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Preface

The papers in this volume formed the programme of the 7%¢ International Confer-
ence on Computational Models of Argument (COMMA ), which was hosted by the Dept.
of Computer Science of The University of Liverpool from Sept. 11t"~12t" 2006. This
conference originated from the ASPIC project! from which significant support has been
received. The organisers are happy to take this opportunity to acknowledge the contribu-
tion of ASPIC towards arranging this inaugural meeting of COMMA.

The field of argumentation, once the preserve of linguistic and philosophical inves-
tigation, is now rightly seen as providing a core approach of great significance to many
aspects of Artificial Intelligence. A central challenge for A.I. researchers, however, con-
cerns how best to develop the long established body of work from more speculative dis-
ciplines, such as philosophical treatments of argument and reasoning, into effective and
practical computational paradigms: one aim of COMMA, well reflected in the papers con-
tributing to this volume, has been to engage with the issues raised by this challenge. Thus
the topics addressed range from formal questions involving properties of algorithms and
semantic models, through proposals for robust implementation of argumentation based
systems, to reports of applications built on argumentation technology.

It is, of course, the case that the success of any conference depends not only on the
quality of the research presented but also on the contributions of many other individuals.
The organisers are grateful to the members of the Programme Committee and additional
reviewers whose detailed reports and subsequent discussions considerably eased the dif-
fult task of forming the final selection of papers. It is also a pleasure to thank Ken Chan,
Phil Jimmieson and Dave Shield for their work in providing technical support throughout
the period from the initial announcement to the conference itself, together with Thelma
Williams who kept track of assorted budget and financial matters. In addition the editors
appreciate the efforts of Carry Koolbergen, Maarten Frohlich, and Paul Weij of IOS Press
in promptly and efficiently handling the many questions that arose during the prepara-
tion of this volume. Finally, and by no means least, we thank Catherine Atherton who
maintained the conference web pages as well as dealing with general queries.

June 2006 Paul E. Dunne
Trevor Bench-Capon
Michael Wooldridge

'European Commission Project, IST-FP6-002307
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Towards Representing and Querying
Arguments on the Semantic Web

Iyad Rahwan > * and P.V. Sakeer?®

& British University in Dubai, UAE
b (Fellow) University of Edinburgh, UK

Abstract. This paper demonstrates the potential of the Semantic Web as a platform
for representing, navigating and processing arguments on a global scale. We use
the RDF Schema (RDFS) ontology language to specify the ontology of the recently
proposed Argument Interchange Format (AIF) and an extension thereof to Toul-
min’s argument scheme. We build a prototype Web-based system for demonstrat-
ing basic querying for argument structures expressed in the Resource Description
Framework (RDF). An RDF repository is created using the Sesame open source
RDF server, and can be accessed via a user interface that implements various user-
defined queries.

Keywords. Argumentation, Semantic Web, Agents, RDF

1. Introduction

Argumentation is a verbal and social activity of reason aimed at increasing (or decreas-
ing) the acceptability of a controversial standpoint for the listener or reader, by putting
forward a constellation of propositions intended to justify (or refute) the standpoint be-
fore a rational judge [1, page 5]. In a computational or multi-agent system, the rational
Jjudge could correspond to a particular choice of rules or algorithm for computing the ac-
ceptable arguments for deciding the agent that wins the argument. Moreover, the stand-
point may not necessarily be propositional, and should be taken in the broadest sense
(e.g. it may refer to a decision or a value judgement). Finally, the term controversial
should also be taken in the broad sense to mean “subject to potential conflict.”

The theory of argumentation is a rich, interdisciplinary area of research lying across
philosophy, communication studies, linguistics, and psychology. Its techniques and re-
sults have found a wide range of applications in both theoretical and practical branches
of artificial intelligence and computer science [2,3,4].

While argumentation mark-up languages such as those of Araucaria [5], Com-
pendium and ASCE (see [6] for example) already exist, they are primarily a means to
enable users to structure arguments through diagrammatic linkage of natural language
sentences. Moreover, these mark-up languages do not have rich formal semantics, and
are therefore not designed to enable sophisticated automated processing of argumenta-

*Correspondence to: Iyad Rahwan, the British University in Dubai, P.O.Box 502216, Dubai, UAE. Tel.:
+971 4 367 1959; Fax: +971 4 366 4698; E-mail: irahwan@acm.org.
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tive statements. Such semantics may help improve applications of electronic deliberative
democracy [7,8,9,10] by enabling citizens to annotate, query and navigate arguments and
elements of arguments. Rich formal semantics may also improve capabilities for argu-
mentation among autonomous software agents [11,12,13,14] by enabling the exchange
arguments in open multi-agent systems using a standardised format.

In response to the above, an effort towards a standard Argument Interchange For-
mat (AIF) has recently commenced [15]. The aim was to consolidate the work that has
already been done in argumentation mark-up languages and multi-agent systems frame-
works. It was hoped that this effort will provide a convergence point for theoretical and
practical work in this area, and in particular facilitate: (i) argument interchange between
agents within a particular multi-agent framework; (ii) argument interchange between
agents across separate multi-agent frameworks; (iii) inspection/manipulation of agent ar-
guments through argument visualisation tools; and (iv) interchange between argumenta-
tion visualisation tools.

This paper presents a first step towards representing arguments on the World Wide
Web using open, rich, and formal semantic annotation. We present building blocks for de-
veloping Web-based systems for navigating and querying argument structures expressed
in the Resource Description Framework (RDF). The RDF representation of arguments
conforms to an ontology of arguments, which is based on the AIF specification and ex-
pressed in the RDF Schema language. By expressing the AIF ontology in a standard
format (namely RDF), it becomes possible to use a variety of Semantic Web tools (e.g.
RDF query engines) to access and process arguments. This approach opens up many
possibilities for automatic argument processing on a global scale.

The rest of the paper is organised as follows. In the next Section, we summarise the
current state of the Argument Interchange Format specification. In Section 3, we describe
how RDF and RDF Schema can be used to specify argument structures. We discuss some
related work in Section 4 and conclude the paper in Section 5.

2. The Argument Interchange Format Ontology

In this section, we provide a brief overview of the current state of the Argument Inter-
change Format. We will use the AIF specification as of April 2006 [15]. The AIF is a core
ontology of argument-related concepts. This core ontology is specified in such a way
that it can be extended to capture a variety of argumentation formalisms and schemes.
To maintain generality, the AIF core ontology assumes that argument entities can be rep-
resented as nodes in a directed graph (di-graph). This di-graph is informally called an
argument network (AN).

2.1. Nodes

There are two kinds of nodes in the AIF, namely, information nodes (I-nodes) and scheme
application nodes or scheme nodes (S-nodes) for short. Roughly speaking, I-Nodes con-
tain content that represent declarative aspects of the the domain of discourse, such as
claims, data, evidence, propositions etc. On the other hand, S-nodes are applications of
schemes. Such schemes may be considered as domain-independent patterns of reason-
ing, including but not limited to rules of inference in deductive logics. The present on-
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the form of a claim

the form of a scheme
application

to I-node to RA-node to PA-node
from I-node data/information used in | data/information used in
applying an inference applying a preference
from RA-node | inferring a conclusion in | inferring a conclusion in | inferring a conclusion in

the form of a preference
application

from PA-node

applying preferences
among information
(goals, beliefs, ..)

applying preferences
among inference
applications

meta-preferences:
applying preferences
among preference

applications

Table 1. Informal semantics of support.

tology deals with two different types of schemes, namely inference schemes and attack
schemes. Potentially other scheme types could exist, such as evaluation schemes and
scenario schemes, which will not be addressed here.

The ontology specifies two types of S-Nodes. If a scheme application node is an
application of an inference scheme it is called a rule of inference application node (RA-
node). If a scheme application node is an application of a preference scheme it is called
a preference application node (PA-node). Informally, RA-nodes can be seen as appli-
cations of rules of inference while PA-nodes can be seen as applications of (possibly
abstract) criteria of preference among evaluated nodes.

2.2. Node Attributes

Nodes may possess different attributes that represent things like title, text, creator, type
(e.g. decision, action, goal, belief), creation date, evaluation, strength, acceptability, and
polarity (e.g. with values of either “pro” or “con”). These attributes may vary and are
not part of the core ontology. Attributes may be intrinsic (e.g. “evidence”), or may be
derived from other attributes (e.g. “acceptability” of a claim may be based on computing
the “strength” of supporting and attacking arguments).

2.3. Edges

According to the AIF core ontology, edges in an argument network can represent all sorts
of (directed) relationships between nodes, but do not necessarily have to be labelled with
semantic pointers. A node A is said to support node B if and only if an edge runs from
Ato B!

There are two types of edges, namely scheme edges and data edges. Scheme edges
emanate from S-nodes and are meant to support conclusions. These conclusions may
either be I-nodes or S-nodes. Data edges emanate from I-nodes, necessarily end in S-
nodes, and are meant to supply data, or information, to scheme applications. In this way,
one may speak of I-to-S edges (e.g. representing “information,” or “data” supplied to a
scheme), S-to-I edges (e.g. representing a “conclusion” supplied by a scheme) and S-to-S
edges (e.g. representing one scheme’s attack against another scheme).

INote that this is a rather lose use of the word “support” and is different from the notion of “support between
arguments” in which one argument supports the acceptability of another argument.
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2.4. Extending the Ontology: Toulmin’s Argument Scheme

Philosopher Stephen Toulmin presented a general argument scheme for analysing ar-
gumentation. Toulmin’s scheme, which has recently become influential in the compu-
tational modelling of argumentation, consists of a number of elements which are often
depicted graphically as follows:

D—QC
|

since W unless R

|
B

The various elements are interpreted as follows:

Claim (C): This is the assertion that the argument backs.
Data (D): The evidence (e.g. fact, an example, statistics) that supports the claim.

Warrant (W): This is what holds the argument together, linking the evidence to the
claim.

Backing (B): The backing supports the warrant; it acts as an evidence for the warrant.

Rebuttal (R): A rebuttal is an argument that might be made against the claim, and is
explicitly acknowledged in the argument.

Qualifier (Q): This element qualifies the conditions under which the argument holds.

An example of an argument expressed according to Toulmin’s scheme can be as follows.
The war in Irat (a fictional country) is justified (C) because there are weapons of mass
destruction (WMDs) in Irat (D) and all countries with weapons of mass destructions must
be attacked (W). Countries with WMDs must be attacked because they pose danger to
others (B). This argument for war on Irat can be rebutted if the public do not believe the
CIA intelligence reports about Irat possessing WMDs (R). Finally, this argument only
holds if attacking Irat is less damaging than the potential damage posed by its WMDs
Q).

Toulmin’s argument scheme may be represented as an extension of the AIF core on-
tology. In particular, the concepts of claim, data, backing, qualifier and rebuttal can all
be expressed as sub-classes of I-Node. The concept of warrant, on the other hand, is an
extension of RA-Nodes. This is because the former concepts all represent passive propo-
sitional knowledge, while the warrant is what holds the scheme together. In addition,
since I-Nodes cannot be linked directly to one another, we introduce two new extensions
of RA-Nodes. The new qualifier-application nodes link qualifier nodes to claim nodes,
while rebuttal-application nodes link rebuttal nodes to claim nodes.

3. Arguments in RDF/RDFS

In this section, we describe the specification of the AIF ontology, and its extension to
Toulmin’s argument scheme, in RDF Schema.
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3.1. Background: XML, RDF and RDFS

The Extensible Mark-up Language (XML) is a W3C standard language for describing
document structures by ragging parts of documents. XML documents provide means for
nesting tagged elements, resulting in a directed tree-based structure. The XML Document
Type Definition (DTD) and XML Schema languages can be used to describe different
types of XML documents.

The Resource Description Framework (RDF)? is a general framework for describing
Internet resources. RDF defines a resource as any object that is uniquely identifiable by
an Uniform Resource Identifier (URI). Properties (or attributes) of resources are defined
using an object-attribute-value triple, called a statement.’> RDF statements can be repre-
sented as 3-tuples, as directed graphs, or using a standard XML-based syntax. The dif-
ferent notations are shown in Figure 1. Attributes are sometimes referred to as properties
or predicates.

Graphical notation: lyad Rahwan phone

Tuple notation: ("lyad Rahwan ", phone, "3671959")

XML notation: <rdf :Description rdf :about="lyad Rahwan ">
<phone>3671959</phone>
</rdf :Description>

Figure 1. Different notations for RDF statements

Unlike XML, which describes document models in directed-tree-based nesting of
elements, RDF’s model is based on arbitrary graphs. This structure is better suited for
creating conceptual domain models. RDF provides a more concise way of describing
rich semantic information about resources. As a result, more efficient representation,
querying and processing of domain models become possible.

RDF Schema (RDFS)* is an (ontology) language for describing vocabularies in RDF
using terms described in the RDF Schema specification. RDFS provides mechanisms
for describing characteristics of resources through, for example, domains and ranges
of properties, classes of resources, or class taxonomies. RDFS (vocabulary-describing)
statements are themselves described using RDF triples.

3.2. AIF and Toulmin’s Scheme in RDF Schema

We have first specified the AIF core ontology in RDFS using the Protégé ontology de-
velopment environment.” The main class Node was specialised to two types of nodes:
I-Node and S-Node. The S-Node class was further specialised to two more classes:
PA-Node and RA-Node. For example, the following RDFS code declares the class
PA-Node and states that it is a sub-class of the class S-Node.

’http://www.w3.org/RDF/

3Sometimes, an attribute is referred to as a property or a slot.
4http://www.w3.org/TR/rdf-schema/
Shttp://protege.stanford.edu/
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<rdfs:Class rdf:about="&kb;PA_Node" rdfs:label="PA_Node">
<rdfs:subClassOf rdf:resource="&kb; S-Node"/>
</rdfs:Class>

Next, the following elements from Toulmin’s scheme were introduced as I-Nodes:
claim, data, backing, rebuttal, and qualifier. All these elements represent passive declar-
ative knowledge. Toulmin’s warrant was expressed as an RA-Node, since it holds part of
the argument together, namely the data nodes and the claim. Similarly, we introduced two
other types of RA-Nodes: Rebuttal-Application nodes are used to link rebuttal
nodes to claims, while Qualifier-Application nodes are used to link qualifier
nodes to claims. The resulting ontology is represented in Figure 2.

Node ToulminArgument Scheme

I-Node S-Node

TR N =

is-a . o
/ /1s a is-a |s—a\ \ is-a is-a

Claim Data Backing Rebuttal Qualifier RA-Node PA-Node
is-a is-a is-a
Rebuttal-Application Warrant Qualifier-Application

Figure 2. Toulmin argument class hierarchy as an extension of AIF ontology

Note that the concept ToulminArgument is a standalone concept. Instances of
this concept will represent complete arguments expressed in Toulmin’s scheme. Such
instances must therefore refer to instances of the various elements of the scheme. The
ontology imposes a number of restrictions on these elements and their interrelation-
ships. In particular, each Toulmin argument must contain exactly one claim, exactly
one warrant, exactly one qualifier, at least one backing, and at least one datum. As
an example, the following RDFS code declares the property claim which links in-
stances of ToulminArgument to instances of type Claim, and states that each
ToulminArgument must be linked to exactly one Claim:

<rdf:Property rdf:about="&kb;claim"
a:maxCardinality="1"
a:minCardinality="1"
rdfs:label="claim">
<rdfs:domain rdf:resource="&kb; ToulminArgument"/>
<rdfs:range rdf:resource="g&kb;Claim"/>
</rdf:Property>
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In our ontology, we defined various predicates to capture every type of edge, such as
those that emanate from backing nodes to warrant nodes, those from warrants to claims,
and so on.

Note that according to our ontology, a single claim node can belong to multiple in-
stances of Toulmin arguments, denoting multiple reasons for believing the claim. Simi-
larly, a single data node could contribute to multiple unrelated claims. The RDF graph
model enables such flexibility.

With the ontology in place, it is now possible to create instances of the Toulmin
argument scheme in RDF. Figure 3 shows the argument mentioned above for justifying
the war on Irat. Each box represents an RDF resource, which is an instance of the relevant
node type, while edges represent RDF predicates. In addition, all these resources are
linked to an instance (named “IratWar”) of the class ToulminArgument, but we
omit these links for clarity purposes. In the Figure, we distinguished S-Nodes by dotted
boxes although they are not treated differently from the point of view of RDF processing
tools.

' Warrant: Countries !
, with WMD's must ——warrant-to-claim —»
be attacked

Claim: War on Irat
is justified

data-to-warrant T AT . .
qualifierapp -to-claim  rebuttalapp -to-claim

backing-to-warrant

! Qualifier- ' Rebuttal- |

+ Application | ' A

Data: There are Backing: Countires pp _______ ! ' Application :

WMDs in Irat with WMD's are T ............
dangerovs qualifier-to- qualifierapp ey ttal-to- rebuttalapp

Qualifier: attacking Irat Rebuttal: CIA
is less damaging than reports about Irat
the potential damage possessing WMDs
posed by its  WMDs not credible

Figure 3. RDF graph for elements of Toulmin argument instance “IratWar”

Note that in practice, each of these elements of the argument instance may reside
on a different location on the Web. For example, the backing text can be replaced by a
reference to a full on-line newspaper article explaining the different dangers countries
with WMDs pose. We believe that this feature of RDF could be instrumental for building
a layer of argument structures on top of existing Web content.

Finally, we note that the above description is not the only way of representing the
Toulmin scheme diagrammatically. Indeed, a Toulmin argument can be represented in
more ways than one while, more or less, preserving its semantics. While such represen-
tations are outside the scope of this paper, we refer the interested reader to the extensive
analysis by Reed and Rowe [16].
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3.3. Deploying an RDF Repository of Arguments

Our ultimate aim is to provide an infrastructure for publishing semantically annotated
arguments on the Semantic Web using a language that is semantically rich and amenable
to machine processing. The choice of RDF as a representation language was motivated
by its expressive power and the availability of tools for navigating and processing RDF
statements.

In order to test our idea, we uploaded the argument instances on Sesame:® an open
source RDF repository with support for RDF Schema inferencing and querying. Sesame
can be deployed on top of a variety of storage systems (relational databases, in-memory,
filesystems, keyword indexers, etc.), and offers a large set of tools for developers to lever-
age the power of RDF and RDF Schema, such as a flexible access API, which supports
both local and remote access, and several query languages, such as RQL and SeRQL
[17]. Sesame itself was deployed on the Apache Tomcat server, which is essentially a
Java servlet container.

We have written a number of queries to demonstrate the applicability of our ap-
proach. The following query retrieves all warrants, data and backings for the different
arguments in favour of the claim that “War on Irat is justified.”

select WARRANT-TEXT, DATA-TEXT, BACKING-TEXT, CLAIM-TEXT
from {WARRANT} kb:scheme-edge-warrant-to-claim {CLAIM},
{WARRANT} kb:text {WARRANT-TEXT},
{DATA} kb:data-edge-data-to-warrant {WARRANT},
{DATA} kb:text {DATA-TEXT},
{BACKING} kb:data-edge-backing-to-warrant {WARRANT},
{BACKING} kb:text {BACKING-TEXT},
{CLAIM} kb:text {CLAIM-TEXT}
where
CLAIM-TEXT like "War in Irat is justified"
using namespace kb = http://protege.stanford.edu/kb#

The output of the above query returned by Sesame will be the following, showing two
arguments. The first justifies war on Irat on the basis of the presence of WMDs. The
second argument justifies the war on the basis of removing the country’s dictator (a
fictional character named “Saddad”).

WARRANT-TEXT DATA-TEXT BACKING-TEXT CLAIM-TEXT
Countries with WMD’s | There are WMD’s | Countries with WMD’s | War on Irat is justified
must be attacked in Irat are dangerous
Countries ruled by dicta- | Saddad is a dictator | Dictatorships pose secu- | War on Irat is justified
tors must be attacked rity threats on neigh-

bours

Suppose that after retrieving the first argument, a user or an automated agent is inter-
ested in finding out what other claims are supported by the warrant “All Countries with
WMD’s must be attacked.” This information can be found using the following query.

Shttp://www.openrdf.org/
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select WARRANT-TEXT, CLAIM-TEXT
from {WARRANT} kb:scheme-edge-warrant-to-claim {CLAIM},
{WARRANT} kb:text {WARRANT-TEXT},
{DATA} kb:data-edge-data-to-warrant {WARRANT},
{DATA} kb:text {DATA-TEXT},
{BACKING} kb:data-edge-backing-to-warrant {WARRANT},
{BACKING} kb:text {BACKING-TEXT},
{CLAIM} kb:text {CLAIM-TEXT}
where
WARRANT-TEXT like
"All Countries with WMD’s must be attacked"
using namespace kb = http://protege.stanford.edu/kb#

The output of this query is as follows:
WARRANT-TEXT CLAIM-TEXT

Countries with WMD’s must be attacked War on Irat is justified
Countries with WMD’s must be attacked War on USO is justified

In this case, the same warrant used to justify the war against Irat may be used to
justify war against the USO (another fictional country).

These queries demonstrate the potential of using the structure of RDF and the ex-
pressiveness of RDF query languages to navigate arguments on the Web. Query results
can be retrieved via Sesame in XML for further processing. In this way, we could build
a more comprehensive system for navigating argument structures through an interactive
user interface that triggers such queries.

4. Related Work

A number of argument mark-up languages have been proposed. For example, the Assur-
ance and Safety Case Environment (ASCE) is a graphical and narrative authoring tool
for developing and managing assurance cases, safety cases and other complex project
documentation. ASCE relies on an ontology for arguments about safety based on claims,
arguments and evidence [18].

Another mark-up language was developed for Compendium,® a semantic hypertext
concept mapping tool. The Compendium argument ontology enables constructing Issue
Based Information System (IBIS) networks, in which nodes represent issues, positions
and arguments [19].

A third mark-up language is the argument-markup language (AML) behind the
Araucaria system,” an XML-based language [5]. The syntax of AML is specified in a
Document Type Definition (DTD) which imposes structural constraints on the form of
legal AML documents. AML was primarily produced for use in the Araucaria tool. For
example, the DTD could state that the definition of an argument scheme must include a
name and any number of critical questions.

Thttp://www.adelard.co.uk/software/asce/
8http://www.compendiuminstitute.org/tools/compendium.hhtm
http://araucaria.computing.dundee.ac.uk/
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ClaiMaker and related technologies [20] provide a set of tools for individuals or
distributed communities to publish and contest ideas and arguments, as is required in
contested domains such as research literatures, intelligence analysis, or public debate. It
provides tools for constructing argument maps, and a server on which they can then be
published, navigated, filtered and visualized using the ClaimFinder semantic search and
navigation tools [21]. This system is based on a specific ontology called the ScholOnto
ontology [22].

The above attempts at providing argument mark-up languages share some following
limitation. Each of these mark-up languages is designed for use with a specific tool, usu-
ally for the purpose of facilitating argument visualisation. They were not intended for
facilitating inter-operability of arguments among a variety of tools. As a consequence,
the semantics of arguments specified using these languages are tightly coupled with par-
ticular schemes to be interpreted in a specific tool and according to a specific underlying
theory. For example, arguments in Compendium are interpreted in relation to a specific
theory of issue-based information systems. In order to enable true interoperability of ar-
guments and argument structures, we need an argument description language that can be
extended in order to accommodate a variety of argumentation theories and schemes. The
AIF, as captured in RDF/RDEFS, has the potential to form the basis for such a language.

Another limitation of the above argument mark-up languages is that they are primar-
ily aimed at enabling users to structure arguments through diagramatic linkage of natu-
ral language sentences [6]. Hence, these mark-up languages are not designed to process
formal logical statements such as those used within multi-agent systems. For example,
AML imposes structural limitations on legal arguments, but provides no semantic model.
Such semantic model is needed in order to enable the automatic processing of argument
structures by software agents.

5. Conclusion

In this paper, we investigated the potential of the Semantic Web as a platform for rep-
resenting, navigating and processing arguments on a global scale. We used the RDF
Schema (RDFS) ontology language to specify the ontology of the recently proposed
Argument Interchange Format (AIF) and an extension thereof to Toulmin’s argument
scheme. We built a prototype Web-based system for demonstrating basic querying for
argument structures expressed in the Resource Description Framework (RDF).

Our future plans include extending the AIF core ontology to other argument
schemes, such as Walton’s schemes for presumptive reasoning [23]. By doing so, we
hope to validate the applicability of our approach and identify the limitations of RDF and
RDFS for representing argument structures. A more expressive ontology language, such
as OWL [24], may be needed.

Another future direction for our work is to build applications that exploit the rich
semantics of arguments provided by Semantic Web ontologies. Such applications could
range from sophisticated argument processing and navigation tools to support human
interaction with argument content, to purely automated applications involving multiple
interacting agents operating on Web-based argument structures.
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Abstract. In order for one agent to meet its goals, it will often need to influence
another to act on its behalf, particularly in a society in which agents have heteroge-
nous sets of abilities. To effect such influence, it is necessary to consider both the
social context and the dialogical context in which influence is exerted, typically
through utterance. Both of these facets, the social and the dialogical, are affected by,
and in turn affect, the plan that the influencing agent maintains, and the plans that
the influenced agents may be constructing. The i-Xchange project seeks to bring
together three closely related areas of research: in distributed planning, in agent-
based social reasoning, and in inter-agent argumentation, in order to solve some of
the problems of exerting influence using socially-aware argument.

Keywords. Multiagent Planning, Argument Protocols, Social Reasoning, Negotiation

1. Introduction

Negotiation is a key form of interaction in multi-agent systems. It is important because
conflict is endemic in such systems and because the individual agents are autonomous
problem solving entities that are typically concerned with achieving their own aims and
objectives. Given its importance, such negotiations come in many different shapes and
forms, ranging from auctions to bilateral negotiations to argumentation. Here we focus
on this latter kind of interaction because it offers perhaps the greatest degree of flexibility
out of all these many different types. However, this flexibility comes at a price. Specifi-
cally, conceptualizing, designing, and building agents that are capable of argumentation-
based negotiation is a major challenge. Given this fact, most work in this area is pri-
marily directed at the theory of such agents and those implementations that do exist are
somewhat primitive in nature. Moreover, much of the theoretical work in this area tends
to concentrate on a specific aspect of the negotiation and fails to provide a coherent over-
arching framework. Against this background, we describe our work in the Information
Exchange Project (i-Xchange) that seeks to rectify these shortcomings.

In more detail, this work seeks to integrate and pull together the following key com-
ponents of an agent’s activity as it relates to argumentation-based negotiation:

e The ability of an agent to devise a plan of action that takes account of the fact
that the agent is situated within a multi-agent community. Thus such an agent can
devise a plan that involves steps that will be performed by agents other than itself.
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Figure 1. The structural components of the i-Xchange architecture

e For those actions that need to be performed by other agents, social reasoning is
required to determine what agents should be chosen to perform what actions. This
involves determining which agents are most suited for the task, which are likely
to be available, and which are likely to be the most reliable.

e Once the appropriate agents have been identified, the agent needs to determine the
most effective way of persuading these agents to perform the desired action. This
dialogical goal can be achieved through a variety of means such as by offering
rewards, making threats, or making use of social relationships that exist between
the agents.

By bringing together these key building blocks, we are able to produce a coherent frame-
work and software architecture for an agent that can perform a complete planning-acting
cycle in which argumentation is used as the basis for all social inter-changes. As well as
detailing the various components and their interfaces, we also demonstrate their opera-
tion in an e-Science scenario that has motivated much of this work.

2. The Information Exchange

The i-Xchange uses two multiagent system frameworks; JACK and JUDE (the Jack-
daw University Development Environment. JUDE is a lightweight, flexible, industrial-
strength agent platform that uses a modular approach to agent development. This enables
domain specific functionality to be encapsulated into a module which can be dynamically
loaded into an agent at runtime. Individual agents within the i-Xchange are represented
by JUDE agents composed of a number of modules. A proxy module incorporating a
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communications bridge allows a 1:1 relationship with JACK agents. The reason for the
use and integration of multiple disparate frameworks is twofold, firstly it allows existing
domain specific software to be used without reimplementation, and secondly it demon-
strates that agents can be developed under different extant frameworks and integrated
into a single heterogeneous MAS.

An i-Xchange agent is composed of three modules offering domain specific func-
tionality. These are the planning, social-reasoning, and dialogical argumentation modules
which are discussed through the remainder of this section. Figure 2 gives an overview
of the components and modules that comprise the infrastructure for an i-Xchange MAS.
Modules communicate with each other to provide aggregate behaviours. Inter-module
communication is achieved by passing data objects between modules. Two such objects
are the service request and the proposal. A service request is created by the Planning
module to encapsulate a partial plan consisting of a set of actions and the name of an
agent committed to perform the actions (initially set to L). A proposal is created by the
dialogical argumentation module during a dialogue to encapsulate a service request re-
ceived from another agent and any associated social issues. Figure 2 shows a complete
circuit of communication for a simple enquiry dialogue between the six modules incor-
porated in a pair of i-Xchange agents.

Figure 2. Basic inter-module and inter-agent communication pathways. The modules P, R, and D on the left
constitute the initiating agent, iXchangeagentp, and the modules P, R, and D on the right constitute the recipient
agent, iXchangeagent; .

2.1. Planning

The planning module makes use of the Graphplan algorithm first introduced in [1] which
we have implemented in Prolog. Let us discuss the algorithm in detail and present our
extensions for the extraction of services from the constructed plans and for service eval-
uation through the merging of services into the constructed plans.

A Planning graph is a layered graph with each layer consisting of a set of proposi-
tions and a set of actions (see figure 3). Each layer (named time-step) represents a point
in time, hence a set of propositions at a time-step n represents a snapshot of the state of
the world at the time-step n, while a set of actions appearing at a time-step n contains all
the actions that are executable in the state of the world at time-step n.

The graph consists of two kinds of nodes namely, the proposition nodes which form
the proposition sets at each time-step and the action nodes which are the instantiations
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Figure 3. A planning graph generated for a very simple blocks world problem (some nodes and edges are
omitted for clarity).

of the operators on the propositions of the time-step. The nodes within the graph are
connected with three kinds of edges:

Precondition edges: The precondition edges connect the actions nodes of a time-step n
with their preconditions appearing in time-step n.

Delete edges: The delete edges connect the action nodes of a time-step n with their
negative effects appearing in time-step n + 1.

Add edges: The add edges connect the action nodes of a time-step n with their positive
effects appearing in time-step n + 1.

