

Natural Language Processing and Text Mining

Anne Kao and Stephen R. Poteet (Eds)

Natural Language
Processing and
Text Mining

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2006927721

ISBN-10: 1-84628-175-X Printed on acid-free paper
ISBN-13: 978-1-84628-175-4

©Springer-Verlag London Limited 2007

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the
publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued
by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be
sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of
a specific statement, that such names are exempt from the relevant laws and regulations and therefore
free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the
information contained in this book and cannot accept any legal responsibility or liability for any errors
or omissions that may be made.

Printed in the United States of America (MVY)

9 8 7 6 5 4 3 2 1

Springer Science+Business Media, LLC
springer.com

Anne Kao, BA, MA, MS, PhD
Bellevue, WA98008, USA

Stephen R. Poteet, BA, MA, CPhil
Bellevue, WA98008, USA

List of Contributors

Jan W. Amtrup
Kofax Image Products
5465 Morehouse Dr, Suite 140
San Diego, CA 92121, USA
Jan Amtrup@kofax.com

John Atkinson
Departamento de Ingeniera In-
formtica
Universidad de Concepción
P.O. Box code: 160-C
Concepción, Chile
atkinson@inf.udec.cl

Chutima Boonthum
Department of Computer Science
Old Dominion University
Norfolk, VA 23529, USA
cboont@cs.odu.edu

Janez Brank
J. Stefan Institute
Jamova 39, 1000
Ljubljana, Slovenia
janez.brank@ijs.si

Stephen W. Briner
Department of Psychology, Institute
for Intelligent Systems
University of Memphis
Memphis, TN 38152, USA
sbriner@memphis.edu

Razvan C. Bunescu
Department of Computer Sciences
University of Texas at Austin
1 University Station C0500
Austin, TX 78712-0233, USA
razvan@cs.utexas.edu

Kiel Christianson
Department of Educational Psychol-
ogy
University of Illinois
Champaign, IL 61820, USA
kiel@uiuc.edu

Navdeep Dhillon
Insightful Corporation
1700 Westlake Ave N, Suite 500
Seattle, WA 98109, USA
infact@insightful.com

Oren Etzioni
Department of Computer Science
University of Washington
Seattle, WA 98125-2350, USA
etzionig@cs.washington.edu

Bernd Freisleben
Department of Mathematics and
Computer Science
University of Marburg
Hans-Meerwein-Str.
D-35032 Marburg, Germany
freisleb@informatik.uni-marburg.de

VI List of Contributors

Marko Grobelnik
J. Stefan Institute
Jamova 39, 1000
Ljubljana, Slovenia
marko.grobelnik@ijs.si

Renu Gupta
Center for Language Research
The University of Aizu
Aizu-Wakamatsu City
Fukushima 965-8580, Japan
renu@u-aizu.ac.jp

Martin Hoof
Department of Electrical Engineering
FH Kaiserslautern
Morlauterer Str. 31
D-67657 Kaiserslautern, Germany
m.hoof@et.fh-kl.de

Youcef-Toumi Kamal
Dept. of Mechanical Engineering
Massachusetts Institute of Technol-
ogy
Cambridge, MA 02139, USA
youcef@mit.edu

Anne Kao
Mathematics and Computing
Technology
Boeing Phantom Works
Seattle, WA 92107, USA
anne.kao@boeing.com

Krzysztof Koperski
Insightful Corporation
1700 Westlake Ave N, Suite 500
Seattle, WA 98109, USA
infact@insightful.com

Irwin B. Levinstein
Department of Computer Science
Old Dominion University
Norfolk, VA 23529, USA
ibl@cs.odu.edu

Jisheng Liang
Insightful Corporation
1700 Westlake Ave N, Suite 500
Seattle, WA 98109, USA
infact@insightful.com

Ying Liu
Singapore MIT Alliance
National University of Singapore
Singapore 117576
mpeliuy@nus.edu.sg

Han Tong Loh
Dept. of Mechanical Engineering
National University of Singapore
Singapore 119260
mpelht@nus.edu.sg

Giovanni Marchisio
Insightful Corporation
1700 Westlake Ave N, Suite 500
Seattle, WA 98109, USA
infact@insightful.com

Philip M. McCarthy
Department of Psychology, Institute
for Intelligent Systems
University of Memphis
Memphis, TN 38152, USA
pmmccrth@memphis.edu

Danielle S. McNamara
Department of Psychology, Institute
for Intelligent Systems
University of Memphis
Memphis, TN 38152, USA
dsmcnamr@memphis.edu

Dunja Mladenić
J. Stefan Institute
Jamova 39, 1000
Ljubljana, Slovenia
dunja.mladenic@ijs.si

List of Contributors VII

Raymond J. Mooney
Department of Computer Sciences
University of Texas at Austin
1 University Station C0500
Austin, TX 78712-0233, USA
mooney@cs.utexas.edu

Eni Mustafaraj
Department of Mathematics and
Computer Science
University of Marburg
Hans-Meerwein-Str.
D-35032 Marburg, Germany
eni@informatik.uni-marburg.de

Thien Nguyen
Insightful Corporation
1700 Westlake Ave N, Suite 500
Seattle, WA 98109, USA
infact@insightful.com

Lubos Pochman
Insightful Corporation
1700 Westlake Ave N, Suite 500
Seattle, WA 98109, USA
infact@insightful.com

Ana-Maria Popescu
Department of Computer Science
University of Washington
Seattle, WA 98125-2350, USA
amp@cs.washington.edu

Stephen R. Poteet
Mathematics and Computing
Technology
Boeing Phantom Works
Seattle, WA 92107, USA
stephen.r.poteet@boeing.com

Jonathan Reichhold
Insightful Corporation
1700 Westlake Ave N, Suite 500
Seattle, WA 98109, USA
infact@insightful.com

Vasile Rus
Department of Computer Science,
Institute for Intelligent Systems
University of Memphis
Memphis, TN 38152, USA
vrus@memphis.edu

Mauritius A. R. Schmidtler
Kofax Image Products
5465 Morehouse Dr, Suite 140
San Diego, CA 92121, USA
Maurice Schmidtler@kofax.com

Lothar M. Schmitt
School of Computer Science &
Engineering
The University of Aizu
Aizu-Wakamatsu City
Fukushima 965-8580, Japan
L@LMSchmitt.de

Shu Beng Tor
School of Mechanical and Aerospace
Engineering
Nanyang Technological University
Singapore 117576
msbtor@ntu.edu.sg

Carsten Tusk
Insightful Corporation
1700 Westlake Ave N, Suite 500
Seattle, WA 98109, USA
infact@insightful.com

Dan White
Insightful Corporation
1700 Westlake Ave N, Suite 500
Seattle, WA 98109, USA
infact@insightful.com

Preface

The topic this book addresses originated from a panel discussion at the 2004
ACM SIGKDD (Special Interest Group on Knowledge Discovery and Data
Mining) Conference held in Seattle, Washington, USA. We the editors orga-
nized the panel to promote discussion on how text mining and natural lan-
guage processing, two related topics originating from very different disciplines,
can best interact with each other, and benefit from each other’s strengths. It
attracted a great deal of interest and was attended by 200 people from all
over the world. We then guest-edited a special issue of ACM SIGKDD Explo-
rations on the same topic, with a number of very interesting papers. At the
same time, Springer believed this to be a topic of wide interest and expressed
an interest in seeing a book published. After a year of work, we have put to-
gether 11 papers from international researchers on a range of techniques and
applications.

We hope this book includes papers readers do not normally find in con-
ference proceedings, which tend to focus more on theoretical or algorithmic
breakthroughs but are often only tried on standard test data. We would like
to provide readers with a wider range of applications, give some examples
of the practical application of algorithms on real-world problems, as well as
share a number of useful techniques.

We would like to take this opportunity to thank all our reviewers: Gary
Coen, Ketty Gann, Mark Greaves, Anne Hunt, Dave Levine, Bing Liu, Dra-
gos Margineantu, Jim Schimert, John Thompson, Rod Tjoelker, Rick Wojcik,
Steve Woods, and Jason Wu. Their backgrounds include natural language
processing, machine learning, applied statistics, linear algebra, genetic algo-
rithms, web mining, ontologies and knowledge management. They complement
the editors’ own backgrounds in text mining and natural language processing
very well. As technologists at Boeing Phantom Works, we work on practical
large scale text mining problems such as Boeing airplane maintenance and
safety, various kinds of survey data, knowledge management, and knowledge
discovery, and evaluate data and text mining, and knowledge management
products for Boeing use. We would also like to thank Springer for the oppor-

X Preface

tunity to interact with researchers in the field and for publishing this book
and especially Wayne Wheeler and Catherine Brett for their help and encour-
agement at every step. Finally, we would like to offer our special thanks to
Jason Wu. We would not have been able to put all the chapters together into
a book without his expertise in LATEX and his dedication to the project.

Bellevue, Washington, USA Anne Kao
April 2006 Stephen R. Poteet

Contents

1 Overview
Anne Kao and Stephen R. Poteet . 1

2 Extracting Product Features and Opinions from Reviews
Ana-Maria Popescu and Oren Etzioni . 9

3 Extracting Relations from Text:
From Word Sequences to Dependency Paths
Razvan C. Bunescu and Raymond J. Mooney . 29

4 Mining Diagnostic Text Reports by Learning to Annotate
Knowledge Roles
Eni Mustafaraj, Martin Hoof, and Bernd Freisleben 45

5 A Case Study in Natural Language Based Web Search
Giovanni Marchisio, Navdeep Dhillon, Jisheng Liang, Carsten Tusk,
Krzysztof Koperski, Thien Nguyen, Dan White, and Lubos Pochman 69

6 Evaluating Self-Explanations in iSTART:
Word Matching, Latent Semantic Analysis, and Topic Models
Chutima Boonthum, Irwin B. Levinstein, and Danielle S. McNamara . . . 91

7 Textual Signatures: Identifying Text-Types Using Latent
Semantic Analysis to Measure the Cohesion of Text
Structures
Philip M. McCarthy, Stephen W. Briner, Vasile Rus, and Danielle S.
McNamara . 107

8 Automatic Document Separation:
A Combination of Probabilistic Classification
and Finite-State Sequence Modeling
Mauritius A. R. Schmidtler, and Jan W. Amtrup . 123

XII Contents

9 Evolving Explanatory Novel Patterns for Semantically-
Based Text Mining
John Atkinson . 145

10 Handling of Imbalanced Data in Text Classification:
Category-Based Term Weights
Ying Liu, Han Tong Loh, Kamal Youcef-Toumi, and Shu Beng Tor 171

11 Automatic Evaluation of Ontologies
Janez Brank, Marko Grobelnik, and Dunja Mladenić 193

12 Linguistic Computing with UNIX Tools
Lothar M. Schmitt, Kiel Christianson, and Renu Gupta 221

Index . 259

1

Overview

Anne Kao and Stephen R. Poteet

1.1 Introduction

Text mining is the discovery and extraction of interesting, non-trivial knowl-
edge from free or unstructured text. This encompasses everything from in-
formation retrieval (i.e., document or web site retrieval) to text classification
and clustering, to (somewhat more recently) entity, relation, and event extrac-
tion. Natural language processing (NLP), is the attempt to extract a fuller
meaning representation from free text. This can be put roughly as figuring
out who did what to whom, when, where, how and why. NLP typically makes
use of linguistic concepts such as part-of-speech (noun, verb, adjective, etc.)
and grammatical structure (either represented as phrases like noun phrase
or prepositional phrase, or dependency relations like subject-of or object-of).
It has to deal with anaphora (what previous noun does a pronoun or other
back-referring phrase correspond to) and ambiguities (both of words and of
grammatical structure, such as what is being modified by a given word or
prepositional phrase). To do this, it makes use of various knowledge repre-
sentations, such as a lexicon of words and their meanings and grammatical
properties and a set of grammar rules and often other resources such as an
ontology of entities and actions, or a thesaurus of synonyms or abbreviations.

This book has several purposes. First, we want to explore the use of NLP
techniques in text mining, as well as some other technologies that are novel to
the field of text mining. Second, we wish to explore novel ways of integrating
various technologies, old or new, to solve a text mining problem. Next, we
would like to look at some new applications for text mining. Finally, we have
several chapters that provide various supporting techniques for either text
mining or NLP or both, or enhancements to existing techniques.

2 Anne Kao and Stephen R. Poteet

1.2 Approaches that Use NLP Techniques

The papers in our first group deal with approaches that utilize to various
degrees more in-depth NLP techniques. All of them use a parser of some
sort or another, one of them uses some morphological analysis (or rather
generation), and two of them use other lexical resources, such as WordNet,
FrameNet, or VerbNet. The first three use off-the-shelf parsers while the last
uses their own parser.

Popescu and Etzioni combine a wide array of techniques. Among these
are NLP techniques such as parsing with an off-the-shelf parser, MINIPAR,
morphological rules to generate nouns from adjectives, and WordNet (for its
synonymy and antonymy information, its IS-A hierarchy of word meanings,
and for its adjective-to-noun pertain relation). In addition, they use hand-
coded rules to extract desired relations from the structures resulting from
the parse. They also make extensive and key use of a statistical technique,
pointwise mutual information (PMI), to make sure that associations found
both in the target data and in supplementary data downloaded from the Web
are real. Another distinctive technique of theirs is that they make extensive use
of the Web as a source of both word forms and word associations. Finally, they
introduce relaxation labeling, a technique from the field of image-processing,
to the field of text mining to perform context sensitive classification of words.

Bunescu and Mooney adapt Support Vector Machines (SVMs) to a new
role in text mining, namely relation extraction, and in the process compare
the use of NLP parsing with non-NLP approaches. SVMs have been used
extensively in text mining but always to do text classification, treating a doc-
ument or piece of text as an unstructured bag of words (i.e., only what words
are in the text and what their counts are, not their position with respect to
each other or any other structural relationships among them). The process of
extracting relations between entities, as noted above, has typically been pre-
sumed to require parsing into natural language phrases. This chapter explores
two new kernels for SVMs, a subsequence kernel and a dependency path ker-
nel, to classify the relations between two entities (they assume the entities
have already been extracted by whatever means). Both of these involve using
a wholly novel set of features with an SVM classifier. The dependency path
kernel uses information from a dependency parse of the text while the subse-
quence kernel treats the text as just a string of tokens. They test these two
different approaches on two different domains and find that the value of the
dependency path kernel (and therefore of NLP parsing) depends on how well
one can expect the parser to perform on text from the target domain, which
in turn depends on how many unknown words and expressions there are in
that domain.

Mustafaraj et al. also combine parsing with statistical approaches to clas-
sification. In their case they are using an ensemble or committee of three
different classifiers which are typically used with non-NLP features but the
features they use are based on parse trees. In addition, their application re-

1 Overview 3

quires a morphological analysis of the words in their domain, given the nature
of German, their target language. They explore the use of off-the-shelf POS
taggers and morphological analyzers for this purpose, but find them falling
short in their domain (a technical one, electrical fault diagnosis), and have
to result to hand coding the morphological rules. Another couple of NLP re-
sources that they utilize are FrameNet and VerbNet to find relevant verbs and
relationships to map into their knowledge-engineering categories, but this is
used off-line for analysis rather than in on-line processing. Finally, they use
active learning to efficiently train their classifiers, a statistical technique that
is relatively new to text mining (or data mining in general, for that matter).

Marchisio et al. utilize NLP techniques almost exclusively, writing their
own parser to do full parsing and using their novel indexing technique to
compress complex parse forests in a way that captures basic dependency rela-
tions like subject-of, object-of, and verb-modification like time, location, etc.,
as well as extended relations involving the modifiers of the entities involved
in the basic relations or other entities associated with them in the text or in
background knowledge. The index allows them to rapidly access all of these
relations, permitting them to be used in document search, an area that has
long been considered not to derive any benefit from any but surface NLP
techniques like tokenization and stemming. This entails a whole new protocol
for search, however, and the focus of their article is on how well users adapt
to this new protocol.

1.3 Non-NLP Techniques

Boontham et al. discuss the use of three different approaches to categoriz-
ing the free text responses of students to open-ended questions: simple word
matching, Latent Semantic Analysis (LSA), and a variation on LSA which
they call Topic Models. LSA and Topic Models are both numerical meth-
ods for generating new features based on linear algebra and ultimately begin
with a representation of the text as a bag of words. In addition, they use
discriminant analysis from statistics for classification. Stemming and soundex
(a method for correcting misspelling by representing words in a way that
roughly corresponds to their pronunciation) are used in the word matching
component. Stemming is the only NLP technique used.

McCarthy et al. also use LSA as their primary technique, employing it to
compare different sections of a document rather than whole documents and
develop a “signature” of documents based on the correlation between different
sections.

Schmidtler and Amtrup combine an SVM with a Markov chain to de-
termine how to separate sequences of text pages into distinct documents of
different types given that the text pages are very noisy, being the product
of optical character recognition. They do a nice job of exploring the different
ways they might model a sequence of pages, in terms both of what categories

4 Anne Kao and Stephen R. Poteet

one might assign to pages and how to combine page content and sequence
information. They use simple techniques like tokenization and stemming, but
not more complex NLP techniques.

Atkinson uses a technique that is very novel for text mining, genetic al-
gorithms (GAs). Genetic algorithms are typically used for solving problems
where the features can be represented as binary vectors. Atkinson adapts this
to text representations by employing a whole range of numerical and statisti-
cal methods, including LSA and Markov chains, and various metrics build on
these. However, other than some manually constructed contexts for rhetorical
roles, he uses no true NLP techniques.

1.4 Range of Applications

The papers in this book perform a wide range of applications, some more
traditional for text mining and some quite novel.

Marchisio et al. take a novel approach to a very traditional application,
simple search or document retrieval. They introduce a new paradigm, taking
advantage of the linguistic structure of the documents as opposed to key
words. Their end-user is the average user of a web search engine.

There are several variants on information extraction.
Bunescu and Mooney look at extracting relations, which, along with entity

extraction, is an important current research area in text mining. They focus
on two domains, bioinformatics and newspaper articles, each involving a com-
pletely different set of entities and relations. The former involves entities like
genes, proteins, and cells, and relations like protein-protein interactions and
subcellular localization. The latter involves more familiar entities like people,
organizations, and locations and relations like “belongs to,” “is head of,” etc.

Mustafaraj et al. focus on extracting a different kind of relation, the roles
of different entities relevant to diagnosis in the technical domain of electrical
engineering. These roles include things like “observed object,” “symptom,”
and “cause.” In the end, they are trying to mark-up the text of diagnostic
reports in a way to facilitate search and the extraction of knowledge about
the domain.

Popescu and Etzioni’s application is the extraction of product features,
parts, and attributes, and customers’ or users’ opinions about these (both
positive and negative, and how strongly they feel) from customer product
reviews. These include specialized entities and relations, as well as opinions
and their properties, which do not quite fit into these categories.

Atkinson ventures into another novel extraction paradigm, extracting
knowledge in form of IF-THEN rules from scientific studies. The scientific
domain he focuses on in this particular study is agricultural and food science.

The remaining applications do not fit into any existing text mining niche
very well. Schmidtler et al. need to solve a very practical problem, that of sep-
arating a stack of pages into distinct documents and labeling the document

1 Overview 5

type. Complicating this problem is the need to use optical character recog-
nition, which results in very noisy text data (lots of errors at the character
level). To help overcome this, they utilize whatever sequential information is
available in several ways: in setting up the categories (not just document type
but beginning/middle/end of document type); in using the category of preced-
ing pages as input in the prediction of a page, and in incorporating knowledge
about the number of pages in each document type and hard constraints on
the possible sequencing of document types.

McCarthy et al. investigate the use of LSA to compare the similarity of
the different sections of scientific studies as a contribution to rhetorical anal-
ysis. While the tool is at first blush useful primarily in the scientific field of
discourse analysis, they suggest a couple of practical applications, using it to
help classify different types of documents (genre and field) or, by authors, to
assess how their document measures up to other documents in the same genre
and field.

Finally, Boonthum et al. explore the use of various text mining techniques
in pedagogy, i.e., to give feedback to students based on discursive rather than
categorical (i.e., true-false or multiple choice) answers. In the end, it is a kind
of classification problem, but they investigate a method to adapt this quickly
to a new domain and set of questions, an essential element for this particular
application.

1.5 Supporting Techniques

In addition to various approaches using text mining for some application,
there are several papers that explore various techniques that can support text
mining (and frequently other data mining) techniques.

Liu et al. investigate a new means of overcoming one of the more impor-
tant problems in automatic text classification, imbalanced data (the situation
where some categories have a lot of examples in the data and other categories
have very few examples in the data). They explore various term weighting
schemes inspired by the TFIDF metric (term frequency / inverse document
frequency) used traditionally in document retrieval in feature selection, and
demonstrate that the resulting weighted features show improved performance
when used with an SVM.

Brank et al. do a nice survey and classification of approaches to evaluating
ontologies for their appropriateness for different domains and tasks, and pro-
pose their own metric. Ontologies are an important component for many NLP
and text mining applications (e.g., topic classification, entity extraction) and,
while the method they propose is based on graph theoretic principles rather
than on text mining, many of the other approaches they survey utilize text
mining principles as part of the evaluation (or part of the automatic or semi-
automatic generation) of ontologies for a particular domain.

6 Anne Kao and Stephen R. Poteet

Finally, the final chapter by Schmitt et al. is rather different from the other
chapters, being more of a tutorial that can benefit students and seasoned pro-
fessionals alike. It shows how to construct a broad range of text mining and
NLP tools using simple UNIX commands and sed and awk (and provides an
excellent primer on these in the process). These tools can be used to perform
a number of functions, from quite basic ones like tokenization, stemming, or
synonym replacement, which are fundamental to many applications, to more
complex or specialized ones, like constructing a concordance (a list of terms
in context from a corpus, a set of documents to be used for training or analy-
sis) or merging text from different formats to capture important information
from each while eliminating irrelevant notations (e.g., eliminating irrelevant
formatting mark-up but retaining information relevant both to the pronun-
ciation and kanji forms of different Japanese characters. This information is
not only useful for people working on UNIX (or Linux), but can be fairly
easily adapted to Perl, which shares much of the regular expression language
features and syntax of the UNIX tools, sed and awk.

1.6 Future Work

With the increased use of the Internet, text mining has become increasingly
important since the term came into popular usage over 10 years ago. Highly
related and specialized fields such as web mining and bioinformatics have also
attracted a lot of research work. However, more work is still needed in several
major directions. (1) Data mining practitioners largely feel that the majority
of data mining work lies in data cleaning and data preparation. This is per-
haps even more true in the case of text mining. Much text data does not follow
prescriptive spelling, grammar or style rules. For example, the language used
in maintenance data, help desk reports, blogs, or email does not resemble that
of well-edited news articles at all. More studies on how and to what degree the
quality of text data affects different types of text mining algorithms, as well
as better methods to ‘preprocess’ text data would be very beneficial. (2) Prac-
titioners of text mining are rarely sure whether an algorithm demonstrated
to be effective on one type of data will work on another set of data. Stan-
dard test data sets can help compare different algorithms, but they can never
tell us whether an algorithm that performs well on them will perform well
on a particular user’s dataset. While establishing a fully articulated natural
language model for each genre of text data is likely an unreachable goal, it
would be extremely useful if researchers could show which types of algorithms
and parameter settings tend to work well on which types of text data, based
on relatively easily ascertained characteristics of the data (e.g., technical vs.
non-technical, edited vs. non-edited, short news vs. long articles, proportion
of unknown vs. known words or jargon words vs. general words, complete,
well-punctuated sentences vs. a series of phrases with little or no punctua-
tion, etc.) (3) The range of text mining applications is now far broader than

1 Overview 7

just information retrieval, as exhibited by some of the new and interesting
applications in this book. Nevertheless, we hope to see an even wider range of
applications in the future and to see how they drive additional requirements
for text mining theory and methods. In addition, newly emerging fields of
study such as link analysis (or link mining) have suggested new directions for
text mining research, as well. Our hope is that between new application areas
and cross-pollination from other fields, text mining will continue to thrive and
see new breakthroughs.

2

Extracting Product Features and Opinions
from Reviews

Ana-Maria Popescu and Oren Etzioni

2.1 Introduction

The Web contains a wealth of opinions about products, politicians, and more,
which are expressed in newsgroup posts, review sites, and elsewhere. As a
result, the problem of “opinion mining” has seen increasing attention over the
past three years from [1, 2] and many others. This chapter focuses on product
reviews, though we plan to extend our methods to a broader range of texts
and opinions.

Product reviews on Web sites such as amazon.com and elsewhere often
associate meta-data with each review, indicating how positive (or negative)
it is using a 5-star scale, and also rank products by how they fare in the
reviews at the site. However, the reader’s taste may differ from the reviewers’.
For example, the reader may feel strongly about the quality of the gym in a
hotel, whereas many reviewers may focus on other aspects of the hotel, such
as the decor or the location. Thus, the reader is forced to wade through a
large number of reviews looking for information about particular features of
interest.

We decompose the problem of review mining into the following main sub-
tasks:

I. Identify product features. In a given review, features can be explicit
(e.g., “the size is too big ”) or implicit (e.g., “the scanner is slow” refers to
the “scanner speed”).

II. Identify opinions regarding product features. For example, “the
size is too big” contains the opinion phrase “too big,” which corresponds to
the “size” feature.

III. Determine the polarity of opinions. Opinions can be positive
(e.g., “this scanner is so great”) or negative (e.g., “this scanner is a complete
disappointment”).

IV. Rank opinions based on their strength. For example, “horrible”
is a stronger indictment than “bad.”

10 Ana-Maria Popescu and Oren Etzioni

This chapter introduces opine, an unsupervised information extraction
system that embodies a solution to each of the above subtasks. Given a partic-
ular product and a corresponding set of reviews, opine outputs a set of product
features, accompanied by a list of associated opinions, which are ranked based
on strength.

Our contributions are as follows:
1. We describe opine’s novel use of a relaxation labeling method to find

the semantic orientation of words in the context of given product features and
sentences.

2. We compare opine with the review mining system of Hu and Liu [2]
and find that opine’s precision on the feature extraction task is 22% higher
than that of Hu and Liu, although its recall is 3% lower. We show that 1/3
of opine’s increase in precision comes from the use of its feature assessment
mechanism on review data while the rest is due to Web statistics.

3. While many other systems have used extracted opinion phrases in order
to determine the polarity of sentences or documents, opine reports its preci-
sion and recall on the tasks of opinion phrase extraction and opinion phrase
polarity extraction in the context of known product features and sentences.
On the first task, opine has a precision of 79% and a recall of 76%. On the
second task, opine has a precision of 86% and a recall of 89%.

4. Finally, opine ranks the opinion phrases corresponding to a particular
property based on their strength and obtains an accuracy of 73%.

The remainder of this chapter is organized as follows: Section 2.2 intro-
duces the basic terminology; Section 2.3 gives an overview of opine, and
describes and evaluates its main components; Section 2.4 describes related
work; and Section 2.5 describes our conclusions and future work.

2.2 Terminology

A product class (e.g., Scanner) is a set of products (e.g., Epson1200). opine
extracts the following types of product features: properties, parts, features of
product parts, related concepts, parts and properties of related concepts (see
Table 2.1 in subsection 2.3.2 for examples in the Scanner domain). Related
concepts are concepts relevant to the customers’ experience with the main
product (e.g., the company that manufactures a scanner). The relationships
between the main product and related concepts are typically expressed as
verbs (e.g., “the company manufactures scanners”) or prepositions (“scanners
from Epson”). Features can be explicit (“good scan quality”) or implicit
(“good scans” implies good ScanQuality).

opine also extracts opinion phrases, which are adjective, noun, verb or
adverb phrases representing customer opinions. Opinions can be positive or
negative and vary in strength (e.g., “fantastic” is stronger than “good”).

2.3 opine Overview

This section gives an overview of opine (see Figure 2.1) and describes its
components and their experimental evaluation.

2 Extracting Product Features and Opinions from Reviews 11

Given product class C with instances I and corresponding reviews R,
opine’s goal is to find a set of (feature, opinions) tuples {(f, oi, ...oj)} such
that f ∈ F and oi, ...oj ∈ O, where:

a) F is the set of product class features in R.
b) O is the set of opinion phrases in R.
c) f is a feature of a particular product instance.
d) o is an opinion about f in a particular sentence.
d) the opinions associated with f are ranked based on opinion strength.

Input: product class C, reviews R.
Output: set of [feature, ranked opinion list] tuples
R’ ← parseReviews(R);

E ← findExplicitFeatures(R’, C);

O ← findOpinions(R’, E);

CO ← clusterOpinions(O);

I ← findImplicitFeatures(CO, E);

RO ← rankOpinions(CO);

{(f , oi, ...oj)...}←outputTuples(RO, I ∪ E);

Fig. 2.1. OPINE Overview.

The steps of our solution are outlined in Figure 2.1 above. opine parses the
reviews using MINIPAR [3] and applies a simple pronoun-resolution module
to the parsed review data. opine then uses the data to find explicit prod-
uct features. opine’s Feature Assessor and its use of Web Point-wise Mutual
Information (PMI) statistics are vital for the extraction of high-quality fea-
tures (see 2.3.3). opine then identifies opinion phrases associated with explicit
features and finds their polarity. opine’s novel use of relaxation labeling tech-
niques for determining the semantic orientation of potential opinion words
in the context of given features and sentences leads to high precision and
recall on the tasks of opinion phrase extraction and opinion phrase polarity
extraction (see 2.3.5).

Opinion phrases refer to properties, which are sometimes implicit (e.g.,
“tiny phone” refers to the size of the phone). In order to extract implicit
properties, opine first clusters opinion phrases (e.g., tiny and small will be
placed in the same cluster), automatically labels the clusters with property
names (e.g., Size) and uses them to extract implicit features (e.g., PhoneSize).
The final component of our system is the ranking of opinions which refer to the
same property based on their strength (e.g., fantastic > (almost, great) >
good). Finally, opine outputs a set of (feature, ranked opinions) tuples for
each identified feature.

2.3.1 The KnowItAll System
opine is built on top of KnowItAll, a Web-based, domain-independent infor-
mation extraction system [4]. Given a set of relations of interest, KnowItAll

12 Ana-Maria Popescu and Oren Etzioni

instantiates relation-specific generic extraction patterns into extraction rules
which find candidate facts. KnowItAll’s Assessor then assigns a probability
to each candidate. The Assessor uses a form of Point-wise Mutual Informa-
tion (PMI) between phrases that is estimated from Web search engine hit
counts [5]. It computes the PMI between each fact and automatically gener-
ated discriminator phrases (e.g., “is a scanner” for the isA() relationship
in the context of the Scanner class). Given fact f and discriminator d, the
computed PMI score is:

PMI(f, d) = Hits(d + f)
Hits(d)∗Hits(f)

For example, a high PMI between “Epson 1200” and phrases such as “is a
scanner” suggests that “Epson 1200” is a Scanner instance. The PMI scores
are converted to binary features for a Naive Bayes Classifier, which outputs a
probability associated with each fact [4].

2.3.2 Finding Explicit Features

opine extracts explicit features for the given product class from parsed review
data. The system recursively identifies the parts and the properties of the given
product class and their parts and properties, in turn, continuing until no more
such features are found. The system then finds related concepts and extracts
their meronyms (parts) and properties. Table 2.1 shows that each feature type
contributes to the set of final features (averaged over seven product classes).

Table 2.1. Explicit Feature Information

Explicit Features Examples % Total

Properties ScannerSize 7%

Parts ScannerCover 52%

Features of Parts BatteryLife 24%

Related Concepts ScannerImage 9%

Related Concepts’ Features ScannerImageSize 8%

Table 2.2. Meronymy Lexical Patterns Notation: [C] = product class (or
instance) [M] = candidate meronym (∗) = wildcard character

[M] of (*) [C] [M] for (*) [C]
[C]’s M [C] has (*) [M]
[C] with (*) [M] [M] (*) in (*) [C]
[C] come(s) with (*) [M] [C] contain(s)(ing) (*) [M]
[C] equipped with (*) [M] [C] endowed with (*) [M]

In order to find parts and properties, opine first extracts the noun phrases
from reviews and retains those with frequency greater than an experimentally
set threshold. opine’s Feature Assessor, which is an instantiation of Know-
ItAll’s Assessor, evaluates each noun phrase by computing the PMI scores

2 Extracting Product Features and Opinions from Reviews 13

between the phrase and meronymy discriminators associated with the prod-
uct class (see Table 2.2). opine distinguishes parts from properties using
WordNet’s IS-A hierarchy (which enumerates different kinds of properties)
and morphological cues (e.g., “-iness”, “-ity” suffixes).

Given a target product class C, opine finds concepts related to C by
extracting frequent noun phrases as well as noun phrases linked to C or C’s
instances through verbs or prepositions (e.g., “The scanner produces great
images”). Related concepts are assessed as described in [6] and then stored as
product features together with their parts and properties.

2.3.3 Experiments: Explicit Feature Extraction

The previous review mining systems most relevant to our work are those in
[2] and [7]. We only had access to the data used in [2] and therefore our
experiments include a comparison between opine and Hu and Liu’s system,
but no direct comparison between opine and IBM’s SentimentAnalyzer [7]
(see the related work section for a discussion of this work).

Hu and Liu’s system uses association rule mining to extract frequent re-
view noun phrases as features. Frequent features are used to find potential
opinion words (only adjectives) and the system uses WordNet synonyms and
antonyms in conjunction with a set of seed words in order to find actual opin-
ion words. Finally, opinion words are used to extract associated infrequent
features. The system only extracts explicit features.

On the five datasets used in [2], opine’s precision is 22% higher than Hu’s
at the cost of a 3% recall drop. There are two important differences between
opine and Hu’s system: a) opine’s Feature Assessor uses PMI assessment to
evaluate each candidate feature and b) opine incorporates Web PMI statistics
in addition to review data in its assessment. In the following, we quantify the
performance gains from a) and b).

a) In order to quantify the benefits of opine’s Feature Assessor, we use
it to evaluate the features extracted by Hu’s algorithm on review data. The
Feature Assessor improves Hu’s precision by 6%.

b) In order to evaluate the impact of using Web PMI statistics, we assess
opine’s features first on reviews, and then on reviews in conjunction with the
Web. Web PMI statistics increase precision by an average of 14.5%.

Overall, 1/3 of OPINE’s precision increase over Hu’s system comes from
using PMI assessment on reviews and the other 2/3 from the use of the Web
PMI statistics.

In order to show that opine’s performance is robust across multiple
product classes, we used two sets of 1,307 reviews downloaded from
tripadvisor.com for Hotels and amazon.com for Scanners. Two annotators
labeled a set of unique 450 opine extractions as correct or incorrect. The
inter-annotator agreement was 86%. The extractions on which the annotators
agreed were used to compute opine’s precision, which was 89%. Furthermore,
the annotators extracted explicit features from 800 review sentences (400 for

14 Ana-Maria Popescu and Oren Etzioni

each domain). The inter-annotator agreement was 82%. opine’s recall on the
set of 179 features on which both annotators agreed was 73%.

Table 2.3. Precision Comparison on the Explicit Feature Extraction Task.
OPINE’s precision is 22% better than Hu’s precision; Web PMI statistics are respon-
sible for 2/3 of the precision increase. All results are reported with respect to Hu’s.

Data Hu Hu Hu OPINE OPINE
Assess(Reviews) Assess(Reviews,Web) (Reviews)

D1 0.75 +0.05 +0.17 +0.07 +0.19

D2 0.71 +0.03 +0.19 +0.08 +0.22

D3 0.72 +0.03 +0.25 +0.09 +0.23

D4 0.69 +0.06 +0.22 +0.08 +0.25

D5 0.74 +0.08 +0.19 +0.04 +0.21

Avg 0.72 +0.06 + 0.20 +0.07 +0.22

Table 2.4. Recall Comparison on the Explicit Feature Extraction Task.
OPINE’s recall is 3% lower than the recall of Hu’s original system (precision level
= 0.8). All results are reported with respect to Hu’s.

Data Hu Hu Hu OPINE OPINE
Assess(Reviews) Assess(Reviews,Web) (Reviews)

D1 0.82 -0.16 -0.08 -0.14 -0.02

D2 0.79 -0.17 -0.09 -0.13 -0.06

D3 0.76 -0.12 -0.08 -0.15 -0.03

D4 0.82 -0.19 -0.04 -0.17 -0.03

D5 0.80 -0.16 -0.06 -0.12 -0.02

Avg 0.80 -0.16 -0.07 -0.14 -0.03

2.3.4 Finding Implicit Features

We now address the extraction of implicit features. The system first extracts
opinion phrases attached to explicit features, as detailed in 2.3.5. Opinion
phrases refer to properties (e.g., “clean” refers to “cleanliness”). When the
property is implicit (e.g., “clean room”), the opinion is attached to an ex-
plicit feature (e.g., “room”). opine examines opinion phrases associated with
explicit features in order to extract implicit properties. If the opinion phrase
is a verb, noun, or adverb, opine associates it with Quality; if the opinion
phrase is an adjective, opine maps it to a more specific property. For instance,
if “clean” and “spacious” are opinions about hotel rooms, opine associates
“clean” with Cleanness and “spacious” with Size.

The problem of associating adjectives with an implied property is closely
related to that of finding adjectival scales [8]. opine uses WordNet synonymy
and antonymy information to group the adjectives in a set of initial clusters.
Next, any two clusters A1 and A2 are merged if multiple pairs of adjectives (a1,
a2) exist such that a1 ∈ A1, a2 ∈ A2 and a1 is similar to a2 (an explanation

2 Extracting Product Features and Opinions from Reviews 15

of adjective similarity is given below). For example, A1 = {“intuitive”} is
merged with A2 = {“understandable”, “clear”}.

Clusters are labeled with the names of their corresponding properties (see
Table 2.6). The property names are obtained from either WordNet (e.g., big is
a value of size), or from a name-generation module which adds suffixes (e.g.,
“-iness”, “-ity”) to adjectives and uses the Web to filter out non-words and
highly infrequent candidate names. If no property names can be found, the
label is generated based ona djectives: “beIntercontinental,” “beWelcome,”
etc.

Adjective Similarity The adjective similarity rules in Table 2.5 consist
of WordNet-Based rules and Web-Based rules. WordNet relationships such as
pertain(adjSynset, nounSynset) and attribute(adjSynset, nounSynset) are
used to relate adjectives to nouns representing properties: if two adjectives
relate to the same property or to related properties, the two adjectives are
similar. In addition to such WordNet-based rules, opine bootstraps a set
of lexical patterns (see 2.3.7 for details) and instantiates them in order to
generate search-engine queries which confirm that two adjectives correspond
to the same property. Given clusters A1 and A2, opine instantiates patterns
such as “a1, (*) even a2 “ with a1 ∈ A1 and a2 ∈ A2 in order to check if a1 and
a2 are similar. For example, hits (“clear, (*) even intuitive”) > 5, therefore
“clear” is similar to “intuitive.”

Table 2.5. WordNet-Based and Web-Based Adjective Similarity Rules.
Notation: s1, s2 = WordNet synsets

adj1 and adj2 are similar if

∃s1, s2 s.t. pertain(adj1, s1), attribute(adj2, s2), isA(s1, s2)
∃s1, s2 s.t. pertain(adj1, s1), pertain(adj2, s2), isA(s1, s2)
∃s1, s2 s.t. attribute(adj1, s1), attribute(adj2, s2), isA(s1, s2)
∃p ∈ {“[X], even[Y]′′, “[X], almost[Y]′′, ...} s.t. hits(p(adj1, adj2)) > t, t = threshold

Table 2.6. Examples of Labeled Opinion Clusters

Quality: like, recommend, good, very good, incredibly good, great, truly great
Clarity: understandable, clear, straightforward, intuitive
Noise: quiet, silent, noisy, loud, deafening
Price: inexpensive, affordable, costly, expensive, cheap

Given an explicit feature f and a set of opinions associated with f which
have been clustered as previously described, opine uses the opinion clus-
ters to extract implicit features. For example, given f=Room and opinions
clean, spotless in the Cleanness cluster, opine generates the implicit feature
RoomCleanness. We evaluated the impact of implicit feature extraction in the
Hotels and Scanners domains.1 Implicit features led to a 2% average increase

1 Hu’s datasets have few implicit features and Hu’s system doesn’t handle implicit
feature extraction.

16 Ana-Maria Popescu and Oren Etzioni

in precision and a 6% increase in recall, mostly in the Hotel domain, which is
rich in adjectives (e.g., “clean room,” “soft bed”).

2.3.5 Finding Opinion Phrases and Their Polarity

This subsection describes how opine extracts potential opinion phrases, dis-
tinguishes between opinions and non-opinions, and finds the polarity of each
opinion in the context of its associated feature in a particular review sentence.

opine uses explicit features to identify potential opinion phrases. Our
intuition is that an opinion phrase associated with a product feature will
occur in its vicinity. This idea is similar to that of [9] and [2], but instead
of using a window of size k or the output of a noun phrase chunker, opine
takes advantage of the dependencies computed by the MINIPAR parser. Our
intuition is embodied by a set of extraction rules, the most important of which
are shown in Table 2.7. If an explicit feature is found in a sentence, opine
applies the extraction rules in order to find the heads of potential opinion
phrases. Each head word, together with its modifiers, is returned as a potential
opinion phrase.

Table 2.7. Domain-Independent Rules for Potential Opinion Phrase
Extraction. Notation: po=potential opinion, M=modifier, NP=noun phrase,
S=subject, P=predicate, O=object. Extracted phrases are enclosed in parenthe-
ses. Features are indicated by the typewriter font. The equality conditions on the
left-hand side use po’s head.

Extraction Rules Examples

if ∃(M, NP = f) → po = M (expensive) scanner

if ∃(S = f, P, O) → po = O lamp has (problems)

if ∃(S, P, O = f) → po = P I (hate) this scanner

if ∃(S = f, P) → po = P program (crashed)

Table 2.8. Dependency Rule Templates For Finding Words w, w′ with
Related Semantic Orientation Labels Notation: v,w,w’=words; f, f’=feature
names; dep=dependent; m=modifier

Rule Templates Example Rules

dependent(w, w′) modifier(w, w′)
∃v s.t. dep(w, v), dep(v, w′) ∃v s.t. m(w, v), object(v, w′)
∃v s.t. dep(w, v), dep(w′, v) ∃v s.t. m(w, v), object(w′, v)

∃f, f ′ s.t. dep(w, f), dep(w′, f ′), dep(f, f ′) ∃f, f ′ s.t. m(w, f), m(w′, f ′), and(f, f ′)

opine examines the potential opinion phrases in order to identify the ac-
tual opinions. First, the system finds the semantic orientation for the lexical
head of each potential opinion phrase. Every phrase whose head word has a
positive or negative semantic orientation is then retained as an opinion phrase.

2 Extracting Product Features and Opinions from Reviews 17

In the following, we describe how opine finds the semantic orientation of
words.

Context-Specific Word Semantic Orientation

Given a set of semantic orientation (SO) labels ({positive, negative, neutral}),
a set of reviews and a set of tuples (w, f , s), where w is a potential opinion
word associated with feature f in sentence s, opine assigns a SO label to each
tuple (w, f , s). For example, the tuple (sluggish, driver, “I am not happy with
this sluggish driver”) will be assigned a negative SO label 2.

opine uses the three-step approach below to label each (w, f , s) tuple:
1. Given the set of reviews, opine finds a SO label for each word w.
2. Given the set of reviews and the set of SO labels for words w, opine

finds a SO label for each (w, f) pair.
3. Given the set of SO labels for (w, f) pairs, opine finds a SO label for

each (w, f , s) input tuple.
Each of these subtasks is cast as an unsupervised collective classification

problem and solved using the same mechanism. In each case, opine is given
a set of objects (words, pairs or tuples) and a set of labels (SO labels); opine
then searches for a global assignment of labels to objects. In each case, opine
makes use of local constraints on label assignments (e.g., conjunctions and
disjunctions constraining the assignment of SO labels to words [10]).

A key insight in opine is that the problem of searching for a global SO
label assignment to words, pairs, or tuples while trying to satisfy as many
local constraints on assignments as possible is analogous to labeling problems
in computer vision (e.g., model-based matching). opine uses a well-known
computer vision technique, relaxation labeling [11], in order to solve the three
subtasks described above.

Relaxation Labeling Overview

Relaxation labeling is an unsupervised classification technique which takes as
input:
a) a set of objects (e.g., words)
b) a set of labels (e.g., SO labels)
c) initial probabilities for each object’s possible labels
d) the definition of an object o’s neighborhood (a set of other objects which
influence the choice of o’s label)
e) the definition of neighborhood features
f) the definition of a support function for an object label

The influence of an object o’s neighborhood on its label L is quantified
using the support function. The support function computes the probability
of the label L being assigned to o as a function of o’s neighborhood features.

2 We use “word” to refer to a potential opinion word w and “feature” to refer to
the word or phrase which represents the explicit feature f .

18 Ana-Maria Popescu and Oren Etzioni

Examples of features include the fact that a certain local constraint is satisfied
(e.g., the word nice participates in the conjunction and together with some
other word whose SO label is estimated to be positive).

Relaxation labeling is an iterative procedure whose output is an assign-
ment of labels to objects. At each iteration, the algorithm uses an update
equation to reestimate the probability of an object label based on its previ-
ous probability estimate and the features of its neighborhood. The algorithm
stops when the global label assignment stays constant over multiple consecu-
tive iterations.

We employ relaxation labeling for the following reasons: a) it has been
extensively used in computer-vision with good results and b) its formalism
allows for many types of constraints on label assignments to be used simul-
taneously. As mentioned before, constraints are integrated into the algorithm
as neighborhood features which influence the assignment of a particular label
to a particular object.

opine uses the following sources of constraints:
a) conjunctions and disjunctions in the review text
b) manually supplied syntactic dependency rule templates (see Table 2.8).

The templates are automatically instantiated by our system with different
dependency relationships (premodifier, postmodifier, etc.) in order to obtain
syntactic dependency rules which find words with related SO labels.

c) automatically derived morphological relationships (e.g., “wonderful” and
“wonderfully” are likely to have similar SO labels).

d) WordNet-supplied synonymy, antonymy, IS-A and morphological rela-
tionships between words. For example, clean and neat are synonyms and so
they are likely to have similar SO labels.

Each of the SO label assignment subtasks previously identified is solved
using a relaxation labeling step. In the following, we describe in detail how
relaxation labeling is used to find SO labels for words in the given review sets.

Finding SO Labels for Words

For many words, a word sense or set of senses is used throughout the re-
view corpus with a consistently positive, negative or neutral connotation (e.g.,
“great,” “awful,” etc.). Thus, in many cases, a word w’s SO label in the con-
text of a feature f and sentence s will be the same as its SO label in the
context of other features and sentences. In the following, we describe how
opine’s relaxation labeling mechanism is used to find a word’s dominant SO
label in a set of reviews.

For this task, a word’s neighborhood is defined as the set of words connected
to it through conjunctions, disjunctions, and all other relationships previously
introduced as sources of constraints.

RL uses an update equation to re-estimate the probability of a word label
based on its previous probability estimate and the features of its neighbor-
hood (see Neighborhood Features). At iteration m, let q(w, L)(m) denote

2 Extracting Product Features and Opinions from Reviews 19

the support function for label L of w and let P (l(w) = L)(m) denote the prob-
ability that L is the label of w. P (l(w) = L)(m+1) is computed as follows:

RL Update Equation [12]

P (l(w) = L)(m+1) =
P (l(w) = L)(m)(1 + αq(w, L)(m))∑

L′ P (l(w) = L′)(m)(1 + αq(w, L′)(m))

where L′ ∈ {pos, neg, neutral} and α > 0 is an experimentally set constant
keeping the numerator and probabilities positive. RL’s output is an assignment
of dominant SO labels to words.

In the following, we describe in detail the initialization step, the derivation
of the support function formula and the use of neighborhood features.

RL Initialization Step opine uses a version of Turney’s PMI-based
approach [13] in order to derive the initial probability estimates (P (l(w) =
L)(0)) for a subset S of the words (since the process of getting the necessary
hitcounts can be expensive, S contains the top 20% most frequent words).
opine computes a SO score so(w) for each w in S as the difference between
the PMI of w with positive keywords (e.g., “excellent”) and the PMI of w with
negative keywords (e.g., “awful”). When so(w) is small, or w rarely co-occurs
with the keywords, w is classified as neutral. Otherwise, if so(w) > 0, w is
positive, and if so(w) < 0, w is negative. opine then uses the labeled S set
in order to compute prior probabilities P (l(w) = L), L ∈ {pos, neg, neutral}
by computing the ratio between the number of words in S labeled L and
|S|. These probabilities will be used as initial probability estimates associated
with the labels of the words outside of S.

Support Function The support function computes the probability of
each label for word w based on the labels of objects in w’s neighborhood N .

Let Ak = {(wj , Lj)|wj ∈ N} , 0 < k ≤ 3|N | represent one of the potential
assignments of labels to the words in N . Let P (Ak)(m) denote the probability
of this particular assignment at iteration m. The support for label L of word
w at iteration m is :

q(w, L)(m) =

3|N|∑
k=1

P (l(w) = L|Ak)(m) ∗ P (Ak)(m)

We assume that the labels of w’s neighbors are independent of each other
and so the formula becomes:

q(w, L)(m) =

3|N|∑
k=1

P (l(w) = L|Ak)(m) ∗
|N|∏
j=1

P (l(wj) = Lj)(m)

Every P (l(wj) = Lj)(m) term is the estimate for the probability that
l(wj) = Lj (which was computed at iteration m using the RL update equa-
tion).

20 Ana-Maria Popescu and Oren Etzioni

The P (l(w) = L|Ak)(m) term quantifies the influence of a particular label
assignment to w’s neighborhood over w’s label. In the following, we describe
how we estimate this term.

Neighborhood Features Each type of word relationship which con-
strains the assignment of SO labels to words (synonymy, antonymy, conjunc-
tion, morphological relations, etc.) is mapped by opine to a neighborhood
feature. This mapping allows opine to simultaneously use multiple indepen-
dent sources of constraints on the label of a particular word. In the following,
we formalize this mapping.

Let T denote the type of a word relationship in R and let Ak,T represent
the labels assigned by Ak to neighbors of a word w which are connected to w
through a relationship of type T . We have Ak =

⋃
T Ak,T and

P (l(w) = L|Ak)(m) = P (l(w) = L|
⋃
T

Ak,T)(m)

For each relationship type T , opine defines a neighborhood feature
fT (w, L, Ak,T) which computes P (l(w) = L|Ak,T), the probability that w’s
label is L given Ak,T (see below). P (l(w) = L|⋃T Ak,T)(m) is estimated com-
bining the information from various features about w’s label using the sigmoid
function σ():

P (l(w) = L|Ak)(m) = σ(

j∑
i=1

f i(w, L, Ak,i)(m) ∗ ci)

where c0, ...cj are weights whose sum is 1 and which reflect opine ’s confidence
in each type of feature.

Given word w, label L, relationship type T and neighborhood label as-
signment Ak, let NT represent the subset of w’s neighbors connected to w
through a type T relationship. The feature fT computes the probability that
w’s label is L given the labels assigned by Ak to words in NT . Using Bayes’s
Law and assuming that these labels are independent given l(w), we have the
following formula for fT at iteration m:

fT (w, L, Ak,T)(m) = P (l(w) = L)(m) ∗
|NT |∏
j=1

P (Lj |l(w) = L)

P (Lj |l(w) = L) is the probability that word wj has label Lj if wj and w are
linked by a relationship of type T and w has label L. We make the simpli-
fying assumption that this probability is constant and depends only on T , L
and Lj , not on the particular words wj and w. For each tuple (T , L, Lj),
L, Lj ∈ {pos, neg, neutral}, opine builds a probability table using a small set
of bootstrapped positive, negative and neutral words.

Finding (Word, Feature) SO Labels

This subtask is motivated by the existence of frequent words which change
their SO label based on associated features, but whose SO labels in the context

2 Extracting Product Features and Opinions from Reviews 21

of the respective features are consistent throughout the reviews (e.g., in the
Hotel domain, “hot water” has a consistently positive connotation, whereas
“hot room” has a negative one).

In order to solve this task, opine initially assigns each (w, f) pair w’s
SO label. The system then executes a relaxation labeling step during which
syntactic relationships between words and, respectively, between features, are
used to update the default SO labels whenever necessary. For example, (hot,
room) appears in the proximity of (broken, fan). If “room”and “fan” are con-
joined by and, this suggests that “hot” and “broken” have similar SO labels
in the context of their respective features. If “broken” has a strongly negative
semantic orientation, this fact contributes to opine’s belief that “hot” may
also be negative in this context. Since (hot, room) occurs in the vicinity of
other such phrases (e.g., stifling kitchen), “hot” acquires a negative SO label
in the context of “room”.

Finding (Word, Feature, Sentence) SO Labels

This subtask is motivated by the existence of (w,f) pairs (e.g., (big, room))
for which w’s orientation changes depending on the sentence in which the pair
appears (e.g., “ I hated the big, drafty room because I ended up freezing” vs.
“We had a big, luxurious room”).

In order to solve this subtask, opine first assigns each (w, f, s) tuple an
initial label which is simply the SO label for the (w, f) pair. The system then
uses syntactic relationships between words and, respectively, features in order
to update the SO labels when necessary. For example, in the sentence “I hated
the big, drafty room because I ended up freezing.”, “big” and “hate” satisfy
condition 2 in Table 2.8 and therefore opine expects them to have similar
SO labels. Since “hate” has a strong negative connotation, “big” acquires a
negative SO label in this context.

In order to correctly update SO labels in this last step, opine takes into
consideration the presence of negation modifiers. For example, in the sentence
“I don’t like a large scanner either,” opine first replaces the positive (w, f)
pair (like, scanner) with the negative labeled pair (not like, scanner) and then
infers that “large” is likely to have a negative SO label in this context.

After opine has computed the most likely SO labels for the head words of
each potential opinion phrase in the context of given features and sentences,
opine can extract opinion phrases and establish their polarity. Phrases whose
head words have been assigned positive or negative labels are retained as opin-
ion phrases. Furthermore, the polarity of an opinion phrase o in the context
of a feature f and sentence s is given by the SO label assigned to the tuple
(head(o), f, s).

2.3.6 Experiments

In this section we evaluate opine’s performance on the following tasks: finding
SO labels of words in the context of known features and sentences (word

22 Ana-Maria Popescu and Oren Etzioni

SO label extraction); distinguishing between opinion and non-opinion phrases
in the context of known features and sentences (opinion phrase extraction);
finding the correct polarity of extracted opinion phrases in the context of
known features and sentences (opinion phrase polarity extraction).

We first ran opine on 13,841 sentences and 538 previously extracted fea-
tures. opine searched for a SO label assignment for 1756 different words in
the context of the given features and sentences. We compared opine against
two baseline methods, PMI++ and Hu++.

PMI++ is an extended version of [1]’s method for finding the SO label
of a word or a phrase. For a given (word, feature, sentence) tuple, PMI++
ignores the sentence, generates a phrase containing the word and the feature
(e.g., “clean room”) and finds its SO label using PMI statistics. If unsure of
the label, PMI++ finds the orientation of the potential opinion word instead.
The search engine queries use domain-specific keywords (e.g., “clean room”
+ “hotel”), which are dropped if they lead to low counts. PMI++ also uses
morphology information (e.g., wonderful and wonderfully are likely to have
similar semantic orientation labels).

Hu++ is a WordNet-based method for finding a word’s context-
independent semantic orientation. It extends Hu’s adjective labeling method
[2] in order to handle nouns, verbs and adverbs and in order to improve cov-
erage. Hu’s method starts with two sets of positive and negative words and
iteratively grows each one by including synonyms and antonyms from Word-
Net. The final sets are used to predict the orientation of an incoming word.
Hu++ also makes use of WordNet IS-A relationships (e.g., problem IS-A
difficulty) and morphology information.

Experiments: Word SO Labels

On the task of finding SO labels for words in the context of given features and
review sentences, opine obtains higher precision than both baseline methods
at a small loss in recall with respect to PMI++. As described below, this
result is due in large part to opine’s ability to handle context-sensitive opinion
words.

We randomly selected 200 (word, feature, sentence) tuples for each word
type (adjective, adverb, etc.) and obtained a test set containing 800 tuples.
Two annotators assigned positive, negative and neutral labels to each tuple
(the inter-annotator agreement was 78%). We retained the tuples on which
the annotators agreed as the gold standard. We ran PMI++ and Hu++ on
the test data and compared the results against opine’s results on the same
data.

In order to quantify the benefits of each of the three steps of our method
for finding SO labels, we also compared opine with a version which only finds
SO labels for words and a version which finds SO labels for words in the
context of given features, but doesn’t take into account given sentences. We
have learned from this comparison that opine’s precision gain over PMI++

2 Extracting Product Features and Opinions from Reviews 23

Table 2.9. Finding Word Semantic Orientation Labels in the Context of
Given Features and Sentences. opine’s precision is higher than that of PMI++
and Hu++. All results are reported with respect to PMI++.

Word POS PMI++ Hu++ OPINE
Precision Recall Precision Recall Precision Recall

Adjectives 0.73 0.91 +0.02 -0.17 +0.07 -0.03

Nouns 0.63 0.92 +0.04 -0.24 +0.11 -0.08

Verbs 0.71 0.88 +0.03 -0.12 +0.01 -0.01

Adverbs 0.82 0.92 +0.02 -0.01 +0.06 +0.01

Avg 0.72 0.91 +0.03 -0.14 +0.06 -0.03

Table 2.10. Extracting Opinion Phrases and Opinion Phrase Polarity
in the Context of Known Features and Sentences. opine’s precision is
higher than that of PMI++ and Hu++. All results are reported with respect
to PMI++.

Measure PMI++ Hu++ OPINE

Opinion Extraction: Precision 0.71 +0.06 +0.08

Opinion Extraction: Recall 0.78 -0.08 -0.02

Opinion Polarity: Precision 0.80 -0.04 +0.06

Opinion Polarity: Recall 0.93 +0.07 -0.04

and Hu++ is mostly due to its ability to handle context-sensitive words in
a large number of cases.

Although Hu++ does not handle context-sensitive SO label assignment,
its average precision was reasonable (75%) and better than that of PMI++.
Finding a word’s SO label is good enough in the case of strongly positive or
negative opinion words, which account for the majority of opinion instances.
The method’s loss in recall is due to not recognizing words absent from Word-
Net (e.g., “depth-adjustable”) or not having enough information to classify
some words in WordNet.

PMI++ typically does well in the presence of strongly positive or strongly
negative words. Its main shortcoming is misclassifying terms such as “basic”
or “visible” which change orientation based on context.

Experiments: Opinion Phrases

In order to evaluate opine on the tasks of opinion phrase extraction and
opinion phrase polarity extraction in the context of known features and sen-
tences, we used a set of 550 sentences containing previously extracted features.
The sentences were annotated with the opinion phrases corresponding to the
known features and with the opinion polarity. The task of opinion phrase po-
larity extraction differs from the task of word SO label assignment above as
follows: the polarity extraction for opinion phrases only examines the assign-

24 Ana-Maria Popescu and Oren Etzioni

ment of pos and neg labels to phrases which were found to be opinions (that
is, not neutral) after the word SO label assignment stage is completed.

We compared opine with PMI++ and Hu++ on the tasks of interest.
We found that opine had the highest precision on both tasks at a small loss in
recall with respect to PMI++. opine’s ability to identify a word’s SO label
in the context of a given feature and sentence allows the system to correctly
extract opinions expressed by words such as “big” or “small,” whose semantic
orientation varies based on context.

opine’s performance is negatively affected by a number of factors: pars-
ing errors lead to missed candidate opinions and incorrect opinion polarity
assignments; other problems include sparse data (in the case of infrequent
opinion words) and complicated opinion expressions (e.g., nested opinions,
conditionals, subjunctive expressions).

2.3.7 Ranking Opinion Phrases

opine clusters opinions in order to identify the properties to which they refer.
Given an opinion cluster A corresponding to some property, opine ranks its
elements based on their relative strength. The probabilities computed at the
end of the relaxation-labeling scheme generate an initial opinion ranking.

Table 2.11. Lexical Patterns Used to Derive Opinions’ Relative Strength.

a, (∗) even b a, (∗) not b

a, (∗) virtually b a, (∗) almost b

a, (∗) near b a, (∗) close to b

a, (∗) quite b a, (∗) mostly b

In order to improve this initial ranking, opine uses additional Web-derived
constraints on the relative strength of phrases. As pointed out in [8], patterns
such as “a1, (*) even a2” are good indicators of how strong a1 is relative to
a2. To our knowledge, the sparse data problem mentioned in [8] has so far
prevented such strength information from being computed for adjectives from
typical news corpora. However, the Web allows us to use such patterns in
order to refine our opinion rankings. opine starts with the pattern mentioned
before and bootstraps a set of similar patterns (see Table 2.11). Given a cluster
A, queries which instantiate such patterns with pairs of cluster elements are
used to derive constraints such as:

c1 = (strength(deafening) > strength(loud)),
c2 = (strength(spotless) > strength(clean)).
opine also uses synonymy and antonymy-based constraints, since syn-

onyms and antonyms tend to have similar strength:
c3 = (strength(clean) = strength(dirty)).
The set S of such constraints induces a constraint satisfaction problem

(CSP) whose solution is a ranking of the cluster elements affected by S (the

2 Extracting Product Features and Opinions from Reviews 25

remaining elements maintain their default ranking). In the general case, each
constraint would be assigned a probability p(s) and opine would solve a prob-
abilistic CSP as described in [14]. We simplify the problem by only using con-
straints supported by multiple patterns in Table 2.11 and by treating them as
hard rather than soft constraints. Finding a strength-based ranking of cluster
adjectives amounts to a topological sort of the induced constraint graph. In
addition to the main opinion word, opinion phrases may contain intensifiers
(e.g., very). The patterns in Table 2.11 are used to compare the strength of
modifiers (e.g., strength(very) > strength(somewhat)) and modifiers which
can be compared in this fashion are retained as intensifiers. opine uses inten-
sifier rankings to complete the adjective opinion rankings (e.g., “very nice” is
stronger than “somewhat nice”). In order to measure opine’s accuracy on the
opinion ranking task, we scored the set of adjective opinion rankings for the
top 30 most frequent properties as follows: if two consecutive opinions in the
ranking are in the wrong order according to a human judge, we labeled the
ranking as incorrect. The resulting accuracy of opine on this task was 73%.

2.4 Related Work

The review-mining work most relevant to our research is described in [2],
[15] and [7]. All three systems identify product features from reviews, but
opine significantly improves on the first two and its reported precision is
comparable to that of the third (although we were not able to perform a direct
comparison, as the system and the data sets are not available). [2] doesn’t
assess candidate features, so its precision is lower than opine’s. [15] employs
an iterative semi-automatic approach which requires human input at every
iteration. Neither model explicitly addresses composite (feature of feature) or
implicit features. [7] uses a sophisticated feature extraction algorithm whose
precision is comparable to opine’s much simpler approach; opine’s use of
meronymy lexico-syntactic patterns is inspired by papers such as [16] and
[17]. Other systems [18, 19] also look at Web product reviews but they do not
extract opinions about particular product features.

Recognizing the subjective character and polarity of words, phrases or
sentences has been addressed by many authors, including [13, 20, 10]. Most
recently, [21] reports on the use of spin models to infer the semantic orienta-
tion of words. The chapter’s global optimization approach and use of multiple
sources of constraints on a word’s semantic orientation is similar to ours, but
the mechanism differs and the described approach omits the use of syntactic
information. Subjective phrases are used by [1, 22, 19, 9] and others in order to
classify reviews or sentences as positive or negative. So far, opine’s focus has
been on extracting and analyzing opinion phrases corresponding to specific
features in specific sentences, rather than on determining sentence or review
polarity. To our knowledge, [7] and [23] describe the only other systems which
address the problem of finding context-specific word semantic orientation. [7]
uses a large set of human-generated patterns which determine the final se-

26 Ana-Maria Popescu and Oren Etzioni

mantic orientation of a word (in the context of a product feature) given its
prior semantic orientation provided by an initially supplied word list. opine’s
approach, while independently developed, amounts to a more general version
of the approach taken by [7]: opine automatically computes both the prior
and final word semantic orientation using a relaxation labeling scheme which
accommodates multiple constraints. [23] uses a supervised approach incorpo-
rating a large set of features in order to learn the types of linguistic contexts
which alter a word’s prior semantic orientation. The paper’s task is different
than the one addressed by opine and [7], as it involves open-domain text and
lacks any information about the target of a particular opinion.

[13] suggests using the magnitude of the PMI-based SO score as an indi-
cator of the opinion’s strength while [24, 25] use a supervised approach with
large lexical and syntactic feature sets in order to distinguish among a few
strength levels for sentence clauses. opine’s unsupervised approach combines
Turney’s suggestion with a set of strong ranking constraints in order to derive
opinion phrase rankings.

2.5 Conclusions and Future Work

opine is an unsupervised information extraction system which extracts fine-
grained features, and associated opinions, from reviews. opine’s use of the
Web as a corpus helps identify product features with improved precision com-
pared with previous work. opine uses a novel relaxation-labeling technique to
determine the semantic orientation of potential opinion words in the context
of the extracted product features and specific review sentences; this technique
allows the system to identify customer opinions and their polarity with high
precision and recall. Current and future work includes identifying and analyz-
ing opinion sentences as well as extending opine’s techniques to open-domain
text.

2.6 Acknowledgments

We would like to thank the members of the KnowItAll project for their com-
ments. Michael Gamon, Costas Boulis, and Adam Carlson have also pro-
vided valuable feedback. We thank Minquing Hu and Bing Liu for providing
their data sets and for their comments. Finally, we are grateful to Bernadette
Minton and Fetch Technologies for their help in collecting additional reviews.
This research was supported in part by NSF grant IIS-0312988, DARPA
contract NBCHD030010, ONR grant N00014-02-1-0324 as well as gifts from
Google and the Turing Center.

References

1. Turney, P.D.: Thumbs up or thumbs down? semantic orientation applied to
unsupervised classification of reviews. In: Procs. of ACL. (2002) 417–424

2 Extracting Product Features and Opinions from Reviews 27

2. Hu, M., Liu, B.: Mining and Summarizing Customer Reviews. In: Procs. of
KDD, Seattle, WA (2004) 168–177

3. Lin, D.: Dependency-based evaluation of MINIPAR. In: Procs. of ICLRE’98
Workshop on Evaluation of Parsing Systems. (1998)

4. Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu, A., Shaked, T., Soder-
land, S., Weld, D., Yates, A.: Unsupervised named-entity extraction from the
web: An experimental study. Artificial Intelligence 165(1) (2005) 91–134

5. Turney, P.D.: Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL.
In: Procs. of the Twelfth European Conference on Machine Learning (ECML),
Freiburg, Germany (2001) 491–502

6. Popescu, A., Yates, A., Etzioni, O.: Class extraction from the World Wide Web.
In: AAAI-04 Workshop on Adaptive Text Extraction and Mining. (2004) 68–73

7. Yi, J., Nasukawa, T., Bunescu, R., Niblack, W.: Sentiment Analyzer: Extract-
ing Sentiments about a Given Topic Using Natural Language Processing Tech-
niques. In: Procs. of ICDM. (2003) 1073–1083

8. Hatzivassiloglou, V., McKeown, K.: Towards the automatic identification of
adjectival scales: clustering adjectives according to meaning. In: Procs. of ACL.
(1993) 182–192

9. Kim, S., Hovy, E.: Determining the sentiment of opinions. In: Procs. of COLING.
(2004)

10. Hatzivassiloglou, V., McKeown, K.: Predicting the semantic orientation of ad-
jectives. In: Procs. of ACL/EACL. (1997) 174–181

11. Hummel, R., Zucker, S.: On the foundations of relaxation labeling processes.
In: PAMI. (1983) 267–287

12. Rangarajan, A.: Self annealing and self annihilation: unifying deterministic
annealing and relaxation labeling. In: Pattern Recognition, 33:635-649. (2000)

13. Turney, P.: Inference of Semantic Orientation from Association. In: CoRR cs.
CL/0309034. (2003)

14. Fargier, H., Lang, J.: A constraint satisfaction framework for decision under
uncertainty. In: Procs. of UAI. (1995) 167–174

15. Kobayashi, N., Inui, K., Tateishi, K., Fukushima, T.: Collecting Evaluative
Expressions for Opinion Extraction. In: Procs. of IJCNLP. (2004) 596–605

16. Berland, M., Charniak, E.: Finding parts in very large corpora. In: Procs. of
ACL. (1999) 57–64

17. Almuhareb, A., Poesio, M.: Attribute-based and value-based clustering: An
evaluation. In: Procs. of EMNLP. (2004) 158–165

18. Morinaga, S., Yamanishi, K., Tateishi, K., Fukushima, T.: Mining product
reputations on the web. In: Procs. of KDD. (2002) 341–349

19. Kushal, D., Lawrence, S., Pennock, D.: Mining the peanut gallery: Opinion
extraction and semantic classification of product reviews. In: Procs. of WWW.
(2003)

20. Riloff, E., Wiebe, J., Wilson, T.: Learning Subjective Nouns Using Extraction
Pattern Bootstrapping. In: Procs. of CoNLL. (2003) 25–32s

21. Takamura, H., Inui, T., Okumura, M.: Extracting Semantic Orientations of
Words Using Spin Model. In: Procs. of ACL. (2005) 133–141

22. Pang, B, L.L., Vaithyanathan, S.: Thumbs up? sentiment classification using
machine learning techniques. In: Procs. of EMNLP. (2002) 79–86

23. Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing Contextual Polarity in Phrase-
Level Sentiment Analysis. In: Procs. of HLT-EMNLP. (2005)

28 Ana-Maria Popescu and Oren Etzioni

24. Wilson, T., Wiebe, J., Hwa, R.: Just how mad are you? finding strong and weak
opinion clauses. In: Procs. of AAAI. (2004) 761–769

25. Gamon, M.: Sentiment classification on customer feedback data: Noisy data,
large feature vectors and the role of linguistic analysis. In: Procs. of COLING.
(2004) 841–847

3

Extracting Relations from Text:
From Word Sequences to Dependency Paths

Razvan C. Bunescu and Raymond J. Mooney

3.1 Introduction

Extracting semantic relationships between entities mentioned in text documents is
an important task in natural language processing. The various types of relationships
that are discovered between mentions of entities can provide useful structured infor-
mation to a text mining system [1]. Traditionally, the task specifies a predefined set
of entity types and relation types that are deemed to be relevant to a potential user
and that are likely to occur in a particular text collection. For example, information
extraction from newspaper articles is usually concerned with identifying mentions
of people, organizations, locations, and extracting useful relations between them.
Relevant relation types range from social relationships, to roles that people hold
inside an organization, to relations between organizations, to physical locations of
people and organizations. Scientific publications in the biomedical domain offer a
type of narrative that is very different from the newspaper discourse. A significant
effort is currently spent on automatically extracting relevant pieces of information
from Medline, an online collection of biomedical abstracts. Proteins, genes, and cells
are examples of relevant entities in this task, whereas subcellular localizations and
protein-protein interactions are two of the relation types that have received signif-
icant attention recently. The inherent difficulty of the relation extraction task is
further compounded in the biomedical domain by the relative scarcity of tools able
to analyze the corresponding type of narrative. Most existing natural language pro-
cessing tools, such as tokenizers, sentence segmenters, part-of-speech (POS) taggers,
shallow or full parsers are trained on newspaper corpora, and consequently they inc-
cur a loss in accuracy when applied to biomedical literature. Therefore, information
extraction systems developed for biological corpora need to be robust to POS or
parsing errors, or to give reasonable performance using shallower but more reliable
information, such as chunking instead of full parsing.

In this chapter, we present two recent approaches to relation extraction that
differ in terms of the kind of linguistic information they use:

1. In the first method (Section 3.2), each potential relation is represented implicitly
as a vector of features, where each feature corresponds to a word sequence an-
chored at the two entities forming the relationship. A relation extraction system

30 Razvan C. Bunescu and Raymond J. Mooney

is trained based on the subsequence kernel from [2]. This kernel is further gen-
eralized so that words can be replaced with word classes, thus enabling the use
of information coming from POS tagging, named entity recognition, chunking,
or Wordnet [3].

2. In the second approach (Section 3.3), the representation is centered on the short-
est dependency path between the two entities in the dependency graph of the
sentence. Because syntactic analysis is essential in this method, its applicability
is limited to domains where syntactic parsing gives reasonable accuracy.

Entity recognition, a prerequisite for relation extraction, is usually cast as a sequence
tagging problem, in which words are tagged as being either outside any entity, or
inside a particular type of entity. Most approaches to entity tagging are therefore
based on probabilistic models for labeling sequences, such as Hidden Markov Mod-
els [4], Maximum Entropy Markov Models [5], or Conditional Random Fields [6],
and obtain a reasonably high accuracy. In the two information extraction methods
presented in this chapter, we assume that the entity recognition task was done and
focus only on the relation extraction part.

3.2 Subsequence Kernels for Relation Extraction

One of the first approaches to extracting interactions between proteins from biomed-
ical abstracts is that of Blaschke et al., described in [7, 8]. Their system is based on
a set of manually developed rules, where each rule (or frame) is a sequence of words
(or POS tags) and two protein-name tokens. Between every two adjacent words is a
number indicating the maximum number of intervening words allowed when match-
ing the rule to a sentence. An example rule is “interaction of (3) <P> (3) with (3)
<P>”, where ’<P>’ is used to denote a protein name. A sentence matches the rule
if and only if it satisfies the word constraints in the given order and respects the
respective word gaps.

In [9] the authors described a new method ELCS (Extraction using Longest
Common Subsequences) that automatically learns such rules. ELCS’ rule represen-
tation is similar to that in [7, 8], except that it currently does not use POS tags,
but allows disjunctions of words. An example rule learned by this system is “- (7)
interaction (0) [between | of] (5) <P> (9) <P> (17) .” Words in square brackets
separated by ‘|’ indicate disjunctive lexical constraints, i.e., one of the given words
must match the sentence at that position. The numbers in parentheses between ad-
jacent constraints indicate the maximum number of unconstrained words allowed
between the two.

3.2.1 Capturing Relation Patterns with a String Kernel

Both Blaschke and ELCS do relation extraction based on a limited set of match-
ing rules, where a rule is simply a sparse (gappy) subsequence of words or POS
tags anchored on the two protein-name tokens. Therefore, the two methods share
a common limitation: either through manual selection (Blaschke), or as a result of
a greedy learning procedure (ELCS), they end up using only a subset of all pos-
sible anchored sparse subsequences. Ideally, all such anchored sparse subsequences
would be used as features, with weights reflecting their relative accuracy. However,

3 Extracting Relations from Text 31

explicitly creating for each sentence a vector with a position for each such feature is
infeasible, due to the high dimensionality of the feature space. Here, we exploit dual
learning algorithms that process examples only via computing their dot-products,
such as in Support Vector Machines (SVMs) [10, 11]. An SVM learner tries to find
a hyperplane that separates positive from negative examples and at the same time
maximizes the separation (margin) between them. This type of max-margin sepa-
rator has been shown both theoretically and empirically to resist overfitting and to
provide good generalization performance on unseen examples.

Computing the dot-product (i.e., the kernel) between the features vectors asso-
ciated with two relation examples amounts to calculating the number of common
anchored subsequences between the two sentences. This is done efficiently by modify-
ing the dynamic programming algorithm used in the string kernel from [2] to account
only for common sparse subsequences constrained to contain the two protein-name
tokens. The feature space is further prunned down by utilizing the following prop-
erty of natural language statements: when a sentence asserts a relationship between
two entity mentions, it generally does this using one of the following four patterns:

• [FB] Fore–Between: words before and between the two entity mentions are
simultaneously used to express the relationship. Examples: ‘interaction of 〈P1〉 with
〈P2〉,’ ‘activation of 〈P1〉 by 〈P2〉.’

• [B] Between: only words between the two entities are essential for asserting
the relationship. Examples: ‘〈P1〉 interacts with 〈P2〉,’ ‘〈P1〉 is activated by 〈P2〉.’

• [BA] Between–After: words between and after the two entity mentions are
simultaneously used to express the relationship. Examples: ‘〈P1〉 – 〈P2〉 complex,’
‘〈P1〉 and 〈P2〉 interact.’

• [M] Modifier: the two entity mentions have no words between them. Examples:
U.S. troops (a Role:Staff relation), Serbian general (Role:Citizen).

While the first three patterns are sufficient to capture most cases of interactions
between proteins, the last pattern is needed to account for various relationships ex-
pressed through noun-noun or adjective-noun compounds in the newspaper corpora.

Another observation is that all these patterns use at most four words to express
the relationship (not counting the two entity names). Consequently, when computing
the relation kernel, we restrict the counting of common anchored subsequences only
to those having one of the four types described above, with a maximum word-length
of four. This type of feature selection leads not only to a faster kernel computation,
but also to less overfitting, which results in increased accuracy.

The patterns enumerated above are completely lexicalized and consequently their
performance is limited by data sparsity. This can be alleviated by categorizing words
into classes with varying degrees of generality, and then allowing patterns to use both
words and their classes. Examples of word classes are POS tags and generalizations
over POS tags such as Noun, Active Verb, or Passive Verb. The entity type can
also be used if the word is part of a known named entity. Also, if the sentence is
segmented into syntactic chunks such as noun phrases (NP) or verb phrases (VP),
the system may choose to consider only the head word from each chunk, together
with the type of the chunk as another word class. Content words such as nouns and
verbs can also be related to their synsets via WordNet. Patterns then will consist
of sparse subsequences of words, POS tags, generalized POS tags, entity and chunk
types, or WordNet synsets. For example, ‘Noun of 〈P1〉 by 〈P2〉’ is an FB pattern
based on words and general POS tags.

