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[X] Euclidean length of X

X-y The dot product of X and y

cos(X,y) The cosine of the angle between X and y
Cij Element in row i and column j of matrix C
CcT Transpose of matrix C

X Estimate of X

E(X) Expectation of X

Var(X) Variance of X

u Mean

o Standard deviation

X Sample mean

52 Sample variance

P(A|B) The probability of A conditional on B
X ~p(x) Random variable X is distributed according to p
b(r; n,p) The binomial distribution

(f) Combination or binomial coefficient (the number of ways of
choosing r objects from n)

n(x; y,o) The normal distribution
H(X) Entropy
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I(X;Y) Mutual information

Dpllaq) Kullback-Leibler (KL) divergence
C(-) Count of the entity in parentheses
fu The relative frequency of u.

Wij, Way) The words wi, Wiyt ..., Wj

Wi j The same as w;;

Wi,...,wj The same as w;;

O(n) Time complexity of an algorithm

Ungrammatical sentence or phrase or ill-formed word

? Marginally grammatical sentence or marginally acceptable
phrase
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ambiguation), table 9.1 (Markov Models), table 10.2 (Tagging), table 11.1
(Probabilistic Context-Free Grammars), and table 14.2 (Clustering).






Preface

THE NEED for a thorough textbook for Statistical Natural Language Pro-
cessing hardly needs to be argued for in the age of on-line information,
electronic communication and the World Wide Web. Increasingly, busi-
nesses, government agencies and individuals are confronted with large
amounts of text that are critical for working and living, but not well
enough understood to get the enormous value out of them that they po-
tentially hide.

At the same time, the availability of large text corpora has changed
the scientific approach to language in linguistics and cognitive science.
Phenomena that were not detectable or seemed uninteresting in studying
toy domains and individual sentences have moved into the center field of
what is considered important to explain. Whereas as recently as the early
1990s quantitative methods were seen as so inadequate for linguistics
that an important textbook for mathematical linguistics did not cover
them in any way, they are now increasingly seen as crucial for linguistic
theory.

In this book we have tried to achieve a balance between theory and
practice, and between intuition and rigor. We attempt to ground ap-
proaches in theoretical ideas, both mathematical and linguistic, but si-
multaneously we try to not let the material get too dry, and try to show
how theoretical ideas have been used to solve practical problems. To do
this, we first present key concepts in probability theory, statistics, infor-
mation theory, and linguistics in order to give students the foundations
to understand the field and contribute to it. Then we describe the prob-
lems that are addressed in Statistical Natural Language Processing (NLP),
like tagging and disambiguation, and a selection of important work so
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that students are grounded in the advances that have been made and,
having understood the special problems that language poses, can move
the field forward.

When we designed the basic structure of the book, we had to make
a number of decisions about what to include and how to organize the
material. A key criterion was to keep the book to a manageable size. (We
didn’t entirely succeed!) Thus the book is not a complete introduction
to probability theory, information theory, statistics, and the many other
areas of mathematics that are used in Statistical NLP. We have tried to
cover those topics that seem most important in the field, but there will
be many occasions when those teaching from the book will need to use
supplementary materials for a more in-depth coverage of mathematical
foundations that are of particular interest.

We also decided against attempting to present Statistical NLP as homo-
geneous in terms of the mathematical tools and theories that are used.
It is true that a unified underlying mathematical theory would be desir-
able, but such a theory simply does not exist at this point. This has led
to an eclectic mix in some places, but we believe that it is too early to
mandate that a particular approach to NLP is right and should be given
preference to others.

A perhaps surprising decision is that we do not cover speech recogni-
tion. Speech recognition began as a separate field to NLP, mainly grow-
ing out of electrical engineering departments, with separate conferences
and journals, and many of its own concerns. However, in recent years
there has been increasing convergence and overlap. It was research into
speech recognition that inspired the revival of statistical methods within
NLP, and many of the techniques that we present were developed first for
speech and then spread over into NLP. In particular, work on language
models within speech recognition greatly overlaps with the discussion
of language models in this book. Moreover, one can argue that speech
recognition is the area of language processing that currently is the most
successful and the one that is most widely used in applications. Neverthe-
less, there are a number of practical reasons for excluding the area from
this book: there are already several good textbooks for speech, it is not an
area in which we have worked or are terribly expert, and this book seemed
quite long enough without including speech as well. Additionally, while
there is overlap, there is also considerable separation: a speech recogni-
tion textbook requires thorough coverage of issues in signal analysis and
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acoustic modeling which would not generally be of interest or accessible
to someone from a computer science or NLP background, while in the
reverse direction, most people studying speech would be uninterested in
many of the NLP topics on which we focus.

Other related areas that have a somewhat fuzzy boundary with Statis-
tical NLP are machine learning, text categorization, information retrieval,
and cognitive science. For all of these areas, one can find examples of
work that is not covered and which would fit very well into the book.
It was simply a matter of space that we did not include important con-
cepts, methods and problems like minimum description length, back-
propagation, the Rocchio algorithm, and the psychological and cognitive-
science literature on frequency effects on language processing.

The decisions that were most difficult for us to make are those that
concern the boundary between statistical and non-statistical NLP. We
believe that, when we started the book, there was a clear dividing line
between the two, but this line has become much more fuzzy recently.
An increasing number of non-statistical researchers use corpus evidence
and incorporate quantitative methods. And it is now generally accepted
in Statistical NLP that one needs to start with all the scientific knowledge
that is available about a phenomenon when building a probabilistic or
other model, rather than closing one’s eyes and taking a clean-slate ap-
proach.

Many NLP researchers will therefore question the wisdom of writing a
separate textbook for the statistical side. And the last thing we would
want to do with this textbook is to promote the unfortunate view in
some quarters that linguistic theory and symbolic computational work
are not relevant to Statistical NLP. However, we believe that there is
so much quite complex foundational material to cover that one simply
cannot write a textbook of a manageable size that is a satisfactory and
comprehensive introduction to all of NLP. Again, other good texts al-
ready exist, and we recommend using supplementary material if a more
balanced coverage of statistical and non-statistical methods is desired.

A final remark is in order on the title we have chosen for this book.
Calling the field Statistical Natural Language Processing might seem ques-
tionable to someone who takes their definition of a statistical method
from a standard introduction to statistics. Statistical NLP as we define it
comprises all quantitative approaches to automated language processing,
including probabilistic modeling, information theory, and linear algebra.
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While probability theory is the foundation for formal statistical reason-
ing, we take the basic meaning of the term ‘statistics’ as being broader,
encompassing all quantitative approaches to data (a definition which one
can quickly confirm in almost any dictionary). Although there is thus
some potential for ambiguity, Statistical NLP has been the most widely
used term to refer to non-symbolic and non-logical work on NLP over the
past decade, and we have decided to keep with this term.

Acknowledgments. Over the course of the three years that we were
working on this book, a number of colleagues and friends have made
comments and suggestions on earlier drafts. We would like to express
our gratitude to all of them, in particular, Einat Amitay, Chris Brew,
Thorsten Brants, Andreas Eisele, Michael Ernst, Oren Etzioni, Marc Fried-
man, Fric Gaussier, Eli Hagen, Marti Hearst, Nitin Indurkhya, Michael
Inman, Mark Johnson, Rosie Jones, Tom Kalt, Andy Kehler, Julian Ku-
piec, Michael Littman, Arman Maghbouleh, Amir Najmi, Kris Popat,
Fred Popowich, Geoffrey Sampson, Hadar Shemtov, Scott Stoness, David
Yarowsky, and Jakub Zavrel. We are particularly indebted to Bob Car-
penter, Eugene Charniak, Raymond Mooney, and an anonymous reviewer
for MIT Press, who suggested a large number of improvements, both in
content and exposition, that we feel have greatly increased the overall
quality and usability of the book. We hope that they will sense our grat-
itude when they notice ideas which we have taken from their comments
without proper acknowledgement.

We would like to also thank: Francine Chen, Kris Halvorsen, and Xe-
rox PARC for supporting the second author while writing this book, Jane
Manning for her love and support of the first author, Robert Dale and
Dikran Karagueuzian for advice on book design, and Amy Brand for her
regular help and assistance as our editor.

Feedback. While we have tried hard to make the contents of this book
understandable, comprehensive, and correct, there are doubtless many
places where we could have done better. We welcome feedback to the
authors via email to cmanning@acm.org or hinrich@hotmail.com.

In closing, we can only hope that the availability of a book which col-
lects many of the methods used within Statistical NLP and presents them
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in an accessible fashion will create excitement in potential students, and
help ensure continued rapid progress in the field.

Christopher Manning
Hinrich Schiitze
February 1999
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IN GENERAL, this book is written to be suitable for a graduate-level
semester-long course focusing on Statistical NLP. There is actually rather
more material than one could hope to cover in a semester, but that rich-
ness gives ample room for the teacher to pick and choose. It is assumed
that the student has prior programming experience, and has some famil-
iarity with formal languages and symbolic parsing methods. It is also
assumed that the student has a basic grounding in such mathematical
concepts as set theory, logarithms, vectors and matrices, summations,
and integration - we hope nothing more than an adequate high school
education! The student may have already taken a course on symbolic NLP
methods, but a lot of background is not assumed. In the directions of
probability and statistics, and linguistics, we try to briefly summarize all
the necessary background, since in our experience many people wanting
to learn about Statistical NLP methods have no prior knowledge in these
areas (perhaps this will change over time!). Nevertheless, study of sup-
plementary material in these areas is probably necessary for a student
to have an adequate foundation from which to build, and can only be of
value to the prospective researcher.

What is the best way to read this book and teach from it? The book is
organized into four parts: Preliminaries (part I), Words (part II), Grammar
(part III), and Applications and Techniques (part IV).

Part I lays out the mathematical and linguistic foundation that the other
parts build on. Concepts and techniques introduced here are referred to
throughout the book.

Part II covers word-centered work in Statistical NLP. There is a natu-
ral progression from simple to complex linguistic phenomena in its four
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chapters on collocations, n-gram models, word sense disambiguation,
and lexical acquisition, but each chapter can also be read on its own.

The four chapters in part III, Markov Models, tagging, probabilistic con-
text free grammars, and probabilistic parsing, build on each other, and so
they are best presented in sequence. However, the tagging chapter can be
read separately with occasional references to the Markov Model chapter.

The topics of part IV are four applications and techniques: statisti-
cal alignment and machine translation, clustering, information retrieval,
and text categorization. Again, these chapters can be treated separately
according to interests and time available, with the few dependencies be-
tween them marked appropriately.

Although we have organized the book with a lot of background and
foundational material in part I, we would not advise going through all of
it carefully at the beginning of a course based on this book. What the
authors have generally done is to review the really essential bits of part I
in about the first 6 hours of a course. This comprises very basic proba-
bility (through section 2.1.8), information theory (through section 2.2.7),
and essential practical knowledge - some of which is contained in chap-
ter 4, and some of which is the particulars of what is available at one’s
own institution. We have generally left the contents of chapter 3 as a
reading assignment for those without much background in linguistics.
Some knowledge of linguistic concepts is needed in many chapters, but
is particularly relevant to chapter 12, and the instructor may wish to re-
view some syntactic concepts at this point. Other material from the early
chapters is then introduced on a “need to know” basis during the course.

The choice of topics in part II was partly driven by a desire to be able to
present accessible and interesting topics early in a course, in particular,
ones which are also a good basis for student programming projects. We
have found collocations (chapter 5), word sense disambiguation (chap-
ter 7), and attachment ambiguities (section 8.3) particularly successful in
this regard. Early introduction of attachment ambiguities is also effec-
tive in showing that there is a role for linguistic concepts and structures
in Statistical NLP. Much of the material in chapter 6 is rather detailed
reference material. People interested in applications like speech or op-
tical character recognition may wish to cover all of it, but if n-gram
language models are not a particular focus of interest, one may only
want to read through section 6.2.3. This is enough to understand the
concept of likelihood, maximum likelihood estimates, a couple of simple
smoothing methods (usually necessary if students are to be building any
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probabilistic models on their own), and good methods for assessing the
performance of systems.

In general, we have attempted to provide ample cross-references so
that, if desired, an instructor can present most chapters independently
with incorporation of prior material where appropriate. In particular, this
is the case for the chapters on collocations, lexical acquisition, tagging,
and information retrieval.

Exercises. There are exercises scattered through or at the end of every
chapter. They vary enormously in difficulty and scope. We have tried to
provide an elementary classification as follows:

* Simple problems that range from text comprehension through to
such things as mathematical manipulations, simple proofs, and
thinking of examples of something.

**  More substantial problems, many of which involve either program-
ming or corpus investigations. Many would be suitable as an as-
signment to be done over two weeks.

* x % Large, difficult, or open-ended problems. Many would be suitable
as a term project.

Website. Finally, we encourage students and teachers to take advantage
of the material and the references on the companion website. It can be
accessed directly at the URL http://www.sultry.arts.usyd.edu.au/fsnlp, or
found through the MIT Press website http://mitpress.mit.edu, by search-
ing for this book.






PART 1

Preliminaries



“Statistical considerations are essential to an understanding of
the operation and development of languages”

(Lyons 1968: 98)

“One’s ability to produce and recognize grammatical utterances
is not based on notions of statistical approximation and the
like” (Chomsky 1957: 16)

“You say: the point isn’t the word, but its meaning, and you
think of the meaning as a thing of the same kind as the word,
though also different from the word. Here the word, there the
meaning. The money, and the cow that you can buy with it.
(But contrast: money, and its use.)”

(Wittgenstein 1968, Philosophical Investigations, §120)

“For a large class of cases—though not for all—in which we
employ the word ‘meaning’ it can be defined thus: the meaning
of a word is its use in the language.”  (Wittgenstein 1968, §43)

“Now isn’t it queer that I say that the word ‘is’ is used with two
different meanings (as the copula and as the sign of equality),
and should not care to say that its meaning is its use; its use,
that is, as the copula and the sign of equality?”

(Wittgenstein 1968, §561)
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Introduction

THE AIM of a linguistic science is to be able to characterize and explain
the multitude of linguistic observations circling around us, in conversa-
tions, writing, and other media. Part of that has to do with the cognitive
side of how humans acquire, produce, and understand language, part
of it has to do with understanding the relationship between linguistic
utterances and the world, and part of it has to do with understanding
the linguistic structures by which language communicates. In order to
approach the last problem, people have proposed that there are rules
which are used to structure linguistic expressions. This basic approach
has a long history that extends back at least 2000 years, but in this cen-
tury the approach became increasingly formal and rigorous as linguists
explored detailed grammars that attempted to describe what were well-
formed versus ill-formed utterances of a language.

However, it has become apparent that there is a problem with this con-
ception. Indeed it was noticed early on by Edward Sapir, who summed it
up in his famous quote “All grammars leak” (Sapir 1921: 38). It is just
not possible to provide an exact and complete characterization of well-
formed utterances that cleanly divides them from all other sequences
of words, which are regarded as ill-formed utterances. This is because
people are always stretching and bending the ‘rules’ to meet their com-
municative needs. Nevertheless, it is certainly not the case that the rules
are completely ill-founded. Syntactic rules for a language, such as that a
basic English noun phrase consists of an optional determiner, some num-
ber of adjectives, and then a noun, do capture major patterns within the
language. But somehow we need to make things looser, in accounting for
the creativity of language use.
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This book explores an approach that addresses this problem head on.
Rather than starting off by dividing sentences into grammatical and un-
grammatical ones, we instead ask, “What are the common patterns that
occur in language use?” The major tool which we use to identify these
patterns is counting things, otherwise known as statistics, and so the sci-
entific foundation of the book is found in probability theory. Moreover,
we are not merely going to approach this issue as a scientific question,
but rather we wish to show how statistical models of language are built
and successfully used for many natural language processing (NLP) tasks.
While practical utility is something different from the validity of a the-
ory, the usefulness of statistical models of language tends to confirm
that there is something right about the basic approach.

Adopting a Statistical NLP approach requires mastering a fair number
of theoretical tools, but before we delve into a lot of theory, this chapter
spends a bit of time attempting to situate the approach to natural lan-
guage processing that we pursue in this book within a broader context.
One should first have some idea about why many people are adopting
a statistical approach to natural language processing and of how one
should go about this enterprise. So, in this first chapter, we examine some
of the philosophical themes and leading ideas that motivate a statistical
approach to linguistics and NLP, and then proceed to get our hands dirty
by beginning an exploration of what one can learn by looking at statistics
over texts.

Rationalist and Empiricist Approaches to Language

Some language researchers and many NLP practitioners are perfectly
happy to just work on text without thinking much about the relationship
between the mental representation of language and its manifestation in
written form. Readers sympathetic with this approach may feel like skip-
ping to the practical sections, but even practically-minded people have
to confront the issue of what prior knowledge to try to build into their
model, even if this prior knowledge might be clearly different from what
might be plausibly hypothesized for the brain. This section briefly dis-
cusses the philosophical issues that underlie this question.

Between about 1960 and 1985, most of linguistics, psychology, artifi-
cial intelligence, and natural language processing was completely domi-
nated by a rationalist approach. A rationalist approach is characterized
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by the belief that a significant part of the knowledge in the human mind is
not derived by the senses but is fixed in advance, presumably by genetic
inheritance. Within linguistics, this rationalist position has come to dom-
inate the field due to the widespread acceptance of arguments by Noam
Chomsky for an innate language faculty. Within artificial intelligence,
rationalist beliefs can be seen as supporting the attempt to create intel-
ligent systems by handcoding into them a lot of starting knowledge and
reasoning mechanisms, so as to duplicate what the human brain begins
with.

Chomsky argues for this innate structure because of what he perceives
as a problem of the poverty of the stimulus (e.g., Chomsky 1986: 7). He
suggests that it is difficult to see how children can learn something as
complex as a natural language from the limited input (of variable quality
and interpretability) that they hear during their early years. The rational-
ist approach attempts to dodge this difficult problem by postulating that
the key parts of language are innate - hardwired in the brain at birth as
part of the human genetic inheritance.

An empiricist approach also begins by postulating some cognitive abil-
ities as present in the brain. The difference between the approaches is
therefore not absolute but one of degree. One has to assume some initial
structure in the brain which causes it to prefer certain ways of organiz-
ing and generalizing from sensory inputs to others, as no learning is
possible from a completely blank slate, a tabula rasa. But the thrust of
empiricist approaches is to assume that the mind does not begin with
detailed sets of principles and procedures specific to the various com-
ponents of language and other cognitive domains (for instance, theories
of morphological structure, case marking, and the like). Rather, it is as-
sumed that a baby’s brain begins with general operations for association,
pattern recognition, and generalization, and that these can be applied to
the rich sensory input available to the child to learn the detailed structure
of natural language. Empiricism was dominant in most of the fields men-
tioned above (at least the ones then existing!) between 1920 and 1960,
and is now seeing a resurgence. An empiricist approach to NLP suggests
that we can learn the complicated and extensive structure of language
by specifying an appropriate general language model, and then inducing
the values of parameters by applying statistical, pattern recognition, and
machine learning methods to a large amount of language use.

Generally in Statistical NLP, people cannot actually work from observ-
ing a large amount of language use situated within its context in the
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world. So, instead, people simply use texts, and regard the textual context
as a surrogate for situating language in a real world context. A body of
texts is called a corpus - corpus is simply Latin for ‘body,’ and when you
have several such collections of texts, you have corpora. Adopting such
a corpus-based approach, people have pointed to the earlier advocacy of
empiricist ideas by the British linguist J.R. Firth, who coined the slogan
“You shall know a word by the company it keeps” (Firth 1957: 11). How-
ever an empiricist corpus-based approach is perhaps even more clearly
seen in the work of American structuralists (the ‘post-Bloomfieldians’),
particularly Zellig Harris. For example, (Harris 1951) is an attempt to find
discovery procedures by which a language’s structure can be discovered
automatically. While this work had no thoughts to computer implemen-
tation, and is perhaps somewhat computationally naive, we find here also
the idea that a good grammatical description is one that provides a com-
pact representation of a corpus of texts.

It is not appropriate to provide a detailed philosophical treatment of
scientific approaches to language here, but let us note a few more dif-
ferences between rationalist and empiricist approaches. Rationalists and
empiricists are attempting to describe different things. Chomskyan (or
generative) linguistics seeks to describe the language module of the hu-
man mind (the I-language) for which data such as texts (the E-language)
provide only indirect evidence, which can be supplemented by native
speaker intuitions. Empiricist approaches are interested in describing
the E-language as it actually occurs. Chomsky (1965: 3-4) thus makes
a crucial distinction between linguistic competence, which reflects the
knowledge of language structure that is assumed to be in the mind of
a native speaker, and linguistic performance in the world, which is af-
fected by all sorts of things such as memory limitations and distracting
noises in the environment. Generative linguistics has argued that one can
isolate linguistic competence and describe it in isolation, while empiricist
approaches generally reject this notion and want to describe actual use
of language.

This difference underlies much of the recent revival of interest in em-
piricist techniques for computational work. During the second phase of
work in artificial intelligence (roughly 1970-1989, say) people were con-
cerned with the science of the mind, and the best way to address that was
seen as building small systems that attempted to behave intelligently.
This approach identified many key problems and approaches that are
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still with us today, but the work can be criticized on the grounds that it
dealt only with very small (often pejoratively called ‘toy’) problems, and
often did not provide any sort of objective evaluation of the general ef-
ficacy of the methods employed. Recently, people have placed greater
emphasis on engineering practical solutions. Principally, they seek meth-
ods that can work on raw text as it exists in the real world, and objective
comparative evaluations of how well different methods work. This new
emphasis is sometimes reflected in naming the field ‘Language Technol-
ogy’ or ‘Language Engineering’ instead of NLP. As we will discuss below,
such goals have tended to favor Statistical NLP approaches, because they
are better at automatic learning (knowledge induction), better at disam-
biguation, and also have a role in the science of linguistics.

Finally, Chomskyan linguistics, while recognizing certain notions of
competition between principles, depends on categorical principles, which
sentences either do or do not satisfy. In general, the same was true of
American structuralism. But the approach we will pursue in Statistical
NLP draws from the work of Shannon, where the aim is to assign proba-
bilities to linguistic events, so that we can say which sentences are ‘usual’
and ‘unusual’. An upshot of this is that while Chomskyan linguists tend
to concentrate on categorical judgements about very rare types of sen-
tences, Statistical NLP practitioners are interested in good descriptions
of the associations and preferences that occur in the totality of language
use. Indeed, they often find that one can get good real world performance
by concentrating on common types of sentences.

Scientific Content

Many of the applications of the methods that we present in this book have
a quite applied character. Indeed, much of the recent enthusiasm for
statistical methods in natural language processing derives from people
seeing the prospect of statistical methods providing practical solutions
to real problems that have eluded solution using traditional NLP methods.
But if statistical methods were just a practical engineering approach, an
approximation to difficult problems of language that science has not yet
been able to figure out, then their interest to us would be rather limited.
Rather, we would like to emphasize right at the beginning that there are
clear and compelling scientific reasons to be interested in the frequency
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with which linguistic forms are used, in other words, statistics, as one
approaches the study of language.

Questions that linguistics should answer

What questions does the study of language concern itself with? As a start
we would like to answer two basic questions:

= What kinds of things do people say?

m What do these things say/ask/request about the world?

From these two basic questions, attention quickly spreads to issues about
how knowledge of language is acquired by humans, and how they actu-
ally go about generating and understanding sentences in real time. But
let us just concentrate on these two basic questions for now. The first
covers all aspects of the structure of language, while the second deals
with semantics, pragmatics, and discourse - how to connect utterances
with the world. The first question is the bread and butter of corpus lin-
guistics, but the patterns of use of a word can act as a surrogate for deep
understanding, and hence can let us also address the second question
using corpus-based techniques. Nevertheless patterns in corpora more
easily reveal the syntactic structure of a language, and so the majority of
work in Statistical NLP has dealt with the first question of what kinds of
things people say, and so let us begin with it here.

How does traditional (structuralist/generative) linguistics seek to an-
swer this question? It abstracts away from any attempt to describe the
kinds of things that people usually say, and instead seeks to describe
a competence grammar that is said to underlie the language (and which
generative approaches assume to be in the speaker’s head). The extent to
which such theories approach the question of what people say is merely
to suggest that there is a set of sentences - grammatical sentences -
which are licensed by the competence grammar, and then other strings
of words are ungrammatical. This concept of grammaticality is meant to
be judged purely on whether a sentence is structurally well-formed, and
not according to whether it is the kind of thing that people would say
or whether it is semantically anomalous. Chomsky gave Colorless green
ideas sleep furiously as an example of a sentence that is grammatical, al-
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though semantically strange and not the kind of thing you would expect
people to say. Syntactic grammaticality is a categorical binary choice.!

Now, initially, a distinction between grammatical and ungrammatical
sentences does not seem so bad. We immediately notice when a non-
native speaker says something really wrong - something ungrammatical
- and we are able to correct such sentences to grammatical ones. In con-
trast, except when there are bad speech errors, a native speaker normally
produces grammatical sentences. But there are at least two reasons why
we should seek more. Firstly, while maintaining a binary split between
grammatical and ungrammatical sentences may seem plausible in simple
cases, it becomes increasingly far-fetched as we extend our investiga-
tion. Secondly, regardless of this, there are many reasons to be interested
in the frequency with which different sentences and sentence types are
used, and simply dividing sentences into grammatical and ungrammati-
cal sentences gives no information about this. For instance, very often
non-native speakers say or write things that are not in any way syntac-
tically ungrammatical, but just somehow subtly odd. Here’s an example
from a student essay:

In addition to this, she insisted that women were regarded as a different
existence from men unfairly.

We might respond to this passage by saying that we can understand the
message, but it would sound better expressed slightly differently. This
is a statement about the conventionality of certain modes of expression.
But a convention is simply a way in which people frequently express or
do something, even though other ways are in principle possible.

The fact that sentences do not divide neatly into two sets - grammat-
ical and ungrammatical ones - is well known to anyone who has been
in linguistics for a while. For many of the complicated sentences of in-
terest to theoretical linguistics, it is difficult for human beings to decide
whether they are grammatical or not. For example, try your hand at judg-
ing the grammaticality of the following sentences drawn (not at random)

1. Some versions of Chomsky’s 1980s theory, Government-Binding theory (GB), provide a
minor degree of gradedness by suggesting that sentences that disobey some constraints
are only sort of weird while ones that disobey other constraints are truly horrible, but the
formal theory, in GB and elsewhere, provides little support for these notions. Linguists
generally rely on an informal system of stars and question marks for initially grading
sentences (where * (ungrammatical) > ?* > ?? > ? (questionable)), but these gradations
are converted into a binary grammatical/ungrammatical distinction when people try to
develop the principles of grammar.
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from (van Riemsdijk and Williams 1986) - a textbook, not even a research
paper - before peeking at the answers in the footnote.2

a. John I believe Sally said Bill believed Sue saw.
b. What did Sally whisper that she had secretly read?
c. John wants very much for himself to win.

d. (Those are) the books you should read before it becomes difficult to
talk about.

e. (Those are) the books you should read before talking about becomes
difficult.

f. Who did Jo think said John saw him?

g. That a serious discussion could arise here of this topic was quite un-
expected.

h. The boys read Mary’s stories about each other.

We find that most people disagree with more than one of van Riemsdijk
and Williams’s claims about which sentences are grammatical. This re-
sult raises real questions about what, if anything, generative linguistics
is describing.

This difficulty has led to many statements in the linguistics literature
about judgements being difficult, or the facts quite obscure, as if some-
how there is a categorical answer to whether each sentence is grammati-
cal, but it is hard for human beings to work out what that answer is. Yet,
despite these manifest difficulties, most of theoretical linguistics contin-
ues to work in a framework that defines such observations to be out of
the realm of interest (relegating them to performance effects). We be-
lieve that this is unsustainable. On the other hand, it must be noticed
that most simple sentences are either clearly acceptable or unacceptable
and we would want our theory to be able to account for this observation.
Perhaps the right approach is to notice the parallel with other cases of
categorical perception that have been described in the psychological liter-
ature. For instance, although the timing of voicing onset which differenti-
ates a /p/ sound from a /b/ sound is a continuous variable (and its typical

2. Answers: a. OK, b. bad, c. OK, d. OK, e. bad, f. Ok, g. OK, h. bad.
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value varies between languages), human beings perceive the results cat-
egorically, and this is why a theory of phonology based on categorical
phonemes is largely viable, despite all the movements and variations in
phonological production occurring in a continuous space. Similarly for
syntax, a categorical theory may suffice for certain purposes. Neverthe-
less, we would argue that the difficulties in giving grammaticality judge-
ments to complex and convoluted sentences show the implausibility of
extending a binary distinction between grammatical and ungrammatical
strings to all areas of language use.

Non-categorical phenomena in language

But beyond the above difficulties in giving grammaticality judgements, if
we peek into the corners of language, we see clear evidence of failures of
categorical assumptions, and circumstances where considerations of fre-
quency of use are essential to understanding language. This suggests that
while a categorical view of language may be sufficient for many purposes,
we must see it as an approximation that also has its limitations (just as
Newtonian physics is good for many purposes but has its limits).3

One source of data on non-categorical phenomena in language is to
look at the history of language change (others are looking at sociolin-
guistic variation and competing hypotheses during language acquisition).
Over time, the words and syntax of a language changes. Words will
change their meaning and their part of speech. For instance, English
while used to be exclusively a noun meaning ‘time,” a usage that survives
mainly in a few fixed phrases such as to take a while, but changed to be
mainly used as a complementizer introducing subordinate clauses (While
you were out, ...). It doesn’t make sense to say that categorically until
some day in 1742 while was only a noun and then it became a comple-
mentizer - even if this claim is only being made for certain speakers
rather than the speech community as a whole. Rather, one would expect
a gradual change. One hypothesis is that if the frequency of use of a word
in various contexts gradually changes so that it departs from the typical
profile of use of words in the category to which it formerly belonged,
and rather its profile of use comes to more resemble words of another

3. Readers not familiar with linguistics and NLP may have trouble understanding this
section and may wish to skip it, but to return to it after reading chapter 3. The historical
examples include various archaic spellings - the standardization of English spelling is a
relatively modern phenomenon. Reading them aloud is often helpful for decoding them.



12

(1.3)

(1.4)

1 Introduction

category, then it will come to be reanalyzed as a word of that different
category. During the period of change, one would expect to see evidence
of noncategorical behavior.

Blending of parts of speech: near

At first blush it appears that the word near can be used either as an
adjective as in (1.3a) or as a preposition (1.3b):

a. We will review that decision in the near future.
b. He lives near the station.

Evidence for near as an adjective includes its position between a deter-
miner and noun as in (1.3a) - a classic adjective position - and the fact
that it can form an adverb by adding -ly: We nearly lost. Evidence for
near as a preposition includes that it can head the locative phrase com-
plements of verbs like live as in (1.3b) - a classic role for prepositions, and
that such a phrase can be modified by right, which is normally restricted
to modifying prepositional phrases: He lives right near the station (cf. He
swam right across the lake vs. ??That’s a right red car). So far, though,
this data is not that surprising: many words in English seem to have
multiple parts of speech. For example, many words are both nouns and
verbs, such as play: They saw a play vs. They play lacrosse on Thursdays.
But the interesting thing is that near can simultaneously show adjective
properties and preposition properties, and thus appears to behave as a
category blend. This happens in sentences like:

a. He has never been nearer the center of the financial establishment.
b. We live nearer the water than you thought.

Realization in the comparative form (nearer) is a hallmark of adjectives
(and adverbs). Other categories do not form comparatives and superla-
tives.* On the other hand, grammatical theory tells us that adjectives and
nouns do not take direct objects, hence we have to insert prepositions

4. The thoughtful reader might note that some prepositions do have related forms ending
in -er which are perhaps related to comparatives (upper, downer, inner, outer), but we note
that none of these prepositions have a superlative that is formed in analogy to regular
adjectival superlatives, as near does (that is, nearest), and that none of these other forms
in -er can be used in preposition-like uses. We cannot say: *John lives inner Sydney than
Fred.
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after adjectives and say unsure of his beliefs or convenient for people
who work long hours. In this sense nearer is behaving like a preposition
by heading a locative phrase and taking a direct object. Thus in these
sentences nearer is simultaneously showing properties of adjectives and
prepositions that are not available to the other category. Hence it is ex-
hibiting a blended status somewhere between these two parts of speech,
which are normally taken as categorically distinct.

Language change: kind of and sort of

New uses for the word sequences kind of and sort of present a convincing
example of how different frequencies of use in certain constructions can
lead to what is apparently categorical change. In modern English, the
expressions sort of and kind of have at least two distinct uses. In one, sort
or kind functions as a noun with of as a following preposition introducing
a prepositional phrase, as in sentences such as What sort of animal made
these tracks? But there is another usage in which these expressions can
best be thought of as degree modifiers, akin to somewhat or slightly:

a. We are kind of hungry.
b. He sort of understood what was going on.

We can tell that kind/sort of is not behaving as a normal noun preposition
sequence here because it is appearing in contexts - such as between the
subject noun phrase and the verb - where normally one cannot insert a
noun-preposition sequence (for example, one cannot say *He variety of
understood what was going on).

Historically, kind and sort were clearly nouns. Among other things,
they could be preceded by a determiner and followed by a PP:

a. A nette sent in to the see, and of alle kind of fishis gedrynge. [1382]
b. I knowe that sorte of men ryght well. [1560]

Unambiguous degree modifier uses did not appear until the nineteenth
century:

a. Tkind of love you, Sal—I vow. [1804]

b. It sort o’ stirs one up to hear about old times. [1833]
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It does not appear that this new construction was borrowed from another
language. Rather it appears to be a language internal development. How
could this innovation have come about?

A plausible hypothesis is to notice that when we have kind/sort of pre-
ceding an adjective, then it is actually ambiguous between these two read-
ings:

a. [np a [kind] [pp of [npdense rock]]]
b. [np a [ap [mop kind of] dense] rock]

And what one finds is that between the sixteenth and the nineteenth
century, there was a significant rise in the use of kind/sort of in this
[Det {sort/kind} of AdjP N] frame:

a. Their finest and best, is a kind of course red cloth. [c. 1600]

b. But in such questions as the present, a hundred contradictory views
may preserve a kind of imperfect analogy. [1743]

(Note that course is here a variant spelling of coarse.) In this environment,
sort/kind of fills a slot that could be occupied by a noun head followed
by a preposition, but it also fills a slot that could be occupied by a de-
gree modifier (with a different syntactic structure). As this usage became
more common, kind/sort of was more commonly being used in a typical
degree modifier slot; in other words, it grew to look syntactically more
like a degree modifier. Moreover, the semantics of these particular nouns
was such that they could easily be thought of as degree modifiers. This
frequency change seems to have driven a change in syntactic category,
and in time the use of kind/sort of was extended to other contexts such
as modifying verb phrases.

The general point here is that while language change can be sudden
(due to either external or internal factors), it is generally gradual. The
details of gradual change can only be made sense of by examining fre-
quencies of use and being sensitive to varying strengths of relationships,
and this type of modeling requires statistical, as opposed to categorical,
observations.

Although there have only been a few attempts to use Statistical NLP for
explaining complex linguistic phenomena, what is exciting about the sub-
ject matter of this book from the point of view of theoretical linguistics
is that this new way of looking at language may be able to account for
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things such as non-categorical phenomena and language change much
better than anything existing today.

Language and cognition as probabilistic phenomena

A more radical argument for probability as part of a scientific under-
standing of language is that human cognition is probabilistic and that
language must therefore be probabilistic too since it is an integral part
of cognition. A frequent response to our previous examples of non-
categorical phenomena in language is that they are marginal and rare.
Most sentences are either clearly grammatical or clearly ungrammatical.
And most of the time, words are used in only one part of speech, without
blending. But if language and cognition as a whole are best explained
probabilistically, then probability theory must be a central part of an ex-
planatory theory of language.

The argument for a probabilistic approach to cognition is that we live
in a world filled with uncertainty and incomplete information. To be able
to interact successfully with the world, we need to be able to deal with
this type of information. Suppose you want to determine whether it is
safe to wade through a river. You see that the water is flowing slowly, so
probably it won’t drag you away. You are pretty certain that no piranhas
or alligators live in this area. You integrate all this information in eval-
uating how safe it is to cross the river. Now, if someone tells you, “the
water is only knee-deep if you walk towards that tall tree over there”, then
this linguistic information will be just one more source of information to
incorporate. Processing the words, forming an idea of the overall mean-
ing of the sentence, and weighing it in making a decision is no different
in principle from looking at the current, forming an idea of the speed
of the water, and taking this sensory information into account. So the
gist of this argument is that the cognitive processes used for language
are identical or at least very similar to those used for processing other
forms of sensory input and other forms of knowledge. These cognitive
processes are best formalized as probabilistic processes or at least by
means of some quantitative framework that can handle uncertainty and
incomplete information.

The facts of language often look quite different depending on whether
or not one is sympathetic to an important role for quantitative meth-
ods in linguistics. A famous example is Chomsky’s dictum that probabil-
ity theory is inappropriate for formalizing the notion of grammaticality.
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He argued that computing the probability of sentences from a corpus
of utterances would assign the same low probability to all unattested
sentences, grammatical and ungrammatical ones alike, and hence not ac-
count for linguistic productivity (Chomsky 1957: 16). This argument only
makes sense if one has a bias against probabilistic representation of con-
cepts in general. Consider the cognitive representation of the concept
tall. Suppose you see a man who is seven feet tall and it is the first per-
son you've ever seen of that height. You will easily recognize this person
as a tall man, not as an uncategorizable man. Similarly, it will be easy
for you to recognize a person of another unattested height, say four feet,
as definitely not tall. In this book, we will look at probabilistic models
that can easily learn and represent this type of regularity and make the
right judgement for unattested examples. Indeed, a major part of Statis-
tical NLP is deriving good probability estimates for unseen events. The
premise that all unattested instances will be treated alike in a probabilis-
tic framework does not hold.

We believe that much of the skepticism towards probabilistic mod-
els for language (and for cognition in general) stems from the fact that
the well-known early probabilistic models (developed in the 1940s and
1950s) are extremely simplistic. Because these simplistic models clearly
do not do justice to the complexity of human language, it is easy to view
probabilistic models in general as inadequate. One of the insights we
hope to promote in this book is that complex probabilistic models can be
as explanatory as complex non-probabilistic models - but with the added
advantage that they can explain phenomena that involve the type of un-
certainty and incompleteness that is so pervasive in cognition in general
and in language in particular.

These issues relate to the treatment of semantics in Statistical NLP.
We mentioned earlier that most existing work in Statistical NLP has con-
centrated on the lower levels of grammatical processing, and people have
sometimes expressed skepticism as to whether statistical approaches can
ever deal with meaning. But the difficulty in answering this question is
mainly in defining what ‘meaning’ is! It is often useful in practice if ‘mean-
ing’ is viewed as symbolic expressions in some language, such as when
translating English into a database query language like SQL. This sort
of translation can certainly be done using a Statistical NLP system (we
discuss the process of translation in chapter 13). But from a Statistical
NLP perspective, it is more natural to think of meaning as residing in
the distribution of contexts over which words and utterances are used.
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Philosophically, this brings us close to the position adopted in the later
writings of Wittgenstein (that is, Wittgenstein 1968), where the mean-
ing of a word is defined by the circumstances of its use (a use theory of
meaning) - see the quotations at the beginning of the chapter. Under this
conception, much of Statistical NLP research directly tackles questions of
meaning.

The Ambiguity of Language: Why NLP Is Difficult

An NLP system needs to determine something of the structure of text -
normally at least enough that it can answer “Who did what to whom?”
Conventional parsing systems try to answer this question only in terms
of possible structures that could be deemed grammatical for some choice
of words of a certain category. For example, given a reasonable grammar,
a standard NLP system will say that sentence (1.10) has 3 syntactic anal-
yses, often called parses:

Our company is training workers.
The three differing parses might be represented as in (1.11):

a. S

/\
NP VP

T~ T~
Our company Aux VP

| T
is Y NP

T

training workers

b. S

/\
NP VP

A /\
Our company V NP

\ \

is VP
T
\Y NP

|

training workers
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C. S

/\

NP VP
T~ T~
Our company V NP

\ T
is  AdjP N
T \

training workers

There is (a), the one humans perceive, where is training is the verb group,
and two others with is as the main verb: in (b) the rest is a gerund (cf. Our
problem is training workers), while in (c) training modifies workers (cf.
Those are training wheels). The last two parses are semantically anoma-
lous, but in most current systems semantic analysis is done only after
syntactic analysis (if at all). This means that, as sentences get longer and
grammars get more comprehensive, such ambiguities lead to a terrible
multiplication of parses. For instance, Martin et al. (1987) report their
system giving 455 parses for the sentence in (1.12):°

List the sales of the products produced in 1973 with the products pro-
duced in 1972.

Therefore, a practical NLP system must be good at making disambigua-
tion decisions of word sense, word category, syntactic structure, and
semantic scope. But the goal of maximizing coverage while minimiz-
ing resultant ambiguity is fundamentally inconsistent with symbolic NLP
systems, where extending the coverage of the grammar to obscure con-
structions simply increases the number of undesired parses for common
sentences and vice versa. Furthermore, experience with Al approaches to
parsing and disambiguation, which seek models with deep understand-
ing, has shown that hand-coded syntactic constraints and preference
rules are time consuming to build, do not scale up well, and are brit-
tle in the face of the extensive use of metaphor in language (Lakoff 1987).
For instance a traditional approach is to use selectional restrictions, and
say, for example, that a verb like swallow requires an animate being as its
subject and a physical object as its object. But such a restriction would
disallow common and straightforward metaphorical extensions of the us-
age of swallow such as these:

5. See also Church and Patil (1982) for similar examples.
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a. I swallowed his story, hook, line, and sinker.
b. The supernova swallowed the planet.

Disambiguation strategies that rely on manual rule creation and hand-
tuning produce a knowledge acquisition bottleneck, and still perform
poorly when evaluated on naturally occurring text.

A Statistical NLP approach seeks to solve these problems by automat-
ically learning lexical and structural preferences from corpora. Rather
than parsing solely using syntactic categories, such as part of speech la-
bels, we recognize that there is a lot of information in the relationships
between words, that is, which words tend to group with each other. This
collocational knowledge can be exploited as a window onto deeper se-
mantic relationships. In particular, the use of statistical models offers
a good solution to the ambiguity problem: statistical models are robust,
generalize well, and behave gracefully in the presence of errors and new
data. Thus Statistical NLP methods have led the way in providing suc-
cessful disambiguation in large scale systems using naturally occurring
text. Moreover, the parameters of Statistical NLP models can often be esti-
mated automatically from text corpora, and this possibility of automatic
learning not only reduces the human effort in producing NLP systems, but
raises interesting scientific issues regarding human language acquisition.

Dirty Hands

Lexical resources

So much for motivation. How does one actually proceed? Well, first of all,
one needs to get one’s hands on some lexical resources: machine-readable
text, dictionaries, thesauri, and also tools for processing them. We will
briefly introduce a few important ones here since we will be referring
to them throughout the book. You can consult the website for more
information on how to actually get your hands on them.

The Brown corpus is probably the most widely known corpus. It is
a tagged corpus of about a million words that was put together at Brown
university in the 1960s and 1970s. It is a balanced corpus. That is, an
attempt was made to make the corpus a representative sample of Amer-
ican English at the time. Genres covered are press reportage, fiction,
scientific text, legal text, and many others. Unfortunately, one has to pay
to obtain the Brown corpus, but it is relatively inexpensive for research
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purposes. Many institutions with NLP research have a copy available, so
ask around. The Lancaster-Oslo-Bergen (LOB) corpus was built as a British
English replication of the Brown corpus.

The Susanne corpus is a 130,000 word subset of the Brown corpus,
which has the advantage of being freely available. It is also annotated
with information on the syntactic structure of sentences - the Brown cor-
pus only disambiguates on a word-for-word basis. A larger corpus of
syntactically annotated (or parsed) sentences is the Penn Treebank. The
text is from the Wall Street Journal. It is more widely used, but not avail-
able for free.

The Canadian Hansards, the proceedings of the Canadian parliament,
are the best known example of a bilingual corpus, a corpus that contains
parallel texts in two or more languages that are translations of each other.
Such parallel texts are important for statistical machine translation and
other cross-lingual NLP work. The Hansards are another resource that
one has to pay for.

In addition to texts, we also need dictionaries. WordNet is an electronic
dictionary of English. Words are organized into a hierarchy. Each node
consists of a synset of words with identical (or close to identical) mean-
ings. There are also some other relations between words that are defined,
such as meronymy or part-whole relations. WordNet is free and can be
downloaded from the internet.
¥ More details on corpora can be found in chapter 4.

Word counts

Once we have downloaded some text, there are a number of quite inter-
esting issues in its low-level representation, classification, and process-
ing. Indeed, so many that chapter 4 is devoted to these questions. But
for the moment, let us suppose that our text is being represented as a
list of words. For the investigation in this section, we will be using Mark
Twain’s Tom Sawyer.

There are some obvious first questions to ask. What are the most com-
mon words in the text? The answer is shown in table 1.1. Notice how
this list is dominated by the little words of English which have important
grammatical roles, and which are usually referred to as function words,
such as determiners, prepositions, and complementizers. The one really
exceptional word in the list is Tom whose frequency clearly reflects the
text that we chose. This is an important point. In general the results one
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Word Freq. Use

the 3332 determiner (article)

and 2972 conjunction

a 1775 determiner

to 1725 preposition, verbal infinitive marker
of 1440 preposition

was 1161 auxiliary verb

it 1027 (personal/expletive) pronoun

in 906 preposition

that 877 complementizer, demonstrative
he 877 (personal) pronoun

I 783 (personal) pronoun

his 772 (possessive) pronoun

you 686 (personal) pronoun

Tom 679 proper noun
with 642 preposition

Table 1.1 Common words in Tom Sawyer.

gets depends on the corpus or sample used. People use large and var-
ied samples to try to avoid anomalies like this, but in general the goal of
using a truly ‘representative’ sample of all of English usage is something
of a chimera, and the corpus will reflect the materials from which it was
constructed. For example, if it includes material from linguistics research
papers, then words like ergativity, causativize, and lexicalist may well oc-
cur, but otherwise they are unlikely to be in the corpus at all, no matter
how large it is.

How many words are there in the text? This question can be interpreted
in two ways. The question about the sheer length of the text is distin-
guished by asking how many word tokens there are. There are 71,370.
So this is a very small corpus by any standards, just big enough to illus-
trate a few basic points. Although Tom Sawyer is a reasonable length
novel, it is somewhat less than half a megabyte of online text, and for
broad coverage statistical grammars we will often seek collections of text
that are orders of magnitude larger. How many different words, or in
other words, how many word types appear in the text? There are 8,018.
This is actually quite a small number for a text its size, and presumably
reflects the fact that Tom Sawyer is written in a colloquial style for chil-
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Word Frequency of

Frequency Frequency
1 3993

2 1292

3 664

4 410

5 243

6 199

7 172

8 131

9 82

10 91
11-50 540
51-100 99
> 100 102

Table 1.2 Frequency of frequencies of word types in Tom Sawyer.

dren (for instance, a sample of newswire the same size contained slightly
over 11,000 word types). In general in this way one can talk about to-
kens, individual occurrences of something, and types, the different things
present. One can also calculate the ratio of tokens to types, which is sim-
ply the average frequency with which each type is used. For Tom Sawyer,
it is 8.9.9

The above statistics tell us that words in the corpus occur ‘on average’
about 9 times each. But one of the greatest problems in Statistical NLP
is that word types have a very uneven distribution. Table 1.2 shows how
many word types occur with a certain frequency. Some words are very
common, occurring over 700 times and therefore individually account-
ing for over 1% of the words in the novel (there are 12 such words in
table 1.1). Overall, the most common 100 words account for slightly over
half (50.9%) of the word tokens in the text. On the other extreme, note
that almost half (49.8%) of the word types occur only once in the corpus.
Such words are referred to as hapax legomena, Greek for ‘read only once.’
Even beyond these words, note that the vast majority of word types oc-

6. This ratio is not a valid measure of something like ‘text complexity’ just by itself, since
the value varies with the size of the text. For a valid comparison, one needs to normalize
the lengths of the texts, such as by calculating the measure over windows of 1,000 words.
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cur extremely infrequently: over 90% of the word types occur 10 times or
less. Nevertheless, very rare words make up a considerable proportion of
the text: 12% of the text is words that occur 3 times or less.

Such simple text counts as these can have a use in applications such
as cryptography, or to give some sort of indication of style or author-
ship. But such primitive statistics on the distribution of words in a text
are hardly terribly linguistically significant. So towards the end of the
chapter we will begin to explore a research avenue that has slightly more
linguistic interest. But these primitive text statistics already tell us the
reason that Statistical NLP is difficult: it is hard to predict much about
the behavior of words that you never or barely ever observed in your cor-
pus. One might initially think that these problems would just go away
when one uses a larger corpus, but this hope is not borne out: rather,
lots of words that we do not see at all in Tom Sawyer will occur - once or
twice - in a large corpus. The existence of this long tail of rare words is
the basis for the most celebrated early result in corpus linguistics, Zipf’s
law, which we will discuss next.

Zipf’s laws

In his book Human Behavior and the Principle of Least Effort, Zipf argues
that he has found a unifying principle, the Principle of Least Effort, which
underlies essentially the entire human condition (the book even includes
some questionable remarks on human sexuality!). The Principle of Least
Effort argues that people will act so as to minimize their probable average
rate of work (i.e., not only to minimize the work that they would have to
do immediately, but taking due consideration of future work that might
result from doing work poorly in the short term). The evidence for this
theory is certain empirical laws that Zipf uncovered, and his presentation
of these laws begins where his own research began, in uncovering certain
statistical distributions in language. We will not comment on his general
theory here, but will mention some of his empirical language laws.

The famous law: Zipf’s law

If we count up how often each word (type) of a language occurs in a large
corpus, and then list the words in order of their frequency of occurrence,
we can explore the relationship between the frequency of a word f and
its position in the list, known as its rank r. Zipf’s law says that:
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Word Freq. Rank f-r Word Freq. Rank f-r
) (r) ) (r)
the 3332 1 3332 turned 51 200 10200
and 2972 2 5944 you’ll 30 300 9000
a 1775 3 5235 name 21 400 8400
he 877 10 8770 comes 16 500 8000
but 410 20 8400 group 13 600 7800
be 294 30 8820 lead 11 700 7700
there 222 40 8880 friends 10 800 8000
one 172 50 8600 begin 9 900 8100
about 158 60 9480 family 8 1000 8000
more 138 70 9660 brushed 4 2000 8000
never 124 80 9920 sins 2 3000 6000
Oh 116 90 10440 Could 2 4000 8000
two 104 100 10400 Applausive 1 8000 8000
Table 1.3 Empirical evaluation of Zipf’s law on Tom Sawyer.
1
foc r

or, in other words:
There is a constant k such thatf - r = k

For example, this says that the 50 most common word should occur
with three times the frequency of the 150" most common word. This
relationship between frequency and rank appears first to have been no-
ticed by Estoup (1916), but was widely publicized by Zipf and continues
to bear his name. We will regard this result not actually as a law, but as a
roughly accurate characterization of certain empirical facts.

Table 1.3 shows an empirical evaluation of Zipf’s law on the basis of
Tom Sawyer. Here, Zipf’s law is shown to approximately hold, but we
note that it is quite a bit off for the three highest frequency words, and
further that the product f - r tends to bulge a little for words of rank
around 100, a slight bulge which can also be noted in many of Zipf’s
own studies. Nevertheless, Zipf’s law is useful as a rough description of
the frequency distribution of words in human languages: there are a few
very common words, a middling number of medium frequency words,
and many low frequency words. Zipf saw in this a deep significance.
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According to his theory both the speaker and the hearer are trying to
minimize their effort. The speaker’s effort is conserved by having a small
vocabulary of common words and the hearer’s effort is lessened by hav-
ing a large vocabulary of individually rarer words (so that messages are
less ambiguous). The maximally economical compromise between these
competing needs is argued to be the kind of reciprocal relationship be-
tween frequency and rank that appears in the data supporting Zipf’s law.
However, for us, the main upshot of Zipf’s law is the practical problem
that for most words our data about their use will be exceedingly sparse.
Only for a few words will we have lots of examples.

The validity and possibilities for the derivation of Zipf’s law is studied
extensively by Mandelbrot (1954). While studies of larger corpora some-
times show a closer match to Zipf’s predictions than our examples here,
Mandelbrot (1954: 12) also notes that “bien que la formule de Zipf donne
I'allure générale des courbes, elle en représente trés mal les détails [al-
though Zipf’s formula gives the general shape of the curves, it is very
bad in reflecting the details].” Figure 1.1 shows a rank-frequency plot of
the words in one corpus (the Brown corpus) on doubly logarithmic axes.
Zipf’s law predicts that this graph should be a straight line with slope —1.
Mandelbrot noted that the line is often a bad fit, especially for low and
high ranks. In our example, the line is too low for most low ranks and
too high for ranks greater than 10,000.

To achieve a closer fit to the empirical distribution of words, Mandel-
brot derives the following more general relationship between rank and
frequency:

f=P(r+p) % or logf=1logP —Blog(r+p)

Here P, B and p are parameters of a text, that collectively measure the
richness of the text’s use of words. There is still a hyperbolic distribu-
tion between rank and frequency, as in the original equation (1.14). If
this formula is graphed on doubly logarithmic axes, then for large values
of r, it closely approximates a straight line descending with slope —B,
just as Zipf’s law. However, by appropriate setting of the other parame-
ters, one can model a curve where the predicted frequency of the most
frequent words is lower, while thereafter there is a bulge in the curve:
just as we saw in the case of Tom Sawyer. The graph in figure 1.2 shows
that Mandelbrot’s formula is indeed a better fit than Zipf’s law for our
corpus. The slight bulge in the upper left corner and the larger slope
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Figure 1.1 Zipf’s law. The graph shows rank on the X-axis versus frequency
on the Y-axis, using logarithmic scales. The points correspond to the ranks
and frequencies of the words in one corpus (the Brown corpus). The line is the
relationship between rank and frequency predicted by Zipf for k = 100, 000, that
is f x r = 100, 000.

of B =1.15 model the lowest and highest ranks better than the line in
figure 1.1 predicted by Zipf.

If we take B = 1 and p = 0 then Mandelbrot’s formula simplifies to
the one given by Zipf (see exercise 1.3). Based on data similar to the cor-
pora we just looked at, Mandelbrot argues that Zipf’s simpler formula
just is not true in general: “lorsque Zipf essayait de représenter tout par
cette loi, il essayait d’habiller tout le monde avec des vétements d'une
seule taille [when Zipf tried to represent everything by this (i.e., his) law,
he tried to dress everyone with clothes of a single cut]”. Nevertheless,
Mandelbrot sees the importance of Zipf’s work as stressing that there are
often phenomena in the world that are not suitably modeled by Gaussian
(normal) distributions, that is, ‘bell curves,” but by hyperbolic distribu-
tions - a fact discovered earlier in the domain of economics by Pareto.
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Figure 1.2 Mandelbrot’s formula. The graph shows rank on the X-axis versus
frequency on the Y-axis, using logarithmic scales. The points correspond to the
ranks and frequencies of the words in one corpus (the Brown corpus). The line is
the relationship between rank and frequency predicted by Mandelbrot’s formula
for P = 1054, B = 1.15, p = 100.

Other laws

References to Zipf’s law in the Statistical NLP literature invariably refer
to the above law, but Zipf actually proposed a number of other empirical
laws relating to language which were also taken to illustrate the Principle
of Least Effort. At least two others are of some interest to the concerns
of Statistical NLP. One is the suggestion that the number of meanings
of a word is correlated with its frequency. Again, Zipf argues that con-
servation of speaker effort would prefer there to be only one word with
all meanings while conservation of hearer effort would prefer each mean-
ing to be expressed by a different word. Assuming that these forces are
equally strong, Zipf argues that the number of meanings m of a word
obeys the law:

m o \F
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or, given the previous law, that:

1
m oc ﬁ
Zipf finds empirical support for this result (in his study, words of fre-
quency rank about 10,000 average about 2.1 meanings, words of rank
about 5000 average about 3 meanings, and words of rank about 2000
average about 4.6 meanings).

A second result concerns the tendency of content words to clump. For
a word one can measure the number of lines or pages between each oc-
currence of the word in a text, and then calculate the frequency F of
different interval sizes I. For words of frequency at most 24 in a 260,000
word corpus, Zipf found that the number of intervals of a certain size
was inversely related to the interval size (F o I7P, where p varied be-
tween about 1 and 1.3 in Zipf’s studies). In other words, most of the time
content words occur near another occurrence of the same word.
¥ The topic of word senses is discussed in chapter 7, while the clumping
of content words is discussed in section 15.3.

Other laws of Zipf’s include that there is an inverse relationship be-
tween the frequency of words and their length, that the greater the fre-
quency of a word or morpheme, the greater the number of different per-
mutations (roughly, compounds and morphologically complex forms) it
will be used in, and yet further laws covering historical change and the
frequency of phonemes.

The significance of power laws

As a final remark on Zipf’s law, we note that there is a debate on how
surprising and interesting Zipf’s law and ‘power laws’ in general are as
a description of natural phenomena. It has been argued that randomly
generated text exhibits Zipf’s law (Li 1992). To show this, we construct
a generator that randomly produces characters from the 26 letters of the
alphabet and the blank (that is, each of these 27 symbols has an equal
chance of being generated next). Simplifying slightly, the probability of a
word of length n being generated is (%)" %: the probability of generating
a non-blank character n times and the blank after that. One can show
that the words generated by such a generator obey a power law of the
form Mandelbrot suggested. The key insights are (i) that there are 26
times more words of length n + 1 than length n, and (i) that there is a
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constant ratio by which words of length n are more frequent than words
of length n + 1. These two opposing trends combine into the regularity
of Mandelbrot’s law. See exercise 1.4.

There is in fact a broad class of probability distributions that obey
power laws when the same procedure is applied to them that is used to
compute the Zipf distribution: first counting events, then ranking them
according to their frequency (Glinter et al. 1996). Seen from this angle,
Zipf’s law seems less valuable as a characterization of language. But the
basic insight remains: what makes frequency-based approaches to lan-
guage hard is that almost all words are rare. Zipf’s law is a good way to
encapsulate this insight.

Collocations

Lexicographers and linguists (although rarely those of a generative bent)
have long been interested in collocations. A collocation is any turn of
phrase or accepted usage where somehow the whole is perceived to have
an existence beyond the sum of the parts. Collocations include com-
pounds (disk drive), phrasal verbs (make up), and other stock phrases
(bacon and eggs). They often have a specialized meaning or are idiomatic,
but they need not be. For example, at the time of writing, a favorite ex-
pression of bureaucrats in Australia is international best practice. Now
there appears to be nothing idiomatic about this expression; it is simply
two adjectives modifying a noun in a productive and semantically com-
positional way. But, nevertheless, the frequent use of this phrase as a
fixed expression accompanied by certain connotations justifies regarding
it as a collocation. Indeed, any expression that people repeat because
they have heard others using it is a candidate for a collocation.
v Collocations are discussed in detail in chapter 5. We see later on that
collocations are important in areas of Statistical NLP such as machine
translation (chapter 13) and information retrieval (chapter 15). In ma-
chine translation, a word may be translated differently according to the
collocation it occurs in. An information retrieval system may want to
index only ‘interesting’ phrases, that is, those that are collocations.
Lexicographers are also interested in collocations both because they
show frequent ways in which a word is used, and because they are mul-
tiword units which have an independent existence and probably should
appear in a dictionary. They also have theoretical interest: to the extent
that most of language use is people reusing phrases and constructions
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Frequency Word1 Word 2

80871 of the
58841 in the
26430 to the
21842 on the
21839 for the

18568 and the
16121 that the

15630 at the
15494 to be
13899 in a
13689 of a
13361 by the

13183 with the
12622 from the
11428 New York

10007 he said
9775 as a
9231 is a
8753 has been
8573 for a

Table 1.4 Commonest bigram collocations in the New York Times.

that they have heard, this serves to de-emphasize the Chomskyan focus
on the creativity of language use, and to give more strength to some-
thing like a Hallidayan approach that considers language to be insepara-
ble from its pragmatic and social context.

Now collocations may be several words long (such as international best
practice) or they may be discontinuous (such as make [something] up), but
let us restrict ourselves to the simplest case and wonder how we can au-
tomatically identify contiguous two word collocations. It was mentioned
above that collocations tend to be frequent usages. So the first idea to try
might be simply to find the most common two word sequences in a text.
That is fairly easily done, and, for a corpus of text from the New York
Times (see page 153), the results are shown in table 1.4. Unfortunately,
this method does not seem to succeed very well at capturing the collo-
cations present in the text. It is not surprising that these pairs of words
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(normally referred to as bigrams) occur commonly. They simply rep-
resent common syntactic constructions involving individually extremely
common words. One problem is that we are not normalizing for the fre-
quency of the words that make up the collocation. Given that the, of, and
in are extremely common words, and that the syntax of prepositional
and noun phrases means that a determiner commonly follows a preposi-
tion, we should expect to commonly see of the and in the. But that does
not make these word sequences collocations. An obvious next step is to
somehow take into account the frequency of each of the words. We will
look at methods that do this in chapter 5.

A modification that might be less obvious, but which is very effective,
is to filter the collocations and remove those that have parts of speech
(or syntactic categories) that are rarely associated with interesting collo-
cations. There simply are no interesting collocations that have a preposi-
tion as the first word and an article as the second word. The two most fre-
quent patterns for two word collocations are “adjective noun” and “noun
noun” (the latter are called noun-noun compounds). Table 1.5 shows
which bigrams are selected from the corpus if we only keep adjective-
noun and noun-noun bigrams. Almost all of them seem to be phrases
that we would want to list in a dictionary - with some exceptions like last
year and next year.

Our excursion into ‘collocation discovery’ illustrates the back and forth
in Statistical NLP between modeling and data analysis. Our initial model
was that a collocation is simply a frequent bigram. We analyzed the re-
sults we got based on this model, identified problems and then came
up with a refined model (collocation = frequent bigram with a particular
part-of-speech pattern). This model needs further refinement because of
bigrams like next year that are selected incorrectly. Still, we will leave
our investigation of collocations for now, and continue it in chapter 5.

Concordances

As a final illustration of data exploration, suppose we are interested in
the syntactic frames in which verbs appear. People have researched how
to get a computer to find these frames automatically, but we can also just
use the computer as a tool to find appropriate data. For such purposes,
people often use a Key Word In Context (KWIC) concordancing program
which produces displays of data such as the one in figure 1.3. In such
a display, all occurrences of the word of interest are lined up beneath
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Frequency Word 1 Word 2 Part-of-speech pattern
11487 New York AN
7261 United States AN
5412 Los Angeles NN
3301 last year AN
3191 Saudi Arabia NN
2699 last week AN
2514 vice president AN
2378 Persian Gulf AN
2161 San Francisco NN
2106 President Bush NN
2001 Middle East AN
1942 Saddam Hussein NN
1867 Soviet Union AN
1850 White House AN
1633 United Nations AN
1337 York City NN
1328 oil prices NN
1210 next year AN
1074 chief executive AN
1073 real estate AN

Table 1.5 Frequent bigrams after filtering. The most frequent bigrams in the
New York Times after applying a part-of-speech filter.

could find a target. The librarian
elights in. The young lady teachers
ingly. The young gentlemen teachers
seeming vexation). The little girls
n various ways, and the little boys
t genuwyne?” Tom 1ifted his 1ip and
is 1little finger for a pen. Then he
ow’s face was haggard, and his eyes
not overlook the fact that Tom even
own. Two or three glimmering Tights
ird flash turned night into day and
that grew about their feet. And it
he first thing his aunt said to him
p from her lethargy of distress and
ent a new burst of grief from Becky

shudder quiver all through him. He

“showed
“showed
“showed
“showed
“showed
showed
showed
showed
showed
showed
showed
showed
showed
showed
showed
showed

off” - running hither and thither w
off” - bending sweetly over pupils

off” with small scoldings and other
off” in various ways, and the 1itt]
off” with such diligence that the a
the vacancy. “Well, all right,” sai
Huckleberry how to make an H and an
the fear that was upon him. When he
a marked aversion to these inquests
where it lay, peacefully sleeping,

every little grass-blade, separate

three white, startled faces, too. A
him that he had brought his sorrows
good interest in the proceedings. S
Tom that the thing in his mind had

Huck the fragment of candle-wick pe

Figure 1.3 Key Word In Context (KWIC) display for the word showed.
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NP agent showed off (PP[with/inlmanner)
NPCOHt@nt
CPIlthat]content
NPagent showed (NPyecipient) VP[inf]content
how VPIinf]content
CP[wherel content
NP agent showed NP[interest] PP[inlcontent
NP agent showed NP[aversion| PP[to]content

Figure 1.4 Syntactic frames for showed in Tom Sawyer.

one another, with surrounding context shown on both sides. Commonly,
KWIC programs allow you to sort the matches by left or right context.
However, if we are interested in syntactic frames, rather than particu-
lar words, such sorting is of limited use. The data shows occurrences
of the word showed within the novel Tom Sawyer. There are 5 uses of
showed off (actually all within one paragraph of the text), each in dou-
ble quotes, perhaps because it was a neologism at the time, or perhaps
because Twain considered the expression slang. All of these uses are in-
transitive, although some take prepositional phrase modifiers. Beyond
these, there are four straightforward transitive verb uses with just a
direct object (6, 8, 11, 12) - although there are interesting differences
between them with 8 being nonagentive, and 12 illustrating a sense of
‘cause to be visible.” There is one ditransitive use which adds the person
being shown (16). Three examples make who was shown the object NP
and express the content either as a that-clause (13, 15) or as a non-finite
question-form complement clause (7). One other example has a finite
question-form complement clause (10) but omits mention of the person
who is shown. Finally two examples have an NP object followed by a
prepositional phrase and are quite idiomatic constructions (9, 14): show
an aversion PP[to] and show an interest PP[in]. But note that while quite
idiomatic, they are not completely frozen forms, since in both cases the
object noun is productively modified to make a more complex NP. We
could systematize the patterns we have found as in figure 1.4.

Collecting information like this about patterns of occurrence of verbs
can be useful not only for purposes such as dictionaries for learners of
foreign languages, but for use in guiding statistical parsers. A substantial
part of the work in Statistical NLP consists (or should consist!) of poring
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over large amounts of data, like concordance lines and lists of candidates
for collocations. At the outset of a project this is done to understand the
important phenomena, later to refine the initial modeling, and finally to
evaluate what was achieved.

Further Reading

Chomsky (1965: 47ff, 1980: 234ff, 1986) discusses the distinction be-
tween rationalist and empiricist approaches to language, and presents ar-
guments for the rationalist position. A recent detailed response to these
arguments from an ‘empiricist’ is (Sampson 1997). For people from a gen-
erative (computational) linguistics background wondering what Statisti-
cal NLP can do for them, and how it relates to their traditional concerns,
Abney (1996b) is a good place to start. The observation that there must
be a preference for certain kinds of generalizations in order to bootstrap
induction was pointed out in the machine learning literature by Mitchell
(1980), who termed the preference bias. The work of Firth is highly in-
fluential within certain strands of the British corpus linguistics tradition,
and is thoroughly covered in (Stubbs 1996). References from within the
Statistical NLP community perhaps originate in work from AT&T, see for
instance (Church and Mercer 1993: 1). The Hallidayan approach to lan-
guage is presented in (Halliday 1994).

Thorough discussions of grammaticality judgements in linguistics are
found in (Schiitze 1996) and (Cowart 1997). Cowart argues for making
use of the judgements of a population of speakers, which is quite com-
patible with the approach of this book, and rather against the Chomskyan
approach of exploring the grammar of a single speaker. A good entry
point to the literature on categorical perception is (Harnad 1987).

Lauer (1995b: ch. 3) advocates an approach involving probability dis-
tributions over meanings. See the Further Reading of chapter 12 for ref-
erences to other Statistical NLP work that involves mapping to semantic
representations.

The discussion of kind/sort of is based on Tabor (1994), which should
be consulted for the sources of the citations used. Tabor provides a con-
nectionist model which shows how the syntactic change discussed can be
caused by changing frequencies of use. A lot of interesting recent work
on gradual syntactic change can be found in the literature on grammati-
calization (Hopper and Traugott 1993).
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Two proponents of an important role for probabilistic mechanisms in
cognition are Anderson (1983, 1990) and Suppes (1984). See (Oaksford
and Chater 1998) for a recent collection describing different cognitive
architectures, including connectionism. The view that language is best
explained as a cognitive phenomenon is the central tenet of cognitive
linguistics (Lakoff 1987; Langacker 1987, 1991), but many cognitive lin-
guists would not endorse probability theory as a formalization of cogni-
tive linguistics. See also (Schiitze 1997).

The novel Tom Sawyer is available in the public domain on the internet,
currently from sources including the Virginia Electronic Text Center (see
the website).

Zipf’s work began with (Zipf 1929), his doctoral thesis. His two major
books are (Zipf 1935) and (Zipf 1949). It is interesting to note that Zipf
was reviewed harshly by linguists in his day (see, for instance, (Kent 1930)
and (Prokosch 1933)). In part these criticisms correctly focussed on the
grandiosity of Zipf’s claims (Kent (1930: 88) writes: “problems of phonol-
ogy and morphology are not to be solved en masse by one grand general
formula”), but they also reflected, even then, a certain ambivalence to the
application of statistical methods in linguistics. Nevertheless, prominent
American structuralists, such as Martin Joos and Morris Swadesh, did be-
come involved in data collection for statistical studies, with Joos (1936)
emphasizing that the question of whether to use statistical methods in
linguistics should be evaluated separately from Zipf’s particular claims.

As well as (Mandelbrot 1954), Mandelbrot’s investigation of Zipf’s law
is summarized in (Mandelbrot 1983) - see especially chapters 38, 40,
and 42. Mandelbrot attributes the direction of his life’s work (leading
to his well known work on fractals and the Mandelbrot set) to reading a
review of (Zipf 1949).

Concordances were first constructed by hand for important literary and
religious works. Computer concordancing began in the late 1950s for the
purposes of categorizing and indexing article titles and abstracts. Luhn
(1960) developed the first computer concordancer and coined the term
KWIC.

Exercises

Exercise 1.1 [** Requires some knowledge of linguistics]

Try to think of some other cases of noncategorical phenomena in language, per-
haps related to language change. For starters, look at the following pairs of
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sentences, and try to work out the problems they raise. (Could these problems
be solved simply by assigning the words to two categories, or is there evidence
of mixed categoriality?)

a. On the weekend the children had fun.
. That’s the funnest thing we’ve done all holidays.

=2

a. Do you get much email at work?
b. This morning I had emails from five clients, all complaining.

Exercise 1.2 [**x Probably best attempted after reading chapter 4]

Replicate some of the results of section 1.4 on some other piece of text. (Alter-
natively, you could use the same text that we did so that you can check your
work easily. In this case, you should only expect results similar to ours, since
the exact numbers depend on various details of what is treated as a word, how
case distinctions are treated, etc.)

Exercise 1.3 [*]

Show that Mandelbrot’s law simplifies to Zipf’s law for B = 1 and p = 0.

Exercise 1.4 [**]
Construct a table like table 1.3 for the random character generator described
above on page 29 (which generates the letters a through z and blank with equal
probability of 1/27).

Exercise 1.5 [* %]
Think about ways of identifying collocations that might be better than the meth-
ods used in this chapter.

Exercise 1.6 [**]
If you succeeded in the above exercise, try the method out and see how well it
appears to perform.

Exercise 1.7 [**]

Write a program to produce KWIC displays from a text file. Have the user be able
to select the word of interest and the size of the surrounding context.



“In 1786, I found, that in Germany they were engaged in a
species of political inquiry, to which they had given the name of
Statistics; and though I apply a different idea to that word, for
by Statistical is meant in Germany, an inquiry for the purpose
of ascertaining the political strength of a country, or questions
respecting matters of state; whereas, the idea I annex to the
term, is an inquiry into the state of a country, for the purpose
of ascertaining the quantum of happiness enjoyed by its
inhabitants, and the means of its future improvement; yet, as
I thought that a new word might attract more public attention,
I resolved on adopting it.”

(Sir J. Sinclair Statist. Acc. Scot. XX. App. p. xiii, 1798)






2 Mathematical Foundations

THIS CHAPTER presents some introductory material on probability and
information theory, while the next chapter presents some essential know-
ledge of linguistics. A thorough knowledge of one or more of the fields of
probability and statistics, information theory, and linguistics is desirable,
and perhaps even necessary, for doing original research in the field of Sta-
tistical NLP. We cannot provide a thorough well-motivated introduction to
each of these three fields within this book, but nevertheless, we attempt
to summarize enough material to allow understanding of everything that
follows in the book. We do however assume knowledge of parsing, ei-
ther from a computer science or computational linguistics perspective.
We also assume a reasonable knowledge of mathematical symbols and
techniques, perhaps roughly to the level of a first year undergraduate
course, including the basics of such topics as: set theory, functions and
relations, summations, polynomials, calculus, vectors and matrices, and
logarithms. Mathematical notations that we use are summarized in the
Table of Notations.

If you are familiar with one of the areas covered in these two chap-
ters, then you should probably just skim the corresponding section. If
you're not familiar with a topic, we think it is probably best to try to
read through each section, but you will probably need to reread sections
when the techniques in them are put to use. These chapters don’t say
much about applications - they present the preparatory theory for what
follows.
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2 Mathematical Foundations

Elementary Probability Theory

This section sketches the essentials of probability theory necessary to
understand the rest of this book.

Probability spaces

Probability theory deals with predicting how likely it is that something
will happen. For example, if one tosses three coins, how likely is it that
they will all come up heads? Although our eventual aim is to look at
language, we begin with some examples with coins and dice, since their
behavior is simpler and more straightforward.

The notion of the likelihood of something is formalized through the
concept of an experiment (or trial) - the process by which an observation
is made. In this technical sense, tossing three coins is an experiment.
All that is crucial is that the experimental protocol is well defined. We
assume a collection of basic outcomes (or sample points) for our experi-
ment, the sample space Q2. Sample spaces may either be discrete, having at
most a countably infinite number of basic outcomes, or continuous, hav-
ing an uncountable number of basic outcomes (for example, measuring a
person’s height). For language applications and in this introduction, we
will mainly deal with discrete sample spaces which only contain a finite
number of basic outcomes. Let an event A be a subset of Q. For example,
in the coin experiment, the first coin being a head, and the second and
third coming down tails is one basic outcome, while any result of one
head and two tails is an example of an event. Note also that Q) represents
the certain event, the space of all possible experimental outcomes, and
@ represents the impossible event. We say that an experimental outcome
must be an event. The foundations of probability theory depend on the
set of events F forming a o -field - a set with a maximal element Q and
arbitrary complements and unions. These requirements are trivially sat-
isfied by making the set of events, the event space, the power set of the
sample space (that is, the set of all subsets of the sample space, often
written 27).

Probabilities are numbers between 0 and 1, where 0 indicates impos-
sibility and 1 certainty. A probability function (also known as a prob-
ability distribution) distributes a probability mass of 1 throughout the
sample space Q. Formally, a discrete probability function is any function
P:F - [0,1] such that:
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= P(Q)=1

m Countable additivity: For disjoint sets A; € F (i.e, Aj N Ay = @ for
J#Kk

.
LC@

Aj) = iP(AJ

We call P(A) the probability of the event A. These axioms say that an
event that encompasses, say, three distinct possibilities must have a
probability that is the sum of the probabilities of each possibility, and
that since an experiment must have some basic outcome as its result,
the probability of that is 1. Using basic set theory, we can derive from
these axioms a set of further properties of probability functions; see ex-
ercise 2.1.

A well-founded probability space consists of a sample space Q, a o-field
of events F, and a probability function P. In Statistical NLP applications,
we always seek to properly define such a probability space for our mod-
els. Otherwise, the numbers we use are merely ad hoc scaling factors, and
there is no mathematical theory to help us. In practice, though, corners
often have been, and continue to be, cut.

Example 1: A fair coin is tossed 3 times. What is the chance of 2 heads?

Solution: The experimental protocol is clear. The sample space is:
Q={HHH,HHT,HTH,HTT, THH, THT, TTH,TTT}

Each of the basic outcomes in Q is equally likely, and thus has probability
1/8. A situation where each basic outcome is equally likely is called a
uniform distribution. In a finite sample space with equiprobable basic
outcomes, P(A) = “QA" (where |A| is the number of elements in a set A).

The event of interest is:
={HHT,HTH, THH}

So:

_Al_3
P(A) =151 =3
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Figure 2.1 A diagram illustrating the calculation of conditional probabil-
ity P(A|B). Once we know that the outcome is in B, the probability of A becomes
P(ANB)/P(B).

Conditional probability and independence

Sometimes we have partial knowledge about the outcome of an experi-
ment and that naturally influences what experimental outcomes are pos-
sible. We capture this knowledge through the notion of conditional proba-
bility. This is the updated probability of an event given some knowledge.
The probability of an event before we consider our additional knowledge
is called the prior probability of the event, while the new probability that
results from using our additional knowledge is referred to as the pos-
terior probability of the event. Returning to example 1 (the chance of
getting 2 heads when tossing 3 coins), if the first coin has been tossed
and is a head, then of the 4 remaining possible basic outcomes, 2 result
in 2 heads, and so the probability of getting 2 heads now becomes % The
conditional probability of an event A given that an event B has occurred
(P(B) > 0) is:
P(ANB)

P(B)
Even if P(B) = 0 we have that:

P(AnB)=P(B)P(A|B) = P(A)P(B|A) [The multiplication rule]

P(A|B) =

We can do the conditionalization either way because set intersection is
symmetric (AN B = BN A). One can easily visualize this result by looking
at the diagram in figure 2.1.
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The generalization of this rule to multiple events is a central result that
will be used throughout this book, the chain rule:

P(A1N...NAp) = P(A1)P(A2|A1)P(A3|A1 N Ap) - - - P(Ay| N1 Ap)

v The chain rule is used in many places in Statistical NLP, such as working
out the properties of Markov models in chapter 9.

Two events A, B are independent of each other if P(AnB) = P(A)P(B).
Unless P(B) = 0 this is equivalent to saying that P(A) = P(A|B) (i.e,,
knowing that B is the case does not affect the probability of A). This
equivalence follows trivially from the chain rule. Otherwise events are
dependent. We can also say that A and B are conditionally independent
given C when P(An B|C) = P(A|C)P(B|C).

Bayes’ theorem

Bayes’ theorem lets us swap the order of dependence between events.
That is, it lets us calculate P(B|A) in terms of P(A|B). This is useful when
the former quantity is difficult to determine. It is a central tool that we
will use again and again, but it is a trivial consequence of the definition of
conditional probability and the chain rule introduced in equations (2.2)
and (2.3):

P(BnA) P(A|B)P(B)
PA) P(A)

The righthand side denominator P(A) can be viewed as a normalizing
constant, something that ensures that we have a probability function. If
we are simply interested in which event out of some set is most likely
given A, we can ignore it. Since the denominator is the same in all cases,

we have that:
P(A[B)P(B) _

argmax ———— = argmaxP(A|B)P (B
gB PA) gB (A|B)P(B)

However, we can also evaluate the denominator by recalling that:

P(BJA) =

P(AnB) = P(A|B)P(B)

P(AnB) = P(AIB)P(B)

So we have:

P(A) = P(AnB)+P(ANnB) [additivity]

P(A|B)P(B) + P(A|B)P(B)
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B and B serve to split the set A into two disjoint parts (one possibly
empty), and so we can evaluate the conditional probability on each, and
then sum, using additivity. More generally, if we have some group of sets
B; that partition A, that is, if A c U;B; and the B; are disjoint, then:

P(A) = > P(A|B;)P(B))

This gives us the following equivalent but more elaborated version of
Bayes’ theorem:

Bayes’ theorem: If A < UL B;, P(A) > 0,and BinB; = @ for i # j then:

) _ P(A|BJ)P(BJ') _ P(A|Bj)P(Bj)
PEIA) = =y = ST P(AB)PB)

Example 2: Suppose one is interested in a rare syntactic construction,
perhaps parasitic gaps, which occurs on average once in 100,000 sen-
tences. Joe Linguist has developed a complicated pattern matcher that
attempts to identify sentences with parasitic gaps. It's pretty good, but
it’s not perfect: if a sentence has a parasitic gap, it will say so with proba-
bility 0.95, if it doesn’t, it will wrongly say it does with probability 0.005.
Suppose the test says that a sentence contains a parasitic gap. What is
the probability that this is true?

Solution: Let G be the event of the sentence having a parasitic gap, and
let T be the event of the test being positive. We want to determine:

P(T|G)P(G)
P(T|G)P(G) + P(T|G)P(G)
0.95 x 0.00001

= 0.95 x 0.00001 + 0.005 x 0.99999 ~ 002

Here we use having the construction or not as the partition in the de-
nominator. Although Joe’s test seems quite reliable, we find that using it
won’t help as much as one might have hoped. On average, only 1 in every
500 sentences that the test identifies will actually contain a parasitic gap.
This poor result comes about because the prior probability of a sentence
containing a parasitic gap is so low.

Vv Bayes’ theorem is central to the noisy channel model described in sec-
tion 2.2.4.

P(GIT)
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First Second die

die 1 2 3 4 5 6

6 7 8 9 10 11 12

5 6 7 8 9 10 11

4 5 6 7 8 9 10

3 4 5 6 7 8 9

2 3 4 5 6 7 8

1 2 3 4 5 6 7

X 2 3 4 5 67 8 9 10 11 12
PX=%| 3 1 T 5§ FI5 3% 7 1 1 3

Figure 2.2 A random variable X for the sum of two dice. Entries in the body
of the table show the value of X given the underlying basic outcomes, while the
bottom two rows show the pmf p(x).

Random variables

A random variable is simply a function X: Q — R" (commonly with n = 1),
where R is the set of real numbers. Rather than having to work with some
irregular event space which differs with every problem we look at, a ran-
dom variable allows us to talk about the probabilities of numerical values
that are related to the event space. We think of an abstract stochastic pro-
cess that generates numbers with a certain probability distribution. (The
word stochastic simply means ‘probabilistic’ or ‘randomly generated,” but
is especially commonly used when referring to a sequence of results as-
sumed to be generated by some underlying probability distribution.)

A discrete random variable is a function X:Q — S where S is a count-
able subset of R. If X:Q — {0,1}, then X is called an indicator random
variable or a Bernoulli trial.

Example 3: Suppose the events are those that result from tossing two
dice. Then we could define a discrete random variable X that is the sum
of their faces: S = {2,...,12}, as indicated in figure 2.2.

Because a random variable has a numeric range, we can often do math-
ematics more easily by working with the values of a random variable,
rather than directly with events. In particular we can define the probabil-
ity mass function (pmf) for a random variable X, which gives the proba-
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bility that the random variable has different numeric values:
pmf p(x) =p(X =x) =P(Ax) where Ay = {w € Q: X(w) = x}

We will write pmfs with a lowercase roman letter (even when they are vari-
ables). If a random variable X is distributed according to the pmf p(x),
then we will write X ~ p(x).

Note that p(x) > 0 at only a countable number of points (to satisfy the
stochastic constraint on probabilities), say {x; : i € N}, while p(x) =0
elsewhere. For a discrete random variable, we have that:

> pxi) = ZP(AX,-) —PQ) =1

1

Conversely, any function satisfying these constraints can be regarded as
a mass function.

¥ Random variables are used throughout the introduction to information
theory in section 2.2.

Expectation and variance

The expectation is the mean or average of a random variable.
If X is a random variable with a pmf p(x) such that >, [x| p(X) < o
then the expectation is:

E(X) = > xp(x)

Example 4: If rolling one die and Y is the value on its face, then:

o 1 21 .1
E(Y) y;xp(y) 6;)/ 5 =33
This is the expected average found by totaling up a large number of
throws of the die, and dividing by the number of throws.
If Y ~ p(y) is a random variable, any function g(Y) defines a new
random variable. If E(g(Y)) is defined, then:

E(g(Y) => g(y)py)

y
For instance, by letting g be a linear function g(Y) = aY + b, we see that
E(g(Y)) =aE(Y)+b. We also have that E(X +Y) = E(X) + E(Y) and if X
and Y are independent, then E(XY) = E(X)E(Y).
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The variance of a random variable is a measure of whether the values
of the random variable tend to be consistent over trials or to vary a lot.
One measures it by finding out how much on average the variable’s values
deviate from the variable’s expectation:

var(X) = E((X -E(X))?)
E(X?) - E2(X)

The commonly used standard deviation of a variable is the square root of
the variance. When talking about a particular distribution or set of data,
the mean is commonly denoted as y, the variance as o2, and the standard
deviation is hence written as o.

Example 5: What is the expectation and variance for the random vari-
able introduced in example 3, the sum of the numbers on two dice?

Solution: For the expectation, we can use the result in example 4, and
the formula for combining expectations in (or below) equation (2.11):

E(X)=E(Y+Y)=E(Y)+E(Y) = 3% +3% =7

The variance is given by:

var(X) = E((X - E(X))?) = > p(x) (x — E(X))* = 5%

Because the results for rolling two dice are concentrated around 7, the
variance of this distribution is less than for an ‘11-sided die,” which re-
turns a uniform distribution over the numbers 2-12. For such a uniformly
distributed random variable U, we find that Var(U) = 10.

v Calculating expectations is central to Information Theory, as we will
see in section 2.2. Variances are used in section 5.2.

Notation

In these sections, we have distinguished between P as a probability func-
tion and p as the probability mass function of a random variable. How-
ever, the notations P(-) and p(-) do not always refer to the same function.
Any time that we are talking about a different probability space, then we
are talking about a different function. Sometimes we will denote these
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different functions with subscripts on the function to make it clear what
we are talking about, but in general people just write P and rely on con-
text and the names of the variables that are arguments to the function to
disambiguate. It is important to realize that one equation is often refer-
ring to several different probability functions, all ambiguously referred
to as P.

Joint and conditional distributions

Often we define many random variables over a sample space giving us a
joint (or multivariate) probability distribution. The joint probability mass
function for two discrete random variables X, Y is:

p(x,y) =P(X=x,Y =y)

Related to a joint pmf are marginal pmfs, which total up the probability
masses for the values of each variable separately:

px(X) = > p(x,y)  py(y) =D p(x,y)
y X

In general the marginal mass functions do not determine the joint mass
function. But if X and Y are independent, then p(x,y) = px(x) py(y).
For example, for the probability of getting two sixes from rolling two
dice, since these events are independent, we can compute that:

1 1 1
mY—&Z—&—mY—®mZ—&—6x6—%
There are analogous results for joint distributions and probabilities for
the intersection of events. So we can define a conditional pmf in terms of

the joint distribution:

p(x,y)
py (y)

and deduce a chain rule in terms of random variables, for instance:

Pxy (x]y) = for y such that py(y) >0

p(w,x,y,z) = pw)px|w)p(ylw,x)p(zlw,x,y)

Determining P

So far we have just been assuming a probability function P and giving it
the obvious definition for simple examples with coins and dice. But what
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do we do when dealing with language? What do we say about the proba-
bility of a sentence like The cow chewed its cud? In general, for language
events, unlike dice, P is unknown. This means we have to estimate P. We
do this by looking at evidence about what P must be like based on a sam-
ple of data. The proportion of times a certain outcome occurs is called
the relative frequency of the outcome. If C(u) is the number of times
an outcome u occurs in N trials then CI(\}” is the relative frequency of u.
The relative frequency is often denoted f,,. Empirically, if one performs
a large number of trials, the relative frequency tends to stabilize around
some number. That this number exists provides a basis for letting us
calculate probability estimates.