For each action node placed into the graph a number of edges are generated that con-
nect the action nodes with their preconditions. Those edges are the precondition edges
(see figure 3:P, — A;). Having placed the action nodes into the graph, Graphplan col-
lects their effects which are placed as propositions into the subsequent time-step (see
Figure 3: ). Subsequently, Graphplan connects the action nodes with their positive ef-
fects through a set of add edges (see Figure 3:A; — P5), and with their negative effects
through a set of delete edges.

Since the actions of the same time-step are applied on the same state with a finite
set of resources there is a potential that the actions will interfere during the consump-
tion of non sharable resources. In order to capture the conflicts that may arise through
the parallel execution of actions, Graphplan propagates binary constraints among the ac-
tions that appear in the same time-step. The propagated constraints are named mutual
exclusion relations (mutex for short) and their meaning is that only one of the two action
nodes marked as mutually exclusive can be performed at that time-step. The notion of ex-
clusivity extends to the propositions meaning that two propositions marked as mutually
exclusive cannot coexist at the same time-step.

At the completion of the generation of a time-step Graphplan tries to identify the
goals and ensure that the goals are mutex free at the newly generated time-step. If the
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goals are present and mutex free, Graphplan performs a search within the generated
graph in order to extract a plan. The search starts from the goals going backwards (i.e.
towards the initial state). Moreover, the search is layered meaning that a new layer of the
graph is considered only when the current goal set is fully satisfied with the actions that
appear in the current layer. To make this more concrete let us have a look at our example
of planning graph shown in figure 3. Graphplan starts from 3: P; where it tries to identify
the goals. Having found the goals Graphplan tries to support all the goals with a mutex
free set of actions from the previous time-step 3:P». If that is not possible Graphplan
backtracks. If a set is found Graphplan generates a new goal set containing the precon-
ditions of the selected actions and repeats the process with the new goal set. The search
succeeds when Graphplan reaches the initial state. Upon the successful completion of
the search the extracted plan is returned (the extracted plan of our example is highlighted
in figure 3).

Having constructed a plan, the planning module fragments the plan into a set of ser-
vices. A service consists of a unique identifier of the service, and the name of the agent
that has committed to the execution of the service (initially set to 1 ). More importantly, a
service contains a set of actions which are causally related on the actor who needs to per-
form them. For instance the highlighted plan of figure 3 consists of a service containing
the actions ‘pick-up ag a’ — ‘stack ag a b’ as the same actor who is going to pick up the
block needs also to stack it. An action consists of a literal representation of its instance
(in the Prolog formalism), and the point in time that it needs to be executed, hence the
precedence constraints among the actions of a service are explicitly captured within the
service.

Having received a service the planning module extracts the actions of the service and
tries to incorporate the actions into the plan in the time-steps defined in the service. If that
is achievable then the service is integrated successfully with the plan and the planning
component returns a positive reply (i.e. T), negative otherwise (i.e. L).

2.2. Social Reasoning

An agent planning and acting in a solitary manner has capabilities that are limited to
its own. Thus, the goals it can achieve by functioning as an individual entity are rather
constrained. The real potential of agents arises when these solitary entities begin to act
as communities. In such a context, opportunities exist for individual agents to compen-
sate for each other’s deficiencies by acting collectively, thereby achieving higher overall
performance as a system. A key mechanism for coordinating social interaction between
agents is negotiation [2].

In abstract, negotiation is commonly viewed as a dialectic process that allows two
or more parties to interact and resolve conflicts of interest that they have among each
other with respect some issues of mutual interest [3,4]. For example, in a situation where
a buyer agent attempts to purchase a car from a seller agent, there is a clear conflict
of interest between the two parties with respect to the price of the car. The buyer is
interested in paying the lowest price possible, whereas the seller is interested in gaining
the highest price possible (thus, the conflict of interest). Negotiation provides a means for
the two agents to resolve their conflict of interest by allowing them to come to a mutually
acceptable agreement. Thus, it can be observed that the ultimate goal of the negotiation
is to arrive at a mutual agreement and, thereby, resolve the conflict of interest present
among the different parties.



20 D. Kalofonos et al. / Building Agents that Plan and Argue in a Social Context

Negotiation is so central and fundamental because it provides the agents with the
means of influencing the behaviour of their autonomous counterparts. By definition, an
autonomous entity cannot be forced to adopt a certain pattern of behaviour. Thus, ne-
gotiation provides agents with the means to convince their autonomous counterparts by
forwarding proposals, making concession, trading options, and, by so doing, (hopefully)
arriving at a mutually acceptable agreement [5]. Apart from being used as a means to
achieve agreements, negotiation also underpins agents’ efforts to coordinate their activi-
ties, achieve cooperation, and resolve conflicts in both cooperative [6] and self-interested
[7] domains.

Increasingly it is argued that incorporating the ability to exchange arguments within
such a negotiation interaction mechanism not only increases the agent’s ability to reach
agreements, but also enhances the mutual acceptability of the agreement [8,9,10,11]. In
more detail, when agents interact within a multi-agent society, in most cases they do so
with imperfect knowledge about their own capabilities, preferences, and constraints and
those of their counterparts. When agents interact within such knowledge imperfections
they may lead to another form of conflict between the agents, termed conflicts of opin-
ion, which may hinder the the agents ability to reach agreements or lead them to sub-
optimal agreements with their counterparts. “Argumentation-Based Negotiation" allows
the agents to exchange additional meta-information such as justifications, critics, and
other forms of persuasive locutions within their interactions. These, in turn, allow agents
to gain a wider understanding of each others capabilities, preferences, and constraints,
thereby making it easier to resolve such conflicts that may arise due to incomplete knowl-
edge. In the current implementation the social reasoning component considers three im-
portant decisions; namely (i) what agent to argue with, (ii) what issues to argue on, and
(iii) within which ranges. The following considers these in more detail:

o What agent In considering which counterpart to interact with the social reason-
ing component considers two important aspects; first the structure of the society
and secondly the experience that it has gained in its past encounters. In most in-
stances, an agent society usually embodies a structure. Certain agents may act in
certain roles within the agent society which may lead to relationships with other
agents acting certain other roles. As a result of these roles and relationships agents
may obtain specific obligations to others and may gain rights to influence certain
others. These obligations and rights constitute social influences which can be con-
structively exploited in a society. In such a context, when considering the coun-
terpart to interact with agent could constructively exploit these social influences.
For instance, when negotiating for a certain service an agent may choose another
which already is obliged to provide this capability through the social structure.
Instead of randomly picking any agent in the society, using such a heuristic in
selecting its counterpart may make the interacting more efficient. Apart from the
social influences of the structure of the society, agents may also take into account
the experience gained in its past encounters. In more detail, if the agent has in-
teracted with that agent in the past to obtain a certain service, it may select the
same agent when it requires the same type of service again. This may enhance
the interaction being more effective since the agent already knows that it has the
capability to perform the required service, which may not always be the case in
selecting a random agent from the society.
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o What Issues Once an agent has chosen its counterpart, the next main decision that
it needs to make are the set of issues to negotiate with. In the negotiation literature,
this set of issues is generally referred to as the negotiation object [5]. For example,
when two agents are negotiating the sale of a car they will address a number of
parameters such as price, warranty period, and after sale service. Each of these
will be a certain negotiation issue, whereas all of these issues taken together will
form the negotiation object. One of the advantages of using an argumentation-
based negotiation approach is that new issues can be introduced or the existing
once be retracted from the negotiation object during the argumentative encounter.

o What ranges Finally, the agent would need to decide the ranges (i.e., the upper
and the lower limits) for each particular negotiation issue that it should adhere
to during its negotiation encounter. The agent may have a certain objective for
each particular issue. For instance, the buyer agent may desire to minimise the
price paid while trying to maximise the quality or after-sales service parameters.
The seller on the other hand may wish to maximise the price while attempting to
minimise the after-sales service parameter. Thus, the upper and the lower limits as
well as the direction (maximise or minimise) would depend the agents individual
desire in the negotiation interaction. A rational agent wouldn’t make an offer that
costs the agent more than the expected benefit it aims to receive in return. Thus,
the upper limit of the all the negotiation issues would have a cost less than the
exacted benefit of buying that service. On the other hand, an agent would not
make an offer with a negative reward since it will be irrational for another agent
to accept such an offer. Between these upper and the lower bounds an agent can
derive a series of offers with a combination of issue value tuples that are viable
(cost is less than the benefit). This will give the set of proposals that the dialogue
module can use in its encounter.

These three components (the agent, the issues, and their respective ranges) compose
the dialogue object which is passed to the dialogical argumentation module. In the next
section we discuss how an agent argues with the chosen counterpart to gain the service
required.

2.3. Dialectical Argumentation

Agents in the i-Xchange system possess a number of capabilities, for example, they are
able to construct plans for achieving goals (detailed in section 2.1), and they are able to
reason in a social context about how to get other agents in the MAS to perform the actions
required by the plan (as detailed in section 2.2). Once a plan has been constructed and a
strategy for achieving the plan is devised it is necessary to interact with the other agents
to engage them in performing the tasks required to satisfy the plan. In the i-Xchange
this is achieved through the use of argumentative dialogue which is controlled by the
Dialectical Argumentation (DA) module.

Dialogue games have been proposed as a means to model the interactions between
participants during argumentative dialogues. One branch of dialogue game research is
into formal dialectical games [12]. These are two-player, turn-taking games in which the
moves available to the players represent the locutional acts or utterances made by the
participants of a dialogue. In other words a formal dialectical system expresses a protocol
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for communication between conversing agents by regulating what an agent can say and
when they can say it.

Many dialectical games have been proposed based on the characterisations of a range
of dialogical situations, for example, Hamblin’s “simple dialectical system" [12] and
Mackenzie’s DC [13] are targeted towards fallacy research whilst McBurney and Parsons
specify some games for use in communication between agents in MAS [14]. The formal
dialectic systems used in the i-Xchange are represented using the unified specification
format introduced in [15]. This representation is part of a unified framework for repre-
senting, rapidly implementing and deploying formal dialectic systems called the Archi-
tecture for Argumentation (A4A). To facilitate this, the framework incorporates a range
of general machinery for representing dialogues and dialectical games. Each dialecti-
cal game is itself designed to model the interactions between participants in a particular
dialogical situation.

An example of the most basic dialogical interaction between i-Xchange agents is
illustrated in the sample system output in section 3 where a partial plan has been con-
structed by the planning module and the social-reasoning module has selected an agent to
carry out the partial plan. The DA module initiates a dialogue with the nominated agent
to determine whether the other agent is capable of performing the actions required of the
partial plan. The dialogue uses a small range of moves to achieve this which are detailed
as follows using the A4A schema:

Game
Name iXchangeg
Turns ( Liberal, Single )
Participants = {init, resp}
Stores: (CStore, Init, Mixed, Set, Public)
(CStore, Resp, Mixed, Set, Public)

Structure
Initiation Termination
Requirements: Requirements:
Teurrent =0 Tlast,move = (Afﬁrm, (_)> \
Effects: Tiast_move = (Deny, (-))
T, ove = {Initiate, (-)) Effects:
Dialoguesus = complete
Moves
(Initiate, (S)) Effects:
Requirements: Tiistener = ( Enquire, (PP))
TC’urTent =1
Effects: (Enquire, (S))
Tffjfﬁ?ﬂm,e = ( Acknowledge, (-)) Requirements:
Tilener,. = ( Acknowledge, (-) )
(Acknowledge, (S)) Effects:
Requirements: CStore2e* " 4+ PP A CStoreSPe*ker |

T%fnf:ti?rf;ve = < Initiatea (')) PP A ( Tnezt_move = <Afﬁrm, (PP)> \
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Trewt_move = (Deny, (PP)) ) (Deny, (S))

Requirements:
(Affirm, (S)) Tjistener . = ( Enquire, (PP) )
Requirements: Effects:
Tjistener . = ( Enquire, (PP) ) Effects: CStore Peeker 4 —pp A
CStore:Peeker | pp CStoreheve" — PP

The iXchange protocol is split into three parts; game, structure and moves. The
game part specifies the turn structure, participants, and commitment stores. The structural
part specifies the required state for legal initiation of a dialogue and the states under
which the dialogue will terminate. The moves part specifies the moves which players
can make during a dialogue. Moves are presented in terms of their legality requirements
and resultant effects if the move is legally played. Legality requirements are formulated
in terms of earlier moves during the dialogue. Effects are formulated in terms of legal
responses and commitment store updates.

When all three i-Xchange agent modules are integrated in a single agent, the game,
iXchangey, is sufficient to enable an agent to engage in a simple dialogue with another
and determine whether the other agent can execute a partial plan thus enabling a commu-
nication round trip between two agents composed of the basic i-Xchange agent modules.

3. Example

This section illustrates the use of the i-Xchange MAS when applied to an e-Science
scenario. The e-Science domain consists of a network of host machines, a set of datasets
that need to be processed, a set of data transportation mediums that can transfer the
datasets between hosts and a set of data processing systems that are needed to be available
in the host machine so that the dataset can be processed. The following operators are
supported;

move dataset: Moves a data transportation medium loaded with a data set between
hosts.

move data processing system: Moves a data transportation medium loaded with a data
processing system between hosts.

move data transportation medium: Moves a data transportation between hosts.
load dataset: Loads a dataset to a data transportation medium.

load data processing system: Loads a data processing system to a data transportation
medium.

unload dataset: Unloads a data set from a data transportation medium.

unload data processing system: Unloads a data processing system from a data trans-
portation medium.

execute: Executes a data processing system at a given host.
terminate: Terminates the execution of a data processing system.
process: Processes a data set.
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The e-Science domain has the following properties; Three classes of agents appear in the
domain, namely the data processing systems, the data transportation mediums, and the
host machines. The e-Science domain is a mixture of the transportation class of planning
domains (logistics for instance) and the puzzle class of planning domains (for example
blocks-world). The first property allows us to model complex societies structured as a hi-
erarchical network of social influences. Hence the agents are provided with a rich social
model to exploit the capabilities of their social reasoning component. The second prop-
erty allows the agents to fully exploit their planning capabilities as the e-Science domain
allows for the specification of very complex planning problems. The combination of the
two properties provides a scenario where complex agent interactions can emerge for con-
flict resolution and task delegation, hence the agents can exploit their capabilities on di-
alectical argumentation. The following fragment illustrates system output as the planner
generates a partial plan, the social reasoning module nominates an agent to execute the
plan and the dialectical argumentation module engages that agent in dialogue.

Planner: {Agent=p2, Action=terminate(p2, m2), Time=3}

iXchangeAgentl::DialogueModule handling message from: iX-

Planner: {Agent=p1, Action=load_dps(t2, p1, m3), Time=1} I-> name: unload_dps(t2, pl, m2) — time: 3
Planner: {Agent=p1, Action=move_dps(t2, pl, m3, m2), Time=2} I-> name: execute(pl, m2) — time: 4
Planner: {Agent=p1, Action=unload_dps(t2, p1, m2), Time=3} I-> name: process(dl, p1, m2) — time: 6
Planner: {Agent=p1, Action=execute(pl, m2), Time=4} iXchangeAgent0::Reasoning: invokeAddDialogueGoal
Planner: {Agent=p1, Action=process(dl, pl, m2), Time=6} iXchangeAgent0::DialogueModule Dialogue Goal Added
Planner: { Agent=p2, Action=execute(p2, m2), Time=1} iXchangeAgent0::DialogueModule sending message to: iX-
Planner: { Agent=p2, Action=process(d2, p2, m2), Time=2} changeAgent] with message content:INIT DIALOGUE
{
{

Planner: {Agent=tl, Action=move_dtm(t1, m3, m2), Time=1}
Planner: { Agent=t1, Action=move_dtm(tl, m2, m1), Time=2}
Planner: { Agent=t1, Action=load_ds(t1, d1, m1), Time=3}
Planner: { Agent=tl, Action=move_ds(tl, d1, m1, m2), Time=4}
Planner: { Agent=t1, Action=unload_ds(t1, d1, m2), Time=5}
Planner: { Agent=t2, Action=load_dps(t2, pl, m3), Time=1}
Planner: { Agent=t2, Action=move_dps(t2, p1, m3, m2), Time=2}
Planner: { Agent=t2, Action=unload_dps(t2, pl, m2), Time=3}
Servicelmpl: ID: 77158a:10abd317fb0:-7fcf

|-> name: load_dps(t2, p1, m3) — time: 1

|-> name: move_dps(t2, pl, m3, m2) — time: 2

|-> name: unload_dps(t2, pl, m2) — time: 3

|-> name: execute(pl, m2) — time: 4

|-> name: process(dl, p1, m2) — time: 6

ServiceImpl: ID: 77158a:10abd317fb0:-7fce

|-> name: execute(p2, m2) — time: 1

|-> name: process(d2, p2, m2) — time: 2

|-> name: terminate(p2, m2) — time: 3

ServiceImpl: ID: 77158a:10abd317fb0:-7fcd

|-> name: move_dtm(tl, m3, m2) — time: 1

|-> name: move_dtm(tl, m2, m1) — time: 2

|-> name: load_ds(tl, d1, ml) — time: 3

|-> name: move_ds(tl, d1, m1l, m2) — time: 4

|-> name: unload_ds(t1, d1, m2) — time: 5

Servicelmpl: ID: 77158a:10abd317fb0:-7fcc

|-> name: load_dps(t2, p1, m3) — time: 1

|-> name: move_dps(t2, pl, m3, m2) — time: 2

|-> name: unload_dps(t2, pl, m2) — time: 3

Reasoning: addServiceRequest

Reasoning: received ServiceRequest with ID:77158a:10abd317fb0:-
7fcf and actions:

I-> name: load_dps(t2, p1, m3) — time: 1

|-> name: move_dps(t2, pI, m3, m2) — time: 2

changeAgent0 with message content:INIT DIALOGUE
iXchangeAgentl::DialogueModule sending message to: iX-
changeAgent0 with message content:OK
iXchangeAgentl::DialogueModule calling invokeAddProposal in
Social Reasoning Module

iXchangeAgent1::ReasoningModule: addProposal()
iXchangeAgent1::ReasoningModule: invokeAddServiceEvaluation
Loading scheduler.pl... ok — PlanningModule: iXchangeAgent1:
Schedule for move_dtm(tl, m3, m2) at 1 — result: yes
iXchangeAgent1::PlanningModule::Schedule for move_dtm(t1,
m2, ml) at 2 — result: yes
iXchangeAgentl::PlanningModule::Schedule for load_ds(tl, dI,
ml) at 3 — result: yes

iXchangeAgentl::PlanningModule::Schedule for move_ds(tl, dI,
ml, m2) at 4 — result: yes
iXchangeAgent1::PlanningModule::Schedule for unload_ds(t1, d1,
m2) at 5 — result: yes

iXchangeAgentl::Reasoning: invokeAddProposalResponse
iXchangeAgentl::DialogueModule =~ Response to  proposal:
77158a:10abd317fb0:-7fcd iXchangeAgentl
iXchangeAgentl::DialogueModule sending message to: iX-
changeAgent0 with message content: ACCEPT: iXchangeAgentl
iXchangeAgent0::DialogueModule handling message from: iX-
changeAgent] with message content: ACCEPT: iXchangeAgent1
iXchangeAgent0::DialogueModule calling invokeAddDialogueRe-
sult in Social Reasoning Module iXchangeAgent0::Reasoning: ad-
dDialogueResult()

iXchangeAgent0::Reasoning: invokeAddServiceResponse
iXchangeAgentO::Planning Module: Setting the agent name for
service with ID: 77158a:10abd317fb0:-7fcd to: iXchangeAgentl
ixchange.shared.Servicelmpl @97eded

The output demonstrates the iXchange system, starting with the planning module
constructing a number of partial-plans. A service is then constructed from each partial
plan requiring an action to be performed by an agent at a certain timepoint. The services
are then passed to the social-reasoning module which determines which agents can ex-
ecute each partial plan encapsulated in each service. The social-reasoning module then
instantiates a dialogue goal which requires the dialogue module to communicate with
the agent selected to perform the service and determine whether that agent will perform
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the required actions. If the recipient agent can perform the action then the dialogue is
successful and the planner is informed via the social-reasoning module that an agent has
been found which has accepted to perform the required action at the determined time-
point.

4. Conclusions

There are two facets to the results presented here. The first is that the i-Xchange is the first
system to successfully integrate planning, social reasoning and argumentation. Though
plans have been maintained in the context of agents communicating, this is the first time
that individual agents have been equipped with modern planning techniques that are fully
integrated with the communication subsystems, and where communicative “failures" (in
the sense of refusals) have been taken into account by the planner on the fly. Similarly,
though social structures have long formed a part of agent reasoning, and have contributed
to the environment in which planners operate, this is the first time that plan refinement
has explicitly involved reasoning about the social context. Finally, though argumentation
has often been thought of in a social context [11], this is the first time that social reason-
ing has been integrated to the execution of specific argument protocols for inter-agent
communication.

There is also a practical facet: the i-Xchange clearly demonstrates that the use of
heterogeneous engineering techniques, different agent platforms and architectures, and
a wide variety of languages and tools can provide a rich but solid foundation for a sin-
gle, focused, coherent agent system. As the sophistication of individual systems contin-
ues to increase, and the scope of functionality becomes ever wider, such cross-platform
heterogeneous development is going to become ever more the norm.
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Abstract. Argumentation is becoming increasingly important in the design and im-
plementation of autonomous software agents. We believe that agents engaged in
decision-making and reasoning should have access to a general purpose argumen-
tation engine that can be configured to conform to one of a range of semantics.
In this paper we discuss our current work on a prototype light-weight Java-based
argumentation engine that can be used to implement a non-monotonic reasoning
component in Internet or agent-based applications.
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1. Introduction

Agents are often cited as a key enabling technology for the next-generation of online
services, such as large-scale electronic commerce [1] and Service-Oriented Computing
[2]. In order to be effective agents will often need to reason about what is to be done,
i.e. perform practical reasoning [3], but in these situations, consisting of large-scale open
multi-agent systems, classical logic-based approaches to reasoning and decision-making
are often unsuitable [4]. Accordingly, agents may benefit from the use of argumentation,
a process based on the exchange and valuation of interacting arguments, to support the
process of practical reasoning.

In this paper we discuss our current work on a light-weight Java-based argumen-
tation engine that can be used to implement a non-monotonic reasoning component in
Internet or agent-based applications. The core engine has been built using tuProlog [5,6],
an existing open-source Prolog engine, as its foundation, which followed the same de-
sign principles that we require for our intended domain of application. Although our ul-
timate goal is to create a general purpose argumentation engine that can be configured
to conform to one of a range of semantics, the current version of the engine implements

IThis work was partially supported by the EU IST/STReP ASPIC project, Grant 002307, and an EPSRC
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the argumentation-based framework presented in [4] (allowing our engine to generate
arguments and counter arguments over an inconsistent knowledge base, determine the
acceptability of arguments and construct proofs using an argument game approach to
constructing proofs of acceptance [7]), and also standard PROLOG inference (allowing
us to prototype a variety of metainterpretters that support other forms of argumentation.)

The motivation behind this paper is primarily to illustrate that a practical Internet-
ready/agent-based implementation of argumentation is now viable. Our implementation,
which we named "Argue tuProlog" (AtuP), will be made available later this year in
SourceForge [8] under an Open Source licence. We have quite deliberately focused on
this as an empirical application of a theoretical model of argumentation, and do not ad-
dress theoretical issues directly (although we will return to some of the outstanding is-
sues in the concluding section). This paper is structured as follows: In Section 2 we pro-
vide motivation for our work and also introduce tuProlog, the foundation of our engine.
Section 3 introduces the ASPIC argumentation framework and in section 4 we discuss
how we have implemented this in our engine. We conclude the paper with an overview
of the planned future work. A fundamental message of this paper, and we will return to
this in our final words, is that we take seriously the need for sound empirical evidence
for the applicability of argumentation.

2. The Motivation for Argue tuProlog

There has been much recent work on argumentation-based engines, notably Vreeswijk’s
IACAS [9], Rock and colleagues Deimos [10] and Garcia and Simari’s DeLP [11] (and
later an extension to this work, P-DeLP, by Chesievar and colleagues [12]). However,
none of these engines implement support for more than one form of argumentation se-
mantics. Good practical reasoning is complex with respect to the argument schemes it
can use and only in limited and well-defined domains of decision-making does it make
sense to use a single scheme of practical reasoning [3]. Accordingly, it is our belief that
agents engaged in reasoning should have access to a general purpose argumentation en-
gine that can be configured to conform to one of a range of semantics.

Our prototype argumentation engine has been built using tuProlog [6] as its founda-
tion. tuProlog is a Java-based Prolog engine which has been designed from the ground
up as a thin and light-weight engine that is easily deployable, dynamically configurable
and easily integrated into Internet or agent applications [5]. There are a number of advan-
tages to using tuProlog as a foundation for our engine. Firstly, the development of tuPro-
log itself followed the same design principles that we require for our intended domain
of application. Secondly, we are building on top of a mature code-base so that much of
the functionality that is common to both argumentation and Prolog-type inference can be
relied on with a high-degree of confidence. Thirdly, this ensures that in the absence of
defeasible rules, our engine defaults to standard Prolog inference.

Utilising the Prolog inference provided by the tuProlog engine we can implement a
series of metainterpretters for a variety of forms of argumentation. However, this way of
implementing an argumentation engine has both a serious performance overhead and a
less than ideal interface. In order to avoid these problems and produce an argumentation
engine that fully conforms to the spirit of a light-weight Internet enabled tool, we are
re-engineering tuProlog by implementing a series of core argumentation algorithms in
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Java, effectively pushing the functionality of the algorithms down into the core engine.
The first algorithm we have implemented in our engine is presented in [4].

3. The Acceptability of Arguments

In [4] a framework for argument games is presented that is concerned with establish-
ing the acceptability of arguments. Argument games between two players, a proponent
(PRO) and opponent (OPP), can be interpreted as constructing proofs of acceptance util-
ising a dialectical structure [7]. The proponent and opponent share the same (possibly in-
consistent) knowledge base and the proponent starts with a a main claim to be "proved".
The proponent attempts to build an admissible set to support the claim and endeavors to
defend any argument against any attack coming from the opponent. The proponent wins
the game (proving acceptability of the claim) if all the attacking arguments have been
defeated, and the opponent wins if they can find an attacking argument that cannot be de-
feated. In [4] a prototype web-based implementation (coded in RUBY) of the framework
algorithms, entitled "Argumentation System" (AS), is also presented.

4. The Implementation of our Engine
4.1. Overview

AtuP is currently implemented in Java and presented as a self-contained component that
can be integrated into a range of applications by utilising the well defined application
programming interface (API) provided. The API exposes key methods to allow an agent
or Internet application developer to access and manipulate the knowledge base (includ-
ing the ability to define numerical values indicating the degree of belief of each propo-
sition), to construct rules, specify and execute queries (establishing whether a claim can
be supported using the knowledge base) and analyse results (determining the support for
a claim and the acceptability of arguments).

4.2. Language

As with the original AS, AtuP accepts formulae in an extended first-order language and
returns answers on the basis of the semantics of credulously preferred sets (as defined
in [4]). The language of AtuP is constituted of atoms, terms and rules (see Section 2.7.3
in [4] for further details) and can be considered as a conservative extension of the basic
language of Prolog, enriched with numbers that quantify degree of belief. As AtuP is
built on top of an existing Prolog engine, the engine naturally accepts Prolog programs.

In AtuP the numerical input values in (0, 1] represent the degree of belief (DOB),
or the credibility, of a proposition [4]. As stated in [4], the DOB is currently provided
to allow experimentation with different methods of argument evaluation and is not in-
tended to express probabilities or represent values from other numerical theories to rea-
son with uncertain or incomplete information. However, in our earlier work [13] we ex-
plored the integration of argumentation with a number of numerical calculi, such as the
semi-qualitative/ordinal possibilities, and "probability of provability" for a fully numeric
scale. In future work we plan to enhance arguments with possibilities as discussed in,
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for example, Amgoud [14] or Chesfievar [12]. This provides us with a computationally
efficient model with a well-founded semantics. We will then progress to explore the in-
tegration of a numerical calculus that has a sound probabilistic semantics.

Within AtuP there are two types of different rules, namely those with an empty an-
tecedent (called beliefs) and those with a non-empty antecedent (called rules). Every
expression of the form ¢ b. is a rule where ¢ is a term and b indicates a degree of be-
lief. Examples of beliefs include a 0.8.and flies (sylvester) 0.1.Every ex-
pression of the form ¢ :- ¢y, ..., t, b. is also a rule, provided ¢, t; are terms, n > 0, and
b denotes the DOB. Examples of rules include flies (X) :— bird(X) 0.8. and
a :— c,d 1.0. A query is an expression of the form ?- t1, ...t,,. where n > 0. It is
possible to include more queries in the input, but since we are usually only interested in
one goal proposition, this is not typical.

4.3. Algorithms

If 7- 1. is a query then AtuP’s main goal is to try and find an argument with conclusion ¢
and then try to construct an admissible set (using the algorithm presented in [4]) around
that argument. In AtuP every search for arguments for a particular query is encapsulated
within another internal instance of an engine. Using multiple internal instances of an
engine allows us to keep track of which participant (PRO or OPP) is conducting the
current query and also to pause the "dialogue" at any time for further analysis. Once
the first argument, say A, is found, the first engine is suspended and A is returned to
AtuP. AtuP then tries to find an attacker of A. Thus for every sub-conclusion s of A, a
separate engine is instantiated to search for arguments against s. If one of these remains
undefeated (which is defined within [4]), then A is defeated, else A remains undefeated.

4.4. Getting Results

When AtuP has finished determining the support for a claim and the acceptability of as-
sociated arguments the engine generates a trace of the argument game dialogue (shown
in the window on the right of Figure 1). In addition to providing an API to allow agent
developers to utilise our engine we have also modified the existing tuProlog graphical
user interface to facilitate off-line experimentation with the engine (as shown in Figure
1). We have also developed the core engine using Sun Microsystem’s NetBeans inte-
grated development environment in which we have installed the latest version of Net-
Beans Profiler [15], a fully functional application profiling tool. This allows us to simu-
late deployment of our engine within a variety of realistic scenarios, and to monitor and
analyse such data as CPU usage, memory usage, program loop/branch counting, thread
profiling and other basic Java Virtual Machine (JVM) behaviour. We are currently in the
process of setting up several large-scale knowledge bases, and when this is complete the
profiling tool will facilitate our ultimate goal of obtaining empirical evaluations of the
performance of a range of argumentation models.