32 Razvan C. Bunescu and Raymond J. Mooney

3.2.2 A Generalized Subsequence Kernel

Let Σ1, Σ2, ..., Σk be some disjoint feature spaces. Following the example in Sec-
tion 3.2.1, Σ1 could be the set of words, Σ2 the set of POS tags, etc. Let
Σ× = Σ1 × Σ2 × ... × Σk be the set of all possible feature vectors, where a fea-
ture vector would be associated with each position in a sentence. Given two feature
vectors x, y ∈ Σ×, let c(x, y) denote the number of common features between x and
y. The next notation follows that introduced in [2]. Thus, let s, t be two sequences
over the finite set Σ×, and let |s| denote the length of s = s1...s|s|. The sequence
s[i:j] is the contiguous subsequence si...sj of s. Let i = (i1, ..., i|i|) be a sequence of
|i| indices in s, in ascending order. We define the length l(i) of the index sequence i
in s as i|i| − i1 + 1. Similarly, j is a sequence of |j| indices in t.

Let Σ∪ = Σ1 ∪ Σ2 ∪ ... ∪ Σk be the set of all possible features. We say that
the sequence u ∈ Σ∗

∪ is a (sparse) subsequence of s if there is a sequence of |u|
indices i such that uk ∈ sik , for all k = 1, ..., |u|. Equivalently, we write u ≺ s[i] as
a shorthand for the component-wise ‘∈‘ relationship between u and s[i].

Finally, let Kn(s, t, λ) (Equation 3.1) be the number of weighted sparse subse-
quences u of length n common to s and t (i.e., u ≺ s[i], u ≺ t[j]), where the weight
of u is λl(i)+l(j), for some λ ≤ 1.

Kn(s, t, λ) =
∑

u∈Σn
∪

∑
i:u≺s[i]

∑
j:u≺t[j]

λl(i)+l(j) (3.1)

Let i and j be two index sequences of length n. By definition, for every k between
1 and n, c(sik , tjk) returns the number of common features between s and t at
positions ik and jk. If c(sik , tjk) = 0 for some k, there are no common feature
sequences of length n between s[i] and t[j]. On the other hand, if c(sik , tjk) is greater
than 1, this means that there is more than one common feature that can be used
at position k to obtain a common feature sequence of length n. Consequently, the
number of common feature sequences of length n between s[i] and t[j], i.e., the size of
the set {u ∈ Σn

∪|u ≺ s[i], u ≺ t[j]}, is given by
∏n

k=1
c(sik , tjk). Therefore, Kn(s, t, λ)

can be rewritten as in Equation 3.2:

Kn(s, t, λ) =
∑

i:|i|=n

∑
j:|j|=n

n∏
k=1

c(sik , tjk)λl(i)+l(j) (3.2)

We use λ as a decaying factor that penalizes longer subsequences. For sparse sub-
sequences, this means that wider gaps will be penalized more, which is exactly the
desired behavior for our patterns. Through them, we try to capture head-modifier
dependencies that are important for relation extraction; for lack of reliable depen-
dency information, the larger the word gap is between two words, the less confident
we are in the existence of a head-modifier relationship between them.

To enable an efficient computation of Kn, we use the auxiliary function K
′
n with

a definition similar to Kn, the only difference being that it counts the length from
the beginning of the particular subsequence u to the end of the strings s and t, as
illustrated in Equation 3.3:

K
′
n(s, t, λ) =

∑
u∈Σn

∪

∑
i:u≺s[i]

∑
j:u≺t[j]

λ|s|+|t|−i1−j1+2 (3.3)

3 Extracting Relations from Text 33

An equivalent formula for K
′
n(s, t, λ) is obtained by changing the exponent of λ from

Equation 3.2 to |s| + |t| − i1 − j1 + 2.
Based on all definitions above, Kn is computed in O(kn|s||t|) time, by modi-

fying the recursive computation from [2] with the new factor c(x, y), as shown in

Figure 3.1. As in [2], the complexity of computing K
′
i (s, t) is reduced to O(|s||t|) by

first evaluating another auxiliary factor K
′′
i (s, t). In Figure 3.1, the sequence sx is

the result of appending x to s (with ty defined in a similar way). To avoid clutter, the
parameter λ is not shown in the argument list of K and K′, unless it is instantiated
to a specific constant.

K
′
0(s, t) = 1, for all s, t

K
′
i (s, t) = 0, if min(|s|, |t|) < i

K
′′
i (s, ∅) = 0, for all i, s

K
′′
i (sx, ty) = λK

′′
i (sx, t) + λ2K

′
i−1(s, t) · c(x, y)

K
′
i (sx, t) = λK

′
i (s, t) + K

′′
i (sx, t)

Kn(s, t) = 0, if min(|s|, |t|) < n

Kn(sx, t) = Kn(s, t) +
∑

j

λ2K
′
n−1(s, t[1 : j − 1]) · c(x, t[j])

Fig. 3.1. Computation of subsequence kernel.

3.2.3 Computing the Relation Kernel

As described at the beginning of Section 3.2, the input consists of a set of sentences,
where each sentence contains exactly two entities (protein names in the case of
interaction extraction). In Figure 3.2 we show the segments that will be used for
computing the relation kernel between two example sentences s and t. In sentence
s, for instance, x1 and x2 are the two entities, sf is the sentence segment before
x1, sb is the segment between x1 and x2, and sa is the sentence segment after x2.
For convenience, we also include the auxiliary segment s

′
b = x1sbx2, whose span is

computed as l(s
′
b) = l(sb) + 2 (in all length computations, we consider x1 and x2 as

contributing one unit only).
The relation kernel computes the number of common patterns between two sen-

tences s and t, where the set of patterns is restricted to the four types introduced
in Section 3.2.1. Therefore, the kernel rK(s, t) is expressed as the sum of four sub-
kernels: fbK(s, t) counting the number of common fore–between patterns, bK(s, t)
for between patterns, baK(s, t) for between–after patterns, and mK(s, t) for mod-
ifier patterns, as in Figure 3.3. The symbol 1 is used there as a shorthand for the
indicator function, which is 1 if the argument is true, and 0 otherwise.

The first three sub-kernels include in their computation the counting of common
subsequences between s

′
b and t

′
b. In order to speed up the computation, all these

34 Razvan C. Bunescu and Raymond J. Mooney

sf

ft ta

sa

1 2y y

t

t’

b

b

1 2x x

s

s’b

b

s =

t =

Fig. 3.2. Sentence segments.

rK(s, t) = fbK(s, t) + bK(s, t) + baK(s, t) + mK(s, t)

bKi(s, t) = Ki(sb, tb, 1) · c(x1, y1) · c(x2, y2) · λl(s
′
b
)+l(t

′
b
)

fbK(s, t) =
∑
i,j

bKi(s, t) · K
′
j(sf , tf), 1 ≤ i, 1 ≤ j, i + j < fbmax

bK(s, t) =
∑

i

bKi(s, t), 1 ≤ i ≤ bmax

baK(s, t) =
∑
i,j

bKi(s, t) · K
′
j(s

−
a , t−

a), 1 ≤ i, 1 ≤ j, i + j < bamax

mK(s, t) = 1(sb = ∅) · 1(tb = ∅) · c(x1, y1) · c(x2, y2) · λ2+2,

Fig. 3.3. Computation of relation kernel.

common counts are calculated separately in bKi, which is defined as the number of
common subsequences of length i between s

′
b and t

′
b, anchored at x1/x2 and y1/y2

respectively (i.e., constrained to start at x1 in s
′
b and y1 in t

′
b, and to end at x2 in

s
′
b and y2 in t

′
b). Then fbK simply counts the number of subsequences that match

j positions before the first entity and i positions between the entities, constrained
to have length less than a constant fbmax. To obtain a similar formula for baK we
simply use the reversed (mirror) version of segments sa and ta (e.g., s−

a and t−
a). In

Section 3.2.1 we observed that all three subsequence patterns use at most 4 words
to express a relation, therefore the constants fbmax, bmax and bamax are set to 4.
Kernels K and K

′
are computed using the procedure described in Section 3.2.2.

3.3 A Dependency-Path Kernel for Relation Extraction

The pattern examples from Section 3.2.1 show the two entity mentions, together
with the set of words that are relevant for their relationship. A closer analysis of

3 Extracting Relations from Text 35

S1 =

=S2

Protesters stations workers

Troops churches ministers

seized several pumping , holding 127 Shell hostage .

recently have raided , warning to stop preaching .

Fig. 3.4. Sentences as dependency graphs.

these examples reveals that all relevant words form a shortest path between the
two entities in a graph structure where edges correspond to relations between a
word (head) and its dependents. For example, Figure 3.4 shows the full dependency
graphs for two sentences from the ACE (Automated Content Extraction) newspa-
per corpus [12], in which words are represented as nodes and word-word dependen-
cies are represented as directed edges. A subset of these word-word dependencies
capture the predicate-argument relations present in the sentence. Arguments are
connected to their target predicates either directly through an arc pointing to the
predicate (‘troops → raided’), or indirectly through a preposition or infinitive par-
ticle (‘warning ← to ← stop’). Other types of word-word dependencies account for
modifier-head relationships present in adjective-noun compounds (‘several → sta-
tions’), noun-noun compounds (‘pumping → stations’), or adverb-verb constructions
(‘recently → raided’).

Word-word dependencies are typically categorized in two classes as follows:

• [Local Dependencies] These correspond to local predicate-argument (or head-
modifier) constructions such as ‘troops → raided’, or ‘pumping → stations’ in
Figure 3.4.

• [Non-local Dependencies] Long-distance dependencies arise due to various
linguistic constructions such as coordination, extraction, raising and control. In
Figure 3.4, among non-local dependencies are ‘troops → warning’, or ‘ministers
→ preaching’.

A Context Free Grammar (CFG) parser can be used to extract local depen-
dencies, which for each sentence form a dependency tree. Mildly context sensitive
formalisms such as Combinatory Categorial Grammar (CCG) [13] model word-word
dependencies more directly and can be used to extract both local and long-distance
dependencies, giving rise to a directed acyclic graph, as illustrated in Figure 3.4.

3.3.1 The Shortest Path Hypothesis

If e1 and e2 are two entities mentioned in the same sentence such that they are
observed to be in a relationship R, then the contribution of the sentence dependency

36 Razvan C. Bunescu and Raymond J. Mooney

Table 3.1. Shortest Path representation of relations.

Relation Instance Shortest Path in Undirected Dependency Graph

S1:protesters AT stations protesters → seized ← stations

S1:workers AT stations workers → holding ← protesters → seized ← stations

S2:troops AT churches troops → raided ← churches

S2:ministers AT churches ministers → warning ← troops → raided ← churches

graph to establishing the relationship R(e1, e2) is almost exclusively concentrated
in the shortest path between e1 and e2 in the undirected version of the dependency
graph.

If entities e1 and e2 are arguments of the same predicate, then the shortest path
between them will pass through the predicate, which may be connected directly to
the two entities, or indirectly through prepositions. If e1 and e2 belong to different
predicate-argument structures that share a common argument, then the shortest
path will pass through this argument. This is the case with the shortest path be-
tween ‘stations’ and ‘workers’ in Figure 3.4, passing through ‘protesters,’ which is
an argument common to both predicates ‘holding’ and ‘seized’. In Table 3.1, we
show the paths corresponding to the four relation instances encoded in the ACE
corpus for the two sentences from Figure 3.4. All these paths support the Located
relationship. For the first path, it is reasonable to infer that if a Person entity
(e.g., ‘protesters’) is doing some action (e.g., ‘seized’) to a Facility entity (e.g.,
‘station’), then the Person entity is Located at that Facility entity. The second
path captures the fact that the same Person entity (e.g., ‘protesters’) is doing two
actions (e.g., ‘holding’ and ‘seized’) , one action to a Person entity (e.g., ‘workers’),
and the other action to a Facility entity (e.g., ‘station’). A reasonable inference in
this case is that the ‘workers’ are Located at the ‘station’.

In Figure 3.5, we show three more examples of the Located (At) relationship
as dependency paths created from one or two predicate-argument structures. The
second example is an interesting case, as it illustrates how annotation decisions
are accommodated in our approach. Using a reasoning similar with that from the
previous paragraph, it is reasonable to infer that ‘troops’ are Located in ‘vans,’ and
that ‘vans’ are Located in ‘city’. However, because ‘vans’ is not an ACE markable,
it cannot participate in an annotated relationship. Therefore, ‘troops’ is annotated
as being Located in ‘city,’ which makes sense due to the transitivity of the relation
Located. In our approach, this leads to shortest paths that pass through two or
more predicate-argument structures.

The last relation example is a case where there exist multiple shortest paths
in the dependency graph between the same two entities – there are actually two
different paths, with each path replicated into three similar paths due to coordina-
tion. Our current approach considers only one of the shortest paths, nevertheless it
seems reasonable to investigate using all of them as multiple sources of evidence for
relation extraction.

There may be cases where e1 and e2 belong to predicate-argument structures that
have no argument in common. However, because the dependency graph is always
connected, we are guaranteed to find a shortest path between the two entities. In
general, we shall find a shortest sequence of predicate-argument structures with

3 Extracting Relations from Text 37

target predicates P1, P2, ..., Pn such that e1 is an argument of P1, e2 is an argument
of Pn, and any two consecutive predicates Pi and Pi+1 share a common argument
(where by “argument” we mean both arguments and complements).

(1) He had no regrets for his actions in Brcko.

his → actions ← in ← Brcko

(2) U.S. troops today acted for the first time to capture an alleged
Bosnian war criminal, rushing from unmarked vans parked in the
northern Serb-dominated city of Bijeljina.

troops → rushing ← from ← vans → parked ← in ← city

(3) Jelisic created an atmosphere of terror at the camp by killing,
abusing and threatening the detainees.

detainees → killing ← Jelisic → created ← at ← camp
detainees → abusing ← Jelisic → created ← at ← camp
detainees → threatning ← Jelisic → created ← at ← camp
detainees → killing → by → created ← at ← camp
detainees → abusing → by → created ← at ← camp
detainees → threatening → by → created ← at ← camp

Fig. 3.5. Relation examples.

3.3.2 Learning with Dependency Paths

The shortest path between two entities in a dependency graph offers a very con-
densed representation of the information needed to assess their relationship. A de-
pendency path is represented as a sequence of words interspersed with arrows that
indicate the orientation of each dependency, as illustrated in Table 3.1. These paths,
however, are completely lexicalized and consequently their performance will be lim-
ited by data sparsity. The solution is to allow paths to use both words and their
word classes, similar with the approach taken for the subsequence patterns in Sec-
tion 3.2.1.

The set of features can then be defined as a Cartesian product over words and
word classes, as illustrated in Figure 3.6 for the dependency path between ‘protesters’
and ‘station’ in sentence S1. In this representation, sparse or contiguous subse-
quences of nodes along the lexicalized dependency path (i.e., path fragments) are
included as features simply by replacing the rest of the nodes with their correspond-
ing generalizations.

Examples of features generated by Figure 3.6 are “protesters → seized ← sta-
tions,” “Noun → Verb ← Noun,” “Person → seized ← Facility,” or “Person
→ Verb ← Facility.” The total number of features generated by this dependency
path is 4 × 1 × 3 × 1 × 4.

38 Razvan C. Bunescu and Raymond J. Mooney

⎡
⎢⎣

protesters
NNS
Noun

Person

⎤
⎥⎦ × [→] ×

[
seized
VBD
Verb

]
× [←] ×

⎡
⎢⎣

stations
NNS
Noun

Facility

⎤
⎥⎦

Fig. 3.6. Feature generation from dependency path.

For verbs and nouns (and their respective word classes) occurring along a de-
pendency path we also use an additional suffix ‘(-)’ to indicate a negative polarity
item. In the case of verbs, this suffix is used when the verb (or an attached auxil-
iary) is modified by a negative polarity adverb such as ‘not’ or ‘never.’ Nouns get
the negative suffix whenever they are modified by negative determiners such as ‘no,’
‘neither’ or ‘nor.’ For example, the phrase “He never went to Paris” is associated
with the dependency path “He → went(-) ← to ← Paris.”

As in Section 3.2, we use kernel SVMs in order to avoid working explicitly
with high-dimensional dependency path feature vectors. Computing the dot-product
(i.e., kernel) between two relation examples amounts to calculating the number of
common features (i.e., paths) between the two examples. If x = x1x2...xm and y
= y1y2...yn are two relation examples, where xi denotes the set of word classes
corresponding to position i (as in Figure 3.6), then the number of common features
between x and y is computed as in Equation 3.4.

K(x,y) = 1(m = n) ·
n∏

i=1

c(xi, yi) (3.4)

where c(xi, yi) = |xi ∩ yi| is the number of common word classes between xi and yi.
This is a simple kernel, whose computation takes O(n) time. If the two paths

have different lengths, they correspond to different ways of expressing a relationship
– for instance, they may pass through a different number of predicate argument
structures. Consequently, the kernel is defined to be 0 in this case. Otherwise, it
is the product of the number of common word classes at each position in the two
paths. As an example, let us consider two instances of the Located relationship,
and their corresponding dependency paths:

1. ‘his actions in Brcko’ (his → actions ← in ← Brcko).
2. ‘his arrival in Beijing’ (his → arrival ← in ← Beijing).

Their representation as a sequence of sets of word classes is given by:

1. x = [x1 x2 x3 x4 x5 x6 x7], where x1 = {his, PRP, Person}, x2 = {→}, x3

= {actions, NNS, Noun}, x4 = {←}, x5 = {in, IN}, x6 = {←}, x7 = {Brcko,
NNP, Noun, Location}

2. y = [y1 y2 y3 y4 y5 y6 y7], where y1 = {his, PRP, Person}, y2 = {→}, y3 =
{arrival, NN, Noun}, y4 = {←}, y5 = {in, IN}, y6 = {←}, y7 = {Beijing, NNP,
Noun, Location}

Based on the formula from Equation 3.4, the kernel is computed as K(x, y) =
3 × 1 × 1 × 1 × 2 × 1 × 3 = 18.

3 Extracting Relations from Text 39

3.4 Experimental Evaluation

The two relation kernels described above are evaluated on the task of extracting
relations from two corpora with different types of narrative, which are described in
more detail in the following sections. In both cases, we assume that the entities and
their labels are known. All preprocessing steps – sentence segmentation, tokeniza-
tion, POS tagging, and chunking – were performed using the OpenNLP1 package.
If a sentence contains n entities (n ≥ 2), it is replicated into

(
n
2

)
sentences, each

containing only two entities. If the two entities are known to be in a relationship,
then the replicated sentence is added to the set of corresponding positive sentences,
otherwise it is added to the set of negative sentences. During testing, a sentence
having n entities (n ≥ 2) is again replicated into

(
n
2

)
sentences in a similar way.

The dependency graph that is input to the shortest path dependecy kernel is
obtained from two different parsers:

• The CCG parser introduced in [14]2 outputs a list of functor-argument depen-
dencies, from which head-modifier dependencies are obtained using a straight-
forward procedure (for more details, see [15]).

• Head-modifier dependencies can be easily extracted from the full parse output
of Collins’ CFG parser [16], in which every non-terminal node is annotated with
head information.

The relation kernels are used in conjunction with SVM learning in order to
find a decision hyperplane that best separates the positive examples from negative
examples. We modified the LibSVM3 package by plugging in the kernels described
above. The factor λ in the subsequence kernel is set to 0.75. The performance is
measured using precision (percentage of correctly extracted relations out of the total
number of relations extracted), recall (percentage of correctly extracted relations
out of the total number of relations annotated in the corpus), and F-measure (the
harmonic mean of precision and recall).

3.4.1 Interaction Extraction from AIMed

We did comparative experiments on the AIMed corpus, which has been previously
used for training the protein interaction extraction systems in [9]. It consists of 225
Medline abstracts, of which 200 are known to describe interactions between human
proteins, while the other 25 do not refer to any interaction. There are 4084 protein
references and around 1000 tagged interactions in this dataset.

The following systems are evaluated on the task of retrieving protein interactions
from AIMed (assuming gold standard proteins):

• [Manual]: We report the performance of the rule-based system of [7, 8].
• [ELCS]: We report the 10-fold cross-validated results from [9] as a Precision-

Recall (PR) graph.
• [SSK]: The subseqeuence kernel is trained and tested on the same splits as

ELCS. In order to have a fair comparison with the other two systems, which use
only lexical information, we do not use any word classes here.

1 URL: http://opennlp.sourceforge.net
2 URL:http://www.ircs.upenn.edu/˜juliahr/Parser/
3 URL:http://www.csie.ntu.edu.tw/˜cjlin/libsvm/

40 Razvan C. Bunescu and Raymond J. Mooney

• [SPK]: This is the shortest path dependency kernel, using the head-modifier
dependencies extracted by Collins’ syntactic parser. The kernel is trained and tested
on the same 10 splits as ELCS and SSK.

The Precision-Recall curves that show the trade-off between these metrics are
obtained by varying a threshold on the minimum acceptable extraction confidence,
based on the probability estimates from LibSVM. The results, summarized in Fig-
ure 3.7, show that the subsequence kernel outperforms the other three systems, with
a substantial gain. The syntactic parser, which is originally trained on a newspaper
corpus, builds less accurate dependency structures for the biomedical text. This is
reflected in a significantly reduced accuracy for the dependency kernel.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on
 (

%
)

Recall (%)

SSK
Manual

ELCS
SPK

Fig. 3.7. Precision-Recall curves for protein interaction extractors.

3.4.2 Relation Extraction from ACE

The two kernels are also evaluated on the task of extracting top-level relations
from the ACE corpus [12], the version used for the September 2002 evaluation.
The training part of this dataset consists of 422 documents, with a separate set of
97 documents reserved for testing. This version of the ACE corpus contains three
types of annotations: coreference, named entities and relations. There are five types
of entities – Person, Organization, Facility, Location, and Geo-Political
Entity – which can participate in five general, top-level relations: Role, Part,
Located, Near, and Social. In total, there are 7,646 intra-sentential relations, of
which 6,156 are in the training data and 1,490 in the test data.

3 Extracting Relations from Text 41

A recent approach to extracting relations is described in [17]. The authors use
a generalized version of the tree kernel from [18] to compute a kernel over rela-
tion examples, where a relation example consists of the smallest dependency tree
containing the two entities of the relation. Precision and recall values are reported
for the task of extracting the five top-level relations in the ACE corpus under two
different scenarios:

– [S1] This is the classic setting: one multi-class SVM is learned to discriminate
among the five top-level classes, plus one more class for the no-relation cases.

– [S2] One binary SVM is trained for relation detection, meaning that all positive
relation instances are combined into one class. The thresholded output of this binary
classifier is used as training data for a second multi-class SVM, trained for relation
classification.

The subsequence kernel (SSK) is trained under the first scenario, to recognize
the same five top-level relation types. While for protein interaction extraction only
the lexicalized version of the kernel was used, here we utilize more features, corre-
sponding to the following feature spaces: Σ1 is the word vocabulary, Σ2 is the set of
POS tags, Σ3 is the set of generic POS tags, and Σ4 contains the five entity types.
Chunking information is used as follows: all (sparse) subsequences are created ex-
clusively from the chunk heads, where a head is defined as the last word in a chunk.
The same criterion is used for computing the length of a subsequence – all words
other than head words are ignored. This is based on the observation that in general
words other than the chunk head do not contribute to establishing a relationship
between two entities outside of that chunk. One exception is when both entities in
the example sentence are contained in the same chunk. This happens very often due
to noun-noun (‘U.S. troops’) or adjective-noun (‘Serbian general’) compounds. In
these cases, the chunk is allowed to contribute both entity heads.

The shortest-path dependency kernel (SPK) is trained under both scenarios. The
dependencies are extracted using either Hockenmaier’s CCG parser (SPK-CCG) [14],
or Collins’ CFG parser (SPK-CFG) [16].

Table 3.2 summarizes the performance of the two relation kernels on the ACE
corpus. For comparison, we also show the results presented in [17] for their best
performing kernel K4 (a sum between a bag-of-words kernel and a tree dependency
kernel) under both scenarios.

Table 3.2. Extraction Performance on ACE.

(Scenario) Method Precision Recall F-measure

(S1) K4 70.3 26.3 38.0

(S1) SSK 73.9 35.2 47.7

(S1) SPK-CCG 67.5 37.2 48.0

(S1) SPK-CFG 71.1 39.2 50.5

(S2) K4 67.1 35.0 45.8

(S2) SPK-CCG 63.7 41.4 50.2

(S2) SPK-CFG 65.5 43.8 52.5

42 Razvan C. Bunescu and Raymond J. Mooney

The shortest-path dependency kernels outperform the dependency kernel from
[17] in both scenarios, with a more substantial gain for SP-CFG. An error analy-
sis revealed that Collins’ parser was better at capturing local dependencies, hence
the increased accuracy of SP-CFG. Another advantage of shortest-path dependency
kernels is that their training and testing are very fast – this is due to representing
the sentence as a chain of dependencies on which a fast kernel can be computed. All
of the four SP kernels from Table 3.2 take between 2 and 3 hours to train and test
on a 2.6GHz Pentium IV machine.

As expected, the newspaper articles from ACE are less prone to parsing errors
than the biomedical articles from AIMed. Consequently, the extracted dependency
structures are more accurate, leading to an improved accuracy for the dependency
kernel.

To avoid numerical problems, the dependency paths are constrained to pass
through at most 10 words (as observed in the training data) by setting the kernel
to 0 for longer paths. The alternative solution of normalizing the kernel leads to
a slight decrease in accuracy. The fact that longer paths have larger kernel scores
in the unnormalized version does not pose a problem because, by definition, paths
of different lengths correspond to disjoint sets of features. Consequently, the SVM
algorithm will induce lower weights for features occurring in longer paths, resulting
in a linear separator that works irrespective of the size of the dependency paths.

3.5 Future Work

There are cases when words that do not belong to the shortest dependency path do
influence the extraction decision. In Section 3.3.2, we showed how negative polarity
items are integrated in the model through annotations of words along the depen-
dency paths. Modality is another phenomenon that is influencing relation extraction,
and we plan to incorporate it using the same annotation approach.

The two relation extraction methods are very similar: the subsequence patterns
in one kernel correspond to dependency paths in the second kernel. More exactly,
pairs of words from a subsequence pattern correspond to pairs of consecutive words
(i.e., edges) on the dependency path. The lack of dependency information in the
subsequence kernel leads to allowing gaps between words, with the corresponding
exponential penalty factor λ. Given the observed similarity between the two meth-
ods, it seems reasonable to use them both in an integrated model. This model would
use high-confidence head-modifier dependencies, falling back on pairs of words with
gaps, when the dependency information is unreliable.

3.6 Conclusion

Mining knowledge from text documents can benefit from using the structured infor-
mation that comes from entity recognition and relation extraction. However, accu-
rately extracting relationships between relevant entities is dependent on the granu-
larity and reliability of the required linguistic analysis. In this chapter, we presented
two relation extraction kernels that differ in terms of the amount of linguistic infor-
mation they use. Experimental evaluations on two corpora with different types of
discourse show that they compare favorably to previous extraction approaches.

3 Extracting Relations from Text 43

3.7 Acknowledgment

This work was supported by grants IIS-0117308 and IIS-0325116 from the NSF. We
would like to thank Arun Ramani and Edward Marcotte for their help in preparing
the AIMed corpus.

References

1. R. J. Mooney, R. C. Bunescu, Mining knowledge from text using information
extraction, SIGKDD Explorations (special issue on Text Mining and Natural
Language Processing) 7 (1) (2005) 3–10.

2. H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, C. Watkins, Text clas-
sification using string kernels, Journal of Machine Learning Research 2 (2002)
419–444.

3. C. D. Fellbaum, WordNet: An Electronic Lexical Database, MIT Press, Cam-
bridge, MA, 1998.

4. L. R. Rabiner, A tutorial on hidden Markov models and selected applications
in speech recognition, Proceedings of the IEEE 77 (2) (1989) 257–286.

5. A. McCallum, D. Freitag, F. Pereira, Maximum entropy Markov models for in-
formation extraction and segmentation, in: Proceedings of the Seventeenth In-
ternational Conference on Machine Learning (ICML-2000), Stanford, CA, 2000.

6. J. Lafferty, A. McCallum, F. Pereira, Conditional random fields: Probabilistic
models for segmenting and labeling sequence data, in: Proceedings of 18th In-
ternational Conference on Machine Learning (ICML-2001), Williamstown, MA,
2001, pp. 282–289.

7. C. Blaschke, A. Valencia, Can bibliographic pointers for known biological data
be found automatically? protein interactions as a case study, Comparative and
Functional Genomics 2 (2001) 196–206.

8. C. Blaschke, A. Valencia, The frame-based module of the Suiseki information
extraction system, IEEE Intelligent Systems 17 (2002) 14–20.

9. R. Bunescu, R. Ge, R. J. Kate, E. M. Marcotte, R. J. Mooney, A. K. Ramani,
Y. W. Wong, Comparative experiments on learning information extractors for
proteins and their interactions, Artificial Intelligence in Medicine (special issue
on Summarization and Information Extraction from Medical Documents) 33 (2)
(2005) 139–155.

10. V. N. Vapnik, Statistical Learning Theory, John Wiley & Sons, New York, 1998.
11. N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines

and Other Kernel-based Learning Methods, Cambridge University Press, 2000.
12. National Institute of Standards and Technology, ACE – Automatic Content

Extraction, http://www.nist.gov/speech/tests/ace (2000).
13. M. Steedman, The Syntactic Process, MIT Press, Cambridge, MA, 2000.
14. J. Hockenmaier, M. Steedman, Generative models for statistical parsing with

combinatory categorial grammar, in: Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics (ACL-2002), Philadelphia, PA,
2002, pp. 335–342.

15. R. C. Bunescu, R. J. Mooney, A shortest path dependency kernel for rela-
tion extraction, in: Proceedings of the Human Language Technology Confer-
ence and Conference on Empirical Methods in Natural Language Processing
(HLT/EMNLP-05), Vancouver, BC, 2005, pp. 724–731.

44 Razvan C. Bunescu and Raymond J. Mooney

16. M. J. Collins, Three generative, lexicalised models for statistical parsing, in:
Proceedings of the 35th Annual Meeting of the Association for Computational
Linguistics (ACL-97), 1997, pp. 16–23.

17. A. Culotta, J. Sorensen, Dependency tree kernels for relation extraction, in:
Proceedings of the 42nd Annual Meeting of the Association for Computational
Linguistics (ACL-04), Barcelona, Spain, 2004, pp. 423–429.

18. D. Zelenko, C. Aone, A. Richardella, Kernel methods for relation extraction,
Journal of Machine Learning Research 3 (2003) 1083–1106.

4

Mining Diagnostic Text Reports by Learning
to Annotate Knowledge Roles

Eni Mustafaraj, Martin Hoof, and Bernd Freisleben

4.1 Introduction

Several tasks approached by using text mining techniques, like text categorization,
document clustering, or information retrieval, operate on the document level, making
use of the so-called bag-of-words model. Other tasks, like document summarization,
information extraction, or question answering, have to operate on the sentence level,
in order to fulfill their specific requirements. While both groups of text mining tasks
are typically affected by the problem of data sparsity, this is more accentuated for
the latter group of tasks. Thus, while the tasks of the first group can be tackled by
statistical and machine learning methods based on a bag-of-words approach alone,
the tasks of the second group need natural language processing (NLP) at the sentence
or paragraph level in order to produce more informative features.

Another issue common to all previously mentioned tasks is the availability of
labeled data for training. Usually, for documents in real world text mining projects,
training data do not exist or are expensive to acquire. In order to still satisfy the
text mining goals while making use of a small contingent of labeled data, several
approaches in machine learning have been developed and tested: different types of
active learning [16], bootstrapping [13], or a combination of labeled and unlabeled
data [1]. Thus, the issue of the lack of labeled data turns into the issue of selecting
an appropriate machine learning approach.

The nature of the text mining task as well as the quantity and quality of available
text data are other issues that need to be considered. While some text mining
approaches can cope with data noise by leveraging the redundancy and the large
quantity of available documents (for example, information retrieval on the Web), for
other tasks (typically those restricted within a domain) the collection of documents
might not possess such qualities. Therefore, more care is required for preparing such
documents for the text mining task.

The previous observations suggest that performing a text mining task on new
and unknown data requires handling all of the above mentioned issues, by combining
and adopting different research approaches. In this chapter, we present an approach
to extracting knowledge from text documents containing diagnostic problem solving
situations in a technical domain (i.e., electrical engineering). In the proposed ap-
proach, we have combined techniques from several areas, including NLP, knowledge

46 Eni Mustafaraj, Martin Hoof, and Bernd Freisleben

engineering, and machine learning to implement a learning framework for annotating
cases with knowledge roles. The ultimate goal of the approach is to discover inter-
esting problem solving situations (hereafter simply referred to as cases) that can be
used by an experience management system to support new engineers during their
working activities. However, as an immediate benefit, the annotations facilitate the
retrieval of cases on demand, allow the collection of empirical domain knowledge,
and can be formalized with the help of an ontology to also permit reasoning. The ex-
perimental results presented in the chapter are based on a collection of 500 Microsoft
Word documents written in German, amounting to about one million words. Several
processing steps were required to achieve the goal of case annotation. In particular,
we had to (a) transform the documents into an XML format, (b) extract paragraphs
belonging to cases, (c) perform part-of-speech tagging, (d) perform syntactical pars-
ing, (e) transform the results into XML representation for manual annotation, (f)
construct features for the learning algorithm, and (g) implement an active learning
strategy. Experimental results demonstrate the feasibility of the learning approach
and a high quality of the resulting annotations.

The chapter is organized as follows. In Section 4.2 we describe our domain of
interest, the related collection of documents, and how knowledge roles can be used
to annotate text. In Section 4.3 we consider work in natural language processing,
especially frame semantics and semantic role labeling, emphasizing parallels to our
task and identifying how resources and tools from these domains can be applied to
perform annotation. Section 4.4 describes in detail all the preparatory steps for the
process of learning to annotate cases. Section 4.5 evaluates the results of learning.
Section 4.6 concludes the chapter and outlines areas of future work.

4.2 Domain Knowledge and Knowledge Roles

4.2.1 Domain Knowledge

Our domain of interest is predictive maintenance in the field of power engineering,
more specifically, the maintenance of insulation systems of high-voltage rotating
electrical machines. Since in many domains it is prohibitive to allow faults that could
result in a breakdown of the system, components of the system are periodically
or continuously monitored to look for changes in the expected behavior, in order
to undertake predictive maintenance actions when necessary. Usually, the findings
related to the predictive maintenance process are documented in several forms: the
measured values in a relational database; the evaluations of measurements/tests
in diagnostic reports written in natural language; or the recognized symptoms in
photographs. The focus of the work described here are the textual diagnostic reports.

In the domain of predictive maintenance, two parties are involved: the service
provider (the company that has the know-how to perform diagnostic procedures and
recommend predictive maintenance actions) and the customer (the operator of the
machine). As part of their business agreement, the service provider submits to the
customer an official diagnostic report. Such a report follows a predefined structure
template and is written in syntactically correct and parsimonious language. In our
case, the language is German.

A report is organized into many sections: summary, reason for the inspection,
data of the inspected machine, list of performed tests and measurements, evaluations

4 Learning to Annotate Knowledge Roles 47

of measurement and test results, overall assessment and recommendations, as well as
several attachments with graphical plots of numerical measurements or photographs
of damaged parts.

From a diagnostic point of view, the most important information is found in the
evaluations of the measurements and tests performed. As a demonstration, consider
the two excerpts in Figure 4.1 (originating from English documents for non-German
speaking customers).

At 1.9UN (= 30kV), an insulation breakdown
occurred on the upper bar of the slot N◦18,
at the slot exit on the NDE side. The break-
down indicates that the bar insulation is se-
riously weakened. This may be caused by in-
tense discharges due to a malfunction of the
slot anti-corona protection.

The measured bypass currents are in a rel-
atively high range indicating a certain sur-
face conductivity. This is due to the fact that
the motor was stored in cold area before it
was moved to the high voltage laboratory
where the temperature and humidity was much
higher so that a certain degree of condensation
could occur on the surface of the winding.

Fig. 4.1. Excerpts from two evaluations of isolation current measurements.

As it is often the case with diagnosis, while the quantities that are measured
or the components that are inspected are the same, the findings depend on a series
of contextual factors, and the reasons for these findings could be quite unique (as
the examples of Figure 4.1 demonstrate). Usually, human experts need many years
of field experience to gain a degree of expertise that allows them to handle any
situation. The goal of our project is to mine the text documents for relevant pieces
of knowledge acquired during diagnostic problem solving situations.

4.2.2 Domain Concepts

In some text mining applications, such as text categorization or information retrieval,
the goal is often to discover terms specific to the domain that could be used as
indices for organizing or retrieving information. Indeed, the excerpts of Figure 4.1
contain several of such domain-specific terms: insulation, discharge, slot anti-corona
protection, conductivity, or winding. Still, using these terms as indices or keywords
for representing the documents does not contribute to the purpose of our intended
application, which is to find knowledge that supports diagnostic problem solving.
To exemplify, consider the sentences in Figure 4.2:

1) The calculated insulating resistance values lay in the safe operating area.
2) Compared to the last examination, lower values for the insulating resistance

were ascertained, due to dirtiness at the surface.

Fig. 4.2. Two sentences with the same domain concept shown in boldface.

In both sentences, the domain concept insulating resistance is found, but from a
diagnostic point of view only the second sentence is interesting, because it describes

48 Eni Mustafaraj, Martin Hoof, and Bernd Freisleben

a possible cause for lower values. Thus, more than domain concepts are needed to
capture the knowledge expressed in the documents. Our solution to this problem is
to label the text with semantic annotations expressed in terms of knowledge roles,
which are introduced in the following subsection.

4.2.3 Knowledge Roles

Knowledge roles are a concept introduced in CommonKADS [28], a knowledge engi-
neering methodology for implementing knowledge-based systems. More specifically,
knowledge roles are abstract names that refer to the role a domain concept plays
when reasoning about a knowledge task. Such tasks are, for example, diagnosis,
assessment, monitoring, or planning. Although these tasks are found in many do-
mains, their description in CommonKADS is domain-independent. Thus, when de-
scribing a diagnosis task, knowledge roles like finding, symptom, fault, parameter,
or hypothesis would be used.

Indeed, if we consider again the sentences in Figure 4.2, it is reasonable to
represent the second sentence with knowledge roles as shown in Figure 4.3:

Knowledge Role Text Phrase
Observed Object: insulating resistance
Symptom: lower values
Cause: dirtiness at the surface

Fig. 4.3. Knowledge roles for sentence 2 of Figure 4.2.

Such a representation can have several advantages. Given a certain value of an
Observed Object, a list of Symptoms that should be checked during the diagnosis
could be retrieved. Or, given a certain Symptom, possible Causes for it could be
listed, and so forth.

Understandably, we are interested in performing the text annotation with knowl-
edge roles automatically. To achieve this goal, we draw on research in natural lan-
guage understanding as described in Section 4.3.

It might be argued that one could simply use a combination of keywords to
retrieve the information. For example, for sentences like that in Figure 4.2, one
might write a query as below:

[low | small | high | large] && [value] && [insulating resistance]

for retrieving symptoms. Or one can search for:

[due to] | [caused by] | [as a result of] . . .

to retrieve sentences containing causes. While this approach may be appealing and
in some occasions even successful, there are several reasons why it could not be
applied in our application:

• A large number of words (adjectives, nouns, adverbs, or verbs) can be used to
describe changes (considered as symptoms in our domain), and no one can know
beforehand which of them is used in the text.

4 Learning to Annotate Knowledge Roles 49

• While verbs are very important for capturing the meaning of a sentence, they
also abound in numbers. For example, to express an observation, any of the
following verbs can be used: observe, detect, show, exhibit, recognize, determine,
result in, indicate, etc. Furthermore, adverbs and negations can change their
meaning and therefore need to be considered. Thus, instead of using verbs as
keywords, we use them to bootstrap the annotating process, and incorporate
them within semantic frames, like the frame Observation for the group above.

• Often, meaning emerges from the relation between different words, instead of
the words separately, and this is exactly what we encountered in the diagnostic
cases.

The knowledge roles used for annotating cases are abstract constructs in knowl-
edge engineering, defined independently of any natural language constructs. Thus,
a contribution of this work lies in trying to bridge the gap between knowledge roles
and the natural language constructs whose meaning they capture. For this purpose,
frame semantics, as described in the next section, is an ideal place to start.

4.3 Frame Semantics and Semantic Role Labeling

4.3.1 Frame Semantics

In frame semantics theory [12], a frame is a “script-like conceptual structure that
describes a particular type of situation, object, or event and the participants involved
in it” [24]. Based on this theory, the Berkeley FrameNet Project1 is creating an online
lexical resource for the English language by annotating text from the 100 million
words British National Corpus.

The structure of a frame contains lexical units (pairs of a word with its meaning),
frame elements (semantic roles played by different syntactic dependents), as well as
annotated sentences for all lexical units that evoke the frame. An example of a frame
with its related components is shown in Figure 4.4.

Annotation of text with frames and roles in FrameNet has been performed man-
ually by trained linguists. An effort to handle this task automatically is being carried
out by research in semantic role labeling, as described in the next subsection.

4.3.2 Semantic Role Labeling

Automatic labeling of semantic roles was introduced in [14]. In this work, after ac-
knowledging the success of information extraction systems that try to fill in domain-
specific frame-and-slot templates (see Section 4.3.4), the need for semantic frames
that can capture the meaning of text independently of the domain was expressed.
The authors envision that the semantic interpretation of text in terms of frames and
roles would contribute to many applications, like question answering, information
extraction, semantic dialogue systems, as well as statistical machine translation or
automatic text summarization, and finally also to text mining.

1 http://framenet.icsi.berkeley.edu/

50 Eni Mustafaraj, Martin Hoof, and Bernd Freisleben

After this initial work, research on semantic role labeling (SRL) has grown
steadily, and in the years 2004 and 2005 [3, 4] a shared task at the CoNLL2 was
defined, in which several research institutions compared their systems. In the mean-
time, besides FrameNet, another corpus with manually annotated semantic roles has
been prepared, PropNet [21], which differs from FrameNet in the fact that it has
general semantic roles not related to semantic frames. PropNet is also the corpus
used for training and evaluation of research systems on the SRL shared task. A
similar corpus to FrameNet for the German language has been created by the Salsa
project [10], and a discussion on the differences and similarities among these three
projects is found in [9].

Frame Evidence

Definition: The Support, a phenomenon or fact, lends support to a claim or proposed course of

action, the Proposition, where the Domain of Relevance may also be expressed.

Lexical units: argue.v, argument.n, attest.v, confirm.v, contradict.v, corroborate.v, demonstrate.v, dis-
prove.v, evidence.n, evidence.v, evince.v, from.prep, imply.v, indicate.v, mean.v, prove.v, reveal.v,
show.v, substantiate.v, suggest.v, testify.v, verify.v

Frame Elements:

Proposition [PRP] This is a belief, claim, or proposed course of action to which the
Support lends validity.

Support [SUP] Support is a fact that lends epistemic support to a claim, or that
provides a reason for a course of action.

. . .

Examples:

And a [SUP sample tested] REVEALED [PRP some inflammation].

It says that [SUP rotation of partners] does not DEMONSTRATE [PRP independence].

Fig. 4.4. Information on the frame Evidence from FrameNet.

SRL is approached as a learning task. For a given target verb in a sentence, the
syntactic constituents expressing semantic roles associated to this verb need to be
identified and labeled with the right roles. SRL systems usually divide sentences
word-by-word or phrase-by-phrase and for each of these instances calculate many
features creating a feature vector. The feature vectors are then fed to supervised
classifiers, such as support vector machines, maximum entropy, or memory-based
learners. While adapting such classifiers to perform better on this task could bring
some improvement, better results can be achieved by constructing informative fea-
tures for learning. A thorough discussion of different features used for SRL can be
found in [14, 22].

4.3.3 Frames and Roles for Annotating Cases

On the one hand, in knowledge engineering there are knowledge tasks and knowledge
roles to represent knowledge; on the other hand, in natural language understanding
there are semantic frames and semantic roles to represent meaning. When knowledge

2 Conference of Natural Language Learning

4 Learning to Annotate Knowledge Roles 51

related to a knowledge task (like diagnosis) is represented by natural language, it
is reasonable to expect that some knowledge roles will map to some semantic roles.
The question is how to find these mappings, and more importantly, how to label
text with these roles?

A knowledge task like diagnosis or monitoring is not equivalent to a semantic
frame. The former are more complex and abstract, and can usually be divided into
several components, which in turn can be regarded equivalent to semantic frames.
By analyzing the textual episodes of diagnostic evaluations, we noticed that they
typically contain a list of observations, explanations based on evidence, and sug-
gestions to perform some activities. Thus, we consulted FrameNet for frames like
Observation, Change, Evidence, or Activity. Indeed, these frames are all present in
FrameNet. For example, Activity is present in 10 subframes, and different meanings
of Change are captured in 21 frames. The frame Evidence was shown in Figure 4.4,
and besides the two roles of Proposition and Support, it has also roles for Degree,
Depictive, Domain of Relevance, Manner, Means, and Result. When one carefully
reads the definition of the roles Proposition and Support and looks at the examples
(Figure 4.4), one can conclude that Proposition is similar to Cause and Support to
Symptom in a diagnosis task.

The problem is to determine which frames to look for, given that there are
currently more than six hundred frames in FrameNet. The key are the lexical units
related to each frame, usually verbs. Starting with the verbs, one gets to the frames
and then to the associated roles. This is also the approach we follow. We initially
look for the most frequent verbs in our corpus, and by consulting several sources
(since the verbs are in German), such as [15], VerbNet,3 and FrameNet, we connect
every verb with a frame, and try to map between semantic roles in a frame and
knowledge roles we are interested in. One could also use the roles of FrameNet, but
they are linguistically biased, and as such are not understandable by domain users
that will annotate training instances for learning (a domain user would directly know
to annotate Cause, but finds Proposition somehow confusing.)

In this work, FrameNet was only used as a lexical resource for consultation, that
is, to find out which frames are evoked by certain lexical units, and what the related
semantic roles are. Since the language of our corpus is German, we cannot make any
statements about how useful the FrameNet frames could be to a learning system
based on English annotated data corresponding to the defined frames.

Finally, it should be discussed why such an approach to annotating text cases
with frames and roles could be beneficial to text mining. For the purpose of this
discussion, consider some facts from the introduced domain corpus. During the eval-
uation of the learning approach, we manually annotated a subcorpus of unique sen-
tences describing one specific measurement (high-voltage isolation current). In the
585 annotated sentences, the frame Evidence was found 152 times, 84 times evoked
by the verb zurückführen (trace back to), 40 times by the verb hindeuten (point to),
and 28 times by 9 other verbs. Analyzing the text annotated with the role Cause in
the sentences with zurückführen, 27 different phrases expressing causes of anomalies
pointed to by the symptoms were found. A few of these expressions appeared fre-
quently, some of them occasionally, some others rarely. In Table 4.1, some of these
expressions are shown.

3 http://www.cis.upenn.edu/˜bsnyder3/cgi-bin/search.cgi

52 Eni Mustafaraj, Martin Hoof, and Bernd Freisleben

Table 4.1. Some phrases annotated with the role Cause.

German Phrase English Translation Frequency

Verschmutzungseinflüsse influences of pollution 10
leitende Verschmutzungen conducting pollutions 8
Ionisation in Klemmenbereich ionization in the terminal area 3
äussere Entladungen external discharges 1

If for every sentence with the frame Evidence the text annotated with Symptom
and Cause is extracted, this text can then be processed further with other text
mining techniques for deriving domain knowledge, which is not directly available in
any of the analyzed texts. For example, one could get answers to questions like: which
are the most frequent symptoms and what causes can explain them; what problems
(i.e., causes) do appear frequently in a specific type of machine, etc. Thus, such an
annotation with frames and roles preprocesses text by generating very informative
data for text mining, and it can also be used in the original form for information
retrieval. Still, such an approach makes sense in those cases when text contains
descriptions of repetitive tasks, which are then expressed by a small number of
underlying semantic frames. Since data and text mining try to extract knowledge
from data of the same nature in the same domain, we find that annotation of text
with knowledge roles could be a valuable approach.

Before explaining in detail the process of learning to automatically annotate text
with knowledge roles (based on the SRL task) in Section 4.4, we briefly discuss the
related field of information extraction.

4.3.4 Information Extraction

Information extraction (IE), often regarded as a restricted form of natural language
understanding, predates research in text mining, although today, IE is seen as one of
the techniques contributing to text mining [30]. Actually, the purpose of IE is very
similar to what we are trying to achieve with role annotation. In IE it is usually
known in advance what information is needed, and part of text is extracted to fill
in slots of a predefined template. An example, found in [20], is the job posting
template, where, from job posting announcements in Usenet, text to fill slots like:
title, state, city, language, platform, etc. is extracted and stored in a database for
simpler querying and retrieval.

Usually, methods used by IE have been based on shallow NLP techniques, trying
to extract from a corpus different types of syntactic rules that match syntactic roles
to semantic categories, as for example in [23].

With the advances in NLP and machine learning research, IE methods have
also become more sophisticated. Actually, SRL can also be seen as a technology for
performing information extraction, in those cases when text is syntactically and se-
mantically more demanding and expressive. All these technologies are intended to be
used for extracting knowledge from text, despite their differences in implementation
or scope.

4 Learning to Annotate Knowledge Roles 53

4.4 Learning to Annotate Cases with Knowledge Roles

To perform the task of learning to annotate cases with knowledge roles, we im-
plemented a software framework, as shown in Figure 4.5. Only the preparation of
documents (described in Section 4.4.1) is performed outside of this framework. In
the remainder of the section, every component of the framework is presented in
detail.

ParsingTagging

Tree Representation

Corpus
Statistics and

Clustering

Feature
Creature

Selection &
Annotation

Learning
Algorithm

1

3

4
5

6

7

8

Corpus

Initialization
Bootstrap

2

Active Learning

Fig. 4.5. The Learning Framework Architecture.

4.4.1 Document Preparation

In Section 4.2.1 it was mentioned that our documents are official diagnostic re-
ports hierarchically structured in several sections and subsections, written by using
MS R© Word. Actually, extracting text from such documents, while preserving the
content structure, is a difficult task. In completing it we were fortunate twice. First,
with MS R© Office 2003 the XML based format WordML was introduced that permits
storing MS R© Word documents directly in XML. Second, the documents were origi-
nally created using a MS R© Word document template, so that the majority of them
had the same structure. Still, many problems needed to be handled. MS R© Word
mixes formatting instructions with content very heavily and this is reflected also in
its XML format. In addition, information about spelling, versioning, hidden template
elements, and so on are also stored. Thus, one needs to explore the XML output of
the documents to find out how to distinguish text and content structure from unim-
portant information. Such a process will always be a heuristic one, depending on the
nature of the documents. We wrote a program that reads the XML document tree,

54 Eni Mustafaraj, Martin Hoof, and Bernd Freisleben

and for each section with a specified label (from the document template) it extracts
the pure text and stores it in a new XML document, as the excerpt in Figure 4.6
shows.

<section title="Measurements">
<subsection title="Stator_Winding">

<measurement title="Visual_Control">
<submeasurement title="Overhang_Support">

<evaluation>
Die Wickelkopfabsttzung AS und NS befand sich in einem ...

</evaluation>
<action>Keine</action>

</submeasurement>
...

Fig. 4.6. Excerpt of the XML representation of the documents.

Based on such an XML representation, we create subcorpora of text containing
measurement evaluations of the same type, stored as paragraphs of one to many
sentences.

4.4.2 Tagging

The part-of-speech (POS) tagger (TreeTagger4) that we used [26] is a probabilistic
tagger with parameter files for tagging several languages: German, English, French,
or Italian. For some small problems we encountered, the author of the tool was very
cooperative in providing fixes. Nevertheless, our primary interest in using the tagger
was not the POS tagging itself (the parser, as is it shown in Section 4.4.3, performs
tagging and parsing), but getting stem information (since the German language has
a very rich morphology) and dividing the paragraphs in sentences (since the sentence
is the unit of operation for the next processing steps).

The tag set used for tagging German is slightly different from that of English.5

Figure 4.7 shows the output of the tagger for a short sentence.6

As indicated in Figure 4.7, to create sentences it suffices to find the lines con-
taining: ". \$. ." (one sentence contains all the words between two such
lines). In general, this is a very good heuristic, but its accuracy depends on the
nature of the text. For example, while the tagger correctly tagged abbreviations
found in its list of abbreviations (and the list of abbreviations can be customized by
adding abbreviations common to the domain of the text), it got confused when the
same abbreviations were found inside parentheses, as the examples in Figure 4.8 for
the word ‘ca.’ (circa) show.

If such phenomena occur often, they become a problem for the further correct
processing of sentences, although one becomes aware of such problems only in the

4 http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger
5 http://www.ims.uni-stuttgart.de/projekte/corplex/TagSets/stts-table.html
6 Translation: A generally good external winding condition is present.

4 Learning to Annotate Knowledge Roles 55

Es PPER es
liegt VVFIN liegen
insgesamt ADV insgesamt
ein ART ein
guter ADJA gut
äusserer ADJA äuβer
Wicklungszustand NN <unknown>
vor PTKVZ vor
. $. .

Fig. 4.7. A German sentence tagged with POS-tags by TreeTagger.

course of the work. A possible solution in such cases is to use heuristics to replace
erroneous tags with correct ones for the types of identified errors.

an APR an
ca. ADV ca.
50 CARD 50
% NN %

($((
ca NE <unknown>
. $. .
20 CARD 20

Fig. 4.8. Correct and erroneous tagging for the word ‘ca.’

The more problematic issue is that of words marked with the stem <unknown>.
Actually, their POS is usually correctly induced, but we are specifically interested in
the stem information. The two reasons for an <unknown> label are a) the word has
been misspelled and b) the word is domain specific, and as such not seen during the
training of the tagger. On the positive side, selecting the words with the <unknown>
label directly creates the list of domain specific words, useful in creating a domain
lexicon.

A handy solution for correcting spelling errors is to use a string similarity func-
tion, available in many programming language libraries. For example, the Python
language has the function “get close matches” in its “difflib” library. An advantage
of such a function is having as a parameter the degree of similarity between strings.
By setting this value very high (between 0 and 1) one is sure to get really similar
matches if any at all.

Before trying to solve the problem of providing stems for words with the
<unknown> label, one should determine whether the stemming information sub-
stantially contributes to the further processing of text. Since we could not know
that in advance, we manually provided stems for all words labeled as <unknown>.
Then, during the learning process we performed a set of experiments, where: a) no
stem information at all was used and b) all words had stem information (tagger +
manually created list of stems). Table 4.2 summarizes the recall and precision of the
learning task in each experiment.

These results show approximately 1% improvement in recall and precision when
stems instead of original words are used. We can say that at least for the learning
task of annotating text with knowledge roles stem information is not necessarily
important, but this could also be due to the fact that a large number of other
features (see Section 4.4.5) besides words are used for learning.

56 Eni Mustafaraj, Martin Hoof, and Bernd Freisleben

Table 4.2. Results of experiments for the contribution of stem information on
learning.

Experiment Recall Precision

a) no stems (only words) 90.38 92.32
b) only stems 91.29 93.40

Still, the reason for having a list of stems was not in avoiding more data due
to word inflections, but in capturing the word composition, a phenomenon typical
for the German language. For example, all the words in the first row of Table 4.3
are compound words that belong to the same semantic category identified by their
last word ‘wert’ (value), i.e., they all denote values of different measured quanti-
ties, and as such have a similar meaning. This similarity cannot be induced if one
compares the words in the original form, something possible by comparing the word
representations of the second row.

Table 4.3. Original words (first row), words composed of stems (second row).

Ableitstromwerte, Gesamtstromwerte, Isolationswiderstandswerte, Isolation-
sstromwerte, Kapazitätswerte, Ladestromwerte, Stromwerten, Verlustfak-
toranfangswert, etc.

Ableit-Strom-Wert, Gesamt-Strom-Wert, Isolation-Widerstand-Wert,
Isolation-Strom-Wert, Kapazität-Wert, Lade-Strom-Wert, Strom-Wert,
Verlustfaktor-Anfang-Wert, etc.

Unfortunately, there are only a few tools available for morphological analysis of
German words. We tried Morphy [17], which is publicly available, but it was not
able to analyze any of our domain-specific words. Therefore, we had to perform this
task by hand.

4.4.3 Parsing

Syntactical parsing is one of the most important steps in the learning framework,
since the produced parse trees serve as input for the creation of features used for
learning. Since we are interested in getting qualitative parsing results, we experi-
mented with three different parsers: the Stanford parser (Klein 2005), the BitPar
parser [27, 25], and the Sleepy parser [7]. What these parsers have in common is that
they all are based on unlexicalized probabilistic context free grammars (PCFG) [18],
trained on the same corpus of German, Negra7 (or its superset Tiger8), and their
source code is publicly available. Still, they do differ in the degree they model some
structural aspects of the German language, their annotation schemas, and the infor-

7 http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/
8 http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERCorpus/

4 Learning to Annotate Knowledge Roles 57

mation included in the output. Figure 4.9 shows the output of the same sentence9

parsed by each parser, and in the following, we discuss each of them.

Stanford Parser

(ROOT
(NUR
(S
(PP (APPR Auf) (CARD NS))
(VAFIN wurden)
(VP
(AP (ADV ca.)
(NM (CARD 5)
(CARD gerissene)
(CARD Keilsicherungsbandagen)))

(VVPP festgestellt)))
($..)))

BitPar Parser

(utt:
(S.fin:
(PP: (APPR: Auf)
(NN: NS))

(VWFIN: wurden)
(AP: (AVP-MAD: (ADV-MAD: ca.))
(CARD: 5))

(NP.nom: (AP: (ADJA%: gerissene))
(NN.nom: Keilsicherungsbandagen))

(VVPP%: festgestellt)))
(\$.: .))

Sleepy Parser

(TOP
(S
(PP-MO (APPR-AD Auf)
(NE-NK NS))

(VAFIN-HD wurden)
(NP-SB
(ADV-MO ca.) (CARD-NK 5)
(ADJA-NK gerissene)
(NN-NK Keilsicherungsbandagen))

(VP-OC (VVPP-HD festgestellt)))
($. .))

Auf NS wurden ca. 5 gerissene Keilsicherungsbandagen festgestellt.
On NS were ca. 5 torn wedge’s safety bands detected.

Fig. 4.9. Parsing output of the same sentence from the three parsers

Stanford Parser - The Stanford parser is an ambitious project that tackles the task
of generating parse trees from unlabeled data independently of the language.
For the moment, the parser is distributed with parameter files for parsing En-
glish, German, and Chinese. We tested the parser on our data and noticed that

9 English translation: “On NS were detected circa 5 torn wedge’s safety bands.”

58 Eni Mustafaraj, Martin Hoof, and Bernd Freisleben

the POS tags were often erroneously induced (in the sentence with only 8 words
of Figure 4.9 there are 3 such errors—CARD tags for 2 nouns and 1 adjective),
which then resulted in erroneous parse trees. But, in those cases when the tag-
ging was performed correctly, the parse trees were also correct. Still, the parser
could not parse long sentences, perhaps due to the fact that it was trained in
the part of the Negra corpus with sentences having up to 10 words. Trying the
parser with long English sentences instead, produced excellent results. We con-
cluded that at this phase of implementation, the Stanford parser could not be
used with our corpus of German sentences that contain an average of up to 18
words per sentence.

BitPar Parser - This parser is composed of two parts, the parser itself [27] and
the parameter files (chart rules, lexicon, etc.) from [25]. Published experimental
results claim robust performance, due to the use of sophisticated annotation
and transformation schemata for modeling grammars. Another advantage of
the parser is that its lexicon can be extended very easily with triples of domain-
dependent words, their tags, their frequency counts in a corpus, thus avoiding
the tagging errors typical for unlexicalised parsers. These tagging errors damage
the parse results, as can be seen from the results of the Stanford parser. Our
critique for the described BitPar is that it usually produces trees with more
nodes than the other parsers and the annotation of nodes contains specialized
linguistic information, not very appropriate for creating features for learning.

Sleepy Parser - This parser has been specifically tuned for the German language,
and while it is a statistical parser like the others, it uses different annota-
tion schemas and incorporates grammatical functions (SB–subject, OC–clausal
object, MO–modifier, HD–head, etc.) or long-distance dependencies between
terms. In constrast to the two other parsers, it also has a highly tuned suffix
analyzer for guessing POS tags [8], which contributes to more accurate tagging
results than the other parsers, although some domain-dependent words are not
always correctly tagged. Erroneous parsing is also encountered for very long
sentences.

Choosing a Parser

All the tested parsers make errors during parsing. In the end, the criteria upon which
we based our choice of the parser were speed and output information. Sleepy was
the fastest and had the most informative output (it prints the log value expressing
the likelihood of parsing, and it labels the majority of nodes with their grammatical
function). Actually, choosing a parser upon these criteria instead of the accuracy
of parsing could be regarded as inappropriate. Our justification is that a metric to
measure the accuracy of parsing on new data does not exist. These parsers have all
been trained on the same corpus, and at least the two German parsers tuned up
to the point where their results are almost the same. Thus, a priori their expected
accuracy in a new corpus should be equal, and accuracy is not a criterion for choosing
one over the other. Given the difficulty of evaluating the accuracy of the parse trees
and their presumed similarity, we based the choice of parser on the qualities that
contributed most to our task, namely speed and informative output.

4 Learning to Annotate Knowledge Roles 59

4.4.4 Tree Representation

The bracketed parse tree and the stem information of tagging serve as input for
the step of creating a tree data structure. The tree is composed of terminals (leaf
nodes) and non-terminals (internal nodes), all of them known as constituents of the
tree. For export purposes as well as for performing exploration or annotation of the
corpus, the tree data structures are stored in XML format, according to a schema
defined in the TigerSearch10 tool. The created tree, when visualized in TigerSearch,
looks like the one shown in Figure. 4.10.11 The terminals are labeled with their
POS tags and also contain the corresponding words and stems; the inside nodes are
labeled with their phrase types (NP, PP, etc.); and the branches have labels, too,
corresponding to the grammatical functions of the nodes. The XML representation
of a portion of the tree is shown in Figure 4.11.

hindeuten

$,

,

AP

PP

PP

 S

HD

HD

NG

AD NK NK

die auf eine mehrnicht kontinuierliche Spannugssteuerung im WickelkopfbereichUnregelmässigkeiten

PTKNEGPRELS APPR ART PIAT ADJA NN APPRART NN WFIN

d auf ein mehrnicht kontinuierlich Spannung−Steuerung in Wickel−Kopf−Bereich hindeutenUnregelmässigkeit

DA

NN

NP

OA

SB

NK RC

AD NK

MO MO

NK

,

Fig. 4.10. Representation of a parsed tree in the TigerSearch tool. Due to space
reasons, only a branch of the tree is shown.

4.4.5 Feature Creation

Features are created from the parse tree of a sentence. A feature vector is created
for every constituent of the tree, containing some features unique to the constituent,
some features common to all constituents of the sentence, and some others calculated
with respect to the target constituent (the predicate verb).

A detailed linguistic description of possible features used by different research
systems for the SRL task is found in [22]. In this subsection, we only list the features
used in our system and give example values for the leaf node Spannungssteuerung

of the parse tree in Figure 4.10.

10 http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERSearch/
11 English translation: “. . . irregularities, which point to a not anymore continuous

steering of voltage in the area of the winding head.”

60 Eni Mustafaraj, Martin Hoof, and Bernd Freisleben

...
<t lemma="Spannung-Steuerung" word="Spannungssteuerung" pos="NN"

id="sentences._108_28" />
<t lemma="in" word="im" pos="APPRART"

id="sentences._108_29" />
<t lemma="Wickel-Kopf-Bereich" word="Wickelkopfbereich" pos="NN"

id="sentences._108_30" />
<t lemma="hindeuten" word="hindeuten" pos="VVFIN" id="sentences._108_31" />
</terminals>
<nonterminals>
<nt id="sentences._108_500" cat="PP">
<edge idref="sentences._108_3" label="NK" />
<edge idref="sentences._108_2" label="DA" />
<edge idref="sentences._108_1" label="DA" />

</nt>
...

Fig. 4.11. XML representation of a portion of the parse tree from Figure 4.10.

Phrase type NN
Grammatical function NK
Terminal (is the constituent a terminal or non-terminal node?) 1
Path (path from the target verb to the constituent, denoting u(up) and d(down) for the direction)
uSdPPd
Grammatical path (like Path, but instead of node labels, branch labels are considered) uHDdMOdNK
Path length (number of branches from target to constituent) 3
Partial path (path to the lowest common ancestor between target and constituent) uPPuS
Relative Position (position of the constituent relative to the target) left
Parent phrase type (phrase type of the parent node of the constituent) PP
Target (lemma of the target word) hindeuten
Target POS (part-of-speech of the target) VVFIN
Passive (is the target verb passive or active?) 0
Preposition (the preposition if the constituent is a PP) none
Head Word (for rules on head words refer to [5]) Spannung-Steuerung
Left sibling phrase type ADJA
Left sibling lemma kontinuierlich
Right sibling phrase type none
Right sibling lemma none
Firstword, Firstword POS, Lastword, Lastword POS (in this case, the constituent has only one word,
thus, these features get the same values: Spannung-Steuerung and NN. For non-terminal constituents
like PP or NP, first word and last word will be different.)
Frame (the frame evoked by the target verb) Evidence
Role (this is the class label that the classifier will learn to predict. It will be one of the roles related
to the frame or none, for an example refer to Figure 4.12.) none

If a sentence has several clauses where each verb evokes a frame, the feature
vectors are calculated for each evoked frame separately and all the vectors participate
in the learning.

4.4.6 Annotation

To perform the manual annotation, we used the Salsa annotation tool (publicly
available) [11]. The Salsa annotation tool reads the XML representation of a parse
tree and displays it as shown in Figure 4.12. The user has the opportunity to add
frames and roles as well as to attach them to a desired target verb. In the example of
Figure 4.12 (the same sentence of Figure 4.10), the target verb hindeuten (point to)
evokes the frame Evidence, and three of its roles have been assigned to constituents of
the tree. Such an assignment can be easily performed using point-and-click. After this

4 Learning to Annotate Knowledge Roles 61

process, an element <frames> is added to the XML representation of the sentence,
containing information about the frame. Excerpts of the XML code are shown in
Figure 4.13.

steering of voltagecontinuous

die

anymoreonetowhichirregularities

Unregelmässigkeiten nicht im

Loc

AP

pointnot

PP

winding’s head area

eine

in

S

Wickelkopfbereich

NP

PP

Find Symptom

Cause

 , kontinuierliche hindeutenmehr

Risk

Spannugssteuerungauf

Manner

Evidence

Fig. 4.12. Annotation with roles with the Salsa tool.

<frames>
<frame name="Evidence" id="sentences._108__f1">
<target><fenode idref="sentences._108_31"/></target>
<fe name="Symptom" id="sentences._108_f1_e1">
<fenode idref="sentences._108_22"/>

</fe>
<fe name="Cause" id="sentences._108__f1_e2">
<fenode idref="sentences._108_509"/>

</fe>
<fe name="Loc" id="sentences._108__f1_e5">
<fenode idref="sentences._108_510"/>

</fe>
...

Fig. 4.13. XML Representation of an annotated frame.

4.4.7 Active Learning

Research in IE has indicated that using an active learning approach for acquiring
labels from a human annotator has advantages over other approaches of selecting
instances for labeling [16]. In our learning framework, we have also implemented an
active learning approach. The possibilities for designing an active learning strategy
are manifold; the one we have implemented uses a committee-based classification
scheme that is steered by corpus statistics. The strategy consists of the following
steps:

62 Eni Mustafaraj, Martin Hoof, and Bernd Freisleben

a) Divide the corpus in clusters of sentences with the same target verb. If a cluster
has fewer sentences than a given threshold, group sentences with verbs evoking
the same frame into the same cluster.

b) Within each cluster, group the sentences (or clauses) with the same parse sub-
tree together.

c) Select sentences from the largest groups of the largest clusters and present them
to the user for annotation.

d) Bootstrap initialization: apply the labels assigned by the user to groups of sen-
tences with the same parse sub-tree.

e) Train all the classifiers of the committee on the labeled instances; apply each
trained classifier to the unlabeled sentences.

f) Get a pool of instances where the classifiers of the committee disagree and
present to the user the instances belonging to sentences from the next largest
clusters not yet manually labeled.

g) Repeat steps d)–f) a few times until a desired accuracy of classification is
achieved.

In the following, the rationale behind choosing these steps is explained.
Steps a), b), c): In these steps, statistics about the syntactical structure of the

corpus are created, with the intention of capturing its underlying distribution, so
that representative instances for labeling can be selected.

Step d): This step has been regarded as applicable to our corpus, due to the
nature of the text. Our corpus contains repetitive descriptions of the same diagnos-
tic measurements on electrical machines, and often, even the language used has a
repetitive nature. Actually, this does not mean that the same words are repeated
(although often standard formulations are used, especially in those cases when noth-
ing of value was observed). Rather, the kind of sentences used to describe the task
has the same syntactic structure. As an example, consider the sentences shown in
Figure 4.14.

[PP Im Nutaustrittsbereich] wurden [NP stärkere Glimmentladungsspuren] festgestellt.

In the area of slot exit stronger signs of corona discharges were detected.

[PP Bei den Endkeilen] wurde [NP ein ausreichender Verkeildruck] festgestellt.

At the terminals’ end a sufficient wedging pressure was detected.

[PP An der Schleifringbolzenisolation] wurden [NP mechanische Beschädigungen] festgestellt.

On the insulation of slip rings mechanical damages were detected.

[PP Im Wickelkopfbereich] wurden [NP grossflächige Decklackablätterungen] festgestellt.

In the winding head area extensive chippings of the top coating were detected.

Fig. 4.14. Examples of sentences with the same structure.

What all these sentences have in common is the passive form of the verb fest-
stellen (wurden festgestellt), and due to the subcategorization of this verb, the parse
tree on the level of phrases is identical for all sentences, as indicated by 4.15. Fur-
thermore, for the frame Observation evoked by the verb, the assigned roles are in
all cases: NP—Finding, PP—Observed Object. Thus, to bootstrap initialization, we
assign the same roles to sentences with the same sub-tree as the manually labeled
sentences.

4 Learning to Annotate Knowledge Roles 63

S

VAFIN NP VPPP

Fig. 4.15. Parse tree of the sentences in Figure 4.14.

Step e): The committee of classifiers consists of a maximum entropy (MaxEnt)
classifier from Mallet [19], a Winnow classifier from SNoW [2], and a memory-based
learner (MBL) from TiMBL [6]. For the MBL, we selected k=5 as the number of the
nearest neighbours. The classification is performed as follows: if at least two classi-
fiers agree on a label, the label is accepted. If there is disagreement, the cluster of
labels from the five nearest neighbours is examined. If the cluster is not homogenous
(i.e., it contains different labels), the instance is included in the set of instances to
be presented to the user for manual labeling.

Step f): If one selects new sentences for manual annotation only based on the
output of the committee-based classifier, the risk of selecting outlier sentences is
high [29]. Thus, from the instances’ set created by the classifier, we select those
belonging to large clusters not manually labeled yet.

4.5 Evaluations

To evaluate this active learning approach on the task of annotating text with knowl-
edge roles, we performed a series of experiments that are described in the following.
It was explained in Section 4.4.1 that, based on the XML structure of the docu-
ments, we created subcorpora with text belonging to different types of diagnostic
tests. After such subcorpora have been processed to create sentences, only unique
sentences are retained for further processing (repetitive, standard sentences do not
bring any new information, they only disturb the learning and therefore are dis-
carded). Then, lists of verbs were created, and by consulting the sources mentioned
in Section 4.3.3, verbs were grouped with one of the frames: Observation, Evidence,
Activity, and Change. Other verbs that did not belong to any of these frames were
not considered for role labeling.

4.5.1 Learning Performance on the Benchmark Datasets

With the aim of exploring the corpus to identify roles for the frames and by using
our learning framework, we annotated two different subcorpora and then manually
controlled them, to create benchmark datasets for evaluation. Some statistics for
the manually annotated subcorpora are summarized in Table 4.4. Then, to evaluate
the efficiency of the classification, we performed 10-fold cross-validations on each
set, obtaining the results shown in Table 4.5, where recall, precision, and the Fβ=1

measure are the standard metrics of information retrieval.
We analyzed some of the classification errors and found that they were due to

parsing anomalies, which had forced us in several occasions to split a role among
several constituents.

64 Eni Mustafaraj, Martin Hoof, and Bernd Freisleben

Table 4.4. Statistics for the benchmark datasets.

Subcorpus Cases No. Sentences No. Unique Sentences No. Annotated Roles No.

Isolation Current 491 1134 585 1862
Wedging System 453 775 602 1751

Table 4.5. Learning results for the benchmark datasets.

Subcorpus Recall Precision Fβ=1 measure

Isolation Current 0.913 0.934 0.92
Wedging System 0.838 0.882 0.86

4.5.2 Active Learning versus Uniform Random Selection

In order to evaluate the advantages of active learning, we compared it to the uni-
form random selection of sentences for manual annotations. Some results for both
approaches are summarized in Table 4.6 and Table 4.7. Recall, precision, and Fβ=1

measure were calculated after each iteration, in which 10 new sentences manually
labeled were added to the training set. The results of active learning (Fβ=1 measure)
are 5–10 points better than those of random learning. For this experiment, the step
d) of the active learning strategy was not applied, since it is very specific to our
corpus.

Table 4.6. Random Learning Results.

Sentences No. Recall Precision Fβ=1 measure

10 0.508 0.678 0.581
20 0.601 0.801 0.687
30 0.708 0.832 0.765
40 0.749 0.832 0.788

Table 4.7. Active Learning Results.

Sentences No. Recall Precision Fβ=1 measure

10 0.616 0.802 0.697
20 0.717 0.896 0.797
30 0.743 0.907 0.817
40 0.803 0.906 0.851

4 Learning to Annotate Knowledge Roles 65

4.5.3 Bootstrapping Based on Other Sets

During the annotation of the two benchmark datasets, we noticed that the two sub-
corpora, although different in nature (set 1: Isolation Current contains evaluations
of numerical measurements performed on the three phases of the machine, set 2:
Wedging System describes visual inspections on the wedging components of the ma-
chine) had very often the frame Observation or Change in common, while the frame
Evidence appeared almost only in the first set, and the frame Activity almost always
in the second. Thus, we tested whether text annotated with the same roles in one
set could bootstrap the learning in the second, and the results are summarized in
Table 4.8.

Table 4.8. Results for bootstrapping based on other labeled sets

Training File Testing File Recall Precision

Isolation Current Wedging System 0.765 0.859
Wedging System Isolation Current 0.642 0.737

We consider these results as very promising, since they hint at the possibility
of using previously annotated text from other subcorpora to bootstrap the learning
process, something that would alleviate the process of acquiring manual annotations
for new text.

4.6 Conclusions

In this chapter, we have presented an approach for extracting knowledge from text
documents containing descriptions of knowledge tasks in a technical domain. Knowl-
edge extraction in our approach is based on the annotation of text with knowledge
roles (a concept originating in knowledge engineering), which we map to seman-
tic roles found in frame semantics. The framework implemented for this purpose is
based on deep NLP and active learning. Experiments have demonstrated a robust
learning performance, and the obtained annotations were of high quality. Since our
framework is inspired by and founded upon research in semantic role labeling (SRL),
the results indicate that SRL could become a highly valuable processing step for text
mining tasks.

In future work, we will consider the advantages of representing annotated text by
means of knowledge roles and the related frames. Besides the previously explained
uses for semantic retrieval of cases and the extraction of empirical domain knowledge
facts, such a representation could also permit looking for potentially interesting
relations in text and can be exploited to populate application and domain ontologies
with lexical items.

66 Eni Mustafaraj, Martin Hoof, and Bernd Freisleben

4.7 Acknowledgments

The Insulation Competence Center of ALSTOM Ltd. Switzerland kindly permitted
the use of the text documents for research purposes. Katrin Erk, Sebastian Pado,
Amit Dubey, Sabine Schulte im Walde, Michael Schiehlen, and Helmut Schmid pro-
vided their linguistic tools and were an invaluable source of information and support.
We are grateful to all of them.

References

1. A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-
training. In Proc. of the Workshop on Computational Learning Theory, COLT
’98, Madison, WI, pages 92–100, 1998.

2. A. J. Carlson, C. M. Cumby, N. D. Rizzolo, J. L. Rosen, and D. Roth. SNoW:
Sparse Network of Winnow. 2004.

3. X. Carreras and L. Màrquez. Introduction to the coNLL shared task: Semantic
role labeling. In Proc. of 8th Conference of Natural Language Learning, pages
89–97, Boston, MA, 2004.

4. X. Carreras and L. Màrquez. Introduction to the coNLL-2005 shared task:
Semantic role labeling. In Proc. of 9th Conference of Natural Language Learning,
pages 152–165, Ann Arbor, MI, June 2005.

5. M. Collins. Head-Driven Statistical Models for Natural Language Parsing. PhD
thesis, University of Pennsylvania, 1999.

6. W. Daelemans, J. Zavrel, K. van der Sloot, and A. van den Bosch. TiMBL:
Tilburg Memory Based Learner. 2004.

7. A. Dubey. Statistical Parsing for German. PhD thesis, University of Saarland,
Germany, 2003.

8. A. Dubey. What to do when lexicalization fails: Parsing German with suffix
analysis and smoothing. In Proc. of 43rd Annual Meeting of ACL, Ann Arbor,
MI, pages 314–321, 2005.

9. M. Ellsworth, K. Erk, P. Kingsbury, and S. Padó. PropBank, SALSA, and
FrameNet: How design determines product. In Proc. of the LREC 2004 Work-
shop on Building Lexical Resources from Semantically Annotated Corpora, Lis-
bon, Portugal, 2004.