Techniques for how this can be done are a major topic of this book, par-
ticularly covered in chapter 6. Common to most of these techniques is
to estimate P by assuming that some phenomenon in language is accept-
ably modeled by one of the well-known families of distributions (such as
the binomial or normal distribution), which have been widely studied in
statistics. In particular a binomial distribution can sometimes be used
as an acceptable model of linguistic events. We introduce a couple of
families of distributions in the next subsection. This is referred to as a
parametric approach and has a couple of advantages. It means we have
an explicit probabilistic model of the process by which the data was gen-
erated, and determining a particular probability distribution within the
family only requires the specification of a few parameters, since most of
the nature of the curve is fixed in advance. Since only a few parameters
need to be determined, the amount of training data required is not great,
and one can calculate how much training data is sufficient to make good
probability estimates.

But, some parts of language (such as the distributions of words in
newspaper articles in a particular topic category) are irregular enough
that this approach can run into problems. For example, if we assume
our data is binomially distributed, but in fact the data looks nothing like
a binomial distribution, then our probability estimates might be wildly
wrong.

For such cases, one can use methods that make no assumptions about
the underlying distribution of the data, or will work reasonably well for
a wide variety of different distributions. This is referred to as a non-
parametric or distribution-free approach. If we simply empirically esti-
mate P by counting a large number of random events (giving us a discrete
distribution, though we might produce a continuous distribution from
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such data by interpolation, assuming only that the estimated probability
density function should be a fairly smooth curve), then this is a non-
parametric method. However, empirical counts often need to be modified
or smoothed to deal with the deficiencies of our limited training data, a
topic discussed in chapter 6. Such smoothing techniques usually assume
a certain underlying distribution, and so we are then back in the world of
parametric methods. The disadvantage of nonparametric methods is that
we give our system less prior information about how the data are gener-
ated, so a great deal of training data is usually needed to compensate for
this.

v Non-parametric methods are used in automatic classification when the
underlying distribution of the data is unknown. One such method, near-
est neighbor classification, is introduced in section 16.4 for text catego-
rization.

Standard distributions

Certain probability mass functions crop up commonly in practice. In
particular, one commonly finds the same basic form of a function, but
just with different constants employed. Statisticians have long studied
these families of functions. They refer to the family of functions as a
distribution and to the numbers that define the different members of the
family as parameters. Parameters are constants when one is talking about
a particular pmf, but variables when one is looking at the family. When
writing out the arguments of a distribution, it is usual to separate the
random variable arguments from the parameters with a semicolon (;). In
this section, we just briefly introduce the idea of distributions with one
example each of a discrete distribution (the binomial distribution), and a
continuous distribution (the normal distribution).

Discrete distributions: The binomial distribution

A binomial distribution results when one has a series of trials with only
two outcomes (i.e., Bernoulli trials), each trial being independent from all
the others. Repeatedly tossing a (possibly unfair) coin is the prototypical
example of something with a binomial distribution. Now when looking at
linguistic corpora, it is never the case that the next sentence is truly inde-
pendent of the previous one, so use of a binomial distribution is always
an approximation. Nevertheless, for many purposes, the dependency be-
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tween words falls off fairly quickly and we can assume independence. In
any situation where one is counting whether something is present or ab-
sent, or has a certain property or not, and one is ignoring the possibility
of dependencies between one trial and the next, one is at least implic-
itly using a binomial distribution, so this distribution actually crops up
quite commonly in Statistical NLP applications. Examples include: look-
ing through a corpus to find an estimate of the percent of sentences in
English that have the word the in them or finding out how commonly
a verb is used transitively by looking through a corpus for instances of a
certain verb and noting whether each use is transitive or not.

The family of binomial distributions gives the number r of successes
out of n trials given that the probability of success in any trial is p:
b(r; n,p) = (':)pr(l —-p)" " where (Z) n

= <r<n
(n—-r)lr!

The term ('r‘) counts the number of different possibilities for choosing
r objects out of n, not considering the order in which they are chosen.
Examples of some binomial distributions are shown in figure 2.3. The bi-
nomial distribution has an expectation of np and a variance of np(1 — p).

Example 6: Let R have as value the number of heads in n tosses of a
(possibly weighted) coin, where the probability of a head is p.
Then we have the binomial distribution:

pP(R=r) =b(r; n,p)

(The proof of this is by counting: each basic outcome with » heads and
n — r tails has probability h" (1 — h)" ", and there are (;’) of them.)

¥ The binomial distribution turns up in various places in the book, such
as when counting n-grams in chapter 6, and for hypothesis testing in
section 8.2.

v The generalization of a binomial trial to the case where each of the tri-
als has more than two basic outcomes is called a multinomial experiment,
and is modeled by the multinomial distribution. A zeroth order n-gram
model of the type we discuss in chapter 6 is a straightforward example
of a multinomial distribution.

v Another discrete distribution that we discuss and use in this book is the
Poisson distribution (section 15.3.1). Section 5.3 discusses the Bernoulli
distribution, which is simply the special case of the binomial distribution
where there is only one trial. That is, we calculate b(r; 1,p).
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Figure 2.3 Two examples of binomial distributions: b(r; 10,0.7) and
b(r; 10,0.1).

Continuous distributions: The normal distribution

So far we have looked only at discrete probability distributions and
discrete random variables, but many things, such as measurements of
heights and lengths, are best understood as having a continuous domain,
over the real numbers R. In this book, we do not outline the mathematics
of continuous distributions. Suffice it to say that there are generally anal-
ogous results, except with points becoming intervals, and sums becoming
integrals. However, we will occasionally have need to refer to continuous
probability distributions, so we will give one example here: the normal
distribution, which is central to all work in probability and statistics.

For many things in the world, such as the heights or IQs of people,
one gets a distribution that is known in the media as a bell curve, but
which is referred to in statistics as a normal distribution. Some normal
distribution curves are shown in figure 2.4. The values of the graphed
functions, probability density functions (pdf), do not directly give the
probabilities of the points along the x-axis (indeed, the probability of a
point is always 0 for a continuous distribution). Rather the probability
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Figure 2.4 Example normal distribution curves: n(x; 0,1) and n(x; 1.5, 2).

of a result within a certain interval on the x-axis is given by the area
delimited by that region, the x-axis and the function curve.

The normal distribution has two parameters for the mean pu, and the
standard deviation o, and the curve is given by:

e~ (Xx—?/(20?)

1
n(x; y,0) = N
The curve where u = 0 and o = 1 is referred to as the standard normal
distribution. A few figures for areas under this curve are given in the
appendix.

While it is much better to refer to such a curve as a ‘nmormal distribution’
than as a ‘bell curve,” if you really want to fit into the Statistical NLP or
pattern recognition communities, you should instead learn to refer to
these functions as Gaussians, and to remark things like, ‘Maybe we could
model that using 3 Gaussians’ at appropriate moments.!

1. Carl Friedrich Gauss was the first to use normal curves to model experimental data,
using them to model the errors made by astronomers and surveyors in repeated measure-
ments of the same quantity, but the normal curve was discovered by Abraham de Moivre.
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In much of statistics, the discrete binomial distribution is approxi-
mated by the continuous normal distribution - one can see the basic
similarity in the shapes of the curves by comparing figures 2.3 and 2.4.
Such an approximation is acceptable when both basic outcomes have a
reasonable probability of occurring or the amount of data is very large
(roughly, when np(1 — p) > 5). But, in natural language, events like oc-
currences of the phrase shade tree mechanics are so rare, that even if you
have a huge amount of text, there will be a significant difference between
the appropriate binomial curve and the approximating normal curve, and
so use of normal approximations can be unwise.

v Gaussians are often used in clustering, as discussed in chapter 14. In
particular, here we have only discussed the one-dimensional or univariate
normal distribution, while we present there the generalization to many
dimensions (the multivariate normal distribution).

v Other continuous distributions discussed in this book are the hyper-
bolic distributions discussed in section 1.4.3, and the t distribution used
for hypothesis testing in section 5.3.

Bayesian statistics

So far, we have presented a brief introduction to orthodox frequentist
statistics. Not everyone is agreed on the right philosophical foundations
for statistics, and the main rival is a Bayesian approach to statistics. Ac-
tually, the Bayesians even argue among themselves, but we are not going
to dwell on the philosophical issues here. We want to just briefly intro-
duce the Bayesian approach because Bayesian methods are very useful in
Statistical NLP, and we will come across them in later chapters.

Bayesian updating

Suppose one takes a coin and tosses it 10 times, and gets 8 heads. Then
from a frequentist point of view, the result is that this coin comes down
heads 8 times out of 10. This is what is called the maximum likelihood es-
timate, as discussed further in section 6.2.1. However, if one has looked
the coin over, and there doesn’t seem anything wrong with it, one would
be very reluctant to accept this estimate. Rather, one would tend to think
that the coin would come down equally head and tails over the long run,
and getting 8 heads out of 10 is just the kind of thing that happens some-
times given a small sample. In other words one has a prior belief that
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influences one’s beliefs even in the face of apparent evidence against it.
Bayesian statistics measure degrees of belief, and are calculated by start-
ing with prior beliefs and updating them in the face of evidence, by use
of Bayes’ theorem.

For example, let u,, be the model? that asserts P(head) = m. Let s be
a particular sequence of observations yielding i heads and j tails. Then,
foranym, 0 <m < 1:

P(slum) = m'(1 —m)J
From a frequentist point of view, we wish to find the MLE:

argmax P (s|um,)
m

To do this, we can differentiate the above polynomial, and find its max-
imum, which fortunately gives the intuitive answer of # or 0.8 for the
case of 8 heads and 2 tails.

But now suppose that one wants to quantify one’s belief that the coin
is probably a regular, fair one. One can do that by assuming a prior
probability distribution over how likely it is that different models p,, are
true. Since one would want most of the probability mass close to %, one
might use something like a Gaussian distribution centered on %, but since
polynomials are the only things we can remember how to differentiate, let
us instead assume that one’s prior belief is modeled by the distribution:

P(um) = 6m(1 —m)

This polynomial was chosen because its distribution is centered on %,

and, conveniently, the area under the curve between 0 and 1 is 1.

When one sees an observation sequence s one wants to know one’s new
belief in the fairness of the coin. One can calculate this from (2.15) and
(2.16) by Bayes’ theorem:

P(s|pum)P (tm)
P(s)
mi(1 — m)J x 6m(1 — m)
P(s)

P(umls) =

2. By a model we mean whatever theoretical edifices we construct to explain something
in the world. A probabilistic model might comprise the specification of a distribution
and certain parameter values. Thus, we are introducing some notational sloppiness in
equation (2.15), since previously we were conditioning on an event, that is, a subset of the
event space, and now we are conditioning on a model, but we will allow ourselves that
freedom.
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6mi+1 (1 _ m)j+1
P(s)
Now P(s) is the prior probability of s. Let us assume for the moment
that it does not depend on u,,, and therefore that we can ignore it while
finding the m that maximizes this equation. If we then differentiate the
numerator so as find its maximum, we can determine that for the case of
8 heads and 2 tails:

argmax P (uyls) = 3
m 4

Because our prior was weak (the polynomial is a quite flat curve centered
over %), we have moved a long way in the direction of believing that the
coin is biased, but the important point is that we haven’t moved all the
way to 0.8. If we had assumed a stronger prior, we would have moved a
smaller distance from % (See exercise 2.8.)

But what do we make of the denominator P(s)? Well, since we have
just seen s, one might conclude that this is 1, but that is not what it
means. Rather, it is the marginal probability which is obtained by adding
up all the P(s|u,,) weighted by the probability of u;,, as we saw earlier in
equation (2.8). For the continuous case, we have the integral:

1
P(s) JO P (5| tm) P (k) d

1
J 6miT(1 —m)/dm
0

This just happens to be an instance of the beta integral, another contin-
uous distribution well-studied by statisticians, and so we can look up a
book to find out that:

6(i+1)!(j+1)!

(i+j+3)!

But the important point is that the denominator is just a normalization
factor, which ensures that what we calculate for P(u,,|s) in (2.17) is ac-
tually a probability function.

In the general case where data come in sequentially and we can reason-
ably assume independence between them, we start off with an a priori
probability distribution, and when a new datum comes in, we can update
our beliefs by calculating the maximum of the a posteriori distribution,
what is sometimes referred to as the MAP probability. This then becomes
the new prior, and the process repeats on each new datum. This process
is referred to as Bayesian updating.

P(s) =
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Bayesian decision theory

But there is another thing that we can do with this new approach: use it
to evaluate which model or family of models better explains some data.
Suppose that we did not actually see the sequence of coin tosses but just
heard the results shouted out over the fence. Now it may be the case, as
we have assumed so far, that the results reported truly reflect the results
of tossing a single, possibly weighted coin. This is the theory u, which is
a family of models, with a parameter representing the weighting of the
coin. But an alternative theory is that at each step someone is tossing
two fair coins, and calling out “tails” if both of them come down tails,
and heads otherwise. Let us call this new theory v. According to v, if s is
a particular observed sequence of i heads and j tails, then:

o = (2) (1)

Note that one of these theories has a free parameter (the weighting
of the coin m), while the other has no parameters. Let us assume that,
a priori, both of these theories are equally likely, for instance:

P(u) = P(v) =%

We can now attempt to work out which theory is more likely given the
data we have seen. We use Bayes’ theorem again, and write down:

_ P(sipP(p) _ P(s[v)P(v)
P(uls) = P(s) P(v]s) = Pls)

The potentially confusing point here is that we have made a quick
change in our notation. The quantity we are now describing as P(s|u)
is the quantity that we wrote as just P(s) in (2.19) - since at that time we
were assuming that theory u,, was true and we were just trying to deter-
mine m, whereas what we are now writing as P(s) is the prior probability
of s, not knowing whether u is true or not. With that gotten straight,
we can calculate the likelihood ratio between these two models. The P(s)
terms in the denominators cancel, and we can work out the rest using
equations (2.19), (2.20), and (2.21):

P(uls) _ P(slp)P(u)
P(v|s) P(s|v)P(v)
6(i+1)!1(j+1)!

(i+q’+3)!

'@
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10 Results Reported 20 Results Reported

Heads Tails Likelihood ratio Heads Tails Likelihood ratio
0 10 4.03 x 104 0 20 1.30 x 1010
1 9 2444.23 2 18 2.07 x 107
2 8 244.42 4 16 1.34 x 10°
3 7 36.21 6 14 2307.06
4 6 7.54 8 12 87.89
5 5 2.16 10 10 6.89
6 4 0.84 12 8 1.09
7 3 0.45 14 6 0.35
8 2 0.36 16 4 0.25
9 1 0.37 18 2 0.48
10 0 0.68 20 0 3.74

Table 2.1 Likelihood ratios between two theories. The left three columns are
for a sequence s of 10 pieces of data, and the right three columns for a sequence
of 20 pieces of data.

If this ratio is greater than 1, we should prefer u, and otherwise we should
prefer v (or commonly people take the log of this ratio and see if that
value is greater than or less than zero).

We can calculate this ratio for different combinations of heads and

tails. Table 2.1 shows likelihood values for sequences of 10 and 20 re-
sults. If there are few heads, then the likelihood ratio is greater than one,
and the possibly weighted coin theory wins, since it is never strongly in-
compatible with any data (because of its free parameter). On the other
hand, if the distribution is roughly what we’d expect according to the two
fair coins theory (a lot more heads than tails) then the likelihood ratio is
smaller than one, and the simpler two fair coins theory wins. As the
quantity of data available becomes greater, the ratio of heads needs to
be nearer % in order for the two fair coins model to win. If these are the
only two theories under consideration, and we choose the one that wins
in such a likelihood ratio, then we have made what is called the Bayes
optimal decision.
v If there are more theories, we can compare them all and decide on the
most likely one in the same general manner. An example of this and
more general discussion of Bayesian decision theory can be found in our
discussion of word sense disambiguation in section 7.2.1.
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Exercises

Exercise 2.1 [*]

This exercise indicates the kind of facility with set theory needed for this book,
and summarizes a few useful results in probability theory. Use set theory and
the axioms defining a probability function to show that:

a. P(AUB) =P(A) + P(B) — P(An B) [the addition rule]

b. P(0) =0

c. P(A)=1-P(A)

d. AcB=P(A) <P(B)

e. P(B—A)=P(B)-P(AnB)

Exercise 2.2 [*]

Assume the following sample space:
Q = {is-noun, has-plural-s, is-adjective, is-verb}
and the function f : 22 — [0, 1] with the following values:

X fx)
{is-noun } 0.45
{has-plural-s} 0.2
{is-adjective }  0.25
{is-verb } 0.3

Can f be extended to all of 22 such that it is a well-formed probability distribu-
tion? If not, how would you model these data probabilistically?
Exercise 2.3 [*]

Compute the probability of the event ‘A period occurs after a three-letter word
and this period indicates an abbreviation (not an end-of-sentence marker),” as-
suming the following probabilities.

P (is-abbreviation|three-letter-word) = 0.8
P (three-letter-word) = 0.0003

Exercise 2.4 [*]
Are X and Y as defined in the following table independently distributed?
X 0 0 1 1

y 0 1 0 1
p(X=x,Y=y) 032 008 048 0.12
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Exercise 2.5 [*]

In example 5, we worked out the expectation of the sum of two dice in terms
of the expectation of rolling one die. Show that one gets the same result if one
calculates the expectation for two dice directly.

Exercise 2.6 [**]

Consider the set of grades you have received for courses taken in the last two
years. Convert them to an appropriate numerical scale. What is the appropriate
distribution for modeling them?

Exercise 2.7 [**]

Find a linguistic phenomenon that the binomial distribution is a good model for.
What is your best estimate for the parameter p?

Exercise 2.8 [**]

Fori = 8 and j = 2, confirm that the maximum of equation (2.15) is at 0.8,
and that the maximum of equation (2.17) is 0.75. Suppose our prior belief had
instead been captured by the equation:

P(um) = 30m?(1 — m)?

What then would the MAP probability be after seeing a particular sequence of 8
heads and 2 tails? (Assume the theory u,, and a prior belief that the coin is fair.)

Essential Information Theory

The field of information theory was developed in the 1940s by Claude
Shannon, with the initial exposition reported in (Shannon 1948). Shannon
was interested in the problem of maximizing the amount of information
that you can transmit over an imperfect communication channel such as
a noisy phone line (though actually many of his concerns stemmed from
codebreaking in World War II). For any source of ‘information’ and any
‘communication channel,” Shannon wanted to be able to determine theo-
retical maxima for (i) data compression - which turns out to be given by
the Entropy H (or more fundamentally, by the Kolmogorov complexity K),
and (ii) the transmission rate - which is given by the Channel Capac-
ity C. Until Shannon, people had assumed that necessarily, if you send
your message at a higher speed, then more errors must occur during the
transmission. But Shannon showed that providing that you transmit the
information in your message at a slower rate than the Channel Capacity,
then you can make the probability of errors in the transmission of your
message as small as you would like.
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Entropy

Let p(x) be the probability mass function of a random variable X, over a
discrete set of symbols (or alphabet) X:

px)=P(X=x), x€X

For example, if we toss two coins and count the number of heads, we
have a random variable: p(0) = 1/4, p(1) = 1/2,p(2) = 1/4.

The entropy (or self-information) is the average uncertainty of a single
random variable:

Entropy H(p) = H(X) = - > p(x)log, p(x)

xeX
Entropy measures the amount of information in a random variable. It is
normally measured in bits (hence the log to the base 2), but using any
other base yields only a linear scaling of results. For the rest of this
book, an unadorned log should be read as log to the base 2. Also, for this
definition to make sense, we define 0log0 = 0.

Example 7: Suppose you are reporting the result of rolling an 8-sided
die. Then the entropy is:

S 1.1 1
H(X) = - Zp(i)logp(i) = — Z —log = = —logg = log 8 = 3 bits

i=1 i=1 8 8

This result is what we would expect. Entropy, the amount of information
in a random variable, can be thought of as the average length of the
message needed to transmit an outcome of that variable. If we wish to
send the result of rolling an eight-sided die, the most efficient way is to
simply encode the result as a 3 digit binary message:

1 2 3 4 5 6 7 8
001 010 011 100 101 110 111 000

The transmission cost of each result is 3 bits, and there is no cleverer way
of encoding the results with a lower average transmission cost. In gen-
eral, an optimal code sends a message of probability p(i) in [—logp(i)]
bits.

The minus sign at the start of the formula for entropy can be moved
inside the logarithm, where it becomes a reciprocal:

1
H(X) = XEZXp(x)logm
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(2.28)
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People without any statistics background often think about a formula
like this as a sum of the quantity p(x)log(1/p(x)) for each x. While this
is mathematically impeccable, it is the wrong way to think about such
equations. Rather you should think of > ,cx p(x)... as an idiom. It says
to take a weighted average of the rest of the formula (which will be a
function of x), where the weighting depends on the probability of each x.
Technically, this idiom defines an expectation, as we saw earlier. Indeed,

1
H(X) —E(logp(x))

Example 8: Simplified Polynesian Simplified Polynesian3 appears to be
just a random sequence of letters, with the letter frequencies as shown:

P t k a i u
/8 1/4 1/8 1/4 1/8 1/8

Then the per-letter entropy is:
- > P()logP(i)

ie{p,t,k,a,i,u}

H(P)

1 1 1 1
—[4)( §10g§+2XZIOg1]

2% bits

This is supported by the fact that we can design a code that on average
takes 2% bits to transmit a letter:

P t k a i u
100 00 101 01 110 111

Note that this code has been designed so that fewer bits are used to send
more frequent letters, but still so that it can be unambiguously decoded
- if a code starts with a O then it is of length two, and if it starts with a 1
it is of length 3. There is much work in information theory on the design
of such codes, but we will not further discuss them here.

One can also think of entropy in terms of the Twenty Questions game.
If you can ask yes/no questions like ‘Is it a t or an a?’ or ‘Is it a conso-
nant?’ then on average you will need to ask 2% questions to identify each
letter with total certainty (assuming that you ask good questions!). In

3. Polynesian languages, such as Hawai’ian, are well known for their small alphabets.



2.2.2

(2.29)

2.2 Essential Information Theory 63

Hip) —

08 |- Bl

0.6 4

04 - b

0.2 B

0 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2.5 The entropy of a weighted coin. The horizontal axis shows the prob-
ability of a weighted coin to come up heads. The vertical axis shows the entropy
of tossing the corresponding coin once.

other words, entropy can be interpreted as a measure of the size of the
‘search space’ consisting of the possible values of a random variable and
its associated probabilities.

Note that: (i) H(X) > 0, (ii) H(X) = 0 only when the value of X is
determinate, hence providing no new information, and that (iii) entropy
increases with the message length. The information needed to transmit
the results of tossing a possibly weighted coin depends on the probability
p that it comes up heads, and on the number of tosses made. The entropy
for a single toss is shown in figure 2.5. For multiple tosses, since each
is independent, we would just multiply the number in the graph by the
number of tosses.

Joint entropy and conditional entropy

The joint entropy of a pair of discrete random variables X,Y ~ p(x,y)
is the amount of information needed on average to specify both their
values. It is defined as:

HX,Y)=- > > p(x,y)logp(X,Y)
xeX yey
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The conditional entropy of a discrete random variable Y given an-
other X, for X,Y ~ p(x,y), expresses how much extra information you
still need to supply on average to communicate Y given that the other
party knows X:

H(Y|X) > pXH(Y|X = x)

xeX

= > p |- > pyIx)logp(ylx)

xeX yey
= =2 > p(x,»)logp(ylx)
xeX yey

There is also a Chain rule for entropy:

H(X,Y)
H(X1,...,Xn)

H(X)+H(Y|X)
H(Xl) +H(X2|X1) +...+H(Xn|X1,...,Xn_1)

The products in the chain rules for probabilities here become sums be-
cause of the log:

H(X,Y) —Ep(x,y) (logp(x,y))

= —Epxy (log(p(x) p(¥x)))

= —Ep(xy) (logp(x) +logp(y|x))

= —Epx (logp(x)) — Ep(x,y) (logp(yIx))
= H(X)+H(YI|X)

Example 9: Simplified Polynesian revisited An important scientific
idea is the distinction between a model and reality. Simplified Polyne-
sian isn’t a random variable, but we approximated it (or modeled it) as
one. But now let’s learn a bit more about the language. Further fieldwork
has revealed that Simplified Polynesian has syllable structure. Indeed, it
turns out that all words consist of sequences of CV (consonant-vowel)
syllables. This suggests a better model in terms of two random variables
C for the consonant of a syllable, and V for the vowel, whose joint dis-
tribution P(C,V) and marginal distributions P(C,-) and P(-,V) are as
follows:



(2.32)
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p t Kk
A% 5 162
il 16 0|71
ul0 % 16|71

3 1

8 4 8

Note that here the marginal probabilities are on a per-syllable basis,
and are therefore double the probabilities of the letters on a per-letter
basis, which would be:

P t k a i u
1/16 3/8 1/16 1/4 1/8 1/8

We can work out the entropy of the joint distribution, in more than one
way. Let us use the chain rule:*

H(C) = 2><%><3+%(2—10g3)
= g—glo 3 bits = 1.061 bits
- 1 4% s
H(VIC) = > p(C=c)HVIC=c)
c=p,t,k
1 11 3 111 1 1 1
= §H<§'§'O)+ZH<§’Z'Z)+§H<§’O,§)
1 3rl 1
= 2X§X1+Z[§X1+ZXZX2]
_ 1,33
4 472
11 . .
= 3 bits = 1.375 bits
H(C,V) = H(C)+H(WV|C)
= 9 3pg3 U
T 3 3%°73
29 3

= 3 - Zlog3 ~ 2.44 bits

4. Within the calculation, we use an informal, but convenient, notation of expressing
a finite-valued distribution as a sequence of probabilities, which we can calculate the
entropy of.
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2.2.3
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Note that those 2.44 bits are now the entropy for a whole syllable (which
was 2 X 2% = 5 for the original Simplified Polynesian example). Our better
understanding of the language means that we are now much less uncer-
tain, and hence less surprised by what we see on average than before.

Because the amount of information contained in a message depends on
the length of the message, we normally want to talk in terms of the per-
letter or per-word entropy. For a message of length n, the per-letter/word
entropy, also known as the entropy rate, is:>

Hrae = +H(Xin) = —+ 3 p(xin) g p(x1n)
X1n
If we then assume that a language is a stochastic process consisting of
a sequence of tokens L = (X;), for example a transcription of every word
you utter in your life, or a corpus comprising everything that is sent
down the newswire to your local paper, then we can define the entropy
of a human language L as the entropy rate for that stochastic process:

1
Hyate (L) = rlll_lllo EH(Xl,XZ, oy Xn)

We take the entropy rate of a language to be the limit of the entropy rate
of a sample of the language as the sample gets longer and longer.

Mutual information

By the chain rule for entropy,

H(X,Y) =H(X)+H(Y|X) =H(Y) + HXI|Y)
Therefore,

H(X) -H(X|Y)=H(Y) - H(Y|X)

This difference is called the mutual information between X and Y. It is the
reduction in uncertainty of one random variable due to knowing about
another, or in other words, the amount of information one random vari-
able contains about another. A diagram illustrating the definition of mu-
tual information and its relationship to entropy is shown in figure 2.6
(adapted from Cover and Thomas (1991: 20)).

5. Commonly throughout this book we use two subscripts on something to indicate a sub-
sequence. So, here, we use Xj; to represent the sequence of random variables (Xj,..., X;)
and similarly x;; = (xj,...,xj). This notation is slightly unusual, but very convenient
when sequences are a major part of the domain of discourse. So the reader should re-
member this convention and be on the lookout for it.
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H(X,Y)

/ AN

H(X) H(Y)

Figure 2.6 The relationship between mutual information I and entropy H.

Mutual information is a symmetric, non-negative measure of the com-
mon information in the two variables. People thus often think of mutual
information as a measure of dependence between variables. However, it
is actually better to think of it as a measure of independence because:

m It is O only when two variables are independent, but

= For two dependent variables, mutual information grows not only with
the degree of dependence, but also according to the entropy of the
variables.

Simple arithmetic gives us the following formulas for mutual informa-
tion I(X; Y):6

(2.36) I(X;Y)

H(X)-H(XIY)
= H(X)+H(Y) H(X,Y)

= ZD(X)log + Zp(y)log ( 7 Zp(x y)logp(x,y)

( )

p(x,y)
= > log ——22°
X,yp(x’w S px)p(y)

Since H(X|X) = 0, note that:
H(X)=H(X) -HX|X) =1(X; X)

6. Mutual information is conventionally written with a semi-colon separating the two ar-
guments. We are unsure why.
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This illustrates both why entropy is also called self-information, and how
the mutual information between two totally dependent variables is not
constant but depends on their entropy.

We can also derive conditional mutual information and a chain rule:

I(X; Y1Z) =1((X; Y)|Z) = H(X|Z) - H(X|Y, Z)

I(Xin; Y) I(X; Y)+ ...+ 1(Xy; YIXy, .., Xno1)

n
> I(X;; YIXy,..., Xic1)
i=1

In this section we have defined the mutual information between two
random variables. Sometimes people talk about the pointwise mutual
information between two particular points in those distributions:

p(x,y)
px)p(y)

This has sometimes been used as a measure of association between ele-
ments, but there are problems with using this measure, as we will discuss
in section 5.4.

v Mutual information has been used many times in Statistical NLP, such
as for clustering words (section 14.1.3). It also turns up in word sense
disambiguation (section 7.2.2).

I(x,y) = log

The noisy channel model

Using information theory, Shannon modeled the goal of communicating
down a telephone line - or in general across any channel - in the follow-
ing way: The aim is to optimize in terms of throughput and accuracy the
communication of messages in the presence of noise in the channel. It
is assumed that the output of the channel depends probabilistically on
the input. In general, there is a duality between compression, which is
achieved by removing all redundancy, and transmission accuracy, which
is achieved by adding controlled redundancy so that the input can be
recovered even in the presence of noise. The goal is to encode the mes-
sage in such a way that it occupies minimal space while still containing
enough redundancy to be able to detect and correct errors. On receipt,
the message is then decoded to give what was most likely the original
message. This process is shown in figure 2.7.
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w X Y w
i)

Message Input to utput from Attempt to
from a finite channel channel reconstruct message
alphabet based on output

Figure 2.7 The noisy channel model.
l1-p
O—0

p

1——1
l-p
Figure 2.8 A binary symmetric channel. A 1 or a 0 in the input gets flipped on
transmission with probability p.

The central concept that characterizes a channel in information theory
is its capacity. The channel capacity describes the rate at which one can
transmit information through the channel with an arbitrarily low proba-
bility of being unable to recover the input from the output. For a memory-
less channel, Shannon’s second theorem states that the channel capacity
can be determined in terms of mutual information as follows:
C=maxI(X;Y)

p(X)
According to this definition, we reach a channel’s capacity if we man-
age to design an input code X whose distribution maximizes the mutual
information between the input and the output over all possible input
distributions p(X).

As an example, consider the binary symmetric channel in figure 2.8.
Each input symbol is either a 1 or a 0, and noise in the channel causes
each symbol to be flipped in the output with probability p. We find that:

I(X;Y) = H(Y)-H(Y|X)
H(Y) - H(p)

Therefore,

maxI(X; Y)=1-H(p)
p(X)



70

2 Mathematical Foundations

1 Noi h 1 0] I
) oisy Channe

p(oli)

Figure 2.9 The noisy channel model in linguistics.

This last line follows because the mutual information is maximized by
maximizing the entropy in the codes, which is done by making the input
and hence the output distribution uniform, so their entropy is 1 bit. Since
entropy is non-negative, C < 1. The channel capacity is 1 bit only if the
entropy is zero, that is if p = 0 and the channel reliably transmits a 0 as
Oand alas 1, orif p = 1 and it always flips bits. A completely noisy
binary channel which transmits both 0s and 1s with equal probability as
Os and 1s (.e., p = %) has capacity C = 0, since in this case there is
no mutual information between X and Y. Such a channel is useless for
communication.

It was one of the early triumphs of information theory that Shannon
was able to show two important properties of channels. First, channel
capacity is a well-defined notion. In other words, for each channel there
is a smallest upper bound of I(X; Y) over possible distributions p(X).
Second, in many practical applications it is easy to get close to the opti-
mal channel capacity. We can design a code appropriate for the channel
that will transmit information at a rate that is optimal or very close to op-
timal. The concept of capacity eliminates a good part of the guesswork
that was involved in designing communications systems before Shannon.
One can precisely evaluate how good a code is for a communication line
and design systems with optimal or near-optimal performance.

The noisy channel model is important in Statistical NLP because a sim-
plified version of it was at the heart of the renaissance of quantitative
natural language processing in the 1970s. In the first large quantitative
project after the early quantitative NLP work in the 1950s and 60s, re-
searchers at IBM’s T. J. Watson research center cast both speech recogni-
tion and machine translation as a noisy channel problem.

Doing linguistics via the noisy channel model, we do not get to con-
trol the encoding phase. We simply want to decode the output to give
the most likely input, and so we work with the channel shown in fig-
ure 2.9. Many problems in NLP can be construed as an attempt to de-
termine the most likely input given a certain output. We can determine
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Application Input Output p(i) p(oli)
Machine L; word L, word p(L1) ina translation
Translation sequences sequences language model model
Optical Character actual text textwith  prob of model of
Recognition (OCR) mistakes language text OCR errors
Part Of Speech POS tag English prob of p(wlt)
(POS) tagging sequences words POS sequences
Speech word speech prob of word acoustic
recognition sequences signal sequences model

Table 2.2 Statistical NLP problems as decoding problems.

this as follows, by using Bayes’ theorem, and then noting that the output
probability is a constant:

p(i) p(oli)

(2.40) (0)

[ = argmaxp(ilo) = arg max = argmaxp(i) p(oli)
i i i

LANGUAGE MODEL Here we have two probability distributions to consider: p(i) is the lan-
guage model, the distribution of sequences of ‘words’ in the input lan-
guage, and p(oli) is the channel probability.

As an example, suppose we want to translate a text from English to
French. The noisy channel model for translation assumes that the true
text is in French, but that, unfortunately, when it was transmitted to us,
it went through a noisy communication channel and came out as English.
So the word cow we see in the text was really vache, garbled by the noisy
channel to cow. All we need to do in order to translate is to recover the
original French - or to decode the English to get the French.”

The validity of the noisy channel model for translation is still giving
rise to many a heated debate among NLP researchers, but there is no
doubt that it is an elegant mathematical framework that has inspired a
significant amount of important research. We will discuss the model in
more detail in chapter 13. Other problems in Statistical NLP can also be
seen as instantiations of the decoding problem. A selection is shown in
table 2.2.

CHANNEL
PROBABILITY

DECODE

7. The French reader may be sympathetic with the view that English is really a form of
garbled French that makes the language of clarté unnecessarily ambiguous!
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(2.43)

(2.44)
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Relative entropy or Kullback-Leibler divergence

For two probability mass functions, p(x), q(x) their relative entropy is
given by:
p(x)

D(pllq) = Xez)cp(x)log@

where again we define 0log % = 0 and otherwise p logg = oo, The relative
entropy, also known as the Kullback-Leibler divergence, is a measure of
how different two probability distributions (over the same event space)
are. Expressed as an expectation, we have:

p(X)>
q(X)

Thus, the KL divergence between p and q is the average number of bits
that are wasted by encoding events from a distribution p with a code
based on a not-quite-right distribution q.

This quantity is always non-negative, and D(p|/q) = 0 iff p = q. For
these reasons, some authors use the name ‘KL distance,” but note that
relative entropy is not a metric (in the sense in which the term is used
in mathematics): it is not symmetric in p and g (see exercise 2.12), and
it does not satisfy the triangle inequality.® Hence we will use the name
‘KL divergence,” but nevertheless, informally, people often think about
the relative entropy as the ‘distance’ between two probability distribu-
tions: it gives us a measure of how close two pmfs are.

Mutual information is actually just a measure of how far a joint distri-
bution is from independence:

IX; Y) =D&, IIpx)p(y))

D(pllq) =Ep (log

We can also derive conditional relative entropy and a chain rule for
relative entropy (Cover and Thomas 1991: 23):

p(yIx)
q(y1x)

D(p(yI0la(ylx) = > p(x) > p(yIx)log
X y

D(px,y)lax,y)) = D) ax) +D(pyIx)lq(ylx))
8. The triangle inequality is that for any three points x, y, z:

dx,y) <d(x,z) +d(z,y)
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v KL divergence is used for measuring selectional preferences in sec-
tion 8.4.

The relation to language: Cross entropy

So far we have examined the notion of entropy, and seen roughly how it
is a guide to determining efficient codes for sending messages, but how
does this relate to understanding language? The secret to this is to return
to the idea that entropy is a measure of our uncertainty. The more we
know about something, the lower the entropy will be because we are less
surprised by the outcome of a trial.

We can illustrate this with the examples used above. Consider again
Simplified Polynesian from examples 8 and 9. This language has 6 let-
ters. The simplest code is to use 3 bits for each letter of the language.
This is equivalent to assuming that a good model of the language (where
our ‘model’ is simply a probability distribution) is a uniform model. How-
ever, we noticed that not all the letters occurred equally often, and, noting
these frequencies, produced a zeroth order model of the language. This
had a lower entropy of 2.5 bits per letter (and we showed how this obser-
vation could be used to produce a more efficient code for transmitting the
language). Thereafter, we noticed the syllable structure of the language,
and developed an even better model that incorporated that syllable struc-
ture into it. The resulting model had an even lower entropy of 1.22 bits
per letter. The essential point here is that if a model captures more of the
structure of a language, then the entropy of the model should be lower.
In other words, we can use entropy as a measure of the quality of our
models.

Alternately, we can think of entropy as a matter of how surprised we
will be. Suppose that we are trying to predict the next word in a Sim-
plified Polynesian text. That is, we are examining P(w|h), where w is
the next word and h is the history of words seen so far. A measure of
our surprise on seeing the next word can be derived in terms of the con-
ditional probability assigned to w by our model m of the distribution of
Simplified Polynesian words. Surprise can be measured by what we might
term the pointwise entropy H(w|h) = —log, m(w|h). If the predictor is
certain that word w follows a given history h and it is correct, then the in-
formation supplied to the predictor on seeing w is —log, 1 = 0. In other
words, the predictor does not experience any surprise at all. On the other
hand, if the model thinks that w cannot follow h, then m(w|h) = 0 and
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so the information supplied to the predictor is infinite (—1log, 0 = o). In
this case our model is infinitely surprised, which is normally a very bad
thing. Usually our models will predict a probability between these two
extremes for each event and so the model will gain some information, or
alternatively, be somewhat surprised, when it sees the next word, and the
goal is to keep that level of surprise as low as possible. Summing over the
surprise of the predictor at each word gives an expression for our total
surprise:

n

How = - logym(wjlwi,wa,...,wj_1)
j=1
= _IOme(Wl,WZ,---awn)

The second line above follows from the chain rule. Normally, we would
want to normalize this measure by the length of the text so our notion
of surprise is not dependent on the size of the text. This normalized
measure gives the average surprise of the predictor per word.

So far this discussion has been rather informal, but we can formalize
it through the notion of relative entropy. Suppose that we have some
empirical phenomenon, in Statistical NLP usually utterances in a certain
language. Assuming some mapping to numbers, we can represent it via
a random variable X. Then we assume that there is some probability
distribution over the utterances - for instance, you hear Thank you much
more often than On you. So we take X ~ p(x).

Now, unfortunately we do not know what p(-) is for empirical phenom-
ena. But by looking at instances, for example by looking at a corpus of
utterances, we can estimate roughly what p seems to be like. In other
words, we can produce a model m of the real distribution, based on our
best estimates. In making this model, what we want to do is to mini-
mize D(p|lm) - to have as accurate a probabilistic model as possible.
Unfortunately, we normally cannot calculate this relative entropy - again,
because we do not know what p is. However, there is a related quantity,
the cross entropy, which we fortunately can get a handle on.

The cross entropy between a random variable X with true probability
distribution p(x) and another pmf q (normally a model of p) is given by:

H(X,q)

H(X)+D(pllq)
- > p(x)logq(x)
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1
Ep (10g ﬁ>
(Proof of this is left to the reader as exercise 2.13.)

Just as we defined the entropy of a language in section 2.2.2, we can
define the cross entropy of a language L = (Xj) ~ p(x) according to a
model m by:

1
H(L,m) = - lim XZ P(X1n) logm(xin)
1n
We do not seem to be making much progress, because it still seems that
we cannot calculate this quantity without knowing p. But if we make
certain assumptions that the language is ‘nice,” then the cross entropy
for the language can be calculated as:

H(L,m) = - lim % logm(x1,)

Using this second form, we can calculate the cross entropy based only
on knowing our probability model and having a large body of utterances
available. That is, we do not actually attempt to calculate the limit, but
approximate it by calculating for a sufficiently large n:

H(L,m) = —% logm(x1,)

This measure is just the figure for our average surprise. Our goal will
be to try to minimize this number. Because H(X) is fixed (if unknown),
this is equivalent to minimizing the relative entropy, which is a measure
of how much our probability distribution departs from actual language
use. The only additional requirement is that the text that we use to test
the model must be an independent test set, and not part of the training
corpus that we used to estimate the parameters of the model. Cross
entropy is inversely related to the average probability a model assigns to
words in test data. Lower model cross entropy normally leads to better
performance in applications, but it need not do so if it is just a matter of
improving the magnitude of probability estimates, but not their relative
ordering. (See section 6.2.3 for more practical details on calculating the
cross entropy of models.)

But what justifies going from equation (2.48) to equation (2.49)? The
formula for language cross entropy has an expectation embedded within
it:

.1 1
H(L,m) = ’115130 EE (log m(Xln))
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Recall that the expectation is a weighted average over all possible se-
quences. But in the above formula we are using a limit and looking at
longer and longer sequences of language use. Intuitively, the idea is then
that if we have seen a huge amount of the language, what we have seen
is ‘typical.” We no longer need to average over all samples of the lan-
guage; the value for the entropy rate given by this particular sample will
be roughly right.

The formal version of this is to say that if we assume that L = (X;) is
a stationary ergodic process, then we can prove the above result. This is
a consequence of the Shannon-McMillan-Breiman theorem, also known as
the Asymptotic Equipartition Property:

Theorem: If H.u. is the entropy rate of a finite-valued stationary er-
godic process (Xy), then:

—%logp(Xl, ..., Xn) — H, with probability 1

We will not prove this theorem; see Cover and Thomas (1991: ch. 3, 15).
An ergodic process is one that, roughly, cannot get into different sub-
states that it will not escape from. An example of a non-ergodic process
is one that in the beginning chooses one of two states: one in which it
generates O forever, one in which it generates 1 forever. If a process is
not ergodic, then even looking at one very long sequence will not neces-
sarily tell us what its typical behavior is (for example, what is likely to
happen when it gets restarted).

A stationary process is one that does not change over time. This is
clearly wrong for language: new expressions regularly enter the language
while others die out. And so, it is not exactly correct to use this result
to allow the calculation of a value for cross entropy for language applica-
tions. Nevertheless, for a snapshot of text from a certain period (such as
one year’'s newswire), we can assume that the language is near enough to
unchanging, and so this is an acceptable approximation to truth. At any
rate, this is the method regularly used.

The entropy of English

As noted above, English in general is not a stationary ergodic process. But
we can nevertheless model it with various stochastic approximations. In
particular, we can model English with what are known as n-gram models
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or Markov chains. These models, which we discuss in detail in chapters 6
and 9, are ones where we assume a limited memory. We assume that the
probability of the next word depends only on the previous k words in the
input. This gives a k™ order Markov approximation:

P(Xn = xnlXn-1 = Xp-1,..., X1 = X1) =
P(Xp = xnlXn-1 = Xn-1,..., Xn-k = Xn—k)

If we are working on a character basis, for example, we are trying to guess
what the next character in a text will be given the preceding k characters.
Because of the redundancy of English, this is normally fairly easy. For
instance, a generation of students have proved this by being able to make
do with photocopies of articles that are missing the last character or two
of every line.

By adding up counts of letters, letter digraphs (that is, sequences of two
letters), and so on in English, one can produce upper bounds for the en-
tropy of English.? We assume some such simplified model of English and
compute its cross entropy against a text and this gives us an upper bound
for the true entropy of English - since D(p|m) > 0, H(X,m) > H(X).
Shannon did this, assuming that English consisted of just 27 symbols
(the 26 letters of the alphabet and SPACE - he ignored case distinctions
and punctuation). The estimates he derived were:

Model Cross entropy (bits)

zeroth order 4.76 (uniform model, so log 27)
first order 4.03

second order 2.8

Shannon’s experiment 1.3 (1.34) (Cover and Thomas 1991: 140)

The first three lines show that as the order of the model increases, that is,
as information about the frequencies of letters (first order) and digraphs
(second order) is used, our model of English improves and the calculated
cross entropy drops. Shannon wanted a tighter upper bound on the en-
tropy of English, and derived one by human experiments - finding out
how good at guessing the next letter in a text a human being was. This
gave a much lower entropy bound for English. (A later experiment with

9. More strictly, one produces an estimate for the text on which the counts are based, and
these counts are good for ‘English’ only to the extent that the text used is representative
of English as a whole. Working at the character level, this is not too severe a problem, but
it becomes quite important when working at the word level, as discussed in chapter 4.
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more subjects on the same text that Shannon used produced the figure
in parentheses, 1.34.)

Of course, the real entropy of English must be lower still: there are
doubtless patterns in people’s speech that humans do not pick up on
(although maybe not that many!). But at present, the statistical language
models that we can construct are much worse than human beings, and
so the current goal is to produce models that are as good as English
speakers at knowing which English utterances sound normal or common
and which sound abnormal or marked.

v We return to n-gram models in chapter 6.

Perplexity

In the speech recognition community, people tend to refer to perplexity
rather than cross entropy. The relationship between the two is simple:

perplexity (X1, m) 2H x1nm)

_1
m(xip) n

We suspect that speech recognition people prefer to report the larger
non-logarithmic numbers given by perplexity mainly because it is much
easier to impress funding bodies by saying that “we’ve managed to re-
duce perplexity from 950 to only 540” than by saying that “we’ve reduced
cross entropy from 9.9 to 9.1 bits.” However, perplexity does also have
an intuitive reading: a perplexity of k means that you are as surprised
on average as you would have been if you had had to guess between
k equiprobable choices at each step.

Exercises

Exercise 2.9 [*]

Take a (short) piece of text and compute the relative frequencies of the letters
in the text. Assume these are the true probabilities. What is the entropy of this
distribution?

Exercise 2.10 [*]

Take another piece of text and compute a second probability distribution over
letters by the same method. What is the KL divergence between the two distribu-
tions? (You will need to ‘smooth’ the second distribution and replace any zero
with a small quantity €.)
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Exercise 2.11 [*]

Cast the problem of word sense disambiguation as a noisy channel model, in
analogy to the examples in table 2.2. Word sense disambiguation is the problem
of determining which sense of an ambiguous word is used (e.g., ‘industrial plant’
vs. ‘living plant’ for plant) and will be covered in chapter 7.

Exercise 2.12 [*]

Show that the KL divergence is not symmetric by finding an example of two
distributions p and q for which D(p |l q) = D(qll p).

Exercise 2.13 [*]
Prove the equality shown in the first two lines of (2.46).

Exercise 2.14 [*]

We arrived at the simplified way of computing cross entropy in equation (2.49)
under the premise that the process we are dealing with is ergodic and station-
ary. List some characteristics of natural languages that show that these two
properties are only approximately true of English.

Exercise 2.15 [* %]

Reproduce Shannon’s experiment. Write a program that shows you a text one
letter at a time. Run it on a text you have not seen. Can you confirm Shannon’s
estimate of the entropy of English?

Exercise 2.16 [% %]

Repeat the last exercise for one text that is ‘easy’ (e.g., a newsgroup posting) and
one text that is ‘hard’ (e.g., a scientific article from a field you don’t know well).
Do you get different estimates? If the estimates are different, what difficulties
does the experiment raise for interpreting the different estimates of the entropy
of English?

Further Reading

Aho et al. (1986: ch. 4) cover parsing in computer science, and Allen
(1995: ch. 3) covers parsing in computational linguistics. Most of the
mathematics we use is covered in Part I of (Cormen et al. 1990), but not
vector spaces and matrices, for which one should consult an introduction
to linear algebra such as (Strang 1988).

Many books give good introductions to basic probability theory. A few
good ones, listed in approximate order of increasing difficulty are (Moore
and McCabe 1989; Freedman et al. 1998; Siegel and Castellan 1988; De-
Groot 1975). Krenn and Samuelsson (1997) is particularly recommended
as a much more thorough introduction to statistics aimed at a Statistical
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NLP audience. Unfortunately most introduction to statistics textbooks
follow a very fixed syllabus which is dominated by hypothesis testing as
applied in experimental sciences such as biology and psychology. Of-
ten these concerns are rather distant from the issues of most relevance
to Statistical NLP, and it can be helpful to also look at books covering
quantitative methods for machine learning, such as (Mitchell 1997).

The coverage of information theory here barely scratches the surface
of that field. Cover and Thomas (1991) provide a thorough introduction.

Brown et al. (1992b) present an estimate of 1.75 bits per character for
the entropy of English based on predicting the next word, trained on an
enormous corpus of English text.
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THIS CHAPTER introduces basic linguistic concepts, which are neces-
sary for making sense of discussions in the rest of the book. It may partly
be a review of things you learned at school, but it will go into more depth
for syntactic phenomena like attachment ambiguities and phrase struc-
ture that are important in NLP. Apart from syntax (sentence structure),
we will cover some morphology (word formation) and semantics (mean-
ing). The last section will give an overview of other areas of linguistics
and pointers to further reading.

Parts of Speech and Morphology

Linguists group the words of a language into classes (sets) which show
similar syntactic behavior, and often a typical semantic type. These
word classes are otherwise called syntactic or grammatical categories,
but more commonly still by the traditional name parts of speech (POS).
Three important parts of speech are noun, verb, and adjective. Nouns
typically refer to people, animals, concepts and things. The prototypi-
cal verb is used to express the action in a sentence. Adjectives describe
properties of nouns. The most basic test for words belonging to the same
class is the substitution test. Adjectives can be picked out as words that
occur in the frame in (3.1):

sad
intelligent

The 4 green one is in the corner.
fat
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In sentence (3.2), the noun children refers to a group of people (those
of young age) and the noun candy to a particular type of food:

Children eat sweet candy.

The verb eat describes what children do with candy. The adjective sweet
tells us about a property of candy, namely that it is sweet. Many words
have multiple parts of speech: candy can also be a verb (as in Too much
boiling will candy the molasses), and, at least in British English, sweet
can be a noun, meaning roughly the same as candy. Word classes are
normally divided into two. The open or lexical categories are ones like
nouns, verbs and adjectives which have a large number of members, and
to which new words are commonly added. The closed or functional cat-
egories are categories such as prepositions and determiners (containing
words like of, on, the, a) which have only a few members, and the mem-
bers of which normally have a clear grammatical use. Normally, the vari-
ous parts of speech for a word are listed in an online dictionary, otherwise
known as a lexicon.

Traditional systems of parts of speech distinguish about 8 categories,
but corpus linguists normally want to use more fine-grained classifica-
tions of word classes. There are well-established sets of abbreviations
for naming these classes, usually referred to as POS tags. In this chapter,
as we introduce syntactic categories, we will give the abbreviations used
in the Brown corpus for the more important categories. For example, ad-
jectives are tagged using the code JJ in the Brown corpus. Because of its
pioneering role, the Brown corpus tags are particularly widely known.
¥ We briefly describe and compare several well-known tag sets in sec-
tion 4.3.2.

Word categories are systematically related by morphological processes
such as the formation of the plural form (dog-s) from the singular form of
the noun (dog). Morphology is important in NLP because language is pro-
ductive: in any given text we will encounter words and word forms that
we haven’t seen before and that are not in our precompiled dictionary.
Many of these new words are morphologically related to known words.
So if we understand morphological processes, we can infer a lot about
the syntactic and semantic properties of new words.

Itis important to be able to handle morphology in English, but it’s abso-
lutely essential when it comes to highly inflecting languages like Finnish.
In English, a regular verb has only 4 distinct forms, and irregular verbs
have at most 8 forms. One can accomplish a fair amount without mor-
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phology, by just listing all word forms. In contrast, a Finnish verb has
more than 10,000 forms! For a language like Finnish, it would be tedious
and impractical to enumerate all verb forms as an enormous list.

The major types of morphological process are inflection, derivation,
and compounding. Inflections are the systematic modifications of a root
form by means of prefixes and suffixes to indicate grammatical distinc-
tions like singular and plural. Inflection does not change word class or
meaning significantly, but varies features such as tense, number, and
plurality. All the inflectional forms of a word are often grouped as mani-
festations of a single lexeme.

Derivation is less systematic. It usually results in a more radical change
of syntactic category, and it often involves a change in meaning. An ex-
ample is the derivation of the adverb widely from the adjective wide (by
appending the suffix -ly). Widely in a phrase like it is widely believed
means among a large well-dispersed group of people, a shift from the core
meaning of wide (extending over a vast area). Adverb formation is also
less systematic than plural inflection. Some adjectives like old or difficult
don’t have adverbs: *oldly and *difficultly are not words of English. Here
are some other examples of derivations: the suffix -en transforms adjec-
tives into verbs (weak-en, soft-en), the suffix -able transforms verbs into
adjectives (understand-able, accept-able), and the suffix -er transforms
verbs into nouns (teach-er, lead-er).

Compounding refers to the merging of two or more words into a new
word. English has many noun-noun compounds, nouns that are combi-
nations of two other nouns. Examples are tea kettle, disk drive, or college
degree. While these are (usually) written as separate words, they are pro-
nounced as a single word, and denote a single semantic concept, which
one would normally wish to list in the lexicon. There are also other
compounds that involve parts of speech such as adjectives, verbs, and
prepositions, such as downmarket, (to) overtake, and mad cow disease.

We will now introduce the major parts of speech of English.

Nouns and pronouns

Nouns typically refer to entities in the world like people, animals, and
things. Examples are:

dog, tree, person, hat, speech, idea, philosophy
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Type of inflection Instances

number singular, plural
gender feminine, masculine, neuter
case nominative, genitive, dative, accusative

Table 3.1 Common inflections of nouns.

English, which is morphologically impoverished compared to many
other languages, has only one inflection of the noun, the plural form.
It is usually formed by appending the suffix -s. Here are some nouns with
their singular and plural forms.

dog: dogs tree: trees person : persons
hat : hats speech : speeches woman : women
idea : ideas philosophy : philosophies child : children

The plural suffix has three pronunciations, /s/ as in hats, /z/, as in boys,
and /3s/ as in speeches, the last case being represented by insertion of
an e in the writing system. A few forms like women don’t follow the
regular pattern, and are termed irregular.

Number (singular and plural) is one common grammatical distinction
that is marked on the noun. Two other types of inflection that are com-
mon for nouns across languages are gender and case as shown in ta-
ble 3.1.

English does not have a system of gender inflections, but it does have
different gender forms for the third person singular pronoun: he (mas-
culine), she (feminine), and it (neuter). An example of gender inflection
of nouns from Latin is the endings -a for feminine and -us for masculine.
Examples: fili-us ‘son, male child’; fili-a ‘daughter, female child.” In some
languages, grammatical gender is closely correlated with the sex of the
person referred to as it is for these two Latin words (female — feminine,
male — masculine, neither — neuter), but in other languages gender is a
largely arbitrary grammatical category. An example linguists are fond of
is the German word for girl, Mddchen, which is neuter.

In some languages, nouns appear in different forms when they have
different functions (subject, object, etc.) in a sentence, and these forms
are called cases. For example, the Latin for ‘son’ is filius when the subject,
but filium when the object of a verb. Many languages have a rich array
of case inflections, with cases for locatives, instrumentals, etc. English
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has no real case inflections. The only case relationship that is systemati-
cally indicated is the genitive. The genitive describes the possessor. For
example, the phrase the woman’s house indicates that the woman owns
the house. The genitive is usually written ’s, but just as ’ after words
that end in s, which includes most plural nouns such as in the students’
grievances. Although ’s initially looks like a case inflection, it is actu-
ally what is termed a clitic, also known as a phrasal affix, because it can
appear not only attached to nouns, but after other words that modify a
noun, as in the person you met’s house was broken into.

Pronouns are a separate small class of words that act like variables
in that they refer to a person or thing that is somehow salient in the
discourse context. For example, the pronoun she in sentence (3.5) refers
to the most salient person (of feminine gender) in the context of use,
which is Mary.

After Mary arrived in the village, she looked for a bed-and-breakfast.

As well as distinguishing the number of their antecedent, they also
mark person (1st = speaker, 2nd = hearer, or 3rd = other discourse enti-
ties). They are the only words in English which appear in different forms
when they are used as the subject and the object of a sentence. We call
these forms the nominative or subject case and accusative or object case
personal pronouns, respectively. Pronouns also have special forms, pos-
sessive pronouns, for when they are a possessor, as in ny car, which we
can view as genitive case forms. Somewhat oddly, English pronouns have
another possessive form, often called the ‘second’ possessive personal
pronoun, used when the object of the preposition of describes the pos-
sessor: a friend of mine. Finally, there are reflexive pronouns, which are
used similarly to ordinary (personal) pronouns except that they always
refer to a nearby antecedent in the same sentence, normally the subject
of the sentence. For example, herself in sentence (3.6a) must refer to
Mary whereas her in sentence (3.6b) cannot refer to Mary (that is, Mary
saw a woman other than herself in the mirror).

a. Mary saw herself in the mirror.
b. Mary saw her in the mirror.

Reflexive pronouns (and certain other expressions like each other) are
often referred to as anaphors, and must refer to something very nearby
in the text. Personal pronouns also refer to previously discussed people
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Nominative Accusative Possessive 2nd Possessive Reflexive
Tag(s) PPS (3SG) PPO PP$ PPS$$ PPL

PPSS (158G,2SG,PL) (PPLS for prL)
1SG I me my mine myself
2SG you you your yours yourself
3SG MASC he him his his himself
3SG FEM she her her hers herself
3SG NEUT it it its its itself
1PL we us our ours ourselves
2PL you you your yours yourselves
3PL they them their theirs themselves

PROPER NAMES
ADVERBIAL NOUNS

Table 3.2 Pronoun forms in English. Second person forms do not distinguish
number, except in the reflexive, while third person singular forms distinguish
gender.

and things, but at a slightly greater distance. All the forms for pronouns,
and their Brown tags are summarized in table 3.2.

Brown tags. NN is the Brown tag for singular nouns (candy, woman).
The Brown tag set also distinguishes two special types of nouns, proper
nouns (or proper names), and adverbial nouns. Proper nouns are names
like Mary, Smith, or United States that refer to particular persons or
things. Proper nouns are usually capitalized. The tag for proper nouns is
NNP.! Adverbial nouns (tag NR) are nouns like home, west and tomorrow
that can be used without modifiers to give information about the circum-
stances of the event described, for example the time or the location. They
have a function similar to adverbs (see below). The tags mentioned so far
have the following plural equivalents: NNS (plural nouns), NNPS (plural
proper nouns), and NRS (plural adverbial nouns). Many also have posses-
sive or genitive extensions: NN§ (possessive singular nouns), NNS$ (pos-
sessive plural nouns), NNP$ (possessive singular proper nouns), NNPS$
(possessive plural proper nouns), and NR$ (possessive adverbial nouns).
The tags for pronouns are shown in table 3.2.

1. Actually, the Brown tag for proper nouns was NP, but we follow the Penn Treebank in
substituting NNP, so that NP can maintain its conventional meaning within linguistics of
a noun phrase (see below). We also follow the Penn Treebank in using a doubled N in the
related tags mentioned subsequently.
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Words that accompany nouns: Determiners and adjectives

Several other parts of speech most commonly appear accompanying
nouns. Determiners describe the particular reference of a noun. A sub-
type of determiners is articles. The article the indicates that we're talking
about someone or something that we already know about or can uniquely
determine. We say the tree if we have already made reference to the tree
or if the reference is clear from context such as when we are standing
next to a tree and it is clear we are referring to it. The article a (or an)
indicates that the person or thing we are talking about was not previously
mentioned. If we say a tree, then we are indicating that we have not men-
tioned this tree before and its identity cannot be inferred from context.
Other determiners include the demonstratives, such as this and that.

Adjectives are used to describe properties of nouns. Here are some
adjectives (in italics):

a red rose, this long journey, many intelligent children, a very trendy
magazine

Uses such as these modifying a noun are called attributive or adnominal.
Adjectives also have a predicative use as a complement of be:

The rose is red. The journey will be long.

Many languages mark distinctions of case, number, and gender on ar-
ticles and adjectives as well as nouns, and we then say that the article or
adjective agrees with the noun, that is, they have the same case, number,
and gender. In English, the morphological modifications of adjectives are
the derivational endings like -Iy which we covered earlier, and the for-
mation of comparative (richer, trendier), and superlative (richest, trendi-
est) forms. Only some, mainly shorter, adjectives form morphological
comparatives and superlatives by suffixing -er and -est. For the rest, pe-
riphrastic forms are used (more intelligent, most intelligent). Periphrastic
forms are formed with the auxiliary words, in this case more and most.
The basic form of the adjective (rich, trendy, intelligent) is called the posi-
tive when contrasted with comparative and superlative. Comparative and
superlative forms compare different degrees to which the property de-
scribed by the adjective applies to nouns. The following example should
be self-explanatory:

John is rich, Paul is richer, Mary is richest.
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Brown tags. The Brown tag for adjectives (in the positive form) is JJ,
for comparatives JJR, for superlatives JJT. There is a special tag, JJS,
for the ‘semantically’ superlative adjectives chief, main, and top. Num-
bers are subclasses of adjectives. The cardinals, such as one, two, and
6,000,000, have the tag CD. The ordinals, such as first, second, tenth, and
mid-twentieth have the tag OD.

The Brown tag for articles is AT. Singular determiners, like this, that,
have the tag DT; plural determiners (these, those) DTS; determiners that
can be singular or plural (some, any) DTI, and ‘double conjunction’ deter-
miners (either, neither) DTX.

Quantifiers are words that express ideas like ‘all,” ‘many,’ ‘some.” The
determiners some and any can function as quantifiers. Other parts of
speech that correspond to quantifiers have the tags ABN (pre-quantifier:
all, many) and PN (nominal pronoun: one, something, anything, some-
body). The tag for there when used to express existence at the beginning
of a sentence is EX.

A final group of words that occur with or instead of nouns are the in-
terrogative pronouns and determiners which are used for questions and
relative clauses. Their tags are WDT (wh-determiner: what, which), WP$
(possessive wh-pronoun: whose), WPO (objective wh-pronoun: whom,
which, that), and WPS (nominative wh-pronoun: who, which, that).

Verbs

Verbs are used to describe actions (She threw the stone), activities (She
walked along the river) and states (I have $50). A regular English verb
has the following morphological forms:

m the root or base form: walk

= the third singular present tense: walks

= the gerund and present participle: walking

= the past tense form and past/passive participle: walked

Most of these forms do duty in several functions. The base form is used
for the present tense.

I walk. You walk. We walk. You (guys) walk. They walk.

The third singular person has a different present tense form:
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She walks. He walks. It walks.

The base form is also used for the infinitive with to:
She likes to walk. She has to walk. To walk is fun.
and after modals and in the bare infinitive:

She shouldn’t walk. She helped me walk.

The -ing form is used for the progressive (indicating that an action is in
progress):

She is walking. She was walking. She will be walking.

and as the gerund, a derived form where the verb gains some or all of the
properties of nouns:

This is the most vigorous walking I've done in a long time. Walking is
fun.

The -ed form serves as past tense indicating an action that took place
in the past:

She walked.

It also functions as the past participle in the formation of present perfect:
She has walked.

and past perfect:

She had walked.

A number of verbs are irregular and have different forms for past tense
and past participle. Examples are drive and take:

a. She drove the car. She has never driven a car.
b. She took off on Monday. She had already taken off on Monday.

Just as nouns are commonly marked for features like number and
case, verbs are also commonly marked for certain features. Table 3.3
summarizes grammatical features that are commonly indicated on verbs
across languages. These features can be indicated either morphologically
(also called synthetically), as in the case of the English endings -s, -ing,
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Feature Category Instances

subject number  singular, plural
subject person first (I walk), second (you walk), third (she walks)

tense present tense, past tense, future tense

aspect progressive, perfect

mood/modality  possibility, subjunctive, irrealis

participles present participle (walking), past participle (walked)
voice active, passive, middle

Table 3.3 Features commonly marked on verbs.

and -ed), or by means of auxiliaries, words that accompany verbs in a
verb group (also called analytically). English uses the auxiliaries have,
be, and will (and others) to express aspect, mood, and some tense infor-
mation. The present and past perfect are formed with have as we saw
in sentences (3.17) and (3.18). The progressive is formed with be (3.14).
Forms that are built using auxiliaries, as opposed to direct inflection as
in the case of the English past tense, are referred to as periphrastic forms.

In English, there is a class of verbs with special properties: the modal
auxiliaries or modals. Modals lack some of the forms of ordinary verbs
(no infinitive, no progressive form), and always come first in the verb
group. They express modalities like possibility (may, can) or obligation
(should) as illustrated in the following examples:

a. With her abilities, she can do whatever she wants to.
b. He may or may not come to the meeting.
c. You should spend more time with your family.

In English, the formation of the future tense with the auxiliary will is in
all ways parallel to that of other modalities:

She will come. She will not come.

Brown tags. The Brown tag set uses VB for the base form (take), VBZ for
the third person singular (takes), VBD for the past tense (took), VBG for
gerund and present participle (taking), and VBN for the past participle
(taken). The tag for modal auxiliaries (can, may, must, could, might, ...)
is MD. Since be, have, and do are important in forming tenses and moods,
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the Brown tag set has separate tags for all forms of these verbs. We omit
them here, but they are listed in table 4.6.

Other parts of speech
Adverbs, prepositions, and particles

We have already encountered adverbs as an example of morphological
derivation. Adverbs modify a verb in the same way that adjectives modify
nouns. Adverbs specify place, time, manner or degree:

a. She often travels to Las Vegas.
b. She allegedly committed perjury.
c. She started her career off very impressively.

Some adverbs, such as often, are not derived from adjectives and lack the
suffix -Iy.

Some adverbs can also modify adjectives ((3.23a) and (3.23b)) and other
adverbs (3.23c¢).

a. a very unlikely event
b. a shockingly frank exchange
c. She started her career off very impressively.

Certain adverbs like very are specialized to the role of modifying ad-
jectives and adverbs and do not modify verbs. They are called degree
adverbs. Their distribution is thus quite distinct from other adverbs, and
they are sometimes regarded as a separate part of speech called quali-
fiers.

Prepositions are mainly small words that prototypically express spatial
relationships:

in the glass, on the table, over their heads, about an interesting idea,
concerning your recent invention

Most prepositions do double duty as particles. Particles are a subclass
of prepositions that can enter into strong bonds with verbs in the forma-
tion of so-called phrasal verbs. We can best think of a phrasal verb as
a separate lexical entry with syntactic and semantic properties different
from the verb it was formed from. Here are some examples:
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a. The plane took off at 8am.

b. Don’t give in to him.

c. It is time to take on new responsibilities.
d. He was put off by so much rudeness.

Sometimes these constructions can occur with the preposition separated
from the verb:

a. I didn’t want to take that responsibility on right now.
b. He put me off.

These phrasal verbs have particular meanings that are quite specialized,
and unpredictable from the verb and particle that make them up.

Sometimes we need to know the meaning of a sentence to be able to
distinguish particles and prepositions: up is a preposition in (3.27a) and
a particle in (3.27b). Note the meaning shift from the literal meaning of
running on an incline in (3.27a) to the figurative meaning of building up
a large bill in (3.27Db).

a. She ran up a hill.

b. She ran up a bill.

Brown tags. The tags for adverbs are RB (ordinary adverb: simply, late,
well, little), RBR (comparative adverb: later, better, less), RBT (superlative
adverb: latest, best, least), * (not), QL (qualifier: very, too, extremely), and
QLP (post-qualifier: enough, indeed). Two tags stand for parts of speech
that have both adverbial and interrogative functions: WQL (wh-qualifier:
how) and WRB (wh-adverb: how, when, where).

The Brown tag for prepositions is IN, while particles have the tag RP.

Conjunctions and complementizers

The remaining important word categories are coordinating and subordi-
nating conjunctions. Coordinating conjunctions ‘conjoin’ or coordinate
two words or phrases of (usually) the same category:

m husband and wife [nouns]
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= She bought or leased the car. [verbs]
= the green triangle and the blue square [noun phrases]
= She bought her car, but she also considered leasing it. [sentences]

One function of coordinating conjunctions is to link two sentences (or
clauses) as shown in the last example. This can also be done by subordi-
nating conjunctions. In the examples below, the subordinating conjunc-
tion is shown in italics.

a. She said that he would be late. [proposition]

b. She complained because he was late. [reason]

c. I'won't wait if he is late. [condition]

d. She thanked him although he was late. [concession]
e. She left before he arrived. [temporal]

Cases of subordinating conjunctions like that in (3.28a) or use of for
which introduce arguments of the verb are often alternatively regarded
as complementizers. The difference between coordination and subordi-
nation is that, as the terms suggest, coordination joins two sentences
as equals whereas subordination attaches a secondary sentence to a pri-
mary sentence. The secondary sentence often expresses a proposition,
a reason, a condition, a concession or a temporally related event.

Brown tags. The tag for conjunctions is CC. The tag for subordinating
conjunctions is CS.

Phrase Structure

Words do not occur in just any old order. Languages have constraints
on word order. But it is also the case that the words in a sentence are
not just strung together as a sequence of parts of speech, like beads on a
necklace. Instead, words are organized into phrases, groupings of words
that are clumped as a unit. Syntax is the study of the regularities and
constraints of word order and phrase structure.

One fundamental idea is that certain groupings of words behave as
constituents. Constituents can be detected by their being able to occur
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in various positions, and showing uniform syntactic possibilities for ex-
pansion. The examples in (3.29) and (3.30) show evidence from position-
ing and phrasal expansion for a constituent that groups nouns and their
modifiers:

®

I put the bagels in the freezer.

b. The bagels, I put in the freezer.

c. I putin the fridge the bagels (that John had given me)
( She ) ( him
the woman the man
the tall woman the short man
the very tall woman [ SaW the very short man -
the tall woman with sad eyes the short man with red hair

This is the notion of a paradigmatic relationship in Saussurean linguis-
tics. All elements that can be replaced for each other in a certain syntactic
position (like the noun phrase constituent above) are members of one
paradigm. In contrast, two words bear a syntagmatic relationship if they
can form a phrase (or syntagma) like sewed clothes or sewed a dress. An
important class of syntagmatically related words are collocations (chap-
ter 5).

In this section we will briefly mention some of the major phrase types,
and then introduce techniques linguists use to model phrase structure.
The upshot will be to suggest that English sentences typically have an
overall phrase structure that looks as follows:

S

/\
NP VP

] T

That man  VBD NP PP

caught the butterfly IN NP

|

with a net

A whole sentence is given the category S. A sentence normally rewrites

as a subject noun phrase and a verb phrase.
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Noun phrases. A nounis usually embedded in a noun phrase (NP), a syn-
tactic unit of the sentence in which information about the noun is gath-
ered. The noun is the head of the noun phrase, the central constituent
that determines the syntactic character of the phrase. Noun phrases are
usually the arguments of verbs, the participants in the action, activity
or state described by the verb. Noun phrases normally consist of an op-
tional determiner, zero or more adjective phrases, a noun head, and then
perhaps some post-modifiers, such as prepositional phrases or clausal
modifiers, with the constituents appearing in that order. Clausal mod-
ifiers of nouns are referred to as relative clauses. Here is a large noun
phrase that indicates many of these possibilities:

The homeless old man in the park that I tried to help yesterday

Prepositional phrases. Prepositional phrases (PPs) are headed by a
preposition and contain a noun phrase complement. They can appear
within all the other major phrase types. They are particularly common
in noun phrases and verb phrases where they usually express spatial and
temporal locations and other attributes.

Verb phrases. Analogous to the way nouns head noun phrases, the verb
is the head of the verb phrase (VP). In general, the verb phrase organizes
all elements of the sentence that depend syntactically on the verb (ex-
cept that in most syntactic theories the verb phrase does not contain the
subject noun phrase). Some examples of verb phrases appear in (3.33):

a. Getting to school on time was a struggle.
b. He was trying to keep his temper.

c. That woman quickly showed me the way to hide.

Adjective phrases. Complex adjective phrases (APs) are less common,
but encompass examples like the phrases shown in bold in these sen-
tences: She is very sure of herself; He seemed a man who was quite
certain to succeed.
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Phrase structure grammars

A syntactic analysis of a sentence tells us how to determine the meaning
of the sentence from the meaning of the words. For example, it will tell us
who does what to whom in the event described in a sentence. Compare:

Mary gave Peter a book.
Peter gave Mary a book.

Sentences (3.34) and (3.35) use the same words, but have different mean-
ings. In the first sentence, the book is transferred from Mary to Peter, in
the second from Peter to Mary. It is the word order that allows us to infer
who did what to whom.

Some languages like Latin or Russian permit many different ways of
ordering the words in a sentence without a change in meaning, and in-
stead use case markings to indicate who did what to whom. This type of
language is called a free word order language, meaning that word order
isn’t used to indicate who the doer is - word order is then usually used
mainly to indicate discourse structure. Other languages such as English
are more restrictive in the extent to which words can move around in a
sentence. In English, the basic word order is Subject - Verb - Object:

The children (subject) should (auxiliary verb) eat spinach (object).

In general, this order is modified only to express particular ‘mood’ cat-
egories. In interrogatives (or questions), the subject and first auxiliary
verb are inverted:

Should (auxiliary verb) the children (subject) eat spinach (object)?

If the statement would involve no auxiliary, a form of do appears in the
initial position (Did he cry?). In imperatives (commands or requests),
there is no subject (it is inferred to be the person who is addressed):

Eat spinach!

Basic sentences are called declaratives when contrasted with interroga-
tives and imperatives.

The regularities of word order are often captured by means of rewrite
rules. A rewrite rule has the form ‘category — category*’ and states that
the symbol on the left side can be rewritten as the sequence of symbols
on the right side. To produce a sentence of the language, we start with
the start symbol ‘S’ (for sentence). Here is a simple set of rewrite rules:
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S — NP VP AT —  the
AT NNS children
NP - AT NN NNS - students
NP PP mountains
VP PP slept
VP - VBD VBD - ate
VBD NP saw
P —~ INNP N - {m }
of

NN —  cake

The rules on the righthand side rewrite one of the syntactic categories
(or part of speech symbols) introduced in the previous sections into a
word of the corresponding category. This part of the grammar is often
separated off as the lexicon. The nature of these rules is that a certain
syntactic category can be rewritten as one or more other syntactic cat-
egories or words. The possibilities for rewriting depend solely on the
category, and not on any surrounding context, so such phrase structure
grammars are commonly referred to as context-free grammars.

With these rules, we can derive sentences. Derivations (3.40) and (3.41)
are two simple examples.

S

— NP VP

— AT NNS VBD

— The children slept

S

— NP VP

— AT NNS VBD NP

— AT NNS VBD AT NN

— The children ate the cake

The more intuitive way to represent phrase structure is as a tree. We refer
to the leaf nodes of the tree as terminal nodes and to internal nodes as
nonterminal nodes. In such a tree each nonterminal node and its immedi-
ate daughters, otherwise known as a local tree corresponds to the appli-
cation of a rewrite rule. The order of daughters generates the word order
of the sentence, and the tree has a single root node, which is the start
symbol of the grammar. Trees (3.42) and (3.43) correspond to deriva-
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tions (3.40) and (3.41). Each node in the tree shows something that we
are hypothesising to be a constituent.

S

/\
NP VP

T |
AT NNS  VBD

\ \ \
The children slept

S

/\
NP VP

/\ /\
AT NNS  VBD NP

\ \ \ PN
The children ate AT NN

the cake

A third and final way to show constituency is via a (labeled) bracketing.
Sets of brackets delimit constituents and may be labeled to show the
category of the nonterminal nodes. The labeled bracketing for (3.43) is
(3.44):

[s [np [aTThe] [Nnschildren]] [vplvep atel [Np [aT the] [Nncakelll]

A property of most formalizations of natural language syntax in terms
of rewrite rules is recursivity: the fact that there are constellations in
which rewrite rules can be applied an arbitrary number of times. In our
example grammar, a PP contains an NP which can in turn contain an-
other PP. Thus we can get recursive expansions as in the example in
figure 3.1. Here, the sequence of prepositional phrases is generated by
multiple application of the rewrite rule cycle “NP — NP PP; PP — IN NP.”
The derivation applies the cycle twice, but we could apply it three, four,
or a hundred times.

Recursivity makes it possible for a single nonterminal symbol like VP or
NP to be expanded to a large number of words. (For example, in figure 3.1
the symbol VP is expanded to nine words: ate the cake of the children in
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S
/\
NP VP
N o T
DT NNS VBD NP
\ \ \ — T
the students ate NP PP
PN _— T
DT NN IN NP
\ \ \ — T
the cake of NP PP
N T
DT NN IN NP
\ \ | T
the children in DT NN

the mountains

Figure 3.1 An example of recursive phrase structure expansion.

the mountains.) One consequence is that two words that were gener-
ated by a common rewrite rule and are syntactically linked can become
separated by intervening words as the derivation of a sentence proceeds.
These types of phenomena are called non-local dependencies because two
words can be syntactically dependent even though they occur far apart
in a sentence.

One example of a dependency that can be non-local is subject-verb
agreement, the fact that the subject and verb of a sentence agree in num-
ber and person. We have She walks, He walks, It walks versus I walk, You
walk, We walk, They walk. That is, the verb has the ending -s indicating
third person singular if and only if the subject is in the third person sin-
gular. Subject and verb agree even if other words and phrases intervene
as in the following example.

The women who found the wallet were given a reward.

If we looked only at immediate neighbors it would seem that we would
have to say the wallet was. Only a complete syntactic analysis of the
sentence reveals that The women is the subject and the form of to be has
to be in the plural.
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Another important case of non-local dependencies is the class known
as long-distance dependencies, such as wh-extraction.> The name is based
on the theory that phrases such as which book in (3.46b) are moved (or
extracted) from an underlying position (after the verb as in (3.46a)) to
their “surface” position (the beginning of the sentence as in (3.46b)).

a. Should Peter buy a book?
b. Which book should Peter buy?

Without making any commitment to such a movement theory, it is clear
that we have to recognize a long distance dependency between buy and
which book. Otherwise we would not be able to tell that book is an argu-
ment of buy.

v Non-local phenomena are a challenge for some Statistical NLP approa-
ches like n-grams that model local dependencies. An n-gram model
would predict that the word after wallet in (3.45) is was, not were. These
issues are further discussed at the beginning of chapter 11.

A final feature of many versions of phrase structure grammar is empty
nodes. Empty nodes occur when a nonterminal may be rewritten as noth-
ing. For example, noting that one can also say Eat the cake! without a
subject NP, one might suggest adding a rule NP — &. An NP nonterminal
is then allowed to be rewritten as nothing. This is often represented by
putting a @ or an e under the node in the tree. Using this notation, the
tree in (3.46b) could be given the structure in (3.47):

g
/\
NP S’

T T
Which book  MD S

‘ /\
should NP VP

N
Peter VB NP

\ \
buy e

2. In the speech literature, the term ‘long-distance dependencies’ regularly refers to any-
thing beyond the range of a trigram model. We have termed such effects ‘non-local depen-
dencies,” and have reserved the term ‘long-distance dependencies’ for its usual linguistic
meaning of a dependency that appears to be able to cross any number of nodes in a
phrase structure tree.
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The simple model of phrase structure that we have developed here
adopts a context-free view of language. For example, once we have ex-
panded ‘VP’ to ‘VBD NP’ and then to ‘sewed NP,’ we can replace NP with
whatever noun phrase we please. The context provided by the verb sewed
is inaccessible when we decide how to expand NP. This inaccessibility of
context is the key property of a context-free grammar. We could expand
VP to a natural phrase like sewed clothes, but we can as easily choose a
nonsensical expansion like sewed wood blocks.

v How to include necessary dependencies is a central topic in probabilis-
tic parsing, which we discuss in chapter 12.

Dependency: Arguments and adjuncts

Another important organizing notion is the concept of dependents. In a
sentence like:

Sue watched the man at the next table.

Sue and the man are dependents of a watching event. We will say that
they are the two arguments of the verb watch. The PP at the next table is
a dependent of man. It modifies man.

Most commonly, noun phrases are arguments of verbs. The arguments
of verbs can be described at various levels. One can classify the argu-
ments via semantic roles. The agent of an action is the person or thing
that is doing something, the patient is the person or thing that is having
something done to it, and other roles like instrument and goal describe
yet other classes of semantic relationships. Alternatively, one can de-
scribe the syntactic possibilities for arguments in terms of grammatical
relations. All English verbs take a subject, which is the noun phrase that
appears before the verb. Many verbs take an object noun phrase, which
normally appears immediately after the verb. Pronouns are in the sub-
ject case when they are subjects of a verb, and in the object case when
they are objects of a verb. In our earlier example, here repeated as sen-
tence (3.49), children is the subject of eat (the children are the agents
of the action of eating), and sweet candy is the object of eat (the sweet
candy is the thing being acted upon, the patient of the action):

Children eat sweet candy.
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Note that the morphological form of candy does not change. In English,
pronouns are the only nouns that change their forms when used in the
object case.

Some verbs take two object noun phrases after the verb, both in the
object case:

She gave him the book.

In this sentence, him is the indirect object (describing the recipient, the
one who indirectly gets something) and the book is the direct object (de-
scribing the patient). Other such verbs are verbs of sending and verbs of
communication:

a. She sent her mother the book.
b. She emailed him the letter.

Such verbs often allow an alternate expression of their arguments where
the recipient appears in a prepositional phrase:

She sent the book to her mother.

Languages with case markings normally distinguish these NPs and ex-
press patients in the accusative case and recipients in the dative case.

There are systematic associations between semantic roles and gram-
matical functions, for example agents are usually subjects, but there are
also some dissociations. In Bill received a package from the mailman, it
is the mailman who appears to be the agent. The relationships between
semantic roles and grammatical functions are also changed by voice al-
ternations (the one feature in table 3.3 which we did not discuss earlier).
Many language make a distinction between active voice and passive voice
(or simply active and passive). Active corresponds to the default way of
expressing the arguments of a verb: the agent is expressed as the subject,
the patient as the object:

Children eat sweet candy.

In the passive, the patient becomes the subject, and the agent is demoted
to an oblique role. In English this means that the order of the two argu-
ments is reversed, and the agent is expressed by means of a prepositional
by-phrase. The passive is formed with the auxiliary be and the past par-
ticiple:
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Candy is eaten by children.

In other languages, the passive alternation might just involve changes in
case marking, and some morphology on the verb.

Subcategorization

As we have seen, different verbs differ in the number of entities (persons,
animals, things) that they relate. One such difference is the contrast be-
tween transitive and intransitive verbs. Transitive verbs have a (direct)
object, intransitive verbs don't:

a. She brought a bottle of whiskey.
b. She walked (along the river).

In sentence (3.55a), a bottle of whiskey is the object of brought. We cannot
use the verb bring without an object: we cannot say She brought. The
verb walk is an example of an intransitive verb. There is no object in
sentence (3.55). There is, however, a prepositional phrase expressing the
location of the activity.

Syntacticians try to classify the dependents of verbs. The first distinc-
tion they make is between arguments and adjuncts. The subject, object,
and direct object are arguments. In general, arguments express entities
that are centrally involved in the activity of the verb. Most arguments are
expressed as NPs, but they may be expressed as PPs, VPs, or as clauses:

a. We deprived him of food.
b. John knows that he is losing.

Arguments are divided into the subject, and all non-subject arguments
which are collectively referred to as complements.

Adjuncts are phrases that have a less tight link to the verb. Adjuncts
are always optional whereas many complements are obligatory (for ex-
ample, the object of bring is obligatory). Adjuncts can also move around
more easily than complements. Prototypical examples of adjuncts are
phrases that tell us the time, place, or manner of the action or state that
the verb describes as in the following examples:

a. She saw a Woody Allen movie yesterday.

b. She saw a Woody Allen movie in Paris.
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c. She saw the Woody Allen movie with great interest.
d. She saw a Woody Allen movie with a couple of friends.

Subordinate clauses (sentences within a sentence) can also be either
adjuncts or subcategorized arguments, and can express a variety of rela-
tionships to the verb. In the examples we saw earlier in (3.28), (a) involves
an argument clause, while the rest are adjuncts.

Sometimes, it’s difficult to distinguish adjuncts and complements. The
prepositional phrase on the table is a complement in the first sentence
(it is subcategorized for by put and cannot be omitted), an adjunct in the
second (it is optional):

She put the book on the table.
He gave his presentation on the stage.

The traditional argument/adjunct distinction is really a reflection of the
categorical basis of traditional linguistics. In many cases, such as the
following, one seems to find an intermediate degree of selection:

a. I straightened the nail with a hammer.
b. He will retire in Florida.

It is not clear whether the PPs in italics should be regarded as being cen-
trally involved in the event described by the verb or not. Within a Sta-
tistical NLP approach, it probably makes sense to talk instead about the
degree of association between a verb and a dependent.

We refer to the classification of verbs according to the types of com-
plements they permit as subcategorization. We say that a verb subcate-
gorizes for a particular complement. For example, bring subcategorizes
for an object. Here is a list of subcategorized arguments with example
sentences.

m Subject. The children eat candy.

Object. The children eat candy.

Prepositional phrase. She put the book on the table.

Predicative adjective. We made the man angry.

Bare infinitive. She helped me walk.
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m Infinitive with to. She likes to walk.
m Participial phrase. She stopped singing that tune eventually.

m  That-clause. She thinks that it will rain tomorrow. The that can usu-
ally be omitted: She thinks it will rain tomorrow.

= Question-form clauses. She is wondering why it is raining in August.
She asked me what book I was reading.

While most of these complements are phrasal units that we have already
seen, such as NPs and APs, the final entries are not, in that they are a
unit bigger than an S. The clause why it is raining in August consists of a
whole sentence it is raining in August plus an additional constituent out
front. Such a “large clause” is referred to as an S’ (pronounced “S Bar”)
constituent. Relative clauses and main clause questions are also analyzed
as S’ constituents.

Often verbs have several possible patterns of arguments. A particular
set of arguments that a verb can appear with is referred to as a subcatego-
rization frame. Here are some subcategorization frames that are common
in English.

= Intransitive verb. NP[subject]. The woman walked.
= Transitive verb. NP[subject], NP[object]. John loves Mary.

= Ditransitive verb. NP[subject], NP[direct object], NP[indirect object].
Mary gave Peter flowers.

= Intransitive with PP. NP[subject], PP. I rent in Paddington.

= Transitive with PP. NP[subject], NP[object], PP. She put the book on the
table.

= Sentential complement. NP[subject], clause. I know (that) she likes
you.

= Transitive with sentential complement. NP[subjl, NP[objl, clause. She
told me that Gary is coming on Tuesday.

Subcategorization frames capture syntactic regularities about comple-
ments. There are also semantic regularities which are called selectional
restrictions or selectional preferences. For example, the verb bark prefers
dogs as subjects. The verb eat prefers edible things as objects:
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The Chihuahua barked all night.
I eat vegetables every day.

Sentences that violate selectional preferences sound odd:
a. The cat barked all night.
b. I eat philosophy every day.

v Selectional preferences are further discussed in section 8.4.