5. What did argumentation ever do for us?

The above question is easier to answer of the Romans than it is of argumentation. Our
current work is a first step in trying to set up some real-world experiments that will help
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Figure 1. Screenshot of "Argue tuProlog" GUI. The left window allows manipulation of the knowledge base,
the bottom window allows query entry and displays the results and the right window shows an argument game
trace after a query has been executed.

us answer our question. In this paper we have presented a prototype light-weight Java-
based argumentation engine which is capable of facilitating automated reasoning and
decision-making, and is suitable for deployment into Internet and agent applications. We
have also discussed the integration of an argumentation-based framework for determin-
ing the acceptability of arguments, as presented in [4], into our engine.

Our immediate next step is to set up some large-scale knowledge bases that will en-
able us to obtain empirical evaluations of the performance of the engine. This work is in
hand now, and we expect to be able to report the results within the next three months. At
that point we will feel confident to release the engine into the wider community, together
with a clear definition of its scope and limitations. As well as gaining empirical data
on the applicability and performance of a specific instance of an argumentation engine,
we will also be evaluating a series of enhancements. As far as possible we are aiming
towards implementing a general purpose argumentation engine that can be configured to
conform to one of a range of semantics. Our basic position is that we have no prior dis-
position towards any one model of argumentation. Instead, our plan is to explore a range
of models to provide an independent evaluation of their expressive power, performance
and scalability.

Argumentation is inherently computationally challenging. As a reminder of just one
point, the consistency of a set of first-order logical formulae is undecidable. Yet, most or
all definitions of an argument refer to the selection of a "consistent subset" of formulae.
We need to investigate theoretical approaches to easing this blocking issue for imple-
mentations (e.g. [16]), and indeed we have a parallel strand of research that is targeting
this. However, we also feel that it is important to make publicly available our and other
"pragmatic" implementations of argumentation, together with some large-scale bench-
marking knowledge bases. This way we can also stimulate scientific evaluations of what
is practically possible now, and really find out what argumentation can do for us.
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Abstract. We consider agents in a multi-agent system, each equipped with a
Bayesian network model (BN) of its environment. We want the agents to reach
consensus on one compromise network, which may not be identical to a single one
of the BNs initially held by the agents, but rather a combination of aspects from
each BN. The task can be characterized as the need for agents to agree on a spe-
cific state (a BN) of a variable with an enormous state space (all possible BNs).
The grandness of the task is reduced by the fact that BNs are composed of local
relationships, and it should therefore be possible to reach the compromise by grad-
ually agreeing on parts of it. In the metaphor of the variable, the agents should be
able to agree on successively smaller subsets of the enormous state space. However,
these same local relationship can interact, and understanding the extent to which
partial agreements affect the possible final compromise is a highly complex task.
In this work we suggest using formal argumentation as the reasoning mechanism
for agents solving this task, and suggest an open-ended agora approach that ensures
agents high quality compromises in an anytime fashion.

Keywords. Argumentation, Bayesian networks, Compromises

1. Introduction

We investigate how Bayesian networks (BNs) can be used in a multi-agent setting with
the help of argumentation theory. Previously the two methodologies have mainly been
studied together with a view to incorporating the efficiency and precision of BNs into
argumentation theory (e.g. [1]), or as an exercise in converting models of one theory into
models of the other (e.g. [2] and [3]). Here, we envision equipping each agent in a MAS
with a BN, as a model of the domain it is situated in, and aim at providing a framework
built on formal argumentation principles in which the agents, starting from their indi-
vidual domain models, can conclude on a single network representing their joint domain
knowledge. This would be useful in cases where the agents only meet occasionally and in
the meantime may make small changes to their models to reflect surprising observations
of their surroundings. By using the two paradigms in this manner, we hope to exploit the
strengths of BNs and of argumentation: Allowing individual agents to draw inferences in
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face of noisy observations using their BNs, and having agents extract a consistent “truth”
from a set of conflicting ones through a distributed process built on argumentation.

The task of fusing several BNs into one compromise BN is made theoretically inter-
esting by the fact that BNs by their graphical nature can be decomposed into several lo-
cal relationships, and thus the aspect of gradually building a compromise BN bottom up
is tempting. However, these very same local relationships can interact in complex ways,
and the consequences of committing oneself to a partial compromise can be hard to esti-
mate. Maybe because of this difficulty, the task has previously mainly been considered a
centralized one-off operation, with little consideration given to these “cascading” effects.
Furthermore, the task has been addressed with an a priori specified view to what consti-
tutes an adequate compromise, with no apparent consensus on the goal of network fusion
among authors (see [4], [5], [6], and [7]). In this paper, we do not commit ourselves to
a specific compromise objective. Rather, we establish a general framework in which any
kind of compromise on BNs can be reached in a gradual manner, with the exact nature
of the proceedings specified by some parameter functions.

As presented the setup may be confused with a negotiation problem, where the
agents would try to negotiate a compromise that is close to their individually held beliefs.
However, unlike the standard negotiation setup, the parts of the problem cannot be val-
ued in isolation, and hence, to the individual agent the value of an already agreed upon
partial compromise, will depend on the compromise choices that remain to be made. For
the same reason, the problem cannot be seen as a distribution of resources, as the indi-
vidual agents utility of the “resources” would change according to how the remaining
ones are distributed. Instead, we hope only to provide the agents with the ability to deter-
mine the extent to which they commit themselves at each step in the construction of the
compromise. That is, the main focus of our work is to provide the reasoning mechanism
individual agents can use for surveying the consequences of committing to partial com-
promises. The advantages of our approach over previous efforts include: That a general
purpose argumentation engine can be implemented and reused in contexts with different
definitions of compromise; that efficient distributed implementations are natural; that in
cases where agents almost agree a priori, little information need to be shared among the
agents; and that anytime compromises can be achieved.

2. Preliminaries And Problem Definition'
2.1. Bayesian Nets

A BN Biis an acyclic directed graph (DAG) G,? over a set of random variables V', along
with a conditional probability distribution for each variable in V' given its parents in G.
The joint probability distribution P over V', obtained by multiplying all these conditional
probability distributions, adheres to a number of conditional (in)dependence constraints
identifiable from G alone. Any other BN B’ with a graph implying the exact same con-
straints on P is said to be equivalent to B. [9] proved that the set of all BNs equivalent
to some BN B can be uniquely characterized by a partially directed graph called the
pattern of B. The pattern of B is constructed by taking the skeleton of B and directing

IFor actual examples and background on the topics, ideas, and algorithms presented here and later, see [8].
2We assume the reader is familiar with the basics of graph theory.
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links as they appear in B iff they participate in a v-structure®. Any BN equivalent to B
can be obtained from its pattern by exchanging links for directed arcs, while taking care
that no directed cycles are introduced, and that no v-structures not already found in the
pattern are introduced. Any DAG obtained from the pattern in this manner is called a
consistent extension of the pattern. The two constraints imply that not all partially di-
rected graphs are patterns of some BN, and furthermore that some links in a pattern are
exchanged for similarly directed arcs in all consistent extensions of the pattern. Such
arcs and arcs found in the pattern are called compelled arcs, and the partially directed
graph obtained by exchanging links for compelled arcs wherever possible, is called the
completed pattern of B. The completed pattern of B is thus a unique characterization of
B’s equivalence class as well. The set of all partially directed graphs over V' that are
completed patterns of some BN thus constitute a complete and minimal encoding of all
probabilistic dependencies for distributions expressible by BNs over V. We denote this
set of completed patterns ¢Y and ¢ when V is obvious from the context. [10] gave an
elegant characterization of the individual elements of €. Next, we present how agreeing
on BNs pose problems.

2.2. Compromising On Bayesian Networks

The problem we are posing arises in a MAS containing a finite number of cooperating
agents. Each agent 7 has a BN B; over a common set of domain variables V', which we
assume to be implicit in the remainder of the text. For ease of exposition, we furthermore
assume that an arbitrary but fixed total ordering ~+ over the variables is known by all
agents a priori. At some point agents 1 to k decide to pool their knowledge, as represented
by Bj to By, into a new BN B,. Facilitating this task is the problem addressed here. We
expect By to B, to be large but somewhat similar (as each describe relationships among
the same variables), and therefore that having each agent communicate its entire model
to each other agent is inefficient. We focus solely on the graphical structure of B.

As all consistent extensions of a completed pattern imply the exact same indepen-
dence properties, it is reasonable to consider completed patterns as basic representations
of domain knowledge, if domain knowledge is taken to be independence properties as in
this text. That is, we only require the agents to agree on the completed pattern G, € € of
B..

To establish whether a graph is a good compromise for the agents, we need a mea-
sure for how well such graphs matches each of B to By. Furthermore, as we plan to build
this compromise gradually, we wish for this measure to be relative to an already agreed
partial compromise. For example, it may be the case that an important dependency be-
tween two variables is already a consequence of a partial compromise, and further con-
nections between the two variables may then be of little value. Contrarily, had the partial
compromise not implied this dependency, connections that would ensure it are valuable.
In general, we cannot assume that a partially specified graph is suitable as representation
of a partial compromise, as this might include agreements on what should not be part of
the final compromise. Therefore, we take a partial compromise P = (P, P_) to be two
sets of sentences in some language, where P, describe aspects that should be true of the
compromise graph, and P_ describe aspects that cannot be true.

3A triple of variables (X, Z, Y’} is a v-structure if X and Y are non-adjacent and both are parents of Z.
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For any three partial compromises P, P¢, and P’, where P, C Py, P C P
P, C PfL’ and P_ C P, we assume that each agent i can compute its compromise
scores s;(P,P®) and s;(P,P") such that s;(P,P?) > s;(P,PP) iff P* describes B;
better than P°, given that P has already been accepted as being descriptive of ;. A
simple example of s;((P,., P_), (P¢, P")) could be the number of features described
in P¢\ Py and P® \ P_, which are consistent with 3;, minus those that are not. A more
complex score could weigh each of these described features according to the empirical
evidence the agent has in favor of or against them. We will assume s; to be additive,
i.e. for any three partial compromises P, P!, and P?, where P C P} C P? and
P° C P! C P?,itis the case that s;,(P°,P?) = 5;(P° Pl) + s;(PL,P?). Notice,
that here we do not attempt to define what it means to be a “better description”, since we
believe that this issue can be dependent on the actual setting in which the framework is
to be used, as stated in Section 1.

In addition to the compromise score, we also assume that the agents know the com-
bination function ¢ : R¥ — R, indicating how much trust should be put into the indi-
vidual agents’ models. Differences in trust can be justified by differences in experiences,
sensor accuracies, etc. Formally, we define ¢ as follows: Let P, P?, and P be partial
compromises. If

c(sl(PJD“), EERE sk(P7Pa)) > C(Sl(P,Pb)7 ) Sk(P7Pb))7

when P*® is a better compromise than P° for the group of agents 1 to k, given that
they have already agreed on P, then ¢ is the combination function for agents i to k.
(An obvious choice for ¢ would be a linear combination of its inputs.) We refer to
c(81(P,PY), ..., s.(P,P%)) as the joint compromise score of P given P, and like s;,
we shall also assume that ¢ is additive.

With this notation in place, we can thus restate the problem more formally as finding
a partial compromise P, which uniquely identifies some graph G* € &, such that

C(Sl((zv z)7’P)7 B sk((®7®)7p)) > C(sl((z7 z)7pl)7 ] sk((z7 z)7PI))7

for all other partial compromises P’, which uniquely identifies a graph G’ € €.

As presented here, it is clear that the problem is not of a simple binary nature, as
we are not trying to establish whether some proposition is true or not, and that we are
furthermore dealing with a setting in which more than two agents may interact. Conse-
quently, we cannot utilize the vast literature on dialectic proof theories directly. Rather,
the problem we are trying to solve is a distributed maximization over a super exponential
hypothesis space (). Furthermore, as the worth of (partial) compromises are only speci-
fied in relation to already agreed upon compromises, the problem is of a highly dynamic
nature.

Our solution to the problem is divided into three parts. First, we create a finite lan-
guage with which graphs and some essential properties of these can be expressed; sec-
ond and most importantly, we construct an argumentation system with which the agents
can reason about consequences of committing to partial compromises; and thirdly, we
create an agora in which the agents can reach compromise graphs in an anytime fashion.
First, however, we describe the formal argumentation framework we have selected as a
reasoning mechanism.
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2.3. Formal Argumentation Frameworks

Formal argumentation takes many forms, but here we see it as an approach to extracting
consistent knowledge from a possibly inconsistent knowledge base. No single methodol-
ogy has yet to stand out as the main approach to argumentation (see [11] for an overview
of a series of approaches), so it has been necessary to pick one from a large pool of these.
The framework we have picked for our purpose is the framework of [12] (which is a
proper generalization of that of [13]), as this is an abstract framework, which leaves the
underlying language unspecified, and thus does not force us to specify in advance the
reasons to which each agent ¢ may attribute its belief in aspects of 5;.

An argumentation system is defined as a pair 4 = (A,r), where A is a set of
arguments, and > C (24 \ {@}) x A is an attack relation. The exact nature of an
argument is left unspecified, but examples could be “In B there is an arc from X to ¥ and
Y and Z are adjacent, so there must be an arc from Y to Z” or “Because I have observed
r, I believe there is an arc from X to Y in B”. For two sets of arguments § C A and
S’ C S and an argument A, if S’ A then S is said to attack A. If no proper subset of S’
attacks A, then S’ is called a minimal attack on A. An example of an attack that would
make sense is “There is an arc from X to Y in B”%>“There is an arc from Y to X in B”.

A semantics of an argumentation framework is a definition of the arguments in the
framework that should be accepted by a rational individual. [13] and [12] work with a
wide range of semantics, but we only introduce those needed here: We define a set of
arguments S C A as being conflict-free, if there is no argument A € S such that S
attacks A. We further define a single argument A as being acceptable with respect to
a set of arguments S, if for each set of arguments T' C A, where T > A, there is an
argument B in T, such that S attacks B. A conflict-free set .S, where all arguments in S
are acceptable with respect to S, is called admissible.

A credulous semantics is that of a preferred extension, which is an admissible set that
is maximal wrt. set inclusion. Finally, an admissible set .S is said to be a stable extension,
if it attacks all arguments in A \ S. Clearly, a stable extension is a preferred extension as
well.

In general it is hard to compute a preferred extension [14], but in [15] we have
adapted a technique of [16] to the problem of enumerating preferred extensions of ar-
gumentation systems of [12]: Given A = (A, ), we define an .A-candidate as a triple
(I,0,U = A\ (IUO)) where

e INO =20,

e cvery argument that is attacked by I is in O, and

e every argument A, for which there exists S C I and B € I, such that SU A B,

isin O.
(Here I is supposed to capture the intuition of arguments that are in the preferred exten-
sion, as opposed to out and unassigned.)

Given an A-candidate C = (I, O, U) and an argument A € U the triplesC — A =
(T_p,0_4,U_4=A\(T_4UO0_4))andC+ A= (T1 4,044, U;s = A\ (T 4U
O, 4)) are given by:

I_4,=1, O_4,=0UA I+AEIUA, and O+AEOUAC+A,

4To reduce clutter, we leave out { and } for singleton sets.
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where A¢ 4 contains all arguments in U \ A which need to be in O 4 in order for
C' + A to be a candidate. If A does not participate in a minimal attack on itself (which is
the case for all arguments of the argumentation system we construct in this paper), then
both C — A and C + A are A-candidates themselves, and we can thus construct candidate
trees, where each node is an .A-candidate: Each .4-candidate C has two children C — A4
and C + A, for some arbitrary chosen A in U, except those candidates where U = &,
which act as leaves in the tree. A candidate tree having candidate C as root, is called a
C-tree.

It can be proven that if I is a preferred extension of A, then there is a leaf (I, O, &)
of any (&, &, A)-tree. Conversely, for any leaf (I, O, @) in a (&, &, A)-tree, where T
defends itself, I is admissible. It follows that, by constructing an arbitrary (&, &, A)-
tree, all preferred extensions can be enumerated.

3. Encoding Graphs

For the agents to conclude on the best compromise G., a formal language L for express-
ing graphs and properties of graphs must be defined. For efficiency reasons we aim to
make this language finite and as small as possible, while ensuring that it is still suffi-
ciently powerful to describe any graph and its membership status in €.

First, we introduce a small language LY for encoding graphs:

Definition 1 (Simple Graph Language). The language L9 is the set containing the
sentences Arc (X, Y), Arc(Y,X), Link (X,Y), and NonAdjacent (X, Y) iff X
andY (X ~» YY) are distinct variables.

A graph knowledge base is a set 39 C LY. Further:

Definition 2 (Consistent Graph Knowledgebases). Given a graph knowledge base 39,
if it holds that for all pairs of variables X and'Y, where X ~ Y, a maximum of one of
Arc(X,Y),Arc(Y,X), Link (X, Y), and NonAdjacent (X, Y) is in X9, then we
call 9 a consistent graph knowledge base (CGK).

The graph encoded by a CGK X9 is the graph G[X?] resulting from starting with
the graph with no edges, and then for any two nodes X and Y (X ~» Y) adding an arc
from X toY if Arc (X, Y) isin 39, an arc from Y to X if Arc (Y, X) isin 39, or an
undirected edge if Link (X, Y) isin X9. It is easy to see that graph encoded by a CGK
is well-defined. Furthermore, given a graph G there exists at least one CGK, for which G
is the encoded graph.

We thus have that any graph can be efficiently encoded as a CGK, and Definition 2
allows us to distinguish the graph knowledge bases, which can be interpreted as graphs,
from those that cannot. Next, we extend LY into a language powerful enough for building
a reasoning engine about graphs and their membership status of € on top:

Definition 3 (Graph Language). The graph language L is the set containing all sen-
tences in LY and

® ArcNotAllowed (X,Y),

® DirectedPath (X,Y),
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UndirectedPath (X,Y),
UndirectedPath (X, Y)Excluding(Z, W),
-DirectedPath (X, Y),
~UndirectedPath (X,Y), and
e -UndirectedPath (X, Y)Excluding(Z, W),
for any choice of distinct variables® X, Y, Z, and W (Z ~» W ). Sentences of the last
six kinds will be referred to as path sentences.

The sentences just introduced are supposed to be used as descriptors of attributes of
the graphs encoded by CGKs: ArcNotAllowed (X, Y) states that an arc from X to
Y would not be strongly protected®, which is required of all arcs in a completed pattern,
while the remaining sentences should be self-explanatory (e.g. ~UndirectedPath-
(X,Y)Excluding (Z, W) states that there is no undirected path between X and Y, or
that any such path necessarily contains either Z or W).

As L9 is a subset of L, it follows that a graph knowledge base is a set of sentences
in L as well, and given a set X of sentences of L, we denote by 39 the set ¥ N LY. In
particular Definition 2 is still applicable.

4. Graph Argumentation System

Building on the language L introduced above, we define an argumentation system for
distinguishing completed patterns that could be compromises for the agents. The sys-
tem that we construct enjoys the properties that a graph is a member of € iff there is a
preferred extension of the system which encodes this graph.

Definition 4 (Graph Argumentation System). The graph argumentation system .49 is

the tuple (L,b9 C (2L x L)), where v9 is defined as follows ({2, B} is short-hand for

any one of (A,B) and (B,A)):

. Arc (X, Y)Y Arc (Y, X)

. Arc (X, Y)Y Link{X, Y}

Arc (X, Y)bY NonAdjacent{X, Y}

. Link (X, Y)b¥ Arc{X, Y}

. Link (X, Y)Y NonAdjacent {X, Y}

NonAdjacent (X, Y)bY Arc({X, Y}

NonAdjacent (X, Y)bY Link{X, Y}

. mDirectedPath (X, Y)v¥ DirectedPath (X, Y)

—-UndirectedPath (X, Y)v¥ UndirectedPath (X,Y)

. mUndirectedPath (X, Y)Excluding (Z, W)»% UndirectedPath (X, Y)Exclu—
ding(Z, W)

11. Arc (X, Y)vY mDirectedPath (X,Y)

12. Link (X, Y)Y mUndirectedPath{X, Y}

13. Link (X, Y)Y nUndirectedPath{X,Y}Excluding (Z, W)

14. {DirectedPath (X, Y), DirectedPath (Y, z)}¥ ~DirectedPath (X, Z)

15. {DirectedPath (X, Y), UndirectedPath{Y, Z}}»% "DirectedPath (X, Z)

SO oNDYL A W~

~

SThroughout the text we assume that the implicit set of variables V" has at least five members. This assump-
tion can easily be lifted, albeit with a more complex notation to follow.

6An arc is strongly protected in a graph & if it occurs in one of four specific sub-graphs of §. See [10] for
details.
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16. {UndirectedPath{X, Y}, DirectedPath (Y, Z)}»¥ mDirectedPath (X, Z)
17. {UndirectedPath{X, Y}, UndirectedPath{Y,Z}}p¥ -UndirectedPath-
{X,2}
18. {UndirectedPath {X,Y}Excluding (Z, W), UndirectedPath{Y,U}Exclu-
ding (Z, W) }»¥ m~UndirectedPath{X,U}Excluding (Z, W)
19. DirectedPath (X, Y)Y Arc(Y,X)
20. DirectedPath (X, Y)bY Link{X, Y}
21. UndirectedPath{X, Y}b¥ Arc(X,Y)
22. {UndirectedPath{X, Y}Excluding (W, Z), Link{X,W}, Link{Y,Z}, Non-
Adjacent {X, Z}, NonAdjacent{Y, W}}r% Link{W, Z}
23. {Arc (X, Y), NonAdjacent (X, Z}}»% Link{Y, Z}
24. ArcNotAllowed (X, Y)pd Arc (X, Y)
25. {Arc(2,X), NonAdjacent{Z, Y} }»% ArcNotAllowed (X, Y)
26. {Arc(2Z,Y), NonAdjacent{Z,X}}»% ArcNotAllowed (X, Y)
27. {Arc (X, Z), Arc (Z,Y)}»% ArcNotAllowed (X, Y)
28 {Link{X,Z},Arc(Z,Y), Link{X, W}, Arc (W, Y), NonAdjacent {Z, W}}>¥ Arc—
NotAllowed (X, Y)
for all choices of distinct variables X, Y, Z, W, and U where the sentences obtained
are in L.

Loosely speaking, if X is a preferred extension of .47, then Bullets 1-7 ensure that
X7 is a CGK; Bullets 8—18 make sure that the path sentences in X \ X¢ are correct wrt.
G[%9]; Bullets 19-28 ensure that G[X9] is a complete pattern, cf. [10]. More precisely
we have:

Lemma 1. Let 3 be conflict free wrt. A9. Then 39 is a CGK.
Theorem 1. Let X be a preferred extension of A9. Then G[X?] is in €.
Theorem 2. If G is in €, then there is a stable extension T of A9, such that G[27] = G.

These results are important since they guarantee that agents arguing under the re-
strictions specified by A9 can be sure that their result is a completed pattern and that
they are not restricted from agreeing on any model a priori by the relations of A9. How-
ever, checking whether a set of arguments constitute a preferred extension is complex.
It involves checks for both admissibility and maximality. We therefore state a result that
yields a computationally efficient way of testing whether an admissible set of arguments
of A? is a preferred extension.

Theorem 3. Let 3. be a preferred extension of A9. Then X is a stable extension.

For proofs of all results and further elaborations, see [8].

5. Fusing Agoras

We now address the problem of having agents agree on a preferred extension of 49,
given that each of them has its own prior beliefs, as expressed by the compromise score
function s;, and that each know the combination function ¢. There has not been a lot of
work done in dialectics for more than two agents, where the simple proponent/opponent
dualism does not suffice. The solution that we propose here is inspired by the Risk Ago-
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ras of [17] and [18] and the traditional blackboard architecture of MAS of cooperating
agents, without being an actual instantiation of any of them. We construct a fusing agora,
which is a framework in which the agents can debate. The agora has the property that,
if agents are allowed to run the debate to conclusion, they end up with the best possible
compromise according to their joint compromise score, and that throughout the debate
they maintain a compromise, which improves as the debate progresses.

In the agora we shall take a .49-candidate (I, O, U) as a unique representatives of a
partial compromise (I, Q). This is possible since I and O are subsets of L, and thus both
contain sentences describing aspects of a graph as required, and furthermore, U is by
definition determined by I and O. Any leaf candidate representing a preferred extension,
then uniquely identifies a completed pattern, as guaranteed by Theorem 1. Agents can
explore all compromises by examining a (&, @, L)-tree. Continually the agents take it
upon themselves to explore sub-trees of this tree, and mark other sub-trees as open for
investigation by other agents. The heuristics guiding the agents choices for exploration,
in addition to sy, .. ., s and ¢, then determine the outcome.

The agora can work in a variety of ways, depending on the behavior of the individual
agents (a vanilla algorithm for an individual agent is provided later in Algorithm 1), but
basically builds on two elements, which we assume each agent can access in a synchro-
nized fashion only: A pool of candidates C and a current best result {I,, s1,}. C consists
of pairs {C, s), where C is an .A?-candidate and thus a sub-tree of a (&, &, L)-tree, and s
is a real value. I, is either the empty set or a preferred extension of A7, and sy, is a real
value. Initially, C contains only one element {(&, &, L), 0}, and (I, sr,) is (&, —00).

Each agent 7 can utter the following locutions:

e ExploreFromPool;({C, s)) — where (C, s) is a member of C'. The meaning of the
locution is that agent ¢ takes upon itself the responsibility to investigate the pre-
ferred extensions in a C-tree, assuming that C has a joint compromise score of
5.

e PutlnPool;({C, s)) — where C is an .A9-candidate, and s is a real value. The mean-
ing of the locution is that agent 7 wants someone else to investigate the preferred
extensions in a C-tree, and that C has a joint compromise score of s.

e UpdateBest;({I, s)) — where I is a subset of L, and s is a real value. The meaning
of the locution is that agent ¢ has identified a preferred extension I with a joint
compromise score s higher than sz, .

e AskOpinion;(Cy,Cs) — where C; and C, are .A9-candidates. The meaning of the
locution is that agent i needs to know s;(Cy,Cs) for all other agents j.

e StateOpinion;(Cy,C2, ss) — where C; and (5 are 4%-candidates, and s; is a real
value. The meaning of the locution is that s;(Cy, Cz) is 8.

The rules governing which locutions individual agents can utter, as well as their effects,
we present as a set of pre and post conditions:

e ExploreFromPool;({C, s))

* Pre: (C,s)isin C.
* Post: {C, s} is removed from C

e PutlnPool;({C, s))

* Pre: There is no {C', s') in C such that C is a sub-tree of some C'-tree.
* Post: {C, s} isin C.
e UpdateBest;({I, s))
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* Pre: s > s1,.
* Post: (I, sy, ) is setto (I, s}.
Locutions AskOpinion;() and StateOpinion;() have no pre or post conditions attached.

Algorithm 1 Vanilla algorithm for agent i

I: {C, s} +SELECTCANDIDATE(C)

2: ExploreFromPool;({C, s))

3 ¢ A (I',0',U") +PRUNE(C)

4: if U' = @ then

5: if PREFERREDEXTENSION(ZI') then
6: AskOpinion;(C,C")

7: S; — S,’(C,C/)

8: wait for StateOpinion;(C,C’, s;Vj # 4
9: s c(s1,...,8:)+s

10: if s’ > sz, then

11: UpdateBest;({C', s'})

12: goto 1

13: else

14: A +SELECTARGUMENT(C")

15: AskOpinion;(C,C’ + A)

16: AskOpinion;(C,C' — A)

17 s + (C,C" + A)

18: s; + 8i(C,C' — A)

19: wait for StateOpinion; (C,C' + A, s;") and StateOpinion; (C,C' — A, 87 \Vj # i
20 st e(sf,...,80)
21: s (81,0, 8;)
22: if st > s~ then
23: PutlnPool;({C' — A, s+ 57))
24: C+C+A
25: s+ s+sT
26: else
27: PutlnPool; ({C' 4 A, s + sT)
28: C+C —-A
29: §4+s+s”
30: goto3

The basic algorithm in Algorithm 1 corresponds to an exhaustive search, if it is
followed by all agents. The search is gradual in two senses: The longer the search goes
on, the average candidate in C' will have more elements in its I and O sets, and thus
be closer to describing a full compromise, and the current compromise held in I, will
have an increasingly higher score. Of course, in order for the search to be a success, each
agent ¢ would also need to keep an eye out for AskOpinion ;(-)’s uttered by other agents,
and reply to these with StateOpinion;(-). It is relatively easy to verify that agents using
Algorithm 1 are uttering locutions in accordance with the pre and post conditions of the
fusing agora.

Algorithm 1 calls a number of functions, which we only describe informally:
PRUNE(C = (I,0,U)) uses pruning rules to investigate whether there is an argument
A in U such that either C + A or C — A contains no leaves with preferred extensions.
If this is the case, the method invokes itself recursively on the sub-tree that did not get



S.H. Nielsen and S. Parsons / An Application of Formal Argumentation: Fusing Bayes Nets in MAS 43

pruned away, until no further branches can be pruned. Some general pruning rules are
given in [15], and more can be established for the specific case of .AY.
SELECTCANDIDATE(C') picks a promising candidate from C'. A promising candidate
could be one with a high score annotated, since these encode good partial compromises,
or candidates with small U sets, as these represent partial compromises that are nearly
complete. If all agents use the same criteria for picking promising candidates, this se-
lection can be sped up by implementing the pool as a sorted list. SELECTCANDIDATE(-)
is one of the areas where heuristics limiting the search space can be implemented. For
instance, it makes sense to allow agents to abstain from exploring the sub-tree rooted at
a candidate if it cannot contain compromises that are consistent with their own BN. This
would mean that in cases where agents agree on all or most of the aspects of G, only few
candidates would need to be explored.

PREFERREDEXTENSION(T) is a Boolean valued function that returns true if the conflict-
free set I is a preferred extension of .AY. The task of answering this is simplified by The-
orem 3, as it states that I is a preferred extension iff I attacks each argumentin L \ I.
SELECTARGUMENT(C = (I, O, U)) simply selects an element A of U. This selection
can be based on the agent’s own score increase going fromCto C + A or C — A, or it
might involve negotiations or argumentation with other agents.