10. K. Erk, A. Kowalski, and S. Padó. The Salsa annotation tool-demo description.
In Proc. of the 6th Lorraine-Saarland Workshop, Nancy, France, pages 111–113,
2003.

11. K. Erk, A. Kowalski, S. Padó, and M. Pinkal. Towards a resource for lexical
semantics: A large German corpus with extensive semantic annotation. In Proc.
of 41st Annual Meeting of ACL, Saporo, Japan, pages 537–544, 2003.

12. C. J. Fillmore. Frame semantics and the nature of language. In Annals of
the New York Academy of Sciences: Conf. on the Origin and Development of
Language and Speech, volume 280, pages 20–32, 1976.

13. R. Ghani and R. Jones. A comparison of efficacy of bootstrapping of algorithms
for information extraction. In Proc. of LREC 2002 Workshop on Linguistic
Knowledge Acquisition, Las Palmas, Spain, 2002.

14. D. Gildea and D. Jurafsky. Automatic labeling of semantic roles. In Computa-
tional Linguistics, volume 23, pages 245–288, 2002.

4 Learning to Annotate Knowledge Roles 67

15. S. Schulte im Walde. Experiments on the Automatic Induction of German Se-
mantic Verb Classes. PhD thesis, Universität Stuttgart, Germany, 2003.

16. R. Jones, R. Ghani, T. Mitchell, and E. Riloff. Active learning for information
extraction with multiple view features sets. In Proc. of Adaptive Text Extraction
and Mining, EMCL/PKDD-03, Cavtat-Dubrovnik, Croatia, pages 26–34, 2003.

17. W. Lezius. Morphy - German morphology, part-of-speech tagging and appli-
cations. In Proc. of 9th Euralex International Congress, Stuttgart, Germany,
pages 619–623, 2000.

18. C. Manning and H. Schütze. Foundations of Statistical Natural Language Pro-
cessing. The MIT Press, Cambridge, MA, 1999.

19. A. K. McCallum. MALLET: A machine learning for language toolkit, 2002.
20. R. J. Mooney and R. Bunescu. Mining knowledge from text using information

extraction. SIGKDD Explor. Newsl., 7(1):3–10, 2005.
21. M. Palmer and D. Gildea. The proposition bank: An annotated corpus of se-

mantic roles. In Computational Linguistics, volume 31, pages 71–106, 2005.
22. S. Pradhan, K. Hacioglu, V. Kruglery, W. Ward, J. H. Martin, and D. Jurafsky.

Support vector learning for semantic argument classification. Machine Learning
Journal, Kluwer Academic Publishers, 59:1–29, 2005.

23. E. Rillof and M. Schelzenbach. An empirical approach to conceptual frame
acquisition. In Proc. of 6th Workshop on Very Large Corpora, Montreal, Canada,
pages 49–56, 1998.

24. J. Ruppenhofer, M. Ellsworth, M. R. L. Petruck, and C. R. Johnson. FrameNet:
Theory and Practice. 2005.

25. M. Schiehlen. Annotation strategies for probabilistic parsing in German. In
Proc. of CoLing’04, Geneva, Switzerland, 2004.

26. H. Schmid. Improvement in part-of-speech tagging with an application to Ger-
man. In Proc. of the ACL SIGDAT-Workshop, Dublin, Ireland, pages 47–50,
1995.

27. H. Schmid. Efficient parsing of highly ambiguous context-free grammars with
bit vectors. In Proc. of CoLing’04, Geneva, Switzerland, 2004.

28. G. Schreiber, H. Akkermans, A. Anjewierden, R. deHoog, N. Shadbolt, W. Van-
deVelde, and B. Wielinga. Knowledge Engineering and Management: The Com-
monKADS Methodology. The MIT Press, Cambridge, MA, 2000.

29. M. Tang, X. Luo, and S. Roukos. Active learning for statistical natural language
parsing. In Proc. of the ACL 40th Anniversary Meeting, Philadelphia, PA, pages
120–127, 2002.

30. S. Weiss, N. Indurkhya, T. Zhang, and F. Damerau. Text Mining: Predictive
Methods for Analyzing Unstructured Information. Springer, New York, NY,
2004.

5

A Case Study in Natural Language Based Web
Search

Giovanni Marchisio, Navdeep Dhillon, Jisheng Liang, Carsten Tusk, Krzysztof
Koperski, Thien Nguyen, Dan White, and Lubos Pochman

5.1 Introduction

Is there a public for natural language based search? This study, based on our experi-
ence with a Web portal, attempts to address criticisms on the lack of scalability and
usability of natural language approaches to search. Our solution is based on InFact R©,
a natural language search engine that combines the speed of keyword search with
the power of natural language processing. InFact performs clause level indexing, and
offers a full spectrum of functionality that ranges from Boolean keyword operators
to linguistic pattern matching in real time, which include recognition of syntactic
roles, such as subject/object and semantic categories, such as people and places. A
user of our search can navigate and retrieve information based on an understanding
of actions, roles and relationships. In developing InFact, we ported the functional-
ity of a deep text analysis platform to a modern search engine architecture. Our
distributed indexing and search services are designed to scale to large document
collections and large numbers of users. We tested the operational viability of InFact
as a search platform by powering a live search on the Web. Site statistics and user
logs demonstrate that a statistically significant segment of the user population is
relying on natural language search functionality. Going forward, we will focus on
promoting this functionality to an even greater percentage of users through a series
of creative interfaces.

Information retrieval on the Web today makes little use of Natural Language
Processing (NLP) techniques [1, 3, 11, 15, 18]. The perceived value of improved
understanding is greatly outweighed by the practical difficulty of storing complex
linguistic annotations in a scalable indexing and search framework. In addition, any
champion of natural language techniques must overcome significant hurdles in user
interface design, as greater search power often comes at a price of more work in for-
mulating a query and navigating the results. All of these obstacles are compounded
by the expected resistance to any technological innovation that has the potential to
change or erode established models for advertising and search optimization, which
are based on pricing of individual keywords or noun phrases, rather than relation-
ships or more complex linguistic constructs.

Nevertheless, with the increasing amount of high value content made available on
the Web and increased user sophistication, we have reasons to believe that a segment

70 Giovanni Marchisio, et al.

of the user population will eventually welcome tools that understand a lot more than
present day keyword search does. Better understanding and increased search power
depend on better parameterization of text content in a search engine index. The most
universal storage employed today to capture text content is an inverted index. In
a typical Web search engine, an inverted index may register presence or frequency
or keywords, along with font size or style, and relative location in a Web page.
Obviously this model is only a rough approximation to the complexity of human
language and has the potential to be superseded by future generation of indexing
standards.

InFact relies on a new approach to text parameterization that captures many
linguistic attributes ignored by standard inverted indices. Examples are syntactic
categories (parts of speech), syntactical roles (such as subject, objects, verbs, prepo-
sitional constraints, modifiers, etc.) and semantic categories (such as people, places,
monetary amounts, etc.). Correspondingly, at query time, there are explicit or im-
plicit search operators that can match, join or filter results based on this rich as-
sortment of tags to satisfy very precise search requirements.

The goal of our experiment was to demonstrate that, once scalability barriers
are overcome, a statistically significant percentage of Web users can be converted
from keyword search to natural language based search. InFact has been the search
behind the GlobalSecurity.org site (www.globalsecurity.org) for the past six months.
According to the Alexa site (www.alexa.com), GlobalSecurity.org has a respectable
overall traffic rank (no. 6,751 as of Feb 14, 2006). Users of the site can perform key-
word searches, navigate results by action themes, or enter explicit semantic queries.
An analysis of query logs demonstrate that all these non-standard information dis-
covery processes based on NLP have become increasingly popular over the first six
months of operation.

The remainder of this chapter is organized as follows. Section 5.2 presents an
overview of our system, with special emphasis on the linguistic analyses and new
search logic. Section 5.3 describes the architecture and deployment of a typical
InFact system. Section 5.4 is a study of user patterns and site statistics.

5.2 InFact System Overview

InFact consists of an indexing and a search module. With reference to Figure 5.1, in-
dexing pertains to the processing flow on the bottom of the diagram. InFact models
text as a complex multivariate object using a unique combination of deep pars-
ing, linguistic normalization and efficient storage. The storage schema addresses the
fundamental difficulty of reducing information contained in parse trees into gener-
alized data structures that can be queried dynamically. In addition, InFact handles
the problem of linguistic variation by mapping complex linguistic structures into se-
mantic and syntactic equivalents. This representation supports dynamic relationship
and event search, information extraction and pattern matching from large document
collections in real time.

5.2.1 Indexing

With reference to Figure 5.1, InFact’s Indexing Service performs in order: 1) docu-
ment processing, 2) clause processing, and 3) linguistic normalization.

5 A Case Study in Natural Language Based Web Search 71

Fig. 5.1. Functional overview of InFact.

Document Processing

The first step in document processing is format conversion, which we handle through
our native format converters, or optionally via search export conversion software
from Stellant

TM
(www.stellent.com), which can convert 370 different input file types.

Our customized document parsers can process disparate styles and recognized zones
within each document. Customized document parsers address the issue that a Web
page may not be the basic unit of content, but it may consist of separate sections
with an associated set of relationships and metadata. For instance a blog post may
contain blocks of text with different dates and topics. The challenge is to automat-
ically recognize variations from a common style template, and segment information
in the index to match zones in the source documents, so the relevant section can
be displayed in response to a query. Next we apply logic for sentence splitting in
preparation for clause processing. Challenges here include the ability to unambigu-
ously recognize sentence delimiters, and recognize regions such as lists or tables that

72 Giovanni Marchisio, et al.

are unsuitable for deep parsing. Last, we extract morphological stems and compute
frequency counts, which are then entered in the index.

Clause Processing

The indexing service takes the output of the sentence splitter and feeds it to a
deep linguistic parser. A sentence may consist of multiple clauses. Unlike traditional
models that store only term frequency distributions, InFact performs clause level
indexing and captures syntactic category and roles for each term, and grammatical
constructs, relationships, and inter-clause links that enable it to understand events.
One strong differentiator of our approach to information extraction [4, 5, 7, 8, 14, 19]
is that we create these indices automatically, without using predefined extraction
rules, and we capture all information, not just predefined patterns. Our parser per-
forms a full constituency and dependency analysis, extracting part-of-speech (POS)
tags and grammatical roles for all tokens in every clause. In the process, tokens
undergo grammatical stemming and an optional, additional level of tagging. For
instance, when performing grammatical stemming on verb forms, we normalize to
the infinitive, but we may retain temporal tags (e.g., past, present, future), aspect
tags (e.g., progressive, perfect), mood/modality tags (e.g., possibility, subjunctive,
irrealis, negated, conditional, causal) for later use in search.

Next we capture inter-clause links, through: 1) explicit tagging of conjunctions
or pronouns that provide the link between the syntactic structures for two adjacent
clauses in the same sentence; and 2) pointing to the list of annotated keywords in the
antecedent and following sentence. Note that the second mechanism ensures good
recall in those instances where the parser fails to produce a full parse tree for long
and convoluted sentences, or information about an event is spread across adjacent
sentences. In addition, appositive clauses are recognized, split into separate clauses
and cross-referenced to the parent clause.

For instance, the sentence: “Appointed commander of the Continental Army
in 1775, George Washington molded a fighting force that eventually won indepen-
dence from Great Britain” consists of three clauses, each containing a governing
verb (appoint, mold, and win). InFact decomposes it into a primary clause (“George
Washington molded a fighting force”) and two secondary clauses, which are related
to the primary clause by an appositive construct (“Appointed commander of the
Continental Army in 1775”) and a pronoun (“that eventually won independence
from Great Britain”), respectively. Each term in each clause is assigned a syntac-
tic category or POS tag (e.g., noun, adjective, etc.) and a grammatical role tag
(e.g., subject, object, etc.). InFact then utilizes these linguistic tags to extract re-
lationships that are normalized and stored in an index, as outlined in the next two
sections.

Linguistic Normalization

We apply normalization rules at the syntactic, semantic, or even pragmatic level.
Our approach to coreferencing and anaphora resolution make use of syntactic agree-
ment and/or binding theory constraints, as well as modeling of referential distance,
syntactic position, and head noun [6, 10, 12, 13, 16, 17]. Binding theory places syn-
tactic restrictions on the possible coreference relationships between pronouns and

5 A Case Study in Natural Language Based Web Search 73

their antecedents [2]. For instance, when performing pronoun coreferencing, syntac-
tic agreement based on person, gender and number limits our search for a noun
phrase linked to a pronoun to a few candidates in the text. In addition, consistency
restrictions limit our search to a precise text span (the previous sentence, the pre-
ceding text in the current sentence, or the previous and current sentence) depending
upon whether the pronoun is personal, possessive, reflective, and what is its person.
In the sentence “John works by himself,” “himself” must refer to John, whereas in
“John bought him a new car,” “him” must refer to some other individual mentioned
in a previous sentence. In the sentence, ““You have not been sending money,” John
said in a recent call to his wife from Germany,” binding theory constraints limit pro-
noun resolution to first and second persons within a quotation (e.g., you), and the
candidate antecedent to a noun outside the quotation, which fits the grammatical
role of object of a verb or argument of a preposition (e.g., wife). Our coreferencing
and anaphora resolution models also benefit from preferential weighting based on
dependency attributes. The candidate antecedents that appear closer to a pronoun
in the text are scored higher (weighting by referential distance). Subject is favored
over object, except for accusative pronouns (weighting by syntactic position). A head
noun is favored over its modifiers (weighting by head label). In addition, as part of
the normalization process, we apply a transformational grammar to map multiple
surface structures into an equivalent deep structure. A common example is the nor-
malization of a dependency structure involving a passive verb form into the active,
and recognition of the deep subject of such clause. At the more pragmatic level, we
apply rules to normalize composite verb expressions, capture explicit and implicit
negations, or to verbalize noun or adjectives in cases where they convey action sense
in preference to the governing verb of a clause. For instance, the sentences “Bill did
not visit Jane,” which contains an explicit negation, and “Bill failed to visit Jane,”
where the negation is rendered by a composite verb expression, are mapped to the
same structure.

5.2.2 Storage

The output of a deep parser is a complex augmented tree structure that usually does
not lend itself to a tractable indexing schema for cross-document search. Therefore,
we have developed a set of rules for converting an augmented tree representation
into a scalable data storage structure.

In a dependency tree, every word in the sentence is a modifier of exactly one
other word (called its head), except the head word of the sentence, which does not
have a head. We use a list of tuples to specify a dependency tree with the following
format:

(Label Modifier Root POS Head-label Role Antecedent [Attributes])

where: Label is a unique numeric ID; Modifier is a term in the sentence; Root
is the root form (or category) of the modifier; POS is its lexical category; Head-
label is the ID of the term that modifier modifies; Role specifies the type of de-
pendency relationship between head and modifier, such as subject, complement, etc;
Antecedent is the antecedent of the modifier; Attributes is the list of semantic
attributes that may be associated with the modifier, e.g., person’s name, location,
time, number, date, etc.

74 Giovanni Marchisio, et al.

For instance, the parse tree for our Washington example above is shown in Table
5.1.

Table 5.1. The parse tree representation of a sentence.

Head
Label Modifier Root POS

Label
Role Antecedent Attributes

1 Appointed Appoint V

2 commander N 1 Obj Person/title

3 of Prep 2 Mod

4 the Det 5 Det

Continental
5

Army
N 3 Pcomp Organization/name

6 in Prep 1 Mod

7 1775 N 6 Pcomp Numeric/date

George
8

Washington
N 9 Subj Person/name

9 molded mold V

10 a Det 12 Det

11 fighting A 12 Mod

12 force N 9 Obj

13 that N 15 Subj 12

14 eventually A 15 Mod

15 won win V

16 independence N 15 Obj

17 from Prep 16 Mod

Great
18

Britain
N 17 Pcomp Location/country

Fig. 5.2. The Subject-Action-Object indexing structure.

The basic idea behind or approach to indexing involves collapsing selected nodes
in the parse tree to reduce the overall complexity of the dependency structures.

5 A Case Study in Natural Language Based Web Search 75

We model our storage structures after the general notion of subject-action-object
triplets, as shown in Figure 5.2. Interlinked subject-action-object triples and their
respective modifiers can express most types of syntactic relations between various
entities within a sentence.

The index abstraction is presented in Table 5.2, where the additional column
“Dist” denotes degrees of separations (or distance) between primary Subject, Verb,
Object and each Modifier, and “Neg” keeps track of negated actions.

Table 5.2. The index abstraction of a sentence.

Subject- Object- Verb-Subject
Modifier

Object
Modifier

Verb
Modifier

Prep Pcomp Dist Neg

Washington George appoint 1 F
commander appoint 1 F
Army Continental appoint 3 F

appoint in 1775 2 F
Washington George force fighting mold 2 F
force fighting independence win 1 F

Greatwin from
Britain

3 F

win eventually 1 F

InFact stores the normalized triplets into dedicated index structures that

• are optimized for efficient keyword search
• are optimized for efficient cross-document retrieval of arbitrary classes of rela-

tionships or events (see examples in the next section)
• store document metadata and additional ancillary linguistic variables for filter-

ing of search results by metadata constraints (e.g., author, date range), or by
linguistic attributes (e.g., retrieve negated actions, search subject modifier field
in addition to primary subject in a relationship search)

• (optionally) superimposes annotations and taxonomical dependencies from a
custom ontology or knowledge base.

With regard to the last feature, for instance, we may superimpose a [Country] entity
label on a noun phrase, which is the subject of the verb “to attack.” The index
supports multiple ontologies and entangled multiparent taxonomies.

InFact stores “soft events” instead of fitting textual information into a rigid
relational schema that may result in information loss. “Soft events” are data struc-
tures that can be recombined to form events and relationships. “Soft events” are
pre-indexed to facilitate thematic retrieval by action, subject, and object type. For
instance, a sentence like “The president of France visited the capital of Tunisia”
contains evidence of 1) a presidential visit to a country’s capital and 2) diplomatic
relationships between two countries. Our storage strategy maintains both interpre-
tations. In other words, we allow more than one subject or object to be associated
with the governing verb of a sentence. The tuples stored in the database are there-
fore “soft events,” as they may encode alternative patterns and relationships found
in each sentence. Typically, only one pattern is chosen at search time, in response to
a specific user request (i.e., request #1: gather all instances of a president visiting a
country; request #2: gather all instances of interactions between any two countries).

76 Giovanni Marchisio, et al.

5.2.3 Search

Unlike keyword search engines, InFact employs a highly expressive query language
(IQL or InFact Query Language) that combines the power of grammatical roles
with the flexibility of Boolean operators, and allows users to search for actions,
entities, relationships, and events. InFact represents the basic relationship between
two entities with an expression of the kind:

Subject Entity > Action > Object Entity,

The arrows in the query refer to the directionality of the action, which could be
either uni-directional (as above) or bi-directional. For example,

Entity 1 <> Action <> Entity 2

will retrieve all relationships involving Entity 1 and Entity 2, regardless of their
roles as subject or object of the action. Wildcards can be used for any grammatical
role. For instance, the query “∗ > eat > cake” will retrieve a list of anybody or
anything that eats a cake; and a query like “John > ∗ > Jane” will retrieve a list
of all uni-directional relationships between John and Jane. InFact also supports the
notion of entity types. For instance, in addition to entering an explicit country name
like “Argentina” as Entity 1 or Entity 2 in a relationship query, a user can enter a
wildcard for any country name by using the syntax [Country]. InFact comes with
a generic ontology that includes [Location], [Person], [Organization], [Numeric] as
the four main branches. Entity types can be organized hierarchically in a taxonomy.
IQL renders hierarchical dependencies by means of taxonomy paths. For instance,
in [Entity/Location/Country] and [Entity/Location/City] both [Country] and [City]
nodes have a common parent [Location]. Taxonomy path can encode “is-a” relations
(as in the above examples), or any other relations defined in a particular ontology
(e.g., “part-of” relation). When querying, we can use a taxonomy node in a relation-
ship search, e.g., [Location], and the query will automatically include all subpaths
in the taxonomic hierarchy, including [City], [Location], or narrow the search by
expanding the path to [Location/City].

With the InFact query language, we can search for:

• Any relationships involving an entity of interest

For example, the query “George Bush <> * <> *” will retrieve any events involving
“George Bush” as subject or object

• Relationships between two entities or entity types

For example, the query “China <> * <> Afghan*” will retrieve all relationships
between the two countries. Note in this case a wildcard is used in “Afghan*” to
handle different spelling variations of Afghanistan. The query “Bin Laden <>*<>
[Organization]” will retrieve any relationships involving “Bin Laden” and an orga-
nization.

• Events involving one or more entities or types

For example, the query “Pope > visit > [country]” will return all instances of the
Pope visiting a country. In another example, “[Organization/name] > acquire >
[Organization/name]” will return all events involving a named company buying
another named company.

5 A Case Study in Natural Language Based Web Search 77

• Events involving a certain action type

“Action types” are groups of semantically linked actions. For example, query “[Per-
son] > [Communication] > [Person]” will retrieve all events involving communica-
tion between two people.

InFact’s query syntax supports Boolean operators (i.e., AND, OR, NOT). For
example, the query:

Clinton NOT Hillary > visit OR travel to > [Location]

is likely to retrieve the travels of Bill Clinton, but not Hillary Clinton.
We can further constrain actions with modifiers, which can be explicit entities

or entity types, e.g., Paris or [location]. For example, the query

[Organization/Name] > buy > [Organization/Name]ˆ[money]

will only return results where a document mentions a specific monetary amount
along with a corporate acquisition. Similarly, the query

Bush <> meet<> Clinton ˆ[location]

will return results restricted to actions that occur in an explicit geographical loca-
tion.

We can also filter search results by specifying document-level constraints, in-
cluding:

• Document metadata tags – lists of returned actions, relationships or events are
restricted to documents that contain the specified metadata values.

• Boolean keyword expressions – lists of returned actions, relationships or events
are restricted to documents that contain the specified Boolean keyword expres-
sions.

For instance, a query like:

[Organization/Name] > buy > [Organization/Name]ˆ[money]; energy NOT oil

will return documents that mentions a corporate acquisition with a specific monetary
amount, and also contain the keyword “energy” but do not contain the keyword
“oil.”

InFact also provides a context operator for inter-clause linking. Suppose for
instance, that we want to retrieve all events where a plane crash kills a certain
number of passengers. The event could be spread over adjacent sentences, as in:
“The plane crashed shortly after take-off. As many as 224 people were killed.”

In this case, a query like:

* > kill > [numeric] ∼plane crash

will retrieve all plane crash events, regardless of whether they are contained in a
single or multiple, adjacent sentences.

InFact can also support synonyms and query expansion via custom ontologies.
In this case, InFact will automatically recognize the equivalence of entities or actions
that belong to the same ontology node.

The InFact Query Language rests on a flexible Java Search API. The Java
Search API allows us to programmatically concatenate search operators, package
and present them to the end user through a simpler interface.

78 Giovanni Marchisio, et al.

5.3 Architecture and Deployment

We designed both indexing and search as parallel distributed services. Figure 5.3
shows a typical deployment scenario, with an indexing service on the left and a
search service on the right. A typical node in each of the diagrams would is a dual
processor (e.g., 2.8+GHz Xeon 1U) machine with 4GB of RAM and two 120GB
drives.

The Indexing Service (left) processes documents in parallel. Index workers access
source documents from external web servers. Multiple index workers can run on each
node. Each index worker performs all the “Annotation Engine” analyses described in
Figure 5.1. An index manager orchestrates the indexing process across many index
workers. The results of all analyses are stored in temporary indices in the index
workers. At configurable intervals, the index manager orchestrates the merging of
all temporary indices into the partition index components.

A partition index hosts the actual disk based indices used for searching. The
contents of a document corpus are broken up into one or more subsets that are
each stored in a partition index. The system supports multiple partition indices: the
exact number will depend on corpus size, number of queries per second and desired
response time. Indices are queried in parallel and are heavily IO bound. Partition
indices are attached to the leaf nodes of the Search Service on the right.

In addition to storing results in a temporary index, index workers can also store
the raw results of parsing in a Database Management System (DBMS). The database
is used almost exclusively to restore a partition index in the event of index corrup-
tion. Data storage requirements on the DBMS range between 0.5 and 6x corpus
size depending on which recovery options for the InFact system are enabled. Once
a document has been indexed and merged into a partition index it is available for
searching.

In a typical search deployment, queries are sent from a client application; the
client application may be a Web browser or a custom application built using the
Search API. Requests arrive over HTTP and are passed through a Web Server to
the Search Service layer and on to the top searcher of a searcher tree. Searchers
are responsible for searching one or more partition index. Multiple searchers are
supported and can be stacked in a hierarchical tree configuration to enable searching
large data sets. The top level searcher routes ontology related requests to one or more
ontology searchers, which can run on a single node. Search requests are passed to
child searchers, which then pass the request down to one or more partition indices.
The partition index performs the actual search against the index, and the result
passes up the tree until it arrives back at the client for display to the user.

If a particular segment of data located in a partition index is very popular and
becomes a search bottleneck, it may be cloned; the parent searcher will load bal-
ance across two or three partition indices. In addition, if ontology searches become
a bottleneck, more ontology searchers may be added. If a searcher becomes a bot-
tleneck, more searchers can be added. The search service and Web server tier may
be replicated, as well, if a load balancer is used.

The example in Figure 5.3 is an example of a large-scale deployment. In the
GlobalSecurity.org portal, we currently need only four nodes to support a user com-
munity of 100,000 against a corpus of several GB of international news articles,
which are updated on a daily basis.

5 A Case Study in Natural Language Based Web Search 79

Fig. 5.3. Architectural overview of InFact.

5.4 The GlobalSecurity.org Experience

5.4.1 Site Background

InFact started powering the GlobalSecurity.org Web site on June 22, 2005. Based
in Alexandria, VA, and “launched in 2000, GlobalSecurity.org is the most compre-

80 Giovanni Marchisio, et al.

hensive and authoritative online destination for those in need of both reliable back-
ground information and breaking news . . . GlobalSecurity.org’s unique positioning
enables it to reach both a targeted and large diversified audience. The content of
the website is updated hourly, as events around the world develop, providing in-
depth coverage of complicated issues. The breadth and depth of information on the
site ensures a loyal repeat audience. This is supplemented by GlobalSecurity.org’s
unique visibility in the mass media, which drives additional growth” [9]. The direc-
tor of GlobalSecurity.org, John Pike, regularly provides commentary and analysis on
space and security issues to PBS, CNN, MSNBC, Fox, ABC, CBS, NBC, BBC, NPR,
and numerous print and online publications. In powering this site, InFact serves the
information search needs of a well-established user community of 100,000, consist-
ing of news reporters, concerned citizens, subject matter experts, senior leaders, and
junior staff and interns.

5.4.2 Operational Considerations

When preparing the GlobalSecurity.org deployment, one of our prime concerns was
the response time of the system. For this reason, we kept the data size of the partition
indices small enough so that most operations occur in memory and disk access
is minimal. We split the GlobalSecurity.org data across two index chunks, each
containing roughly 14 GB of data in each partition index. Another concern was
having sufficient capacity to handle the user load. To account for future user traffic,
we specified the deployment for 2-3 times the maximum expected load of about
11,000 queries per day. This left us with two cloned partition indices per index
chunk. In addition, we wanted a hot back up of the entire site, in case of any
hardware failures, and to support us each time we are rolling out new features.

Fig. 5.4. The GlobalSecurity.org home page.

Another area of concern was the distribution of query types. Our system has
significantly varying average response time and throughput (measured in queries/
minute) depending on the type of queries being executed. We assumed that users

5 A Case Study in Natural Language Based Web Search 81

would take some time to migrate from keyword queries to fact queries. Therefore, we
selected a very conservative ratio of 50/50 fact-to-keyword query types with a view
to adding more hardware if needed. After automatically generating millions of query
files, we heavily loaded the system with the queries to simulate heavy traffic using
JMeter, a multi-threaded client web user simulation application from the Apache
Jakarta organization. Based on these simulations, we deployed with only four nodes.

Fig. 5.5. Keyword search result and automatic tip generation with InFact in re-
sponse to the keyword query “blackhawk.”

5.4.3 Usability Considerations

In deploying InFact on the GlobalSecurity.org site, our goal was to serve the infor-
mation needs of a wide community of users, the majority of which are accustomed
to straightforward keyword search. Therefore, on this site, by default, InFact acts
as a keyword search engine. However, we also started experimenting with ways to
progressively migrate users away from keyword search and towards natural language
search or “fact search.” With reference to Figure 5.4, users approaching the site can
enter InFact queries from the search box in the upper left, or click on the Hot Search
link. The latter executes a predefined fact search, which is particularly popular over
an extended time period (days or even weeks). The Hot Search is controlled by Glob-
alSecurity.org staff, and is outside the control of the general user. However, once in
the InFact search page (Figure 5.5), the user can execute fact searches explicitly by
using the IQL syntax. The IQL syntax is fully documented in the InFact Help page.

82 Giovanni Marchisio, et al.

Alternatively, by clicking on the “Try your own Fact Search” link on the upper right
of the InFact Search page, the user is introduced to a Custom Query Generator
(Figure 5.6), which produces the query of Figure 5.7.

Fig. 5.6. Fact search with the InFact Custom Query Generator: the user is looking
for facts that involve the export of plutonium.

The most interesting device we employed is guided fact navigation in response to
a keyword entry. We call this process “tip generation.” In this scenario, we capture
keywords entered by a user and try to understand whether these are names of people,
places, organization, military units, vehicles, etc. When executing a keyword search,
the InFact system can recommend several fact searches which may be of interest to
a user based on the keywords entered. These recommendations are presented to the
user as a guided navigation menu consisting of links. In the example of Figure 5.5,
the user is performing a keyword search for “blackhawk.” The user sees a series of
links presented at the top of the result set. They read: “Tip: View facts involving
blackhawk and: Combat, Its Usage/Operation, Locations, Military Organizations,
Money.” Each of these links when clicked in turn executes a fact search. For instance,
clicking on Military Organizations will generate the list of facts or relationships
of Figure 5.8, which gives an overview of all military units that have used the
blackhawk helicopter; clicking on Money will generate the list of facts or relationships
of Figure 5.9, which gives an overview of procurement and maintenance costs, as well
as government spending for this vehicle. The relationships are returned in a table
display where each row is an event, and columns identify the three basic semantic

5 A Case Study in Natural Language Based Web Search 83

Fig. 5.7. Fact search with the InFact Custom Query Generator: InFact translates
the query of Figure 5.6 into the InFact Query Language (IQL) and returns a list of
results. IQL operators are fully documented in the Help page.

roles of source (or subject), action (or verb), and target (or object). Note that
relationships, by default, are sorted by relevance to a query, but can also be resorted
by date, action frequency, or alphabetically by source, action or target. Each of the
relationships or facts in the table is in turn hyperlinked to the exact location in the
source document where it was found, so the user can quickly validate the findings
and explore its context (Figure 5.10).

Usage logs were the primary driver for this customization effort. The personnel
at GlobalSecurity.org were very helpful and provided us with many months of user
traffic Web logs. We wrote some simple scripts to analyze the logs. For example,
we studied the 500 most popular key word searches performed on the site ranked in
order of popularity. Next, we began looking for entity types that would be helpful
to the most number of users. We found a lot of user interest in weapons, terrorists,
and US officials, amongst other things. We then set about creating ontologies for
each of these areas. New custom ontologies can easily be mapped into the internal
InFact ontology XML format.

5.4.4 Analysis of Query Logs

We wish to quantify the relative popularity of natural language (Fact) search versus
keyword search. In addition, we wish to compare the relative success of alternative
strategies we adopted to overcome usability issues. This study of log data reflect

84 Giovanni Marchisio, et al.

Fig. 5.8. Tip Navigation with InFact: facts involving the “blackhawk” helicopter
and military organizations.

Fig. 5.9. Tip Navigation with InFact: facts involving the “blackhawk” helicopter
and money.

four ways users submit a natural language query to InFact: 1) they click on the
Hot Search link; 2) they click on a keyword tip; 3) they click on an example in the
Query Generator or Help page; 4) they attempt to type an explicit relationship or
fact search using the IQL syntax.

5 A Case Study in Natural Language Based Web Search 85

Fig. 5.10. Tip Navigation with InFact: each fact is hyperlinked to the exact location
where it was found in the source document.

At the time of this writing, an average of 36% of advanced search users click
on the hot search link “Iran and Nuclear program,” which executes a predefined
search like “Iran > * ∼ nuclear.” However, it is difficult to assess what the user
experience is like because in 80% of cases the user performs non-search-related tasks,
and therefore we don’t know how long they spent looking at the results. Note that
users clicking on this link may not realize that they are going to a search engine
page, since the link title is ambiguous. The results of this search are quite good,
and still relevant. The hot search is an important entry point into our search site,
as 36% of all the fact search queries executed came from this source. It seems likely
that adding more of these hot search links or otherwise accentuating them on the
page would significantly increase user exposure to natural language based queries.

Our analysis of query logs shows that keyword tips are the most effective way
to migrate users to Fact Search. Users who click on tips frequently follow up with

86 Giovanni Marchisio, et al.

queries of their own. Tip clickers also write better queries, probably because, after
seeing the column display, they have a much better sense of how queries can be
composed. Keyword tip clickers typically find the results engaging enough to spend
an average of 1.5 minutes studying the results: 37% of users go back and click on
more than one tip. Even better, 87% follow up by clicking on the “Try your own
Fact Search” link and try their own query. All of the queries attempted are queries;
90% produce results; our follow up analysis suggests that for two thirds of these
queries the results are relevant to the users search goals. In other words, users who
click on the tips are extremely likely not only to try their own fact search, but also
to pay enough attention to the format to write both valid and useful queries.

Examples in the Help File or Query Generator are largely ineffective at getting
users to try Fact Search. Because the results returned by the examples usually do
not necessarily relate to what the user wishes to search on, the column display is
more of a distraction than an enticement to try Fact Search. However, those who go
on to try Fact Search, after clicking on an example, have a better chance of writing
good queries. Example link clickers are less likely to experiment with Fact Search
or invest time learning how it works. Seventy-two percent of users end their session
after clicking on one or more examples, not even returning to perform the keyword
search that presumably brought them to the site in the first place. Of the 28% who
did not leave the site after clicking an example, two thirds went on to try a Fact
Search. Only 6% of users click on examples after having tried a Fact Search query
on their own. Analysis of this user group suggests that examples have a place in the
UI, but are not sufficiently compelling to motivate users to try Fact Search alone.
However, this evidence does lend support to the hypothesis that users who see the
column display are more likely to create valid queries: 60% of the users who click on
examples and go on to write their own queries write valid queries and get results,
which is still a much higher percentage than for users who blindly try to create
queries.

About 75% of users who try Fact Search directly by using the IQL syntax, and
without seeing the column display first fail to get results. Forty-five percent of users
write invalid queries where nouns are inserted in the action field (the most com-
mon error). Another common error is specifying too much information or attaching
prepositions to noun phrases. We can detect some of these errors automatically,
and we plan to provide automatic guidance to users going forward. About 20% of
query creators get impressive results. Most successful users get their queries right
on the first shot, and, in general, seem unwilling to invest much time experimenting.
Successful users are most likely expert analysts. In reproducing their searches and
inspecting their results, we estimate that they have a positive impression of Fact
search. In 75% of cases the results of Fact Search take direct the user quickly to the
relevant parts of relevant documents, providing a deeper overview and faster naviga-
tion of content. However, in 25% of cases, expert users also write queries that return
no results. Reasons for this include specifying too much information or including
modifiers or prepositional terms in the verb field such as: “cyber attack,” “led by,”
and “go to.” In many cases users would be successful by just entering the verb. In
some cases, users get lots of fact search results, but lack the experience to refine
their query, so they simply go back to keyword search. We should try to communi-
cate how queries can be modified further if there are too many results, perhaps by
adding an ontology tag, or a context operator to the query syntax. For instance, the
query “Bush > meet > [person]” could yield a large number of irrelevant results, if

5 A Case Study in Natural Language Based Web Search 87

a user is only interested in a list of diplomatic meetings. The query can be refined
as “Bush >meet > [person/name].” In this case, the addition of an ontology tag
restricts the number of meetings to those that are likely to involve named political
personalities of some relevance. If the user is primarily interested in meeting that
involve talks on nuclear arms control, the query can be further refined as “Bush >
meet > [person/name] ∼ nuclear arms control.” Similarly, the query “[country] >
produce > uranium” can be turned into the query “[country] > produce >[numeric]
uranium” if a user is after quantities of uranium that are being produced around
the world. In general, we observe that users accustomed to keyword search believe
that specifying more terms translates into more accurate results. In moving these
users to Fact Search we must encourage them to start as simple as possible, since
the IQL can express in two words what would take 20 lines using Boolean language.

Fig. 5.11. Queries/day vs day of operation (June 22, 2005, to November 30, 2005).

Finally, Figure 5.11 shows overall query volumes (keyword search and Fact
Search) as a function of day from the first day of operation (June 22 to Novem-
ber 30, 2005). The cyclic nature of the graph derives from the fact that most user
access the site during the working week. Figure 5.12, which displays query volumes
vs week of operation, clearly shows a positive trend: overall traffic to the site has
increased by almost 40% ever since we introduced InFact search. The most inter-
esting metrics relate to the percentage of users that derive value from Fact Search.
The most effective mechanism to promote natural language search, as we have seen,
are the tips. Figure 5.13 shows a 60% increase in the number of users that click on
the tips automatically generated by InFact’s advanced linguistic analysis over our
entire period of operation. The overall percentage has increased from 4% to 10%.
Our analysis also suggests that the best way to teach users how to write good queries
is to first expose them to the summary result displays that ensues from a natural
language query. The sooner users become aware of the type of results that a natural

88 Giovanni Marchisio, et al.

language query can yield, the higher the chances that they learn how to use the new
search functions correctly. This reinforces the idea that the result display may be a
driver of Fact Search.

Fig. 5.12. Queries/week vs week of operation (June to November, 2005).

Fig. 5.13. Percentage of tips clicked (June to November, 2005).

5 A Case Study in Natural Language Based Web Search 89

5.5 Conclusion

We deployed a natural language based search to a community of Web users, and
measured its popularity relative to conventional keyword search. Our work addressed
criticisms of NLP approaches to search to the effect that they are not scalable and are
too complex to be usable by average end-users. Our approach rests on a sophisticated
index parameterization of text content, that captures syntactic and semantic roles,
in addition to keyword counts, and enables interactive search and retrieval of events
patterns based on a combination of keyword distributions and natural language
attributes. Our distributed indexing and search services are designed to scale to
large document collections and large numbers of users. We successfully deployed on
a Web site that serves a community of 100,000 users. An analysis of query logs shows
that, during the first six months of operation, traffic has increased by almost 40%.
Even more significantly, we are encountering some success in promoting natural
language searches. Our study demonstrates that the percentage of users that avail
themselves of guided fact navigation based on natural language understanding has
increased from 4% to 10% during the first six months of operation. Going forward,
we will focus on increasing this percentage with a more innovative UI.

5.6 Acknowledgments

This work was partially supported by Dr. Joseph Psotka of the US Army Research
Institute under contract No. W74V8H-05-C-0016. We are also indebted to John
Pike, director of GlobalSecurity.org and his staff for providing us with many months
of user traffic Web logs prior to going live.

References

1. D. Appelt and D. Israel. Introduction to information extraction technology.
IJCAI-99 tutorial. http://www.ai.sri.com/∼appelt/ie-tutorial/ijcai99.pdf.

2. D. Appelt and D. Israel. Semantic approaches to binding theory. In Proceedings
of the Workshop on Semantic Approaches to Binding Theory. ESSLLI, 2003.

3. A. Arampatzis, T. van der Weide, P. van Bommel, and C. Koster. Linguistically-
motivated information retrieval. In M. Dekker, editor, Encyclopedia of Library
and Information Science, Springer Verlag, volume 69, pages 201–222. 2000.

4. C. F. Baker, C. J. Fillmore, and J. B. Lowe. The Berkeley FrameNet project.
In C. Boitet and P. Whitelock, editors, Proceedings of the Thirty-Sixth Annual
Meeting of the Association for Computational Linguistics and Seventeenth Inter-
national Conference on Computational Linguistics, pages 86–90, San Francisco,
California, 1998. Morgan Kaufmann Publishers.

5. I. Dagan, O. Glickman, and B. Magnini. The pascal recognizing textual entail-
ment challenge. In Proceedings of the PASCAL Challenges Workshop Recogniz-
ing Textual Entailment, 2005.

6. M. Dimitrov. A light-weight approach to coreference resolution for named enti-
ties in text. Master’s thesis, University of Sofia, 2002.

90 Giovanni Marchisio, et al.

7. D. Gildea and D. Jurafsky. Automatic labeling of semantic roles. Computational
Linguistics, 28(3):245–288, 2002.

8. D. Gildea and M. Palmer. The necessity of parsing for predicate argument recog-
nition. In Proceedings of the 40th Meeting of the Association for Computational
Linguistics (ACL 2002), pages 239–246, 2002.

9. GlobalSecurity.org. http://www.globalsecurity.org/org/overview/history.htm.
10. M. Kameyama. Recognizing referential links: An information extraction per-

spective. In Proceedings of the ACL’97/EACL’97 Workshop on Operation Fac-
tors in Practical, Robust Anaphora Resolution, pages 46–53, 1997.

11. A. Kao and S. Poteet. Report on KDD conference 2004 panel discussion can
natural language processing help text mining? SIGKDD Explorations, 6(2):132–
133, 2004.

12. C. Kennedy and B. Boguraev. Anaphora for everyone: Pronominal anaphora
resolution without a parser. In Proceedings of the 16th International Conference
on Computational Linguistics (COLING’96), pages 113–118, 1996.

13. S. Lappin and H. Leass. An algorithm for pronominal anaphora resolution.
Computational Linguistics, 20(4):535–561, 1994.

14. D. Lin and P. Pantel. DIRT - discovery of inference rules from text. In Knowledge
Discovery and Data Mining, pages 323–328, 2001.

15. C. Manning and H. Schutze. Foundation of Statistical Natural Language Pro-
cessing. The MIT Press, 2000.

16. R. Miltov. Robust pronoun resolution with limited knowledge. In Proceed-
ings of the 18th International Conference on Computational Linguistics (COL-
ING’98)/ACL’98, pages 869–875.

17. R. Miltov. Anaphora resolution: The state of the art. Working paper. University
of Wolverhamption, 1999.

18. National Institute of Standards and Technology. Automatic content extraction
(ACE). http://www.itl.nist.gov/iaui/894.01/tests/ace.

19. M. Surdeanu, S. Harabagiu, J. Williams, and P. Aarseth. Using predicate-
argument structures for information extraction. In 41th Annual Meeting of the
Association for Computational Linguistics, pages 8–15, 2003.

6

Evaluating Self-Explanations in iSTART:
Word Matching, Latent Semantic Analysis,
and Topic Models

Chutima Boonthum, Irwin B. Levinstein, and Danielle S. McNamara

6.1 Introduction

iSTART (Interactive Strategy Trainer for Active Reading and Thinking) is a web-
based, automated tutor designed to help students become better readers via multi-
media technologies. It provides young adolescent to college-aged students with a pro-
gram of self-explanation and reading strategy training [19] called Self-Explanation
Reading Training, or SERT [17, 21, 24, 25]. The reading strategies include (a) com-
prehension monitoring, being aware of one’s understanding of the text; (b) para-
phrasing, or restating the text in different words; (c) elaboration, using prior knowl-
edge or experiences to understand the text (i.e., domain-specific knowledge-based
inferences) or common sense, using logic to understand the text (i.e., domain-general
knowledge based inferences); (d) predictions, predicting what the text will say next;
and (e) bridging, understanding the relation between separate sentences of the text.
The overall process is called “self-explanation” because the reader is encouraged to
explain difficult text to him- or herself. iSTART consists of three modules: Intro-
duction, Demonstration, and Practice. In the last module, students practice using
reading strategies by typing self-explanations of sentences. The system evaluates
each self-explanation and then provides appropriate feedback to the student. If the
explanation is irrelevant or too short, the student is required to add more informa-
tion. Otherwise, the feedback is based on the level of overall quality.

The computational challenge here is to provide appropriate feedback to the stu-
dents concerning their self-explanations. To do so requires capturing some sense of
both the meaning and quality of the self-explanation. Interpreting text is critical for
intelligent tutoring systems, such as iSTART, that are designed to interact meaning-
fully with, and adapt to, the users’ input. iSTART was initially proposed as using
Latent Semantic Analysis (LSA; [13]) to capture the meanings of texts and to assess
the students’ self-explanation; however, while the LSA algorithms were being built,
iSTART used simple word matching algorithms. In the course of integrating the
LSA algorithms, we found that a combination of word-matching and LSA provided
better results than either separately [18].

Our goal in evaluating the adequacy of the algorithms has been to imitate ex-
perts’ judgments of the quality of the self-explanations. The current evaluation sys-
tem predicts the score that a human gives on a 4-point scale, where 0 represents an

92 Chutima Boonthum, Irwin B. Levinstein, and Danielle S. McNamara

evaluation of the explanation as irrelevant or too short; 1, minimally acceptable; 2,
better but including primarily the local textual context; and 3, oriented to a more
global comprehension. Depending on the text, population, and LSA space used, our
results have ranged from 55 to 70 percent agreement with expert evaluations using
that scale. We are currently attempting to improve the effectiveness of our algo-
rithms by incorporating Topic Models (TM) either in place of or in conjunction
with LSA and by using more than one LSA space from different genres (science,
narrative, and general TASA corpus). We present some of the results of these efforts
in this chapter.

Our algorithms are constrained by two major requirements, speedy response
times and speedy introduction of new texts. Since the trainer operates in real time,
the server that calculates the evaluation must respond in 4 to 5 seconds. Further-
more the algorithms must not require any significant preparation of new texts, a
requirement precisely contrary to our plans when the project began. In order to
accommodate the needs of the teachers whose classes use iSTART, the trainer must
be able to use texts that the teachers wish their students to use for practice within
a day or two. This time limit precludes us from significantly marking up the text or
gathering related texts to incorporate into an LSA corpus.

In addition to the overall 4-point quality score, we are attempting to expand
our evaluation to include an assessment of the presence of various reading strategies
in the student’s explanation so that we can generate more specific feedback. If the
system were able to detect whether the explanation uses paraphrasing, bridging, or
elaboration we could provide more detailed feedback to the students, as well as an
individualized curriculum based on a more complete model of the student. For ex-
ample, if the system were able to assess that the student only paraphrased sentences
while self-explaining, and never used strategies such as making bridging inferences
or knowledge-based elaborations, then the student could be provided additional
training to generate more inference-based explanations.

This chapter describes how we employ word matching, LSA, and TM in the
iSTART feedback systems and the performance of these techniques in producing
both overall quality and reading strategy scores.

6.2 iSTART: Feedback Systems

iSTART was intended from the outset to employ LSA to determine appropriate
feedback. The initial goal was to develop one or more benchmarks for each of the
SERT strategies relative to each of the sentences in the practice texts and to use
LSA to measure the similarity of a trainee’s explanation to each of the benchmarks.
A benchmark is simply a collection of words, in this case, words chosen to represent
each of the strategies (e.g., words that represent the current sentence, words that
represent a bridge to a prior sentence). However, while work toward this goal was
progressing, we also developed a preliminary “word-based” (WB) system to provide
feedback in our first version of iSTART [19] so that we could provide a complete
curriculum for use in experimental situations. The second version of iSTART has
integrated both LSA and WB in the evaluation process; however, the system still
provides only overall quality feedback. Our current investigations aim to provide
feedback based on identifying specific reading strategies.

6 Evaluating Self-Explanation in iSTART 93

6.2.1 Word Matching Feedback Systems

Word matching is a very simple and intuitive way to estimate the nature of a self-
explanation. In the first version of iSTART, several hand-coded components were
built for each practice text. For example, for each sentence in the text, the “im-
portant words” were identified by a human expert and a length criterion for the
explanation was manually estimated. Important words were generally content words
that were deemed important to the meaning of the sentence and could include words
not found in the sentence. For each important word, an association list of synonyms
and related terms was created by examining dictionaries and existing protocols as
well as by human judgments of what words were likely to occur in a self-explanation
of the sentence. In the sentence “All thunderstorms have a similar life history,” for
example, important words are thunderstorm, similar, life, and history. An associa-
tion list for thunderstorm would include storms, moisture, lightning, thunder, cold,
tstorm, t-storm, rain, temperature, rainstorms, and electric-storm. In essence, the
attempt was made to imitate LSA.

A trainee’s explanation was analyzed by matching the words in the explanation
against the words in the target sentence and words in the corresponding association
lists. This was accomplished in two ways: (1) Literal word matching and (2) Soundex
matching.

Literal word matching - Words are compared character by character and if
there is a match of the first 75% of the characters in a word in the target sentence
(or its association list) then we call this a literal match. This also includes removing
suffix -s, -d, -ed, -ing, and -ion at the end of each words. For example, if the trainee’s
self-explanation contains ‘thunderstom’ (even with the misspelling), it still counts
as a literal match with words in the target sentence since the first nine characters
are exactly the same. On the other hand, if it contains ‘thunder,’ it will not get a
match with the target sentence, but rather with a word on the association list.

Soundex matching - This algorithm compensates for misspellings by mapping
similar characters to the same soundex symbol [1, 5]. Words are transformed to their
soundex code by retaining the first character, dropping the vowels, and then con-
verting other characters into soundex symbols. If the same symbol occurs more than
once consecutively, only one occurrence is retained. For example, ‘thunderstorm’ will
be transformed to ‘t8693698’; ‘communication’ to ‘c8368.’ Note that the later exam-
ple was originally transformed to ‘c888368’ and two 8s were dropped (‘m’ and ‘n’
are both mapped to ‘8’). If the trainee’s self-explanation contains ‘thonderstorm’ or
‘tonderstorm,’ both will be matched with ‘thunderstorm’ and this is called a soundex
match. An exact soundex match is required for short words (i.e., those with fewer
than six alpha-characters) due to the high number of false alarms when soundex is
used. For longer words, a match on the first four soundex symbols suffices. We are
considering replacing this rough and ready approach with a spell-checker.

A formula based on the length of the sentence, the length of the explanation, the
length criterion mentioned below, the number of matches to the important words,
and the number of matches to the association lists produces a rating of 0 (inad-
equate), 1 (barely adequate), 2 (good), or 3 (very good) for the explanation. The
rating of 0 or inadequate is based on a series of filtering criteria that assesses whether
the explanation is too short, too similar to the original sentence, or irrelevant. Length

94 Chutima Boonthum, Irwin B. Levinstein, and Danielle S. McNamara

is assessed by a ratio of the number of words in the explanation to the number in
the target sentence, taking into consideration the length criterion. For example, if
the length of the sentence is 10 words and the length priority is 1, then the required
length of the self-explanation would be 10 words. If the length of the sentence is 30
words and the length priority is 0.5, then the self-explanation would require a min-
imum of 15 words. Relevance is assessed from the number of matches to important
words in the sentence and words in the association lists. Similarity is assessed in
terms of a ratio of the sentence and explanation lengths and the number of matching
important words. If the explanation is close in length to the sentence, with a high
percentage of word overlap, the explanation would be deemed too similar to the tar-
get sentence. If the explanation failed any of these three criteria (Length, Relevance,
and Similarity), the trainee would be given feedback corresponding to the problem
and encouraged to revise the self-explanation.

Once the explanation passes the above criteria, then it is evaluated in terms of
its overall quality. The three levels of quality that guide feedback to the trainee are
based on two factors: 1) the number of words in the explanation that match either
the important words or association-list words of the target sentence compared to
the number of important words in the sentence and 2) the length of the explanation
in comparison with the length of the target sentence. This algorithm will be referred
as WB-ASSO, which stands for word-based with association list.

This first version of iSTART (word-based system) required a great deal of human
effort per text, because of the need to identify important words and, especially, to
create an association list for each important word. However, because we envisioned
a scaled-up system rapidly adaptable to many texts, we needed a system that re-
quired relatively little manual effort per text. Therefore, WB-ASSO was replaced.
Instead of lists of important and associated words we simply used content words
(nouns, verbs, adjectives, adverbs) taken literally from the sentence and the entire
text. This algorithm is referred to as WB-TT, which stands for word-based with to-
tal text. The content words were identified using algorithms from Coh-Metrix, an
automated tool that yields various measures of cohesion, readability, other charac-
teristics of language [9, 20]. The iSTART system then compares the words in the
self-explanation to the content words from the current sentence, prior sentences,
and subsequent sentences in the target text, and does a word-based match (both lit-
eral and soundex) to determine the number of content words in the self-explanation
from each source in the text. While WB-ASSO is based on a richer corpus of words
than WB-TT, the replacement was successful because the latter was intended for
use together with LSA which incorporates the richness of a corpus of hundreds of
documents. In contrast, WB-ASSO was used on its own.

Some hand-coding remained in WB-TT because the length criterion for an expla-
nation was calculated based on the average length of explanations of that sentence
collected from a separate pool of participants and on the importance of the sentence
according to a manual analysis of the text. Besides being relatively subjective, this
process was time consuming because it required an expert in discourse analysis as
well as the collection of self-explanation protocols. Consequently, the hand-coded
length criterion was replaced with one that could be determined automatically from
the number of words and content words in the target sentence (we called this word-
based with total text and automated criteria, or WB2-TT). The change from WB-TT
to WB2-TT affected only the screening process of the length and similarity criteria.
Its lower-bound and upper-bound lengths are entirely based on the target sentence’s

6 Evaluating Self-Explanation in iSTART 95

length. The overall quality of each self-explanation (1, 2, or 3) is still computed with
the same formula used in WB-TT.

6.2.2 Latent Semantic Analysis (LSA) Feedback Systems

Latent Semantic Analysis (LSA; [13, 14]) uses statistical computations to extract
and represent the meaning of words. Meanings are represented in terms of their
similarity to other words in a large corpus of documents. LSA begins by finding
the frequency of terms used and the number of co-occurrences in each document
throughout the corpus and then uses a powerful mathematical transformation to
find deeper meanings and relations among words. When measuring the similarity
between text-objects, LSA’s accuracy improves with the size of the objects. Hence,
LSA provides the most benefit in finding similarity between two documents. The
method, unfortunately, does not take into account word order; hence, very short
documents may not be able to receive the full benefit of LSA.

To construct an LSA corpus matrix, a collection of documents are selected. A
document may be a sentence, a paragraph, or larger unit of text. A term-document-
frequency (TDF) matrix X is created for those terms that appear in two or more
documents. The row entities correspond to the words or terms (hence the W) and
the column entities correspond to the documents (hence the D). The matrix is
then analyzed using Singular Value Decomposition (SVD; [26]), that is the TDF
matrix X is decomposed into the product of three other matrices: (1) vectors of
derived orthogonal factor values of the original row entities W, (2) vectors of derived
orthogonal factor values of the original column entities D, and (3) scaling values
(which is a diagonal matrix) S. The product of these three matrices is the original
TDF matrix.

{X} = {W}{S}{D} (6.1)

The dimension (d) of {S} significantly affects the effectiveness of the LSA space
for any particular application. There is no definite formula for finding an optimal
number of dimensions; the dimensionality can be determined by sampling the results
of using the matrix {W}{S} to determine the similarity of previously-evaluated
document pairs for different dimensionalities of {S}. The optimal size is usually in
the range of 300-400 dimensions.

The similarity of terms is computed by taking the cosine of the corresponding
term vectors. A term vector is the row entity of that term in the matrix W. In
iSTART, the documents are sentences from texts and trainees’ explanations of those
sentences. These documents consist of terms, which are represented by term vectors;
hence, the document can be represented as a document vector which is computed
as the sum of the term vectors of its terms:

Di =

n∑
t=1

Tti (6.2)

where Di is the vector for the ith document D, Tti is the term vector for the term t
in Di, and n is number of terms in D. The similarity between two documents (i.e.,
the cosine between the two document vectors) is computed as

96 Chutima Boonthum, Irwin B. Levinstein, and Danielle S. McNamara

Sim(D1, D2) =

∑d

i=1
(D1i × D2i)∑d

i=1
(D1i)2 ×

∑d

i=1
(D2i)2

(6.3)

Since the first versions of iSTART were intended to improve students’ compre-
hension of science texts, the LSA space was derived from a collection of science texts
[11]. This corpus consists of 7,765 documents containing 13,502 terms that were used
in two or more documents. By the time the first version of the LSA-based system
was created (referred to as LSA1), the original goal of identifying particular strate-
gies in an explanation had been replaced with the less ambitious one of rating the
explanation as belonging one of three levels [22]. The highest level of explanation,
called “global-focused,” integrates the sentence material in a deep understanding of
the text. A “local-focused” explanation explores the sentence in the context of its
immediate predecessors. Finally, a “sentence-focused” explanation goes little beyond
paraphrasing. To assess the level of an explanation, it is compared to four bench-
marks or bags of words. The rating is based on formulae that use weighted sums of
the four LSA cosines between the explanation and each of the four benchmarks.

The four benchmarks include: 1) the words in the title of the passage (“title”),
2) the words in the sentence (“current sentence”), 3) words that appear in prior
sentences in the text that are causally related to the sentence (“prior text”), and
4) words that did not appear in the text but were used by two or more subjects
who explained the sentence during experiments (“world knowledge”). While the title
and current sentence benchmarks are created automatically, the prior-text bench-
mark depends on a causal analysis of the conceptual structure of the text, relating
each sentence to previous sentences. This analysis requires both time and expertise.
Furthermore, the world-knowledge benchmark requires the collection of numerous
explanations of each text to be used. To evaluate the explanation of a sentence, the
explanation is compared to each benchmark, using the similarity function mentioned
above. The result is called a cosine value between the self-explanation (SE) and the
benchmark. For example, Sim(SE, Title) is called the title LSA cosine. Discriminant
Analysis was used to construct the formulae that categorized the overall quality as
being a level 1, 2, or 3 [23]. A score is calculated for each of the levels using these
formulae. The highest of the three scores determines the predicted level of the expla-
nation. For example, the overall quality score of the explanation is a 1 if the level-1
score is higher than both the level-2 and level-3 scores.

Further investigation showed that the LSA1 cosines and the factors used in
the WB-ASSO approach could be combined in a discriminant analysis that re-
sulted in better predictions of the values assigned to explanations by human experts.
However, the combined approach was less than satisfactory. Like WB-ASSO, LSA1
was not suitable for an iSTART program that would be readily adaptable to new
practice texts. Therefore, we experimented with formulae that would simplify the
data gathering requirements to develop LSA2. Instead of the four benchmarks men-
tioned above, we discarded the world knowledge benchmark entirely and replaced
the benchmark based on causal analysis of prior-text with one that simply consisted
of the words in the previous two sentences. We could do this because the texts
were taken from science textbooks whose argumentation tends to be highly linear
argumentation in science texts; consequently the two immediately prior sentences

6 Evaluating Self-Explanation in iSTART 97

worked well as stand-ins for the set of causally related sentences. It should be noted
that this approach may not succeed so well with other genres, such as narrative or
history texts.

We tested several systems that combined the use of word-matching and LSA2
and the best one is LSA2/WB2-TT. In these combinatory systems, we combine
a weighted sum of the factors used in the fully automated word-based systems
and LSA2. These combinations allowed us to examine the benefits of using the
world knowledge benchmark (in LSA1) when LSA was combined with a fully auto-
mated word-based system and we found that world knowledge benchmark could be
dropped. Hence, only three benchmarks are used for LSA-based factors: 1) the words
in the title of the passage, 2) the words in the sentence, and 3) the words in the two
immediately prior sentences. From the word-based values we include 4) the number
of content words matched in the target sentence, 5) the number of content words
matched in the prior sentences, 6) the number of content words matched in the
subsequent sentences, and 7) the number of content words that were not matched in
4, 5, or 6. One further adjustment was made because we noticed that the LSA ap-
proach alone was better at predicting higher values correctly, while the word-based
approach was better at predicting lower values. Consequently, if the formulae of the
combined system predicted a score of 2 or 3, that value is used. However, if the sys-
tem predicted a 1, a formula from the word-based system is applied. Finally, level 0
was assigned to explanations that had negligible cosine matches with all three LSA
benchmarks.

6.2.3 Topic Models (TM) Feedback System

The Topic Models approach (TM; [10, 27]) applies a probabilistic model in finding
a relationship between terms and documents in terms of topics. A document is
conceived of as having been generated probabilistically from a number of topics and
each topic consists of number of terms, each given a probability of selection if that
topic is used. By using a TM matrix, we can estimate the probability that a certain
topic was used in the creation of a given document. If two documents are similar,
the estimates of the topics they probably contain should be similar. TM is very
similar to LSA, except that a term-document frequency matrix is factored into two
matrices instead of three.

{Xnormalized} = {W}{D} (6.4)

The dimension of matrix {W} is W x T , where W is the number of words in the
corpus and T is number of topics. The number of topics varies, more or less, with the
size of corpus; for example, a corpus of 8,000 documents may require only 50 topics
while a corpus of 40,000 documents could require about 300 topics. We use the TM
Toolbox [28] to generate the {W} or TM matrix, using the same science corpus as
we used for the LSA matrix. In this construction, the matrix {X} is for all terms in
the corpus, not just those appearing in two different documents. Although matrix
{X} is supposed to be normalized, the TM toolbox takes care of this normalization
and outputs for each topic, the topic probability, and a list of terms in this topic
along with their probabilities in descending order (shown in Table 6.1). This output
is easily transformed into the term-topic-probability matrix.

98 Chutima Boonthum, Irwin B. Levinstein, and Danielle S. McNamara

Table 6.1. Results from Topic Models Toolbox: science corpus, 50 topics, seed 1,
500 iteration, default alpha and beta.

TOPIC 2 0.0201963151 TOPIC 38 0.0214418635
earth 0.1373291184 light 0.1238061875

sun 0.0883152826 red 0.0339683946
solar 0.0454833721 color 0.0307797075

atmosphere 0.0418036547 white 0.0262046347
moon 0.0362104843 green 0.0230159476

surface 0.0181062747 radiation 0.0230159476
planet 0.0166343877 wavelengths 0.0230159476
center 0.0148681234 blue 0.0184408748
bodies 0.0147209347 dark 0.0178863206

tides 0.0139849912 visible 0.0170544891
planets 0.0133962364 spectrum 0.0151135492

gravitational 0.0125131042 absorbed 0.0149749106
system 0.0111884060 colors 0.0148362720
appear 0.0110412173 rays 0.0116475849

mass 0.0100108964 eyes 0.0108157535
core 0.0083918207 yellow 0.0105384764

space 0.0083918207 absorption 0.0102611992
times 0.0079502547 eye 0.0095680064
orbit 0.0073614999 pigment 0.0092907293

... ...

To measure the similarity between documents based on TM, the Kullback Liebler
distance (KL-distance: [27]) between two documents is recommended, rather than
the cosine (which, nevertheless, can be used). A document can be represented by a
set of probabilities that this document could contain topic i using the following

Dt =

n∑
i=1

Tit (6.5)

where Dt is the probability of topic t in the document D, Tit is the probability of
topic t of the term i in the document D, and n is number of terms appearing in the
document D. The KL-distance between two documents (the similarity) is computed
as follows:

KL(D1, D2) =
1

2

T∑
t=1

D1tlog2(D1t/D2t) +
1

2

T∑
t=1

D2tlog2(D2t/D1t) (6.6)

Constructing a TM matrix involves making choices regarding a number of fac-
tors, such as the number of topics, the seed for random number generation, alpha,
beta, and the number of iterations. We have explored these factors and constructed
a number of TM matrices in an effort to optimize the resulting matrix; however, for
this preliminary evaluation, we use a TM matrix of 50 topics and a seed of 1.

The first TM-based system we tried was simply used in place of the LSA-based
factors in the combined-system. The three benchmarks are still the same but sim-

6 Evaluating Self-Explanation in iSTART 99

ilarity is computed in two ways: (1) using cosines — comparing the explanation
and the benchmark using the cosine formula (Referred as TM1) and (2) using KL
distances — comparing the explanation and the benchmark using the KL distance
(Referred as TM2). As before, formulae are constructed using Discriminant Analysis
in order to categorize the quality of explanation as Levels 1, 2, or 3.

6.2.4 Metacognitive Statements

The feedback systems include a metacognitive filter that searches the trainees’ self-
explanations for patterns indicating a description of the trainee’s mental state such
as “now I see ...” or “I don’t understand this at all.” While the main purpose of
the filter is to enable the system to respond to such non-explanatory content more
appropriately, we also used the same filter to remove “noise” such as “What this
sentence is saying is ...” from the explanation before further processing. We have
examined the effectiveness of the systems with and without the filter and found
that they all perform slightly better with than without it. Thus, the systems in this
chapter all include the metacognitive filter.

The metacognitive filter also benefits the feedback system. When a metacogni-
tive pattern is recognized, its category is noted. If the self-explanation contains only
a metacognitive statement, the system will respond to a metacognitive category such
as understanding, not-understanding, confirmation, prediction, or boredom instead
of responding irrelevantly. Regular expressions are used to define multiple patterns
for each metacognitive category. If any pattern is matched in the self-explanation,
words matching the pattern are removed before evaluation. Examples of regular ex-
pression are shown below:

NOTUNDERSTAND :i(?:.?m|\W+am)(?:\W+\w+)?\W+\W+(?:(?:not
(?:\W+\w+)?\W+(?:sure|certain|clear))|
un(?:sure|certain|clear))

UNDERSTAND :now\W+i\W+(?:know|knew|underst(?:an|oo)d|
remember(?:ed)?|recall(?:ed)?|recogniz(?:ed)?|get|
got|see)

CONF :(?:so\W+)?i\W+(?:was|got\W+it)\W+(?:right|correct)

The first pattern will include “I’m not sure,” “I am uncertain”; second pattern
includes “Now I understand,” “Now I remembered”; and the last pattern includes
“So, I was right.” We originally constructed over 60 patterns. These were reduced
to 45 by running them on a large corpus of explanations and eliminating those that
failed to match and adding those that were missed.

6.3 iSTART: Evaluation of Feedback Systems

Two experiments were used to evaluate the performance of various systems of al-
gorithms that vary as a function of approach (word-based, LSA, combination of
word-based and LSA, and combination of word-based TM). In Experiment 1, we

100 Chutima Boonthum, Irwin B. Levinstein, and Danielle S. McNamara

compare all eight systems in terms of the overall quality score by applying each sys-
tem to a database of self-explanation protocols produced by college students. The
protocols had been evaluated by a human expert on overall quality. In Experiment 2,
we investigated two systems using a database of explanations produced by middle-
school students. These protocols were scored to identify particular reading strategies.

6.3.1 Experiment 1

Self-Explanations. The self-explanations were collected from college students who
were provided with SERT training and then tested with two texts, Thunderstorm
and Coal. Both texts consisted of 20 sentences. The Thunderstorm text was self-
explained by 36 students and the Coal text was self-explained by 38 students. The
self-explanations were coded by an expert according to the following 4-point scale: 0
= vague or irrelevant; 1 = sentence-focused (restatement or paraphrase of the sen-
tence); 2 = local-focused (includes concepts from immediately previous sentences);
3 = global-focused (using prior knowledge).

The coding system was intended to reveal the extent to which the participant
elaborated the current sentence. Sentence-focused explanations do not provide any
new information beyond the current sentence. Local-focused explanations might
include an elaboration of a concept mentioned in the current or immediately prior
sentence, but there is no attempt to link the current sentence to the theme of the
text. Self-explanations that linked the sentence to the theme of the text with world
knowledge were coded as “global-focused.” Global-focused explanations tend to use
multiple reading strategies, and indicate the most active level of processing.

Results. Each of the eight systems produces an evaluation comparable to the
human ratings on a 4-point scale. Hence, we calculated the correlations and percent
agreement between the human and system evaluations (see Table 6.2). Additionally,
d primes (d′s) were computed for each strategy level as a measure of how well the
system could discriminate among the different levels of strategy use. The d′s were
computed from hit and false-alarm rates. A hit would occur if the system assigned
the same self-explanation to a category (e.g., global-focused) as the human judges.
A false-alarm would occur if the system assigned the self-explanation to a category
(e.g., global-focused) that was different from the human judges (i.e., it was not a
global-focused strategy). d′s are highest when hits are high and false-alarms are low.
In this context, d′s refer to the correspondence between the human and system in
standard deviation units. A d′ of 0 indicates chance performance, whereas greater
d′s indicate greater correspondence.

One thing to note in Table 6.3 is that there is general improvement according to
all of the measures going from left to right. As might be expected, the systems with
LSA fared far better than those without LSA, and the combined systems were the
most successful. The word-based systems tended to perform worse as the evaluation
level increased (from 0 to 3), but performed relatively well at identifying poor self-
explanations and paraphrases. All of the systems, however, identified the sentence-
focused (i.e., 2’s) explanations less successfully. However, the d′s for the sentence
focused explanations approach 1.0 when LSA is incorporated, particularly when LSA
is combined with the word-based algorithms.

Apart from better performance with LSA than without, the performance is also
more stable with LSA. Whereas the word-based systems did not perform equally

6 Evaluating Self-Explanation in iSTART 101

Table 6.2. Measures of agreement for the Thunderstorm and Coal texts between
the eight system evaluations and the human ratings of the self-explanations in Ex-
periment 1.

Thunderstorm WB- WB-TT WB2-TT LSA1 LSA2 LSA2/ TM1 TM2
Text ASSO WB2-TT

Correlation 0.47 0.52 0.43 0.60 0.61 0.64 0.56 0.58
% Agreement 48% 50% 27% 55% 57% 62% 59% 60%
d’ of 0’s 2.21 2.26 0.97 2.13 2.19 2.21 1.49 2.37
d’ of 1’s 0.84 0.79 0.66 1.32 1.44 1.45 1.27 1.39
d’ of 2’s 0.23 0.36 -0.43 0.47 0.59 0.85 0.74 0.70
d’ of 3’s 1.38 1.52 1.41 1.46 1.48 1.65 1.51 1.41
Avg d’ 1.17 1.23 0.65 1.34 1.43 1.54 1.25 1.23

Coal WB- WB-TT WB2-TT LSA1 LSA2 LSA2/ TM1 TM2
Text ASSO WB2-TT

Correlation 0.51 0.47 0.41 0.66 0.67 0.71 0.63 0.61
% Agreement 41% 41% 29% 56% 57% 64% 61% 61%
d’ of 0’s 4.67 4.73 1.65 2.52 2.99 2.93 2.46 2.05
d’ of 1’s 1.06 0.89 0.96 1.21 1.29 1.50 1.38 1.52
d’ of 2’s 0.09 0.13 -0.37 0.45 0.49 0.94 0.74 0.61
d’ of 3’s -0.16 1.15 1.28 1.59 1.59 1.79 1.60 1.50
Avg d’ 1.42 1.73 0.88 1.44 1.59 1.79 1.54 1.42

well on the Thunderstorm and Coal texts, there is a high-level of agreement for
the LSA-based formulas (i.e., the results are virtually identical in the two tables).
This indicates that if we were to apply the word-based formulas to yet another text,
we have less assurance of finding the same performance, whereas the LSA-based
formulas are more likely to replicate across texts.

Figure 6.1.a provides a closer look at the data for the combined, automated
system, LSA2/WB2-TT and Figure 6.1.b for the TM2 system. As the d′s indi-
cated, both systems’ performance is quite good for explanations that were given
human ratings of 0, 1, or 3. Thus, the system successfully identifies poor explana-
tions, paraphrases, and very good explanations. It is less successful for identifying
explanations that consist of paraphrases in addition to some information from the
previous sentence or from world knowledge. As one might expect, some are classified
as paraphrases and some as global by the system. Although not perfect, we consider
this result a success because so few were misclassified as poor explanations.

6.3.2 Experiment 2

Self-Explanations. The self-explanations were collected from 45 middle-school stu-
dents (entering 8th and 9th grades) who were provided with iSTART training and
then tested with two texts, Thunderstorm and Coal. The texts were shortened ver-
sions of the texts used in Experiment 1, consisting of 13 and 12 sentences, respec-
tively. This chapter presents only the data from the Coal text.

102 Chutima Boonthum, Irwin B. Levinstein, and Danielle S. McNamara

a) LSA2/WB2-TT — LSA with Word-based

b) TM2 — Topic Models with KL distance

Fig. 6.1. Correspondence between human evaluations of the self-explanations and
the combined system (LSA2/WB2-TT and TM2) for Thunderstorm text. Expla-
nations were evaluated by humans as vague or irrelevant (0), sentence-focused (1),
local-focused (2), or global (3).

6 Evaluating Self-Explanation in iSTART 103

The self-explanations from this text were categorized as paraphrases, irrelevant
elaborations, text-based elaborations, or knowledge-based elaborations. Paraphrases
did not go beyond the meaning of the target sentence. Irrelevant elaborations may
have been related to the sentence superficially or tangentially, but were not related
to the overall meaning of the text and did not add to the meaning of the text.
Text-based elaborations included bridging inferences that made links to information
presented in the text prior to the sentence. Knowledge-based elaborations included
the use of prior knowledge to add meaning to the sentence. This latter category is
analogous to, but not the same as, the global-focused category in Experiment 1.

Results. In contrast to the human coding system used in Experiment 1, the cod-
ing system applied to this data was not intended to map directly onto the iSTART
evaluation systems. In this case, the codes are categorical and do not necessarily
translate to a 0-3 quality range. One important goal is to be able to assess (or
discriminate) the use of reading strategies and improve the system’s ability to ap-
propriately respond to the student. This is measured in terms of percent agreement
with human judgments of each reading strategy shown in Table 6.3.

Table 6.3. Percent agreement to expert ratings of the self-explanations to the Coal
text for the LSA2/WB2-TT and TM2 combined systems for each reading strategy
in Experiment 2.

Reading Strategy LSA2/WB2-TT TM2

Paraphrase Only 69.9 65.8
Irrelevant Elaboration Only 71.6 76.0
Current Sentence Elaboration Only 71.9 71.2
Knowledge-Based Elaboration Only 94.6 90.3
Paraphrase + Irrelevant Elaboration 79.7 76.6
Paraphrase + Current Sentence Elaboration 68.2 67.3
Paraphrase + Knowledge-Based Elaboration 84.6 81.2

The results show that both systems perform very well, with an average of 77%
for the LSA2/WB2-TT system and 75% for the TM2 system. This approaches our
criteria of 85% agreement between trained experts who score the self-explanations.
The automated systems could be thought of as ‘moderately trained scorers.’ These
results thus show that either of these systems would guide appropriate feedback to
the student user.

The score for each strategy score (shown in Table 6.3) can be coded either
0=present or 1=present. With the current coding scheme, only one strategy (out of
seven) will be given a value of 1. We are currently redefining the coding scheme so
that each reading strategy will have its own scores. For example, if the explanation
contains both paraphrase and current sentence elaboration, with the current coding
scheme, “Paraphrase + Current Sentence Elaboration” will be coded as a 1. On
the other hand, with the new coding scheme, we will have at least 3 variables:
(1) “Paraphrase” will be coded as a 1 for present, (2) “Elaboration” coded as a
1 for present, and (3) “Source of Elaboration” coded as a 2 for current sentence
elaboration.

104 Chutima Boonthum, Irwin B. Levinstein, and Danielle S. McNamara

6.4 Discussion

The purpose of this chapter has been to investigate the ability of topic model algo-
rithms to identify the quality of explanations as well as specific reading strategies
in comparison to word-based and LSA-based algorithms. We found in Experiment
1 that TM systems performed comparably to the combined systems, though not
quite as well. In Experiment 2, we found that the TM models performed nearly
as well as the combined system in identifying specific strategies. These results thus
broaden the scope of NLP models that can be applied to problems such as ours —
providing real-time feedback in a tutoring environment. Indeed, the performance of
both systems in Experiment 2 was highly encouraging. These results indicate that
future versions of iSTART will be able to provide specific feedback about reading
comprehension strategy use with relatively high confidence.

Our future work with the TM systems will be to attempt to combine the TM
algorithms with the LSA and word-based algorithms. To venture toward that goal,
we need to first identify the strengths of the TM algorithms so that the combined
algorithm capitalizes on the strengths of the TM — much as we did when we created
the combined word-based and LSA-based system. This will require that we analyze
a greater variety of protocols, including self-explanations from a greater variety of
texts and text genres. We are in the process of completing that work.

These NLP theories and their effectiveness have played important roles in the
development of iSTART. For iSTART to effectively teach reading strategies, it must
be able to deliver valid feedback on the quality of the self-explanations that a student
types during practice. In order to deliver feedback, the system must understand,
at least to some extent, what a student is saying in his or her self-explanation. Of
course, automating natural language understanding has been extremely challenging,
especially for non-restrictive content domains like self-explaining a text in which a
student might say one of any number of things. Algorithms such as LSA opened up
a horizon of possibilities to systems such as iSTART — in essence LSA provided a
‘simple’ algorithm that allowed tutoring systems to provide appropriate feedback to
students (see [14]). The results presented in this chapter show that the topic model
similarly offers a wealth of possibilities in natural language processing.

6.5 Acknowledgments

This project was supported by NSF (IERI Award number: 0241144) and its contin-
uation funded by IES (IES Award number: R305G020018). Any opinions, findings
and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of NSF and IES.

References

1. Birtwisle, M. (2002) The Soundex Algorithm. Retrieved from:
http://www.comp.leeds.ac.uk/matthewb/ar32/basic soundex.htm

2. Bransford, J., Brown, A., & Cocking, R., Eds. (2000). How people learn: Brain,
mind, experience, and school. Washington, D.C.: National Academy Press. On-
line at: http://www.nap.edu/html/howpeople1/

6 Evaluating Self-Explanation in iSTART 105

3. Chi, M. T. H., De Leeuw, N., Chiu, M., & LaVancher, C. (1994). Eliciting
self-explanations improves understanding. Cognitive Science, 18, 439-477.

4. Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, R., & Glaser, R. (1989).
Self-explanation: How students study and use examples in learning to solve
problems. Cognitive Science, 13, 145-182.

5. Christian. P. (1998) Soundex — can it be improved? Computers in Genealogy,
6 (5)

6. Graesser, A. C., Penumatsa, P., Ventura, M., Cai, Z., & Hu, X. (2005). Us-
ing LSA in AutoTutor: Learning through mixed-initiative dialogue in natural
language. In T. Landauer, D.S., McNamara, S. Dennis, & W. Kintsch (Eds.),
LSA: A Road to Meaning. Mahwah, NJ: Erlbaum.

7. Graesser, A. C., Hu, X., & McNamara, D. S. (2005). Computerized learning en-
vironments that incorporate research in discourse psychology, cognitive science,
and computational linguistics. In A. F. Healy (Ed.), Experimental Cognitive
Psychology and its Applications: Festschrift in Honor of Lyle Bourne, Walter
Kintsch, and Thomas Landauer. Washington, D.C.: American Psychological
Association.

8. Graesser, A. C., Hu, X., & Person, N. (2001). Teaching with the help of talk-
ing heads. In T. Okamoto, R. Hartley, Kinshuk, J. P. Klus (Eds.), Proceed-
ings IEEE International Conference on Advanced Learning Technology: Issues,
Achievements and Challenges (460-461).

9. Graesser, A. C., McNamara, D. S., Louwerse, M. M., & Cai, Z. (2004). Coh-
Metrix: Analysis of text on cohesion and language. Behavior Research Methods,
Instruments, and Computers, 36, 193-202.

10. Griffiths, T., & Steyvers, M. (2004). Finding Scientific Topics. Proceedings of
the National Academy of Science, 101 (suppl. 1), 5228-5235.

11. Kurby, C.A., Wiemer-Hastings, K., Ganduri, N., Magliano, J.P., Millis, K.K.,
& McNamaar, D.S. (2003). Computerizing Reading Training: Evaluation of a
latent semantic analysis space for science text. Behavior Research Methods,
Instruments, and Computers, 35, 244-250.

12. Kintsch, E., Caccamise, D., Dooley, S., Franzke, M., & Johnson, N. (2005).
Summary street: LSA-based software for comprehension and writing. In T.
Landauer, D.S., McNamara, S. Dennis, & W. Kintsch (Eds.), LSA: A Road to
Meaning. Mahwah, NJ: Erlbaum.

13. Landauer, T. K., Foltz, P. W., & Laham, D. (1998). Introduction to Latent
Semantic Analysis. Discourse Processes, 25, 259-284.

14. Landauer, T. K., McNamara, D. S., Dennis, S., & W. Kintsch. (2005) LSA: A
Road to Meaning, Mahwah, NJ: Erlbaum.

15. Louwerse, M. M., Graesser, A. C., Olney, A., & the Tutoring Research Group.
(2002). Good computational manners: Mixed-initiative dialog in conversational
agents. In C. Miller (Ed.), Etiquette for Human-Computer Work, Papers from
the 2002 Fall Symposium, Technical Report FS-02-02, 71-76.

16. Magliano, J. P., Todaro, S., Millis, K. K., Wiemer-Hastings, K., Kim, H. J.,
& McNamara, D. S. (2004). Changes in reading strategies as a function of
reading training: A comparison of live and computerized training. Submitted
for publication.

17. McNamara, D. S. (2004). SERT: Self-explanation reading training. Discourse
Processes, 38, 1-30.

18. McNamara, D. S., Boonthum, C., Levinstein, I. B., & Millis, K. K. (2005)
Using LSA and word-based measures to assess self-explanations in iSTART. In

106 Chutima Boonthum, Irwin B. Levinstein, and Danielle S. McNamara

T. Landauer, D.S. McNamara, S. Dennis, & W. Kintsch (Eds.), LSA: A Road
to Meaning, Mahwah, NJ: Erlbaum.

19. McNamara, D. S., Levinstein, I. B., & Boonthum, C. (2004). iSTART: Inter-
active strategy training for active reading and thinking. Behavior Research
Methods, Instruments, & Computers, 36, 222-233.

20. McNamara, D. S., Louwerse, M. M., & Graesser, A. C. (2002). Coh-Metrix: Au-
tomated cohesion and coherence scores to predict text readability and facilitate
comprehension. Technical report, Institute for Intelligent Systems, University
of Memphis, Memphis, TN.

21. McNamara, D. S., & Scott, J. L. (1999). Training reading strategies. In M.
Hahn & S. C. Stoness (Eds.), Proceedings of the Twenty-first Annual Meeting
of the Cognitive Science Society (pp. 387-392). Hillsdale, NJ: Erlbaum.

22. Millis, K. K., Kim, H. J., Todaro, S. Magliano, J. P., Wiemer-Hastings, K., &
McNamara, D. S. (2004). Identifying reading strategies using latent semantic
analysis: Comparing semantic benchmarks. Behavior Research Methods, In-
struments, & Computers, 36, 213-221.

23. Millis, K. K., Magliano, J. P., Wiemer-Hastings, K., Todaro, S., & McNamara,
D. S. (2005). Assessing comprehension with Latent Semantic Analysis. In T.
Landauer, D.S. McNamara, S. Dennis, & W. Kintsch (Eds.), LSA: A Road to
Meaning, Mahwah, NJ: Erlbaum.

24. O’Reilly, T., Best, R., & McNamara, D. S. (2004). Self-Explanation reading
training: Effects for low-knowledge readers. In K. Forbus, D. Gentner, T. Regier
(Eds.), Proceedings of the Twenty-sixth Annual Meeting of the Cognitive Sci-
ence Society (pp. 1053-1058). Mahwah, NJ: Erlbaum.

25. O’Reilly, T., Sinclair, G. P., & McNamara, D. S. (2004). Reading strategy train-
ing: Automated verses live. In K. Forbus, D. Gentner, T. Regier (Eds.), Pro-
ceedings of the Twenty-sixth Annual Meeting of the Cognitive Science Society
(pp. 1059-1064). Mahwah, NJ: Erlbaum.

26. Press, W.M., Flannery, B.P., Teukolsky, S.A., & Vetterling, W.T. (1986). Nu-
merical recipes: The art of scientific computing. New York, NY: Cambridge
University Press.

27. Steyvers, M., & Griffiths, T. (2005) Probabilistic topic models. In T. Landauer,
D.S. McNamara, S. Dennis, & W. Kintsch (Eds.), LSA: A Road to Meaning,
Mahwah, NJ: Erlbaum.

28. Steyvers, M., & Griffiths, T. (2005) Matlab Topic Modeling Toolbox 1.3. Re-
trieved from http://psiexp.ss.uci.edu/research/programs data/toolbox.htm

29. Streeter, L., Lochbaum, K., Psotka, J., & LaVoie, N. (2005). Automated tools
for collaborative learning environments. In T. Landauer, D.S., McNamara, S.
Dennis, & W. Kintsch (Eds.), LSA: A Road to Meaning. Mahwah, NJ: Erlbaum.

7

Textual Signatures: Identifying Text-Types
Using Latent Semantic Analysis to Measure
the Cohesion of Text Structures

Philip M. McCarthy, Stephen W. Briner, Vasile Rus, and
Danielle S. McNamara

7.1 Introduction

Just as a sentence is far more than a mere concatenation of words, a text is far
more than a mere concatenation of sentences. Texts contain pertinent information
that co-refers across sentences and paragraphs [30]; texts contain relations between
phrases, clauses, and sentences that are often causally linked [21, 51, 56]; and texts
that depend on relating a series of chronological events contain temporal features
that help the reader to build a coherent representation of the text [19, 55]. We re-
fer to textual features such as these as cohesive elements, and they occur within
paragraphs (locally), across paragraphs (globally), and in forms such as referential,
causal, temporal, and structural [18, 22, 36]. But cohesive elements, and by conse-
quence cohesion, does not simply feature in a text as dialogues tend to feature in
narratives, or as cartoons tend to feature in newspapers. That is, cohesion is not
present or absent in a binary or optional sense. Instead, cohesion in text exists on
a continuum of presence, which is sometimes indicative of the text-type in ques-
tion [12, 37, 41] and sometimes indicative of the audience for which the text was
written [44, 47]. In this chapter, we discuss the nature and importance of cohesion;
we demonstrate a computational tool that measures cohesion; and, most impor-
tantly, we demonstrate a novel approach to identifying text-types by incorporating
contrasting rates of cohesion.

7.2 Cohesion

Recent research in text processing has emphasized the importance of the cohesion of
a text in comprehension [5, 44, 43]. Cohesion is the degree to which ideas in the text
are explicitly related to each other and facilitate a unified situation model for the
reader. As McNamara and colleagues have shown, challenging text (such as science)
is particularly difficult for low-knowledge students. These students are cognitively
burdened when they are forced to make inferences across texts [22, 34, 35, 38, 44].
Adding cohesion to text alleviates this burden by filling conceptual and structural
gaps. Recent developments in computational linguistics and discourse processing
have now made it possible to measure this textual cohesion. These developments

108 Philip M. McCarthy et al.

have come together in a computational tool called Coh-Metrix [22] that approxi-
mates over 200 indices of textual cohesion and difficulty. Armed with this technology,
text-book writers and teachers have the opportunity to better assess the appropri-
ateness of a text for particular students [47], and researchers have the opportunity
to assess cohesion patterns in text-types so as to better understand what consti-
tutes a prototypical text from any given domain, genre, register, or even author
[37, 42, 12, 14].

7.3 Coh-Metrix

Coh-Metrix assesses characteristics of texts by using parts of speech classifiers
[4, 49, 7, 8, 9, 10, 11], and latent semantic analysis [32, 33]. The indices gener-
ated from Coh-Metrix offer an assessment of the cohesiveness and readability of any
given text . These indices have been used to indicate textual cohesion and difficulty
levels in a variety of studies. For example, Ozuru et al. [47] used Coh-Metrix to rate
high and low cohesion versions of biology texts, the study showing that participants
benefited most from the high cohesion versions. And Best, Floyd, and McNamara
[1] used Coh-Metrix to compare 61 third-graders’ reading comprehension for nar-
rative and expository texts, the study suggesting that children with low levels of
world knowledge were more inclined to have comprehension problems with expos-
itory texts. While research into assessing the benefits of cohesion continues apace,
the utility of the Coh-Metrix tool has also allowed the pursuit of other avenues of
textual investigation.

One of these alternative avenues is text identification. For example, Louwerse
et al. [37] used Coh-Metrix to investigate variations in cohesion across written and
spoken texts, finding evidence for a significant difference between these modes. Mc-
Carthy, Lewis, et al. [42] showed that Coh-Metrix indices were versatile enough to
distinguish between authors even within the same register. Crossley et al.[12] used a
wide variety of Coh-Metrix indices to show significant differences between authentic
English language texts and the simplified versions used in texts designed for En-
glish language learners. And McCarthy, Lightman et al. [41] used Coh-Metrix to
investigate variations in cohesion and difficulty across units of science and history
texts, finding evidence that while difficulty scores for textbooks reflect the grade to
which they are assigned, the cohesion rates differed significantly depending upon
domain. In this chapter, we build on these approaches to identification of textual
characteristics by demonstrating how cohesion indices produced by Coh-Metrix can
be used to form prototypical models of text-types that we call textual signatures.

7.4 Approaches to Analyzing Texts

Traditional approaches to categorizing discourse have tended to treat text as if it
were a homogeneous whole. These wholes, or bodies of text, are analyzed for various
textual features, which are used to classify the texts as belonging to one category or
another [2, 3, 26, 27, 37, 42]. To be sure, such approaches have yielded impressive
findings, generally managing to significantly discriminate texts into categories such
as dialect, domain, genre, or author. Such discrimination is made possible because

7 Identifying Text-Types Using Latent Semantic Analysis 109

different kinds of texts feature different quantities of features. For example, Biber
[2] identified if clauses and singular person pronoun use as key predictors in distin-
guishing British- from American-English. Louwerse et al. [37] used cohesion scores
generated from Coh-Metrix to distinguish both spoken from written texts and nar-
ratives from non-narratives. And Stamatatos, Fakotatos, and Kokkinakis [50] used a
number of style markers including punctuation features and frequencies of verb- and
noun-phrases to distinguish between the authors of a variety of newspaper columns.
Clearly, discriminating texts by treating them as homogenous wholes has a good
track record. However, texts tend to be heterogeneous, and treating them as such
may substantially increase the power of corpus analyses.

The parts of a text serve the textual whole either by function or by form. In
terms of function, Propp [48] identified that texts can be comprised of fundamental
components, fulfilled by various characters, performing set functions. In terms of
form, numerous theories of text structure have demonstrated how textual elements
are inter-related [24, 25, 31, 40]. Labov’s narrative theory, to take one example,
featured six key components: the abstract (a summary), the orientation (the cast of
characters, the scene, and the setting), the action (the problem, issue, or action), the
evaluation (the story’s significance), the resolution (what happens, the denouement),
and the coda (tying up lose ends, moving to the present time and situation).

Unfortunately for text researchers, the identification of the kinds of discourse
markers described above has proven problematic because the absence or ambiguity of
such textual markers tends to lead to limited success [39]. This is not to say that there
has been no success at all. Morris and Hirst [46], for example, developed an algorithm
that attempted to uncover a hierarchical structure of discourse based on lexical
chains. Although their algorithm was only manually tested, the evidence from their
study, suggesting that text is structurally identifiable through themes marked by
chains of similar words, supports the view that the elements of heterogeneous texts
are identifiable. Hearst [23] developed this idea further by attempting to segment
expository texts into topically related parts. Like Morris and Hirst [46], Hearst
used term repetition as an indicator of topically related parts. The output of his
method is a linear succession of topics, with topics able to extend over more than
one paragraph. Hearst’s algorithm is fully implementable and was also tested on
magazine articles and against human judgments with reported precision and recall
measures in the 60th percentile, meaning around 60% of topic boundaries identified
in the text are correct (precision) and 60% of the true boundaries are identified
(recall).

The limited success in identifying textual segments may be the result of searching
for a reliable fine grained analysis before a courser grain has first been established.
For example, a courser approach acknowledges that texts have easily identifiable
beginnings, middles, and ends, and these parts of a text , or at least a sample from
them, are not at all difficult to locate. Indeed, textual analysis using such parts
has proved quite productive. For example, Burrows [6] found that the introduction
section of texts rather than texts as a whole allowed certain authorship to be signifi-
cantly distinguished. And McCarthy, Lightman et al.[41] divided high-school science
and history textbook chapters into sections of beginnings, middles, and ends, finding
that reading difficulty scores rose with significant regularity across these sections as
a chapter progressed.

If we accept that texts are comprised of parts, and that the text (as a whole)
is dependent upon the presence of each part, then we can form the hypothesis that

110 Philip M. McCarthy et al.

the parts of the text are inter-dependent and, therefore, are likely to be structurally
inter-related. In addition, as we know that cohesion exists in texts at the clausal,
sentential, and paragraph level [22], it would be no surprise to find that cohesion
also existed across the parts of the text that constitute the whole of the text . If this
were not the case, parts of text would have to exist that bore no reference to the
text as a whole. Therefore, if we measure the cohesion that exists across identifiable
parts of the text, we can predict the degree to which the parts co-refer would be
indicative of the kind of text being analyzed. In Labov’s [31] narrative model, for
example, we might expect a high degree of coreference between the second section
(the orientation) and the sixth section (the coda): Although the two sections are
textually distant, they are semantically related in terms of the textual elements with
both sections likely to feature the characters, the motive of the story, and the scene
in which the story takes place. In contrast, we might expect less coreference between
the forth and fifth sections (evaluation and resolution): While the evaluation and
resolution are textually juxtaposed, the evaluation section is likely to offer a more
global, moral and/or abstracted perspective of the story. The resolution, however, is
almost bound to be local to the story and feature the characters, the scene, and the
outcome. Consequently, semantic relations between these two elements are likely to
be less marked.

By forming a picture of the degree to which textual parts inter-relate, we can
build a representation of the structure of the texts, a prototypical model that we
call the textual signature. Such a signature stands to serve students and researchers
alike. For students, their work can be analyzed to see the extent to which their paper
reflects a prototypical model. Specifically, a parts analysis may help students to see
that sections of their papers are under- or over-represented in terms of the global
cohesion. For researchers, a text-type signature should help significantly in mining
for appropriate texts. For example, the first ten web sites from a Google search for a
text about cohesion (featuring the combined keywords of comprehension, cohesion,
coherence, and referential) yielded papers from the field of composition theory, En-
glish as a foreign language, and cognitive science, not to mention a disparate array
of far less academic sources. While the specified keywords that were entered may
have occurred in each of the retrieved items, the organization of the parts of the
retrieved papers (and their inter-relatedness) would differ. Knowing the signatures
that distinguishes the text types would help researchers to locate more effectively
the kind of resources that they require. A further possible benefit of textual signa-
tures involves Question Answering (QA) systems [45, 52]. Given a question and a
large collection of texts (often in gigabytes), the task in QA is to draw a list of short
answers (the length of a sentence) to the question from the collection. The typical
architecture of a modern QA system includes three subsystems: question process-
ing, paragraph retrieval and answer processing. Textual signatures may be able to
reduce the search space in the paragraph retrieval stage by identifying more likely
candidates.

7.5 Latent Semantic Analysis

To assess the inter-relatedness of text sections we used latent semantic analysis
(hereafter, LSA). An extensive review of the procedures and computations involved
in LSA is available in Landauer and Dumais [32] and Landauer et al. [33]. For this

7 Identifying Text-Types Using Latent Semantic Analysis 111

chapter, however, we offer only an overview of the theory of LSA, its method of
calculations, and a summary of some of the many studies that have incorporated its
approach.

LSA is a technique that uses a large corpus of texts together with singular value
decomposition to derive a representation of world knowledge [33]. LSA is based
on the idea that any word (or group of words) appears in some contexts but not
in others. Thus, words can be compared by the aggregate of their co-occurrences.
This aggregate serves to determine the degree of similarity between such words [13].
LSA’s practical advantage over shallow word overlap measures is that it goes beyond
lexical similarities such as chair/chairs or run/ran, and manages to rate the relative
semantic similarity between terms such as chair/table, table/wood, and wood/forest.
As such, LSA does not only tell us whether two items are the same, it tells us how
similar they are. Further, as Wolfe and Goldman [54] report, there is substantial
evidence to support the notion that the reliability of LSA is not significantly different
from human raters when asked to perform the same judgments.

As a measure of semantic relatedness, LSA has proven to be a useful tool in
a variety of studies. These include computing ratings of the quality of summaries
and essays [17, 29], tracing essay elements to their sources [15], optimizing texts-
to-reader matches based on reader knowledge and projected difficulty of unread
texts [53], and for predicting human interpretation of metaphor difficulty [28]. For
this study, however, we adapted the LSA cohesion measuring approach used by
Foltz, Kintsch & Landauer [16]. Foltz and colleagues formed a representation of
global cohesion by using LSA to analyze the relationship of ever distant textual
paragraphs. As the distances increased, so the LSA score of similarity decreased.
The results suggested that LSA was a useful and practical tool for measuring the
relative degrees of similarity between textual sections. In our study, however, we
replace Foltz and colleagues comparison of paragraphs with a comparison of journal
sections, and rather than assuming that cohesion would decrease relative to distance,
we made predictions based on the relative similarity between the sections of the
article.

7.6 Predictions

The abstract section was selected as the primary source of comparison as it is the
only section whose function is specifically to relate the key elements of each other
section of the paper. But the abstract does not relate to each other section of the
paper equally. Instead, the abstract outlines the theme of the study (introduction);
it can refer to the basic method used in the study (methods); it will briefly state a
prominent result from the study (results); and it will then discuss the relevance of the
studys findings (discussions). This definition allowed us to make predictions as to the
signature generated from such comparisons. Specifically, we predicted that abstracts
would feature far greater reference to the introduction (AI comparison type) and
discussion sections (AD comparison type), less reference to the results section (AR
comparison type), and less reference still to the methods section (AM comparison
type). The reason for such predictions is that abstracts would take more care to
set the scene of the paper (the introduction) and the significance of the findings
(discussions). The results section, although important, tends to see its key findings
restated in the discussion section, where it is subsumed into the significance of the

112 Philip M. McCarthy et al.

paper. We predicted that the abstract to methods comparison type (AM) would
form the weakest co-reference as experimental methods, although essential to state
clearly in the body of a paper, tend to follow well-established patterns and are of
little interest to the reader of an abstract who needs to understand quickly and
succinctly the gist of the paper.

7.7 Methods

Using freely available on-line psychology papers from five different journals (see
Appendix), we formed a corpus of 100 texts. For the purposes of simplification and
consistency, we extracted from this corpus only the texts that were comprised of five
author-identified sections: abstract, Introduction, methods, results, discussion. This
left 67 papers in the analysis. We then removed titles, tables, figures, and footnotes
before forming the paired sections outlined above (AI, AM, AR, AD). Each of the
pairs from the 67 papers was then processed through the Coh-Metrix version of LSA
.

7.8 Results of Experiment 1

To examine differences in relatedness of the abstract to each of the text sections, we
conducted a repeated measures Analysis of Variance (ANOVA) on the LSA cosines
including the within-text factors of AI (M=.743, SD=.110), AM (M=.545, SD=.151),
AR (M=.637, SD=.143), and AD (M=.742, SD=.101). As shown in Figure 7.1,
the results confirmed our predictions. There was a main effect of comparison type,
F(3,66)= 54.701, MSE=.011, p<.001. Pairwise contrasts (see Table 7.1) indicated
that all of the differences were reliable except for the difference between the AI and
AD comparisons. The pattern depicted in Figure 7.1 is what we will refer to as the
textual signature for scientific reports such as those we have analyzed in this study.

Table 7.1. Pairwise Comparisons of the Relatedness of Text Sections to the Ab-
stract

Method (AM) Results (AR) Discussion (AD)

Introduction (AI) Diff=.198 (.021)* Diff=.106 (.021)* Diff=.001(.010)
Method (AM) Diff=-.092 (.019)* Diff=-.197(.019)*
Results (AR) Diff=-.105 (.018)*

Notes: Diff denotes the average difference between the cosines; * p<.01

While the signature from Experiment 1 confirmed our prediction, one possi-
bility is that the differences may simply reflect the relative length of the textual
sections. To test this possibility, we examined differences in relatedness of the ab-
stract to each of the text sections by conducting a repeated measures ANOVA on

7 Identifying Text-Types Using Latent Semantic Analysis 113

Fig. 7.1. Textual signature formed from means of the abstract to other sections for
Experiments 1, 2 and 3.

the number of words in each text section including the within-text factors of Intro-
duction (M=1598.015, SD=871.247), Method (M=1295.791, SD=689.756), Results
(M=1408.627, SD=841.185), and Discussion (M=1361.284, SD=653.742). There was
a main effect of comparison type, F(3,66)= 2.955, MSE=382691.182, p=.034. Pair-
wise contrasts (see Table 7.2) indicated that the only significant differences were
between the AI/AM comparison types and the AI/AD comparison type. The re-
sults confirmed that the section length signature does not reflect the LSA signature
(see Figure 7.2). Removing words that LSA does not account for from this analysis
(such as numbers) made no significant difference to the results.

Table 7.2. Pairwise Comparisons of the Relatedness of Text Sections to the Ab-
stract for text length

Method (AM) Results (AR) Discussion (AD)

Introduction (AI) Diff=302.22 (113.13)* Diff=189.39 (107.91) Diff=236.73 (94.37)*
Method (AM) Diff=-112.84 (120.59) Diff=-65.49 (105.67)
Results (AR) Diff=47.34 (97.41)

Notes: Diff denotes the average difference between the lengths; * p<.01

114 Philip M. McCarthy et al.

Fig. 7.2. Average length in terms of number of words in each text section.

7.9 Experiment 2

If LSA compares relative similarities between sections, then it is reasonable to as-
sume that comparing similarly themed papers would produce signatures similar to
those observed in Experiment 1. Because less of a relationship is expected from
papers with overlapping themes as compared to those from the same paper, we pre-
dicted a relative decline in the LSA comparison scores. We also expected a reduced
relationship between the abstract and results section because they are from different
studies.

To test this prediction, we composed an entirely new corpus of 20 similar articles:
all themed as working memory and intelligence. We then extracted the abstracts of
these texts from the bodies and randomly reassigned the abstract to a different
articles parts. As in Experiment 1, we conducted a repeated measures ANOVA on
the LSA cosines including the within-text factors of AI (M=.439, SD=.136), AM
(M=.289, SD=.110), AR (M=.304, SD=.144), and AD (M=.454, SD=.162). There
was a main effect of comparison type, F(3,19)= 16.548, MSE=.009, p<.001. Pairwise
contrasts (see Table 7.3) indicated that all differences were reliable except between
AM and AD and between AM and AR.

As shown in Figure 7.1, the pattern of cosines is similar to that of Experiment
1, with reduced scores overall compared to Experiment 1, and a reduction in the
relationship between the abstracts and results section. These results allow us to
predict that LSA can produce prototypical signatures that are able to differentiate
between sections from the same articles, and those articles that are merely similar
in theme.

7 Identifying Text-Types Using Latent Semantic Analysis 115

Table 7.3. Pairwise comparison of abstract to similar-themed body

Method (AM) Results (AR) Discussion (AD)

Introduction (AI) Diff=.150 (.032)* Diff=.135 (.032)* Diff=-.015 (.020)
Method (AM) Diff=-.015 (.026) Diff=-.165 (.036)*
Results (AR) Diff=.150 (.032)*

Notes: Diff denotes the average difference between the cosines; * p<.01

7.10 Experiment 2a

One potential weakness of Experiment 2 was the relatively small size of the corpus
(i.e., 20 texts). To alleviate the concern that the results were a function of the size
of text corpora, we split the original 67-text corpus from Experiment 1 into three
random groups of 20 texts and re-analyzed the results. If 20 texts were a sufficiently
sized corpus , then the analysis should yield the same pattern as observed in Exper-
iment 1. This analysis produced three sets of scores for each of the four comparison
types (AI, AM, AR, and AD). As can be seen from Figure 7.3, the three new signa-
tures map almost perfectly to the original signature from Experiment 1. There were
also no significant differences within the corresponding section comparisons from the
three 20-text corpora.

Fig. 7.3. Comparison of Experiment 1 to three sets of 20 texts taken from the
original corpora.

116 Philip M. McCarthy et al.

7.11 Experiment 3

In Experiment 1, we showed that LSA may be able to provide a textual signature
based on the relationships between the abstract of the paper and the sections within
the paper. We will refer to this kind of signature as type same paper (SP). In Ex-
periment 2 we showed that LSA can also produce prototypical signatures indicative
of articles of a similar theme. We will refer to this kind of signature as type same
theme (ST). In Experiment 3, we show that LSA based signatures can also indicate
papers that are differently themed. We will refer to this kind of signature as type
different theme (DT).

Based on the findings from Experiment 2, we predicted that the DT signature
would more closely match that of Experiment 2. However, because the themes of
Experiment 3’s abstracts are different from the sections they were being compared
to, we predicted the differences of the LSA scores for the AI and AD comparison
types over the AM and AR comparison types would be less pronounced. To test
this prediction, we randomly replaced the abstracts from Experiment 1 with the
thematically consistent abstracts from Experiment 2.

To examine differences in relatedness of the abstract to each of the text sec-
tions for the DT corpus, we conducted a repeated measures ANOVA on the LSA
cosines including the within-text factors of AI (M=.289, SD=.138), AM (M=.231,
SD=.141), AR (M=.234, SD=.143), and AD (M=.298, SD=.150). There was a main
effect of comparison type, F(3,19)= 9.278, MSE=.002, p<.001. Pairwise contrasts
(see Table 7.4) indicated that the DT signature (like the ST signatures) resulted
in the AR and AM comparisons being significantly different from the AI and AD
comparison types. However, also like the ST signature, the AI comparisons did not
significantly differ from the AD comparisons. Thus, despite the appearance of Fig-
ure 7.1 producing a lower cosine signature, we could not be sure from these results
whether the DT corpus significantly differed from the ST corpus.

Table 7.4. Pairwise comparison of abstract to dissimilarly themed body

Method (AM) Results (AR) Discussion (AD)

Introduction (AI) Diff=.058 (.013)* Diff=.055 (.014)* Diff=-.002 (.013)
Method (AM) Diff=-.003 (.015) Diff=-.060 (.019)*
Results (AR) Diff=-.056 (.017)*

Notes: Diff denotes the average difference between the cosines; * p<.01

To examine whether the SP, ST, and DT corpora were significantly different from
one another, we ran mixed ANOVA, including the within-text factor of comparison
type and the between-text factor of corpora. Because the SP corpus contained 67
papers, and the other corpora were comprised of 20 papers, we randomly selected a
20-paper corpus from Experiment 2a to represent the SP corpus.

As shown in the previous studies, there was a main effect of comparison type,
F(3,171) = 41.855, MSE=.007, p<.001. There was also a main effect of corpus,
F(2,57) = 67.259, MSE=.013, p<.001. A post hoc Bonferroni test between the cor-
pora indicated that there was a significant difference between each of the corpora: SP

7 Identifying Text-Types Using Latent Semantic Analysis 117

to ST (p<.001); SP to DT (p<.001); and ST to DT (p<.05). Most importantly, the
interaction between corpus and section was significant, F(6,171) = 4.196, MSE=.007,
p<.001, indicating that the differences between the sections depends on the type of
corpora.

The results from this experiment indicate that the corpus using the same pa-
pers for the comparisons (SP) shows greater internal difference than do those with
either similar or different themes (i.e., ST, DT). This result is largely due to the
stronger AR comparison generated in the SP corpus. While the signatures generated
from the ST and DT corpora are internally similar, the results of this experiment
offer evidence that the degree of similarity between sections within the corpora is
significantly different.

These results allowed us to extend our signature assumption to predicting that
LSA can differentiate three text-types: the same paper, similarly themed papers,
and differently themed papers.

7.12 Discussion

The results of this study suggest that LSA comparisons of textual sections can
produce an identifiable textual signature. These signatures serve as a prototypical
model of the text-type and are distinguishable from those produced by texts which
are merely similar in theme (ST), or similar in field (DT).

Textual signatures of the type produced in this study have the potential to
be used for a number of purposes. For example, students could assess how closely
the signature of their papers reflected a prototypical signature. The discrepancies
between the two LSA cosines may indicate to the student where information is
lacking, redundant, or irrelevant. For researchers looking for supplemental material,
the signatures method could be useful for identifying texts from the same field,
texts of the same theme, and even the part of the text in which the researcher is
interested. Related to this issue is a key element in Question Answering systems:
as textual signatures stand to identify thematically related material, the retrieval
stage of QA systems may be better able to rank its candidate answers.

Future research will focus on developing a range of textual signatures beyond the
abstract comparisons outlined in this chapter. Specifically, comparisons of section
parts from the perspective of the introduction, methods, results, and discussions
sections need to be examined. This broader scope offers the possibility of greater
accuracy in textual identification. For example, papers that were only thematically
related would likely have higher overlaps generated from introduction sections than
from other sections. Introductions feature a review of the literature which would
likely be highly consistent across papers within the same theme, whereas the other
sections (especially the results section) would likely be significantly different from
paper to paper.

In addition to extending the perspectives of signatures, we also need to consider
how other indices may help us to better identify textual signatures. Coh-Metrix
generates a variety of alternative lexical similarity indices such as stem, lemma,
and word overlap. While these indices do not compare semantic similarities such as
table/chair or intelligence/creativity (as LSA does), they do compare lexical overlaps
such as produce/production, suggest/suggests and investigate/investigated. Indices

118 Philip M. McCarthy et al.

such as these, and the signatures they generate, may come to form a web of soft
constraints that could help us improve the confidence we have that a retrieved text
or textual unit matches a target set of constraints.

If future research offers continued efficacious signatures then an array of indices
can be imagined. Once achieved, a discriminant analysis between corpora such as
the SP, ST, and DT outlined in this study could be conducted. Such testing would
lend substantial support to a textual signatures approach to text identification.

Looking even further ahead, we would also like to extend our signatures research
beyond the type of texts presented in this study. For example, we need to consider
the signatures generated from articles with multiple experiments as well as articles,
essays, and reports from other fields. It is reasonable to expect that any identifiable
genre is composed of elements, and that those elements exposed to methods such
as those used in this study will produce identifiable and therefore distinguishable
signatures.

While a great deal of work remains to be done, we believe that LSA-based
textual signatures contributes to the field by offering a useful and novel approach
for computational research into text mining.

7.13 Acknowledgments

This research was supported by the Institute for Education Sciences (IES
R3056020018-02). Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not necessarily reflect the
views of the IES. We would also like to thank David Dufty and Mike Rowe for their
contributions to this study.

References

1. Best, R.M., Floyd, R.G., & McNamra, D.S. (2004). Understanding the fourth-
grade slump: Comprehension difficulties as a function of reader aptitudes and
text genre. Paper presented at the 85th Annual Meeting of the American Ed-
ucational Research Association.

2. Biber, D. (1987). A textual comparison of British and American writing. Amer-
ican Speech, 62, 99-119.

3. Biber, D. (1988). Linguistic features: algorithms and functions in variation
across speech and writing. Cambridge: Cambridge University Press.

4. Brill, E. (1995). Unsupervised learning of disambiguation rules for part of
speech tagging. In Proceedings of the Third Workshop on Very Large Corpora,
Cambridge, MA.

5. Britton, B. K., & Gulgoz, S. (1991). Using Kintschs computational model to
improve instructional text: Effects of inference calls on recall and cognitive
structures. Journal of Educational Psychology, 83, 329-345

6. Burrows, J. (1987). Word-patterns and story-shapes: The statistical analysis of
narrative style. Literary and Linguistic Computing, 2, 6170.

7. Charniak, E. (1997) Statistical Parsing with a context-free grammar and word
statistics Proceedings of the Fourteenth National Conference on Artificial In-
telligence, Menlo Park: AAAI/MIT Press

7 Identifying Text-Types Using Latent Semantic Analysis 119

8. Charniak, E. (2000) A Maximum-Entropy-Inspired Parser. Proceedings of the
North-American Chapter of Association for Computational Linguistics, Seattle,
WA

9. Charniak, E. & Johnson, M. (2005) Coarse-to-fine n-best parsing and Max-
Ent discriminative reranking. Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics (pp. 173-180). Ann Arbor, MI

10. Collins, M. (1996) A New Statistical Parser Based on Bigram Lexical Depen-
dencies. Proceedings of the 34th Annual Meeting of the ACL, Santa Cruz, CA

11. Collins, M. (1997) Three Generative, Lexicalised Models for Statistical Parsing
Proceedings of the 35th Annual Meeting of the Association for Computational
Linguistics, Madrid, Spain.

12. Crossley, S., Louwerse, M.M., McCarthy, P.M., & McNamara, D.S. (forthcom-
ing 2007). A linguistic analysis of simplified and authentic texts. Modern Lan-
guage Journal, 91, (2).

13. Dennis, S., Landauer, T., Kintsch, W. & Quesada, J. (2003). Introduction to
Latent Semantic Analysis. Slides from the tutorial given at the 25th Annual
Meeting of the Cognitive Science Society, Boston.

14. Duran, N., McCarthy, P.M., Graesser, A.C., McNamara, D.S., (2006). An em-
pirical study of temporal indices. Proceedings of the 28th annual conference of
the Cognitive Science Society, 2006.

15. Foltz, P. W., Britt, M. A., & Perfetti, C. A. (1996). Reasoning from multiple
texts: An automatic analysis of readers’ situation models. In G. W. Cottrell
(Ed.) Proceedings of the 18th Annual Cognitive Science Conference (pp. 110-
115). Lawrence Erlbaum, NJ.

16. Foltz, P. W., Kintsch, W., & Landauer, T. K. (1998). The measurement of
textual Coherence with Latent Semantic Analysis. Discourse Processes, 25, 285-
307.

17. Foltz, P. W., Gilliam, S., & Kendall, S. (2000). Supporting content-based feed-
back in on-line writing evaluation with LSA. Interactive Learning Environ-
ments, 8, 111-127.

18. Gernsbacher, M.A. (1990). Language comprehension as structure building.
Hillsdale, NJ: Erlbaum.

19. Givn, T. (1995). Coherence in the text and coherence in the mind. In Gerns-
bacher, M.A. & Givn, T., Coherence in spontaneous text. (pp. 59-115). Ams-
terdam/Philadelphia, John Benjamins.

20. Graesser, A.C. (1993). Inference generation during text comprehension. Dis-
course Processes, 16, 1-2.

21. Graesser, A.C., Singer, M., & Trabasso, T. (1994). Constructing inferences dur-
ing narrative text comprehension. Psychological Review, 101, 371-95.

22. Graesser, A.C., McNamara, D., Louwerse, M., & Cai, Z. (2004). Coh-Metrix:
CohMetrix: Analysis of text on cohesion and language. Behavioral Research
Methods, Instruments, and Computers, 36, 193-202.

23. Hearst, M.A. (1994) Multi-paragraph Segmentation of Expository Text. Pro-
ceedings of the Association of Computational Linguistics, Las Cruces, NM.

24. Hobbs, J.R. (1985). On the coherence and structure of discourse. CSLI Tech-
nical Report, 85-37. Stanford, CA.

25. Hovy, E. (1990). Parsimonious and profligate approaches to the question of dis-
course structure relations. Proceedings of the Fifth International Workshop on
Natural Language generation, East Stroudsburg, PA, Association for Compu-
tational Linguistics.

120 Philip M. McCarthy et al.

26. Karlsgren J. & Cutting, D. (1994). Recognizing text genres with simple met-
rics using discriminant analysis. International Conference on Computational
Linguistics Proceedings of the 15th conference on Computational linguistics -
Volume 2 (pp. 1071-1075). Kyoto, Japan.

27. Kessler, Nunberg, G., & Schutze, H. (1997). Automatic detection of text genre.
In Proceedings of 35th Annual Meeting of Association for Computational Lin-
guistics, and in 8th Conference of European Chapter of Association for Com-
putational Linguistics (pp. 32-38). Madrid, Spain.

28. Kintsch, W. & Bowles, A. (2002) Metaphor comprehension: What makes a
metaphor difficult to understand? Metaphor and Symbol, 2002, 17, 249-262.

29. Kintsch, E., Steinhart, D., Stahl, G., LSA Research Group, Matthews, C., &
Lamb, R. (2000). Developing summarization skills through the use of LSA-
based feedback. Interactive Learning Environments 8, 87-109.

30. Kintsch, W., & van Dijk, T.A. (1978). Toward a model of text comprehension
and production. Psychological Review, 85, 363-394.

31. Labov, W. (1972). The Transformation of Experience in Narrative Syntax, In
W. Labov (ed.), Language in the Inner City, 1972, University of Pennsylvania
Press, Philadelphia.

32. Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: The
Latent Semantic Analysis theory of the acquisition, induction, and representa-
tion of knowledge. Psychological Review, 104, 211-240.

33. Landauer, T. K., Foltz, P. W., & Laham, D. (1998). Introduction to Latent
Semantic Analysis. Discourse Processes, 25, 259-284.

34. Lehman, S., & Schraw, G. (2002). Effects of coherence and relevance on shallow
and deep text processing. Journal of Educational Psychology, 94, 738-750.

35. Linderholm, T., Everson, M.G., van den Broek, Mischinski, M., Crittenden, A.,
& Samuels, J. (2000). Effects of causal text revisions on more and less skilled
readers comprehension of easy and difficult text. Cognition and Instruction, 18,
525-556.

36. Louwerse, M.M. (2002). Computational retrieval of themes. In M.M. Louw-
erse & W. van Peer (Eds.), Thematics: Interdisciplinary Studies (pp. 189-212).
Amsterdam/Philadelphia: John Benjamins.

37. Louwerse, M. M., McCarthy, P. M., McNamara, D. S., & Graesser, A. C. (2004).
Variation in language and cohesion across written and spoken registers. In K.
Forbus, D. Gentner, & T. Regier (Eds.), Proceedings of the 26th Annual Meet-
ing of the Cognitive Science Society (pp. 843-848). Mahwah, NJ: Erlbaum.

38. Loxterman, J.A., Beck, I. L., & McKeown, M.G. (1994). The effects of thinking
aloud during reading on students’ comprehension of more or less coherent text.
Reading Research Quarterly, 29, 353-367.

39. Mani, I. & Pustejovsky, J. (2004). Temporal discourse markers for narrative
structures.ACL Workshop on Discourse Annotation, Barcelona, Spain. East
Stoudsburg, PA, Association for Computational Linguistics.

40. Mann, W. C. & Thompson, S. A. (1988). Rhetorical Structure Theory: Toward
a functional theory of text organization. Text, 8 (3). 243-281

41. McCarthy, P.M., Lightman, E.J., Dufty, D.F. & McNamara (in press). Us-
ing Coh-Metrix to assess distributions of cohesion and difficulty in high-school
textbooks. Proceedings of the 28th annual conference of the Cognitive Science
Society.

7 Identifying Text-Types Using Latent Semantic Analysis 121

42. McCarthy, P.M., Lewis, G.A., Dufty, D.F., & McNamara, D.S. (2006). Ana-
lyzing Writing Styles with Coh-Metrix. 19th International FLAIRS Conference
2006.

43. McNamara, D.S., Kintsch, E., Songer, N.B., & Kintsch, W. (1996). Are good
texts always better? Text coherence, background knowledge, and levels of un-
derstanding in learning from text. Cognition and Instruction, 14, 1-43.

44. McNamara, D. S. (2001). Reading both high and low coherence texts: Effects
of text sequence and prior knowledge. Canadian Journal of Experimental Psy-
chology, 55, 51-62.

45. Moldovan, D., Harabagiu, S., Pasca, M., Mihalcea, R., Girju, R., Goodrum, R.,
& Rus, V. (2000): The Structure and Performance of an Open-Domain Question
Answering System, in Proceedings of ACL 2000, Hong Kong, October

46. Morris, J., Hirst, G. (1991) Lexical cohesion computed by thesaural relations
as an indicator of the structure of text, Computational Linquistics, 17, 21-48.

47. Ozuru, Y., Dempsey, K., Sayroo, J., & McNamara, D. S. (2005). Effects of
text cohesion on comprehension of biology texts. Proceedings of the 27th An-
nual Meeting of the Cognitive Science Society (pp. 1696-1701). Hillsdale, NJ:
Erlbaum.

48. Propp, V. (1968). Morphology of the folk tale. Baltimore: Port City Press, pp
19-65.

49. Ratnaparkhi, A. (1996), A maximum entropy model for part-of-speech tag-
ging. Proceedings of Conference on Empirical Methods in Natural Language
Processing, University of Pennsylvania.

50. Stamatatos, E., Fakotatos, N., & Kokkinakis, G. (2001). Computer-based au-
thorship attribution without lexical measures. Computers and the Humanities,
35, 193-214.

51. Trabasso, T., & van den Broek, P. (1985). Causal thinking and the representa-
tion of narrative events. Journal of Memory and Language, 24, 612-630.

52. Voorhees, E. M. & Tice, D.M. (2000). Building a question answering test col-
lection. Proceedings of the Twenty-Third Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval

53. Wolfe, M. B., Schreiner, M. E., Rehder, B., Laham, D., Foltz, P. W., Kintsch,
W., & Landauer, T. K. (1998). Learning from text: Matching readers and text
by Latent Semantic Analysis. Discourse Processes, 25, 309-336.

54. Wolfe, M. B.W., & Goldman S.R. (2003). Use of latent semantic analysis for
predicting psychological phenomena: Two issues and proposed solutions. Be-
havior Research Methods, Instruments, & Computers, 35, 22-31.

55. Zwaan, R.A.(1996). Processing narrative time shifts. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 22, 1196-1207.

56. Zwaan, R.A. & Radvansky, G.A. (1998). Situation models in language compre-
hension and Memory. Psychological Bulletin, 123, 162-185.

122 Philip M. McCarthy et al.

Appendix (Journals Analyzed)

Table 7.5.

Journal Name Articles Publication Date Range

Acta Psychologica 11 2000-2004
Biological Psychology 14 2000-2004
Cognition 4 2000-2001
Intelligence 20 2000-2003
Journal of Applied Psychotherapy Research 17 2002-2003

8

Automatic Document Separation:
A Combination of Probabilistic Classification
and Finite-State Sequence Modeling

Mauritius A. R. Schmidtler, and Jan W. Amtrup

8.1 Introduction

Large organizations are increasingly confronted with the problem of capturing, pro-
cessing, and archiving large amounts of data. For several reasons, the problem is
especially cumbersome in the case where data is stored on paper. First, the weight,
volume, and relative fragility of paper incur problems in handling and require spe-
cific, labor-intensive processes to be applied. Second, for automatic processing, the
information contained on the pages must be digitized, performing Optical Character
Recognition (OCR). This leads to a certain number of errors in the data retrieved
from paper. Third, the identities of individual documents become blurred. In a stack
of paper, the boundaries between documents are lost, or at least obscured to a large
degree.1

As an example, consider the processing of loan documents in the mortgage in-
dustry: Usually, documents originate at local branch offices of an organization (e.g.,
bank branches, when a customer fills out and signs the necessary forms and provides
additional information). All loan documents finalized at a local office on a given day
are collated into one stack of paper (called a batch) and sent via surface mail to a
centralized processing facility. At that facility, the arriving packets from all over the
country are opened and the batches are scanned. In order to define the boundaries
and identities of documents, separator sheets are manually inserted in the batches.
Separator sheets are special pages that carry a barcode identifying the specific loan
document that follows the sheet, e.g., Final Loan Application or Tax Form, etc. The
separation and identification of the documents is necessary for archival and future
retrieval of specific documents. It is also a precondition for further processing, for
instance in order to facilitate the extraction of certain key information, e.g., the loan
number, property address and the like.

The problem we are addressing in this chapter is the process of manually in-
serting separator sheets into loan files. A person must take a loan file, leaf through
the stack of paper (hundreds of pages), and insert appropriate separators at the
correct boundary points. This work is both tedious and challenging. It is tedious,
since no important new information is created, but only information that previously

1 Notwithstanding physical markers such as staples, etc. Those are usually removed
as a first step in document processing.

124 Mauritius A. R. Schmidtler, and Jan W. Amtrup

existed is re-created. It is challenging, since the person needs to have a fair amount
of knowledge of loan documents (hundreds of document categories) and work with
a high degree of attention to detail. Nevertheless, the error rate for this process can
be as high as 8%. The cost for the insertion is also significant, both in terms of labor
and material; it is estimated that 50% of the document preparation cost is used for
sorting and the insertion of separator sheets. One customer estimates the printing
cost for separator sheets alone to be in excess of $1M per year.

In the automated solution presented here [1], the loan files still need to be col-
lected and shipped to a central facility for processing.2 At the facility, the batches
are scanned in their entirety, without inserting separator sheets beforehand. The
result of this process is a long sequence of images of pages, up to 2000 images per
batch. Next, the text on each page is read by an OCR engine. A classification engine
(see Section 8.4.2) determines the likely document types of loan documents (e.g.,
Appraisals, Tax Forms, etc.), and a separation mechanism (see Section 8.4.3) inserts
virtual boundaries between pages to indicate where one document ends and the next
one begins. The separated documents are then labeled accordingly and delivered for
further processing, e.g., the extraction of relevant information.

8.2 Related Work

Traditionally, the processing of scanned paper forms has concentrated on the han-
dling of structured forms. These are paper documents that have well-defined physical
areas in which to insert information, such as the social security number and income
information on tax forms. Ideally, for these forms the separation problem does not
even arise, since the documents are of a specified length. If, however, a sequence of
documents needs to be separated, it is usually enough to concentrate a recognition
process on the first page to find out which document is present. This information
defines the number of pages in the document and thus the separation information
with certainty. The recognition process is often done indirectly, coupled with a sub-
sequent extraction system. Extraction rules define areas of interest on a form and
how to gather data from those zones. For instance, an extraction rule for a tax form
could first specify how to identify a box on the top left corner of the document that
contains the text “1040.” Then the rule would search down the form to find a rect-
angular box labeled “SSN” and extract the nine digits contained in a grid directly
to the right of the label. If this recognition rule succeeds, i.e., text can be found and
recognized with sufficient confidence, the document is identified as a two-page 1040
tax form and the social security number is extracted.

While such local, forms-based rules work extremely well in their area of appli-
cation, the extension of this approach to less structured forms or even forms that
exist in a large number of variations is highly effort-intensive and error-prone. For
instance, the example above treated federal tax forms, of which there are only a few
varieties. However, there are at least fifty varieties of state tax forms, and defining

2 We do not discuss distributed scanning operations here. The principle in this
case is that no paper documents are ever shipped, but that each local office scans
the documents that are created locally. The images of the documents are then
transferred to a central facility. This operational schema presents some of the
same and some additional complications.

8 Automatic Document Separation 125

the form and contents of every such form is a major undertaking. But even then,
the layout of the forms is known and can, in principle, be described in advance.
For other semi-structured forms, this is not the case. For instance, appraisals (as
in the case of mortgage loan applications) always contain roughly the same type
of information (property address, value, comparable objects in the vicinity of the
property in question, etc.). However, recognizing an appraisal based on very local
information about specific structural properties of the form is extremely difficult.
The layout of appraisals from different sources can not be foreseen. As such, the
search for specific items on a page, using this information as an indication of what
form is present and, more importantly for the case discussed here, the length of the
document, are highly uncertain.

This is even more pronounced for so-called unstructured forms which have no
specific layout considerations. Those also appear in concrete business cases, such
as legal documents, waivers, riders, etc. Here, a layout-based definition of forms is
highly unlikely to succeed.

The conclusion is that for a large variety of important documents, a rule-driven
layout-based recognition is possibly inferior to a content-based recognition, as is used
in the present solution. This is still true if a subsequent extraction step is used to
gather information from the documents. Distinguishing between the separation step
and the extraction step can facilitate the process of writing rules for information
extraction, since the identity of documents can now be taken for granted.3

The cost of maintaining a solution for separation (and extraction) also needs
to be considered, since it is highly likely that the layout of forms changes over
time. Except in very specific circumstances, the extent and form of the change is
out of control of the maintainer of a separation solution. This entails monitoring
the incoming forms for such changes and the rules governing recognition must be
modified immediately once a change is observed.

From the preceding discussion, it seems to us that treating separation and ex-
traction as two distinct steps is advantageous. Furthermore, we favor content-based
and example-based methods over manually written layout rules. The exact form of
features used (e.g., image-based or text-based) is unspecified in principle. However,
based on the experiences in our application domain, we prefer text-based features
(see below).

The most direct approach to document separation would treat the task as
a straightforward segmentation problem. Maximum Entropy (ME) methods have
proven very successful in the area of segmentation of natural language sentences
[2, 3]. Each boundary (in our case the point between two pages) is characterized by
features of its environment (e.g., by the words used on the preceding and following
page). An ME classifier is then used to solve the binary problem (boundary/non-
boundary) for new, unseen page transitions. We are unaware of any publication
using this approach for automatic document separation.

Instead of looking for boundaries, one could also attempt to ascertain that two
consecutive pages belong in the same document, thus indirectly establishing borders.

3 Note that this still assumes that rules are used to identify local information
on a page. It may also be possible to handle the extraction step in a content-
based manner, focusing not on the layout of a page, but on the words on it.
The respective merits of each of these method is beyond the scope of the present
chapter.

126 Mauritius A. R. Schmidtler, and Jan W. Amtrup

An instance of this method is described in [4]. They define a similarity measure
between two pages that takes document structure (text in headers and footers, esp.
page numbers), layout information (font structure), and content (text on pages) into
account. They use a single-linkage agglomerative clustering method to group pages
together. The clustering process is bounded by manually set thresholds. They report
a maximum separation accuracy of 95.68%, using a metric from [5] that measures
the correctness of the number of separation points between non-adjacent pages.
Since our data is different and we solve a combined problem of classification and
separation ([4] only perform separation), their results cannot directly be compared
to ours.

8.3 Data Preparation

The input to our separation solution is the text delivered by an OCR engine of
scanned page images. We are primarily reporting on data from the mortgage pro-
cessing industry, hence the document types (Appraisal, Truth in Lending, etc.). Our
sample here contains documents from 30 document types. The quality of the images
varies based on their origin (original or photocopy) and treatment (fax). Figures 8.1
and 8.2 show two sample images (one from a Loan Application, one from a Note)
and some of the OCR text generated from them.

In order to be prepared for the core classification algorithms (see below), the
input text is tokenized and stemmed. Tokenization uses a simple regular expression
model that also eliminates all special characters. Stemming for English is based on
the Porter algorithm.[6]4

The stream of stemmed tokens isolated from a scanned image is then converted
into a feature vector. We are using a bag of words model of text representation; each
token type is represented by a single feature and the value of that feature is the
number of occurences of the token on the page. In addition, the text is filtered using
a stopword list. This filtering removes words that are very common in a language;
for instance, in English the list includes all closed-class words such as “the,” “a,”
“in,” “he,” etc. Table 8.1 shows some of the features and their values extracted from
a Note. The entries in the table indicate the processing that the text underwent.

Note that these three processes introduce two significant abstractions over the
input text:

• By stemming, we assume that the detailed morphological description of words
is irrelevant for the purpose of classification. For instance, we are unable to
tell whether the feature “address” in Table 8.1 came from the input “address,”
“addresses,” or “addressing.” Inflectional and part-of-speech information is lost.

• Using bags of words, we are abstracting from the linear structure of the input
text. We pose that there is little value in knowing which word appeared before
or near another and the only important information is in knowing which word
appears more frequently than others.

• The application of a stopword list, finally, de-emphasizes the value of syntactic
information even further, since many syntactically disambiguating words are
ignored.

4 We only apply stemming for English text. Text in other languages is used without
morphological processing.

8 Automatic Document Separation 127

Uniform Residential Loan Application I
TYPE GF’MORTGAGE-AHD TERMS
OF LOAN Mortgage flvAB—Ccnvniltiai
Applied fof: E¿HA Agency Case Num-
ber Lender Case Number Amount 5
I No. of Months Amortization Fixed
Rate Typo: I Other (explain): I ARM
(type): / LOAN Subject Property Ad-
dresi (street, city, state, ZIP) Legal De-
scripllon of Subject Property (attach
description If necessary) No. of Units
Year Built Purpose of Loan Construc-
tion Construction-Permanent Otner (ex-
plain): Property will be: Primary ” ”an.
Compl&te this line If construction or
construction-permanent loan. Secondary
Investment Year Lot Acquired Original
Cost S Amount Exjsling Uens $ (a)
Present Value of Lot $ (b) Cost o(Im-
provements $ Total (a+b) S Complete
this line if this Is a ra/fiuncfl loan. Year
Acquired Original Cost Amount Existing
Uens Title will be held in what Name(s)
Purpose of Refinance Describe Improva-
manU

Fig. 8.1. Image and OCR text from a sample loan application. While the forms
themselves are authentic, we redacted the information contained on them to ensure
privacy.

It has been shown [7] that, for certain classifiers and texts, these abstractions do
not reduce accuracy. In addition, abstraction reduces the number of parameters that
need to be estimated during training, which in turn reduces the number of training
samples that need to be provided. This aspect is of particular importance for us.
In order to deploy a separation solution, customers must prepare a certain number
of samples for each document type. Given the classification technology outlined in
section 8.4.2, we achieve acceptable results with as little as twenty to thirty examples
per document type. If we were using a classifier that takes word sequence information
into account, for instance a Bayesian classifier over word n-grams, we would need
hundreds of samples per document type; this would pose a severe entrance barrier
for customers.5

5 However, for certain types of problems, sequence-aware modeling is superior and
even necessary. In one deployment, we encountered a fixed form with two broad
columns into which data could be entered. Depending on whether only one column
or both were filled out, the documents were categorized as different types. The
classification model had difficulties distinguishing between these two document
types. In an experiment, we collected enough sample data to train a word n-gram
classifier and were then able to reliably assess the correct type.

128 Mauritius A. R. Schmidtler, and Jan W. Amtrup

4. BORROWER’S RIGHT TO PREPAY
I have the right to make payments of
Principal at any time before they are due.
A payment of Principal only is known as
a ”Prepayment.” When I make a Pre-
payment, I will tell the Note Holder in
writing that I am doing so. I may not
designate a payment as a Prepayment if
1 have not made all the monthly pay-
ments due under the Note. I may make a
full Prepayment or partial Prepayments
without paying a Prepayment charge.
The Note Holder will use my Prepay-
ments to reduce the amount of Principal
that I owe under this Note. However, the
Note Holder may apply my Prepayment
to the accrued and unpaid interest on
the Prepayment amount, before applying
my Prepayment to reduce the Principal
amount of the Note. If I make a par-
tial Prepayment, there willpe no changes
in the due date or in the amount of my
monthly payment unless the Note Holder
agrees in writing to those changes.

Fig. 8.2. Image and OCR text from a sample Note

Table 8.1. Some of the features extracted from a Note

Token #Occur Token #Occur Token #Occur

accru 1 chang 2 fanni 1
acm 1 charg 3 fix 1
address 1 check 1 form 3
agre 1 citi 1 freddi 1
ani 3 compani 1 ftill 1
anyon 1 date 5 holder 6
appli 4 day 1 home 1
august 1 dbs 1 howev 1
befor 4 default 1 initi 1
begin 1 describ 2 ink 1
borrow 2 design 1 instrument 1
bowi 1 differ 1 interest 9
box 1 entitl 1 juli 1
burtonsvil 1 everi 2 known 1
cash 1 famili 1 la 1

8 Automatic Document Separation 129

From the examples in Figures 8.1 and 8.2, it can be seen that the OCR process
introduces a significant degree of noise into the textual data that all further pro-
cesses are operating on. We have not undertaken experiments specifically designed
to evaluate the degradation in accuracy of either classification or separation that
this OCR noise induces. Such experiments could be set up to work from cleaned-up
OCR text. Since this implies a large amount of manual labor, the change in docu-
ment quality could be simulated by printing electronic documents and manipulating
the pages, e.g., by copying them repeatedly.

Table 8.2. Some of the features related to the stem borrow

Token #Occur Token #Occur Token #Occur

borrnu 1 borronv 4 borrovv 8
borrnwer 1 borrotr 1 borrovvcr 1
borro 92 borrou 3 borrovvef 1
borroa 1 borrov 14 borrovvei 1
borroaer 1 borrovc 1 borrovvfir 1
borroh 4 borrovcf 1 borrovvi 1
borroi 1 borrovd 1 borrovw 1
borroifril 1 borrovi 3
borrojv 1 borrovj 3
borrokbr 1 borrovjar 1
borrom 2 borrovl 1
borromad 1 borrovrti 1
borromicrl 1 borrovt 1
borromr 1 borrovti 1
borron 1 borrovu 1

OCR noise also affects the size of training sets negatively. Under the bag-of-words
model, the text for each page is converted into a feature vector with a dimension-
ality equal to the number of distinct words (or stems) in the training corpus. Noise
introduced during OCR multiplies this number by generating many seemingly dis-
tinct, spurious words. Table 8.2 shows a small number of features related to the
stem “borrow.”

For some data sets, the number of OCR-induced variations becomes so high
that the size of the training set exceeds reasonable memory sizes (e.g., > 2 GB).
In those cases, we apply a preliminary feature selection step that removes features
with low occurrence counts until we arrive at a small enough feature set. In general,
though, we prefer to keep all features available for the classification mechanism and
not perform any initial feature selection. Only in cases when size or performance
require it, we apply feature selection to reduce the size of the feature set. We use
basic frequency filtering and information-gain or mutual information as selection
means.

130 Mauritius A. R. Schmidtler, and Jan W. Amtrup

8.4 Document Separation as a Sequence Mapping
Problem

Automatic Document Separation adds two pieces of information to a stream of un-
labeled pages. It inserts boundaries, so that documents are kept together, and it
assigns labels to those documents that indicate their type. The problem can be
seen as the mapping of an input sequence to an output sequence, i.e., a sequence of
scanned paper pages is mapped to a sequence of document types. The mapping of
sequences is a well known problem in Computer Science and there exist many differ-
ent applications. For example, compilers, speech recognition, information extraction,
and machine translation are all instances that have some aspect that deals with the
problem of sequence mapping: A sequence of human readable program statements
to a sequence of machine code, a sequence of acoustic signals to a sequence of words,
a sequence of words to a sequence of tags, and a sequence of, e.g., Spanish words to
a sequence of French words.

In addition, probabilistic models are often employed in order to determine the
probabilities of possible output sequences given a particular input sequence. In this
chapter, we utilize these concepts to solve the problem of document separation:
Map a given sequence of pages to all possible output sequences, i.e., sequences of
document types, determine for each output sequence its probability given the input
sequence, find the most likely output sequence (sequence of document types), and,
thus, effectively separate the sequence of input pages by document type.

8.4.1 Sequence Model

Formally, the procedure described above can be modeled as a Markov chain. De-
noting the input sequence of ordered pages6 pc by P = (pc

1, . . . , p
c
n) and the output

sequence of document types by D = (d1, . . . , dn), the probability of a specific se-
quence of document types D given the input sequence of pages can be written as

p(D|P) =

n∏
j=1

p(dj |Dj−1,P) , (8.1)

where dj denotes the document type of the j-th page and Dj−1 the output sequence
of document types up to the (j − 1)-th page. In many practical applications, inde-
pendence assumptions regarding the different events dj , Dj−1, and P hold at some
level of accuracy and allow estimations of the probability p(D|P) that are efficient
yet accurate enough for the given purpose.

We started by assuming that the document type dj at time step j only depends
on the page content pc

j at time step j and gradually increased the complexity of
the models by taking into account the document types of previous time steps. In
particular, we considered

p(D|P) ≈
n∏

j=1

p(dj |pc
j) (8.2)

as well as the following approximation, which is very common and has been widely
used in several fields, e.g., for information extraction [8],

6 The superscript c indicates that the content of the pages is considered.

8 Automatic Document Separation 131

p(D|P) ≈
n∏

j=1

p(dj |dj−1, p
c
j) (8.3)

and finally

p(D|P) ≈
n∏

j=1

p(dj |dj−1, dj−2, p
c
j) . (8.4)

Instead of trying to approximate the probality of p(D|P) ever more accurately
by relaxing the independence assumptions one also can describe pages in more detail
by breaking up the document types based on the page position within a document.
Functionally, this is achieved by altering the output language. In the extreme, this
would lead to a model of the data in which the symbols of the output language
are different for each page number within the document. You would have symbols
like TaxForm1, TaxForm2, TaxForm3, etc., for the different page numbers within a
tax form. Here, we increased the alphabet of the original output language threefold.
Every document type symbol is split into three symbols: Start, middle, and end
page of the document type. In our experience, forms often have distinctive first and
last pages, e.g., forms ending with signature pages and starting with pages identify-
ing the form, whereas middle pages of forms do not contain as much discriminating
information. Accordingly, the sequences of the new output language are now se-
quences of the type D′, where D′ is given by D′ = (d′

1, . . . , d
′
n) with d′

j denoting
the document type as well as the page type. The definitions of the page type events
{start, middle, end} are:

start : {pc
j,t|t = 1, t ≤ l}

middle : {pc
j,t|t > 1, t < l}

end : {pc
j,t|t > 1, t = l} (8.5)

where j is the global page number within the batch and t is the local page number
within a document of length l.

One of the models considered using the new output language is

p(D′|P) ≈
n∏

j=1

p(d′
j |pc

j) , (8.6)

under the constraint that the sequence of page types is consistent with the definitions
given by Eq. 8.5, e.g., every document has to end with the end page type with the
exception of one-page documents. The last model has, owing to this constraint,
many similarities with the model given by Eq. 8.4. The main difference between the
two models is that the model of Eq. 8.4 determines boundaries between documents
based on the previous document types, whereas the model of Eq. 8.6 relies mainly on
the difference of start, middle, and end pages within the document type to identify
boundaries. Accordingly, the model of Eq. 8.6 can separate subsequent instances of
the same document type, whereas the model of Eq. 8.4 cannot.

Finally, we also tested models that conditioned the output symbol at a given
time step not only on the content of the current page but also on the previous and
the next page

132 Mauritius A. R. Schmidtler, and Jan W. Amtrup

p(D|P) ≈
n∏

j=1

p(dj |dj−1, dj−2, p
c
j−1, p

c
j , p

c
j+1) (8.7)

p(D|P) ≈
n∏

j=1

p(d′
j |pc

j−1, p
c
j , p

c
j+1) , (8.8)

where the model given by Eq. 8.8 has the same constrained output language as
the model of Eq. 8.6, i.e., an output language consistent with the definitions of the
events {start, middle, end} given by Eq. 8.5.

8.4.2 Sequence Model Estimation

The problem of determining the different sequence models introduced in the previous
section is given by estimating a probability of the form p(x|pc, y) with e.g., x denoting
a document type and y a history of document types. As outlined in Section 8.3, a
bag of words model is used for the page content7 pc, i.e., pc = {(c1, w1), . . . , (cn, wn)}
with cj denoting the number of occurences of word wj on the page, yielding

p(x|pc, y) = p(pc|x, y)
p(x, y)

p(pc, y)
∝

n∏
j=1

p(wj |x, y)cj p(x, y) , (8.9)

whereby in the last step the constant factor 1/p(pc, y) has been omitted. As can be
seen from Eq. 8.9, the sequence model estimation is reduced to the determination of
the probabilities p(wj |x, y) and p(x, y). These probabilities are estimated empirically
by using sample documents (training examples) for the various events (x, y). For a
typical training corpus , provided by the customer, the statistics for determining the
word probabilities p(w|x, y) are very low.8 Given such statistics, overfitting to the
training data is a common problem. Smoothing techniques, like those developed for
language modeling [9], are a common tool to address the problem of low statistics by
reserving some probability mass for unobserved events. In the case of determining
the conditioned word probabilities p(w|x, y), words that have been observed in the
training data would be assigned lower probabilites than the maximum likelihood
estimates, whereas unobserved words would be assigned higher probabilities than
their maximum likelihood estimates. Statistical learning methods, e.g., [10, 11], uti-
lizing methods of regularization theory, allow us to determine the tradeoff between
memorization and generalization more principled than the smoothing techniques
mentioned above. The learning method adopted here for estimating the sequence
model is a Support Vector Machine[10] (SVM). It is commonly known that Support
Vector Machines are well suited for text applications given a small number of train-
ing examples [12]. This is an important aspect for the commercial use of the system,
since the process of gathering, preparing, and cleaning up training examples is time
consuming and expensive.

7 Here, pc indicates both content models we are considering: The page content at
a given time step as well as the content of the pages pc

j−1, p
c
j , p

c
j+1 at a time step

j.
8 For a typical training corpus, almost all words occur rarely with words counts of

one to two.

8 Automatic Document Separation 133

Table 8.3. Classification Results

Optimized Not optimized
precision recall F1-value precision recall F1-value

Micro averages 0.95 0.95 0.95 0.90 0.90 0.90
Macro averages 0.94 0.86 0.87 0.82 0.79 0.78

Support Vector Machines solve a binary classification problem. The SVM score
associated with an instance of the considered events is its signed distance to the
separating hyperplane in units of the SVM margin. In order to solve multiclass
problems, a series of Support Vector Machines have to be trained, e.g., in the case
of a one-vs-all training schema, the number of SVMs trained is given by the number
of classes. The scores between these different machines are not directly compara-
ble and the scores must be calibrated such that at least for a given classification
instance the scores are on an equal scale. In this application, the scores not only
must be comparable between classes for a given classification instance (page), but
also between different classification instances (pages), i.e., the SVM scores must be
mapped to probabilities. Platt [13] uses SVM scores that are calibrated to class
membership probabilities by adopting the interpretation of the score being propor-
tional to the logarithmic ratio of class membership probability. He determines the
class membership probability as a funcion of the SVM score by fitting a sigmoid
function to the empirically observed class membership probabilities as a function
of the SVM score. The fit parameters are the slope of the sigmoid function and/or
a translational offset. The latter parameter, given the interpretation of the SVM
scores discussed above, is the logarithmic ratio of the class prior probabilities. The
method used here [14] fixes the translational offset and only fits the slope parame-
ter. In addition, the Support Vector Machines are trained using cost factors for the
positive as well as for the negative class and optimize the two costs independently.
Empirical studies performed by the authors showed that cost factor optimization
in conjunction with fitting the slope parameter of the mapping function from SVM
scores to probabilities yields superior probability estimates than fitting the slope
and the translational offset without cost factor optimization, fitting the slope and
the translational offset with cost factor optimization, and fitting the slope only.

Table 8.3 summarizes the classification results for different loan forms. The re-
sults shown in the Optimized heading are the classification results obtained with the
class membership probabilities using cost factor optimization and fitting the slope
of the sigmoid function. Using SVM scores directly without calibration and cost
factor optimization yields the results under the heading Not Optimized. The macro
averages, especially, illustrate the effectiveness of the elected method. The observed
improvement is a combined effect of using probabilities instead of SVM scores and
cost factor optimization. An added benefit of optimizing the positive and negative
cost factors is an improved handling of the OCR noise. As discussed in section 8.3,
OCR increases the feature space considerably and cost factor optimization becomes
important in order to avoid overfitting to the training corpus.

In summary, the effects of cost factor optimization can be interpreted as follows:
The ratio of positive to negative cost factors determines the right class prior prob-

134 Mauritius A. R. Schmidtler, and Jan W. Amtrup

States

Appraisal 0.9 0.5 0.5 0.8
TaxForm 0.7 0.9 0.9 0.8

· · ·

Note 0.5 0.7 0.7 0.3
time

page 1 page 2 page 3 page 4

Fig. 8.3. A trellis for the model of Eq. 8.2.

ability and thus enables an effective mapping of SVM scores to probabilities. The
absolute value of the cost factor is an estimate of the optimal tradeoff between mem-
orization and generalization and thus, enables an efficient handling of the noisy data.
This together with mapping the scores to probabilities allows us to effectively utilize
Support Vector Machines with their superior learning paradigm for the estimation
of the sequence models.

8.4.3 Sequence Processing

In the previous two sections, we outlined the different probability models that can
be applied to the problem of document separation and the approach to classification
that we have taken to arrive at probabilities for categories attached to pages. All
probability models were based on viewing the classification and separation process
as a sequence mapping problem, described formally as a Markov chain as in Eq. 8.1.
Experience from information extraction and speech recognition (e.g., [15]) shows
that the results of such mappings and the search for the best sequence can be
represented as a trellis. A trellis is a two-dimensional graph in which the horizontal
axis represents time steps. For speech recognition, this would be incoming acoustic
feature vectors. For information extraction, it could be words and, in our case, each
time step is an incoming page within a batch. The vertical axis represents the states
in which the mapping process may find itself and also the possible output symbols
it may generate.

Transitions from states for one time step to the next denote the larger structure
of the problem. These transitions can also be annotated with probabilities.

Consider the very simple model of Eq. 8.2, in which the probability of a document
type only depends on the content of a page. In the trellis, there are as many states
as there are document types. The interesting value for such a state is the probability
that the page is of the associated document type. There are transitions from each
state for one time step to all states for the next time step, indicating that each
following state is equally probable. Figure 8.3 shows part of such a trellis.

The question of what a “best sequence” is can easily be answered: Since the
individual scores delivered are probabilities (due to calibration), the probability of
the complete sequence can be modeled using the product of all scores encountered on
a path from the first page to the last. This sequence can be computed using Viterbi

8 Automatic Document Separation 135

States
Previous Current

Appraisal Appraisal (A,A) (A,A)
TaxForm Appraisal (T,A) (T,A)
Note Appraisal (N,A)
Appraisal TaxForm (A,T) (A,T)
TexForm TaxForm (T,T)
Note TaxForm (N,T)
Appraisal Note (A,N)
TexForm Note (T,N) (T,N)
Note Note (N,N)

time
page 1 page 2

Fig. 8.4. Partial connection structure for the trellis for model Eq. 8.2.

search. At each time step, it records the locally best path to each state. Due to the
independence of each time step, no locally suboptimal path can be part of the global
solution. We can use Viterbi search to establish the best sequence of document types
according to the model of Eq. 8.2. In fact, in the case of such a simple model, it
suffices to identify the best document type for each page, which automatically will
be a member of the best overall sequence. However, for any non-trivial model, this
is not the case.

The models according to Eq. 8.3 and Eq. 8.4 introduce context into the decision
process. This context or history needs to be reflected in the states of the trellis.
For instance, the states reflecting the model of Eq. 8.3 are annotated with pairs of
document types, the first one denoting the conditioning on the document type of
the previous page and the second one denoting the decision for the current page.
Moreover, the transition structure of the trellis needs to be modified as to ensure the
consistency of paths. For instance, a state marked with “Appraisal” as the current
decision can only be connected to following states that have “Appraisal” in their
history. Figure 8.4 shows part of the connection structure for the model according
to Eq. 8.3.

The extension of the context increases the number of states in a trellis. For the
model of Eq. 8.4, we use triples instead of pairs of document types as state names.

Model 8.6 describes pages in more detail, adding a page type (Start, Middle, End)
to the document type. Thus, for each document type relevant for a specific problem,
we would have three states in the trellis. In addition, the transition structure needs
to be carefully crafted as to only allow paths that describe complete documents,
i.e., follow Eq. 8.5. For instance, in order to be a valid document boundary, a state
associated with an end page must be immediately followed by a state associated
with a start page.

For reasons of simplicity and extensibility, it would be advantageous if these
sequence constraints could be formulated in isolation from the trellis containing the
classification results themselves. Pereira and Riley [16] show that speech recognition

136 Mauritius A. R. Schmidtler, and Jan W. Amtrup

Start End

p:p/0.64

Taxform_Start

Taxform_Start

p:p/0.21

p:p/0.95
Taxform_End

p:p/0.95

Taxform_End

Fig. 8.5. Classification results for one page

can be interpreted as a sequence of weighted finite state transducers (WFSTs) that
are combined using the composition operation. We adopt this view by associating
our trellis of page classification results with an acoustic model applied to some input
in speech recognition. The probabilities for an individual page to be of some class
correspond to the emission probabilities represented in the recognition trellis of a
speech recognizer. The restriction we placed on only allowing complete documents
to be part of a sequence of documents corresponds to the use of a language model
that renders certain word sequences more likely than others.9 The “language model”
we use currently only contains binary probability values, modeling hard constraints.
However, similar to language models used in speech recognition, we could employ
graded constraints represented by probabilities on language model transitions. This
could be useful, for instance, in modeling the different likelihoods of sequences of
documents, should such sequences exist.

In order to apply this analogy, we need to define the topology and contents of two
finite state transducers. For the document type/page type model, the classification
results can be represented in an FST as shown in Figure 8.5. The transitions of a
classification transducer are of two kinds:

• Transitions that represent physical pages contain a symbol indicating a physical
page on the lower and upper level and a classification score as weight. Which
score is attached to the page depends on the topology of the transducer, which
is defined by the next type of transitions.

• Transitions with an empty lower level denote boundary information about doc-
uments. There are transitions for the start and the end of a document. The
occurrence of these transitions thus defines the type of page and the type of
score that should be used. For instance, in Figure 8.5, the topmost transition
(with score 0.64) indicates a middle page, since there are no boundaries given.
The second transition chain belongs to a form that contains only a single page
and consequently is bounded by both a start indicator and an end indicator.
The third and fourth transitions belong to start and end pages respectively.

Figure 8.5 contains the information necessary to represent the classification re-
sults for one page with regard to one document type. The complete FST representing
a problem with three document types and four pages is shown in Figure 8.6. Note

9 On a more basic level, the document sequence restrictions can also be likened
to the use of a pronunciation dictionary within a speech recognizer. However,
acoustic modeling and pronunciation dictionary are usually combined into one
processing step, while we explicitly distinguish between these.

8 Automatic Document Separation 137

Start
End

...

...
...

...

... ...

...

...

...

...

...

...

... ...

...

...

...

...

...

...

... ...

...

...

...

...
...

...

... ...

...

...

...

...

...

...

... ...

...

...

...

...

...

...

... ...

...

...

...

...
...

...

... ...

...

...

...

...

...

...

... ...

...

...

...

...

...

...

... ...

...

...

...

...
...

...

... ...

...

...

...

...

...

...

... ...

...

...

...

...

...

...

... ...

...

...

Fig. 8.6. Classification results as an FST

that using this FST, it is still possible to generate invalid page sequences. For in-
stance, a start page for an Appraisal could be followed by another such start page. A
restriction transducer plays a role analogous to a language model and ensures that
such invalid paths are not present in the final search trellis.

A restriction (or rule) transducer contains labels on both the lower and upper
side. The transformation from page content to document type/page type symbols
has already been defined by the classification FST. The rule transducer has no infor-
mational role anymore, but a pure filtering role of eliminating impossible sequences
of document and page types. Figure 8.7 shows the rules for a sequence containing
documents of three document types. Note that all weights on the transitions are
given as 1.0, so as not to modify the probabilities from the page information.

Start

TaxForm_Start:TaxForm_Start/1.0

Appraisal_Start:Appraisal_Start/1.0

Note_Start:Note_Start/1.0 End

TaxForm_End:TaxForm_End/1.0

p:p/1.0

Appraisal_End:Appraisal_End/1.0

p:p/1.0

Note_End:Note_End/1.0p:p/1.0

Fig. 8.7. FST for three document types

The composition operation on finite state transducers can now be used to gen-
erate a transducer that only contains such sequences of pages that result in a valid
sequence of documents. Composition treats the “output” of one transducer (the up-
per level) as the “input” (lower level) of the other transducer. If we compose the
classification FST with the rule FST, we achieve the desired result, an FST that
contains the probabilities for specific pages, but only contains valid sequences. The
output of this operation can be quite large, though. In the worst case, the composed
FST has a number of states that is the product of the number of states of both
arguments. In practice, this upper limit is not reached, but the size of the composed
FST is still a concern, which we will address below.