X’ theory

Phrase structure rules as presented above do not predict any systematic-
ity in the way that phrases in natural languages are made, nor any reg-
ularities for the appearance of different kinds of dependents in clauses.
However, modern syntax has stressed that there are a lot of such regu-
larities. An important idea is that a word will be the head of a phrase.
The reason why we talk about noun phrases and prepositional phrases
is because they are a constituent consisting of a noun or preposition re-
spectively, and all their dependents. The noun or preposition heads the
phrase.3 Linguists have further argued that there is a broad systematicity
in the way dependents arrange themselves around a head in a phrase. A
head forms a small constituent with its complements. This constituent
can be modified by adjuncts to form a bigger constituent, and finally this
constituent can combine with a specifier, a subject or something like a
determiner to form a maximal phrase. An example of the general picture
is shown in (3.64):

NP
/\
Det N’
\ T
the AP N’
A /\
definitive N PP

study of subcategorization

3. Recall, however, that verb phrases, as normally described, are slightly anomalous, since
they include all the complements of the verb, but not the subject.
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The intermediate constituents are referred to as N’ nodes (pronounced
“N bar nodes”). This is basically a two bar level theory (where we think
of XP as X’), but is complicated by the fact that recursive adjunction of
modifiers is allowed at the N’ level to express that a noun can have any
number of adjectival phrase modifiers. Sometimes people use theories
with more or fewer bar levels.

The final step of the argument is that while there may be differences
in word order, this general pattern of constituency is repeated across
phrase types. This idea is referred to as X' theory, where the X is taken
to represent a variable across lexical categories.

Phrase structure ambiguity

So far we have used rewrite rules to generate sentences. It is more com-
mon to use them in parsing, the process of reconstructing the deriva-
tion(s) or phrase structure tree(s) that give rise to a particular sequence
of words. We call a phrase structure tree that is constructed from a sen-
tence a parse. For example, the tree in (3.43) is a parse of sentence (3.41).

In most cases, there are many different phrase structure trees that
could all have given rise to a particular sequence of words. A parser
based on a comprehensive grammar of English will usually find hundreds
of parses for a sentence. This phenomenon is called phrase structure
ambiguity or syntactic ambiguity. We saw an example of a syntactically
ambiguous sentence in the introduction, example (1.10): Our company
is training workers. One type of syntactic ambiguity that is particularly
frequent is attachment ambiguity .

Attachment ambiguities occur with phrases that could have been gen-
erated by two different nodes. For example, according to the grammar
in (3.39), there are two ways to generate the prepositional phrase with a
spoon in sentence (3.65):

The children ate the cake with a spoon.

It can be generated as a child of a verb phrase, as in the parse tree shown
in figure 3.2 (a), or as a child of one of the noun phrases, as in the parse
tree shown in figure 3.2 (b).

Different attachments have different meanings. The ‘high’ attachment
to the verb phrase makes a statement about the instrument that the chil-
dren used while eating the cake. The ‘low’ attachment to the noun phrase
tells us which cake was eaten (the cake with a spoon, and not, say, the
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() S
/\
NP VP
A /\
AT NNS VP PP
\ \ T T
The children VBD NP IN NP
\ N \ N
ate AT NN with AT NN
\ \ \ \
the cake a spoon
(b) S
/\
NP VP
/\ /\
AT NNS VBD NP
\ \ \ T
The children ate NP PP
/\ A
AT NN IN NP
\ \ \ N

the cake with AT NN
\ \

a spoon

Figure 3.2 An example of a prepositional phrase attachment ambiguity.

cake with icing). So resolving attachment ambiguities can be important
for finding the correct semantic interpretation.

A much-studied subclass of syntactic ambiguity is the phenomenon
of garden pathing. A garden path sentence leads you along a path that
suddenly turns out not to work. For example, there might turn out to be
additional words in the sentence that do not seem to belong there:

The horse raced past the barn fell.

Sentence (3.66) from (Bever 1970) is probably the most famous example
of a garden path sentence. By the time most people get to the word barn,
they have constructed a parse that roughly corresponds to the meaning
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‘The horse ran past the barn.” But then there is an additional word fell
that cannot be incrementally added to this parse. We have to backtrack
to raced and construct a completely different parse, corresponding to
the meaning The horse fell after it had been raced past the barn. Garden
pathing is the phenomenon of first being tricked into adopting a spurious
parse and then having to backtrack to try to construct the right parse.

Garden-path sentences are rarely a problem in spoken language. Se-
mantic preferences, the generosity of speakers in following communica-
tive maxims, and intonational patterns all usually prevent us from garden
pathing (MacDonald et al. 1994; Tanenhaus and Trueswell 1995). We can
see this in sentence (3.66) where an intonational break between horse and
raced would tip the hearer off that raced introduces a reduced relative
clause, not the verb of the main clause. However, garden-pathing can be
a real problem when reading complex sentences of written English.

We have seen examples of sentences with more than one parse due
to syntactic ambiguity. Most sentences are of this type. But it is also
possible that a sentence will have no parse at all. The reason could be that
a rule was used in the generation of the sentence that is not covered by
the grammar. The other possibility is that the sentence is ungrammatical
or not syntactically well-formed. Here is an example of an ungrammatical
sentence.

*Slept children the.

It is important to distinguish ungrammaticality from semantic abnormal-
ity. Sentences like the following are odd, but they are jarring because
their semantic interpretation is incoherent whereas (3.67) does not have
an interpretation at all.

a. Colorless green ideas sleep furiously.
b. The cat barked.

People often use a hash mark (#) to indicate semantic, pragmatic, or cul-
tural oddness, as opposed to the marks we introduced earlier for syntac-
tic illformedness.

Semantics and Pragmatics

Semantics is the study of the meaning of words, constructions, and utter-
ances. We can divide semantics into two parts, the study of the meaning
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of individual words (or lexical semantics) and the study of how meanings
of individual words are combined into the meaning of sentences (or even
larger units).

One way to approach lexical semantics is to study how word meanings
are related to each other. We can organize words into a lexical hierarchy,
as is the case, for example, in WordNet, which defines hypernymy and
hyponymy. A hypernym or hyperonym®* is a word with a more general
sense, for example, animal is a hypernym of cat. A hyponym is a word
with a more specialized meaning: cat is a hyponym of animal. (In general,
if w! is a hypernym of w2, then w? is a hyponym of wl.) Antonyms are
words with opposite meanings: hot and cold or long and short. The part-
whole relationship is called meronyny. The word tire is a meronym of
car and leaf is a meronym of tree. The whole corresponding to a part is
called a holonym.

Synonyms are words with the same meaning (or very similar meaning):
car and automobile are synonyms. Homonyms are words that are written
the same way, but are (historically or conceptually) really two different
words with different meanings which seem unrelated. Examples are suit
(‘lawsuit’ and ‘set of garments’) and bank (‘river bank’ and ‘financial insti-
tution’). If a word’s meanings (or senses) are related, we call it a polyseme.
The word branch is polysemous because its senses (‘natural subdivision
of a plant’ and ‘a separate but dependent part of a central organization’)
are related. Lexical ambiguity can refer to both homonymy and polysemy.
The subcase of homonymy where the two words are not only written the
same way, but also have identical pronunciation, is called homophony. So
the words bass for a species of fish and bass for a low-pitched sound are
homonyms, but they are not homophones.

v Disambiguating word senses is the topic of chapter 7.

Once we have the meanings of individual words, we need to assemble
them into the meaning of the whole sentence. That is a hard problem
because natural language often does not obey the principle of composi-
tionality by which the meaning of the whole can be strictly predicted from
the meaning of the parts. The word white refers to very different colors
in the following expressions:

white paper, white hair, white skin, white wine
White hair is grey, a white skin really has a rosy color, and white wine

4. The latter is prescriptively correct. The former is more commonly used.
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is actually yellow (but yellow wine doesn’t sound very appealing). The
groupings white hair, white skin, and white wine are examples of colloca-
tions. The meaning of the whole is the sum of the meanings of the part
plus some additional semantic component that cannot be predicted from
the parts.

v Collocations are the topic of chapter 5.

If the relationship between the meaning of the words and the meaning
of the phrase is completely opaque, we call the phrase an idiom. For ex-
ample, the idiom to kick the bucket describes a process, dying, that has
nothing to do with kicking and buckets. We may be able to explain the
historical origin of the idiom, but in today’s language it is completely
non-compositional. Another example is the noun-noun compound car-
riage return for the character that marks the end of a line. Most younger
speakers are not aware of its original meaning: returning the carriage of
a typewriter to its position on the left margin of the page when starting
a new line.

There are many other important problems in assembling the meanings
of larger units, which we will not discuss in detail here. One example
is the problem of scope. Quantifiers and operators have a scope which
extends over one or more phrases or clauses. In the following sentence,
we can either interpret the quantifier everyone as having scope over the
negative not (meaning that not one person went to the movie), or we can
interpret the negation as having scope over the quantifier (meaning that
at least one person didn’t go to the movie):

Everyone didn’t go to the movie.

In order to derive a correct representation of the meaning of the sentence,
we need to determine which interpretation is correct in context.

The next larger unit to consider after words and sentences is a dis-
course. Studies of discourse seek to elucidate the covert relationships
between sentences in a text. In a narrative discourse, one can seek to
describe whether a following sentence is an example, an elaboration, a
restatement, etc. In a conversation one wants to model the relationship
between turns and the kinds of speech acts involved (questions, state-
ments, requests, acknowledgments, etc.). A central problem in discourse
analysis is the resolution of anaphoric relations.

a. Mary helped Peter get out of the cab. He thanked her.
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b. Mary helped the other passenger out of the cab. The man had asked
her to help him because of his foot injury.

Anaphoric relations hold between noun phrases that refer to the same
person or thing. The noun phrases Peter and He in sentence (3.71a) and
the other passenger and The man in sentence (3.71b) refer to the same
person. The resolution of anaphoric relations is important for informa-
tion extraction. In information extraction, we are scanning a text for a
specific type of event such as natural disasters, terrorist attacks or cor-
porate acquisitions. The task is to identify the participants in the event
and other information typical of such an event (for example the purchase
price in a corporate merger). To do this task well, the correct identi-
fication of anaphoric relations is crucial in order to keep track of the
participants.

Hurricane Hugo destroyed 20,000 Florida homes. At an estimated cost
of one billion dollars, the disaster has been the most costly in the state’s
history.

If we identify Hurricane Hugo and the disaster as referring to the same
entity in mini-discourse (3.72), we will be able to give Hugo as an an-
swer to the question: Which hurricanes caused more than a billion dollars
worth of damage?

Discourse analysis is part of pragmatics, the study of how knowledge
about the world and language conventions interact with literal meaning.
Anaphoric relations are a pragmatic phenomenon since they are con-
strained by world knowledge. For example, for resolving the relations
in discourse (3.72), it is necessary to know that hurricanes are disasters.
Most areas of pragmatics have not received much attention in Statistical
NLP, both because it is hard to model the complexity of world knowledge
with statistical means and due to the lack of training data. Two areas that
are beginning to receive more attention are the resolution of anaphoric
relations and the modeling of speech acts in dialogues.

Other Areas

Linguistics is traditionally subdivided into phonetics, phonology, mor-
phology, syntax, semantics, and pragmatics. Phonetics is the study of the
physical sounds of language, phenomena like consonants, vowels and in-
tonation. The subject of phonology is the structure of the sound systems
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in languages. Phonetics and phonology are important for speech recogni-
tion and speech synthesis, but since we do not cover speech, we will not
cover them in this book. We will introduce the small number of phonetic
and phonological concepts we need wherever we first refer to them.

In addition to areas of study that deal with different levels of language,
there are also subfields of linguistics that look at particular aspects of
language. Sociolinguistics studies the interactions of social organization
and language. The change of languages over time is the subject of histori-
cal linguistics. Linguistic typology looks at how languages make different
use of the inventory of linguistic devices and how they can be classified
into groups based on the way they use these devices. Language acquisi-
tion investigates how children learn language. Psycholinguistics focuses
on issues of real-time production and perception of language and on
the way language is represented in the brain. Many of these areas hold
rich possibilities for making use of quantitative methods. Mathematical
linguistics is usually used to refer to approaches using non-quantitative
mathematical methods.

Further Reading

In-depth overview articles of a large number of the subfields of linguistics
can be found in (Newmeyer 1988). In many of these areas, the influence
of Statistical NLP can now be felt, be it in the widespread use of corpora,
or in the adoption of quantitative methods from Statistical NLP.

De Saussure 1962 is a landmark work in structuralist linguistics. An
excellent in-depth overview of the field of linguistics for non-linguists is
provided by the Cambridge Encyclopedia of Language (Crystal 1987). See
also (Pinker 1994) for a recent popular book. Marchand (1969) presents
an extremely thorough study of the possibilities for word derivation in
English. Quirk et al. (1985) provide a comprehensive grammar of English.
Finally, a good work of reference for looking up syntactic (and many mor-
phological and semantic) terms is (Trask 1993).

Good introductions to speech recognition and speech synthesis are:
(Waibel and Lee 1990; Rabiner and Juang 1993; Jelinek 1997).
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Exercises

Exercise 3.1 [*]
What are the parts of speech of the words in the following paragraph?

The lemon is an essential cooking ingredient. Its sharply fragrant juice and
tangy rind is added to sweet and savory dishes in every cuisine. This enchanting
book, written by cookbook author John Smith, offers a wonderful array of recipes
celebrating this internationally popular, intensely flavored fruit.

Exercise 3.2 [*]

Think of five examples of noun-noun compounds.

Exercise 3.3 [*]
Identify subject, direct object and indirect object in the following sentence.

He baked her an apple pie.

Exercise 3.4 [*]

What is the difference in meaning between the following two sentences?

a. Mary defended her.
b. Mary defended herself.

Exercise 3.5 [*]
What is the standard word order in the English sentence (a) for declaratives,
(b) for imperatives, (c) for interrogatives?

Exercise 3.6 [*]
What are the comparative and superlative forms for the following adjectives and
adverbs?

good, well, effective, big, curious, bad

Exercise 3.7 [*]

Give base form, third singular present tense form, past tense, past participle,
and present participle for the following verbs.

throw, do, laugh, change, carry, bring, dream

Exercise 3.8 [*]

Transform the following sentences into the passive voice.

a. Mary carried the suitcase up the stairs.

b. Mary gave John the suitcase.
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Exercise 3.9 [*]
What is the difference between a preposition and a particle? What grammatical
function does in have in the following sentences?

a. Mary lives in London.

b. When did Mary move in?

c. She puts in a lot of hours at work.

d. She put the document in the wrong folder.

Exercise 3.10 [*]
Give three examples each of transitive verbs and intransitive verbs.

Exercise 3.11 [*]
What is the difference between a complement and an adjunct? Are the itali-
cized phrases in the following sentences complements or adjuncts? What type
of complements or adjuncts?

She goes to Church on Sundays.

She went to London.

Peter relies on Mary for help with his homework.

The book is lying on the table.

She watched him with a telescope.

P o o

Exercise 3.12 [*]

The italicized phrases in the following sentences are examples of attachment
ambiguity. What are the two possible interpretations?

Mary saw the man with the telescope.
The company experienced growth in classified advertising and preprinted inserts.

Exercise 3.13 [*]
Are the following phrases compositional or non-compositional?

to beat around the bush, to eat an orange, to kick butt, to twist somebody’s
arm, help desk, computer program, desktop publishing, book publishing, the
publishing industry

Exercise 3.14 [*]
Are phrasal verbs compositional or non-compositional?

Exercise 3.15 [*]

In the following sentence, either a few actors or everybody can take wide scope
over the sentence. What is the difference in meaning?

A few actors are liked by everybody.






Corpus-Based Work

THIS CHAPTER begins with some brief advice on getting set up to do
corpus-based work. The main requirements for Statistical NLP work are
computers, corpora, and software. Many of the details of computers and
corpora are subject to rapid change, and so it does not make sense to
dwell on these. Moreover, in many cases, one will have to make do with
the computers and corpora at one’s local establishment, even if they are
not in all respects ideal. Regarding software, this book does not attempt
to teach programming skills as it goes, but assumes that a reader inter-
ested in implementing any of the algorithms described herein can already
program in some programming language. Nevertheless, we provide in
this section a few pointers to languages and tools that may be generally
useful.

After that the chapter covers a number of interesting issues concerning
the formats and problems one encounters when dealing with ‘raw data’ -
plain text in some electronic form. A very important, if often neglected,
issue is the low-level processing which is done to the text before the real
work of the research project begins. As we will see, there are a number of
difficult issues in determining what is a word and what is a sentence. In
practice these decisions are generally made by imperfect heuristic meth-
ods, and it is thus important to remember that the inaccuracies of these
methods affect all subsequent results.

Finally the chapter turns to marked up data, where some process -
often a human being - has added explicit markup to the text to indicate
something of the structure and semantics of the document. This is often
helpful, but raises its own questions about the kind and content of the
markup used. We introduce the rudiments of SGML markup (and thus
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also XML) and then turn to substantive issues such as the choice of tag
sets used in corpora marked up for part of speech.

Getting Set Up

Computers

Text corpora are usually big. It takes quite a lot of computational re-
sources to deal with large amounts of text. In the early days of comput-
ing, this was the major limitation on the use of corpora. For example in
the earliest years of work on constructing the Brown corpus (the 1960s),
just sorting all the words in the corpus to produce a word list would take
17 hours of (dedicated) processing time. This was because the computer
(an IBM 7070) had the equivalent of only about 40 kilobytes of memory,
and so the sort algorithm had to store the data being sorted on tape
drives. Today one can sort this amount of data within minutes on even a
modest computer.

As well as needing plenty of space to store corpora, Statistical NLP
methods often consist of a step of collecting a large number of counts
from corpora, which one would like to access speedily. This means that
one wants a computer with lots of hard disk space, and lots of memory.
In a rapidly changing world, it does not make much sense to be more pre-
cise than this about the hardware one needs. Fortunately, all the change
is in a good direction, and often all that one will need is a decent personal
computer with its RAM cheaply expanded (whereas even a few years ago,
a substantial sum of money was needed to get a suitably fast computer
with sufficient memory and hard disk space).

Corpora

A selection of some of the main organizations that distribute text cor-
pora for linguistic purposes are shown in table 4.1. Most of these orga-
nizations charge moderate sums of money for corpora.! If your budget
does not extend to this, there are now numerous sources of free text,
ranging from email and web pages, to the many books and (maga)zines

1. Prices vary enormously, but are normally in the range of US$100-2000 per CD for
academic and nonprofit organizations, and reflect the considerable cost of collecting and
processing material.
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Linguistic Data Consortium (LDC) http://www.ldc.upenn.edu
European Language Resources Association (ELRA) http://www.icp.grenet.fr/ELRA/
International Computer Archive of Modern English ICAME)  http://nora.hd.uib.no/icame.html
Oxford Text Archive (OTA) http://ota.ahds.ac.uk/

Child Language Data Exchange System (CHILDES) http://childes.psy.cmu.edu/

REPRESENTATIVE
SAMPLE

Table 4.1 Major suppliers of electronic corpora with contact URLS.

that are available free on the web. Such free sources will not bring you
linguistically-marked-up corpora, but often there are tools that can do
the task of adding markup automatically reasonably well, and at any rate,
working out how to deal with raw text brings its own challenges. Further
resources for online text can be found on the website.

When working with a corpus, we have to be careful about the valid-
ity of estimates or other results of statistical analysis that we produce.
A corpus is a special collection of textual material collected according to
a certain set of criteria. For example, the Brown corpus was designed
as a representative sample of written American English as used in 1961
(Francis and Kucera 1982: 5-6). Some of the criteria employed in its
construction were to include particular texts in amounts proportional
to actual publication and to exclude verse because “it presents special
linguistic problems” (p. 5).

As a result, estimates obtained from the Brown corpus do not neces-
sarily hold for British English or spoken American English. For example,
the estimates of the entropy of English in section 2.2.7 depend heavily on
the corpus that is used for estimation. One would expect the entropy of
poetry to be higher than that of other written text since poetry can flaunt
semantic expectations and even grammar. So the entropy of the Brown
corpus will not help much in assessing the entropy of poetry. A more
mundane example is text categorization (see chapter 16) where the per-
formance of a system can deteriorate significantly over time because a
sample drawn for training at one point can lose its representativeness
after a year or two.

The general issue is whether the corpus is a representative sample of
the population of interest. A sample is representative if what we find
for the sample also holds for the general population. We will not dis-
cuss methods for determining representativeness here since this issue
is dealt with at length in the corpus linguistics literature. We also refer
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the reader to this literature for creating balanced corpora, which are put
together so as to give each subtype of text a share of the corpus that is
proportional to some predetermined criterion of importance. In Statis-
tical NLP, one commonly receives as a corpus a certain amount of data
from a certain domain of interest, without having any say in how it is
constructed. In such cases, having more training text is normally more
useful than any concerns of balance, and one should simply use all the
text that is available.

In summary, there is no easy way of determining whether a corpus is
representative, but it is an important issue to keep in mind when doing
Statistical NLP work. The minimal questions we should attempt to answer
when we select a corpus or report results are what type of text the corpus
is representative of and whether the results obtained will transfer to the
domain of interest.

Vv The effect of corpus variability on the accuracy of part-of-speech tag-
ging is discussed in section 10.3.2.

Software

There are many programs available for looking at text corpora and ana-
lyzing the data that you see. In general, however, we assume that readers
will be writing their own software, and so all the software that is really
needed is a plain text editor, and a compiler or interpreter for a lan-
guage of choice. However, certain other tools, such as ones for searching
through text corpora can often be of use. We briefly describe some such
tools later.

Text editors

You will want a plain text editor that shows fairly literally what is actually
in the file. Fairly standard and cheap choices are Emacs for Unix (or
Windows), TextPad for Windows, and BBEdit for Macintosh.

Regular expressions

In many places and in many programs, editors, etc., one wishes to find
certain patterns in text, that are often more complex than a simple match
against a sequence of characters. The most general widespread notation
for such matches are regular expressions which can describe patterns
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that are a regular language, the kind that can be recognized by a finite
state machine. If you are not already familiar with regular expressions,
you will want to become familiar with them. Regular expressions can be
used in many plain text editors (Emacs, TextPad, Nisus, BBEdit, ...), with
many tools (such as grep and sed), and as built-ins or libraries in many
programming languages (such as Perl, C, ...). Introductions to regular
expressions can be found in (Hopcroft and Ullman 1979; Sipser 1996;
Friedl 1997).

Programming languages

Most Statistical NLP work is currently done in C/C++. The need to deal
with large amounts of data collection and processing from large texts
means that the efficiency gains of coding in a language like C/C++ are
generally worth it. But for a lot of the ancillary processing of text, there
are many other languages which may be more economical with human
labor. Many people use Perl for general text preparation and reformat-
ting. Its integration of regular expressions into the language syntax is
particularly powerful. In general, interpreted languages are faster for
these kinds of tasks than writing everything in C. Old timers might still
use awk rather than Perl - even though what you can do with it is rather
more limited. Another choice, better liked by programming purists is
Python, but using regular expressions in Python just is not as easy as
Perl. One of the authors still makes considerable use of Prolog. The built-
in database facilities and easy handling of complicated data structures
makes Prolog excel for some tasks, but again, it lacks the easy access to
regular expressions available in Perl. There are other languages such as
SNOBOL/SPITBOL or Icon developed for text computing, and which are
liked by some in the humanities computing world, but their use does
not seem to have permeated into the Statistical NLP community. In the
last few years there has been increasing uptake of Java. While not as
fast as C, Java has many other appealing features, such as being object-
oriented, providing automatic memory management, and having many
useful libraries.

Programming techniques

This section is not meant as a substitute for a general knowledge of com-
puter algorithms, but we briefly mention a couple of useful tips.
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Coding words. Normally Statistical NLP systems deal with a large num-
ber of words, and programming languages like C(++) provide only quite
limited facilities for dealing with words. A method that is commonly used
in Statistical NLP and Information Retrieval is to map words to numbers
on input (and only back to words when needed for output). This gives a
lot of advantages because things like equality can be checked more easily
and quickly on numbers. It also maps all tokens of a word to its type,
which has a single number. There are various ways to do this. One good
way is to maintain a large hash table (a hash function maps a set of ob-
jects into a specificed range of integers, for example, [0,...,127]). Ahash
table allows one to see efficiently whether a word has been seen before,
and if so return its number, or else add it and assign a new number. The
numbers used might be indices into an array of words (especially effec-
tive if one limits the application to 65,000 or fewer words, so they can
be stored as 16 bit numbers) or they might just be the address of the
canonical form of the string as stored in the hashtable. This is especially
convenient on output, as then no conversion back to a word has to be
done: the string can just be printed.

There are other useful data structures such as various kinds of trees.
See a book on algorithms such as (Cormen et al. 1990) or (Frakes and
Baeza-Yates 1992).

Collecting count data. For a lot of Statistical NLP work, there is a first
step of collecting counts of various observations, as a basis for estimating
probabilities. The seemingly obvious way to do that is to build a big data
structure (arrays or whatever) in which one counts each event of interest.
But this can often work badly in practice since this model requires a huge
memory address space which is being roughly randomly accessed. Unless
your computer has enough memory for all those tables, the program will
end up swapping a lot and will run very slowly. Often a better approach is
for the data collecting program to simply emit a token representing each
observation, and then for a follow on program to sort and then count
these tokens. Indeed, these latter steps can often be done by existing
system utilities (such as sort and uniq on Unix systems). Among other
places, such a strategy is very successfully used in the CMU-Cambridge
Statistical Language Modeling toolkit which can be obtained from the web
(see website).
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Looking at Text

Text will usually come in either a raw format, or marked up in some
way. Markup is a term that is used for putting codes of some sort into a
computer file, that are not actually part of the text in the file, but explain
something of the structure or formatting of that text. Nearly all computer
systems for dealing with text use mark-up of some sort. Commercial
word processing software uses markup, but hides it from the user by
employing WYSIWYG (What You See Is What You Get) display. Normally,
when dealing with corpora in Statistical NLP, we will want explicit markup
that we can see. This is part of why the first tool in a corpus linguist’s
toolbox is a plain text editor.

There are a number of features of text in human languages that can
make them difficult to process automatically, even at a low level. Here
we discuss some of the basic problems that one should be aware of. The
discussion is dominated by, but not exclusively concerned with, the most
fundamental problems in English text.

Low-level formatting issues
Junk formatting/content

Depending on the source of the corpus, there may be various formatting
and content that one cannot deal with, and is just junk that needs to be
filtered out. This may include: document headers and separators, type-
setter codes, tables and diagrams, garbled data in the computer file, etc.
If the data comes from OCR (Optical Character Recognition), the OCR pro-
cess may have introduced problems such as headers, footers and floating
material (tables, figures, and footnotes) breaking up the paragraphs of
the text. There will also usually be OCR errors where words have been
misrecognized. If your program is meant to deal with only connected En-
glish text, then other kinds of content such as tables and pictures need
to be regarded as junk. Often one needs a filter to remove junk content
before any further processing begins.

Uppercase and lowercase

The original Brown corpus was all capitals (a * before a letter was used to
indicate a capital letter in the original source text). All uppercase text is
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rarely seen these days, but even with modern texts, there are questions of
how to treat capitalization. In particular, if we have two tokens that are
identical except that one has certain letters in uppercase, should we treat
them as the same? For many purposes we would like to treat the, The,
and THE as the same, for example if we just want to do a study of the
usage of definite articles, or noun phrase structure. This is easily done
by converting all words to upper- or lowercase, but the problem is that
at the same time we would normally like to keep the two types of Brown
in Richard Brown and brown paint distinct. In many circumstances it is
easy to distinguish proper names and hence to keep this distinction, but
sometimes it is not. A simple heuristic is to change to lowercase letters
capital letters at the start of a sentence (where English regularly capi-
talizes all words) and in things like headings and titles when there is a
series of words that are all in capitals, while other words with capital let-
ters are assumed to be names and their uppercase letters are preserved.
This heuristic works quite well, but naturally, there are problems. The
first problem is that one has to be able to correctly identify the ends of
sentences, which is not always easy, as we discuss later. In certain gen-
res (such as Winnie the Pooh), words may be capitalized just to stress that
they are making a Very Important Point, without them indicating a proper
name. At any rate, the heuristic will wrongly lowercase names that ap-
pear sentence initially or in all uppercase sequences. Often this source of
error can be tolerated (because regular words are usually more common
than proper names), but sometimes this would badly bias estimates. One
can attempt to do better by keeping lists of proper names (perhaps with
further information on whether they name a person, place, or company),
but in general there is not an easy solution to the problem of accurate
proper name detection.

Tokenization: What is a word?

Normally, an early step of processing is to divide the input text into units
called tokens where each is either a word or something else like a number
or a punctuation mark. This process is referred to as tokenization. The
treatment of punctuation varies. While normally people want to keep sen-
tence boundaries (see section 4.2.4 below), often sentence-internal punc-
tuation has just been stripped out. This is probably unwise. Recent work
has emphasized the information contained in all punctuation. No mat-
ter how imperfect a representation, punctuation marks like commas and
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dashes give some clues about the macro structure of the text and what is
likely to modify what.

The question of what counts as a word is a vexed one in linguistics,
and often linguists end up suggesting that there are words at various lev-
els, such as phonological words versus syntactic words, which need not
all be the same. What is a humble computational linguist meant to do?
Kucera and Francis (1967) suggested the practical notion of a graphic
word which they define as “a string of contiguous alphanumeric charac-
ters with space on either side; may include hyphens and apostrophes, but
no other punctuation marks.” But, unfortunately, life is not that simple,
even if one is just looking for a practical, workable definition. Kucera
and Francis seem in practice to use intuition, since they regard as words
numbers and monetary amounts like $22.50 which do not strictly seem to
obey the definition above. And things get considerably worse. Especially
if using online material such as newsgroups and web pages for data, but
even if sticking to newswires, one finds all sorts of oddities that should
presumably be counted as words, such as references to Micro$oft or the
web company C|net, or the various forms of smilies made out of punctu-
ation marks, such as :-). Even putting aside such creatures, working out
word tokens is a quite difficult affair. The main clue used in English is
the occurrence of whitespace - a space or tab or the beginning of a new
line between words - but even this signal is not necessarily reliable. What
are the main problems?

Periods

Words are not always surrounded by white space. Often punctuation
marks attach to words, such as commas, semicolons, and periods (full
stops). It at first seems easy to remove punctuation marks from word
tokens, but this is problematic for the case of periods. While most peri-
ods are end of sentence punctuation marks, others mark an abbreviation
such as in etc. or Calif. These abbreviation periods presumably should
remain as part of the word, and in some cases keeping them might be im-
portant so that we can distinguish Wash., an abbreviation for the state of
Washington, from the capitalized form of the verb wash. Note especially
that when an abbreviation like etc. appears at the end of the sentence,
then only one period occurs, but it serves both functions of the period,
simultaneously! An example occurred with Calif. earlier in this para-
graph. Within morphology, this phenomenon is referred to as haplology.
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The issue of working out which punctuation marks do indicate the end
of a sentence is discussed further in section 4.2.4.

Single apostrophes

It is a difficult question to know how to regard English contractions such
as I'll or isn’t. These count as one graphic word according to the definition
above, but many people have a strong intuition that we really have two
words here as these are contractions for I will and is not. Thus some
processors (and some corpora, such as the Penn Treebank) split such
contractions into two words, while others do not. Note the impact that
not splitting them has. The traditional first syntax rule:

S — NP VP

stops being obviously true of sentences involving contractions such as
I'm right. On the other hand, if one does split, there are then funny
words like s and n’t in your data.

Phrases such as the dog’s and the child’s, when not abbreviations for
the dog is or the dog has, are commonly seen as containing dog’s as the
genitive or possessive case of dog. But as we mentioned in section 3.1.1,
this is not actually correct for English where ’s is a clitic which can at-
tach to other elements in a noun phrase, such as in The house I rented
yesterday'’s garden is really big. Thus it is again unclear whether to re-
gard dog’s as one word or two, and again the Penn Treebank opts for the
latter. Orthographic-word-final single quotations are an especially tricky
case. Normally they represent the end of a quotation - and so should not
be part of a word, but when following an s, they may represent an (unpro-
nounced) indicator of a plural possessive, as in the boys’ toys - and then
should be treated as part of the word, if other possessives are being so
treated. There is no easy way for a tokenizer to determine which function
is intended in many such cases.

Hyphenation: Different forms representing the same word

Perhaps one of the most difficult areas is dealing with hyphens in the
input. Do sequences of letters with a hyphen in between count as one
word or two? Again, the intuitive answer seems to be sometimes one,
sometimes two. This reflects the many sources of hyphens in texts.
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One source is typographical. Words have traditionally been broken and
hyphens inserted to improve justification of text. These line-breaking hy-
phens may be present in data if it comes from what was actually typeset.
It would seem to be an easy problem to just look for hyphens at the end
of a line, remove them and join the part words at the end of one line and
the beginning of the next. But again, there is the problem of haplology.
If there is a hyphen from some other source, then after that hyphen is
regarded as a legitimate place to break the text, and only one hyphen
appears not two. So it is not always correct to delete hyphens at the
end of a line, and it is difficult in general to detect which hyphens were
line-breaking hyphens and which were not.

Even if such line-breaking hyphens are not present (and they usually
are not in truly electronic texts), difficult problems remain. Some things
with hyphens are clearly best treated as a single word, such as e-mail
or co-operate or A-1-plus (as in A-1-plus commercial paper, a financial
rating). Other cases are much more arguable, although we usually want
to regard them as a single word, for example, non-lawyer, pro-Arab, and
so-called. The hyphens here might be termed lexical hyphens. They are
commonly inserted before or after small word formatives, sometimes for
the purpose of splitting up vowel sequences.

The third class of hyphens is ones inserted to help indicate the cor-
rect grouping of words. A common copy-editing practice is to hyphenate
compound pre-modifiers, as in the example earlier in this sentence or in
examples like these:

a. the once-quiet study of superconductivity
b. a tough regime of business-conduct rules
c. the aluminum-export ban

d. a text-based medium

And hyphens occur in other places, where a phrase is seen as in some
sense quotative or as expressing a quantity or rate:

a. the idea of a child-as-required-yuppie-possession must be motivating
them

b. a final “take-it-or-leave-it” offer

c. the 90-cent-an-hour raise
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d. the 26-year-old

In these cases, we would probably want to treat the things joined by hy-
phens as separate words. In many corpora this type of hyphenation is
very common, and it would greatly increase the size of the word vocab-
ulary (mainly with items outside a dictionary) and obscure the syntactic
structure of the text if such things were not split apart into separate
words.?

A particular problem in this area is that the use of hyphens in many
such cases is extremely inconsistent. Some texts and authorities use
cooperate, while others use co-operate. As another example, in the Dow
Jones newswire, one can find all of database, data-base and data base
(the first and third are commonest, with the former appearing to domi-
nate in software contexts, and the third in discussions of company assets,
but without there being any clear semantic distinction in usage). Closer
to home, look back at the beginning of this section. When we initially
drafted this chapter, we (quite accidentally) used all of markup, mark-up
and mark(ed) up. A careful copy editor would catch this and demand con-
sistency, but a lot of the text we use has never been past a careful copy
editor, and at any rate, we will commonly use texts from different sources
which often adopt different conventions in just such matters. Note that
this means that we will often have multiple forms, perhaps some treated
as one word and others as two, for what is best thought of as a single
lexeme (a single dictionary entry with a single meaning).

Finally, while British typographic conventions put spaces between
dashes and surrounding words, American typographic conventions nor-
mally have a long dash butting straight up against the words—Ilike this.
While sometimes this dash will be rendered as a special character or as
multiple dashes in a computer file, the limitations of traditional com-
puter character sets means that it can sometimes be rendered just as a
hyphen, which just further compounds the difficulties noted above.

The same form representing multiple ‘words’

In the main we have been collapsing distinctions and suggesting that
one may wish to regard variant sequences of characters as really the

2. Ome possibility is to split things apart, but to add markup, as discussed later in this
chapter, which records that the original was hyphenated. In this way no information is
lost.
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same word. It is important to also observe the opposite problem, where
one might wish to treat the identical sequence of characters as different
words. This happens with homographs, where two lexemes have overlap-
ping forms, such as saw as a noun for a tool, or as the past tense of the
verb see. In such cases we might wish to assign occurrences of saw to
two different lexemes.

v Methods of doing this automatically are discussed in chapter 7.

Word segmentation in other languages

Many languages do not put spaces in between words at all, and so the ba-
sic word division algorithm of breaking on whitespace is of no use at all.
Such languages include the major East-Asian languages/scripts such as
Chinese, Japanese, Korean, and Thai. Ancient Greek was also written by
Ancient Greeks without word spaces. Spaces were introduced (together
with accent marks, etc.) by those who came afterwards. In such lan-
guages, word segmentation is a much more major and challenging task.
While maintaining most word spaces, in German compound nouns are
written as a single word, for example Lebensversicherungsgesellschafts-
angestellter ‘life insurance company employee.” In many ways this makes
linguistic sense, as compounds are a single word, at least phonologically.
But for processing purposes one may wish to divide such a compound,
or at least to be aware of the internal structure of the word, and this
becomes a limited word segmentation task. While not the rule, joining
of compounds sometimes also happens in English, especially when they
are common and have a specialized meaning. We noted above that one
finds both data base and database. As another example, while hard disk
is more common, one sometimes finds harddisk in the computer press.

Whitespace not indicating a word break

Until now, the problems we have dealt with have mainly involved splitting
apart sequences of characters where the word divisions are not shown by
whitespace. But the opposite problem of wanting to lump things together
also occurs. Here, things are separated by whitespace but we may wish
to regard them as a single word. One possible case is the reverse of
the German compound problem. If one decides to treat database as one
word, one may wish to treat it as one word even when it is written as data
base. More common cases are things such as phone numbers, where we
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may wish to regard 9365 1873 as a single ‘word,’ or in the cases of multi-
part names such as New York or San Francisco. An especially difficult
case is when this problem interacts with hyphenation as in a phrase like
this one:

the New York-New Haven railroad

Here the hyphen does not express grouping of just the immediately ad-
jacent graphic words - treating York-New as a semantic unit would be a
big mistake.

Other cases are of more linguistic interest. For many purposes, one
would want to regard phrasal verbs (make up, work out) as a single lex-
eme (section 3.1.4), but this case is especially tricky since in many cases
the particle is separable from the verb (I couldn’t work the answer out),
and so in general identification of possible phrasal verbs will have to be
left to subsequent processing. One might also want to treat as a single
lexeme certain other fixed phrases, such as in spite of, in order to, and be-
cause of, but typically a tokenizer will regard them as separate words. A
partial implementation of this approach occurs in the LOB corpus where
certain pairs of words such as because of are tagged with a single part of
speech, here preposition, by means of using so-called ditto tags.

Variant coding of information of a certain semantic type

Many readers may have felt that the example of a phone number in the
previous section was not very recognizable or convincing because their
phone numbers are written as 812-4374, or whatever. However, even if
one is not dealing with multilingual text, any application dealing with
text from different countries or written according to different stylistic
conventions has to be prepared to deal with typographical differences. In
particular, some items such as phone numbers are clearly of one seman-
tic sort, but can appear in many formats. A selection of formats for phone
numbers with their countries, all culled from advertisements in one issue
of the magazine The Economist, is shown in table 4.2. Phone numbers var-
iously use spaces, periods, hyphens, brackets, and even slashes to group
digits in various ways, often not consistently even within one country.
Additionally, phone numbers may include international or national long
distance codes, or attempt to show both (as in the first three UK entries
in the table), or just show a local number, and there may or may not
be explicit indication of this via other marks such as brackets and plus
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Phone number Country Phone number Country

0171 378 0647 UK +45 43 48 60 60 Denmark
(44.171) 830 1007 UK 95-51-279648 Pakistan

+44 (0) 1225 753678 UK +411/284 3797 Switzerland
01256 468551 UK (94-1) 866854 Sri Lanka

(202) 522-2230 USA +49 69 136-2 98 05 Germany
1-925-225-3000 USA 33134433226 France
212.995.5402 USA ++31-20-5200161 The Netherlands

Table 4.2 Different formats for telephone numbers appearing in an issue of
The Economiist.

signs. Trying to deal with myriad formats like this is a standard prob-
lem in information extraction. It has most commonly been dealt with by
building carefully handcrafted regular expressions to match formats, but
given the brittleness of such an approach, there is considerable interest
in automatic means for learning the formatting of semantic types.

v We do not cover information extraction extensively in this book, but
there is a little further discussion in section 10.6.2.

Speech corpora

Our discussion has concentrated on written text, but the transcripts of
speech corpora provide their own additional challenges. Speech corpora
normally have more contractions, various sorts of more phonetic rep-
resentations, show pronunciation variants, contain many sentence frag-
ments, and include fillers like er and um. Example (4.4) - from the Switch-
board corpus available from the LDC - shows a typical extract from a
speech transcript:

Also I [cough] not convinced that the, at least the kind of people that I
work with, I'm not convinced that that’s really, uh, doing much for the
progr-, for the, uh, drug problem.

Morphology

Another question is whether one wants to keep word forms like sit, sits
and sat separate or to collapse them. The issues here are similar to those
in the discussion of capitalization, but have traditionally been regarded
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as more linguistically interesting. At first, grouping such forms together
and working in terms of lexemes feels as if it is the right thing to do. Do-
ing this is usually referred to in the literature as stemming in reference to
a process that strips off affixes and leaves you with a stem. Alternatively,
the process may be referred to as lemmatization where one is attempting
to find the lemma or lexeme of which one is looking at an inflected form.
These latter terms imply disambiguation at the level of lexemes, such as
whether a use of lying represents the verb lie-lay ‘to prostrate oneself’ or
lie-lied ‘to fib.’

Extensive empirical research within the Information Retrieval (IR) com-
munity has shown that doing stemming does not help the performance
of classic IR systems when performance is measured as an average over
queries (Salton 1989; Hull 1996). There are always some queries for which
stemming helps a lot. But there are others where performance goes down.
This is a somewhat surprising result, especially from the viewpoint of lin-
guistic intuition, and so it is important to understand why that is. There
are three main reasons for this.

One is that while grouping the various forms of a stem seems a good
thing to do, it often costs you a lot of information. For instance, while
operating can be used in a periphrastic tense form as in Bill is operating a
tractor (section 3.1.3), it is usually used in noun- and adjective-like uses
such as operating systems or operating costs. It is not hard to see why a
search for operating systems will perform better if it is done on inflected
words than if one instead searches for all paragraphs that contain operat-
and system. Or to consider another example, if someone enters business
and the stemmer then causes retrieval of documents with busy in them,
the results are unlikely to be beneficial.

Secondly, morphological analysis splits one token into several. How-
ever, often it is worthwhile to group closely related information into
chunks, notwithstanding the blowout in the vocabulary that this causes.
Indeed, in various Statistical NLP domains, people have been able to im-
prove system performance by regarding frequent multiword units as a
single distinctive token. Often inflected words are a useful and effective
chunk size.

Thirdly, most information retrieval studies have been done on English
- although recently there has been increasing multilingual work. English
has very little morphology, and so the need for dealing intelligently with
morphology is not acute. Many other languages have far richer systems
of inflection and derivation, and then there is a pressing need for mor-
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phological analysis. A full-form lexicon for such languages, one that sepa-
rately lists all inflected forms of all words, would simply be too large. For
instance, Bantu languages (spoken in central and southern Africa) display
rich verbal morphology. Here is a form from KiHaya (Tanzania). Note the
prefixes for subject and object agreement, and tense:

akabimuha
a-ka-bi-mu-ha
1SG-PAST-3PL-3SG-give
‘I gave them to him.’

For historical reasons, some Bantu language orthographies write many
of these morphemes with whitespace in between them, but in the lan-
guages with ‘conjunctive’ orthographies, morphological analysis is badly
needed. There is an extensive system of pronoun and tense markers ap-
pearing before the verb root, and quite a few other morphemes that can
appear after the root, yielding a large system of combinatoric possibili-
ties. Finnish is another language famous for millions of inflected forms
for each verb.

One might be tempted to conclude from the paragraphs above that,
in languages with rich morphology, one would gain by stripping inflec-
tional morphology but not derivational morphology. But this hypothesis
remains to be carefully tested in languages where there is sufficient in-
flectional morphology for the question to be interesting.

It is important to realize that this result from IR need not apply to any
or all Statistical NLP applications. It need not even apply to all of IR.
Morphological analysis might be much more useful in other applications.
Stemming does not help in the non-interactive evaluation of IR systems,
where a query is presented and processed without further input, and the
results are evaluated in terms of the appropriateness of the set of docu-
ments returned. However, principled morphological analysis is valuable
in IR in an interactive context, the context in which IR should really be
evaluated. A computer does not care about weird stems like busy from
business, but people do. They do not understand what is going on when
business is stemmed to busy and a document with busy in it is returned.

It is also the case that nobody has systematically studied the possi-
bility of letting people interactively influence the stemming. We believe
that this could be very profitable, for cases like saw (where you want to
stem for the sense ‘see,” but not for the sense ‘cutting implement’), or
derivational cases where in some cases you want the stems (arbitrary
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from arbitrariness), but in some you do not (busy from business). But the
suggestion that human input may be needed does show the difficulties of
doing automatic stemming in a knowledge-poor environment of the sort
that has often been assumed in Statistical NLP work (for both ideological
and practical reasons).

v Stemming and IR in general are further discussed in chapter 15.

Sentences
What is a sentence?

The first answer to what is a sentence is “something ending with a *.’, ‘7’
or ‘'.” We have already mentioned the problem that only some periods
mark the end of a sentence: others are used to show an abbreviation, or
for both these functions at once. Nevertheless, this basic heuristic gets
one a long way: in general about 90% of periods are sentence boundary
indicators (Riley 1989). There are a few other pitfalls to be aware of.
Sometimes other punctuation marks split up what one might want to
regard as a sentence. Often what is on one or the other or even both
sides of the punctuation marks colon, semicolon, and dash (*’, ‘;’, and
‘—") might best be thought of as a sentence by itself, as “:’ in this example:

The scene is written with a combination of unbridled passion and sure-
handed control: In the exchanges of the three characters and the rise and
fall of emotions, Mr. Weller has captured the heartbreaking inexorability
of separation.

Related to this is the fact that sometimes sentences do not nicely follow
in sequence, but seem to nest in awkward ways. While normally nested
things are not seen as sentences by themselves, but clauses, this classi-
fication can be strained for cases such as the quoting of direct speech,
where we get subsentences:

“You remind me,” she remarked, “of your mother.”

A second problem with such indirect speech is that it is standard type-
setting practice (particularly in North America) to place quotation marks
after sentence final punctuation. Therefore, the end of the sentence is
not after the period in the example above, but after the close quotation
mark that follows the period.

The above remarks suggest that the essence of a heuristic sentence
division algorithm is roughly as in figure 4.1. In practice most systems
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= Place putative sentence boundaries after all occurrences of . ? ! (and
maybe ;: —)

= Move the boundary after following quotation marks, if any.
= Disqualify a period boundary in the following circumstances:

- Ifitis preceded by a known abbreviation of a sort that does not nor-
mally occur word finally, but is commonly followed by a capitalized
proper name, such as Prof. or vs.

- If it is preceded by a known abbreviation and not followed by an
uppercase word. This will deal correctly with most usages of ab-
breviations like etc. or Jr. which can occur sentence medially or
finally.

= Disqualify a boundary with a ? or ! if:
- Itis followed by a lowercase letter (or a known name).

m Regard other putative sentence boundaries as sentence boundaries.

Figure 4.1 Heuristic sentence boundary detection algorithm.

have used heuristic algorithms of this sort. With enough effort in their
development, they can work very well, at least within the textual domain
for which they were built. But any such solution suffers from the same
problems of heuristic processes in other parts of the tokenization pro-
cess. They require a lot of hand-coding and domain knowledge on the
part of the person constructing the tokenizer, and tend to be brittle and
domain-specific.

There has been increasing research recently on more principled meth-
ods of sentence boundary detection. Riley (1989) used statistical clas-
sification trees to determine sentence boundaries. The features for the
classification trees include the case and length of the words preceding
and following a period, and the a priori probability of different words to
occur before and after a sentence boundary (the computation of which
requires a large quantity of labeled training data). Palmer and Hearst
(1994; 1997) avoid the need for acquiring such data by simply using the
part of speech distribution of the preceding and following words, and
using a neural network to predict sentence boundaries. This yields a
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robust, largely language independent boundary detection algorithm with
high performance (about 98-99% correct). Reynar and Ratnaparkhi (1997)
and Mikheev (1998) develop Maximum Entropy approaches to the prob-
lem, the latter achieving an accuracy rate of 99.25% on sentence boundary
prediction.3

v Sentence boundary detection can be viewed as a classification problem.
We discuss classification, and methods such as classification trees and
maximum entropy models in chapter 16.

What are sentences like?

In linguistics classes, and when doing traditional computational linguis-
tics exercises, sentences are generally short. This is at least in part be-
cause many of the parsing tools that have traditionally been used have
a runtime exponential in the sentence length, and therefore become im-
practical for sentences over twelve or so words. It is therefore important
to realize that typical sentences in many text genres are rather long. In
newswire, the modal (most common) length is normally around 23 words.
A chart of sentence lengths in a sample of newswire text is shown in ta-
ble 4.3.

Marked-up Data

While much can be done from plain text corpora, by inducing the struc-
ture present in the text, people have often made use of corpora where
some of the structure is shown, since it is then easier to learn more.
This markup may be done by hand, automatically, or by a mixture of
these two methods. Automatic means of learning structure are covered
in the remainder of this book. Here we discuss the basics of markup.
Some texts mark up just a little basic structure such as sentence and
paragraph boundaries, while others mark up a lot, such as the full syntac-
tic structure in corpora like the Penn Treebank and the Susanne corpus.
However, the most common grammatical markup that one finds is a cod-
ing of words for part of speech, and so we devote particular attention to
that.

3. Accuracy as a technical term is defined and discussed in section 8.1. However, the
definition corresponds to one’s intuitive understanding: it is the percent of the time that
one is correctly classifying items.
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Length Number Percent Cum. %

1-5 1317 3.13 3.13

6-10 3215 7.64 10.77
11-15 5906 14.03 24.80
16-20 7206 17.12 41.92
21-25 7350 17.46 59.38
26-30 6281 14.92 74.30
31-35 4740 11.26 85.56
36-40 2826 6.71 92.26
41-45 1606 3.82 96.10
46-50 858 2.04 98.14
51-100 780 1.85 99.99
101+ 6 0.01 100.00

Table 4.3 Sentence lengths in newswire text. Column “Percent” shows the per-
centage in each range, column “Cum. %” shows the cumulative percentage below
a certain length.

Markup schemes

Various schemes have been used to mark up the structure of text. In
the early days, these were developed on an ad hoc basis, as needs arose.
One of the more important early examples was the COCOA format, which
was used for including header information in texts (giving author, date,
title, etc.). This information was enclosed within angle brackets with the
first letter indicating the broad semantics of the field. Some other ad hoc
systems of this sort are still in quite common use. The most common
form of grammatical markup, which we discuss in great detail below, is
indicating the part of speech of words by adding a part of speech tag
to each word. These tags are commonly indicated by devices such as
following each word by a slash or underline and then a short code naming
the part of speech. The Penn Treebank uses a form of Lisp-like bracketing
to mark up a tree structure over texts.

However, currently by far the most common and supported form of
markup is to use SGML (the Standard Generalized Markup Language).
SGML is a general language that lets one define a grammar for texts, in
particular for the type of markup they contain. The now-ubiquitous HTML
is an instance of an SGML encoding. The Text Encoding Initiative (TEI) was
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a major attempt to define SGML encoding schemes suitable for marking
up various kinds of humanities text resources ranging from poems and
novels to linguistic resources like dictionaries. Another acronym to be
aware of is XML. XML defines a simplified subset of SGML that was partic-
ularly designed for web applications. However, the weight of commercial
support behind XML and the fact that it avoids some of the rather arcane,
and perhaps also archaic, complexities in the original SGML specification
means that the XML subset is likely to be widely adopted for all other
purposes as well.

This book does not delve deeply into SGML. We will give just the rudi-
mentary knowledge needed to get going. SGML specifies that each doc-
ument type should have a Document Type Definition (DTD), which is a
grammar for legal structures for the document. For example, it can state
rules that a paragraph must consist of one or more sentences and nothing
else. An SGML parser verifies that a document is in accordance with this
DTD, but within Statistical NLP the DTD is normally ignored and people
just process whatever text is found. An SGML document consists of one
or more elements, which may be recursively nested. Elements normally
begin with a begin tag and end with an end tag, and have document con-
tent in between. Tags are contained within angle brackets, and end tags
begin with a forward slash character. As well as the tag name, the begin
tag may contain additional attribute and value information. A couple of
examples of SGML elements are shown below:

a. <p><s>And then he left.</s>
<s>He did not say another word.</s></p>

b. <utt speak="Fred" date="10-Feb-1998">That is an ugly
couch.</utt>

The structure tagging shown in (4.8a), where the tag s is used for sen-
tences and p for paragraphs, is particularly widespread. Example (4.8b)
shows a tag with attributes and values. An element may also consist of
just a single tag (without any matching end tag). In XML, such empty ele-
ments must be specially marked by ending the tag name with a forward
slash character.

In general, when making use of SGML-encoded text in a casual way,
one will wish to interpret some tags within angle brackets, and to simply
ignore others. The other SGML syntax that one must be aware of is char-
acter and entity references. These begin with an ampersand and end with
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a semicolon. Character references are a way of specifying characters not
available in the standard ASCII character set (minus the reserved SGML
markup characters) via their numeric code. Entity references have sym-
bolic names which were defined in the DTD (or are one of a few predefined
entities). Entity references may expand to any text, but are commonly
used just to encode a special character via a symbolic name. A few exam-
ples of character and entity references are shown in (4.9). They might be
rendered in a browser or when printed as shown in (4.10).

a. &#x43; is the less than symbol
b. r&eacute;sum&eacute;

c. This chapter was written on &docdate;.

a. < is the less than symbol
b. résumé

c. This chapter was written on January 21, 1998.

There is much more to know about SGML, and some references appear in
the Further Reading below, but this is generally enough for what the XML
community normally terms the ‘Desperate Perl Hacker’ to get by.

Grammatical tagging

A common first step of analysis is to perform automatic grammatical
tagging for categories roughly akin to conventional parts of speech, but
often considerably more detailed (for instance, distinguishing compara-
tive and superlative forms of adjectives, or singular from plural nouns).
This section examines the nature of tag sets. What tag sets have been
used? Why do people use different ones? Which one should you choose?
v How tagging is done automatically is the subject of chapter 10.

Tag sets

Historically, the most influential tag sets have been the one used for tag-
ging the American Brown corpus (the Brown tag set) and the series of
tag sets developed at the University of Lancaster, and used for tagging
the Lancaster-Oslo-Bergen corpus and more recently the British National
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Sentence CLAWS c5 Brown Penn Treebank ICE

she PNP PPS PRP PRON(pers,sing)

was VBD BEDZ VBD AUX(pass,past)

told VVN VBN VBN V(ditr,edp)

that CJT CS IN CONJUNC(subord)

the ATO AT DT ART(def)

journey  NN1 NN NN N(com,sing)

might VMO MD MD AUX(modal,past)

kill VVI VB VB V(montr,infin)

her PNP PPO PRP PRON(poss,sing)
PUN . . PUNC(per)

Figure 4.2 A sentence as tagged according to several different tag sets.

Tag set Basic size Total tags
Brown 87 179
Penn 45
CLAWSI 132
CLAWS2 166
CLAWS ¢5 62
London-Lund 197

Table 4.4 Sizes of various tag sets.

Corpus (CLAWS1 through CLAWSS5; CLAWSS is also referred to as the c5
tag set). Recently, the Penn Treebank tag set has been the one most
widely used in computational work. It is a simplified version of the Brown
tag set. A brief summary of tag set sizes is shown in table 4.4. An ex-
ample sentence shown tagged via several different tag sets is shown in
figure 4.2. These tag sets are all for English. In general, tag sets incorpo-
rate morphological distinctions of a particular language, and so are not
directly applicable to other languages (though often some of the design
ideas can be transferred). Many tag sets for other languages have also
been developed.

An attempt to align some tag sets, roughly organized by traditional
parts of speech appears in tables 4.5 and 4.6, although we cannot guar-
antee that they are accurate in every detail. They are mostly alphabetical,
but we have deviated from alphabetical order a little so as to group cat-
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Category

Adjective

Adjective, ordinal number
Adjective, comparative
Adjective, superlative
Adjective, superlative, semantically
Adjective, cardinal number
Adjective, cardinal number, one
Adverb

Adverb, negative

Adverb, comparative

Adverb, superlative

Adverb, particle

Adverb, question

Adverb, degree & question
Adverb, degree

Adverb, degree, postposed
Adverb, nominal

Conjunction, coordination
Conjunction, subordinating
Conjunction, complementizer that
Determiner

Determiner, pronoun
Determiner, pronoun, plural
Determiner, prequalifier
Determiner, prequantifier

Determiner, pronoun or double conj.
Determiner, pronoun or double conj.

Determiner, article

Determiner, postdeterminer
Determiner, possessive
Determiner, possessive, second
Determiner, question
Determiner, possessive & question
Noun

Noun, singular

Noun, plural

Noun, proper, singular

Noun, proper, plural

Noun, adverbial

Noun, adverbial, plural
Pronoun, nominal (indefinite)
Pronoun, personal, subject
Pronoun, personal, subject, 3SG
Pronoun, personal, object
Pronoun, reflexive

Pronoun, reflexive, plural
Pronoun, question, subject
Pronoun, question, object
Pronoun, existential there

Examples

happy, bad

sixth, 72nd, last
happier, worse
happiest, worst
chief, top

3, fifteen

one

often, particularly
not, n’t

faster

fastest

up, off, out

when, how, why
how, however
very, so, too
enough, indeed
here, there, now
and, or

although, when
that

this, each, another
any, some

these, those

quite

all, half

both

either, neither
the, a, an

many, same

their, your

mine, yours
which, whatever
whose

aircraft, data
woman, book
women, books
London, Michael
Australians, Methodists
tomorrow, home
Sundays, weekdays
none, everything, one
you, we

she, he, it

you, them, me
herself, myself
themselves, ourselves
who, whoever
who, whoever
there

Claws ¢5

AJO
ORD
AJC
AJS
AJO
CRD
PNI
AVO
XX0
AVO
AVO
AVP
AVQ
AVQ
AVO
AVO
AVO
CJC
CJS
cJT
DTO
DTO
DTO
DTO
DTO
DTO
DTO
ATO
DTO
DPS
DPS
DTQ
DTQ
NNO
NN1
NN2
NPO
NPO
NNO
NN?2
PNI
PNP
PNP
PNP
PNX
PNX
PNQ
PNQ
EXO0

PPS
PPO
PPL
PPLS
WPS
WPO
EX

141

Penn

Table 4.5 Comparison of different tag sets: adjective, adverb, conjunction, de-
terminer, noun, and pronoun tags.
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Category Examples Claws ¢c5 Brown Penn
Verb, base present form (not infinitive)  take, live VVB VB VBP
Verb, infinitive take, live VVI VB VB
Verb, past tense took, lived VVD VBD VBD
Verb, present participle taking, living VVG VBG VBG
Verb, past/passive participle taken, lived VVN VBN VBN
Verb, present 3SG -s form takes, lives Vvz VBZ VBZ
Verb, auxiliary do, base do VDB DO VBP
Verb, auxiliary do, infinitive do VDB DO VB
Verb, auxiliary do, past did VDD DOD VBD
Verb, auxiliary do, present part. doing VDG VBG VBG
Verb, auxiliary do, past part. done VDN VBN VBN
Verb, auxiliary do, present 3SG does VDZ DOZ VBZ
Verb, auxiliary have, base have VHB HV VBP
Verb, auxiliary have, infinitive have VHI HV VB
Verb, auxiliary have, past had VHD HVD VBD
Verb, auxiliary have, present part. having VHG HVG VBG
Verb, auxiliary have, past part. had VHN HVN VBN
Verb, auxiliary have, present 3SG has VHZ HVZ VBZ
Verb, auxiliary be, infinitive be VBI BE VB
Verb, auxiliary be, past were VBD BED VBD
Verb, auxiliary be, past, 3SG was VBD BEDZ VBD
Verb, auxiliary be, present part. being VBG BEG VBG
Verb, auxiliary be, past part. been VBN BEN VBN
Verb, auxiliary be, present, 3SG is,’s VBZ BEZ VBZ
Verb, auxiliary be, present, 1SG am, 'm VBB BEM VBP
Verb, auxiliary be, present are, 're VBB BER VBP
Verb, modal can, could,’ll VMO MD MD
Infinitive marker to TOO TO TO
Preposition, to to PRP IN TO
Preposition for, above PRP IN IN
Preposition, of of PRF IN IN
Possessive ’s,’ POS $ POS
Interjection (or other isolate) oh, yes, mmm IT]J UH UH
Punctuation, sentence ender L7 PUN

Punctuation, semicolon ; PUN

Punctuation, colon or ellipsis PUN

Punctuation, comma s PUN s s
Punctuation, dash - PUN - -
Punctuation, dollar sign $ PUN not $
Punctuation, left bracket ([{ PUL ( (
Punctuation, right bracket )1} PUR ) )
Punctuation, quotation mark, left L PUQ not “
Punctuation, quotation mark, right T PUQ not ”
Foreign words (not in English lexicon) UNC (FW-) FwW
Symbol [£j] * not SYM
Symbol, alphabetical A,B,c, d 770

Symbol, list item A A. First LS

Table 4.6 Comparison of different tag sets: Verb, preposition, punctuation and
symbol tags. An entry of ‘not’ means an item was ignored in tagging, or was not
separated off as a separate token.
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egories that are sometimes collapsed. In this categorization, we use an
elsewhere convention where the least marked category is used in all cases
where a word cannot be placed within one of the more precise subclassi-
fications. For instance, the plain Adjective category is used for adjectives
that aren’t comparatives, superlatives, numbers, etc. The complete Brown
tag set was made larger by two decisions to augment the tag set. Normal
tags could be followed by a hyphen and an attribute like TL (for a ti-
tle word), or in the case of foreign words, the FW foreign word tag was
followed by a hyphen and a part of speech assignment. Secondly, the
Brown tag scheme makes use of ‘combined tags’ for graphic words that
one might want to think of as multiple lexemes, such as you’ll.* Normally
such items were tagged with two tags joined with a plus sign, but for
negation one just adds * to a tag. So isn’t is tagged BEZ* and she’ll is
tagged PPS+MD. Additionally, possessive forms like children’s are tagged
with a tag ending in ‘$’. Normally, these tags are transparently derived
from a base non-possessive tag, for instance, NNS$ in this case. These
techniques of expanding the tag set are ignored in the comparison.

Even a cursory glance will show that the tag sets are very different. Part
of this can be attributed to the overall size of the tag set. A larger tag
set will obviously make more fine-grained distinctions. But this is not the
only difference. The tag sets may choose to make distinctions in different
areas. For example, the c5 tag setis larger overall than the Penn Treebank
tag set, and it makes many more distinctions in some areas, but in other
areas it has chosen to make many fewer. For instance, the Penn tag set
distinguishes 9 punctuation tags, while ¢5 makes do with only 4. Pre-
sumably this indicates some difference of opinion on what is considered
important. Tag sets also disagree more fundamentally in how to classify
certain word classes. For example, while the Penn tag set simply regards
subordinating conjunctions as prepositions (consonant with work in gen-
erative linguistics), the ¢5 tag set keeps them separate, and moreover
implicitly groups them with other types of conjunctions. The notion of
implicit grouping referred to here is that all the tag sets informally show
relationships between certain sets of tags by having them begin with the
same letter or pair of letters. This grouping is implicit in that although
it is obvious to the human eye, they are formally just distinct symbolic

4. Compare the discussion above. This is also done in some other corpora, such as the
London-Lund corpus, but the recent trend seems to have been towards dividing such
graphic words into two for the purposes of tagging.
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tags, and programs normally make no use of these families. However,
in some other tag sets, such as the one for the International Corpus of
English (Greenbaum 1993), an explicit system of high level tags with at-
tributes for the expression of features has been adopted. There has also
been some apparent development in people’s ideas of what to encode.
The early tag sets made very fine distinctions in a number of areas such
as the treatment of certain sorts of qualifiers and determiners that were
relevant to only a few words, albeit common ones. More recent tag sets
have generally made fewer distinctions in such areas.

The design of a tag set

What features should guide the design of a tag set? Standardly, a tag set
encodes both the target feature of classification, telling the user the use-
ful information about the grammatical class of a word, and the predictive
features, encoding features that will be useful in predicting the behavior
of other words in the context. These two tasks should overlap, but they
are not necessarily identical.

The notion of part of speech is actually complex, since parts of speech
can be motivated on various grounds, such as semantic (commonly called
notional) grounds, syntactic distributional grounds, or morphological
grounds. Often these notions of part of speech are in conflict. For the
purposes of prediction, one would want to use the definition of part of
speech that best predicts the behavior of nearby words, and this is pre-
sumably strictly distributional tags. But in practice people have often
used tags that reflect notional or morphological criteria. For example one
of the uses of English present participles ending in -ing is as a gerund
where they behave as a noun. But in the Brown corpus they are quite
regularly tagged with the VBG tag, which is perhaps better reserved for
verbal uses of participles. This happens even within clear noun com-
pounds such as this one:

Fulton/NP-TL County/NN-TL Purchasing/vBG Department/NN

Ideally, we would want to give distinctive tags to words that have dis-
tinctive distributions, so that we can use that information to help pro-
cessing elsewhere. This would suggest that some of the tags in, for ex-
ample, the Penn Treebank tag set are too coarse to be good predictors.
For instance, the complementizer that has a very distinct distribution
from regular prepositions, and degree adverbs and the negative not have
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very different distributions from regular adverbs, but neither of these
distinctions show up in the tag set. People have frequently made changes
to add or remove distinctions according to their intuitions - for exam-
ple, Charniak (1996) questions the decision of the Penn Treebank to tag
auxiliaries with the same tags as other verbs, given that auxiliary verbs
have a very distinctive distribution, and proceeds to retag them with an
AUX tag. In general, the predictive value of making such changes in the
set of distinctions in part of speech systems has not been very system-
atically evaluated. So long as the same tag set is used for prediction
and classification, making such changes tends to be a two-edged sword:
splitting tags to capture useful distinctions gives improved information
for prediction, but makes the classification task harder.> For this reason,
there is not necessarily a simple relationship between tag set size and the
performance of automatic taggers.

Further Reading

The Brown corpus (the Brown University Standard Corpus of Present-Day
American English) consists of just over a million words of written Amer-
ican English from 1961. It was compiled and documented by W. Nelson
Francis and Henry Kucera (Francis and Kucera 1964; Kucera and Fran-
cis 1967; Francis and Kucera 1982). The details on early processing of
the Brown corpus are from an email from Henry Kucera (posted to the
corpora mailing list by Katsuhide Sonoda on 26 Sep 1996). The LOB
(Lancaster-Oslo-Bergen) corpus was built as a British-English replication
of the Brown Corpus during the 1970s (Johansson et al. 1978; Garside
et al. 1987).

Identifying proper names is a major issue in Information Extraction.
See (Cardie 1997) for an introduction.

A carefully designed and experimentally tested set of tokenization
rules is the set used for the Susanne corpus (Sampson 1995: 52-59).

Nunberg (1990) provides a linguistic perspective on the importance of
punctuation. An introductory discussion of what counts as a word in
linguistics can be found in (Crowley et al. 1995: 7-9). Lyons (1968: 194-
206) provides a more thorough discussion. The examples in the section
on hyphenation are mainly real examples from the Dow Jones newswire.

5. This is unless one category groups two very separate distributional clusters, in which
case splitting the category can actually sometimes make classification easier.
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Others are from e-mail messages to the corpora list by Robert Amsler and
Mitch Marcus, 1996, and are used with thanks.

There are many existing systems for morphological analysis available,
and some are listed on the website. An effective method of doing stem-
ming in a knowledge-poor way can be found in Kay and Roéscheisen
(1993). Sproat (1992) contains a good discussion of the problems mor-
phology presents for NLP and is the source of our German compound
example.

The COCOA (COunt and COncordance on Atlas) format was used in
corpora from ICAME and in related software such as LEXA (Hickey 1993).

SGML and XML are described in various books (Herwijnen 1994; Mc-
Grath 1997; St. Laurent 1998), and a lot of information, including some
short readable introductions, is available on the web (see website).

The guidelines of the Text Encoding initiative (1994 P3 version) are
published as McQueen and Burnard (1994), and include a very readable
introduction to SGML in chapter 2. In general, though, rather than read
the actual guidelines, one wants to look at tutorials such as Ide and Véro-
nis (1995), or on the web, perhaps starting at the sites listed on the web-
site. The full complexity of the TEI overwhelmed all but the most dedi-
cated standard bearers. Recent developments include TEILite, which tries
to pare the original standard down to a human-usable version, and the
Corpus Encoding Standard, a TEI-conformant SGML instance especially
designed for language engineering corpora.

Early work on CLAWS (Constituent-Likelihood Automatic Word-tagging
System) and its tag set is described in (Garside et al. 1987). The more re-
cent c¢5 tag set presented above is taken from (Garside 1995). The Brown
tag set is described in (Francis and Kucera 1982) while the Penn tag set is
described in (Marcus et al. 1993), and in more detail in (Santorini 1990).

This book is not an introduction to how corpora are used in linguistic
studies (even though it contains a lot of methods and algorithms useful
for such studies). However, recently there has been a flurry of new texts
on corpus linguistics (McEnery and Wilson 1996; Stubbs 1996; Biber et al.
1998; Kennedy 1998; Barnbrook 1996). These books also contain much
more discussion of corpus design issues such as sampling and balance
than we have provided here. For an article specifically addressing the
problem of designing a representative corpus, see (Biber 1993).

More details about different tag sets are collected in Appendix B of
(Garside et al. 1987) and in the web pages of the AMALGAM project (see
website). The AMALGAM website also has a description of the tokenizing
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rules that they use, which can act as an example of a heuristic sentence di-
vider and tokenizer. Grefenstette and Tapanainen (1994) provide another
discussion of tokenization, showing the results of experiments employ-
ing simple knowledge-poor heuristics.

Exercises

Exercise 4.1 [* ]

As discussed in the text, it seems that for most purposes, we’d want to treat
some hyphenated things as words (for instance, co-worker, Asian-American),
but not others (for instance, ain’t-it-great-to-be-a-Texan, child-as-required-yuppie-
possession). Find hyphenated forms in a corpus and suggest some basis for which
forms we would want to treat as words and which we would not. What are the
reasons for your decision? (Different choices may be appropriate for different
needs.) Suggest some methods to identify hyphenated sequences that should
be broken up - e.g., ones that only appear as non-final elements of compound
nouns:

IN[child-as-required-yuppie-possession] syndrome]

Exercise 4.2 [* % For linguists]

Take some linguistic problem that you are interested in (non-constituent coordi-
nation, ellipsis, idioms, heavy NP shift, pied-piping, verb class alternations, etc.).
Could one hope to find useful data pertaining to this problem in a general cor-
pus? Why or why not? If you think it might be possible, is there a reasonable
way to search for examples of the phenomenon in either a raw corpus or one
that shows syntactic structures? If the answer to both these questions is yes,
then look for examples in a corpus and report on anything interesting that you
find.

Exercise 4.3 [ ]

Develop a sentence boundary detection algorithm. Evaluate how successful it is.
(In the construction of the Wall Street Journal section of the ACL-DCI CD-ROM
(Church and Liberman 1991), a rather simplistic sentence boundary detection
algorithm was used, and the results were not hand corrected, so many errors
remain. If this corpus is available to you, you may want to compare your results
with the sentence boundaries marked in the corpus. With luck, you should be
able to write a system that performs considerably better!)
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“When I say, for instance, ‘I had a good breakfast this morning,’
it is clear that I am not in the throes of laborious thought, that
what I have to transmit is hardly more than a pleasurable
memory symbolically rendered in the grooves of habitual
expression. ... It is somewhat as though a dynamo capable of
generating enough power to run an elevator were operated
almost exclusively to feed an electric doorbell.”

(Sapir 1921: 14)



COMPOSITIONALITY

Collocations

A COLLOCATION is an expression consisting of two or more words that
correspond to some conventional way of saying things. Or in the words
of Firth (1957: 181): “Collocations of a given word are statements of the
habitual or customary places of that word.” Collocations include noun
phrases like strong tea and weapons of mass destruction, phrasal verbs
like to make up, and other stock phrases like the rich and powerful. Par-
ticularly interesting are the subtle and not-easily-explainable patterns of
word usage that native speakers all know: why we say a stiff breeze but
not ??a stiff wind (while either a strong breeze or a strong wind is okay),
or why we speak of broad daylight (but not ?bright daylight or ??narrow
darkness).

Collocations are characterized by limited compositionality. We call a
natural language expression compositional if the meaning of the expres-
sion can be predicted from the meaning of the parts. Collocations are not
fully compositional in that there is usually an element of meaning added
to the combination. In the case of strong tea, strong has acquired the
meaning rich in some active agent which is closely related, but slightly
different from the basic sense having great physical strength. Idioms are
the most extreme examples of non-compositionality. Idioms like to kick
the bucket or to hear it through the grapevine only have an indirect his-
torical relationship to the meanings of the parts of the expression. We
are not talking about buckets or grapevines literally when we use these
idioms. Most collocations exhibit milder forms of non-compositionality,
like the expression international best practice that we used as an exam-
ple earlier in this book. It is very nearly a systematic composition of its
parts, but still has an element of added meaning. It usually refers to ad-
ministrative efficiency and would, for example, not be used to describe a
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cooking technique although that meaning would be compatible with its
literal meaning.

There is considerable overlap between the concept of collocation and
notions like term, technical term, and terminological phrase. As these
names suggest, the latter three are commonly used when collocations
are extracted from technical domains (in a process called terminology
extraction). The reader should be warned, though, that the word term
has a different meaning in information retrieval. There, it refers to both
words and phrases. So it subsumes the more narrow meaning that we
will use in this chapter.

Collocations are important for a number of applications: natural lan-
guage generation (to make sure that the output sounds natural and mis-
takes like powerful tea or to take a decision are avoided), computational
lexicography (to automatically identify the important collocations to be
listed in a dictionary entry), parsing (so that preference can be given to
parses with natural collocations), and corpus linguistic research (for in-
stance, the study of social phenomena like the reinforcement of cultural
stereotypes through language (Stubbs 1996)).

There is much interest in collocations partly because this is an area that
has been neglected in structural linguistic traditions that follow Saussure
and Chomsky. There is, however, a tradition in British linguistics, asso-
ciated with the names of Firth, Halliday, and Sinclair, which pays close
attention to phenomena like collocations. Structural linguistics concen-
trates on general abstractions about the properties of phrases and sen-
tences. In contrast, Firth’s Contextual Theory of Meaning emphasizes the
importance of context: the context of the social setting (as opposed to
the idealized speaker), the context of spoken and textual discourse (as
opposed to the isolated sentence), and, important for collocations, the
context of surrounding words (hence Firth’s famous dictum that a word is
characterized by the company it keeps). These contextual features easily
get lost in the abstract treatment that is typical of structural linguistics.

A good example of the type of problem that is seen as important in
this contextual view of language is Halliday's example of strong vs. pow-
erful tea (Halliday 1966: 150). It is a convention in English to talk about
strong tea, not powerful tea, although any speaker of English would also
understand the latter unconventional expression. Arguably, there are no
interesting structural properties of English that can be gleaned from this
contrast. However, the contrast may tell us something interesting about
attitudes towards different types of substances in our culture (why do we
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use powerful for drugs like heroin, but not for cigarettes, tea and coffee?)
and it is obviously important to teach this contrast to students who want
to learn idiomatically correct English. Social implications of language use
and language teaching are just the type of problem that British linguists
following a Firthian approach are interested in.

In this chapter, we will introduce a number of approaches to finding
collocations: selection of collocations by frequency, selection based on
mean and variance of the distance between focal word and collocating
word, hypothesis testing, and mutual information. We will then return
to the question of what a collocation is and discuss in more depth differ-
ent definitions that have been proposed and tests for deciding whether
a phrase is a collocation or not. The chapter concludes with further
readings and pointers to some of the literature that we were not able
to include.

The reference corpus we will use in examples in this chapter consists
of four months of the New York Times newswire: from August through
November of 1990. This corpus has about 115 megabytes of text and
roughly 14 million words. Each approach will be applied to this corpus
to make comparison easier. For most of the chapter, the New York Times
examples will only be drawn from fixed two-word phrases (or bigrams).
It is important to keep in mind, however, that we chose this pool for
convenience only. In general, both fixed and variable word combinations
can be collocations. Indeed, the section on mean and variance looks at
the more loosely connected type.

Frequency

Surely the simplest method for finding collocations in a text corpus is
counting. If two words occur together a lot, then that is evidence that
they have a special function that is not simply explained as the function
that results from their combination.

Predictably, just selecting the most frequently occurring bigrams is not
very interesting as is shown in table 5.1. The table shows the bigrams
(sequences of two adjacent words) that are most frequent in the corpus
and their frequency. Except for New York, all the bigrams are pairs of
function words.

There is, however, a very simple heuristic that improves these results
a lot (Justeson and Katz 1995b): pass the candidate phrases through a
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Ciwtw?) w w
80871 of the
58841 in the
26430 to the
21842 on the
21839 for the
18568 and  the
16121 that the
15630 at the
15494 to be
13899 in a
13689 of a
13361 by the
13183 with the
12622 from the
11428 New York
10007 he said

9775 as a
9231 is a
8753 has been
8573 for a

Table 5.1 Finding Collocations: Raw Frequency. C(-) is the frequency of some-

thing in the corpus.

Tag Pattern Example

AN

NN

AAN
ANN
NAN
NNN
NPN

linear function

regression coefficients

Gaussian random variable
cumulative distribution function
mean squared error

class probability function
degrees of freedom

Table 5.2 Part of speech tag patterns for collocation filtering. These patterns
were used by Justeson and Katz to identify likely collocations among frequently
occurring word sequences.
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Cwl w?) wt w2 Tag Pattern
11487 New York AN
7261 United States AN
5412 Los Angeles NN
3301 last year AN
3191 Saudi Arabia NN
2699 last week AN
2514 vice president AN
2378 Persian Gulf AN
2161 San Francisco NN
2106 President Bush NN
2001 Middle East AN
1942 Saddam Hussein NN
1867 Soviet Union AN
1850 White House AN
1633 United Nations AN
1337 York City NN
1328 oil prices NN
1210 next year AN
1074 chief executive AN
1073 real estate AN

Table 5.3 Finding Collocations: Justeson and Katz’ part-of-speech filter.

part-of-speech filter which only lets through those patterns that are likely
to be ‘phrases.’! Justeson and Katz (1995b: 17) suggest the patterns in
table 5.2. Each is followed by an example from the text that they use as a
test set. In these patterns A refers to an adjective, P to a preposition, and
N to a noun.

Table 5.3 shows the most highly ranked phrases after applying the fil-
ter. The results are surprisingly good. There are only 3 bigrams that we
would not regard as non-compositional phrases: last year, last week, and
first time. York City is an artefact of the way we have implemented the
Justeson and Katz filter. The full implementation would search for the
longest sequence that fits one of the part-of-speech patterns and would
thus find the longer phrase New York City, which contains York City.

The twenty highest ranking phrases containing strong and powerful all

1. Similar ideas can be found in (Ross and Tukey 1975) and (Kupiec et al. 1995).
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w C(strong,w) w C(powerful, w)
support 50 force 13
safety 22 computers 10
sales 21 position 8
opposition 19 men 8
showing 18 computer 8
sense 18 man 7
message 15 symbol 6
defense 14 military 6
gains 13 machines 6
evidence 13 country 6
criticism 13 weapons 5
possibility 11 post 5
feelings 11 people 5
demand 11 nation 5
challenges 11 forces 5
challenge 11 chip 5
case 11 Germany 5
supporter 10 senators 4
signal 9 neighbor 4
man 9 magnet 4

Table 5.4 The nouns w occurring most often in the patterns ‘strong w’ and
‘powerful w.

have the form A N (where A is either strong or powerful). We have listed
them in table 5.4.

Again, given the simplicity of the method, these results are surpris-
ingly accurate. For example, they give evidence that strong challenge and
powerful computers are correct whereas powerful challenge and strong
computers are not. However, we can also see the limits of a frequency-
based method. The nouns man and force are used with both adjectives
(strong force occurs further down the list with a frequency of 4). A more
sophisticated analysis is necessary in such cases.

Neither strong tea nor powerful tea occurs in our New York Times cor-
pus. However, searching the larger corpus of the World Wide Web we find
799 examples of strong tea and 17 examples of powerful tea (the latter
mostly in the computational linguistics literature on collocations), which
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indicates that the correct phrase is strong tea.?

Justeson and Katz' method of collocation discovery is instructive in
that it demonstrates an important point. A simple quantitative technique
(the frequency filter in this case) combined with a small amount of lin-
guistic knowledge (the importance of parts of speech) goes along way. In
the rest of this chapter, we will use a stop list that excludes words whose
most frequent tag is not a verb, noun or adjective.

Exercise 5.1 [*]
Add part-of-speech patterns useful for collocation discovery to table 5.2, includ-
ing patterns longer than two tags.

Exercise 5.2 [*]
Pick a document in which your name occurs (an email, a university transcript or
a letter). Does Justeson and Katz'’s filter identify your name as a collocation?
Exercise 5.3 [*]

We used the World Wide Web as an auxiliary corpus above because neither stong
tea nor powerful tea occurred in the New York Times. Modify Justeson and Katz’s
method so that it uses the World Wide Web as a resource of last resort.

Mean and Variance

Frequency-based search works well for fixed phrases. But many colloca-
tions consist of two words that stand in a more flexible relationship to
one another. Consider the verb knock and one of its most frequent argu-
ments, door. Here are some examples of knocking on or at a door from
our corpus:

a. she knocked on his door

b. they knocked at the door

¢. 100 women knocked on Donaldson’s door
d. a man knocked on the metal front door

The words that appear between knocked and door vary and the distance
between the two words is not constant so a fixed phrase approach would
not work here. But there is enough regularity in the patterns to allow
us to determine that knock is the right verb to use in English for this
situation, not hit, beat or rap.

2. This search was performed on AltaVista on March 28, 1998.
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Sentence: Stocks crash as rescue plan teeters

Bigrams: stocks crash stocks as  stocks rescue

MEAN
VARIANCE

crash as crash rescue crash plan
as rescue as plan as teeters
rescue plan rescue teeters
plan teeters

Figure 5.1 Using a three word collocational window to capture bigrams at a
distance.

A short note is in order here on collocations that occur as a fixed phrase
versus those that are more variable. To simplify matters we only look
at fixed phrase collocations in most of this chapter, and usually at just
bigrams. But it is easy to see how to extend techniques applicable to
bigrams to bigrams at a distance. We define a collocational window (usu-
ally a window of 3 to 4 words on each side of a word), and we enter every
word pair in there as a collocational bigram, as in figure 5.1. We then
proceed to do our calculations as usual on this larger pool of bigrams.

However, the mean and variance based methods described in this sec-
tion by definition look at the pattern of varying distance between two
words. If that pattern of distances is relatively predictable, then we have
evidence for a collocation like knock ... door that is not necessarily a
fixed phrase. We will return to this point and a more in-depth discussion
of what a collocation is towards the end of this chapter.

One way of discovering the relationship between knocked and door is to
compute the mean and variance of the offsets (signed distances) between
the two words in the corpus. The mean is simply the average offset. For
the examples in (5.1), we compute the mean offset between knocked and
door as follows:

%(3+3+5+5)=4.0

(This assumes a tokenization of Donaldson’s as three words Donaldson,
apostrophe, and s, which is what we actually did.) If there was an oc-
currence of door before knocked, then it would be entered as a negative
number. For example, —3 for the door that she knocked on. We restrict
our analysis to positions in a window of size 9 around the focal word
knocked.
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The variance measures how much the individual offsets deviate from
the mean. We estimate it as follows.
2 2t (di —d)?

B n-1
where n is the number of times the two words co-occur, d; is the offset for
co-occurrence i, and d is the sample mean of the offsets. If the offset is
the same in all cases, then the variance is zero. If the offsets are randomly
distributed (which will be the case for two words which occur together by
chance, but not in a particular relationship), then the variance will be
high. As is customary, we use the sample deviation s = +/s2, the square
root of the variance, to assess how variable the offset between two words
is. The deviation for the four examples of knocked / door in the above
caseis 1.15:

N

s = \/%((3 -4.0)2+ (3-4.0)2+(5-4.02+ (5-4.0)2) = 1.15

The mean and deviation characterize the distribution of distances be-
tween two words in a corpus. We can use this information to discover
collocations by looking for pairs with low deviation. A low deviation
means that the two words usually occur at about the same distance. Zero
deviation means that the two words always occur at exactly the same
distance.

We can also explain the information that variance gets at in terms of
peaks in the distribution of one word with respect to another. Figure 5.2
shows the three cases we are interested in. The distribution of strong with
respect to opposition has one clear peak at position —1 (corresponding
to the phrase strong opposition). Therefore the variance of strong with
respect to opposition is small (s = 0.67). The mean of —1.15 indicates that
strong usually occurs at position —1 (disregarding the noise introduced
by one occurrence at —4).

We have restricted positions under consideration to a window of size
9 centered around the word of interest. This is because collocations are
essentially a local phenomenon. Note also that we always get a count of
0 at position 0 when we look at the relationship between two different
words. This is because, for example, strong cannot appear in position 0
in contexts in which that position is already occupied by opposition.

Moving on to the second diagram in figure 5.2, the distribution of
strong with respect to support is drawn out, with several negative po-
sitions having large counts. For example, the count of approximately 20
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frequency
of strong
50 —
20
—4 -3 1 3 4 "
Position of strong with respect to opposition (d = —1.15,s = 0.67).
frequency
of strong
50 -
T
—4 -3 1 3 4 ]
Position of strong with respect to support (d = —1.45,s = 1.07).
frequency
of strong
50 —
20 4
[ 1 71—
-4 -3 1 3 4

Position of strong with respect to for (d = —1.12,s = 2.15).

Figure 5.2 Histograms of the position of strong relative to three words.
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s d Count | Word 1 Word 2
0.43 0.97 11657 | New York
0.48 1.83 24 | previous games
0.15 2.98 46 | minus points
0.49 3.87 131 | hundreds dollars
4.03 0.44 36 | editorial Atlanta
4.03 0.00 78 | ring New
3.96 0.19 119 | point hundredth
3.96 0.29 106 | subscribers | by
1.07 1.45 80 | strong support
1.13 2.57 7 | powerful organizations
1.01 2.00 112 | Richard Nixon
1.05 0.00 10 | Garrison said

Table 5.5 Finding collocations based on mean and variance. Sample deviation
s and sample mean d of the distances between 12 word pairs.

at position —2 is due to uses like strong leftist support and strong busi-
ness support. Because of this greater variability we get a higher s (1.07)
and a mean that is between positions —1 and —2 (—1.45).

Finally, the occurrences of strong with respect to for are more evenly
distributed. There is tendency for strong to occur before for (hence the
negative mean of —1.12), but it can pretty much occur anywhere around
for. The high deviation of s = 2.15 indicates this randomness. This
indicates that for and strong don’t form interesting collocations.