Of course, the debate in the agora can be stopped at any time, and G[I{] will then
be the best compromise encountered so far, as it is only ever replaced by compromises
having a higher joint compromise score.

It is worth stressing that Algorithm 1 is a vanilla algorithm, and that the agora is
open for more aggressive behaviour. One such behaviour could be to have agents skip the
asking for opinions part in Lines 14 to 22 for most additions of arguments (and basing the
decision only on the agents own beliefs), and only ask when the agent itself is indifferent.
Another behaviour could be to never perform Lines 23 and 27, which would correspond
to a myopic greedy construction of the compromise. Alternatively, these two lines could
be carried out only when the difference between s and s~ is very small. We could
even have setups where the agents show different behaviours, or where individual agents
change behaviour during debate depending on their available resources and utility of a
good compromise. Moreover, the agora does not require that agents wait for a candidate
to be in the pool, before somebody can start exploring this candidate; so even when one
agent is pursuing an aggressive strategy and fails to leave candidates for others to explore,
other agents can still decide to explore these. The point is, that no matter what behaviour
is requested, the basics of the agora and the agents remains the same.

6. Conclusion

We have introduced a problem which we believe is a challenging one for the argumen-
tation community, due to its mix of complexity and conditional decomposability as well
as its origin in conflicting knowledge bases. Our own solution enables agents to judge
the possible compromises resulting from a partial compromise, by constructing a candi-
date tree rooted in this partial compromise, and the agora we have proposed ensures that
such exploration can take place in a distributed fashion. One problem with the vanilla
algorithm we have given, is that agents exploring a branch of a candidate-tree can end
up putting a lot of candidates into the pool of candidates. The space requirements for
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storing the pool of candidates can be prohibitive, so it might be required that the can-
didates in the pool are defined in relation to each other, which imposes restrictions on
which candidates an agent can choose to explore, as these are removed from the pool.
Furthermore, it might be necessary to construct heuristics for thinning the pool of candi-
dates. These issues, as well as finding good heuristics for selecting candidates to explore
are challenging topics for future research.
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Abstract. In this paper we discuss the integration of two systems that are based
on a specific theory of argumentation: the first, an existing web-based discussion
forum; the second, a method to enable autonomous software agents to perform
practical reasoning based upon their subscription to social values. We show how the
output from the first of these systems can be used as input to the second and how
the information gathered can be reasoned about through computer support. The
purpose of the approach is to demonstrate how current theories of argumentation
can be used to assist with the analysis of public attitude in a particular debate, with
the specific example domain used being that of eDemocracy. We also provide some
discussion and comparison of these current tools with similar, earlier systems.

Keywords. eDemocracy, practical reasoning, argumentation frameworks

1. Introduction

This paper discusses the application of theories of argumentation to the domain of
eDemocracy. The emergence of web technologies has led to the computerisation of nu-
merous ‘traditional’ business processes in the public, as well as the private, sector. The
ability of the public to interact with their rulers through online provisions has led to the
emergence of a new method of governance: eDemocracy. The transformation of democ-
racy into an electronic medium is currently making great advances, even though the field
is still relatively young. Numerous countries are engaged in the trial and development of
new interactive systems for eDemocracy, such as those for e-voting [1] and proposals for
new systems for eGovernment are attempting to address major issues such as trust and
security e.g., [2,3]. Thus, with the introduction of safe and efficient web-based services
governments have the opportunity to exploit the benefits of new computer technologies
to provide accessible, efficient and useful systems through which democracy can be ef-
fectively conducted. As debate and policy justification are key elements of eDemocracy,
support for systems promoting such interactions can be enlisted through the implemen-
tation of theories of argumentation to underpin these systems. The work presented in this
paper aims to address some of these objectives. The paper explores how a specific com-
puter system implemented to facilitate eDemocracy can be integrated with autonomous
agent systems used to reason about the justification of arguments concerning actions. In
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section 2 we give an overview of a tool, named the PARMENIDES system, developed
to foster public debate on a particular political issue. In section 3 we briefly describe
an approach to argument representation for dealing with reasoning about action, which
can be deployed in autonomous software systems. In section 4 we describe how a link
can be established between the systems described in the previous two sections. We then
illustrate this approach with a short example. In section 5 we discuss how the approach
presented in this paper compares and contrasts with earlier systems of similar ambition.
Finally, in section 6 we offer some concluding remarks.

2. The PARMENIDES Discussion Forum

In recent years numerous computer systems have been developed which aim to facil-
itate the online conveyance of democracy, e.g., Zeno [4] and DEMOS [5]. This pa-
per focuses on one particular system — the PARMENIDES system developed by Atkin-
son et al. [6] — designed to encourage public participation and debate regarding the
Government’s justifications for proposed actions. The PARMENIDES (Persuasive AR-
guMENt In DEmocracieS) system is described in [6] and the system can be used at:
http://www.csc.liv.ac.uk/~katie/Parmenides.html.

The idea of the system is to enable members of the public to submit their opinions
about the Government’s justification of a particular action. In the prototypical version
the subject dealt with is the 2003 war in Iraq, with the particular question under scrutiny
being, “Is invasion of Iraq justified?” (as this concerns a past action, the example debate
used is for illustrative purposes only). One of the key features of PARMENIDES is the
underlying model upon which it is based, as the tool is intended as an implementation to
exploit a specific representation of persuasive argument. The background of this model
of argument is as follows.

Atkinson et al. have previously described an argument scheme and critical questions
that provide an account of persuasive argument in practical reasoning [7]. Their argument
scheme is an extension to Walton’s sufficient condition scheme for practical reasoning
[8], and follows his method of treating such schemes as presumptive justification. His
account views an argument scheme as embodying a presumption in favour of the con-
clusion, where presumptions are tested by posing critical questions associated with the
scheme. In order for the presumption to stand, satisfactory answers must be given to any
such questions that are posed in the given situation. Atkinson et al’s extended scheme,
called AS1 and given below, makes Walton’s notion of a goal more explicit:

AST1 In the current circumstances R,
we should perform action A,
to achieve new circumstances S,
which will realise some goal G,
which will promote some value V.

In this scheme the notion of a goal has been separated into three distinct elements:
states of affairs (the effects of actions), goals (the desired features in those states of
affairs) and values (the reasons why those features are desirable). Thus, values provide
subjective reasons as to why states of affairs are desirable or undesirable. Additionally,
values relate states of affairs, since a given state of affairs may be desirable through
promoting several values, and a given value can be promoted by several states of affairs.
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Instantiations of argument scheme AS1 provide prima facie justifications of propos-
als for action. Associated with this scheme are sixteen different critical questions that
challenge the presumptions in instantiations of AS1. These critical questions are:

CQ1: Are the believed circumstances true?

CQ2: Assuming the circumstances, does the action have the stated consequences?

CQ3: Assuming the circumstances and that the action has the stated consequences, will
the action bring about the desired goal?

CQ4: Does the goal realise the value stated?

CQS5: Are there alternative ways of realising the same consequences?

CQ6: Are there alternative ways of realising the same goal?

CQ7: Are there alternative ways of promoting the same value?

CQ8: Does doing the action have a side effect which demotes the value?

CQOI: Does doing the action have a side effect which demotes some other value?

CQ10: Does doing the action promote some other value?

CQI11: Does doing the action preclude some other action which would promote some
other value?

CQ12: Are the circumstances as described possible?

CQ13: Is the action possible?

CQ14: Are the consequences as described possible?

CQ15: Can the desired goal be realised?

CQ16: Is the value indeed a legitimate value?

Given this argument scheme and critical questions, debates can then take place be-
tween dialogue participants whereby one party attempts to justify a particular action, and
another party attempts to present persuasive reasons as to why elements of the justifi-
cation may not hold or could be improved. It is this structure for debate that forms the
underlying model of the PARMENIDES system. In the prototypical version a justifica-
tion upholding the action of invading Iraq is presented to users of the system in the form
of argument scheme AS1. Users are then led in a structured fashion through as series of
web pages that pose the appropriate critical questions to determine which parts of the
justification the users agree or disagree with. Once a critique has been given regarding
the initial justification for action, users are then given the opportunity to state their own
full justification of any action they believe should be proposed, regarding the topic in
question. Users of the system are not aware (and have no need to be aware) of the un-
derlying structure for argument representation but nevertheless, this structure is imposed
on the information they submit. This enables the collection of information which has
been structured in a clear and unambiguous fashion from a system which does not re-
quire users to gain specialist knowledge before being able to use the tool. All responses
given by users are written to a back-end database so that information as to which points
of the argument are more strongly supported than others can be gathered. The original
proponent of the action, i.e., the Government, can then analyse the information gathered
to review public support of its case and perhaps revise or change its justification to make
the policy more amenable to public support.

This brief description of the PARMENIDES system is intended as an overview of the
tool and it is described in more detail in [6]. We now briefly describe how the argument
scheme and critical questions discussed in this section can be employed in an alternative
application making use of autonomous software agents.
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3. Reasoning About Action Using Autonomous Agents

In [9] Atkinson et al. describe how their argument scheme and critical questions can be
transformed into a computational account for use in software systems consisting of au-
tonomous agents based upon the popular belief-desire-intention (BDI) architecture. They
provide formal definitions that specify pre-conditions for when an agent can construct a
position based upon its beliefs, the actions available for performance, the agent’s desires,
and its values. As standard BDI architectures do not incorporate values, in [9] an account
has been given that extends the architecture to include values, which provide justifica-
tions for the agent’s choice of intentions, based upon its beliefs and desires. A full set
of pre-conditions is specified, which when satisfied allow agents to attack a justification
for action by posing any of the critical questions against the position. The output of this
process is a set of presumptive arguments' plus attacks on them. Resolution of a chosen
course of action is then done by organising the arguments and attacks into Value-Based
Argumentation Frameworks (VAFs) [10], which provide an extension to Dung’s Argu-
mentation Frameworks (AFs) [11] to accommodate different audiences with different
values and interests. Within a VAF, which arguments are accepted depends on the rank-
ing that the audience (characterised by a particular preference ordering on the values) to
which they are addressed gives to the purposes motivating the argument. As in Dung’s
AFs, the key elements in a VAF are the preferred extensions (PEs), which provide the
maximal consistent set of conflict-free arguments, relative to a particular audience [10].
To demonstrate this approach Atkinson et al. have provided an example application
in [9]. In this example they provide a reconstruction of the arguments involved in a well
known legal case from property law and they show how BDI agents can reason about
the justified course of action, in accordance with the above method. In the next section
we show how a link can be provided between PARMENIDES and the method described
above. This link is intended to show how computer support based on argumentation can
be used to aid the democratic debating process, whilst accounting for differing opinions.

4. Integrating the Approaches

Given that the two systems described above are based upon the same model of argument,
there is an obvious link that can be exploited between them, as we will demonstrate now.

The purpose of the PARMENIDES system is to gather public opinions regarding
the justification of proposed government actions. This could potentially mean that large
amounts of data are received and stored by the system and it would be useful to have a
mechanism to analyse and reason about the data. The use of software agents can serve
this purpose.

The database that records the information submitted through PARMENIDES stores
all the critiques and counter proposals supplied by members of the public. Any such
counter proposal offering a justification for action is decomposed and stored as individual
entries that record each of the elements of the justification that comprise an instantiation
of argument scheme AS1, i.e., the circumstances believed to be true, the action proposed
given these circumstances, the consequences of performing the action that include the

't is assumed in [9] that these arguments will be represented in some suitable formal logic, such as propo-
sitional logic, amenable to reasoning by a software agent.
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goal of the action, and, the value promoted through achievement of this goal. Given
this information, it is then possible to determine different audiences, based upon their
value subscriptions, and thus ascertain the acceptability and popularity of each action
suggested. An example to illustrate this is given below.

4.1. Example

On entering the PARMENIDES system, the user is presented with the Government’s
(hypothetical) justification for invading Iraq. This justification is as follows:

e In the current situation: Saddam has weapons of mass destruction (WMD), Sad-
dam will not disarm voluntarily, Saddam is running an oppressive regime, Saddam
is defying the UN, Saddam is a threat to his neighbours.

e The action we should take is: invade Iraq.

e Invading Iraq will: Remove the WMD, Restore democracy to Iraq, Assert the
authority of the UN, Remove the threat Saddam poses to his neighbours, Cause
military casualties, Cause civilian casualties.

e This will achieve: Removing WMD will promote world security, Restoring
democracy will promote human rights.

As two values are involved in this justification we can split the argument into two
separate justifications: one based on the presence of WMD whereby the action of invad-
ing will get rid of the WMD, promoting the value ‘world security’, and, one based on the
existence of an oppressive regime whereby invading will dispel the regime, promoting
the value ‘human rights’. We shall call these two arguments Argl and Arg2 respectively.
We are then able to take the individual elements of each justification and instantiate the
beliefs, desires, goals and values of a value-enhanced BDI agent (in accordance with the
formal pre-conditions described in [9]) to represent the views expressed in these justifi-
cations?. For convenience we will use a separate BDI agent to represent each perspective
in this example. Now, returning to the PARMENIDES system, suppose that a particu-
lar user disagrees with the justification given in Argl. Such a disagreement would be
revealed in the summary of the responses of the user’s critique that is displayed when
he has been questioned about his views regarding each element of the justification. A
textual excerpt from such a summary, showing the user’s opinion of the circumstances,
as displayed by PARMENIDES is given below:

You disagree that Saddam has WMD,

You disagree that Saddam will not disarm involuntarily,
You agree that Saddam is running an oppressive regime,
You disagree that Saddam is defying the UN

You agree that Saddam is a threat to his neighbours.

As an example, if we examine the first item on the list we can see that this partic-
ular user believes that Saddam does not possess WMD, i.e., the user disagrees with the
description of the current situation. In critiquing this element the user (without knowing
or needing to know) is posing critical question CQ1 and we shall call this attack on the

2Due to space restrictions we assume that the pre-conditions for instantiating the agents are met and we do
not provide specific details of this here. Detailed examples of how agents are instantiated can be found in [9].
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justification ‘Attack1’3. In order to construct the appropriate VAF to represent this attack,
we need to identify the value endorsed by this argument. As the attack represents a dis-
agreement as to what the facts of the situation are, we associate this argument with the
value ‘opinion’. Thus, the critical question posed by this attack isolates the contentious
element of the justification that requires clarification, whilst recognising that this is rela-
tive to an opinion of a particular opponent. This value would initially be ranked as a weak
argument against the justification, but it could gain strength were more users shown to
have the same opinion. If a general consensus emerged that a particular element was seen
as unjustifiable in the opinion of the public, then the Government may be persuaded to
act upon the perceived disputable point, e.g., by clarifying the facts or altering the policy.

We can now instantiate a BDI agent that holds the belief manifest in the attack de-
scribed above, i.e., that there are no WMD. If we now view the arguments considered so
far as a VAF, we have the situation shown in Figure 1:

Argl CQ10 Arg2
world human
security) rights

\gl
Attackl
opinion

Figure 1. VAF with an attack on a justification.

The VAF in Figure 1 has nodes to represent the two arguments promoting different
values and it also shows the attack on Argl posed by CQ1 (and note that the other cri-
tiques given in the list could also be treated in the same manner). Note also that the VAF
shows an attack between Argl and Arg2 through the use of CQ10 to point out that al-
though both arguments endorse the same action, they each promote different values. This
distinction places importance upon the justification that each argument offers in support
of the action. The reason these arguments are then seen to attack each other is that each
sees the other’s justification as being less acceptable. The importance of this point can be
seen through the criticism levelled at the British Government who ostensibly invaded Iraq
to remove WMD, while critics argued that their motives were actually regime change,
illegal under international law. Thus, in addition to deciding which action to execute,
deciding upon the most acceptable justification for an action is also an important part of
practical reasoning. This point is also demonstrated in other domains, such as the legal
one where the justification of actions has consequences for making future judgments.

Returning now to the example, suppose the PARMENIDES user has critiqued the
original justification and has also gone on to offer an alternative action plus justification.
Such an alternative, which we will call Arg3, might be recorded as follows:

In the current situation: we believe Saddam may have WMD,

The action we should take is: give weapons inspectors more time to investigate,
This will: clarify whether the WMD claim is true or not,

This will achieve: public trust in the facts.

3Note that in all the VAFs presented here ‘Arg’ is used to denote instantiations of AS1 (that may or may
not arise through posing critical questions) and this is distinguished from ‘Attack’ which is used to denote an
argument that poses a critical question but does not instantiate AS1. Thus attacks are solely negative, whereas
arguments also propose an action.
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The PARMENIDES database would record each of the following: the facts about
the situation the user believes to be the case, the action proposed given these facts, the
consequences of these facts, and the reasons (values) as to why these consequences are
desirable. Such a justification is offering an alternative action, incompatible with the
original action, which promotes some other value and thus it is posing critical question
CQ11. We are then able to instantiate another BDI agent with the beliefs, desires and
value cited in the above justification for action. The VAF showing the addition of this
argument is given in Figure 2:

Argl CQI10 Arg2
world human
security/ rights

public
trust

Figure 2. VAF with argument promoting a different value.

In the above VAF the attack of CQ11 on Argl would succeed for any audience that
ranks the value ‘public trust’ higher than the value ‘world security’. Attackl would only
succeed in defeating Argl if it were shown to be an opinion expressed by a sufficiently
large number of users, according to a set threshold. As yet, Arg2 has no further attackers
so the action of invasion, for the reasons specified in Arg2, could still be justifiable. How-
ever, submissions to PARMENIDES may reveal some critiques and counter proposals
for the justification of Arg2. Again, consider a sample summary of a user’s critique from
the PARMENIDES database, this time concerning the consequences of the action:

You believe that invading Iraq will achieve the following:

Remove the WMD: Yes,

Restore democracy in Iraq: No,

Assert the authority of the UN: No,

Remove the threat that Saddam poses to his neighbours: Yes.
Cause military casualties: Yes,

Cause civilian casualties: Yes.

If we examine the second item on the list we can see that this particular user believes
that invading Iraq will not restore democracy to the country, i.e., he disagrees with the
consequences of the action. This critique poses critical question CQ2 and we shall call
this attack on the justification ‘Attack2’. As in the case of Attack1, Attack2 will also take
the value ‘opinion’. So, we can instantiate another BDI agent that holds this belief.

After having given his critique, a user with such views may also propose an alterna-
tive position on the matter, such as the example one given below:

e In the current situation: Saddam is running an oppressive regime, Saddam is vio-
lating human rights,

¢ The action we should take is: wait for a second UN resolution on the matter,

e This will mean: unjustified military intervention is not required,

e This will achieve: respect for international law.

As this justification is offering an alternative action, incompatible with the original
action, which promotes some other value, it is again posing critical question CQ11. We
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will call this Arg4 and we can use another BDI agent to represent this view. Both Attack2
and Arg4 can now be added to the VAF, as shown in Figure 3.

Argl CQI10 Arg2
world human
security nghls CQ] ! Arg4

respect
QI p

law
Figure 3. VAF with attacks on Arg2.

In the above scenario the attack of CQ11 on Arg2 would succeed for any audience
that ranks the value ‘respect for international law’ higher than the value ‘human rights’
(as used in relation to the specific argument). Attack2 would only succeed in defeating
Arg? if it were shown to be an opinion expressed by a sufficiently large number of users.

We have shown how both original justifications can be subject to attack through
users’ critiques, though there are of course further attacks that could be posed against the
original justifications: the attacks discussed this far are intended to show a few examples
of how the position can be critiqued. In order to give some structure and analysis to the
data submitted to PARMENIDES, all critiques and alternative proposals would need to
be represented as VAFs. This would enable the Government to uncover any patterns in
the data showing which parts of the justification are mostly frequently disagreed with,
and segment the population according to their values. For example, critiques from mul-
tiple users may reveal that CQI is consistently being posed to disagree with the state-
ment ‘Saddam has WMD’. In such a case, the proponents of the original justification (the
Government) may then try to clarify their reasons for endorsing this point, i.e., provid-
ing information on sources and their trustworthiness. Further critiques may reveal, for
example, that CQO is consistently used to introduce arguments stating that other values
have not been considered by the Government and these values are important to members
of the public. In this case the Government would have to provide justification as to why
the values they are endorsing are the most important ones concerned in the debate.

4.2. Reasoning About Public Opinions

The previous subsection described how the public’s criticisms can be posed against the
Government’s position on the issue in question. However, to ensure that all opinions have
been assessed in relation to each other, the reasoning process should not end here. In
the same way that the original justification for invading Iraq was subject to critique, so
the user-supplied arguments should also be subject to the same method of critical ques-
tioning. The PARMENIDES system currently does not provide a facility by which users
can critically assess each other’s views, though such an extension is desirable and would
seem feasible to implement. However, it is currently possible to examine all views sup-
plied and use the method described in the previous section to show how views between
users may conflict. We now provide a short example of this.

If we examine Figure 3 we can see that it contains Arg3. This argument was con-
structed from an alternative position to the original justification, as supplied by a user.
There are numerous ways in which this could be attacked. For example, the original pro-
ponent could counter that the goal of verifying whether Saddam has WMD could be met
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through the alternative action of consulting an existing dossier profiling Iraq’s WMD.
This could instantiate AS1 with Arg5 as follows:

e In the current situation: we believe Saddam has WMD,

e The action we should take is: consult the previous dossiers produced by weapons
inspectors on Iraqg’s WMD ,

This will mean: the WMD claim is verified,

This will: promote public trust in the facts.

This argument states that there is an alternative action that meets the same goal
(verifying the WMD claim), and thus it makes use of critical question CQ6.

Looking to the attacks on Arg2 from Figure 3, we can see that Arg4 is one such
attack. Again, this argument was constructed from a user-supplied alternative position
and it too could be attacked in numerous ways. For example, the original proponent could
counter that the alternative action proposed has side effects which actually demote the
value concerned. This could instantiate AS1 with Arg6 as follows:

e In the current situation: Saddam is running an oppressive regime, Saddam is vio-
lating human rights,

e The action we should take is: wait for a second UN resolution on the matter,

e This will mean: Saddam is allowed to continue his activities,

e This will: demote respect for international law.

This argument states that the action proposed has unconsidered consequences which
actually demote the value in question, (‘respect for international law’), and thus it makes
use of critical question CQS8. Additionally, there may be further arguments supplied by
other users that also attack Arg4. For example, CQ9 could be used to state that the action
has consequences which demote some other value, as in the following argument, Arg7:

e In the current situation: Saddam is running an oppressive regime, Saddam is vio-
lating human rights,

o The action we should take is: wait for a second UN resolution on the matter,

e This will mean: Saddam’s enemies could be vulnerable to attack,

e This will: demote world security.

The above three arguments, Arg5, Argb and Arg7, can then be added to the VAF:

Argd
respect CcQ9
law Arg7

world
security,

respect
law

Figure 4. Final VAF.

If the reasoning were to stop here then we can see that for any audience Arg5 defeats
Arg3, as the two are motivated by the same value*. Arg7 defeats Arg4 for any audience

“Following [10], where an argument attacks another argument with the same value in a VAF, the attacker
always succeeds.
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that ranks the value ‘world security’ higher than the value ‘respect for international law’.
If we then consider Arg6, this defeats Arg4 for any audience (again, as the two are
motivated by the same value). Nonetheless, the loss of Arg4 does not mean that Arg2 will
be reinstated as Arg2 could still be defeated by Attack2. Of course, the new arguments
introduced to the VAF will themselves be subject to critique and were further arguments
to be introduced to the debate through responses supplied to the PARMENIDES system,
then the status of the VAF would need to be updated and re-evaluated accordingly.

The example arguments used here are intended to serve as an illustration of the
approach, but in practice we envisage the debate encompassing a much larger range of
arguments. Once a sufficiently representative number of views had been submitted to
the PARMENIDES system, the Government would then be able to assess the opinions
supplied and their relative importance. If the opinions revealed that particular parts of
the original justification of the policy in question were viewed as being contentious,
then the Government could take measures it deems appropriate to respond to public
criticism. This may involve clarification of the facts, release of supporting information,
or adjustment to the policy, amongst other things.

5. Related Work

Various mediation systems for deliberative debate have been proposed over the last two
decades. We now briefly discuss how the work presented here relates to some similar
systems. In particular, we examine the Zeno framework of Gordon and Karacapilidis [4].

Zeno, like PARMENIDES, is a “computer-based discussion forum with particular
support for argumentation” [4]. The specific model of argumentation that Zeno is based
upon is Rittel’s Issue-Based Information System (IBIS) [12]. Zeno’s main feature is a
type of labelling function to represent arguments so that the relationship of positions re-
garding a solution to a practical issue can be assessed. From these arguments, a dialecti-
cal graph can be constructed showing the pros and cons of the choices available, in order
to decide upon a solution to a practical issue. Users are able to express their preferences
for particular choices and provide qualifications for these preferences. Zeno’s dialectical
representation graphs differ from VAFs in a number of ways. Firstly, VAFs solely encap-
sulate the notion of attack between arguments and as such, say nothing about the ‘pros’
of arguments. However, within a VAF, an attack on an attack could be construed as a type
of supporting argument: if a particular argument is attacked, then a second attack made
on the first may re-instate the original argument. In a Dung style AF, the notion of support
is captured by considering the acceptability of an argument with reference to a set of ar-
guments. An admissible set collectively supports all its members against all attacks from
outside the set. Such defending arguments are not viewed as ‘pros’ within a VAF because
they are only introduced into a VAF to provide rebuttals to attacks (if such defending
arguments do not originally appear in the VAF). In effect, this method is prompting the
audience to voice objections to the arguments presented, and any such objections will
be included and evaluated as necessary, once identified. This means that only arguments
relevant to the debate are included in the evaluation and arguments superfluous to it are
avoided. An additional consequence of including supporting arguments in the debate is
that they affect the evaluation of the acceptability of arguments. By requiring supporting
arguments to be included in order to justify a position, arguments that are not attacked
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cannot automatically be presumed acceptable, as they can in a VAF. Again, having this
feature in a VAF means that relevant arguments are introduced to the debate only as and
when necessary. However, other accounts that make use of supporting arguments have
more recently been proposed, such as Amgoud et al’s argumentation frameworks [13].

Examining now the ‘value’ component of VAFs, we believe that this provides extra
information in the evaluation of the arguments that is not explicitly represented in Zeno.
Zeno allows preferences between positions to be expressed, but these preferences are not
justified in the subjective manner that is provided by the notion of an audience within a
VAF. In Zeno’s dialectical graphs, positions are regarded more like propositional state-
ments that can be organised into a preference ordering according to the constraints de-
fined in the debate. In VAFs however, such statements are distinguished into goal-value
pairs where goal states map onto value(s) promoted by the goals. Thus, preference or-
derings over values are relative to particular audiences — they are not fixed constraints
— and so they provide explanations as to why disagreements occur and what persuasion
needs to take place in order for agreement to be reached.

In [14] the Zeno framework has also been compared against other decision support
systems, such as McBurney and Parson’s Risk Agora System [15]. This particular system
was devised to model inquiry dialogues (and in particular, scientific inquiries), though
the system is based on a different form of argumentation, namely, a dialogue game.
As with most standard dialogue games, the framework specifies locutions that may be
uttered by the participants (in accordance with specific pre-conditions), and it also tracks
any commitments made by participants throughout the course of the dialogue. However,
Risk Agora is not a fully implemented system, thus it does not provide real-time support
for debates and it is intended as more of a tool to model the arguments in a debate and
the relations between these arguments. Unlike PARMENIDES, it does not concern itself
with justifying action through debate, as it is concerned more with inquiry dialogues.

Finally, returning to the eDemocracy domain, there are numerous approaches that
have been developed in recent years that advocate the use of web-based discussion boards
as a useful way of encouraging and supporting debate. Examples of such approaches can
be found in [16,17]. Although such discussion boards can indeed encourage participa-
tion and debate, they generally provide no structure to the information gathered. The key
advantage that the PARMENIDES system provides over such discussion boards is that
it is implemented upon a firm model of argument, which is transparent to the user, but
provides structure to the responses submitted. Additionally, the data submitted to PAR-
MENIDES can be further analysed according to the techniques described in this paper.
There are, of course, numerous other mediation systems that have been developed to pro-
vide support to decision making. However, consideration has been limited to the systems
discussed here to illustrate the main merits of the approach presented in this paper, which
combines a computational decision support system with current work on argumentation.

6. Concluding Remarks

In this paper we have shown how support can be given to systems for eDemocracy
through the use of a current theory of argumentation concerning action. Our approach
advocates a method integrating online public debate with current technologies based on
autonomous software programs that are intended to provide computer support for rea-



58 K. Atkinson / Value-Based Argumentation for Democratic Decision Support

soning about actions. We believe that both the systems described are of value in them-
selves as they are based upon a defined method of argument representation. Moreover,
once integrated we believe that they have the potential to add further value to domains,
such as the political one, where reasoning about and justifying actions is crucial.’
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Abstract. Argument Based Machine Learning (ABML) is a new approach to ma-
chine learning in which the learning examples can be accompanied by arguments.
The arguments for specific examples are a special form of expert’s knowledge
which the expert uses to substantiate the class value for the chosen example. MoZina
et al. developed the ABCN2 algorithm - an extension of the well known rule learn-
ing algorithm CN2 - that can use argumented examples in the learning process. In
this work we present an application of ABCN2 in the medical domain which deals
with severe bacterial infections in geriatric population. The elderly population, peo-
ple over 65 years of age, is rapidly growing as well as the costs of treating this pop-
ulation. In our study, we compare ABCN2 to CN2 and show that using arguments
we improve the characteristics of the model. We also report the results that C4.5,
Naive Bayes and Logistic Regression achieve in this domain.

Keywords. Argument Based Machine Learning, Rule learning, Geriatric population,
Bacterial infections

1. Introduction

The elderly population is a unique one and that is also true from the medical perspective.
Compared to younger population, people over 65 years of age usually react to a disease
in a different way. Many symptoms may not even be present or they are masked by others
which makes it a very difficult task for a medical doctor to diagnose a condition, to decide
a proper treatment or to estimate the patient’s risk of death. From a wider perspective, the
proportion of elderly in the population is growing rapidly and so are the costs of medical
treatment, which presents an emerging economic problem.