138 Mauritius A. R. Schmidtler, and Jan W. Amtrup

Algorithm 1 General document separation
Require: An ordered list of pages (a batch), consisting of pages p1 to pn.
Require: An FST rules that describes the possible sequences of documents, as in

Figure 8.7.
Ensure: An ordered list of documents dk, each of which consists of an ordered list

of pages.
{Perform Classification}

2: for all pages pi, 1 ≤ i ≤ n in the batch do
3: for all classes cj do {Three classes per document type (start/middle/end)}
4: cij ← probability that pi is of class cj

5: end for
6: end for

{Perform Separation}
8: pg ← The FST representing the classification results, as in Figure 8.6
9: sg ← pg composed with rules

10: sg ← the best path through sg
{Create documents}

12: D ← ∅
13: d ← ∅
14: for all Transitions in sg, in topological order do
15: if The transition is labeled with “ End” then
16: D+ = d
17: else if The transition is labeled with a page then
18: d+ = p
19: end if
20: end for

The goal is to find a path through the composed FST from the start state to an
end state under the constraint that we are interested in the highest possible overall
probability. Any graph search method can be applied. However, the topology of
the input graph simplifies the problem somewhat (see below). For convenience, we
represent the result of the search also as an FST. The separation algorithm can now
be described by Algorithm 1.

Representing rules about the sequence of document types as a graph has more
far-reaching applications than just to make sure that document boundaries are ob-
served. For instance, limits about the size of documents can now be easily introduced.
Figure 8.8 shows a rule FST that prescribes all Tax forms must be at least two pages
and at most five pages long.

Start

TaxForm_Start:
TaxForm_Start/1.0

End
p:p/1.0 p:p/1.0

p:p/1.0
p:p/1.0

p:p/1.0 TaxForm_End:
TaxForm_End/1.0

Fig. 8.8. A rule FST restricting tax forms to between two and five pages long

8 Automatic Document Separation 139

Similarly, the rule FST can be used to make demands about the order of doc-
uments, depending on the application. For instance, a mortgage application could
prescribe that an Appraisal is always directly followed by a Note. Using a powerful
representation mechanism such as finite state transducers simplifies the introduction
of additional functionality significantly.

However, there are also drawbacks to the naive implementation of operations over
finite state transducers. Additional representational power in this case comes at a
price, mainly in terms of memory consumption and secondary in processing time. A
typical mortgage application defines somewhere between 50 and 200 document types
and consequently between 150 and 600 classes for which probabilities and graphs
have to be produced. A batch may be as long as 1000 pages. The composition of
the resulting classification graph with the rule graph requires a great deal of space
to hold and time to construct. We experienced graph sizes of over one gigabyte and
runtime reached tens of minutes, clearly insufficient for the successful application in
industry.

This situation is again similar to speech recognition with language modeling.
A language model represents an extremely large number of possible and probable
word sequences. Incorporating this knowledge into the basic recognition trellis is
infeasible due to both space and time restrictions. Thus, both knowledge sources
are kept separate. The probabilities delivered by the language model are taken into
account by the search for the best word sequence. For our problem, we also notice
that the composition of the classification and rules FSTs is transient; in the end,
we are interested only in the best path through the composition FST. Thus, it
is unnecessary to completely unfold the composition. Instead, we use a technique
similar to delayed composition [17] combined with beam search [18] to extract the
final result. This reduces memory usage significantly for large problems. Table 8.4
shows the memory usage for a few data points, all of which are well within the
limits of our requirements. The runtime is also much lower; for 1000 pages and
200 categories, the processing time decreases from roughly 16 minutes for the naive
approach to less than 3 minutes for the advanced procedure.

Table 8.4. Memory usage for separation

Batch size Memory Usage
in pages 200 categories 300 categories

1000 118 MB 151 MB
2000 211 MB 363 MB

8.5 Results

We evaluated the performance of all probability models for sequences that we de-
scribed in Section 8.4.2. Table 8.5 shows the F1-values for all models. The table
suggests three main results:

140 Mauritius A. R. Schmidtler, and Jan W. Amtrup

Table 8.5. Comparison of separation and classifcation results of the various se-
quence models.

Seqence model Probability Micro-averaged F1-value

Eq. 8.2 p(dj |pc
j) 0.63

Eq. 8.3 p(dj |dj−1, p
c
j) 0.74

Eq. 8.4 p(dj |dj−1, dj−2, p
c
j) 0.83

Eq. 8.6 p(d′
j |pc

j) 0.84
Eq. 8.7 p(dj |dj−1, dj−2, p

c
j−1, p

c
j , p

c
j+1) 0.86

Eq. 8.8 p(d′
j |pc

j−1, p
c
j , p

c
j+1) 0.87

• The inclusion of a history of document types improves performance. This is not
surprising, given the fact that forms are, on average, longer than one page. For
instance, using a trigram model instead of a unigram yields an improvement of
31%.

• Specializing page descriptions improves performance. This confirms our earlier
reasoning that forms often exhibit specific start and end pages. It also allows
the model to separate two consecutive instances of the same document type.

• Conditioning on the content of surrounding pages improves performance. Com-
paring the last two rows in Table 8.5 with their counterparts without the content
of the surrounding pages in the condition indicates a boost of around 3.5% in
F1-value.

The last model (Eq. 8.8) is the best model in our experiments. However, it
presents a serious drawback in that it uses roughly three times the number of fea-
tures to describe a page (namely, the content of the page itself and that of the two
surrounding pages). Given the increased CPU and memory usage during training,
this seemed too high a price to pay for a 3% gain in performance. Thus, for deploy-
ment into customer production systems, we decided to use the model according to
Eq. 8.6. It is the best of the one-page-content models, and the distinction of page
types not only makes the model more efficient, but also helps with the integration
of the separation workflow in a broader, extraction-oriented system owing to its
capability of separating two consecutive identical forms.

Table 8.6 shows detailed results for the final deployment model. For each doc-
ument type, the table shows the absolute counts of the results, precision, recall,
and F1-value in two different scenarios. The first six columns show results on the
page level: For each page, the predicted document type is compared with the true
document type, and results calculated from that. The last six columns show values
on the sequence level, taking into account full documents rather than pages. Each
document (i.e., the sequence of pages from start page to end page) is compared with
a gold standard; if both the extent of the document and its type match, the docu-
ment is counted as correct. If either the document type or the pages contained in the
document do not match, the document is counted as incorrect. These measures are
much more strict than the page-level measures, as can be seen from the micro- and
macro averages. Note that Table 8.6 reports on an experiment with 30 document
types; however, the method scales well, and we achieve similar results with much
larger numbers of categories.

8 Automatic Document Separation 141

Table 8.6. Number of true positive (TP), false positive (FP), false negative (FN),
precision (P), recall (R), and F-measure (F) on a page as well as on a sequence level
after separation. Final Model.

Page level Sequence level
TP FP FN P R F1 TP FP FN P R F1

Form A 207 4 1 0.98 1.00 0.99 108 9 8 0.92 0.93 0.93
Form B 13 0 0 1.00 1.00 1.00 4 0 0 1.00 1.00 1.00
Form C 151 9 7 0.94 0.96 0.95 79 24 13 0.77 0.86 0.81
Form D 171 0 10 1.00 0.94 0.97 108 10 12 0.92 0.90 0.91
Form E 2 0 0 1.00 1.00 1.00 2 0 0 1.00 1.00 1.00
Form F 15 0 0 1.00 1.00 1.00 12 0 0 1.00 1.00 1.00
Form G 100 0 0 1.00 1.00 1.00 22 0 0 1.00 1.00 1.00
Form H 56 0 0 1.00 1.00 1.00 53 0 0 1.00 1.00 1.00
Form I 6 0 0 1.00 1.00 1.00 6 0 0 1.00 1.00 1.00
Form J 14 0 0 1.00 1.00 1.00 14 0 0 1.00 1.00 1.00
Form K 10 3 0 0.77 1.00 0.87 10 3 0 0.77 1.00 0.87
Form L 74 11 12 0.87 0.86 0.87 21 9 7 0.70 0.75 0.72
Form M 52 11 10 0.83 0.84 0.83 18 6 4 0.75 0.82 0.78
Form N 13 0 0 1.00 1.00 1.00 13 0 0 1.00 1.00 1.00
Form O 2 1 3 0.67 0.40 0.50 1 2 3 0.33 0.25 0.29
Form P 167 8 4 0.95 0.98 0.97 106 23 11 0.82 0.91 0.86
Form Q 22 0 0 1.00 1.00 1.00 22 0 0 1.00 1.00 1.00
Form R 51 0 0 1.00 1.00 1.00 16 0 0 1.00 1.00 1.00
Form S 1 5 0 0.17 1.00 0.29 1 5 0 0.17 1.00 0.29
Form T 226 0 0 1.00 1.00 1.00 66 0 0 1.00 1.00 1.00
Form U 64 4 2 0.94 0.97 0.96 48 8 4 0.86 0.92 0.89
Form V 4 2 1 0.67 0.80 0.73 0 6 2 0.00 0.00 0.00
Form W 9 3 1 0.75 0.90 0.82 9 3 1 0.75 0.90 0.82
Form X 55 0 0 1.00 1.00 1.00 28 0 0 1.00 1.00 1.00
Form Y 376 4 13 0.99 0.97 0.98 248 18 15 0.93 0.94 0.94
Form Z 26 0 1 1.00 0.96 0.98 6 3 2 0.67 0.75 0.71
Form AA 326 8 8 0.98 0.98 0.98 26 18 7 0.59 0.79 0.68
Form AB 26 0 0 1.00 1.00 1.00 21 5 1 0.81 0.95 0.88
Form AC 332 0 2 1.00 0.99 1.00 20 2 2 0.91 0.91 0.91
Form AD 17 2 0 0.89 1.00 0.94 17 2 0 0.89 1.00 0.94

Σ 2588 75 75 – – — 1105 156 92 – – –
Micro averages – – – 0.97 0.97 0.97 – – – 0.88 0.92 0.90
Macro averages – – – 0.91 0.95 0.92 – – – 0.82 0.89 0.84

142 Mauritius A. R. Schmidtler, and Jan W. Amtrup

The training for this model required at least 20 examples per category, 10 each for
the training and as a hold-out set. The maximum number of examples per category
was capped at 40. Initially, the feature space had a dimensionality of 620,455. We
reduced this number to at most 20,000 features per category by applying mutual
information feature selection.

A comparison between the different problems and the models we apply is instruc-
tive. In Table 8.3, we reach an F1-value of 95% for the classification of documents.
There, the boundaries are given, and the classifier is able to use all words from all
pages in the document. In the experiments we report in Table 8.5, the problem is
more complex: Each page must be classified separately and document boundaries
inferred. Applying a comparable model (Eq. 8.2) in this situation, we only reach
an F1-value of 63%. Only by careful selection of an appropriate probability model,
we are able to raise the performance to an F1-value of 92% on the page level with
model (Eq. 8.6).

One should note that the scores delivered by the SVM multi-class classifier are
calibrated and represent class membership probabilities. Thus, thresholding can
be applied to control the amount of errors that a customer expects from automatic
decisions, and to control the amount of manual review of decisions that have been re-
jected. Using this technique, we can achieve precision of > 95% while simultaneously
keeping the recall above 80%.

8.5.1 Production Deployments

The deployment of an automatic document separation solution is a lengthy process,
as is common for any workflow-changing installation in large organizations. Most
often, a proof-of-concept phase precedes the deployment proper. This part of a
project can be pre-sales in order to demonstrate the feasibility of the approach to
the customer or it can be as the first step in a deployment to find out how much
automation can be introduced with high accuracy. In a proof of concept (POC), only
a small subset of document types are considered for classification and separation.
This poses a set of unique problems to consider: The document separator is normally
set up to classify all documents into a set of well-known and well-defined document
types. In a POC, only a subset of document types (say, 10 out of 50) is relevant.
However, the incoming batches still contain documents of all types. The challenge
here is to “actively ignore” the remaining document types without adverse effects
on the classification and separation results for the document types on which we are
concentrating.

The deployment of the production version of the separation solution can take
as long as six months for a medium-sized organization (separating between five and
ten million pages per month). Of this time, two to three months are usually spent
on configuring the software. This includes the setup of the training data for the
separator but also the development of an extraction mechanism that is usually part
of the larger workflow. The rest of the time is used for the purchase and installation of
hardware (possibly new scanners, processing machines, and review stations) and the
retraining of the review personnel. It is good practice to introduce the new workflow
and automated solution in increments, first converting one or two production lines to
the automated separation solution and reviewing the efficiency of the process. Once
the hardware, software and workflow function satisfactorily, the remaining lines are
activated.

8 Automatic Document Separation 143

Using an automated classification and separation solution yields significant ben-
efits for an organization. There are large cost-savings associated with the process
(in a manual solution, 50% of the preparation cost is spent on sorting and inserting
separator sheets) and the accuracy is superior. In a typical setting with hundreds
of document types, at least 95-98% precision can be attained at a recall level of at
least 80%. This means that only a fraction of the original data must be reviewed
and no operations have to be performed on the physical paper pages that are at the
source of the process.

8.6 Conclusion

In this chapter, we presented an automatic solution for the classification and separa-
tion of paper documents. The problem is to ingest a long sequence of images of paper
pages and to convert those into a sequence of documents with definite boundaries
and document types. In a manual setting, this process is costly and error prone.
The automatic solution we describe prepares the incoming pages by running them
through an OCR process to discover the text on the page. Basic NLP techniques
for segmentation and morphological processing are used to arrive at a description
of a page that associates stems with occurrence counts for a page (bag-of-words
model). An SVM classifier is applied to generate probabilities that pages are of a
given document and page type. After obtaining all classification probabilities, we are
using a finite state transducer-based approach to detect likely boundaries between
documents. Viewing this process as a sequence-mapping problem with well-defined
subareas such as probabilistic modeling, classification and sequence processing al-
lows us to fine-tune several aspects of the approach.

There were several major challenges in the development of this set of algorithms.
The outside constraints prescribed a solution with high performance, both in terms
of process accuracy and resource efficiency (time and hardware in setup and produc-
tion). These requirements have significant ramifications for the choice of algorithms
and models. For instance, Bayesian classifiers based on word n-grams are primarily
unsuited due to their high training data demands. Also, the composition and search
during separation had to be implemented in an on-demand fashion to comply with
memory size requirements.

The overall result is a system that — although relatively simple in its basic
components and methods — is very complex in its totality and its optimizations
on a component level. We consistently reach high performance of greater than 95%
precision with more than 80% recall and use the solution described here in large
deployments with several million pages throughput a month.

8.7 Acknowledgments

Developing and validating technology solutions that can eventually be turned into
successful products in the marketplace is an endeavor that includes many people.
The authors would like to thank all who participated in exploring the technological
and engineering problems of automatic document separation, in particular Tristan
Juricek, Scott Texeira, and Sameer Samat.

144 Mauritius A. R. Schmidtler, and Jan W. Amtrup

References

1. Schmidtler, M., Texeira, S., Harris, C., Samat, S., Borrey, R., Macciola, A.: Au-
tomatic document separation. United States Patent Application 20050134935,
US Patent & Trademark Office (2005)

2. Ratnaparkhi, A.: A Simple Introduction to Maximum Entropy Models for Nat-
ural Language Processing. IRCS Report 97-08, University of Pennsylvania,
Philadelphia, PA (1997)

3. Reynar, J., Ratnaparkhi, A.: A Maximum Entropy Approach to Identifying
Sentence Boundaries. In: Proceedings of the ANLP97, Washington, D.C. (1997)

4. Collins-Thompson, K., Nickolov, R.: A Clustering-Based Algorithm for Auto-
matic Document Separation. In: SIGIR 2002 Workshop on Information Retrieval
and OCR. (2002)

5. Pevzner, L., Hearst, M.: A Critique and Improvement of an Evaluation Metric
for Text Segmentation. Computational Linguistics 28 (2002) 19–36

6. Porter, M.: An Algorithm for Suffix Stripping. Program 14 (1980) 130–130
7. Joachims, T.: Learning to Classify Text using Support Vector Machines: Meth-

ods, Theory, and Algorithms. Kluwer (2002)
8. McCallum, A., Freytag, D., Pereira, F.: Maximum entropy markov models

for information extraction and segmentation. Technical report, Just Research,
AT&T Labs — Research (2000)

9. Goodman, J.: A bit of progress in language modeling. Technical Report
MSR-TR-2001-72, Machine Learning and Applied Statistics Group Microsoft
Research (2001)

10. Vapnik, V.: Statistical Learning Theory. JOHN WILEY & SONS, INC (1998)
11. Jaakola, T., Meila, M., Jebara, T.: Maximum entropy discrimination. Technical

report, MIT AI Lab, MIT Media Lab (1999)
12. Joachims, T.: Text Categorization with Support Vector Machines: Learning

with Many Relevant Features. Technical Report LS-8 Report 23, Universitat
Dortmund Fachbereich Informatik Lehrstuhl VIII Kunstliche Intelligenz (1997)

13. Platt, J.: Probabilistic outputs for support vector machines and comparison to
regularised likelihood methods. Technical report, Microsoft Research (1999)

14. Harris, C., Schmidtler, M.: Effective multi-class support vector machine classifi-
cation. United States Patent Application 20040111453, US Patent & Trademark
Office (2004)

15. Jelinek, F.: Statistical Methods for Speech Recognition. Language, Speech and
Communication. MIT Press, Cambridge, Massachusetts (1998)

16. Pereira, F., Riley, M.: Speech recognition by composition of weighted finite
automata. Technical report, AT&T Labs — Research (1996)

17. Mohri, M., Pereira, F.C.N., Riley, M.: A Rational Design for a Weighted Finite-
State Transducer Library. In: Workshop on Implementing Automata. (1997)
144–158

18. Lowerre, B.T.: The HARPY Speech Recognition System. PhD thesis, Carnegie
Mellon University (1976)

9

Evolving Explanatory Novel Patterns for
Semantically-Based Text Mining ∗

John Atkinson

9.1 Motivation

An important problem with mining textual information is that in this unstructured
form is not readily accessible to be used by computers. This has been written for
human readers and requires, when feasible, some natural language interpretation.
Although full processing is still out of reach with current technology, there are
tools using basic pattern recognition techniques and heuristics that are capable of
extracting valuable information from free text based on the elements contained in it
(i.e., keywords). This technology is usually referred to as Text Mining, and aims
at discovering unseen and interesting patterns in textual databases [8, 19].

These discoveries are useless unless they contribute valuable knowledge for users
who make strategic decisions (i.e., managers, scientists, businessmen). This leads
then to a complicated activity referred to as Knowledge Discovery from Texts
(KDT) which, like Knowledge Discovery from Databases (KDD), correspond to “the
non-trivial process of identifying valid, novel, useful and understandable patterns in
data” [6].

KDT can potentially benefit from successful techniques from Data Mining or
Knowledge Discovery from Databases (KDD) [14] which have been applied to rela-
tional databases. However, Data Mining techniques cannot be immediately applied
to text data for the purposes of TM as they assume a structure in the source data
which is not present in free text. Hence new representations for text data have to
be used. Also, while the assessment of discovered knowledge in the context of KDD
is a key aspect for producing an effective outcome, the evaluation/assessment of the
patterns discovered from text has been a neglected topic in the majority of the KDT
approaches. Consequently, it has not been proven whether the discoveries are novel,
interesting, and useful for decision makers.

Despite the large amount of research over the last few years, few research efforts
worldwide have recognized the need for high-level representations (i.e., not just

∗ This research is sponsored by the National Council for Scientific and Techno-
logical Research (FONDECYT, Chile) under grant number 1040469 “Un Modelo
Evolucionario de Descubrimiento de Conocimiento Explicativo desde Textos con
Base Semantica con Implicaciones para el Analisis de Inteligencia.”

146 John Atkinson

keywords), for taking advantage of linguistic knowledge, and for special purpose
ways of producing and assessing the unseen knowledge. The rest of the effort has
concentrated on doing text mining from an Information Retrieval (IR) perspective
and so both representation (keyword based) and data analysis are restricted.

The most sophisticated approaches to text mining or KDT are characterised by
an intensive use of external electronic resources including ontologies, thesauri, etc.,
which highly restricts the application of the unseen patterns to be discovered, and
their domain independence. In addition, the systems so produced have few metrics
(or none at all) which allow them to establish whether the patterns are interesting
and novel.

In terms of data mining techniques, Genetic Algorithms (GA) for Mining pur-
poses has several promising advantages over the usual learning/analysis methods
employed in KDT: the ability to perform global search (traditional approaches deal
with predefined patterns and restricted scope), the exploration of solutions in par-
allel, the robustness to cope with noisy and missing data (something critical in
dealing with text information as partial text analysis techniques may lead to impre-
cise outcome data), and the ability to assess the goodness of the solutions as they
are produced.

In this paper, we propose a new model for KDT which brings together the
benefits of shallow text processing and GAs to produce effective novel knowledge.
In particular, the approach combines Information Extraction (IE) technology and
multi-objective evolutionary computation techniques. It aims at extracting key un-
derlying linguistic knowledge from text documents (i.e., rhetorical and semantic
information) and then hypothesising and assessing interesting and unseen explana-
tory knowledge. Unlike other approaches to KDT, we do not use additional electronic
resources or domain knowledge beyond the text database.

9.2 Related Work

Typical approaches to text mining and knowledge discovery from texts are based on
simple bag-of-words (BOW) representations of texts which make it easy to analyse
them but restrict the kind of discovered knowledge [2]. Furthermore, the discoveries
rely on patterns in the form of numerical associations between concepts (i.e., these
terms will be later referred to as target concepts) from the documents, which fails
to provide explanations of, for example, why these terms show a strong connection.
Consequently, no deeper knowledge or evaluation of the discovered knowledge is
considered and so the techniques become merely “adaptations” of traditional DM
methods with an unproven effectiveness from a user viewpoint.

Traditional approaches to KDT share many characteristics with classical DM but
they also differ in many ways: many classical DM algorithms [19, 6], are irrelevant
or ill suited for textual applications as they rely on the structuring of data and
the availability of large amounts of structured information [7, 18, 27]. Many KDT
techniques inherit traditional DM methods and keyword-based representation which
are insufficient to cope with the rich information contained in natural-language text.
In addition, it is still unclear how to rate the novelty and/or interestingness of the
knowledge discovered from texts.

Some people suggest that inadequacy and failure to report novel results are likely
because of the confusion between finding/accessing information in texts (i.e., using

9 Evolutionary Text Mining 147

IR and data analysis techniques) and text mining: the goal of information access
is to help users find documents that satisfy their information needs, whereas KDT
aims at discovering or deriving novel information from texts, finding patterns across
the documents [17]. Here, two main approaches can be distinguished: those based on
Bag-of-Words representations, and those based on more structured representations.

9.2.1 Bag-of-Words-Based Approaches

Some of the early work on TM came from the Information Retrieval community,
hence the assumption of text represented as a Bag-of-Words (BOW), and then to
be processed via classical DM methods [7, 27]. Since there is additional information
beyond these keywords and issues such as their order do not matter in a BOW
approach, it will usually be referred to as non-structured representation.

Once the initial information (i.e., terms, keywords) has been extracted, KDD
operations can be carried out to discover unseen patterns. Representative methods
in this context have included Regular Associations [6], Concept Hierarchies citeFeld-
man98b, Full Text Mining [27], Clustering, Self-Organising Maps.

Most of these approaches work in a very limited way because they rely on sur-
face information extracted from the texts, and on its statistical analysis. As a con-
sequence, key underlying linguistic information is lost. The systems may be able to
detect relations or associations between items, but they cannot provide any descrip-
tion of what those relations are. At this stage, it is the user’s responsibility to look
for the documents involved with those concepts and relations to find the answers.
Thus, the relations are just a “clue” that there is something interesting but which
needs to be manually verified.

9.2.2 High-Level Representation Approaches

Another main stream in KDT involves using more structured or higher-level repre-
sentations to perform deeper analysis so to discover more sophisticated novel / inter-
esting knowledge. Although in general, the different approaches have been concerned
with either performing exploratory analysis for hypothesis formation, or finding new
connections/relations between previously analysed natural language knowledge, it
has also involved using term-level knowledge for other purposes than just statistical
analysis.

Some early research by Swanson on the titles of articles stored in MEDLINE [28]
used an augmented low-level representation (the words in the titles) and exploratory
data analysis to discover hidden connections [30, 32] leading to very promising and
interesting results in terms of answering questions for which the answer was not
currently known. He showed how chains of causal implication within the medical
literature can lead to hypotheses for causes of rare diseases, some of which have
received scientific supporting evidence.

Other approaches using Information Extraction (IE) which inherited some of
Swanson’s ideas to derive new patterns from a combination of text fragments, have
also been successful. Essentially, IE is a Natural-Language (NL) technology which
analyses an input NL document in a shallow way by using defined patterns along with
mechanisms to resolve implicit discourse-level information (i.e., anaphora, corefer-
ence, etc.) to match important information from the texts. As a result, an IE task

148 John Atkinson

produces an intermediate representation called “templates” in which information
relevant has been recognised, for example: names, events, entities, etc., or high-level
linguistic entities: noun phrases, etc.

Using IE techniques and electronic linguistic resources, Hearst [19] proposes a
domain-independent method for the automatic discovery of WordNet-style lexicose-
mantic relations by searching for corresponding lexicosyntactical patterns in unre-
stricted text collections. This technique is meant to be useful as an automated or
semi-automated aid for lexicographers and builders of domain-dependent knowledge
bases. Also, it does not require an additional knowledge base or specific interpreta-
tion procedures in order to propose new instances of WordNet relations [9]. Once
the basic relations (i.e., hyponyms, hypernyms, etc.) are obtained, they are used to
find common links with other “similar” concepts in WordNet [9] and so to discover
new semantic links [18]. However, there are tasks which need to be performed by
hand such as deciding on a lexical relation that is of interest (i.e., hyponym) and a
list of word pairs from WordNet this relation is known to hold between.

One of the main advantages of this method is its low cost for augmenting the
structure of WordNet and its simplicity of relations. However, it also has some
drawbacks including its dependence on the structure of a general-purpose ontology
which prevents it from reasoning about specific terminology/concepts, the restricted
set of defined semantic relations (i.e., only relations contained in WordNet are dealt
with), its dependence on WordNet’s terms (i.e., only terms present in WordNet can
be related and any novel domain-specific term will be missed), the kind of inference
enabled (i.e., it is only possible to produce direct links; what if we wish to relate
different terms which are not in WordNet?), etc.

A natural further important step would be using knowledge base such as Word-
Net to support text inference to extract relevant, unstated information from the text.
Harabagiu and Moldovan [15] address this issue by using WordNet as a commonsense
knowledge base and designing relation-driven inference mechanisms which look for
common semantic paths in order to draw conclusions. One outstanding feature of
their method is that from these generated inferences, it is easy to ask for unknown
relations between concepts. This has proven to be extremely useful in the context of
Question-Answering Systems. However, although the method exhibits understand-
ing capabilities, the commonsense facts discovered have not been demonstrated to
be novel and interesting from a KDD viewpoint.

Mooney and colleagues [25] have also attempted to bring together general on-
tologies, IE technology and traditional machine learning methods to mine interesting
patterns. Unlike previous approaches, Mooney deals with a different kind of knowl-
edge, e.g., prediction rules. In addition, an explicit measure of novelty of the mined
rules is proposed by establishing semantic distances between rules’ antecedents and
consequents using the underlying organisation of WordNet. Novelty is then defined
as the average (semantic) distance between the words in a rule’s antecedent and con-
sequent. A key problem with this is that the method depends highly on WordNet’s
organisation and idiosyncratic features. As a consequence, since a lot of information
extracted from the documents are not included in WordNet the predicted rules will
lead to misleading decisions on their novelty.

The discussed approaches to TM/KDT use a variety of different “learning” tech-
niques. Except for cases using Machine Learning techniques such as Neural Networks
(e.g., SOM), decision trees, and so on, which have also been used in traditional DM,
the real role of “learning” in the systems is not clear. There is no learning which

9 Evolutionary Text Mining 149

enables the discovery but instead a set of primitive search strategies which do not
necessarily explore the whole search space due to their dependence on the kind of
semantic information previously extracted.

Although DM tasks have been commonly tackled as learning problems, the na-
ture of DM suggests that the problem of DM (i.e., finding unseen, novel and in-
teresting patterns) should be seen as involving search (i.e., different hypotheses are
explored) and optimization (i.e., hypotheses which maximize quality criteria should
be preferred) instead.

Despite there being a significant and successful number of practical search and
optimization techniques [24, 5], there are some features that make some techniques
more appealing to perform this kind of task than others, in terms of representation
required, training sets required, supervision, hypothesis assessment, robustness in
the search, etc.

In particular, the kind of evolutionary computation technique known as Genetic
Algorithms (GA) has proved to be promising for search and optimization purposes.
Compared with classical search and optimization algorithms, GAs are much less
susceptible to getting stuck in local suboptimal regions of the search space as they
perform global search by exploring solutions in parallel. GAs are robust and able to
cope with noisy and missing data, they can search spaces of hypotheses containing
complex interacting parts, where the impact of each part on overall hypothesis fitness
may be difficult to model [13].

In order to use GAs to find optimal values of decision variables, we first need to
represent the hypotheses in binary strings (the typical pseudo-chromosomal repre-
sentation of a hypothesis in traditional GAs). After creating an initial population of
strings at random, genetic operations are applied with some probability in order to
improve the population. Once a new string is created by the operators, the solution
is evaluated in terms of its measure of individual goodness referred to as fitness.

Individuals for the next generation are selected according to their fitness values,
which will determine those to be chosen for reproduction. If a termination condition
is not satisfied, the population is modified by the operators and a new (and hopefully
better) population is created. Each interaction in this process is called a generation
and the entire set of generations is called a run. At the end of a run there is often
one or more highly fit chromosomes in the population.

One of the major contributions of evolutionary algorithms (e.g., GAs) for an im-
portant number of DM tasks (e.g., rule discovery, etc.) is that they tend to cope well
with attribute interactions. This is in contrast to the local, greedy search performed
by often-used rule induction and decision-tree algorithms [3, 14]. Most rule induc-
tion algorithms generate (prune) a rule by selecting (removing) one rule condition
at a time, whereas evolutionary algorithms usually evaluate a rule as a whole via the
fitness function rather than evaluating the impact of adding/removing one condition
to/from a rule. In addition, operations such as crossover usually swap several rule
conditions at a time between two individuals.

Typical tasks for GAs in DM have included [12, 34]: Classification; in which the
goal is to predict the value (the class) of a user-defined goal attribute based on the
values of other attributes; Discovery of Association rules; where binary attributes
(items) contained in data instances (i.e., records) are used to discover associations
of the form IF-THEN, Rule discovery/prediction; in which the system can produce
many different combinations of attributes. (even if the original attributes do not

150 John Atkinson

have much predictive power by themselves, the system can effectively create “derived
attributes” with greater predictive power) to come up with new rules.

A common representation used for this kind of task encodes attributes and values
of a rule in a binary string of rule conditions and rule consequent. Suppose that an
individual represents a rule antecedent with a single attribute-value condition, where
the attribute Marital status and its values can be “single,” “married,” ”divorced,”
and “widow.” A possible representation would be a condition involving this attribute
encoded by four bits, so the string “0110” (i.e., the second and third values of the
attribute are present) would represent the antecedent IF marital status=married
OR divorced) using internal disjunctions (i.e., logical OR).

One general aspect worth noting in applying GAs for DM tasks is that both the
representation used for the discovery and the evaluation carried out assume that the
source data are properly represented in a structured form (i.e., database) in which
the attributes and values are easily handled.

When dealing with text data, these working assumptions are not always plau-
sible because of the complexity of text information. In particular, mining text data
using evolutionary algorithms requires a certain level of representation which cap-
tures knowledge beyond discrete data (i.e., semantics). Thus there arises the need for
new operations to create knowledge from text databases. In addition, fitness evalu-
ation also imposes important challenges in terms of measuring novel and interesting
knowledge which might be implicit in the texts or be embedded in the underlying
semantics of the extracted data.

Applying evolutionary methods to TM/KDT is a very recent research topic.
With the exception of the work of [1] on the discovery of semantic relations no other
research effort is under way as far as we know as the most promising KDT techniques
have been tackled with more traditional search/learning methods.

The advantage over a similar approach for discovery of unseen relations as in
[16], is that this approach provides more robust results in a way that exploits a wider
number of possible hypotheses in the search space. In addition, the IE patterns finally
used for the extraction are automatically learned, whereas for [16], these need to be
handcrafted. Although the obtained relations have been evaluated in terms of their
coverage in WordNet, the subjective quality of this unseen knowledge has not been
assessed from a KDD viewpoint as no user has been involved in the process.

9.3 A Semantically Guided Model for Effective Text
Mining

We developed a semantically guided model for evolutionary Text Mining which
is domain-independent but genre-based. Unlike previous approaches to KDT, our
approach does not rely on external resources or descriptions hence its domain-
independence. Instead, it performs the discovery only using information from the
original corpus of text documents and from the training data generated from them.
In addition, a number of strategies have been developed for automatically evaluating
the quality of the hypotheses (“novel” patterns). This is an important contribution
on a topic which has been neglected in most of KDT research over the last years.

We have adopted GAs as central to our approach to KDT. However, for proper
GA-based KDT there are important issues to be addressed including representa-

9 Evolutionary Text Mining 151

tion and guided operations to ensure that the produced offspring are semantically
coherent.

In order to deal with issues regarding representation and new genetic operations
so to produce an effective KDT process, our working model has been divided into
two phases. The first phase is the preprocessing step aimed to produce both training
information for further evaluation and the initial population of the GA. The second
phase constitutes the knowledge discovery itself, in particular this aims at producing
and evaluating explanatory unseen hypotheses.

The whole processing starts by performing the IE task (Figure 9.1) which applies
extraction patterns and then generates a rule-like representation for each document
of the specific domain corpus. After processing a set of n documents, the extraction
stage will produce n rules, each one representing the document’s content in terms of
its conditions and conclusions. Once generated, these rules, along with other training
data, become the “model” which will guide the GA-based discovery (see Figure 9.1).

.

.
..
..

Rule 2Doc 2

Learning
GA

Population
Initial

Hypothesis 1

Hypothesis 2

....
Hypothesis k

(k << p)

Hypothesis 3

Knowledge Discovery

Doc 1

Doc 3

Doc n

Rule 3

Rule n

Rule 1

Preprocessed
Data

Document
Representation

LSA training

Hypothesis 1

Hypothesis 2
....
....

Hypothesis p

(p << n)

Part-of-Speech
Tagger

Recognition

Role and
Predicate

Preprocessing and Training

IE task

Discovered

Novel Hypotheses

Domain Corpus

Fig. 9.1. The Evolutionary Model for Knowledge Discovery from Texts

In order to generate an initial set of hypotheses, an initial population is created
by building random hypotheses from the initial rules, that is, hypotheses containing
predicate and rhetorical information from the rules are constructed. The GA then
runs for a number of generations until a fixed number of generations is achieved. At
the end, a small set of the best hypotheses are obtained.

The description of the model is organised as follows: Section 9.3.1 presents the
main features of the text preprocessing phase and how the representation for the
hypotheses is generated. In addition, training tasks which generate the initial knowl-
edge (semantic and rhetorical information) to feed the discovery are described. Sec-
tion 9.3.2 describes constrained genetic operations to enable the hypotheses dis-
covery, and proposes different evaluation metrics to assess the plausibility of the
discovered hypotheses in a multi-objective context.

152 John Atkinson

9.3.1 Text Preprocessing and Training

The preprocessing phase has two main goals: to extract important information from
the texts and to use that information to generate both training data and the initial
population for the GA.

In terms of text preprocessing (see first phase in Figure 9.1), an underlying
principle in our approach is to be able to make good use of the structure of the doc-
uments for the discovery process. It is well-known that processing full documents
has inherent complexities [23], so we have restricted our scope somewhat to consider
a scientific genre involving scientific/technical abstracts. These have a well-defined
macro-structure (genre-dependent rhetorical structure) to “summarise” what the
author states in the full document (i.e., background information, methods, achieve-
ments, conclusions, etc).

Unlike patterns extracted for usual IE purposes such as in [18, 19, 20], this macro-
structure and its roles are domain-independent but genre-based, so it is relatively
easy to translate it into different contexts.

As an example, suppose that we are given the following abstract where bold
sequences of words indicate the markers triggering the IE patterns:

The current study aims to provide

GOAL

{
the basic information about the fertilisers system, specially in its
nutrient dynamics.

OBJECT
{

Long-term trends of the soil’s chemical and physical fertility

were also analysed. The methodology is based on the

METHOD

{
study of lands’ plots using different histories of usage of crop
rotation with fertilisers

in order to detect long-term changes. ... Finally, a
deep checking of data allowed us to conclude that

CONCLUSION
{

soils have improved after 12 years of continuous rotation.

From such a structure, important constituents can be identified:

• Rhetorical Roles (discourse-level knowledge): these indicate important places
where the author makes some “assertions” about his/her work (i.e., the author
is stating the goals, used methods, achieved conclusions, etc.). In the exam-
ple above, the roles are represented by goal, object of study, method and
conclusion.

• Predicate Relations: these are represented by actions (predicate and arguments)
which are directly connected to the role being identified and state a relation
which holds between a set of terms (words which are part of a sentence), a
predicate and the role which they are linked to. Thus, for the example, they are
as follows: provide(‘the basic information ..’), analyse(‘long-term trends
...’), study(‘lands plot using ...’), improve(‘soil ..improved after ..’)

• Causal Relation(s): Although there are no explicit causal relations in the above
example, we can hypothesise a simple rule of the form:
IF the current goals are G1,G2, .. and the means/methods used
M1,M2, .. (and any other constraint/feature) THEN it is true that
we can achieve the conclusions C1,C2, ..
Finally, the sample abstract may be represented in a rule-like form as follows:

9 Evolutionary Text Mining 153

IF goal(provide(‘the basic information ..’))

AND object(analyse(‘long-term trends ...’))

AND method(study(‘lands plot using ...’))

THEN conclusion(improve(‘soil ..improved after ..’))

Note that causal relations are extracted from individual abstracts. In order to
extract this initial key information from the texts, an IE module was built. Es-
sentially, it takes a set of text documents, has them tagged through a previously
trained Part-of-Speech (POS) tagger (i.e., Brill Tagger), and produces an interme-
diate representation for every document (i.e., template, in an IE sense) which is then
converted into a general rule. A set of hand-crafted domain-independent extraction
patterns were written and coded.

In addition, key training data are captured from the corpus of documents itself
and from the semantic information contained in the rules. This can guide the discov-
ery process in making further similarity judgements and assessing the plausibility of
the produced hypotheses.

• Training Information from the Corpus:
It has been suggested that huge amounts of texts represent a valuable source of
semantic knowledge. In particular, in Latent Semantic Analysis (LSA) [21] it is
claimed that this knowledge is at the word level.
Following work by [21] on LSA incorporating structure, we have designed a semi-
structured LSA representation for text data in which we represent predicate
information (i.e., verbs) and arguments (i.e., set of terms) separately once they
have been properly extracted in the IE phase. For this, the similarity is calculated
by computing the closeness between two predicates (and arguments) based on
the LSA data (function SemSim(P1(A1), P2(A2))).
We propose a simple strategy for representing the meaning of the predicates
with arguments. Next, a simple method is developed to measure the similarity
between these units.
Given a predicate P and its argument A, the vectors representing the meaning for
both of them can be directly extracted from the training information provided
by the LSA analysis. Representing the argument involves summing up all the
vectors representing the terms of the argument and then averaging them, as is
usually performed in semi-structured LSA. Once this is done, the meaning vector
of the predicate and the argument is obtained by computing the sum of the two
vectors as used in [33]. If there is more than one argument, then the final vector
of the argument is just the sum of the individual arguments’ vectors.
Next, in making further semantic similarity judgements between two predicates
P1(A1) and P2(A2) (i.e., provide(’the basic information ..’)), we take their
corresponding previously calculated meaning vectors and then the similarity is
determined by how close these two vectors are. We can evaluate this by comput-
ing the cosine between these vectors which gives us a closeness measure between
−1 (complete unrelatedness) and 1 (complete relatedness) [22].
Note however that training information from the texts is not sufficient as it only
conveys data at a word semantics level. We claim that both basic knowledge
at a rhetorical, semantic level, and co-occurrence information can be effectively
computed to feed the discovery and to guide the GA.
Accordingly, we perform two kinds of tasks: creating the initial population and
computing training information from the rules.

154 John Atkinson

a) Creating the initial population of hypotheses:
once the initial rules have been produced, their components (rhetorical roles,
predicate relations, etc.) are isolated and become a separate “database.”
This information is used both to build the initial hypotheses and to feed the
further genetic operations (i.e., mutation of roles will need to randomly pick
a role from this database).

b) Computing training information (in which two kinds of training data are
obtained):
a) Computing correlations between rhetorical roles and predicate relations:

the connection between rhetorical information and the predicate action
constitutes key information for producing coherent hypotheses. For ex-
ample, is, in some domain, the goal of some hypothesis likely to be as-
sociated with the construction of some component? In a health context,
this connection would be less likely than having “finding a new medicine
for ..” as a goal.
In order to address this issue, we adopted a Bayesian approach where
we obtain the conditional probability of some predicate p given some
attached rhetorical role r, namely Prob(p | r). This probability values
are later used to automatically evaluate some of the hypotheses’ criteria.

b) Computing co-occurrences of rhetorical information:
One could think of a hypothesis as an abstract having text paragraphs
which are semantically related to each other. Consequently, the meaning
of the scientific evidence stated in the abstract may subtly change if the
order of the facts is altered.
This suggests that in generating valid hypotheses there will be rule struc-
tures which are more or less desirable than others. For instance, if every
rule contains a “goal” as the first rhetorical role, and the GA has gener-
ated a hypothesis starting with some “conclusion” or “method,” it will
be penalised and therefore, it is very unlikely for that to survive in the
next generation. Since the order matters in terms of affecting the rule’s
meaning, we can think of the p roles of a rule, as a sequence of tags:
< r1, r2, ..rp > such that ri precedes ri+1, so we generate, from the rules,
the conditional probabilities Prob(rp | rq), for every role rp, rq. The prob-
ability that rq precedes rp will be used in evaluating new hypotheses, in
terms that, for instance, its coherence.

9.3.2 Knowledge Discovery and Automatic Evaluation of Patterns

Our approach to KDT is strongly guided by semantic and rhetorical information,
and consequently there are some soft constraints to be met before producing the
offspring so as to keep them coherent.

The GA will start from a initial population, which in this case, is a set of semi-
random hypotheses built up from the preprocessing phase. Next, constrained GA
operations are applied and the hypotheses are evaluated. In order for every individ-
ual to have a fitness assigned, we use a evolutionary multi-objective optimisation
strategy based on the Strength Pareto Evolutionary Algorithm (SPEA) algorithm
[35]. SPEA deals with the diversity of the solutions (i.e., niche formation) and the
fitness assignment as a whole in a representation-independent way. An attractive

9 Evolutionary Text Mining 155

feature of SPEA is that in order to create niches, this does not define a neighbor-
hood by means of a distance metric on the genotypic or phenotypic space. Instead,
the classes of solutions are grouped according to the results of a clustering method
which uses the vector of objective functions of the individuals, and not the individ-
uals themselves.

Once the offspring is produced, the population update is performed using a
steady-state strategy. Here, each individual from a small number of the worst hy-
potheses is replaced by an individual from the offspring only if the latter are better
than the former.

For semantic constraints, judgements of similarity between hypotheses or compo-
nents of hypotheses (i.e., predicates, arguments, etc.) are carried out using the LSA
training data and predicate-level information previously discussed in the training
step.

Hypothesis Discovery

Using the semantic measure above and additional constraints discussed later on, we
propose new operations to allow guided discovery such that unrelated new knowledge
is avoided, as follows:

• Selection: selects a small number of the best parent hypotheses of every gen-
eration (Generation Gap) according to their fitness. Note that the notion of
optimum (and best) is different here as there is more than one objective to be
traded off. Accordingly, this is usually referred to as a “Pareto Optimum” [29].
Assuming a minimization problem (i.e., “worse” involves smaller values), a de-
cision vector (i.e., vector of several objectives) is a Pareto optimal if there exists
no feasible vector which would increase some objective without causing a si-
multaneous decrease in at least one other objective. Unfortunately, this concept
almost always gives not a single solution, but rather a set of solutions called
the Pareto Optimal set. The decision vectors corresponding to the solutions in-
cluded in the Pareto optimal set are called non-dominated, and the space of the
objective functions whose nondominated vectors are in the Pareto optimal set is
called the Pareto front [4, 5, 11].

• Crossover: a simple recombination of both hypotheses’ conditions and conclu-
sions takes place, where two individuals swap their conditions to produce new
offspring (the conclusions remain).
Under normal circumstances, crossover works on random parents and positions
where their parts should be exchanged. However, in our case this operation must
be restricted to preserve semantic coherence. We use soft semantic constraints
to define two kinds of recombinations:

a) Swanson’s Crossover: based on Swanson’s hypothesis [30, 31] we propose a
recombination operation as follows:
If there is a hypothesis (AB) such that “IF A THEN B” and another one
(BC) such that “IF B’ THEN C,” (B’ being something semantically similar
to B) then a new interesting hypothesis “IF A THEN C” can be inferred
via LSA if the conclusions of AB have high semantic similarity with the
conditions of hypothesis BC.
The above principle can be seen in Swanson’s crossover between two learned
hypotheses as shown in figure 9.2

156 John Atkinson

IF goal(establish(a))

method(use(b))
method(study(c))

THEN determine(z)
IF

object(perform(y))

THEN determine(z)

IF goal(establish(a))

method(use(b))
method(study(c))

THEN produce(x’)

goal(produce(x))

AB

BC

AC

Fig. 9.2. Semantically guided Swanson Crossover

b) Default Semantic Crossover: if the previous transitivity does not apply then
the recombination is performed as long as both hypotheses as a whole have
high semantic similarity which is defined in advance by providing minimum
thresholds.

• Mutation: aims to make small random changes on hypotheses to explore new
possibilities in the search space. As in recombination, we have dealt with this
operation in a constrained way, so we propose three kinds of mutations to deal
with the hypotheses’ different objects:

a) Role Mutation: one rhetorical role (including its contents: relations and ar-
guments) is selected and randomly replaced by a random one from the initial
role database.

b) Predicate Mutation: one inner predicate and its argument is selected and
randomly replaced with another predicate-argument pair from the initial
predicate databases.

c) Argument Mutation: since we have no information about arguments’ seman-
tic types, we choose a new argument by following a guided procedure in
which the former argument is randomly replaced with that having a high
semantic similarity via LSA. [33].

• Population Update: we use a non-generational GA in which some individuals
are replaced by the new offspring in order to preserve the hypotheses’ good
material from one generation to other, and so to encourage the improvement of
the population’s quality.

Evaluation

Since each hypothesis in our model has to be assessed by different criteria, usual
methods for evaluating fitness are not appropriate. Hence Evolutionary Multi-
Objective Optimisation (EMOO) techniques which use the multiple criteria defined
for the hypotheses are needed. Accordingly, we propose EMOO-based evaluation
metrics to assess the hypotheses’ fitness in a domain-independent way and, un-
like other approaches, without using any external source of domain knowledge. The
different metrics are represented by multiple criteria by which the hypotheses are
assessed.

In order to establish evaluation criteria, we have taken into account different
issues concerning plausibility (Is the hypothesis semantically sound?, Are the GA
operations producing something coherent in the current hypothesis?), and quality

9 Evolutionary Text Mining 157

itself (How is the hypothesis supported from the initial text documents? How in-
teresting is it?). Accordingly, we have defined eight evaluation criteria to assess the
hypotheses (i.e., in terms of Pareto dominance, it will produce a 8-dimensional vector
of objective functions) given by: relevance, structure, cohesion, interesting-
ness, coherence, coverage, simplicity, plausibility of origin.

The current hypothesis to be assessed will be denoted as H, and the training
rules as Ri. Evaluation methods (criteria) by which the hypotheses are assessed and
the questions they are trying to address are as follows:

• Relevance
Relevance addresses the issue of how important the hypothesis is to target con-
cepts. This involves two concepts (i.e., terms), as previously described, related
to the question:
What is the best set of hypotheses that explain the relation between < term1 >
and < term2 >?
Considering the current hypothesis, it turns into a specific question: how good
is the hypothesis in explaining this relation?
This can be estimated by determining the semantic closeness between the hy-
pothesis’ predicates (and arguments) and the target concepts2 by using the
meaning vectors obtained from the LSA analysis for both terms and predicates.
Our method for assessing relevance takes these issues into account along with
some ideas of Kintsch’s Predication. Specifically, we use the concept of Strength
[21]: strength(A, I) = f(SemSim(A, I), SemSim(P, I))) between a predicate
with arguments and surrounding concepts (target concepts in our case) as a
part of the relevance measure, which basically decides whether the predicate
(and argument) is relevant to the target concepts in terms of the similarity
between both predicate and argument, and the concepts.
We define the function f as proposed by [21] to give a relatedness measure such
that high values are obtained only if both the similarity between the target con-
cept and the argument (α), and target concept and the predicate (β) exceed
some threshold. Next, we highlight the closeness by determining the square dif-
ference between each similarity value and the desired value (1.0). If we take the
average square difference, we obtain an error metric which is a Mean Square Er-
ror (MSE). As we want to get low error values so to encourage high closeness, we
subtract MSE from 1. Formally, f(α, β) is therefore computed as the function:

f(α, β) =

{
1 − MSE({α, β}) if both α and β > threshold
0 Otherwise

where the MSE is the Mean Square Error between the similarities and the desired
value (V d = 1.0), is calculated as:

MSE({list of n values vi})= 1
n

∑n

i=1
(vi − V d)2

In order to account for both target concepts, we just take the average of strength
for both terms. So, the overall relevance becomes:

relevance(H) =
1
2

∑|H|
i=1

strength(Pi,Ai,<term1>)+strength(Pi,Ai,<term2>)

|H|

2 Target concepts are relevant nouns in our experiment. However, in a general case,
these might be either nouns or verbs.

158 John Atkinson

in which | H | denotes the length of the hypothesis H, that is, the number of
predicates.
Note that pairs of target concepts are provided by a domain experts so as to
guide the search process.

• Structure (How good is the structure of the rhetorical roles?): measures how
much of the rules’ structure is exhibited in the current hypothesis.
Since we have previous pre-processed information for bi-grams of roles, the struc-
ture can be computed by following a Markov chain [23] as follows:

Structure(H) = Prob(r1) ∗
∏|H|

i=2
Prob(ri | ri−1)

where ri represents the i−th role of the hypothesis H, Prob(ri | ri−1) denotes the
conditional probability that role ri−1 immediately precedes ri. Prob(ri) denotes
the probability that no role precedes ri, that is, it is at the beginning of the
structure (i.e., Prob(ri |< start >)).

<START>

conclusion

object

method

goal 0.030.53

0.12

0.16

0.23

0.41

0.35

0.54
0.56

0.49

0.28

0.09

1.0

0.06 0.05

0.08

Fig. 9.3. Markov Model for Roles Structure Learned from sampled technical doc-
uments

For example, part of a Markov chain of rhetorical roles learned by the model from
a specific technical domain can be seen in figure 9.3. Here it can be observed that
some structure tags are more frequent than others (i.e., the sequence of rhetorical
roles goal-method (0.54) is more likely than the sequence goal-conclusion (0.08)).

• Cohesion (How likely is a predicate action to be associated with some specific
rhetorical role?): measures the degree of “connection” between rhetorical infor-
mation (i.e., roles) and predicate actions. The issue here is how likely (according
to the rules) some predicate relation P in the current hypothesis is to be associ-
ated with role r. Formally, cohesion for hypothesis H is expressed as:

cohesion(H) =
∑

ri,Pi∈H

Prob(Pi|ri)
|H|

where Prob(Pi | ri) states the conditional probability of the predicate Pi given
the rhetorical role ri.

9 Evolutionary Text Mining 159

• Interestingness (How interesting is the hypothesis in terms of its antecedent
and consequent?):
Unlike other approaches to measure “interestingness” which use an external
resource (e.g., WordNet) and rely on its organisation, we propose a different
view where the criterion can be evaluated from the semi-structured information
provided by the LSA analysis. Accordingly, the measure for hypothesis H is
defined as a degree of unexpectedness as follows:

interestingness(H)= <Semantic Dissimilarity between Antecedent

and Consequent>

That is, the lower the similarity, the more interesting the hypothesis is likely
to be, so the dissimilarity is measured as the inverse of the LSA similarity.
Otherwise, it means the hypothesis involves a correlation between its antecedent
and consequent which may be an uninteresting known common fact [26].

• Coherence: This metrics addresses the question whether the elements of the
current hypothesis relate to each other in a semantically coherent way. Unlike
rules produced by DM techniques in which the order of the conditions is not an
issue, the hypotheses produced in our model rely on pairs of adjacent elements
which should be semantically sound, a property which has long been dealt with
in the linguistic domain, in the context of text coherence [10].
As we have semantic information provided by the LSA analysis which is com-
plemented with rhetorical and predicate-level knowledge, we developed a simple
method to measure coherence, following work by [10] on measuring text coher-
ence.
Semantic coherence is calculated by considering the average semantic similarity
between consecutive elements of the hypothesis. However, note that this closeness
is only computed on the semantic information that the predicates and their
arguments convey (i.e., not the roles) as the role structure has been considered
in a previous criterion. Accordingly, the criterion can be expressed as follows:

Coherence(H)=
∑(|H|−1)

i=1

SemSim(Pi(Ai),Pi+1(Ai+1))

(|H|−1)

where (| H | −1) denotes the number of adjacent pairs, and SemSim is the
LSA-based semantic similarity between two predicates.

• Coverage: The coverage metric tries to address the question of how much the
hypothesis is supported by the model (i.e., rules representing documents and
semantic information).
Coverage of a hypothesis has usually been measured in KDD approaches by con-
sidering some structuring in data (i.e., discrete attributes) which is not present
in textual information. Besides, most of the KDD approaches have assumed the
use of linguistic or conceptual resources to measure the degree of coverage of the
hypotheses (i.e., match against databases, positive examples).
In order to deal with the criterion in the context of KDT, we say that a generated
hypothesis H covers an extracted rule Ri (i.e., rule extracted from the original
training documents, including semantic and rhetorical information) only if the
predicates of H are roughly (or exactly, in the best case) contained in Ri.
Formally, the rules covered are defined as:

RulesCovered(H)={ Ri ∈ RuleSet | ∀Pj ∈ Ri ∃HPk ∈ HP :
(SemSim(HPk, Pj) ≥ threshold ∧ predicate(HPk)=predicate(Pj))}

160 John Atkinson

Approximate Cover

Exact Cover

No Cover

method("a") describe("b") method("x") describe("b")
RULE j

analyse("a") generate("b")
RULE k

...

...

describe("b") method("a") generate("c")
RULE i

Hypothesis

Rule Set

Fig. 9.4. Computing Hypothesis Covering of Documents’ rules

Where SemSim(HPk, Pj) represents the LSA-based similarity between hypoth-
esis predicate HPk and rule predicate Pj , threshold denotes a minimum fixed
user-defined value, RuleSet denotes the whole set of rules, HP represents the
list of predicates with arguments of H, and Pj represents a predicate (with argu-
ments) contained in Ri. Once the set of rules covered is computed, the criterion
can finally be computed as:

Coverage(H) = |RulesCovered(H)|
|RuleSet|

Where | RulesCovered | and | RuleSet | denote the size of the set of rules
covered by H, and the size of the initial set of extracted rules, respectively.

• Simplicity (How simple is the hypothesis?): shorter and/or easy-to-interpret
hypotheses are preferred. Since the criterion has to be maximised, the evaluation
will depend on the length (number of elements) of the hypothesis.

• Plausibility of Origin (How plausible is the hypothesis produced by Swan-
son’s evidence?): If the current hypothesis was an offspring from parents which
were recombined by a Swanson’s transitivity-like operator, then the higher the
semantic similarity between one parent’s consequent and the other parent’s an-
tecedent, the more precise is the evidence, and consequently worth exploring as
a novel hypothesis. If no better hypothesis is found so far, the current similarity
is inherited from one generation to the next.
Accordingly, the criterion for a hypothesis H is simply given by:

Plausibility(H) =

{
Sp If H was created from a Swanson’s crossover

0 If H is in the original population or is a

result of another operation

Note that since we are dealing with a multi-objective problem, there is no simple
way to get independent fitness values as the fitness involves a set of objective func-
tions to be assessed for every individual. Therefore, the computation is performed
by comparing objectives of one individual with others in terms of Pareto dominance
[5] in which non-dominated solutions (Pareto individuals) are searched for in every
generation.

We took a simple approach in which an approximation to the Pareto optimal set
is incrementally built as the GA goes on. The basic idea is to determine whether a

9 Evolutionary Text Mining 161

solution is better than another in global terms, that is, a child is better if this is a
becomes a non-dominated hypothesis.

Next, since our model is based on a multi-criteria approach, we have to face
three important issues in order to assess every hypothesis’ fitness: Pareto dominance,
fitness assignment and the diversity problem [5]. Despite an important number of
state-of-the-art methods to handle these issues [5], only a small number of them
has focused on the problem in an integrated and representation-independent way. In
particular, Zitzler [35] proposes an interesting method, Strength Pareto Evolutionary
Algorithm (SPEA) which uses a mixture of established methods and new techniques
in order to find multiple Pareto-optimal solutions in parallel, and at the same time
to keep the population as diverse as possible. We have also adapted the original
SPEA algorithm to allow for the incremental updating of the Pareto-optimal set
along with our steady-state replacement method.

9.4 Analysis and Results

In order to assess the quality of the discovered knowledge (hypotheses) by the model
a Prolog-based prototype has been built. The IE task has been implemented as a set
of modules whose main outcome is the set of rules extracted from the documents.
In addition, an intermediate training module is responsible for generating informa-
tion from the LSA analysis and from the rules just produced. The initial rules are
represented by facts containing lists of relations both for antecedent and consequent.

For the purpose of the experiments, the corpus of documents has been obtained
from the AGRIS database for agricultural and food science. We selected this kind of
corpus as it has been properly cleaned-up, and builds upon a scientific area which
we do not have any knowledge about so to avoid any possible bias and to make the
results more realistic. A set of 1000 documents was extracted from which one third
were used for setting parameters and making general adjustments, and the rest were
used for the GA itself in the evaluation stage.

Next, we tried to provide answers to two basic questions concerning our original
aims:

a) How well does the GA for KDT behave?
b) How good are the hypotheses produced according to human experts in terms of

text mining’s ultimate goals: interestingness, novelty and usefulness, etc.

In order to address these issues, we used a methodology consisting of two phases:
the system evaluation and the experts’ assessment.

a) System Evaluation: this aims at investigating the behavior and the results pro-
duced by the GA.
We set the GA by generating an initial population of 100 semi-random hy-
potheses. In addition, we defined the main global parameters such as Mutation
Probability (0.2), Crossover Probability (0.8), Maximum Size of Pareto set (5%),
etc. We ran five versions of the GA with the same configuration of parameters
but different pairs of terms to address the quest for explanatory novel hypothe-
ses.
The different results obtained from running the GA as used for our experiment
are shown in the form of a representative behavior in figure 9.5, where the

162 John Atkinson

0 100 200 300 400 500 600 700 800 900 1000
0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

NUM. OF GENERATIONS

A
V

E
R

A
G

E
 O

B
JE

C
T

IV
E

 V
A

LU
E

COHERENCE

run1
run2
run3
run4
run5

0 100 200 300 400 500 600 700 800 900 1000
0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

NUM. OF GENERATIONS

A
V

E
R

A
G

E
 O

B
JE

C
T

IV
E

 V
A

LU
E

COHESION

run1
run2
run3
run4
run5

0 100 200 300 400 500 600 700 800 900 1000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

NUM. OF GENERATIONS

A
V

E
R

A
G

E
 O

B
JE

C
T

IV
E

 V
A

LU
E

SWANSON PLAUSIBILITY

run1
run2
run3
run4
run5

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

NUM. OF GENERATIONS

A
V

E
R

A
G

E
 O

B
JE

C
T

IV
E

 V
A

LU
E

RELEVANCE

run1
run2
run3
run4
run5

Fig. 9.5. GA evaluation for some of the criteria

number of generations is placed against the average objective value for some of
the eight criteria.
Some interesting facts can be noted. Almost all the criteria seem to stabilise
after (roughly) generation 700 for all the runs; that is, no further improvement
beyond this point is achieved and so this may give us an approximate indication
of the limits of the objective function values.
Another aspect worth highlighting is that despite a steady-state strategy being
used by the model to produce solutions, the individual evaluation criteria behave
in unstable ways to accommodate solutions which had to be removed or added.
As a consequence, it is not necessarily the case that all the criteria have to
monotonically increase.
In order to see this behavior, look at the results for the criteria for the same
period of time, between generations 200 and 300 for run 4. For an average
hypothesis, Coherence, Cohesion, Simplicity and Structure get worse, whereas
Coverage, Interestingness and Relevance, improve and Plausibility shows some
variability. Note that not all the criteria are shown in the graph.

b) Expert Assessment: this aims at assessing the quality (and therefore, effective-
ness) of the discovered knowledge on different criteria by human domain experts.
For this, we designed an experiment in which 20 human experts were involved
and each assessed 5 hypotheses selected from the Pareto set. We then asked
the experts to assess the hypotheses from 1 (worst) to 5 (best) in terms of the

9 Evolutionary Text Mining 163

following criteria: Interestingness (INT), Novelty (NOV), Usefulness (USE) and
Sensibleness (SEN).

In order to select worthwhile terms for the experiment, we asked one domain
expert to filter pairs of target concepts previously related according to traditional
clustering analysis (see Table 9.1 containing target concepts used in the experi-
ments). The pairs which finally deserved attention were used as input in the actual
experiments (i.e., degradation and erosive).

Run Term 1 Term 2

1 enzyme zinc

2 glycocide inhibitor

3 antinutritious cyanogenics

4 degradation erosive

5 cyanogenics inhibitor

Table 9.1. Pairs of target concepts used for the actual experiments

Once the system hypotheses were produced, the experts were asked to score
them according to the five subjective criteria. Next, we calculated the scores for
every criterion as seen in the overall results in Table 9.2 (for length’s sake, only
some criterion are shown).

The assessment of individual criteria shows some hypotheses did well with scores
above the average (50%) on a 1-5 scale. Overall, this supports the claim that the
model indeed is able to find nuggets in textual information and to provide some basic
explanation about the hidden relationships in these discoveries. This is the case for
3 hypotheses in terms of INT, 2 hypotheses in terms of SEN, 5 hypotheses in terms
of USE, and 1 hypothesis in terms of NOV, etc.

No. of Hypotheses
Criterion Negative Positive

< Average ≥ Average

ADD 20/25 (80%) 5/25 (20 %)

INT 19/25 (76%) 6/25 (24 %)

NOV 21/25 (84%) 4/25 (16 %)

SEN 17/25 (68%) 8/25 (32 %)

USE 20/25 (80%) 5/25 (20 %)

Table 9.2. Distribution of Experts’ assessment of Hypothesis per Criteria

These results and the evaluation produced by the model were used to measure
the correlation between the scores of the human subjects and the system’s model
evaluation. Since both the expert and the system’s model evaluated the results based
on several criteria, we first performed a normalisation aimed at producing a single
“quality” value for each hypothesis as follows:

164 John Atkinson

• For the expert assessment: the scores of the different criteria for every hypothesis3

are averaged. Note that this will produce values between 1 and 5, with 5 being
the best.

• For the model evaluation: for every hypothesis, both the objective value and
the fitness are considered as follows: whereas the lower the fitness score, the
better the hypothesis, the higher the objective value, the better the hypothesis.
Therefore, we subtract the fitness from 1 for each hypothesis and then we add
this to the average value of the objective values for this hypothesis. Note that
this will produce values between 0 and 2, with 2 being the best.

We then calculated the pair of values for every hypothesis and obtained a (Spear-
man) correlation r = 0.43 (t− test = 23.75, df = 24, p < 0.001). From this result, we
see that the correlation shows a good level of prediction compared to humans. This
indicates that for such a complex task (knowledge discovery), the model’s behavior
is not too different from the experts’ (see Figure 9.6).

0 5 10 15 20 25
1

1.5

2

2.5

3

3.5

4

HYPOTHESIS

Average Score (EXPERT)
Average Fitness (SYSTEM)

Fig. 9.6. Correlation between human and system evaluation of discovered hypothe-
ses

Note that in Mooney’s experiment using simple discovered rules, a lower human-
system correlation of r = 0.386 was obtained. Considering also that the human
subjects were not domain experts as in our case, our results are encouraging as
these involve a more demanding process which requires further comprehension of
both the hypothesis itself and the working domain. In addition, our model was able
to do it better without any external linguistic resources as in Mooney’s experiments
[26].

In order to show what the final hypotheses look like and how the good charac-
teristics and less desirable features above are exhibited, we picked one of the best
hypotheses as assessed by the experts (i.e., we picked one of the best 25 of the
100 final hypotheses) based on the average value of the 5 scores they assigned. For
example, hypothesis 65 of run 4 looks like:

3 ADD is not considered here as this does not measure a typical KDD aspect,

9 Evolutionary Text Mining 165

IF goal(perform(19311)) and goal(analyze(20811))

THEN establish(111)

Where the numerical values represent internal identifiers for the arguments and
their semantic vectors, and its resulting criteria vector is
[0.92, 0.09, 0.50, 0.005, 0.7, 0.00, 0.30, 0.25] (the vector’s elements represent the val-
ues for the criteria relevance, structure, coherence, cohesion, interestingness, plau-
sibility, coverage, and simplicity) and obtained an average expert’s assessment of
3.74. In natural-language text, this can roughly be interpreted as (each item of
the following NL description represents a predicate-level information of hypothesis
above):

• IF the work aims at performing the genetic grouping of seed populations and
investigating a tendency to the separation of northern populations into different
classes, AND

• The goal is to analyse the vertical integration for producing and selling Pinus
Timber in the Andes-Patagonia region.

• THEN as a consequence, the best agricultural use for land lots of organic
agriculture must be established to promote a conservationist culture in priority
or critical agricultural areas.

The hypothesis appears to be more relevant and coherent than others (relevance
= 92%). However, this is not complete in terms of cause-effect. For instance, the
methods are missing. It is also important to highlight that the high value for the
coherence of the pattern (50%) is consistent with the contents of the predicates of the
hypothesis. The three key paragraphs containing rhetorical knowledge indeed relate
to the same topic: testing and producing specific Pinus trees. Even more important
is the fact that despite having zero plausibility (novelty), the pattern is still regarded
as interesting by the model (70%) and above the average by the experts. As for the
target concepts (degradant and erosive) and the way the discovered hypothesis
attempts to explain the link between them, it can be seen that the contents of this
patterns try to relate these terms with ”agricultural areas,” ”seed populations,” etc.,
so the discovery makes a lot of sense.

Another of the discovered patterns is given by hypothesis 88 of run 3, which is
represented as follows:

IF goal(present(11511)) AND

method(use(25511))

THEN effect(1931,1932)

and has a criteria vector [0.29, 0.18, 0.41, 0.030, 0.28,0.99, 0.30, 0.50] and obtained
an average expert’s assessment of 3.20. In natural-language text, this can roughly
be interpreted as:

• IF the goal is to present a two-dimensional scheme for forest restoration in
which two regression models with Pinus and without Pinus are identified by
inspiring in the natural restoring dynamics, AND

• The method is based on the use of micro-environments for capturing the kind
of farm mice called Apodemus Sylvaticusi, and on the use of capture traps at a
rate of 1464 traps per night.

166 John Atkinson

• THEN, in vitro digestion of three cutting ages in six ecotypes has an effect on
”Bigalta” cuttings which got their higher performance in a 63-day period.

This hypothesis looks more complete (goal, methods, etc.) but is less relevant
than the previous hypothesis despite its close coherence. Note also that the plausi-
bility is much higher than for hypothesis 65, but the other criteria seemed to be a
key factor for the experts.

The hypothesis concerns the production and cutting of a specific kind of tree (Pi-
nus) and forests where these lie. However, the second role (“the method is based...”)
discusses a different topic (mice capture) which apparently has nothing to do with
the main issue and that is the reason for the pattern’s coherence to be scored lower
than the previous hypothesis (41% vs. 50%). The model also discovered that there
are organisms (and issues related to them) which are affecting the Pinus (and for-
est) restoration (i.e., mice). This fact has received a higher value for Plausibility of
Origin or the Novelty of the pattern (99%) and consequently, it is correlated with
the experts opinion of the pattern (score=3.20).

Another example of discovered patterns is a low-scored hypothesis given by the
following hypothesis 52:

IF object(perform(20611)) AND

object(carry_out(2631))

THEN effect(1931,1932)

and has a criteria vector [0.29,0.48, 0.49, 0.014, 0.2, 0, 0.3, 0.5] and obtained an av-
erage expert’s assessment of 1.53.

The structure of this pattern (48%) is better than for hypothesis 88. However,
since the hypothesis is not complete, this has been scored lower than the previous
one. This might be explained because the difference in structure between object-
object and goal-method (Figure 9.3) is not significant and as both hypotheses (88
and 52) become final solutions, the expert scored best those which better explain
the facts. Note that as the model relies on the training data, this does not ensure
that every hypothesis is complete. In fact, previous experimental analyses of recall
show that only 26% of the original rules representing the documents contain some
sort of “method.”

In natural-language text, the pattern can roughly be interpreted as:

• IF the object of the work is to perform the analysis of the fractioned honey
in Brazil for improving the producers’ income and profitability, AND

• The object of the work is to carry out observations for the study of Pinus
hartwegii at the mexican snowed hills so to complement the previously existing
information about the development status of Adjunctus and its biology.

• THEN in vitro digestion of three cutting ages in six ecotypes has an effect on
bigalta cuttings which got their higher performance in a 63-day period.

This hypothesis shows the same relevance as the previous one (29%) indicating
that both attempt to explain the connection between the target concepts and that
contained in the pattern. Note also that coherence is not very high (49%) consider-
ing that one part of the pattern discusses the “honey production” and issues, and
the other parts deal with the investigation, production and cutting of Pinus trees.
Accordingly the degree of interestingness and novelty of the patterns has been low

9 Evolutionary Text Mining 167

scored which is well-correlated with the expert’s assessment. Nevertheless, the hy-
pothesis is successful in detecting hidden relations between certain areas (Mexican
snowed hills) and the Pinus production and cutting.

9.5 Conclusions

Unlike traditional approaches to Text Mining, in this chapter we contribute an inno-
vative way of combining additional linguistic information and evolutionary learning
techniques in order to produce novel hypotheses which involve explanatory and ef-
fective novel knowledge.

From the experiments and results, it can be noted that the approach supports the
claim that the evolutionary model to KDT indeed is able to find nuggets in textual
information and to provide basic explanations about the hidden relationships in
these discoveries.

We also introduced a unique approach for evaluation which deals with semantic
and Data Mining issues in a high-level way. In this context, the proposed representa-
tion for hypotheses suggests that performing shallow analysis of the documents and
then capturing key rhetorical information may be a good level of processing which
constitutes a trade off between completely deep and keyword-based analysis of text
documents. In addition, the results suggest that the performance of the model in
terms of the correlation with human judgements are slightly better than approaches
using external resources as in [26]. In particular criteria, the model shows a very
good correlation between the system evaluation and the expert assessment of the
hypotheses.

The model deals with the hypothesis production and evaluation in a very promis-
ing way which is shown in the overall results obtained from the experts evaluation
and the individual scores for each hypothesis. However, it is important to note that
unlike the experts who have a lot of experience, preconceived concept models and
complex knowledge in their areas, the system has done relatively well only exploring
the corpus of technical documents and the implicit connections contained in it.

From an evolutionary KDT viewpoint, the correlations and the quality of the
final hypotheses show that the GA operations and the system’s evaluation of the
individuals may be effective predictions of really useful novel knowledge from a user
perspective.

References

1. A. Bergstron, P. Jaksetic, and P. Nordin. Acquiring Textual Relations Auto-
matically on the Web Using Genetic Programming. EuroGP 2000, Edinburgh,
Scotland, pages 237–246, April 2000.

2. Michael Berry. Survey of Text Mining: Clustering, Classification, and Retrieval.
Springer, 2004.

3. M. Berthold and D. Hand. Intelligent Data Analysis. Springer, 2000.
4. C. Coello. A Short Tutorial on Evolutionary Multiobjective Optimisation. ACM

Computing Surveys, 2001.

168 John Atkinson

5. Kalyanmoy Deb. Multi-objective Optimization Using Evolutionary Algorithms.
Wiley, 2001.

6. U. Fayyad, G. Piatesky-Shapiro, and P. Smith. From Data Mining to Knowledge
Discovery: An Overview. In Advances in Knowledge Discovery and Data Mining,
pages 1–36. MIT Press, 1996.

7. R. Feldman. Knowledge Management: A Text Mining Approach. Proc.
of the 2nd Int. Conference on Practical Aspects of Knowledge Management
(PAKM98), Basel, Switzerland, October 1998.

8. R. Feldman and I. Dagan. Knowledge Discovery in textual databases (KDT).
Proceedings of the first international conference on knowledge discovery and data
mining (KDD-95), Montreal, Canada, pages 112–117, August 1995.

9. C. Fellbaum. WordNet: An Electronic Lexical Database. MIT Press, 1998.
10. P. Foltz, W. Kintsch, and T. Landauer. The Measurement of Textual Coherence

with Latent Semantic Analysis. Discourse processes, 25(2):259–284, 1998.
11. C. Fonseca and P. Fleming. An Overview of Evolutionary Algorithms in Multi-

objective Optimisation. Evolutionary Computation, 3(1):1–16, 1995.
12. A. Freitas. A Survey of Evolutionary Algorithms for Data Mining and Knowl-

edge Discovery. Advances in Evolutionary Computation, Springer-Verlag, 2002.
13. D. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-

ing. Addison Wesley, 1989.
14. J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan-

Kaufmann, 2001.
15. S. Harabagiu and D. Moldovan. Knowledge processing on an extended wordnet.

In WordNet: An Electronic Lexical Database, pages 379–403. MIT Press, 1998.
16. M. Hearst. Automated Discovery of WordNet Relations. In WordNet: An Elec-

tronic Lexical Database, pages 131–151. MIT Press, 1998.
17. M. Hearst. Text Data Mining: Issues, Techniques and the Relation to Informa-

tion Access. Technical report, Univerity of California at Berkeley, 1998.
18. M. Hearst. Untangling Text Data Mining. Proceedings of the 37th Annual

Meeting of the ACL, University of Maryland (invited paper), June 1999.
19. M. Hearst. Text Mining Tools: Instruments for Scientific Discovery. IMA Text

Mining Workshop, USA, April 2000.
20. C. Jacquemin and E. Tzoukermann. NLP for Term Variant Extraction: Synergy

between Morphology, Lexicon, and Syntax. In Natural Language Information
Retrieval. Kluwer Academic, 1999.

21. W. Kintsch. Predication. Cognitive Science, 25(2):173–202, 2001.
22. T. Landauer, P. Foltz, and D. Laham. An Introduction to Latent Semantic

Analysis. Discourse Processes, 10(25):259–284, 1998.
23. C. Manning and H. Schutze. Foundations of Statistical Natural Language Pro-

cessing. MIT Press, 1999.
24. M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1996.
25. U. Nahm and R. Mooney. Using Information Extraction to Aid the Discovery of

Prediction Rules from Text. Proceedings of the 6th International Conference on
Knowledge Discovery and Data Mining (KDD-2000) Workshop on Text Mining,
August 2000.

26. U. Nahm and R. Mooney. Text Mining with Information Extraction. AAAI
2002 Spring Symposium on Mining Answers from Texts and Knowledge Bases,
Stanford, USA, 2002.

9 Evolutionary Text Mining 169

27. M. Rajman and R. Besancon. Text Mining: Knowledge Extraction from Un-
structured Textual Data. 6th Conference of the International federation of clas-
sification societies (IFCS-98), Rome, Italy, July 1998.

28. P. Srinivasan. Text mining: Generating hypotheses from medline. Journal of
the American Society for Information Science, 55(4):396–413, 2004.

29. W. Stadler. Fundamentals of Multicriteria Optimization. Plenum Press, New
York, 1988.

30. D. Swanson. Migraine and Magnesium: Eleven Neglected Connections. Per-
spectives in Biology and Medicine, n/a(31):526–557, 1988.

31. D. Swanson. On the Fragmentation of Knowledge, the Connection Explosion,
and Assembling Other People’s ideas. Annual Meeting of the American Society
for Information Science and Technology, 27(3), February 2001.

32. M. Weeber, H. Klein, L. de Jong, and R. Vos. Using concepts in literature-
based discovery: Simulating swanson’s raynaud-fish oil and migraine-magnesium
discoveries. Journal of the American Society for Information Science, 52(7):548–
557, 2001.

33. P. Wiemer-Hastings. Adding Syntactic Information to LSA. Proceedings of
the Twenty-second Annual Conference of the Cognitive Science Society, pages
989–993, 2000.

34. G. Williams. Evolutionary Hot Spots Data Mining. 3rd Pacific-Asia Conference,
PAKDD-99, Beijing, China, April, pages 184–193, 1999.

35. E. Zitzler and L. Thiele. An Evolutionary Algorithm for Multiobjective Opti-
misation: The Strength Pareto Approach. Technical Report 43, Swiss Federal
Institute of Technology (ETH), Switzerland, 1998.

10

Handling of Imbalanced Data in Text
Classification: Category-Based Term Weights

Ying Liu, Han Tong Loh, Kamal Youcef-Toumi, and Shu Beng Tor

10.1 Introduction

Learning from imbalanced data has emerged as a new challenge to the machine
learning (ML), data mining (DM) and text mining (TM) communities. Two recent
workshops in 2000 [17] and 2003 [7] at AAAI and ICML conferences respectively and
a special issue in ACM SIGKDD explorations [8] are dedicated to this topic. It has
been witnessing growing interest and attention among researchers and practitioners
seeking solutions in handling imbalanced data. An excellent review of the state-of-
the-art is given by Gary Weiss [43].