The word pairs in table 5.5 indicate the types of collocations that can
be found by this approach. If the mean is close to 1.0 and the devia-
tion low, as is the case for New York, then we have the type of phrase
that Justeson and Katz’ frequency-based approach will also discover. If
the mean is much greater than 1.0, then a low deviation indicates an in-
teresting phrase. The pair previous / games (distance 2) corresponds to
phrases like in the previous 10 games or in the previous 15 games; minus
/ points corresponds to phrases like minus 2 percentage points, minus
3 percentage points etc; hundreds / dollars corresponds to hundreds of
billions of dollars and hundreds of millions of dollars.

High deviation indicates that the two words of the pair stand in no
interesting relationship as demonstrated by the four high-variance exam-
ples in table 5.5. Note that means tend to be close to zero here as one
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would expect for a uniform distribution. More interesting are the cases
in between, word pairs that have large counts for several distances in
their collocational distribution. We already saw the example of strong
{ business } support in figure 5.2. The alternations captured in the other
three medium-variance examples are powerful { lobbying } organizations,
Richard { M. } Nixon, and Garrison said / said Garrison (remember that
we tokenize Richard M. Nixon as four tokens: Richard, M, ., Nixon).

The method of variance-based collocation discovery that we have in-
troduced in this section is due to Smadja. We have simplified things
somewhat. In particular, Smadja (1993) uses an additional constraint
that filters out ‘flat’ peaks in the position histogram, that is, peaks that
are not surrounded by deep valleys (an example is at —2 for the combi-
nation strong / for in figure 5.2). Smadja (1993) shows that the method
is quite successful at terminological extraction (with an estimated accu-
racy of 80%) and at determining appropriate phrases for natural language
generation (Smadja and McKeown 1990).

Smadja’s notion of collocation is less strict than many others’. The
combination knocked / door is probably not a collocation we want to
classify as terminology - although it may be very useful to identify for
the purpose of text generation. Variance-based collocation discovery is
the appropriate method if we want to find this type of word combination,
combinations of words that are in a looser relationship than fixed phrases
and that are variable with respect to intervening material and relative
position.

Hypothesis Testing

One difficulty that we have glossed over so far is that high frequency and
low variance can be accidental. If the two constituent words of a frequent
bigram like new companies are frequently occurring words (as new and
companies are), then we expect the two words to co-occur a lot just by
chance, even if they do not form a collocation.

What we really want to know is whether two words occur together more
often than chance. Assessing whether or not something is a chance event
is one of the classical problems of statistics. It is usually couched in terms
of hypothesis testing. We formulate a null hypothesis Hy that there is no
association between the words beyond chance occurrences, compute the
probability p that the event would occur if Hy were true, and then reject
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Hy if p is too low (typically if beneath a significance level of p < 0.05,
0.01, 0.005, or 0.001) and retain Hy as possible otherwise.3

It is important to note that this is a mode of data analysis where we
look at two things at the same time. As before, we are looking for partic-
ular patterns in the data. But we are also taking into account how much
data we have seen. Even if there is a remarkable pattern, we will discount
it if we haven’t seen enough data to be certain that it couldn’t be due to
chance.

How can we apply the methodology of hypothesis testing to the prob-
lem of finding collocations? We first need to formulate a null hypothesis
which states what should be true if two words do not form a colloca-
tion. For such a free combination of two words we will assume that each
of the words w! and w? is generated completely independently of the
other, and so their chance of coming together is simply given by:

P(wlw?) = P(whHP(w?)
The model implies that the probability of co-occurrence is just the prod-
uct of the probabilities of the individual words. As we discuss at the

end of this section, this is a rather simplistic model, and not empirically
accurate, but for now we adopt independence as our null hypothesis.

The t test

Next we need a statistical test that tells us how probable or improbable it
is that a certain constellation will occur. A test that has been widely used
for collocation discovery is the t test. The t test looks at the mean and
variance of a sample of measurements, where the null hypothesis is that
the sample is drawn from a distribution with mean u. The test looks at
the difference between the observed and expected means, scaled by the
variance of the data, and tells us how likely one is to get a sample of that
mean and variance (or a more extreme mean and variance) assuming that
the sample is drawn from a normal distribution with mean u. To deter-
mine the probability of getting our sample (or a more extreme sample),
we compute the t statistic:

X—-u
t = =
VN
3. Significance at a level of 0.05 is the weakest evidence that is normally accepted in the

experimental sciences. The large amounts of data commonly available for Statistical NLP
tasks means the we can often expect to achieve greater levels of significance.
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where x is the sample mean, s? is the sample variance, N is the sample
size, and u is the mean of the distribution. If the t statistic is large enough
we can reject the null hypothesis. We can find out exactly how large it has
to be by looking up the table of the t distribution we have compiled in
the appendix (or by using the better tables in a statistical reference book,
or by using appropriate computer software).

Here’s an example of applying the t test. Our null hypothesis is that
the mean height of a population of men is 158cm. We are given a sample
of 200 men with x = 169 and s> = 2600 and want to know whether this
sample is from the general population (the null hypothesis) or whether it
is from a different population of smaller men. This gives us the following
t according to the above formula:

. 169 — 158
\/@
200

If you look up the value of t that corresponds to a confidence level of
« = 0.005, you will find 2.576.% Since the t we got is larger than 2.576,
we can reject the null hypothesis with 99.5% confidence. So we can say
that the sample is not drawn from a population with mean 158cm, and
our probability of error is less than 0.5%.

To see how to use the t test for finding collocations, let us compute the
t value for new companies. What is the sample that we are measuring the
mean and variance of? There is a standard way of extending the t test
for use with proportions or counts. We think of the text corpus as a
long sequence of N bigrams, and the samples are then indicator random
variables that take on the value 1 when the bigram of interest occurs, and
are 0 otherwise.

Using maximum likelihood estimates, we can compute the probabilities
of new and companies as follows. In our corpus, new occurs 15,828
times, companies 4,675 times, and there are 14,307,668 tokens overall.

~ 3.05

15828
Pnew) = 13507668
. 4675
P(companies) = 14307668

4. A sample of 200 means 199 degress of freedom, which corresponds to about the same
t as o degrees of freedom. This is the row of the table where we looked up 2.576.
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The null hypothesis is that occurrences of new and companies are inde-
pendent.

Hy : P(new companies) = P (new)P (companies)
15828 4675

- = -7
= 14307668 < 14307668 ~ > 1> X 10

If the null hypothesis is true, then the process of randomly generating
bigrams of words and assigning 1 to the outcome new companies and
0 to any other outcome is in effect a Bernoulli trial with p = 3.615 X
10~7 for the probability of new company turning up. The mean for this
distribution is ¢ = 3.615 x 1077 and the variance is o2 = p(1 — p) (see
section 2.1.9), which is approximately p. The approximation o = p(1 —
p) = p holds since for most bigrams p is small.

It turns out that there are actually 8 occurrences of new companies
among the 14,307,668 bigrams in our corpus. So, for the sample, we
have that the sample mean is: X = m ~ 5.591 x 10~7. Now we have
everything we need to apply the t test:

poXoH 5.59110°7 - 3.61510"7
\/E 5.59110~7
N 14307668

This t value of 0.999932 is not larger than 2.576, the critical value for
o = 0.005. So we cannot reject the null hypothesis that new and compa-
nies occur independently and do not form a collocation. That seems the
right result here: the phrase new companies is completely compositional
and there is no element of added meaning here that would justify elevat-
ing it to the status of collocation. (The t value is suspiciously close to 1.0,
but that is a coincidence. See exercise 5.5.)

Table 5.6 shows t values for ten bigrams that occur exactly 20 times in
the corpus. For the top five bigrams, we can reject the null hypothesis
that the component words occur independently for &« = 0.005, so these
are good candidates for collocations. The bottom five bigrams fail the
test for significance, so we will not regard them as good candidates for
collocations.

Note that a frequency-based method would not be able to rank the ten
bigrams since they occur with exactly the same frequency. Looking at the
counts in table 5.6, we can see that the t test takes into account the num-
ber of co-occurrences of the bigram (C(w! w?)) relative to the frequencies
of the component words. If a high proportion of the occurrences of both
words (Ayatollah Ruhollah, videocassette recorder) or at least a very high

~ 0.999932
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t Ciwl)y Ccw?) cwtw?) | wl w2
4.4721 42 20 20 | Ayatollah Ruhollah
4.4721 41 27 20 | Bette Midler
4.4720 30 117 20 | Agatha Christie
4.4720 77 59 20 | videocassette | recorder
4.4720 24 320 20 | unsalted butter
2.3714 14907 9017 20 | first made
2.2446 13484 10570 20 | over many
1.3685 14734 13478 20 | into them
1.2176 14093 14776 20 | like people
0.8036 15019 15629 20 | time last

Table 5.6 Finding collocations: The t test applied to 10 bigrams that occur with
frequency 20.

proportion of the occurrences of one of the words (unsalted) occurs in
the bigram, then its t value is high. This criterion makes intuitive sense.

Unlike most of this chapter, the analysis in table 5.6 includes some
stop words - without stop words, it is actually hard to find examples that
fail significance. It turns out that most bigrams attested in a corpus occur
significantly more often than chance. For 824 out of the 831 bigrams that
occurred 20 times in our corpus the null hypothesis of independence can
be rejected. But we would only classify a fraction as true collocations.
The reason for this surprisingly high proportion of possibly dependent
bigrams (SZT‘I1 ~ 0.99) is that language - if compared with a random word
generator - is very regular so that few completely unpredictable events
happen. Indeed, this is the basis of our ability to perform tasks like
word sense disambiguation and probabilistic parsing that we discuss in
other chapters. The t test and other statistical tests are most useful as
a method for ranking collocations. The level of significance itself is less
useful. In fact, in most publications that we cite in this chapter, the level
of significance is never looked at. All that is used is the scores and the
resulting ranking.

Hypothesis testing of differences

The t test can also be used for a slightly different collocation discovery
problem: to find words whose co-occurrence patterns best distinguish
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t C(w) C(strongw) C(powerfulw) Word

3.1622 933 0 10 computers
2.8284 2337 0 8 computer
2.4494 289 0 6 symbol
2.4494 588 0 6 machines
2.2360 2266 0 5 Germany
2.2360 3745 0 5 nation
2.2360 395 0 5 chip
2.1828 3418 4 13 force
2.0000 1403 0 4 friends
2.0000 267 0 4 neighbor
7.0710 3685 50 0 support
6.3257 3616 58 7 enough
4.6904 986 22 0 safety
4.5825 3741 21 0 sales
4.0249 1093 19 1 opposition
3.9000 802 18 1 showing
3.9000 1641 18 1 sense
3.7416 2501 14 0 defense
3.6055 851 13 0 gains
3.6055 832 13 0 criticism

Table 5.7 Words that occur significantly more often with powerful (the first ten
words) and strong (the last ten words).

between two words. For example, in computational lexicography we may
want to find the words that best differentiate the meanings of strong and
powerful. This use of the t test was suggested by Church and Hanks
(1989). Table 5.7 shows the ten words that occur most significantly more
often with powerful than with strong (first ten words) and most signif-
icantly more often with strong than with powerful (second set of ten
words).

The t scores are computed using the following extension of the t test
to the comparison of the means of two normal populations:
;= X1 — X

812 S22
ny nz

Here the null hypothesis is that the average difference is 0 (u = 0), so we
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have x —u=x = % > (X1, — x2;,) = X1 — X2. In the denominator we add the
variances of the two populations since the variance of the difference of
two random variables is the sum of their individual variances.

Now we can explain table 5.7. The t values in the table were computed
assuming a Bernoulli distribution (as we did for the basic version of the
t test that we introduced first). If w is the collocate of interest (e.g.,
computers or symbol) and v! and v? are the words we are comparing (e.g.,
powerful and strong), then we have %1 = s = P(vlw), X» = s5 = P(V?w).
We again use the approximation s? = p — p? =~ p:

_Pv'w) - P(v*w)

P(viw)+P(v2w)
N

We can simplify this as follows.

Cvlw)  C(vV’w)
t =~ N N
Cviw)+C(v2w)
N2

Cvlw) — C(v®w)
JC(VIw) + C(v2w)

where C(x) is the number of times x occurs in the corpus.

The application suggested by Church and Hanks (1989) for this form
of the t test was lexicography. The data in table 5.7 are useful to a lex-
icographer who wants to write precise dictionary entries that bring out
the difference between strong and powerful. Based on significant collo-
cates, Church and Hanks analyze the difference as a matter of intrinsic
vs. extrinsic quality. For example, strong support from a demographic
group means that the group is very committed to the cause in question,
but the group may not have any power. So strong describes an intrinsic
quality. Conversely, a powerful supporter is somebody who actually has
the power to move things. Many of the collocates we found in our cor-
pus support Church and Hanks’ analysis. But there is more complexity to
the difference in meaning between the two words since what is extrinsic
and intrinsic can depend on subtle matters like cultural attitudes. For ex-
ample, we talk about strong tea on the one hand and powerful drugs on
the other, a difference that tells us more about our attitude towards tea
and drugs than about the semantics of the two adjectives (Church et al.
1991: 133).
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w1 = new Wy # new

Wo = companies 8 4667
(new companies) | (e.g., old companies)

Wo # companies 15820 14287181
(e.g., new machines) (e.g., old machines)

Table 5.8 A 2-by-2 table showing the dependence of occurrences of new and
companies. There are 8 occurrences of new companies in the corpus, 4,667 bi-
grams where the second word is companies, but the first word is not new, 15,820
bigrams with the first word new and a second word different from companies,
and 14,287,181 bigrams that contain neither word in the appropriate position.

Pearson’s chi-square test

Use of the t test has been criticized because it assumes that probabili-
ties are approximately normally distributed, which is not true in general
(Church and Mercer 1993: 20). An alternative test for dependence which
does not assume normally distributed probabilities is the x?2 test (pro-
nounced ‘chi-square test’). In the simplest case, the x? test is applied to
2-by-2 tables like table 5.8. The essence of the test is to compare the
observed frequencies in the table with the frequencies expected for inde-
pendence. If the difference between observed and expected frequencies
is large, then we can reject the null hypothesis of independence.

Table 5.8 shows the distribution of new and companies in the refer-
ence corpus that we introduced earlier. Recall that C(new) = 15,828,
C(companies) = 4,675, C(new companies) = 8, and that there are
14,307,668 tokens in the corpus. That means that the number of bi-
grams w;w;,1 with the first token not being new and the second token
being companies is 4667 = 4675 — 8. The two cells in the bottom row are
computed in a similar way.

The x? statistic sums the differences between observed and expected
values in all squares of the table, scaled by the magnitude of the expected
values, as follows:

2 (0ij — Eij)?

X % E
where i ranges over rows of the table, j ranges over columns, O;; is the
observed value for cell (i, j) and E;; is the expected value.

One can show that the quantity X? is asymptotically x? distributed. In
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other words, if the numbers are large, then X2 has a x? distribution. We
will return to the issue of how good this approximation is later.

The expected frequencies E;; are computed from the marginal proba-
bilities, that is, from the totals of the rows and columns converted into
proportions. For example, the expected frequency for cell (1,1) (new
companies) would be the marginal probability of new occurring as the
first part of a bigram times the marginal probability of companies occur-
ring as the second part of a bigram (multiplied by the number of bigrams
in the corpus):

8 + 4667 y 8 + 15820
N N
That is, if new and companies occurred completely independently of each
other we would expect 5.2 occurrences of new companies on average for

a text of the size of our corpus.
The x? test can be applied to tables of any size, but it has a simpler
form for 2-by-2 tables: (see exercise 5.9)

XN = 5.2

2 _ N(01102 — 012071)?
(011 + 012) (011 + 021) (012 + 022) (021 + O22)

X

This formula gives the following x2 value for table 5.8:

14307668(8 x 14287181 — 4667 x 15820)2

~ 1.
(8 +4667)(8 +15820) (4667 + 14287181) (15820 + 14287181) >>

Looking up the x? distribution in the appendix, we find that at a proba-
bility level of & = 0.05 the critical value is x? = 3.841 (the statistic has
one degree of freedom for a 2-by-2 table). So we cannot reject the null
hypothesis that new and companies occur independently of each other.
Thus new companies is not a good candidate for a collocation.

This result is the same as we got with the t statistic. In general, for the
problem of finding collocations, the differences between the t statistic
and the x? statistic do not seem to be large. For example, the 20 bigrams
with the highest t scores in our corpus are also the 20 bigrams with the
highest x? scores.

However, the x? test is also appropriate for large probabilities, for
which the normality assumption of the t test fails. This is perhaps the
reason that the x? test has been applied to a wider range of problems in
collocation discovery.

One of the early uses of the x? test in Statistical NLP was the identifi-



5.3 Hypothesis Testing 171

| cow = cow
vache 59 6
= vache 8 570934

Table 5.9 Correspondence of vache and cow in an aligned corpus. By applying
the x2 test to this table one can determine whether vache and cow are transla-
tions of each other.

| corpus 1 corpus 2

word 1 60 9
word 2 500 76
word 3 124 20

Table 5.10 Testing for the independence of words in different corpora using x?2.
This test can be used as a metric for corpus similarity.

cation of translation pairs in aligned corpora (Church and Gale 1991b).>
The data in table 5.9 (from a hypothetical aligned corpus) strongly sug-
gest that vache is the French translation of English cow. Here, 59 is the
number of aligned sentence pairs which have cow in the English sentence
and vache in the French sentence etc. The x? value is very high here:
Xx° = 456400. So we can reject the null hypothesis that cow and vache
occur independently of each other with high confidence. This pair is a
good candidate for a translation pair.

An interesting application of x? is as a metric for corpus similarity
(Kilgarriff and Rose 1998). Here we compile an n-by-two table for a large
n, for example n = 500. The two columns correspond to the two corpora.
Each row corresponds to a particular word. This is schematically shown
in table 5.10. If the ratio of the counts are about the same (as is the case
in table 5.10, each word occurs roughly 6 times more often in corpus 1
than in corpus 2), then we cannot reject the null hypothesis that both
corpora are drawn from the same underlying source. We can interpret
this as a high degree of similarity. On the other hand, if the ratios vary
wildly, then the X? score will be high and we have evidence for a high
degree of dissimilarity.

5. They actually use a measure they call ¢2, which is X2 multiplied by N. They do this
since they are only interested in ranking translation pairs, so that assessment of signifi-
cance is not important.
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H1 HZ

p==% pr=%
) p==% p2 = &
c; bigrams are wlw? b(ci2; c1,p) b(ci2; c1,p1)

c2 — 12 out of N — ¢ bigrams are =w!w? b(c; —c12; N —c1,p)  b(ca —c12; N —¢1,p2)

5.34

LIKELTHOOD RATIO

Table 5.11 How to compute Dunning’s likelihood ratio test. For example, the
likelihood of hypothesis H; is the product of the last two lines in the rightmost
column.

Just as application of the t test is problematic because of the under-
lying normality assumption, so is application of x? in cases where the
numbers in the 2-by-2 table are small. Snedecor and Cochran (1989: 127)
advise against using x? if the total sample size is smaller than 20 or if it
is between 20 and 40 and the expected value in any of the cells is 5 or
less.

Likelihood ratios

Likelihood ratios are another approach to hypothesis testing. We will see
below that they are more appropriate for sparse data than the x? test.
But they also have the advantage that the statistic we are computing, a
likelihood ratio, is more interpretable than the X? statistic. It is simply
a number that tells us how much more likely one hypothesis is than the
other.

In applying the likelihood ratio test to collocation discovery, we ex-
amine the following two alternative explanations for the occurrence fre-
quency of a bigram wlw? (Dunning 1993):

= Hypothesis 1. P(w?|w!) = p = P(W?|-w!)
= Hypothesis 2. P(w?|w!) = p; = p» = P(W?|-wl)

Hypothesis 1 is a formalization of independence (the occurrence of w? is
independent of the previous occurrence of w!), Hypothesis 2 is a formal-
ization of dependence which is good evidence for an interesting colloca-
tion.®

6. We assume that p; > p» if Hypothesis 2 is true. The case p; < p» is rare and we will
ignore it here.
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We use the usual maximum likelihood estimates for p, p; and p» and
write cj, ¢», and c;» for the number of occurrences of wl, w? and wlw?
in the corpus:

2

D=N 191=%2 p2 =

C2 —C12
N—C1

Assuming a binomial distribution:

b(k; n,x) = (Z) xK(1 = x)(n0
the likelihood of getting the counts for w!, w? and w!w? that we actually
observed is then L(H;) = b(cy2; c1,p)b(c2 — c12; N — ¢1,p) for Hypothe-
sis 1 and L(H>) = b(ci2; c1,p1)b(c2—c12; N—cy,p2) for Hypothesis 2. Ta-
ble 5.11 summarizes this discussion. One obtains the likelihoods L(H;)
and L(H>) just given by multiplying the last two lines, the likelihoods of
the specified number of occurrences of wlw? and -~w!w?2, respectively.
The log of the likelihood ratio A is then as follows:

gL(Hl)
L(H>)
log b(cy2,c1,p)b(c2 — c12,N — ¢1,p)
b(ci2,c1,p1)b(c2 — c12,N — c1,p2)
log L(c12,c1,p) +1ogL(c2 — c12,N = ¢1,p)

—log L(c12,c1,p1) —logL(c2 — ¢12,N — ¢1,p2)

logA =

where L(k,n,x) = xK(1 — x)"k,

Table 5.12 shows the twenty bigrams of powerful which are highest
ranked according to the likelihood ratio when the test is applied to the
New York Times corpus. We will explain below why we show the quantity
—2log A instead of A. We consider all occurring bigrams here, including
rare ones that occur less than six times, since this test works well for
rare bigrams. For example, powerful cudgels, which occurs 2 times, is
identified as a possible collocation.

One advantage of likelihood ratios is that they have a clear intuitive in-
terpretation. For example, the bigram powerful computers is e%->*82:96 ~
1.3 x 10!8 times more likely under the hypothesis that computers is more
likely to follow powerful than its base rate of occurrence would suggest.
This number is easier to interpret than the scores of the t test or the
x2 test which we have to look up in a table.
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—2logA Cc(wlH) Ccw?) Ccwlw?) wl w2

1291.42 12593 932 150 most powerful
99.31 379 932 10 politically powerful
82.96 932 934 10 powerful computers
80.39 932 3424 13 powerful force
57.27 932 291 6 powerful symbol
51.66 932 40 4 powerful lobbies
51.52 171 932 5 economically powerful
51.05 932 43 4 powerful magnet
50.83 4458 932 10 less powerful
50.75 6252 932 11 very powerful
49.36 932 2064 8 powerful position
48.78 932 591 6 powerful machines
47.42 932 2339 8 powerful computer
43.23 932 16 3 powerful magnets
43.10 932 396 5 powerful chip
40.45 932 3694 8 powerful men
36.36 932 47 3 powerful 486
36.15 932 268 4 powerful neighbor
35.24 932 5245 8 powerful political
34.15 932 3 2 powerful cudgels

Table 5.12 Bigrams of powerful with the highest scores according to Dunning’s
likelihood ratio test.

But the likelihood ratio test also has the advantage that it can be more
appropriate for sparse data than the x? test. How do we use the likeli-
hood ratio for hypothesis testing? If A is a likelihood ratio of a particular
form, then the quantity —21log A is asymptotically x? distributed (Mood
et al. 1974: 440). So we can use the values in table 5.12 to test the null
hypothesis H; against the alternative hypothesis H». For example, we can
look up the value of 34.15 for powerful cudgels in the table and reject H;
for this bigram on a confidence level of & = 0.005. (The critical value (for
one degree of freedom) is 7.88. See the table of the x? distribution in the
appendix.)

The particular form of the likelihood ratio that is required here is that
of a ratio between the maximum likelihood estimate over a subpart of
the parameter space and the maximum likelihood estimate over the en-
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tire parameter space. For the likelihood ratio in (5.11), the entire space
is the space of pairs (p1, p2) for the probability of w? occurring when w!
preceded (p1) and w? occurring when a different word preceded (p»). We
get the maximum likelihood for the data we observed if we assume the
maximum likelihood estimates that we computed in (5.8). The subspace
is the subset of cases for which p; = p». Again, the estimate in (5.8)
gives us the maximum likelihood over the subspace given the data we ob-
served. It can be shown that if A is a ratio of two likelihoods of this type
(one being the maximum likelihood over the subspace, the other over the
entire space), then —2log A is asymptotically x? distributed. ‘Asymptot-
ically’ roughly means ‘if the numbers are large enough’. Whether or not
the numbers are large enough in a particular case is hard to determine,
but Dunning has shown that for small counts the approximation to x2
is better for the likelihood ratio in (5.11) than, for example, for the X?2
statistic in (5.6). Therefore, the likelihood ratio test is in general more
appropriate than Pearson’s x? test for collocation discovery.”

Relative frequency ratios. So far we have looked at evidence for collo-
cations within one corpus. Ratios of relative frequencies between two or
more different corpora can be used to discover collocations that are char-
acteristic of a corpus when compared to other corpora (Damerau 1993).
Although ratios of relative frequencies do not fit well into the hypothe-
sis testing paradigm, we treat them here since they can be interpreted as
likelihood ratios.

Table 5.13 shows ten bigrams that occur exactly twice in our reference
corpus (the 1990 New York Times corpus). The bigrams are ranked ac-
cording to the ratio of their relative frequencies in our 1990 reference
corpus versus their frequencies in a 1989 corpus (again drawn from the
months August through November). For example, Karim Obeid occurs 68
times in the 1989 corpus. So the relative frequency ratio r is:

2

r =800~ 0.024116

11731564

The bigrams in table 5.13 are mostly associated with news items that
were more prevalent in 1989 than in 1990: The Muslim cleric Sheik Abdul

7. However, even —2log A is not approximated well by x? if the expected values in the
2-by-2 contingency table are less than 1.0 (Read and Cressie 1988; Pedersen 1996).
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Ratio 1990 1989 w! w2
0.0241 2 68 Karim  Obeid
0.0372 2 44 East Berliners
0.0372 2 44  Miss Manners
0.0399 2 41 17 earthquake
0.0409 2 40 HUD officials
0.0482 2 34 EAST GERMANS
0.0496 2 33 Muslim cleric
0.0496 2 33 John Le

0.0512 2 32 Prague Spring
0.0529 2 31 Among individual

Table 5.13 Damerau’s frequency ratio test. Ten bigrams that occurred twice
in the 1990 New York Times corpus, ranked according to the (inverted) ratio of
relative frequencies in 1989 and 1990.

Karim Obeid (who was abducted in 1989), the disintegration of commu-
nist Eastern Europe (East Berliners, EAST GERMANS, Prague Spring), the
novel The Russia House by John Le Carre, a scandal in the Department of
Housing and Urban Development (HUD), and the October 17 earthquake
in the San Francisco Bay Area. But we also find artefacts like Miss Manners
(whose column the New York Times newswire stopped carrying in 1990)
and Among individual. The reporter Phillip H. Wiggins liked to use the
latter phrase for his stock market reports (Among individual Big Board
issues ...), but he stopped writing for the Times in 1990.

The examples show that frequency ratios are mainly useful to find
subject-specific collocations. The application proposed by Damerau is to
compare a general text with a subject-specific text. Those words and
phrases that on a relative basis occur most often in the subject-specific
text are likely to be part of the vocabulary that is specific to the domain.

Exercise 5.4 [**]

Identify the most significantly non-independent bigrams according to the t test
in a corpus of your choice.

Exercise 5.5 [*]

Itis a coincidence that the t value for new companies is close to 1.0. Show this by
computing the t value of new companies for a corpus with the following counts.
C(new) = 30,000, C(companies) = 9,000, C(new companies) = 20, and corpus
size N = 15,000, 000.
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Exercise 5.6 [*]

We can improve on the method in section 5.2 by taking into account variance. In
fact, Smadja does this and the algorithm described in (Smadja 1993) therefore
bears some similarity to the t test.

Compute the t statistic in equation (5.3) for possible collocations by substituting
mean and variance as computed in section 5.2 for X and s> and (a) assuming
u = 0, and (b) assuming u = round(x), that is, the closest integer. Note that we
are not testing for bigrams here, but for collocations of word pairs that occur at
any fixed small distance.

Exercise 5.7 [%*]

As we pointed out above, almost all bigrams occur significantly more often than
chance if a stop list is used for prefiltering. Verify that there is a large proportion
of bigrams that occur less often than chance if we do not filter out function
words.

Exercise 5.8 [%*]

Apply the t test of differences to a corpus of your choice. Work with the follow-
ing word pairs or with word pairs that are appropriate for your corpus: man /
woman, blue / green, lawyer / doctor.

Exercise 5.9 [*]

Derive equation (5.7) from equation (5.6).

Exercise 5.10 [% %]

Find terms that distinguish best between the first and second part of a corpus
of your choice.

Exercise 5.11 [* ]

Repeat the above exercise with random selection. Now you should find that
fewer terms are significant. But some still are. Why? Shouldn’t there be no
differences between corpora drawn from the same source? Do this exercise for
different significance levels.

Exercise 5.12 [% %]

Compute a measure of corpus similarity between two corpora of your choice.

Exercise 5.13 [**]

Kilgarriff and Rose’s corpus similarity measure can also be used for assessing
corpus homogeneity. This is done by constructing a series of random divisions
of the corpus into a pair of subcorpora. The test is then applied to each pair. If
most of the tests indicated similarity, then it is a homogeneous corpus. Apply
this test to a corpus of your choice.
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Iwhw?) cwh) cw?) Ccwlw?) | w! w2
18.38 42 20 20 | Ayatollah Ruhollah
17.98 41 27 20 | Bette Midler
16.31 30 117 20 | Agatha Christie
15.94 77 59 20 | videocassette | recorder
15.19 24 320 20 | unsalted butter
1.09 14907 9017 20 | first made
1.01 13484 10570 20 | over many
0.53 14734 13478 20 | into them
0.46 14093 14776 20 | like people
0.29 15019 15629 20 | time last

Table 5.14 Finding collocations: Ten bigrams that occur with frequency 20,
ranked according to mutual information.

Mutual Information

An information-theoretically motivated measure for discovering inter-
esting collocations is pointwise mutual information (Church et al. 1991;
Church and Hanks 1989; Hindle 1990). Fano (1961: 27-28) originally de-
fined mutual information between particular events x" and y’, in our case
the occurrence of particular words, as follows:

0g, P(x"y")
P(x")P(y")

PX'y")

P(x')
P(y'|x")
° PO
This type of mutual information, which we introduced in section 2.2.3,
is roughly a measure of how much one word tells us about the other, a
notion that we will make more precise shortly.

In information theory, mutual information is more often defined as
holding between random variables, not values of random variables as we
have defined it here (see the standard definition in section 2.2.3). We will
see below that these two types of mutual information are quite different
creatures.

When we apply this definition to the 10 collocations from table 5.6, we

IxX,y") =
= log,

= log
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chambre - chambre MI X2
house 31,950 12,004
= house 4793 848,330 4.1 553610
communes — communes
house 4974 38,980
- house 441 852,682 4.2 88405

Table 5.15 Correspondence of chambre and house and communes and house
in the aligned Hansard corpus. Mutual information gives a higher score to (com-
munes,house), while the x? test gives a higher score to the correct translation
pair (chambre,house).

get the same ranking as with the t test (see table 5.14). As usual, we use
maximum likelihood estimates to compute the probabilities, for example:

20

I(Ayatollah, Ruhollah) = 1og, —— 14307668 50— ~ 18.38
14307668 < 14307668

So what exactly is (pointwise) mutual information, I(x’,y’), a measure of?
Fano writes about definition (5.12):

The amount of information provided by the occurrence of the event
represented by [y’'] about the occurrence of the event represented
by [x'] is defined as [(5.12)].

For example, the mutual information measure tells us that the amount
of information we have about the occurrence of Ayatollah at position i in
the corpus increases by 18.38 bits if we are told that Ruhollah occurs at
position i + 1. Or, since (5.12) and (5.13) are equivalent, it also tells us
that the amount of information we have about the occurrence of Ruhollah
at position i + 1 in the corpus increases by 18.38 bits if we are told that
Ayatollah occurs at position i. We could also say that our uncertainty is
reduced by 18.38 bits. In other words, we can be much more certain that
Ruhollah will occur next if we are told that Ayatollah is the current word.

Unfortunately, this measure of ‘increased information’ is in many cases
not a good measure of what an interesting correspondence between two
events is, as has been pointed out by many authors. (We base our dis-
cussion here mainly on (Church and Gale 1991b) and (Maxwell 1992).)
Consider the two examples in table 5.15 of counts of word correspon-
dences between French and English sentences in the Hansard corpus, an
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aligned corpus of debates of the Canadian parliament (the table is simi-
lar to table 5.9). The reason that house frequently appears in translations
of French sentences containing chambre and communes is that the most
common use of house in the Hansard is the phrase House of Commons
which corresponds to Chambre de communes in French. But it is easy
to see that communes is a worse match for house than chambre since
most occurrences of house occur without communes on the French side.
As shown in the table, the x?2 test is able to infer the correct correspon-
dence whereas mutual information gives preference to the incorrect pair
(communes,house).

We can explain the difference between the two measures easily if we
look at definition (5.12) of mutual information and compare the quanti-
ties I(chambre, house) and I(communes, house):

P (house|chambre) ] % 0.87

~ log P (house)

P(house) P(house)
4974
. ~ log 074441 _ og P (house| communes)

P (house) P(house) P(house)

The word communes in the French makes it more likely that house oc-
curred in the English than chambre does. The higher mutual information
value for communes reflects the fact that communes causes a larger de-
crease in uncertainty here. But as the example shows decrease in uncer-
tainty does not correspond well to what we want to measure. In contrast,
the x?2 is a direct test of probabilistic dependence, which in this context
we can interpret as the degree of association between two words and
hence as a measure of their quality as translation pairs and collocations.

Table 5.16 shows a second problem with using mutual information for
finding collocations. We show ten bigrams that occur exactly once in
the first 1000 documents of the reference corpus and their mutual infor-
mation score based on the 1000 documents. The right half of the table
shows the mutual information score based on the entire reference corpus
(about 23,000 documents).

The larger corpus of 23,000 documents makes some better estimates
possible, which in turn leads to a slightly better ranking. The bigrams
marijuana growing and new converts (arguably collocations) have moved
up and Reds survived (definitely not a collocation) has moved down. How-
ever, what is striking is that even after going to a 10 times larger corpus
6 of the bigrams still only occur once and, as a consequence, have in-
accurate maximum likelihood estimates and artificially inflated mutual

log

< log
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Liooo w!'  w? wlw? Bigram 13000 wl w2 wlw? Bigram
16.95 5 1 1 Schwartz eschews | 14.46 106 6 1 Schwartz eschews
15.02 1 19 1 fewest visits 13.06 76 22 1 FIND GARDEN
13.78 5 9 1 FIND GARDEN 11.25 22 267 1 fewest visits
12.00 5 31 1 Indonesian pieces 8.97 43 663 1 Indonesian pieces
9.82 26 27 1 Reds survived 8.04 170 1917 6 marijuana growing
9.21 13 82 1 marijuana growing 5.73 15828 51 3 new converts
7.37 24 159 1 doubt whether 5.26 680 3846 7 doubt whether
6.68 687 9 1 new converts 4.76 739 713 1 Reds survived
6.00 661 15 1 like offensive 1.95 3549 6276 6 must think
3.81 159 283 1 must think 0.41 14093 762 1 like offensive

Table 5.16 Problems for Mutual Information from data sparseness. The table
shows ten bigrams that occurred once in the first 1000 documents in the ref-
erence corpus ranked according to mutual information score in the first 1000
documents (left half of the table) and ranked according to mutual information
score in the entire corpus (right half of the table). These examples illustrate that
alarge proportion of bigrams are not well characterized by corpus data (even for
large corpora) and that mutual information is particularly sensitive to estimates
that are inaccurate due to sparseness.

information scores. All 6 are not collocations and we would prefer a
measure which ranks them accordingly.

None of the measures we have seen works very well for low-frequency
events. But there is evidence that sparseness is a particularly difficult
problem for mutual information. To see why, notice that mutual infor-
mation is a log likelihood ratio of the probability of the bigram P (w!w?)
and the product of the probabilities of the individual words P (w!)P(w?).
Consider two extreme cases: perfect dependence of the occurrences of
the two words (they only occur together) and perfect independence (the
occurrence of one does not give us any information about the occurrence
of the other). For perfect dependence we have:

P(xy) P(x) 1
100y) =108 5ty =8 prorGy ~ 8 P(y)
That is, among perfectly dependent bigrams, as they get rarer, their mu-
tual information increases.

For perfect independence we have:

P(xy) P(x)P(y)

I(X,)/) =10gm ZIOgW :lOg]. =0
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Symbol Definition Current use Fano
I(x,y) log pf’;)xl’;&) pointwise mutual information mutual information
I(X;Y) Elog p}’%ﬁ%) mutual information average Ml/expectation of MI

EXPECTATION

Table 5.17 Different definitions of mutual information in (Cover and Thomas
1991) and (Fano 1961).

We can say that mutual information is a good measure of independence.
Values close to 0 indicate independence (independent of frequency). But
it is a bad measure of dependence because for dependence the score
depends on the frequency of the individual words. Other things being
equal, bigrams composed of low-frequency words will receive a higher
score than bigrams composed of high-frequency words. That is the oppo-
site of what we would want a good measure to do since higher frequency
means more evidence and we would prefer a higher rank for bigrams for
whose interestingness we have more evidence. One solution that has been
proposed for this is to use a cutoff and to only look at words with a fre-
quency of at least 3. However, such a move does not solve the underlying
problem, but only ameliorates its effects.

Since pointwise mutual information does not capture the intuitive no-
tion of an interesting collocation very well, it is often not used when it is
made available in practical applications (Fontenelle et al. 1994: 81) or it is
redefined as C(w!w?)I(w!, w?) to compensate for the bias of the origi-
nal definition in favor of low-frequency events (Fontenelle et al. 1994: 72,
Hodges et al. 1996).

As we mentioned earlier, the definition of mutual information used
here is common in corpus linguistic studies, but is less common in Infor-
mation Theory. Mutual information in Information Theory refers to the
expectation of the quantity that we have used in this section:

g p(X,Y)
p(X)p(Y)

The definition we have used in this chapter is an older one, termed point-
wise mutual information (see section 2.2.3, Fano 1961: 28, and Gallager
1968). Table 5.17 summarizes the older and newer naming conventions.
One quantity is the expectation of the other, so the two types of mutual
information are quite different.

The example of mutual information demonstrates what should be self-

I(X; Y) = Epix, 10
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evident: it is important to check what a mathematical concept is a for-
malization of. The notion of pointwise mutual information that we have
used here (log J‘ﬁ‘f)—%) measures the reduction of uncertainty about
the occurrence of one word when we are told about the occurrence of the
other. As we have seen, such a measure is of limited utility for acquiring

the types of linguistic properties we have looked at in this section.

Exercise 5.14 [* %]

Justeson and Katz’s part-of-speech filter in section 5.1 can be applied to any of
the other methods of collocation discovery in this chapter. Pick one and modify
it to incorporate a part-of-speech filter. What advantages does the modified
method have?

Exercise 5.15 [% % ]

Design and implement a collocation discovery tool for a translator’s workbench.
Pick either one method or a combination of methods that the translator can
choose from.

Exercise 5.16 [ % ]

Design and implement a collocation discovery tool for a lexicographer’s work-
bench. Pick either one method or a combination of methods that the lexicogra-
pher can choose from.

Exercise 5.17 [* % %]

Many news services tag references to companies in their news stories. For ex-
ample, all references to the General Electric Company would be tagged with the
same tag regardless of which variant of the name is used (e.g., GE, General Elec-
tric, or General Electric Company). Design and implement a collocation discovery
tool for finding company names. How could one partially automate the process
of identifying variants?

The Notion of Collocation

The notion of collocation may be confusing to readers without a back-
ground in linguistics. We will devote this section to discussing in more
detail what a collocation is.

There are actually different definitions of the notion of collocation.
Some authors in the computational and statistical literature define a col-
location as two or more consecutive words with a special behavior, for
example Choueka (1988):

[A collocation is defined as] a sequence of two or more consecutive
words, that has characteristics of a syntactic and semantic unit,
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and whose exact and unambiguous meaning or connotation cannot
be derived directly from the meaning or connotation of its compo-
nents.

Most of the examples we have presented in this chapter also assumed
adjacency of words. But in most linguistically oriented research, a phrase
can be a collocation even if it is not consecutive (as in the example knock
... door). The following criteria are typical of linguistic treatments of
collocations (see for example Benson (1989) and Brundage et al. (1992)),
non-compositionality being the main one we have relied on here.

= Non-compositionality. The meaning of a collocation is not a straight-
forward composition of the meanings of its parts. Either the meaning
is completely different from the free combination (as in the case of id-
ioms like kick the bucket) or there is a connotation or added element of
meaning that cannot be predicted from the parts. For example, white
wine, white hair and white woman all refer to slightly different colors,
so we can regard them as collocations.

= Non-substitutability. We cannot substitute other words for for the
components of a collocation even if, in context, they have the same
meaning. For example, we can’t say yellow wine instead of white wine
even though yellow is as good a description of the color of white wine
as white is (it is kind of a yellowish white).

= Non-modifiability. Many collocations cannot be freely modified with
additional lexical material or through grammatical transformations.
This is especially true for frozen expressions like idioms. For example,
we can’t modify frog in to get a frog in one’s throat into to get an ugly
frog in one’s throat although usually nouns like frog can be modified
by adjectives like ugly. Similarly, going from singular to plural can
make an idiom ill-formed, for example in people as poor as church
mice.

A nice way to test whether a combination is a collocation is to translate
it into another language. If we cannot translate the combination word by
word, then that is evidence that we are dealing with a collocation. For
example, translating make a decision into French one word at a time we
get faire une décision which is incorrect. In French we have to say prendre
une décision. So that is evidence that make a decision is a collocation in
English.



ASSOCIATION
CO-OCCURRENCE

5.5 The Notion of Collocation 185

strength power

to build up ~ to assume ~

to find ~ emergency ~

to save ~ discretionary ~

to sap somebody’s ~ ~ over [several provinces]
brute ~ supernatural ~

tensile ~ to turn off the ~

the ~ to [do X] the ~ to [do X]

[our staff was] at full ~ the balance of ~

on the ~ of [your recommendation| | fire ~

Table 5.18 Collocations in the BBI Combinatory Dictionary of English for the
words strength and power.

Some authors have generalized the notion of collocation even further
and included cases of words that are strongly associated with each other,
but do not necessarily occur in a common grammatical unit and with a
particular order, cases like doctor - nurse or plane - airport. It is prob-
ably best to restrict collocations to the narrower sense of grammatically
bound elements that occur in a particular order and use the terms associ-
ation and co-occurrence for the more general phenomenon of words that
are likely to be used in the same context.

It is instructive to look at the types of collocations that a purely lin-
guistic analysis of text will discover if plenty of time and person power
is available so that the limitations of statistical analysis and computer
technology need be of no concern. An example of such a purely linguistic
analysis is the BBI Combinatory Dictionary of English (Benson et al. 1993).
In table 5.18, we show some of the collocations (or combinations as the
dictionary prefers to call them) of strength and power that the diction-
ary lists.® We can see immediately that a wider variety of grammatical
patterns is considered here (in particular patterns involving prepositions
and particles). Naturally, the quality of the collocations is also higher
than computer-generated lists - as we would expect from a manually
produced compilation.

We conclude our discussion of the concept of collocation by going
through some subclasses of collocations that deserve special mention.

8. We cannot show collocations of strong and powerful because these adjectives are not
listed as entries in the dictionary.



186

LIGHT VERBS

VERB PARTICLE
CONSTRUCTIONS
PHRASAL VERBS

PROPER NAMES

TERMINOLOGICAL
EXPRESSIONS

5 Collocations

Verbs with little semantic content like make, take and do are called light
verbs in collocations like make a decision or do a favor. There is hardly
anything about the meaning of make, take or do that would explain why
we have to say make a decision instead of take a decision and do a fa-
vor instead of make a favor, but for many computational purposes the
correct light verb for combination with a particular noun must be deter-
mined and thus acquired from corpora if this information is not available
in machine-readable dictionaries. Dras and Johnson (1996) examine one
approach to this problem.

Verb particle constructions or phrasal verbs are an especially important
part of the lexicon of English. Many verbs in English like to tell off and
to go down consist of a combination of a main verb and a particle. These
verbs often correspond to a single lexeme in other languages (répriman-
der, descendre in French). This type of construction is a good example of
a collocation with often non-adjacent words.

Proper nouns (also called proper names) are usually included in the
category of collocations in computational work although they are quite
different from lexical collocations. They are most amenable to ap-
proaches that look for fixed phrases that reappear in exactly the same
form throughout a text.

Terminological expressions or phrases refer to concepts and objects in
technical domains. Although they are often fairly compositional (e.g., hy-
draulic oil filter), it is still important to identify them to make sure that
they are treated consistently throughout a technical text. For example,
when translating a manual, we have to make sure that all instances of
hydraulic oil filter are translated by the same term. If two different trans-
lations are used (even if they have the same meaning in some sense), the
reader of the translated manual could get confused and think that two
different entities are being described.

As a final example of the wide range of phenomena that the term col-
location is applied to, let us point to the many different degrees of in-
variability that a collocation can show. At one extreme of the spectrum
we have usage notes in dictionaries that describe subtle differences in us-
age between near-synonyms like answer and reply (diplomatic answer vs.
stinging reply). This type of collocation is important for generating text
that sounds natural, but getting a collocation wrong here is less likely
to lead to a fatal error. The other extreme are completely frozen ex-
pressions like proper names and idioms. Here there is just one way of
saying things and any deviation will completely change the meaning of
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what is said. Luckily, the less compositional and the more important a
collocation, the easier it is to acquire it automatically.

Further Reading

See (Stubbs 1996) for an in-depth discussion of the British tradition of
‘empiricist’ linguistics.

The t test is covered in most general statistics books. Standard ref-
erences are (Snedecor and Cochran 1989: 53) and (Moore and McCabe
1989: 541). Weinberg and Goldberg (1990: 306) and Ramsey and Schafer
(1997) are more accessible for students with less mathematical back-
ground. These books also cover the x? test, but not some of the other
more specialized tests that we discuss here.

One of the first publications on the discovery of collocations was
(Church and Hanks 1989), later expanded to (Church et al. 1991). The au-
thors drew attention to an emerging type of corpus-based dictionary (Sin-
clair 1995) and developed a program of computational lexicography that
combines corpus evidence, computational methods and human judge-
ment to build more comprehensive dictionaries that better reflect actual
language use.

There are a number of ways lexicographers can benefit from automated
processing of corpus data. A lexicographer writes a dictionary entry after
looking at a potentially large number of examples of a word. If the ex-
amples are automatically presorted according to collocations and other
criteria (for example, the topic of the text), then this process can be made
much more efficient. For example, phrasal verbs are sometimes neglected
in dictionaries because they are not separate words. A corpus-based ap-
proach will make their importance evident to the lexicographer. In addi-
tion, a balanced corpus will reveal which of the uses are most frequent
and hence most important for the likely user of a dictionary. Difference
tests like the t test are useful for writing usage notes and for writing ac-
curate definitions that reflect differences in usage between words. Some
of these techniques are being used for the next generation of dictionaries
(Fontenelle et al. 1994).

Eventually, a new form of dictionary could emerge from this work,
a kind of dictionary-cum-corpus in which dictionary entry and corpus
evidence support each other and are organized in a coherent whole. The
COBUILD dictionary already has some of these characteristics (Sinclair
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1995). Since space is less of an issue with electronic dictionaries plenty
of corpus examples can be integrated into a dictionary entry for the in-
terested user.

What we have said about the value of statistical corpus analysis for
monolingual dictionaries applies equally to bilingual dictionaries, at least
if an aligned corpus is available (Smadja et al. 1996).

Another important application of collocations is Information Retrieval
(IR). Accuracy of retrieval can be improved if the similarity between a
user query and a document is determined based on common collocations
(or phrases) instead of common words (Fagan 1989; Evans et al. 1991;
Strzalkowski 1995; Mitra et al. 1997). See Lewis and Jones (1996) and
Krovetz (1991) for further discussion of the question of using colloca-
tion discovery and NLP in Information Retrieval and Nevill-Manning et al.
(1997) for an alternative non-statistical approach to using phrases in IR.
Steier and Belew (1993) present an interesting study of how the treat-
ment of phrases (for example, for phrase weighting) should change as
we move from a subdomain to a general domain. For example, invasive
procedure is completely compositional and a less interesting collocation
in the subdomain of medical articles, but becomes interesting and non-
compositional when ‘exported’ to a general collection that is a mixture of
many specialized domains.

Two other important applications of collocations, which we will just
mention, are natural language generation (Smadja 1993) and cross-
language information retrieval (Hull and Grefenstette 1998).

An important area that we haven’t been able to cover is the discovery
of proper nouns, which can be regarded as a kind of collocation. Proper
nouns cannot be exhaustively covered in dictionaries since new people,
places, and other entities come into existence and are named all the
time. Proper nouns also present their own set of challenges: co-reference
(How can we tell that IBM and International Bureau Machines refer to the
same entity?), disambiguation (When does AMEX refer to the American Ex-
change, when to American Express?), and classification (Is this new entity
that the text refers to the name of a person, a location or a company?).
One of the earliest studies on this topic is (Coates-Stephens 1993). Mc-
Donald (1995) focuses on lexicosemantic patterns that can be used as
cues for proper noun detection and classification. Mani and MacMillan
(1995) and Paik et al. (1995) propose ways of classifying proper nouns
according to type.

One frequently used measure for interestingness of collocations that
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we did not cover is the z score, a close relative of the t test. It is used in
several software packages and workbenches for text analysis (Fontenelle
et al. 1994; Hawthorne 1994). The z score should only be applied when
the variance is known, which arguably is not the case in most Statistical
NLP applications.

Fisher’s exact test is another statistical test that can be used for judging
how unexpected a set of observations is. In contrast to the t test and the
x?2 test, it is appropriate even for very small counts. However, it is hard
to compute, and it is not clear whether the results obtained in practice
are much different from, for example, the x2 test (Pedersen 1996).

Yet another approach to discovering collocations is to search for points
in the word stream with either low or high uncertainty as to what the next
(or previous) word will be. Points with high uncertainty are likely to be
phrase boundaries, which in turn are candidates for points where a col-
location may start or end, whereas points with low uncertainty are likely
to be located within a collocation. See (Evans and Zhai 1996) and (Shimo-
hata et al. 1997) for two approaches that use this type of information for
finding phrases and collocations.
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STATISTICAL NLP aims to do statistical inference for the field of natu-
ral language. Statistical inference in general consists of taking some data
(generated in accordance with some unknown probability distribution)
and then making some inferences about this distribution. For example,
we might look at lots of instances of prepositional phrase attachments
in a corpus, and use them to try to predict prepositional phrase attach-
ments for English in general. The discussion in this chapter divides the
problem into three areas (although they tend to overlap considerably): di-
viding the training data into equivalence classes, finding a good statistical
estimator for each equivalence class, and combining multiple estimators.

As a running example of statistical estimation, we will examine the
classic task of language modeling, where the problem is to predict the
next word given the previous words. This task is fundamental to speech
or optical character recognition, and is also used for spelling correction,
handwriting recognition, and statistical machine translation. This sort of
task is often referred to as a Shannon game following the presentation
of the task of guessing the next letter in a text in (Shannon 1951). This
problem has been well-studied, and indeed many estimation methods
were first developed for this task. In general, though, the methods we
develop are not specific to this task, and can be directly used for other
tasks like word sense disambiguation or probabilistic parsing. The word
prediction task just provides a clear easily-understood problem for which
the techniques can be developed.
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Bins: Forming Equivalence Classes

Reliability vs. discrimination

Normally, in order to do inference about one feature, we wish to find
other features of the model that predict it. Here, we are assuming that
past behavior is a good guide to what will happen in the future (that is,
that the model is roughly stationary). This gives us a classification task:
we try to predict the target feature on the basis of various classificatory
features. When doing this, we effectively divide the data into equivalence
classes that share values for certain of the classificatory features, and use
this equivalence classing to help predict the value of the target feature
on new pieces of data. This means that we are tacitly making indepen-
dence assumptions: the data either does not depend on other features, or
the dependence is sufficiently minor that we hope that we can neglect it
without doing too much harm. The more classificatory features (of some
relevance) that we identify, the more finely conditions that determine the
unknown probability distribution of the target feature can potentially be
teased apart. In other words, dividing the data into many bins gives us
greater discrimination. Going against this is the problem that if we use a
lot of bins then a particular bin may contain no or a very small number of
training instances, and then we will not be able to do statistically reliable
estimation of the target feature for that bin. Finding equivalence classes
that are a good compromise between these two criteria is our first goal.

n-gram models

The task of predicting the next word can be stated as attempting to esti-
mate the probability function P:

P(wnlwi,...,wn_1)

In such a stochastic problem, we use a classification of the previous
words, the history, to predict the next word. On the basis of having looked
at a lot of text, we know which words tend to follow other words.

For this task, we cannot possibly consider each textual history sepa-
rately: most of the time we will be listening to a sentence that we have
never heard before, and so there is no previous identical textual history
on which to base our predictions, and even if we had heard the begin-
ning of the sentence before, it might end differently this time. And so we
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need a method of grouping histories that are similar in some way so as
to give reasonable predictions as to which words we can expect to come
next. One possible way to group them is by making a Markov assumption
that only the prior local context - the last few words - affects the next
word. If we construct a model where all histories that have the same last
n — 1 words are placed in the same equivalence class, then we have an
(n — 1)™ order Markov model or an n-gram word model (the last word of
the n-gram being given by the word we are predicting).

Before continuing with model-building, let us pause for a brief inter-
lude on naming. The cases of n-gram models that people usually use are
for n = 2, 3,4, and these alternatives are usually referred to as a bigram,
a trigram, and a four-gram model, respectively. Revealing this will surely
be enough to cause any Classicists who are reading this book to stop,
and to leave the field to uneducated engineering sorts: gram is a Greek
root and so should be put together with Greek number prefixes. Shannon
actually did use the term digram, but with the declining levels of educa-
tion in recent decades, this usage has not survived. As non-prescriptive
linguists, however, we think that the curious mixture of English, Greek,
and Latin that our colleagues actually use is quite fun. So we will not try
to stamp it out.!

Now in principle, we would like the n of our n-gram models to be fairly
large, because there are sequences of words like:

Sue swallowed the large green __.

where swallowed is presumably still quite strongly influencing which
word will come next - pill or perhaps frog are likely continuations, but
tree, car or mountain are presumably unlikely, even though they are in
general fairly natural continuations after the large green __. However,
there is the problem that if we divide the data into too many bins, then
there are a lot of parameters to estimate. For instance, if we conser-
vatively assume that a speaker is staying within a vocabulary of 20,000
words, then we get the estimates for numbers of parameters shown in
table 6.1.2

1. Rather than four-gram, some people do make an attempt at appearing educated by
saying quadgram, but this is not really correct use of a Latin number prefix (which would
give quadrigram, cf. quadrilateral), let alone correct use of a Greek number prefix, which
would give us “a tetragram model.”

2. Given a certain model space (here word n-gram models), the parameters are the num-
bers that we have to specify to determine a particular model within that model space.
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Model Parameters

1st order (bigram model): 20,000 x 19,999 = 400 million
2nd order (trigram model): 20,0002 x 19,999 = 8 trillion
3th order (four-gram model): 20,0003 x 19,999 = 1.6 x 107

Table 6.1 Growth in number of parameters for n-gram models.

So we quickly see that producing a five-gram model, of the sort that
we thought would be useful above, may well not be practical, even if
we have what we think is a very large corpus. For this reason, n-gram
systems currently usually use bigrams or trigrams (and often make do
with a smaller vocabulary).

One way of reducing the number of parameters is to reduce the value
of n, but it is important to realize that n-grams are not the only way
of forming equivalence classes of the history. Among other operations
of equivalencing, we could consider stemming (removing the inflectional
endings from words) or grouping words into semantic classes (by use
of a pre-existing thesaurus, or by some induced clustering). This is ef-
fectively reducing the vocabulary size over which we form n-grams. But
we do not need to use n-grams at all. There are myriad other ways of
forming equivalence classes of the history - it’s just that they’re all a bit
more complicated than n-grams. The above example suggests that know-
ledge of the predicate in a clause is useful, so we can imagine a model
that predicts the next word based on the previous word and the previ-
ous predicate (no matter how far back it is). But this model is harder to
implement, because we first need a fairly accurate method of identifying
the main predicate of a clause. Therefore we will just use n-gram models
in this chapter, but other techniques are covered in chapters 12 and 14.

For anyone from a linguistics background, the idea that we would
choose to use a model of language structure which predicts the next word
simply by examining the previous two words - with no reference to the
structure of the sentence - seems almost preposterous. But, actually, the

Since we are assuming nothing in particular about the probability distribution, the num-
ber of parameters to be estimated is the number of bins times one less than the number
of values of the target feature (one is subtracted because the probability of the last target
value is automatically given by the stochastic constraint that probabilities should sum to
one).
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lexical co-occurrence, semantic, and basic syntactic relationships that ap-
pear in this very local context are a good predictor of the next word,
and such systems work surprisingly well. Indeed, it is difficult to beat a
trigram model on the purely linear task of predicting the next word.

Building n-gram models

In the final part of some sections of this chapter, we will actually build
some models and show the results. The reader should be able to recreate
our results by using the tools and data on the accompanying website. The
text that we will use is Jane Austen’s novels, and is available from the
website. This corpus has two advantages: (i) it is freely available through
the work of Project Gutenberg, and (ii) it is not too large. The small size
of the corpus is, of course, in many ways also a disadvantage. Because of
the huge number of parameters of n-gram models, as discussed above,
n-gram models work best when trained on enormous amounts of data.
However, such training requires a lot of CPU time and diskspace, so a
small corpus is much more appropriate for a textbook example. Even so,
you will want to make sure that you start off with about 40Mb of free
diskspace before attempting to recreate our examples.

As usual, the first step is to preprocess the corpus. The Project Guten-
berg Austen texts are very clean plain ASCII files. But nevertheless, there
are the usual problems of punctuation marks attaching to words and so
on (see chapter 4) that mean that we must do more than simply split on
whitespace. We decided that we could make do with some very simple
search-and-replace patterns that removed all punctuation leaving white-
space separated words (see the website for details). We decided to use
Emma, Mansfield Park, Northanger Abbey, Pride and Prejudice, and Sense
and Sensibility as our corpus for building models, reserving Persuasion
for testing, as discussed below. This gave us a (small) training corpus of
N = 617,091 words of text, containing a vocabulary V of 14,585 word
types.

By simply removing all punctuation as we did, our file is literally a long
sequence of words. This isn’t actually what people do most of the time.
It is commonly felt that there are not very strong dependencies between
sentences, while sentences tend to begin in characteristic ways. So people
mark the sentences in the text - most commonly by surrounding them
with the SGML tags <s> and </s>. The probability calculations at the
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start of a sentence are then dependent not on the last words of the pre-
ceding sentence but upon a ‘beginning of sentence’ context. We should
additionally note that we didn’t remove case distinctions, so capitalized
words remain in the data, imperfectly indicating where new sentences
begin.

Statistical Estimators

Given a certain number of pieces of training data that fall into a certain
bin, the second goal is then finding out how to derive a good probabil-
ity estimate for the target feature based on these data. For our running
example of n-grams, we will be interested in P(w; - - - wy) and the predic-
tion task P(wyn|wy - - - wu_1). Since:

P(wy---wp)

P(W |W "'W,)Z—
i T PWr e W1

estimating good conditional probability distributions can be reduced to
having good solutions to simply estimating the unknown probability dis-
tribution of n-grams.3

Let us assume that the training text consists of N words. If we append
n — 1 dummy start symbols to the beginning of the text, we can then also
say that the corpus consists of N n-grams, with a uniform amount of
conditioning available for the next word in all cases. Let B be the number
of bins (equivalence classes). This will be V"*~1 where V is the vocabulary
size, for the task of working out the next word and V" for the task of
estimating the probability of different n-grams. Let C(w; - - - wy) be the
frequency of a certain n-gram in the training text, and let us say that
there are N, n-grams that appeared r times in the training text (i.e., N, =
[{wy - -wp : C(Wy - --wy) = r}|). These frequencies of frequencies are
very commonly used in the estimation methods which we cover below.
This notation is summarized in table 6.2.

3. However, when smoothing, one has a choice of whether to smooth the n-gram proba-
bility estimates, or to smooth the conditional probability distributions directly. For many
methods, these do not give equivalent results since in the latter case one is separately
smoothing a large number of conditional probability distributions (which normally need
to be themselves grouped into classes in some way).
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N Number of training instances
B Number of bins training instances are divided into
Win An n-gram wj - - - Wy, in the training text

C(wy - - -wy) Frequency of n-gram w; - - - wy, in training text

¥ Frequency of an n-gram

() Frequency estimate of a model

N, Number of bins that have r training instances in them
T, Total count of n-grams of frequency r in further data
h ‘History’ of preceding words

Table 6.2 Notation for the statistical estimation chapter.

Maximum Likelihood Estimation (MLE)
MLE estimates from relative frequencies

Regardless of how we form equivalence classes, we will end up with bins
that contain a certain number of training instances. Let us assume a
trigram model where we are using the two preceding words of context to
predict the next word, and let us focus in on the bin for the case where
the two preceding words were comes across. In a certain corpus, the
authors found 10 training instances of the words comes across, and of
those, 8 times they were followed by as, once by more and once by a.
The question at this point is what probability estimates we should use
for estimating the next word.

The obvious first answer (at least from a frequentist point of view) is
to suggest using the relative frequency as a probability estimate:

P(as) = 0.8

P(more) = 0.1

P(a) = 0.1
P(x) = 0.0 for x not among the above 3 words

This estimate is called the maximum likelihood estimate (MLE):

Cwy - - - wy)

Pyie(wy - - - wy) = N

C(wy - --wp)

p W ) = =W Wh)
MLE (Wn W1 Wn-1) Cov w1
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If one fixes the observed data, and then considers the space of all pos-
sible parameter assignments within a certain distribution (here a trigram
model) given the data, then statisticians refer to this as a likelihood func-
tion. The maximum likelihood estimate is so called because it is the
choice of parameter values which gives the highest probability to the
training corpus.* The estimate that does that is the one shown above.
It does not waste any probability mass on events that are not in the train-
ing corpus, but rather it makes the probability of observed events as high
as it can subject to the normal stochastic constraints.

But the MLE is in general unsuitable for statistical inference in NLP.
The problem is the sparseness of our data (even if we are using a large
corpus). While a few words are common, the vast majority of words are
very uncommon - and longer n-grams involving them are thus much rarer
again. The MLE assigns a zero probability to unseen events, and since
the probability of a long string is generally computed by multiplying the
probabilities of subparts, these zeroes will propagate and give us bad
(zero probability) estimates for the probability of sentences when we just
happened not to see certain n-grams in the training text.> With respect to
the example above, the MLE is not capturing the fact that there are other
words which can follow comes across, for example the and some.

As an example of data sparseness, after training on 1.5 million words
from the IBM Laser Patent Text corpus, Bahl et al. (1983) report that 23%
of the trigram tokens found in further test data drawn from the same
corpus were previously unseen. This corpus is small by modern stan-
dards, and so one might hope that by collecting much more data that the
problem of data sparseness would simply go away. While this may ini-
tially seem hopeful (if we collect a hundred instances of comes across, we
will probably find instances with it followed by the and some), in practice
it is never a general solution to the problem. While there are a limited
number of frequent events in language, there is a seemingly never end-

4. This is given that the occurrence of a certain n-gram is assumed to be a random variable
with a binomial distribution (i.e., each n-gram is independent of the next). This is a quite
untrue (though usable) assumption: firstly, each n-gram overlaps with and hence partly
determines the next, and secondly, content words tend to clump (if you use a word once
in a paper, you are likely to use it again), as we discuss in section 15.3.

5. Another way to state this is to observe that if our probability model assigns zero prob-
ability to any event that turns out to actually occur, then both the cross-entropy and the
KL divergence with respect to (data from) the real probability distribution is infinite. In
other words we have done a maximally bad job at producing a probability function that
is close to the one we are trying to model.
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ing tail to the probability distribution of rarer and rarer events, and we
can never collect enough data to get to the end of the tail.5 For instance
comes across could be followed by any number, and we will never see ev-
ery number. In general, we need to devise better estimators that allow for
the possibility that we will see events that we didn’t see in the training
text.

All such methods effectively work by somewhat decreasing the proba-
bility of previously seen events, so that there is a little bit of probability
mass left over for previously unseen events. Thus these methods are fre-
quently referred to as discounting methods. The process of discounting is
often referred to as smoothing, presumably because a distribution with-
out zeroes is smoother than one with zeroes. We will examine a number
of smoothing methods in the following sections.

Using MLE estimates for n-gram models of Austen

Based on our Austen corpus, we made n-gram models for different values
of n. It is quite straightforward to write one’s own program to do this,
by totalling up the frequencies of n-grams and (n — 1)-grams, and then
dividing to get MLE probability estimates, but there is also software to do
it on the website.

In practical systems, it is usual to not actually calculate n-grams for
all words. Rather, the n-grams are calculated as usual only for the most
common k words, and all other words are regarded as Out-Of-Vocabulary
(O0V) items and mapped to a single token such as <UNK>. Commonly, this
will be done for all words that have been encountered only once in the
training corpus (hapax legomena). A useful variant in some domains is to
notice the obvious semantic and distributional similarity of rare numbers
and to have two out-of-vocabulary tokens, one for numbers and one for
everything else. Because of the Zipfian distribution of words, cutting out
low frequency items will greatly reduce the parameter space (and the
memory requirements of the system being built), while not appreciably
affecting the model quality (hapax legomena often constitute half of the
types, but only a fraction of the tokens).

We used the conditional probabilities calculated from our training cor-
pus to work out the probabilities of each following word for part of a

6. Cf. Zipf’s law - the observation that the relationship between a word’s frequency and
the rank order of its frequency is roughly a reciprocal curve - as discussed in section 1.4.3.
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In
person  she was inferior to both sisters
l-gram P(-) P(-) P(-) P(-) P(-) P(-)
1  the 0.034 the 0.034 the 0.034 the 0.034  the 0.034 the 0.034
2 to 0.032 to 0.032 to 0.032 to 0.032 to 0.032 to 0.032
3  and 0.030 and 0.030 and 0.030 and 0.030 and 0.030
4 of 0.029 of 0.029 of 0.029 of 0.029 of 0.029
8 was 0.015 was 0.015 was 0.015 was 0.015 was 0.015
13  she 0.011 she 0.011 she 0.011 she 0.011
254 both 0.0005 both 0.0005 both 0.0005
435 sisters 0.0003 sisters 0.0003
1701 inferior  0.00005
2-gram P (-|person) P(-|she) P(-|was) P(-linferior) P(-|to) P(-|both)
1 and 0.099 had 0.141 not 0.065 to 0.212 be 0.111 of 0.066
2 who 0.099 was  0.122 a 0.052 the 0.057 to 0.041
3 to 0.076 the 0.033 her 0.048 in 0.038
4 in 0.045 to 0.031 have 0.027 and 0.025
23 she 0.009 Mrs 0.006 she 0.009
41 what 0.004 sisters 0.006
293 both 0.0004
) inferior O
3-gram  P(-|In,person)  P(-|person,she)  P(-|she,was) P(-|was,inf.) P(-|inferior,to) P(-|to,both)
1 UNSEEN did 0.5 not 0.057 UNSEEN the 0.286 to 0.222
2 was 0.5 very 0.038 Maria 0.143 Chapter  0.111
3 in 0.030 cherries  0.143 Hour 0.111
4 to 0.026 her 0.143 Twice 0.111
) inferior 0 both 0 sisters 0
4-gram  P(-|ulLp) P(-ILp,s) P(-1p,s;w) P(-Is,w,i) P(-Ilwit) P(-|it,b)
1 UNSEEN UNSEEN in 1.0 UNSEEN UNSEEN UNSEEN
) inferior O

Table 6.3 Probabilities of each successive word for a clause from Persuasion.
The probability distribution for the following word is calculated by Maximum
Likelihood Estimate n-gram models for various values of n. The predicted likeli-
hood rank of different words is shown in the first column. The actual next word
is shown at the top of the table in italics, and in the table in bold.
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sentence from our test corpus Persuasion. We will cover the issue of test
corpora in more detail later, but it is vital for assessing a model that
we try it on different data - otherwise it isn’t a fair test of how well the
model allows us to predict the patterns of language. Extracts from these
probability distributions - including the actual next word shown in bold
- are shown in table 6.3. The unigram distribution ignores context en-
tirely, and simply uses the overall frequency of different words. But this
is not entirely useless, since, as in this clause, most words in most sen-
tences are common words. The bigram model uses the preceding word
to help predict the next word. In general, this helps enormously, and
gives us a much better model. In some cases the estimated probability
of the word that actually comes next has gone up by about an order of
magnitude (was, to, sisters). However, note that the bigram model is not
guaranteed to increase the probability estimate. The estimate for she has
actually gone down, because she is in general very common in Austen
novels (being mainly books about women), but somewhat unexpected af-
ter the noun person - although quite possible when an adverbial phrase
is being used, such as In person here. The failure to predict inferior after
was shows problems of data sparseness already starting to crop up.

When the trigram model works, it can work brilliantly. For example, it
gives us a probability estimate of 0.5 for was following person she. But in
general it is not usable. Either the preceding bigram was never seen be-
fore, and then there is no probability distribution for the following word,
or a few words have been seen following that bigram, but the data is so
sparse that the resulting estimates are highly unreliable. For example, the
bigram to both was seen 9 times in the training text, twice followed by to,
and once each followed by 7 other words, a few of which are shown in the
table. This is not the kind of density of data on which one can sensibly
build a probabilistic model. The four-gram model is entirely useless. In
general, four-gram models do not become usable until one is training on
several tens of millions of words of data.

Examining the table suggests an obvious strategy: use higher order
n-gram models when one has seen enough data for them to be of some
use, but back off to lower order n-gram models when there isn’t enough
data. This is a widely used strategy, which we will discuss below in the
section on combining estimates, but it isn’t by itself a complete solution
to the problem of n-gram estimates. For instance, we saw quite a lot of
words following was in the training data - 9409 tokens of 1481 types -
but inferior was not one of them. Similarly, although we had seen quite
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a lot of words in our training text overall, there are many words that
did not appear, including perfectly ordinary words like decides or wart.
So regardless of how we combine estimates, we still definitely need a
way to give a non-zero probability estimate to words or n-grams that we
happened not to see in our training text, and so we will work on that
problem first.

Laplace’s law, Lidstone’s law and the Jeffreys-Perks law
Laplace’s law

The manifest failure of maximum likelihood estimation forces us to ex-
amine better estimators. The oldest solution is to employ Laplace’s law
(1814; 1995). According to this law,

_Cwr---wy) +1

B N +B

This process is often informally referred to as adding one, and has the
effect of giving a little bit of the probability space to unseen events.
But rather than simply being an unprincipled move, this is actually the
Bayesian estimator that one derives if one assumes a uniform prior on
events (i.e., that every n-gram was equally likely).

However, note that the estimates which Laplace’s law gives are depen-
dent on the size of the vocabulary. For sparse sets of data over large
vocabularies, such as n-grams, Laplace’s law actually gives far too much
of the probability space to unseen events.

Consider some data discussed by Church and Gale (1991a) in the con-
text of their discussion of various estimators for bigrams. Their corpus
of 44 million words of Associated Press (AP) newswire yielded a vocab-
ulary of 400,653 words (maintaining case distinctions, splitting on hy-
phens, etc.). Note that this vocabulary size means that there is a space
of 1.6 x 10'! possible bigrams, and so a priori barely any of them will
actually occur in the corpus. It also means that in the calculation of Prap,
B is far larger than N, and Laplace’s method is completely unsatisfactory
in such circumstances. Church and Gale used half the corpus (22 million
words) as a training text. Table 6.4 shows the expected frequency esti-
mates of various methods that they discuss, and Laplace’s law estimates
that we have calculated. Probability estimates can be derived by divid-
ing the frequency estimates by the number of n-grams, N = 22 million.
For Laplace’s law, the probability estimate for an n-gram seen r times is

Prap(wy -+ - wy)
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= fMLE f empirical f Lap f del f GT N, T,
0.000027 0.000137 0.000037 0.000027 74671100000 2019187
0.448 0.000274 0.396 0.446 2 018 046 903 206
1.25 0.000411 1.24 1.26 449 721 564 153
2.24 0.000548 2.23 2.24 188 933 424 015
3.23 0.000685 3.22 3.24 105 668 341 099
4.21 0.000822 4.22 4.22 68 379 287 776
5.23 0.000959 5.20 5.19 48 190 251 951
6.21 0.00109 6.21 6.21 35709 221 693
7.21 0.00123 7.18 7.24 27 710 199 779
8.26 0.00137 8.18 8.25 22 280 183 971

Table 6.4 Estimated frequencies for the AP data from Church and Gale (1991a).
The first five columns show the estimated frequency calculated for a bigram that
actually appeared r times in the training data according to different estimators:
r is the maximum likelihood estimate, fempirical Uses validation on the test set,
fLap is the ‘add one’ method, fqe is deleted interpolation (two-way cross valida-
tion, using the training data), and f gt is the Good-Turing estimate. The last two
columns give the frequencies of frequencies and how often bigrams of a certain
frequency occurred in further text.

(r+1)/(N+B), so the frequency estimate becomes frap = (r+1)N/(N+B).
These estimated frequencies are often easier for humans to interpret
than probabilities, as one can more easily see the effect of the discount-
ing.

Although each previously unseen bigram has been given a very low
probability, because there are so many of them, 46.5% of the probability
space has actually been given to unseen bigrams.” This is far too much,
and it is done at the cost of enormously reducing the probability esti-
mates of more frequent events. How do we know it is far too much? The
second column of the table shows an empirically determined estimate
(which we discuss below) of how often unseen n-grams actually appeared
in further text, and we see that the individual frequency of occurrence
of previously unseen n-grams is much lower than Laplace’s law predicts,
while the frequency of occurrence of previously seen n-grams is much
higher than predicted.® In particular, the empirical model finds that only
9.2% of the bigrams in further text were previously unseen.

7. This is calculated as No X Pap(+) = 74,671,100,000 x 0.000137/22, 000,000 = 0.465.
8. It is a bit hard dealing with the astronomical numbers in the table. A smaller example
which illustrates the same point appears in exercise 6.2.
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Lidstone’s law and the Jeffreys-Perks law

Because of this overestimation, a commonly adopted solution to the prob-
lem of multinomial estimation within statistical practice is Lidstone’s law
of succession, where we add not one, but some (normally smaller) posi-
tive value A:

_Cwrp---wy) +A
B N + BA

This method was developed by the actuaries Hardy and Lidstone, and
Johnson showed that it can be viewed as a linear interpolation (see below)
between the MLE estimate and a uniform prior. This may be seen by
setting u = N/(N + BA):

Prig(wy =+ - wp)

C(wy - --wy)

Priawy - - -wy) = N

1
+(1-p )E
The most widely used value for A is % This choice can be theoretically
justified as being the expectation of the same quantity which is maxi-
mized by MLE and so it has its own names, the Jeffreys-Perks law, or
Expected Likelihood Estimation (ELE) (Box and Tiao 1973: 34-36).

In practice, this often helps. For example, we could avoid the objection
above that two much of the probability space was being given to unseen
events by choosing a small A. But there are two remaining objections:
(i) we need a good way to guess an appropriate value for A in advance, and
(ii) discounting using Lidstone’s law always gives probability estimates
linear in the MLE frequency and this is not a good match to the empirical
distribution at low frequencies.

Applying these methods to Austen

Despite the problems inherent in these methods, we will nevertheless try
applying them, in particular ELE, to our Austen corpus. Recall that up
until now the only probability estimate we have been able to derive for
the test corpus clause she was inferior to both sisters was the unigram
estimate, which (multiplying through the bold probabilities in the top
part of table 6.3) gives as its estimate for the probability of the clause
3.96 x 10717, For the other models, the probability estimate was either
zero or undefined, because of the sparseness of the data.

Let us now calculate a probability estimate for this clause using a bi-
gram model and ELE. Following the word was, which appeared 9409
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Rank Word MLE ELE

1 not 0.065 0.036

2 a 0.052 0.030

3 the 0.033 0.019

4 to 0.031 0.017
=1482 inferior O 0.00003

Table 6.5 Expected Likelihood Estimation estimates for the word following was.

times, not appeared 608 times in the training corpus, which overall con-
tained 14589 word types. So our new estimate for P (not|was) is (608 +
0.5)/(9409 + 14589 x 0.5) = 0.036. The estimate for P(not|was) has
thus been discounted (by almost half!). If we do similar calculations for
the other words, then we get the results shown in the last column of ta-
ble 6.5. The ordering of most likely words is naturally unchanged, but
the probability estimates of words that did appear in the training text
are discounted, while non-occurring words, in particular the actual next
word, inferior, are given a non-zero probability of occurrence. Continu-
ing in this way to also estimate the other bigram probabilities, we find
that this language model gives a probability estimate for the clause of
6.89 x 10729, Unfortunately, this probability estimate is actually lower
than the MLE estimate based on unigram counts - reflecting how greatly
all the MLE probability estimates for seen n-grams are discounted in the
construction of the ELE model. This result substantiates the slogan used
in the titles of (Gale and Church 1990a,b): poor estimates of context are
worse than none. Note, however, that this does not mean that the model
that we have constructed is entirely useless. Although the probability
estimates it gives are extremely low, one can nevertheless use them to
rank alternatives. For example, the model does correctly tell us that she
was inferior to both sisters is a much more likely clause in English than
inferior to was both she sisters, whereas the unigram estimate gives them
both the same probability.

Held out estimation

How do we know that giving 46.5% of the probability space to unseen
events is too much? One way that we can test this is empirically. We
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can take further text (assumed to be from the same source) and see how
often bigrams that appeared r times in the training text tend to turn up
in the further text. The realization of this idea is the held out estimator
of Jelinek and Mercer (1985).

The held out estimator

For each n-gram, wy - - - wy, let:

Ci(wy - - -wy) frequency of w; - - - wy, in training data

Co(wy -+ -Wwy) frequency of w; - - - wy, in held out data

and recall that N, is the number of bigrams with frequency r (in the
training text). Now let:

T, = Z Co(wr -+ -wp)

{wr---wn:Cr(wr---wp)=r}
That is, T, is the total number of times that all n-grams that appeared
r times in the training text appeared in the held out data. Then the aver-
age frequency of those n-grams is % and so an estimate for the proba-
bility of one of these n-grams is:

T,

NN

Pro(wy - - -wy) = where C(wy - --Wwy) =F

Pots of data for developing and testing models

A cardinal sin in Statistical NLP is to test on your training data. But why is
that? The idea of testing is to assess how well a particular model works.
That can only be done if it is a ‘fair test’ on data that has not been seen
before. In general, models induced from a sample of data have a tendency
to be overtrained, that is, to expect future events to be like the events on
which the model was trained, rather than allowing sufficiently for other
possibilities. (For instance, stock market models sometimes suffer from
this failing.) So it is essential to test on different data. A particular case
of this is for the calculation of cross entropy (section 2.2.6). To calculate
cross entropy, we take a large sample of text and calculate the per-word
entropy of that text according to our model. This gives us a measure
of the quality of our model, and an upper bound for the entropy of the
language that the text was drawn from in general. But all that is only
true if the test data is independent of the training data, and large enough
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to be indicative of the complexity of the language at hand. If we test
on the training data, the cross entropy can easily be lower than the real
entropy of the text. In the most blatant case we could build a model
that has memorized the training text and always predicts the next word
with probability 1. Even if we don’t do that, we will find that MLE is an
excellent language model if you are testing on training data, which is not
the right result.

So when starting to work with some data, one should always separate
it immediately into a training portion and a testing portion. The test data
is normally only a small percentage (5-10%) of the total data, but has to
be sufficient for the results to be reliable. You should always eyeball the
training data - you want to use your human pattern-finding abilities to
get hints on how to proceed. You shouldn’t eyeball the test data - that’s
cheating, even if less directly than getting your program to memorize it.

Commonly, however, one wants to divide both the training and test
data into two again, for different reasons. For many Statistical NLP meth-
ods, such as held out estimation of n-grams, one gathers counts from
one lot of training data, and then one smooths these counts or estimates
certain other parameters of the assumed model based on what turns up
in further held out or validation data. The held out data needs to be inde-
pendent of both the primary training data and the test data. Normally the
stage using the held out data involves the estimation of many fewer pa-
rameters than are estimated from counts over the primary training data,
and so it is appropriate for the held out data to be much smaller than the
primary training data (commonly about 10% of the size). Nevertheless, it
is important that there is sufficient data for any additional parameters of
the model to be accurately estimated, or significant performance losses
can occur (as Chen and Goodman (1996: 317) show).

A typical pattern in Statistical NLP research is to write an algorithm,
train it, and test it, note some things that it does wrong, revise it and
then to repeat the process (often many times!). But, if one does that a lot,
not only does one tend to end up seeing aspects of the test set, but just
repeatedly trying out different variant algorithms and looking at their
performance can be viewed as subtly probing the contents of the test set.
This means that testing a succession of variant models can again lead to
overtraining. So the right approach is to have two test sets: a development
test set on which successive variant methods are trialed and a final test
set which is used to produce the final results that are published about
the performance of the algorithm. One should expect performance on
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the final test set to be slightly lower than on the development test set
(though sometimes one can be lucky).

The discussion so far leaves open exactly how to choose which parts
of the data are to be used as testing data. Actually here opinion divides
into two schools. One school favors selecting bits (sentences or even n-
grams) randomly from throughout the data for the test set and using the
rest of the material for training. The advantage of this method is that
the testing data is as similar as possible (with respect to genre, register,
writer, and vocabulary) to the training data. That is, one is training from
as accurate a sample as possible of the type of language in the test data.
The other possibility is to set aside large contiguous chunks as test data.
The advantage of this is the opposite: in practice, one will end up using
any NLP system on data that varies a little from the training data, as
language use changes a little in topic and structure with the passage of
time. Therefore, some people think it best to simulate that a little by
choosing test data that perhaps isn’t quite stationary with respect to the
training data. At any rate, if using held out estimation of parameters, it is
best to choose the same strategy for setting aside data for held out data
as for test data, as this makes the held out data a better simulation of
the test data. This choice is one of the many reasons why system results
can be hard to compare: all else being equal, one should expect slightly
worse performance results if using the second approach.

While covering testing, let us mention one other issue. In early work, it
was common to just run the system on the test data and present a single
performance figure (for perplexity, percent correct or whatever). But this
isn't a very good way of testing, as it gives no idea of the variance in
the performance of the system. A much better way is to divide the test
data into, say 20, smaller samples, and work out a test result on each of
them. From those results, one can work out a mean performance figure,
as before, but one can also calculate the variance that shows how much
performance tends to vary. If using this method together with continuous
chunks of training data, it is probably best to take the smaller testing
samples from different regions of the data, since the testing lore tends
to be full of stories about certain sections of data sets being “easy,” and
so it is better to have used a range of test data from different sections of
the corpus.

If we proceed this way, then one system can score higher on average
than another purely by accident, especially when within-system variance
is high. So just comparing average scores is not enough for meaningful
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System 1 System 2

scores 71,61, 55, 60, 68,49, 42,55,75,45, 54,51
42,72,76,55, 64 55, 36, 58, 55, 67
total 609 526
n 11 11
mean X; 55.4 47.8
s2 =D (xij — %i)? 1,375.4 1,228.8
df 10 10
Pooled s? = W ~ 130.2

t— JiX _ 554478 4 56

02 2:130.2
Jg

Table 6.6 Using the t test for comparing the performance of two systems. Since
we calculate the mean for each data set, the denominator in the calculation of
variance and the number of degrees of freedom is (11 — 1) + (11 — 1) = 20.
The data do not provide clear support for the superiority of system 1. Despite
the clear difference in mean scores, the sample variance is too high to draw any
definitive conclusions.

system comparison. Instead, we need to apply a statistical test that takes
into account both mean and variance. Only if the statistical test rejects
the possibility of an accidental difference can we say with confidence that
one system is better than the other.?

An example of using the t test (which we introduced in section 5.3.1)
for comparing the performance of two systems is shown in table 6.6
(adapted from (Snedecor and Cochran 1989: 92)). Note that we use a
pooled estimate of the sample variance s® here under the assumption
that the variance of the two systems is the same (which seems a reason-
able assumption here: 609 and 526 are close enough). Looking up the
t distribution in the appendix, we find that, for rejecting the hypothesis
that the system 1 is better than system 2 at a probability level of & = 0.05,
the critical value is t = 1.725 (using a one-tailed test with 20 degrees of
freedom). Since we have t = 1.56 < 1.725, the data fail the significance
test. Although the averages are fairly distinct, we cannot conclude supe-
riority of system 1 here because of the large variance of scores.

9. Systematic discussion of testing methodology for comparing statistical and machine
learning algorithms can be found in (Dietterich 1998). A good case study, for the example
of word sense disambiguation, is (Mooney 1996).
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Using held out estimation on the test data

So long as the frequency of an n-gram C(w; - - - wy) is the only thing that
we are using to predict its future frequency in text, then we can use held
out estimation performed on the test set to provide the correct answer of
what the discounted estimates of probabilities should be in order to max-
imize the probability of the test set data. Doing this empirically measures
how often n-grams that were seen r times in the training data actually do
occur in the test text. The empirical estimates fempirical in table 6.4 were
found by randomly dividing the 44 million bigrams in the whole AP cor-
pus into equal-sized training and test sets, counting frequencies in the
22 million word training set and then doing held out estimation using
the test set. Whereas other estimates are calculated only from the 22
million words of training data, this estimate can be regarded as an em-
pirically determined gold standard, achieved by allowing access to the
test data.

Cross-validation (deleted estimation)

The fempiricar €stimates discussed immediately above were constructed
by looking at what actually happened in the test data. But the idea of
held out estimation is that we can achieve the same effect by dividing the
training data into two parts. We build initial estimates by doing counts
on one part, and then we use the other pool of held out data to refine
those estimates. The only cost of this approach is that our initial training
data is now less, and so our probability estimates will be less reliable.

Rather than using some of the training data only for frequency counts
and some only for smoothing probability estimates, more efficient
schemes are possible where each part of the training data is used both
as initial training data and as held out data. In general, such methods in
statistics go under the name cross-validation.

Jelinek and Mercer (1985) use a form of two-way cross-validation that
they call deleted estimation. Suppose we let NZ be the number of n-grams
occurring r times in the a™ part of the training data, and T#? be the total
occurrences of those bigrams from part a in the b'® part. Now depending
on which part is viewed as the basic training data, standard held out
estimates would be either:

01 TlO
r

Pho(wy - - - wy) = —£— or
hO(l n) 9 N,}N

where C(Wy - --wy) =F
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The more efficient deleted interpolation estimate does counts and
smoothing on both halves and then averages the two:

T + O

—_— where C(wy ---wy) =F
N(N,Q—i—N,l) ( 1 n)

Pael(wy - - -wy) =

On large training corpora, doing deleted estimation on the training data
works better than doing held-out estimation using just the training data,
and indeed table 6.4 shows that it produces results that are quite close
to the empirical gold standard.'? It is nevertheless still some way off for
low frequency events. It overestimates the expected frequency of unseen
objects, while underestimating the expected frequency of objects that
were seen once in the training data. By dividing the text into two parts
like this, one estimates the probability of an object by how many times
it was seen in a sample of size %, assuming that the probability of a
token seen r times in a sample of size % is double that of a token seen r
times in a sample of size N. However, it is generally true that as the size
of the training corpus increases, the percentage of unseen n-grams that
one encounters in held out data, and hence one’s probability estimate
for unseen n-grams, decreases (while never becoming negligible). It is for
this reason that collecting counts on a smaller training corpus has the
effect of overestimating the probability of unseen n-grams.