Infections in the aging population present an increasing problem in the developed
countries. Many patients that with an infection have associated chronic diseases such
as diabetes, heart, kidney, lung or liver disease which makes the treatment even more
complicated. The number of nursing home residents is also increasing in this population.
Because of the specific living environment, these people are usually more susceptible
to bacterial infections. Despite great progress in treating infectious diseases they remain
one of the major causes of death in geriatric population. Some diferences in the course
of illness can be observed compared to younger patients. Greater risk of severe bacterial

I Correspondence to: Jure Zabkar, Faculty of Computer and Information Science, University of Ljubljana,
Trzaska 25, SI-1001 Ljubljana, Slovenia. Tel.: +386 1 4768 299; Fax: +386 1 4768 386; E-mail:
jure.zabkar @fri.uni-lj.si.
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infection is due to the patient being immunocompromised [1], immobile, nursing home
resident or comorbidity. In the elderly, the infections are often present with untypical
signs, such as the absence of fever [2,3,4,5], the absence of cough at pneumonia and
weakness or changed mental status [6]. These usually cause a delay in making a right
diagnosis. A proper and efficient antimicrobial treatment is often given too late, and the
risk of a fatal outcome is increased [7,8].

In this paper we apply an approach to argument-based machine learning to this do-
main. The motivation for using machine learning in this study is to build a model from
data which would help the physician, at the first examination of the patient, to decide the
severity of the infection and consequently, whether the patient should be admitted to hos-
pital or could be treated as an outpatient. Moreover, we would like to have an understand-
able model, not a black box, to see which parameters play a decisive role. Several studies
are described in the literature regarding the difficulty of the course of disease [9,10,11].
Fine et al. [11] implemented a prognostic model for adult patients with documented bac-
terial pneumonia. An overall study, regarding the bacterial infections of different organs
and taking into account so many clinical as well as laboratorial parameters has, to our
knowledge, not been carried out yet.

The alternative to machine learning would be to implement with the help of domain
experts an expert system and use it for diagnosing the severity of infection. The knowl-
edge possessed by experts is usually implicit and they find it extremely difficult to elicit
it in the form of a set of rules. On the other hand, it was shown that it is easier for experts
to discuss certain concrete cases, instead of giving a general theory. Research from de-
feasible argumentation [12] proposed an alternative approach to building expert systems.
Experts should first give arguments for some specific examples of possible outcomes.
These arguments are then given to an argumentation engine, an expert system that can
use these (possibly contradictory) arguments to make predictions for new cases. When-
ever a decision from the arguments could not be inferred, the experts are again asked for
additional arguments.

Our approach, Argument Based Machine Learning (ABML) [13,14], combines ma-
chine learning and argumentation. ABML is a new approach to machine learning in
which the learning examples could be accompanied by arguments. The expert chooses a
subset of learning examples and gives reasons, in the form of arguments, why the class
value of the example is as given. We have developed an argument-based rule learning
algorithm ABCN?2 [15,14], an extension of the well-known CN2 algorithm, which we
here apply to our medical domain hoping to improve the prediction quality of standard
machine learning techniques by using arguments given by experts.

2. Argument Based Machine Learning

Argument Based Machine Learning (ABML) [14,13] is a new approach to machine
learning that can learn from examples and arguments. While the standard problem of
machine learning from examples is to induce a hypothesis that explains given examples,
in ABML some of these examples are given arguments, and the problem of ABML is
to induce a hypothesis that explains examples using these arguments. The arguments for
specific examples are a special form of expert’s knowledge which he/she uses to sub-
stantiate the class value for the chosen example. We believe that it is much easier for the



J. Zabkar et al. / Argument Based Machine Learning in a Medical Domain 61

expert to justify the class value of the specific example than to provide some generally
applicable rules. We consider this as the main advantage of the ABML approach. The
other two important advantages of ABML are:

1. Arguments impose constraints over the space of possible hypotheses, thus reduc-
ing search complexity,

2. An induced hypothesis should make more sense to an expert as it has to be con-
sistent with given arguments.

Regarding the first advantage above, it is obvious that constraining the search space
should help to overcome the problem of explosive combinatorial space of possible hy-
potheses. Arguments do not simply reduce search complexity but they rather make it
smarter, by directing the search into subspaces where better hypotheses should reside.
Regarding the second advantage, we should mention that several hypotheses could ex-
plain the given examples well, but some may not be understandable to the expert. By
including the arguments the induced hypotheses should make more sense to the expert.

2.1. ABCN2

Argument Based CN2 (ABCN2) is a realization of the concepts just described. It is
an extension of the rule learning algorithm CN2 [16,17] in which a subset of learning
examples may be given arguments. The details of the algorithm and the formalism of
accepted arguments by the method are described in [15,18]. Here we shall give only a
brief overview.

2.1.1. Argumented examples

A learning example E in the usual form accepted by CN2 is a pair (4, C), where A is
an attribute-value vector, and C' is a class value. An argumented example AE is a triple
of the form:

AE = (4, C, Arguments)

As usual, A is an attribute-value vector and C' is a class value. Arguments is a set of
arguments Argy, ..., Arg,, where an argument Arg; has one of the following forms:

C because Reasons
or
C' despite Reasons

The former specifies a positive argument (speaks for the given class value), while the
latter specifies a negative argument (speaks against the class value). Reasons is a con-
junction of reasons ry, . .., Ty,

Reasons =ri Ara A... AT,

where each of the reasons r; is a condition on a single attribute (e.g. X = z, where X is
the name of the attribute and x is a possible value for this attribute).
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Patient ~ Consciousness Trombocytes BloodPressure Gender Death

Patient n.1 normal > 100 > 100 male no
Patient n.2  disoriented < 100 > 100 male no
Patient n.3 normal < 100 < 100 female  yes
Patient n.4  disoriented > 100 < 100 female  yes

Table 1. A simplified version of the infections database.

2.1.2. The ABCN2 Algorithm

ABCN?2 is based on the version of CN2 that induces a set of unordered rules [17]. The
main difference between CN2 and ABCN2 is in the definition of rule covering. In the
standard definition (CN2), a rule covers an example if the condition part of the rule is
true for this example. In argument based rule learning, this definition is modified to: A
rule R AB-covers an argumented example F if:

1. All conditions in R are true for E (same as in CN2),
2. R is consistent with at least one positive argument of E, and
3. R is not consistent with any of negative arguments of F,

where rule R is consistent with an argument Arg if the reasons of Arg are present among
conditions of R.

We will illustrate the idea of AB-covering on a simplified version of an infections
database. Each example is a patient described with four attributes: Consciousness (with
possible values “normal” and “disoriented”), Trombocytes (possible values “> 100" and
“< 1007), BloodPressure (“> 100” and “< 1007), and Gender (“male” and “female”).
The class is Death (with possible values “yes” and “no”). Let there be four learning
examples as shown in Table 1.

The expert’s argument for occurrence of death for Patient n.3 could be: she died be-
cause the number of trombocytes is less than hundred. Similarly, Patient n.4 died because
she was disoriented. A negative argument can be: Patient n.3 died despite her conscious-
ness being normal. Third patient would in our syntax be written as:

((Consciousness = normal, Trombocytes = < 100, BloodPressure = <
100,
Gender = female), Death = yes,{Death = yes because
Trombocytes = < 100,
Death = yes despite Consciousness = normall).

Arguments given for examples additionally constrain rules covering this example. Re-
member that in CN2, rules have the form:

IF Complex THEN Class

where C'omplex is the conjunction of simple conditions, called selectors. For the pur-
pose of this paper, a selector simply specifies the value of an attribute. A rule in our
domain can be:

IF C'onsciousness = normal AND Trombocytes = < 100 THEN
Death = yes
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The condition part of the rule is satisfied by the attribute values of third patient, so
we say that this rule covers this example (all conditions in the rule are true for example).

As an illustration of the differences between AB-covering and the usual definition
of covering, consider again our example with the argument that she died because the
number of trombocytes is less than hundred and despite her consciousness being normal.
Consider the following rules:

Rule 1: IF Gender = female THEN Death = yes.

Rule 2: IF Consciousness = normal AND Trombocytes = <
100 THEN
Death = yes
Rule 3: IF Trombocytes = < 100 AND BloodPressure = < 100 THEN
Death = yes

All three rules cover the third example and have 100% accuracy on the above data set.
However, Rule 1 does not AB-cover the example, because it is not consistent with the
positive argument (conditions of positive argument are not satisfied). Rule 2 is consistent
with positive argument, however as it is also consistent with the negative argument, it
still does not AB-cover the third example. The last example AB-covers the Patient n.3
example.

We mentioned that the first requirement for ABML is that an induced hypothesis ex-
plains argumented examples using given arguments. In rule learning this means that each
argumented example must be covered by at least one rule that AB-covers the example.
This is achieved simply by replacing covering in original CN2 with AB-covering. As a
result of this replacement, non-argumented examples may also be AB-covered. A further
improvement of the original CN2 algorithm is the requirement that induced rules explain
as many as possible non-argumented examples by arguments given for the argumented
examples (see [15,18]). Three further important mechanisms inherited from CN2 are im-
proved in ABCN2. These are: examples removing strategy (after a rule is learned), the
evaluation function, and classification by rules. In the remainder of this section we will
explain why these parts are problematic and how we improved them.

2.1.3. Removing strategy

After CN2 learns a rule, it removes examples covered by this rule and recursively con-
tinues learning on the remaining examples. This approach assumes that the algorithm
induces the best possible rule for given examples - there exists no rule that would be
evaluated better than this rule and cover the same examples. This assumption might be
true for the original CN2, but for ABCN2, where we first learn from argumented exam-
ples (learning is constrained by arguments of argumented example), this assumption is
likely to be incorrect. A rule learned from an argumented example can be seen as the
best possible rule covering this example. However, this rule may not be the best rule for
other examples covered by this rule. For instance, it could happen that CN2 finds a bet-
ter rule for some of these examples. Therefore, removing examples after learning from
argumented examples might prevent classical CN2 from learning some good rules. To
avoid this drawback, in [14] we developed a probabilistic covering strategy.
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2.1.4. Evaluation function

The evaluation function in rule learning algorithms is used to determine the goodness
(or quality) of a rule. This measure of goodness should determine the rule’s potential to
predict yet unseen cases. In versions of CN2, rules are often evaluated using the Laplace
formula for probability. Due to a search through a huge space of possible hypotheses,
this evaluation method usually gives optimistic estimates of probability [19]. In the case
of ABCN2, rules learned from argumented examples are selected from a smaller space of
hypotheses than rules induced with the standard CN2 algorithm, and thus the quality of
arule learned from an argumented example is relatively underestimated when compared
to a rule learned from standard CN2. We developed a novel evaluation method based on
extreme value theory [19] that accounts for multiple comparisons in the search. Using
this method, the evaluations of rules learned from arguments are not underestimated any
more. Due to this fact, the quality of a rule becomes now a very important factor in
classification.

2.1.5. Classification from rules

Most of the methods for classification by rules take into account the distribution of cov-
ered examples by these rules. However, similarly to the Laplace evaluation function, the
number of positive examples in the distribution tends to be optimistic. As our evalua-
tion function, described in the previous section, accounts for the number of candidate
hypotheses, it would make sense to use the quality of a rule (instead of distribution) in
classification. We developed such a method based on the Minimax theorem [20], for a
detailed explanation of this classification method see [14].

3. Experiments
3.1. Data

The data for our study was gathered at the Clinic for Infectious Diseases in Ljubljana,
from June 1st, 2004 to June 1st, 2005. The physicians included only patients over 65
years of age with CRP value over 60 mg/l, which indicated a bacterial etiology of the
infection. The patients were observed for 30 days from the first examination or until
death caused by the infection. The data includes 40 clinical and laboratorial parameters
(attributes) acquired at the first examination for each of 298 patients (examples). The
infections are distinguished with respect to the site where bacteria is found or on the
clinical basis (respiratory, urinary tract, soft tissues, other). The continuous attributes
were categorized by the physician. The distribution of the class values is the following:

e 34 examples (11.4%) for *death = yes’
e 263 examples (88.6%) for ’death = no’

3.2. Arguments

The argumentation was done by the physician who was treating the patients and could
by her expert knowledge state several positive and negative arguments for 32 examples,
where all argumented examples were from class death = yes, namely she gave the reasons
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Attribute Value

GENDER Z Positive arguments

AGE_YEARS 92

AGE C DEATH=YES because RESPIRATORY_RATE_D="> 16”
NURSING_HOME_RESIDENT NO DEATH=YES because SATURATION_D="< 90”
COMMORBIDITY 0 DEATH=YES because BLOOD_PRESSURE_D="< 100~
DIABETES NO DEATH=YES because TEMPERATURE_D="> 37.9”
HEART NO DEATH=YES because LEUKOCYTES_D=“> 12~
KIDNEY NO DEATH=YES because CREATININE_D="> 100"
LIVER NO DEATH=YES because BLOOD_UREA_D=“> 13"
LUNG NO DEATH=YES because NA_D=“> 147"

IMMUNITY NO DEATH=YES because AGE_YEARS is high
CENTRAL_NERVE_SYSTEM NO DEATH=YES because WEAKNESS=YES

MOBILITY YES DEATH=YES because CONSCIOUSNESS=DISSORIENTED
CONTINENCE YES

BEDSORE NO Negative arguments

CATHETER NO

IMPLANT NO DEATH=YES despite MOBILITY=YES

VOMITING NO DEATH=YES despite CONTINENCE=YES
DIABLOODPRESSUREHEA NO DEATH=YES despite TROMBOCYTES_D="2> 100"
WEAKNESS YES DEATH=YES despite HEART_RATE_D="< 100"
CONSCIOUSNESS DISSORIENTED DEATH=YES despite RODS_D=“< 10"
TROMBOCYTES_D > 100 DEATH=YES despite CRP_D="< 150"
TEMPERATURE_D >37.9 DEATH=YES despite COMMORBIDITY=0
RESPIRATORY_RATE_D > 16

SATURATION_D < 920

HEART_RATE_D < 100

BLOOD_PRESSURE_D < 100

LEUKOCYTES_D > 12

RODS_D < 10

CRP_D < 150

CREATININE_D > 100

BLOOD_UREA_D > 13

GLU_D < 15

NA_D > 147

INFECTION_TYPE RESPIRATORY

DEATH (class value) YES

Table 2. A sample argumented example from the infections database.

she believed caused death for each selected patient. A sample argumented example is
shown in Table 2.

One could, at this point, ask an interesting question about these arguments: whether
they would, if used as rules, describe the domain sufficiently well. We built a simple
classifier from the given arguments and tested it on the same data set; for each case,
we counted the number of applicable arguments for class death = yes and compared
this number to the number of arguments for class death = no. The accuracy of such
a classifier is only slightly above 40%, therefore there is still a large space available
for machine learning to improve. Since the default accuracy in this domain is 88.6% it
indicates that the knowledge which is hidden in arguments is far from perfect. However,
please note that this experiment is not used to validate the expert knowledge. To do that,
at least the arguments for examples from the opposite class should be given as well. Our
intention is merely to show that the knowledge given by the arguments is neither perfect
nor complete though it can still help to improve learning.

3.3. Results

Learning and testing was performed by 10-fold cross validation which was carried out 10
times with different random splits of examples into folds. We compared the algorithms
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ABCN2 and CN2, where both methods used the improvements shown in the previous
section, so that their comparison directly represents the influence of the arguments added
to the learning examples. Both algorithms were then compared to Naive Bayes (NB),
decision trees (C4.5) and logistic regression (LogR). The algorithms were compared
with regard to classification accuracy, area under ROC (AUC) and Brier score. All the
methods and tests were implemented within Orange toolkit [21]. The results are shown
in Figure 1-3.

Observing classification accuracy, that is the percentage of correct classifications, we
can see that CN2, ABCN2 and C4.5 achieve similar results while NB and LogR perform
significantly worse (Fig. 1). Although classification accuracy is important it should be
accompanied by other estimates especially because the majority classifier itself is quite
accurate in this domain due to the imbalance between the two classes. Therefore we also
measure AUC and Brier score, which are applicable as all the methods also give the
probability of the predicted class. AUC measures how well the method ranks examples:
it is the probability that for two randomly chosen examples with different classes, the
method will correctly decide classes for these examples (it is not allowed to classify
both in the same class, as it knows that they are from different classes). This measure is
often used to evaluate hypotheses in medical domains, where we wish to have methods
that separate positive from negative examples as well as possible. Figure 2 shows that,
according to AUC, ABCN2 significantly outperforms all other methods. The same effect
also comes out in Brier scores (Figure 3), which measures the average quadratic error
of predicted probability. It is important to note that for imbalanced domains, such as our
domain, AUC and Brier score are more relevant measures of success than accuracy.

3.4. Discussion

ABCN2 achieved better results than CN2 according to all three measures by using argu-
ments given by an expert. The question is how the induced hypotheses from both mea-
sures differ and why ABCN2 is the better method. To examine the hypotheses, we in-
duced a set of rules from the whole data set with ABCN2 and CN2. As the arguments
were given only to examples with class value death=yes, the induced rules for death=no
were the same for both methods. Both methods induced 14 rules for the class death=yes,
however there were two important differences between these two sets of rules. First, due
to the restriction of hypotheses space with arguments, about half of the rules were dif-
ferent. While inspecting the rules that were the same in CN2’s and ABCN2’s set, we
noticed that the quality estimates of these rules were different. For example, the rule:

IF trombocites<100 AND mobility=no THEN death=yes

was present in both rule sets. It covers 6 examples with class value death=yes and 1 with
death=no, which means that the relative frequency of death=yes is 6/7 = 0.86. However,
the evaluation function based on extreme value distributions [19] used in CN2 estimated
the probability of this class (given that the conditions are true) as 0.47, which is much
less than 0.86. This happens because there is a high probability that such a rule would be
found by chance. On the other hand, when learning with ABCN2, the evaluation of the
same rule is 0.67. In CN2, this rule was obtained by searching the whole space unguided
by expert knowledge while in ABCN?2 the rule was built from the argument 'death=yes
BECAUSE trombocites<100’. The search space in ABCN2 is smaller, which means that
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Figure 1. Mean values and standard errors of classification accuracy across tested methods.

the probability of finding such a rule by chance is lower. So, the expected quality of the
rule is higher.

In the above paragraph we have shown the importance of the first expected advantage
of ABML: “Arguments impose constraints over the space of possible hypotheses, thus
reducing search complexity”. Regarding the second advantage, that induced rules should
make more sense to an expert, we asked our expert (Jerneja Videcnik) to examine the
rules and compare them. Unfortunately, she could not decide which rules were more
understandable to her. We believe that this occurs due to the large number of arguments
with only one reason given for each example, while our restriction is that the rule must
be consistent with at least one positive argument. The rule must, therefore, contain only
one of the given reasons and can neglect the others.

4. Conclusion

We described the application of argument based machine learning to the medical do-
main dealing with severe bacterial infections in geriatric population. Our intention was
to show how arguments can be used to guide a machine learning algorithm towards a
better model. The use of arguments proved to be a powerful approach which offers a new
insight in using expert knowledge in machine learning. This knowledge is not given as
general background knowledge but is rather tied to specific examples to reason about the
class value using available attributes.

We used ABCN2 which is an argument-based version of the CN2 algorithm. Our
medical domain is the first real-life domain to which ABML has been applied. Several
examples were given arguments by the medical doctor and used in the learning process.
In our experiments we compared ABCN2 to some other popular machine learning algo-
rithms that are not capable of using arguments, such as CN2, C4.5, Naive Bayes and lo-
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Figure 3. Mean values and standard errors of Brier score across tested methods.

gistic regression. The results show several advantages of ABCN2 over other algorithms.
ABCN?2 significatnly outperforms others in classification accuracy, AUC and Brier score.

For further work, it would be very interesting to see how well can an expert alone
(without machine learning) would classify the examples. We would need to ask an inde-
pendent expert, who had not seen these examples before, and ask her to classify them ac-
cording to her knowledge. We believe that such experiment would truly show the added
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value of an argument based approach. Moreover, it would also be interesting to see how
the number of argumented examples influences the results and check how the results
change if we select different subsets of argumented examples. In our experiment the
number of arguments was quite large, which might not always happen, as argumenting
examples are usually time consuming for experts. Another interesting experiment would
be to have several physicians giving arguments for the examples and compare the models.
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Abstract. In this paper we present a novel approach for combining Case-Based
Reasoning (CBR) and Argumentation. This approach involves /) the use of CBR
for evaluating the arguments submitted by agents in collaborative decision making
dialogs, and 2) the use of Argument Schemes and Critical Questions to organize
the CBR memory space. The former involves use of past cases to resolve conflicts
among newly submitted arguments by assigning them a strength, and possibly sub-
mitting additional arguments deemed relevant in similar past deliberations. The
latter enables use of agents’ submitted arguments instantiating Argument Schemes
and Critical Questions, to assess the similarity among cases. This use of CBR and
argumentation is formulated with the ProCLAIM model, which features a Mediator
Agent that directs proponent agents in their deliberation and subsequently evaluates
their submitted arguments so as to conclude whether a proposed decision is valid.
To motivate and substantiate the practical value of this approach, we illustrate its
application in the human organ transplantation field.

Keywords. Case-Based Reasoning, Argument Schemes, Multi-Agent Systems

1. Introduction

In many domains decisions are made following established guidelines that guarantee
their correctness and/or safety in the case of safety-critical domains. However, there are
circumstances in which decisions that deviate from the guidelines are justified. In this
paper we present a model — ProCLAIM - that provides a setting for proponent agents to
argue over the validity of their intended decisions. The model features a Mediator Agent
(M A) that directs the proponent agents in their deliberation and subsequently evaluates
the submitted arguments so as to conclude whether a proposed decision is valid. The M A
will generally accept as valid only those decisions that, in light of the given arguments,
comply with the guidelines. However, the M A may exceptionally be persuaded to accept
(resp. reject) proposed decisions whose supporting and attacking arguments indicate that,
although they do not comply (resp. do comply) with the guidelines, there is evidential
basis to accept (resp. reject) them.

*Correspondence to: Pancho Tolchinsky, Dept. Llenguatges i Sistemes Informatics - Universitat Politecnica
de Catalunya. ¢/ Jordi Girona 1-3, 08034 Barcelona, Spain. E-mail: tolchinsky @Isi.upc.edu



72 P. Tolchinsky et al. / CBR and Argument Schemes for Collaborative Decision Making

Hence, ProCLAIM defines a Case-Based Reasoning component/engine (CBRe) for
evaluating, in light of the arguments used in the current and previous deliberations,
whether there is sufficient evidence to accept or reject a proposed decision. To enable this
functionality, the CBRe’s memory space is organized using a structured set of Argument
Schemes and Critical Questions [1]. This provides the CBRe with the means to compare
cases on the basis of arguments used in each deliberation. Broadly speaking, two cases
are similar if the submitted arguments, associated to these cases, are similar.

From an argumentation perspective, a proposed decision is itself represented by
an argument that is attacked and reinstated by the submitted arguments organized into
a graph of interacting arguments. Assessing the validity of a proposed decision thus
amounts to determining the dialectical status of the argument representing the decision.
To do so may require establishing a preference between arguments that attack each other,
based on the relative strength of the mutually attacking arguments. The role of the CBRe
is to use past cases in order to assign these strengths, as well as possibly submitting
additional arguments deemed relevant in similar past deliberations.

To illustrate the practical value of ProCLAIM and in particular of the CBRe, we
apply the model in a transplant scenario [2]. In the following section we describe the
ProCLAIM model. In §3 we introduce the transplant scenario, and in §4 we show how the
CBRe makes use of arguments to compare cases and how cases can be used to resolve
conflicts among arguments. Finally, §5 concludes with a discussion and programme for
future work.

2. The ProCLAIM Model

Broadly construed, the ProCLAIM model consist of a mediator agent, M A, directing
proponent agents in an argument based collaborative decision making dialog, in which
the final decision must comply with certain domain dependent guidelines. The arguments
submitted by the proponent agents may also persuade the M A to accept decisions that
deviate from the guidelines. For example, the M A may be able to reason that the submit-
ted arguments supporting an alternative decision have proven to be correct in previous
similar deliberations.

We believe that ProCLAIM is of particular value in safety-critical domains (although
the scope of domain may well be wider) where the consequences ensuing from a wrong
decision may be catastrophic. Guidelines in such sensitive environments usually exist
and are created in an attempt to minimize hazardous decisions. Nonetheless, there are
circumstances in which a decision is appropriate despite violating established guidelines.
Moreover, in such environments, arguments supported by empirical evidence are some-
what more persuasive.

ProCLAIM defines three main tasks for the A7 A: 1) Inform the proponent agents as
to what are their dialectical possible moves at each stage of the deliberation; 2) Ensure
that the submitted arguments are relevant (e.g., comply with the guidelines), and 3) Eval-
uate the submitted arguments in order to identify the winning arguments and thus de-
termine whether a proposed decision is valid. This last task may require the assignment
of strengths to the given arguments and possibly submission of additional arguments. In
order to undertake these tasks, A A makes use of four knowledge resources (see fig. 1):
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Figure 1. ProCLAIM’s Architecture

Argument Scheme Repository (ASR): In order to direct the proponent agents in their
deliberation the A4 A makes use of a repository of argument schemes and their as-
sociated critical questions formalized in a way that defines a protocol based ex-
change of arguments (e.g. given a submitted argument A instantiating a scheme
of ASR, the M A can reference the ASR in order to identify the schemes that, if
effectively instantiated, constitute an attack on A). As we will see in §4, the ASR
also structures the CBRe’s memory space.

Guideline Knowledge (GK): This component enables the M A to check whether the ar-
guments comply with the established knowledge, by checking what are the valid
instantiations of the schemes in ASR (the ASR can thus be regarded as an abstrac-
tion of the GK).

Case-Based Reasoning Engine (CBRe): This component enables M A to assign strengths
to the submitted arguments on the basis of their associated evidence gathered from
past deliberations, as well as provide additional arguments deemed relevant in
previous similar situations.

Argument Source Manager ASM: Depending on the source from whom, or where, the
arguments are submitted, the strengths of these arguments may be readjusted by
the A A. Thus, this component manages the knowledge related to the agents’ roles
and/or reputations, and/or the types of certificates, or references, that may em-
power agents to undertake some exceptional decision.

The agents’ argument construction is based on a first order logic programming lan-
guage described in [3]. This work also defines the conflict based interaction between ar-
guments. Given the constructed arguments and their interactions we apply Dung’s semi-
nal calculus of opposition [4] to determine the justified or winning arguments. However,
determining the winning arguments may require the M A to assign strengths to the sub-
mitted arguments and possibly the submission of additional arguments. This is further
discussed and illustrated in sections 3 and 4. The agents’ dialog and in particular, the role
of the M A in directing the deliberation by referencing the ASR is defined in [5]. Agents
construct and submit arguments by instantiating the schemes and critical questions in the
ASR. The M A’s task is then to determine which are the winning arguments in order to
conclude whether the proposed decision complies with the GK. This may involve refer-
encing the CBRe to access similar past experiences and arguments given to support an
undertaken decision not compliant with the GK, but which proved to have a successful
outcome. This may also involve referencing past experiences in order to resolve mutually
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attacking arguments by assigning relative strengths to these arguments. These roles of
the CBRe are further developed in §4. We now introduce the transplant scenario in order
to illustrate the practical value of ProCLAIM, and in particular the value of Case-Based
Reasoning in resolving conflicting arguments and the use of arguments for comparing
cases.

3. The Transplant Scenario

Human organ transplantation constitutes the only effective therapy for many life-threat-
ening diseases. However, while the increasing success of transplants has led to increase
in demand, the lack of a concomitant increase in donor organ availability has led to a
growing disparity between supply and demand [6]. In spite of this, an important per-
centage of human organs available for transplantation are discarded as being deemed
non-viable for that purpose.

The human organ selection process illustrates the ubiquity of disagreement and con-
flict of opinion in the medical domain. What may be a sufficient reason for discarding
an organ for some qualified professionals may not be for others. Hence, contradictory
conclusions may be derived from the same set of facts. For example, suppose a donor
with a smoking history but no history of chronic obstructive pulmonary disease (COPD).
The medical guidelines indicate that a donor’s smoking history is a sufficient reason for
deeming a donor’s lung as non-viable [7]. However, there are qualified physicians that
reason that the donor’s lung is viable given that there is no history of COPD [6]. Simi-
larly, the guidelines suggest discarding the kidney of a donor whose cause of death was
streptococcus viridans endocarditis (sve)[7]. However, some reason that by administrat-
ing penicillin to the recipient the kidney can safely be transplanted [8].

The transplant scenario begins when a potential donor becomes available. The
donor’s organs deemed non-viable by the Transplant Coordinator (which we name the
Donor Agent, D A) are discarded, whereas the organs deemed viable are offered via a
third-party (Transplant Organization) in a queue of Transplant Units, (which we name
Recipient Agents) that may be located in different hospitals. These Recipient Agents,
RA,,...,RA,, to which the organ may eventually be offered may accept it, in which case
they may attempt to implant it to a potential recipient they are responsible for. Or, if
every RA; fails to accept the organ, it is discarded, i.e. not extracted from the donor.

A D A’s decision to not offer an organ which he believes to be non-viable prevents
other 7A;’s from having the opportunity to make use of that organ. The human organ
selection process is described in more detail in [2] where an alternative selection pro-
cess is proposed to be managed by CARREL, an agent-based organization designed to
improve the overall transplant process. In this alternative process a D A; that detects a
potential donor offers all the potentially transplantable organs irrespective of whether he
believes the organs to be viable or non-viable. CARREL then distributes the offer to the
appropriate RAs. Together with an organ offer, the D A; has to provide the arguments
that support his assessment over the organ’s viability. In that way, a BRA; will be able
to counter-argue D A;’s assessment when there is disagreement. The D A, in turn, will
have the chance to counter-argue, and so on. Thus an argument-based dialog may take
place between DA; and RA;. In particular, a D A;’s arguments for the non-viability of
an organ may now be defeated by the RA;’s arguments for viability, and thus, RA; may



P. Tolchinsky et al. / CBR and Argument Schemes for Collaborative Decision Making 75

have the opportunity to make use of that organ. In the same way, D A;’s arguments for
the viability of the offered organ may be stronger than those of a RA; for non-viability.
This will result in committing RA; to transplant the offered organ as his decision for not
transplanting it would be deemed unjustified.