The data imbalance problem often occurs in classification and clustering scenar-
ios when a portion of the classes possesses many more examples than others. As
pointed out by Chawla et al. [8] when standard classification algorithms are applied
to such skewed data, they tend to be overwhelmed by the major categories and
ignore the minor ones. There are two main reasons why the uneven cases happen.
One is due to the intrinsic nature of such events as credit fraud, cancer detection,
network intrusion, earthquake prediction and so on [8]. These are rare events pre-
sented as a unique category but can only occupy a very small portion of the entire
example space. Another case is due to the expense of collecting learning examples
and legal or privacy reasons. In our previous endeavor of building a manufactur-
ing centered technical paper corpus [27, 28], due to the costly efforts demanded for
human labeling and diverse interests in the papers, we ended up naturally with a
skewed collection.

Automatic text classification (TC) has recently witnessed a booming interest,
due to the increased availability of documents in digital form and the ensuing need
to organize them [40]. In TC tasks, given that most test collections are composed
of documents belonging to multiple classes, the performance is usually reported in
terms of micro-averaged and macro-averaged scores [40, 46]. Macro-averaging gives
equal weights to the scores generated from each individual category. In comparison,
micro-averaging tends to be dominated by the categories with more positive training
instances. Due to the fact that many of these test corpora used in TC are either
naturally skewed or artificially imbalanced especially in the binary and so called ‘one-
against-all’ settings, classifiers often perform far less than satisfactorily for minor

172 Ying Liu, Han Tong Loh, Kamal Youcef-Toumi, and Shu Beng Tor

categories [24, 40, 46]. Therefore, micro-averaging mostly yields much better results
than macro-averaging.

There have been several endeavors in handling imbalanced data sets in TC.
Here, we only focus on the approaches adopted in TC and group them based on
their primary focus. The first approach is based on sampling strategy. Yang [45] has
tested two sampling methods, i.e., proportion-enforced sampling and completeness-
driven sampling. Her empirical study using the ExpNet system shows that a global
sampling strategy which favors common categories over rare categories is critical for
the success of TC based on a statistical learning approach. Without such a global
control, the global optimal performance will be compromised and the learning effi-
ciency can be substantially decreased. Nickerson et al. [33] provide a guided sampling
approach based on a clustering algorithm called Principal Direction Divisive Parti-
tioning to deal with the between-class imbalance problem. It has shown improvement
over existing methods of equalizing class imbalances, especially when there is a large
between-class imbalance together with severe imbalance in the relative densities of
the subcomponents of each class. Liu’s recent efforts [25] in testing different sam-
pling strategies, i.e., under-sampling and over-sampling, and several classification
algorithms, i.e., Näıve Bayes, k -Nearest Neighbors (kNN) and Support Vector Ma-
chines (SVMs), improve the understanding of interactions among sampling method,
classifier and performance measurement.

The second major effort emphasizes cost sensitive learning [10, 12, 44]. In many
real scenarios like risk management and medical diagnosis, making wrong decisions
are usually associated with very different costs. A wrong prediction of the nonexis-
tence of cancer, i.e., false negative, may lead to death, while the wrong prediction of
cancer existence, i.e., false positive, only results in unnecessary anxiety and medical
tests. In view of this, assigning different cost factors to false negatives and false
positives will lead to better performance with respect to positive (rare) classes [8].
Brank et al. [4] have reported their work on cost sensitive learning using SVMs on
TC. They obtain better results with methods that directly modify the score thresh-
old. They further propose a method based on the conditional class distributions for
SVM scores that works well when only very few training examples are available.

The recognition based approach, i.e., one-class learning, has provided another
class of solutions [18]. One-class learning aims to create the decision model based
on the examples of the target category alone, which is different from the typical
discriminative approach, i.e., the two classes setting. Manevitz and Yousef [30] have
applied one-class SVMs on TC. Raskutti and Kowalczyk [35] claim that one-class
learning is particularly helpful when data are extremely skewed and composed of
many irrelevant features and very high dimensionality.

Feature selection is often considered an important step in reducing the high
dimensionality of the feature space in TC and many other problems in image pro-
cessing and bioinformatics. However, its unique contribution in identifying the most
salient features to boost the performance of minor categories has not been stressed
until some recent work [31]. Yang [47] has given a detailed evaluation of several fea-
ture selection schemes. We noted the marked difference between micro-averaged and
macro-averaged values due to the poor performances over rare categories. Forman
[14] has done a very comprehensive study of various schemes for TC on a wide range
of commonly used test corpora. He has recommended the best pair among different
combinations of selection schemes and evaluation measures. The recent efforts from
Zheng et al. [50] advance the understanding of feature selection in TC. They show

10 Handling of Imbalanced Data in TC: Category-Based Term Weights 173

the merits and great potential of explicitly combining positive and negative features
in a nearly optimal fashion according to the imbalanced data.

Some recent work simply adapting existing ML techniques and not even directly
targeting the issue of class imbalance have shown great potential with respect to
the data imbalance problem. Castillo and Serrano [6], and Fan et al. [13] have re-
ported the success using an ensemble approach, e.g., voting and boosting, to handle
skewed data distribution. Challenged by real industry data with a huge number of
records and an extremely skewed data distribution, Fan’s work shows that the en-
semble approach is capable of improving the performance on rare classes. In their
approaches, a set of weak classifiers using various learning algorithms are built up
over minor categories. The final decision is reached based on the combination of
outcomes from different classifiers. Another promising approach which receives less
attention falls into the category of semi-supervised learning or weakly supervised
learning [3, 15, 16, 23, 26, 34, 48, 49]. The basic idea is to identify more positive
examples from a large amount of unknown data. These approaches are especially
viable when unlabeled data are steadily available. The last effort attacking the im-
balance problem uses parameter tuning in kNNs [2]. The authors expect to set k
dynamically according to the data distribution, in which a large k is granted given
a minor category.

In this chapter, we tackle the data imbalance problem from a different angle.
We present a novel approach assigning better weights to the features from minor
categories. Inspired by the merits of feature selection, we base our approach to
identifying the most salient features for a category on the classic term weighting
scheme, i.e., tfidf and propose several weighting factors called Category-Based Term
Weights (CBTW) to replace the idf term in the classic tfidf form. The experiment
setup is explained in Section 10.5. We carry out the evaluation and comparison of
our CBTWs with many other different weighting forms over two skewed data sets,
including Reuters-21578. We explain the experimental findings and discuss their
performance in Section 10.6. Finally, we give our conclusions in Section 10.7.

10.2 Term Weighting Scheme

TC is the process of categorizing documents into predefined thematic categories. In
its current practice, which is dominated by supervised learning, the construction of
a text classifier is often conducted in two main phases [9, 40]:

a) Document indexing - the creation of numeric representations of the documents
• Term selection - selecting a subset of terms from all terms occurring in the

collection to represent the documents in a better way, either to facilitate
computing or to achieve best effectiveness in classification

• Term weighting - assigning a numeric value to each term in order that rep-
resents its contribution to making a document stand out from others

b) Classifier learning - the building of a classifier by learning from the numeric
representations of the documents

In information retrieval and machine learning, term weighting has long been
formulated as term frequency · inverse documents frequency, i.e., tfidf [1, 36,
38, 39]. The more popular ”ltc” form [1, 38, 39] is given by,

174 Ying Liu, Han Tong Loh, Kamal Youcef-Toumi, and Shu Beng Tor

tfidf(ti, dj) = tf(ti, dj) × log(
N

N(ti)
) (10.1)

and its normalized version is

wi,j =
tfidf(ti, dj)√∑|T |
k=1

tfidf(tk, dj)2
(10.2)

where N and |T | denote the total number of documents and unique terms contained
in the collection respectively, and N(ti) represents the number of documents in the
collection in which term occurs at least once, and

tf(ti, dj) =

{
1 + log(n(ti, dj)), if n(ti, dj) > 0;
0, otherwise.

(10.3)

where n(ti, dj) is the number of times that the term occurs in the document. In prac-
tice, the summation in equation (10.2) is only concerned with the terms occurring
in the document.

The significance of the classic term weighting schemes in equation (10.1) and
(10.2) is that they have embodied three fundamental assumptions about the term
frequency distribution in a collection of documents [9, 40]. These assumptions are:

• Rare terms are no less important than frequent terms - the idf assumption
• Multiple appearance of a term in a document are no less important than single

appearance - the tf assumption
• For the same quantity of term matching, long documents are no more important

than short documents - the normalization assumption

Because of these, the ”ltc” and its normalized form have been extensively studied
by many researchers and show good performance over a number of different data
sets [40]. Therefore, they have become the default choice in TC research.

After document indexing, the next phase is classifier induction. Recently, the
support vector machine (SVM) [5, 42] has become the most popular learning al-
gorithm in current TC practices mainly due to its leading, consistent performance
[11, 19, 24, 40, 46], and its capability of handling a high dimensional input space.
Joachims [19, 21] claims that incorporating term selection will weaken the perfor-
mance of SVM in TC, and therefore recommends skipping term selection. Term
selection, one of the two main steps in document indexing, has become less impor-
tant in SVM-based TC. This has left term weighting as the only step before the
induction of an SVM classifier. Furthermore, since current SVM theory is more ef-
fective in handling binary problems, the training and testing data sets supplied to
SVM are either formed as ‘one-category-against-another-category’ or ‘one-category-
against-all-other-categories.’ Therefore, instead of answering whether a document
belongs to a specific category, the algorithm tries to distinguish the documents of
one category from others. To exploit this characteristic of SVM algorithm, our ba-
sic idea is to assign weights dynamically to terms in such a way that it helps to
differentiate documents of each category under consideration from other categories,
rather than giving uniform values, i.e., idf , to them across all categories. We explore
this problem by merging the power of term selection with term weighting. In other
words, we aim to capture the category characteristics of these documents and see
whether this can further contribute to the existing performance of SVM.

10 Handling of Imbalanced Data in TC: Category-Based Term Weights 175

10.3 Inspiration from Feature Selection

Feature selection serves as a key procedure to reduce the dimensionality of input
space in order to save computational cost. It has been integrated as a default step
for many learning algorithms, like Artificial Neural Networks, k -Nearest Neighbors,
Decision Trees, etc. In the research community of ML, the computational constraints
imposed by the high dimensionality of the input data space and the richness of in-
formation it provides to maximally identify each individual object is a well known
tradeoff. The ability of feature selection to capture the salient information by select-
ing the most important attributes, and thus making the computing tasks tractable
has been shown in IR and ML research [14, 32, 37, 47]. Furthermore, feature selec-
tion is also beneficial since it tends to reduce the over-fitting problem, in which the
trained objects are tuned to fit very well the data upon which they have been built,
but performs poorly when applied to unseen data [40].

In TC, several feature selection methods have been intensively studied to distill
the important terms while still keeping the dimensionality low. Table 10.1 shows the
general functions of several popular feature selection methods. These methods derive
either from the information theory or from the linear algebra literature [40, 47].

Table 10.1. Several feature selection methods and their functions, where tk denotes
a term, ci stands for a category, P (tk, ci) denotes the probability a document is from
category ci when term tk occurs at least once in it, P (tk, ci) denotes the probability
a document is not from category ci when term tk occurs at least once in it, P (tk, ci)
denotes the probability a document is from category ci when term tk does not occur
in it, P (tk, ci) denotes the probability a document is not from category ci when term
tk does not occur in it.

Feature Selection Method Mathematical Form

Information Gain P (tk, ci) log P (tk,ci)
P (tk)P (ci)

+ P (tk, ci) log P (tk,ci)

P (tk)P (ci)

Mutual Information log P (tk,ci)
P (tk)P (ci)

Chi-square N [P (tk,ci)P (tk,ci)−P (tk,ci)P (tk,ci)]
2

P (tk)P (tk)P (ci))P (ci)

Correlation Coefficient N [P (tk,ci)P (tk,ci)−P (tk,ci)P (tk,ci)]√
P (tk)P (tk)P (ci)P (ci)

Odds Ratio log P (tk|ci)(1−P (tk|ci))
(1−P (tk|ci))P (tk|ci)

Simplified Chi-square P (tk, ci)P (tk, ci) − P (tk, ci)P (tk, ci)

Basically, there are two distinct ways to rank and assess the features, i.e., globally
and locally.

a) Global feature selection aims to select features which are good across all cate-

gories. In this manner, either the sum fsum(tk) =
∑|c|

i=1
f(tk, ci), or the weighted

average of a term tk, i.e., favg(tk) =
∑|c|

i=1
P (ci)f(tk, ci), is assessed, where f

is the specified feature selection method, P (ci) is the percentage of category ci

and |c| denotes the number of categories.
b) Local feature selection aims to differentiate those terms that are more distin-

guishable for certain categories only. Usually, terms are ranked and selected

176 Ying Liu, Han Tong Loh, Kamal Youcef-Toumi, and Shu Beng Tor

based on fmax(tk) = max
|c|
i=1 f(tk, ci), i.e., the maximum of the category spe-

cific values.

The sense of either ‘global’ or ‘local’ does not have much impact on the selection
of method itself, but it does affect the performance of classifiers built upon different
categories. In TC, the main purpose is to address whether this document belongs to
a specific category. Obviously, we prefer the salient features which are unique from
one category to another, i.e., a ‘local’ approach. Ideally, the salient feature set from
one category does not have any items overlapping with those from other categories.
If this cannot be avoided, then how to better present them comes into the picture.

While many previous works have shown the relative strengths and merits of these
methods [14, 32, 37, 40, 47], our experience with feature selection over a number
of standard or ad-hoc data sets shows the performance of such methods can be
highly dependant on the data. This is partly due to the lack of understanding of
different data sets in a quantitative way, and it needs further research. From our
previous study of all feature selection methods and what has been reported in the
literature [47], we noted when these methods are applied to text classification for
term selection purpose, they are basically utilizing the four fundamental information
elements shown in Table 10.2, i.e., A denotes the number of documents belonging
to category ci where the term tk occurs at least once; B denotes the number of
documents not belonging to category ci where the term tk occurs at least once; C
denotes the number of documents belonging to category ci where the term tk does
not occur; D denotes the number of documents not belonging to category ci where
the term tk does not occur.

Table 10.2. Fundamental information elements used for feature selection in text
classification

ci ci

tk A B
tk C D

These four information elements have been used to estimate the probabilities
listed in Table 10.1. Table 10.3 shows the functions in Table 10.1 as presented by
the information elements A, B, C and D.

Table 10.3. Feature selection methods and their formations as represented by in-
formation elements in Table 10.2

Method Mathematical Form Represented by Information Elements

Information Gain −A+C
N

log A+C
N

+ A
N

log(A
A+B

) + C
N

log C
C+D

Mutual Information log(AN/(A + B)(A + C))

Chi-square N(AD − BC)2/(A + C)(B + D)(A + B)(C + D)

Correlation Coefficient
√

N(AD − BC)/
√

(A + C)(B + D)(A + B)(C + D)

Odds Ratio log(AD/BC)

Simplified Chi-square (AD − BC)/N2

10 Handling of Imbalanced Data in TC: Category-Based Term Weights 177

10.4 Category-Based Term Weights

10.4.1 Revisit of tfidf

As stated before, while many researchers believe that the term weighting schemes
in the form as tfidf representing those three aforementioned assumptions, we un-
derstand tfidf in a much simpler manner, i.e.,

a) Local weight - the tf term, either normalized or not, specifies the weight of tk

within a specific document, which is basically estimated based on the frequency
or relative frequency of tk within this document.

b) Global weight - the idf term, either normalized or not, defines the contribution
of tk to a specific document in a global sense.

If we temporarily ignore how tfidf is defined, and focus on the core problem,
i.e., whether this document is from this category, we realize we need a set of terms to
represent the documents effectively and a reference framework to make the compar-
ison possible. As previous research shows that tf is very important [22, 29, 38, 40]
and using tf alone can already achieve good performance, we retain the tf term.
Now, let us consider idf , i.e., the global weighting of tk.

The conjecture is that if the term selection can effectively differentiate a set
of terms Tk out from all terms T to represent category ci, then it is desirable to
transform that difference into some sort of numeric values for further processing.
Our approach is to replace the idf term with the value generated using term selec-
tion. Since this procedure is performed jointly with the category membership, this
basically implies that the weights of Tk are category specific. Therefore, the only
problem left is which term selection method is appropriate to compute such values.

10.4.2 Category-Based Term Weights

We decide to compute the term values using the most direct information, e.g., A, B
and C, and combine them in a sensible way which is different from existing feature
selection measures. From Table 10.2, two important ratios are noted, i.e., A/B and
A/C,

• A/B: it is easy to understand that if term tk is highly relevant to category ci

only, which basically says that tk is a good feature to represent category ci, then
the value of A/B tends to be higher.

• A/C: given two terms tk, tl and a category ci, the term with the higher value of
A/C, will be the better feature to represent ci, since a larger portion of it occurs
with category ci.

Obviously, the role of A/B is straightforward and, when A/B is equal, A/C
can possibly further differentiate these terms. This has been conjectured to be the
contribution of A/C. In fact, these two ratios are nicely supported by probability
estimates. For instance, A/B can be extended as (A/N)/(B/N), where N is the
total number of documents, A/N is the probability estimate of documents from
category ci where term tk occurs at least once and B/N is the probability estimate
of documents not from category ci where term tk occurs at least once. In this manner,
A/B can be interpreted as a relevance indicator of term tk with respect to category

178 Ying Liu, Han Tong Loh, Kamal Youcef-Toumi, and Shu Beng Tor

ci. Surely, the higher the ratio, the more important the term tk is related to category
ci. A similar analysis can be be made with respect to A/C. The ratio reflects the
expectation that a term is deemed as more relevant if it occurs in the larger portion
of documents from category ci than other terms.

Table 10.4. The different combinations of Category-Based Term Weights (CBTW),
the mathematical forms are represented by information elements shown in Table 10.2

CBTW1 log(1 + A
B

A
C

) CBTW5 log(1 + A+B
B

A+C
C

)

CBTW2 log(1 + A
B

+ A
C

) CBTW6 log(1 + A+B
B

+ A+C
C

)

CBTW3 log(1 + A
B

) log(1 + A
C

) CBTW7 log(1 + A+B
B

) log(1 + A+C
C

)

CBTW4 log[(1 + A
B

)(1 + A
C

)] CBTW8 log[(1 + A+B
B

)(1 + A+C
C

)]

Since the computing of either A/B or A/C has its intrinsic connection with cat-
egory membership, we propose a new term weighting scheme called Category-Based
Term Weights (CBTW) to replace the idf part in the classic tfidf weighting scheme,
and feature selection, a regular step in TC, is skipped in our experiments. Consid-
ering the probability foundation of A/B and A/C and the possibility of combining
them, the most immediate choice is to take the product of these two ratios. They are
named as CBTWn in Table 10.4, where n = 1, 3, 5, 7. However, we also include other
possibilities by extending them in another four different ways named as CBTWn,
where n = 2, 4, 6, 8.

Because we are not very sure which one can deliver better performance, these
eight combinations are evaluated in the benchmarking experiments reported in Sec-
tion 10.6.

10.5 Experimental Setup

Two data sets were tested in our experiment, i.e., MCV1 and Reuters-21578. MCV1
is an archive of 1434 English language manufacturing related engineering papers
which we gathered by the courtesy of the Society of Manufacturing Engineers (SME).
It combines all engineering technical papers published by SME from year 1998 to
year 2000. All documents were manually classified [27, 28]. There are a total of
18 major categories in MCV1. Figure 10.1 gives the class distribution in MCV1
. Reuters-21578 is a widely used benchmarking collection [40]. We followed Sun’s
approach [41] in generating the category information. Figure 10.2 gives the class
distribution of the Reuters dataset used in our experiment. Unlike Sun [41], we did
not randomly sample negative examples from categories not belonging to any of the
categories in our dataset, instead we treated examples not from the target category
in our dataset as negatives.

We compared our weighting schemes experimentally with a number of other well
established weighting schemes, e.g., TFIDF, ‘ltc’ and normalized ‘ltc,’ on MCV1 and
Reuters-21578 using SVM as the classification algorithm. We also carried out the
benchmarking experiments between our conjectures and many other feature selection
methods, e.g., chi-square (ChiS), correlation coefficient (CC), odds ratio (OddsR),

10 Handling of Imbalanced Data in TC: Category-Based Term Weights 179

Fig. 10.1. Class distribution in MCV1

Fig. 10.2. Class distribution in Reuters-21578

180 Ying Liu, Han Tong Loh, Kamal Youcef-Toumi, and Shu Beng Tor

information gain (IG) and relevance frequency (RF) [30], by replacing the idf term
with the feature selection value in the classic tfidf weighting schemes. Therefore,
schemes are largely formulated in a form as tf · (feature value) (TFFV). Table 10.5
shows all 16 weighting schemes tested in our experiments and their mathematic for-
mations. Please note that basically the majority of TFFV schemes are composed of
two items, i.e., the normalized term frequency tf(ti, dj)/ max[tf(dj)] and the term’s

feature value, e.g.,
√

N(AD−BC)√
(A+C)(B+D)(A+B)(C+D)

in the correlation coefficient scheme,

where tf(ti, dj) is the frequency of term ti in the document dj and max[tf(dj)] is
the maximum frequency of a term in the document dj . The only different ones are
TFIDF weighting, ‘ltc’ form and the normalized ‘ltc’ form as specified in Table 10.5.

Table 10.5. All weighting schemes tested in the experiments and their mathematic

formations, where the normalized term frequency ntf is defined as
tf(ti,dj)

max[tf(dj)]

Weighting Scheme Name Mathematic Formations

tf ·Correlation Coef. CC ntf ·
√

N(AD−BC)√
(A+C)(B+D)(A+B)(C+D)

tf ·Chi-square ChiS ntf · N(AD−BC)2

(A+C)(B+D)(A+B)(C+D)

tf ·Information Gain IG ntf · (A
N

log AN
(A+B)(A+C)

+ C
N

log CN
(C+D)(A+C)

)

tf ·Odds Ratio OddsR ntf · log(AD/BC)

tf ·Relevance Freq. RF ntf · log(1 + A+B
B

)

TFIDF [1] TFIDF ntf · log(N
N(ti)

)

tfidf -ltc ltc tf(ti, dj) · log(N
N(ti)

)

Normalized ltc nltc tfidfltc√∑
tfidf2

ltc

Cat. Based Term Wt. 1 CBTW1 ntf · log(1 + A
B

A
C

)

Cat. Based Term Wt. 2 CBTW2 ntf · log(1 + A
B

+ A
C

)

Cat. Based Term Wt. 3 CBTW3 ntf · log(1 + A
B

) log(1 + A
C

)

Cat. Based Term Wt. 4 CBTW4 ntf · log[(1 + A
B

)(1 + A
C

)]

Cat. Based Term Wt. 5 CBTW5 ntf · log(1 + A+B
B

A+C
C

)

Cat. Based Term Wt. 6 CBTW6 ntf · log(1 + A+B
B

+ A+C
C

)

Cat. Based Term Wt. 7 CBTW7 ntf · log(1 + A+B
B

) log(1 + A+C
C

)

Cat. Based Term Wt. 8 CBTW8 ntf · log[(1 + A+B
B

)(1 + A+C
C

)]

Major standard text preprocessing steps were applied in our experiments, includ-
ing stopword and punctuation removal, and stemming. However, feature selection
was skipped and all terms left after stopword and punctuation removal were kept
as features. In our experiments we used the SVM implementation called SVMLight

[19, 20]. We used the linear function as its kernel function, since previous work has
shown that the linear function can deliver even better performance without tedious
parameter tuning in TC [19, 21]. As for the performance measurement, precision,
recall and the harmonic combination of precision and recall, i.e., the F1 value, were
calculated [1, 36]. Performance was assessed based on five-fold cross validation. Since

10 Handling of Imbalanced Data in TC: Category-Based Term Weights 181

we are very concerned about the performance of every category and especially the
minor ones, we report the overall performance in macro-averaged scores, to avoid
the bias for major categories in imbalanced data associated with micro-averaged
scores.

10.6 Experimental Results and Discussion

10.6.1 Overall Performance

Figure 10.3 shows the overall performance of a total of 16 weighting schemes tested
over MCV1 and Reuters-21578 . They are reported in terms of macro-averaged F1

values.

Fig. 10.3. The macro-averaged F1 values of 16 weighting schemes tested over MCV1
and Reuters-21578

Our first observation is that all TFFV weighting schemes outperform classic
ones, i.e., TFIDF, ‘ltc,’ and normalized ‘ltc’ schemes. The TFIDF’s performance
based on Reuters-21578 is in line with the literature [41, 46]. This has shown the
overall effectiveness of TFFV-based schemes. In general, the performance patterns of
all 16 schemes on MCV1 and Reuters-21578 match very well. For example, CBTW1

and CBTW3 always take the lead among CBTWs, normalized ‘ltc’ always performs

182 Ying Liu, Han Tong Loh, Kamal Youcef-Toumi, and Shu Beng Tor

worse than the other two, and the odds ratio does not performe as well as the other
TFFVs. Global based classic schemes, i.e., TFIDF, ‘ltc’, and normalized ‘ltc’ form, do
not work well for either MCV1 or Reuters-21578. A close look at their performance
reveals that classifiers built for minor categories, e.g., composites manufacturing,
electronics manufacturing and so on, do not produce satisfactory results. This has
largely affected the overall performance. Among TFFVs, odds ratio does not work
very well. This is a surprise since the odds ratio is mentioned as one of the leading
feature selection methods for text classification in the literature [37, 40]. This implies
that it is always worthwhile to reassess the strength of a term selection method for
a new dataset, even if they have tended to perform well in the past.

From Table 10.5 we also note that RF is actually some sort of simplified version of
CBTWs where the ratio of A/C or the information element C is excluded. However,
performances generated over MCV1 and Reuters-21578 indicate that CBTWs are
not worse than RF. In fact, our experimental results show that the effective combi-
nation of A/B and A/C, i.e., CBTW1 and CBTW3, can lead to better performance
than RF. This has demonstrated the practical value of A/C and our aforementioned
conjectures about how terms can be further distinguished.

10.6.2 Gains for Minor Categories

As shown in Figure 10.1 and Figure 10.2, both MCV1 and Reuters-21578 are skewed
data sets. While MCV1 possesses 18 categories with one major category occupying
up to 25% of the whole population of supporting documents, there are six categories
that own only around 1% of MCV1 each and 11 categories falling below the average,
i.e., 5.5%, if MCV1 is evenly distributed. The same case also happens to the Reuters-
21578 dataset. While it has 13 categories, grain and crude, the two major categories,
share around half of the population. There are eight categories in total falling below
the average. Previous literatures did not report successful stories over these minor
categories [40, 41, 46].

Since our study shows that TFFV schemes work better than classic approaches,
we examine why this is the case. A close analysis shows that TFFVs display much
better results over minor categories in both MCV1 and Reuters-21578 . We plot
their performances in Figures 10.4 and 10.5, respectively. For all minor categories
shown in both figures, we observed a sharp increase of performance occurs when
the system’s weighting method switches from normalized ‘ltc’ to CBTWs and from
TFIDF to RF.

Based on Figure 10.3, since TFIDF often helps SVM generate the best perfor-
mance among the three classic ones and CBTW1 has the best overall performance
among the 16 weighting candidates, we chose TFIDF and CBTW1 as representa-
tive of each group for further analysis. Both precision and recall of each individual
category in MCV1 and Reuters-21578 are plotted in Figures 10.6 and 10.7. Look-
ing at both figures reveals why TFFVs, in particular CBTW1, perform better. We
observed that in general CBTW1 falls slightly below TFIDF in terms of precision.
However, CBTW1 performs far better in terms of recall and as a result surpasses
TFIDF in terms of F1 values. While the averaged precision of TFIDF in MCV1 is
0.8355 which is about 5% higher than CBTW1, the averaged recall of CBTW1 is
0.7443, far superior to TFIDF’s 0.6006. The case with Reuters-21578 is even more
impressive. While the averaged precision of TFIDF is 0.8982 which is only 1.8%

10 Handling of Imbalanced Data in TC: Category-Based Term Weights 183

Fig. 10.4. Performance of 16 weighting schemes over 6 minor categories in MCV1,
where each of them only occupies around 1% of MCV1

higher than CBTW1, the averaged recall of CBTW1 reaches 0.9080, compared with
TFIDF ’s 0.7935.

10.6.3 Significance Test

In order to determine whether the performance improvement gained by CBTWs and
other TFFVs over these two imbalanced data sets are significant, we performed the
macro sign test (S-test) and macro t-test (T-test) on the paired F1 values. Table
10.6 and 10.7 show the detailed F1 values of each individual category generated
based on different major term weighting approaches over MCV1 and Reuters-21578,
respectively. As pointed out by Yang [46], on the one hand, the S-test may be more
robust in reducing the influence of outliers, but at the risk of being insensitive or
not sufficiently sensitive in performance comparison because it ignores the absolute
difference between F1 values; on the other hand, the T-test is sensitive to the absolute
values, but could be overly sensitive when F1 values are highly unstable, e.g., for
the minor categories. Therefore, we adopt both tests here to give a comprehensive
understanding of the performance improvement.

Since for both data sets, TFIDF performs better than the other two classic
approaches and CBTW1 achieves the best overall performance compared to other
CBTWs and TFFVs, we choose them as the representatives of their peers. For

184 Ying Liu, Han Tong Loh, Kamal Youcef-Toumi, and Shu Beng Tor

Table 10.6. Macro-averaged F1 values and detailed performance of each scheme
over MCV1

Cat. TFIDF CC ChiS IG OddsR RF CBTW1

1 0.7351 0.8186 0.7249 0.7463 0.7302 0.7664 0.8029
2 0.6703 0.6684 0.6461 0.6234 0.6172 0.6771 0.7160
3 0.4344 0.5943 0.6232 0.6651 0.5925 0.5978 0.6603
4 0.3670 0.6034 0.5109 0.6476 0.5043 0.5277 0.6825
5 0.7961 0.8202 0.8526 0.8347 0.8252 0.8336 0.8791
6 0.4854 0.6036 0.6346 0.6292 0.5601 0.5997 0.6493
7 0.8554 0.8395 0.8437 0.8280 0.8585 0.8627 0.8643
8 0.7479 0.7470 0.7312 0.7338 0.7488 0.7607 0.7252
9 0.8421 0.8610 0.8522 0.8529 0.8707 0.8597 0.8637
10 0.7628 0.7888 0.7779 0.7915 0.7736 0.7893 0.8274
11 0.7160 0.7230 0.7230 0.7351 0.7073 0.7411 0.7536
12 0.7055 0.7786 0.7689 0.7744 0.6627 0.7618 0.7899
13 0.6162 0.6903 0.6733 0.6753 0.6555 0.6559 0.6657
14 0.4343 0.5499 0.6011 0.5448 0.4651 0.5079 0.4943
15 0.7984 0.8671 0.8455 0.8584 0.8473 0.8141 0.8674
16 0.4411 0.5070 0.5382 0.6190 0.4580 0.4485 0.5730
17 0.7468 0.8122 0.8319 0.8367 0.7643 0.8044 0.8304
18 0.9567 0.8973 0.8892 0.9504 0.9074 1.0000 0.9505

Avg. 0.6729 0.7317 0.7260 0.7415 0.6971 0.7227 0.7553

Table 10.7. Macro-averaged F1 values and detailed performance of each scheme
over Reuters-21578

Cat. TFIDF CC ChiS IG OddsR RF CBTW1

1 0.7930 0.8144 0.8615 0.8197 0.7466 0.7794 0.8740
2 0.7364 0.8130 0.8139 0.8734 0.6938 0.8044 0.8311
3 0.9465 0.9767 0.9719 0.9721 0.9619 0.9612 0.9814
4 0.8034 0.9030 0.9401 0.9235 0.8881 0.8951 0.9185
5 0.9399 0.9395 0.9151 0.9111 0.9373 0.9385 0.9028
6 0.9472 0.9695 0.9586 0.9491 0.9605 0.9730 0.9630
7 0.8158 0.8457 0.8563 0.8300 0.7446 0.8088 0.8357
8 0.8423 0.8340 0.8481 0.8444 0.8126 0.8648 0.8827
9 0.7648 0.8123 0.8109 0.8073 0.7757 0.7530 0.8423
10 0.7590 0.8463 0.8972 0.9259 0.7727 0.7776 0.8869
11 0.8836 0.9087 0.8840 0.8929 0.9027 0.9135 0.8850
12 0.7962 0.8290 0.8486 0.8290 0.8357 0.8423 0.8546
13 0.8666 0.9186 0.9157 0.9352 0.9173 0.9117 0.9360

Avg. 0.8380 0.8777 0.8863 0.8857 0.8423 0.8633 0.8918

10 Handling of Imbalanced Data in TC: Category-Based Term Weights 185

Fig. 10.5. Performance of 16 weighting schemes over 7 minor categories in Reuters-
21578, where each of them only occupies between 1% and less than 5% of Reuters-
21578

both the S-test and T-test, we actually conduct two sets of tests. One is to test
all major schemes against TFIDF and another one is to test CBTW1 against the
major schemes. While the first aims to assess the goodness of schemes in the form
of TFFVs, the second tests whether CBTWs generate even better results.

Table 10.8. Details of S-test on MCV1 , P (Z >= k)=p-Value, where two F1 values
are the same if their difference is not more than 0.01

All vs. TFIDF CBTW1 vs. All

Test n K p-Value Test n K p-Value

CC 16 14 2.090E-03 TFIDF 18 16 6.561E-04
ChiS 18 13 4.813E-02 CC 16 12 3.841E-02
IG 18 14 1.544E-02 ChiS 17 14 6.363E-03
OddsR 15 11 5.923E-02 IG 16 11 1.051E-01
RF 18 18 3.815E-06 OddsR 18 16 6.561E-04
CBTW1 18 16 6.561E-04 RF 16 13 1.064E-02

186 Ying Liu, Han Tong Loh, Kamal Youcef-Toumi, and Shu Beng Tor

Fig. 10.6. Details of precision and recall for categories in MCV1

Table 10.8 summarizes the S-test results of major schemes against TFIDF and
CBTW1 against others for MCV1. We consider two F1 values to be the same if their
difference is not more than 0.01, i.e., 1%. Table 10.9 summarizes the T-test results of
major schemes against TFIDF and CBTW1 against others for MCV1, where alpha
is set as 0.001. Tables 10.10 and 10.11 report the test results for Reuters-21578,
where tests are carried out in the same manner conducted in Tables 10.8 and 10.9.

From the results we cam summarize the strength of different schemes. Consider
the merits evaluated based on TFFVs against TFIDF, TFFVs have shown they are

10 Handling of Imbalanced Data in TC: Category-Based Term Weights 187

Fig. 10.7. Details of precision and recall for categories in Reuters-21578

the better approach in handling imbalanced data. Among various TFFVs, CBTW1

claims the leading performance in both MCV1 and Reuters-21578. However, the
approach based on the odds ratio is not much superior to TFIDF. With respect to
the evaluation based on the merits of CBTW1 against the others, it is not surprising
to see that CBTW1 still takes the lead. It manages to perform better than the ap-
proaches based on information gain and chi-square in the T-test where the absolute
difference of F1 values is considered. Furthermore, CBTW1 always achieves better
results than RF in both data sets. This demonstrates the contribution of A/C in
handling imbalanced data sets. Finally, the strengths of information gain, chi-square
and correlation coefficient shown in the tests are compatible with what is in liter-
ature [14, 40, 47]. In general, the more minor categories the dataset possesses, the

188 Ying Liu, Han Tong Loh, Kamal Youcef-Toumi, and Shu Beng Tor

Table 10.9. Details of T-test on MCV1 , where alpha = 0.001 and degree of freedom
= 34

All vs. TFIDF, alpha=0.001 CBTW1 vs. All, alpha=0.001

Test t-Value t-Critical Test t-Value t-Critical

CC 21.509 3.354 TFIDF 30.171 3.354
ChiS 19.634 CC 10.688
IG 25.879 ChiS 13.465
OddsR 8.343 IG 6.571
RF 17.038 OddsR 24.003
CBTW1 30.171 RF 13.368

Mean 20.429 Mean 16.378

StdDev 7.536 StdDev 8.882

Table 10.10. Details of S-test on Reuters-21578, P (Z >= k)=p-Value, where two
F1 values are the same if their difference is not more than 0.01

All vs. TFIDF CBTW1 vs. All

Test n K p-Value Test n K p-Value

CC 12 11 3.174E-03 TFIDF 12 11 3.174E-03
ChiS 12 11 3.174E-03 CC 12 8 1.938E-01
IG 11 10 5.859E-03 ChiS 11 7 2.744E-01
OddsR 12 8 1.938E-01 IG 12 7 3.872E-01
RF 12 9 7.300E-02 OddsR 12 10 1.929E-02
CBTW1 12 11 3.174E-03 RF 13 10 4.614E-02

Table 10.11. Details of T-test on Reuters-21578 , where alpha = 0.001 and degree
of freedom = 34

All vs. TFIDF, alpha=0.001 CBTW1 vs. All, alpha=0.001

Test t-Value t-Critical Test t-Value t-Critical

CC 19.571 3.467 TFIDF 28.893 3.467
ChiS 25.164 CC 8.587
IG 24.352 ChiS 3.682
OddsR 1.692 IG 3.993
RF 11.338 OddsR 22.619
CBTW1 28.893 RF 15.139

Mean 18.501 Mean 13.819

StdDev 10.214 StdDev 10.326

better overall performance can be achieved if CBTW1 is chosen as the weighting
scheme.

10.7 Conclusion

Handling of imbalanced data sets in TC has become an emerging challenge. In this
chapter, we introduce a new weighting scheme which is generally formulated as

10 Handling of Imbalanced Data in TC: Category-Based Term Weights 189

tf · (feature value) (TFFV) to replace classic tfidf -based approaches. We then
propose Category-Based Term Weights (CBTWs), which directly make use of two
critical information ratios, as a new way to compute the feature value. These two
ratios are deemed to possess the most salient information about the category mem-
bership of terms and their computation does not impose any extra cost compared to
the conventional feature selection methods. Our experimental study and extensive
comparisons based on two imbalanced data sets, MCV1 and Reuters-21578, show
the merits of TFFV-based approaches and their ability to handle imbalanced data.
Among the various TFFVs, CBTW1 offers the best overall performance in both data
sets. Our approach has provided an effective choice to improve TC performance for
imbalanced data. Furthermore, since CBTWs are derived from the understanding of
feature selection, they can also be viewed as new feature selection schemes to reflect
the relevance of terms with respect to thematic categories. Their joint application
with other algorithms in TC, e.g., Näıve Bayes, k -Nearest Neighbors and Artificial
Neural Networks where feature selection is usually performed, needs further explo-
ration.

10.8 Acknowledgment

The authors would like to thank the reviewers for their valuable comments and
Ee-Peng Lim and Aixin Sun for much fruitful discussion.

References

1. Baeza-Yates R. & Ribeiro-Neto B. (1999) Modern information retrieval.
Addison-Wesley Longman Publishing Co. Inc., Boston, MA, USA

2. Baoli L., Qin L. & Shiwen Y. (2004) An adaptive k-nearest neighbor text cat-
egorization strategy. ACM Transactions on Asian Language Information Pro-
cessing (TALIP) 3:215–226

3. Blum A. & Mitchell T. (1998) Combining Labeled and Unlabeled Data with Co-
Training. In: COLT: Proceedings of the Workshop on Computational Learning
Theory

4. Brank J., Grobelnik M., Milic-Frayling N. & Mladenic D. (2003) Training text
classifiers with SVM on very few positive examples. Report MSR-TR-2003-34

5. Burges C. J. C. (1998) A tutorial on support vector machines for pattern recog-
nition. Data Mining and Knowledge Discovery 2:121–167

6. Castillo M. D. d. & Serrano J. I. (2004) A multistrategy approach for digital
text categorization from imbalanced documents. ACM SIGKDD Explorations
Newsletter: Special issue on learning from imbalanced datasets 6:70–79

7. Chawla N., Japkowicz N. & Kolcz A. (eds) (2003) Proceedings of the ICML’2003
Workshop on Learning from Imbalanced Data Sets

8. Chawla N., Japkowicz N. & Kolcz A. (eds) (2004) Special Issue on Learning
from Imbalanced Data Sets. ACM SIGKDD Explorations Newsletter 6

9. Debole F. & Sebastiani F. (2003) Supervised term weighting for automated
text categorization. In: Proceedings of the 2003 ACM Symposium on Applied
computing

190 Ying Liu, Han Tong Loh, Kamal Youcef-Toumi, and Shu Beng Tor

10. Dietterich T., Margineantu D., Provost F. & Turney P. (eds) (2000) Proceedings
of the ICML’2000 Workshop on Cost-sensitive Learning

11. Dumais S. & Chen H. (2000) Hierarchical classification of Web content. In: Pro-
ceedings of the 23rd annual international ACM SIGIR conference on Research
and development in information retrieval (SIGIR2000)

12. Elkan C. (2001) The Foundations of Cost-Sensitive Learning. In: Proceedings
of the Seventeenth International Joint Conference on Artificial Intelligence (IJ-
CAI’01)

13. Fan W., Yu P. S. & Wang H. (2004) Mining Extremely Skewed Trading Anoma-
lies. In: Advances in Database Technology - EDBT 2004: 9th International
Conference on Extending Database Technology

14. Forman G. (2003) An extensive empirical study of feature selection metrics for
text classification. The Journal of Machine Learning Research, Special Issue on
Variable and Feature Selection 3:1289–1305

15. Ghani R. (2002) Combining Labeled and Unlabeled Data for MultiClass Text
Categorization. In: International Conference on Machine Learning (ICML 2002)

16. Goldman S. & Zhou Y. (2000) Enhancing Supervised Learning with Unlabeled
Data. In: Proceedings of 17th International Conference on Machine Learning

17. Japkowicz N. (eds) (2000) Proceedings of the AAAI’2000 Workshop on Learning
from Imbalanced Data Sets. AAAI Tech Report WS-00-05, AAAI

18. Japkowicz N., Myers C. & Gluck M. A. (1995) A Novelty Detection Approach to
Classification. In: Proceedings of the Fourteenth International Joint Conference
on Artificial Intelligence (IJCAI-95)

19. Joachims T. (1998) Text categorization with Support Vector Machines: Learn-
ing with many relevant features. In: ECML-98, Tenth European Conference on
Machine Learning

20. Joachims T. (2001) A Statistical Learning Model of Text Classification with
Support Vector Machines. In: Proceedings of the 24th annual international
ACM SIGIR conference on Research and development in information retrieval

21. Joachims T. (2002) Learning to Classify Text Using Support Vector Machines.
Kluwer Academic Publishers

22. Leopold E. & Kindermann J. (2002) Text Categorization with Support Vector
Machines - How to Represent Texts in Input Space. Machine Learning 46:423–
444

23. Lewis D. D. & Gale W. A. (1994) A Sequential Algorithm for Training Text
Classifiers. In: Proceedings of SIGIR-94, 17th ACM International Conference
on Research and Development in Information Retrieval

24. Lewis D. D., Yang Y., Rose T. G. & Li F. (2004) RCV1: a new benchmark col-
lection for text categorization research. Journal of Machine Learning Research
5:361–397

25. Liu A. Y. C. (2004) The effect of oversampling and undersampling on classifying
imbalanced text datasets. Masters thesis. University of Texas at Austin

26. Liu B., Dai Y., Li X., Lee W. S. & Yu P. (2003) Building Text Classifiers
Using Positive and Unlabeled Examples. In: Proceedings of the Third IEEE
International Conference on Data Mining (ICDM’03)

27. Liu Y., Loh H. T. & Tor S. B. (2004) Building a Document Corpus for Manu-
facturing Knowledge Retrieval. In: Proceedings of the Singapore MIT Alliance
Symposium 2004

10 Handling of Imbalanced Data in TC: Category-Based Term Weights 191

28. Liu Y., Loh H. T., Youcef-Toumi K. & Tor S. B. (2005) MCV1: An Engineer-
ing Paper Corpus for Manufacturing Knowledge Retrieval. submitted to the
Journal of Knowledge and Information System (KAIS)

29. Man L. (2004) A Comprehensive Comparative Study on Term Weighting
Schemes for Text Categorization with Support Vector Machines. In: Text Sem-
inar of CHIME Group at the National University of Singapore

30. Manevitz L. M. & Yousef M. (2002) One-class svms for document classification.
The Journal of Machine Learning Research 2:139–154

31. Mladenic D. & Grobelnik M. (1999) Feature Selection for Unbalanced Class
Distribution and Naive Bayes. In: Proceedings of the Sixteenth International
Conference on Machine Learning, ICML’99

32. Ng H. T., Goh W. B. & Low K. L. (1997) Feature selection, perception learning,
and a usability case study for text categorization. In: ACM SIGIR Forum, Pro-
ceedings of the 20th annual international ACM SIGIR conference on Research
and development in information retrieval

33. Nickerson A., Japkowicz N. & Milios E. (2001) Using Unsupervised Learning
to Guide Re-Sampling in Imbalanced Data Sets. In: Proceedings of the Eighth
International Workshop on AI and Statitsics

34. Nigam K. P. (2001) Using unlabeled data to improve text classification. PhD
thesis. Carnegie Mellon University

35. Raskutti B. & Kowalczyk A. (2004) Extreme re-balancing for SVMs: a case
study. ACM SIGKDD Explorations Newsletter: Special issue on learning from
imbalanced datasets 6:60–69

36. Rijsbergen C. J. v. (1979) Information Retrieval. 2nd edn. Butterworths, Lon-
don, UK

37. Ruiz M. E. & Srinivasan P. (2002) Hierarchical Text Categorization Using Neu-
ral Networks. Information Retrieval 5:87–118

38. Salton G. & Buckley C. (1988) Term Weighting Approaches in Automatic Text
Retrieval. Information Processing and Management 24:513–523

39. Salton G. & McGill M. J. (1983) Introduction to Modern Information Retrieval.
McGraw-Hill, New York, USA

40. Sebastiani F. (2002) Machine Learning in Automated Text Categorization.
ACM Computing Surveys (CSUR) 34:1–47

41. Sun A., Lim E. P., Ng W. K. & Srivastava J. (2004) Blocking Reduction Strate-
gies in Hierarchical Text Classification. IEEE Transactions on Knowledge and
Data Engineering (TKDE) 16:1305–1308

42. Vapnik V. N. (1999) The Nature of Statistical Learning Theory. 2nd edn.
Springer-Verlag, New York

43. Weiss G. M. (2004) Mining with rarity: a unifying framework. ACM SIGKDD
Explorations Newsletter: Special issue on learning from imbalanced datasets
6:7–19

44. Weiss G. M. & Provost F. (2003) Learning when training data are costly: the
effect of class distribution on tree induction. Journal of Artificial Intelligence
Research 19:315–354

45. Yang Y. (1996) Sampling Strategies and Learning Efficiency in Text Catego-
rization. In: Proceedings of the AAAI Spring Symposium on Machine Learning
in Information Access

46. Yang Y. & Liu X. (1999) A re-examination of text categorization methods.
In: Proceedings of the 22nd annual international ACM SIGIR conference on
Research and development in information retrieval

192 Ying Liu, Han Tong Loh, Kamal Youcef-Toumi, and Shu Beng Tor

47. Yang Y. & Pedersen J. O. (1997) A Comparative Study on Feature Selection
in Text Categorization. In: Proceedings of ICML-97, 14th International Con-
ference on Machine Learning

48. Yu H., Zhai C. & Han J. (2003) Text Classification from Positive and Unla-
beled Documents. In: Proceedings of the twelfth international conference on
Information and knowledge management (CIKM 2003)

49. Zelikovitz S. & Hirsh H. (2000) Improving Short Text Classification Using Unla-
beled Background Knowledge. In: Proceedings of the Seventeenth International
Conference on Machine Learning(ICML2000)

50. Zheng Z., Wu X. & Srihari R. (2004) Feature selection for text categorization
on imbalanced data. ACM SIGKDD Explorations Newsletter: Special issue on
learning from imbalanced datasets 6:80–89

11

Automatic Evaluation of Ontologies

Janez Brank, Marko Grobelnik, and Dunja Mladenić

11.1 Introduction

We can observe that the focus of modern information systems is moving from “data
processing” towards “concept processing,” meaning that the basic unit of processing
is less and less an atomic piece of data and is becoming more a semantic concept
which carries an interpretation and exists in a context with other concepts. An
ontology is commonly used as a structure capturing knowledge about a certain area
by providing relevant concepts and relations between them. Analysis of textual data
plays an important role in construction and usage of ontologies, especially with the
growing popularity of semi-automated ontology construction (here referred to also
as ontology learning). Different knowledge discovery methods have been adopted for
the problem of semi-automated ontology construction [10] including unsupervised,
semi-supervised and supervised learning over a collection of text documents, using
natural language processing to obtain semantic graph of a document, visualization of
documents, information extraction to find relevant concepts, visualization of context
of named entities in a document collection.

A key factor which makes a particular discipline or approach scientific is the abil-
ity to evaluate and compare the ideas within the area. Ontologies are a fundamental
data structure for conceptualizing knowledge which is in most practical cases soft
and non-uniquely expressible. As a consequence, we are in general able to build many
different ontologies conceptualizing the same body of knowledge and we should be
able to say which of these ontologies serves better some predefined criterion. Thus,
ontology evaluation is an important issue that must be addressed if ontologies are
to be widely adopted in the semantic web and other semantics-aware applications.
Users facing a multitude of ontologies need to have a way of assessing them and
deciding which one best fits their requirements. Likewise, people constructing an
ontology need a way to evaluate the resulting ontology and possibly to guide the
construction process and any refinement steps. Automated or semi-automated on-
tology learning techniques also require effective evaluation measures, which can be
used to select the best ontology out of many candidates, to select values of tunable
parameters of the learning algorithm, or to direct the learning process itself if the
latter is formulated as finding a path through a search space.

194 Janez Brank, Marko Grobelnik, and Dunja Mladenić

The remainder of this chapter is structured as follows. In Section 11.2, we present
an overview of related work on ontology evaluation. We describe the main approaches
to ontology evaluation and show different techniques that are used to evaluate differ-
ent aspects or levels of an ontology. In Section 11.3, we refer to a formal framework
for defining an ontology and show how various aspects of evaluation can be incorpo-
rated into such a framework. In Section 11.4, we present our approach to evaluating
a hierarchic ontology by comparing it to a gold standard. In Section 11.5, we present
experiments that explore how our evaluation measure responds to various modifi-
cations in the case of a large real-world topic ontology. Finally, in Section 11.6, we
present some guidelines for future work.

11.2 Survey of Ontology Evaluation Approaches

Various approaches to the evaluation of ontologies have been considered in the lit-
erature, depending on what kind of ontologies are being evaluated and for what
purpose. Broadly speaking, most evaluation approaches fall into one of the following
categories:

• approaches based on comparing the ontology to a gold standard (which may
itself be an ontology; e.g., [16]);

• approaches based on using the ontology in an application and evaluating the
results (e.g., [22]);

• approaches involving comparisons with a source of data (e.g., a collection of
documents) about the domain that is to be covered by the ontology (e.g., [2]);

• approaches where evaluation is done by humans who try to assess how well the
ontology meets a set of predefined criteria, standards, requirements, etc. (e.g.,
[15]).

In addition to the above categories of evaluation, we can group the ontology eval-
uation approaches based on the level of evaluation, as described in the following
subsections.

11.2.1 Ontology Evaluation at Different Levels

An ontology is a fairly complex structure and it is often more practical to focus on the
evaluation of different levels of the ontology separately rather than trying to directly
evaluate the ontology as a whole. This is particularly true if the emphasis is on
having the evaluation proceed automatically rather than being entirely carried out
by human users/experts. Another reason for the level-based approach is that when
automatic learning techniques have been used in the construction of the ontology, the
techniques involved are substantially different for the different levels. The individual
levels have been defined variously by different authors (e.g., [8, 9, 3, 22, 6]), but these
various definitions tend to be broadly similar and usually involve the following levels:

• Lexical, vocabulary, or data layer. Here the focus is on which concepts, instances,
facts, etc. have been included in the ontology, and the vocabulary used to repre-
sent or identify these concepts. Evaluation on this level tends to involve compar-
isons with various sources of data concerning the problem domain (e.g., domain-
specific text corpora), as well as techniques such as string similarity measures
(e.g., edit distance).

11 Automatic Evaluation of Ontologies 195

• Hierarchy or taxonomy. An ontology typically includes a hierarchical is-a or sub-
sumption relation between concepts. Although various other relations between
concepts may be also defined, the is-a relationship is often particularly important
and may be the focus of specific evaluation efforts.

• Other semantic relations. The ontology may contain other relations besides is-a,
and these relations may be evaluated separately. This typically includes measures
such as precision and recall.

• Context level. (1) An ontology may be part of a larger collection of ontologies, and
may reference or be referenced by various definitions in these other ontologies. In
this case it may be important to take this context into account when evaluating
it [26, 3, 21]. (2) Another form of context is the application where the ontology
is to be used; basically, rather than evaluate the ontology per se, it may be more
practical to evaluate it within the context of a particular application, and to
see how the results of the application are affected by the use of the ontology in
question. Instead of focusing on an individual application, one may also focus
on evaluation from the point of view of the individual users or the organization
(e.g., company) that will use the ontology [7].

• Syntactic level. Evaluation on this level may be of particular interest for on-
tologies that have been mostly constructed manually. The ontology is usually
described in a particular formal language and must match the syntactic require-
ments of that language (use of the correct keywords, etc.). Various other syntactic
considerations, such as the presence of natural-language documentation, avoid-
ing loops between definitions, etc., may also be considered [8]. Of all aspects of
ontology evaluation, this is probably the one that lends itself the most easily to
automated processing.

• Structure, architecture, design. Unlike the first three levels on this list, which
focus on the actual sets of concepts, instances, relations, etc. involved in the
ontology, this level focuses on higher-level design decisions that were used dur-
ing the development of the ontology. This is primarily of interest in manually
constructed ontologies. Assuming that some kind of design principles or crite-
ria have been agreed upon prior to constructing the ontology, evaluation on
this level means checking to what extent the resulting ontology matches those
criteria. Structural concerns involve the organization of the ontology and its
suitability for further development (e.g., addition of new concepts, modification
or removal of old ones) [8, 9]. For some applications, it is also important that
the formal definitions and statements of the ontology are accompanied by ap-
propriate natural-language documentation, which must be meaningful, coherent,
up-to-date and consistent with the formal definitions, sufficiently detailed, etc.
Evaluation of these qualities on this level must usually be done largely or even
entirely manually by people such as ontological engineers and domain experts.

The following table summarizes which approaches from the list at the beginning of
Section 11.2 are commonly used for which of the levels discussed in this subsection.
The next few subsections will present more details about the various approaches
and levels of ontology evaluation.

196 Janez Brank, Marko Grobelnik, and Dunja Mladenić

Table 11.1. An overview of approaches to ontology evaluation on different levels.

Approach to ontology evaluation
Level Gold Application Data-driven Assessment

standard based by humans

Lexical, vocabulary, concept, data × × × ×
Hierarchy, taxonomy × × × ×
Other semantic relations × × × ×
Context (repository/application) × ×
Syntactic ×1 ×
Structure, architecture, design ×
1 “Gold standard” in the sense of comparing the syntax in the ontology definition with the syntax
specification of the formal language in which the ontology is written (e.g., RDF, OWL, etc.).

11.2.2 Evaluation on the Lexical/Vocabulary and Concept/Data
Level

An example of an approach that can be used for the evaluation of a lexical/vocabulary
level of an ontology is the one proposed by Maedche and Staab [16]. Similarity be-
tween two strings is measured based on the Levenshtein edit distance [14], normal-
ized to produce scores in the range [0, 1]. Sometimes background knowledge about
the domain can be used to introduce an improved domain-specific definition of the
edit distance; for example, when comparing names of persons, one might take into
account the fact that first names are often abbreviated [6]. A string matching mea-
sure between two sets of strings is then defined by taking each string of the first set,
finding its similarity to the most similar string in the second set, and averaging this
over all strings of the first set. One may take the set of all strings used as concept
identifiers in the ontology being evaluated, and compare it to a “gold standard” set
of strings that are considered a good representation of the concepts of the problem
domain under consideration. The gold standard could be in fact another ontology
(as in Maedche and Staab’s work), or it could be taken statistically from a corpus
of documents (see Section 11.2.4), or prepared by domain experts.

The lexical content of an ontology can also be evaluated using the concepts of
precision and recall, as known in information retrieval. In this context, precision
would be the percentage of the ontology lexical entries (strings used as concept
identifiers) that also appear in the gold standard, relative to the total number of
ontology words. Recall is the percentage of the gold standard lexical entries that also
appear as concept identifiers in the ontology, relative to the total number of gold
standard lexical entries. A downside of the precision and recall measures defined
in this way is that they do not allow for minor differences in spelling (e.g., use of
hyphens in multi-word phrases, etc.). Another way to achieve more tolerant matching
criteria [2] is to augment each lexical entry with its hypernyms from WordNet or
some similar resource; then, instead of testing for equality of two lexical entries, one
can test for overlap between their corresponding sets of words (each set containing
an entry with its hypernyms).

The same approaches could also be used to evaluate the lexical content of an
ontology on other levels, e.g., the strings used to identify relations, instances, etc.

11 Automatic Evaluation of Ontologies 197

Velardi et al. [27] describe an approach for the evaluation of an ontology learning
system which takes a body of natural-language text and tries to extract from it
relevant domain-specific concepts (terms and phrases), and then find definitions for
them (using web searches and WordNet entries) and connect some of the concepts
by is-a relations. Part of their evaluation approach is to generate natural-language
glosses for multiple-word terms. The glosses are of the form “x y = a kind of y,
〈definition of y〉, related to the x, 〈definition of x〉,” where y is typically a noun and
x is a modifier such as another noun or an adjective. A gloss like this would then
be shown to human domain experts, who would evaluate it to see if the word sense
disambiguation algorithm selected the correct definitions of x and y. An advantage
of this kind of approach is that domain experts might be unfamiliar with formal
languages in which ontologies are commonly described, and thus it might be easier
for them to evaluate the natural-language glosses. Of course, the downside of this
approach is that it nevertheless requires a lot of work on part of the domain experts.

11.2.3 Evaluation of Taxonomic and Other Semantic Relations

Brewster et al. [2] suggested using a data-driven approach to evaluate the degree of
structural fit between an ontology and a corpus of documents. (1) Given a corpus of
documents from the domain of interest, a clustering algorithm based on expectation
maximization is used to determine, in an unsupervised way, a probabilistic mixture
model of hidden “topics” such that each document can be modeled as having been
generated by a mixture of topics. (2) Each concept c of the ontology is represented
by a set of terms including its name in the ontology and the hypernyms of this name,
taken from WordNet. (11.3) The probabilistic models obtained during clustering can
be used to measure, for each topic identified by the clustering algorithm, how well the
concept c fits that topic. (11.4) At this point, if we require that each concept fits at
least some topic reasonably well, we obtain a technique for lexical-level evaluation of
the ontology. Alternatively, we may require that concepts associated with the same
topic should be closely related in the ontology (via is-a and possibly other relations).
This would indicate that the structure of the ontology is reasonably well aligned
with the hidden structure of topics in the domain-specific corpus of documents. A
drawback of this method as an approach for evaluating relations is that it is difficult
to take the directionality of relations into account. For example, given concepts
c1 and c2, the probabilistic models obtained during clustering in step (1) may be
enough to infer that they should be related, but they are not really sufficient to infer
whether e.g., c1 is-a c2, or c2 is-a c1, or if they should in fact be connected by some
other relation rather than is-a.

Given a gold standard, evaluation of an ontology on the relational level can also
be based on precision and recall measures. Spyns [25] discusses an approach for
automatically extracting a set of lexons, i.e., triples of the form 〈term1, role, term2〉,
from natural-language text. The result can be interpreted as an ontology, with terms
corresponding to concepts and roles corresponding to (non-hierarchical) relations
between concepts. Evaluation was based on precision and recall, comparing the
ontology either with a human-provided gold standard, or with a list of statistically
relevant terms. The downside of this approach is again the need for a lot of manual
human work involved in preparing the gold standard.

A somewhat different aspect of ontology evaluation has been discussed by Guar-
ino and Welty [11]. They point out several philosophical notions (essentiality, rigid-

198 Janez Brank, Marko Grobelnik, and Dunja Mladenić

ity, unity, etc.) that can be used to better understand the nature of various kinds of
semantic relationships that commonly appear in ontologies, and to discover possible
problematic decisions in the structure of an ontology. For example, a property is
said to be essential to an entity if it necessarily holds for that entity. A property
that is essential for all entities having this property is called rigid (e.g., “being a
person”: there is no entity that could be a person but isn’t; everything that is a per-
son is necessarily always a person); a property that cannot be essential to an entity
is called anti-rigid (e.g., “being a student”: any entity that is a student could also
not be a student). A class defined by a rigid property cannot be the subclass of a
class defined by an anti-rigid property. This observation allows us to conclude, if we
see an ontology in which “person” is a subclass of “student,” that this relationship
is wrong. Various other kinds of misuse of the is-a relationship can also be detected
in a similar way (for example, is-a is sometimes used to express meta-level charac-
teristics of some class, or is used instead of is-a-part-of, or is used to indicate that a
term may have multiple meanings). A downside of this approach is that it requires
manual intervention by a trained human expert familiar with the above-mentioned
notions such as rigidity; at the very least, the expert should annotate the concepts
of the ontology with appropriate metadata tags, whereupon checks for certain kinds
of errors can be made automatically. As pointed out, e.g., in [12], applications where
evaluation of this sort is truly important (and justifies the costs) are probably rela-
tively rare. However, Völker et al. [28] recently proposed an approach to aid in the
automatic assignment of these metadata tags.

Maedche and Staab [16] propose several measures for comparing the relational
aspects of two ontologies. If one of the ontologies is a gold standard, these measures
can also be used for ontology evaluation. Although this is in a way a drawback of
this method, an important positive aspect is that once the gold standard is defined,
comparison of two ontologies can proceed entirely automatically. The semantic co-
topy of a term c in a given hierarchy is the set of all its super- and sub-concepts.
Given two hierarchies H1, H2, a term t might represent some concept c1 in H1 and
a concept c2 in H2. One can then compute the set of terms which represent concepts
from the cotopy of c1 in H1, and the set of terms representing concepts from the
cotopy of c2 in H2; the overlap of these two sets can be used as a measure of how
similar a role the term t has in the two hierarchies H1 and H2. An average of this
may then be computed over all the terms occurring in the two hierarchies; this is a
measure of similarity between H1 and H2.

Similar ideas can also be used to compare other relations besides is-a. Let R1

be a binary relation in the first ontology, with a domain d(R1) and a range r(R1).
Analogously, let R2 be a binary relation in the second ontology. We can consider the
relations to be similar if d(R1) is similar to d(R2) and r(R1) is similar to r(R2). Since
d(R1) and d(R2) are simply two sets of concepts, they can be compared similarly
as in the preceding paragraph: determine the set of terms that occur as names of
any concept of d(R1) or any of its hypernyms; in analogous way, determine the
set of terms for d(R2); then compute the overlap of these two sets. The overlap
between ranges r(R1) and r(R2) can be computed in an analogous way. If there
are several such pairs of relations, the similarity can be computed for each pair and
then averaged to obtain an indicator of relational-level similarity between the two
ontologies as a whole.

11 Automatic Evaluation of Ontologies 199

11.2.4 Context-Level Evaluation

Sometimes the ontology is a part of a larger collection of ontologies that may refer-
ence one another (e.g., one ontology may use a class or concept declared in another
ontology), for example, on the web or within some institutional library of ontolo-
gies. This context can be used for evaluation of an ontology in various ways. For
example, the Swoogle search engine of Ding et al. [5] uses cross-references between
semantic-web documents to define a graph and then compute a score for each ontol-
ogy in a manner analogous to PageRank used by the Google web search engine. The
resulting “ontology rank” is used by Swoogle to rank its query results. A similar ap-
proach used in the OntoKhoj portal of Patel et al. [21]. In both cases an important
difference in comparison to PageRank is that not all “links” or references between
ontologies are treated the same. For example, if one ontology defines a subclass of
a class from another ontology, this reference might be considered more important
than if one ontology only uses a class from another as the domain or range of some
relation.

Alternatively, the context for evaluation may be provided by human experts;
for example, Supekar [26] proposes that an ontology be enhanced with metadata
such as its design policy, how it is being used by others, as well as “peer reviews”
provided by users of this ontology. A suitable search engine could then be used to
perform queries on this metadata and would aid the user in deciding which of the
many ontologies in a repository to use. The downside of this approach is that it
relies almost entirely on manual human effort to both provide annotations and to
use them in evaluating and selecting an ontology.

11.2.5 Application-Based Evaluation

Typically, the ontology will be used in some kind of application or task. The outputs
of the application, or its performance on the given task, might be better or worse
depending partly on the ontology used in it. Thus one might argue that a good
ontology is one which helps the application in question produce good results on
the given task. Ontologies may therefore be evaluated simply by plugging them
into an application and evaluating the results of the application. This is elegant
in the sense that the output of the application might be something for which a
relatively straightforward and non-problematic evaluation approach already exists.
For example, Porzel and Malaka [22] describe a scenario where the ontology, with its
relations (both is-a and others) is used primarily to determine how closely related
the meaning of two concepts is. The task is a speech recognition problem, where
there may be several hypotheses about what a particular word in the sentence really
means; a hypotheses should be coherent, which means that the interpretations of
individual words should be concepts that are relatively closely related to each other.
Thus the ontology is used to measure distance between concepts and thereby to
assess the coherence of hypotheses (and choose the most coherent one). Evaluation
of the final output of the task is relatively straightforward, and requires simply that
the proposed interpretations of the sentences are compared with the gold standard
provided by humans.

An approach like this can elegantly side-step the various complications of on-
tology evaluation and translate them to the problem of evaluating the application
output, which is often simpler. However, this approach to ontology evaluation also

200 Janez Brank, Marko Grobelnik, and Dunja Mladenić

has several drawbacks: (1) it allows one to argue that the ontology is good or bad
when used in a particular way for a particular task, but it’s difficult to generalize
this observation (what if the ontology is used for a different task, or differently for
the same task?); (2) the evaluation may be sensitive in the sense that the ontology
could be only a small component of the application and its effect on the outcome
may be relatively small (or depend considerably on the behavior of the other com-
ponents); (3) if evaluating a large number of ontologies, they must be sufficiently
compatible that the application can use them all (or the application must be suf-
ficiently flexible), e.g., as regarding the format in which the ontology is described,
the presence and names of semantic relations, etc. If it is necessary to adapt the
application somewhat for each ontology that is to be evaluated, this approach to
evaluation can quickly become very costly.

11.2.6 Data-Driven Evaluation

An ontology may also be evaluated by comparing it to existing data (usually a
collection of textual documents) about the problem domain to which the ontology
refers. For example, Patel et al. [21] proposed an approach to determine if the on-
tology refers to a particular topic, and to classify the ontology into a directory of
topics: one can extract textual data from the ontology (such as names of concepts
and relations, or other suitable natural-language strings) and use this as the input
to a text classification model. The model itself can be trained by some of the stan-
dard machine learning algorithms from the area of text classification; a corpus of
documents on a given subject can be used as the input to the learning algorithm.

Another data-driven approach has been proposed by Brewster et al. [2]. First, a
set of relevant domain-specific terms are extracted from the corpus of documents, for
example using latent semantic analysis. The amount of overlap between the domain-
specific terms and the terms appearing in the ontology (e.g., as names of concepts)
can then be used to measure the fit between the ontology and the corpus. Measures
such as precision or recall could also be used in this context.

In the case of more extensive and sophisticated ontologies that incorporate a lot
of factual information (such as Cyc, see, e.g., www.cyc.com), the corpus of docu-
ments could also be used as a source of “facts” about the external world, and the
evaluation measure is the percentage of these facts that can also be derived from
information in the ontology.

11.2.7 Multiple-Criteria Approaches

Another family of approaches to ontology evaluation deals with the problem of
selecting a good ontology (or a small short-list of promising ontologies) from a given
set of ontologies, and treats this problem as essentially a decision-making problem.
Therefore, techniques familiar from the area of decision support systems can be used
to help us evaluate the ontologies and choose one of them. Usually, these approaches
are based on defining several decision criteria or attributes; for each criterion, the
ontology is evaluated and given a numerical score. Additionally a weight is also
assigned (in advance) to each criterion, and an overall score for the ontology is then
computed as a weighted sum of its per-criterion scores. This approach is analogous to
the strategies used in many other contexts to select the best candidate out of many

11 Automatic Evaluation of Ontologies 201

(e.g., tenders, grant applications, etc.). It could be particularly useful in situations
where we are faced with a considerable number of ontologies roughly relevant to
our domain in interest and wish to select the best ontology (or a few good ones).
However, this type of approaches may still have difficulties such as the need for
much manual involvement by human experts, for the presence of a gold standard
ontology, etc. In effect, the general problem of ontology evaluation has been deferred
or relegated to the question of how to evaluate the ontology with respect to the
individual evaluation criteria.

Burton-Jones et al. [3] propose an approach of this type, with 10 simple criteria
such as syntactical correctness, clarity of vocabulary, etc. (a brief description of the
way used to compute a numeric score for each attribute is included in parentheses):

• lawfulness (i.e., frequency of syntactical errors),
• richness (how many of the syntactic features available in the formal language

are actually used by the ontology),
• interpretability (do the terms used in the ontology also appear in WordNet?),
• consistency (how many concepts in the ontology are involved in inconsistencies),
• clarity (do the terms used in the ontology have many senses in WordNet?),
• comprehensiveness (number of concepts in the ontology, relative to the average

for the entire library of ontologies),
• accuracy (percentage of false statements in the ontology),
• relevance (number of statements that involve syntactic features marked as useful

or acceptable to the user/agent),
• authority (how many other ontologies use concepts from this ontology),
• history (how many accesses to this ontology have been made, relative to other

ontologies in the library/repository).

As can be seen from this list, this methodology involves criteria from most of the
levels discussed in Section 11.2.1. A downside of this approach is that there is little
in it to help us ascertain to what extent the ontology matches the real-world state of
the problem domain to which is refers (or indeed if it really deals with the domain we
are interested in; it could be about some entirely unrelated subject; but this problem
can be at least partially addressed by text categorization techniques, as used, e.g.,
in [21]). The accuracy criterion in the list above provides a way to take the accuracy
into account when computing the overall ontology score, but it’s usually difficult
to compute the percentage of false statements otherwise than by examining them
all manually. On the positive side, the other criteria listed above can be computed
automatically (although some of them assume that the ontology under consideration
belongs to a larger library or repository of ontologies, and that metadata such as
access history is available for the repository). Fox et al. [7] propose another set of
criteria, which is however geared more towards manual assessment and evaluation of
ontologies. Their criteria involve: functional completeness (does the ontology contain
enough information for the application at hand?), generality (is it general enough
to be shared by multiple users, departments, etc.?), efficiency (does the ontology
support efficient reasoning?), perspicuity (is it understandable to the users?), preci-
sion/granularity (does it support multiple levels of abstraction/detail?), minimality
(does it contain only as many concepts as necessary?).

An even more detailed set of 117 criteria is described in [15], organized in a three-
level framework. The criteria cover various aspects of the formal language used to
describe the ontology, the contents of the ontology (concepts, relations, taxonomy,

202 Janez Brank, Marko Grobelnik, and Dunja Mladenić

axioms), the methodology used to construct the ontology, the costs (hardware, soft-
ware, licensing, etc.) of using the ontology, and the tools available for working with
the ontology. Many of the criteria are simple enough that the score of an ontology
with respect to these criteria could be computed automatically or at least without
much human involvement. The authors also cite several earlier works in the same
area, with a more moderate number of criteria.

11.3 A Theoretical Framework for Ontology Evaluation

In this section we present a formal definition of ontologies, provide examples of how
various kinds of ontologies may be captured in the context of this formalization, and
discuss how evaluation fits into this formal framework.

A reasonable and well thoughtout formal definition of ontologies has been de-
scribed recently in the work of Ehrig et al. [6]. In this formalization, the on-
tology (with datatypes) is defined as a structure O = (C, T, R, A, I, V,≤C ,≤T

, σR, σA, ιC , ιT , ιR, ιA). It consists of (disjoint) sets of concepts (C), types (T), rela-
tions (R), attributes (A), instances (I) and values (V). The partial orders ≤C (on
C) and ≤T (on T) define a concept hierarchy and a type hierarchy. The function
σR : R → C × C provides relation signatures (i.e., for each relation, the function
specifies which concepts may be linked by this relation), while σA : A → C ×T pro-
vides attribute signatures (for each attribute, the function specifies to which concept
the attribute belongs and what is its datatype). Finally, there are partial instantia-
tion functions ιC : C → 2I (the assignment of instances to concepts), ιT : T → 2V

(the assignment of values to types), ιR : R → 2I×I (which instances are related by a
particular relation), and ιA : A → 2I×V (what is the value of each attribute for each
instance). (Another formalization of ontologies, based on similar principles, has also
been described by Bloehdorn et al. [1].)

For some types of ontologies, this framework can be further extended, par-
ticularly with “concept attributes” in addition to the “instance attributes” men-
tioned above. The concept attributes would be a set A′, with a signature function
σA′ : A′ → T and an instantiation function ιA′ : A′ → 2C×V . The value of such an
attribute would not be associated to a particular instance of a concept, but would
apply to the concept as such. This extension will be useful for some of the evalu-
ation scenarios considered later in this section. Other possible extensions, such as
relations between concepts (as opposed to between instances), the introduction of
metaclasses, or the introduction of relations with arity greater than 2, are probably
of less practical interest.

A flexible formal network like this can accommodate various commonly-used
kinds of ontologies:

• Terminological ontologies where concepts are word senses and instances are
words. The WordNet ontology (http://www.cogsci.princeton.edu/∼wn/) is an
example of this. Attributes include things like natural-language descriptions of
word senses (for concepts) and string representations of words (for instances).

• Topic ontologies where concepts are topics and instances are documents. Familiar
examples include the Open Directory at http://www.dmoz.org/ or the Yahoo!
directory at http://dir.yahoo.com/. Concept attributes typically consist of a
name and a short description of each topic, and instance attributes consist of a

11 Automatic Evaluation of Ontologies 203

document title, description, URL, and the main block of the text (for practical
purposes, such text is often represented as a vector using, e.g., the TF-IDF
weighting under the vector space model of text representation).

• Data-model ontologies where concepts are tables in a data base and instances
are data records (such as in a database schema). In this setting, datatypes and
attributes in the above-mentioned formal definition of an ontology are straight-
forward analogies to the types and attributes (a.k.a. fields or columns) in a data
base management system.

Evaluation can be incorporated in this theoretical framework as a function that
maps the ontology O to a real number, e.g., in the range [0, 1]. However, as has
been seen in Section 11.2, a more practical approach is to focus the evaluation on
individual components of the ontology O (which correspond roughly to the levels of
ontology evaluation discussed in Section 11.2). Results of the evaluation of individual
components can later be aggregated into a combined ontology evaluation score [6].

• The datatypes and their values (i.e., T , V , ≤T , and ιT) would typically not be
evaluated; they are merely the groundwork on which the rest of the structure
can stand.

• A lexical- or concept-level evaluation can focus on C, I, ιC , and possibly some
instance attributes from ιA.

• Evaluation of the concept hierarchy (is-a relationship) would focus on the ≤C

partial order.
• Evaluation of other semantic relations would focus on R, ιR, and the concept

and instance attributes.
• One could also envision evaluation focusing on particular attributes; for example,

whether a suitable natural-language name has been chosen for each concept. This
kind of evaluation would take ιC and the attributes as input and assess whether
the concept attributes are suitable given ιC and the instance attributes.

• Application- or task-based evaluation could be formalized by defining the appli-
cation as a function A(D, O) which produces some output given its input data D
and the ontology O. By fixing the input data D, any evaluation function defined
on the outputs of A becomes de facto an evaluation function on O. However, the
practical applicability of such a formalization is debatable.

• Evaluation based on comparison to a gold standard can be incorporated into this
theoretical framework as a function defined on a pair of ontologies (effectively
a kind of similarity measure, or a distance function between ontologies). Simi-
larly, data-driven evaluation can be seen as a function of the ontology and the
domain-specific data corpus D, and could even be formulated probabilistically
as P (O|D).

11.4 Architecture and Approach

We have developed an approach to ontology evaluation primarily geared to enable
automatic evaluation of an ontology that includes instances of the ontology con-
cepts. The approach is based on the gold standard paradigm and its main focus is
to compare how well the given ontology resembles the gold standard in the arrange-
ment of instances into concepts and the hierarchical arrangement of the concepts
themselves. It is similar to the other existing ontology evaluation methods based on

204 Janez Brank, Marko Grobelnik, and Dunja Mladenić

a gold standard (see Section 11.2) with the main difference being that, while it bases
the evaluation on instances assigned to the ontology concepts, our approach does
not rely on natural-language descriptions of the concepts and instances (unlike e.g.,
the string edit distance approaches of Maedche and Staab [16]). No assumptions are
made regarding the representation of instances, only that we can distinguish one
instance from another (and that the ontology is based on the same set of instances
as the gold standard).