There are other ways of doing cross-validation. In particular Ney et al.
(1997) explore a method that they call Leaving-One-Out where the pri-
mary training corpus is of size N — 1 tokens, while 1 token is used as
held out data for a sort of simulated testing. This process is repeated N
times so that each piece of data is left out in turn. The advantage of this
training regime is that it explores the effect of how the model changes if
any particular piece of data had not been observed, and Ney et al. show
strong connections between the resulting formulas and the widely-used
Good-Turing method to which we turn next.!!

10. Remember that, although the empirical gold standard was derived by held out esti-
mation, it was held out estimation based on looking at the test data! Chen and Goodman
(1998) find in their study that for smaller training corpora, held out estimation outper-
forms deleted estimation.

11. However, Chen and Goodman (1996: 314) suggest that leaving one word out at a
time is problematic, and that using larger deleted chunks in deleted interpolation is to be
preferred.
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Good-Turing estimation
The Good-Turing estimator

Good (1953) attributes to Turing a method for determining frequency or
probability estimates of items, on the assumption that their distribution
is binomial. This method is suitable for large numbers of observations of
data drawn from a large vocabulary, and works well for n-grams, despite
the fact that words and n-grams do not have a binomial distribution. The
probability estimate in Good-Turing estimation is of the form Pgt = r*/N
where r* can be thought of as an adjusted frequency. The theorem un-
derlying Good-Turing methods gives that for previously observed items:
E (N r+1 )
E(Ny)

where E denotes the expectation of a random variable (see (Church and
Gale 1991a; Gale and Sampson 1995) for discussion of the derivation of
this formula). The total probability mass reserved for unseen objects is
then E(N71)/N (see exercise 6.5).

Using our empirical estimates, we can hope to substitute the observed
N, for E(N,). However, we cannot do this uniformly, since these empir-
ical estimates will be very unreliable for high values of ». In particular,
the most frequent n-gram would be estimated to have probability zero,
since the number of n-grams with frequency one greater than it is zero!
In practice, one of two solutions is employed. One is to use Good-Turing
reestimation only for frequencies r < k for some constant k (e.g., 10).
Low frequency words are numerous, so substitution of the observed fre-
quency of frequencies for the expectation is quite accurate, while the
MLE estimates of high frequency words will also be quite accurate and so
one doesn’t need to discount them. The other is to fit some function S
through the observed values of (r,N,) and to use the smoothed values
S(r) for the expectation (this leads to a family of possibilities depend-
ing on exactly which method of curve fitting is employed - Good (1953)
discusses several smoothing methods). The probability mass % given to
unseen items can either be divided among them uniformly, or by some
more sophisticated method (see under Combining Estimators, below). So
using this method with a uniform estimate for unseen events, we have:

re=(r+1)

Good-Turing Estimator: If C(wy - - - wy) =1 > 0,

o . r+1Sr+1)
Pgr(wy Wn) = N where r* = —r
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If Clwy---wy) =0,

1- Z?:lNr% - N1
No ~ NoN

Per(wy -+ -wp) =

Gale and Sampson (1995) present a simple and effective approach, Sim-
ple Good-Turing, which effectively combines these two approaches. As a
smoothing curve they simply use a power curve N, = ar? (with b < -1
to give the appropriate hyperbolic relationship), and estimate A and b
by simple linear regression on the logarithmic form of this equation
log N, = a+blogr (linear regression is covered in section 15.4.1, or in all
introductory statistics books). However, they suggest that such a simple
curve is probably only appropriate for high values of r. For low values of
r, they use the measured N, directly. Working up through frequencies,
these direct estimates are used until for one of them there isn’t a signifi-
cant difference between r* values calculated directly or via the smoothing
function, and then smoothed estimates are used for all higher frequen-
cies.!? Simple Good-Turing can give exceedingly good estimators, as can
be seen by comparing the Good-Turing column fgr in table 6.4 with the
empirical gold standard.

Under any of these approaches, it is necessary to renormalize all the
estimates to ensure that a proper probability distribution results. This
can be done either by adjusting the amount of probability mass given to
unseen items (as in equation (6.14)), or, perhaps better, by keeping the
estimate of the probability mass for unseen items as % and renormal-
izing all the estimates for previously seen items (as Gale and Sampson
(1995) propose).

Frequencies of frequencies in Austen

To do Good-Turing, the first step is to calculate the frequencies of differ-
ent frequencies (also known as count-counts). Table 6.7 shows extracts
from the resulting list of frequencies of frequencies for bigrams and
trigrams. (The numbers are reminiscent of the Zipfian distributions of

12. An estimate of r* is deemed significantly different if the difference exceeds 1.65 times
the standard deviation of the Good-Turing estimate, which is given by:

Nri1 Nri1
r+1 2r—+(1+r—)
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Bigrams Trigrams

r Ny r Ny r N, r Ny
1 138741 28 90 1 404211 28 35
2 25413 29 120 2 32514 29 32
3 10531 30 86 3 10056 30 25
4 5997 31 98 4 4780 31 18
5 3565 32 99 5 2491 32 19
6 2486 . 6 1571 s
7 1754 1264 1 7 1088 189 1
8 1342 1366 1 8 749 202 1
9 1106 1917 1 9 582 214 1
10 896 2233 1 10 432 366 1

2507 1 378 1

Table 6.7 Extracts from the frequencies of frequencies distribution for bigrams
and trigrams in the Austen corpus.

section 1.4.3 but different in the details of construction, and more exag-
gerated because they count sequences of words.) Table 6.8 then shows
the reestimated counts r* and corresponding probabilities for bigrams.

For the bigrams, the mass reserved for unseen bigrams, N;/N =
138741/617091 = 0.2248. The space of bigrams is the vocabulary
squared, and we saw 199,252 bigrams, so using uniform estimates,
the probability estimate for each unseen bigram is: 0.2248/(14585% —
199252) = 1.058 x 1072, If we now wish to work out conditional prob-
ability estimates for a bigram model by using Good-Turing estimates for
bigram probability estimates, and MLE estimates directly for unigrams,
then we begin as follows:

fcr(person she)  1.228

C(person) 223 = 0.0055

P(she|person) =

Continuing in this way gives the results in table 6.9, which can be com-
pared with the bigram estimates in table 6.3. The estimates in general
seem quite reasonable. Multiplying these numbers, we come up with a
probability estimate for the clause of 1.278 x 10~17. This is at least much
higher than the ELE estimate, but still suffers from assuming a uniform
distribution over unseen bigrams.
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31
32
1264
1366
1917

2233
2507

%

-
0.0007
0.3663
1.228
2.122
3.058
4.015
4.984
5.96
6.942
7.928
8.916

26.84
27.84
28.84
29.84
30.84

1263
1365
1916
2232
2506

Pgr(+)

1.058 x 1079
5.982 x 1077
2.004 x 1076
3.465 x 1076
4.993 x 1076
6.555 x 1076
8.138 x 107
9.733 x 1076
1.134 x 107>
1.294 x 107>
1.456 x 107>

4.383 x 107>
4.546 x 107>
4.709 x 107>
4872 x 107>
5.035x 107

0.002062
0.002228
0.003128
0.003644
0.004092
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Table 6.8 Good-Turing estimates for bigrams: Adjusted frequencies and prob-

abilities.

P(she|person)

P (was|she)

P(inferior|was)

P(tolinferior)
P (both|to)

P (sisters|both)

0.0055
0.1217
6.9x 1078
0.1806
0.0003956
0.003874

Table 6.9 Good-Turing bigram frequency estimates for the clause from Persua-

sion.
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Briefly noted

Ney and Essen (1993) and Ney et al. (1994) propose two discounting mod-
els: in the absolute discounting model, all non-zero MLE frequencies are
discounted by a small constant amount 6 and the frequency so gained is
uniformly distributed over unseen events:

Absolute discounting: If C(w; - - - wy) =7,

P ) (r-96)/N ifr>0

st W = (BX](I)\]]?])(S otherwise
(Recall that B is the number of bins.) In the linear discounting method,
the non-zero MLE frequencies are scaled by a constant slightly less than
one, and the remaining probability mass is again distributed across novel

events:

Linear discounting: If C(wy - - - wy) =1,

1-x)r/N ifr>0
/Ny otherwise

P(Wl"'Wn):{

These estimates are equivalent to the frequent engineering move of mak-
ing the probability of unseen events some small number € instead of
zero and then rescaling the other probabilities so that they still sum to
one - the choice between them depending on whether the other proba-
bilities are scaled by subtracting or multiplying by a constant. Looking
again at the figures in table 6.4 indicates that absolute discounting seems
like it could provide a good estimate. Examining the fempirical figures
there, it seems that a discount of 6 =~ 0.77 would work well except for
bigrams that have only been seen once previously (which would be un-
derestimated). In general, we could use held out data to estimate a good
value for 6. Extensions of the absolute discounting approach are very
successful, as we discuss below. It is hard to justify linear discounting.
In general, the higher the frequency of an item in the training text, the
more accurate an unadjusted MLE estimate is, but the linear discounting
method does not even approximate this observation.

A shortcoming of Lidstone’s law is that it depends on the number of
bins in the model. While some empty bins result from sparse data prob-
lems, many more may be principled gaps. Good-Turing estimation is one
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method where the estimates of previously seen items do not depend on
the number of bins. Ristad (1995) explores the hypothesis that natu-
ral sequences use only a subset of the possible bins. He derives various
forms for a Natural Law of Succession, including the following probability
estimate for an n-gram with observed frequency C(wy - - - wy) =1

r+1 . _
N+B lfN()—O
D(N+14No-B)
Pnis(Wy -« - wp) = % if No>0andr >0

(B—Np) (B—Ng+1)
No(N2+N+2(B—Np))

otherwise

The central features of this law are: (i) it reduces to Laplace’s law if some-
thing has been seen in every bin, (ii) the amount of probability mass
assigned to unseen events decreases quadratically in the number N of
trials, and (iii) the total probability mass assigned to unseen events is
independent of the number of bins B, so there is no penalty for large
vocabularies.

Combining Estimators

So far the methods we have considered have all made use of nothing but
the raw frequency r of an n-gram and have tried to produce the best es-
timate of its probability in future text from that. But rather than giving
the same estimate for all n-grams that never appeared or appeared only
rarely, we could hope to produce better estimates by looking at the fre-
quency of the (n — 1)-grams found in the n-gram. If these (n — 1)-grams
are themselves rare, then we give a low estimate to the n-gram. If the
(n — 1)-grams are of moderate frequency, then we give a higher probabil-
ity estimate for the n-gram.!3 Church and Gale (1991a) present a detailed
study of this idea, showing how probability estimates for unseen bigrams
can be estimated in terms of the probabilities of the unigrams that com-
pose them. For unseen bigrams, they calculate the joint-if-independent
probability P(w;)P(w>), and then group the bigrams into bins based on
this quantity. Good-Turing estimation is then performed on each bin to
give corrected counts that are normalized to yield probabilities.

13. But if the (n — 1)-grams are of very high frequency, then we may actually want to
lower the estimate again, because the non-appearance of the n-gram is then presumably
indicative of a principled gap.
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But in this section we consider the more general problem of how to
combine multiple probability estimates from various different models. If
we have several models of how the history predicts what comes next, then
we might wish to combine them in the hope of producing an even better
model. The idea behind wanting to do this may either be smoothing, or
simply combining different information sources.

For n-gram models, suitably combining various models of different or-
ders is in general the secret to success. Simply combining MLE n-gram
estimates of various orders (with some allowance for unseen words) us-
ing the simple linear interpolation technique presented below results in
a quite good language model (Chen and Goodman 1996). One can do bet-
ter, but not by simply using the methods presented above. Rather one
needs to combine the methods presented above with the methods for
combining estimators presented below.

Simple linear interpolation

One way of solving the sparseness in a trigram model is to mix that model
with bigram and unigram models that suffer less from data sparseness.
In any case where there are multiple probability estimates, we can make
a linear combination of them, providing only that we weight the contri-
bution of each so that the result is another probability function. Inside
Statistical NLP, this is usually called linear interpolation, but elsewhere
the name (finite) mixture models is more common. When the functions
being interpolated all use a subset of the conditioning information of
the most discriminating function (as in the combination of trigram, bi-
gram and unigram models), this method is often referred to as deleted
interpolation. For interpolating n-gram language models, such as deleted
interpolation from a trigram model, the most basic way to do this is:

PyiWn|Wn—2,Wn-1) = A1P1(Wn) + A2P2 (WnlWn_1) + A3P3(Wn|Wn_1, Wn_2)

where 0 < A; <1 and >;A; = 1.

While the weights may be set by hand, in general one wants to find the
combination of weights that works best. This can be done automatically
by a simple application of the Expectation Maximization (EM) algorithm,
as is discussed in section 9.2.1, or by other numerical algorithms. For
instance, Chen and Goodman (1996) use Powell’s algorithm, as presented
in (Press et al. 1988). Chen and Goodman (1996) show that this simple
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model (with just slight complications to deal with previously unseen his-
tories and to reserve some probability mass for out of vocabulary items)
works quite well. They use it as the baseline model (see section 7.1.3) in
their experiments.

Katz’s backing-off

In back-off models, different models are consulted in order depending
on their specificity. The most detailed model that is deemed to provide
sufficiently reliable information about the current context is used. Again,
back-off may be used to smooth or to combine information sources.
Back-off n-gram models were proposed by Katz (1987). The estimate
for an n-gram is allowed to back off through progressively shorter histo-
ries:
(U= Ay Cm o
if C(Wi—ps1---wi) >k
X+ wiog Pbo (Wil Wi—ps2 - - - wi_1)
otherwise

PooWilWi—ns1 - - Wi—1) =

If the n-gram of concern has appeared more than k times (k is normally
set to 0 or 1), then an n-gram estimate is used, as in the first line. But the
MLE estimate is discounted a certain amount (represented by the function
d) so that some probability mass is reserved for unseen n-grams whose
probability will be estimated by backing off. The MLE estimates need to
be discounted in some manner, or else there would be no probability
mass to distribute to the lower order models. One possibility for calcu-
lating the discount is the Good-Turing estimates discussed above, and
this is what Katz actually used. If the n-gram did not appear or appeared
k times or less in the training data, then we will use an estimate from a
shorter n-gram. However, this back-off probability has to be multiplied
by a normalizing factor « so that only the probability mass left over in
the discounting process is distributed among n-grams that are estimated
by backing off. Note that in the particular case where the (n — 1)-gram in
the immediately preceding history was unseen, the first line is inapplica-
ble for any choice of w;, and the back-off factor « takes on the value 1. If
the second line is chosen, estimation is done recursively via an (n — 1)-
gram estimate. This recursion can continue down, so that one can start
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with a four-gram model and end up estimating the next word based on
unigram frequencies.

While backing off in the absence of much data is generally reasonable,
it can actually work badly in some circumstances. If we have seen the bi-
gram w;w; many times, and wy is a common word, but we have never seen
the trigram w;w;wy, then at some point we should actually conclude that
this is significant, and perhaps represents a ‘grammatical zero,” rather
than routinely backing off and estimating P(wy|h) via the bigram esti-
mate P(wi|w;). Rosenfeld and Huang (1992) suggest a more complex
back-off model that attempts to correct for this.

Back-off models are sometimes criticized because their probability es-
timates can change suddenly on adding more data when the back-off al-
gorithm selects a different order of n-gram model on which to base the
estimate. Nevertheless, they are simple and in practice work well.

General linear interpolation

In simple linear interpolation, the weights were just a single number, but
one can define a more general and powerful model where the weights are
a function of the history. For k probability functions Py the general form
for a linear interpolation model is:

k
Py(wlh) = > Ai(h)Pi(w|h)
i=1
where Vh, 0 < A;(h) <1 and >;A;(h) = 1.

Linear interpolation is commonly used because it is a very general way
to combine models. Randomly adding in dubious models to a linear in-
terpolation need not do harm providing one finds a good weighting of
the models using the EM algorithm. But linear interpolation can make
bad use of component models, especially if there is not a careful par-
titioning of the histories with different weights used for different sorts
of histories. For instance, if the A; are just constants in an interpola-
tion of n-gram models, the unigram estimate is always combined in with
the same weight regardless of whether the trigram estimate is very good
(because there is a lot of data) or very poor.

In general the weights are not set according to individual histories.
Training a distinct Ay, ;, for each w(_py1)(i-1) is not in general fe-
licitous, because it would worsen the sparse data problem. Rather one
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wants to use some sort of equivalence classing of the histories. Bahl et al.
(1983) suggest partitioning the A into bins according to C(W(i—n+1)i-1)),
and tying the parameters for all histories with the same frequency.

Chen and Goodman (1996) show that rather than this method of put-
ting the A parameters into bins, a better way is to group them according
to the average number of counts per non-zero element:

CW(i—n+1)(i-1))
Wi 1 C(W(i—n+1)i) > 0|

That is, we take the average count over non-zero counts for n-grams
Wi_n+1 -+ - Wio1wX. We presume that the reason this works is that, be-
cause of the syntax of language, there are strong structural constraints
on which words are possible or normal after certain other words. While
it is central to most Statistical NLP language models that any word is al-
lowed after any other - and this lets us deal with all possible disfluencies
- nevertheless in many situations there are strong constraints on what
can normally be expected due to the constraints of grammar. While some
n-grams have just not been seen, others are ‘grammatical zeroes,” to coin
a phrase, because they do not fit with the grammatical rules of the lan-
guage. For instance, in our Austen training corpus, both of the bigrams
great deal and of that occur 178 times. But of that is followed in the
corpus by 115 different words, giving an average count of 1.55, reflecting
the fact that any adverb, adjective, or noun can felicitously follow within
a noun phrase, and any capitalized word starting a new sentence is also
a possibility. There are thus fairly few grammatical zeroes (mainly just
verbs and prepositions). On the other hand, great deal is followed by
only 36 words giving an average count of 4.94. While a new sentence
start is again a possibility, grammatical possibilities are otherwise pretty
much limited to conjunctions, prepositions, and the comparative form of
adjectives. In particular, the preposition of follows 38% of the time. The
higher average count reflects the far greater number of grammatical ze-
roes following this bigram, and so it is correct to give new unseen words
a much lower estimate of occurrence in this context.

Finally, note that back-off models are actually a special case of the gen-
eral linear interpolation model. In back-off models, the functions A;(h)
are chosen so that their value is O for a history h except for the coefficient
of the model that would have been chosen using a back-off model, which
has the value 1.
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Briefly noted

Bell et al. (1990) and Witten and Bell (1991) introduce a number of
smoothing algorithms for the goal of improving text compression. Their
“Method C” is normally referred to as Witten-Bell smoothing and has been
used for smoothing speech language models. The idea is to model the
probability of a previously unseen event by estimating the probability of
seeing such a new (previously unseen) event at each point as one proceeds
through the training corpus. In particular, this probability is worked out
relative to a certain history. So to calculate the probability of seeing a
new word after, say, sat in one is calculating from the training data how
often one saw a new word after sat in, which is just the count of the num-
ber of trigram types seen which begin with sat in. It is thus an instance
of generalized linear interpolation:

Pwg(WilWi-n+1)i-1)) = Awineniy PMEEOWi I W(i—n+1)-1))

+(1 = Aoy ) PwB (Wil Wii—ni2)ii-1))

where the probability mass given to new n-grams is given by:

[{wi: C(Wi—ns1 - - - wi) > 0}

(I-A i—n+1) (- ) =
MEED T wg s C (W1 - - - i) > 03+ Xy, C(Wiipi - - W)

However, Chen and Goodman’s (1998) results suggest that this method
is not as good a smoothing technique for language models as others that
we discuss in this section (performing particularly poorly when used on
small training sets).

Samuelsson (1996) develops Linear Successive Abstraction, a method of
determining the parameters of deleted interpolation style models without
the need for their empirical determination on held out data. Samuels-
son’s results suggest similar performance within a part-of-speech tagger
to that resulting from conventional deleted interpolation; we are unaware
of any evaluation of this technique on word n-gram models.

Another simple but quite successful smoothing method examined by
Chen and Goodman (1996) is the following. MacKay and Peto (1990) argue
for a smoothed distribution of the form:

C(Wi—n+1* - - Wi) + &Pyp(WilWini2 - - - Wi1)
CWi-nt1 -+ Wi-1) + &

Prp (Wil Wispg1 - - - Wwio1) =

where « represents the number of counts added, in the spirit of Lid-
stone’s law, but distributed according to the lower order distribution.
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Model Cross-entropy Perplexity
Bigram 7.98 bits 252.3
Trigram 7.90 bits 239.1
Fourgram 7.95 bits 247.0

Table 6.10 Back-off language models with Good-Turing estimation tested on
Persuasion.

Chen and Goodman (1996) suggest that the number of added counts
should be proportional to the number of words seen exactly once, and
suggest taking:

& =Y(Nit(Wi—ps1 -+ -wi-1) + B)

where N1 (Wj_n+1 - - - Wi—1) = [{wj : C(Wi_p+1 - - - wj) = 1}], and then opti-
mizing B and y on held out data.

Kneser and Ney (1995) develop a back-off model based on an exten-
sion of absolute discounting which provides a new more accurate way of
estimating the distribution to which one backs off. Chen and Goodman
(1998) find that both this method and an extension of it that they propose
provide excellent smoothing performance.

Language models for Austen

With the introduction of interpolation and back-off, we are at last at the
point where we can build first-rate language models for our Austen cor-
pus. Using the CMU-Cambridge Statistical Language Modeling Toolkit
(see the website) we built back-off language models using Good-Turing
estimates, following basically the approach of Katz (1987).!4 We then
calculated the cross-entropy (and perplexity) of these language models
on our test set, Persuasion. The results appear in table 6.10. The esti-
mated probabilities for each following word, and the n-gram size used to
estimate it for our sample clause is then shown in table 6.11. Our prob-
ability estimates are at last pleasingly higher than the unigram estimate
with which we began!

While overall the trigram model outperforms the bigram model on the
test data, note that on our example clause, the bigram model actually as-

14. The version of Good-Turing smoothing that the package implements only discounts
low frequencies - words that occurred fewer than 7 times.
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P(shelh) P(was|lh) P/(inferior|lh) P(tolh) P(bothlh) P(sisters|h) | Product
Unigram 0.011 0.015 0.00005 0.032 0.0005 0.0003 3.96 x 10717
Bigram 0.00529  0.1219 0.0000159 0.183 0.000449  0.00372 3.14 x 1071
n used 2 2 1 2 2 2
Trigram  0.00529  0.0741 0.0000162 0.183 0.000384  0.00323 1.44 x 10~1°
n used 2 3 1 2 2 2

6.4

Table 6.11 Probability estimates of the test clause according to various lan-
guage models. The unigram estimate is our previous MLE unigram estimate. The
other two estimates are back-off language models. The last column gives the
overall probability estimate given to the clause by the model.

signs a higher probability. Overall, the fourgram model performs slightly
worse than the trigram model. This is expected given the small amount
of training data. Back-off models are in general not perfectly successful
at simply ignoring inappropriately long contexts, and the models tend to
deteriorate if too large n-grams are chosen for model building relative to
the amount of data available.

Conclusions

A number of smoothing methods are available which often offer similar
and good performance figures. Using Good-Turing estimation and linear
interpolation or back-off to circumvent the problems of sparse data rep-
resent good current practice. Chen and Goodman (1996, 1998) present
extensive evaluations of different smoothing algorithms. The conclusions
of (Chen and Goodman 1998) are that a variant of Kneser-Ney back-
off smoothing that they develop normally gives the best performance.
It is outperformed by the Good-Turing smoothing method explored by
Church and Gale (1991a) when training bigram models on more than 2
million words of text, and one might hypothesize that the same would
be true of trigram models trained on a couple of orders of magnitude
more text. But in all other circumstances, it seems to perform as well or
better than other methods. While simple smoothing methods may be ap-
propriate for exploratory studies, they are best avoided if one is hoping
to produce systems with optimal performance. Active research continues
on better ways of combining probability models and dealing with sparse
data.
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Further Reading

Important research studies on statistical estimation in the context of lan-
guage modeling include (Katz 1987), (Jelinek 1990), (Church and Gale
1991a), (Ney and Essen 1993), and (Ristad 1995). Other discussions of es-
timation techniques can be found in (Jelinek 1997) and (Ney et al. 1997).
Gale and Church (1994) provide detailed coverage of the problems with
“adding one.” An approachable account of Good-Turing estimation can
be found in (Gale and Sampson 1995). The extensive empirical compar-
ison of various smoothing methods in (Chen and Goodman 1996, 1998)
are particularly recommended.

The notion of maximum likelihood across the values of a parameter
was first defined in (Fisher 1922). See (Ney et al. 1997) for a proof that
the relative frequency really is the maximum likelihood estimate.

Recently, there has been increasing use of maximum entropy methods
for combining models. We defer coverage of maximum entropy models
until chapter 16. See Lau et al. (1993) and Rosenfeld (1994, 1996) for
applications to language models.

The early work cited in section 6.2.2 appears in: (Lidstone 1920), (John-
son 1932), and (Jeffreys 1948). See (Ristad 1995) for discussion. Good
(1979: 395-396) covers Turing’s initial development of the idea of Good-
Turing smoothing. This article is reprinted with amplification in (Britton
1992).

Exercises

Exercise 6.1 [ ]

Explore figures for the percentage of unseen n-grams in test data (that differs
from the training data). Explore varying some or all of: (i) the order of the model
(i.e., n), (ii) the size of the training data, (iii) the genre of the training data, and
(iv) how similar in genre, domain, and year the test data is to the training data.

Exercise 6.2 [*]

As a smaller example of the problems with Laplace’s law, work out probability
estimates using Laplace’s law given that 100 samples have been seen from a
potential vocabulary of 1000 items, and in that sample 9 items were seen 10
times, 2 items were seen 5 times and the remaining 989 items were unseen.
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Exercise 6.3 [*]
Show that using ELE yields a probability function, in particular that

D> PrE(wi---wy) =1

W1 -Wn

Exercise 6.4 [*]

Using the word and bigram frequencies within the Austen test corpus given be-
low, confirm the ELE estimate for the test clause she was inferior to both sisters
given in section 6.2.2 (using the fact that the word before she in the corpus was
person).

w C(w) W1Wa C(wiws)
person 223 person she 2
she 6,917 she was 843
was 9,409 was inferior 0
inferior 33 inferior to 7
to 20,042 to both 9
both 317 both sisters 2
Exercise 6.5 [*]

Show that Good-Turing estimation is well-founded. Le., you want to show:

_forwi - - - wn)

=1
N

> Per(wr - W)

W1 -Wn

Exercise 6.6 [*]

We calculated a Good-Turing probability estimate for she was inferior to both
sisters using a bigram model with a uniform estimate of unseen bigrams. Make
sure you can recreate these results, and then try doing the same thing using a
trigram model. How well does it work?

Exercise 6.7 [**]

Build language models for a corpus using the software pointed to on the web-
site (or perhaps build your own). Experiment with what options give the best
language model, as measured by cross-entropy.

Exercise 6.8 [**]

Get two corpora drawn from different domains, and divide each into a training
and a test set. Build language models based on the training data for each domain.
Then calculate the cross-entropy figures for the test sets using both the language
model trained on that domain, and the other language model. How much do the
cross-entropy estimates differ?
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Exercise 6.9 [ ]

Write a program that learns word n-gram models of some text (perhaps doing
smoothing, but it is not really necessary for this exercise). Train separate models
on articles from several Usenet newsgroups or other text from different genres
and then generate some random text based on the models. How intelligible is
the output for different values of n? Is the different character of the various
newsgroups clearly preserved in the generated text?

Exercise 6.10 [* %]

Write a program that tries to identify the language in which a short segment of
text is written, based on training itself on text written in known languages. For
instance, each of the following lines is text in a different language:

doen is ondubbelzinnig uit
prétendre a un emploi
uscirono fuori solo alcune
look into any little problem

If you know a little about European languages, you can probably identify what
language each sample is from. This is a classification task, in which you should
usefully be able to use some of the language modeling techniques discussed
in this chapter. (Hint: consider letter n-grams vs. word n-grams.) (This is a
problem that has been investigated by others; see in particular (Dunning 1994).
The website contains pointers to a number of existing language identification
systems - including one that was originally done as a solution to this exercise!)



“The primary implication is that a task-independent set of word
senses for a language is not a coherent concept. Word senses
are simply undefined unless there is some underlying rationale
for clustering, some context which classifies some distinctions as
worth making and others as not worth making. For people,
homonyms like ‘pike’ are a limiting case: in almost any
situation where a person considers it worth their while
attending to a sentence containing ‘pike,’ it is also worth their
while making the fish/weapon distinction.”

(Kilgarriff 1997: 19)
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Word Sense Disambiguation

THIS CHAPTER gives an overview of work on word sense disambigua-
tion within Statistical NLP. It introduces a few of the most important
word sense disambiguation algorithms, and describes their resource re-
quirements and performance.

What is the idea of word sense disambiguation? The problem to be
solved is that many words have several meanings or senses. For such
words given out of context, there is thus ambiguity about how they are
to be interpreted. As a first example of ambiguity, consider the word
bank and two of the senses that can be found in Webster’s New Collegiate
Dictionary (Woolf 1973):

= the rising ground bordering a lake, river, or sea...

= an establishment for the custody, loan exchange, or issue of money,
for the extension of credit, and for facilitating the transmission of
funds

The task of disambiguation is to determine which of the senses of an
ambiguous word is invoked in a particular use of the word. This is done
by looking at the context of the word’s use.

This is how the problem has normally been construed in the word sense
disambiguation literature. A word is assumed to have a finite number of
discrete senses, often given by a dictionary, thesaurus, or other reference
source, and the task of the program is to make a forced choice between
these senses for the meaning of each usage of an ambiguous word, based
on the context of use. However, it is important to realize at the outset that
there are a number of reasons to be quite unhappy with such a statement
of the task. The word bank is perhaps the most famous example of an
ambiguous word, but it is really quite atypical. A more typical situation
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is that a word has various somewhat related senses, and it is unclear
whether to and where to draw lines between them. For example, consider
the word title. Some senses that we found in a dictionary were:

» Name/heading of a book, statute, work of art or music, etc.

m Material at the start of a film

m The right of legal ownership (of land)

m The document that is evidence of this right

= An appellation of respect attached to a person’s name

m A written work [by synecdoche, i.e., putting a part for the whole]

One approach is simply to define the senses of a word as the meanings
given to it in a particular dictionary. However, this is unsatisfactory from
a scientific viewpoint because dictionaries often differ greatly in the num-
ber and kind of senses they list, not only because comprehensive dictio-
naries can be more complete, but fundamentally in the way word uses
are gathered into senses. And often these groupings seem quite arbi-
trary. For example, the above list of senses distinguishes as two senses
a right of legal title to property and a document that shows that right.
However, this pattern of sense extension between a concept and some-
thing that shows the concept is pervasive and could have been, but was
not, distinguished for other uses. For example the same ambiguity exists
when talking about the title of a painting. For instance, one might remark
in a gallery:

This work doesn’t have a title.

That sentence could mean either that the work was not given a title by
the author, or simply that the little placard giving the title, which usually
appears by paintings in a gallery, is missing. It is also somewhat unclear
why books, statutes and works of art or music are grouped together while
films are separated out. The second definition could be seen as a special
case of the first definition. It is quite common in many dictionaries for
senses to be listed that are really special cases of another sense, if this
sense is frequently and distinctively used in texts. These difficulties sug-
gest that, for most words, the usages and hence the sense definitions are
not to be thought of as like five kinds of cheese, among which one must
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choose, but more like a casserole which has some pieces of clearly dis-
tinct identifiable content, but a lot of stuff of uncertain and mixed origin
in between.

Notwithstanding these philosophical objections, the problem of disam-
biguation is of clear importance in many applications of natural language
processing. A system for automatic translation from English to German
needs to translate bank as Ufer for the first sense given above (‘ground
bordering a lake or river’), and as Bank for the second sense (‘financial
institution’). An information retrieval system answering a query about
‘financial banks’ should return only documents that use bank in the sec-
ond sense. Whenever a system'’s actions depend on the meaning of the
text being processed, disambiguation is beneficial or even necessary.

There is another kind of ambiguity, where a word can be used as differ-
ent parts of speech. For example, butter may be used as a noun, or as a
verb, as in You should butter your toast. Determining the usage of a word
in terms of part of speech is referred to as tagging, and is discussed in
chapter 10. How do these two notions relate? Using a word as a verb
instead of as a noun is clearly a different usage, with a different meaning
involved, and so this could be viewed as a word sense disambiguation
problem. Conversely, differentiating word senses could be viewed as a
tagging problem, but using semantic tags rather than part of speech tags.
In practice, the two topics have been distinguished, partly because of dif-
ferences between the nature of the problem, and partly because of the
methods that have been used to approach them. In general, nearby struc-
tural cues are most useful for determining part of speech (e.g., is the
preceding word a determiner?), but are almost useless for determining
semantic sense within a part of speech. Conversely, quite distant content
words are often very effective for determining a semantic sense, but are
of little use for determining part of speech. Consequently, most part of
speech tagging models simply use local context, while word sense disam-
biguation methods often try to use content words in a broader context.

The nature of ambiguity and disambiguation changes quite a bit de-
pending on what material is available for training a word sense disam-
biguation system. After an initial section about methodology, this chap-
ter has three main sections dealing with different types of training ma-
terial. Section 7.2 describes supervised disambiguation, disambiguation
based on a labeled training set. Section 7.3 describes dictionary-based
disambiguation, disambiguation that is based on lexical resources such
as dictionaries and thesauri. Section 7.4 deals with unsupervised disam-
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biguation, the case in which only unlabeled text corpora are available for
training. We conclude with an in-depth discussion of the notion of sense
and pointers to further reading.

Methodological Preliminaries

Several important methodological issues come up in the context of word
sense disambiguation. They are of general relevance to NLP, but have
received special attention in this context. These are: supervised vs. unsu-
pervised learning; the use of artificial evaluation data, known in the word
sense disambiguation context as pseudowords; and the development of
upper and lower bounds for the performance of algorithms, so that their
success can be meaningfully interpreted.

Supervised and unsupervised learning

A lot of algorithms are classified as to whether they involve supervised or
unsupervised learning (Duda and Hart 1973: 45). The distinction is that
with supervised learning we know the actual status (here, sense label) for
each piece of data on which we train, whereas with unsupervised learn-
ing we do not know the classification of the data in the training sample.
Unsupervised learning can thus often be viewed as a clustering task (see
chapter 14), while supervised learning can usually be seen as a classifica-
tion task (see chapter 16), or equivalently as a function-fitting task where
one extrapolates the shape of a function based on some data points.

However, in the Statistical NLP domain, things are often not this sim-
ple. Because the production of labeled training data is expensive, people
will often want to be able to learn from unlabeled data, but will try to give
their algorithms a head start by making use of various knowledge sources,
such as dictionaries, or more richly structured data, such as aligned bilin-
gual texts. In other methods, the system is seeded with labeled training
data, but this data is augmented by further learning from unlabeled data.
Rather than trying to force different methods on to a procrustean bed, it
usually makes most sense to simply give a precise answer to the question:
What knowledge sources are needed for use of this method? As we will see,
sometimes there are alternative combinations of knowledge sources that
can give similar information (e.g., using either aligned bilingual texts, or
monolingual texts and a bilingual dictionary).
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Pseudowords

In order to test the performance of disambiguation algorithms on a nat-
ural ambiguous word, a large number of occurrences has to be disam-
biguated by hand - a time-intensive and laborious task. In cases like this
in which test data are hard to come by, it is often convenient to gener-
ate artificial evaluation data for the comparison and improvement of text
processing algorithms. In the case of word sense disambiguation these
artificial data are called pseudowords.

Gale et al. (1992e) and Schiitze (1992a) show how pseudowords, i.e.,
artificial ambiguous words, can be created by conflating two or more nat-
ural words. For example, to create the pseudoword banana-door, one
replaces all occurrences of banana and door in a corpus by the artifi-
cial word banana-door. Pseudowords make it easy to create large-scale
training and test sets for disambiguation while obviating the need for
hand-labeling: we regard the text with pseudowords as the ambiguous
source text, and the original as the text with the ambiguous words dis-
ambiguated.

Upper and lower bounds on performance

While it is important to measure the performance of one’s algorithm, nu-
merical evaluation by itself is meaningless without some discussion of
how well the algorithm performs relative to the difficulty of the task. For
example, whereas 90% accuracy is easy to achieve for part-of-speech tag-
ging of English text, it is beyond the capacity of any existing machine
translation system. The estimation of upper and lower bounds for the
performance of an algorithm is a way to make sense of performance fig-
ures (Gale et al. 1992a). It is a good idea for many tasks in NLP, especially
if there are no standardized evaluation sets for comparing systems.

The upper bound used is usually human performance. In the case
of word sense disambiguation, if human judges disagree on the correct
sense assignment for a particular context, then we cannot expect an auto-
matic procedure to do better. Determining upper bounds is particularly
interesting if the disambiguation algorithm uses a limited representation
of contexts, for example just looking at the three words on each side
of the ambiguous word. In such a situation, the reason for poor per-
formance may just be that the contextual representations are not very
informative so that even humans would not be able to disambiguate very
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well based on the same information. We can evaluate this by looking at
human performance when based on the same limited contextual cues.!

An upper bound for word sense disambiguation was established by
Gale et al. (1992a). Gale et al. performed tests with the following task:
Subjects were given pairs of occurrences and had to decide whether they
were instances of the same sense. The task resulted in upper bounds
between 97% and 99%. However, most of the words in Gale et al.’s test
set have few and clearly distinct senses. In contrast, there are many am-
biguous words (in particular, high-frequency ones) that are similar to our
example title, i.e., their senses are interrelated and overlapping. Inter-
judge agreement depends on the type of ambiguity: it is higher for words
with clearly distinct senses (95% and higher) and lower for polysemous
words with many related senses (perhaps as low as 65% to 70%).2 The task
is also easier when viewed as a yes/no decision task than as an arbitrary
clustering task.

This means that we have to look at the properties of an individual am-
biguous word to determine whether a disambiguation algorithm does a
good job for it. For a word like bank we should aim for performance
in the ninety percent range, whereas less stringent criteria should be ap-
plied to fuzzier cases like title, side, and way.

The lower bound or baseline is the performance of the simplest possi-
ble algorithm, usually the assignment of all contexts to the most frequent
sense. A baseline should always be given because raw performance num-
bers make it impossible to assess how hard disambiguation is for a par-
ticular word. An accuracy of 90% is an excellent result for an ambiguous
word with two equiprobable senses. The same accuracy for a word with
two senses in a 9 to 1 frequency ratio is trivial to achieve - by always
selecting the most frequent sense.

v Upper and lower bounds are most relevant when we are dealing with
a classification task and the evaluation measure is accuracy. Section 8.1
discusses other evaluation measures, in particular, precision and recall.

1. Although, for limited artificial contexts like this, it is of course possible that computers
might be able to be more successful than human beings at extracting useful predictive
information.

2. See (Jorgensen 1990). To be able to correctly compare the extent of inter-judge agree-
ment across tasks, we need to correct for the expected chance agreement (which depends
on the number of senses being distinguished). This is done by the kappa statistic (Siegel
and Castellan 1988; Carletta 1996).
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Symbol Meaning

w an ambiguous word

S1y.-ySky...,Sk  senses of the ambiguous word w

C1y..-,Ci,...,C;  contexts of w in a corpus

Vi,...,Vj,..., vy words used as contextual features for disambiguation

Table 7.1 Notational conventions used in this chapter.

Supervised Disambiguation

In supervised disambiguation, a disambiguated corpus is available for
training. There is a training set of exemplars where each occurrence of
the ambiguous word w is annotated with a semantic label (usually its
contextually appropriate sense si). This setting makes supervised disam-
biguation an instance of statistical classification, the topic of chapter 16.
The task is to build a classifier which correctly classifies new cases based
on their context of use ¢;. This notation, which we will use throughout
the remainder of the chapter, is shown in table 7.1.

We have selected two of the many supervised algorithms that have
been applied to word sense disambiguation that exemplify two impor-
tant theoretical approaches in statistical language processing: Bayesian
classification (the algorithm proposed by Gale et al. (1992b)) and Informa-
tion Theory (the algorithm proposed by Brown et al. (1991b)). They also
demonstrate that very different sources of information can be employed
successfully for disambiguation. The first approach treats the context of
occurrence as a bag of words without structure, but it integrates infor-
mation from many words in the context window. The second approach
looks at only one informative feature in the context, which may be sen-
sitive to text structure. But this feature is carefully selected from a large
number of potential ‘informants.’

Bayesian classification

The idea of the Bayes classifier which we will present for word senses is
that it looks at the words around an ambiguous word in a large context
window. Each content word contributes potentially useful information
about which sense of the ambiguous word is likely to be used with it.
The classifier does no feature selection. Instead it combines the evidence
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from all features. The specific formalization we describe is due to Gale
et al. (1992b). The supervised training of the classifier assumes that we
have a corpus where each use of ambiguous words is labeled with its
correct sense.

A Bayes classifier applies the Bayes decision rule when choosing a class,
the rule that minimizes the probability of error (Duda and Hart 1973: 10-
43):

Bayes decision rule
Decide s’ if P(s"|c) > P(sk|c) for sy = s’

The Bayes decision rule is optimal because it minimizes the probability
of error. This is true because for each individual case it chooses the class
(or sense) with the highest conditional probability and hence the smallest
error rate. The error rate for a sequence of decisions (for example, dis-
ambiguating all instances of w in a multi-page text) will therefore also be
as small as possible.

We usually do not know the value of P(sx|c), but we can compute it
using Bayes’ rule as in section 2.1.10:

P(clsk)
P(c)

P(sklc) = P(sk)
P(sy) is the prior probability of sense sk, the probability that we have an
instance of s; if we do not know anything about the context. P(sk) is
updated with the factor P(%lcs)") which incorporates the evidence which we
have about the context, and results in the posterior probability P(sk|c).
If all we want to do is choose the correct class, we can simplify the
classification task by eliminating P(c) (which is a constant for all senses
and hence does not influence what the maximum is). We can also use
logs of probabilities to make the computation simpler. Then, we want to

assign w to the sense s’ where:

s’ = argmaxP(sg|c)
Sk

= argmaxP(C|Sk)P(Sk)

Sk P(C)
= argmaxP(c|sk)P(sk)
Sk

= argmax[logP(c|sk) + log P(sx)]
Sk
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Gale et al.’s classifier is an instance of a particular kind of Bayes clas-
sifier, the Naive Bayes classifier. Naive Bayes is widely used in machine
learning due to its efficiency and its ability to combine evidence from a
large number of features (Mitchell 1997: ch. 6). It is applicable if the state
of the world that we base our classification on is described as a series
of attributes. In our case, we describe the context of w in terms of the
words v; that occur in the context.

The Naive Bayes assumption is that the attributes used for description
are all conditionally independent:

Naive Bayes assumption
P(clsk) = P({vjlv; in c}Isk) = [1y;inc P(Vjlsk)

In our case, the Naive Bayes assumption has two consequences. The
first is that all the structure and linear ordering of words within the con-
text is ignored. This is often referred to as a bag of words model.? The
other is that the presence of one word in the bag is independent of an-
other. This is clearly not true. For example, president is more likely to
occur in a context that contains election than in a context that contains
poet. But, as in many other cases, the simplifying assumption makes it
possible to adopt an elegant model that can be quite effective despite
its shortcomings. Obviously, the Naive Bayes assumption is inappropri-
ate if there are strong conditional dependencies between attributes. But
there is a surprisingly large number of cases in which it does well, partly
because the decisions made can still be optimal even if the probability es-
timates are inaccurate due to feature dependence (Domingos and Pazzani
1997).

With the Naive Bayes assumption, we get the following modified deci-
sion rule for classification:

Decision rule for Naive Bayes
Decide s" if s = argmaxg, [log P (sx) + Zvj inclog P(vjlsk)]

P(vj|sx) and P(sx) are computed via Maximum-Likelihood estimation,
perhaps with appropriate smoothing, from the labeled training corpus:

C(vj,sk)

P(vjlsk) = Cis0)

3. A bag is like a set, but allows repeated elements (we use ‘in’ rather than ‘€’ in equa-
tion (7.4) because we are treating c as a bag).
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comment: Training
for all senses sx of w do

for all words v; in the vocabulary do
P(vyls) =
end
end
for all senses s of w do
P(sK) = G
end
comment: Disambiguation
for all senses sy of w do
score(syx) = log P (sk)
for all words v; in the context window ¢ do
score(si) = score(sk) +log P (v;lsk)
15 end
16 end
17 choose s’ = argmax,, score(sk)

© S N ULk W N~

[
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Figure 7.1 Bayesian disambiguation.

Clues for sense

medication prices, prescription, patent, increase, consumer, pharmaceutical
illegal substance abuse, paraphernalia, illict, alcohol, cocaine, traffickers

Table 7.2 Clues for two senses of drug used by a Bayesian classifier. Adapted
from (Gale et al. 1992b: 419).

~ C(sk)

P(sx) = Cow)

where C (v}, si) is the number of occurrences of v; in a context of sense
Sk in the training corpus, C(sk) is the number of occurrences of s in
the training corpus, and C(w) is the total number of occurrences of the
ambiguous word w. Figure 7.1 summarizes the algorithm.

Gale, Church and Yarowsky (1992b; 1992c¢) report that a disambigua-
tion system based on this algorithm is correct for about 90% of occur-
rences for six ambiguous nouns in the Hansard corpus: duty, drug, land,
language, position, and sentence.

Table 7.2 gives some examples of words that are good clues for two
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Ambiguous word Indicator Examples: value — sense

prendre object mesure — to take
décision — to make

vouloir tense present — to want
conditional — to like

cent word to the left per — %
number — c. [money]

Table 7.3 Highly informative indicators for three ambiguous French words.

senses of drug in the Hansard corpus. For example, prices is a good clue
for the ‘medication’ sense. This means that P (prices| 'medication’) is large
and P (prices|‘illicit substance’) is small and has the effect that a context
of drug containing prices will have a higher score for ‘medication’ and a
lower score for ‘illegal substance’ (as computed on line 14 in figure 7.1).

An information-theoretic approach

The Bayes classifier attempts to use information from all words in the
context window to help in the disambiguation decision, at the cost of a
somewhat unrealistic independence assumption. The information theo-
retic algorithm which we turn to now takes the opposite route. It tries to
find a single contextual feature that reliably indicates which sense of the
ambiguous word is being used. Some of Brown et al.’s (1991b) examples
of indicators for French ambiguous words are listed in table 7.3. For the
verb prendre, its object is a good indicator: prendre une mesure trans-
lates as to take a measure, prendre une décision as to make a decision.
Similarly, the tense of the verb vouloir and the word immediately to the
left of cent are good indicators for these two words as shown in table 7.3.

In order to make good use of an informant, its values need to be cat-
egorized as to which sense they indicate, e.g., mesure indicates to take,
décision indicates to make. Brown et al. use the Flip-Flop algorithm for
this purpose. Let ty,...,t; be the translations of the ambiguous word,
and xi,...,x, the possible values of the indicator. Figure 7.2 shows the
Flip-Flop algorithm for this case. The version of the algorithm described
here only disambiguates between two senses. See Brown et al. (1991a) for
an extension to more than two senses. Recall the definition of mutual
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1 find random partition P = {P;, P>} of {t1,...,tm}
2 while (improving) do

3 find partition Q = {Q1,Q>2} of {Xx1,...,Xn}
4 that maximizes I(P; Q)

5 find partition P = {P1, P>} of {t1,...,tm}

7 that maximizes I(P; Q)

s end

Figure 7.2 The Flip-Flop algorithm applied to finding indicators for disam-
biguation.

information from section 2.2.3:

L Y) = Pxy)
161 %{ygyp""y“og p(x)p(y)
It can be shown that each iteration of the Flip-Flop algorithm increases
the mutual information I(P; Q) monotonically, so a natural stopping cri-
terion is that I(P; Q) does not increase any more or only insignificantly.

As an example, assume we want to translate prendre based on its
object and that we have {t1,...,tm} = {take, make,rise, speak} and
{x1,...,Xn} = {mesure, note, exemple, décision, parole} (cf. (Brown et al.
1991b: 267)). The initial partition P of the senses might be P; = {take,
rise} and P, = {make, speak}. Which partition Q of the indicator values
would give us maximum I(P; Q)? Obviously, the answer depends on
the particular data we are working with. But let us assume that prendre
is translated by take when occurring with the objects mesure, note, and
exemple (corresponding to the phrases take a measure, take notes, and
take an example), and translated by make, speak, and rise when occurring
with décision, and parole (corresponding to the phrases make a decision,
make a speech and rise to speak).

Then the partition that will maximize I(P; Q) is Q; = {mesure, note,
exemple} and Q» = {décision, parole} since this division of the indicator
values gives us the most information for distinguishing the translations
in P; from the translations in P,. We only make an incorrect decision
when prendre la parole is translated as rise to speak, but this cannot be
avoided since rise and speak are in two different partition groups.

The next two steps of the algorithm then repartition P as P; = {take}
and P, = {make,rise, speak} and Q as before. This partition is always
correct for take. We would have to consider more than two ‘senses’ if we
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also wanted to distinguish between the other translations make, rise and
speak.

A simple exhaustive search for the best partition of the French transla-
tions and the best possible indicator values would take exponential time.
The Flip-Flop algorithm is an efficient linear-time algorithm for comput-
ing the best partition of values for a particular indicator, based on the
splitting theorem (Breiman et al. 1984). We run the algorithm for all pos-
sible indicators and then choose the indicator with the highest mutual
information. Brown et al. found that this was the accusative object for
prendre, tense for vouloir and the preceding word for cent as shown in
table 7.3.

Once an indicator and a particular partition of its values has been de-
termined, disambiguation is simple:

1. For the occurrence of the ambiguous word, determine the value x; of
the indicator.

2. If x; is in Q, assign the occurrence to sense 1, if x; is in Q», assign the
occurrence to sense 2.

Brown et al. (1991b) report a 20% improvement in the performance of
a machine translation system (from 37 to 45 sentences correct out of
100) when the information-theoretic algorithm is incorporated into the
system.

We call the algorithm supervised because it requires a labeled training
set. However in Brown et al.’s (1991b) work, each occurrence of, say,
French cent is ‘labeled’ not with its sense but by its corresponding English
translation. These class labels are not the senses. For example, some of
the labels of the French word cent are (English) per and the numbers
0, one, 2, and 8. The algorithm groups the labels into two classes, Q; =
{per} and Q2 = {0, one, 2,8} which are then interpreted as the two senses
of cent, corresponding to the English translations % (percent sign) and
cent (with the variants c. and sou). There is thus a many-to-one mapping
from labels to senses.

Dictionary-Based Disambiguation

If we have no information about the sense categorization of specific in-
stances of a word, we can fall back on a general characterization of the
senses. This section describes disambiguation methods that rely on the
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definition of senses in dictionaries and thesauri. Three different types
of information have been used. Lesk (1986) exploits the sense defini-
tions in the dictionary directly. Yarowsky (1992) shows how to apply
the semantic categorization of words (derived from the categories in Ro-
get’s thesaurus) to the semantic categorization and disambiguation of
contexts. In Dagan and Itai’s method (1994), translations of the different
senses are extracted from a bilingual dictionary and their distribution in
a foreign language corpus is analyzed for disambiguation. Finally, we will
see how a careful examination of the distributional properties of senses
can lead to significant improvements in disambiguation. Commonly, am-
biguous words are only used with one sense in any given discourse and
with any given collocate (the one sense per discourse and one sense per
collocation hypotheses).

Disambiguation based on sense definitions

Lesk (1986) starts from the simple idea that a word’s dictionary defini-
tions are likely to be good indicators for the senses they define.* Suppose
that two of the definitions of cone are as follows:

1. a mass of ovule-bearing or pollen-bearing scales or bracts in trees of
the pine family or in cycads that are arranged usually on a somewhat
elongated axis,

2. something that resembles a cone in shape: as ... a crisp cone-shaped
wafer for holding ice cream.

If either tree or ice occur in the same context as cone, then chances are
that the occurrence belongs to the sense whose definition contains that
word: sense 1 for tree, sense 2 for ice.

Let Dq,...,Dg be the dictionary definitions of the senses si,...,sx of
the ambiguous word w, represented as the bag of words occurring in the
definition, and E,, the dictionary definition of a word v; occurring in the
context of use ¢ of w, represented as the bag of words occurring in the
definition of v;. (If sj,,...,s;, are the senses of v, then E,, = U; Dj,. We
simply ignore sense distinctions for the words v; that occur in the context
of w.) Then Lesk’s algorithm can be described as shown in figure 7.3. For
the overlap function, we can just count the number of common words in

4. Lesk credits Margaret Millar and Lawrence Urdang with the original proposal of the
algorithm.
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1 comment: Given: context ¢

2 for all senses si of w do

3 score(sk) = overlap(Dk, Uy, inc Ev;)
4 end

5 choose s’ s.t. s’ = arg max, score(sk)

Figure 7.3 Lesk’s dictionary-based disambiguation algorithm. Dy is the set of
words occurring in the dictionary definition of sense sk. Ey,; is the set of words
occurring in the dictionary definition of word v; (that is, the union of all the
sense definitions of v;).

Sense Definition

s1 tree a tree of the olive family

s> burned stuff the solid residue left when combustible material
is burned

Table 7.4 Two senses of ash.

Scores Context
S1 82

0 1 This cigar burns slowly and creates a stiff ash.
1 0 The ashis one of the last trees to come into leaf.

Table 7.5 Disambiguation of ash with Lesk’s algorithm. The score is the num-
ber of (stemmed) words that are shared by the sense definition and the context.
The first sentence is disambiguated as ‘burned stuff’ because one word is shared
with the definition of sense s», burn, and there are no common words for the
other sense. In the second example, the word shared with the definition of s;
(“tree’) is tree.

the definition Dy of sense sk and the union U, i, ¢ Ev; of the definitions
of the words v; in the context. Or we could use any of the similarity
functions which we present in table 8.7.

One of Lesk’s examples is the word ash with the senses in table 7.4.
The two contexts in table 7.5 are correctly disambiguated when scored
on the number of words common with the different sense definitions.

By itself, information of this sort derived from a dictionary is insuffi-
cient for high quality word sense disambiguation. Lesk reports accuracies
between 50% and 70% when the algorithm is applied to a sample of am-
biguous words. He suggests various optimizations that could improve
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performance. For example, one could run several iterations of the algo-
rithm on a text. Instead of using the union of all words E,, occurring in
the definition of v}, one could only use the words in the definitions of the
contextually appropriate senses as determined in the previous iteration
of the algorithm. One would hope that the iterated algorithm eventually
settles on the correct sense of each word in the text. Pook and Catlett
(1988) suggest another improvement: to expand each word in the context
with a list of synonyms from a thesaurus. Such an algorithm combines
elements of dictionary-based and thesaurus-based disambiguation.

Thesaurus-based disambiguation

Thesaurus-based disambiguation exploits the semantic categorization
provided by a thesaurus like Roget’s (Roget 1946) or a dictionary with
subject categories like Longman’s (Procter 1978). The basic inference in
thesaurus-based disambiguation is that the semantic categories of the
words in a context determine the semantic category of the context as a
whole, and that this category in turn determines which word senses are
used.

The following simple thesaurus-based algorithm was proposed by
Walker (1987: 254). The basic information used is that each word is
assigned one or more subject codes in the dictionary. If the word is as-
signed several subject codes, then we assume that they correspond to the
different senses of the word. Let t(sx) be the subject code of sense s; of
ambiguous word w occurring in context c. Then w can be disambiguated
by counting the number of words for which the thesaurus lists t(sx) as
a possible topic. We then choose the sense with the highest count as
shown in figure 7.4.

Black (1988: 187) achieved only moderate success when applying
Walker’s algorithm to a sample of five ambiguous words: accuracies
around 50%. However, the test words were difficult and highly ambigu-
ous: interest, point, power, state and terms.

One problem with the algorithm is that a general categorization of
words into topics is often inappropriate for a particular domain. For
example, mouse may be listed as both a mammal and an electronic de-
vice in a thesaurus, but in a computer manual it will rarely be evidence
for the thesaurus category ‘mammal.” A general topic categorization may
also have a problem of coverage. We will not find Navratilova in a the-
saurus from the 1960s (and we may not find any proper nouns). Yet
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1 comment: Given: context ¢

2 for all senses sx of w do

3 score(sk) = 2y, inc 6 (t(sk), V)

4 end

5 choose s’ s.t. s’ = arg max, score(sk)

Figure 7.4 Thesaurus-based disambiguation. t(sx) is the subject code of sense
sk and 6(t(sx),v;) = 1iff t(sx) is one of the subject codes of v; and 0 otherwise.
The score is the number of words that are compatible with the subject code of
sense Sk.

the occurrence of Navratilova is an excellent indicator of the category
‘sports.’

The algorithm in figure 7.5 for the adaptation of a topic classification
to a corpus was proposed by Yarowsky (1992). The algorithm adds words
to a category t; if they occur more often than chance in the contexts of t;
in the corpus. For example, Navratilova will occur more often in sports
contexts than in other contexts, so it will be added to the sports category.

Yarowsky’s algorithm in figure 7.5 uses the Bayes classifier introduced
in section 7.2.1 for both adaptation and disambiguation. First we com-
pute a score for each pair of a context ¢; in the corpus and a thesaurus
category t;. For example, context (7.6) would get a high score for the
thesaurus category ‘sports,” assuming that the thesaurus lists tennis as a
‘sports’ word. In Yarowsky’s experiments, a context is simply a 100-word
window centered around the ambiguous word.

It is amazing that Navratilova, who turned 33 earlier this year, continues
to play great tennis.

Making a Naive Bayes assumption, we can compute this score(c;, t;) as
log P(t;|c;) where P (t;|c;) is computed as follows.

P(ylc) = %P(n)
Hvincip(vm)

Hvinc,- P(v)

We then use a threshold « in line 7 to determine which thesaurus cat-
egories are salient in a context. A fairly large value for this threshold
should be chosen so that only contexts with good evidence for a category
are assigned.

P(t)
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comment: Categorize contexts based on categorization of words
for all contexts ¢; in the corpus do

for all thesaurus categories t; do

score(cj, t;) = log P}%C‘f)’)P(tl)

end
end
t(ci) = {t;|score(c;, ;) > o}
comment: Categorize words based on categorization of contexts
for all words v; in the vocabulary do
10 Vi ={clvj in c}
11 end
12 for all topics t; do
13 T ={clg et(c)}
14 end
15 for all words v;, all topics ; do
16 Pvilt) =V;nTil/ 2 IV n Thl
17 end
18 for all topics t; do
19 P(t) = (Z;1IVinTi) /(2 2 IVi 0 Til)
20 end
21 comment: Disambiguation
22 for all senses s of w occurring in ¢ do
23 score(sy) = log P(t(sk)) + Zvjinc log P(v;l|t(sk))
24 end
25 choose s’ s.t. " = argmax,, score(si)

ROW N =

© o N Y U

Figure 7.5 Adaptive thesaurus-based disambiguation. Yarowsky’s algorithms
for adapting a semantic categorization of words and for thesaurus-based disam-
biguation. P(v;|t;) on line 16 is estimated as the proportion of contexts of topic
t; that contain word v;.

Now we can adjust the semantic categorization in the thesaurus to our
corpus (represented as the set of contexts {¢;}). On line 16, we estimate
P(v;jlt;) as the proportion of contexts of v; that are in category t;. If v;
is covered in the thesaurus, then this will adapt v;’s semantic categories
to the corpus (for example, stylus may get a high score as a computer
term even though the thesaurus only lists it in the category ‘writing’). If
v; is not covered, then it will be added to the appropriate categories (the
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Word Sense Roget category  Accuracy
bass musical senses MUSIC 99%
fish ANIMAL, INSECT 100%
star space object UNIVERSE 96%
celebrity ENTERTAINER 95%
star shaped object INSIGNIA 82%
interest curiosity REASONING 88%
advantage INJUSTICE 34%
financial DEBT 90%
share PROPERTY 38%

Table 7.6 Some results of thesaurus-based disambiguation. The table shows
the senses of three ambiguous words, the Roget categories they correspond to,
and the accuracy of the algorithm in figure 7.5. Adapted from (Yarowsky 1992).

case of Navratilova). The prior probability of t; is simply computed as its
relative frequency, adjusted for the fact that some contexts will have no
semantic categories and others more than one (line 19).

The values P (v;|t;) computed on line 16 are then used for disambigua-
tion in analogy to the Bayesian algorithm we discussed earlier (see fig-
ure 7.1). Yarowsky (1992) recommends smoothing for some of the maxi-
mum likelihood estimates (see chapter 6).

Table 7.6 shows some results from (Yarowsky 1992). The method
achieves high accuracy when thesaurus categories and senses align well
with topics as in the case of bass and star. When a sense is spread
out over several topics, the algorithm fails. Yarowsky calls these topic-
independent distinctions between senses. For example, the sense ‘advan-
tage’ of interest (as in self-interest) is not topic-specific. Self-interest can
occur in music, entertainment, space exploration, finance, etc. Therefore,
a topic-based classification does not do well on this sense.

Disambiguation based on translations in a second-language
corpus

The third dictionary-based algorithm makes use of word corresponden-
ces in a bilingual dictionary (Dagan et al. 1991; Dagan and Itai 1994).
We will refer to the language of application (the one for which we want
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Sense 1 Sense 2
Definition legal share attention, concern
Translation Beteiligung Interesse
English collocation acquire an interest show interest
Translation Beteiligung erwerben Interesse zeigen

Table 7.7 How to disambiguate interest using a second-language corpus.

to do disambiguation) as the first language and the target language in
the bilingual dictionary as the second language. For example, if we want
to disambiguate English based on a German corpus, then English is the
first language, German is the second language, and we need an English-
German dictionary (one with English headwords and German entries).

The basic idea of Dagan and Itai’s algorithm is best explained with the
example in table 7.7. English interest has two senses with two different
translations in German. Sense 1 translates as Beteiligung (legal share, as
in “a 50% interest in the company”) and Sense 2 translates as Interesse
(attention, concern, as in “her interest in mathematics”). (There are other
senses of interest which we will ignore here.) In order to disambiguate an
occurrence of interest in English, we identify the phrase it occurs in and
search a German corpus for instances of the phrase. If the phrase occurs
with only one of the translations of interest in German, then we assign
the corresponding sense whenever interest is used in this phrase.

As an example, suppose interest is used in the phrase showed interest.
The German translation of show, ‘zeigen,’ will only occur with Interesse
since “legal shares” are usually not shown. We can conclude that interest
in the phrase to show interest belongs to the sense attention, concern. On
the other hand, the only frequently occurring translation of the phrase
acquired an interest is erwarb eine Beteiligung, since interest in the sense
‘attention, concern’ is not usually acquired. This tells us that a use of
interest as the object of acquire corresponds to the second sense, “legal
share.”

A simple implementation of this idea is shown in figure 7.6. For the
above example the relation R is ‘is-object-of’ and the goal would be to dis-
ambiguate interest in R (interest, show). To do this, we count the number
of times that translations of the two senses of interest occur with trans-
lations of show in the second language corpus. The count of R (Interesse,
zeigen) would be higher than the count of R(Beteiligung, zeigen), so we
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1 comment: Given: a context ¢ in which w occurs in relation R(w, v)
2 for all senses sx of w do

3 score(sy) = |{c € S|AW" € T(sx),v' € T(v) : R(W',V') € c}|

4 end

5 choose s" = arg max;, score(sg)

Figure 7.6 Disambiguation based on a second-language corpus. S is the
second-language corpus, T(sx) is the set of possible translations of sense sy,
and T (v) is the set of possible translations of v. The score of a sense is the
number of times that one of its translations occurs with translations of v in the
second-language corpus.

would choose the sense ‘attention, concern,’ corresponding to Interesse.

The algorithm used by Dagan and Itai is more complex: it disam-
biguates only if a decision can be made reliably. Consider the example of
Hebrew ro‘sh which has two possible English translations, top and head.
Dagan and Itai found 10 examples of the relation stand at head and 5
examples of the relation stand at top in their English second-language
corpus. This suggests that stand at head is more likely to translate the
Hebrew phrase ‘amad be-ro‘sh correctly. However, we can expect “stand
at head” to be incorrect in a large proportion of the translations (approxi-
mately ﬁ ~ 0.33). In many cases, it is better to avoid a decision than to
make an error with high probability. In a large system in which each com-
ponent has a certain error rate, an accuracy of about 0.67 as in the above
example is unacceptable. If a sentence passes through five components,
each with an error rate of 0.33, then overall system accuracy could be as
low as 14%: (1 — 0.33)° ~ 0.14. Dagan and Itai show how the probability
of error can be estimated. They then make decisions only when the level
of confidence is 90% or higher.

One sense per discourse, one sense per collocation

The dictionary-based algorithms we have looked at so far process each
occurrence separately. But there are constraints between different occur-
rences that can be exploited for disambiguation. This section discusses
work by Yarowsky (1995) which has focussed on two such constraints:

= One sense per discourse. The sense of a target word is highly consis-
tent within any given document.
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Discourse Initial label Context

d; living the existence of plant and animal life

living classified as either plant or animal

? Although bacterial and plant cells are enclosed
d» living contains a varied plant and animal life

living the most common plant life

living slight within Arctic plant species

factory are protected by plant parts remaining from

Table 7.8 Examples of the one sense per discourse constraint. The table shows
contexts from two different documents, d; and d,. One context in d; lacks suffi-
cient local information for disambiguation (“?”). Local information is misleading
for the last context in d». The one sense per discourse constraint can be used
to counteract lacking or misleading information in such cases. It will correctly
assign the unclassified and the misclassified contexts to ‘living.” Adapted from
(Yarowsky 1995).

m One sense per collocation. Nearby words provide strong and con-
sistent clues to the sense of a target word, conditional on relative
distance, order and syntactic relationship.

As an example for the first constraint consider the word plant. The
constraint captures the intuition that if the first occurrence of plant is a
use of the sense ‘living being,’” then later occurrences are likely to refer
to living beings too. Table 7.8 shows two examples. This constraint is
especially usable when the material to be disambiguated is a collection
of small documents, or can be divided into short ‘discourses’ by the kind
of method discussed in section 15.5. Then, this simple property of word
senses can be used quite effectively as we will see below.

The second constraint makes explicit the basic assumption that most
work on statistical disambiguation relies on: that word senses are
strongly correlated with certain contextual features like other words in
the same phrasal unit. Yarowsky’s (1995) approach is similar to Brown
et al.’s (1991b) information-theoretic method, which we introduced in
section 7.2.2, in that he selects the strongest collocational feature for a
particular context and disambiguates based only on this feature. Collo-
cational features are ranked according to the following ratio:

P(Skl |f)
P(sk,If)



7.3 Dictionary-Based Disambiguation 251

which basically is the ratio of the number of occurrences of sense sx, with
collocation f divided by the number of occurrences of sense si, with col-
location f (again, smoothing is important if the collocation and/or senses
occur infrequently, see Yarowsky (1994)).

Relying on only the strongest feature has the advantage that no inte-
gration of different sources of evidence is necessary. Many statistical
methods, such as the Naive Bayes method used in section 7.2.1 or the
dictionary-based methods presented earlier in this section, assume inde-
pendence when evidence is combined. Since independence rarely holds, it
is sometimes better to avoid the need for combining evidence altogether,
and to rely on just one reliable piece of evidence. The more complex
alternative is to accurately model the dependencies between sources of
evidence (see chapter 16).

Figure 7.7 is a schematic description of an algorithm proposed by
Yarowsky that combines both constraints. The algorithm iterates build-
ing two interdependent sets for each sense sx. Fx contains characteristic
collocations. Ey is the set of contexts of the ambiguous word w that are
currently assigned to si.

On line 3, Fy is initialized from the dictionary definition of sx or from
another source (for example, a set of collocations entered manually by a
lexicographer or a set of collocations from a small hand-labeled training
set). Ex is initially empty.

The iteration begins by assigning all contexts with a characteristic col-
location from Fy to Ex (line 11). For example, all contexts of interest
in which interest is the object of the verb show would be assigned to
Eattention, concern’ if “is the object of show” is one of the collocations in
Fattention, concern’- The set of characteristic collocations is then recomputed
by selecting those collocations that are most characteristic of the just up-
dated Ex (line 14).

After this part of the algorithm has been completed, the constraint
“one sense per discourse” is applied. All instances of the ambiguous
word w are assigned to the majority sense in a document or discourse
(line 20). Table 7.8 gave two examples of this process.

Yarowsky demonstrates that this algorithm is highly effective. Differ-
ent versions achieve between 90.6% and 96.5% accuracy. The error rate is
reduced by 27% when the discourse constraint (lines 18-21) is incorpo-
rated. This is a surprisingly good performance given that the algorithm
does not need a labeled set of training examples.
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comment: Initialization
for all senses sx of w do
Fy = the set of collocations in si’s dictionary definition
end
for all senses sx of w do
Ex=0
end
comment: One sense per collocation
while (at least one Ey changed in the last iteration) do
for all senses sy of w do
Ex = {cil3fm: fm € ¢i A fm € Fi}
end
for all senses s of w do
Fx = {fmlVn = kPP—fi’;\)’i’;; > o}
end
end
comment: One sense per discourse
for all documents d,, do
determine the majority sense sy of w in d,y
assign all occurrences of w in d,; to sk
21 end

© ® N Y LR W N~
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Figure 7.7 Disambiguation based on “one sense per collocation” and “one sense
per discourse.”

Unsupervised Disambiguation

All that the methods discussed in the last section require for disambigua-
tion are basic lexical resources, a small training set, or a few collocation
seeds. Although this seems little to ask for, there are situations in which
even such a small amount of information is not available. In particular,
this is often the case when dealing with information from specialized
domains, for which there may be no available lexical resources.” For
example, information retrieval systems must be able to deal with text
collections from any subject area. General dictionaries are less useful
for domain-specific collections. A data base of chemical abstracts mostly

5. However, there are specialized dictionaries in some fields, such as for medical and
scientific terms.
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contains documents that belong to the category “chemistry” in a generic
semantic classification. A generic thesaurus-based disambiguation algo-
rithm would therefore be of little use. One cannot expect the user of an
information retrieval system to define the senses of ambiguous words or
to provide a training set for a new text collection. With the surge in on-
line material in recent years, there is an increasing number of scenarios
where outside sources of information are not available for disambigua-
tion.

Strictly speaking, completely unsupervised disambiguation is not pos-
sible if we mean sense tagging: an algorithm that labels occurrences as
belonging to one sense or another. Sense tagging requires that some
characterization of the senses be provided. However, sense discrimina-
tion can be performed in a completely unsupervised fashion: one can
cluster the contexts of an ambiguous word into a number of groups and
discriminate between these groups without labeling them. Several such
sense discrimination algorithms have been proposed. We will describe
one of them here, context-group discrimination, largely following Schiitze
(1998).% Note also the similarity to Brown et al.’s approach described in
section 7.2.2. Brown et al. (1991b) cluster translations of an ambiguous
word, which can be thought of as a type of prelabeling of the occurrences
of the ambiguous word w. Here, we will look at a completely unsuper-
vised algorithm that clusters unlabeled occurrences.

The probabilistic model is the same as that developed by Gale et al.
(section 7.2.1). For an ambiguous word w with senses sy,..., Sk,..., Sk,
we estimate the conditional probability of each word v; occurring in a
context where w is being used in a particular sense sx, that is, P(v;lsk).

In contrast to Gale et al.’s Bayes classifier, parameter estimation in un-
supervised disambiguation is not based on a labeled training set. Instead,
we start with a random initialization of the parameters P(v;|sx). The
P(vj|sk) are then reestimated by the EM algorithm (see section 14.2.2).
After the random initialization, we compute for each context c¢; of w the
probability P(cj|sx) that it was generated by sense sx. We can use this
preliminary categorization of the contexts as our training data and then
reestimate the parameters P(vj|sx) so as to maximize the likelihood of
the data given the model. The algorithm is developed in figure 7.8.

The EM algorithm is guaranteed to increase the log likelihood of the

6. For consistency we reuse the probabilistic model introduced in section 7.2.1 and sec-
tion 7.3.2, instead of Schiitze’s.
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1. Initialize the parameters of the model y randomly. The parameters
are P(vjlsy),1 < j=<J,1<k=<K,and P(sx),1 <k <K.

Compute the log of the likelihood of the corpus C given the model u
as the product of the probabilities P(c;) of the individual contexts c;
(where P(c;) = SX_; P(ci|sk)P(sp)):

I K

I K
I(Clu) =log[ [ D P(cilsk)P(sk) = > log > P(cils)P(sk)
i=1k=1

i=1 k=1

2. While I(C|u) is improving repeat:

(@)

(b)

E-step. For 1 <k <K,1 <i < I estimate hji, the posterior probabil-
ity that sy generated c;, as follows:
__ Plailsk)

S ko1 Pleilsk)
To compute P(c;i|sx), we make the by now familiar Naive Bayes as-
sumption:

P(cilsk) = [] P(vjlsk)

VjECi

hix

M-step. Re-estimate the parameters P(v;|sx) and P(sx) by way of
maximum likelihood estimation:

1
Zi=1 Z{Ci:VjECi} hix
Zj

where > (..., c¢;; sums over all contexts in which v; occurs and Z; =

P(vjlsk) =

PR 2. (civieq) hik is a normalizing constant.
Recompute the probabilities of the senses as follows:
I I
Dicthik i1 hix
K 1 =
k=1 i1 hik I

P(sx) =

Figure 7.8 An EM algorithm for learning a word sense clustering. K is the num-
ber of desired senses; ci,...,cj,...,c; are the contexts of the ambiguous word
in the corpus; and vy, ...,Vj,..., vy are the words being used as disambiguating
features.
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model given the data in each step. Therefore, the stopping criterion for
the algorithm is to stop when the likelihood (computed in step 1) is no
longer increasing significantly.

Once the parameters of the model have been estimated, we can disam-
biguate contexts of w by computing the probability of each of the senses
based on the words v; occurring in the context. Again, we make the Naive
Bayes assumption and use the Bayes decision rule (7.5):

Decide s" if s’ = argmax[log P(sx) + > log P(v;lsk)]
Sk vjec

The granularity of the sense classification of an ambiguous word can be
chosen by running the algorithm for a range of values for K, the number
of senses. The more senses there are, the more structure the model has,
and therefore it will be able to explain the data better. As a result the best
possible log likelihood of the model given the data will be higher with
each new sense added. However, one can examine by how much the log
likelihood increases with each new sense. If it increases strongly because
the new sense explains an important part of the data, then this suggests
that the new number of senses is justified. If the log likelihood increases
only moderately, then the new sense only picks up random variation in
the data and it is probably not justified.”

A simpler way to determine the number of senses is to make it de-
pendent on how much training material is available. This approach is
justified for an information retrieval application by Schiitze and Pedersen
(1995).

An advantage of unsupervised disambiguation is that it can be eas-
ily adapted to produce distinctions between usage types that are more
fine-grained than would be found in a dictionary. Again, information re-
trieval is an application for which this is useful. The distinction between
physical banks in the context of bank robberies and banks as abstract
corporations in the context of corporate mergers can be highly relevant
even if it is not reflected in dictionaries.

If the unsupervised algorithm is run for a large number of senses, say
K = 20, then it will split dictionary senses into fine-grained contextual
variants. For example, the sense ‘lawsuit’ of suit could be split into ‘civil
suit,” ‘criminal suit,” etc. Usually, the induced clusters do not line up
well with dictionary senses. Infrequent senses and senses that have few

7. One could choose the optimal number of senses automatically by testing on validation
data, as discussed in chapter 6.
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Word Sense Accuracy
u o

suit lawsuit 95 0
the suit you wear 96 0

motion physical movement 85 1
proposal for action 88 13

train line of railroad cars 79 19
to teach 55 31

Table 7.9 Some results of unsupervised disambiguation. The table shows
the mean u and standard deviation o for ten experiments with different initial
conditions for the EM algorithm. Data are from (Schiitze 1998: 110).

collocations are hard to isolate in unsupervised disambiguation. Senses
like the use of suit in the sense ‘to be appropriate for’ as in This suits me
fine are unlikely to be discovered. However, such hard to identify senses
often carry less content than senses that are tied to a particular subject
area. For an information retrieval system, it is probably more important
to make the distinction between usage types like ‘civil suit’ vs. ‘criminal
suit’ than to isolate the verbal sense ‘to suit.’

Some results of unsupervised disambiguation are shown in table 7.9.
We need to take into account the variability that is due to different ini-
tializations here (Step 1 in figure 7.8). The table shows both the average
accuracy and the standard deviation over ten trials. For senses with a
clear correspondence to a particular topic, the algorithm works well and
variability is low. The word suit is an example. But the algorithm fails for
words whose senses are topic-independent such as ‘to teach’ for train -
this failure is not unlike other methods that work with topic information
only. In addition to the low average performance, variability is also quite
high for topic-independent senses. In general, performance is 5% to 10%
lower than that of some of the dictionary-based algorithms as one would
expect given that no lexical resources for training or defining senses are
used.

What Is a Word Sense?

Now that we have looked at a wide range of different approaches to word
sense disambiguation, let us revisit the question of what precisely a word
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sense is. It would seem natural to define senses as the mental representa-
tions of different meanings of a word. But given how little is known about
the mental representation of meaning, it is hard to design experiments
that determine how senses are represented by a subject. Some studies
ask subjects to cluster contexts. The subject is given a pile of index
cards, each with a sentence containing the ambiguous word, and instruc-
tions to sort the pile into coherent subgroups. While these experiments
have provided many insights (for example, for research on the notion of
semantic similarity, see Miller and Charles (1991)), it is not clear how well
they model the use of words and senses in actual language comprehen-
sion and production. Determining linguistic similarity is not a task that
people are confronted with in natural situations. Agreement between
clusterings performed by different subjects is low (Jorgensen 1990).

Another problem with many psychological experiments on ambiguity is
that they rely on introspection and whatever folk meaning a subject as-
sumes for the word ‘sense.” It is not clear that introspection is a valid
methodology for getting at the true mental representations of senses
since it fails to elucidate many other phenomena. For example, peo-
ple tend to rationalize non-rational economic decisions (Kahneman et al.
1982).

The most frequently used methodology is to adopt the sense defini-
tions in a dictionary and then to ask subjects to label instances in a cor-
pus based on these definitions. There are different opinions on how well
this technique works. Some researchers have reported high agreement
between judges (Gale et al. 1992a) as we discussed above. High average
agreement is likely if there are many ambiguous words with a skewed
distribution, that is, one sense that is used in most of the occurrences.
Sanderson and van Rijsbergen (1998) argue that such skewed distribu-
tions are typical of ambiguous words.

However, randomly selecting ambiguous words as was done in (Gale
et al. 1992a) introduces a bias which means that their figures may not
reflect actual inter-judge agreement. Many ambiguous words with the
highest disagreement rates are high-frequency words. So on a per-token
basis inter-judge disagreement can be high even if it is lower on a per-
type basis. In a recent experiment, Jean Véronis (p.c., 1998) found that
there was not a single instance of the frequent French words correct,
historique, économie, and comprendre with complete agreement among
judges. The main reasons Véronis found for inter-judge disagreement
were vague dictionary definitions and true ambiguity in the corpus.
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Can we write dictionaries that are less vague? Fillmore and Atkins
(1994) discuss such issues from a lexicographic perspective. Some au-
thors argue that it is an inherent property of word meaning that several
senses of a word can be used simultaneously or co-activated (Kilgarriff
1993; Schiitze 1997; Kilgarriff 1997), which entails high rates of inter-
judge disagreement. Of course, there are puns like (7.9) in which multiple
senses are used in a way that seems so special that it would be acceptable
for an NLP system to fail:

In AI, much of the I is in the beholder.

But Kilgarriff (1993) argues that such simultaneous uses of senses are
quite frequent in ordinary language. An example is (7.10) where arguably
two senses of competition are invoked: ‘the act of competing’ and ‘the
competitors.’

For better or for worse, this would bring competition to the licensed
trade.

Many cases of ‘coactivation’ are cases of systematic polysemy, lexico-
semantic rules that apply to a class of words and systematically change or
extend their meaning. (See (Apresjan 1974), (Pustejovsky 1991), (Lakoff
1987), (Ostler and Atkins 1992), (Nunberg and Zaenen 1992), and (Copes-
take and Briscoe 1995) for theoretical work on systematic polysemy and
(Buitelaar 1998) for a recent computational study.) The word competi-
tion is a case in point. A large number of English words have the same
meaning alternation between ‘the act of X’ vs. ‘the people doing X’. For
example, organization, administration, and formation also exhibit it.

A different type of systematic ambiguity that cannot be neglected in
practice is that almost all words can also be used as proper nouns, some
of them frequently. Examples are Brown, Bush, and Army.

One response to low inter-judge agreement and the low performance
of disambiguation algorithms for highly ambiguous words is to only con-
sider coarse-grained distinctions, for example only those that manifest
themselves across languages (Resnik and Yarowsky 1998). Systematic
polysemy is likely to be similar in many languages, so we would not dis-
tinguish the two related senses of competition (‘the act of competing’ and
‘the competitors’) even if a monolingual dictionary lists them as differ-
ent. This strategy is similar to ones used in other areas of NLP, such as
parsing, where one defines an easier problem, shallow parsing, and does
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not attempt to solve the hardest problem, the resolution of attachment
ambiguities.

Clustering approaches to word sense disambiguation (such as context-
group disambiguation) adopt the same strategy. By definition, automatic
clustering will only find groups of usages that can be successfully distin-
guished. This amounts to a restriction to a subpart of the problem that
can be solved. Such solutions with a limited scope can be quite useful.
Many translation ambiguities are coarse, so that a system restricted to
coarse sense distinctions is sufficient. Context-group disambiguation has
been successfully applied to information retrieval (Schiitze and Pedersen
1995).

Such application-oriented notions of sense have the advantage that it
is easy to evaluate them as long as the application that disambiguation
is embedded in can be evaluated (for example, translation accuracy for
machine translation, the measures of recall and precision - introduced in
chapter 8 - for information retrieval). Direct evaluation of disambigua-
tion accuracy and comparison of different algorithms is more difficult,
but will be easier in the future with the development of standard evalu-
ation sets. See Mooney (1996) for a comparative evaluation of a number
of machine learning algorithms and Towell and Voorhees (1998) for the
evaluation of a disambiguator for three highly ambiguous words (hard,
serve, and line). A systematic evaluation of algorithms was undertaken
as part of the Senseval project (unfortunately, after the writing of this
chapter). See the website.

Another factor that influences what notion of sense is assumed, al-
beit implicitly, is the type of information that is used in disambiguation:
co-occurrence (the bag-of-words model), relational information (subject,
object, etc.), other grammatical information (such as part-of-speech), col-
locations (one sense per collocation) and discourse (one sense per dis-
course). For example, if only co-occurrence information is used, then
only ‘topical’ sense distinctions are recognized, senses that are associ-
ated with different domains. The inadequacy of the bag-of-words model
for many sense distinctions has been emphasized by Justeson and Katz
(1995a). Leacock et al. (1998) look at the combination of topical and col-
locational information and achieve optimal results when both are used.
Choueka and Lusignan (1985) show that humans do surprisingly well at
sense discrimination if only a few words of adjacent context are shown
- giving more context contributes little to human disambiguation perfor-
mance. However, that does not necessarily mean that wider context is
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useless for the computer. Gale et al. (1992b) show that there is addi-
tional useful information in the context out to about 50 words on either
side of the ambiguous word (using their algorithm), and that there is de-
tectable information about sense distinctions out to a very large distance
(thousands of words).

Different types of information may be appropriate to different degrees
for different parts of speech. Verbs are best disambiguated by their ar-
guments (subjects and objects), which implies the importance of local
information. Many nouns have topically distinct word senses (like suit
and bank) so that a wider context is more likely to be helpful.

Much research remains to be done on word sense disambiguation. In
particular, it will become necessary to evaluate algorithms on a represen-
tative sample of ambiguous words, an effort few researchers have made
so far. Only with more thorough evaluation will it be possible to fully un-
derstand the strengths and weaknesses of the disambiguation algorithms
introduced in this chapter.

Further Reading

An excellent recent discussion of both statistical and non-statistical work
on word sense disambiguation is (Ide and Véronis 1998). See also (Guthrie
et al. 1996). An interesting variation of word sense disambiguation is sen-
tence boundary identification (section 4.2.4). The problem is that periods
in text can be used either to mark an abbreviation or to mark the end
of a sentence. Palmer and Hearst (1997) show how the problem can be
cast as the task of disambiguating two ‘senses’ of the period: ending an
abbreviation vs. ending a sentence or both.

The common thread in this chapter has been the amount and type
of lexical resources used by different approaches. In these remarks, we
will first mention a few other methods that fit under the rubrics of su-
pervised, dictionary-based, and unsupervised disambiguation, and then
work that did not fit well into our organization of the chapter.

Two important supervised disambiguation methods are k nearest
neighbors (kNN), also called memory-based learning (see page 295) and
loglinear models. A nearest neighbor disambiguator is introduced in
(Dagan et al. 1994, 1997b). The authors stress the benefits of kNN ap-
proaches for sparse data. See also (Ng and Lee 1996) and (Zavrel and
Daelemans 1997). Decomposable models, a type of loglinear model, can
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be viewed as a generalization of Naive Bayes. Instead of treating all
features as independent, features are grouped into mutually dependent
subsets. Independence is then assumed only between features in dif-
ferent subsets, not for all pairs of features as is the case in the Naive
Bayes classifier. Bruce and Wiebe (1994) apply decomposable models to
disambiguation with good results.

Other disambiguation algorithms that rely on lexical resources are
(Karov and Edelman 1998), (Guthrie et al. 1991), and (Dini et al. 1998).
Karov and Edelman (1998) present a formalism that takes advantage of
evidence both from a corpus and a dictionary, with good disambigua-
tion results. Guthrie et al. (1991) use the subject field codes in (Procter
1978) in a way similar to the thesaurus classes in (Yarowsky 1992). Dini
et al. (1998) apply transformation-based learning (see section 10.4.1) to
tag ambiguous words with thesaurus categories.

Papers that use clustering include (Pereira et al. 1993; Zernik 1991b;
Dolan 1994; Pedersen and Bruce 1997; Chen and Chang 1998). Pereira
et al. (1993) cluster contexts of words in a way similar to Schiitze (1998),
but based on a different formalization of clustering. They do not di-
rectly describe a disambiguation algorithm based on the clustering result,
but since in this type of unsupervised method assignment to clusters is
equivalent to disambiguation, this would be a straightforward extension.
See section 14.1.4 for the clustering algorithm they use. Chen and Chang
(1998) and Dolan (1994) are concerned with constructing representations
for senses by combining several subsenses into one ‘supersense.” This
type of clustering of subsenses is useful for constructing senses that are
coarser than those a dictionary may provide and for relating sense defi-
nitions between two dictionaries.

An important issue that comes up in many different approaches to
disambiguation is how to combine different types of evidence (McRoy
1992). See (Cottrell 1989; Hearst 1991; Alshawi and Carter 1994; Wilks
and Stevenson 1998) for different proposals.