Therefore, the ProCLAIM model is instantiated in order to extend the CARREL Sys-
tem so as to support the new selection process which we believe has the potential to
increase the number of organs current selection processes make available. In particular,
the proponent agents are the DA; and RAj, the GK is instantiated by the Acceptability
Criteria Knowledge Base (ACKB) that encodes the criteria the medical doctors should
refer to when deciding the organs’ viability. The Argument Source Manager relates to
the agents’ reputation. Namely, the M A may deem as stronger the arguments submitted
by agents with good reputation (e.g. a RA; that have in the past successfully transplanted
those organs which he claimed to be viable). Finally, the CBRe allows the A A to evalu-
ate the submitted arguments on the basis of past transplantation experiences. For exam-
ple, if an agent argues that the lung of a donor with a smoking history can safely be trans-
planted because he did not have COPD, the M A references the CBRe in order to evaluate
this argument’s evidential support. Note that at the same time, the submitted arguments
highlight what are the relevant factors for deciding a case. Namely, the argument graphs
highlight the relevant attributes for assessing the similarity among cases.

The stage in the transplant experience in which arguments are submitted have asso-
ciated different evidential weight. Arguments submitted before an organ is extracted are
referred to as phase I arguments and have associated weaker evidential wight. If an organ
is deemed viable for a RA;, the organ is extracted. At this time, new evidence may indi-
cate that the organ is in fact non-viable, and so it is discarded. The RA; is then obliged to
provide CARREL with the new arguments (capturing the new evidence) as to why the or-
gan is non-viable. These are referred to as phase 2 (post-extraction/pre-transplantation)
arguments. If complications arise after transplantation, then 17 A ; provides CARREL with
arguments justifying (explaining) how the complications resulted in failure (eventually
making the organ non-viable), or, conversely, arguments explaining how the complica-
tions were overcome so as to result in a successful transplant (eventually making the or-
gan viable). These are referred to as phase 3 (post-transplant) arguments and are deemed
as providing stronger evidence. Hence, phase I arguments are presumptive, submitted
prior to undertaking any decision, whereas, phase 2 and 3 arguments are submitted once
the consequences of the decision is known, and so they are conclusive or explanatory
arguments. We now give a shirt example of phase I arguments.

Figure 2a. captures the schemes used by the agents in order to argue over the viabil-
ity of an offered kidney of a donor d whose cause of death was sve. The argument graph
that may result from such deliberation is illustrated in figure 2b. A deliberation must be-
gin with the instantiation of the scheme that captures the decision under debate, the topic
of the deliberation. In this case, the instantiation of the Viability Scheme (A1 in fig. 2b.).
The later submitted arguments will attack A1 or reinstate it (see [5] for a more detailed
description of the dialog process). Note that in fig. 2b. arguments A5 and A4 mutually
attack each other. This is because the claim of A5 —Recipient + will not result in having
svi as a consequence of donor d having sve— is in contradiction with the statement in
A4 —r may result in having svi—. Intuitively, it remains a moot point as to whether ad-
ministering penicillin is a sufficiently efficacious action for preventing svi in r (45 wins
out over A4) or not (44 wins out over A5). Therefore, it cannot be concluded whether
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Scheme ID

Scheme Name

Scheme Description

Vs

Viability Scheme

Donor D of organ O And no contraindications
are known for donating organ O to recipient
R Therefore, organ Ois viable

NVS1

Non-Viability
Scheme1

Donor D of organ O has contraindications C
for donating organ O to recipient Therefore,
organ O'is non-viable

Donor Disease
Transfer

When transplanting organ O from donor D
with condition C7 to a recipient R, R may

Al
VS(d kidney.r)

Does dono D has contraindication
Cfor donating 0?

A2
NVS1(d,sve kidney)

Is condition C on donor D a
contraindication?

A3
Challenge

DDTS R result in having condition C2and C2is

Contraindicatiom : M.

Scheme harmful Hence, C1 is a contraindication for A4 A6

donating O DDTS(kidney,d,sve,rsvi CCAPS(teicoplanin,r,d,sve,svi
i i Is there a course of action Athat N
Donor Condition Followwrgdcoursenfav acn;? A ocn1re0|p|ﬁ_m H prevents recipient A from resulting in Will course of action A have
Course of Action | Prevents conor s concition &7 resulting in having condition C2? undesiderable effects on
DCCAPS . condition C2on RAnd Ais intended recipieny R?
Prevention . f :
Scheme Therefore R will not result in having C2as a A5 A7
a consequence of D having C1 by DCCAPS(penciind.svesvi RCAC in,r,teic_allerg

Figure 2. a) Fragment of the schemes in the ASR. b) Argument graph that results from arguing over the
viability of a kidney of a donor with sve. The arrows represent the attack relation (& — b, a attacks b) and
the texts of the arrows are critical questions associated to the schemes. We denote Scheme;(x1, .., x) as an
instantiation of the scheme Sheme;, with 1, .., 2, grounded and preserving the order in which the variables
appear in the scheme definition. The graph also depicts the proposal for treating svi with teicoplanin, A6,
but it is defeated by A7, the recipient 7 is allergic to this antibiotic.

the kidney is viable or not. Applying Dung’s calculus of opposition to the fig. 2b. graph
only A7 is evaluated as winning. However, if we take A5 to asymmetrically defeat A4
(succeeds in its attack at the expense of A4’s attack on A5) then Dung’s winning argu-
ments are A5, A3 and A1l. Thus, the organ would be deemed viable. But if A4 defeats
Ab, then A4 and A2 win and the organ would be deemed non-viable. In order to resolve
this impasse in the argument evaluation, the M/ A makes use of the three knowledge re-
sources: ACKB, the agents’ reputation and the CBRe. Supposing penicillin is a novel
treatment for preventing svi, the ACKB would not value argument A5 as reliable, and
so the M A would derive that A4 defeats A5. However, supposing the agent submitting
argument A5 has good reputation, A5 may be deemed stronger than A4, hence the M A
would conclude that the kidney is viable!. We now describe the CBRe role in resolving
conflicting arguments and the ASR structure the case base.

4. The Case-Based Reasoning Engine

Case Based Reasoning (CBR) has proven to be an appropriate reasoning and learning ap-
proach for ill-structured domains, where capturing experts’ knowledge is difficult and/or
the domain theory is weak or incomplete. However, CBR developers still have to face
problems such as having to decide how to represent a case, what are the relevant factors
for comparing them and how to retain new cases that encode, in a useful way, both the
success and failure of the cases’ proposed solutions. On the other hand, argumentation
has proven to be a suitable approach for reasoning under uncertainty, with inconsistent
knowledge sources, and in dialog based communication. However, one unresolved issue
in argumentation is how to reuse the knowledge encoded in the arguments used in previ-
ous dialogs. A few approaches (see [9] and [10]) address this issue by providing support
to end users for accessing or retrieving previous stored dialogs. On the other hand, [11]

11t is beyond the scope of this paper to discuss the conflict resolution based on the other knowledge resources.
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formalizes the way in which arguments used in previous legal cases can be integrated
into the current dialog, also represented as a Dung’s argument graph.

In this section we propose the use of CBR together with argumentation to: /) make
use of previous resolved deliberations for evaluating the argument graph resulting from
a new deliberation. This amounts to assigning a strength to the submitted arguments and
possibly submitting additional arguments deemed relevant in previous similar deliber-
ations; and 2) organize the case memory by making use of the structure of argument
schemes and critical questions encoded in the ASR. We show that in this way, a case
can simply be defined as a placeholder for the available data in an experience (e.g. a
transplant experience) together with the agents’ submitted arguments; and that it is these
argument graphs associated with each case that provide the means for case comparison.
Moreover, these argument graphs represent two aspects of an experience. In the first case
they capture the arguments exchanged by the proponent agents in arriving at a decision;
thus presumptive arguments (phase I arguments). In the second case they capture the
downstream outcome of actions taken as a result of the decision arrived at in the first
case; thus conclusive or explanatory arguments (phase 2 and 3 arguments). In this way,
the appropriateness of the decision is fed back into the argument graph associated with
the case. Hence, the success and failure of a case’s proposed solution is given by the
dialectical status of the argument representing the decision.

4.1. Cases and Argument-Graphs Representation

Each (transplant) experience constitutes a case. The textual (medical) information de-
scribing an experience - the case description - along with the graph of (presumptive and
explanatory) arguments submitted by the agents capture the case’s features. In different
experiences the arguments given by the agents may be the same, i.e. different cases may
share the same graph (see fig.3). Each argument graph has an associated evidential sup-
port represented by a tuple of natural numbers (FK). F indicates the degree of certainty
in the decision’s correctness and K is the number of cases that share the argument graph.
Thus, graphs with bigger F' and K provide stronger evidence. Note that graphs represent-
ing cases with no feedback on the decisions’ correctness have a more presumptive nature
(smaller F') than those whose decision is supported or attacked by factual evidence (big-
ger F') which are more conclusive, or explanatory in nature. In the transplant scenario
this accounts for F' being 1,2 or 3 according to the phase in which the transplant expe-
rience was resolved. An argument graph may be deemed as having sufficient evidential
support, when the evidential support is bigger than a given threshold (e.g. K > 5).

As described in §3, it may be that the argument graph GG of a new case may have
nodes connected by bi-directional links, i.e., arguments A and A’ mutually attack. One
of the CBRe tasks is to decide, on the basis of argument graphs associated with past
experiences, whether A defeats A’ or vice versa, and thus help establish whether a deci-
sion should be accepted. Referring to the example in §3, this would involve determining
whether the evidence represented by past cases indicates that penicillin is (A5 defeats
A4) or is not (A4 defeats A5) effective in preventing the recipient from contracting svi.
Another example would be the use of evidence to determine whether or not lung trans-
plants are successful where the donor had smoking history but no COPD. In the next
subsection we describe the CBRe’s reasoning cycle [12]. That is, the four processes: re-
trieve, reuse, revise and retain, that enable CBRe to carry out its task. As we will also
see, these assume an organization in the case-base memory space given by the ASR.
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Scenario (Case Description) : Argument Graph . O

Donor’s characteristics:

Relevant data of the donor, such as r

hio ager dendes, blood type, caves @G0

of death, viral infections, etc. \ \
Organ characteristics:

Specific information of the organ. Evidential Support: (F,K) .
Recipient characteristics: ————<

Relevant data of the recipient, P AN

such as his age, gender, blood type, . N

urgency level, etc. - N

Logistical characteristics:
Location of both donor and recipient,
the distance between the two location,
expected travel time, etc.

Argument graph:

—O f : ............... . :\

Figure 3. Case and Argument Graph Representation.

4.2. The CBRe Reasoning Cycle

Retrieval: We describe in some detail the first reasoning process in which, given a target
problem, the relevant cases for solving it are retrieved from the memory. The relevant
cases will be represented by the argument graphs associated to the cases. The relevant
graphs to retrieve are those whose arguments apply to the new situation and such that
they have sufficient evidential support. The memory from which the relevant argument
graphs are retrieved is a set M/ of directed graphs whose nodes are instantiated argument
schemes or critical questions of the ASR, and whose edges represent attacks or defeats
between arguments allowed by the ASR. Also, every graph G; € M contains a single
node that captures the topic under debate. In the transplant scenario this account only
for the Viability Scheme. In order to facilitate the retrieval process, the memory space is
organized on the basis of three partial orderings:

Definition 1 Let S be defined as the memory space M and let S' be equal to S (contain-
ing the ‘same’ graphs) except that in S' the edges are not directional and nodes are the
identifiers of the schemes or critical questions of ASR. Thus, if for example, VS(d,lung,r)
is a node of a graph in S its correspondent node in 5" is VS. Let pg be the canonical
projection from S into S'. Given G1,G2 € S, we say that G2 structurally contains G1,
G1 <5 G2, if and only if the graph ps(G1) is a subgraph of ps(G2).

Given a new target problem with an associated graph G, the CBRe first identifies those
graphs in its memory M that structurally contain G2, i.e. the set {G1,...,Gn} C M
such that for i = 1...n, G <g G; (where the set S of Definition 1 is M U {G}).
The instantiation of schemes in &; may differ from the instantiations in G. We wish to
retrieve only those (7; whose instantiations are related to that of G as determined by an
ontological hierarchy of instantiating terms.

Definition 2 Let O be the ontology whose terms instantiate the argument schemes of
ASR, where O is expressed as an ordering <7 on terms, and <7 is interpreted as ‘more
specific than’ (e.g. svi <7 bacterial_infection <1 infection)

2Note that these are labelled graphs, moreover they all have a single node representing the topic under debate
(e.g. Viability Scheme), hence, the graph comparison does not result in a computational overhead.
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New Case’s

SITUATION

Retrieve the argument graphs that Retain only the argument graphs whose
subsume the new case’s argument graph arguments apply to the new case’s situation

Evidential Support

Mapping the
retrieved
argument graphs

Retain only the Argument graphs that
have sufficient evidentil support

Figure 4. The Retrieval Process: steps 1 until 4. The Reuse Process, step 5

We are only interested in those G, related to &, where the degree of similarity, or the
distance between them, falls below a given threshold. To evaluate this, we use the dis-
tance between terms in O, denoted as §¢ (e.g., do(in fection, svi) = 2), to determine a
distance ;.5 between scheme instantiations, and so a distance between graphs that share
the same structure.

Definition 3 Ler G1,G2 € M such that G1 =g G2 (ie. ps(Gl) = ps(G2)) and
schy . ..schy, be the nodes of both ps(G1) and ps(G2). That is, for j = 1...m,
sch;(x1,..,2y) is a node in G1 iff sch;(y1,..,yn) is a node in G2. Then the dis-
tance between G1 and G2 is given by: §(G1,G2) = mazliL (dscn(schj(zy, .., zn)
L 8¢hi (Y1, .-, yn))), where §sep (schj(x1, .., &n), schi(y1, -, yn)) = mazle, (6o (@i, y:)).

We then state a threshold & such that the CBRe retains only those G; such that §(G, G;)
< k. To summarize, given a target graph G, CBRe retrieves the set Ry = {G;...G,,}
such thatfor: = 1...n, G <p, G, (step 2 of fig. 4), where <p, is defined as follows:

Definition 4 Ler G'1,G2 € M such that for some sub-graph G3 of G2, G1 =g G3
(hence G1 <g G2). Then, G1 <p, G2 if5(G1,G3) < k.

From R;, the CBRe excludes the graphs that have arguments that are not applicable in
the target case, resulting in the set R (step 3 of fig. 4). For example, a graph G, in R,
will not be retained in Rs if G, has an argument A, that assumes the donor has property
X which is not true in the target case. This implies searching for property X on the donor
in the target case’s description. Note that if this property is found in the case’s description
G, will remain in R, and thus argument A,. Although not belonging to the target graph
it may be deemed relevant for resolving the target case. From the resulting set Ro, the
CBRe selects the graphs with sufficient evidential support (see sub§4.1), resulting in R3.
At this stage (step 4 of fig. 4), each G; € Rj3 is an argument graph that is applicable to
the new case’s situation, taking into account all the submitted arguments, and such that
it has sufficient evidential support. Therefore, each argument in G; is relevant.

Reusing: The aim of this process is to map 3 to a solution for the target graph G. All
the argument graphs in R3 are merged into a single graph Gz such that it contains all

3Note that the donors and recipients are not relevant for the graph comparison, thus §p{d,d’) = 0 and
P grap p ola,
So(r,r') = 0 for every two donors d and d’ and recipients  and 7.
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Figure 5. Smoking history example illustrating the CBRe reasoning cycle

the arguments in all graphs in Rs, and therefore in G (step 5 of fig.4), i.e. G is the
minimal graph such that G; <p, Gr, G; € Rs. Note that in merging the graphs it may
be that there are G1, G5 € R3 such that an argument A asymmetrically defeats 4’ in G
but A’ asymmetrically defeats A in G5. We thus must decide the direction of the defeat
(the edge direction) in G g. Recalling the mutually attacking arguments A4 and A5 in the
target graph shown in fig.2b), this amounts to deciding which argument asymmetrically
defeats the other given the previous graphs Gy and G, (where A4 = A and A5 = A").

Suppose that for each edge connecting arguments A and A’ of G; € Rj3 such
that A asymmetrically defeats A’ we associate the evidential support of G;, writ-
ing ES(G;, A, A") = (F,K). Whereas if A does not asymmetrically defeat A’ then
ES(G;, A, A" = (0,0). Now, for every two connected arguments 4, A’ in Gg, if
mazrg,cr, (ES(Gi, A, A") is sufficiently greater* than mazrg,cr, (ES(Gi, A', A)),
then the edge in G will go from A to A’ indicating that A defeats A’. Otherwise, A
and A’ will remain connected by a bi-directional edge in (g indicating a mutual attack,
which means there is no sufficient evidence to resolve the conflicting arguments.

Thus, G g is the CBRe proposed solution, where, as described above, evidential sup-
ports are used to determine defeats and so a winning argument for viable or non-viable
as described in §3. However, G g can also determine the decision’s validity given addi-
tional arguments in Gy that are not in G. G’ may identify additional arguments, not
in G, that are applicable to the target case and belonging to a graph with sufficient evi-
dential support. Thus, these additional arguments may identify new relevant factors for
deciding the target problem which were not taken into account initially in G. Recall also
that G will be a graph constructed from presumptive arguments (phase I arguments),
whereas GG may also contain conclusive arguments (phases 2 and 3 arguments). As
described at the end of §3, phase 2 arguments in G may provide conclusive evidence
supporting a final decision for non-viability. Phase 3 arguments may provide conclusive
evidence supporting a final decision for non-viability or viability (e.g., arguments de-
scribing post-transplant procedures that unsuccessfully, respectively successfully, dealt
with post-transplant complications). To summarize, G provides: 1) evidential support
to determine defeats amongst arguments in G and so determine the decision’s validity; 2)
new arguments for determining the decision’s viability; 3) additional arguments that may
serve, for example, as guidance to the RA; for post-transplant management of patients.

Revising: The solution G’ must be tested in the real world, and if necessary, revised.
This is achieved by requiring the agents to continue submitting arguments to G g until

4The definition of ‘sufficiently greater’ is domain dependent. E.g., (F1, K'1) is sufficiently greater than
(F2,K2)if:a)F1 > F2,orb) F1 = F2and F1> 1, F2> l,and K1 a > K2, with0 < oo < 1.
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the (transplant) experience ends. For example, if in the smoking history example the lung
is deemed viable in G’ (see fig.5) but there is a graft failure the reasons for the failure
will be submitted as new argument A4, that will reinstate the argument for non-viability.
The resulting updated argument graph G';, will then be stored in the case base.

Retain: The aim is to store the possibly updated G’ as a new graph in the memory.
Hence, when a (transplant) experience finishes, the case describing this experience is re-
tained by the CBRe. If there already exists an argument graph G 5s in the memory such
that G%; =p, G and the edges directions coincide, then the case is associated with G 3
increasing G 5r’s evidential support. Otherwise, the target case is retained as associated
to G, which is added as a new argument graph to M.

5. Conclusions and Future Work

In this paper we have proposed I) the use of CBR in order to evaluate the evidential
support (and thus relative strength) of the agents’ submitted arguments, which helps to
resolve the impasse of having arguments that mutually attack each other; and 2) the use
of argument schemes and critical questions to organize the CBR’s memory space, which
enables comparison of cases on the basis of the submitted arguments.

This use of CBR is described as part of the ProCLAIM model intended for agents
to argue over the validity of their intended decisions. We have shown its practical value
in assessing the viability of organs for transplantation. The work described furthers our
eventual objective [2], vis-a-vis. to increase the number of human organs current selec-
tion processes make available for transplantation.

Other works that have combined argumentation with cases can be found in the legal
domain, particularly in the context of the Common law system, a legal system based
on unwritten laws developed through judicial decisions that create binding precedent.
The inherent argumentative nature of the legal domain and the particular features of the
Common law system provide a scenario for developing models and systems for reasoning
and arguing with precedents, i.e. past cases. Exponents of these works are systems such
as HYPO[13] and CABARET [14] which assist users in constructing arguments from
cases. Intended for the same purposes is the extension to the HERMES System proposed
in [10] that aims to support human agents involved in group decision making processes
to retrieve, adapt and re-use past cases.

We are currently prototyping the CBRe so as to extend an existing prototype of the
logical argumentation model described in [3]. This work is intended as a precursor to
development of a robust large scale demonstrator with embedded argumentation com-
ponents developed by the EU 6" framework project ASPIC® (Argumentation Services
Platform with Integrated Components). Future work will focus on extending the retrieval
process so as to address adaptation of previous cases in order to increase the scope of the
relevant cases. Another future line of work is use of the case base for searching patterns in
order to propose new arguments, i.e. to propose new instantiations of argument schemes
(e.g. relating a donor condition x with unsuccessful transplants: NVS1(d,x,organ)).

51t could be argued that these works are best described as systems or models for arguing with cases, rather
than CBR systems in the sense of [12]. Moreover, systems such as HYPO, do not define any kind of automated
procedure for retaining new cases.

6WWW.argumemation.org
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The transplant scenario serves to illustrate ProCLAIM’s practical value. We believe
ProCLAIM, and in particular the CBRe, may also prove to be useful in other safety-
related environments. We are currently investigating the application of ProCLAIM as an
extension to DAI-DEPUR [15], a decision support systems for Wastewater Treatment
Plants (wwtp). In this scenario, the proponent agents would represent the wwtp opera-
tors, the Argument Source Manager would relate to the operators’ hierarchy within the
plant and the GK would be instantiated by the guidelines encoding compliance with the
environmental legislations. The CBRe will help to establish on an evidential basis, indi-
cating whether the operators’ decisions are appropriate and thus environmentally safe, in
light of their given arguments.
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Abstract. One difficulty that arises in abstract argument systems is that many natu-
ral questions regarding argument acceptability are, in general, computationally in-
tractable having been classified as complete for classes such as NP, co-NP, and Hg.
In consequence, a number of researchers have considered methods for specialis-
ing the structure of such systems so as to identify classes for which efficient deci-
sion processes exist. In this paper the effect of a number of graph-theoretic restric-
tions is considered. For the class of bipartite graphs, it is shown that determining
the acceptability status of a specific argument can be accomplished in polynomial
time under both credulous and sceptical semantics. In contrast to these positive
results, however, deciding whether an arbitrary ser of arguments is “collectively
acceptable” remains NP—complete in bipartite systems. In addition, a construction
is presented by means of which questions posed of arguments in any given finite
argument system may be expressed as questions within a related system in which
every argument attacks and is attacked by at most two arguments. It follows that
bounding the number of attacks on individual arguments is unlikely to produce a
computationally more tractable environment.

Keywords. Computational properties of argumentation; argumentation frameworks;
computational complexity

1. Introduction

Since their introduction in the seminal work of Dung [1] abstract argument systems have
proven to be a valuable paradigm with which to formalise divers semantics defining ar-
gument “acceptability”. In these a key component is the concept of an “attack” relation-
ship wherein the incompatibility of two arguments — p and ¢, say — may be expressed in
terms of one of these “attacking” the other: such relationships may be presented indepen-
dently of any internal structure of the individual arguments concerned so that the proper-
ties of the overall argument system, e.g. which of its arguments may be defended against
any attack and which are indefensible, depend solely on the attack relationship rather
than properties of individual argument schemata. Among other applications, this abstract
view of argumentation has been demonstrated to be a powerful and flexible approach to
modelling reasoning in a variety of non-classical logics, e.g. [1,2,3].

We present the formal definitions underpinning argument systems in Section 2, in-
cluding two of the widely-studied admissibility semantics — preferred and stable — in-
troduced in [1]: at this point we simply observe that these describe differing conditions
which a maximal set of mutually compatible arguments, .S, must satisfy in order to be ad-
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missible within some argument system comprising arguments X’ with attack relationship
ACX xX.

Despite the descriptive power offered by abstract argument systems one significant
problem is the apparent intractability of many natural questions concerning acceptability
under all but the most elementary semantics: such intractability classifications encom-
passing NP—completeness and co-NP—completeness results of Dimopoulos and Torres [4]
and the TTH—completeness classifications presented in Dunne and Bench-Capon [5]. Mo-
tivated, at least to some degree, by these negative results a number of researchers have
considered mechanisms by which argument systems may be specialised or enriched so
that the resulting structures admit efficient decision procedures. Two main strategies are
evident: the first, and the principal focus of the present paper, has been to identify purely
graph-theoretic conditions leading to tractable methods for those cases within which
these are satisfied; the second, which itself may be coupled with graph-theoretic restric-
tions, is to consider additional structural aspects in developing the basic argument and
attack relationship form. Under the first category, [1] already identifies directed acyclic
graphs (DAGs) as a suitable class, while recent work of Coste-Marquis et al. [6] has
shown that symmetric argument systems — those in which p attacks ¢ if and only if ¢
attacks p — also form a tractable class. Graph-theoretic considerations also feature sig-
nificantly in work of Baroni et al. [7,8].

Probably the two most important exemplars of the second approach are the
Preference—based argumentation frameworks of Amgoud and Cayrol [9] and Value—
based argumentation frameworks introduced by Bench-Capon [10]. While the support-
ing motivation for both formalisms is, perhaps, more concerned with providing interpre-
tations and resolution of issues arising from the presence of multiple maximal admissible
sets which are mutually incompatible, both approaches start with an arbitrary argument
system, (X, .A), and reduce it to an acyclic system, (X', B) in which B C A. This reduc-
tion is determined via some additional relationship R with the main distinction between
[9] and [10] being the exact manner in which R is defined.

In this paper some further classes of graph-theoretic restrictions are considered: the
classes of k—partite directed graphs and those of bounded degree. In the former class,
for which the case k£ = 2 is of particular interest, the arguments X may be partitioned
into k pairwise disjoint subsets — (X7, ..., Xx) — such that every attack in A involves
arguments belonging to different sets in this partition: the special case, k = 2, defines the
class of bipartite directed graphs. In the bounded degree class, the number of attacks on
(the argument’s in-degree) and attacks made by (the argument’s out-degree) any z € X,
ie. {y : (y,x) € A} and |[{y : (x,y) € A}| are bounded by given values (p, q),
again the special case p = ¢ = 2 is of particular interest.

In the remainder of this paper formal background and definitions are given in Sec-
tion 2 together with the decision questions considered. Sections 3 and 4 present the main
body of results concerning, respectively, k-partite and bounded degree directed graphs.
Conclusions and developments are discussed in Section 5.

2. Finite Argument Systems — Basic Definitions

The following concepts were introduced in Dung [1].
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Definition 1 An argument system is a pair H = (X, A), in which X is a finite set of
arguments and A C X x X is the attack relationship for H. A pair (x,y) € A is referred
to as ‘y is attacked by x” or ‘x attacks y’. The convention of excluding “self-attacking”
arguments, also observed in [6], is assumed, i.e. forallx € X, (x,z) ¢ A. For R, S
subsets of arguments in the system H(X, A), we say that

a. s € S is attacked by R if there is some r € R such that (r,s) € A.

x € X is acceptable with respect to S if for every y € X that attacks x there is
some z € S that attacks y.

. S is conflict-free if no argument in S is attacked by any other argument in S.

. A conflict-free set S is admissible if every y € S is acceptable w.r.t S.

. S is a preferred extension if it is a maximal (with respect to C) admissible set.

. S is a stable extension if S is conflict free and every y & S is attacked by S.

g. 'H is coherent if every preferred extension in H is also a stable extension.

e

- 0 a0

Following the terminology of [6], H(X, A) is symmetric if for every pair of arguments
x, y in X it holds that (x,y) € Aif and only if (y,z) € A

An argument x is credulously accepted if there is some preferred extension contain-
ing it; x is sceptically accepted if it is a member of every preferred extension.

We make one further assumption regarding the graph-theoretic structure of argument
systems: as an undirected graph, H(X, A) is connected. In informal terms, this states
that the systems considered do not consist of two or more “isolated” systems.

The concepts of credulous and sceptical acceptance motivate the following decision
problems that have been considered in [4,5].

Decision Problem Instance Question
CA H(X, A),z € X | Isx credulously accepted in H?
SA H(X, A),z € X | Iszsceptically accepted in H?

The questions above are formulated in terms of single arguments, it will be useful
to consider analogous concepts with respect to sefs. Thus CAy; denotes the decision
problem whose instances are an argument system (X', A) together with a subset S of
AX': the instance being accepted if there is a preferred extension 7" for which S C T.
Similarly, SAy accepts instances for which S is a subset of every preferred extension.

The results of [4] establish that CA is NP—complete, while [5] proves SA to be H’Q’—
complete.

In contrast, we have the following more positive results.

Fact 1

a. Every argument system H has at least one preferred extension. (Dung [1])

b. If H(X,A) is a DAG then H has a unique preferred extension. This is also a
stable extension and may be found in time linear in |X| + | A|. ((Dung [1])

c. If H(X,A) is symmetric then CA, SA, CAyy, and SAyy are all polynomial time
decidable. Furthermore H is coherent. (Coste-Marquis et al. [6]).

d. If H(X,A) contains no odd-length simple directed cycles, then H is coherent.
(Dunne and Bench-Capon [5])

e. If H(X,.A) is coherent then SA(H, x) can be decided in co-NP.
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Fact 1 (e) is an easy consequence of the sceptical acceptance methods described in work
of Vreeswijk and Prakken [11].

While Fact 1 (a) ensures the existence of a preferred extension — a property that
is not guaranteed to be the case for stable extensions — it is possible that the empry
set of arguments (which is always admissible) is the unique such extension. Whether a
given argument system H (X, .A) has a non-empty preferred extension is unlikely to be
efficiently decidable in general: [4] showing this decision problem to be NP—complete.

We also consider the effect that restricting the underlying graph structure has with
respect to the value-based argument systems of [10].

Definition 2 A value-based argumentation framework (VAF), is defined by a triple
(H(X,A),V,n), where H(X, A) is an argument system, V = {v1,va,...,v;} a set of
k values, and n : X — V a mapping that associates a value n(x) € V with each
argument x € X.

An audience for a VAF (X, A, V,n), is a binary relation R C V X V whose (irreflex-
ive) transitive closure, R*, is asymmetric, i.e. at most one of (v,v'), (v, v) are members
of R* for any distinct v, v/ € V. We say that v; is preferred to v; in the audience R,
denoted v; =g vj, if (v;,v;) € R*. We say that « is a specific audience if o yields a
total ordering of V.

Using VAFs, ideas analogous to admissible argument in standard argument systems are
defined in the following way. Note that all these notions are now relative to some audi-
ence.