11.4.1 Task Description

We have tested our approach on a concrete task of evaluating a topic ontology based
on the “Science” subtree of the dmoz.org internet directory. The dmoz directory is
a topic ontology structured as a hierarchy of topics, and each topic may contain
(besides subtopics) zero or more links to external web pages. Each link includes
a title and a short description of the external web page. In the context of the
ontology learning scenario, each link to an external web page represents an instance
of the topic, in a manner similar to the approach to automatic classification of
Web documents into a topic ontology defined in [20]. In addition to classifying
documents into a topic ontology to populate an existing ontology, we can also define
a problem of learning an ontology given only a set of documents. In the case of
“Science” subtree of dmoz.org this means given a total of approx. 100,000 instances,
arrange the instances into a hierarchy of concepts. In effect, this is similar to an
unsupervised hierarchical clustering problem. The resulting hierarchy of concepts
(with each instance attached to one of the concepts) is in effect a simple ontology
(the hierarchical relationship between concepts can be approximately interpreted as
an “is-a” relation). One can evaluate learned ontologies by comparing them to the
“Science” subtree of the real dmoz.org directory, which will thus assume the role of
a gold standard.

In this evaluation task, each instance is represented by a short document of
natural-language text (i.e., the title and description of the external page, as it ap-
pears in the dmoz.org directory). The concepts of the learned ontologies, however,
are not explicitly represented by any terms, phrases, or similar textual descriptions.
The question of how to select a good short textual representation, or perhaps a set
of keywords, for a particular learned concept could in itself be a separate task, but
is not part of the ontology learning task whose evaluation is being discussed here.
Additionally, since the number of instances (as well as concepts) is fairly large, the
evaluation must be reasonably fast and completely automated.

11.4.2 Similarity Measures on Partitions

Our approach to evaluation is based on the analogies between this ontology learning
task and traditional unsupervised clustering. In clustering, the task is to partition a
set of instances into a family of disjoint subsets. Here, the topic ontology can be seen
as a hierarchical way of partitioning the set of instances. The clustering community
has proposed various techniques for comparing two partitions of the same set of
instances, which can be used to compare the output of an automated clustering
method with a gold-standard partition. If these distance measures on traditional
“flat” partitions can be extended to hierarchical partitions, they can be used to

11 Automatic Evaluation of Ontologies 205

compare a learned ontology to the gold-standard ontology (since both will be, in the
context of this ontology learning task, two hierarchical partitions of the same set of
instances).

One popular measure of agreement between two flat partitions is the Rand index
[24]. Assume that there is a set of instances O = {o1, . . . , on},1 with two partitions
of O into a family of disjoint subsets, U = {U1, . . . , Um} and V = {V1, . . . , Vk},
where ∪i=1..mUi = O, ∪j=1..kVj = O, Ui ∩ Ui′ = ∅ for each 1 ≤ i < i′ ≤ m, and
Vj ∩ Vj′ = ∅ for each 1 ≤ j < j′ ≤ k. Then one way to compare the partitions U
and V is to count the agreements and disagreements in the placement of instances
into clusters. If two items oi, oj ∈ O belong to the same cluster of U but to two
separate clusters of V , or vice versa, this is considered a disagreement. On the other
hand, if they belong to the same cluster in both partitions, or to separate clusters
in both partitions, this is considered an agreement between partitions. The Rand
index between U and V is the number of agreements relative to the total number of
pairs of instances (i.e., to n(n − 1)/2).

11.4.3 A Similarity Measure for Ontologies

We can elegantly formulate a similarity measure over ontologies by rephrasing the
Rand index as follows. Let us denote by U(o) the cluster of U that contains the
instance o ∈ O, and similarly by V (o) the cluster of V that contains the instance
o ∈ O. Let δX(Xi, Xj) be some distance measure between clusters Xi and Xj of a
partition X. Then we define the OntoRand index by the following formula:

OntoRandIdx(U, V) = 1−
∑

1≤i<j≤n
|δU (U(oi), U(oj)) − δV (V (oi), V (oj))|

n(n − 1)/2
. (11.1)

If we define δU (Ui, Uj) = 1 if Ui = Uj , and δU (Ui, Uj) = 0 otherwise and δV as
well in an analogous manner, we can see that the Rand index is a special case of
our OntoRand index. That is, the term bracketed by | . . . | in eq. (11.1) equals 1 if
there is a disagreement between U and V concerning the placement of the pair of
instances oi and oj . The sum over all i and j therefore counts the number of pairs
where a disagreement occurs.

When we apply the OntoRand index for the purpose of comparing ontologies,
we must take the hierarchical arrangement of concepts into account. In the original
Rand index, what matters for a particular pair of instances is simply if they be-
long to the same cluster or not. However, when concepts or clusters are organized
hierarchically, not any two different clusters are equally different. For example, two
concepts with a common parent in the tree are likely to be quite similar even though
they are not exactly the same; on the other hand, two concepts that do not have any
common ancestor except the root of the tree are probably highly unrelated. Thus, if
one ontology places a pair of instances in the same concept while the other ontology
places this pair of instances in two different concepts with a common parent, this
is a disagreement, but not a very strong one; on the other hand, if the second on-
tology places the two instances into two completely unrelated concepts, this would

1 In this section, O stands only for the set of instances, not for an entire ontology
as in Sec. 11.3. We use O instead of I for the set of instances to prevent confusion
with the use of i as an index in subscripts.

206 Janez Brank, Marko Grobelnik, and Dunja Mladenić

be a large disagreement. We use the formula for OntoRandIdx(U, V) given above,
where the functions δU and δV take this intuition into account. That is, rather than
returning merely 1 or 0 depending on whether the given two clusters are the same
or not, the functions δU and δV should return a real number from the range [0, 1],
expressing a measure of how closely related the two clusters are.

By plugging in various definitions of the functions δU and δV , we can obtain a
family of similarity measures for ontologies, suitable for comparing an ontology with
the gold standard in the context of the task that has been discussed in Section 11.4.1.
We propose two concrete families of δU and δV . Since the definitions of δU and δV

will always be analogous to each other and differ only in the fact that each applies
to a different ontology, we refer only to the δU function in the following discussion.

Similarity Based on Common Ancestors

One possibility is inspired by the approach that is sometimes used to evaluate the
performance of classification models for classification in hierarchies (see, e.g., [19]),
and that could incidentally also be useful in the context of e.g., evaluating an auto-
matic ontology population system. Given a concept Ui in the ontology U , let A(Ui)
be the set of all ancestors of this concept, i.e., all concepts on the path from the
root to Ui (including Ui itself). If two concepts Ui and Uj have a common parent,
the sets A(Ui) and A(Uj) will have a large intersection; on the other hand, if they
have no common parent except the root, the intersection of A(Ui) and A(Uj) will
contain only the root concept. Thus the size of the intersection can be taken as a
measure of how closely related the two concepts are.

δU (Ui, Uj) = |A(Ui) ∩ A(Uj)|/|A(Ui) ∪ A(Uj)|. (11.2)

This measure (also known as the Jaccard coefficient) has the additional nice char-
acteristic that it can be extended to cases where U is not a tree but an arbitrary
directed acyclic graph. If the arrows in this graph point from parents to children,
the set A(Ui) is simply the set of all nodes from which U is reachable.

Similarity Based on Distance in the Tree

An alternative way to define a suitable function δU would be to work directly with
the distances between Ui and Uj in the tree U . In this case, let l be the distance
between Ui and Uj in the tree (length of the path from Ui to the common ancestor
of Ui and Uj , and thence down to Uj), and h be the depth of the deepest common
ancestor of Ui and Uj . If l is large, this is a sign that Ui and Uj are not very closely
related; similarly, if h is small, this is a sign that Ui and Uj don’t have any common
ancestors except very general concepts close to the root, and therefore Ui and Uj

aren’t very closely related. There are various ways of taking these intuitions into
account in a formula for δU as a function of l and h. For example, Rada et al. [23]
have proposed a distance measure of the form:

δ(l, h) = e−αl tanh(βh) (11.3)

Here, α and β are nonnegative constants, and tanh is the hyperbolic tangent

tanh(x) = (ex − e−x)/(ex + e−x) = 1 − 2/(1 + e2x).

11 Automatic Evaluation of Ontologies 207

Thus, if h is small, th(βh) is close to 0, whereas for a large h it becomes close to
1. It is reasonable to treat the case when the two concepts are the same, i.e., when
Ui = Uj and thus l = 0, as a special case, and define δ(0, h) = 1 in that case, to
prevent δU (Ui, Ui) from being dependent on the depth of the concept Ui.

Incidentally, if we set α to 0 (or close to 0) and β to some large value, δ(l, h) will
be approx. 0 for h = 0 and approx. 1 for h > 0. Thus, in the sum used to define the
OntoRand index (11.1), each pair of instances contributes the value of 1 if they have
some common ancestor besides the root in one ontology but not in other, otherwise
it contributes the value of 0. Thus, the OntoRand index becomes equivalent to
the ordinary Rand index computed over the partitions of instances implied by the
second-level concepts of the two ontologies (i.e., the immediate subconcepts of the
root concept). This can be taken as a warning that α should not be too small and β
not too large, otherwise the OntoRand index will ignore the structure of the lower
levels of the ontologies.

The overlap-based version of dU from eq. (11.2) can also be defined in terms of
h and l. If the root is taken to be at depth 0, then the intersection of A(Ui) and
A(Uj) contains h +1 concepts, and the union of A(Ui) and A(Uj) contains h + l +1
concepts. Thus, we see that eq. (11.2) is equivalent to defining

δ(l, h) = (h + 1)/(h + l + 1). (11.4)

By comparing the equations (11.3) and (11.4), we see a notable difference between
the two definitions of δ: when h = 0, i.e., when the two instances have no common
ancestor except the root, eq. (11.3) returns δ = 0 while eq. (11.4) returns δ =
1/(l + 1) > 0. When comparing two ontologies, it may often happen that many
pairs of instances have no common ancestor (except the root) in either of the two
ontologies, i.e., hU = hV = 0, but the distance between their concepts is likely to be
different: lU �= lV . In these cases, using eq. (11.3) will result in δU = δV = 0, while
eq. (11.4) will result in δU �= δV . When the resulting values |δU − δV | are used in
eq. (11.1), we see that in the case of definition (11.3), many terms in the sum will be
0 and the OntoRand index will be close to 1. For example, in our experiments with
the Science subtree of dmoz.org (Sec. 11.5.3), despite the fact that the assignment of
instances to concepts was considerably different between the two ontologies, approx.
81% of instance pairs had hU = hV = 0 (and only 3.2% of these additionally had
lU = lV). Thus, when using the definition of δ from eq. (11.3) (as opposed to the
overlap-based definition from eq. (11.4)), we must accept the fact that most of the
terms in the sum (11.1) will be 0 and OntoRand index will be close to 1. This does
not mean that the resulting values of OntoRand are not useful for assessing whether,
e.g., one ontology is closer to the gold standard than another ontology is, but it may
nevertheless appear confusing that OntoRand is always so close to 1. In this case a
possible alternative is to replace eq. (11.3) by

δ(l, h) = e−αl tanh(βh+1) (11.5)

The family of δ-functions defined by (11.5) can be seen as a generalization (in a loose
sense) of the δ-function from formula (11.4). For example, we compared the values
of δ produced by these two definitions on a set of 106 random pairs of documents
from the dmoz.org Science subtree. For a suitable choice of α and β, the definition
(11.5) can be made to produce values of δ that are very closely correlated with those
of definition (11.4) (e.g., correl. coefficient = 0.995 for α = 0.15, β = 0.25). Similarly,

208 Janez Brank, Marko Grobelnik, and Dunja Mladenić

when we compute |δU − δV | for various pairs of documents (when using eq. (11.1)
to compare two ontologies in Sec. 11.5.3), definition (11.5) can yield values closely
correlated to those of definition (11.4) for suitable values of α and β (e.g., correl.
coef. = 0.981 for α = 0.8, β = 1.5). However, note that the fact that δ values of
(11.5) are closely correlated with those of (11.4) for some choice of α and β does not
imply that the |δU − δV | will also be closely correlated for the same choice of α and
β (or vice versa).

The need to select concrete values of α and β is one of the disadvantages of using
the definition (11.3) (or (11.5)) rather than the overlap-based definition (11.2) (or
equivalently (11.4)).

Further generalizations. The distance measure (11.3) could be further generalized
by taking δ(l, h) = f(l)g(h) for any decreasing function f and increasing function g.
Since the values l and h are always integers and are limited by the depth of the tree
(or twice the depth in the case of l), the functions f and g (or even δ(l, h) itself)
could even be defined using a table of function values for all possible l and h.

Note that the main part of the OntoRand index formula, as defined in equa-
tion (11.1), i.e., the sum

∑
1≤i<j≤n

|δU (U(oi), U(oj)) − δV (V (oi), V (oj))|, can also

be interpreted as a Manhattan (L1-norm) distance between two vectors of n(n−1)/2
components, one depending on the ontology U and the other depending only on the
ontology V . Thus, in effect, we have represented an ontology U by a “feature vec-
tor” in which the (i, j)-th component has the value δU (U(oi), U(oj)) describing how
closely the instances oi and oj have been placed in that ontology. This interpreta-
tion opens the possibility of various further generalizations, such as using Euclidean
distance instead of Manhattan distance, or even using kernel methods (cf. [13]).
However, we leave such extensions for further work.

11.4.4 Approximation Algorithms

As can be seen from eq. (11.1), the computation of our ontology similarity measure
involves a sum over all pairs of documents, (i, j) for 1 ≤ i < j ≤ n. This quadratic
time complexity can be problematic when comparing ontologies with a fairly large
number of instances (e.g., on the order of 100,000, as in the case of the dmoz.org “Sci-
ence” subtree mentioned in Section 11.4.1). One way to speed up the computation of
the similarity measure and obtain an approximate result is to use a randomly sam-
pled subset of pairs rather than all possible pairs of documents. That is, eq. (11.1)
would then contain the average value of |δU (U(oi), U(oj)) − δV (V (oi), V (oj))| over
some subset of pairs instead of over all pairs.

Another way towards approximate computation of the similarity measure is to
try to identify pairs (i, j) for which the difference |δU (U(oi), U(oj))−δV (V (oi), V (oj))|
is not close to 0. If both ontologies classify the instances oi and oj into highly unre-
lated clusters, the values δU (U(oi), U(oj)) and δV (V (oi), V (oj)) will both be close
to 0 and their difference will also be close to 0 and will not have a large effect on
the sum. (In a typical dmoz-like hierarchy we can expect that a large proportion
of pairs of instances will fall unto such relatively unrelated clusters. As an extreme
case, consider the definition of δU using eq. (3). If a pair of instances has no common
ancestor concept except the root, h will be 0 and thus δU will be 0. If this happens
in both ontologies, the pair will contribute nothing to the sum in eq. (11.1).) Thus it
would be reasonable to try identifying pairs (i, j) for which oi and oj are in closely

11 Automatic Evaluation of Ontologies 209

related clusters in at least one of the two ontologies, and computing the exact sum
for these pairs, while disregarding the remaining pairs (or processing them using the
subsampling technique from the previous paragraph). For example, suppose that δU

is defined by eq. (11.4) as δ(l, h) = (h + 1)/(h + l + 1). Thus, we need to find pairs
of concepts for which (h + 1)/(h + l + 1) is greater than some threshold ε. (Then
we will know that detailed processing is advisable for pairs of instances which fall
into one of these pairs of concepts.) The condition (h + 1)/(h + l + 1) > ε can be
rewritten as l < (h+1)(1/ε−1). Thus, suitable pairs of concepts could be identified
by the following algorithm:

Initialize P := {}.
For each concept c:

Let h be the depth of c, and let L = �(h + 1)(1/ε − 1)�.
Denote the children of c (its immediate subconcepts) by c1, . . . , cr.
For each l from 1 to L, for each i from 1 to r, let Sl,i be the set of

those subconcepts of c that are also subconcepts of ci

and are l levels below c in the tree.
For each l from 1 to L, for each i from 1 to r,

add to P all the pairs from Sl,i × (∪l′≤L−1 ∪i′ �=i Sl′,i′).

In each iteration of the outermost loop, the algorithm processes a concept c and
discovers all pairs of concepts c′, c′′ such that c is the deepest common ancestor of
c′ and c′′ and δU (c′, c′′) > ε. For more efficient maintenance of the Sl,i sets, it might
be advisable to process the concepts c in a bottom-up manner, since the sets for a
parent concept can be obtained by merging appropriate sets of its children.

For the time being, we have tested random sampling of pairs as outlined at the
beginning of this subsection. Separate treatment of pairs with (h+1)/(h+ l+1) > ε
will be the topic of future work.

11.5 Evaluation of the Proposed Approach

The idea of evaluating the proposed approach to automatic ontology evaluation is in
showing its output on several concrete situations enabling the reader to get an idea
of the approach results given a well-defined mismatch in the ontologies (the learned
ontology and the “gold-standard” ontology). Namely, instead of learning an ontology
that we then evaluate, we use the “gold-standard” ontology, introduce some errors
in it and use it to simulate the learned ontology. We have defined several simple and
intuitive operations for introducing errors in the “gold-standard” ontology. The aim
is to illustrate a kind of mismatch that can be found between the learned ontology
and the “gold-standard” ontology and its influence on the evaluation score of the
proposed OntoRand index. The following operations are presented below in our
evaluation of the proposed approach:

• Removing lower levels of the tree — deleting all concepts below a certain depth
in the tree (see Section 11.5.1).

• Swapping a concept and its parent (see Section 11.5.2).
• Reassigning instances to concepts based on their associated natural language

text (see Section 11.5.3).

210 Janez Brank, Marko Grobelnik, and Dunja Mladenić

The dataset we used for the evaluation is the dmoz.org directory as of October 21,
2005. It contains 687,333 concepts and 4,381,225 instances. The concepts are orga-
nized into a tree; the deepest parts of the hierarchy go 15 levels deep, but in most
places it is shallower (85% of all concepts are on levels 5 through 9, and the av-
erage node depth is 7.13). Since it would be too time-consuming to compute our
OntoRand index over all pairs of documents (there are approx. 9.6 ·1012 such pairs),
we used a random sample of 106 pairs of documents.

In the case of the similarity measure (11.3), which is based on the tree distance
between two concepts, it is necessary to select the parameters α and β. Recall that
α is used in the term e−αl, where l is the length of the path from one concept to
the other. Since our hierarchy has just 15 levels, we know that l ≤ 28 for any pair of
nodes; but since most nodes are on levels 5 through 9, we can expect l to be around
10–15 for a typical random pair of unrelated concepts. We decided to use α = 0.3,
which results in e−αl values from 0.74 (for l = 1) to 0.22 (for l = 5), 0.05 (for l = 10)
and 0.01 (for l = 15).

The parameter β can be chosen using similar considerations. It is used in the
term tanh(βh), where h is the level at which the last common ancestor of the two
concepts is located. Thus in our case h will be between 0 and 14, and will be close
to 0 for two random unrelated concepts. For two very closely related concepts, h
will typically be close to the depth of these two concepts, which (as we saw above)
is on average around 7. We use β = 0.4, which results in values of tanh(βh) ranging
from 0 (for h = 0) and 0.20 (for h = 1) to 0.76 (for h = 5), 0.89 (for h = 7), and
0.96 (for h = 10).

In general, the choice of values of α and β depends on the characteristics of the
ontologies we are dealing with. A more principled way of choosing α and β might
be to set explicit requirements on the value that we want e−αl to have for a pair
of two random (i.e., typically unrelated) documents, and on the value that we want
tanh(βh) to have for a pair of two very closely related documents.

11.5.1 Removing Lower Levels of the Tree

In this scenario we keep only the upper k levels of the tree, for various values of k.
Any concepts located at levels from k + 1 on are discarded; instances that used to
be assigned to one of the deleted concepts are reassigned to its ancestor on the level
k − 1 (i.e., the deepest level that was not deleted). We then compare the resulting
tree with the original tree. This removal of lower levels of the tree corresponds to
the scenario that the ontology is being constructed automatically in a top-down
manner (e.g., by hierarchical top-down clustering of instances) and some automatic
stopping criterion is used to decide when to stop partitioning the clusters; if we stop
too early, the resulting hierarchy will lack the lower levels. The chart in Figure 11.1
shows how the overlap measure (eq. 11.2) and the tree distance measure (eq. 11.3)
react to this gradual removal of lower parts of the hierarchy.

We note that the overlap-based similarity measure increases monotonically as
more and more levels are kept. The increase is quick at first and slow at the end,
which is reasonable because (as has been noted above) the deeper levels of the hier-
archy contain relatively few nodes, so discarding them does not alter the hierarchy
so dramatically. For instance, if we constructed an ontology in a top-down manner
and stopped when the ontology is at most seven levels deep, the OntoRand index

11 Automatic Evaluation of Ontologies 211

Fig. 11.1. Evaluation of ontologies that lack lower levels, based on the OntoRand
index. The overlap-based similarity measure uses eq. (11.2) to define δU , while the
tree-distance based similarity measure uses eq. (11.3). The dotted line shows an
analytical approximation of the OntoRand values based on the overlap similarity
measure.

would estimate the similarity of this ontology to the gold standard (having an av-
erage node depth of approx. 7) as 0.94. On the other hand, if we stopped after at
most three levels, the OntoRand index would be 0.74.

It may be somewhat surprising that the similarity of an ontology to the original
one is still as high as 0.74 even if only the top three levels of the ontology have
been kept. To understand this, consider a pair of random concepts; in the original
hierarchy, they are typically unrelated and are located around the 7th level, so
the ancestor sets of eq. (11.2) have an intersection of 1 and a union of around 13,
resulting in the overlap measure δ ≈ 1/13. In the pruned hierarchy, where only k
uppermost levels have been retained, and documents from lower nodes reassigned
to the ancestor nodes at level k− 1, such a random pair of documents would yield δ
around 1/(2k − 1). Thus such pairs of documents would push the OntoRand index
value towards 1 − |1/13 − 1/(2k − 1)|. As the “analytical approximation” in the
chart shows, this is not an altogether bad predictor of the shape of the curve for the
overlap-based measure.

The tree-distance similarity measure is slightly more problematic in this scenario.
In the original tree, a typical random pair of instances falls into unrelated concepts
that have no common ancestors except the root, i.e., h = 0 and thus δ = 0 (or δ
close to 0 even if h > 0). If a few deepest levels of the tree are removed and instances
reassigned to the suitable ancestor concepts, any pair of instances that used to have
h = 0 will still have h = 0, thus its δ according to eq. (11.3) remains unchanged and
this pair does not help decrease the similarity measure between the new hierarchy
and the original one. This is why the similarity as measured by OntoRand remains
relatively high all the time. Only concept pairs with h > 0 contribute towards the
dissimilarity, because their distance (l in eq. (11.3)) decreases if the lower levels are
pruned away and the instances moved to higher-level concepts. Because l is used in
the term e−αl, decreasing l causes the value of δ to increase for that pair of instances;
the more levels we prune away, the larger δ will be compared to its original value,
and the OntoRand similarity decreases accordingly. A quirk occurs at the very end,

212 Janez Brank, Marko Grobelnik, and Dunja Mladenić

when only one level remains and h drops to 0 even for these pairs of instances;
thus δ doesn’t increase when we move from two levels to 1: it drops to 0 instead,
causing the overall OntoRand similarity to grow again. This non-monotonicity could
be addressed by modifying the formula (11.3) somewhat, but it doesn’t really have a
large practical impact anyway, as in a practical setting the ontology to be compared
to the gold standard would certainly have more than one level.

11.5.2 Swapping a Concept and Its Parent

This operation on trees is sometimes known as “rotation.” Consider a concept c
and its parent concept c′. This operation replaces c and c′ so that c′ becomes the
child of c; all other children of c′, which were formerly the siblings of c, are now
its grandchildren; all the children of c, which were formerly the grandchildren of
c′, are now its siblings. If c′ formerly had a parent c′′, then c′′ is now the parent
of c, not of c′. The result of this operation is a tree such as might be obtained by
an automated ontology construction algorithm that proceeds in a top-down fashion
and did not split the set of instances correctly (e.g., instead of splitting the set of
instances related to science into those related to physics, chemistry, biology, etc.,
and then splitting the “physics” cluster into mechanics, thermodynamics, nuclear
physics, etc., it might have split the “science” cluster into mechanics, thermodynam-
ics, nuclear physics, and “miscellaneous,” where the last group would later be split
into chemistry, biology, etc.). How does this operation affect the values of h and l
used in eqs. (11.2) and (11.3)? For two concepts that were originally both in the
subtree rooted by c, the value of h decreases by 1; if they were both in the subtree
of c′ but not in the subtree of c, the value of h increases by 1; if one was in the
subtree of c and the other outside the subtree of c′, the value of l decreases by 1; if
one was in the subtree of c′ but not in the subtree of c, and the other was outside
the subtree of c′, the value of l increases by 1; otherwise, nothing changes. The last
case includes in particular all those pairs of instances where none belonged to the
subtree rooted by c′ in the original ontology; this means the vast majority of pairs
(unless the subtree of c was very large). Thus the disagreement in the placement
of documents is usually quite small for an operation of this type, and OntoRand
is close to 1. This phenomenon is even more pronounced when using the similarity
measure based on tree distance (eq. 11.3) instead of the overlap measure (eq. 11.2).
Therefore, in the charts below (Figures 11.2 and 11.3), we show only the results for
the overlap measure and we show 1 − OntoRand instead of OntoRand itself.

We performed 640 experiments with this operation, using one of the 640
third-level categories as the category c (e.g., replacing Top/Science/Physics and
Top/Science, etc.).

Figure 11.2 shows that the dissimilarity of the ontology after rotation to the
original ontology grows with the size of the parent subtree of c, while Figure 11.3
shows that this dissimilarity decreases with the size of c’s own subtree. This is
reasonable: the more instances there are in c’s subtree, the less different it is from
its parent, and the less the ontology has changed due to the rotation. For instance,
the topmost group of “×” symbols on both charts of Figure 11.3 corresponds to
experiments where c was one of the subcategories of the largest second-level category,
Top/World. As the right chart on Figure 11.3 shows, the dissimilarity is almost
linearly proportional to the difference in the size of the parent subtree and the
subtree rooted by c.

11 Automatic Evaluation of Ontologies 213

Fig. 11.2. Evaluation of ontologies where a concept c has been swapped with its
parent. The chart shows one symbol for each choice of c. The number of instances
in the parent subtree (the one rooted by c’s parent) is used as the x-coordinate, and
the dissimilarity after rotation is used as the y-coordinate.
As we can see, dissimilarity tends to grow approximately linearly with the size of
the parent subtree. The groups of symbols on the right represent experiments where
c was the child of one of the two largest second-level categories (Top/World and
Top/Regional).

Fig. 11.3. Evaluation of ontologies where a concept c has been swapped with its
parent. These charts explore the connection between dissimilarity and the number
of instances in c’s own subtree. Again each choice of c is represented by one sym-
bol (whose shape depends on the number of instances in the subtree rooted by c’s
parent). In the left chart, the x-coordinate is the number of instances in c’s own sub-
tree; in the right chart, the x-coordinate is the difference in the number of instances
between the parent’s and c’s own subtree.

11.5.3 Reassignment of Instances to Concepts

In the dmoz ontology, each instance is really a short natural-language document
consisting of a web page title and description (usually 10–20 words). In this scenario,
we follow the standard practice from the field of information retrieval and represent
each document by a normalized TF-IDF vector. Based on these vectors, we compute
the centroid of each concept, i.e., the average of all documents that belong to this
concept or to any of its direct or indirect subconcepts. The cosine of the angle
between a document vector and a concept centroid vector is a measure of how
closely the topic of the document matches the topic of the concept (as defined by

214 Janez Brank, Marko Grobelnik, and Dunja Mladenić

the set of all documents belonging to that concept). We then reassign each document
to the category whose centroid is the most similar to the document vector. Thus,
the hierarchical relation between concepts remains unchanged, but the assignment of
instances to concepts may change considerably. This reassignment of instances to the
nearest concepts resembles operations that might be used in an automated ontology
construction/population approach (e.g., analogous to k-means clustering). We then
measure the similarity of the new ontology (after the reassignment of documents to
concepts) to the original one.

For reasons of scalability, the experiments in this section were not performed
on the entire dmoz ontology, but only on its “Science” subtree. This consists of
11,624 concepts and 104,853 documents. We compare two reassignment strategies:
“thorough reassignment” compares each document vector to the centroids of all
concepts, while “top-down reassignment” is a greedy approach that starts with the
root concept and proceeds down the tree, always moving into the subconcept whose
centroid is the most similar to the document vector. When a leaf is reached, or when
none of the subconcept centroids is more similar to the document vector than the
current concept’s centroid, the procedure stops and assigns the document to the
current concept. This is much faster than thorough reassignment, but it has the risk
of being derailed into a less promising part of the tree due to bad choices in the
upper levels.

Fig. 11.4. Evaluation of ontology where instances have been reassigned to concepts
based on their natural-language descriptions. The number of reassignment steps is
used as the x-coordinate. The left chart shows the similarity of the original ontology
and the ontology after reassignment. The right chart shows the average distance (as
measured by δU , eq. (11.2)) between a concept containing an instance in the original
ontology and the concept to which the instance has been reassigned.

After documents are reassigned to concepts, new centroids of the concepts may
be computed (based on the new assignment of documents to concepts), and a new
reassignment step performed using the new centroids. The charts on Figure 11.4
show the results for up to five reassignment steps. The overlap-based definition of
δU (see eq. (11.2)) was used for both charts.

The left chart in Figure 11.4 shows the similarity of the ontology after each reas-
signment step to the original ontology. As can be expected, top-down reassignment
of documents to concepts introduces much greater changes to the ontology than
thorough reassignment. Most of the change occurs during the first reassignment
step (which is reasonable as it would be naive to expect a simple centroid-based

11 Automatic Evaluation of Ontologies 215

nearest neighbor approach using 10–20 word descriptions to accurately match the
classification of the human editors working for dmoz). In fact, it turns out that
93% of documents are moved to a different concept during the first top-down re-
assignment step (or 66% during the first thorough reassignment step). However,
the similarity measure between the new ontology and the original one is neverthe-
less fairly high (around 0.74). The reasons for this are: firstly, only the assignment
of documents to concepts has been changed, but not the hierarchical relationship
between the concepts; secondly, if documents are moved to different concepts in a
consistent way, δU may change fairly little for most pairs of documents, resulting in
a high OntoRand index value; thirdly, even though 93% of documents were moved
to a different concept, the new concept was often fairly close to the original one.
This is shown on the right chart, where the value of δU was computed between the
concept containing a document in the original ontology and the one containing this
document after a certain number of reassignment steps; this was then averaged over
all documents. As this chart shows, even though only 7% of documents remained in
the same concept during the first step of top-down reassignment, the average (over
all documents) δU between the original and the new concept is not 0.07 but much
higher — approx. 0.31.

11.6 Discussion and Future Work

The main features of our proposed approach are that it focuses on fully automated
evaluation of ontologies, based on comparison with a gold standard ontology; it does
not make any assumptions regarding the description or representation of instances
and concepts, but assumes that both ontologies have the same set of instances. We
proposed a new ontology similarity measure, OntoRand index, designed by analogy
with the Rand index that is commonly used to compare partitions of a set. We
propose several versions of the OntoRand index based on different underlying mea-
sures of distance between concepts in the ontology. We evaluated the approach on
a large ontology based on the dmoz.org web directory. The experiments were based
on several operations that modify the gold standard ontology in order to simulate
possible discrepancies that may occur if a different ontology is constructed over
the same problem domain (and same set of instances). The experiments show that
the measure based on overlap of ancestor sets (Section 11.4.3) is more convenient
than the measure based on tree distance (Sec. 11.4.3), because the latter requires
the user to define the values of two parameters and it is not obvious how to do
this in a principled way. Additionally, the tree-distance based measure is often less
successful at spreading similarity values over a greater part of the [0, 1] interval; to
address this issue, we propose a modified similarity measure (eq. 11.5), which we will
evaluate experimentally in future work. Another issue, which is shared by both sim-
ilarity measures proposed here, is that the resulting OntoRand index is sometimes
insufficiently sensitive to differences that occur in the upper levels of the ontology
(Sec. 11.5.2). Section 11.5.3 indicates another possible drawback of this approach,
namely that keeping the structure of the concept hierarchy and modifying only the
assignment of instances to concepts may not affect the similarity measure as much
as a human observer might expect.

216 Janez Brank, Marko Grobelnik, and Dunja Mladenić

From a purely algorithmic point of view, it would also be interesting to explore
if the ontology similarity measure as currently defined in Section 11.4.3 can be
accurately computed in sub-quadratic time (in terms of the number of instances).

The experimental evaluation in Section 11.5 could be extended with various other
operations. For example, we could split existing leaf concepts into subconcepts, either
randomly or using some clustering technique. This is the converse of the operation of
removing the leaf concepts described in Section 11.5.1. Another possibly interesting
operation would be to merge two or more sibling concepts. As the experiments
with switching a concept and its parent showed (Sec. 11.5.2), a rearrangement of
concepts in the upper levels of the tree (in our case we were switching a third-level
concept and its parent, which is a second-level concept) might have only a very
small effect on the similarity measure. Depending on the intended application, this
may be undesirable from a human point of view because changes in the upper levels
correspond to significantly different decisions regarding the conceptualization of the
main concepts (especially the more abstract ones) of the domain of interest. These
are important decisions that occur in the early stages of ontology construction;
therefore, it might be helpful if our similarity measures could be extended to be
more sensitive to such differences in the organization of concepts in the upper levels
of the ontology.

11.6.1 Evaluation without Assuming the Same Set of Instances

The proposed approach presented in Section 11.4 assumes that we are comparing
two ontologies based on the same set of instances (but with different sets of concepts,
different assignment of instances to concepts and different arrangement of concepts
into a hierarchy). One way to extend this approach would be to allow for comparison
of ontologies based on different sets of instances. In this case it is no longer possible to
take a pair of instances and observe where they are placed in one ontology and where
in the other, because each ontology has its own separate set of instances. Assuming
that each instance is represented by a textual document, some kind of matching
would need to be introduced. Given two instances oi and oj from the ontology
U , one might find a few nearest neighbours of oi and oj in the ontology V , and
observe δV on the pairs of these nearest neighbours. However, this would introduce
an additional level of time complexity.

Comparison of two ontologies could also be based on the principle of edit dis-
tance. In this case one is looking for a sequence of edit operations that can transform
one ontology into the other, while minimizing the total cost (e.g., the number of
edit operations). However, if the two ontologies have different sets of concepts (and
possibly even different sets of instances), it might be difficult to efficiently find a
minimum-cost sequence of edit operations. Some efficient algorithms for comparing
ordered trees on the edit distance principle are known (see e.g., [4]), but here we
would be dealing with unordered trees.

Another direction that might be promising to explore would be ontology similar-
ity measures based on information-theoretic principles. For example, the variation-
of-information metric for comparing two flat partitions of a set of instances [17] has
been shown to have a number of desirable and theoretically appealing characteris-
tics [18]. Essentially this metric treats cluster membership as a random variable; two
different partitions of a set of instances are treated as two random variables and the
mutual information between them is used as a measure of the similarity of the two

11 Automatic Evaluation of Ontologies 217

partitions. This similarity measure could be extended to hierarchical partitions. It
would need to roughly answer a question such as: How many bits of information do
we need to convey in order to describe, for each instance, where it belongs in the
second hierarchy, if we already know the position of all instances in the first hierar-
chy? A suitable coding scheme would need to be introduced; e.g., for each concept c
of the first hierarchy, find the most similar concept c′ in the second hierarchy; then,
for each instance o from c, to describe its position in the second hierarchy, list a
sequence of steps (up and down the is-a connections in the hierarchy) that leads
from c′ to the concept that actually contains the instance o.

11.6.2 Evaluation without a Gold Standard

It would also be interesting to try evaluating an ontology “by itself” rather than
comparing it to a gold standard. This type of evaluation would be useful in many
contexts where a gold standard ontology is not available. One possibility is to have
a partial gold standard, such as a list of important concepts but not a hierarchy;
evaluation could then be based on precision and recall (i.e., observing how many
of the concepts from the gold-standard list also appear in the constructed ontology,
and vice versa). Another scenario is if a gold standard is not available for our domain
of interest but for some other domain, we can use that domain and its gold stan-
dard to evaluate/compare different ontology learning algorithms and/or tune their
parameters, then use the resulting settings on the actual domain of our interest in
the hope that the result will be a reasonable ontology, even though we do not have
a gold standard to compare it to.

However, approaches that completely avoid the need for a gold standard could
also be considered. In the case of “flat” partitions in traditional clustering, measures
such as cluster compactness or inter-cluster distance are often used to evaluate a
flat partition: instances from the same cluster should be close to each other, while
instances from different clusters should be as far apart as possible. Measures of
this sort could also be extended to hierarchical partitions. One could also envision
using machine learning methods to evaluate a partition: the partition can be seen
as dividing the set of instances into several disjoint classes, and we can try learning
a classification model for each class. If the partition of instances into classes was
reasonable, one would expect the resulting classifiers to perform better than if the
partition was essentially random or unrelated to the attributes of the instances.

11.7 Acknowledgments

This work was supported by the Slovenian Research Agency and the IST Programme
of the European Community under SEKT Semantically Enabled Knowledge Tech-
nologies (IST-1-506826-IP) and PASCAL Network of Excellence (IST-2002-506778).
This publication only reflects the authors’ views.

218 Janez Brank, Marko Grobelnik, and Dunja Mladenić

References

1. Bloehdorn S, Haase P, Sure Y, Voelker J, Bevk M, Bontcheva K, Roberts I
(2005) Report on the integration of ML, HLT and OM. SEKT Deliverable
D.6.6.1, July 2005.

2. Brewster C, Alani H, Dasmahapatra S, Wilks Y (2004) Data driven ontology
evaluation. In: Proceedings of the Int. Conf. on Language Resources and Eval-
uation, Lisbon, Portugal, 26–28 May 2004.

3. Burton-Jones A, Storey V C, Sugumaran V, Ahluwalia P (2004) A semiotic
metrics suite for assessing the quality of ontologies. Data and Knowledge En-
gineering 55(1):84–102.

4. Chawathe S S, Rajaraman A, Garcia-Molina H, Widom J (1996). Change Detec-
tion in Hierarchically Structured Information. In: Proc. of the ACM SIGMOD
Conference, pp. 493–504, 1996.

5. Ding L, Finin T, Joshi A, Pan R, Cost R S, Peng Y, Reddivari P, Doshi V,
Sachs J (2004). Swoogle: A search and metadata engine for the semantic web.
In: Proc. ACM Conf. on Information and Knowledge Mgmt, pp. 652–659, 2004.

6. Ehrig M, Haase P, Hefke M, Stojanovic N (2005). Similarity for ontologies —
a comprehensive framework. In: Proc. 13th Eur. Conf. Information Sys., 2005.

7. Fox M S, Barbuceanu M, Gruninger M, Lin J (1998). An organization ontol-
ogy for enterprise modelling. In: Prietula M et al. (eds.) Simulating organi-
zations: Computational models of institutions and groups, AAAI/MIT Press,
1998, pp. 131–152.

8. Gómez-Pérez A (1994) Some ideas and examples to evaluate ontologies. Knowl-
edge Systems Laboratory, Stanford University, 1994.

9. Gómez-Pérez A (1996) Towards a framework to verify knowledge sharing tech-
nology. Expert Systems with Applications, 11(11.4):519–529.

10. Grobelnik M, Mladenić D (2005) Automated Knowledge Discovery in Advanced
Knowledge Management. Journal of Knowledge Management, 9(5):132–149.

11. Guarino N, Welty C (2002) Evaluating ontological decisions with OntoClean.
Communications of the ACM, 45(2):61–65, February 2002.

12. Hartmann J, Spyns P, Giboin A, Maynard D, Cuel R, Suárez-Figueroa M C,
Sure Y (2005) Methods for ontology evaluation. KnowledgeWeb Deliverable
D1.2.3, January 2005.

13. Haussler, D (1999) Convolution kernels on discrete structures. Technical report,
Department of Computer Science, University of California at Santa Cruz, 1999.

14. Levenshtein VI (1966) Binary codes capable of correcting deletions, insertions,
and reversals. Soviet Physics Doklady 10(8):707–710.

15. Lozano-Tello A, Gómez-Pérez A (2004) Ontometric: A method to choose the
appropriate ontology. Journal of Database Management, 15(2):1–18.

16. Maedche A, Staab S (2002) Measuring similarity between ontologies. In: Proc.
13th Conf. on Information and Knowledge Mgmt. (2002). LNAI vol. 2473.

17. Meila M (2003) Comparing clusterings by the variation of information. In: Proc.
of the 16th Annual Conference on Computational Learning Theory, 2003.

18. Meila M (2005) Comparing clusterings — an axiomatic view. In: Proc. of the
Int. Conference on Machine Learning, 2005.

19. Mladenić D (1998) Machine Learning on non-homogeneous, distributed text
data. Ph.D. thesis, University of Ljubljana, 1998.

20. Mladenić D, Grobelnik M (2003) Feature selection on hierarchy of web docu-
ments. Journal of Decision support systems, 35:45–87.

11 Automatic Evaluation of Ontologies 219

21. Patel C, Supekar K, Lee Y, Park E K (2004) OntoKhoj: a semantic web portal
for ontology searching, ranking and classification. In: Proc. of the 5th ACM
Workshop on Web Information and Data Mgmt, New Orleans, USA, 2004.

22. Porzel R, Malaka R (2004) A task-based approach for ontology evaluation. In:
Proc. ECAI 2004 Workshop on Ontology Learning and Population, pp. 9–16.

23. Rada R, Mili H, Bicknell E, Blettner M (1989) Development and application
of a metric on semantic nets. IEEE Trans. on Systems, Man, and Cybernetics,
19(1):17–30.

24. Rand W M (1971) Objective criteria for the evaluation of clustering methods.
Journal of the American Statistical Association, 66:846–850.

25. Spyns P (2005) EvaLexon: Assessing triples mined from texts. Technical Report
09, STAR Lab, Brussels, 2005.

26. Supekar K (2005) A peer-review approach for ontology evaluation. In: Proceed-
ings of the Int. Protégé Conf., Madrid, Spain, 2005.

27. Velardi P, Navigli R, Cucchiarelli A, Neri F (2005) Evaluation of OntoLearn,
a methodology for automatic learning of domain ontologies. In: Buitelaar P,
Cimiano P, Magnini B (eds) Ontology Learning from Text: Methods, Evaluation
and Applications, IOS Press, 2005.

28. Völker J, Vrandecic D, Sure Y (2005) Automatic evaluation of ontologies
(AEON). In: Proceedings 4th International Semantic Web Conference, 2005.

12

Linguistic Computing with UNIX Tools

Lothar M. Schmitt, Kiel Christianson, and Renu Gupta

12.1 Introduction

This chapter presents an outline of applications to language analysis that open up
through the combined use of two simple yet powerful programming languages with
particularly short descriptions: sed and awk. We shall demonstrate how these two
UNIX1 tools can be used to implement small, useful and customized applications
ranging from text-formatting and text-transforming to sophisticated linguistic com-
puting. Thus, the user becomes independent of sometimes bulky software packages
which may be difficult to customize for particular purposes.

To demonstrate the point, let us list two lines of code which rival an application
of “The Oxford Concordance Program OCP2” [21]. Using OCP2, [28] conducted
an analysis of collocations occurring with “between” and “through.” The following
simple UNIX pipe (cf. section 12.2.3) performs a similar analysis:

#!/bin/sh

leaveOnlyWords $1| oneItemPerLine -| mapToLowerCase -| context - 20|

awk ’(($1~/^between$/)||($(NF)~/^between$/))&&($0~/ through /)’ -

Each of the programs in the above pipe shall be explained in detail in this chapter
and contains 3 to 12 essential2 lines of code.

This chapter is a continuation of [40] where a short, more programming-oriented
tutorial introduction to the use of sed and awk for language analysis can be found
including a detailed listing of all operators. A large number of references to [40]
including mirror-listings can be found on the internet. A recommended alternative
to consulting [40] as supplement to this chapter is reading the manual pages3 for
sed and awk. In addition, it is recommended (but not necessary) to read [4] and the
introductions to sed and awk in [30].

1 The term UNIX shall stand in the remainder of this chapter for “UNIX or
LINUX.”

2 The procedure leaveOnlyWords is lengthy because it contains one trivial line of
code per single-period-abbreviation such as “Am.”. It can be computer-generated
using sed from a list of such abbreviations (cf. section 12.3.4).

3 Type man sed and man awk in a UNIX terminal window under any shell.

222 Lothar M. Schmitt, Kiel Christianson, and Renu Gupta

In order to use sed and awk effectively for language analysis, only limited knowl-
edge of UNIX is needed. For proof of this claim and the convenience of the reader, we
have listed the minimal number of facts needed to write programs for the Bourne-
shell sh such that sed and awk can be combined in the pipe mechanism of UNIX to
create very powerful processing devices. See Section 12.2.

An underlying principle in many of the applications presented in this chapter is
the fact that the pipe mechanism of UNIX allows the manipulated text to be not
only data, but to interact with the UNIX commands/filters in the pipe. From this
perspective, the pipe and data are “fluid” rather than static objects. This allows for
a very efficient programming style.

Included in this work is a collection of ideas and methods that should enable
people to write short, customized applications for language analysis combining the
simplicity and the potential of the two programming languages, sed and awk. We
shall show that by combining basic components, each containing a few lines of code,
one can generate a flexible and powerful customized environment. In addition, more
elaborate UNIX tools such as lex [34, 30] or yacc [25, 30], and programming lan-
guages such as C [31] or prolog [11] can be used together with the methods presented
here. See also [10] for an introduction of certain UNIX tools for language analysis.
Note that, e.g., mathematica [47] or some public domain plotting software such as
gnuplot [17] can be used to generate graphics from numerical data produced with
awk.

The latter parts of this chapter describe methods of application. Some of these
applications have been used in [39] which is a system designed to support the
teaching of English as a second language by computer means. In particular, we
have used sed and awk for analysis and automatic correction of short essays that
were submitted as homework by Japanese students of English composition via e-
mail. One can use sed and awk to isolate phrases and sentences that were submitted
by students and contain critical or interesting grammatical patterns for presentation
in class. Other applications of sed and awk in [39] are the analysis of grammatical
patterns in students’ writings as well as statistical evaluation.

In addition to the applications just described, we can show how to set up a
language training environment (cf. [40]), how to develop tools for statistical evalu-
ation of text, be it in regard to concordance (cf. [28] or the example listed above,
[38]), in regard to lexical-etymological analysis (cf. [19]), or in regard to judging
the readability of text (cf. [22]). In [38], a corpus search for the strings a...of,
an...of, be...to, too...to, for...of, had...of and many...of was conducted.
Such a search including the sorting of the results into separate files can also be
implemented with a few lines of code. We shall describe how to implement a lexical-
etymological analysis on a machine as done in [19] by hand. And, we shall describe
how our procedure which counts word frequencies can be used to roughly judge the
readability of text (cf. [22]). Finally, we shall indicate how sed and awk can be used
to implement special parsers that transform a linear source file for a dictionary (here:
[37]) into a multi-dimensional database for the internet. In addition, our exposition
contains many comments in regard to other applications using particular features
of sed and awk such as identifying Japanese kanji characters in bilingual text or
assisting translation.

As outlined above, we present a particularly short and customized introduction
to the use of sed and awk under UNIX in language research including a large variety
of applications. Scattered reference to sed and awk can be found in descriptions of

12 Linguistic Computing with UNIX Tools 223

literary computing, e.g., [18], who uses the tools for literary computing in French.
However, we are not aware of any presentation of sed and awk geared toward lin-
guistic analysis with the exception of [39]. We shall demonstrate that sed and awk

provide easy-to-understand means to use programming in linguistic research. A gen-
uine alternative to the approach presented in this chapter is using perl [44].

Finally, note that the tools sh, sed and awk which we have used here as well as
the pipe mechanism are also available for other operating systems. Consequently,
the methods presented here can easily be ported to platforms where these means
are available.

12.2 Implementing a Word Frequency Count Using the
Bourne-Shell

One can activate the Bourne-shell sh by typing sh←↩ in a terminal window on a com-
puter running the UNIX/LINUX operating system. The Bourne-shell sh presents
itself with a $ as prompt. It is very important to note that in this state one can test
programs for sh interactively line-by-line in the terminal. Typing Control-d in sh

causes sh to terminate. For sh, a list of commands that it reads from a file or from
a terminal window are indistinguishable. In the remainder of this section, we shall
discuss how to set up programs for sh. This is done, in particular, for the purpose of
demonstrating how little initial knowledge of UNIX is necessary to start using sed

and awk programming in linguistic research.

12.2.1 Creating a UNIX Command Using the Bourne-Shell

Essentially, a sh program is a file containing one sh command per line as well
as some multi-line commands. These commands are worked through by sh from
top to bottom in the file. Several (single-line) commands can also be separated by
semicolons ; and listed on one line. In that case, they are executed from left to right
in the line.

Example: Copy the following lines into a file lowerCaseStrings with your fa-
vorite text editor:

#!/bin/sh

Comment: lowerCaseStrings

(1) Map upper-case characters to lower case.

(2) Isolate strings of non-white characters on separate lines.

sed ’y/ABCDEFGHIJKLMNOPQRSTUVWXYZ/abcdefghijklmnopqrstuvwxyz/

s/[^a-z][^a-z]*/\

/g’ $1

Save this file as yourLoginName/lowerCaseStrings directly in your home direc-
tory. Then, type cd ; chmod 700 lowerCaseStrings in your currently used shell
window4. lowerCaseStrings is now a UNIX command just like the built-in ones.
Next, type lowerCaseStrings yourTextFile in your shell window to see what the

4 cd sets your working directory to your home directory. chmod 700

lowerCaseStrings makes lowerCaseStrings executable for you in addi-

224 Lothar M. Schmitt, Kiel Christianson, and Renu Gupta

program does. Here, yourTextFile should be a smaller plain-text file in your home
directory, and the output of the command will appear in your shell window. It can
be redirected to a file (cf. Section 12.2.3).

Explanation: The first line #!/bin/sh of lowerCaseStrings tells whatever shell
you are using that the command lines are designed for sh which executes the file.
The next three lines are comment. Comment for sh, sed and awk starts by defini-
tion with a # as first character in a line. Note that comment is not allowed within a
multi-line sed command. The last three lines of lowerCaseStrings are one sh com-
mand which calls sed and delivers two arguments (subsequent strings of characters)
to sed. The first entity following sed is a string of characters limited/marked by
single-quote characters ’ which constitutes the sed program. Within that program,
the sed command y/ABC...Z/abc...z/ maps characters in the string ABC...Z to cor-
responding characters in the string abc...z. In the remainder of this paragraph, the
italicized string ‘newline’ stands for the “invisible” character that causes a line-break
when displayed. The sed command s/[^a-z][^a-z]*/\newline/g substitutes(s)
every(g) string of non-letters by a single newline-character (encoded as5 \newline).
A string of non-letters (to be precise: non-lower case letters) is thereby encoded as
one non(^)-letter [^a-z] followed by an arbitrary number(*) of non-letters [^a-z]*.
Consequently, s/[^a-z][^a-z]*/\newline/g puts all strings of letters on separate
lines. The trailing $1 is the second argument to sed and stands for the input-file
name.6 In the above example, one has $1=yourTextFile.

Remark: We shall refer to a program similar to lowerCaseStrings that only
contains the first line of the sed program invoking the y operator as mapToLowerCase.

12.2.2 Implementing a Frequency Count Using awk

The above sed program combined with awk makes it easy to implement a simple
word frequency count. For that purpose, we need a counting program which we shall
name countFrequencies. The listing of countFrequencies shows the typical use
of an array (here: number) in awk (cf. Section 12.4.1.3).

#!/bin/sh

countFrequencies (Counting strings of characters on lines.)

awk ’{ number[$0]++ }

END { for (string in number) { print string , number[string] }}

’ $1

Explanation: awk operates on the input (file) line by line. The string/symbol $0
stands for the content of the line that is currently under consideration/manipulation.

tion to being readable and writable. Consult the manual pages entries (i.e., type
man cd and man chmod in your shell window) for further details about cd and
chmod.

5 \newline is seen as newline character by sed. newline alone would be interpreted
as the start of a new command line for sed.

6 More precisely: the trailing $1 is the symbol the Bourne-shell uses to commu-
nicate the first string (i.e., argument) after lowerCaseStrings to sed (e.g.,
yourTextFile in lowerCaseStrings yourTextFile becomes sed ’program’

yourTextFile). Arguments to a UNIX command are strings separated by white
space. Nine arguments $1...$9 can be used in a UNIX command.

12 Linguistic Computing with UNIX Tools 225

The first awk command { number[$0]++ } increments a counter variable
number[string] by 1, if the string is the content of the current line(=$0). For every
occurring string, the counter number[string] is automatically initiated to 0. The
character sequence ++ means “increase by one.” If every line contains a single word,
then at the end of the file, the counter variable number[word] contains the number
of occurrences of that particular word. The awk command in the last line prints the
strings which were encountered together with the number of occurrences of these
strings at the END of processing. As in Section 12.2.1, the trailing $1 stands for the
input file.

12.2.3 Using the Pipe Mechanism

Combining lowerCaseStrings and countFrequencies, we create a UNIX command
wordFrequencyCount as follows:

#!/bin/sh

wordFrequencyCount

lowerCaseStrings $1 >intermediateFile

countFrequencies intermediateFile

The command wordFrequencyCount is used as wordFrequencyCount tFile where
tFile is any plain-text file.

Explanation: lowerCaseStrings $1 applies lowerCaseStrings to the first argu-
ment (string, filename) after wordFrequencyCount (cf. Section 12.2.1). The resulting
output is then written/redirected via > to the file intermediate File, which is cre-
ated if non-existent and overwritten if in existence7. inter mediateFile stays in
existence after wordFrequencyCount terminates and can be further used. Finally,
countFrequencies intermediateFile applies the word count to the intermediate
result.

Instead of using intermediateFile, one can let the UNIX system handle the
transfer (piping) of intermediate results from one program to another. The follow-
ing sh program is completely equivalent to the first listing of wordFrequencyCount
except that the intermediate result is stored nowhere:

#!/bin/sh

wordFrequencyCount (2nd implementation)

lowerCaseStrings $1 | countFrequencies -

Explanation: The pipe symbol | causes the transfer (piping) of intermediate
results from lowerCaseStrings to countFrequencies. The pipe symbol | or the
string |\ can terminate a line, in which case the pipe is continued into the next line.
The trailing hyphen symbolizes the virtual file (in UNIX-jargon called “standard
input”) that is the input file for countFrequencies.

We observe that the output of countFrequencies is not sorted. The reader may
want to replace the last line in the program by

lowerCaseStrings $1 | countFrequencies - | sort -

employing the UNIX command sort as the final step in the processing.
Additional information about programming sh and the UNIX commands men-

tioned above can be obtained using the man sh command as well as consulting [30].

7 >> instead of > appends to an existing file.

226 Lothar M. Schmitt, Kiel Christianson, and Renu Gupta

12.3 Linguistic Processing with sed

The stream editor sed is the ideal tool to make replacements in texts. This can be
used to mark, isolate, rearrange and replace strings and string patterns in texts. In
this section, we shall exploit sed’s capabilities to present a number of small useful
processing devices for linguistic computing which range from preprocessing devices
to grammatical analyzers. All of these applications are essentially based upon simple
substitution rules.

In our philosophy of text processing, the text itself becomes, e.g., through the
introduction of certain markers a program that directs the actions of the UNIX
programs that act on it in a pipe.

12.3.1 Overview of sed Programming

A sed program operates on a file line-by-line. Roughly speaking, every line of the
input-file is stored in a buffer called the pattern space and is worked on therein by
every command line of the entire sed program from top to bottom. This is called
a cycle. Each sed operator that is applied to the content of the pattern space may
alter it. In that case, the previous version of the content of the pattern space is lost.
Subsequent sed operators are always applied to the current content of the pattern
space and not the original input line. After the cycle is over, the resulting pattern
space is printed/delivered to output, i.e., the output file or the next process in the
UNIX pipe mechanism. Lines that were never worked on are consequently copied to
output by sed.

Substitution Programs

The simplest and most commonly used sed programs are short substitution
programs. The following example shows a program that replaces the patterns thing
and NEWLINE matching the strings thing and NEWLINE in all instances in a file8 by
NOUN and a newline character, respectively:

#!/bin/sh

sed ’s/thing/NOUN/g

s/NEWLINE/\

/g’ $1

Explanation: The setup of the entire sed program and the two substitution
commands of this program are very similar to the example in section 12.2.1. The
first sed command s/thing/NOUN/g consists of four parts: (1) s is the sed operator
used and stands for “substitute.” (2) thing is the pattern that is to be substituted. A
detailed listing of legal patterns in sed substitution commands is given in Appendix
A.1. (3) NOUN is the replacement for the pattern. (4) The g means “globally.” Without
the g at the end only the first occurrence of the pattern would be replaced in a line.

The second substitution command shows the important technique of how to
place newline characters at specific places in text. This can be used to break pieces
of text into fragments on separate lines for further separate processing. There is
nothing following the trailing backslash \ which is part of the sed program. See the

8 As before, the symbol/string $1 stands for the filename.

12 Linguistic Computing with UNIX Tools 227

program lowerCaseStrings of section 12.2.1 for a non-trivial example using this
technique.

We observe that one can also store sed commands without the two framing
single quotes in a file (say) sedCommands and use sed -f sedCommands instead of or
in any sh program as above.

Applications (tagging programs for grammatical analysis): The above example
indicates how to examine a text for the overall structure of grammatical patterns
occurring in that text. Thereby, lists of verbs, nouns and other grammatical entities
can be automatically transformed into sed programs that perform identification (see,
e.g., the listing of the UNIX command eliminateList in Section 12.3.4). Similarly,
a dedicated list of words can be automatically formatted into a (search) program in
another programming language.

Applications (synonyms/translations through substitution): A custom-de- signed
sed program similar to the above can be used to replace every word in a file by a
bracketed list of synonyms. This can be used as a feedback device to encourage stu-
dents to use a diversified vocabulary. In addition, note that sed can handle Japanese
kanji characters. Thus, a custom-designed sed program similar to the above where
every English word is replaced by a bracketed family of romaji, hiragana/katakana
and kanji characters can be used to assist translation of text documents.

Application (cleaning files of control sequences in preprocessing): The replace-
ment in a substitution can be empty. This can, e.g., be used to “clean” a tex/latex
[33] file of control sequences (e.g., \subsection).

The Format of an Addressed sed Command

The format of an addressed sed command is AddressCommand Address can
be omitted. In that case, Command is then applied to every pattern space. (On first
reading, one may think of the pattern space as being the current line of input). If
an Address is given, then Command is applied to the pattern space only if the pattern
space matches Address. Address can be a pattern (regular expression) enclosed within
slashes / as described in Appendix A.1, a line number not enclosed within slashes
or $ standing for the last line. In addition, a range of addresses in the format
StartActionAddress,EndActionAddressCommand can be used. In that case, Command
is applied to every pattern space after StartActionAddress has been found until and
including the pattern space where EndActionAddress has been found.

Example: The following program replaces TX with Texas in all lines that contain
the string USA.

#!/bin/sh

sed ’/USA/s/TX/Texas/g’ $1

sed commands are terminated by either an immediately following newline character,
a semicolon, or the end of the program.

One may wish to process the single quote ’ using sed or awk. In a program
similar to the one listed above, the single quote ’ needs to be encoded as: ’\’’.
This means for sh: (1) terminate the string listing the sed program temporarily at
the first ’, (2) concatenate the latter with the literal (\) character ’ and (3) continue
the string listing the sed program by concatenating with the string following the
third ’. If a sed or awk program is stored in a file, then the the single quote ’ is

228 Lothar M. Schmitt, Kiel Christianson, and Renu Gupta

encoded as itself. The representation of the slash / and backslash characters in sed

programs are \/ and \\ respectively (cf. Appendix A.1).

Application (conditional tagging): A sed program similar to the program above
can be used for conditional tagging. For example, if a file contains one entire sentence
per line, then an Address can be used to conditionally tag (or otherwise process)
certain items/words/phrases in a sentence depending whether or not that sentence
contains a certain (other) key-item that is identified by the Address in the sed

command.

12.3.2 Preprocessing and Formatting Tools

The next simple examples show how text can be preprocessed with small, customized
sed programs such that the output can be used with much more ease for further
processing in a pipe. Alternatively, the code given below may be included in larger
sed programs when needed. However, dividing processes into small entities as given
in the examples below is a very useful technique to isolate reusable components and
to avoid programming mistakes resulting from over-complexity of single programs.

Application (adding blanks for easier pattern matching): The following sh pro-
gram adjusts blanks and tabs in the input file (symbolized by $1) in such a way
that it is better suited for certain searches. This program will be often used in what
follows since it makes matching items considerably easier. In what follows, we shall
refer to this program as addBlanks. All ranges [] in the sed program contain a
blank and a tab.

#!/bin/sh

addBlanks

sed ’s/[][]*/ /g; s/^ */ /;

s/ *$/ /; s/^ *$//’ $1

Explanation: First, all strings consisting only of blanks or tabs are normalized to
two blanks. Then, a single blank is placed at the beginning and the end of the pattern
space. Finally, any resulting white pattern space is cleared in the last substitution
command.
Justification: Suppose one wants to search in a file for occurrences of the word
“liberal.” In order to accurately identify the strings Liberal and liberal in raw
text, one needs the following four patterns (compare Appendix A.1):
/[^A-Za-z][Ll]iberal[^A-Za-z]/ /^[Ll]iberal[^A-Za-z]/

/[^A-Za-z][Ll]iberal$/ /^[Ll]iberal$/

If one preprocesses the source file with addBlanks, only the first pattern is needed.
Thus, a sed-based search program for Liberal and liberal is shorter and faster.

Application (Finding words in a text in a crude fashion): The following program
is a variation of addBlanks. It can be used to isolate words in text in a somewhat
crude fashion. In fact, abbreviations and words that contain a hyphen, a slash (e.g.,
A/C) or an apostrophe are not properly identified.

#!/bin/sh

leaveOnlyWords (crude implementation)

sed ’s/[^A-Za-z][^A-Za-z]*/ /g; s/^ */ /

s/ *$/ /; s/^ *$//’ $1

12 Linguistic Computing with UNIX Tools 229

Application (Putting non-white strings on separate lines): The following program
is another useful variation of addBlanks. It isolates non-white strings of characters
in a text and puts every such string on a separate line. This is a very good input
format for counting and statistical operations on words. All ranges in the following
program [] contain a blank and a tab. We shall call this oneItemPerLine.

#!/bin/sh

oneItemPerLine

sed ’/^[]*$/d; s/^[]*//; s/[]*$//; s/[][]*/\

/g’ $1

Explanation: First, all white lines are removed by deleting the pattern space
(sed operator d) which includes terminating the cycle9, i.e., the remainder of the
sed program is not applied to the current pattern space, the current pattern space
is not printed to output, and processing continues with the next line of input. For
non-white lines, white characters at the beginning and the end of lines are removed.
Finally, all remaining strings of white characters are replaced by newline characters.

Remark: Let us note at this point, that sed also has an operator to terminate
the program. This is the operator q (quit). For example, sed ’5q’ fName prints the
first 5 lines of the file fName, since it quits copying lines to the output (no action)
at line 5.

Application (Normalizing phrases/items on separate lines): The following sh pro-
gram which removes obsolete blanks and tabs in a file $1 is somewhat the inverse
of addBlanks. In what follows, we shall refer to this program as adjustBlankTabs.
Every range [] contains a blank and a tab.

#!/bin/sh

adjustBlankTabs

sed ’s/^[]*//; s/[]*$//; s/[][]*/ /g’ $1

Explanation: All leading and trailing white space (blanks and tabs) is removed
first. Finally, all white strings are replaced by a single blank in the last substitution
command.

Justification: adjustBlankTabs standardizes and minimizes phrases (as strings)
which may automatically be obtained from e-mail messages with inconsistent typing
style or text files that have been justified left and right. This is useful if one wants
to analyze sentences or derive statistics for phrases which should be processed as
unique strings of characters.

Technique: The following program replaces @ by @@, # by #@, and _ by ## in an
input file, i.e., each of the single characters @, #, and _ is replaced by the corre-
sponding pair (consisting of characters @ and # only) in the order of the substitution
commands from left to right. In what follows, we shall refer to this program as
hideUnderscore.

#!/bin/sh

hideUnderscore

sed ’s/@/@@/g; s/#/#@/g; s/_/##/g’ $1

9 See the definition of “cycle” at the beginning of Section 12.3.1.

230 Lothar M. Schmitt, Kiel Christianson, and Renu Gupta

The following program is the inverse of hideUnderscore. In what follows, we shall
refer to this inverse program as restoreUnderscore. Observe for the verification of
the program that sed scans the pattern space from left to right.

#!/bin/sh

restoreUnderscore

sed ’s/##/_/g; s/#@/#/g; s/@@/@/g’ $1

Application (using a hidden character as a marker in text): Being able to let
a character (here the underscore) “disappear” in text at the beginning of a pipe
is extremely useful. That character can be used to “break” complicated, general
patterns to mark exceptions. See the use of this technique in the implementations
of leaveOnlyWords and markDeterminers in Section 12.3.3. Entities that have been
recognized in text can be marked by keywords of the sort _NOUN_. Framed by under-
score characters, these keywords are easily distinguishable from regular words in the
text. At the end of the pipe, all keywords are usually gone or properly formatted,
and the “missing” character is restored.

Another application is to recognize the ends of sentences in the case of the
period character. The period appears also in numbers and in abbreviations. By
first replacing the period in the two latter cases by an underscore character and
then interpreting the period as a marker for the ends of sentences is, with minor
additions, one way to generate a file which contains one entire sentence per line.

12.3.3 Tagging Linguistic Items

The tagged regular expression mechanism is the most powerful programming device
in sed. This mechanism is not available in such simplicity in awk. It can be used
to extend, divide and rearrange patterns and their parts. Up to nine chunks of the
pattern in a substitution command can be framed (tagged) using the strings \(and
\).

Example: Consider the pattern /[0-9][0-9]*\.[0-9]*/ which matches decimal
numbers such as 10. or 3.1415. Tagging the integer-part [0-9][0-9]* (i.e., what is
positioned left of the period character) in the above pattern yields
/\([0-9][0-9]*\)\.[0-9]*/.

The tagged and matched (recognized) strings can be reused in the pattern and
the replacement in the substitution command as \1, \2, \3 ... counting from left to
right. We point out to the reader that the order of \1...\9 standing for tagged regular
sub-expressions need not be retained. Thus, rearrangement of tagged expressions is
possible in the replacement in a substitution command.

Example: The substitution command s/\(.\)\1/DOUBLE\1/g matches double
characters such as oo, 11 or && in the pattern /\(.\)\1/ and replaces them with
DOUBLEo, DOUBLE1 or DOUBLE& respectively. More detail about the usage of tagged
regular expressions is given in the following three examples.

Application (identifying words in text): The following program shows how one
can properly identify words in text. We shall refer to it as leaveOnlyWords. (This
is the longest program listing in this chapter.)

1: #!/bin/sh

12 Linguistic Computing with UNIX Tools 231

2: # leaveOnlyWords

3: sed ’s/[^A-Za-z.’\’’/-][^A-Za-z.’\’’/-]*/ /g

4: s/\([A-Za-z][A-Za-z]*\)\.\([A-Za-z][A-Za-z]*\)\./\1_\2_/g

5: s/\([A-Za-z][A-Za-z]*_[A-Za-z][A-Za-z]*\)\./\1_/g

6: s/Am\./Am_/g; s/Ave\./Ave_/g; s/Bart\./Bart_/g;

7: # The list of substitution commands continues ...

8: s/vols\./vols_/g; s/vs\./vs_/g; s/wt\./wt_/g;

9: s/\./ /g; s/_/./g

10: s/\([A-Za-z]\)\-\([A-Za-z]\)/\1_\2/g; s/\-/ /g; s/_/-/g

11: s/\([A-Za-z]\)\/\([A-Za-z]\)/\1_\2/g; s/\-/ /g; s/_/\//g

12: s/\([A-Za-z]\)’\’’\([A-Za-z]\)/\1_\2/g; s/’\’’/ /g; s/_/’\’’/g

13: ’ $1

Explanation: First, all strings which do not contain a letter, a period, an apos-
trophe, a slash or a hyphen are replaced by a blank (line 3). At this moment, the
pattern space does not contain any underscore character which is subsequently used
as a marker. The marker (_) is first used to symbolize period characters that are
a part of words (abbreviations) and need to be retained. Next (lines 4–5), strings
of the type letters.letters. are replaced by letters_letters_. For example, v.i.p. is
replaced by v_i_p. Following that, strings of the type letters_letters. are replaced
by letters_letters_. For example, v_i_p. is then replaced by v_i_p_. Next (lines 6-8)
comes a collection of substitution commands that replaces the period in standard
abbreviations with an underscore character. Then (line 9), all remaining period char-
acters are replaced by blanks (deleted) and subsequently all underscore characters
by periods (restored). Next (line 10), every hyphen which is embedded between two
letters is replaced by an underscore character. All other hyphens are then replaced
by blanks (deleted), and subsequently all underscore characters are replaced by hy-
phens (restored). Finally (lines 11–12), the slash (encoded as \/) and the apostrophe
(encoded as ’\’’, cf. Section 12.3.1) are treated in a similar way as the hyphen.

Example: The following program finds all four-letter words in a text. The pro-
gram shows the usefulness of, in particular, addBlanks in simplifying pattern match-
ing. We shall refer to it as findFourLetterWords.

#!/bin/sh

findFourLetterWords (sed version)

leaveOnlyWords $1 | addBlanks - |

sed ’s/ \([A-Za-z][a-z][a-z][a-z]\) /_\1/g; s/ [^_][^_]* //g;

/^$/d; s/_/ /g;

=’ - |

sed ’N; s/\n/ /’ -

Explanation: The first sed program acts as follows: 1) All four-letter words are
marked with a leading underscore character. 2) All unmarked words are deleted. 3)
Resulting white pattern spaces (lines) are deleted which also means that the cycle is
interrupted and neither the line nor the corresponding line number are subsequently
printed. 4) Underscore characters in the pattern space are replaced by blanks. 5)
Using the sed-operator =, the line number is printed before the pattern space is.
This will occur only if a four-letter word was found on a line. The output is piped
into the second sed program which merges corresponding numbers and lines: 1)
Using the sed-operator N (new line appended), every second line in the pipe (i.e.,

232 Lothar M. Schmitt, Kiel Christianson, and Renu Gupta

every line coming from the original source file $1 which contains at least one four-
letter word) is appended via N to the preceding line in the pipe containing solely the
corresponding line number. 2) The embedded newline character (encoded as \n) is
removed and the two united lines are printed as one.

Application (tagging grammatical entities): The following program shows the
first serious linguistic application of the techniques introduced so far. It marks
all determiners in an input text file symbolized by $1. We shall refer to it as
markDeterminers.

1: #!/bin/sh

2: # markDeterminers

3: addBlanks $1 | sed ’s/\.\.\./_TRIPLE_PERIOD_/g

4: s/\([[{(< ‘"_]\)\([Tt]h[eo]se\)\([]})> ’\’’",?!_.]\)/

\1_DETERMINER_\2_\3/g

5: s/\([[{(< ‘"_]\)\([Tt]his\)\([]})> ’\’’",?!_.]\)/

\1_DETERMINER_\2_\3/g

6: s/\([[{(< ‘"_]\)\([Tt]hat\)\([]})> ’\’’",?!_.]\)/

\1_DETERMINER_\2_\3/g

7: s/\([[{(< ‘"_]\)\([Tt]he\)\([]})> ’\’’",?!_.]\)/

\1_DETERMINER_\2_\3/g

8: s/\([[{(< ‘"_]\)\([Aa]n\)\([]})> ’\’’",?!_.]\)/

\1_DETERMINER_\2_\3/g

9: s/\([[{(< ‘"_]\)\([Aa]\)\([]})> ’\’’",?!_]\)/

\1_DETERMINER_\2_\3/g

10: s/\([[{(< ‘"_]\)\([Aa]\)\(\.[^A-Za-z]\)/\1_DETERMINER_\2_\3/g

11: s/_TRIPLE_PERIOD_/.../g’ - | adjustBlankTabs -

In the above listing, lines 4–9 are broken at the boundary / of the pattern and
the replacement in the sed substitution commands that are listed. This does not
represent correct code. Line 10 shows, in principle, the “correct” code-listing for any
of these sed substitution commands.

Explanation of the central sed program: The first substitution command (line
3) replaces the triple period as in “Bill bought...a boat and a car.” by the marker
_TRIPLE_PERIOD_. This distinguishes the period in front of “a” in “...a boat” from an
abbreviation such as “a.s.a.p.” The character preceding a determiner10 is encoded
left of the determiner in every pattern (lines 4–10) as range [[{(< ‘"_], tagged
and reused right11 as \1 in the replacement in the substitution command. The
determiner which is specified in the middle of every pattern is reused as \2. It will
be preceded by the marker _DETERMINER_ and followed by an underscore character in
the output of the above program. The non-letter following a determiner is encoded
right of the determiner in the first five patterns (lines 4–8, “those”-“An”) as range
[]})> ’\’’",?!_.], tagged and reused as \3. The string ’\’’ represents a single ’

(cf. section 12.3.1). For the determiner “a” the period is excluded in the characters
that are allowed to follow it in the range []})> ’\’’",?!_] in line 9. If a period
follows the character a, then a non-letter must follow in order that a represents the
determiner “a”. This is encoded as \.[^A-Za-z] in line 10 of the program. The string

10 This means characters that the authors consider legal to precede a word in text.
11 That is in the continuation of the line below for lines 4–9.

12 Linguistic Computing with UNIX Tools 233

encoded as \.[^A-Za-z] is tagged and reused as \3. After the tagging is completed,
the triple period is restored in line 11. For example, the string "A liberal?" is
replaced by the program with "_DETERMINER_A_ liberal?".

Application (grammatical analysis): A collection of tagging programs such as
markDeterminers can be used for elementary grammatical analysis and search for
grammatical patterns in text. If a file contains only one entire sentence per line, then
a pattern /_DETERMINER_.*_DETERMINER_/ would find all sentences that contain at
least two determiners.

Note that the substitution s/_[A-Za-z_]*_//g eliminates everything that has
been tagged thus far.

12.3.4 Turning a Text File into a Program

One can use a sed program to create a program from a file containing data in a
convenient format (e.g., a list of words). Such an action can precede the use of the
generated program, i.e., one invokes the sed program and the generated program
separately. Alternatively, the generation of a program and its subsequent use are
part of a single UNIX command. The latter possibility is outlined next.

Application (removing a list of unimportant words): Suppose that one has a
file that contains a list of words that are “unimportant” for some reason. Suppose
in addition, that one wants to eliminate these unimportant words from a second
text file. For example, function words such as the, a, an, if, then, and, or, ... are
usually the most frequent words but carry less semantic load than content words.
See [8, pp. 219–220] for a list of frequent words. The following program generates
a sed program $1.sed out of a file $1 that contains a list of words deemed to
be “unimportant.” The generated script $1.sed eliminates the unimportant words
from a second file $2. We shall refer to the following program as eliminateList.
For example, eliminateList unimportantWords largeTextFile removes words in
$1=unimportantWords from $2=largeTextFile.

1: #!/bin/sh

2: # eliminateList

3: # First argument $1 is file of removable material.

4: # Second argument $2 is the file from which material is removed.

5: leaveOnlyWords $1 | oneItemPerLine - |

6: sed ’s/[./-]/\\&/g

7: s/.*/s\/\\([^A-Za-z]\\)&\\([^A-Za-z]\\)\/\\1\\2\/g/

8: ’ >$1.sed

9: addBlanks $2 | sed -f $1.sed - | adjustBlankTabs -

Explanation: Line 5 in the program isolates words in the file $1 and feeds them
(one word per line) into the first sed program starting in line 6. In the first sed

program in lines 6–7 the following is done: 1) Periods, slashes (“A/C”), or hyphens
are preceded by a backslash character. Here, the sed-special character & is used which
reproduces in the replacement of a sed substitution command what was matched
in the pattern of that command (here: the range [./-]). For example, the string
built-in is replaced by built\-in. This is done since periods and hyphens are

234 Lothar M. Schmitt, Kiel Christianson, and Renu Gupta

special characters in sed. 2) The second substitution command generates an s-
command from a given string on a single line. In fact, out of the pattern space (line)
containing solely the string built\-in which is matched by .* and reproduced by
& in the substitution command in line 7, the following s-command is generated in
$1.sed:

s/\([^A-Za-z]\)built\-in([^A-Za-z]\)/\1\2/g

Note that all slash and backslash characters occurring in the latter line (except the
one in built\-in) have to be preceded by an additional backslash in the replacement

s\/\\([^A-Za-z]\\)&\\([^A-Za-z]\\)\/\\1\\2\/g

in the generating second substitution command listed above to represent themselves.
The list of generated s-commands is stored in a new file $1.sed in line 8. Using
sed -f $1.sed in line 9, this file of s-commands is then applied to the file whose
name is given to sh as second argument $2.

Application (checking summary writing): With the technique introduced above,
one can compare student summaries against the original text by deleting words from
the original in the students’ writings.

12.3.5 Further Processing Techniques

Processing an input line repeatedly with the same (fragment of the) cycle is an
important feature of sed programs and an important technique. This involves the
address operator (:) and the loop operator test (t) of sed. The next example
illustrates the basic mechanism in an elementary setup.

Example: The following program moves all characters 0 (zero) to the very right
of a line. This shows the typical use of the t operator.

#!/bin/sh

Move all zeroes to the right in a line.

sed ’: again; s/0\([^0]\)/\10/g; t again’ $1

Explanation: The first command of the sed program defines the address again.
The second command exchanges all characters 0 with a neighboring non-zero to the
right. Hereby, the non-zero is encoded as [^0], tagged, and reused as \1 to the left in
the replacement in the substitution command. The last command tests whether or
not a substitution happened. If a substitution happened, then the cycle is continued
at : again. Otherwise, the cycle is terminated.