Although we only cover statistical approaches here, work on word
sense disambiguation has a long tradition in Artificial Intelligence and
Computational Linguistics. Two often-cited contributions are (Kelly and
Stone 1975), a hand-constructed rule-based disambiguator, and (Hirst
1987), who exploits selectional restrictions for disambiguation. An ex-
cellent overview of non-statistical work on disambiguation can be found
in the above-mentioned (Ide and Véronis 1998).
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Exercises

Exercise 7.1 [*]

The lower bound of disambiguation accuracy depends on how much information
is available. Describe a situation in which the lower bound could be lower than
the performance that results from classifying all occurrences of a word as in-
stances of its most frequent sense. (Hint: What knowledge is needed to calculate
that lower bound?)

Exercise 7.2 [**]

Supervised word sense disambiguation algorithms are quite easy to devise and
train. Either implement one of the models discussed above, or design your own
and implement it. How good is the performance? Training data are available
from the Linguistic Data Consortium (the DSO corpus) and from the WordNet
project (semcor). See the website for links to both.

Exercise 7.3 [**]

Create an artificial training and test set using pseudowords. Evaluate one of the
supervised algorithms on it.

Exercise 7.4 [*x]

Download a version of Roget’s thesaurus from the web (see the website), and
implement and evaluate a thesaurus-based algorithm.

Exercise 7.5 [**]

The two supervised methods differ on two different dimensions: the number
of features used (one vs. many) and the mathematical methodology (informa-
tion theory vs. Bayesian classification). How would one design a Bayes classifier
that uses only one feature and an information-theoretic method that uses many
features?

Exercise 7.6 [**]

In light of the discussion on closely related and ‘co-activated’ senses, discuss to
what extent pseudowords model ambiguity well.

Exercise 7.7 [**]

Lesk’s algorithm counts how many words are shared between sense definition
and context. This is not optimal since reliance on “non-descript” or stop words
like try or especially can result in misclassifications. Try to come up with refine-
ments of Lesk’s algorithm that would weight words according to their expected
value in discrimination.

Exercise 7.8 [*]

Two approaches use only one feature: information-theoretic disambiguation and
Yarowsky’s (1995) algorithm. Discuss differences and other similarities between
the two approaches.
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Exercise 7.9 [*]

Discuss the validity of the “one sense per discourse” constraint for different
types of ambiguity (types of usages, homonyms etc.). Construct examples where
the constraint is expected to do well and examples where it is expected to do
poorly.

Exercise 7.10 [% %]

Evaluate the one sense per discourse constraint on a corpus. Find sections or
articles with multiple uses of an ambiguous word, and work out how often they
have different senses.

Exercise 7.11 [*]

The section on unsupervised disambiguation describes criteria for determining
the number of senses of an ambiguous word. Can you think of other criteria?
Assume (a) that a dictionary is available (but the word is not listed in it); (b) that
a thesaurus is available (but the word is not listed in it).

Exercise 7.12 [*]

For a pair of languages that you are familiar with, find three cases of an ambigu-
ous word in the first language for which the senses translate into different words
and three cases of an ambiguous words for which at least two senses translate
to the same word.

Exercise 7.13 [*]

Is it important to evaluate unsupervised disambiguation on a separate test set or
does the unsupervised nature of the method make a distinction between training
and test set unnecessary? (Hint: It can be important to have a separate test set.
Why? See (Schiitze 1998: 108).)

Exercise 7.14 [*]
Several of the senses of title discussed in the beginning of the chapter are related
by systematic polysemy. Find other words with the same systematic polysemy.

Exercise 7.15 [% %]

Pick one of the disambiguation algorithms and apply it to sentence boundary
identification.



“There is one, yt is called in the Malaca tongue Durion, and is so
good that ... it doth exceede in savour all others that euer they
had seene, or tasted.”

(Parke tr. Mendoza’s Hist. China 393, 1588)
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Lexical Acquisition

THE TOPIC of chapter 5 was the acquisition of collocations, phrases and
other combinations of words that have a specialized meaning or some
other special behavior important in NLP. In this chapter, we will cast our
net more widely and look at the acquisition of more complex syntactic
and semantic properties of words. The general goal of lexical acquisition
is to develop algorithms and statistical techniques for filling the holes
in existing machine-readable dictionaries by looking at the occurrence
patterns of words in large text corpora. There are many lexical acquisi-
tion problems besides collocations: selectional preferences (for example,
the verb eat usually takes food items as direct objects), subcategorization
frames (for example, the recipient of contribute is expressed as a preposi-
tional phrase with o), and semantic categorization (what is the semantic
category of a new word that is not covered in our dictionary?). While we
discuss simply the ability of computers to learn lexical information from
online texts, rather than in any way attempting to model human language
acquisition, to the extent that such methods are successful, they tend to
undermine the classical Chomskyan arguments for an innate language
faculty based on the perceived poverty of the stimulus.

Most properties of words that are of interest in NLP are not fully cov-
ered in machine-readable dictionaries. This is because of the productivity
of natural language. We constantly invent new words and new uses of old
words. Even if we could compile a dictionary that completely covered the
language of today, it would inevitably become incomplete in a matter of
months. This is the reason why lexical acquisition is so important in
Statistical NLP.

A brief discussion of what we mean by lexical and the lexicon is in
order. Trask (1993: 159) defines the lexicon as:
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That part of the grammar of a language which includes the lexical
entries for all the words and/or morphemes in the language and
which may also include various other information, depending on
the particular theory of grammar.

The first part of the definition (“the lexical entries for all the words”)
suggests that we can think of the lexicon as a kind of expanded diction-
ary that is formatted so that a computer can read it (that is, machine-
readable). The trouble is that traditional dictionaries are written for the
needs of human users, not for the needs of computers. In particular,
quantitative information is completely missing from traditional dictio-
naries since it is not very helpful for the human reader. So one important
task of lexical acquisition for Statistical NLP is to augment traditional
dictionaries with quantitative information.

The second part of the definition (“various other information, depend-
ing on the particular theory of grammar”) draws attention to the fact
that there is no sharp boundary between what is lexical information and
what is non-lexical information. A general syntactic rule like S — NP VP
is definitely non-lexical, but what about ambiguity in the attachment of
prepositional phrases? In a sense, it is a syntactic problem, but it can be
resolved by looking at the lexical properties of the verb and the noun that
compete for the prepositional phrase as the following example shows:

a. The children ate the cake with their hands.
b. The children ate the cake with blue icing.

We can learn from a corpus that eating is something you can do with your
hands and that cakes are objects that have icing as a part. After acquiring
these lexical dependencies between ate and hands and cake and icing, we
can correctly resolve the attachment ambiguities in example (8.1) such
that with their hands attaches to ate and with blue icing attaches to cake.

In a sense, almost all of Statistical NLP involves estimating parameters
tied to word properties, so a lot of statistical NLP work has an element
of lexical acquisition to it. In fact, there are linguistic theories claim-
ing that all linguistic knowledge is knowledge about words (Dependency
Grammar (Mel’ cuk 1988), Categorial Grammar (Wood 1993), Tree Adjoin-
ing Grammar (Schabes et al. 1988; Joshi 1993), ‘Radical Lexicalism’ (Kart-
tunen 1986)) and all there is to know about a language is the lexicon, thus
completely dispensing with grammar as an independent entity. In gen-
eral, those properties that are most easily conceptualized on the level
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of the individual word are covered under the rubric ‘lexical acquisition.’
We have devoted separate chapters to the acquisition of collocations and
word sense disambiguation simply because these are self-contained and
warrant separate treatment as central problems in Statistical NLP. But
they are as much examples of lexical acquisition as the problems covered
in this chapter.

The four main areas covered in this chapter are verb subcategorization
(the syntactic means by which verbs express their arguments), attach-
ment ambiguity (as in example (8.1)), selectional preferences (the seman-
tic characterization of a verb’s arguments such as the fact that things
that get eaten are usually food items), and semantic similarity between
words. However, we first begin by introducing some evaluation measures
which are commonly used to evaluate lexical acquisition methods and
various other Statistical NLP systems, and conclude with a more in-depth
discussion of the significance of lexical acquisition in Statistical NLP and
some further readings.

Evaluation Measures

An important recent development in NLP has been the use of much more
rigorous standards for the evaluation of NLP systems. It is generally
agreed that the ultimate demonstration of success is showing improved
performance at an application task, be that spelling correction, summa-
rizing job advertisements, or whatever. Nevertheless, while developing
systems, it is often convenient to assess components of the system on
some artificial performance score (such as perplexity), improvements in
which one can expect to be reflected in better performance for the whole
system on an application task.

Evaluation in Information Retrieval (IR) makes frequent use of the no-
tions of precision and recall, and their use has crossed over into work
on evaluating Statistical NLP models, such as a number of the systems
discussed in this chapter. For many problems, we have a set of targets
(for example, targeted relevant documents, or sentences in which a word
has a certain sense) contained within a larger collection. Our system then
decides on a selected set (documents that it thinks are relevant, or sen-
tences that it thinks contain a certain sense of a word, etc.). This situation
is shown in figure 8.1. The selected and target groupings can be thought
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FALSE POSITIVES
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FALSE NEGATIVES
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PRECISION
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tn

/ AN

selected target

Figure 8.1 A diagram motivating the measures of precision and recall. The
areas counted by the figures for true and false positives and true and false
negatives are shown in terms of the target set and the selected set. Precision
is tp/|selected|, the proportion of target (or correct) items in the selected (or
retrieved) set. Recall is tp/|target|, the proportion of target items that were
selected. In turn, |selected| = tp + fp, and |target| = tp + fn).

of as indicator random variables, and the joint distribution of the two
variables can be expressed as a 2x2 contingency matrix:

Actual
System | target — target
selected tp fp
—selected ’ fn tn

The numbers in each box show the frequency or count of the number of
items in each region of the space. The cases accounted for by tp (true
positives) and tn (true negatives) are the cases our system got right. The
wrongly selected cases in fp are called false positives, false acceptances
or Type II errors. The cases in fn that failed to be selected are called false
negatives, false rejections or Type I errors.

Precision is defined as a measure of the proportion of selected items
that the system got right:

_
th+fp

Recall is defined as the proportion of the target items that the system

precision =
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selected:

tp
tp+fn

In applications like IR, one can generally trade off precision and re-
call (one can select every document in the collection and get 100% recall
but very low precision, etc.). This tradeoff can be plotted in a precision-
recall curve, as we illustrate in section 15.1.2. Sometimes such a tradeoff
doesn’t make as much sense in NLP applications, but in any situation
where there are some items that one is more sure of than others (such as
in subcategorization frame learning in section 8.2), the same opportuni-
ties for trading off precision vs. recall exist.

For this reason it can be convenient to combine precision and recall into
a single measure of overall performance. One way to do this is the F mea-
sure, a variant of the E measure introduced by van Rijsbergen (1979: 174),
where F = 1 — E. The F measure is defined as follows:

1

1 1
O(ﬁ-i-(l—()()ﬁ

recall =

where P is precision, R is recall and « is a factor which determines the
weighting of precision and recall. A value of & = 0.5 is often chosen for
equal weighting of P and R. With this « value, the F measure simplifies
to 2PR/(R + P).

A good question to ask is: “Wait a minute, in the table in (8.2), tp + tn
is the number of things I got right, and fp + fn is the number of things
I got wrong. Why don’t we just report the percentage of things right or
the percentage of things wrong?” One can do that, and these measures
are known as accuracy and error. But it turns out that these often aren’t
good measures to use because in most of the kinds of problems we look
at tn, the number of non-target, non-selected things, is huge, and dwarfs
all the other numbers. In such contexts, use of precision and recall has
three advantages:

m Accuracy figures are not very sensitive to the small, but interesting
numbers tp, fp, and fn, whereas precision and recall are. One can get
extremely high accuracy results by simply selecting nothing.

= Other things being equal, the F measure prefers results with more true
positives, whereas accuracy is sensitive only to the number of errors.
This bias normally reflects our intuitions: We are interested in finding
things, even at the cost of also returning some junk.
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tpy fp fn tn Prec Rec F Acc

@ 25 0 125 99,850 1.000 0.167 0.286 0.9988
50 100 100 99,750 0.333 0.333 0.333 0.9980

75 150 75 99,700 0.333 0.500 0.400 0.9978

125 225 25 99,625 0.357 0.833 0.500 0.9975

150 275 0 99,575 0.353 1.000 0.522 0.9973

(b)y 50 0 100 99,850 1.000 0.333 0.500 0.9990
75 25 75 99,825 0.750 0.500 0.600 0.9990

100 50 50 99,800 0.667 0.667 0.667 0.9990

150 100 0 99,750 0.600 1.000 0.750 0.9990

Table 8.1 The F measure and accuracy are different objective functions. The
table shows precision, recall, F measure (with &« = 0.5) and accuracy scores for
certain selections of some number of items from out of a collection of 100,000
items of which 150 are genuine targets. The upper series (a) shows increasing
F measure values, but decreasing accuracy. The lower series (b) shows identical
accuracy scores, but again increasing F measure values. The bias of the F mea-
sure is towards maximizing the true positives, while accuracy is sensitive only
to the number of classification errors.

m Using precision and recall, one can give a different cost to missing
target items versus selecting junk.

Table 8.1 provides some examples which illustrate how accuracy and the
F measure (with « = 0.5) evaluate results differently.

A less frequently used measure is fallout, the proportion of non-
targeted items that were mistakenly selected.

fp
fp+tn

fallout =

Fallout is sometimes used as a measure of how hard it is to build a sys-
tem that produces few false positives. If the number of non-targeted
items is very large, then low precision due to large fp may be unavoid-
able because with a large background population of non-targeted items,
it is unavoidable that some will be miscategorized.

In some fields of engineering recall-fallout trade-offs are more com-
mon than precision-recall trade-offs. One uses a so-called ROC curve (for
receiver operating characteristic) to show how different levels of fallout
(false positives as a proportion of all non-targeted events) influence recall
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Functions Verb Example

subject, object greet She greeted me.

subject, clause hope She hopes he will attend.
subject, infinitive hope She hopes to attend.
subject, object, clause tell She told me he will attend.
subject, object, infinitive tell She told him to attend.

subject, (direct) object, indirect object give  She gave him the book.

Table 8.2 Some subcategorization frames with example verbs and sentences.
(adapted from (Brent 1993: 247)).

or sensitivity (true positives as a proportion of all targeted events). Think
of a burglar alarm that has a knob for regulating its sensitivity. The ROC
curve will tell you, for a certain rate of false positives, what the expected
rate of true positives is. For example, for a false positives rate of being
woken up once in a hundred nights with no burglars, one might achieve
an expected rate of true positives of 95% (meaning 5% of burglaries will
not be detected).

v Evaluation measures used in probabilistic parsing are discussed in sec-
tion 12.1.8, and evaluation in IR is further discussed in section 15.1.2.

Verb Subcategorization

Verbs subcategorize for different syntactic categories as we discussed in
section 3.2.2. That is, they express their semantic arguments with differ-
ent syntactic means. A particular set of syntactic categories that a verb
can appear with is called a subcategorization frame. Examples of subcat-
egorization frames are given in table 8.2. English verbs always subcatego-
rize for a subject, so we sometimes omit subjects from subcategorization
frames.

The phenomenon is called subcategorization because we can think of
the verbs with a particular set of semantic arguments as one category.
Each such category has several subcategories that express these seman-
tic arguments using different syntactic means. For example, the class
of verbs with semantic arguments theme and recipient has a subcategory
that expresses these arguments with an object and a prepositional phrase
(for example, donate in He donated a large sum of money to the church),
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and another subcategory that in addition permits a double-object con-
struction (for example, give in He gave the church a large sum of money).

Knowing the possible subcategorization frames for verbs is important
for parsing. The contrast in (8.7) shows why.

a. She told the man where Peter grew up.

b. She found the place where Peter grew up.

If we know that tell has the subcategorization frame NP NP S (subject,
object, clause), and that find lacks that frame, but has the subcatego-
rization frame NP NP (subject, object), we can correctly attach the where-
clause to told in the first sentence (as shown in (8.8a)) and to place in the
second sentence (as shown in (8.8b)).

a. She told [the man] [where Peter grew upl].
b. She found [the place [where Peter grew up]].

Unfortunately, most dictionaries do not contain information on subcat-
egorization frames. Even if we have access to one of the few dictionaries
that do (e.g., Hornby 1974), the information on most verbs is incomplete.
According to one account, up to 50% of parse failures can be due to miss-
ing subcategorization frames.! The most comprehensive source of sub-
categorization information for English is probably (Levin 1993). But even
this excellent compilation does not cover all subcategorization frames
and it does not have quantitative information such as the relative fre-
quency of different subcategorization frames for a verb. And the need to
cope with the productivity of language would make some form of acqui-
sition from corpora necessary even if there were better sources available.

A simple and effective algorithm for learning some subcategorization
frames was proposed by Brent (1993), implemented in a system called
Lerner. Suppose we want to decide based on corpus evidence whether
verb v takes frame f. Lerner makes this decision in two steps.

m Cues. Define a regular pattern of words and syntactic categories which
indicates the presence of the frame with high certainty. Certainty is
formalized as probability of error. For a particular cue ¢/ we define
a probability of error €; that indicates how likely we are to make a
mistake if we assign frame f to verb v based on cue ¢/.

1. John Carroll, “Automatic acquisition of subcategorization frames and selectional pref-
erences from corpora,” talk given at the workshop “Practical Acquisition of Large-Scale
Lexical Information” at CSLI, Stanford, on April 23, 1998.
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m Hypothesis testing. The basic idea here is that we initially assume
that the frame is not appropriate for the verb. This is our null hy-
pothesis Hy. We reject this hypothesis if the cue ¢/ indicate with high
probability that our Hy is wrong.

Cues. Here is the regular pattern that Brent (1993: 247) uses as the cue
for the subcategorization frame “NP NP” (transitive verbs):

Cue for frame “NP NP”:
(OBJ | SUBJ_OBJ | CAP) (PUNC | CC)

where OB]J stands for personal pronouns that are necessarily accusative
(or objective) like me and him, SUBJ_OBJ stands for personal pronouns
that can be both subjects and objects like you and it, CAP is any cap-
italized word, PUNC is a punctuation mark, and CC is a subordinating
conjunction like if, before or as.

This pattern is chosen because it is only likely to occur when a verb
indeed takes the frame “NP NP.” Suppose we have a sentence like (8.10)
which matches the instantiation “CAP PUNC” of pattern (8.9).

[...] greet-V Peter-CAP ,-PUNC [...]

One can imagine a sentence like (8.11) where this pattern occurs and the
verb does not allow the frame. (The matching pattern in (8.11) is came-V
Thursday-CAP ,-PUNC.) But this case is very unlikely since a verb followed
by a capitalized word that in turn is followed by a punctuation mark will
almost always be one that takes objects and does not require any other
syntactic arguments (except of course for the subject). So the probability
of error is very low when we posit the frame ‘NP NP’ for a verb that occurs
with cue (8.9).

I came Thursday, before the storm started.

Note that there is a tradeoff between how reliable a cue is and how of-
ten it occurs. The pattern “OBJ CC” is probably even less likely to be a
misleading cue than “CAP PUNC.” But if we narrowed (8.9) down to one
reliable instantiation, we might have to sift through hundreds of occur-
rences of a verb to find the first occurrence with a cue, which would make
the test applicable only to the most frequent verbs. This is a problem
which we will return to later.
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Hypothesis testing. Once the cues for the frames of interest have been
defined, we can analyze a corpus, and, for any verb-frame combination,
count the number of times that a cue for the frame occurs with the verb.
Suppose that verb v occurs a total of n times in the corpus and that there
are m < n occurrences with a cue for frame f/. Then we can reject the null
hypothesis Hy that v does not permit f/ with the following probability
of error:

n
pe =PV (f) =0IC(V, /) =m) = ) <':)ef(1 —e)nr
r=m
where vi(fJ) = 0 is shorthand for ‘Verb v! does not permit frame fJ,
C(Vi,¢/) is the number of times that v! occurs with cue ¢/, and €; is the
error rate for cue fJ, that is, the probability that we find cue ¢/ for a
particular occurrence of the verb although the frame is not actually used.

Recall the basic idea of hypothesis testing (chapter 5, page 162): pg is
the probability of the observed data if the null hypothesis Hj is correct.
If pg is small, then we reject Hy because the fact that an unlikely event
occurred indicates assuming Hy was wrong. Our probability of error in
this reasoning is pr.

In equation (8.12), we assume a binomial distribution (section 2.1.9).
Each occurrence of the verb is an independent coin flip for which the cue
doesn’t work with probability €; (that is, the cue occurs, but the frame
doesn’t), and for which it works correctly with probability 1—¢; (either the
cue occurs and correctly indicates the frame or the cue doesn’t occur and
thus doesn’t mislead us).? It follows that an incorrect rejection of Hy has
probability pg if we observe m or more cues for the frame. We will reject
the null hypothesis if pr < « for an appropriate level of significance «,
for example, x = 0.02. For pr > «, we will assume that verb v! does not
permit frame f/.

An experimental evaluation shows that Lerner does well as far as pre-
cision is concerned. For most subcategorization frames, close to 100%
of the verbs assigned to a particular frame are correctly assigned (Brent
1993: 255). However, Lerner does less well at recall. For the six frames
covered by Brent (1993), recall ranges from 47% to 100%, but these num-
bers would probably be appreciably lower if a random sample of verb
types had been selected instead of a random sample of verb tokens,

2. Lerner has a third component that we have omitted here: a way of determining €; for
each frame. The interested reader should consult (Brent 1993).
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a sampling method that results in a small proportion of low-frequency
verbs.3 Since low-frequency verbs are least likely to be comprehensively
covered in existing dictionaries, they are arguably more important to get
right than high-frequency verbs.

Manning (1993) addresses the problem of low recall by using a tagger
and running the cue detection (that is, the regular expression matching
for patterns like (8.9)) on the output of the tagger. It may seem worrying
that we now have two error-prone systems, the tagger and the cue detec-
tor, which are combined, resulting in an even more error-prone system.
However, in a framework of hypothesis testing, this is not necessarily
problematic. The basic insight is that it doesn’t really matter how reliable
a cue is as an indicator for a subcategorization frame. Even an unreliable
indicator can help us determine the subcategorization frame of a verb
reliably if it occurs often enough and we do the appropriate hypothesis
testing. For example, if cue ¢/ with error rate €; = 0.25 occurs 11 out
of 80 times, then we can still reject the null hypothesis that v/ does not
permit ¢/ with pg = 0.011 < 0.02 despite the low reliability of c/.

Allowing low-reliability cues and additional cues based on tagger out-
put increases the number of available cues significantly. As a result, a
much larger proportion of verb occurrences have cues for a given frame.
But more importantly, there are many subcategorization frames that have
no high-reliability cues, for example, subcategorization for a preposition
such as on in he relies on relatives or with in she compared the results with
earlier findings. Since most prepositions occurring after verbs are not
subcategorized for, there is simply no reliable cue for verbs subcatego-
rizing for a preposition. Manning’s method can learn a larger number of
subcategorization frames, even those that have only low-reliability cues.

Table 8.3 shows a sample of Manning’s results. We can see that preci-
sion is high: there are only three errors. Two of the errors are preposi-
tional phrases (PPs): to bridge between and to retire in. It is often difficult
to decide whether prepositional phrases are arguments (which are sub-
categorized for) or adjuncts (which aren’t). One could argue that retire
subcategorizes for the PP in Malibu in a sentence like John retires in Mal-
ibu since the verb and the PP-complement enter into a closer relationship
than mere adverbial modification. (For example, one can infer that John
ended up living in Malibu for a long time.) But the OALD does not list

3. Each occurrence of a verb in the Brown corpus had an equal chance of appearing in the
sample which biases the sample against low-frequency verbs.
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Verb Correct Incorrect OALD
bridge 1 1 1
burden 2 2
depict 2 3
emanate 1 1
leak 1 5
occupy 1 3
remark 1 1 4
retire 2 1 5
shed 1 2
troop 0 3

Table 8.3 Some subcategorization frames learned by Manning’s system. For
each verb, the table shows the number of correct and incorrect subcategoriza-
tion frames that were learned and the number of frames listed in the Oxford
Advanced Learner’s Dictionary (Hornby 1974). Adapted from (Manning 1993).

“NP in-PP” as a subcategorization frame, and this was what was used as
the gold standard for evaluation.

The third error in the table is the incorrect assignment of the intransi-
tive frame to remark. This is probably due to sentences like (8.13) which
look like remark is used without any arguments (except the subject).

“And here we are 10 years later with the same problems,” Mr. Smith re-
marked.

Recall in table 8.3 is relatively low. Recall here is the proportion of sub-
categorization frames listed in the OALD that were correctly identified.
High precision and low recall are a consequence of the hypothesis testing
framework adopted here. We only find subcategorization frames that are
well attested. Conversely, this means that we do not find subcategoriza-
tion frames that are rare. An example is the transitive use of leak as in
he leaked the news, which was not found due to an insufficient number
of occurrences in the corpus.

Table 8.3 is only a sample. Precision for the complete set of 40 verbs
was 90%, recall was 43%. One way to improve these results would be
to incorporate prior knowledge about a verb’s subcategorization frame.
While it is appealing to be able to learn just from raw data, without any
help from a lexicographer’s work, results will be much better if we take
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prior knowledge into account. The same pattern can be strong evidence
for a new, unlisted subcategorization frame for one verb but evidence
for a different frame with another verb. This is particularly true if we
continue in the direction of more structured input to the subcategoriza-
tion detector and use a parser instead of just a tagger. The simplest way
of specifying prior knowledge would be to stipulate a higher prior for
subcategorization frames listed in the dictionary.

As an example of how prior knowledge would improve accuracy, sup-
pose we analyze a particular syntactic pattern (say, V NP S) and find two
possible subcategorization frames f! (subject, object) and f? (subject,
object, clause) with a slightly higher probability for f!. This is our exam-
ple (8.8). A parser could choose f! (subject, object) for a verb for which
both frames have the same prior and f? (subject, object, clause) for a verb
for which we have entered a bias against f! using some prior knowledge.
For example, if we know that email is a verb of communication like tell,
we may want to disfavor frames without clauses, and the parser would
correctly choose frame f2 (subject, object, clause) for I emailed my boss
where I had put the file with the slide presentation. Such a system based
on an incomplete subcategorization dictionary would make better use of
a corpus than the systems described here and thus achieve better results.

Exercise 8.1 [*]

A potential problem with the inclusion of low-reliability cues is that they ‘wa-
ter down’ the effectiveness of high-reliability cues if we combine all cues in one
regular expression pattern, resulting in lower recall. How can we modify the
hypothesis test to address this problem? Hint: Consider a multinomial distribu-
tion.

Exercise 8.2 [*]

Suppose a subcategorization frame for a verb is very rare. Discuss the difficulty
of detecting such a frame with Brent and Manning’s methods.

Exercise 8.3 [*]

Could one sharpen the hypothesis test for a low-frequency subcategorization
frame f/ by taking as the event space the set of occurrences of the verb that
could potentially be instances of the subcategorization frame? Consider a verb
that is mostly used transitively (with a direct object NP), but that has some oc-
currences that subcategorize only for a PP. The methods discussed above would
count transitive uses as evidence against the possibility of any intransitive use.
With an appropriately reduced event space, this would no longer be true. Discuss
advantages and disadvantages of such an approach.
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Exercise 8.4 [*]

A difficult problem in an approach using a fixed significance level (¢ = 0.02 in
Brent’s work) and a categorical classification scheme (the verb takes a particular
frame, yes/no) is to determine the threshold such that as many subcategoriza-
tion classifications as possible are correct (high precision), but not too many
frames are missed (high recall). Discuss how this problem might be alleviated in
a probabilistic framework in which we determine P(f/|v') instead of making a
binary decision.

Exercise 8.5 [*]

In an approach to subcategorization acquisition based on parsing and priors,
how would you combine probabilistic parses and priors into a posterior estimate
of the probability of subcategorization frames? Assume that the priors are given
in the form P(f/|v'), and that parsing a corpus gives you a number of estimates
of the form P(sx|f’) (the probability of sentence k given that verb V! in the
sentence occurs with frame fJ).

Attachment Ambiguity

A pervasive problem in parsing natural language is resolving attachment
ambiguities. When we try to determine the syntactic structure of a sen-
tence, a problem that we consider in general in chapter 12, there are
often phrases that can be attached to two or more different nodes in
the tree, and we have to decide which one is correct. PP attachment is
the attachment ambiguity problem that has received the most attention
in the Statistical NLP literature. We saw an example of it in chapter 3
example (3.65), here repeated as (8.14):

The children ate the cake with a spoon.

Depending on where we attach the prepositional phrase with a spoon,
the sentence can either mean that the children were using a spoon to eat
the cake (the PP is attached to ate), or that of the many cakes that they
could have eaten the children ate the one that had a spoon attached (the
PP is attached to cake). This latter reading is anomalous with this PP,
but would be natural for the PP with frosting. See figure 3.2 in chapter 3
for the two different syntactic trees that correspond to the two attach-
ments. This type of syntactic ambiguity occurs in every sentence in which
a prepositional phrase follows an object noun phrase. The reason why
the sentence in (1.12) had so many parses was because there were a lot
of PPs (and participial relative clauses) which can attach at various places
syntactically. In this section, we introduce a method for determining the
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attachment of prepositional phrases based on lexical information that is
due to Hindle and Rooth (1993).

How are such ambiguities to be resolved? While one could imagine con-
textualizing a discourse where with a spoon was used as a differentiator
of cakes, it was natural in the above example to see it as a tool for eating,
and thus to choose the verb attachment. This seems to be true for many
naturally occurring sentences:

a. Moscow sent more than 100,000 soldiers into Afghanistan ...
b. Sydney Water breached an agreement with NSW Health ...

In these examples, only one attachment results in a reasonable interpre-
tation. In (8.15a), the PP into Afghanistan must attach to the verb phrase
headed by send, while in (8.15b), the PP with NSW Health must attach
to the NP headed by agreement. In cases like these, lexical preferences
can be used to disambiguate. Indeed, it turns out that, in most cases,
simple lexical statistics can determine which attachment is the correct
one. These simple statistics are basically co-occurrence counts between
the verb and the preposition on the one hand, and between the noun and
the preposition on the other. In a corpus, we would find lots of cases
where into is used with send, but only a few where into is used with sol-
dier. So we can be reasonably certain that the PP headed by into in (8.15a)
attaches to send, not to soldiers.

A simple model based on this information is to compute the following
likelihood ratio A (cf. section 5.3.4 on likelihood ratios).

P(plv)

P(pln)

where P(p|v) is the probability of seeing a PP with p after the verb v
and P(p|n) is the probability of seeing a PP with p after the noun n.
We can then attach to the verb for A(v,n,p) > 0 and to the noun for
A(v,n,p) <O0.

The trouble with this model is that it ignores the fact that other things
being equal, there is a preference for attaching phrases “low” in the parse
tree. For PP attachment, the lower node is the NP node. For example, the
tree in figure 3.2 (b) attaches the PP with the spoon to the lower NP node,
the tree in figure 3.2 (a) attaches it to the higher VP node. One can explain
low attachments with a preference for local operations. When we process
the PP, the NP is still fresh in our mind and so it is easier to attach the PP
to it.

A(v,n,p) = log
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w C(w) C(w,with)
end 5156 607
venture 1442 155

Table 8.4 An example where the simple model for resolving PP attachment
ambiguity fails.

The following example from the New York Times shows why it is im-
portant to take the preference for attaching low into account:

Chrysler confirmed that it would end its troubled venture with Maserati.
The preposition with occurs frequently after both end (e.g., the show
ended with a song) and venture (e.g., the venture with Maserati). The
data from the New York Times corpus in table 8.4, when plugged into
equation (8.16), predict attachment to the verb:

607 155
P(plv) = =156 ~ 0.118 > 0.107 = Taaz = P(p|n)

But that is the wrong decision here. The model is wrong because equa-
tion (8.16) ignores a bias for low attachment in cases where a preposition
is equally compatible with the verb and the noun. We will now develop a
probabilistic model for PP attachment that formalizes this bias.

Hindle and Rooth (1993)

In setting up the probabilistic model that is due to Hindle and Rooth
(1993), we first define the event space. We are interested in sentences
that are potentially ambiguous with respect to PP attachment. So we
define the event space to consist of all clauses that have a transitive verb
(a verb with an object noun phrase), an NP following the verb (the object
noun phrase) and a PP following the NP.”> Our goal is to resolve the PP
attachment ambiguity in these cases.

In order to reduce the complexity of the model, we limit our attention
to one preposition at a time (that is, we are not modeling possible inter-
actions between PPs headed by different prepositions, see exercise 8.8),

4. We used the subset of texts from chapter 5.

5. Our terminology here is a little bit sloppy since the PP is actually part of the NP when
it attaches to the noun, so, strictly speaking, it does not follow the NP. So what we mean
here when we say “NP” is the base NP chunk without complements and adjuncts.
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and, if there are two PPs with the same preposition in sequence, then we
will only model the behavior of the first (see exercise 8.9).

To simplify the probabilistic model, we will not directly ask the ques-
tion about whether a certain preposition is attached to a certain verb or
noun. Rather, we will estimate how likely it is in general for a preposition
to attach to a verb or noun. We will look at the following two questions,
formalized by the sets of indicator random variables VA, and NA,:

VAy: Is there a PP headed by p and following the verb v which attaches
to v (VA, = 1) or not (VA, = 0)?

NAy: Is there a PP headed by p and following the noun n which attaches
to n (NAp = 1) or not (NA, = 0)?

Note that we are referring to any occurrence of the preposition p here
rather than to a particular instance. So it is possible for both NA, and
VA, to be 1 for some value of p. For instance, this is true for p = on in
the sentence:

He put the book [on World War II] [on the table].

For a clause containing the sequence “v ...n ...PP,” we wish to calcu-
late the probability of the PP headed with preposition p attaching to the
verb v and the noun n, conditioned on v and n:

P(VAp,NAylv,n) = P(VAylv,n)P(NA,lv,n)
= P(VAp|V)P(NAy|n)

In (8.19), we assume conditional independence of the two attachments
- that is, whether a PP occurs modifying n is independent of whether
one occurs modifying v. In (8.20), we assume that whether the verb is
modified by a PP does not depend on the noun and whether the noun is
modified by a PP does not depend on the verb.

That we are treating attachment of a preposition to a verb and to a noun
(i.e.,, VA, and NA,) as independent events seems counterintuitive at first
since the problem as stated above posits a binary choice between noun
and verb attachment. So, rather than being independent, attachment to
the verb seems to imply non-attachment to the noun and vice versa. But
we already saw in (8.18) that the definitions of VA, and NA, imply that
both can be true. The advantage of the independence assumption is that
it is easier to derive empirical estimates for the two variables separately
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rather than estimating their joint distribution. We will see below how we
can estimate the relevant quantities from an unlabeled corpus.

Now suppose that we wish to determine the attachment of a PP that is
immediately following an object noun. We can compute an estimate in
terms of model (8.20) by computing the probability of NA, = 1.

P(Attach(p) = nlv,n) = P(VA, =0V VA, =1|v) XxP(NA, = 1|n)
= 1.0xXP(NA, =1|n)
= P(NA, =1|n)

So we do not need to consider whether VA, = 0 or VA, = 1, since while
there could be other PPs in the sentence modifying the verb, they are
immaterial to deciding the status of the PP immediately after the noun
head.

In order to see that the case VA, = 1 and NA, = 1 does not make
Attach(p) = v true, let’s look at what these two premises entail. First,
there must be two prepositional phrases headed by a preposition of type
p. This is because we assume that any given PP can only attach to one
phrase, either the verb or the noun. Second, the first of these two PPs
must attach to the noun, the second to the verb. If it were the other way
round, then we would get crossing brackets. It follows that VA, = 1 and
NA, = 1 implies that the first PP headed by p is attached to the noun, not
to the verb. So Attach(p) # v holds in this case.

In contrast, because there cannot be crossing lines in a phrase structure
tree, in order for the first PP headed by the preposition p to attach to the
verb, both VA, = 1 and NA, = 0 must hold. Substituting the appropriate
values in model (8.20) we get:

P(Attach(p) = v|v,n) P(VA, = 1,NA, = 0|v,n)

— P(VA, = 1|v)P(NA, = 0|n)

We can again assess P (Attach(p) = v) and P (Attach(p) = n) via a likeli-
hood ratio A.

o P(Attach(p) = v|v,n)
2 P(Attach(p) = n|v,n)

log, T VA = 11v)P(NA, = 0]v)
2 P(NA, = 1|n)

A(v,n,p)

We choose verb attachment for large positive values of A and noun attach-
ment for large negative values. We can also make decisions for values of
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A closer to zero (verb attachment for positive A and noun attachment for
negative A), but there is a higher probability of error.

How do we estimate the probabilities P(VA, = 1|v) and P(NA, = 1|n)
that we need for equation (8.22)? The simplest method is to rely on
maximum likelihood estimates of the familiar form:

P(VA, =1]v) = CC(Y’V‘)’)
P(NA, = 1n) = Cc(’g”q’)g)

where C(v) and C(n) are the number of occurrences of v and n in the
corpus, and C(v,p) and C(n, p) are the number of times that p attaches
to v and p attaches to n. The remaining difficulty is to determine the
attachment counts from an unlabeled corpus. In some sentences the
attachment is obvious.

a. The road to London is long and winding.
b. She sent him into the nursery to gather up his toys.

The prepositional phrase in italics in (8.22a) must attach to the noun
since there is no preceding verb, and the italicized PP in (8.22b) must
attach to the verb since attachment to a pronoun like him is not possi-
ble. So we can bump up our counts for C(road, to) and C(send, into) by
one based on these two sentences. But many sentences are ambiguous.
That, after all, is the reason why we need an automatic procedure for the
resolution of attachment ambiguity.

Hindle and Rooth (1993) propose a heuristic for determining C(v, p)
and C(n,p) from unlabeled data that has essentially three steps.

1. Build an initial model by counting all unambiguous cases (examples
like (8.22a) and (8.22h)).

2. Apply the initial model to all ambiguous cases and assign them to the
appropriate count if A exceeds a threshold (for example, A > 2.0 for
verb attachment and A < —2.0 for noun attachment).

3. Divide the remaining ambiguous cases evenly between the counts (that
is, increase both C(v, p) and C(n, p) by 0.5 for each ambiguous case).

Sentence (8.15a), here repeated as (8.23), may serve as an example of
how the method is applied (Hindle and Rooth 1993: 109-110).
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Moscow sent more than 100,000 soldiers into Afghanistan ...

First we estimate the two probabilities we need for the likelihood ratio.

The count data are from Hindle and Rooth’s test corpus.

C(send, into) 86
C(send) 17425

C(soldiers,into) 1
C(soldiers) 1478

The fractional count is due to the step of the heuristic that divides the

hardest ambiguous cases evenly between noun and verb. We also have:

P(NAino = O|soldiers) = 1 — P(NAjno = 1|soldiers) ~ 0.9993

P (VAo = 1]send)

~ 0.049

P (NAjuto = 1|soldiers) ~ 0.0007

Plugging these numbers into formula (8.22), we get the following like-
lihood ratio.
0.049 x 0.9993

A(send, soldiers, into) ~ log, 00007 ~ 6.13

So attachment to the verb is much more likely (2613 =~ 70 times more
likely), which is the right prediction here. In general, the procedure is
accurate in about 80% of cases if we always make a choice (Hindle and
Rooth 1993: 115). We can trade higher precision for lower recall if we
only make a decision for values of A that exceed a certain threshold. For
example, Hindle and Rooth (1993) found that precision was 91.7% and
recall was 55.2% for A = 3.0.

General remarks on PP attachment

Much of the early psycholinguistic literature on parsing emphasized the
use of structural heuristics to resolve ambiguities, but they clearly don’t
help in cases like the PP attachments we have been looking at. For identi-
cal sequences of word classes, sometimes one parse structure is correct,
and sometimes another. Rather, as suggested by Ford et al. (1982), lexical
preferences seem very important here.

There are several major limitations to the model presented here. One
is that it only considers the identity of the preposition and the noun
and verb to which it might be attached. Sometimes other information is
important (studies suggest human accuracy improves by around 5% when
they see more than just a v,n, p triple). In particular, in sentences like
those in (8.25), the identity of the noun that heads the NP inside the PP is
clearly crucial:
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The board approved [its acquisition] [by Royal stco Ltd.] [of Toronto] [for
$27 a share] [at its monthly meeting].

Figure 8.2 Attachments in a complex sentence.

a. I examined the man with a stethoscope

b. I examined the man with a broken leg

Other information might also be important. For instance Hindle and
Rooth (1993) note that a superlative adjective preceding the noun highly
biased things towards an NP attachment (in their data). This condition-
ing was probably omitted by Hindle and Rooth because of the infrequent
occurrence of superlative adjectives. However, a virtue of the likelihood
ratio approach is that other factors can be incorporated in a principled
manner (providing that they are assumed to be independent). Much other
work has used various other features, in particular the identity of the
head noun inside the PP (Resnik and Hearst 1993; Brill and Resnik 1994;
Ratnaparkhi et al. 1994; Zavrel et al. 1997; Ratnaparkhi 1998). Franz
(1996) is able to include lots of features within a loglinear model ap-
proach, but at the cost of reducing the most basic association strength
parameters to categorical variables.

A second major limitation is that Hindle and Rooth (1993) consider
only the most basic case of a PP immediately after an NP object which
is modifying either the immediately preceding noun or verb. But there
are many more possibilities for PP attachments than this. Gibson and
Pearlmutter (1994) argue that psycholinguistic studies have been greatly
biased by their overconcentration on this one particular case. A PP sep-
arated from an object noun by another PP may modify any of the noun
inside the preceding PP, the object noun, or the preceding verb. Figure 8.2
shows a variety of the distant and complex attachment patterns that oc-
cur in texts. Additionally, in a complex sentence, a PP might not modify
just the immediately preceding verb, but might modify a higher verb. See
Franz (1997) for further discussion, and exercise 8.9.
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Other attachment issues

Apart from prepositional phrases, attachment ambiguity also occurs with
various kinds of adverbial and participial phrases and clauses, and in
noun compounds. The issue of the scope of coordinations in parsing is
also rather similar to an attachment decision, but we will not consider it
further here.

A noun phrase consisting of a sequence of three or more nouns either
has the left-branching structure [[N N] N] or the right-branching structure
[N [N N]]. For example, door bell manufacturer is left-branching: [[door
bell] manufacturer]. It’s a manufacturer of door bells, not a manufac-
turer of bells that somehow has to do with doors. The phrase woman
aid worker is an example of a right-branching NP: [woman [aid worker]].
The phrase refers to an aid worker who is female, not a worker working
for or on woman aid. The left-branching case roughly corresponds to at-
tachment of the PP to the verb ([V N PJ]), while the right-branching case
corresponds to attachment to the noun ([V [N P]]).

We could directly apply the formalism we’ve developed for preposi-
tional phrases to noun compounds. However, data sparseness tends to
be a more serious problem for noun compounds than for prepositional
phrases because prepositions are high-frequency words whereas most
nouns are not. For this reason, one approach is to use some form of
semantic generalization based on word classes in combination with at-
tachment information. See Lauer (1995a) for one take on the problem
(use of semantic classes for the PP attachment problem was explored by
Resnik and Hearst (1993) with less apparent success). A different exam-
ple of class-based generalization will be discussed in the next section.

As a final comment on attachment ambiguity, note that a large pro-
portion of prepositional phrases exhibit ‘indeterminacy’ with respect to
attachment (Hindle and Rooth 1993: 112). Consider the PP with them
in (8.26):

We have not signed a settlement agreement with them.

When you sign an agreement with person X, then in most cases it is an
agreement with X, but you also do the signing with X. It is rather unclear
whether the PP should be attached to the verb or the noun or whether we
should rather say that a PP like with them in sentence (8.26) should attach
to both verb and noun. Lauer (1995a) found that a significant proportion
of noun compounds also had this type of attachment indeterminacy. This



8.3 Attachment Ambiguity 287

is an example of a possibly important insight that came out of Statisti-
cal NLP work. Before Hindle and Rooth’s study, computational linguists
were not generally aware of how widespread attachment indeterminacy
is (though see Church and Patil (1982) for a counterexample).

After becoming aware of this fact, we could just say that it doesn’t mat-
ter how we attach in indeterminate cases. But the phenomenon might
also motivate us to explore new ways of determining the contribution
a prepositional phrase makes to the meaning of a sentence. The phe-
nomenon of attachment indeterminacy suggests that it may not be a
good idea to require that PP meaning always be mediated through a noun
phrase or a verb phrase as current syntactic formalisms do.

Exercise 8.6 [*]

As is usually the case with maximum likelihood estimates, they suffer in accuracy
if data are sparse. Modify the estimation procedure using one of the procedures
suggested in chapter 6. Hindle and Rooth (1993) use an ‘Add One’ method in
their experiments.

Exercise 8.7 [*]

Hindle and Rooth (1993) used a partially parsed corpus to determine C(v, p), and
C(n,p). Discuss whether we could use an unparsed corpus and what additional
problems we would have to grapple with.

Exercise 8.8 [*]

Consider sentences with two PPs headed by two different prepositions, for ex-
ample, “He put the book on Churchill in his backpack.” The model we developed
could attach on Churchill to put when applied to the preposition on and in his
backpack to book when applied to the preposition in. But that is an incorrect
parse tree since it has crossing brackets. Develop a model that makes consistent
decisions for sentences with two PPs headed by different prepositions.

Exercise 8.9 [* %]

Develop a model that resolves the attachment of the second PP in a sequence of
the form: V... N ... PP PP. There are three possible cases here: attachment to
the verb, attachment to the noun and attachment to the noun in the first PP.

Exercise 8.10 [*]

Note the following difference between a) the acquisition methods for attachment
ambiguity in this section and b) those for subcategorization frames in the last
section and those for collocations in chapter 5. In the case of PP attachment,
we are interested in what is predictable. We choose the pattern that best fits
what we would predict to happen from the training corpus. (For example, a PP
headed by in after send.) In the case of subcategorization and collocations, we
are interested in what is unpredictable, that is, patterns that shouldn’t occur if
our model was right. Discuss this difference.
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Selectional Preferences

Most verbs prefer arguments of a particular type. Such regularities are
called selectional preferences or selectional restrictions. Examples are that
the objects of the verb eat tend to be food items, the subjects of think
tend to be people, and the subjects of bark tend to be dogs. These seman-
tic constraints on arguments are analogous to the syntactic constraints
we looked at earlier, subcategorization for objects, PPs, infinitives etc.
We use the term preferences as opposed to rules because the preferences
can be overridden in metaphors and other extended meanings. For exam-
ple, eat takes non-food arguments in eating one’s words or fear eats the
soul.

The acquisition of selectional preferences is important in Statistical
NLP for a number of reasons. If a word like durian is missing from our
machine-readable dictionary, then we can infer part of its meaning from
selectional restrictions. In the case of sentence (8.27), we can infer that a
durian is a type of food.

Susan had never eaten a fresh durian before.

Another important use of selectional preferences is for ranking the
possible parses of a sentence. We will give higher scores to parses where
the verb has ‘natural’ arguments than to those with atypical arguments,
a strategy that allows us to choose among parses that are equally good
on syntactic criteria. Scoring the semantic wellformedness of a sentence
based on selectional preferences is more amenable to automated lan-
guage processing than trying to understand the meaning of a sentence
more fully. This is because the semantic regularities captured in selec-
tional preferences are often quite strong and, due to the tight syntactic
link between a verb and its arguments, can be acquired more easily from
corpora than other types of semantic information and world knowledge.

We will now introduce the model of selectional preferences proposed
by Resnik (1993, 1996). In principle, the model can be applied to any
class of words that imposes semantic constraints on a grammatically de-
pendent phrase: verb—subject, verb—direct object, verb—prepositional
phrase, adjective—~noun, noun—noun (in noun-noun compounds). But
we will only consider the case ‘verb—direct object’ here, that is, the case
of verbs selecting a semantically restricted class of direct object noun
phrases.

The model formalizes selectional preferences using two notions: selec-
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tional preference strength and selectional association. Selectional prefer-
ence strength measures how strongly the verb constrains its direct object.
It is defined as the KL divergence between the prior distribution of direct
objects (the distribution of direct objects for verbs in general) and the
distribution of direct objects of the verb we are trying to characterize.

We make two assumptions to simplify the model. First, we only take
the head noun of the direct object into account (for example, apple in
Susan ate the green apple) since the head is the crucial part of the noun
phrase that determines compatibility with the verb. Second, instead of
dealing with individual nouns, we will instead look at classes of nouns.
As usual, a class-based model facilitates generalization and parameter
estimation. With these assumptions, we can define selectional preference
strength S(v) as follows:

P(c|v)
P(c)

S(v) = D(P(CIV)IIP(C)) = > P(c|v)log

where P(C) is the overall probability distribution of noun classes and
P(C]v) is the probability distribution of noun classes in the direct object
position of v. We can take the noun classes from any lexical resource that
groups nouns into classes. Resnik (1996) uses WordNet.

Based on selectional preference strength, we can define selectional as-
sociation between a verb v and a class ¢ as follows:

P(c|v)log %
A(v,c) =
(v,c) SO
That is, the association between a verb and a class is defined as the pro-

portion that its summand P (c|v) log P P(’i‘c‘)/) contributes to the overall pref-

erence strength S(v).

Finally, we need a rule for assigning association strength to nouns (as
opposed to noun classes). If the noun n is in only one class c, then
we simply define A(v,n) £ A(v,c). If the noun is a member of several
classes, then we define its association strength as the highest association
strength of any of its classes.

A(v,n) = max A(v,c)
ceclasses(n)

A noun like chair in (8.31) is in several classes because it is polysemous
(or ambiguous).

Susan interrupted the chair.
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Nounclassc | P(c) P(cleat) P(c|see) P(clfind)
people 0.25 0.01 0.25 0.33
furniture 0.25 0.01 0.25 0.33
food 0.25 0.97 0.25 0.33
action 0.25 0.01 0.25 0.01
SPS S(v) 1.76 0.00 0.35

Table 8.5 Selectional Preference Strength (SPS). The argument distributions and
selectional preference strengths of three verbs for a classification of nouns with
four classes (based on hypothetical data).

In the case of chair, we have two candidate classes, ‘furniture’ and ‘peo-
ple’ (the latter in the sense ‘chairperson’). Equating A (v, n) with the max-
imum A(v, c¢) amounts to disambiguating the noun. In sentence (8.31) we
will base the association strength A (interrupt, chair) on the class ‘peo-
ple’ since interrupting people is much more common than interrupting
pieces of furniture, that is:

A(interrupt, people) > A(interrupt, furniture)
Hence:

A(interrupt, chair)

max Al(interrupt,c)
ceclasses(chair)

= A(interrupt, people)

So we can disambiguate chair as a by-product of determining the associ-
ation of interrupt and chair.

The hypothetical data in table 8.5 (based on (Resnik 1996: 139)) may
serve as a further illustration of the model. The table shows the prior dis-
tribution of object NPs over noun classes (assuming that there are only
the four classes shown) and posterior distributions for three verbs. The
verb eat overwhelmingly prefers food items as arguments; see’s distri-
bution is not very different from the prior distribution since all physical
objects can be seen; find has a uniform distribution over the first three
classes, but ‘disprefers’ actions since actions are not really the type of
entities that are found.

The selectional preference strengths of the three verbs are shown in
the row ‘SPS.” The numbers conform well with our intuition about the
three verbs: eat is very specific with respect to the arguments it can take,
find is less specific, and see has no selectional preferences (at least in
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our hypothetical data). Note that there is a clear interpretation of SPS
as the amount of information we gain about the argument after learning
about the verb. In the case of eat, SPS is 1.76, corresponding to almost 2
binary questions. That is just the number of binary questions we need to
get from four classes (people, furniture, food, action) to one, namely the
class ‘food’ that eat selects. (Binary logarithms were used to compute SPS
and association strength.)

Computing the association strengths between verbs and noun classes,
we find that the class ‘food’ is strongly preferred by eat (8.32) whereas
the class ‘action’ is dispreferred by find (8.33). This example shows that
the model formalizes selectional ‘dispreferences’ (negative numbers) as
well as selectional preferences (positive numbers).

Al(eat,food)
A(find, action)

1.08
—-0.13

The association strengths between see and all four noun classes are zero,
corresponding to the intuition that see does not put strong constraints
on its possible arguments.

The remaining problem is to estimate the probability that a direct ob-
ject in noun class ¢ occurs given a verb v, P(c|v) = Pp(:"‘f)). The maximum
likelihood estimate for P(v) is C(v)/>.,» C(V'), the relative frequency of
v with respect to all verbs. Resnik (1996) proposes the following estimate

for P(v,c):

1 1
P - = § .
v,0) N |classes(n)| cv,n)
newords(c)

where N is the total number of verb-object pairs in the corpus, words(c)
is the set of all nouns in class c, classes(n) is the number of noun classes
that contain n as a member and C(v,n) is the number of verb-object
pairs with v as the verb and n as the head of the object NP. This way of
estimating P (v, c) bypasses the problem of disambiguating nouns. If a
noun that is a member of two classes ¢; and ¢ occurs with v, then we
assign half of this occurrence to P(v,c;) and half to P(v, c2).

So far, we have only presented constructed examples. Table 8.6 shows
some actual data from Resnik’s experiments on the Brown corpus (Resnik
1996: 142). The verbs and nouns were taken from a psycholinguistic
study (Holmes et al. 1989). The nouns in the left and right halves of
the table are ‘typical’ and ‘atypical’ objects, respectively. For most verbs,
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Verb v Noun n A(v,n) Class Nounn A(v,n) Class

answer request 4.49 speech act tragedy 3.88 communication
find label 1.10 abstraction fever 0.22 psych. feature

hear story 1.89 communication | issue 1.89 communication
remember | reply 1.31 statement smoke 0.20 article of commerce
repeat comment 1.23 communication | journal 1.23 communication
read article 6.80 writing fashion —0.20 activity

see friend 5.79 entity method —0.01 method

write letter 7.26 writing market 0.00 commerce

IMPLICIT OBJECT
ALTERNATION

(8.35)

Table 8.6 Association strength distinguishes a verb’s plausible and implausible
objects. The left half of the table shows typical objects, the right half shows
atypical objects. In most cases, association strength A(v, n) is a good predictor
of object typicality.

association strength accurately predicts which object is typical. For ex-
ample, it correctly predicts that friend is a more natural object for see
than method. Most errors the model makes are due to the fact that it
performs a form of disambiguation, by choosing the highest association
strength among the possible classes of the noun (cf. the example of chair
we discussed earlier). Even if a noun is an atypical object, if it has a
rare interpretation as a plausible object, then it will be rated as typical.
An example of this is hear. Both story and issue can be forms of commu-
nication, but this meaning is rarer for issue. Yet the model chooses the
rare interpretation because it makes more sense for the verb hear.

Apart from the specific question of selectional preference, Resnik also
investigates how well the model predicts whether or not a verb has the
so-called implicit object alternation (or unspecified object alternation, see
Levin (1993: 33)). An example is the alternation between sentences (8.35a)
and (8.35b). The verb eat alternates between explicitly naming what was
eaten (8.35a) and leaving the thing eaten implicit (8.35b).

a. Mike ate the cake.
b. Mike ate.

The explanation Resnik offers for this phenomenon is that the more
constraints a verb puts on its object, the more likely it is to permit the
implicit-object construction. The intuition is that for a verb like eat with a
strong selectional preference, just knowing the verb gives us so much in-
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formation about the direct object that we don’t have to mention it. Resnik
finds evidence that selectional preference strength is a good predictor of
the permissibility of the implicit-object alternation for verbs.

We can now see why Resnik’s model defines selectional preference
strength (SPS) as the primary concept and derives association strength
from it. SPS is seen as the more basic phenomenon which explains the
occurrence of implicit objects as well as association strength.

An alternative is to define association strength directly as P(c|v) - or
as P(n|v) if we don’t want to go through an intermediate class represen-
tation. Approaches to computing P (n|v) include distributional clustering
(the work by Pereira et al. (1993) described in chapter 14) and methods
for computing the similarity of nouns. If a measure of the similarity of
nouns is available, then P(n|v) can be computed from the distribution of
nouns similar to n that are found in the argument slot of v. See the next
section for more on this approach.

Exercise 8.11 [*]

As we pointed out above, we can use a model of selectional preferences for dis-
ambiguating nouns by computing the association strengths for different senses
of the noun. This strategy assumes that we know what the senses of the noun
are and which classes they are members of. How could one use selectional pref-
erences to discover senses of nouns whose senses we don’t know?

Exercise 8.12 [*]
Verbs can also be ambiguous as in the case of fire in these two sentences.

a. The president fired the chief financial officer.
b. Mary fired her gun first.

How can the model be used to disambiguate verbs? Consider two scenarios, one
in which we have a training set in which verb senses are labeled, one in which we
don’t.

Exercise 8.13 [*]

The model discussed in this section assigns the noun sense with the maximum
association strength. This approach does not take prior probabilities into ac-
count. We may not want to choose an extremely rare sense of a noun even if it
is the best fit as the object NP of a verb.

Example: The noun shot has the rare meaning ‘marksman’ as in John was reputed
to be a crack shot. So, theoretically, we could choose this sense for shot in
the sentence John fired a shot, corresponding to the meaning John laid off a
marksman.

How could prior probabilities be used to avoid such incorrect inferences?
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Exercise 8.14 [% %]

In the approach developed above, WordNet is treated as a flat set of noun classes,
but it is actually a hierarchy. How could one make use of the information present
in the hierarchy (for example, the fact, that the class ‘dog’ is a subclass of ‘animal’
which in turn is a subclass of ‘entity’)?

Exercise 8.15 [**]

Verbs can be organized into a hierarchy too. How could one use hierarchical
information about verbs for better parameter estimation?

Exercise 8.16 [*]

One assumption of the model is that it is the head noun that determines the
compatibility of an object NP with the selectional preferences of the verb. How-
ever, as pointed out by Resnik (1996: 137), that is not always the case. Examples
include negation (you can’t eat stones), and certain adjectival modifiers (he ate
a chocolate firetruck; the tractor beam pulled the ship closer); neither stones
nor firetrucks are compatible with the selectional preferences of eat, but these
sentences are still well-formed. Discuss this problem.

Exercise 8.17 [*]

Hindle and Rooth (1993) go through several iterations of estimating initial pa-
rameters of their model, disambiguating some ambiguous attachments and re-
estimating parameters based on disambiguated instances. How could this ap-
proach be used to estimate the prior probabilities of noun classes in (8.34)?
The goal would be to improve on the uniform distribution over possible classes
assumed in the equation.

Exercise 8.18 [*]

Resnik’s model expresses association strength as a proportion of selectional
preference strength. This leads to interesting differences from an approach
based on formalizing selectional preference as P(n|v). Compare two noun-verb
pairs with equal P(n|v), that is, P(ni|vy) = P(ny|v»). If the selectional prefer-
ence strength of v; is much larger than that of v, then we get A(vy,c(n;)) <
A(vy,c(nz)). So the two models make different predictions here. Discuss these
differences.

Semantic Similarity

The holy grail of lexical acquisition is the acquisition of meaning. There
are many tasks (like text understanding and information retrieval) for
which Statistical NLP could make a big difference if we could automati-
cally acquire meaning. Unfortunately, how to represent meaning in a way
that can be operationally used by an automatic system is a largely un-
solved problem. Most work on acquiring semantic properties of words
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has therefore focused on semantic similarity. Automatically acquiring a
relative measure of how similar a new word is to known words (or how
dissimilar) is much easier than determining what the meaning actually is.
Despite its limitations, semantic similarity is still a useful measure to
have. It is most often used for generalization under the assumption that
semantically similar words behave similarly. An example would be the
problem of selectional preferences that we discussed in the previous
section. Suppose we want to find out how appropriate durian is as an
argument of eat in sentence (8.37) (our previous example (8.27)):

Susan had never eaten a fresh durian before.

Suppose further that we don’t have any information about durian except
that it’'s semantically similar to apple, banana, and mango, all of which
perfectly fit the selectional preferences of eat. Then we can generalize
from the behavior of apple, banana, and mango to the semantically sim-
ilar durian and hypothesize that durian is also a good argument of eat.
This scheme can be implemented in various ways. We could base our
treatment of durian only on the closest semantic neighbor (say, mango),
or we could base it on a combination of evidence from a fixed number of
nearest neighbors, a combination that can be weighted according to how
semantically similar each neighbor is to durian.

Similarity-based generalization is a close relative of class-based gener-
alization. In similarity-based generalization we only consider the closest
neighbors in generalizing to the word of interest. In class-based general-
ization, we consider the whole class of elements that the word of interest
is most likely to be a member of. (See exercise 8.20.)

Semantic similarity is also used for query expansion in information re-
trieval. A user who describes a request for information in her own words
may not be aware of related terms which are used in the documents that
the user would be most interested in. If a user describes a request for
documents on Russian space misions using the word astronaut, then a
query expansion system can suggest the term cosmonaut based on the
semantic similarity between astronaut and cosmonaut.

Another use of semantic similarity is for so-called k nearest neighbors
(or KNN) classification, see section 16.4). We first need a training set of
elements that are each assigned to a category. The elements might be
words and the categories might be topic categories as they are used by
newswire services (‘financial,” ‘agriculture,” ‘politics’ etc.). In KNN classi-
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fication we assign a new element to the category that is most prevalent
among its k nearest neighbors.

Before delving into the details of how to acquire measures of semantic
similarity, let us remark that semantic similarity is not as intuitive and
clear a notion as it may seem at first. For some, semantic similarity is an
extension of synonymy and refers to cases of near-synonymy like the pair
dwelling/abode. Often semantic similarity refers to the notion that two
words are from the same semantic domain or topic. On this understand-
ing of the term, words are similar if they refer to entities in the world that
are likely to co-occur like doctor, nurse, fever, and intravenous, words
that can refer to quite different entities or even be members of different
syntactic categories.

One attempt to put the notion of semantic similarity on a more solid
footing is provided by Miller and Charles (1991), who show that judge-
ments of semantic similarity can be explained by the degree of contextual
interchangeability or the degree to which one word can be substituted for
another in context.

Note that ambiguity presents a problem for all notions of semantic
similarity. If a word is semantically similar to one sense of an ambiguous
word, then it is rarely semantically similar to the other sense. For exam-
ple, litigation is similar to the legal sense of suit, but not to the ‘clothes’
sense. When applied to ambiguous words, semantically similar usually
means ‘similar to the appropriate sense’.

Vector space measures

A large class of measures of semantic similarity are best conceptualized
as measures of vector similarity. The two words whose semantic similar-
ity we want to compute are represented as vectors in a multi-dimensional
space. Figures 8.3, 8.4, and 8.5 give (constructed) examples of such multi-
dimensional spaces (see also figure 15.5).

The matrix in figure 8.3 represents words as vectors in document space.
Entry a;; contains the number of times word j occurs in document i.
Words are deemed similar to the extent that they occur in the same doc-
uments. In document space, cosmonaut and astronaut are dissimilar (no
shared documents); truck and car are similar since they share a docu-
ment: they co-occur in dy.

The matrix in figure 8.4 represents words as vectors in word space.
Entry b;; contains the number of times word j co-occurs with word 1.
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cosmonaut astronaut moon car truck
dy | 1 0 1 1 0
d» | O 1 1 0 0
d; | 1 0 0 0 0
dy | O 0 0 1 1
ds | 0 0 0 1 0
dg | O 0 0 0 1
Figure 8.3 A document-by-word matrix A.
cosmonaut astronaut moon car truck
cosmonaut | 2 0 1 1 0
astronaut 0 1 1 0 0
moon 1 1 2 1 0
car 1 0 1 3 1
truck 0 0 0 1 2
Figure 8.4 A word-by-word matrix B.
cosmonaut astronaut moon car truck
Soviet 1 0 0 1 1
American 0 1 0 1 1
spacewalking | 1 1 0 0 0
red 0 0 0 1 1
full 0 0 1 0 0
old 0 0 0 1 1

297

Figure 8.5 A modifier-by-head matrix C. The nouns (or heads of noun phrases)

in the top row are modified by the adjectives in the left column.

Co-occurrence can be defined with respect to documents, paragraphs or
other units. Words are similar to the extent that they co-occur with the
same words. Here, cosmonaut and astronaut are more similar than before
since they both co-occur with moon.

We have defined co-occurrence in figure 8.4 with respect to the doc-
uments in figure 8.3. In other words, the following relationship holds:
B = AT A. (Here -1 is the transpose, where we swap the rows and columns

so that X; = Xji.)

The matrix in figure 8.5 represents nouns (interpreted as heads of noun
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phrases) as vectors in modifier space. Entry c;; contains the number of
times that head j is modified by modifier i. Heads are similar to the ex-
tent that they are modified by the same modifiers. Again, cosmonaut and
astronaut are similar. But, interestingly moon is dissimilar from cosmo-
naut and astronaut here, in contrast to the document space in figure 8.3
and the word space in figure 8.4. This contrast demonstrates that differ-
ent spaces get at different types of semantic similarity. The type of un-
differentiated co-occurrence information in document and word spaces
captures topical similarity (words pertaining to the same topic domain).
Head-modifier information is more fine-grained. Although astronaut and
moon are part of the same domain (‘space exploration’), they are obvi-
ously entities with very different properties (a human being versus a
celestial body). Different properties correspond to different modifiers,
which explains why the two words come out as dissimilar on the head-
modifier metric.%

The three matrices also have an interesting interpretation if we look
at the similarity of rows instead of the similarity of columns (or, equiv-
alently, look at the similarity of columns of the transposed matrices).
Looking at the matrices this way, A defines similarity between docu-
ments. This is the standard way of defining similarity among documents
and between documents and queries in information retrieval. Matrix C
defines similarity between modifiers when transposed. For example, red
and old are similar (they share car and truck), suggesting that they are
used to modify the same types of nouns. Matrix B is symmetric, so
looking at similarity of rows is no different from looking at similarity
of columns.

So far we have appealed to an intuitive notion of vector similarity. Ta-
ble 8.7 defines several measures that have been proposed to make this
notion precise (adapted from (van Rijsbergen 1979: 39)). At first, we only
consider binary vectors, that is, vectors with entries that are either O or 1.
The simplest way to describe a binary vector is as the set of dimensions
on which it has non-zero values. So, for example, the vector for cosmo-
naut in figure 8.5 can be represented as the set {Soviet, spacewalking}.
Having done this, we can calculate similarities using set operations, as in
table 8.7.

6. See Grefenstette (1996) and Schiitze and Pedersen (1997) for a discussion of the pros
and cons of measuring word similarity based on associations versus head-modifier rela-
tionships.
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Similarity measure Definition
matching coefficient XnY
i - 2[XNY]
Dice coefficient XITTY]
Jaccard (or Tanimoto) coefficient Iigﬂ
. | XNY]|
Overlap coefficient XY
. [ XnY]
cosine —
VIXIXY]

Table 8.7 Similarity measures for binary vectors.

The first similarity measure, the matching coefficient, simply counts the
number of dimensions on which both vectors are non-zero. In contrast
to the other measures, it does not take into account the length of the
vectors and the total number of non-zero entries in each.”

The Dice coefficient normalizes for length by dividing by the total num-
ber of non-zero entries. We multiply by 2 so that we get a measure that
ranges from 0.0 to 1.0 with 1.0 indicating identical vectors.

The Jaccard coefficient penalizes a small number of shared entries (as
a proportion of all non-zero entries) more than the Dice coefficient does.
Both measures range from 0.0 (no overlap) to 1.0 (perfect overlap), but the
Jaccard coefficient gives lower values to low-overlap cases. For example,
two vectors with ten non-zero entries and one common entry get a Dice
score of 2x1/(10+10) = 0.1 and a Jaccard score of 1/(10+10—-1) = 0.05.
The Jaccard coefficient is frequently used in chemistry as a measure of
similarity between chemical compounds (Willett and Winterman 1986).

The Overlap coefficient has the flavor of a measure of inclusion. It has
avalue of 1.0 if every dimension with a non-zero value for the first vector
is also non-zero for the second vector or vice versa (in other words if
XcYorY cX).

The cosine is identical to the Dice coefficient for vectors with the same
number of non-zero entries (see exercise 8.24), but it penalizes less in
cases where the number of non-zero entries is very different. For ex-
ample, if we compare one vector with one non-zero entry and another
vector with 1000 non-zero entries and if there is one shared entry, then

7. This can be desirable to reflect our confidence in the similarity judgement. Hindle
(1990) recommends a measure for noun similarity with this property.
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we get a Dice coefficient of 2 X 1/(1 + 1000) ~ 0.002 and a cosine of
1/+/1000 x 1 ~ 0.03. This property of the cosine is important in Statisti-
cal NLP since we often compare words or objects that we have different
amounts of data for, but we don’t want to say they are dissimilar just
because of that.

So far we have looked at binary vectors, but binary vectors only have
one bit of information on each dimension. A more powerful represen-
tation for linguistic objects is the real-valued vector space. We will not
give a systematic introduction to linear algebra here, but let us briefly
review the basic concepts of vector spaces that we need in this book.
A real-valued vector X of dimensionality n is a sequence of n real num-
bers, where x; denotes the i component of X (its value on dimension i).
The components of a vector are properly written as a column:

X1
X2

>y
Il

Xn

However, we sometimes write vectors horizontally within paragraphs. We
write R" for the vector space of real-valued vectors with dimensionality
n, so we have X € R". In a Euclidean vector space, the length of a vector
is defined as follows.

R n
x| = Zi:lxi2

Finally, the dot product between two vectors is defined as X-y = > | X; V.

The cosine, the last similarity measure we introduced for binary vec-
tors, is also the most important one for real-valued vectors. The cosine
measures the cosine of the angle between two vectors. It ranges from 1.0
(cos(0°) = 1.0) for vectors pointing in the same direction over 0.0 for or-
thogonal vectors (cos(90°) = 0.0) to —1.0 for vectors pointing in opposite
directions (cos(180°) = —1.0).

For the general case of two n-dimensional vectors X and ¥ in a real-
valued space, the cosine measure can be calculated as follows:

- >

_ Xy S XiVi
RIYE s w23 2

This definition highlights another interpretation of the cosine, the inter-
pretation as the normalized correlation coefficient. We compute how well

cos(X,y)
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the x; and the y; correlate and then divide by the (Euclidean) length of
the two vectors to scale for the magnitude of the individual x; and y;.

We call a vector normalized if it has unit length according to the Eu-
clidean norm:

n
Xl => x2=1

i=1
For normalized vectors, the cosine is simply the dot product:
cos(X,y) =X-y

The Euclidean distance between two vectors measures how far apart
they are in the vector space:

N o n
X =yl = Zi=1(><i - yi)?

An interesting property of the cosine is that, if applied to normalized
vectors, it will give the same ranking of similarities as Euclidean distance
does. That is, if we only want to know which of two objects is closest to
a third object, then cosine and Euclidean distance give the same answer
for normalized vectors. The following derivation shows why ranking ac-
cording to cosine and Euclidean distance comes out to be the same:

n
(IX-¥D?* = D> (xi—y)?
i=1
n n n
= ng_zzxiyi+zyl'2
i=1 i=1 i=1
n
= 1—22)(1')/1‘-1—1

i=1
= 20-%-y)

Finally, the cosine has also been used as a similarity measure of prob-
ability distributions (Goldszmidt and Sahami 1998). Two distributions
{pi} and {g;} are first transformed into {./p;} and {,/q;}. Taking the
cosine of the two resulting vectors gives the measure D = Y[, ./Pidi,
which can be interpreted as the sum over the geometric means of the
{pi} and {g;}.

Table 8.8 shows some cosine similarities computed for the New York
Times corpus described in chapter 5. We compiled a 20,000-by-1,000 ma-
trix similar to the word-by-word matrix in figure 8.4. As rows we selected
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Focus word Nearest neighbors

garlic sauce .732 pepper .728 salt .726 cup .726
fallen fell 932 decline .931 rise 930 drop 929
engineered | genetically .758 drugs .688 research .687 drug .685
Alfred named .814 Robert .809 William .808 W .808
simple something .964 things .963 You 963 always .962

Table 8.8 The cosine as a measure of semantic similarity. For each of the five
words in the left column, the table shows the words that were most similar
according to the cosine measure when applied to a word-by-word co-occurrence
matrix. For example, sauce is the word that is most similar to garlic. The cosine
between the vectors of sauce and garlic is 0.732.

the 20,000 most frequent words, as columns the 1,000 most frequent
words (after elimination of the 100 most frequent words in both cases).
Instead of raw co-occurrence counts, we used the logarithmic weighting
function f(x) = 1 + log(x) for non-zero counts (see section 15.2.2). A co-
occurrence event was defined as two words occurring within 25 words
of each other. The table shows cosine similarities between rows of the
matrix.

For some word pairs, cosine in word space is a good measure of se-
mantic similarity. The neighbors of garlic are generally close in meaning
to garlic (with the possible exception of cup). The same is true for fallen.
Note, however, that grammatical distinctions are not reflected because
co-occurrence information is insensitive to word order and grammatical
dependencies (the past participle fallen and the past tense fell are near-
est neighbors of each other). The word engineered shows the corpus-
dependency of the similarity measure. In the New York Times, the word
is often used in the context of genetic engineering. A corpus of automo-
bile magazine articles would give us a very different set of neighbors of
engineered. Finally, the words Alfred and simple show us the limits of
the chosen similarity measure. Some of the neighbors of Alfred are also
names, but this is a case of part-of-speech similarity rather than seman-
tic similarity. The neighbors of simple seem completely random. Since
simple is frequently used and its occurrences are distributed throughout
the corpus, co-occurrence information is not useful here to characterize
the semantics of the word.

The examples we have given demonstrate the advantage of vector



PRIMING

8.5.2

8.5 Semantic Similarity 303

spaces as a representational medium: their simplicity. It is easy to visu-
alize vectors in a two-dimensional or three-dimensional space. Equating
similarity with the extent to which the vectors point in the same direction
is equally intuitive. In addition, vector space measures are easy to com-
pute. Intuitive simplicity and computational efficiency are probably the
main reasons that vector space measures have been used for a long time
in information retrieval, notably for word-by-document matrices (Lesk
1969; Salton 1971a; Qiu and Frei 1993). Work on using vector measures
for word-by-word and modifier-by-head matrices is more recent (Grefen-
stette 1992b; Schiitze 1992b). See (Grefenstette 1992a) and (Burgess and
Lund 1997) for research demonstrating that vector-based similarity mea-
sures correspond to psychological notions of semantic similarity such as
the degree to which one word primes another.

Probabilistic measures

The problem with vector space based measures is that, except for the
cosine, they operate on binary data (yes or no). The cosine is the only
vector space measure that accommodates quantitative information, but it
has its own problems. Computing the cosine assumes a Euclidean space.
This is because the cosine is defined as the ratio of the lengths of two
sides of a triangle. So we need a measure of length, the Euclidean met-
ric. But a Euclidean space is not a well-motivated choice if the vectors
we are dealing with are vectors of probabilities or counts - which is what
most representations for computing semantic similarity are based on. To
see this observe that the Euclidean distance between the probabilities 0.0
and 0.1 is the same as the distance between the probabilities 0.9 and 1.0.
But in the first case we have the difference between impossibility and
a chance of 1 in 10 whereas in the second there is only a small differ-
ence of about 10%. The Euclidean distance is appropriate for normally
distributed quantities, not for counts and probabilities.

Matrices of counts like those in figures 8.3, 8.4, and 8.5 can be easily
transformed into matrices of conditional probabilities by dividing each
element in a row by the sum of all entries in the row (this amounts to
using maximum likelihood estimates). For example, in the matrix in fig-
ure 8.5, the entry for (American, astronaut) would be transformed into
P(American|astronaut) = % = 0.5. The question of semantic similarity
can then be recast as a question about the similarity (or dissimilarity) of
two probability distributions.
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(Dis-)similarity measure | Definition
KL divergence D(pllg) = >;pilog %

information radius (IRad) | D(p|%%) + D(qll%5%)
Ly norm >ilpi — ail

Table 8.9 Measures of (dis-)similarity between probability distributions.

Table 8.9 shows three measures of dissimilarity between probability
distributions investigated by Dagan et al. (1997b). We are already familiar
with the KL divergence from section 2.2.5. It measures how well distribu-
tion g approximates distribution p; or, more precisely, how much infor-
mation is lost if we assume distribution g when the true distribution is p.
The KL divergence has two problems for practical applications. First, we
get a value of o if there is a ‘dimension’ with g; = 0 and p; # 0 (which will
happen often, especially if we use simple maximum likelihood estimates).
Secondly, KL divergence is asymmetric, that is, usually D (pllq) = D(qllp).
The intuitive notion of semantic similarity and most other types of sim-
ilarity we are interested in is symmetric, so the following should hold:
sim(p, q) = sim(q, p).8

The second measure in table 8.9, information radius (or total diver-
gence to the average as Dagan et al. (1997b) call it), overcomes both
these problems. It is symmetric (IRad(p,q) = IRad(q,p)) and there is
no problem with infinite values since % + 0 if either p; + 0 or g; = 0.
The intuitive interpretation of IRad is that it answers the question: How
much information is lost if we describe the two words (or random vari-
ables in the general case) that correspond to p and g with their average
distribution? IRad ranges from O for identical distributions to 21log?2 for
maximally different distributions (see exercise 8.26). As usual we assume
0log0 = 0.

A third measure considered by Dagan et al. (1997b) is the L; (or Man-
hattan) norm. It also has the desirable properties of being symmetric and
well-defined for arbitrary p and g. We can interpret it as a measure of the
expected proportion of different events, that is, as the expected propor-

8. Note that in clustering, asymmetry can make sense since we are comparing two differ-
ent entities, the individual word that we need to assign to a cluster and the representation
of the cluster. The question here is how well the cluster represents the word which is
different from similarity in the strict sense of the word. See (Pereira et al. 1993).
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tion of events that are going to be different between the distributions p
and g. This is because %Ll(p,q) =1 - >;min(p;, q;), and > ; min(p;, q;)
is the expected proportion of trials with the same outcome.’

As an example consider the following conditional distributions com-
puted from the data in figure 8.5.

p1 = P(Soviet|cosmonaut) = 0.5

p2 = 0

p3 = P(spacewalking|cosmonaut) = 0.5
a = 0

g2 = P(American|astronaut) = 0.5

q3 = P(spacewalking|astronaut) = 0.5

Here we have:

1 .

SLip,@) =1- 3 min(p;,g) =1-05=0.5
i

So if we looked at the sets of adjectives that occurred with a large number
of uses of cosmonaut and astronaut in a corpus, then the overlap of the
two sets would be expected to be 0.5, corresponding to the proportion of
occurrences of spacewalking with each noun.

Dagan et al. (1997b) compared the three dissimilarity measures (KL,
IRad, and L;) on a task similar to the selectional preferences problem in
section 8.4. Instead of looking at the fit of nouns as argument of verbs,
they looked at the fit of verbs as predicates for nouns. For example, given
a choice of the verbs make and take the similarity measures were used to
determine that make is the right verb to use with plans (make plans) and
take is the right verb to use with actions (take actions).

9. The following derivation shows that %Ll(p, q) =1->;min(pi,qi):

Zi lpi — ail

= 2 [maX(m, i) — min(p;, qi)]

Li(p,q)

= Y[ i+ ai - min(pi,a0)) - min(pi, ai) |
= DL,pi+>.ai—2 min(pi,d)
= 2(1—Zimin(lﬂi,4i))

Note that this also shows that 0 < L1 (p,q) < 2 since >; min(p,q) = 0.
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Here is how the similarity measure is used to compute the conditional
probability P (verb|noun), which Dagan et al. (1997b) use as a measure of
‘goodness of fit:’

W(n,n")
Z AR

N1 P(vin')

Psm(vin) =
n’eS(n)
Here, v is the verb, n is the noun, S(n) is the set of nouns closest to n
according to the similarity measure,'® W (n,n’) is a similarity measure
derived from the dissimilarity measure and N (n) is a normalizing factor:
N(n) =>, W(n,n').
This formulation makes it necessary to transform the dissimilarity
measure (KL, IRad or L;) into the similarity measure W. The following
three transformations were used.

Wxi(p,q) = 10-8Dplla)
Wirad(p,q) = 10 FRad(plla)
WLl(plq) = (Z_LI(U,CI))B

The parameter 8 can be tuned for optimal performance.

Dagan et al. (1997b) show that IRad consistently performs better than
KL and L;. Consequently, they recommend IRad as the measure that is
best to use in general.

This concludes our brief survey of measures of semantic similarity and
dissimilarity. Vector space measures have the advantage of conceptual
simplicity and of producing a similarity value that can be directly used
for generalization. But they lack a clear interpretation of the computed
measure. Probabilistic dissimilarity measures are on a more solid footing
theoretically, but require an additional transformation to get to a mea-
sure of similarity that can be used for nearest neighbor generalization. Ei-
ther approach is valuable in acquiring semantic properties of words from
corpora by using similarity to transfer knowledge from known words to
those that are not covered in the lexicon.

Exercise 8.19 [*]

Similarity-based generalization depends on the premise that similar things be-
have similarly. This premise is unobjectionable if the two uses of the word simi-
lar here refer to the same notion. But it is easy to fall into the trap of interpreting

10. For the experiments, S(n) was chosen to be the entire set of nouns, but one can limit
the words considered to those closest to the target word.
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them differently. In that case, similarity-based generalization can give inaccurate
results.

Find examples of such potentially dangerous cases, that is, examples where
words that are similar with respect to one aspect behave very differently with
respect to another aspect.

Exercise 8.20 [*]

Similarity-based and class-based generalization are more closely related than it
may seem at first glance. Similarity-based generalization looks at the closest
neighbors and weights the input from these neighbors according to their sim-
ilarity. Class-based generalization looks at the most promising class and, in
the simplest case, generalizes the novel word to the average of that class. But
class-based generalization can be made to look like similarity-based generaliza-
tion by integrating evidence from all classes and weighting it according to how
well the element fits into each class. Similarity-based generalization looks like
class-based generalization if we view each element as a class.

Discuss the relationship between the two types of generalization. What role do
efficiency considerations play?

Exercise 8.21 [*]

Co-occurrence matrices like the one in figure 8.3 represent different types of in-
formation depending on how co-occurrence is defined. What types of words
would you expect fire to be similar to for the following definitions of co-
occurrence: co-occurrence within a document; co-occurrence within a sentence;
co-occurrence with words at a maximum distance of three words to the right;
co-occurrence with the word immediately adjacent to the right. (See Finch and
Chater (1994) and Schiitze (1995) for two studies that show how the latter type
of immediate co-occurrence can be used to discover syntactic categories.)

Exercise 8.22 [* %]

The measures we have looked at compare simple objects like vectors and proba-
bility distributions. There have also been attempts to measure semantic similar-
ity between more complex objects like trees (see (Sheridan and Smeaton 1992)
for one example). How could one measure the (semantic?) similarity between
trees? How might such an approach lead to a better measure of semantic simi-
larity between words than ‘flat’ structures?

Exercise 8.23 [*]

Select two words heading columns in figure 8.3 and compute pairwise similar-
ities using each of the measures in table 8.7 for each of the three matrices in
figures 8.3 through 8.5.

Exercise 8.24 [*]

Show that dice and cosine coefficients are identical if the two vectors compared
have the same number of non-zero entries.
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Exercise 8.25 [*]

Semantic similarity can be context-dependent. For example, electrons and tennis
balls are similar when we are talking about their form (both have a round shape)
and dissimilar when we are talking about their sizes.

Discuss to what extent similarity is context-dependent and when this can hinder
correct generalization.
Exercise 8.26 [*]

Show that divergence to the average (IRad) is bounded by 2 log 2.

Exercise 8.27 [*]

Select two words heading columns in figure 8.3 and compute the three measures
of dissimilarity in table 8.9 for each of the matrices in figures 8.3 through 8.5.
You will have to smooth the probabilities for KL divergence. Are the dissimilarity
measures asymmetric for KL divergence?

Exercise 8.28 [**]

Both the L; norm and the Euclidean norm are special cases of the Minkowski
norm Ly:

Ly(a,b) = v|> |ai - bil?

In this context, the Euclidean norm is also referred to as L,. So the L; norm
can be seen as a more appropriate version of the Euclidean norm for probability
distributions.

Another norm that has been used for vectors is L., that is L, for p — oo (Salton
et al. 1983). What well-known function does L., correspond to?

Exercise 8.29 [*]
Does a dissimilarity measure of 0 on one of the measures in table 8.9 imply that
the other two measures are 0 too?

Exercise 8.30 [*]

If two probability distributions are maximally dissimilar according to one mea-
sure in table 8.9 (e.g., IRad(p,q) = 2log2), does that imply that they are maxi-
mally dissimilar according to the other two?

The Role of Lexical Acquisition in Statistical NLP

Lexical acquisition plays a key role in Statistical NLP because available lex-
ical resources are always lacking in some way. There are several reasons
for this.
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One reason is the cost of building lexical resources manually. For many
types of lexical information, professional lexicographers will collect more
accurate and comprehensive data than automatic procedures. But often
manually constructed dictionaries are not available due to the cost of
their construction. One estimate for the average time it takes to create
a lexical entry from scratch is half an hour (Neff et al. 1993; obviously it
depends on the complexity of the entry), so manual resource construction
can be quite expensive.

There is one type of data that humans, including lexicographers, are
notoriously bad at collecting: quantitative information. So the quantita-
tive part of lexical acquisition almost always has to be done automati-
cally, even if excellent manually constructed lexical resources are avail-
able for qualitative properties.

More generally, many lexical resources were designed for human con-
sumption. The flip side of quantitative information being missing (which
may be less important for people) is that the computer has no access
to contextual information that is necessary to interpret lexical entries in
conventional dictionaries. This is expressed aptly by Mercer (1993): “one
cannot learn a new language by reading a bilingual dictionary.” An ex-
ample is the irregular plural postmen which is not listed as an exception
in the lexical entry of postman in some dictionaries because it is obvious
to a human reader that the plural of postman is formed in analogy to
the plural of man. The best solution to problems like these is often the
augmentation of a manual resource by automatic means.

Despite the importance of these other considerations motivating au-
tomated lexical acquisition, the main reason for its importance is the
inherent productivity of language. Natural language is in a constant state
of flux, adapting to the changing world by creating names and words to
refer to new things, new people and new concepts. Lexical resources have
to be updated to keep pace with these changes. Some word classes are
more likely to have coverage gaps than others. Most documents will men-
tion proper nouns that we have not encountered before whereas there
will hardly ever be newly created auxiliaries or prepositions. But the cre-
ativity of language is not limited to names. New nouns and verbs also
occur at a high rate in many texts. Words that are covered in the diction-
ary may still need the application of lexical acquisition methods because
they develop new senses or new syntactic usage patterns.

How can we quantify the amount of lexical information that has to be
learned automatically, even if lexical resources are available? For a rough
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Type of coverage problem Example

proper noun Caramello, Chateau-Chalon
foreign word perestroika

code R101

mathematical object X1

non-standard English havin’

abbreviation NLP

hyphenated word non-examination

hyphen omitted bedclothes

negated adjective unassailable

adverbs ritualistically

technical vocabulary normoglycaemia

plural of mass noun estimations

other cases deglutition, don’ts, affinitizes (VBZ)

Table 8.10 Types of words occurring in the LOB corpus that were not covered
by the OALD dictionary.

assessment, we can consult Zipf’s law and other attempts to estimate the
proportion of as yet unseen words and uses in text (see chapter 6 and,
for example, (Baayen and Sproat 1996) and (Youmans 1991)).

A more detailed analysis is provided in (Sampson 1989). Sampson
tested the coverage of a dictionary with close to 70,000 entries (the OALD,
Hornby 1974) for a 45,000 word subpart of the LOB corpus. (Numbers
were not counted as words.) He found that about 3% of tokens were not
listed in the dictionary. It is instructive to look at the different types of
words that are the cause of coverage problems. Table 8.10 lists the major
types found by Sampson and some examples.