Definition 3 Ler (X, A,V,n) be a VAF and R an audience.

a. For arguments x, y in X, x is a successful attack on y (or x defeats y) with
respect to the audience R if: (z,y) € A and it is not the case that n(y) =r 1(x).

b. An argument x is acceptable to the subset S with respect to an audience R if: for
every y € X that successfully attacks x with respect to R, there is some z € S
that successfully attacks y with respect to R.

c. Asubset S of X is conflict-free with respect to the audience R if: for each (x,y) €
S x S, either (x,y) & Aorn(y) =r n(x).

d. A subset S of X is admissible with respect to the audience R if: S is conflict free
with respect to R and every x € S is acceptable to S with respect to R.

e. A subset S is a preferred extension for the audience R if it is a maximal admissi-
ble set with respect to 'R.

f. A subset S is a stable extension for the audience R if S is admissible with respect
to R and for all y & S there is some x € S which successfully attacks y with
respect to R.

Bench-Capon [10] proves that every specific audience, «, induces a unique preferred
extension within its underlying VAF: we use P((X, A, V,n), «) to denote this extension.
Analogous to the concepts of credulous and sceptical acceptance, in VAFs the ideas of
subjective and objective acceptance arise,

Subjective Acceptance (SBA)

Instance: A VAF (X, A, V,n); argument 2 € X;

Question: Is there a specific audience, « for which © € P((X, A, V,n),a)?
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Objective Acceptance (OBA)
Instance: A VAF (X, A, V,7); argument x € X;
Question: Is z € P((X, A, V,n), «) for every specific audience a.

Regarding these questions, Dunne and Bench-Capon [12] show the former to be
NP—complete and the latter co-NP—complete.

In the remainder of this paper attention will focus on the restricted forms of argument
system described in the following definition.

Definition 4

a. An argument system H(X, A) is k-partite if there is a partition of X into k sets
(X1, ..., Xg) such that

V{y,z) e A yeXi=2¢ 4,

The term bipartite will be used for the case k = 2. It should be noted that, since
there is no insistence that each of the partition members be non-empty, any k-
partite system is, trivially, also a (k + t)-partite system for every t > 0. We use
the notation T'¥) for the set of all k-partite argument systems.

b. An argument system H(X, A) has (p, q)-bounded degree if

VeeX {yeX : (y,z) e A} <p and
{yeX : (my) eA} <q

The notation A9 will be used for the set of all (p, q)-bounded degree systems.

The notations cA®), sA(F)| CA%’;), and SA?? (similarly sBA®) and 0BA®*) for the case
of VAFs) will be used to distinguish the various avatars of the decision problems of in-
terest when instances are required to be k-partite argument systems. Similarly we use
COHERENT(*) to denote the problem of deciding whether a k-partite argument system
is coherent. In instances of these problems it is assumed that H (X, .A) is presented us-
ing an appropriate partition of X into k disjoint sets (X1, ..., X).! Table 1 below sum-
marises the properties of k-partite systems proved in Section 3, where it is noted that
lower bounds on the complexity of problems for k-partite systems are also lower bounds
for (k + ¢)-partite systems.

3. Bipartite and k-partite Argument Systems

In this section we consider the effect on problem complexity of restricting systems to be
k-partite for both standard Dung-style argument systems and the development of these
described by VAFs. The results indicated in Table 1 are presented in the opening subsec-
tion and the case of VAFs, in particular the complexity of SBA(*) and 0BA(®), is examined
in the second part.

'Without this, problems arise when checking if an arbitrary argument system, H, is k-partite: for & > 3 the
corresponding decision question is NP—complete.
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Decision Problem Complexity

a. ca® Polynomial-time
b. cA® NP—complete
c. CA 5[2}) NP—complete
d. sa(® Polynomial-time
e. sa®) 15 —complete
f. SA f}) Polynomial-time
g SA (é) 15 —complete
h. | coHERENT(?) Trivial

i COHERENT(4) I15—complete

Table 1. Complexity-theoretic Properties of k-partite Argument Systems

3.1. k-partite Dung-style Argument Systems

We first deal with the case of bipartite argument systems (k = 2). For other values it
is noted that the classifications are largely straightforward consequences of the graph-
theoretic constructions in [4,5]. Notice that it is straightforward to deal with the claim
made in Table 1(h): a bipartite argument system cannot have any odd-length cycles, and
thus coherence is ensured via Fact 1 (d). In contrast to undirected graph structures, the
absence of odd-length directed cycles, while necessary, is not a sufficient condition for
an argument system to be bipartite; symmetric systems, however, are bipartite systems if
and only if the associated undirected graph contains no odd-length cycles.

The main idea underlying the algorithm of Theorem 1 is as follows: in a bipartite
argument system, 5(), Z, A) attackers of an argument y € ) can only be arguments
z € Z, and defences to such attacks must, themselves, also be arguments in ). It follows,
therefore, that those arguments of ) that are attacked by members of Z upon which
no counterattack exists cannot be admissible. Moreover, attacks on Z furnished by such
arguments play no useful function (as counterattacks) and may be eliminated from A, a
process that can lead to further arguments in Z becoming unattacked. By iterating the
process of removing indefensible arguments in ) and their associated attacks on Z, this
algorithm identifies an admissible subset of ).

Theorem 1

a. CA®) is polynomial time decidable.
b. SA® is polynomial time decidable.

Proof: For (a), given a bipartite argument system, B()), Z, A) and € ) U Z, without
loss of generality assume that = € ). Consider the subset, .S of ) that is formed by the
following algorithm.

1. z'::();yo = y;AO = A
2. repeat

214 :=43+1
22, = YVia \N{y€eViz1 : 3z€ Z : (z,y) € A;_71 and

Hyedii : (y2) e Aisa}| =0}
23 A = A \ {(y,2) c y€Vi\Vi1 }
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until Y; = Y,
3. return );

If S is the subset of ) returned we claim that CA®) (3, x) holds if and only if z € S.

Suppose first that z € S C Y. Since B(), Z,.A) is a bipartite argument system it
follows that S'is conflict-free. Now consider any argument z € Z that attacks .S: it must
be the case that there is some y € S that counterattacks z for otherwise at least one
argument would have been removed from S at Step(2.2). In total, S is conflict-free and
every argument in .S is acceptable with respect to .S, i.e. .S is an admissible set containing
x which is, hence, credulously accepted.

On the other hand, suppose that x is credulously accepted. Let .S be the subset of
Y returned and suppose for the sake of contradiction that = ¢ S: then there must be
some iteration of the algorithm during which = € );_; but z ¢ );. In order for this to
occur, we must have a sequence of arguments (zg, 21 ,..., 2;) in Z with the property
that [{ y € V; : (y,z;) € Aj}| = 0 with (z;,z) € A;. Now any argument y’ of
Y attacked by zp cannot be credulously accepted since there is no counterattack on zg
available. It follows that the attacks (y’, z) provided by such arguments cannot play an
effective role in defending another argument and thus can be removed. Continuing in this
way, it follows that no argument y” that is attacked by 21 is credulously accepted: the
only attackers of z; are arguments of ) that are attacked by zy and these, we have seen,
are indefensible. In total, x ¢ S would imply that z is indefensible, a conclusion which
contradicts the assumption that = was credulously accepted.

The preceding analysis establishes the algorithm’s correctness. The proof of (a) is
completed by noting that it runs in polynomial time: there are at most |)| iterations of
the main loop each taking only polynomially many (in | U Z| + |.A) steps.

Part (b) follows from (a), Table 1(h) and the observation of [11] that, in coherent
systems, an argument is sceptically accepted if and only if all of its attackers fail to be
credulously accepted. o

Turning to the problems CA(y and SA(y, [6] note that in many cases decision problems
involving sets are “no harder” than the related questions formulated for specific argu-
ments, e.g. for unrestricted argument systems, symmetric argument systems and DAGS,
the upper bounds for CAy and SA¢y are identical to the corresponding upper bounds for
CA and SA. In this light, the next result may appear somewhat surprising: although, as
has just been shown, CA(?) is polynomial time decidable, CAE{Q}) is likely to be noticeably
harder.

Theorem 2

(2)
a. CA{}

b. SAﬁ) is polynomial time decidable.

is NP—complete, even for sets containing exactly tWo arguments.

Proof: For (a), that CAEQ}) € NP is easily demonstrated via the non-deterministic algo-

rithm that guesses a subset 7', checks S C 7" and that T is admissible.

To show that ca'?) is NP—hard we use a reduction from the problem Monotone 3-
CNF Satisfiability (MCS) ([13, p. 259]), instances of which comprise a 3-CNF formula
over a set of propositional variables {z1,...,z,},
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m m
(21, 22,...,20) = /\ C; = /\ (Yi1 V Y2 V ¥i3)

and each clause, C;, is defined using exactly three positive literals or exactly three
negated literals, e.g. (1 V 22 V 23) A (-1 V =29 V ) would define a valid instance
of Mcs, however (z1 V —z2 V x3) would not. An instance ® of MCS is accepted if and
only if there is an instantiation, « € (T, 1 )™ under which ®(a) = T.

Given ®(z1,...,2,) an instance of MCS let {C],...,C;'} be the subset of its
clauses in which only positive literals occur and {D7, ..., D.'} those in which only
negated literals are used. Consider the bipartite argument system Byics(YV, Z,.A) in
which

Y = {&", Cf,....,CH, —xy,...,—x,}
zZ = {(I)+7 wa--,D;a Zla"'axn}

and A contains
{<'Ij7_‘xj>a <_‘xja1:j> 01 S]Sn}
{(crot) : 1<i<r} U {(D7,®) :1<i<s} U
{(~z;,D;) : —x; occursin D;}
{{z;,C;") : z; occursin C;"}

The instance of CA({2}) is completed by setting S = {®+, ®7}.

Suppose that there is some preferred extension, 7', of Bycgs for which {<I>+, 7} C
T, i.e. that (Bycs, S) defines a positive instance of CA?}). Then, for each C;" some ar-
gument z; with (z;,C;") € A must be in T (otherwise the attack (C;", ®*) is unde-
fended); similarly for each D;" some argument -z, with (—zy, D;") € Amustbein T
It cannot be the case, however, that both x; and —x; are in T'. We can, thus, construct a
satisfying instantiation of ® viax; := T if ; € T, and xj := L if —~x; € T

On the other hand suppose the instance ® of MCS is satisfiable, using some instanti-
ation a. In this case the set

{7,067} U {a:j' : zj = Tundera} U {z; : x; = L under o}

is easily seen to be admissible, so that (Bycs, {®1, ®7}) defines a positive instance of
CA(Q).

Part (b) follows easily from Theorem 1(b) since a set of arguments S is sceptically
accepted if and only if each of its constituent members is sceptically accepted. o

The remaining cases in Table 1 are considered in the following Theorem.

Theorem 3

a. Vk>3 ca® and CAF{? are NP—complete.

b. Vk >4, sak), SA%) and COHERENT®) are TTh—complete.

Proof: (Outline) The membership proofs are identical to those that hold for the unre-
stricted versions of each problem. For the cases in (a), NP-hardness follows by observing
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that the argument system given in [14, Defn. 7, p. 234]> from which NP-hardness of CA
and CAyy is deduced, is 3-partite. Similarly, for (b), after applying the translation de-
scribed in [5] to “suitable” quantified Boolean formulae,? the resulting argument system
is 4-partite. o

We can, in fact, demonstrate that Thm 3(b) holds for £ > 3: the proof, however, requires
a non-trivial application of techniques introduced in Section 4 applied to the construction
from [5] and is omitted here.

3.2. k-partite Value-Based Argumentation Frameworks

In Theorem 1 it was shown that CA(® and sA(®) are solvable by efficient algorithmic
methods, a property which continues to hold for SA(Z}) even though ca'® becomes as
hard as the unrestricted version. While there is some superficial similarity between the
concepts of credulous (resp. sceptical) acceptance and subjective (resp. objective) ac-
ceptance, as is demonstrated in Bench-Capon et al. [15, Thm. 12], it is not possible,
in general, to deduce whether an argument is subjectively accepted in a given VAF,
(X, A,V,n), from knowledge of whether or not it is credulously accepted in the (value-
free) system (X', A). Nevertheless, one might hope that since bipartite systems offer a
tractable class within standard argument systems, so too bipartite VAFs would admit effi-
cient processes with which to determine subjective and and objective acceptance. In fact,
as we show in Theorem 4, in complete contrast to the standard framework the problems
sBA?) and 0BA®) are as hard as their unrestricted counterparts, SBA and OBA.

Theorem 4

a. SBA() is Np—complete.
b. 0BA® is co-NP—complete.

Proof: (Outline) Membership in NP (resp. co-NP) is via an identical argument to that
used for the unrestricted versions as given in [12]. To show that sBA(?) is NP-hard we,
again, use a reduction from the problem MCS introduced in the proof of Theorem 2(a).
Given an instance ® = A", C; of MCS, consider the bipartite VAF, Ko = (Y U
Z, A, V,n) defined from ® in which

y - {év xla”'uxnv_‘ylw"v_'yn}
Z :{Clv---;cﬂu ﬁxlw'wﬁmnayla"'ayn}
A = (o, i), (mwiy w4), (Wi i), (W, ys) 0 1 <i<njU

{(Ci,®) s 1<i<m}U
{{(~i, Cy) + —w € O} U {{2:,Cy) + m; € Cj}

V = {con}U{pos;, neg; : 1 <i<n}
con ifpe{®,C,...,Cn}
n(p) = < pos; ifp € {x;,y;}

neg; if p € {-x;, ~y;}

2This is a very minor modification of the construction in [4, Thm. 5.1, p. 227].

3The Hg—hardness proof from [5] uses a reduction from the problem QBFy whose instances are arbitrary
propositional formula ®(X,Y") accepted if for every instantiation v of X there is some instantiation /3 of
Y for which ®(«, 8) holds. This problem remains Hg—complete when @ is restricted to CNF formulae, the
resulting argument system for these cases in the reduction from [5] being 4-partite.
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With this construction we can construct a specific audience «, such that ® € P(Kg, «)
if and only if & is a satisfiable instance of MCS. For (b), we use a similar construction,
adding an argument ®’ to Z with n(®’) = con and whose sole attacker is ®: @’ is
objectively accepted if and only if the instance ® of MCS is unsatisfiable. The full details
are omitted for space reasons. o

4. Restricting numbers of attacks — (p, ¢)-bounded degree systems

In contrast to many of the results of Section 3, the restriction considered in this Section,
perhaps, suprisingly does not lead to improved algorithmic methods. Our principal inter-
est is in introducing the concept of a given class of argument systems being capable of
“representing” another class. This is of interest for the following reason. Suppose that ®
and U are properties of argument systems (where the formal definition of “property” will
be clarified subsequently). Furthermore, suppose that any system with property ® can be
“represented” (in a sense to be made precise) by another system with property ¥. As-
suming such a representation can be constructed efficiently, we would be able to exploit
algorithmic methods tailored to systems with property ¥ also to operate on systems with
property ®: given H (satisfying @), form G, (with property ¥) and use an algorithm
operating on this to decide the question posed of . In a more precise sense, we have the
formalism presented below.

Definition S A property, II of finite argument systems is a (typically, infinite) subset of
all possible finite argument systems. We say H has property 11 if H is a member of 11
The argument system H (X, A) is simulated by the argument system G(X U Y, B) if all
of the following hold for all T C X UY and all S C X

a. CAp(G,T) = cAp(H,T\Y); cA(H,S)= 3T CYcAap(G,SUT).
b. SA{}(g,T) = SA{}(H,T \ y), SA{}(H, S) = dJTCYy SA{}(g, S U T).
c. COHERENT(G) < COHERENT(H).

A property, A represents a property U if for every H(X,A) € T there is some G(X U
Y, B) € A such that H is simulated by G. We say that A polynomially represents I' if
there is some constant k such that, for every H(X, A) € T there is some G(X UY,B) €
A such that |X U Y| < |X|* and H is simulated by G. Finally we say that a property is
(polynomially) universal if it (polynomially) represents all argument systems.

It will be useful also to view as “polynomially universal” those properties that represent
all but finitely many argument systems.*

The class of argument systems considered in this section are those defined by the
property, A9 introduced in Defn 4(b). Our main result in this section, whose proof is
given in outline only, is

Theorem 5 A2 is polynomially universal.

4The motivation is to allow a rather cleaner statement of results such as Corollary 1: the result claimed in
this particular case fails to be true of exactly one graph with the property considered.
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Proof: (Outline)’ Let (X, .A) be any finite argument system. Suppose H ¢ A(>2),
Consider any z € X for which {y : (y,z) € A} = {y1,92,...,yx} and k > 3.
Introduce 2k — 2 “new” arguments — ZI = {21,2,..., 2012} — and replace the set
of attacks {{y;, ) : i > 2} by the system of attacks B* defined through

k-1 k—2
{(21, %), (Yr—1,206—2), (Yk, 22k —2)} U U {(22i, 20i-1)} U U {(i, z2i-2)}

Letting G be the argument system formed by (X U ZI* A\ {(y;,z) : i > 2} U B).
It can be shown that S is a preferred extension with x € S for H if and only if S U
{ZQj : 1 < j <k—1}is apreferred extension in g;n. Noting that the construction does
not change the number of attacks on arguments other than x, a similar procedure can be
applied to any remaining argument attacked by at least three arguments.

A near identical construction serves when dealing with those arguments that attack
more than two others. For each € X suchthat, {y : (z,y) € A} = {y1, y2,.-., Uk}
and k > 3 we introduce 2k — 2 new arguments, Z2% = {u,us,...,usx_o}, replacing
the set of attacks { (z,y;) : @ > 2} with the system of attacks Bo"* given by

k-1 k—2
{(z,w), (uor—2,yr—1), (Uor—2,yK)} U U {(ugi—1,u2:)} U U {(u2i—2,yi)}
i=1 =2

Letting GO"* be the system with arguments XYUZS"" and attack relation A\ {(z, y;) : i >
2} U B2" it may be shown that S is a preferred extension of H with z € S if and only if
SU{ug; : 1<j<k— 1} isa preferred extension of GO"*. o

Now, recalling that T'(*) is the set of all k-partite argument systems we obtain
Corollary 1 The property T N A22) s polynomially universal.

Proof: As undirected graphs, via Brooks’ Theorem ([16, Thm 6, Ch. 15, p. 337]), with
one exception, every argument system in A(%2) is 4-colourable and, thus, 4-partite. o

5. Conclusions and Development

In this paper we have considered how the complexity of a number of important decision
questions in both standard and value-based argument systems is affected under various
graph-theoretic restrictions: the system being k-partite; each argument being attacked
by and attacking some maximum number of arguments. In the first of these we obtain
improved methods for both credulous and sceptical acceptance with bipartite graphs,
however, no such reduction in complexity results for the related questions within VAFs.
Similarly, we have outlined a construction whereby systems in which no argument at-
tacks and is attacked by at most two arguments are sufficiently general to model the be-
haviour of any finite argument system, thereby suggesting that this restriction is unlikely

5For readers familiar with the standard translation from k-CNF to 3-CNF (k > 3) or the Chomsky Normal
Form representation of context-free grammars, we note that a similar approach is used in these constructions.
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to yield better algorithmic methods. The concept of “polynomial universality” introduced
in Defn 5 with a concrete example of such being given in Corollary 1, may be of some
interest regarding generic “normal form” representations of argument systems. One par-
ticular aspect of some interest with respect to Corollary 1 concerns multiagent imple-
mentation of argument processes: under the (reasonable) assumption that the arguments
endorsed by individual agents are “internally consistent”, i.e. conflict—free, one can en-
visage potential applications as providing a mechanism for distributing the components
of a global system over (at most) four agents so that interaction regarding the status of
single arguments, in the first instance, need only consider the (at most) two agents from
which its attackers originate.
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Abstract. The hitherto most abstract, and hence general, argumentation system, is
the one described by Dung in a paper from 1995. This framework does not allow
for joint attacks on arguments, but in a recent paper we adapted it to support such
attacks, and proved that this adapted framework enjoyed the same formal proper-
ties as that of Dung. One problem posed by Dung’s original framework, which was
neglected for some time, is how to compute preferred extensions of the argumen-
tation systems. However, in 2001, in a paper by Doutre and Mengin, a procedure
was given for enumerating preferred extensions for these systems. In this paper
we propose a method for enumerating preferred extensions of the potentially more
complex systems, where joint attacks are allowed. The method is inspired by the
one given by Doutre and Mengin.

Keywords. Argumentation with sets, Preferred Extensions

1. Introduction

In the last fifteen years or so, there has been much interest in argumentation systems
within the artificial intelligence community. This interest spreads across many different
sub-areas of artificial intelligence. One of these is non-monotonic reasoning [1,2], which
exploits the fact that argumentation systems can handle, and resolve, inconsistencies [3,
4] and uses it to develop general descriptions of non-monotonic reasoning [5,6]. This line
of work is summarised in [7]. Another area that makes use of argumentation is reasoning
and decision making under uncertainty [8,9,10], which exploits the dependency structure
one can infer from arguments in order to correctly combine evidence. Much of this work
is covered in [11]. More recently [12,13], the multi-agent systems community has begun
to make use of argumentation, using it to develop a notion of rational interaction [14,15].

One very influential and very abstract system of argumentation was that introduced
by Dung [16]. This was, for instance, the basis for the work in [5], was the system ex-
tended by Amgoud in [17,18], and subsequently as the basis for the dialogue systems
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in [19,20]. The importance of Dung’s results is mainly due to the fact that his frame-
work abstracts away from details of language and argumentation rules, that the presented
semantics therefore are clear and intuitive, and that relationships among arguments can
be analysed in isolation from other (e.g. implicational) relationships. Furthermore, the
results can easily be transferred to any other argumentation framework, by identifying
that framework’s equivalent of an attack. It is this generality, we believe, that has con-
tributed to the popularity of the work, and we see it as a prime contender for becoming
an established standard for further investigations into the nature of arguments and their
interaction.

However, even if Dung was trying to abstract away from the underlying language and
structure of arguments, his framework implicitly assumes a logical “and” connective in
the underlying language, to be able to model all kinds of attacks. This hidden assumption
is caused by Dung’s attack relation being a simple binary relation from one argument to
another, rather than a relation mapping sets of arguments to other sets of arguments. In a
recent paper [21] we presented a generalisation of Dung’s framework, which allows sets
of arguments to attack single arguments, and thus frees the underlying language from
being closed under some logical “and” connective'. The main motivation for that work
was that sometimes it seems reasonable for a number of arguments to interact and con-
stitute an attack on some other argument, even though the arguments of the attack does
not individually attack that argument. The approach, where such joint attacks are mod-
elled by adding to the argumentation system a new argument that represents the set of
attacking arguments, and then employing traditional argumentation analysis to this sys-
tem, is not satisfactory: The encoding is artificial, adding distance between the formalism
and the modelled argumentation situation, and to ensure that nonsense conclusions do
not arise, the relation of attack among arguments need to be restricted or an extra layer
of logical relationships among arguments need to be specified. The former muddles the
clear distinction between arguments and attacks, which was the very appeal of Dung’s
framework, and the latter makes it hard to survey the effects of one set of argument on
others and calls for more specialized formalisms for analysis than Dung’s. For further
elaborations on this see [21].

In this paper, we build on the work in [21] and propose a method for enumerating
preferred extensions of the argumentation systems defined there. In general it is hard
to compute a preferred extension [23], but [24] presents a method that enumerates pre-
ferred extensions for an abstract argumentation system as presented in [16]. Moreover,
[25] and [26] present methods for answering whether a specific argument is in at least
one preferred extension, or if it is in all preferred extensions. Here we adapt the basic

!'Subsequently, we have been directed to [22], which describes an argumentation framework that is a gener-
alization of that in [16] too. The main differences between [22] and [21] are due to difference in perspectives:
Bochman is motivated by the task of establishing a correspondence between disjunctive logic programming
and abstract argumentation, and ends up with a framework that allows any finite set of arguments (including
the empty set) to attack and be attacked by any other finite set, whereas we have tried to expand the dialogical
and dialectical boundaries of abstract argumentation by allowing for arbitrary sets of attacking arguments (but
the empty set), and claim that further flexibility is not needed for argumentative reasoning. (Indeed, the main
example motivating attacks on entire sets of arguments turns out to be sensibly represented in our framework.)
Due to his aims, Bochman construct new semantics for his framework and identifies new families of argumen-
tation systems with nice properties (none of them coinciding with our formalism). We, on the other hand, stick
as close as possible to the semantics provided by Dung, and instead show that the all of Dung’s results are valid
for systems with sets of attacking arguments.
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technique of [24] to the more complex case of argumentation systems with joint attacks.
The main problem for this adaptation, is that the argumentation systems of [16] can be
viewed as directed graphs, and that this fact is exploited in the pruning rules of [24]. For
the argumentation systems of [21], however, no similar graph structure exists, and new
pruning rules thus have to be constructed. In particular, we lack a context independent
notion of “reflective” arguments, and a context independent notion of a single argument
being detrimental to a specific set of arguments.

2. Argumentation With Attacking Sets of Arguments

In this section we present our generalisation of the framework of [16], as introduced in
[21].

Definition 1 (Argumentation Systems). An argumentation system is a pair (A,),
where A is a set of arguments, and > C (P(A) \ {@}) x A is an attack relation.

Throughout the paper we assume an argumentation system .4 = (A, ), and take it
to be implicit.

We say that a set of arguments S attacks an argument A, if there is §' C S such
that S’ v A. In that case we also say that A is attacked by S. If there is no set " ¢ S’
such that S attacks A, then we say that S’ is a minimal attack on A. Obviously, if there
is a set that attacks an argument A, then there must also exist a minimal attack on A.
Moreover, if S is a minimal attack on A, then it must be the case that S A. If for two
sets of arguments Sy and S, there is an argument A € Ss, which is attacked by S,
then we say that S attacks S5, and that .S, is attacked by S;. If a set S attacks some
argument in S, and this is true of no subsets of S, then we say that .S is a minimal
attack on S-, and relaxing notation a bit, write S - .S». If a set of arguments S does not
attack itself, then we say that .S is conflict-free.

Let Sy and S5 be sets of arguments. If S attacks some argument A, and S attacks
S2, then we say that Sy is a defense of A from S,, and that Sy defends A from S,.
Obviously, if S is a superset of Sy, S5 is also a defense of A from S>. An argument
A is said to be acceptable with respect to a set of arguments S, if S defends A from
all sets of attacking arguments S’ C A. A conflict-free set of arguments S is said to be
admissible if each argument in S is acceptable with respect to S. This leads us to the
credulous semantics we treat in this paper:

Definition 2 (Preferred Extensions). An admissible set 8* is called a preferred exten-
sion, if there is no admissible set ' C A, such that S* C §'.

From [16] and [21], we have that for each admissible set S, there exists a preferred
extension S*, such that § C S*. Moreover, as the empty set is an admissible set, we
have that every argumentation system has at least one preferred extension.

A very skeptical semantics, is the grounded extension, which is defined as the least
fix point of the function F' : P(A) — P(A), defined as

F(8)={A : Aisacceptable wrt. S}.
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Example 1 (An Introductory Example): Consider an argumentation system A. =
(A.,v.), where A, = {A,B,C, D, E,F} and v, is defined as:

{4,C,D}v. B, {A,B}v.C, {B}v.D, {C,E}v.D,
{D}v. E, {B,F}v.E, {A}v.F, and {D}v,F.

It can easily be verified that the grounded extension of A, is {A}. The preferred exten-
sions are {A, B, E} and {A, C, D}, which we shall prove later in the paper.

3. Computing Preferred Extensions

We now present a method for computing the preferred extensions for an argumentation
system with sets of attacking arguments as defined in Definition 1. The method is in-
spired by a similar method, for computing preferred extensions for Dung’s original ar-
gumentation systems, presented in [24]. The basic strategy is to enumerate all possible
divisions of A into two sets, I and O, where I are the arguments that are in a preferred
extension, and O are those that are out, and then check for each division if I is a pre-
ferred extension. Now, of course the number of divisions can be drastically reduced, by
noting requirements on I imposed by Definition 2, so a full enumeration can often be
avoided.

The enumeration of divisions is constructed as a tree, where each node is a partition
of A into three sets (I, O, U), where U is the arguments still not assigned to one of the
two divisions I and O. The root of the tree is a node where both I and O are empty
and all arguments are assigned to the undecided partition. Each child (I',0',U") of a
node (I,0,U) is then a refinement of the division represented by the previous node, i.e.
I C I'and O C O'. The size of such a tree is exponential in the number of arguments,
but fortunately we often do not have to construct the entire tree, and if only more specific
queries are sought answered (such as “Is argument A included in some preferred exten-
sion?”’) we can sometimes get away with only inspecting parts of a few branches of the
tree.

First we define the nodes we work with. These are called A-candidates, or as we
take A to be implicit, just candidates. For a given set S C A, define

S7={A€cA: T CSst.Tr A}
and
ST ={A€A:3ITCS,BeSst.TU{A}vB}.

S is thus the set of arguments attacked by S, and S is the set of arguments, which
if added to S, would make S attack itself. A candidate is then a triple (I C A, O C
A, U = A\ (I U O)) satisfying the following properties:
I co, (1)
I CO, and (2)
INO=g2. 3)
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(IfC = (I,0,U) is a triple, we will use subscripts to refer to the sets in the partition,
e.g. I denotes the set I in C.)

Example 2 (Candidates): We consider again the argumentation system A, = (A.,®.)
from Example 1. A few examples of candidates are ({B},{D},{A,C,E,F}), (&, A., 9),
and ({C,D}, {A,B,E,F}, @). Some examples of non-candidates are ({A},{B, D},
{C.E,F}), {E,F},{A,D},{B,C}) and ({B},{B,D},{A,C.E, F}).

Focusing only on candidates, rather than arbitrary divisions of A, is thus a restriction
on the number of divisions to consider. We argue that it is sufficient below.

It follows from (1) and (3), that for any candidate C, I is conflict-free. For any
triple C, we denote by pref(C) the set of all preferred extensions S*, where I C S* C
I U Ug. It follows, that if Uz = @&, then pref(C) is {I¢} if I is a preferred extension
and & otherwise.