Application (defining commutation relations and standardization for control se-
quences in a non plain-text file): In the course of the investigation in [1, 2, 3],
techniques were developed by one of the authors to transform the file containing
the source file of [37] (which was generated with a What-You-See-Is-What-You-Get
Editor) into a prolog database. This raised the following problems:
1) The source is “dirty”: it contains many control sequences coming from the
wysiwyg-editor which have no meaning, but were used for the format and the spac-
ing in the printed book. Such control sequences had to be removed. This was done
using substitution commands with empty replacements.
2) The source cannot be “cleaned” in an easy fashion from the control sequences
mentioned in 1). Some of the control sequences in the source are important in regard
to the database which was generated. In [37], Japanese words and compounds are

12 Linguistic Computing with UNIX Tools 235

represented using kanji, on pronunciation and kun pronunciation. The on pronun-
ciation of kanji is typeset in italics. In the source file, the associated text is framed
by a unique pair of control sequences. Similarly, the kun pronunciation of kanji is
represented by small caps.
3) The source was typed by a human with a regular layout on paper (i.e., in the
printed book) in mind. Though quite regular, it contains a certain collection of de-
scribable irregularities. For example, the ranges of framing pairs of control sequences
overlap sometimes. In order to match on and kun pronunciation in the source file
of [37] properly, a collection of commutation rules for control sequences was imple-
mented such that the control sequences needed for pattern matching framed only a
piece of text and no other control sequences. These commutation rules were imple-
mented in a similar way as the latter example shows.

Application (sorting results into different files): The following example illustrates
how to sort/copy results of text-processing with sed into a number of dedicated files.
We shall refer to the following program as sortByVowel. sortByVowel sorts all words
in a text file $1=fName into several files depending upon the vowels occurring in the
words. For example, all words containing the vowel “a” are put into one file fName.a.

1: #!/bin/sh

2: # sortByVowel

3: echo >$1.a; echo >$1.e; echo >$1.i; echo >$1.o; echo >$1.u;

4: leaveOnlyWords $1 | oneItemPerLine - |

5: sed -n ’/a/w ’$1’.a

6: /e/w ’$1’.e

7: /i/w ’$1’.i

8: /o/w ’$1’.o

9: /u/w ’$1’.u’

Explanation: Line 3 of this sh program generates empty files $1.a...$1.u in case
the program has been used before on the same file. This is done by echoing “nothing
plus a terminating newline character” into the files.12 First, we observe, that the
option13 -n (no printing) suppresses14 any output of sed. Next, observe the use of
the single quotes and string concatenation in sh in lines 5–9. For example, if the
argument $1 to sh equals the string fName, then sh passes the string /a/w fName.a

to sed in line 5. Thus, if the current pattern space (input line) contains the vowel
“a”, then sed writes to the file fName.a in line 5. Output by the w operator is
always appended to an existing file. Thus, the files have to be removed or empty
versions have to be created in case the program has been used before on the same
file. (Consult man echo and man rm.) Note that everything after a w operator and
separating white space until the end of the line is understood as the filename the w

operator is supposed to write to. Note in addition, that a w operator can follow and
be part of a substitution command. In that case the w operator writes to the named
file if a substitution was made.

12 For example, echo ’liberal’ >fName overwrites(>) the file fName with the con-
tent liberalnewline.

13 When used, options are usually listed directly after a UNIX command with a
leading hyphen before the first “real” argument $1 of the command.

14 Printing can always be triggered explicitly by the print operator p. For example,
/liberal/p prints the pattern space, if the string liberal has been found.

236 Lothar M. Schmitt, Kiel Christianson, and Renu Gupta

There is no direct output by sortByVowel. It is clear how to generalize this pro-
cedure to a more significant analysis, e.g., searches for specific patterns or searches
for phrases.

12.4 Extending the Capabilities with awk

awk is a simple programming language based on pattern recognition in the current
line of input and operations on chunks of that line. In that regard, it is very simi-
lar to sed. In contrast to sed, awk allows string-variables and numerical variables.
Consequently, one can accomplish with much more ease a variety of elaborate ma-
nipulations of strings in the current line of input that may depend, in particular,
on several previous lines of input. In addition, one can accomplish numerical oper-
ations on files such as accounting and keeping statistics of things (cf. the example
countFrequencies in Section 12.2.2). Good introductions to awk are [4, 5, 30].

12.4.1 Overview of awk Programming and Its Applications

As mentioned above, awk is based on pattern recognition in the current line of input
and operations on chunks of that line. awk uses pattern recognition as addresses
similar to sed (cf. Section 12.3.1 and Appendix A.1). Furthermore, awk partitions
the current line of input (input record15) automatically in an array of “fields”. The
fields of the current line of input are usually the full strings of non-white characters
in the line. One typical use of awk is matching and rearranging the fields in a line
similar to the tagging in the substitution command of sed. However, the tagging and
reuse of tagged expressions in the substitution command of sed can usually only be
matched by rather complicated programming in awk.

The Format of an awk Program

Programs in awk need no compilation. An awk program looks like the following:

awk ’BEGIN { actionB } ;

pattern1 { action1 } ;

pattern2 { action2 } ;

...
END { actionE }’

actionB is executed before the input file is processed. actionE is executed after the
input file is processed. The lines with BEGIN and END can be omitted.

Every line in the above program contains an awk command (ignoring the leading
string awk ’ and the trailing ’). One can store a list of awk commands in a file (say)
awkCommands and use awk -f awkCommands targetFile to execute the program on
targetFile.

awk operates on input records (usually lines) in a cycle just like sed. action1 is
executed if pattern1 matches the original input record. After that, action2 is executed
if pattern2 matches the current, possibly altered pattern space and the cycle was not
terminated by action1. This continues until the second-to-last line of the awk program

15 This is awk-jargon. In sed-jargon, this was formerly called the pattern space.

12 Linguistic Computing with UNIX Tools 237

is reached. If a patternN , (N = 1, 2, ...), is omitted, then the corresponding actionN

is executed every time the program reaches that line of code in the cycle. If { actionN

} is omitted, then the entire input line is printed by default-action. Observe that
by default an awk program does not copy/print an input line (similar to sed -n).
Thus, printing has to be triggered by an address patternN with no corresponding
actionN , which selects the pattern space, or alternatively, printing can be triggered
by a separate print statement within actionN (similar to the operator p in sed).

Example: The following program numberOfLines prints the number of lines16

in a file.

#!/bin/sh

numberOfLines

awk ’END {print NR}’ $1

numberOfLines prints the built-in counter NR (number of records) at the end of the
file. By default setting, which can be changed, records are the lines of input delimited
by newline characters. The delimiter for records is stored in the built-in variable RS

(record separator).

Application (counting the occurrence of word-patterns in text): The following
program countIonWords counts the occurrence of words ending in “ion” in a text
file. Together with a search for the occurrence of words ending in “ment”, this gives
an indication of the usage of academic vocabulary in the text (cf. [13, 14])).

#!/bin/sh

countIonWords

leaveOnlyWords $1| oneItemPerLine -| awk ’/ion$/’ -| numberOfLines -

Explanation: The first two programs of the pipe deliver one word per line into
the pipe. The awk program17 /ion$/ invokes the default action print the pattern
space (i.e., line) for words ending ($) in “ion”. The lines which contain such words
are then counted by numberOfLines.

The Format of an awk Command

As shown above, any awk command has the following format:
pattern { action } ;

The closing semicolon is optional. If a semicolon follows an awk command, then
another command can follow on the same line. The commands with the BEGIN and
the END pattern must be on separate lines.

If pattern matches the input record (pattern space), then action is carried out.
pattern can be very similar to address patterns in sed. However, much more com-
plicated address patterns are possible in awk. Compare the listings in Appendix A.1
and Appendix A.2. An action is a sequence of statements that are separated by
semicolons ; or are on different lines.

16 Consult the UNIX manual pages for wc in this regard (i.e., type man wc).
17 Alternatively, the sed program sed ’/ion$/!d’ - could be used in the pipe.

/ion$/!d does not (encoded by the negation operator ! of sed) delete (using the
deletion operator d) a line (here: word) that ends in “ion”. Consult also man grep

in this regard.

238 Lothar M. Schmitt, Kiel Christianson, and Renu Gupta

Variables and Arrays

A variable-name or array-name in awk is a string of letters. An array-entry has
the format arrayName[index]. The index in arrayName is simply a string which is
a very flexible format, i.e., any array is by default an associative array and not
necessarily a linear array indexed by integers. A typical example for use of an
associative array showing the power of this concept can be found in Section 12.2.2
of this chapter (countFrequencies). Numbers are simultaneously understood as
strings in awk. All variables or entries of an array that are used are automatically
initiated to the empty string. Any string has numerical value zero (0).

Built-In Variables

awk has a number of built-in variables some of which have already been intro-
duced. In the next few paragraphs, we shall list the most useful ones. The reader is
refered to [4, 5, 40] or the UNIX manual pages for awk for a complete listing.

FILENAME: The built-in variable FILENAME contains the name of the current input
file. awk can distinguish the standard input - as the name of the current input file.
Using a pattern such as FILENAME==fName (cf. appendix A.2), processing by awk can
depend upon one of several input files that follow the awk program as arguments and
are being processed in the order listed from left to right (e.g., awk ’awkProgram’

fileOne fileTwo fileLast). See the listing of the program setIntersection below
in Section 12.4.2.3 for a typical use of FILENAME.

FS: The built-in variable FS contains the field separator character. Default: se-
quences of blanks and tabs. For example, the variable FS should be reset to & (sep-
arator for tables in TEX), if one wants to partition the input line in regard to fields
separated by &. Such a resetting action happens often in actionB matched by the
BEGIN pattern at the start of processing in an awk program.

NF: The built-in variable NF contains the number of fields in the current pattern
space (input record). This is very important in order to loop over all fields in the
pattern space using the for-loop construct of awk. A typical loop is given by:

for(counter=1;counter<=NF;counter++){ actionWith(counter) }.
See the listing of the program findFourLetterWords below for a typical use of NF.
Note that NF can be increased to “make room” for more fields which can be filled
with results of the current computation in the cycle.

NR: The built-in variable NR contains the number of the most recent input record.
Usually, this is the line number if the record separator character RS is not reset or NR
itself is not reassigned another value. See the listing of the program context below
for a typical use of NR.

OFS: The built-in variable OFS contains the output field separator used in print.
Default: blank. OFS is caused to be printed if a comma “,” is used in a print

statement. See the listing of the program firstFiveFieldsPerLine below for an
application.

ORS: The built-in variable ORS contains the output record separator string. It
is appended to the output after each print statement. Default: newline-character.
ORS can be set to the empty string through ORS="". In that case, output lines are
concatenated. If one sets ORS="\n\n", i.e., two newline characters (see next section),
then the output is double-spaced. See the listing of the awk program in section 12.5.2
for an application.

12 Linguistic Computing with UNIX Tools 239

RS: The built-in variable RS contains the input record separator character. De-
fault: newline character. Note that one can set RS="\n\n". In that case, the built-in
variable NR counts paragraphs, if the input text file is single-spaced.

Representation of Strings, Concatenation and Formatting the Output

Strings of characters in awk used in printing and as constant string-values are
simply framed by double quotes ". The special character sequences \\, \", \t and
\n represent the backslash, the double quote, the tab and the newline character in
strings respectively. Otherwise, every character including the blank just represents
itself.

Strings or the values of variables containing strings are concatenated by listing
the strings or variables separated by blanks. For example, "aa" "bb" represents the
same string as "aabb".

A string (framed by double quotes ") or a variable var containing string can be
printed using the statements ‘print string;’ or ‘print var;’ respectively. The state-
ment print; simply prints the pattern space. Using the print function for printing
is sufficient for most purposes. However in awk, one can also use a second printing
function printf which acts similar to the function printf of the programming lan-
guage C. See [40, 31, 4, 5] for further details and consult the manual pages for awk

and printf for more information on printf. One may be interested in printf if one
wants to print the results of numerical computations, such as statistical evaluations
for further processing by a plotting program such as Mathematica [47] or gnuplot

[17].

Application (finding a line together with its predecessor in a text): The word “be-
cause” is invariably used incorrectly by Japanese learners of English. Because “be-
cause” is often used by Japanese learners of English to begin sentences (or sentence
fragments), it is necessary to not only print sentences containing the string Because

or because, but also to locate and print the preceding sentence as well. The follow-
ing program prints all lines in a file that match the pattern /[Bb]ecause/ as well as
the lines that precede such lines. We shall refer to it as printPredecessorBecause.

#!/bin/sh

printPredecessorBecause

awk ’/[Bb]ecause/ { print previousLine "\n" $0 "\n\n" }

{ previousLine=$0 }’ $1

Explanation: The symbol/string $0 represents the entire line or pattern space in
awk. Thus, if the current line matches /[Bb]ecause/, then it is printed following its
predecessor which was previously saved in the variable previousLine. Afterwards,
two newline characters are printed in order to structure the output. Should the first
line of the input file match /[Bb]ecause/, then previousLine shall be automatically
initiated to the empty string such that the output starts with the first newline
character that is printed. Finally, every line is saved in the variable previousLine

waiting for the next input line and cycle.

Fields and Field Separators

In the default mode, the fields of an input line are the full strings of non-white
characters separated by blanks and tabs. They are addressed in the pattern space
from left to right as field variables $(1), $(2), ... $(NF) where NF is a built-in

240 Lothar M. Schmitt, Kiel Christianson, and Renu Gupta

variable containing the number of fields in the current input record. Thus, one
can loop over all fields in the current input record using the for-statement of awk
and manipulate every field separately. Alternatively, $(1)—$(9) can be addressed
as $1—$9. The symbols/strings $0 and $(0) stand for the entire pattern space.

Example: The following program firstFiveFieldsPerLine prints the first five
fields in every line separated by one blank. It can be used to isolate starting phrases
of sentences, if a text file is formatted in such a way that every line contains an
entire single sentence. For example, it enables an educator to check whether his
or her students use transition signals such as “First”, “Next”, “In short” or “In
conclusion” in their writing.

#!/bin/sh

firstFiveFieldsPerLine

awk ’{ print $1 , $2 , $3 , $4 , $5 }’ $1

Recall that the trailing $1 represents the input file name for the Bourne shell. The
commas trigger printing of the built-in variable OFS (output field separator) which
is set to a blank by default.

Built-In Operators and Functions

awk has built-in operators for numerical computation, Boolean or logical opera-
tions, string manipulation, pattern matching and assignment of values to variables.
The following lists all awk operators in decreasing order of precedence, i.e., operators
on top of this list are applied before operators that are listed subsequently, if the
order of execution is not explicitly set by parentheses.

Note that strings other than those that have the format of numbers all have the
value 0 in numerical computations.
• Increment operators ++, --. Comment: ++var increments the variable var by 1
before it is used. var++ increments var by 1 immediately after it was used (in that
particular spot of the expression and the program).
• Algebraic operators *, /, %. Comment: Multiplication, division, and integer division
remainder (mod-operator).
• Concatenation of strings. Nothing or white space (cf. Section 12.4.1.5).
• Relational operators for comparison >, >=, <, <=, ==, !=, ~, !~. Comment: ==, !=
stand for “equal” and “not equal,” respectively. ~, !~ stand for “matches pattern”
and “does not match pattern,” respectively. For example, x~/a/ is satisfied, if the
string in variable x contains the letter a. If it is not clear what sort of comparison
is meant, then awk uses string comparison instead of numerical comparison.
• !. Logical not.
• &&. Logical and.
• ||. Logical or.
• Assignment operators =, +=, -=, *=, /= and %=. Comment: = is the assignment
operator that assigns a value to a variable. The other assignment operators +=, -=,
*=, /= and %= exist just for notational convenience as, e.g., in C [31]. For example,
var+=d sets var to var+d. This the same as var=var+d.

In addition to the above operators, the following built-in functions can be used
in awk programs:
• int, sqrt, exp, log. Comment: int(expression) is the integer part of expression.
sqrt() is the square root function. exp() is the exponential function to base e and
log() is its inverse.

12 Linguistic Computing with UNIX Tools 241

• length(string) returns the length of string, i.e., the number of characters in string.

• index(bigstring,substring). Comment: This produces the position where substring
starts in bigstring. If substring is not contained in bigstring, then the value 0 is
returned. This allows analysis of fields beyond matching a substring.
• substr(string,n1,n2). Comment: This produces the nth

1 through the nth
2 character

of string. If n2 >length(string) or if n2 is omitted, then string is copied from the
nth

1 character to the end.
• split(string,arrayName,"c"). Comment: This splits string at every instance of
the separator character c into the array arrayName and returns the number of fields
encountered.
• string = sprintf(format , expr1 , expr2 ...). Comment: This sets
string to what is produced by printf format , expr1 , expr2 ... In regard to the
printing function printf in awk or C consult [40, 31, 4, 5] and the manual pages for
awk and printf.

Application (generating strings of context from a file): The next important ex-
ample shows the use of the functions index() and substr() in awk. It generates all
possible sequences of consecutive words of a certain length in a file. We shall refer to
it as context. Suppose that a file $1 is organized in such a way that single words are
on individual lines (e.g., the output of a pipe leaveOnlyWords | oneItemPerLine).
context uses two arguments. The first argument $1 is supposed to be the name of
the file that is organized as described above. The second argument $2 is supposed
to be a positive integer. context then generates “context” of length $2 out of $1.
In fact, all possible sequences of length $2 of consecutive words in $1 are generated
and printed.

1: #!/bin/sh

2: # context

3: # First argument $1 is input file name.

4: # Second argument $2 is context-length.

5: awk ’BEGIN { cLength=’$2’+0 }

6: NR==1 { c=$0 }

7: NR>1 { c=c " " $0 }

8: NR>cLength { c=substr(c,index(c," ")+1) }

9: NR>=cLength { print c }’ $1

Explanation: Suppose the above program is invoked as context sourceFile 11.
Then, $2=11. In line 5, the awk-variable cLength is set to 11. Thereby, the operation
+0 forces any string contained in the second argument $2 to context, even the empty
string, to be considered as a number in the remainder of the program. In the second
command of the awk program (line 6), the context c is set to the first word (i.e., input
line). In the third command (line 7), any subsequent word (input line) other than
the first is appended to c separated by a blank. The fourth statement (line 8) works
as follows: after 12 words are collected in c, the first is cut away by using the position
of the first blank, i.e., index(c," "), and reproducing c from index(c," ")+1 until
the end. Thus, the word at the very left of c is lost. Finally (line 9), the context c

is printed, if it contains at least 11 words cLength.

242 Lothar M. Schmitt, Kiel Christianson, and Renu Gupta

Note that the output of context is, essentially, eleven times the size of the
input for the example just listed. It may be advisable to incorporate any desired,
subsequent pattern matching for the strings that are printed by context into an
extended version of this program.

Control Structures

awk has two special control structures next and exit. In addition, awk has the
usual control structures: if, for and while.

next is a statement that starts processing the next input line immediately from
the top of the awk program. next is the analogue of the d operator in sed. exit is
a statement that causes awk to terminate immediately. exit is the analogue of the
q operator in sed.

The if statement looks the same as in C [31, p. 55]:
if (conditional) { action1 }

else { action2 }

conditional can be any of the types of conditionals we defined above for address
patterns including Boolean combinations of comparison of algebraic expressions in-
cluding the use of variables. If a regular expression /regExpr/ is intended to match
or not to match the entire pattern space $0 in conditional, then this has to be de-
noted explicitely using the match-operator ~. Thus, one has to use $0~/regExpr/ or
$0!~/regExpr/ respectively. The else part of the if statement can be omitted or
can follow on the same line.

Example: The use of a for-statement in connection with an if-statement is
shown in the next example. We shall refer to the following program as
findFourLetterWords. It shows a typical use of for and if, i.e., looping over all
fields with for, and on condition determined by if taking some action on the fields.

1: #!/bin/sh

2: # findFourLetterWords (awk version)

3: leaveOnlyWords $1 |

4: awk ’ { for(f=1;f<=NF;f++) {

5: if($(f)!~/^[A-Za-z][a-z][a-z][a-z]$/) { $(f)="" }

6: }

7: }

8: /[^]/ { print NR , $0 }

9: ’ - | adjustBlankTabs -

Explanation: The for-loop in line 4 processes every field (addressed as $(f) in
line 5, f the counter variable) from left to right. If a field $(f) does not match the
pattern /^[A-Za-z][a-z][a-z][a-z]$/, then it is set to the empty string in line 5.
In case the pattern space stays non-white (/[^]/) after this procedure, it is printed
in line 8 with a leading line-number NR. Finally, blanks are properly adjusted in the
output by adjustBlankTabs.

The technique how to loop over associative arrays has already been demonstrated
in the listing of the program countFrequencies in Section 12.2.2.

Similar to the for statement, the while statement also looks the same as in C

[31, p. 60]: while (conditional) { action }.

12 Linguistic Computing with UNIX Tools 243

12.4.2 Vectors and Sets

We conclude the section on awk by introducing a standard file format called “vec-
tors.” For files of this format, we show how to define a large variety of operations
such as vector addition/subtraction and statistical operations. In addition, we define
set-operations. Such operations are very useful in numerical/statistical evaluations
and for comparison of data obtained by methods presented until this point in our
exposition.

Definition: Vector (Lists of Type/Token Ratios)

Suppose that one represents frequencies of occurrence of particular words or
phrases in the following way in a file: every line of the file consists of two parts
where the first part is a word or phrase which may contain digits and the second
part (the final field) is a single number which represents and will be called the
frequency. A file in this format will be called a vector (list of type/token ratios). An
example of an entry of a vector is given by

limit 55

Mathematically speaking, such a file of word/phrase frequencies is a vector over the
free base of character strings [20, p. 13]. The program countFre- quencies listed in
Section 12.2.2 generates vectors.

Vector Operations

In this section, we show how to implement vector operations using awk.

Application (vector addition): The next program vectorAddition implements
vector addition. If aFile and bFile are vectors, then vectorAddition is used
as cat aFile bFile | vectorAddition -. The UNIX command cat aFile bFile

concatenates files aFile bFile with the content of aFile leading.
vectorAddition can be used, e.g., to measure the cumulative advance of students

in regard to vocabulary use.

#!/bin/sh

vectorAddition

adjustBlankTabs $1 |

awk ’NF>1 { n=$(NF); $(NF)=""; sum[$0]+=n }

END { for (string in sum) { print string sum[string] } }

’ - | sort -

Explanation: In the first line of the awk program the last field in the pattern
space $0 is first saved in the variable n before the last field is set to the empty string
retaining a trailing blank (*). An array sum is generated which uses the altered
string $0 in the pattern space as index. Its components sum[$0] are used to sum up
(+=) all frequencies n corresponding to the altered string $0. Recall that sum[$0]

is initiated to 0 automatically. After processing the input this way (at the END),
the for-loop passes through the associative array sum with looping index string.
string is printed together with the values of the summations (sum[string]). Note
that there is no comma in the print statement in view of (*). Finally, the overall
output is sorted into standard lexicographical order using the UNIX command sort.

244 Lothar M. Schmitt, Kiel Christianson, and Renu Gupta

Application (scalar multiplication): The next program scalarMultiplica- tion
implements scalar multiplication. If aFile is a vector and n is a number, then it is
used as scalarMultiplication aFile n.

#!/bin/sh

scalarMultiplication

First argument $1 is vector. Second argument $2 is scalar.

awk ’{ $(NF)*=(’$2’+0) ; print }’ $1

Explanation: The scalar $2 is spliced into the awk program by sh using string
concatenation of the strings ’{ $(NF)*=(’, the content of the second argument of
the command $2 and ’+0) ; print }’. Then, for every input line of the file $1,
every frequency in the vector which is stored in $(NF) is multiplied by the scalar
and the resulting pattern space is printed.

Application (absolute value): The next program computeAbsoluteValue com-
putes the absolute value of the frequencies of items in a vector.

#!/bin/sh

computeAbsoluteValue

awk ’$(NF)<0 { $(NF)=-$(NF) } ; { print }’ $1

Explanation: If the last field of an input line is negative, then its sign is reversed.
Next, every line is printed.

Application (sign function): Like the previous program, the next program
frequencySign computes the sign of the frequencies of items in a vector.

#!/bin/sh

frequencySign

awk ’$(NF)>0 {$(NF)=1}; $(NF)<0 {$(NF)=-1}; {print}’ $1

Application (selecting frequencies): The next program cuts away low frequencies
from a file $1 that is a vector. The limit value $2 is the second argument to the
program. We shall refer to it as filterHighFrequencies. It can be used to gain files
with very common words that are functional in the grammatical sense but not in
regard to the context.

#!/bin/sh

filterHighFrequencies

First argument $1: vector. Second argument $2: cut-off threshold.

awk ’$(NF)>=’$2 $1

Explanation: $2 stands for the second argument to filterHighFrequencies.
If this program is invoked with filterHighFrequencies fname 5, then sh passes
$(NF)>=5 as selecting address pattern to awk. Consequently, all lines of fname where
the last field is larger than or equal to 5 are printed.

Application: The vector operations presented above allow to analyse and com-
pare, e.g., vocabulary use of students in a class in a large variety of ways (vocab-
ulary use of a single student vs. the class or vs. a dedicated list of words, sim-
ilarity/distinction of vocabulary use among students, computation of probalility
distributions over vocabulary use (normalization), etc.).

12 Linguistic Computing with UNIX Tools 245

Application (average and standard deviation): The following program determines
the sum, average and standard deviation of the frequencies in a vector $1.

#!/bin/sh

awk ’/[^]/ { s1+=$(NF); s2+=$(NF)*$(NF) }

END { print s1 , s1/NR , sqrt(s2*NR-s1*s1)/NR }’ $1

Explanation: The awk program only acts on non-white lines since the non-white
pattern /[^]/ must be matched. s1 and s2 are initiated automatically to value 0
by awk. s1+=$(NF) adds the last field in every line to s1. s2+=$(NF)*$(NF) adds the
square of the last field in every line to s2. Thus, at the end of the program we have
s1=

∑NR

n=1
$(NF)n and s2=

∑NR

n=1
($(NF)n)2. In the END-line, the sum s1, the average

s1/NR and the standard deviation (cf. [16, p. 81]) are printed.

Set Operations

In this section, we show how to implement set operations using awk. Set oper-
ations as well as vector operations are extremely useful in comparing results from
different analyses performed with the methods presented thus far.

Application (set intersection): The next program implements set intersection.18

We shall refer to it as setIntersection. If aFile and bFile are organized such that
items (= set elements) are listed on separate lines, then it is used as setIntersection
aFile bFile. setIntersection can be used to measure overlap in use of vocabulary.
Consult also man comm.

#!/bin/sh

setIntersection

awk ’FILENAME=="’$1’" { n[$0]=1; next }; n[$0]==1’ $1 $2

Explanation: awk can accept and distinguish more than one input file after the
program-string. This property is utilized here. Suppose this command is invoked as
setIntersection aFile bFile. This means $1=aFile and $2=bFile in the above.
As long as this awk program reads its first argument aFile, it only creates an
associative array n indexed by the lines $0 in aFile with constant value 1 for the
elements of the array. If the awk program reads the second file bFile, then only
those lines $0 in bFile are printed where the corresponding n[$0] was initiated to
1 while reading aFile. For elements which occur only in bFile, n[$0] is initiated
to 0 by the conditional which is then found to be false.

If one changes the final conditional n[$0]==1 in setIntersection to n[$0]==0,
then this implements set-complement. If such a procedure is named setComplement,
then setComplement aFile bFile computes all elements from bFile that are not
in aFile.

18 Note that adjustBlankTabs fName | sort -u - converts any file fName into a
set where every element occurs only once. In fact, sort -u sorts a file and only
prints occurring lines once. Consequently, cat aFile bFile | adjustBlankTabs

- | sort -u - implements set union.

246 Lothar M. Schmitt, Kiel Christianson, and Renu Gupta

12.5 Larger Applications

In this section, we describe how these tools can be applied in language teaching and
language analysis. We draw on our experience using these tools at the University of
Aizu where Japanese students learn English as a foreign language. Of course, any
language teacher can modify the examples outlined here to fit a given teaching need.

The tools provide three types of assistance to language teachers: they can be used
for teaching, for language analysis to inform teaching, and for language analysis in
research. In teaching, the tools can be linked to an email program that informs
students about specific errors in their written texts; such electronic feedback for
low-level errors can be more effective than feedback from the teacher [43, 45]. The
tools can also help teachers identify what needs to be taught. From a database of
student writing, a teacher can identify systematic patterns of errors that need to be
addressed in class. In addition, one can isolate syntactic structures and lexical items
that the students either overuse or avoid using because of their complexity [27].

One can also use the tools to identify (or confirm) the features of expert texts
in different research genres. Such texts are organized along similar lines with four
sections– Introduction, Methods, Results, and Discussion; further, the Introduction
section can be divided into four Moves [42] that use different language structures
and lexis. Other features include the location of the thesis sentence [7], the use of
hedges such as “perhaps” and “could” [24], and the use of cohesive devices such as
repetition to make the text more readable [22]. Since most students are not familiar
with such devices, the teacher may need to examine expert texts and use the awk

and sed tools to locate similar strings in student writing.
Various commercial tools are currently available for language analysis; however,

many of them come in separate packages and are often expensive. Further, they
draw on million-word databases that provide accurate results but are overkill for
both teachers and students.

The following examples illustrate some of the capabilities of the techniques de-
veloped thus far.

12.5.1 Automated Feedback for Spelling and Punctuation

Some of the first mistakes a teacher of English to Japanese students meets are purely
mechanical: spelling and punctuation, especially when the students’ writing is done
on computers with English keyboards (as is the case at the University of Aizu).
Japanese university students generally have little experience typing in English, and
mechanical mistakes are abundant.

Spelling errors can be identified with the UNIX spell program. In [39], we use
sed and awk to reformat the result of the spell check, which is sent back to the
student.

More difficult to correct and teach is English punctuation, the rules of which,
regarding spacing in particular, are different from Japanese. In fact, written Japanese
does not include spaces either between words or after (or before) punctuation marks.
At first, this problem may seem trivial. However, hours of class time spent discussing
punctuation and yet more hours of manually correcting persistent errors tend to wear
on teachers. Persistent errors in English punctuation have even been observed by
one of the authors in English printing done by the Japan Bureau of Engraving, the

12 Linguistic Computing with UNIX Tools 247

government agency that typesets and prints the entrance examinations for Japanese
universities. Clearly, if English punctuation rules (i.e., spacing rules) are not taught
explicitly, they will not be learned.

A teacher using an automatic punctuation-correction program such as the one
in [39] described below is able to correct nearly all of the students’ punctuation
problems, thus presenting the spacing rules in an inductive, interactive way. A
punctuation-correcting program is one of several tools described in [35].

As a database, we have defined a list of forbidden pairs of characters. This
is achieved by listing the matrix M pertaining to the relation R which is given
by char1 R char2 ⇔ “The character sequence char1char2 is forbidden.” During
the setup phase of the system used in [39], the matrix M is translated by an sed

program into a new sed program which scans the essays submitted by students
via electronic mail for mistakes. Examples for forbidden sequences are blank, or ‘?.
These mistakes are marked, and the marked essays are sent back to the individual
students automatically. The translation into a sed program during setup works in
the same way as the generation of an elimination program shown above in Section
12.3.4. The resulting marking program is very similar to markDeterminers. Suffice
it to say that this automated, persistent approach to correcting punctuation has
been an immediate and dramatic success [39].

Finally, let us remark that our procedure for identifying mistakes in punctuation
can also be used in analyses of punctuation patterns, frequency, and use, as in [36].

12.5.2 Extracting Sentences

In [39], one of the tools reformats student essays in such a way that entire sentences
are on single lines. Such a format is very useful in two ways:
Goal 1: To select actual student sentences which match certain patterns. The teacher
can then write any number of programs that search for strings identified as partic-
ularly problematic for a given group of students. For example, the words “because”
and “too” are frequently used incorrectly by Japanese speakers of English. Further-
more, once those strings have been identified, the sentences containing them can
be saved in separate files according to the strings and printed as lists of individual
sentences. Such lists can then be given to students in subsequent lessons dealing
with the problem areas for the students to read and determine whether they are
correct or incorrect, and if incorrect, how to fix them.
Goal 2: To analyze example sentences. One example is to measure the complexity of
grammatical patterns used by students using components such as markDeterminers.
This can be used to show the decrease or increase of certain patterns over time
using special sed based search programs and, e.g., countFrequencies as well as
mathematica for display.

Our procedure for identifying sentences achieves a high level of accuracy without
relying on proper spacing as a cue for sentence division, as does another highly
accurate divider [26].

The following shows part of the implementation of sentence identification in [39]:

#!/bin/sh

hideUnderscore $1 | hideAbbreviations - |

hideNumbers - | adjustBlankTabs - |

248 Lothar M. Schmitt, Kiel Christianson, and Renu Gupta

The implementations of hideUnderscore and hideAbbreviations have been dis-
cussed above. Compare also the listing of leaveOnlyWords given above. hideNumbers
replaces, e.g., the string $1.000.000 by $1_000_000, thus, “hiding” the decimal
points in numbers. The next sed program listed below defines the ends of sentences.
This is the most important component of the pipe which we show for reference.

1: sed ’s/\([^]})’\’’".!?][]}).!?]*\)\([!?]\)

\([]})]*\)\([^]})’\’’".!?]\)/\1\2\3__\2__\

2: \4/g

3: s/\([^]})’\’’".!?][]}).!?]*\)\([!?]\)\([]})]*\)$/\1\2\3__\2__/

4: s/\([^]})’\’’".!?][]})’\’’".!?]*\.

[]})’\’’"]*\)\([^]})’\’’".!?]\)/\1__.__\

5: \2/g

6: s/[^]})’\’’".!?][]})’\’’".!?]*\.[]})’\’’"]*$/&__.__/’ |

Explanation: Line 1 of this listing is broken after \([!?]\) representing the end
of the sentence . In the first two sed commands (lines 1–3), the end of the sentence
for “?” and “!” are defined. The similar treatment of “?” and “!” is implemented
by using a range [!?] which is the second tagged entity in the patterns in lines
1 and 3. Thus, the letter ending the sentence is represented by \2. The range-
sequence [^]})’\’’".!?] followed by []}).!?]* defines admissible strings before
the end of a sentence. It is the first tagged entity \1 in the patterns in lines 1
and 3. The range-sequence represents at least one non-closing character, followed
by a possible sequence of allowed closing characters. A sentence may be multiply
bracketed in various ways. This is represented by the range []})]* which is the
third tagged entity \3 in the patterns in lines 1 and 3. After the possible bracketing
is finished, there should not follow another closing (brackets, quotes) or terminating
character “.”, “?” or “!”. (This handles exactly the case of the previous sentence.)
The excluded terminating character is encoded as [^]})’\’’".!?] in line 1, and is
the fourth tagged item \4. In the substitution part of the sed command in lines 1–2,
the originally tagged sequence (\1\2\3\4) is replaced by \1\2\3__\2__newline\4.
Thus, after the proper ending of the sentence in \3, a marker __\2__ is introduced
for sorting/identification purposes. Then, a newline character is introduced such
that the next sentence starting in \4 starts on a new line. Line 3 handles the case
when the sentence-end in “?” or “!” coincides with the end of the line.

Line 4 of this listing is broken after \. representing the period (and not
an arbitrary character) ending the sentence. The last two substitution rules in
lines 4–6 for marking sentences that end in a period are different than those
for “?” and “!”. But the principles are similar. In line 4, the range-sequence
[^]})’\’’".!?][]})’\’’".!?] followed by []})’\’’".!?]* defines admissible
strings before the end of a sentence. The range-sequence represents at least one non-
closing character, followed by a possible sequence of allowed closing characters. Then
the closing period is explicitly encoded as \. The range-sequence []})’\’’"]* (clos-
ing brackets) followed by [^]})’\’’".!?] (non-closing character) defines admissible
strings after the end of a sentence. Line 7 handles the case when the sentence-end
coincides with the end of the line.

Next follows an awk program in the pipe which is shown below:

awk ’BEGIN { ORS=" " }

{ print }

12 Linguistic Computing with UNIX Tools 249

/__[!?.]__$/ { print "\n" }’ | ...

Explanation: The program merges lines that are not marked as sentence endings
by setting the output record separator ORS to a blank. If a line-end is marked as
sentence-end, then an extra newline character is printed.

Next, we merge all lines which start, e.g., in a lower case word with its predeces-
sor since this indicates that we have identified a sentence within a sentence. Finally,
markers are removed and the “hidden” things are restored in the pipe. By conven-
tion, we deliberately accept that an abbreviation does not terminate a sentence.
Overall, our procedure creates double sentences on lines in rare cases. Nevertheless,
this program is sufficiently accurate for the objectives outlined above in (1) and (2).
Note that it is easy to scan the output for lines possibly containing two sentences
and subsequently inspect a “diagnostic” file.

Application: The string “and so on” is extremely common in the writing of
Japanese learners of English, and it is objected to by most teachers. From the
examples listed above such as printPredecessorBecause, it is clear how to connect
the output of the sentence finder with a program that searches for and so on.

In [46], 121 very common mistakes made by Japanese students of English are
documented. We point out to the reader that a full 75 of these can be located
in student writing using the most simple of string-search programs, such as those
introduced above.

12.5.3 Readability of Texts

Hoey [22, pp. 35–48, 231–235] points out that the more cohesive a foreign language
text, the easier it is for learners of the language to read. One method Hoey proposes
for judging relative cohesion, and thus readability, is by merely counting the number
of repeated content words in the text (repetition being one of the main cohesive
elements of texts in many languages). Hoey concedes though that doing this “rough
and ready analysis” [22, p. 235] by hand is tedious work, and impractical for texts
of more than 25 sentences.

An analysis like this is perfectly suited for the computer, however. In principle,
any on-line text could be analyzed in terms of readability based on repetition. One
can use countWordFrequencies or a similar program to determine word frequencies
over an entire text or “locally.” Entities to search through “locally” could be para-
graphs or all blocks of, e.g., 20 lines of text. The latter procedure would define a
flow-like concept that could be called “local context.” Words that appear at least
once with high local frequency are understood to be important. A possible exten-
sion of countWordFrequencies is to use spell -x to identify derived words such as
Japanese from Japan. Such a procedure aids teachers in deciding which vocabulary
items to focus on when assigning students to read the text, i.e., the most frequently
occurring ones ordered by their appearance in the text.

Example: The next program implements a search for words that are locally
repeated (i.e., within a string of 200 words) in a text. In fact, we determine the
frequencies of words in a file $1 that occur first and are repeated at least three times
within all possible strings of 200 consecutive words. 200 is an upper bound for the
analysis performed in [22, pp. 35–48].

250 Lothar M. Schmitt, Kiel Christianson, and Renu Gupta

#!/bin/sh

leaveOnlyWords $1 | oneItemPerLine - | context - 200 |

quadrupleWords - | countFrequencies -

Explanation: leaveOnlyWords $1 | oneItemPerLine | context - 200 gener-
ates all possible strings of 200 consecutive words in the file $1. quadrupleWords

picks those words which occur first and are repeated at least three times within
lines. An implementation of quadrupleWords is left as an exercise; or consult [40].
countFrequencies determines the word frequencies of the determined words.

Note again that context - 200 creates an intermediate file which essentially is
200 times the size of the input. If one wants to apply the above to large files, then
the subsequent search in quadrupleWords should be combined with context - 200.

We have applied the above procedure to the source file of an older version of this
document. Aside from function-words such as the and a few names, the following
were found with high frequency: UNIX, address, awk, character, command, field,
format, liberal, line, pattern, program, sed, space, string, students, sum, and words.

12.5.4 Lexical-Etymological Analysis

In [19], the author determined the percentage of etymologically related words shared
by Serbo-Croatian, Bulgarian, Ukrainian, Russian, Czech, and Polish. The author
looked at 1672 words from the above languages to determine what percentage of
words each of the six languages shared with each of the other six languages. He
did this analysis by hand using a single source. This kind of analysis can help in
determining the validity of traditional language family groupings, e.g.:
• Is the west-Slavic grouping of Czech, Polish, and Slovak supported by their lex-
ica?
• Do any of these have a significant number of non-related words in its lexicon?
• Is there any other language not in the traditional grouping worthy of inclusion
based on the number of words it shares with those in the group?

Information of this kind could also be applied to language teaching/learning by
making certain predictions about the ”learnability” of languages with more or less
similar lexica and developing language teaching materials targeted at learners from
a given related language (e.g., Polish learners of Serbo-Croatian).

Disregarding a discussion about possible copyright violations, it is easy today
to scan a text written in an alphabetic writing system into a computer to obtain
automatically a file format that can be evaluated by machine and, finally, do such a
lexical analysis of sorting/counting/intersecting with the means we have described
above. The source can be a text of any length. The search can be for any given
(more or less narrowly defined) string or number thereof. In principle, one could
scan in (or find on-line) a dictionary from each language in question to use as the
source-text. Then one could do the following:
1) Write rules using sed to “level” or standardize the orthography to make the text
uniform.
2) Write rules using sed to account for historical sound and phonological changes.
(Such rules are almost always systematic and predictable. For example: the German
intervocalic “t” is changed in English to “th.” Exceptional cases could be included
in the programs explicitly. All of these rules already exist, thanks to the efforts of
historical linguists over the last century (cf. [15]).

12 Linguistic Computing with UNIX Tools 251

Finally, there has to be a definition of unique one-to-one relations of lexica for
the languages under consideration. Of course, this has to be done separately for
every pair of languages.

12.5.5 Corpus Exploration and Concordance

The following sh program shows how to generate the surrounding context for words
from a text file $1, i.e., the file name is first argument $1 to the program. The second
argument to the program, i.e., $2, is supposed to be a strictly positive integer. In
this example, two words are related if there are not more that ($2)−2 other words
in between them.

1: #!/bin/sh

2: # surroundingContext

3: leaveOnlyWords $1 | oneItemPerLine - |

4: mapToLowerCase - | context - $2 |

5: awk ’{ for (f=2;f<=NF;f++) { print $1,$(f) } }’ |

6: countFrequencies -

Explanation: If a file contains the strings (words) aa, ab, ac, ... zz and $2=6,
then the first line of output of the code in lines 3–4 (into the pipe continued at line
5) would be aa ab ac ad ae af. That is what the awk program in line 5 would see
as first line of input. The awk program would then print aa ab, aa ac, ... aa af on
separate lines as response to that first line of input. The occurrence of such pairs is
then counted by countFrequencies. This defines a matrix Md of directed context
(asymmetric relation) between the words in a text. Md is indexed by pairs of words
(word1,word2). If the frequency of the entry in Md pertaining to (word1,word2) is
low, then the two words word1 and word2 are distant or unrelated.

Applying the procedure listed above to the source file of an older version of this
document and filtering out low frequencies using filterHighFrequencies - 20 the
following pairs of word were found in close proximity among a long list containing
otherwise mostly “noise”: (address pattern), (awk print), (awk program), (awk sed),
(echo echo), (example program), (hold space), (input line), (liberal liberal), (line
number), (newline character), (pattern space), (print print), (program line), (range
sed), (regular expressions), (sed program), (sh awk), (sh bin), (sh program), (sh
sed), (string string), and (substitution command).

Using the simple program listed above or some suitable modification, any lan-
guage researcher or teacher can conduct basic concordancing and text analysis with-
out having to purchase sometimes expensive and often inflexible concordancing or
corpus-exploration software packages. See the example given in the introduction.

In [38], a corpus search for the strings characterized by the following awk patterns

(a|(an)|(for)|(had)|(many)) [A-Za-z’-]+ of

((be)|(too)) [A-Za-z’-]+ to

was conducted. Modifying the program listed in the introduction as follows would
allow the user to search for these strings and print the strings themselves and ten
words to both the right and left of the patterns in separate files.

252 Lothar M. Schmitt, Kiel Christianson, and Renu Gupta

#!/bin/sh

leaveOnlyWords $1| oneItemPerLine -| mapToLowerCase -| context - 23|

awk ’($(11)~/^((an?)|(for)|(had)|(many))$/)&&($(13)=="of") {

File="’$1’." $(11) ".of"; print>File }

($(11)~/^((be)|(too))$/) &&($(13)=="to") {

File="’$1’." $(11) ".to"; print>File }’ -

It has been noted in several corpus studies of English collocation ([32, 41, 6]) that
searching for 5 words on either side of a given word will find 95% of collocational co-
occurrence in a text. After a search has been done for all occurrences of word word1

and the accompanying 5 words on either side in a large corpus, one can then search
the resulting list of surrounding words for multiple occurrences of word word2 to
determine with what probability word1 co-occurs with word2. The formula in [12, p.
291] can then be used to determine whether an observed frequency of co-occurrence
in a given text is indeed significantly greater than the expected frequency.

In [9], the English double genitive construction, e.g., “a friend of mine” is
compared in terms of function and meaning to the preposed genitive construc-
tion “my friend.” In this situation, a simple search for strings containing of

((mine)|(yours)|...) (dative possessive pronouns) and of .*’s would locate all
of the double genitive constructions (and possibly the occasional contraction, which
could be discarded during the subsequent analysis). In addition, a search for nom-
inative possessive pronouns and of .*’s together with the ten words that follow
every occurrence of these two grammatical patterns would find all of the preposed
genitives (again, with some contractions). Furthermore, a citation for each located
string can be generated that includes document title, approximate page number and
line number.

12.5.6 Reengineering Text Files across Different File Formats

In the course of the investigations outlined in [1, 2, 3], one of the authors developed
a family of programs that are able to transform the source file of [37], which was
typed with a what-you-see-is-what-you-get editor into a prolog database. In fact,
any machine-readable format can now be generated by slightly altering the programs
already developed.

The source was available in two formats: 1) an RTF format file, and 2) a text
file free of control sequences that was generated from the first file. Both formats
have advantages and disadvantages. As outlined in Section 12.3.5, the RTF format
file distinguishes Japanese on and kun pronunciation from ordinary English text
using italic and small cap typesetting, respectively. On the other hand, the RTF
format file contains many control sequences that make the text “dirty” in regard
to machine evaluation. We have already outlined in Section 12.3.5 how unwanted
control sequences in the RTF format file were eliminated, but valuable information
in regard to the distinction of on pronunciation, kun pronunciation and English
was retained. The second control-sequence-free file contains the standard format of
kanji which is better suited for processing in the UNIX environment we used. In
addition, this format is somewhat more regular, which is useful in regard to pattern
matching that identifies the three different categories of entries in [37]: radical, kanji
and compound. However, very valuable information is lost in the second file in regard
to the distinction between on pronunciation, kun pronunciation and English.

12 Linguistic Computing with UNIX Tools 253

Our first objective was to merge both texts line-by-line and to extract from
every pair of lines the relevant information. Merging was achieved through pat-
tern matching, observing that not all but most lines correspond one-to-one in both
sources. Kanji were identified through use of the sed operator l19. As outlined in
Section 12.3.5, control sequences were eliminated from the RTF format file but the
information some of them represent was retained.

After the source files were properly cleaned by sed and the different pieces from
the two sources identified (tagged), awk was used to generate a format from which all
sorts of applications are now possible. The source file of [37] is typed regularly enough
such that the three categories of entry radical, kanji and compound can be identified
using pattern matching. In fact, a small grammar was defined for the structure of the
source file of [37] and verified with awk. By simply counting all units, an index for the
dictionary which does not exist in [37] can now be generated. This is useful in finding
compounds in a search over the database and was previously impossible. In addition,
all relevant pieces of data in the generated format can be picked by awk as fields and
framed with, e.g., prolog syntax. It is also easy to generate, e.g., English→kanji
or English→kun dictionaries from this kanji→on/kun→English dictionary using
the UNIX command sort and rearrangement of fields. In addition, it is easy to
reformat [37] into proper jlatex format. This could be used to re-typeset the entire
dictionary.

12.6 Conclusion

In the previous exposition, we have given a short but detailed introduction to sed

and awk and their applications to language analysis. We have shown that developing
sophisticated tools with sed and awk is easy even for the computer novice. In addi-
tion, we have demonstrated how to write customized filters with particularly short
code that can be combined in the UNIX environment to create powerful processing
devices particularly useful in language research.

Applications are searches of words, phrases, and sentences that contain inter-
esting or critical grammatical patterns in any machine readable text for research
and teaching purposes. We have also shown how certain search or tagging programs
can be generated automatically from simple word lists. Part of the search routines
outlined above can be used to assist the instructor of English as a second language
through automated management of homework submitted by students through elec-
tronic mail [39]. This management includes partial evaluation, correction and an-
swering of the homework by machine using programs written in sed and/or awk. In
that regard, we have also shown how to implement a punctuation checker.

Another class of applications is the use of sed and awk in concordancing. A
few lines of code can substitute for an entire commercial programming package. We
have shown how to duplicate in a simple way searches performed by large third-party
packages. Our examples include concordancing for pairs of words, other more general
patterns, and the judgement of readability of text. The result of such searches can be
sorted and displayed by machine for subsequent human analysis. Another possibility

19 The sed operator l lists the pattern space on the output in an unambiguous form.
In particular, non-printing characters are spelled in two-digit ascii and long lines
are folded.

254 Lothar M. Schmitt, Kiel Christianson, and Renu Gupta

is to combine the selection schemes with elementary statistical operations. We have
shown that the latter can easily be implemented with awk.

A third class of application of sed and awk is lexical-etymological analysis. Using
sed and awk, dictionaries of related languages can be compared and roots of words
determined through rule-based and statistical analysis.

Various selection schemes can easily be formulated and implemented using set
and vector operations on files. We have shown the implementation of set union, set
complement, vector addition, and other such operations.

Finally, all the above shows that sed and awk are ideally suited for the develop-
ment of prototype programs in certain areas of language analysis. One saves time in
formatting the text source into a suitable database for certain types of programming
languages such as prolog. One saves time in compiling and otherwise handling C,
which is required if one does analysis with lex and yacc. In particular, if the devel-
oped program runs only a few times this is very efficient.

Disclaimer

The authors do not accept responsibility for any line of code or any programming
method presented in this work. There is absolutely no guarantee that these methods
are reliable or even function in any sense. Responsibility for the use of the code and
methods presented in this work lies solely in the domain of the applier/user.

References

1. H. Abramson, S. Bhalla, K.T. Christianson, J.M. Goodwin, J.R. Goodwin, J.
Sarraille (1995): Towards CD-ROM based Japanese ↔ English dictionaries:
Justification and some implementation issues. In: Proc. 3rd Natural Language
Processing Pacific-Rim Symp. (Dec. 4–6, 1995), Seoul, Korea

2. H. Abramson, S. Bhalla, K.T. Christianson, J.M. Goodwin, J.R. Goodwin, J.
Sarraille, L.M. Schmitt (1996): Multimedia, multilingual hyperdictionaries: A
Japanese ↔ English example. Paper presented at the Joint Int. Conf. Associa-
tion for Literary and Linguistic Computing and Association for Computers and
the Humanities (June 25–29, 1996), Bergen, Norway, available from the authors

3. H. Abramson, S. Bhalla, K.T. Christianson, J.M. Goodwin, J.R. Goodwin, J.
Sarraille, L.M. Schmitt (1996): The Logic of Kanji lookup in a Japanese ↔
English hyperdictionary. Paper presented at the Joint Int. Conf. Association
for Literary and Linguistic Computing and Association for Computers and the
Humanities (June 25–29, 1996), Bergen, Norway, available from the authors

4. A.V. Aho, B.W. Kernighan, P.J. Weinberger (1978): awk — A Pattern Scan-
ning and Processing Language (2nd ed.). In: B.W. Kernighanm, M.D. McIl-
roy (eds.), UNIX programmer’s manual (7th ed.), Bell Labs, Murray Hill,
http://cm.bell-labs.com/7thEdMan/vol2/awk

5. A.V. Aho, B.W. Kernighan, P.J. Weinberger (1988): The AWK programming
language. Addison-Wesley, Reading, MA

6. B.T.S. Atkins (1992): Acta Linguistica Hungarica 41:5–71
7. J. Burstein, D. Marcu (2003): Computers and the Humanities 37:455–467

12 Linguistic Computing with UNIX Tools 255

8. C. Butler (1985): Computers in linguistics. Basil Blackwell, Oxford
9. K.T. Christianson (1997): IRAL 35:99–113

10. K. Church (1990): Unix for Poets. Tutorial at 13th Int. Conf. on Computational
Linguistics, COLING-90 (August 20–25, 1990), Helsinki, Finland, http://

www.ling.lu.se/education/homepages/LIS131/unix_for_poets.pdf

11. W.F. Clocksin, C.S. Mellish (1981): Programming in Prolog. Springer, Berlin
12. A. Collier (1993): Issues of large-scale collocational analysis. In: J. Aarts, P. De

Haan, and N. Oostdijk (eds.), English language corpora: Design, analysis and
exploitation, Editions Rodopi, B.V., Amsterdam

13. A. Coxhead (2000): TESOL Quarterly 34:213–238
14. A. Coxhead (2005): Academic word list. Retrieved Nov. 30, 2005,

http://www.vuw.ac.nz/lals/research/awl/

15. A. Fox (1995): Linguistic Reconstruction: An Introduction to Theory and
Method. Oxford Univ. Press, Oxford

16. P.G. Gänssler, W. Stute (1977): Wahrscheinlichkeitstheorie. Springer, Berlin
17. gnuplot 4.0. Gnuplot homepage, http://www.gnuplot.info
18. J.D. Goldfield (1986): An Approach to Literary Computing in French. In:

Méthodes quantitatives et informatiques dans l’étude des textes, Slatkin-
Champion, Geneva

19. M. Gordon (1996): What does a language’s lexicon say about the company it
keeps?: A slavic case study. Paper presented at Annual Michigan Linguistics
Soc. Meeting (October 1996), Michigan State Univ., East Lansing, MI

20. W. Greub (1981): Linear Algebra. Springer, Berlin
21. S. Hockey, J. Martin (1988): The Oxford concordance program: User’s manual

(Ver. 2). Oxford Univ. Computing Service, Oxford
22. M. Hoey (1991): Patterns of lexis in text. Oxford Univ. Press, Oxford
23. A.G. Hume, M.D. McIlroy (1990): UNIX programmer’s manual (10th ed.). Bell

Labs, Murray Hill
24. K. Hyland (1997): J. Second Language Writing 6:183–205
25. S.C. Johnson (1978): Yacc: Yet another compiler-compiler. In: B.W. Kernighan,

M.D. McIlroy (eds.), UNIX programmer’s manual (7th ed.), Bell Labs, Murray
Hill, http://cm.bell-labs.com/7thEdMan/vol2/yacc.bun

26. G. Kaye (1990): A corpus builder and real-time concordance browser for an IBM
PC. In: J. Aarts, W. Meijs (eds.), Theory and practice in corpus linguistics,
Editions Rodopi, B.V., Amsterdam

27. P. Kaszubski (1998): Enhancing a writing textbook: a nationalist perspective.
In: S. Granger (ed.), Learner English on Computer, Longman, London

28. G. Kennedy (1991): Between and through: The company they keep and the func-
tions they serve. In: K. Aijmer, B. Altenberg (eds.), English corpus linguistics,
Longman, New York

29. B.W. Kernighan, M.D. McIlroy (1978): UNIX programmer’s manual (7th ed.).
Bell Labs, Murray Hill

30. B.W. Kernighan, R. Pike (1984): The UNIX programming environment. Pren-
tice Hall, Englewood Cliffs, NJ

31. B.W. Kernighan, D.M. Ritchie (1988): The C programming language. Prentice
Hall, Englewood Cliffs, NJ

32. G. Kjellmer (1989): Aspects of English collocation. In: W. Meijs (ed.), Corpus
linguistics and beyond, Editions Rodopi, B.V., Amsterdam

33. L. Lamport (1986): Latex — A document preparation system. Addison-Wesley,
Reading, MA

256 Lothar M. Schmitt, Kiel Christianson, and Renu Gupta

34. M.E. Lesk, E. Schmidt (1978): Lex — A lexical analyzer generator. In: B.W.
Kernighan, M.D. McIlroy (eds.), UNIX programmer’s manual (7th ed.), Bell
Labs, Murray Hill, http://cm.bell-labs.com/7thEdMan/vol2/lex

35. N.H. McDonald, L.T. Frase, P. Gingrich, S. Keenan (1988): Educational Psy-
chologist 17:172–179

36. C.F. Meyer (1994): Studying usage in computer corpora. In: G.D. Little. M.
Montgomery (eds.), Centennial usage studies, American Dialect Soc., Jack-
sonville, FL

37. A.N. Nelson (1962): The original modern reader’s Japanese-English character
dictionary (Classic ed.). Charles E. Tuttle, Rutland

38. A. Renouf, J.M. Sinclair (1991): Collocational frameworks in English. In: K.
Aijmer, B. Altenberg (Eds.) English corpus linguistics, Longman, New York

39. L.M. Schmitt, K. Christianson (1998): System 26:567–589
40. L.M. Schmitt, K. Christianson (1998): ERIC: Educational Resources Informa-

tion Center, Doc. Service, National Lib. Edu., USA, ED 424 729, FL 025 224
41. F.A. Smadja (1989): Literary and Linguistic Computing 4:163–168
42. J.M. Swales (1990): Genre Analysis: English in Academic and Research Setting.

Cambridge Univ. Press, Cambridge
43. F. Tuzi (2004): Computers and Composition 21:217–235
44. L. Wall, R.L. Schwarz (1990): Programming perl. O’Reilly, Sebastopol
45. C.A. Warden (2000): Language Learning 50:573–616
46. J.H.M. Webb (1992): 121 common mistakes of Japanese students of English

(Revised ed.). The Japan Times, Tokyo
47. S. Wolfram (1991): Mathematica — A system for doing mathematics by com-

puter (2nd ed.). Addison-Wesley, Reading, MA

Appendices

A.1. Patterns (Regular Expressions)

Patterns which are also called regular expressions can be used in sed and awk
for two purposes:

(a) As addresses, in order to select the pattern space (roughly the current
line) for processing (cf. sections 12.3.1 and 12.4.1).

(b) As patterns in sed substitution commands that are actually replaced.
Patterns are matched by sed and awk as the longest, non-overlapping strings
possible.

Regular expressions in sed. The patterns that can be used with sed con-
sist of the following elements in between slashes /:

(1) Any non-special character matches itself.
(2) Special characters that otherwise have a particular function in sed

have to be preceded by a backslash \ in order to be understood literally. The
special characters are: \\ \/ \^ \$ \. \[\] * \& \n

(3) ^ resp. $ match the beginning resp. the end of the pattern space. They
must not be repeated in the replacement in a substitution command.

(4) . matches any single character.

12 Linguistic Computing with UNIX Tools 257

(5) [range] matches any character in the string of characters range. The
following five rules must be observed:
R1: The backslash \ is not needed to indicate special characters in range. The
backslash only represents itself.
R2: The closing bracket] must be the first character in range in order to be
recognized as itself.
R3: Intervals of the type a-z, A-Z, 0-9 in range are permitted. For example,
i-m.
R4: The hyphen - must be at the beginning or the end of range in order to
be recognized as itself.
R5: The carat ^ must not be the first character in range in order to be recog-
nized as itself.

(6) [^range] matches any character not in range. The rules R1–R4 under
5) also apply here.

(7) pattern* stands for 0 or any number of concatenated copies of pattern
where pattern is a specific character, the period . (meaning any character) or
a range [...] as described under 5) and 6).

(8) pattern\{α,ω\} stands for α to ω concatenated copies of pattern. If ω
is omitted, then an arbitrarily large number of copies of pattern is matched.
Thus, the repitor * is equivalent to \{0,\}.

Regular expressions in awk. Regular expressions are used in awk as address
patterns to select the pattern space for an action. They can also be used in
the if statement of awk to define a conditional. Regular expressions in awk
are very similar to regular expressions in sed. The regular expressions that
can be used with awk consist of the following elements in between slashes /:

(1) Any non-special character matches itself as in sed.
(2) Special characters that otherwise have a particular function in awk

have to be preceded by a backslash \ in order to be understood literally as in
sed. A newline character in the pattern space can be matched with \n. The
special characters are: \\ \/ \^ \$ \. \[\] * \+ \? \(\) \| \n.

Observe that & is not special in awk but in sed. In contrast, + and ? are
special in awk serving as repitors similar to *. Parentheses are allowed in regu-
lar expressions in awk for grouping. Alternatives in regular expressions in awk
are encoded using the vertical slash character |. Thus, the literal characters
\+, \?, \(, \) and \| become special in awk but are not in sed. Note that
there is no tagging using \(and \) in awk.

(3) ^ resp. $ match the beginning resp. the end of the pattern space as in
sed.

(4) . matches any single character as in sed.
(5) [range] matches any character in the string of characters range. The

following five rules must be observed:
R1: The backslash \ is not used to indicate special characters in range except
for \] and \\.
R2: The closing bracket] is represented as \]. The backslash \ is represented

258 Lothar M. Schmitt, Kiel Christianson, and Renu Gupta

as \\.
R3: Intervals of the type a-z, A-Z, 0-9 in range are permitted. For example,
1-9.
R4: The hyphen - must be at the beginning or the end of range in order to
be recognized as itself.
R5: The carat ^ must not be the first character in range in order to be recog-
nized as itself.

(6) [^range] matches any character not in range. The rules R1–R4 set
under 5) also apply here.

(7) pattern? stands for 0 or 1 copies of pattern where pattern is a specific
character, the period . (meaning any character) or a range [...] as described
under 5) and 6) or something in parentheses. pattern* stands for 0 or any
number of concatenated copies of pattern. pattern+ stands for 1 or any number
of concatenated copies of pattern.

(8) The ordinary parentheses (and) are used for grouping.
(9) The vertical slash | is used to define alternatives.

A.2. Advanced Patterns in awk

Address patterns in awk that select the pattern space for action can be
(1) regular expressions as described in A.1,
(2) algebraic-computational expressions involving variables20 and func-

tions, and
(3) Boolean combinations of anything listed under 1) or 2).

Essentially, everything can be combined in a sensible way to customize a
pattern.

Example: In the introduction, the following is used:
awk ’(($1~/^between$/)||($(NF)~/^between$/))&&($0~/ through /)’ -

This prints every line of input where the first or (||) last field equals between

and (&&) there exits a field that equals through on the line by invoking the default
action (i.e., printing). It is assumed that fields are separated by blanks. This is used
in the very first example code in the introduction.

20 For example, the variable fields of the input record can be matched against pat-
terns using the tilde operator.

Index

! bang or exclamation (sed-operator
not), 237

| vertical bar (pipe symbol), 221, 225
: colon (sed-operator define address),

234
= equal sign (sed-operator print line

number), 231
$ (end of line symbol), 256
$ (last line address), 227
$(0) (awk variable), 240
$(1) (awk field variable), 239
$0 (awk variable), 221, 224
$1 (awk field variable), 239
$1 (sh argument), 221
> (sh-redirect), 225
>> (sh-redirect), 225
^ (begin of line symbol), 256
^ (range negation), 256
++ (awk increment operator), 224, 240
-- (awk increment operator), 224, 240

active learning, see automatic
classification, active learning, 61

addBlanks, 228
address (sed), 227, 234
adjustBlankTabs, 242
agricultural and food science, 161
algebraic operators (awk), 240, 258
analysis of collocations, 221
anaphora resolution, see natural lan-

guage processing (NLP), anaphora
resolution

antonym, see thesaurus, synonym,
antonym

argument $1 (sh), 221

array (awk), 224, 236, 238, 241, 243

assignment operators (awk), 240

associative array (awk), 238, 242, 243,
245

automatic classification, 1, 2, 5, 124,
149, 171, 176, 182

active learning, 61

binary, 133

by rules, 124

dependency path kernel, 2, 30, 34–38

feature selection, 172, 173, 175–178,
180, 182, 189

imbalanced data, 5, 171–173, 181,
183, 187–189

kernel methods, 2

Mallet classifier, 62

multi-class, 133, 142

relational kernels, 33–34, 39, 42

subsequence kernels, 2, 30, 32–33, 40

support vector machines (SVM), 2, 3,
5, 31, 39, 132, 172, 174, 178, 180,
182

TiMBL, 63

automatically generated program,
233–234

awk

algebraic operators, 240, 258

array, 224, 236, 238, 241, 243

assignment operators, 240

associative array, 238, 242, 243, 245

built-in functions, 240

concatenation, 227, 235, 238–240

260 Index

control structures, 242
exit, 242
for loop, 238, 240, 242, 243
formatting the output, 241
if, 242
increment operators, 240
logical operators, 240
loop, 238, 240, 242, 243
next, 242
operators, 240
print, 224, 237–245, 248, 251, 258
printf, 239, 241
relational operators, 240
variables, 241
while, 242

awk function
exp, 240
index, 241
int, 240
length, 240
log, 240
split, 241
sqrt, 240
string, 240
substr, 241

awk program, 236
awk variable

FILENAME, 238
FS, 238
NF, 238
NR, 238
OFS, 238
ORS, 238
RS, 238

bag-of-words, 2, 3, 132, 146, 147
bang or exclamation, ! (sed-operator

not), 237
beam search, 139
BEGIN (awk pre-processing action

address), 236–238, 241, 249
Berkely FrameNet Project, see

FrameNet
BitPar, see parser, BitPar
Bourne shell, 222
built-in functions (awk), 240

calibration of scores, 133, 142

categorization, automatic, see auto-
matic classification

category-based term weights, see term
weighting scheme, category-based
term weights

cd (UNIX command), 223
change directory (UNIX command), 223
checking summary writing - sample

application, 234
chmod (UNIX command), 223
classification, automatic, see automatic

classification
cleaning files, 227
clustering, 53, 125, 147, 155, 171, 172,

197, 204, 210, 213, 216, 217
Coh-Metrix, 94, 108, 109, 112, 117
cohesion, 107–111, 157, 249

cohesive, 107
collocations, 221
colon, : (sed-operator define address),

234
CommonKADS, 48
composition (English), 222
concatenation (awk), 227, 235, 238–240
concordance, 221, 222, 251, 255
conditional tagging, 228
context, 10, 12, 16, 18, 21–26, 47, 77,

86, 92, 96, 221, 238, 241, 244,
249–251

control structures (awk), 242
coreferencing, see natural language

processing, anaphora resolution
corpus (corpora), 5, 109, 111, 112,

114–118
AGRIS, 161
biomedical corpora, 29, 40, 42
MCV1, 178, 181–189
MEDLINE, 147
Reuters-21578, 173, 178, 181–189
training corpus, 132

corpus search, 222, 251
cost factor, 133
cost-based term weighting, see term

weighting scheme, cost-based term
weighting

countFrequencies, 224, 225, 236, 238,
242, 247, 249–251

countIonWords, 237
CoNLL shared task, 50

Index 261

crossover mutation, see Genetic
Algorithm, crossover mutation

cycle, 226

d (sed-operator delete pattern space),
237

decision support, 200
dependency path kernel, see automatic

classificaton, dependency path
kernel

dependency relations, see linguistics,
syntactic dependencies

document preparation, 126
document retrieval, see information

retrieval
document separation, 123

automatic, 124, 130

echo, 235
edit distance, 194, 196, 203, 216
eliminateList, 227
END (awk pre-processing action

address), 224, 225, 236, 237, 243,
245

English as a second language, 222, 227
English composition, 222
English punctuation, 222, 246
equal sign, = (sed-operator print line

number), 231
exclamation or bang, ! (sed-operator

not), 237
exit (awk), 242
exp (awk function), 240
extracting sentences, 247

feature assessment, feature assessor,
10–13

feature space, 142
feedback (writing instruction), 227–246
feedback systems, 92–94, 97, 99, 100
field, 236
field separator, 238, 239
field variables, 239
findFourLetterWords, 231, 238
finite state transducer

composition, 137
delayed composition, 139
weighted (WFST), 136

firstFiveFieldsPerLine, 238

for loop (awk), 238, 240, 242, 243
formatting the output (awk), 241
frame semantics, see Berkely FrameNet

Project, 49
FrameNet, 2, 3, 49
frequencies, 222–225

generating programs, 233–234
genetic algorithm (GA), 4, 146–157,

161–167
crossover mutation, 156

genre, 5, 6, 92, 97, 104, 108, 118, 150,
152, 246

gold standard, 209
grammar, see linguistics, grammar
grammatical analysis, 222, 227, 233
graph theory, 5
grep, 237

hedges, 246
hideUnderscore, 229
hypothesis discovery, 155

if (awk), 242
IF-THEN rules, 4, 149, 165–167
increment operators (awk), 240
index (awk function), 241
InFact, 69

architecture, 78
indexing, 70
linguistic normalization, 72
storage, 73
usability, 81

information extraction, 1, 3, 4, 9, 11,
29, 49, 52, 124, 130, 146–148, 152

by rules, 124
entity extraction, 1, 3, 4
feature extraction, 10–26
opinion phrase extraction, 10, 11, 16,

21, 23
opinion phrase polarity extraction,

10, 11, 22, 23
relation extraction, 2, 4, 29, 40–42

information retrieval, 1, 3, 4, 146, 196
fact based, 81
keyword based, 75, 76
natural language based, 75, 76

int (awk function), 240
interestingness, 150, 157

262 Index

isolating sentences, 222, 238
iSTART, 91–93

feedback systems, see feedback
systems

Jaccard coefficient, 206

kernel, see automatic classification,
kernel methods

KL-distance, see topic models,
Kullback-Leibler distance

KnowItAll, 11, 12
knowledge roles, 46, 48–53, 55, 63, 65
Kullback-Leibler distance, see topic

models, Kullback-Leibler distance

last line address ($), 227
last line of input ($), 227
latent semantic analysis (LSA), 3–5, 91,

95, 96, 100, 108, 110–118, 153
benchmarks, 96
cosine similarity measure, 96
dimensions, 95
document representation, 95
document similarity, 95, 153
latent semantic space, 95
singular value decomposition, 95
term similarity, 95
word-document matrix, 95

leaveOnlyWords, 221
length (awk function), 240
length criteria, 93
lexical analysis, 250, 256
lexical-etymological analysis, 222, 250,

254
lexicon, see linguistics, lexicon
linguistics, 1, 4

grammar, 1, 3, 6
lexicon, 1
morphology, 1–3, 18, 54
part-of-speech (tagger), 1, 29–31, 54,

153
syntactic dependencies, 1, 3, 18, 31,

73
local repetition, 249
log (awk function), 240
logical operators (awk), 240
loop, 252, 253
loop (awk), 238, 240, 242, 243

loop (sed), 234

machine learning, see automatic
classification

Mallet, see automatic classification,
Mallet classifier

mapToLowerCase, 221
markDeterminers, 230
marker in text, 230
Markov chain, 3, 4, 30, 130, 158
MCV1, see corpus (corpora), MCV1
meronym, 12, 25
metacognitive filter, 99
metacognitive statements, 99
MINIPAR, see parser, MINIPAR
morphology, see linguistics, morphology
mortgage, 123
multi-objective optimization, see

optimization, multi-objective

N (sed-operator next line appended),
231

natural language processing (NLP),
1–3, 5, 6, 29

anaphora resolution, 72, 148
natural language processing dependency

tree, see linguistics, syntactic
dependencies

natural language processing parser, see
parser, parsing

neighborhood features, 17–20
next (awk), 242
novelty, 150, 157
numberOfLines, 237

oneItemPerLine, 221
ontology, 1, 2, 5, 12, 13

ontology formalization, 202
OntoRand index, 205
operators (awk), 240
Opine, 10–26
opinion mining, 4, 9–26
opinion phrase extraction, see informa-

tion extraction, opinion phrase
extraction

opinion phrase polarity extraction, see
information extraction, opinion
phrase polarity extraction

opinion polarity, 9–11, 16, 21, 23–26

Index 263

opinion strength, 9–11, 24–26
optical character recognition (OCR), 5,

123
optimization, multi-objective, 155

Pareto optimal set, 161
Strength Pareto Evolutionary

Algorithm (SPEA), 154

p (sed-operator print), 226
Pareto optimal set, see optimization,

multi-objective, Pareto optimal
set

parser, parsing, 2, 3, 29, 39, 40
BitPar, 58
deep parser, 2, 30, 73
MINIPAR, 2, 11, 16
Sleepy parser, 58
Stanford Parser, 57

part-of-speech (tagger), see linguistics,
part-of-speech (tagger)

partition, 204
pattern, 256
pattern matching, simplified, 231
pattern space, 226, 230
pipe, pipe symbol, |, 221, 225
pointwise mutual information (PMI), 2,

11–26
polarity, see opinion polarity
POS, see linguistics, part-of-speech

(tagger)
print (awk), 224, 237–245, 248, 251, 258
print (sed), 226, 229, 231, 235
printf (awk), 239, 241
printPredecessorBecause, 239
product features, 9, 10, 25, 26

explicit features, 11–17, 25
implicit features, 9–11, 14, 15

PropNet, 49
punctuation check (English), 246, 253

q (sed-operator quit), 229

Rand index, 205
range, 227–229, 232, 233, 235, 248, 257,

258
re-engineering text files across different

formats, 252
readability of text, 222, 249, 253
reading strategy, 91, 101

SERT, 91
reformat, 246
regular expression, 227, 230, 242, 251,

256–258
relational labeling, 10
relational operators (awk), 240
relaxation labeling, 10, 11, 17, 18, 26
relevance criteria, 94
repitor, 257
restoreUnderscore, 230
Reuters-21578, see corpus (corpora),

Reuters-21578
review mining, see opinion mining
rhetorical information, 153

s (sed-operator substitute), 224
Salsa annotation tool, 60
scanning, 123
search, see information retrieval
second language learning, 222
sed

loop, 234
print, 226, 229, 231, 235

sed -n, 235
sed-operator

! bang or exclamation (not), 237
: colon (define address), 234
bang or exclamation, ! (not), 237
colon, : (define address), 234
d (delete pattern space), 237
exclamation or bang, ! (not), 237
N (next line appended), 231
p (print), 226
q (quit), 229
s (substitute), 224
t (test and loop), 234
w (write to file), 235
y (map characters), 223

self-explanation
assessment, 93
experiment, 100, 101
human ratings, 100
quality, 91, 93, 94, 96

semantic orientation labels, see semantic
role labeling

semantic role labeling, 17–24, 49
sentence boundary, 222, 238
sentiment analysis, 13
SentimentAnalyzer (IBM), 13

264 Index

sequence, 5

mapping of, 5, 130

model, 3, 5, 130

model estimation, 132

Processing, 134

SERT, see reading strategy, SERT

set (file format), 245

set operations, 245

sh, 221, 223, 224

sh argument, 221, 223, 224

sh program, 221, 223, 224

shell program, 223, 224

similarity criteria, 94

simplified pattern matching, 231

singular value decomposition, see latent
semantic analysis, singular value
decomposition

SNoW, 63

sortByVowel, 235

sorting (by patterns with sed), 235

sorting into files, 235

soundex, 3, 93

SPEA, see optimization, multi-
objective, Strength Pareto
Evolutionary Algorithm

spelling, 246

split (awk function), 241

sqrt (awk function), 240

stemming, 3–5

string (awk function), 240

structure, 109, 110

structural, 107

subsequence kernel, see automatic
classificaton, subsequence kernel

substitution, 225

substr (awk function), 241

summary writing - sample application,
234

support vector machines (SVM), see
automatic classification, support
vector machines (SVM)

surroundingContext, 251

SVD, see latent semantic analysis,
singular value decomposition

SVM, see automatic classification,
support vector machines (SVM)

synonym, see thesaurus, synonym,
antonym

syntactic dependencies, see linguistics,
syntactic dependencies

t (sed-operator test and loop), 234
tagged regular expression, 230
tagger, see linguistics, part-of-speech

tagger
tagging, 230
tagging programs, 230
term weighting scheme, 5, 173, 174, 177,

178
category-based term weighting, 5,

170, 173, 177, 178, 189
cost-based term weighting, 5
TFIDF, 5, 173, 177–189

text categorization, see automatic
classification

text classification, see automatic
classification

textual signatures, 108, 110, 117, 118
TFIDF, see term weighting scheme,

TFIDF
thesaurus, synonym, antonym, 1, 2, 5,

13, 14, 18, 227
TiMBL, see automatic classification,

TiMBL, 63
tokenization, 3–5, 29
topic hierarchy, 204
topic models, 3, 92

document representation, 3, 98
document similarity, 98
Kullback-Leibler (KL) distance, 98
matrix, 97, 98
toolbox, 97

training corpus, see corpus (corpora),
training corpus

transducer, 136
transition signals, 240
translation, 222
TreeTagger, 54
trellis, 134
type/token ratio, 243

UNIX scripts, 5, 221–258

variables (awk), 241
vector (file format), 242
vector operations, 242
VerbNet, 2, 3

Index 265

vertical bar (pipe symbol), |, 221, 225
Viterbi search, 135

w (sed-operator write to file), 235
wc (UNIX command), 237
web, as data source, 9, 13, 24, 26
WFST, see finite state transducer,

weighted

while (awk), 242

word frequency, 222–224

WordNet, 2, 13, 14, 18, 148, 150

writing instruction, 227–246

y (sed-operator map characters), 223

	Contents
	1 Overview
	2 Extracting Product Features and Opinions from Reviews
	3 Extracting Relations from Text: From Word Sequences to Dependency Paths
	4 Mining Diagnostic Text Reports by Learning to Annotate Knowledge Roles
	5 A Case Study in Natural Language Based Web Search
	6 Evaluating Self-Explanations in iSTART: Word Matching, Latent Semantic Analysis, and Topic Models
	7 Textual Signatures: Identifying Text-Types Using Latent Semantic Analysis to Measure the Cohesion of Text Structures
	8 Automatic Document Separation: A Combination of Probabilistic Classification and Finite-State Sequence Modeling
	9 Evolving Explanatory Novel Patterns for Semantically-Based Text Mining
	10 Handling of Imbalanced Data in Text Classification: Category-Based Term Weights
	11 Automatic Evaluation of Ontologies
	12 Linguistic Computing with UNIX Tools
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