More than half of the missing words were proper nouns. The other
half is due to the other categories in the table. Some of the coverage
problems would be expected not to occur in a larger dictionary (some
frequent proper nouns and words like unassailable). But based on Samp-
son’s findings, one would expect between one and two percent of tokens
in a corpus to be missing from even a much larger dictionary. It is also im-
portant to note that this type of study only gets at character strings that
are entirely missing from the dictionary. It is much harder to estimate
at what rate known words are used with new senses or in novel syntactic
constructions. Finally, the one to two percent of unknown words tend to
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be among the most important in a document: the name of the person pro-
filed in an article or the abbreviation for a new scientific phenomenon. So
even if novel words constitute only a small percentage of the text, having
an operational representation for their properties is paramount.

It took a long time until the limitations of dictionaries and hand-crafted
knowledge bases for successful language processing became clear to NLP
researchers. A common strategy in early NLP research was to focus on a
small subdomain to attack what seemed to be the two most fundamental
problems: parsing and knowledge representation. As a result of this
focus on small subdomains, this early research “provided nothing for
general use on large-scale texts” and “work in computational linguistics
was largely inapplicable to anything but to sub-languages of very limited
semantic and syntactic scope” (Ide and Walker 1992).

Problems of lexical coverage started to take center stage in the late
eighties when interest shifted from subdomains to large corpora and ro-
bust systems, partly due to the influence of speech recognition research.
One of the earliest pieces of work on lexical acquisition from corpora was
done for the FORCE4 system developed by Walker and Amsler (1986) at
SRI International. Since then, lexical acquisition has become one of the
most active areas of Statistical NLP.

What does the future hold for lexical acquisition? One important trend
is to look harder for sources of prior knowledge that can constrain the
process of lexical acquisition. This is in contrast to earlier work that tried
to start ‘from scratch’ and favored deriving everything from the corpus.
Prior knowledge can be discrete as is the case when a lexical hierarchy like
WordNet is used or probabilistic, for example, when a prior distribution
over object noun classes is derived from a verb’s dictionary entry and
this prior distribution is then refined based on corpora. Much of the hard
work of lexical acquisition will be in building interfaces that admit easy
specification of prior knowledge and easy correction of mistakes made in
automatic learning.

One important source of prior knowledge should be linguistic theory,
which has been surprisingly underutilized in Statistical NLP. In addition
to the attempts we have discussed here to constrain the acquisition pro-
cess using linguistic insights, we refer the reader to Pustejovsky et al.
(1993), Boguraev and Pustejovsky (1995), and Boguraev (1993) for work
that takes linguistic theory as the foundation of acquisition. The last
two articles summarize the important work on computational lexicogra-
phy done at Cambridge University (described in detail in (Boguraev and
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Briscoe 1989)), which, although mostly non-statistical, contains impor-
tant insights on how to combine theoretical linguistics and empirical ac-
quisition from lexical resources.

Dictionaries are only one source of information that can be important
in lexical acquisition in addition to text corpora. Other sources are en-
cyclopedias, thesauri, gazeteers, collections of technical vocabulary and
any other reference work or data base that is likely to contribute to a
characterization of the syntactic and semantic properties of uncommon
words and names.

The reader may have wondered why we have limited ourselves to tex-
tual sources. What about speech, images, video? Lexical acquisition has
focused on text because words are less ambiguous descriptors of content
than features that can be automatically extracted from audio and visual
data. But we can hope that, as work on speech recognition and image
understanding progresses, we will be able to ground the linguistic rep-
resentation of words in the much richer context that non-textual media
provide. It has been estimated that the average educated person reads
on the order of one million words in a year, but hears ten times as many
words spoken. If we succeed in emulating human acquisition of language
by tapping into this rich source of information, then a breakthrough in
the effectiveness of lexical acquisition can be expected.

Further Reading

There are several books and special issues of journals on lexical acqui-
sition: (Zernik 1991a), (Ide and Walker 1992), (Church and Mercer 1993),
and (Boguraev and Pustejovsky 1995). More recent work is covered in
later issues of Computational Linguistics, Natural Language Engineering,
and Computers and the Humanities. In what follows, we point the reader
to some of the work on lexical acquisition we were not able to cover.

Other approaches to the resolution of attachment ambiguity include
transformation-based learning (Brill and Resnik 1994) and loglinear mod-
els (Franz 1997). Collins and Brooks (1995) used a back-off model to
address data sparseness issues. Attachment ambiguity in noun phrases
also occurs in Romance languages. See (Bourigault 1993) for French and
(Basili et al. 1997) for Italian.

An alternative to Resnik’s information-theoretic approach to the acqui-
sition of selectional preferences is work by Li and Abe (1995) that uses a
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Minimum Description Length framework. In (Li and Abe 1996), this work
is extended to take into account the dependency between two or more
arguments of a verb. For example, drive can take car as a subject (This
car drives well), but only if there is no object. This type of regularity
can only be discovered we we look at all arguments of the verb simulta-
neously. See also (Velardi and Pazienza 1989) and (Webster and Marcus
1989) for early (non-probabilistic, but corpus-based) work on selectional
preferences.

Once we have acquired information about the selectional preferences
of a verb, we can exploit this knowledge to acquire subcategorization
frames, the first problem we looked at in this chapter. Poznanski and
Sanfilippo (1995) and Aone and McKee (1995) take this approach. For
example, a verb that takes an NP of type ‘beneficiary’ or ‘recipient’ is
likely to subcategorize for a to-PP.

Apart from semantic similarity, the automatic enhancement of hierar-
chies has been another focus in the area of acquiring semantics. Hearst
and Schiitze (1995) and Hearst (1992) describe systems that insert new
words into an existing semantic hierarchy and Coates-Stephens (1993)
and Paik et al. (1995) do the same for proper nouns. Riloff and Shep-
herd (1997) and Roark and Charniak (1998) assign words to categories
assuming a flat category structure (which can be regarded as a simplified
semantic hierarchy).

Two other important types of semantic information that attempts have
been made to acquire from corpora are antonyms (Justeson and Katz
1991) and metaphors (Martin 1991).

We suggested above that non-textual data are a worthwhile source of
information to exploit. There are some research projects that investigate
how lexical acquisition could take advantage of such data once the prob-
lem of how to automatically build a representation of the context of an
utterance has been solved. Suppes et al. (1996) stress the importance of
action-oriented matching between linguistic forms and their contextual
meaning (as opposed to acquiring word meaning from passive percep-
tion). Siskind (1996) shows that even if the contextual representation is
highly ambiguous (as one would expect in a realistic learning situation),
lexical acquisition can proceed successfully.

As a last source of information for acquiring meaning, we mention
work on exploiting morphology for this purpose. An example of a mor-
phological regularity that implies a particular type of meaning is the pro-
gressive tense. In English, only non-stative verbs occur in the progressive
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tense. Oversimplifying somewhat, we can infer from the fact that we find
he is running in a corpus, but not he is knowing that know is stative and
run is non-stative. See (Dorr and Olsen 1997), (Light 1996) and (Viegas
et al. 1996) for work along these lines. While none of these papers take
a statistical approach, such morphological information could be a fertile
ground for applying statistical methods.

We conclude these bibliographic remarks by pointing the reader to
two important bodies of non-statistical work that warrant careful study
by anybody interested in lexical acquisition. They are of great poten-
tial importance either because they suggest ways of combining statisti-
cal approaches with symbolic approaches (as in the regular-expression
post-filtering of collocations in (Justeson and Katz 1995b)) or because
the insights they offer can often be expressed in a statistical framework
as well as in a non-statistical framework, making them a valuable source
for future statistical work.

The first area is the work on building syntactic and semantic know-
ledge bases from machine-readable dictionaries described by Boguraev
and Briscoe (1989) and Jensen et al. (1993). These two books are a
good starting point for those who want to learn about the strengths and
weaknesses of dictionaries for lexical acquisition. We have focused on
corpus-based acquisition here because that has been the bias in Statisti-
cal NLP, but we believe that most future work will combine corpus-based
and dictionary-based acquisition.

The second area is the application of regular expression matching to
natural language processing. (See (Appelt et al. 1993), (Jacquemin 1994),
(Voutilainen 1995), (Sproat et al. 1996), and (Jacquemin et al. 1997) for
examples.) There are phenomena and processing steps in lexical acqui-
sition that deal with purely symbolic information and that can be well
modeled in terms of regular languages. (Tokenization of English is an
example.) In such cases, the speed and simplicity of finite state automata
cannot be matched by other methods (Roche and Schabes 1997; Levine
et al. 1992).
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HIDDEN MARKOV MODELS (HMMs) have been the mainstay of the sta-
tistical modeling used in modern speech recognition systems. Despite
their limitations, variants of HMMs are still the most widely used tech-
nique in that domain, and are generally regarded as the most successful.
In this chapter we will develop the basic theory of HMMs, touch on their
applications, and conclude with some pointers on extending the basic
HMM model and engineering practical implementations.

An HMM is nothing more than a probabilistic function of a Markov pro-
cess. We have already seen an example of Markov processes in the n-gram
models of chapters 2 and 6. Markov processes/chains/models were first
developed by Andrei A. Markov (a student of Chebyshev). Their first use
was actually for a linguistic purpose - modeling the letter sequences in
works of Russian literature (Markov 191 3) - but Markov models were then
developed as a general statistical tool. We will refer to vanilla Markov
models as Visible Markov Models (VMMs) when we want to be careful to
distinguish them from HMMs.

We have placed this chapter at the beginning of the “grammar” part of
the book because working on the order of words in sentences is a start
at understanding their syntax. We will see that this is what a VMM does.
HMMs operate at a higher level of abstraction by postulating additional
“hidden” structure, and that allows us to look at the order of categories
of words. After developing the theory of HMMs in this chapter, we look at
the application of HMMs to part-of-speech tagging. The last two chapters
in this part then deal with the probabilistic formalization of core notions
of grammar like phrase structure.
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Markov Models

Often we want to consider a sequence (perhaps through time) of random
variables that aren’t independent, but rather the value of each variable
depends on previous elements in the sequence. For many such systems,
it seems reasonable to assume that all we need to predict the future ran-
dom variables is the value of the present random variable, and we don’t
need to know the values of all the past random variables in the sequence.
For example, if the random variables measure the number of books in
the university library, then, knowing how many books were in the library
today might be an adequate predictor of how many books there will be to-
morrow, and we don’t really need to additionally know how many books
the library had last week, let alone last year. That is, future elements of
the sequence are conditionally independent of past elements, given the
present element.

Suppose X = (Xi,...,X7) is a sequence of random variables taking
values in some finite set S = {sy,..., sy}, the state space. Then the Markov
Properties are:

Limited Horizon:
P(Xt1 = Skl X1, ..., Xe) = P(Xe1 = skl Xe)
Time invariant (stationary):
=P(Xo = skl X1)

X is then said to be a Markov chain, or to have the Markov property.
One can describe a Markov chain by a stochastic transition matrix A:

aij = P(X¢i1 = 8j1 X = i)

Here, a;; = 0, Vi, j and Z?]:l ajj=1,Vi.
Additionally one needs to specify I, the probabilities of different initial
states for the Markov chain:

M = P(X1 = $i)

Here, Zfil 11; = 1. The need for this vector can be avoided by specifying
that the Markov model always starts off in a certain extra initial state, s,
and then using transitions from that state contained within the matrix A
to specify the probabilities that used to be recorded in II.
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Figure 9.1 A Markov model.

From this general description, it should be clear that the word n-gram
models we saw in chapter 6 are Markov models. Markov models can be
used whenever one wants to model the probability of a linear sequence of
events. For example, they have also been used in NLP for modeling valid
phone sequences in speech recognition, and for sequences of speech acts
in dialog systems.

Alternatively, one can represent a Markov chain by a state diagram as
in figure 9.1. Here, the states are shown as circles around the state name,
and the single start state is indicated with an incoming arrow. Possible
transitions are shown by arrows connecting states, and these arcs are la-
beled with the probability of this transition being followed, given that you
are in the state at the tail of the arrow. Transitions with zero probability
are omitted from the diagram. Note that the probabilities of the outgoing
arcs from each state sum to 1. From this representation, it should be
clear that a Markov model can be thought of as a (nondeterministic) fi-
nite state automaton with probabilities attached to each arc. The Markov
properties ensure that we have a finite state automaton. There are no
long distance dependencies, and where one ends up next depends simply
on what state one is in.

In a visible Markov model, we know what states the machine is passing
through, so the state sequence or some deterministic function of it can
be regarded as the output.
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The probability of a sequence of states (that is, a sequence of random
variables) X1, ..., Xt is easily calculated for a Markov chain. We find that
we need merely calculate the product of the probabilities that occur on
the arcs or in the stochastic matrix:

P(Xi1,...,XT) = PX1)P(X2|X1)P(X31X1,X0) - - - P(X7lX1,..., X1-1)
= P(X1))P(X21X1)P(X3|X3) - - - P(XT|XT-1)
T-1
= Tx, 1_[ AX X1
=1

So, using the Markov model in figure 9.1, we have:

P(t,i,p) = PX;1=0PX2=1ilX1 =0)P(X3 =plX2=1)
= 1.0x0.3x0.6
= 0.18

Note that what is important is whether we can encode a process as a
Markov process, not whether we most naturally do. For example, recall
the n-gram word models that we saw in chapter 6. One might think that,
for n = 3, such a model is not a Markov model because it violates the
Limited Horizon condition - we are looking a little into earlier history.
But we can reformulate any n-gram model as a visible Markov model by
simply encoding the appropriate amount of history into the state space
(states are then (n — 1)-grams, for example (was, walking, down) would
be a state in a fourgram model). In general, any fixed finite amount of
history can always be encoded in this way by simply elaborating the state
space as a crossproduct of multiple previous states. In such cases, we
sometimes talk of an mt" order Markov model, where m is the number
of previous states that we are using to predict the next state. Note, thus,
that an n-gram model is equivalent to an (n — 1) order Markov model.

Exercise 9.1 [*]

Build a Markov Model similar to figure 9.1 for one of the types of phone numbers
in table 4.2.

Hidden Markov Models

In an HMM, you don’t know the state sequence that the model passes
through, but only some probabilistic function of it.
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Figure 9.2 The crazy soft drink machine, showing the states of the machine
and the state transition probabilities.

Example 1: Suppose you have a crazy soft drink machine: it can be in
two states, cola preferring (CP) and iced tea preferring (IP), but it switches
between them randomly after each purchase, as shown in figure 9.2.

Now, if, when you put in your coin, the machine always put out a cola
if it was in the cola preferring state and an iced tea when it was in the
iced tea preferring state, then we would have a visible Markov model. But
instead, it only has a tendency to do this. So we need symbol emission
probabilities for the observations:

P(O¢ = kXt = 8i, Xt+1 = Sj) = Dijk

For this machine, the output is actually independent of s;, and so can be
described by the following probability matrix:

Output probability given From state

cola iced tea lemonade

(ice_t) (lem)
CP | 0.6 0.1 0.3
IP | 0.1 0.7 0.2

What is the probability of seeing the output sequence {lem, ice_t} if the
machine always starts off in the cola preferring state?

Solution: We need to consider all paths that might be taken through the
HMM, and then to sum over them. We know that the machine starts in
state CP. There are then four possibilities depending on which of the
two states the machine is in at the other two time instants. So the total
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probability is:

0.7x0.3x0.7x0.1+0.7x0.3x0.3x0.1 +

0.3x0.3x0.5%x0.7+0.3x0.3x0.5x%x0.7 0.084

Exercise 9.2 [*]

What is the probability of seeing the output sequence {col,lem} if the machine
always starts off in the ice tea preferring state?

Why use HMMs?

HMMs are useful when one can think of underlying events probabilisti-
cally generating surface events. One widespread use of this is tagging
- assigning parts of speech (or other classifiers) to the words in a text.
We think of there being an underlying Markov chain of parts of speech
from which the actual words of the text are generated. Such models are
discussed in chapter 10.

When this general model is suitable, the further reason that HMMs are
very useful is that they are one of a class of models for which there exist
efficient methods of training through use of the Expectation Maximiza-
tion (EM) algorithm. Given plenty of data that we assume to be generated
by some HMM - where the model architecture is fixed but not the proba-
bilities on the arcs - this algorithm allows us to automatically learn the
model parameters that best account for the observed data.

Another simple illustration of how we can use HMMs is in generating
parameters for linear interpolation of n-gram models. We discussed in
chapter 6 that one way to estimate the probability of a sentence:

P (Sue drank her beer before the meal arrived)

was with an n-gram model, such as a trigram model, but that just using
an n-gram model with fixed n tended to suffer because of data sparse-
ness. Recall from section 6.3.1 that one idea of how to smooth n-gram
estimates was to use linear interpolation of n-gram estimates for various
n, for example:

PiiWnlWn_1,Wn—2) = A1P1(Wn) + A2Po(Wn|Wn_1) + A3P3(Wn|Wn_1, Wn_2)

This way we would get some idea of how likely a particular word was,
even if our coverage of trigrams is sparse. The question, then, is how
to set the parameters A;. While we could make reasonable guesses as to
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Figure 9.3 A section of an HMM for a linearly interpolated language model. The
notation o : p on arcs means that this transition is made with probability p, and
that an o is output when this transition is made (with probability 1).

what parameter values to use (and we know that together they must obey
the stochastic constraint >; A; = 1), it seems that we should be able to
find the optimal values automatically. And, indeed, we can (Jelinek 1990).
The key insight is that we can build an HMM with hidden states that
represent the choice of whether to use the unigram, bigram, or trigram
probabilities. The HMM training algorithm will determine the optimal
weight to give to the arcs entering each of these hidden states, which
in turn represents the amount of the probability mass that should be
determined by each n-gram model via setting the parameters A; above.
Concretely, we build an HMM with four states for each word pair, one
for the basic word pair, and three representing each choice of n-gram
model for calculating the next transition. A fragment of the HMM is
shown in figure 9.3. Note how this HMM assigns the same probabilities as
the earlier equation: there are three ways for w¢ to follow ww? and the
total probability of seeing w¢ next is then the sum of each of the n-gram
probabilities that adorn the arcs multiplied by the corresponding param-
eter A;. The HMM training algorithm that we develop in this chapter can
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Set of states
Output alphabet

S

K

Intial state probabilities II={m},ies

State transition probabilities A= {ajj},i,j €S

Symbol emission probabilities B = {b;jx},i,j € S,k € K
X
(0]

State sequence
Output sequence

-Xl"",-XT+1) XtZSH {1,...,N}
01,...,0T) 0t €K

Table 9.1 Notation used in the HMM chapter.

then be applied to this network, and used to improve initial estimates for
the parameters A;4p. There are two things to note. This conversion works
by adding epsilon transitions - that is transitions that we wish to say do
not produce an output symbol. Secondly, as presented, we now have
separate parameters Ajzp for each word pair. But we would not want to
adjust these parameters separately, as this would make our sparse data
problem worse not better. Rather, for a fixed i, we wish to keep all (or at
least classes of) the Aj;, parameters having the same value, which we do
by using tied states. Discussion of both of these extensions to the basic
HMM model will be deferred to section 9.4.

General form of an HMM

An HMM is specified by a five-tuple (S, K, I, A, B), where S and K are the
set of states and the output alphabet, and I1, A, and B are the probabilities
for the initial state, state transitions, and symbol emissions, respectively.
The notation that we use in this chapter is summarized in table 9.1. The
random variables X; map from state names to corresponding integers.
In the version presented here, the symbol emitted at time t depends on
both the state at time t and at time t + 1. This is sometimes called a
arc-emission HMM, because we can think of the symbol as coming off the
arc, as in figure 9.3. An alternative formulation is a state-emission HMM,
where the symbol emitted at time t depends just on the state at time t.
The HMM in example 1 is a state-emission HMM. But we can also regard it
as a arc-emission HMM by simply setting up the b;jx parameters so that
Vk',k"”, biji = bjji. This is discussed further in section 9.4.

Given a specification of an HMM, it is perfectly straightforward to simu-
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1t:=1;
2 Start in state s; with probability mr; (i.e., X1 = 1)
3 forever do

4 Move from state s; to state s; with probability a;; (i.e., Xr+1 = J)
5 Emit observation symbol o; = k with probability b; jx

6 t:=t+1

7 end

Figure 9.4 A program for a Markov process.

late the running of a Markov process, and to produce an output sequence.
One can do it with the program in figure 9.4. However, by itself, doing
this is not terribly interesting. The interest in HMMs comes from assum-
ing that some set of data was generated by a HMM, and then being able
to calculate probabilities and probable underlying state sequences.

The Three Fundamental Questions for HMMs

There are three fundamental questions that we want to know about an
HMM:

1. Given a model u = (A, B,II), how do we efficiently compute how likely
a certain observation is, that is P(O|u)?

2. Given the observation sequence O and a model u, how do we choose a
state sequence (Xi,...,X7+1) that best explains the observations?

3. Given an observation sequence O, and a space of possible models
found by varying the model parameters u = (A, B, 1r), how do we find
the model that best explains the observed data?

Normally, the problems we deal with are not like the soft drink machine.
We don’t know the parameters and have to estimate them from data.
That’s the third question. The first question can be used to decide be-
tween models which is best. The second question lets us guess what
path was probably followed through the Markov chain, and this hidden
path can be used for classification, for instance in applications to part of
speech tagging, as we see in chapter 10.



326

9.3.1

DECODING

(9.6)

(9.7)

(9.8)

(9.9

DYNAMIC
PROGRAMMING
MEMOIZATION

9 Markov Models

Finding the probability of an observation

Given the observation sequence O = (01,...,07) and a model u =
(A, B,II), we wish to know how to efficiently compute P(O|u) - the prob-
ability of the observation given the model. This process is often referred
to as decoding.

For any state sequence X = (X1,...,XT1+1),
T
POIX,;) = []P(oilXe,Xi1, 1)

t=1
= leXgolengoz e bXTXT+10T

and,
P(X|p) = TTx,ax,%,0x:X; * * * AXyXro,
Now,

P(O,X[p) = P(O|X, )P (X|p)

Therefore,
P(Oly) = > P(OIX,u)P(X|p)
X
T
= Z Ter 1_[ aXrXr+1erXr+10r
X1- X141 t=1

This derivation is quite straightforward. It is what we did in exam-
ple 1 to work out the probability of an observation sequence. We simply
summed the probability of the observation occurring according to each
possible state sequence. But, unfortunately, direct evaluation of the re-
sulting expression is hopelessly inefficient. For the general case (where
one can start in any state, and move to any other at each step), the calcu-
lation requires (2T + 1) - NT*+! multiplications.

Exercise 9.3 [*]
Confirm this claim.

The secret to avoiding this complexity is the general technique of dy-
namic programming or memoization by which we remember partial re-
sults rather than recomputing them. This general concept crops up in
many other places in computational linguistics, such as chart parsing,
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and in computer science more generally (see (Cormen et al. 1990: ch. 16)
for a general introduction). For algorithms such as HMMs, the dynamic
programming problem is generally described in terms of trellises (also
called Iattices). Here, we make a square array of states versus time, and
compute the probabilities of being at each state at each time in terms
of the probabilities for being in each state at the preceding time instant.
This is all best seen in pictures - see figures 9.5 and 9.6. A trellis can
record the probability of all initial subpaths of the HMM that end in a cer-
tain state at a certain time. The probability of longer subpaths can then
be worked out in terms of one shorter subpaths.

The forward procedure

The form of caching that is indicated in these diagrams is called the for-
ward procedure. We describe it in terms of forward variables:

xi(t) = P(0102 - - - 0¢-1, X¢ = II11)

The forward variable «;(t) is stored at (s;, t) in the trellis and expresses
the total probability of ending up in state s; at time t (given that the obser-
vations o7 - - - 0;—1 were seen). It is calculated by summing probabilities
for all incoming arcs at a trellis node. We calculate the forward variables
in the trellis left to right using the following procedure:

1. Initialization
O(i(l)=7Ti, l1<i<N

2. Induction

N
O(J'(t—i-l):ZO(i(t)aijbijot, 1<t<T,1<j<N
i=1

3. Total

N

POl = >, ai(T +1)
i=1

This is a much cheaper algorithm that requires only 2N?T multiplica-
tions.
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S1

........................... q

82

State 3

SN

1 2 3 T+1
Time, t

Figure 9.5 Trellis algorithms. The trellis is a square array of states versus
times. A node at (s;,t) can store information about state sequences which in-
clude X; = i. The lines show the connections between nodes. Here we have a
fully interconnected HMM where one can move from any state to any other at
each step.

The backward procedure

It should be clear that we do not need to cache results working forward
through time like this, but rather that we could also work backward. The
backward procedure computes backward variables which are the total
probability of seeing the rest of the observation sequence given that we
were in state s; at time t. The real reason for introducing this less intu-
itive calculation, though, is because use of a combination of forward and
backward probabilities is vital for solving the third problem of parameter
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t t+1

Figure 9.6 Trellis algorithms: Closeup of the computation of forward probabil-
ities at one node. The forward probability «;(t +1) is calculated by summing the
product of the probabilities on each incoming arc with the forward probability
of the originating node.

reestimation.
Define backward variables

Bi(t) =P(o;---orlXe =1,1)

Then we can calculate backward variables working from right to left
through the trellis as follows:
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Output
lem ice_t cola
Time (t): 1 2 3 4
xcp(t) 1.0 0.21 0.0462 0.021294
op (t) 0.0 0.09 0.0378 0.010206
P(o1---0¢-1) 1.0 0.3 0.084  0.0315
Bcp (1) 0.0315  0.045 0.6 1.0
Bip (1) 0.029 0.245 0.1 1.0
P(01 e OT) 0.0315
ycp(t) 1.0 0.3 0.88 0.676
yrp(t) 0.0 0.7 0.12 0.324
X, CP P CP CP
Scp(t) 1.0 0.21 0.0315 0.019404
S1p(t) 0.0 0.09 0.0315 0.008316
WYep(t) Cp P CP
Yrp () Ccp IP Cp
X CP P CP CP
P(X) 0.019404

Table 9.2 Variable calculations for O = (lem, ice_t, cola).

1. Initialization
Bi(T +1) =1,

2. Induction

1<i<N

N
Bi(t) = Zaijbijotﬁj(t-‘rl), l1<t=<T,1<i=<N

Jj=1

3. Total

N
P(Olp) = > miBi(1)

i=1

Table 9.2 shows the calculation of forward and backward variables, and
other variables that we will come to later, for the soft drink machine from
example 1, given the observation sequence O = (lem, ice_t, cola).
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Combining them

More generally, in fact, we can use any combination of forward and back-
ward caching to work out the probability of an observation sequence.
Observe that:

P(O,X¢=ilu) = P(or---or,X¢ =1ilp)
= P(o1---0r-1,Xe =1,0¢---or|H)
= P(o1---0r-1,Xt = 1|p)
XP(0¢---orloy---0r-1, X =1, 1)
= P(or---0r-1,Xe = ilp)P(0c - - - o7l Xy =1, 1)
= ;i (t)Bi(t)
Therefore:

N
POlp) = > ai(0)Bi(t), 1<t=<T+1
i=1

The previous equations were special cases of this one.

Finding the best state sequence

The second problem was worded somewhat vaguely as “finding the state
sequence that best explains the observations.” That is because there is
more than one way to think about doing this. One way to proceed would
be to choose the states individually. That is, foreach t,1 <t < T + 1, we
would find X; that maximizes P (X;|0, u).

Let
yi(t) = PX;=1ilO,u)
_ P(X;=1,0lp)
P(O|u)
;i (1) Bi (1)
S0 o (0B (D)

The individually most likely state )/(\t is:

X, = argmaxy;(t), 1<t<T+1
1<i<N

This quantity maximizes the expected number of states that will be
guessed correctly. However, it may yield a quite unlikely state sequence.
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Therefore, this is not the method that is normally used, but rather the
Viterbi algorithm, which efficiently computes the most likely state se-
quence.

Viterbi algorithm

Commonly we want to find the most likely complete path, that is:

argmaxP(X|0, u)
X

To do this, it is sufficient to maximize for a fixed O:
argmaxP(X,0|u)
X
An efficient trellis algorithm for computing this path is the Viterbi al-
gorithm. Define:

0j(t) = max P(Xp---Xi-1,01+ - 0¢-1,X¢ = jlu)
Xy Xi-1

This variable stores for each point in the trellis the probability of the most
probable path that leads to that node. The corresponding variable ;(t)
then records the node of the incoming arc that led to this most probable
path. Using dynamic programming, we calculate the most probable path
through the whole trellis as follows:

1. Initialization
0j(1)=m;, 1<j<N

2. Induction
o0j(t+1) = 1r£ii>§6i(t)aijbijo" 1<j<N
Store backtrace

(,Uj(t +1) = argmaxé,-(t)a,-jb,-jot, 1<j<N
1<i<N

3. Termination and path readout (by backtracking). The most likely state
sequence is worked out from the right backwards:

Xt = argmaxd;(T +1)
12i<N
Xt = Py, C+1)
P(X) = max §;(T+1)

1<i<N
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In these calculations, one may get ties. We assume that in that case one
path is chosen randomly. In practical applications, people commonly
want to work out not only the best state sequence but the n-best se-
quences or a graph of likely paths. In order to do this people often store
the m < n best previous states at a node.

Table 9.2 above shows the computation of the most likely states and
state sequence under both these interpretations - for this example, they
prove to be identical.

The third problem: Parameter estimation

Given a certain observation sequence, we want to find the values of the
model parameters u = (A, B, ) which best explain what we observed.
Using Maximum Likelihood Estimation, that means we want to find the
values that maximize P(O|u):

arg max P (O training | 1)
u

There is no known analytic method to choose u to maximize P(O|u). But
we can locally maximize it by an iterative hill-climbing algorithm. This
algorithm is the Baum-Welch or Forward-Backward algorithm, which is a
special case of the Expectation Maximization method which we will cover
in greater generality in section 14.2.2. It works like this. We don’t know
what the model is, but we can work out the probability of the observa-
tion sequence using some (perhaps randomly chosen) model. Looking at
that calculation, we can see which state transitions and symbol emissions
were probably used the most. By increasing the probability of those, we
can choose a revised model which gives a higher probability to the ob-
servation sequence. This maximization process is often referred to as
training the model and is performed on training data.

Define p((i, j),1 <t < T,1 <i,j < N as shown below. This is the prob-
ability of traversing a certain arc at time t given observation sequence O;
see figure 9.7.

P(Xl' = i,Xf+l :J|O,U)

P(X; =1,Xe41 = J,01p)
P(O|u)

p[(l’.])




334 9 Markov Models

aijbijo,

i (1) Bj(t+1)

Figure 9.7 The probability of traversing an arc. Given an observation sequence
and a model, we can work out the probability that the Markov process went from
state s; to s; at time t.

&;(t)a;jbijo Bj(t + 1)
-1 ®m (1) B (1)
«;(t)a;jbijo Bj(t + 1)
Zmzl Z]r;;l X (1) Amnbmno, Bn (t + 1)

Note that y;(t) = Z?j:l pe(i, J).
Now, if we sum over the time index, this gives us expectations (counts):

yi(t) = expected number of transitions from state i in O

M=

~
Il
—

p: (i, j) = expected number of transitions from state i to j in O

M~

~
Il
—

So we begin with some model u (perhaps preselected, perhaps just cho-
sen randomly). We then run O through the current model to estimate
the expectations of each model parameter. We then change the model to
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maximize the values of the paths that are used a lot (while still respect-
ing the stochastic constraints). We then repeat this process, hoping to
converge on optimal values for the model parameters p.

The reestimation formulas are as follows:

expected frequency in state i at time t = 1
yi(1)

3
[

. expected number of transitions from state i to j
expected number of transitions from state i
T ..
Zt:l pf (l’ .])
T
thl Yi(t)

expected number of transitions from i to j with k observed
expected number of transitions from i to j
2it:o=k1<t<T} Pe(l, J)
Si-1pe(i )

bijk =

Thus, from p = (A, B, I1), we derive i = (A, B,II). Further, as proved by
Baum, we have that:

P(Olf) = P(O|u)

This is a general property of the EM algorithm (see section 14.2.2). There-
fore, iterating through a number of rounds of parameter reestimation
will improve our model. Normally one continues reestimating the pa-
rameters until results are no longer improving significantly. This process
of parameter reestimation does not guarantee that we will find the best
model, however, because the reestimation process may get stuck in a lo-
cal maximum (or even possibly just at a saddle point). In most problems
of interest, the likelihood function is a complex nonlinear surface and
there are many local maxima. Nevertheless, Baum-Welch reestimation is
usually effective for HMMSs.

To end this section, let us consider reestimating the parameters of the
crazy soft drink machine HMM using the Baum-Welch algorithm. If we let
the initial model be the model that we have been using so far, then train-
ing on the observation sequence (lem, ice_t, cola) will yield the following
values for p;(i, j):
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Time (and j)
1 2 3
CP IP [y1 CP IP |y, CP P |y3
i CP 03 07|10 028 002]03 0616 0.264 | 0.88
IP 00 00|00 06 01 |07 006 006 |0.12

and so the parameters will be reestimated as follows:

Original Reestimated
Imn Cp 1.0 1.0
IP 0.0 0.0
CP 1P CP 1P
A CP 0.7 0.3 0.5486 0.4514
IP 0.5 0.5 0.8049 0.1951
cola ice_t lem cola ice_t lem
B CP 06 0.1 0.3 0.4037 0.1376 0.4587
IP 0.1 0.7 0.2 0.1363 0.8537 0.0
Exercise 9.4 [*]

If one continued running the Baum-Welch algorithm on this HMM and this train-
ing sequence, what value would each parameter reach in the limit? Why?

The reason why the Baum-Welch algorithm is performing so strangely here
should be apparent: the training sequence is far too short to accurately rep-
resent the behavior of the crazy soft drink machine.

Exercise 9.5 [*]

Note that the parameter that is zero in IT stays zero. Is that a chance occurrence?
What would be the value of the parameter that becomes zero in B if we did an-
other iteration of Baum-Welch reestimation? What generalization can one make
about Baum-Welch reestimation of zero parameters?

HMMs: Implementation, Properties, and Variants

Implementation

Beyond the theory discussed above, there are a number of practical is-
sues in the implementation of HMMs. Care has to be taken to make the
implementation of HMM tagging efficient and accurate. The most obvious
issue is that the probabilities we are calculating consist of keeping on
multiplying together very small numbers. Such calculations will rapidly
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underflow the range of floating point numbers on a computer (even if you
store them as ‘double’!).

The Viterbi algorithm only involves multiplications and choosing the
largest element. Thus we can perform the entire Viterbi algorithm work-
ing with logarithms. This not only solves the problem with floating point
underflow, but it also speeds up the computation, since additions are
much quicker than multiplications. In practice, a speedy implementa-
tion of the Viterbi algorithm is particularly important because this is the
runtime algorithm, whereas training can usually proceed slowly offline.

However, in the Forward-Backward algorithm as well, something still
has to be done to prevent floating point underflow. The need to perform
summations makes it difficult to use logs. A common solution is to em-
ploy auxiliary scaling coefficients, whose values grow with the time t so
that the probabilities multiplied by the scaling coefficient remain within
the floating point range of the computer. At the end of each iteration,
when the parameter values are reestimated, these scaling factors cancel
out. Detailed discussion of this and other implementation issues can
be found in (Levinson et al. 1983), (Rabiner and Juang 1993: 365-368),
(Cutting et al. 1991), and (Dermatas and Kokkinakis 1995). The main al-
ternative is to just use logs anyway, despite the fact that one needs to
sum. Effectively then one is calculating an appropriate scaling factor at
the time of each addition:

funct log_add =
if (y — x > log big)
then y
elsif (x — y > log big)
then x
else min(x, y) + log(exp(x — min(x,y)) + exp(y — min(x, y)))
fi.
where big is a suitable large constant like 103°. For an algorithm like
this where one is doing a large number of numerical computations, one
also has to be careful about round-off errors, but such concerns are well
outside the scope of this chapter.

Variants

There are many variant forms of HMMs that can be made without funda-
mentally changing them, just as with finite state machines. One is to al-
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low some arc transitions to occur without emitting any symbol, so-called
epsilon or null transitions (Bahl et al. 1983). Another commonly used vari-
ant is to make the output distribution dependent just on a single state,
rather than on the two states at both ends of an arc as you traverse an
arc, as was effectively the case with the soft drink machine. Under this
model one can view the output as a function of the state chosen, rather
than of the arc traversed. The model where outputs are a function of
the state has actually been used more often in Statistical NLP, because
it corresponds naturally to a part of speech tagging model, as we see in
chapter 10. Indeed, some people will probably consider us perverse for
having presented the arc-emission model in this chapter. But we chose
the arc-emission model because it is trivial to simulate the state-emission
model using it, whereas doing the reverse is much more difficult. As sug-
gested above, one does not need to think of the simpler model as having
the outputs coming off the states, rather one can view the outputs as still
coming off the arcs, but that the output distributions happen to be the
same for all arcs that start at a certain node (or that end at a certain node,
if one prefers).

This suggests a general strategy. A problem with HMM models is the
large number of parameters that need to be estimated to define the
model, and it may not be possible to estimate them all accurately if not
much data is available. A straightforward strategy for dealing with this
situation is to introduce assumptions that probability distributions on
certain arcs or at certain states are the same as each other. This is re-
ferred to as parameter tying, and one thus gets tied states or tied arcs.
Another possibility for reducing the number of parameters of the model
is to decide that certain things are impossible (i.e., they have probability
zero), and thus to introduce structural zeroes into the model. Making
some things impossible adds a lot of structure to the model, and so
can greatly improve the performance of the parameter reestimation al-
gorithm, but is only appropriate in some circumstances.

Multiple input observations

We have presented the algorithms for a single input sequence. How does
one train over multiple inputs? For the kind of HMM we have been as-
suming, where every state is connected to every other state (with a non-
zero transition probability) - what is sometimes called an ergodic model
- there is a simple solution: we simply concatenate all the observation
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sequences and train on them as one long input. The only real disadvan-
tage to this is that we do not get sufficient data to be able to reestimate
the initial probabilities 11; successfully. However, often people use HMM
models that are not fully connected. For example, people sometimes use
a feed forward model where there is an ordered set of states and one can
only proceed at each time instant to the same or a higher numbered state.
If the HMM is not fully connected - it contains structural zeroes - or if
we do want to be able to reestimate the initial probabilities, then we need
to extend the reestimation formulae to work with a sequence of inputs.
Provided that we assume that the inputs are independent, this is straight-
forward. We will not present the formulas here, but we do present the
analogous formulas for the PCFG case in section 11.3.4.

Initialization of parameter values

The reestimation process only guarantees that we will find a local max-
imum. If we would rather find the global maximum, one approach is to
try to start the HMM in a region of the parameter space that is near the
global maximum. One can do this by trying to roughly estimate good val-
ues for the parameters, rather than setting them randomly. In practice,
good initial estimates for the output parameters B = {b;x} turn out to be
particularly important, while random initial estimates for the parameters
A and IT are normally satisfactory.

Further Reading

The Viterbi algorithm was first described in (Viterbi 1967). The mathe-
matical theory behind Hidden Markov Models was developed by Baum
and his colleagues in the late sixties and early seventies (Baum et al.
1970), and advocated for use in speech recognition in lectures by Jack
Ferguson from the Institute for Defense Analyses. It was applied to
speech processing in the 1970s by Baker at CMU (Baker 1975), and by
Jelinek and colleagues at IBM (Jelinek et al. 1975; Jelinek 1976), and then
later found its way at IBM and elsewhere into use for other kinds of lan-
guage modeling, such as part of speech tagging.

There are many good references on HMM algorithms (within the context
of speech recognition), including (Levinson et al. 1983; Knill and Young
1997; Jelinek 1997). Particularly well-known are (Rabiner 1989; Rabiner
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and Juang 1993). They consider continuous HMMs (where the output is
real valued) as well as the discrete HMMs we have considered here, con-
tain information on applications of HMMs to speech recognition and may
also be consulted for fairly comprehensive references on the develop-
ment and the use of HMMs. Our presentation of HMMs is however most
closely based on that of Paul (1990).

Within the chapter, we have assumed a fixed HMM architecture, and
have just gone about learning optimal parameters for the HMM within
that architecture. However, what size and shape of HMM should one
choose for a new problem? Sometimes the nature of the problem de-
termines the architecture, as in the applications of HMMs to tagging that
we discuss in the next chapter. For circumstances when this is not the
case, there has been some work on learning an appropriate HMM struc-
ture on the principle of trying to find the most compact HMM that can
adequately describe the data (Stolcke and Omohundro 1993).

HMMs are widely used to analyze gene sequences in bioinformatics. See
for instance (Baldi and Brunak 1998; Durbin et al. 1998). As linguists, we
find it a little hard to take seriously problems over an alphabet of four
symbols, but bioinformatics is a well-funded domain to which you can
apply your new skills in Hidden Markov Modeling!
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THE ULTIMATE GOAL of research on Natural Language Processing is
to parse and understand language. As we have seen in the preceding
chapters, we are still far from achieving this goal. For this reason, much
research in NLP has focussed on intermediate tasks that make sense of
some of the structure inherent in language without requiring complete
understanding. One such task is part-of-speech tagging, or simply tag-
ging. Tagging is the task of labeling (or tagging) each word in a sentence
with its appropriate part of speech. We decide whether each word is a
noun, verb, adjective, or whatever. Here is an example of a tagged sen-
tence:

The-AT representative-NN put-VBD chairs-NNS on-IN the-AT table-NN.

The part-of-speech tags we use in this chapter are shown in table 10.1,
and generally follow the Brown/Penn tag sets (see section 4.3.2). Note
that another tagging is possible for the same sentence (with the rarer
sense for put of an option to sell):

The-AT representative-JJ put-NN chairs-VBZ on-IN the-AT table-NN.

But this tagging gives rise to a semantically incoherent reading. The tag-
ging is also syntactically unlikely since uses of put as a noun and uses of
chairs as an intransitive verb are rare.

This example shows that tagging is a case of limited syntactic disam-
biguation. Many words have more than one syntactic category. In tagging,
we try to determine which of these syntactic categories is the most likely
for a particular use of a word in a sentence.

Tagging is a problem of limited scope: Instead of constructing a com-
plete parse, we just fix the syntactic categories of the words in a sentence.
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Tag Part Of Speech

AT article

BEZ the word is

IN preposition

JJ adjective

JIR comparative adjective

MD modal

NN singular or mass noun
NNP singular proper noun
NNS plural noun

PERIOD .: 7!

PN personal pronoun

RB adverb

RBR comparative adverb

TO the word to

VB verb, base form

VBD verb, past tense

VBG verb, present participle, gerund
VBN verb, past participle

VBP verb, non-3rd person singular present
VBZ verb, 3rd singular present

WDT wh- determiner (what, which)

Table 10.1 Some part-of-speech tags frequently used for tagging English.

For example, we are not concerned with finding the correct attachment
of prepositional phrases. As a limited effort, tagging is much easier to
solve than parsing, and accuracy is quite high. Between 96% and 97% of
tokens are disambiguated correctly by the most successful approaches.
However, it is important to realize that this impressive accuracy figure is
not quite as good as it looks, because it is evaluated on a per-word basis.
For instance, in many genres such as newspapers, the average sentence is
over twenty words, and on such sentences, even with a tagging accuracy
of 96% this means that there will be on average over one tagging error
per sentence.

Even though it is limited, the information we get from tagging is still
quite useful. Tagging can be used in information extraction, question an-
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swering, and shallow parsing. The insight that tagging is an intermediate
layer of representation that is useful and more tractable than full parsing
is due to the corpus linguistics work that was led by Francis and Kucera
at Brown University in the 1960s and 70s (Francis and Kucera 1982).

The following sections deal with Markov Model taggers, Hidden Markov
Model taggers and transformation-based tagging. At the end of the chap-
ter, we discuss levels of accuracy for different approaches to tagging. But
first we make some general comments on the types of information that
are available for tagging.

The Information Sources in Tagging

How can one decide the correct part of speech for a word used in a con-
text? There are essentially two sources of information. One way is to look
at the tags of other words in the context of the word we are interested in.
These words may also be ambiguous as to their part of speech, but the
essential observation is that some part of speech sequences are common,
such as AT JJ NN, while others are extremely unlikely or impossible, such
as AT JJ VBP. Thus when choosing whether to give an NN or a VBP tag
to the word play in the phrase a new play, we should obviously choose
the former. This type of syntagmatic structural information is the most
obvious source of information for tagging, but, by itself, it is not very
successful. For example, Greene and Rubin (1971), an early deterministic
rule-based tagger that used such information about syntagmatic patterns
correctly tagged only 77% of words. This made the tagging problem look
quite hard. One reason that it looks hard is that many content words in
English can have various parts of speech. For example, there is a very
productive process in English which allows almost any noun to be turned
into a verb, for example, Next, you flour the pan, or, I want you to web our
annual report. This means that almost any noun should also be listed in a
dictionary as a verb as well, and we lose a lot of constraining information
needed for tagging.

These considerations suggest the second information source: just
knowing the word involved gives a lot of information about the correct
tag. Although flour can be used as a verb, an occurrence of flour is much
more likely to be a noun. The utility of this information was conclusively
demonstrated by Charniak et al. (1993), who showed that a ‘dumb’ tagger
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that simply assigns the most common tag to each word performs at the
surprisingly high level of 90% correct.! This made tagging look quite easy
- at least given favorable conditions, an issue to which we shall return. As
aresult of this, the performance of such a ‘dumb’ tagger has been used to
give a baseline performance level in subsequent studies. And all modern
taggers in some way make use of a combination of syntagmatic informa-
tion (looking at information about tag sequences) and lexical information
(predicting a tag based on the word concerned).

Lexical information is so useful because the distribution of a word’s us-
ages across different parts of speech is typically extremely uneven. Even
for words with a number of parts of speech, they usually occur used
as one particular part of speech. Indeed, this distribution is usually so
marked that this one part of speech is often seen as basic, with others be-
ing derived from it. As a result, this has led to a certain tension over the
way the term ‘part of speech’ has been used. In traditional grammars, one
often sees a word in context being classified as something like ‘a noun be-
ing used as an adjective,” which confuses what is seen as the ‘basic’ part
of speech of the lexeme with the part of speech of the word as used in
the current context. In this chapter, as in modern linguistics in general,
we are concerned with determining the latter concept, but nevertheless,
the distribution of a word across the parts of speech gives a great deal
of additional information. Indeed, this uneven distribution is one reason
why one might expect statistical approaches to tagging to be better than
deterministic approaches: in a deterministic approach one can only say
that a word can or cannot be a verb, and there is a temptation to leave
out the verb possibility if it is very rare (since doing so will probably lift
the level of overall performance), whereas within a statistical approach,
we can say that a word has an extremely high a priori probability of being
a noun, but there is a small chance that it might be being used as a verb,
or even some other part of speech. Thus syntactic disambiguation can be
argued to be one context in which a framework that allows quantitative
information is more adequate for representing linguistic knowledge than
a purely symbolic approach.

1. The general efficacy of this method was noted earlier by Atwell (1987).
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Markov Model Taggers

The probabilistic model

In Markov Model tagging, we look at the sequence of tags in a text as a
Markov chain. As discussed in chapter 9, a Markov chain has the follow-
ing two properties:

m Limited horizon. P(X;;1 = tj|X1, e, Xj) =P(Xjs1 = tJ | X;)
» Time invariant (stationary). P(Xi,1 = t/|X;) = P(X2 = t/]|X1)

That is, we assume that a word’s tag only depends on the previous tag
(limited horizon) and that this dependency does not change over time
(time invariance). For example, if a finite verb has a probability of 0.2 to
occur after a pronoun at the beginning of a sentence, then this probability
will not change as we tag the rest of the sentence (or new sentences). As
with most probabilistic models, the two Markov properties only approxi-
mate reality. For example, the Limited Horizon property does not model
long-distance relationships like Wh-extraction - this was in fact the core
of Chomsky’s famous argument against using Markov Models for natural
language.

Exercise 10.1 [*]

What are other linguistic phenomena that are not modeled correctly by Markov
chains? Which general property of language is common to these phenomena?

Exercise 10.2 [*]
Why is Time Invariance problematic for modeling language?

Following (Charniak et al. 1993), we will use the notation in table 10.2.
We use subscripts to refer to words and tags in particular positions of
the sentences and corpora we tag. We use superscripts to refer to word
types in the lexicon of words and to refer to tag types in the tag set. In
this compact notation, we can state the above Limited Horizon property
as follows:

P(tiz1lt11) = P(tiv116)

We use a training set of manually tagged text to learn the regularities
of tag sequences. The maximum likelihood estimate of tag t* following
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W the word at position i in the corpus

ti the tag of w;

Wi i+m the words occurring at positions i through i + m
(alternative notations: W; - - * Witm, Wi, -« -, Witm, Wi(i+m))

tii+m the tags t; - - - tivm fOr wi - - - Wi

wl the I'" word in the lexicon

tJ the j™ tag in the tag set

cwh the number of occurrences of w! in the training set

C(t)) the number of occurrences of t/ in the training set

C(tJ,t*)  the number of occurrences of t/ followed by tX
C(w!:t/) the number of occurrences of w! that are tagged as t/

T number of tags in tag set
w number of words in the lexicon
n sentence length

Table 10.2 Notational conventions for tagging.

t/ is estimated from the relative frequencies of different tags following a
certain tag as follows:

C(t4,th)

P = ey

For instance, following on from the example of how to tag a new play, we
would expect to find that P(NN|]J]J) > P(VBP|]J). Indeed, on the Brown
corpus, P(NN|JJ) = 0.45 and P(VBP|]JJ) =~ 0.0005.

With estimates of the probabilities P (t;,;|t;), we can compute the prob-
ability of a particular tag sequence. In practice, the task is to find the
most probable tag sequence for a sequence of words, or equivalently, the
most probable state sequence for a sequence of words (since the states
of the Markov Model here are tags). We incorporate words by having the
Markov Model emit words each time it leaves a state. This is similar to
the symbol emission probabilities b;jx in HMMs from chapter 9:

P(On = k|Xyn = 8i, Xn+1 = Sj) = bijk

The difference is that we can directly observe the states (or tags) if we
have a tagged corpus. Each tag corresponds to a different state. We
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can also directly estimate the probability of a word being emitted by a
particular state (or tag) via Maximum Likelihood Estimation:
Cwl,t))

C(t))

Now we have everything in place to find the best tagging t; , for a sen-
tence wi . Applying Bayes’ rule, we can write:

P(Wl,n |t1,n)P(t1,n)

Pw!|th) =

argmax P (t; nlwi,n) = argmax

tin tin P(win)
= argmaxP (wy |ty n)P(t1n)
tl,n

We now reduce this expression to parameters that can be estimated
from the training corpus. In addition to the Limited Horizon assumption
(10.5), we make two assumptions about words:

m words are independent of each other (10.4), and

m a word’s identity only depends on its tag (10.5)

n

[[Pwiltin)

i=1

XP(tyltin-1) X P(tp-1lt1n-2) X - - - X P(£21t1)

n

[TPwilt)

i=1

><P(trzun—l) XP(tn - 1|tn—2) Xowws XP(t2|tl)

P(Wl,n |t1,n)P(t1,n)

[P (wilt) x P(tilti-1)]

i=1

(We define P(t;|tg) = 1.0 to simplify our notation.)

Exercise 10.3 [*]

These are simplifying assumptions. Give two examples each of phenomena
where independence of words (10.4) and independence from previous and fol-
lowing tags (10.5) don’t hold.

So the final equation for determining the optimal tags for a sentence
is:

n
fi,n = argmax P (ty,nlwi,n) = [ [ P(Wilt) P(tilti-1)

t1,n i=1
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1 for all tags t/ do

2 for all tags tX do

3 P(tk|t)) 1= LD
4 end

5 end

¢ for all tags t/ do

7 for all words w! do

s P(w!|th) = g
9 end

10 end

Figure 10.1 Algorithm for training a Visible Markov Model Tagger. In most
implementations, a smoothing method is applied for estimating the P(t*|t/) and
P(w!|t)).

Second tag
First tag AT  BEZ IN NN VB PERIOD
AT 0 0 0 48636 0 19
BEZ 1973 0 426 187 0 38
IN 43322 0 1325 17314 0 185
NN 1067 3720 42470 11773 614 21392
VB 6072 42 4758 1476 129 1522
PERIOD 8016 75 4656 1329 954 0

Table 10.3 Idealized counts of some tag transitions in the Brown Corpus. For
example, NN occurs 48636 times after AT.

The algorithm for training a Markov Model tagger is summarized in
figure 10.1. The next section describes how to tag with a Markov Model
tagger once it is trained.

Exercise 10.4 [*]
Given the data in table 10.3, compute maximum likelihood estimates as shown
in figure 10.1 for P(AT|PERIOD), P(NN|AT), P(BEZ|NN), P(IN|BEZ), P(AT|IN),
and P(PERIOD|NN). Assume that the total number of occurrences of tags can be
obtained by summing over the numbers in a row (e.g., 1973+426+187 for BEZ).

Exercise 10.5 [*]

Given the data in table 10.4, compute maximum likelihood estimates as shows in
figure 10.1 for P(bear|t*), P(is|tX), P(move|tk), P(president|t*), P(progress|t¥),
and P (the|tk). Take the total number of occurrences of tags from table 10.3.
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AT BEZ IN NN VB PERIOD

bear 0 0 10 0 43 0
is 0 10065 0 0 0 0
move 0 0 0 36 133 0
on 0 0 5484 0 0 0
president 0 0 0 382 0 0
progress 0 0 0 108 4 0
the 69016 0 0 0 0 0
0 0 0 0 0 48809

Table 10.4 Idealized counts of tags that some words occur within the Brown
Corpus. For example, 36 occurrences of move are with the tag NN.

Exercise 10.6 [*]
Compute the following two probabilities:

m  P(AT NN BEZ IN AT NN|The bear is on the move.)
m  P(AT NN BEZ IN AT VB|The bear is on the move.)

The Viterbi algorithm

We could evaluate equation (10.7) for all possible taggings t; , of a sen-
tence of length n, but that would make tagging exponential in the length
of the input that is to be tagged. An efficient tagging algorithm is the
Viterbi algorithm from chapter 9. To review, the Viterbi algorithm has
three steps: (i) initialization, (ii) induction, and (iii) termination and path-
readout. We compute two functions 6;(j), which gives us the probability
of being in state j (= tag j) at word i, and ;+1 (j), which gives us the most
likely state (or tag) at word i given that we are in state j at word i + 1.
The reader may want to review the discussion of the Viterbi algorithm in
section 9.3.2 before reading on. Throughout, we will refer to states as
tags in this chapter because the states of the model correspond to tags.
(But note that this is only true for a bigram tagger.)
The initialization step is to assign probability 1.0 to the tag PERIOD:

61 (PERIOD) = 1.0
01(t) = 0.0 for t # PERIOD

That is, we assume that sentences are delimited by periods and we pre-
pend a period in front of the first sentence in our text for convenience.
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comment: Given: a sentence of length n
comment: Initialization
01 (PERIOD) = 1.0
61(t) = 0.0 for t #+ PERIOD
comment: Induction
fori:=1tonstep1do
for all tags t/ do
Sir1(t)) := maxy <k<7[8; (tK) X P(wis1[t) x P(t/[tX)]
Wil (t)) == argmax, o7 [6; (1K) X P(wi;1[t)) X P(t7]tF)]
end
end
comment: Termination and path-readout
Xp+1 = argmax; cj.7 On+1(J)

© ® N Y LR W N~

~ o~ e
w N = O

14 for j:=nto1lstep —1do

15 Xj=yj1(Xj1)

16 end

17 P(X1,...,Xn) = maXi<j<70pn41 (1)

Figure 10.2 Algorithm for tagging with a Visible Markov Model Tagger.

The induction step is based on equation (10.7), where ajx = P(tk|t))
and b jg,1 = P(W![t)):

Sii1 (V) = 1mkaXT[5,-(tk) XPwi|th xP/]0)], 1<j<T

Wis (V) = argmax[6; (tX) x P(wi1 [)) x P([t¥)], 1<j=<T

1<k<T
Finally, termination and read-out steps are as follows, where X1,..., X,
are the tags we choose for words wy,..., wy:

X, = argmax &y, (t/)
12j<T

Xi=yin1(Xin1), l<i<n-1
P(X1,...,Xn) = maxj<j<r0n+1(t)
Tagging with a Visible Markov Model tagger is summarized in figure 10.2.

Exercise 10.7 [*]

Based on the probability estimates from the previous set of exercises, tag the
following sentence using the Viterbi algorithm.
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The bear is on the move.

Exercise 10.8

Some larger data sets of tag sequence probabilities and some suggested exercises
are available on the website.

Terminological note: Markov Models vs. Hidden Markov Models. The
reader may have noticed that for the purposes of tagging, the Markov
Models in this chapter are treated as Hidden Markov Models. This is
because we can observe the states of the Markov Model in training (the
tags of the labeled corpus), but we only observe words in applying the
Markov Model to the tagging task. We could say that the formalism used
in Markov Model tagging is really a mixed formalism. We construct ‘Visi-
ble’ Markov Models in training, but treat them as Hidden Markov Models
when we put them to use and tag new corpora.

Variations
Unknown words

We have shown how to estimate word generation probabilities for words
that occur in the corpus. But many words in sentences we want to tag
will not be in the training corpus. Some words will not even be in the
dictionary. We discussed above that knowing the a priori distribution of
the tags for a word (or at any rate the most common tag for a word) takes
you a great deal of the way in solving the tagging problem. This means
that unknown words are a major problem for taggers, and in practice,
the differing accuracy of different taggers over different corpora is often
mainly determined by the proportion of unknown words, and the smarts
built into the tagger that allow it to try to guess the part of speech of
unknown words.

The simplest model for unknown words is to assume that they can be
of any part of speech (or perhaps only any open class part of speech
- that is nouns, verbs, etc., but not prepositions or articles). Unknown
words are given a distribution over parts of speech corresponding to that
of the lexicon as a whole. While this approach is serviceable in some
cases, the loss of lexical information for these words greatly lowers the
accuracy of the tagger, and so people have tried to exploit other features
of the word and its context to improve the lexical probability estimates
for unknown words. Often, we can use morphological and other cues to
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Feature Value | NNP NN NNS VBG VBZ
unknown word yes 0.05 0.02 0.02 0.005 0.005
no 0.95 0.98 098 0.995 0.995

capitalized yes 0.95 0.10 0.10 0.005 0.005
no 0.05 0.90 0.90 0.995 0.995
ending -S 0.05 0.01 0.98 0.00 0.99

-ing 0.01 0.01 0.00 1.00 0.00
stion | 0.05 0.10 0.00 0.00 0.00
other | 0.89 0.88 0.02 0.00 0.01

Table 10.5 Table of probabilities for dealing with unknown words in tagging.
For example, P(unknown word = yes|NNP) = 0.05 and P (ending = -ing|VBG) =
1.0.

make inferences about a word’s possible parts of speech. For example,
words ending in -ed are likely to be past tense forms or past participles.
Weischedel et al. (1993) estimate word generation probabilities based on
three types of information: how likely it is that a tag will generate an
unknown word (this probability is zero for some tags, for example PN,
personal pronouns); the likelihood of generation of uppercase/lowercase
words; and the generation of hyphens and particular suffixes:

Pwhth) = %P(unknown word|t/) P (capitalized|t/) P (endings/hyph|t/)

where Z is a normalization constant. This model reduces the error rate
for unknown words from more than 40% to less than 20%.

Charniak et al. (1993) propose an alternative model which depends
both on roots and suffixes and can select from multiple morphological
analyses (for example, do-es (a verb form) vs. doe-s (the plural of a noun)).

Most work on unknown words assumes independence between fea-
tures. Independence is often a bad assumption. For example, capitalized
words are more likely to be unknown, so the features ‘unknown word’
and ‘capitalized’ in Weischedel et al.’s model are not really independent.
Franz (1996; 1997) develops a model for unknown words that takes de-
pendence into account. He proposes a loglinear model that models main
effects (the effects of a particular feature on its own) as well as interac-
tions (such as the dependence between ‘unknown word’ and ‘capitalized’).
For an approach based on Bayesian inference see Samuelsson (1993).
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Exercise 10.9 [*]

Given the (made-up) data in table 10.5 and Weischedel et al.’s model for un-
known words, compute P(fenestration|t’), P(fenestrates|t’), P(palladio|t*),
P(palladios|t*), P(Palladio|t¥), P(Palladios|t¥), and P(guesstimating|t¥). As-
sume that NNP, NN, NNS, VBG, and VBZ are the only possible tags. Do the
estimates seem intuitively correct? What additional features could be used for
better results?

Exercise 10.10 [% %]

Compute better estimates of the probabilities in table 10.5 from the data on the
web site.

Trigram taggers

The basic Markov Model tagger can be extended in several ways. In the
model developed so far, we make predictions based on the preceding tag.
This is called a bigram tagger because the basic unit we consider is the
preceding tag and the current tag. We can think of tagging as selecting
the most probable bigram (modulo word probabilities).

We would expect more accurate predictions if more context is taken
into account. For example, the tag RB (adverb) can precede both a verb
in the past tense (VBD) and a past participle (VBN). So a word sequence
like clearly marked is inherently ambiguous in a Markov Model with a
‘memory’ that reaches only one tag back. A trigram tagger has a two-
tag memory and lets us disambiguate more cases. For example, is clearly
marked and he clearly marked suggest VBN and VBD, respectively, be-
cause the trigram “BEZ RB VBN” is more frequent than the trigram “BEZ
RB VBD” and because “PN RB VBD” is more frequent than “PN RB VBN.”
A trigram tagger was described in (Church 1988), which is probably the
most cited publication on tagging and got many NLP researchers inter-
ested in the problem of part-of-speech tagging.

Interpolation and variable memory

Conditioning predictions on a longer history is not always a good idea.
For example, there are usually no short-distance syntactic dependen-
cies across commas. So knowing what part of speech occurred before
a comma does not help in determining the correct part of speech af-
ter the comma. In fact, a trigram tagger may make worse predictions
than a bigram tagger in such cases because of sparse data problems -
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trigram transition probabilities are estimated based on rarer events, so
the chances of getting a bad estimate are higher.

One way to address this problem is linear interpolation of unigram,
bigram, and trigram probabilities:

P(tilt1,i-1) = ArP1(8;) + Ao Pa(tilti1) + AgP3(tilti—1,i-2)

This method of linear interpolation was covered in chapter 6 and how to
estimate the parameters A; using an HMM was covered in chapter 9.

Some researchers have selectively augmented a low-order Markov
model based on error analysis and prior linguistic knowledge. For ex-
ample, Kupiec (1992b) observed that a first order HMM systematically
mistagged the sequence “the bottom of” as “AT JJ IN.” He then extended
the order-one model with a special network for this construction so that
the improbability of a preposition after a “AT JJ” sequence could be
learned. This method amounts to manually selecting higher-order states
for cases where an order-one memory is not sufficient.

A related method is the Variable Memory Markov Model (VMMM)
(Schiitze and Singer 1994). VMMMs have states of mixed “length” instead
of the fixed-length states of bigram and trigram taggers. A VMMM tagger
can go from a state that remembers the last two tags (corresponding to
a trigram) to a state that remembers the last three tags (corresponding
to a fourgram) and then to a state without memory (corresponding to a
unigram). The number of symbols to remember for a particular sequence
is determined in training based on an information-theoretic criterion. In
contrast to linear interpolation, VMMMSs condition the length of mem-
ory used for prediction on the current sequence instead of using a fixed
weighted sum for all sequences. VMMMSs are built top-down by splitting
states. An alternative is to build this type of model bottom-up by way of
model merging (Stolcke and Omohundro 1994a; Brants 1998).

The hierarchical non-emitting Markov model is an even more powerful
model that was proposed by Ristad and Thomas (1997). By introduc-
ing non-emitting transitions (transitions between states that do not emit
a word or, equivalently, emit the empty word €), this model can store
dependencies between states over arbitrarily long distances.

Smoothing

Linear interpolation is a way of smoothing estimates. We can use any of
the other estimation methods discussed in chapter 6 for smoothing. For
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example, Charniak et al. (1993) use a method that is similar to Adding
One (but note that, in general, it does not give a proper probability distri-
bution ...):

C(t/=1,t))

C(ti-1)

Smoothing the word generation probabilities is more important than
smoothing the transition probabilities since there are many rare words
that will not occur in the training corpus. Here too, Adding One has been
used (Church 1988). Church added 1 to the count of all parts of speech
listed in the dictionary for a particular word, thus guaranteeing a non-
zero probability for all parts of speech t/ that are listed as possible for
wil:

Pt/ = (1 —€)

- Ct/,wh +1
Jiwly = = 77T =
Pt iw?) Cwh) + K

where K; is the number of possible parts of speech of w!.

Exercise 10.11 [*]
Recompute the probability estimates in exercises 10.4 and 10.5 with Adding One.

Reversibility

We have described a Markov Model that ‘decodes’ (or tags) from left to
right. It turns out that decoding from right to left is equivalent. The
following derivation shows why this is the case:

P(tin) = P®)P(t2lt)P(t231t2) ... P(th—1,nltn-1)
P(t1)P(t12)P(t23)...P(ty_1,n)
P(t)P(t2)...P(ty-1)

= P(ty)P(t121t2)P(t23113) ... P(ty—1,nltn)

Assuming that the probability of the initial and last states are the same
(which is the case in tagging since both correspond to the tag PERIOD),
‘forward’ and ‘backward’ probability are the same. So it doesn’t matter
which direction we choose. The tagger described here moves from left to
right. Church’s tagger takes the opposite direction.

Maximum Likelihood: Sequence vs. tag by tag

As we pointed out in chapter 9, the Viterbi Algorithm finds the most
likely sequence of states (or tags). That is, we maximize P (t; |wi,n). We
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could also maximize P(t;|w; ) for all i which amounts to summing over
different tag sequences.
As an example consider sentence (10.10):

Time flies like an arrow.

Let us assume that, according to the transition probabilities we've gath-
ered from our training corpus, (10.11a) and (10.11b) are likely taggings
(assume probability 0.01), (10.11c) is an unlikely tagging (assume proba-
bility 0.001), and that (10.11d) is impossible because transition probabil-
ity P(VB|VBZ) is 0.0.

a. NN VBZ RB AT NN. P(-) =0.01
b. NN NNS VB AT NN. P(-) =0.01
¢. NN NNS RB AT NN. P(-) =0.001
d. NN VBZ VB AT NN. P(-)=0

For this example, we will obtain taggings (10.11a) and (10.11b) as the
equally most likely sequences P (& ,|w1,,). But we will obtain (10.11c¢) if
we maximize P(t;|w; ) for all i. This is because P (X, = NNS|Time flies
like an arrow) = 0.011 = P(b) + P(c) > 0.01 = P(a) = P(X, = VBZ|Time
flies like an arrow) and P (X3 = RB|Time flies like an arrow) = 0.011 =
P(a) + P(c) > 0.01 = P(b) = P(X3 = VB|Time flies like an arrow).

Experiments conducted by Merialdo (1994: 164) suggest that there is
no large difference in accuracy between maximizing the likelihood of in-
dividual tags and maximizing the likelihood of the sequence. Intuitively,
it is fairly easy to see why this might be. With Viterbi, the tag transi-
tions are more likely to be sensible, but if something goes wrong, we will
sometimes get a sequence of several tags wrong; whereas with tag by tag,
one error does not affect the tagging of other words, and so one is more
likely to get occasional dispersed errors. In practice, since incoherent se-
quences (like “NN NNS RB AT NN” above) are not very useful, the Viterbi
algorithm is the preferred method for tagging with Markov Models.

Hidden Markov Model Taggers

Markov Model taggers work well when we have a large tagged training
set. Often this is not the case. We may want to tag a text from a special-
ized domain with word generation probabilities that are different from
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those in available training texts. Or we may want to tag text in a foreign
language for which training corpora do not exist at all.

Applying HMMs to POS tagging

If we have no training data, we can use an HMM to learn the regularities
of tag sequences. Recall that an HMM as introduced in chapter 9 consists
of the following elements:

= a set of states

= an output alphabet

m initial state probabilities

m state transition probabilities
= symbol emission probabilities

As in the case of the Visible Markov Model, the states correspond to tags.
The output alphabet consists either of the words in the dictionary or
classes of words as we will see in a moment.

We could randomly initialize all parameters of the HMM, but this would
leave the tagging problem too unconstrained. Usually dictionary infor-
mation is used to constrain the model parameters. If the output alphabet
consists of words, we set word generation (= symbol emission) proba-
bilities to zero if the corresponding word-tag pair is not listed in the
dictionary (e.g., JJ is not listed as a possible part of speech for book). Al-
ternatively, we can group words into word equivalence classes so that all
words that allow the same set of tags are in the same class. For example,
we could group bottom and top into the class JJ-NN if both are listed with
just two parts of speech, JJ and NN. The first method was proposed by
Jelinek (1985), the second by Kupiec (1992b). We write bj; for the prob-
ability that word (or word class) I is emitted by tag j. This means that
as in the case of the Visible Markov Model the ‘output’ of a tag does not
depend on which tag (= state) is next.

m Jelinek’s method.

by, C(wh
Doy b;.mC(w’”)

bj;=
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where the sum is over all words w™ in the dictionary and

JL L otherwise

. { 0 if t/ is not a part of speech allowed for w!
T(wl)

where T (w/) is the number of tags allowed for w/.

Jelinek’s method amounts to initializing the HMM with the maximum
likelihood estimates for P(wk|t!), assuming that words occur equally
likely with each of their possible tags.

m Kupiec’s method. First, group all words with the same possible parts
of speech into ‘metawords’ u;. Here L is a subset of the integers from
1 to T, where T is the number of different tags in the tag set:

ur = {(w!|j € L - t/is allowed for w!} VL c {1,...,T}

For example, if NN = t> and JJ = t® then uyss; will contain all words
for which the dictionary allows tags NN and JJ and no other tags.

We then treat these metawords u; the same way we treated words in
Jelinek’s method:?

b b;_LC(uL)
iL = < 1.x -~ ~

’ 2y bj . Clur)

where C(uy/) is the number of occurrences of words from u;/, the sum
in the denominator is over all metawords u;/, and

JL= 1 L otherwise

N {0 if j¢ L
[L]

where |L| is the number of indices in L.

The advantage of Kupiec’s method is that we don’t fine-tune a sepa-
rate set of parameters for each word. By introducing equivalence classes,
the total number of parameters is reduced substantially and this smaller
set can be estimated more reliably. This advantage could turn into a
disadvantage if there is enough training material to accurately estimate
parameters word by word as Jelinek’s method does. Some experiments

2. The actual initialization used by Kupiec is a variant of what we present here. We have
tried to make the similarity between Jelinek’s and Kupiec’s methods more transparent.
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DO maximum likelihood estimates from a tagged training corpus
D1 correct ordering only of lexical probabilities

D2 lexical probabilities proportional to overall tag probabilities
D3 equal lexical probabilities for all tags admissible for a word

TO maximum likelihood estimates from a tagged training corpus
T1 equal probabilities for all transitions

Table 10.6 Initialization of the parameters of an HMM. DO, D1, D2, and D3 are
initializations of the lexicon, and TO and T1 are initializations of tag transitions
investigated by Elworthy.

conducted by Merialdo (1994) suggest that unsupervised estimation of
a separate set of parameters for each word introduces error. This ar-
gument does not apply to frequent words, however. Kupiec therefore
does not include the 100 most frequent words in equivalence classes, but
treats them as separate one-word classes.

Training. Once initialization is completed, the Hidden Markov Model is
trained using the Forward-Backward algorithm as described in chapter 9.

Tagging. As we remarked earlier, the difference between VMM tagging
and HMM tagging is in how we train the model, not in how we tag. The
formal object we end up with after training is a Hidden Markov model
in both cases. For this reason, there is no difference when we apply the
model in tagging. We use the Viterbi algorithm in exactly the same man-
ner for Hidden Markov Model tagging as we do for Visible Markov Model

tagging.

The effect of initialization on HMM training

The ‘clean’ (i.e., theoretically well-founded) way of stopping training with
the Forward-Backward algorithm is the log likelihood criterion (stop when
the log likelihood no longer improves). However, it has been shown that,
for tagging, this criterion often results in overtraining. This issue was
investigated in detail by Elworthy (1994). He trained HMMs from the dif-
ferent starting conditions in table 10.6. The combination of DO and TO
corresponds to Visible Markov Model training as we described it at the
beginning of this chapter. D1 orders the lexical probabilities correctly
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(for example, the fact that the tag VB is more likely for make than the
tag NN), but the absolute values of the probabilities are randomized. D2
gives the same ordering of parts of speech to all words (for example, for
the most frequent tag t/, we would have P(w|t/) is greater than P (w|tk)
for all other tags tX). D3 preserves only information about which tags are
possible for a word, the ordering is not necessarily correct. T1 initializes
the transition probabilities to roughly equal numbers.3

Elworthy (1994) finds three different patterns of training for different
combinations of initial conditions. In the classical pattern, performance
on the test set improves steadily with each training iteration. In this case
the log likelihood criterion for stopping is appropriate. In the early max-
imum pattern, performance improves for a number of iterations (most
often for two or three), but then decreases. In the initial maximum pat-
tern, the very first iteration degrades performance.

The typical scenario for applying HMMs is that a dictionary is available,
but no tagged corpus as training data (conditions D3 (maybe D2) and
T1). For this scenario, training follows the early maximum pattern. That
means that we have to be careful in practice not to overtrain. One way
to achieve this is to test the tagger on a held-out validation set after each
iteration and stop training when performance decreases.

Elworthy also confirms Merialdo’s finding that the Forward-Backward
algorithm degrades performance when a tagged training corpus (of even
moderate size) is available. That is, if we initialize according to DO and
TO, then we get the initial maximum pattern. However, an interesting
twist is that if training and test corpus are very different, then a few
iterations do improve performance (the early maximum pattern). This is
a case that occurs frequently in practice since we are often confronted
with types of text for which we do not have similar tagged training text.

In summary, if there is a sufficiently large training text that is fairly
similar to the intended text of application, then we should use Visible
Markov Models. If there is no training text available or training and test
text are very different, but we have at least some lexical information, then
we should run the Forward-Backward algorithm for a few iterations. Only
when we have no lexical information at all, should we train for a larger
number of iterations, ten or more. But we cannot expect good perfor-

3. Exactly identical probabilities are generally bad as a starting condition for the EM algo-
rithm since they often correspond to suboptimal local optima that can easily be avoided.
We assume that D3 and T1 refer to approximately equal probabilities that are slightly
perturbed to avoid ties.
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mance in this case. This failure is not a defect in the forward-backward
algorithm, but reflects the fact that the forward-backward algorithm is
only maximizing the likelihood of the training data by adjusting the pa-
rameters of an HMM. The changes it is using to reduce the cross entropy
may not be in accord with our true objective function - getting words
assigned tags according to some predefined tag set. Therefore it is not
capable of optimizing performance on that task.

Exercise 10.12 [*]

When introducing HMM tagging above, we said that random initialization of the
model parameters (without dictionary information) is not a useful starting point
for the EM algorithm. Why is this the case? What would happen if we just had
the following eight parts of speech: preposition, verb, adverb, adjective, noun,
article, conjunction, and auxiliary; and randomly initialized the HMM. Hint: The
EM algorithm will concentrate on high-frequency events which have the highest
impact on log likelihood (the quantity maximized).

How does this initialization differ from D3?

Exercise 10.13 [*]

The EM algorithm improves the log likelihood of the model given the data in
each iteration. How is this compatible with Elworthy’s and Merialdo’s results
that tagging accuracy often decreases with further training?

Exercise 10.14 [*]

The crucial bit of prior knowledge that is captured by both Jelinek’s and Kupiec’s
methods of parameter initialization is which of the word generation probabilities
should be zero and which should not. The implicit assumption here is that
a generation probability set to zero initially will remain zero during training.
Show that this is the case referring to the introduction of the Forward-Backward
algorithm in chapter 9.

Exercise 10.15 [* %]

Get the Xerox tagger (see pointer on website) and tag texts from the web site.

Transformation-Based Learning of Tags

In our description of Markov models we have stressed at several points
that the Markov assumptions are too crude for many properties of nat-
ural language syntax. The question arises why we do not adopt more
sophisticated models. We could condition tags on preceding words (not
just preceding tags) or we could use more context than trigram taggers
by going to fourgram or even higher order taggers.
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This approach is not feasible because of the large number of param-
eters we would need. Even with trigram taggers, we had to smooth
and interpolate because maximum likelihood estimates were not robust
enough. This problem would be exacerbated with models more complex
than the Markov models introduced so far, especially if we wanted to
condition transition probabilities on words.

We will now turn to transformation-based tagging. One of the strengths
of this method is that it can exploit a wider range of lexical and syn-
tactic regularities. In particular, tags can be conditioned on words and
on more context. Transformation-based tagging encodes complex in-
terdependencies between words and tags by selecting and sequencing
transformations that transform an initial imperfect tagging into one with
fewer errors. The training of a transformation-based tagger requires an
order of magnitude fewer decisions than estimating the large number of
parameters of a Markov model.

Transformation-based tagging has two key components:

m a specification of which ‘error-correcting’ transformations are admis-
sible

m the learning algorithm

As input data, we need a tagged corpus and a dictionary. We first tag
each word in the training corpus with its most frequent tag - that is what
we need the dictionary for. The learning algorithm then constructs a
ranked list of transformations that transforms the initial tagging into a
tagging that is close to correct. This ranked list can be used to tag new
text, by again initially choosing each word’s most frequent tag, and then
applying the transformations. We will now describe these components in
more detail.

Transformations

A transformation consists of two parts, a triggering environment and a
rewrite rule. Rewrite rules have the form t' — t2, meaning “replace tag
t! by tag t2.” Brill (1995a) allows the triggering environments shown in
table 10.7. Here the asterisk is the site of the potential rewriting and the
boxes denote the locations where a trigger will be sought. For example,
line 5 refers to the triggering environment “Tag t/ occurs in one of the
three previous positions.”
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Schema t-3 ti-2 ti-1 G G+l Gis1 Gie3
1 *
2 « [
3 | | *
1 | |
5 | | *
6 * |
7 *
8 * |
9 [ L]

Table 10.7 Triggering environments in Brill’s transformation-based tagger. Ex-
amples: Line 5 refers to the triggering environment “Tag t/ occurs in one of the
three previous positions”; Line 9 refers to the triggering environment “Tag t/
occurs two positions earlier and tag tX occurs in the following position.”

Source tag Target tag Triggering environment

NN VB previous tag is TO

VBP VB one of the previous three tags is MD
JJR RBR next tag is JJ

VBP VB one of the previous two words is n't

Table 10.8 Examples of some transformations learned in transformation-based
tagging.

Examples of the type of transformations that are learned given these
triggering environments are shown in table 10.8. The first transforma-
tion specifies that nouns should be retagged as verbs after the tag TO.
Later transformations with more specific triggers will switch some words
back to NN (e.g., school in go to school). The second transformation in
table 10.8 applies to verbs with identical base and past tense forms like
cut and put. A preceding modal makes it unlikely that they are used in
the past tense. An example for the third transformation is the retagging
of more in more valuable player.

The first three transformations in table 10.8 are triggered by tags. The
fourth one is triggered by a word. (In the Penn Treebank words like don’t
and shouldn’t are split up into a modal and n’t) Similar to the second
transformation, this one also changes a past tense form to a base form.
A preceding n’t makes a base form more likely than a past tense form.
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1 Cp := corpus with each word tagged with its most frequent tag
3 for k:= 0 step 1 do

v := the transformation u; that minimizes E (u;(Ck))

if (E(Cx) — E(v(Ck))) < € then break fi

Ci+1 := v(Cx)

8 Tksl =V

9 end

10 Output sequence: Tq,..., Tk

NO A

Figure 10.3 The learning algorithm for transformation-based tagging. C;
refers to the tagging of the corpus in iteration i. E is the error rate.

Word-triggered environments can also be conditioned on the current
word and on a combination of words and tags (“the current word is w!
and the following tag is t/”).

There is also a third type of transformation in addition to tag-triggered
and word-triggered transformations. Morphology-triggered transforma-
tions offer an elegant way of integrating the handling of unknown words
into the general tagging formalism. Initially, unknown words are tagged
as proper nouns (NNP) if capitalized, as common nouns (NN) otherwise.
Then morphology-triggered transformations like “Replace NN by NNS if
the unknown word’s suffix is -s” correct errors. These transformations
are learned by the same learning algorithm as the tagging transforma-
tions proper. We will now describe this learning algorithm.

The learning algorithm

The learning algorithm of transformation-based tagging selects the best
transformations and determines their order of application. It works as
shown in figure 10.3.

Initially we tag each word with its most frequent tag. In each iteration
of the loop, we choose the transformation that reduces the error rate
most (line 4), where the error E(C) is measured as the number of words
that are mistagged in tagged corpus Cx. We stop when there is no trans-
formation left that reduces the error rate by more than a prespecified
threshold €. This procedure is a greedy search for the optimal sequence
of transformations.

We also have to make two decisions about how to apply the transfor-
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mations, that is, how exactly to compute T;(Cx). First, we are going to
stipulate that transformations are applied from left to right to the input.
Secondly, we have to decide whether transformations should have an im-
mediate or delayed effect. In the case of immediate effect, applications
of the same transformation can influence each other. Brill implements
delayed-effect transformations, which are simpler. This means that a
transformation “A — B if the preceding tag is A” will transform AAAA
to ABBB. AAAA would be transformed to ABAB if transformations took
effect immediately.

An interesting twist on this tagging model is to use it for unsuper-
vised learning as an alternative to HMM tagging. As with HMM tagging,
the only information available in unsupervised tagging is which tags are
allowable for each word. We can then take advantage of the fact that
many words only have one tag and use that as the scoring function for
selecting transformations. For example, we can infer that the tagging of
can in The can is open as NN is correct if most unambiguous words in
the environment “AT __ BEZ” are nouns with this tag. Brill (1995b) de-
scribes a system based on this idea that achieves tagging accuracies of
up to 95.6%, a remarkable result for an unsupervised method. What is
particularly interesting is that there is no overtraining - in sharp contrast
to HMMs which are very prone to overtraining as we saw above. This is a
point that we will return to presently.

Relation to other models
Decision trees

Transformation-based learning bears some similarity to decision trees
(see section 16.1). We can view a decision tree as a mechanism that labels
all leaves that are dominated by a node with the majority class label of
that node. As we descend the tree we relabel the leaves of a child node
if its label differs from that of the parent node. This way of looking
at a decision tree shows the similarity to transformation-based learning
where we also go through a series of relabelings, working on smaller and
smaller subsets of the data.

In principle, transformation-based learning is strictly more powerful
than decision trees as shown by Brill (1995a). That is, there exist clas-
sification tasks that can be solved using transformation-based learning
that cannot be solved using decision trees. However, it is not clear that
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this ‘extra power’ of transformation-based learning is used in NLP appli-
cations.

The main practical difference between the two methods is that the
training data are split at each node in a decision tree and that we ap-
ply a different sequence of ‘transformations’ for each node (the sequence
corresponding to the decisions on the path from the root to that node). In
transformation-based learning, each transformation in the learned trans-
formation list is applied to all the data (leading to a rewriting when the
triggering environment is met). As a result, we can directly minimize on
the figure of merit that we are most interested in (number of tagging er-
rors in the case of tagging) as opposed to indirect measures like entropy
that are used for HMMs and decision trees. If we directly minimized tag-
ging errors in decision tree learning, then it would be easy to achieve
100% accuracy for each leaf node. But performance on new data would be
poor because each leaf node would be formed based on arbitrary proper-
ties of the training set that don’t generalize. Transformation-based learn-
ing seems to be surprisingly immune to this form of overfitting (Ramshaw
and Marcus 1994). This can be partially explained by the fact that we
always learn on the whole data set.

One price we pay for this robustness is that the space of transforma-
tion sequences we have to search is huge. A naive implementation of
transformation-based learning will therefore be quite inefficient. How-
ever, there are ways of searching the space more intelligently and effi-
ciently (Brill 1995a).

Probabilistic models in general

In comparison to probabilistic models (including decision trees), trans-
formation based learning does not make the battery of standard methods
available that probability theory provides. For example, no extra work is
necessary in a probabilistic model for a ‘k-best’ tagging - a tagging mod-
ule that passes a number of tagging hypotheses with probabilities on to
the next module downstream (such as the parser).

It is possible to extend transformation-based tagging to ‘k-best’ tagging
by allowing rules of the form “add tag A to Bif ...” so that some words
will be tagged with multiple tags. However, the problem remains that we
don’t have an assessment of how likely each of the tags is. The first tag
could be 100 times more likely than the next best one in one situation
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and all tags could be equally likely in another situation. This type of
knowledge could be critical for constructing a parse.

An important characteristic of learning methods is the way prior know-
ledge can be encoded. Transformation-based tagging and probabilistic
approaches have different strengths here. The specification of templates
for the most appropriate triggering environments offers a powerful way
of biasing the learner towards good generalizations in transformation-
based learning. The templates in table 10.7 seem obvious. But they
seem obvious only because of what we know about syntactic regularities.
A large number of other templates that are obviously inappropriate are
conceivable (e.g., “the previous even position in the sentence is a noun”).

In contrast, the probabilistic Markov models make it easier to encode
precisely what the prior likelihood for the different tags of a word are (for
example, the most likely tag is ten times as likely or just one and a half
times more likely). The only piece of knowledge we can give the learner
in transformation-based tagging is which tag is most likely.

Automata

The reader may wonder why we describe transformation-based tagging
in this textbook even though we said we would not cover rule-oriented
approaches. While transformation-based tagging has a rule component,
it also has a quantitative component. We are somewhat loosely using
Statistical NLP in the sense of any corpus-based or quantitative method
that uses counts from corpora, not just those that use the framework of
probability theory. Transformation-based tagging clearly is a Statistical
NLP method in this sense because transformations are selected based on
a quantitative criterion.

However, the quantitative evaluation of transformations (by how much
they improve the error rate) only occurs during training. Once learning is
complete, transformation-based tagging is purely symbolic. That means
that a transformation-based tagger can be converted into another sym-
bolic object that is equivalent in terms of tagging performance, but has
other advantageous properties like time efficiency.

This is the approach taken by Roche and Schabes (1995). They convert
a transformation-based tagger into an equivalent finite state transducer,
a finite-state automaton that has a pair of symbols on each arc, one input
symbol and one output symbol (in some cases several symbols can be
output when an arc is traversed). A finite-state transducer passes over an
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input string and converts it into an output string by consuming the input
symbols on the arcs it traverses and outputting the output symbols on
the same arcs.

The construction algorithm proposed by Roche and Schabes has four
steps. First, each transformation is converted into a finite-state trans-
ducer. Second, the transducer is converted into its local extension. Simply
put, the local extension f> of a transducer f; is constructed such that run-
ning f> on an input string in one pass has the same effect as running f;
on each position of the input string. This step takes care of cases like the
following. Suppose we have a transducer that implements the transfor-
mation “replace A by B if one of the two preceding symbols is C.” This
transducer will have one arc with the input symbol A and the output sym-
bol B. So for an input sequence like “CAA” we have to run it twice (at the
second and third position) to correctly transduce “CAA” to “CBB.” The
local extension is constructed such that one pass will do this conversion.

In the third step, we compose all transducers into one single trans-
ducer whose effect is the same as running the individual transducers in
sequence. This single transducer is generally non-deterministic. When-
ever this transducer has to keep an event (like “C occurred at position i”)
in memory it will do this by launching two paths one assuming that a
tag affected by a preceding C will occur later, one assuming that no
such tag will occur. The appropriate path will be pursued further, the
inappropriate path will be ‘killed off’ at the appropriate position in the
string. This type of indeterminism is not efficient, so the fourth step is to
convert the non-deterministic transducer into a deterministic one. This
is not possible in general since non-deterministic transducers can keep
events in memory for an arbitrary long sequence, which cannot be done
by deterministic transducers. However, Roche and Schabes show that the
transformations used in transformation-based tagging do not give rise
to transducers with this property. We can therefore always transform a
transformation-based tagger into a deterministic finite-state transducer.

The great advantage of a deterministic finite-state transducer is speed.
A transformation-based tagger can take RKn elementary steps to tag a
text where R is the number of transformations, K is the length of the
triggering environment, and n is the length of the input text (Roche and
Schabes 1995: 231). In contrast, finite-state transducers are linear in the
length of the input text with a much smaller constant. Basically, we only
hop from one state to the next as we read a word, look up its most likely
tag (the initial state) and output the correct tag. This makes speeds of
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several tens of thousands of words per second possible. The speed of
Markov model taggers can be an order of magnitude lower. This means
that transducer-based tagging adds a very small overhead to operations
like reading the input text from disk and its time demands are likely to
be negligible compared to subsequent processing steps like parsing or
message understanding.

There has also been work on transforming Hidden Markov models into
finite state transducers (Kempe 1997). But, in this case, we cannot achieve
complete equivalence since automata cannot perfectly mimic the floating
point operations that need to be computed for the Viterbi algorithm.

Summary

The great advantage of transformation-based tagging is that it can condi-
tion tagging decisions on a richer set of events than the probabilistic
models we looked at earlier. For example, information from the left
and right can be used simultaneously and individual words (not just
their tags) can influence the tagging of neighboring words. One rea-
son transformation-based tagging can accommodate this richer set of
triggering environments is probably that it primarily deals with binary
information, which is less complex than probabilities.

It has also been claimed that transformations are easier to understand
and modify than the transition and word generation probabilities in prob-
abilistic tagging. However, it can be quite hard to foresee the effect of
changing one transformation in a sequence, since complex interactions
can occur when several dozen transformations are applied in sequence
and each depends on the output of the previous one.

Work on the theoretical foundations of transformation-based tagging
is still on-going. For example, the fact that transformation-based learning
seems remarkably resistant to overfitting is so far an empirical result that
is not well understood.

Even so, both learning and tagging are remarkably simple and intuitive
in transformation-based tagging. Whether this simplicity is the principal
criterion for choosing between a transformation-based or a probabilis-
tic tagger, or whether the strength of probabilistic models in dealing with
uncertainty and certain types of prior knowledge are more important con-
siderations will depend on many factors such as what type of system the
tagger is a component of and whether those working on this system are
more comfortable with rule-based or probabilistic approaches.
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Apart from tagging, transformation-based learning has also been ap-
plied to parsing (Brill 1993b), prepositional phrase attachment (Brill and
Resnik 1994), and word sense disambiguation (Dini et al. 1998).

Exercise 10.16 [*]

Transformation-based learning is a form of greedy search. Is greedy search ex-
pected to find the optimal sequence of transformations? What would be alterna-
tives?

Exercise 10.17 [*]

Most of the triggering environments in Brill (1995a) refer to preceding context.
Why? Would you expect the same tendency for languages other than English?

Exercise 10.18 [*]

The set of possible triggering environments for words and tags is different in
(Brill 1995a). For example, “one of the three preceding tags is X” is admissible as
a triggering environment, but not “one of the three preceding words is X.” What
might be the reason for this difference? Consider the differences between the
sizes of the search spaces for words and tags.

Exercise 10.19 [*]

Apart from choosing the most frequent tag as initialization, we can also assign
all words to the same tag (say, NN) or use the output of another tagger which
the transformation-based tagger can then improve. Discuss relative advantages
of different initializations.

Exercise 10.20 [**]

Get the Brill tagger (see pointer on website) and tag texts from the website.

Other Methods, Other Languages

Other approaches to tagging

Tagging has been one of the most active areas of research in NLP in the
last ten years. We were only able to cover three of the most important ap-
proaches here. Many other probabilistic and quantitative methods have
been applied to tagging, including all the methods we cover in chap-
ter 16: neural networks (Benello et al. 1989), decision trees (Schmid 1994),
memory-based learning (or k nearest neighbor approaches) (Daelemans
et al. 1996), and maximum entropy models (Ratnaparkhi 1996).*

4. Ratnaparkhi’s tagger, one of the highest performing statistical taggers, is publicly avail-
able. See the website.
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There has also been work on how to construct a tagged corpus with
a minimum of human effort (Brill et al. 1990). This problem poses itself
when a language with as yet no tagged training corpus needs to be tackled
or when in the case of already tagged languages we encounter text that is
so different as to make existing tagged corpora useless.

Finally, some researchers have explored ways of constructing a tag set
automatically in order to create syntactic categories that are appropri-
ate for a language or a particular text sort (Schiitze 1995; McMahon and
Smith 1996).

Languages other than English

We have only covered part-of-speech tagging of English here. It turns
out that English is a particularly suitable language for methods that try
to infer a word’s grammatical category from its position in a sequence
of words. In many other languages, word order is much freer, and the
surrounding words will contribute much less information about part of
speech. However, in most such languages, the rich inflections of a word
contribute more information about part of speech than happens in En-
glish. A full evaluation of taggers as useful preprocessors for high-level
multilingual NLP tasks will only be possible after sufficient experimental
results from a wide range of languages are available.

Despite these reservations, there exist now quite a number of tagging
studies, at least for European languages. These studies suggest that the
accuracy for other languages is comparable with that for English (Der-
matas and Kokkinakis 1995; Kempe 1997), although it is hard to make
such comparisons due to the incomparability of tag sets (tag sets are not
universal, but all encode the particular functional categories of individual
languages).

Tagging Accuracy and Uses of Taggers

Tagging accuracy

Accuracy numbers currently reported for tagging are most often in the
range of 95% to 97%, when calculated over all words. Some authors give
accuracy for ambiguous words only, in which case the accuracy figures
are of course lower. However, performance depends considerably on fac-
tors such as the following.



372

10 Part-of-Speech Tagging

s The amount of training data available. In general, the more the better.

m The tag set. Normally, the larger the tag set, the more potential am-
biguity, and the harder the tagging task (but see the discussion in sec-
tion 4.3.2). For example, some tag sets make a distinction between the
preposition to and the infinitive marker to, and some don’t. Using the
latter tag set, one can’t tag to wrongly.

m The difference between training corpus and dictionary on the one
hand and the corpus of application on the other. If training and ap-
plication text are drawn from the same source (for example, the same
time period of a particular newspaper), then accuracy will be high. Nor-
mally the only results presented for taggers in research papers present
results from this situation. If the application text is from a later time
period, from a different source, or even from a different genre than the
training text (e.g., scientific text vs. newspaper text), then performance
can be poor.>

= Unknown words. A special case of the last point is coverage of the
dictionary. The occurrence of many unknown words will greatly de-
grade performance. The percentage of words not in the dictionary can
be very high when trying to tag material from some technical domain.

A change in any of these four conditions will impact tagging accuracy,
sometimes dramatically. If the training set is small, the tag set large,
the test corpus significantly different from the training corpus, or we are
confronted with a larger than expected number of unknown words, then
performance can be far below the performance range cited above. It is
important to stress that these types of external conditions often have a
stronger influence on performance than the choice of tagging method -
especially when differences between methods reported are on the order
of half a percent.

The influence of external factors also needs to be considered when
we evaluate the surprisingly high performance of a ‘dumb’ tagger which
always chooses a word’s most frequent tag. Such a tagger can get an ac-
curacy of about 90% in favorable conditions (Charniak et al. 1993). This
high number is less surprising when we learn that the dictionary that was
used in (Charniak et al. 1993) is based on the corpus of application, the

5. See Elworthy (1994) and Samuelsson and Voutilainen (1997) for experiments looking
at performance for different degrees of similarity to the training set.
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Brown corpus. Considerable manual effort went into the resources that
make it now easy to determine what the most frequent tag for a word in
the Brown corpus is. So it is not surprising that a tagger exploiting this
dictionary information does well. The automatic tagger that was origi-
nally used to preprocess the Brown corpus only achieved 77% accuracy
(Greene and Rubin 1971). In part this was due to its non-probabilistic
nature, but in large part this was due to the fact that it could not rely
on a large dictionary giving the frequency with which words are used in
different parts of speech that was suitable for the corpus of application.

Even in cases where we have a good dictionary and the most-frequent-
tag strategy works well, it is still important how well a tagger does in
the range from 90% correct to 100% correct. For example, a tagger with
97% accuracy has a 63% chance of getting all tags in a 15-word sentence
right, compared to 74% for a tagger with 98% accuracy. So even small
improvements can make a significant difference in an application.

One of the best-performing tagging formalisms is non-quantitative:
EngCG (English Constraint Grammar), developed at the University of
Helsinki. Samuelsson and Voutilainen (1997) show that it performs bet-
ter than Markov model taggers, especially if training and test corpora are
not from the same source.’ In EngCG, hand-written rules are compiled
into finite-state automata (Karlsson et al. 1995; Voutilainen 1995). The
basic idea is somewhat similar to transformation-based learning, except
that a human being (instead of an algorithm) iteratively modifies a set
of tagging rules so as to minimize the error rate. In each iteration, the
current rule set is run on the corpus and an attempt is made to mod-
ify the rules so that the most serious errors are handled correctly. This
methodology amounts to writing a small expert system for tagging. The
claim has been made that for somebody who is familiar with the method-
ology, writing this type of tagger takes no more effort than building an
HMM tagger (Chanod and Tapanainen 1995), though it could be argued
that the methodology for HMM tagging is more easily accessible.

We conclude our remarks on tagging accuracy by giving examples of
some of the most frequent errors. Table 10.9 shows some examples of
common error types reported by Kupiec (1992b). The example phrases
and fragments are all ambiguous, demonstrating that semantic context,

6. The accuracy figures for EngCG reported in the paper are better than 99% vs. better
than 95% for a Markov Model tagger, but comparison is difficult since some ambiguities
are not resolved by EngCG. EngCG returns a set of more than one tag in some cases.
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Correct tag Tagging error  Example

noun singular  adjective an executive order
adjective adverb more important issues
preposition particle He ran up a big ...
past tense past participle loan needed to meet
past participle past tense loan needed to meet

Table 10.9 Examples of frequent errors of probabilistic taggers.

or more syntactic context is necessary than a Markov model has access
to. Syntactically, the word executive could be an adjective as well as a
noun. The phrase more important issues could refer to a larger number
of important issues or to issues that are more important. The word up is
used as a preposition in running up a hill, as a particle in running up a
bill. Finally, depending on the embedding, needed can be a past participle
or a past tense form as the following two sentences from (Kupiec 1992b)
show:

a. The loan needed to meet rising costs of health care.

b. They cannot now handle the loan needed to meet rising costs of health
care.

Table 10.10 shows a portion of a confusion matrix for the tagger de-
scribed in (Franz 1995). Each row shows the percentage of the time words
of a certain category were given different tags by the tagger. In a way the
results are unsurprising. The errors occur in the cases where multiple
class memberships are common. Particularly to be noted, however, is the
low accuracy of tagging particles, which are all word types that can also
act as prepositions. The distinction between particles and prepositions,
while real, is quite subtle, and some people feel that it is not made very
accurately even in hand-tagged corpora.”

Applications of tagging

The widespread interest in tagging is founded on the belief that many NLP
applications will benefit from syntactically disambiguated text. Given this

7. Hence, as we shall see in chapter 12, it is often ignored in the evaluation of probabilistic
parsers.
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Correct Tags assigned by the tagger
Tags | DT IN JJ NN RB RP VB VBG
DT | 99.4 3 3
IN 4 975 1.5 .5
JJ 1 939 1.8 9 1 4
NN 2.2 955 2 4
RB 2 24 22 .6 93.2 1.2
RP 24.7 1.1 12.6 61.5
VB 3 1.4 96.0
VBG 25 4.4 93.0

Table 10.10 A portion of a confusion matrix for part of speech tagging. For
each tag, a row of the table shows the percentage of the time that the tagger
assigned tokens of that category to different tags. (Thus, in the full confusion
matrix, the percentages in each row would add to 100%, but do not do so here,
because only a portion of the table is shown.). Based on (Franz 1995).

ultimate motivation for part-of-speech tagging, it is surprising that there
seem to be more papers on stand-alone tagging than on applying tagging
to a task of immediate interest. We summarize here the most important
applications for which taggers have been used.

Most applications require an additional step of processing after tag-
ging: partial parsing. Partial parsing can refer to various levels of detail
of syntactic analysis. The simplest partial parsers are limited to finding
the noun phrases of a sentence. More sophisticated approaches assign
grammatical functions to noun phrases (subject, direct object, indirect
object) and give partial information on attachments, for example, ‘this
noun phrase is attached to another (unspecified) phrase to the right'.

There is an elegant way of using Markov models for noun phrase
recognition (see (Church 1988), but a better description can be found
in (Abney 1996a)). We can take the output of the tagger and form a
sequence of tag bigrams. For example, NN VBZ RB AT NN would be
transformed into NN-VBZ VBZ-RB RB-AT AT-NN. This sequence of tag
bigrams is then tagged with five symbols: noun-phrase-beginning, noun-
phrase-end, noun-phrase-interior, noun-phrase-exterior (that is, this tag
bigram is not part of a noun phrase), and between-noun-phrases (that is,
at the position of this tag bigram there is a noun phrase immediately to
the right and a noun phrase immediately to the left). The noun phrases
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are then all sequences of tags between a noun-phrase-beginning symbol
(or a between-noun-phrases symbol) and a noun-phrase-end symbol (or
a between-noun-phrases symbol), with noun-phrase-interior symbols in
between.

The best known approaches to partial parsing are Fidditch, developed
in the early eighties by Hindle (1994), and an approach called “parsing by
chunks” developed by Abney (1991). These two systems do not use tag-
gers because they predate the widespread availability of taggers. See also
(Grefenstette 1994). Two approaches that are more ambitious than cur-
rent partial parsers and attempt to bridge the gap between shallow and
full parsing are the XTAG system (Doran et al. 1994) and chunk tagging
(Brants and Skut 1998; Skut and Brants 1998).

In many systems that build a partial parser on top of a tagger, partial
parsing is accomplished by way of regular expression matching over the
output of the tagger. For example, a simple noun phrase may be defined
as a sequence of article (AT), an arbitrary number of adjectives (JJ) and a
singular noun (NN). This would correspond to the regular expression “AT
JJ* NN.” Since these systems focus on the final application, not on partial
parsing we cover them in what follows not under the rubric “partial pars-
ing,” but grouped according to the application they are intended for. For
an excellent overview of partial parsing (and tagging) see (Abney 1996a).

One important use of tagging in conjunction with partial parsing is for
lexical acquisition. We refer the reader to chapter 8.

Another important application is information extraction (which is also
referred to as message understanding, data extraction, or text data min-
ing). The goal in information extraction is to find values for the prede-
fined slots of a template. For example, a template for weather report-
ing might have slots for the type of weather condition (tornado, snow
storm), the location of the event (the San Francisco Bay Area), the time
of the event (Sunday, January 11, 1998), and what the effect of the event
was (power outage, traffic accidents, etc.). Tagging and partial parsing
help identify the entities that serve as slot fillers and the relationships
between them. A recent overview article on information extraction is
(Cardie 1997). In a way one could think of information extraction as
like tagging except that the tags are semantic categories, not grammati-
cal parts of speech. However, in practice quite different techniques tend
to be employed, because local sequences give less information about se-
mantic categories than grammatical categories.

Tagging and partial parsing can also be applied to finding good in-
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dexing terms in information retrieval. The best unit for matching user
queries and documents is often not the individual word. Phrases like
United States of America and secondary education lose much of their
meaning if they are broken up into words. Information retrieval per-
formance can be improved if tagging and partial parsing are applied
to noun phrase recognition and query-document matching is done on
more meaningful units than individual terms (Fagan 1987; Smeaton 1992;
Strzalkowski 1995). A related area of research is phrase normalization
in which variants of terms are normalized and represented as the same
basic unit (for example, book publishing and publishing of books). See
(Jacquemin et al. 1997).

Finally, there has been work on so-called question answering systems
which try to answer a user query that is formulated in the form of a ques-
tion by returning an appropriate noun phrase such as a location, a person,
or a date (Kupiec 1993b; Burke et al. 1997). For example, the question
Who killed President Kennedy? might be answered with the noun phrase
Oswald instead of returning a list of documents as most information re-
trieval systems do. Again, analyzing a query in order to determine what
type of entity the user is looking for and how it is related to other noun
phrases mentioned in the question requires tagging and partial parsing.

We conclude with a negative result: the best lexicalized probabilistic
parsers are now good enough that they perform better starting with un-
tagged text and doing the tagging themselves, rather than using a tagger
as a preprocessor (Charniak 1997a). Therefore, the role of taggers ap-
pears to be as a fast lightweight component that gives sufficient informa-
tion for many application tasks, rather than as a desirable preprocessing
stage for all applications.

Further Reading

Early work on modeling natural language using Markov chains had been
largely abandoned by the early sixties, partially due to Chomsky’s criti-
cism of the inadequacies of Markov models (Chomsky 1957: ch. 3). The
lack of training data and computing resources to pursue an ‘empirical’
approach to natural language probably also played a role. Chomsky’s
criticism still applies: Markov chains cannot fully model natural lan-
guage, in particular they cannot model many recursive structures (but
cf. Ristad and Thomas (1997)). What has changed is that approaches that
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emphasize technical goals such as solving a particular task have become
acceptable even if they are not founded on a theory that fully explains
language as a cognitive phenomenon.

The earliest ‘taggers’ were simply programs that looked up the category
of words in a dictionary. The first well-known program which attempted
to assign tags based on syntagmatic contexts was the rule-based pro-
gram presented in (Klein and Simmons 1963), though roughly the same
idea is present in (Salton and Thorpe 1962). Klein and Simmons use the
terms ‘tags’ and ‘tagging,” though apparently interchangeably with ‘codes’
and ‘coding.” The earliest probabilistic tagger known to us is (Stolz et al.
1965). This program initially assigned tags to some words (including all
function words) via use of a lexicon, morphology rules, and other ad-hoc
rules. The remaining open class words were then tagged using condi-
tional probabilities calculated from tag sequences. Needless to say, this
wasn’t a well-founded probabilistic model.

Credit has to be given to two groups, one at Brown University, one
at the University of Lancaster, who spent enormous resources to tag two
large corpora, the Brown corpus and the Lancaster-Oslo-Bergen (LOB) cor-
pus. Both groups recognized how invaluable a corpus annotated with
tag information would be for further corpus research. Without these two
tagged corpora, progress on part-of-speech tagging would have been hard
if not impossible. The availability of a large quantity of tagged data is no
doubt an important reason that tagging has been such an active area of
research.

The Brown corpus was automatically pre-tagged with a rule-based tag-
ger, TAGGIT (Greene and Rubin 1971). This tagger used lexical informa-
tion only to limit the tags of words and only applied tagging rules when
words in the surrounding context were unambiguously tagged. The out-
put of the tagger was then manually corrected in an effort that took many
years and supplied the training data for a lot of the quantitative work that
was done later.

One of the first Markov Model taggers was created at the University
of Lancaster as part of the LOB tagging effort (Garside et al. 1987; Mar-
shall 1987). The heart of this tagger was the use of bigram tag sequence
probabilities, with limited use of higher order context, but the differing
probabilities of assigning a word to different parts of speech were han-
dled by ad hoc discounting factors. The type of Markov Model tagger that
tags based on both word probabilities and tag transition probabilities was
introduced by Church (1988) and DeRose (1988).
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During the beginning of the resurgence of quantitative methods in NLP,
the level of knowledge of probability theory in the NLP community was
so low that a frequent error in early papers is to compute the probability
of the next tag in a Markov model as (10.14) instead of (10.13). At first
sight, (10.14) can seem more intuitive. After all, we are looking at a word
and want to determine its tag, so it is not far-fetched to assume the word
as given and the tag as being conditioned on the word.

n

argmax P (t1nlwin) = [ [[P(Wilt:) x P(ti|ti-1)]

tin i=1

n

argmax P (t1nlwin) = [ [[P(tilwi) x P(tilti-1)]

tin i=1

But, actually, equation (10.14) is not correct, and use of it results in lower
performance (Charniak et al. 1993).

While the work of Church and DeRose was key in the resurgence of
statistical methods in computational linguistics, work on hidden Markov
model tagging had actually begun much earlier at the IBM research cen-
ters in New York state and Paris. Jelinek (1985) and Derouault and Meri-
aldo (1986) are widely cited. Earlier references are Bahl and Mercer (1976)
and Baker (1975), who attributes the work to Elaine Rich. Other early
work in probabilistic tagging includes (Eeg-Olofsson 1985; Foster 1991).

A linguistic discussion of the conversion of nouns to verbs (denomi-
nal verbs) and its productivity can be found in Clark and Clark (1979).
Huddleston (1984: ch. 3) contains a good discussion of the traditional
definitions of parts of speech, their failings, and the notion of part of
speech or word class as used in modern structuralist linguistics.

Exercises

Exercise 10.21 [*]

Usually, the text we want to tag is not segmented into sentences. An algorithm
for identifying sentence boundaries is introduced in chapter 4, together with a
general overview of the nitty-gritty of corpus processing.

Could we integrate sentence-boundary detection into the tagging methods intro-
duced in this chapter? What would we have to change? How effective would you
expect sentence-boundary detection by means of tagging to be?
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Exercise 10.22 [**]

Get the MULTEXT tagger (see the website) and tag some non-English text from
the website.



(11.1)

Probabilistic Context Free
Grammars

PEOPLE WRITE and say lots of different things, but the way people say
things - even in drunken casual conversation - has some structure and
regularity. The goal of syntax within linguistics is to try to isolate that
structure. Until now, the only form of syntax we have allowed ourselves
is methods for describing the ordering and arrangement of words, either
directly in terms of the words, or in terms of word categories. In this
chapter, we wish to escape the linear tyranny of these n-gram models
and HMM tagging models, and to start to explore more complex notions
of grammar.

Even in the most traditional forms of grammar, syntax is meant to
show something more that just linear order. It shows how words group
together and relate to each other as heads and dependents. The dominant
method used for doing this within the last 50 or so years has been to
place tree structures over sentences, as we saw in chapter 3. Language
has a complex recursive structure, and such tree-based models - unlike
Markov models - allow us to capture this. For instance Kupiec (1992b)
notes that his HMM-based tagger has problems with constructions like:

The velocity of the seismic waves rises to ...

because a singular verb (here, rises) is unexpected after a plural noun.
Kupiec’s solution is to augment the HMM model so it can recognize a
rudimentary amount of NP structure, which in his model is encoded as
a higher-order context extension glued on to his basic first order HMM.
Leaving aside the technical details of the solution, the essential observa-
tion about verb agreement is that it is reflecting the hierarchical structure
of the sentence, as shown in (11.2), and not the linear order of words.
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S
//,////\
NPsg VPSg
%\ A
DT NN PP vises to ...
The velocity IN NPy

of the seismic waves

The verb agrees in number with the noun velocity which is the head of the
preceding noun phrase, and not with the noun that linearly precedes it.

The simplest probabilistic model for recursive embedding is a PCFG,
a Probabilistic (sometimes also called Stochastic) Context Free Grammar
- which is simply a CFG with probabilities added to the rules, indicating
how likely different rewritings are. We provide a detailed discussion of
PCFGs in this chapter for a number of reasons: PCFGs are the simplest
and most natural probabilistic model for tree structures, the mathemat-
ics behind them is well understood, the algorithms for them are a natural
development of the algorithms employed with HMMs, and PCFGs pro-
vide a sufficiently general computational device that they can simulate
various other forms of probabilistic conditioning (as we describe in sec-
tion 12.1.9). Nevertheless, it is important to realize that PCFGs are only
one of many ways of building probabilistic models of syntactic structure,
and in the next chapter we study the domain of probabilistic parsing
more generally.

A PCFG G consists of:

m A set of terminals, {wX},k=1,...,V
m A set of nonterminals, {N},i=1,...,n
m A designated start symbol, N!

m A set of rules, {N! — €/}, (where T/ is a sequence of terminals and
nonterminals)

m A corresponding set of probabilities on rules such that:

Vi >P(N'-¢/)=1
J
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Notation Meaning

G Grammar (PCFG)

L Language (generated or accepted by a grammar)

t Parse tree

{N1,...,N"} Nonterminal vocabulary (N! is start symbol)

{wl ...,w"Y} Terminal vocabulary

Wi Wiy Sentence to be parsed

N,ng Nonterminal N/ spans positions p through g in string
xj(p,q) Outside probabilities (11.15)

Bi(p,q) Inside probabilities (11.14)

Table 11.1 Notation for the PCFG chapter.

Note that when we write P(N' — /) in this chapter, we always mean
P(N' — TJ|N"). That is, we are giving the probability distribution of the
daughters for a certain head. Such a grammar can be used either to parse
or generate sentences of the language, and we will switch between these
terminologies quite freely.

Before parsing sentences with a PCFG, we need to establish some no-
tation. We will represent the sentence to be parsed as a sequence of
words wy - - - wy,, and use wyy, to denote the subsequence w, - - - wy,. We
denote a single rewriting operation of the grammar by a single arrow —.
If as a result of one or more rewriting operations we are able to rewrite
a nonterminal N’ as a sequence of words w, - - - wp, then we will say

that NV dominates the words wy - - - wy,, and write either NJ = Wq- - Wp
or yield(N/) = wy - - -wp. This situation is illustrated in (11.4): a sub-
tree with root nonterminal N/ dominating all and only the words from
Wy - - - Wp in the string:

NJ
T~

Wa...Wb

To say that a nonterminal N; spans positions a through b in the string,
but not to specify what words are actually contained in this subsequence,
we will write N2,. This notation is summarized in table 11.1.

The probability of a sentence (according to a grammar G) is given by:

P(Wim) = > P(wim,t) wheret is a parse tree of the sentence
t
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S — NP VP 1.0 NP — NP PP 0.4
PP — P NP 1.0 NP — astronomers 0.1
VP - VNP 0.7 NP — ears 0.18
VP - VPPP 0.3 NP — saw 0.04
P — with 1.0 NP — stars 0.18
V — saw 1.0 NP — telescopes 0.1

Table 11.2 A simple Probabilistic Context Free Grammar (PCFG). The nontermi-
nals are S, NP, PP, VP, P, V. We adopt the common convention whereby the start
symbol N! is denoted by S. The terminals are the words in italics. The table
shows the grammar rules and their probabilities. The slightly unusual NP rules
have been chosen so that this grammar is in Chomsky Normal Form, for use as
an example later in the section.

= > P(t)

{tryield () =wim}

Moreover, it is easy to find the probability of a tree in a PCFG model. One
just multiplies the probabilities of the rules that built its local subtrees.

Example 1: Assuming the grammar in table 11.2, the sentence as-
tronomers saw stars with ears has two parses with probabilities as shown
in figure 11.1.

What are the assumptions of this model? The conditions that we need
are:

m Place invariance. The probability of a subtree does not depend on
where in the string the words it dominates are (this is like time invari-
ance in HMMs):

vk P(N,{(,HC) — ) is the same

m Context-free. The probability of a subtree does not depend on words
not dominated by the subtree.

P(N,{, — Clanything outside k through I) = P(N,{, - 0)

m Ancestor-free. The probability of a subtree does not depend on nodes
in the derivation outside the subtree.

P(N,{, — Clany ancestor nodes outside N,{I) = P(N,{l -0)
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t: S1.0
/\
NP1 VPy.7
‘ /\
astronomers Vi NPg 4
\ T
saw  NPg.1s PP; o
/\
stars  P1o NPgig
\ \
with ears
t: S1.0
/\
NP1 VPo.3
/\
astronomers VPy.7 PP o

/\ /\
Vio NPoig Pio NPoisg

saw stars with ears

P(t;) = 1.0x0.1x0.7%x1.0x0.4x0.18%x1.0x1.0x0.18
= 0.0009072
P(tz) = 1.0x0.1x0.3x0.7x1.0x0.18x1.0x1.0x0.18
= 0.0006804
P(wis) = P(t1) +P(tp) = 0.0015876

Figure 11.1 The two parse trees, their probabilities, and the sentence probabil-
ity. This is for the sentence astronomers saw stars with ears, according to the
grammar in table 11.2. Nonterminal nodes in the trees have been subscripted
with the probability of the local tree that they head.
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Using these conditions we can justify the calculation of the probability of
a tree in terms of just multiplying probabilities attached to rules. But to
show an example, we need to be able to distinguish tokens of a nontermi-
nal. Therefore, let the upper left index in N/ be an arbitrary identifying
index for a particular token of a nonterminal. Then,
ls
/\

p ZNP 3vp

PR |

the man snores,

P(1S13 — 2NPy» 3VP33, °NP;» — the; many,3VP33 — snoress)
P(*S13 — NP1z *VP33)P(*NPy2 — the; manz|'Si3 — *NP12 *VP33)
P(3VP33 — snores3|'S13 — °NP;» 3VP33,2NPy» — the, many)
= P(1S;3 — 2NPy; 3VP33)P(?NPy, — the; many)P (3VP33 — snoress)

P(S — NP VP)P (NP — the man)P (VP — snores)

where, after expanding the probability by the chain rule, we impose
first the context-freeness assumption, and then the position-invariant as-
sumption.

Some Features of PCFGs

Here we give some reasons to use a PCFG, and also some idea of their
limitations:

= As grammars expand to give coverage of a large and diverse corpus of
text, the grammars become increasingly ambiguous. There start to be
many structurally different parses for most word sequences. A PCFG
gives some idea of the plausibility of different parses.

m A PCFG does not give a very good idea of the plausibility of different
parses, since its probability estimates are based purely on structural
factors, and do not factor in lexical co-occurrence.

m PCFGs are good for grammar induction. Gold (1967) showed that CFGs
cannot be learned (in the sense of identification in the limit - that is,
whether one can identify a grammar if one is allowed to see as much
data produced by the grammar as one wants) without the use of neg-
ative evidence (the provision of ungrammatical examples). But PCFGs
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can be learned from positive data alone (Horning 1969). (However, do-
ing grammar induction from scratch is still a difficult, largely unsolved
problem, and hence much emphasis has been placed on learning from
bracketed corpora, as we will see in chapter 12.)

= Robustness. Real text tends to have grammatical mistakes, disfluen-
cies, and errors. This problem can be avoided to some extent with a
PCFG by ruling out nothing in the grammar, but by just giving implau-
sible sentences a low probability.

m PCFGs give a probabilistic language model for English (whereas a CFG
does not).

m The predictive power of a PCFG as measured by entropy tends to be
greater than that for a finite state grammar (i.e., an HMM) with the
same number of parameters. (For such comparisons, we compute the
number of parameters as follows. A V terminal, n nonterminal PCFG
has n3 + nV parameters, while a K state M output HMM has K2 +
MK parameters. While the exponent is higher in the PCFG case, the
number of nonterminals used is normally quite small. See Lari and
Young (1990) for a discussion of this with respect to certain artificial
grammars.)

m In practice, a PCFG is a worse language model for English than an n-
gram model (for n > 1). An n-gram model takes some local lexical
context into account, while a PCFG uses none.

m PCFGs are not good models by themselves, but we could hope to com-
bine the strengths of a PCFG and a trigram model. An early experiment
that conditions the rules of a PCFG by word trigrams (and some addi-
tional context sensitive knowledge of the tree) is presented in Mager-
man and Marcus (1991) and Magerman and Weir (1992). Better solu-
tions are discussed in chapter 12.

m PCFGs have certain biases, which may not be appropriate. All else be-
ing equal, in a PCFG, the probability of a smaller tree is greater than
a larger tree. This is not totally wild - it is consonant with Frazier’s
(1978) Minimal Attachment heuristic - but it does not give a sensible
model of actual sentences, which peak in frequency at some interme-
diate length. For instance, table 4.3 showed that the most frequent
length for Wall Street journal sentences is around 23 words. A PCFG
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gives too much of the probability mass to very short sentences. Sim-
ilarly, all else being equal, nonterminals with a small number of ex-
pansions will be favored over nonterminals with many expansions in
PCFG parsing, since the individual rewritings will have much higher
probability (see exercise 12.3).

The one item here that deserves further comment is the claim that PCFGs
define a language model. Initially, one might suspect that providing that
the rules all obey equation (11.3), then > ,c,P(w) = > P(t) = 1. But
actually this is only true if the probability mass of rules is accumulating
in finite derivations. For instance, consider the grammar:

S — rhubarb P =
S—-SS P =

WIN W[

This grammar will generate all strings rhubarb ... rhubarb. However, we
find that the probability of those strings is:

rhubarb %
rhubarb rhubarb EXiXt=%
2 3
rhubarb rhubarb rhubarb (% X (%) X2 = 22;3

The probability of the language is the sum of this infinite series % + % +
% + ..., which turns out to be % Thus half the probability mass has
disappeared into infinite trees which do not generate strings of the lan-
guage! Such a distribution is often termed inconsistent in the probability
literature, but since this word has a rather different meaning in other
fields related to NLP, we will term such a distribution improper. In prac-
tice, improper distributions are not much of a problem. Often, it doesn’t
really matter if probability distributions are improper, especially if we are
mainly only comparing the magnitude of different probability estimates.
Moreover, providing we estimate our PCFG parameters from parsed train-
ing corpora (see chapter 12), Chi and Geman (1998) show that one always
gets a proper probability distribution.

Questions for PCFGs

Just as for HMMs, there are three basic questions we wish to answer:
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m What is the probability of a sentence wy,, according to a grammar G:
P(WimlG)?

= What is the most likely parse for a sentence: arg max; P (t|wim, G)?

m How can we choose rule probabilities for the grammar G that maxi-
mize the probability of a sentence, arg max; P(wim|G)?

In this chapter, we will only consider the case of Chomsky Normal Form
grammars, which only have unary and binary rules of the form:

N' - N/ N*
N - wi
The parameters of a PCFG in Chomsky Normal Form are:

P(NJ — N" NS|G) If n nonterminals, an n3 matrix of parameters
P(NJ - wk|G) If V terminals, nV parameters

Forj=1,...,n,

> P(N/ = N" N%) + > P(NJ — wk) =1

r,s k

This constraint is seen to be satisfied for the grammar in table 11.2 (un-
der the convention whereby all probabilities not shown are zero). Any
CFG can be represented by a weakly equivalent CFG in Chomsky Normal
Form.!

To see how we might efficiently compute probabilities for PCFGs, let
us work from HMMs to probabilistic regular grammars, and then from
there to PCFGs. Consider a probabilistic regular grammar (PRG), which
has rules of the form:

N — w/ N¥ or N’ — w/ and start state N!

This is similar to what we had for an HMM. The difference is that in an
HMM there is a probability distribution over strings of a certain length:

vn > P(win) =1

Win

1. Two grammars G; and G» are weakly equivalent if they both generate the same lan-
guage L (with the same probabilities on sentences for stochastic equivalence). Two gram-
mars are strongly equivalent if they additionally assign sentences the same tree structures
(with the same probabilities, for the stochastic case).
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Figure 11.2 A Probabilistic Regular Grammar (PRG).

whereas in a PCFG or a PRG, there is a probability distribution over the
set of all strings that are in the language £ generated by the grammar:

> P(w) =1

weLl

To see the difference, consider:
P (John decided to bake a)

This would have a high probability in an HMM, since this is a quite likely
beginning to a sentence, but a very low probability in a PRG or a PCFG,
because it isn't a complete utterance.

We can think of a PRG as related to an HMM roughly as in figure 11.2.
We add a start state and the transitions from it to the states of the HMM
mirror the initial probabilities II. To represent ending the string, we ad-
join to the HMM a finish state, often called a sink state, which one never
leaves once one has entered it. From each HMM state one can continue in
the basic HMM or shift to the sink state, which we interpret as the end of
string in the PRG.

This gives the basic idea of how PRGs are related to HMMs. We can
implement the PRG as an HMM where the states are nonterminals and the
terminals are the output symbols, as follows:

States: NP — N — N’ — N — sink state
| | | |
Outputs: the big brown box

Recall how for an HMM we were able to efficiently do calculations in terms
of forward and backward probabilities:

Forward probability «;(t)

Pwi-1), Xt = 1)
Backward probability Bi(t) = P(Wwir|Xe =1)
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NJ

/ /B

w1 Wp_1 Wp Wg Wg+l W

Figure 11.3 Inside and outside probabilities in PCFGs.

But now consider the PRG parse again, drawn as a tree:

(11.13) NP

In the tree, the forward probability corresponds to the probability of ev-
erything above and including a certain node, while the backward proba-
bility corresponds to the probability of everything below a certain node
(given the node). This suggests an approach to dealing with the more
general case of PCFGs. We introduce Inside and Outside probabilities, as
indicated in figure 11.3, and defined as follows:
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Outside probability «;(p,q) = P(wl(p,l),Niq,w(q+1)m|G)

Inside probability B;(p,q) = P(qu'NlJ;q, G)
The inside probability B;(p, q) is the total probability of generating words
Wp - - - W4 given that one is starting off with the nonterminal N/. The
outside probability «;(p, q) is the total probability of beginning with the
start symbol N! and generating the nonterminal N,f,q and all the words
outside wp - - - wy.

The Probability of a String

Using inside probabilities

In general, we cannot efficiently calculate the probability of a string by
simply summing the probabilities of all possible parse trees for the string,
as there will be exponentially many of them. An efficient way to calcu-
late the total probability of a string is by the inside algorithm, a dynamic
programming algorithm based on the inside probabilities:

P(WimlG) =P(N' = winlG)
= PWimINi,,G) = B1(1,m)

The inside probability of a substring is calculated by induction on the
length of the string subsequence:

Base case: We want to find B (k, k) (the probability of a rule N/ — wy):

Bi(k,k) = P(WiINL,G)
= P(N/ = w|G)

Induction: We want to find B;(p,q), for p < g. As this is the inductive
step using a Chomsky Normal Form grammar, the first rule must be of
the form N/ — N7 N¥, so we can proceed by induction, dividing the string
in two in various places and summing the result:

N/

/\
N" N*

Wp Wd  Wd+1 Wq
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Then, Vj,1 <p <q < m,

P(WMWngl G)
q-1

= Z Z P(Wpd,N;,d,W(d+1)q,N(Sd+1)q|NrJ7q,G)
.S d=p

Bj(p,aq)

q-1 . .
= 2 > P(N}a N1y Nbas )P Wpa Npa, Np gy Nig 140 G)

r,.S d=p
XP(W(d+1)q|NrJJq, ;;d;Nfd.;.])q;Wpd,G)
q-1 )
= >, 2 P(NJ3, Nigi1)q/Npg, G)P(Wpal N}y, G)
r,S d=p

XP(W(d+1)q|N(Sd+1)q. G)

g-1
= 3 > PN/ —~ N'N*)B,(p,d)Bs(d +1,9)
rS d=p

Above, we first divided things up using the chain rule, then we made
use of the context-free assumptions of PCFGs, and then rewrote the re-
sult using the definition of the inside probabilities. Using this recurrence
relation, inside probabilities can be efficiently calculated bottom up.

Example 2: The above equation looks scary, but the calculation of in-
side probabilities is actually relatively straightforward. We're just trying
to find all ways that a certain constituent can be built out of two smaller
constituents by varying what the labels of the two smaller constituents
are and which words each spans. In table 11.3, we show the computations
of inside probabilities using the grammar of table 11.2 and the sentence
explored in figure 11.1. The computations are shown using a parse tri-
angle where each box records nodes that span from the row index to the
column index.

v Further calculations using this example grammar and sentence are left
to the reader in the Exercises.
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5

Bnp =

0.1

Bs =

0.0126

Bs =

0.0015876

Bnp =

Bv =

0.04
1.0

Bvp =

0.126

Bvp

0.015876

Bnp =

0.18

Bnp =

0.01296

Bp =

1.0

Brp =

0.18

Bnp =

0.18

11.3.2

(11.18)

(11.19)

OUTSIDE ALGORITHM

astronomers

saw

stars

with

ears

Table 11.3 Calculation of inside probabilities. Table cell (p, g) shows non-zero
probabilities B!(p,q) calculated via the inside algorithm. The recursive com-
putation of inside probabilities is done starting along the diagonal, and then
moving in diagonal rows towards the top right corner. For the simple gram-
mar of table 11.2, the only non-trivial case is cell (2,5), which we calculate as:
P(VP — VNP)Bv(2,2)Bnp(3,5) + P(VP — VP PP)Byp(2,3)Brp(4,5)

Using outside probabilities

We can also calculate the probability of a string via the use of the outside
probabilities. For any k, 1 < k < m,

PWimlG) = D P(Wig1), Wi Wiks 1ym, Nig|G)

J

ZP(Wl(k—l);N]{k,W(k+1)m|G)
J

XP (Wi W1 (k-1)» N Wik+1)n, G)

> i (k,K)P(NY — wy)
J

The outside probabilities are calculated top down. As we shall see,
the inductive calculation of outside probabilities requires reference to
inside probabilities, so we calculate outside probabilities second, using
the outside algorithm.

Base Case: The base case is the probability of the root of the tree being
nonterminal N* with nothing outside it:

1
0 forj#1

o1 (1, m)
(1, m)
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Inductive case: In terms of the previous step of the derivation, a node
Ny, with which we are concerned might be on the left:

Nl

(11.20)

Wi Wp—1 Wp == Wg Wayp - We Werl r - - Wi

or right branch of the parent node:

(11.21)

Nl

Wl...we_lwe...wp_l Wp---Wqu+1...Wm

We sum over both possibilities, but restrict the first sum to g # j so as
not to double count in the case of rules of the form X — N/N/:

x;j(p,q)

m
[Z Z P(Wl(n—lhW(q+1)m1N£eiNM|N(q+1 )]
f.g#je=aq+1

[Z Z (Wip-1), Wg+1) m!NQQ'Ne(p 1>’qu)]
f.g e=1

m .
[Z Z P(Wl(pfl)’W(e+1)m|N1§e)P(Nilm, q+1 |Nne)
f.g#je=aq+1

XP(W(q+1)e|N?q+1 ] [Z Z P Wl(e 1) q+l)m,N£q)
f.ge=1

XP(Ng(p—wNéq|Neq)P(We(p71)|Ne(p—1)]
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= [ 3 ap,P(NF ~ NI N9)By(q +1,e)]
f.g#je=q+1

p-1
+[3 Y ape, PN — N9 N/)By(e,p — 1) ]
f.ge=1

As with an HMM, we can form a product of the inside and the outside
probabilities:

P(Wl(pfl),NlJ;q:W(q+1)m|G)P(qu|NrJ7‘q’G)
P(Wlm,N]anﬂG)

xj(p,a)Bj(p,q)

But this time, the fact that we postulate a nonterminal node is important
(whereas in the HMM case it is trivial that we are in some state at each
point in time). Therefore, the probability of the sentence and that there
is some constituent spanning from word p to g is given by:

P(Wim, NpqglG) = > «;(p,a)Bj(p,q)
j

However, we know that there will always be some nonterminal spanning
the whole tree and each individual terminal (in a Chomsky Normal Form
grammar). The nonterminal nodes whose only daughter is a single ter-
minal node are referred to as preterminal nodes. Just in these cases
this gives us the equations in (11.17) and (11.19) for the total prob-
ability of a string. Equation (11.17) is equivalent to «;(1,m)fS;(1,m)
and makes use of the root node, while equation (11.19) is equivalent to
2.j «j(k,k)Bj(k, k) and makes use of the fact that there must be some
preterminal N’/ above each word wg.

Finding the most likely parse for a sentence

A Viterbi-style algorithm for finding the most likely parse for a sentence
can be constructed by adapting the inside algorithm to find the element
of the sum that is maximum, and to record which rule gave this maxi-
mum. This works as in the HMM case because of the independence as-
sumptions of PCFGs. The result is an O (m3n3) PCFG parsing algorithm.
The secret to the Viterbi algorithm for HMMs is to define accumulators
6 (t) which record the highest probability of a path through the trellis
that leaves us at state j at time t. Recalling the link between HMMs and
PCFGs through looking at PRGs, this time we wish to find the highest



(11.23)

11.3 The Probability of a String 397

probability partial parse tree spanning a certain substring that is rooted
with a certain nonterminal. We will retain the name 6 and use accumula-
tors:

0i(p,q) = the highest inside probability parse of a subtree N;',q

Using dynamic programming, we can then calculate the most probable
parse for a sentence as follows. The initialization step assigns to each
unary production at a leaf node its probability. For the inductive step, we
again know that the first rule applying must be a binary rule, but this time
we find the most probable one instead of summing over all such rules,
and record that most probable one in the ¢ variables, whose values are
a list of three integers recording the form of the rule application which
had the highest probability.

1. Initialization
5i(p,p) = P(N' — wp)
2. Induction

8i(p,q) = max P(N' - N/ N&&;(p,r)ox(r +1,q)
<j,k<n
p<r<q

Store backtrace

wi(p,q) = argmax P(N' — N/ N¥)&;(p, r)x(r + 1,q)
(J.k,r)

3. Termination and path readout (by backtracking). Since our grammar
has a start symbol N!, then by construction, the probability of the
most likely parse rooted in the start symbol is:?

P(t) = 61(1,m)
We want to reconstruct this maximum probability tree {. We do this by
regarding f as a set of nodes {X,} and showing how to construct this

2. We could alternatively find the highest probability node of any category that dominates
the entire sentence as:

P(f) = max &;(1,m)

l<i<n
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set. Since the grammar has a start symbol, the root node of the tree
must be Ni,,. We then show in general how to construct the left and
right daughter nodes of a nonterminal node, and applying this process
recursively will allow us to reconstruct the entire tree. If Xy = N;;q is
in the Viterbi parse, and y;(p,q) = (j, k, r), then:

left(Xy) Ny
right(Xy) = Né‘rﬂ)q

Note that where we have written ‘argmax’ above, it is possible for there
not to be a unique maximum. We assume that in such cases the parser
just chooses one maximal parse at random. It actually makes things con-
siderably more complex to preserve all ties.

Training a PCFG

The idea of training a PCFG is grammar learning or grammar induction,
but only in a certain limited sense. We assume that the structure of the
grammar in terms of the number of terminals and nonterminals, and the
name of the start symbol is given in advance. We also assume the set of
rules is given in advance. Often one assumes that all possible rewriting
rules exist, but one can alternatively assume some pre-given structure
in the grammar, such as making some of the nonterminals dedicated
preterminals that may only be rewritten as a terminal node. Training
the grammar comprises simply a process that tries to find the optimal
probabilities to assign to different grammar rules within this architecture.

As in the case of HMMs, we construct an EM training algorithm, the
Inside-Outside algorithm, which allows us to train the parameters of a
PCFG on unannotated sentences of the language. The basic assumption
is that a good grammar is one that makes the sentences in the training
corpus likely to occur, and hence we seek the grammar that maximizes
the likelihood of the training data. We will present training first on the
basis of a single sentence, and then show how it is extended to the more
realistic situation of a large training corpus of many sentences, by assum-
ing independence between sentences.

To determine the probability of rules, what we would like to calculate
is:
C(N/ - T)

P(N/ - 1T) = S CN ~y)
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where C(-) is the count of the number of times that a particular rule is
used. If parsed corpora are available, we can calculate these probabilities
directly (as discussed in chapter 12). If, as is more common, a parsed
training corpus is not available, then we have a hidden data problem: we
wish to determine probability functions on rules, but can only directly see
the probabilities of sentences. As we don’t know the rule probabilities,
we cannot compute relative frequencies, so we instead use an iterative
algorithm to determine improving estimates. We begin with a certain
grammar topology, which specifies how many terminals and nontermi-
nals there are, and some initial probability estimates for rules (perhaps
just randomly chosen). We use the probability of each parse of a training
sentence according to this grammar as our confidence in it, and then sum
the probabilities of each rule being used in each place to give an expecta-
tion of how often each rule was used. These expectations are then used
to refine our probability estimates on rules, so that the likelihood of the
training corpus given the grammar is increased.
Consider:

P(N' =5 wipm, NV = wpylG)

= P(N' = wiml|G)P(NY = wpyIN! = wip, G)

xj(p,q)Bj(p,q)

We have already solved how to calculate P (N? = Wim); let us call this
probability r. Then:

xj(p,q)Bj(p,q)
T

P(NY =5 wygIN' = wim, G) =

and the estimate for how many times the nonterminal N/ is used in the
derivation is:
m m
E(N/ is used in the derivation) = > >
p=14=p

T

In the case where we are not dealing with a preterminal, we substitute
the inductive definition of f into the above probability and then Vr,s,p <

q.
P(N/ — N" N® = wpyIN' = wim, G)
S, o (p,@)P(NV — N" N*)B,(p,d)Bs(d +1,q)
TT

Therefore, the estimate for how many times this particular rule is used
in the derivation can be found by summing over all ranges of words that
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the node could dominate:
E(NJ — N" N, N/ used)
S S S8 o (p,@)P(NY — N" N%)B,(p,d)Bs(d +1,q)
T
Now for the maximization step, we want:

- E(NJ — N” N*$,NJ used)
J NV NS) — ’
PN NTN) E(NJ used)

So, the reestimation formula is:
P(NJ — N" N®) = (11.25)/(11.24)
S S S & (p, @P(NF —~ NT N%)B,(p,d)Bs(d +1,9)
o1 oty & (p,@)Bi(p,q)
Similarly for preterminals,

Sty o (h,h)P(NT — wy, wp = wk)
s
iy &j(h, h)P(wy = wh) B (h, h)
T
The P(wn = wk) above is, of course, either 0 or 1, but we express things
in the second form to show maximal similarity with the preceding case.
Therefore,

PN/ = wKIN' = wim, G)

3 Sty o(h,h)P(wp = wX)Bj(h, h)
St Yoy & (p, @) Bj(p, q)

Unlike the case of HMMs, this time we cannot possibly avoid the prob-
lem of dealing with multiple training instances - one cannot use con-
catenation as in the HMM case. Let us assume that we have a set of
training sentences W = (Wq,...,Wy), with W; = w1 - - - Wi m,. Let fi, gi,
and h; be the common subterms from before for use of a nonterminal at
a branching node, at a preterminal node, and anywhere respectively, now
calculated from sentence W;:

> a, & (p,@)P(NJ — N'N*)B,(p,d)Bs(d + 1,9)

P(NJ — wk)

filp,q,j,r,s) = :
P(N' = WilG)
gi(h,j, k) = “J(h’h)P(wh*:wk)Bj(h,h)
P(N! = W;|G)
hip.q.j) = XiPaBiw.a

P(N! = W;|G)
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If we assume that the sentences in the training corpus are independent,
then the likelihood of the training corpus is just the product of the prob-
abilities of the sentences in it according to the grammar. Therefore, in
the reestimation process, we can sum the contributions from multiple
sentences to give the following reestimation formulas. Note that the de-
nominators consider all expansions of the nonterminal, as terminals or
nonterminals, to satisfy the stochastic constraint in equation (11.3) that
a nonterminal’s expansions sum to 1.

S Sy S, fip.a. T, s)

P(N/ — N"N%) = : : g
Zlui] Z;;nil Zglzlp hl(pl q!.])

and

Ao Y22t gi(h, j, k)
P(NJ — wk) = =12 z .
S St Yat, hi(p, g, )

The Inside-Outside algorithm is to repeat this process of parameter
reestimation until the change in the estimated probability of the training
corpus is small. If G; is the grammar (including rule probabilities) in the
i jteration of training, then we are guaranteed that the probability of
the corpus according to the model will improve or at least get no worse:

P(WIGis1) = P(W|Gy).

Problems with the Inside-Outside Algorithm

However, the PCFG learning algorithm is not without problems:

1. Compared with linear models like HMMs, it is slow. For each sentence,
each iteration of training is O(m®n3), where m is the length of the
sentence, and n is the number of nonterminals in the grammar.

2. Local maxima are much more of a problem. Charniak (1993) reports
that on each of 300 trials of PCFG induction (from randomly initialized
parameters, using artificial data generated from a simple English-like
PCFG) a different local maximum was found. Or in other words, the
algorithm is very sensitive to the initialization of the parameters. This
might perhaps be a good place to try another learning method. (For
instance, the process of simulated annealing has been used with some
success with neural nets to avoid problems of getting stuck in local
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maxima (Kirkpatrick et al. 1983; Ackley et al. 1985), but it is still per-
haps too compute expensive for large-scale PCFGs.) Other partial so-
lutions are restricting rules by initializing some parameters to zero or
performing grammar minimization, or reallocating nonterminals away
from “greedy” terminals. Such approaches are discussed in Lari and
Young (1990).

3. Based on experiments on artificial languages, Lari and Young (1990)
suggest that satisfactory grammar learning requires many more non-
terminals than are theoretically needed to describe the language at
hand. In their experiments one typically needed about 3n nontermi-
nals to satisfactorily learn a grammar from a training text generated
by a grammar with n nonterminals. This compounds the first problem.

4. While the algorithm is guaranteed to increase the probability of the
training corpus, there is no guarantee that the nonterminals that the
algorithm learns will have any satisfactory resemblance to the kinds of
nonterminals normally motivated in linguistic analysis (NP, VP, etc.).
Even if one initializes training with a grammar of the sort familiar to
linguists, the training regime may completely change the meaning of
nonterminal categories as it thinks best. As we have set things up, the
only hard constraint is that N! must remain the start symbol. One
option is to impose further constraints on the nature of the grammar.
For instance, one could specialize the nonterminals so that they each
only generate terminals or nonterminals. Using this form of grammar
would actually also simplify the reestimation equations we presented
above.

Thus, while grammar induction from unannotated corpora is possible in
principle with PCFGs, in practice, it is extremely difficult. In different
ways, many of the approaches of the next chapter address various of the
limitations of using vanilla PCFGs.

Further Reading

A comprehensive discussion of topics like weak and strong equivalence,
Chomsky Normal Form, and algorithms for changing arbitrary CFGs into
various normal forms can be found in (Hopcroft and Ullman 1979). Stan-
dard techniques for parsing with CFGs in NLP can be found in most Al
and NLP textbooks, such as (Allen 1995).
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Probabilistic CFGs were first studied in the late 1960s and early 1970s,
and initially there was an outpouring of work. Booth and Thomson
(1973), following on from Booth (1969), define a PCFG as in this chap-
ter (modulo notation). Among other results, they show that there are
probability distributions on the strings of context free languages which
cannot be generated by a PCFG, and derive necessary and sufficient con-
ditions for a PCFG to define a proper probability distribution. Other work
from this period includes: (Grenander 1967), (Suppes 1970), (Huang and
Fu 1971), and several PhD theses (Horning 1969; Ellis 1969; Hutchins
1970). Tree structures in probability theory are normally referred to as
branching processes, and are discussed in such work as (Harris 1963) and
(Sankoff 1971).

During the 1970s, work on stochastic formal languages largely died
out, and PCFGs were really only kept alive by the speech community, as an
occasionally tried variant model. The Inside-Outside algorithm was intro-
duced, and its convergence properties formally proved by Baker (1979).
Our presentation essentially follows (Lari and Young 1990). This paper
includes a proof of the algorithmic complexity of the Inside-Outside al-
gorithm. Their work is further developed in (Lari and Young 1991).

For the extension of the algorithms presented here to arbitrary PCFGs,
see (Charniak 1993) or (Kupiec 1991, 1992a).3 Jelinek et al. (1990) and
Jelinek et al. (1992a) provide a thorough introduction to PCFGs. In par-
ticular, these reports, and also Jelinek and Lafferty (1991) and Stolcke
(1995), present incremental left-to-right versions of the Inside and Viterbi
algorithms, which are very useful in contexts such as language models for
speech recognition.

In the section on training a PCFG, we assumed a fixed grammar archi-
tecture. This naturally raises the question of how one should determine
this architecture, and how one would learn it automatically. There has
been a little work on automatically determining a suitable architecture
using Bayesian model merging, a Minimum Description Length approach
(Stolcke and Omohundro 1994b; Chen 1995), but at present this task is
still normally carried out by using the intuitions of a linguist.

3. For anyone familiar with chart parsing, the extension is fairly straightforward: in a
chart we always build maximally binary ‘traversals’ as we move the dot through rules. We
can use this virtual grammar, with appropriate probabilities to parse arbitrary PCFGs (the
rule that completes a constituent can have the same probability as the original rule, while
all others have probability 1).
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PCFGs have also been used in bioinformatics (e.g., Sakakibara et al.
1994), but not nearly as much as HMMs.

Exercises

Exercise 11.1 [**]

Consider the probability of a (partial) syntactic parse tree giving part of the struc-
ture of a sentence:

NP

N

P | Det N’

/N

Adj N

In general, as the (sub)tree gets large, we cannot accurately estimate the probabil-
ity of such trees from any existing training corpus (a data sparseness problem).

As we saw, PCFGs approach this problem by estimating the probability of a tree
like the one above from the joint probabilities of local subtrees:

NP N’

L NI

Det N Adj N

However, how reasonable is it to assume independence between the probability
distributions of these local subtrees (which is the assumption that licenses us to
estimate the probability of a subtree as the product of the probability of each
local tree it contains)?

Use a parsed corpus (e.g., the Penn Treebank) and find for some common sub-
trees whether the independence assumption seems justified or not. If it is not,
see if you can find a method of combining the probabilities of local subtrees in
such a way that it results in an empirically better estimate of the probability of
a larger subtree.

Exercise 11.2 [*]

Using a parse triangle as in figure 11.3, calculate the outside probabilities for the
sentence astronomers saw stars with ears according to the grammar in table 11.2.
Start at the top righthand corner and work towards the diagonal.

Exercise 11.3 [*]

Using the inside and outside probabilities for the sentence astronomers saw stars
with ears worked out in figure 11.3 and exercise 11.2, reestimate the proba-
bilities of the grammar in table 11.2 by working through one iteration of the
Inside-Outside algorithm. It is helpful to first link up the inside probabilities
shown in figure 11.3 with the particular rules and subtrees used to obtain them.
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What would the rule probabilities converge to with continued iterations of the
Inside-Outside algorithm? Why?

Exercise 11.4 [ % ]

Recording possible spans of nodes in a parse triangle such as the one in fig-
ure 11.3 is the essence of the Cocke-Kasami-Younger (CKY) algorithm for pars-
ing CFGs (Younger 1967; Hopcroft and Ullman 1979). Writing a CKY PCFG parser
is quite straightforward, and a good exercise. One might then want to extend
the parser from Chomsky Normal Form grammars to the more general case of
context-free grammars. One way is to work out the general case oneself, or to
consult the appropriate papers in the Further Reading. Another way is to write
a grammar transformation that will take a CFG and convert it into a Chomsky
Normal Form CFG by introducing specially-marked additional nodes where nec-
essary, which can then be removed on output to display parse trees as given by
the original grammar. This task is quite easy if one restricts the input CFG to
one that does not contain any empty nodes (nonterminals that expand to give
nothing).

Exercise 11.5 [% % *]

Rather than simply parsing a sequence of words, if interfacing a parser to a
speech recognizer, one often wants to be able to parse a word lattice, of the
sort shown in figure 12.1. Extend a PCFG parser so it works with word lattices.
(Because the runtime of a PCFG parser is dependent on the number of words in
the word lattice, a PCFG parser can be impractical when dealing with large speech
lattices, but our CPUs keep getting faster every year!)






CHUNKING

GRAMMAR INDUCTION

Probabilistic Parsing

THE PRACTICE of parsing can be considered as a straightforward im-
plementation of the idea of chunking - recognizing higher level units of
structure that allow us to compress our description of a sentence. One
way to capture the regularity of chunks over different sentences is to
learn a grammar that explains the structure of the chunks one finds. This
is the problem of grammar induction. There has been considerable work
on grammar induction, because it is exploring the empiricist question of
how to learn structure from unannotated textual input, but we will not
cover it here. Suffice it to say that grammar induction techniques are
reasonably well understood for finite state languages, but that induction
is very difficult for context-free or more complex languages of the scale
needed to handle a decent proportion of the complexity of human lan-
guages. It is not hard to induce some form of structure over a corpus
of text. Any algorithm for making chunks - such as recognizing com-
mon subsequences - will produce some form of chunked representation
of sentences, which we might interpret as a phrase structure tree. How-
ever, most often the representations one finds bear little resemblance to
the kind of phrase structure that is normally proposed in linguistics and
NLP.

Now, there is enough argument and disagreement within the field of
syntax that one might find someone who has proposed syntactic struc-
tures similar to the ones that the grammar induction procedure which
you have sweated over happens to produce. This can and has been taken
as evidence for that model of syntactic structure. However, such an ap-
proach has more than a whiff of circularity to it. The structures found
depend on the implicit inductive bias of the learning program. This sug-
gests another tack. We need to get straight what structure we expect our
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Kennedy

Figure 12.1 A word lattice (simplified).

model to find before we start building it. This suggests that we should
begin by deciding what we want to do with parsed sentences. There are
various possible goals: using syntactic structure as a first step towards
semantic interpretation, detecting phrasal chunks for indexing in an IR
system, or trying to build a probabilistic parser that outperforms n-gram
models as a language model. For any of these tasks, the overall goal is
to produce a system that can place a provably useful structure over arbi-
trary sentences, that is, to build a parser. For this goal, there is no need
to insist that one begins with a tabula rasa. If one just wants to do a
good job at producing useful syntactic structure, one should use all the
prior information that one has. This is the approach that will be adopted
in this chapter.

The rest of this chapter is divided into two parts. The first introduces
some general concepts, ideas, and approaches of broad general relevance,
which turn up in various places in the statistical parsing literature (and a
couple which should turn up more often than they do). The second then
looks at some actual parsing systems that exploit some of these ideas,
and at how they perform in practice.

Some Concepts

Parsing for disambiguation

There are at least three distinct ways in which one can use probabilities
in a parser:
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= Probabilities for determining the sentence. One possibility is to use
a parser as a language model over a word lattice in order to determine
what sequence of words running along a path through the lattice has
highest probability. In applications such as speech recognizers, the
actual input sentence is uncertain, and there are various hypotheses,
which are normally represented by a word lattice as in figure 12.1.1
The job of the parser here is to be a language model that tries to de-
termine what someone probably said. A recent example of using a
parser in this way is (Chelba and Jelinek 1998).

= Probabilities for speedier parsing. A second goal is to use probabil-
ities to order or prune the search space of a parser. The task here
is to enable the parser to find the best parse more quickly while not
harming the quality of the results being produced. A recent study of
effective methods for achieving this goal is (Caraballo and Charniak
1998).

= Probabilities for choosing between parses. The parser can be used
to choose from among the many parses of the input sentence which
ones are most likely.

In this section, and in this chapter, we will concentrate on the third use of
probabilities over parse trees: using a statistical parser for disambigua-
tion.

Capturing the tree structure of a particular sentence has been seen as
key to the goal of disambiguation - the problem we discussed in chap-
ter 1. For instance, to determine the meaning of the sentence in (12.1),
we need to determine what are the meaningful units and how they relate.
In particular we need to resolve ambiguities such as the ones represented
in whether the correct parse for the sentence is (12.2a) or (12.2b), (12.2¢)
or (12.2d), or even (12.2e).

The post office will hold out discounts and service concessions as incen-
tives.

1. Alternatively, they may be represented by an n-best list, but that has the unfortunate
effect of multiplying out ambiguities in what are often disjoint areas of uncertainty in the
signal.
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(12.2) a. S
/\
NP Aux VP
| -
The post office  will \Y% NP PP
hold out NP Conj NP as incentives
|
discounts and service concessions
b. S
/\
NP Aux VP
The post office will VP Conj VP
S \ ] T
A% NP and v NP PP
| \
hold out discounts service concessions as incentives
C. S
T
NP Aux VP
| T
The post office  will \Y% NP
\ T
hold out NP Conj NP
discounts and N N PP
service concessions as incentives
d. S
/\
NP Aux VP
| -
The post office will V PP PP
hold P NP as incentives
| T
out NP Conj NP

discounts and service concessions
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e. S
/\
NP VP
Y
The post office will hold VP Conj VP

RN \ ] T

\% NP and \Y NP PP
|~ \

out discounts service concessions as incentives

One might get the impression from computational linguistics books
that such ambiguities are rare and artificial, because most books contain
the same somewhat unnatural-sounding examples (ones about pens and
boxes, or seeing men with telescopes). But that’s just because simple
short examples are practical to use. Such ambiguities are actually ubi-
quitous. To provide some freshness in our example (12.1), we adopted
the following approach: we randomly chose a Wall Street Journal article,
and used the first sentence as the basis for making our point. Finding
ambiguities was not difficult.? If you are still not convinced about the
severity of the disambiguation problem, then you should immediately do
exercise 12.1 before continuing to read this chapter.

What is one to do about all these ambiguities? In classical categorical
approaches, some ambiguities are seen as genuine syntactic ambiguities,
and it is the job of the parser to return structures corresponding to all
of these, but other weird things that one’s parser spits out are seen as
faults of the grammar, and the grammar writer will attempt to refine
the grammar, in order to generate less crazy parses. For instance, the
grammar writer might feel that (12.2d) should be ruled out, because hold
needs an object noun phrase, and enforce that by a subcategorization
frame placed on the verb hold. But actually that would be a mistake,
because then the parser would not be able to handle a sentence such as:
The flood waters reached a height of 8 metres, but the sandbags held.

In contrast, a statistically-minded linguist will not be much interested
in how many parses his parser produces for a sentence. Normally there
is still some categorical base to the grammar and so there is a fixed finite

2. We refrained from actually using the first sentence, since like so many sentences in
newspapers, it was rather long. It would have been difficult to fit trees for a 38 word
sentence on the page. But for reference, here it is: Postmaster General Anthony Frank, in a
speech to a mailers’ convention today, is expected to set a goal of having computer-readable
bar codes on all business mail by 1995, holding out discounts and service concessions as
incentives.
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number of parses, but statistically-minded linguists can afford to be quite
licentious about what they allow into their grammar, and so they usually
are. What is important is the probability distribution over the parses gen-
erated by the grammar. We want to be able to separate out the few parses
that are likely to be correct from the many that are syntactically possible,
but extremely unlikely. In many cases, we are just interested in “the best
parse,” which is the one deemed to be most likely to be correct. Statistical
parsers generally disambiguate and rate how likely different parses are
as they parse, whereas in conventional parsers, the output trees would
normally be sent to downstream models of semantics and world know-
ledge that would choose between the parses. A statistical parser usually
disambiguates as it goes by using various extended notions of word and
category collocation as a surrogate for semantic and world knowledge.
This implements the idea that the ways in which a word tends to be used
gives us at least some handle on its meaning.

Treebanks

We mentioned earlier that pure grammar induction approaches tend not
to produce the parse trees that people want. A fairly obvious approach
to this problem is to give a learning tool some examples of the kinds
of parse trees that are wanted. A collection of such example parses is
referred to as a treebank. Because of the usefulness of collections of
correctly-parsed sentences for building statistical parsers, a number of
people and groups have produced treebanks, but by far the most widely
used one, reflecting both its size and readily available status, is the Penn
Treebank.

An example of a Penn Treebank tree is shown in figure 12.2. This exam-
ple illustrates most of the major features of trees in the Penn treebank.
Trees are represented in a straightforward (Lisp) notation via bracketing.
The grouping of words into phrases is fairly flat (for example there is no
disambiguation of compound nouns in phrases such as Arizona real es-
tate loans), but the major types of phrases recognized in contemporary
syntax are fairly faithfully represented. The treebank also makes some
attempt to indicate grammatical and semantic functions (the -SBJ and
-LOC tags in the figure, which are used to tag the subject and a locative,
respectively), and makes use of empty nodes to indicate understood sub-
jects and extraction gaps, as in the understood subject of the adverbial
clause in the example, where the empty node is marked as *. In table 12.1,
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( (S (NP-SBJ The move)
(VP followed
(NP (NP a round)
(PP of
(NP (NP similar increases)

(PP by
(NP other Tlenders))

(PP against
(NP Arizona real estate Tloans)))))

(S-ADV (NP-SBJ *)
(VP reflecting
(NP (NP a continuing decline)
(PP-LOC 1in
(NP that market))))))

)

Figure 12.2 A Penn Treebank tree.
S Simple clause (sentence) CONJP Multiword conjunction phrases
SBAR S’ clause with complementizer FRAG Fragment
SBARQ Wh-question S’ clause INTJ Interjection
SQ Inverted Yes/No question S’ clause LST List marker
SINV Declarative inverted S’ clause NAC Not A Constituent grouping
ADJP Adjective Phrase NX Nominal constituent inside NP
ADVP  Adverbial Phrase PRN Parenthetical
NP Noun Phrase PRT Particle
PP Prepositional Phrase RRC Reduced Relative Clause
QP Quantifier Phrase (inside NP) UCP Unlike Coordinated Phrase
VP Verb Phrase X Unknown or uncertain
WHNP  Wh- Noun Phrase WHADJP  Wh- Adjective Phrase
WHPP  Wh- Prepositional Phrase WHADVP Wh- Adverb Phrase

Table 12.1 Abbreviations for phrasal categories in the Penn Treebank. The
common categories are gathered in the left column. The categorization includes
a number of rare categories for various oddities.
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we summarize the phrasal categories used in the Penn Treebank (which
basically follow the categories discussed in chapter 3).

One oddity, to which we shall return, is that complex noun phrases are
represented by an NP-over-NP structure. An example in figure 12.2 is the
NP starting with similar increases. The lower NP node, often referred to
as the ‘baseNP’ contain just the head noun and preceding material such
as determiners and adjectives, and then a higher NP node (or sometimes
two) contains the lower NP node and following arguments and modifiers.
This structure is wrong by the standards of most contemporary syntac-
tic theories which argue that NP postmodifiers belong with the head un-
der some sort of N’ node, and lower than the determiner (section 3.2.3).
On the other hand, this organization captures rather well the notion of
chunks proposed by Abney (1991), where, impressionistically, the head
noun and prehead modifiers seem to form one chunk, whereas phrasal
postmodifiers are separate chunks. At any rate, some work on parsing
has directly adopted this Penn Treebank structure and treats baseNPs as
a unit in parsing.

Even when using a treebank, there is still an induction problem of
extracting the grammatical knowledge that is implicit in the example
parses. But for many methods, this induction is trivial. For example,
to determine a PCFG from a treebank, we need do nothing more than
count the frequencies of local trees, and then normalize these to give
probabilities.

Many people have argued that it is better to have linguists construct-
ing treebanks than grammars, because it is easier to work out the cor-
rect parse of individual actual sentences than to try to determine (often
largely by intuition) what all possible manifestations of a certain rule
or grammatical construct are. This is probably true in the sense that a
linguist is unlikely to immediately think of all the possibilities for a con-
struction off the top of his head, but at least an implicit grammar must
be assumed in order to be able to treebank. In multiperson treebanking
projects, there has normally been a need to make this grammar explicit.
The treebanking manual for the Penn Treebank runs to over 300 pages.

Parsing models vs. language models

The idea of parsing is to be able to take a sentence s and to work out
parse trees for it according to some grammar G. In probabilistic parsing,
we would like to place a ranking on possible parses showing how likely
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each one is, or maybe to just return the most likely parse of a sentence.
Thinking like this, the most natural thing to do is to define a probabilistic
parsing model, which evaluates the probability of trees t for a sentence s
by finding:

P(t|s,G) where ZP(tIs,G)=1
t

Given a probabilistic parsing model, the job of a parser is to find the most
probable parse of a sentence {:

t = argmaxP(t|s,G)
t

This is normally straightforward, but sometimes for practical reasons
various sorts of heuristic or sampling parsers are used, methods which
in most cases find the most probable parse, but sometimes don't.

One can directly estimate a parsing model, and people have done this,
but they are a little odd in that one is using probabilities conditioned
on a particular sentence. In general, we need to base our probability
estimates on some more general class of data. The more usual approach
is to start off by defining a language model, which assigns a probability
to all trees generated by the grammar. Then we can examine the joint
probability P(t,s|G). Given that the sentence is determined by the tree
(and recoverable from its leaf nodes), this is just P(t|G), if yield(t) =
s, and O otherwise. Under such a model, P(t|G) is the probability of a
particular parse of a particular sentence according to the grammar G.
Below we suppress the conditioning of the probability according to the
grammar, and just write P(t) for this quantity.

In a language model, probabilities are for the entire language £, so we
have that:

>  P()=1

{t: yield(t)eL}

We can find the overall probability of a sentence as:

> P(s,t)
t
> P

{t: yield(t)=s}

P(s)



416

(12.7)

12.1.4

PRIMING

12 Probabilistic Parsing

This means that it is straightforward to make a parsing model out of a
language model. We simply divide the probability of a tree in the lan-
guage model by the above quantity. The best parse is given by:

P(t,s)
P(s)

So a language model can always be used as a parsing model for the pur-
pose of choosing between parses. But a language model can also be used
for other purposes (for example, as a speech recognition language model,
or for estimating the entropy of a language).

On the other hand, there is not a way to convert an arbitrary parsing
model into a language model. Nevertheless, noticing some of the biases
of PCFG parsing models that we discussed in chapter 11, a strand of work
at IBM explored the idea that it might be better to build parsing models
directly rather than defining them indirectly via a language model (Je-
linek et al. 1994; Magerman 1995), and directly defined parsing models
have also been used by others (Collins 1996). However, in this work,
although the overall probabilities calculated are conditioned on a partic-
ular sentence, the atomic probabilities that the probability of a parse is
decomposed into are not dependent on the individual sentence, but are
still estimated from the whole training corpus. Moreover, when Collins
(1997) refined his initial model (Collins 1996) so that parsing probabilities
were defined via an explicit language model, this significantly increased
the performance of his parser. So, while language models are not neces-
sarily to be preferred to parsing models, they appear to provide a better
foundation for modeling.

f= argmax P (t|s) = argmax =argmaxP(t,s)
t t t

Weakening the independence assumptions of PCFGs
Context and independence assumptions

It is widely accepted in studies of language understanding that humans
make wide use of the context of an utterance to disambiguate language
as they listen. This use of context assumes many forms, for example the
context where we are listening (to TV or in a bar), who we are listening
to, and also the immediate prior context of the conversation. The prior
discourse context will influence our interpretation of later sentences (this
is the effect known as priming in the psychological literature). People will
find semantically intuitive readings for sentences in preference to weird
ones. Furthermore, much recent work shows that these many sources of
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information are incorporated in real time while people parse sentences.?
In our previous PCFG model, we were effectively making an independence
assumption that none of these factors were relevant to the probability of
a parse tree. But, in fact, all of these sources of evidence are relevant to
and might be usable for disambiguating probabilistic parses. Even if we
are not directly modeling the discourse context or its meaning, we can
approximate these by using notions of collocation to help in more local
semantic disambiguation, and the prior text as an indication of discourse
context (for instance, we might detect the genre of the text, or its topic).
To build a better statistical parser than a PCFG, we want to be able to
incorporate at least some of these sources of information.

Lexicalization

There are two somewhat separable weaknesses that stem from the in-
dependence assumptions of PCFGs. The most often remarked on one is
their lack of lexicalization. In a PCFG, the chance of a VP expanding as a
verb followed by two noun phrases is independent of the choice of verb
involved. This is ridiculous, as this possibility is much more likely with
ditransitive verbs like hand or tell, than with other verbs. Table 12.2
uses data from the Penn Treebank to show how the probabilities of vari-
ous common subcategorization frames differ depending on the verb that
heads the VP.# This suggests that somehow we want to include more in-
formation about what the actual words in the sentence are when making
decisions about the structure of the parse tree.

In other places as well, the need for lexicalization is obvious. A clear
case is the issue of choosing phrasal attachment positions. As discussed
at length in chapter 8, it is clear that the lexical content of phrases almost
always provides enough information to decide the correct attachment
site, whereas the syntactic category of the phrase normally provides very
little information. One of the ways in which standard PCFGs are much

3. This last statement is not uncontroversial. Work in psycholinguistics that is influenced
by a Chomskyan approach to language has long tried to argue that people construct syn-
tactic parses first, and then choose between them in a disambiguation phase (e.g., Frazier
1978). But a variety of recent work (e.g., Tanenhaus and Trueswell 1995, Pearlmutter and
MacDonald 1992) has argued against this and suggested that semantic and contextual
information does get incorporated immediately during sentence understanding.

4. One can’t help but suspect that some of the very low but non-zero entries might reveal
errors in the treebank, but note that because functional tags are being ignored, an NP can
appear after an intransitive verb if it is a temporal NP like last week.
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Verb
Local tree come take think want
VP -V 9.5%  2.6% 4.6% 5.7%
VP - V NP 1.1% 32.1%  0.2% 13.9%
VP -V PP 34.5% 3.1% 7.1%  0.3%
VP — V SBAR 6.6% 0.3% 73.0% 0.2%
VP -V S 2.2% 1.3% 4.8% 70.8%
VP -V NP S 0.1% 5.7%  0.0%  0.3%

VP -V PRT NP 03% 58% 0.0% 0.0%
VP — V PRT PP 6.1% 1.5% 0.2%  0.0%

Table 12.2 Frequency of common subcategorization frames (local trees ex-
panding VP) for selected verbs. The data show that the rule used to expand
VP is highly dependent on the lexical identity of the verb. The counts ignore
distinctions in verbal form tags. Phrase names are as in table 12.1, and tags are
Penn Treebank tags (tables 4.5 and 4.6).

worse than n-gram models is that they totally fail to capture the lexical
dependencies between words. We want to get this back, while maintain-
ing a richer model than the purely linear word-level n-gram models. The
most straightforward and common way to lexicalize a CFG is by having
each phrasal node be marked by its head word, so that the tree in (12.8a)
will be lexicalized as the tree in (12.8b).

(12.8) a. S b. Swalked
/\ /\
NP VP NPSue VPwalked
\ T \ T
NNP VBD PP NNPSue VBDwaIked PPlnto
\ \ N \ \ T
Sue walked P NP Sue walked  Pinto NPgtore
N \ N
into DT NN into  DTe NNgore
\ \ \ \
the store the store

Central to this model of lexicalization is the idea that the strong lexi-
cal dependencies are between heads and their dependents, for example
between a head noun and a modifying adjective, or between a verb and
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a noun phrase object, where the noun phrase object can in turn be ap-
proximated by its head noun. This is normally true and hence this is an
effective strategy, but it is worth pointing out that there are some depen-
dencies between pairs of non-heads. For example, for the object NP in
(12.9):

I got [Np the easier problem [of the two] [to solve]].

both the posthead modifiers of the two and to solve are dependents of the
prehead modifier easier. Their appearance is only weakly conditioned
by the head of the NP problem. Here are two other examples of this
sort, where the head is in bold, and the words involved in the nonhead
dependency are in italics:

a. Her approach was more quickly understood than mine.
b. He lives in what must be the farthest suburb from the university.

See also exercise 8.16.

Probabilities dependent on structural context

However, PCFGs are also deficient on purely structural grounds. Inherent
to the idea of a PCFG is that probabilities are context-free: for instance,
that the probability of a noun phrase expanding in a certain way is inde-
pendent of where the NP is in the tree. Even if we in some way lexical-
ize PCFGs to remove the other deficiency, this assumption of structural
context-freeness remains. But this grammatical assumption is actually
quite wrong. For example, table 12.3 shows how the probabilities of ex-
panding an NP node in the Penn Treebank differ wildly between subject
position and object position. Pronouns, proper names and definite NPs
appear more commonly in subject position while NPs containing post-
head modifiers and bare nouns occur more commonly in object position.
This reflects the fact that the subject normally expresses the sentence-
internal topic. As another example, table 12.4 compares the expansions
for the first and second object NPs of ditransitive verbs. The disprefer-
ence for pronouns to be second objects is well-known, and the preference
for ‘NP SBAR’ expansions as second objects reflects the well-known ten-
dency for heavy elements to appear at the end of the clause, but it would
take a more thorough corpus study to understand some of the other ef-
fects. For instance, it is not immediately clear to us why bare plural



420

12 Probabilistic Parsing

Expansion % as Subj % as Obj
NP — PRP 13.7% 2.1%
NP — NNP 3.5% 0.9%
NP — DT NN 5.6% 4.6%
NP — NN 1.4% 2.8%
NP — NP SBAR 0.5% 2.6%
NP — NP PP 5.6% 14.1%

Table 12.3 Selected common expansions of NP as Subject vs. Object, ordered
by log odds ratio. The data show that the rule used to expand NP is highly
dependent on its parent node(s), which corresponds to either a subject or an
object.

Expansion % as 1st Obj % as 2nd Obj
NP — NNS 7.5% 0.2%
NP — PRP 13.4% 0.9%
NP — NP PP 12.2% 14.4%
NP — DT NN 10.4% 13.3%
NP — NNP 4.5% 5.9%
NP — NN 3.9% 9.2%
NP — JJ NN 1.1% 10.4%
NP — NP SBAR 0.3% 5.1%

Table 12.4 Selected common expansions of NP as first and second object inside
VP. The data are another example of the importance of structural context for
nonterminal expansions.

nouns are so infrequent in the second object position. But at any rate,
the context-dependent nature of the distribution is again manifest.

The upshot of these observations is that we should be able to build
a much better probabilistic parser than one based on a PCFG by better
taking into account lexical and structural context. The challenge (as so
often) is to find factors that give us a lot of extra discrimination while
not defeating us with a multiplicity of parameters that lead to sparse
data problems. The systems in the second half of this chapter present a
number of approaches along these lines.
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@ S (b) S
NP VP NP VP
N VP N VP
astronomers VP astronomers VP
astronomers V NP astronomers V NP
astronomers saw NP astronomers V N
astronomers saw N astronomers V telescopes
astronomers saw telescopes astronomers saw telescopes

Figure 12.3 Two CFG derivations of the same tree.

Tree probabilities and derivational probabilities

In the PCFG framework, one can work out the probability of a tree by just
multiplying the probabilities of each local subtree of the tree, where the
probability of a local subtree is given by the rule that produced it. The
tree can be thought of as a compact record of a branching process where
one is making a choice at each node, conditioned solely on the label of the
node. As we saw in chapter 3, within generative models of syntax,” one
generates sentences from a grammar, classically by starting with a start
symbol, and performing a derivation which is a sequence of top-down
rewrites until one has a phrase marker all of whose leaf nodes are termi-
nals (that is, words). For example, figure 12.3 (a) shows the derivation of
a sentence using the grammar of table 11.2, where at each stage one non-
terminal symbol gets rewritten according to the grammar. A straightfor-
ward way to make rewrite systems probabilistic is to define probability
distributions over each choice point in the derivation. For instance, at
the last step, we chose to rewrite the final N as telescopes, but could have
chosen something else, in accord with the grammar. The linear steps of
a derivational process map directly onto a standard stochastic process,
where the states are productions of the grammar. Since the generative
grammar can generate all sentences of the language, a derivational model
is inherently a language model.

Thus a way to work out a probability for a parse tree is in terms of
the probability of derivations of it. Now in general a given parse tree
can have multiple derivations. For instance, the tree in (12.11) has not

5. In the original sense of Chomsky (1957); in more recent work Chomsky has suggested
that ‘generative’ means nothing more than ‘formal’ (Chomsky 1995: 162).
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only the derivation in figure 12.3 (a), but also others, such as the one in
figure 12.3 (b), where the second NP is rewritten before the V.

S

/\
NP VP

‘ /\
N \% NP

astronomers saw N

telescopes

So, in general, to estimate the probability of a tree, we have to calculate:

P(t) = > P(d)
{d: d is a derivation of t}

However, in many cases, such as the PCFG case, this extra complication
is unnecessary. It is fairly obvious to see (though rather more difficult
to prove) that the choice of derivational order in the PCFG case makes
no difference to the final probabilities.® Regardless of what probability
distribution we assume over the choice of which node to rewrite next in a
derivation, the final probability for a tree is otherwise the same. Thus we
can simplify things by finding a way of choosing a unique derivation for
each tree, which we will refer to as a canonical derivation. For instance,
the leftmost derivation shown in figure 12.3 (a), where at each step we
expand the leftmost non-terminal can be used as a canonical derivation.
When this is possible, we can say:

P(t) = P(d) where d is the canonical derivation of t

Whether this simplification is possible depends on the nature of the prob-
abilistic conditioning in the model. It is possible in the PCFG case because
probabilities depend only on the parent node, and so it doesn’t matter if
other nodes have been rewritten yet or not. If more context is used,
or there are alternative ways to generate the same pieces of structure,
then the probability of a tree might well depend on the derivation. See
sections 12.2.1 and 12.2.2.7

6. The proof depends on using the kind of derivation to tree mapping developed in
(Hopcroft and Ullman 1979).
7. Even in such cases, one might choose to approximate tree probabilities by estimating
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Let us write oy 4 «y, for an individual rewriting step r; rewriting the
string oy as «,. To calculate the probability of a derivation, we use the
chain rule, and assign a probability to each step in the derivation, con-
ditioned by preceding steps. For a standard rewrite grammar, this looks
like this:

m
Pd)=PS>o1 20>, Bam=s) = [[Prilr,...ri1)

i=1
We can think of the conditioning terms above, that is, the rewrite rules
already applied, as the history of the parse, which we will refer to as h;.
So hj = (r1,...,ri—1). This is what led to the notion of history-based
grammars (HBGs) explored initially at IBM. Since we can never model the
entire history, normally what we have to do is form equivalence classes
of the history via an equivalencing function 7t and estimate the above as:

m
P(d) = [[P(rilmt(h))

i=1
This framework includes PCFGs as a special case. The equivalencing func-
tion for PCFGs simply returns the leftmost non-terminal remaining in the
phrase marker. So, 1 (h;) = 1 (h;) iff leftmostyr () = leftmostyy(«;).

There’s more than one way to do it

The way we augmented a CFG with probabilities in chapter 11 seems so
natural that one might think that this is the only, or at least the only
sensible, way to do it. The use of the term PCFG - probabilistic context-
free grammar - tends to give credence to this view. Hence it is impor-
tant to realize that this is untrue. Unlike the case of categorical context
free languages, where so many different possibilities and parsing meth-
ods converge on strongly or weakly equivalent results, with probabilistic
grammars, different ways of doing things normally lead to different prob-
abilistic grammars. What is important from the probabilistic viewpoint
is what the probabilities of different things are conditioned on (or look-
ing from the other direction, what independence assumptions are made).
While probabilistic grammars are sometimes equivalent - for example

them according to the probabilities of a canonical derivation, but this could be expected
to have a detrimental effect on performance.
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an HMM working from left-to-right gives the same results as one work-
ing from right-to-left, if the conditioning fundamentally changes, then
there will be a different probabilistic grammar, even if it has the same
categorical base. As an example of this, we will consider here another
way of building a probabilistic grammar with a CFG basis, Probabilistic
Left-Corner Grammars (PLCGS).

Probabilistic left-corner grammars

If we think in parsing terms, a PCFG corresponds to a probabilistic version
of top-down parsing. This is because at each stage we are trying to predict
the child nodes given knowledge only of the parent node. Other parsing
methods suggest different models of probabilistic conditioning. Usually,
such conditioning is a mixture of top-down and bottom-up information.
One such possibility is suggested by a left-corner parsing strategy.

Left corner parsers (Rosenkrantz and Lewis 1970; Demers 1977) work
by a combination of bottom-up and top-down processing. One begins
with a goal category (the root of what is currently being constructed),
and then looks at the left corner of the string (i.e., one shifts the next
terminal). If the left corner is th