Given a triple C and an argument A € Uy, define the triples

C—A=(Ic, OcU{A}, Uc\{4}), “4)

and
C+A=(IcU{A}, OcUA 4 UA:,, Uc\({AtUAG4UALL) O

where

Ag ,={BeU; : IS C st SU{A}» B} 6)

and

Aby={BeU: :3SCI,Cele st SU{B}rA

VSU{A,B}rC v SU{A,B}r A}. (7)

Example 3 (Adding Arguments to Triples): Building on Example 2, we add E
to the candidate C; = ({B},{D},{A,C,E,F}) and the non-candidate Cy =
({A},{B,D},{C, E,F}): In the first case, Az p = @ and A p = {F}, and in
the second Ag) |\ p = Ag, g = @. Therefore, Cy + E = ({B,E},{D,F},{A,C})
andCy + E = ({AaE}7 {B7D}7 {CvF})

It is easy to verify that, given a candidate C and an argument A € U¢, we have that
I A\ = A4, (8)
and
Ioa\Ie = A 4 9)
Given the partial division represented by a candidate, some arguments might be impos-

sible to add to the set I without ending up with a contradiction. We therefore define the
set of reflexive arguments with respect to a candidate C as follows:
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refl(C) = {A € Ue : IS C I, s.t. SU {4} > A}. (10)

From the definitions, it immediately follows that if A € refl(C) then pref(C + A) = .
Furthermore, we can state an important theorem, which implies that given a candidate C,
we can use the definitions of C + A and C — A to construct a tree of candidates having C
as root:

Theorem 1. Let C be a candidate, and A € Upg. If A & refl(C) then both C + A and
C — A are candidates as well. Otherwise only C — A is a candidate.

Proof. Tt is obvious that C — A is a candidate no matter whether A is in refl(C) or not.
We therefore only show that C + A is a candidate iff A is not in refl(C).

First, assume that A is in refl(C). This means that there is some set S C I, such
that S U {A} v A. Consequently, Ic; 4 = I U {A} contains a subset T' = S U {4},
such that T' > A. If C + A was to be a candidate, (1) would therefore require that A is in
Oc¢ 4. It follows that A is in Iz 4 N Og¢y 4, which is thus not empty. That contradicts
(3), and C + A can thus not be a candidate.

Conversely, assume that A is not in refl (C ) and we show that C + A is a candidate
by means of contradiction. That is, assume that C + A is not a candidate, which means
that one of the following must be true:

(): AB € I} 4 s.t. B ¢ Ocy 4,
(i): 3B € I5, 4 s.t. B € Ocy 4,01
(111) B € IC+A N OC+A.

We show that each case is impossible. First, assume that (i) is the case. Since C is a
candidate, we necessarily have that I,> C O¢ C O¢4 4 and it must thus be the case
that B € I} 4 \ Iz, which according to (8) is equivalent to having B € Az, 4.
But according to (5), A?+A is a subset of O¢ 4, s0 B € O¢y 4 after all, which is a
contradiction. Case (ii) is proved to be impossible with a similar argument.

Assume that (iii) is the case. Since C is a candidate, we know from (3) that Oc NIy =
@, and, since A is in Ue, which is disjoint from O¢, also that O¢ N (Ic U {A})
OcN1Icya = 2. Therefore, B must be a member of Ocy 4 \Oc = (A, 4, UAE, 4)
U¢. Furthermore, as Ug N Iz = & it follows that B must be in Icy a4 \ I = {A}.
Thus, A must be in either Az 4 or A&, 4. The first possibility is ruled out, since 4 by
assumption is not a member of refl(C). So A mustbe in A%, 4.

According to the definition of A, 4, there mustbe a C' € I¢ and aset § C I,
so either S U {A} v A or S U {A} v C. Again the first possibility is precluded by the
assumption that A is not in refl(C), so it must be the case that S U {A} v C'. But then A
is in I~ and as C is a candidate also in O¢. That contradicts the assumption that A4 is in
U, and the theorem follows. O

Nl

The theorem thus establishes that iterated use of the C + A and C — A-definitions
makes sense. Moreover, we have the following result on that activity:

Theorem 2. Let C be a candidate and A and B be distinct arguments in U \ refl(C),
such that both (C + A) + B and (C + B) + A are candidates. Then
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(C+A4)+B=(C+B)+A4, (11)
(C—A)—B=(C-B)-A, and (12)
(C+A4)-B=(C-B)+A. (13)

Proof. We only show (11), since the others follow from similar, albeit slightly simpler
arguments. It is obvious that Tici a4y 8 = IicyB)4a and, given that Oy ayyB =
O+ B)+4, also that Uey 4y18 = Uy pya- We therefore just need to show that
Octayrs = Ocipyta

Octarts =0c UAL yUAL 4 UAC 4 s UAL 415
=0c UIqa\ 1) U a\ 1)
U ciayrs \Icra) VT ay \ I a)
=0c U (I(?+A)+B \I") Y (I(%+A)+B \IE),

where the last step is warranted by the observation that S C T and S% C T*, for
any two sets S and T', where S C T'.
Now, as Ijcy ay1B = I(cyB)+a, We have:

Oc U (I(?+A)+B \Ic?) U (I(%+A)+B \Ig)
=0c U (I g1 pyra\ I ) VT e pyya \ IE)
=0c U(Ihp \ I )V (IE p \ I¢)
UIymyra \ IehB) YT p1a \ I21B) = Oyt a
O

Thus, no matter in what order several arguments are moved from U to Iz and Og,
the resulting candidate is the same.

Now, we wish to use a tree of candidates as enumeration of preferred extensions.
Given a candidate C, we define a C-tree inductively as follows:

e If U; = & then the tree consisting of the leaf C is a C-tree.

o If A e Uc \refl(C) then a tree with root node C having the roots of a C + A-tree
and a C — A-tree as only children is a C-tree.

o If A € Ug Nrefl(C) then a tree with root node C having the root of a C — A-tree
as only child is a C-tree.

Example 4 (C-trees): We continue expanding on Cy as in Example 3. Repeated construc-
tion of candidates gives the C-tree presented in Figure 1. Notice that some branches are
shorter than others. This is because some additions to I imply additions to O, and hence
exhaust U sooner.

Any tree, for which there is some candidate C such that the tree is a C-tree, is called a
candidate tree. The following results guarantee that candidate trees include all divisions
that encode preferred extensions.
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GL+E)+ A
Cl+E\ ((CGi+E)—4)+C

/ (€ +EB) -4
C1 (G+EBY-4)-C

\ /(Cl—E)+A
¢ —E (L —Ey—A)+C

G-E) -4

(G -B)-a-C
Figure 1. A Cy-tree

Lemma 1. Let S C A be a conflict-free set, C a candidate, where I C S and O:NS =
@&, and A a member of S\ I¢. Then C + A is a candidate, and O¢y 4 NS = 2.

Proof. First note that A cannot be in refl(C), as that would mean that there isaset T C I
such that T' U { A} © A, which again would mean that S is not conflict-free. Therefore,
Theorem 1 guarantees that C + A is a candidate, and we thus only need to show that
OcianNS=0.

As Oc NS = @it follows that Ocya NS = (A, 4 U AL, 4) N S. If this set
is non-empty, then there must be a B in S, such that there is aset T' C Iz C S and
element C' € I C 8, where either T U {A}» B, TU{B}v A, TU{A4,B}vC,
or T U {4, B} v A. But each of these imply that § is not conflict-free, and hence we
conclude that O¢1 4 NS = @. O

Theorem 3. Let C be a candidate, and A € Upg. Then pref(C) = pref(C + A) Upref(C —
A).

Proof. Tt is obvious that pref(C + A) U pref(C — 4) C pref(C), so we only show that
pref(C) C pref(C + A) U pref(C — A).

Let §* € pref(C), i.e. Ir € 8 C I U Ug. If A is not in $*, then it follows that
S§* C I UU:\ {A} = Ic_4 UU¢_4, and hence that 8 € pref(C — A). If A is
in S* we similarly get that $* O I U {A} = Iz;4 and we only need to show that
S§*C I aUUgya,ie that Ocp 4 NS* = @. But this is guaranteed by Lemma 1, and
the result follows. U

From this we immediately get:

Corollary 1. If S* is a preferred extension, then there is a leaf C of any (&, &, A)-tree,
such that 8* € pref(C).

Thus, when enumerating preferred extensions, it suffices to construct a single candi-
date tree, viz. a (&, @, A)-tree, even if candidates do not represent all possible divisions
of A. Furthermore, as the grounded extension of any system is a subset of any preferred
extension [16,21], we have the following stronger result:

Corollary 2. If S* is a preferred extension, and G is the grounded extension, then there
isaleafC ofany (G,G7 UG, A\ (GU G~ UG))-tree, such that S* € pref(C).
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4. Pruning of Candidate Trees

Depending on how a candidate tree is constructed, we might be able to prune it. In what
follows we present some simple corollaries which allow for pruning of candidate trees.

Corollary 3. Let C be a candidate for which pref(C) = &. Then pref(C') = & for all
nodes C' in any C-tree.

Thus, if during construction of a candidate tree, we create a candidate for which we
know that pref(C) is empty (e.g. by use of Theorems 6 or 7 below), then we do not have
to construct the sub-tree rooted at that candidate.

Corollary 4. Ler C be a candidate. If Ug = refl(C), then pref(C) = pref((I¢, O¢ U
UC7 z))

Thus, if at some point in the construction of a candidate tree, we cannot find an
argument to add to I, then we can stop exploring this branch of the tree.

Theorem 4. Let C be a candidate. If I¢ U Uz G S*, for some admissible set §*, then
pref(C) = @.

Proof. Obvious from Definition 2. O
Theorem 5. Let C be a candidate. If I} \ (I UU¢) " # & then pref(C) = @.

Proof. Assume otherwise, and let §* € pref(C) and A € I§ \ (IcWU;) 7. As A € I}
it follows that there is some argument B € I C S* and set T C Iz C S*, such that
T U {A} v B. Furthermore, as S* is a preferred extension, it defends itself, and thus
attacks some argument in ' U {A}. But as S* is conflict-free, this argument must be A,
and A must thus be in $* C (I U U¢) 7, which is a contradiction. O

Theorem 6. Let C be a candidate and A € Ug. If

o for all sets T, where T v A, it holds that T N 1, # &, and
e A¢ (IC U Uc)ﬁ, and
e A¢ (IC U Ue \ {A})H

then pref(C — A) = @.

Proof. Assume that there is a S* € pref(C — A), i.e. that Iz 4 C S§* C U¢_ 4, which
implies that A ¢ S*. Hence, either S* does not defend A, or §* U { A} is not conflict-
free. We show that both cases are impossible.

Let T be some minimal attack on A. Since we have that T' N I;” # &, I attacks
T, and hence that S* D I defends A, ruling out the first case.

If S* U { A} is not conflict-free, but S* is, then there isa set T' C S* C (Io UUg \
{A}) and argument B € S§* C (I U U¢ \ {A}), such that either T > A, T U {A} > A,
orT'U {A} v B. But the latter of these is precluded by A & (I U U¢ \ {A})* and the
othersby A ¢ (I UU¢) . O

Theorem 7. Let C be a candidate and A € U¢ an argument, which is attacked by at
least one set of arguments. If, for all pairs of sets T and R, where T > R and R A, it
holds that T N O¢ # @, then pref(C + A) = @.
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Proof. Assume S* € pref(C + A), implying that Ioy 4 C S*,ie. A € S§*. As §* is
a preferred extension, it must defend A. Let R be an attack on A (whose existence is
guaranteed by the assumptions of the theorem). Since S* defends A, it follows that there
isaset T C S* such that T R. But then T and R fulfills the conditions in the theorem,
and TNO¢ # @. It follows that S* NO¢ # @, which implies that (I UU)NO¢ # &,
which contradicts that C is a candidate. O

It may be possible to establish further pruning rules, especially for families of con-
crete argumentation systems, where the attack relation is known to abide by some restric-
tions. Moreover, it might be possible to establish heuristics for checking the conditions in
the above theorems, or construct data structures which allow for these to be easily tested
inC + A and C — A given the answers in C. However, this is outside the scope of this
paper.

As mentioned before, the method for answering questions about preferred ex-
tensions, presented here, is based on candidate trees. The exact nature of construct-
ing/walking the trees we leave unspecified, as it may be dependent on the question that
we seek an answer to and the system at hand. In some cases it may be suitable to use a
depth-first walk of a candidate tree, and in others (such as when |A| = c0) a breath-first
or iterated deepening depth-first walk will be needed. However, even though we leave
out an exact specification of our method, we show how to apply it to an example:

Example 5 (Full-blown Example): We round off the example system A., presented in
Example 2, by identifying all preferred extensions for it. As no sets of arguments are
attacking A it is clear that it belongs to the grounded extension of A. We therefore
set out with constructing a C-tree, where C is a candidate having I = {A}, such as
({A},{F},{B,C,D, E}). We construct the tree in a depth-first manner. The final result
is shown in Figure 2.

First we construct C + B = ({A,B},{C,D,F},{E}) and then (C + B) + E =
({4,B,E},{C,D,F},2). Here {A, B,E} is an admissible set, and U gy is
empty, so the recursion stops. Next we would need to consider (C+ B)—E, but C+ B and
E satisfies the conditions in Theorem 6 so we know that the sub-tree rooted at (C+B)—FE
contains no preferred extensions, so we skip it.

Instead we back-track and constructC — B = ({A},{B, F},{C,D,E}), (C-B)+
C = ({4,C}, {B,F},{D,E}), and then ((C~ B)+C)+D = ({A,C, D}, {B, E, F},
&). This latter one contains an admissible set, viz. {A,C, D}. Next, we construct
((C-B)+C)-D = ({4,C},{B, D, F},{E}), which satisfies the conditions in Theo-
rem 5 (the satisfying element being B). Therefore, we do not investigate that sub-tree any
Sfurther. Instead we back-track and construct (C — B) — C = ({A},{B,C,F},{D,E})
and then ((C — B) — C) + D = ({A,D},{B,C,E,F},&). Here {A,D} is not a
preferred extension (it does not attack B which attacks it). Back-tracking one level, we
construct ((C — B) — C) = D = ({A},{B,C,D,F},{E}). This candidate satisfies
the condition in Theorem 4, as { A, E} is a subset of {A, B, E}, which we discovered
previously.

The analysis thus shows that the two admissible sets of A having no admissible set
as supersets (i.e. the preferred extensions), are {A, B, E} and {A,C, D}.

Due to the restriction to candidates and the pruning rules, in the example we were
able to deduce the result from five total divisions (out of 64 theoretically possible di-
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C+B——(C+DB)+F
/ /((C*B)fC)J-D
c C-B+0
\ __— (€-B)-C)-D
C-B
(C-B)-C)+D
\(CB)C/
{c-B)y-C)-»

Figure 2. Enumerating all preferred extensions of Ae.

visions), and with an overhead of five partial divisions. We think this is a satisfactory
result, considering the highly intertwined nature of the example system. Of course, the
actual efficiency of the method is influenced by a number of factors:

e How fast can the conditions in Theorems 4 to 7 be checked?

e In what order are candidates expanded. In the example above we went for explor-
ing the largest sets as soon as possible, which allowed for ruling out sub-trees for
smaller sets later on. Other heuristics may be better, depending on the problem
being solved.

5. Conclusions

We have presented a method for enumerating the preferred extensions of argumentation
system where joint attacks are allowed. We have proved that the method is complete and
have presented a number of optimisation rules which should help reduce the running time
of implementations. We do not claim that the set of these optimisation rules is complete,
and acknowledge that details regarding implementation are still open for optimisation.
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An algorithm to compute minimally
grounded and admissible defence sets
in argument systems

Gerard A.W. Vreeswijk
CS Dept., Utrecht University

Abstract. This paper presents a query-answering algorithm to compute minimal
lines of defence around an individual argument. The algorithm returns all such de-
fence sets together with an indication whether the defence is grounded or admis-
sible. For every argument encountered in the search process the algorithm further
indicates whether that argument is IN, OUT, or UNDEC (undecided) according to
the grounded semantics. The presentation of the algorithm is followed by a correct-
ness proof and a complexity analysis of other than worst cases. The algorithm is
already functional in argument analysis and visualization tools.

Keywords. Argumentation, algorithm, complexity

1. Introduction

Recently, a large number of new argument tools have been introduced. Most of these
tools are meant to represent and visualize argument structures but do not show which
arguments can actually be accepted [1,2].

The problem to decide which arguments may be accepted has two aspects. The first
aspect, the theory, is concerned with questions such as which notions of acceptability
there exist (grounded, admissible, preferred, stable, semi-stable) and how different no-
tions of acceptability relate to each other. This part is relatively well understood [3,4,5].
The second aspect is involved with the design and analysis of algorithms that decide
on acceptability. Here, the analysis falls apart in two approaches. The first approach is
interested in the complexity of specific acceptability problems in worst cases. This di-
rection is well sorted out by Dimopoulos et al. [6] and Dunne et al. [7,8]. The second
approach is interested in the design of algorithms with the intention to actually use them
in practice [9,10,11]. This paper follows the latter approach. More specifically, this paper
proposes an algorithm that computes grounded and admissible defence sets in one pass
(i.e., without walking the search tree twice) for single arguments. The presentation of
the algorithm is followed by a correctness proof and a complexity analysis of other than
worst cases.

Algorithms to compute grounded and/or preferred extensions have been proposed,
among others, in [9,10,11,12]. However, these algorithms address one particular seman-
tics and do not combine the search for different semantics. Indeed, surprisingly little im-
plementations exists that actually compute credulous preferred acceptance. This paper is
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connected such an implementation. Most of the existing algorithms, notably [9,12], are
meant to compute full extensions, rather than to compute minimal lines of defence. Other
algorithms, notably [10], are tailored to a specific argument paradigm. Finally, many pro-
posed algorithms lack a complexity analysis. Exceptions are [6,7,8]. A problem with the
latter approaches, however, is that they only address worst-case scenarios.

2. Basic concepts

The following is a rehearsal of known material, and is necessary to understand the algo-
rithm and the motivation of the algorithm.

Definition 2.1 (Argument system) An argument system is a simple di-graph in which
the nodes represent arguments, and the edges represent attack relations between argu-
ments. The expression a < b is pronounced as “a is attacked by b”.

An argument system may contain cycles and loops (1-cycles). Nodes adjacent to loops
are called self-attacking arguments. If a < b, this may be interpreted as a case in which
the acceptance of argument b is a reason not to accept argument a. If X is a set of
arguments such that no two arguments in X attack each other, then X is called conflict-
free. If a «— band b «— c, we say that a is defended by c. If X is a set of arguments
such that all elements are defended by (possibly other) elements in X, then X is called
self-defending.

Caminada [13] argues convincingly that the following two axioms are fundamental.

Definition 2.2 (Reinstatement labeling) A reinstatement labeling is a function L :
A — {IN,OUT, UNDEC } satisfying the following two properties:

1. An argument is IN iff all its attackers (if any) are OUT.
2. An argument is OUT iff one of its attackers is IN.

The two axioms together contain four implications so they are quite “heavy”. Caminada
proved that every reinstatement labeling L corresponds to a set X = {a | L(a) = IN }.
Conversely, every set X C A induces a reinstatement labeling L where all elements of
X are labeled IN, and all elements that are attacked by elements of X are labeled OUT.
The rest is labeled UNDEC. Different semantical notions such as grounded extensions,
admissible sets, preferred extensions and stable extensions are common property and can
be found in the literature or elsewhere in this volume.

The following results are from Caminada [13] and Dung [14] and are needed to
motivate the semantics the algorithm operates on.

Result 2.1 (Caminada, 2006) The following concepts are equivalent: (a) complete ex-
tensions; (b) reinstatement labelings.

e The following concepts are equivalent: (a) grounded extensions; (b) reinstatement
labelings with minimal IN; (c) reinstatement labelings with minimal OUT;, (d) reinstate-
ment labelings with maximal UNDEC.

o The following concepts are equivalent: (a) preferred extensions; (b) reinstatement
labelings with maximal IN; (c) reinstatement labelings with maximal OUT.

o The following concepts are equivalent: (a) stable extensions; (b) reinstatement
labelings with empty UNDEC.
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Result 2.2 (Dung, 1995) (1) An argument is in a complete extension iff it is in an admis-
sible set; (2) an argument is in all complete extensions if it is in the grounded extension.

3. Motivation

This section explains what a practical argument algorithm should compute and motivates
these choices. To this end, we need to introduce the notion of a defence set. Let a be
an argument. A defence set around a is a minimally admissible set D that contains a. A
grounded defence set is a defence set without directed loops. Thus, if arguments a, by, bo,
C1,1, C1,2, €21, arc such that a «— bi, bz — Cij and C12 < b1 then D1 = {a; C1,1; 6271}
and Do = {a; ¢1 2; c2.1} are defence sets of a of which only the first is grounded.

The are two types of algorithms, namely, query-based algorithms and total algo-
rithms. Query-based algorithms compute answers for one particular argument, whether
such answers are yes/no answers, defence sets or full extensions. Total algorithms com-
pute answers for all arguments. This paper presents a query-based algorithm.

3.1. Semantics

When dealing with argument systems, questions often boil down to the following two
fundamental problems:

1. Should this argument be accepted in all possible worlds? IL.e., should everyone
accept this argument?

2. Is there a possible world in which this argument must be accepted? I.e., can any-
one defend this argument consistently?

If we assume that we are dealing with a reasonable audience (i.e., an audience that works
with valid reinstatement labelings only) then the first question corresponds to the prob-
lem to determine whether a is labeled IN in all reinstatement labelings. By Result 2.1
we know that reinstatement labelings correspond to complete extensions, and by Re-
sult 2.2 we know that the intersection of all complete extensions is the grounded exten-
sion. Hence, the first question corresponds to the question whether a is contained in the
grounded extension.

The second question corresponds to the question whether there exists a reinstate-
ment labeling where a is labeled IN. By Result 2.1 we know that reinstatement label-
ings correspond to complete extensions, and by Result 2.2 we know that the membership
question for complete extensions is equivalent to the membership question for admissi-
ble sets. Hence, the second question boils down to the question whether a is contained
in an admissible set.

3.2. Multiplicity

The difference between query-answering algorithms and total algorithms has been ex-
plained at the beginning of Sec. 3. Both approaches have their pros and cons. A total
algorithm would especially be relevant to GUI-based argument systems. In GUI based
systems all arguments (and argument elements) that a user has constructed thus far are
represented within the system and may be shown to the user. Such systems work with ele-
ments that are typically of a propositional nature and the number of elements constructed
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in GUI based systems often remains within reasonable bounds. In such situations it is
reasonable to expect that all argument elements have received a status-assignment and
that this status-assignment is displayed in the GUI. On the other hand, there are argument
systems that are based on first-order languages or equally expressive languages. These
systems can only rely on query-answering algorithms. Arguments in first-order systems
are constructed dynamically and therefore cannot be known in advance.

An additional advantage of a query-answering algorithm is that it can in principle
take on the task of a total algorithm, simply by enumerating all arguments and querying
each argument as it is enumerated. Work of Dimopoulos et al. [6] suggest that in terms
of complexity such brute-force methods are perhaps the best one can achieve.

4. Algorithm

To explain the algorithm, we need the following concepts. Let = be an argument. A
candidate-solution for z is a pair (L,s) where L is a conflict-free list of arguments
without doublures such that © € L and s € {Grd, Adm}. A candidate-solution set (CSS)
for z is a (possibly empty) list of candidate solutions. A solution for z is a candidate
solution (L, s) such that L is admissible. A solution set (S) is a (possibly empty) list of
solutions, adjoined with an element from {IN, OUT, UNDEC}.

The input for the algorithm consists of a query r, together with a Dung-type argu-
ment system, that is, together with a simple di-graph. The algorithm returns a solution set
S. Let r be the argument that is queried and let T" be the tree induced by r from G. The
algorithm is a depth-first search on T" where restrictions on every node (called “permit-
ted next move” in the algorithm) ensure that all branches are explored to a finite depth.
These conditions are described now. Suppose either PRO or CON produces a new argu-
ment z in reply to other arguments. The following conditions are used to decide when
candidate-solutions of the form T" = (L, s) may be dropped if x is further explored.

1. For both parties:
(a) The argument z is attacked by one of PRO’s arguments, i.e., L — .
2. For PRO:

(a) The argument z attacks one of PRO’s arguments, i.e. L «— z.
(b) The argument x is attacked by a winning CON argument.

Condition (1) suffices in itself to ensure that the algorithm terminates and is correct.
(The latter is proven in a moment.) The use of the Condition (2a-2b), then, is to termi-
nate search at the earliest possible moment. The latter is important because a search for
arguments in an expressive object-language is expensive.

From Condition (1) it further follows that CON may not repeat itself, and from that
result, in turn, it follows that PRO does need to repeat itself throughout the entire search.

The algorithm itself consists of three parts: a pre-processing part (6-24), a loop (25-
44), and a return part (45-51). The pre-processing part initializes local variables and
verifies whether simple problem instances are encountered that may yield an immediate
answer. If the argument under investigation has attackers and the CSS is non-empty, then
attackers are explored one at a time. As long as the CSS is non-empty, results of attackers
are collected inside the loop and are added to the running result or are used to expand
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elements of the running result, depending on the parity of the argument. The return part
returns the solution set and caches the result for possibly similar function calls in the
future.

1. function grd-adm(
2 argument,
3. branch, defaults to
4 candidate-solutions defaults to [[(}, Grd]]
5.)
6. on-pro-arg :=length of branch is even ;
7. push argument at end of branch ;
8. status:=IN;
#  First, verify whether argument contributes to candidate-solutions.
# If an argument is known to be IN or OUT or self-attacking, the candidate-
# solution set will in some cases be empty so that further search is unnecessary.
9. if on-pro-arg
10. if status-of(argument)==0UT
11. candidate-solutions =0;
12. else-if argument is self-attacking
13. candidate-solutions =0;
14. status := UNDEC if status==IN;
15. end-if
16. else
17. candidate-solutions := () if status-of(argument)==IN ;
18. end-if

19. ifon-pro-arg

20. add argument at the end of the first co-ordinate of each
21. element in candidate-solutions

22. else

23. accumulated-candidate-solutions :=0;

24. end-if

25. if candidate-solutions # () and ATTACKERS(argument) # ()

26. for-each attacker € ATTACKERS(argument)
# If there is repetition in a branch, the solutions in candidate-
# solutions do no longer qualify as candidate-grounded solutions.
217. if attacker € branch
28. status := UNDEC if status==IN;
29. change all Grd/Adm labels in candidate-solutions to Adm;
30. end-if
# Drop candidate-solutions that do longer qualify as

# candidate-admissible solutions.
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31. filtered:={s € candidate-solutions |
32. attacker is a permitted next move on s } ;
33. next if £i1ltered==0 ; # Nothing left to explore
34. intermediate, intermediate-status =
35. grd-adm(attacker, attacker, filtered);
# Status update is defined in Equation (1)
36. status :=update(status, intermediate-status);
37. if on-pro-arg
38. candidate-solutions := intermediate;
39. break for-each loop if candidate-solutions==0;
40. else
41. accumulated-candidate-solutions U= intermediate;
42. end-if
43. end-for-each
44. end-if

45. if on-pro-arg

46. solution-set ;= candidate-solutions;

47. else

48. solution-set :=accumulated-candidate-solutions;
49. end-if

50. pop argument at end of branch ;

51. return [ solution-set, status];
where status update is defined as follows:

update(status, intermediate-status) =

ouT if status # OUT and intermediate-status = IN
UNDEC ifstatus =IN and intermediate-status = UNDEC (1)
status otherwise.

Many parts of the algorithm depend on the parity of the argument (i.e., whether the
argument is owned by PRO or CON), so much so that it is worth considering to split the
algorithm in a PRO side and a CON side. A split would eliminate if-then-else constructs
that depend on argument parity. A disadvantage, however, is that common parts of the
algorithm, when split, must be duplicated. To prevent such unnecessary duplications, I
decided to present a monological version of the algorithm.

The notion of “permitted next move” on line 31 is defined by restrictions that are
imposed on the expansion of candidate-solution sets, as described at the beginning of
Sec. 4.
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Examples of the algorithm can be obtained through the implementation site. (Cf.
Sec. 6.)

5. Correctness

To prove correctness we need a number of concepts that demarcate parts of the search
tree. Let z be an arbitrary node, and consider a specific stage in the search process at x.
Let T)} consist of all nodes that are visited at least once; let 7' consist of all nodes that
are visited twice; further let Tg? be transitively closed in the direction of the edges. Thus,
the root is always in 72, Further, let 7, contain x and be upwards closed. It may easily
be verified that 7} contains all its successors and that 72 C T'!. Finally, let T} =2 =p.y
T} — T2. In this way, T} 2 is the arm (subset of a branch) from z to T2.

Theorem 5.1 Let a be the root argument. The solution set S(a) contains precisely all
solutions for a.

Proof. (Outline.) To set up an induction argument, we prove two claims.

Claim 1: upon entry, the candidate-solution set CSS(z) consists of all solutions for
T2, such that each solution is augmented with PRO-elements from 7} ~2.
Claim 2: upon exit, the solution set S(z) consists of all solutions for 77} U T7;.

Because « is the root node, we have T; C T7, so that the second claim implies that the
solution set S(a) indeed consists of all solutions for 7)* which indeed would establish
the desired result.

The two claims may be proven with induction on the number of node visits. Consider
an arbitrary node z. There are three cases: x is the root, z is an internal node, or z is
a leaf node. As an example let us consider the case where z is an internal node. Thus,
U — T — Y1,...,Yn Where “—" denote attack relations and n > 0. With induction
we may assume Claim 1 for v and Claim 2 for vy, ..., y,. We first prove Claim 1 for
x. We may assume that CSS(u) contains all solutions for T'2, such that each solution is
augmented with PRO-elements from 77! ~2. Further, 7> = T'? because z and u are one
the same branch. Since 7} = T} U {2} and T2 = T2, we are left to show that

_ [{SuU{z}| S €CSS(u)} ifxisowned by PRO
CSS(x) = {CSS(U) otherwise. @

consists of all solutions for 772, such that each solution is augmented with PRO-elements
from T} =2. If z € CON there is nothing to prove; if z € PRO then the claim follows
from 7} =2 = T'!=2 U {z} and the construction of CSS(z).

For internal nodes Claim 2 follows immediately from the induction hypothesis of
Y1, - - - Yn and the way how S(y1), . . ., S(yn ) are combined into S(z). The minimality of
S(z) follows from the way how intermediate CSSs are conditionally merged into CSS(x)
(line 41 of the algorithm). CSS(z) then later becomes S(z).

The proofs of the two remaining cases run analogous except that Claim 2 for leaf
nodes must be proven with the help of Claim 1 combined with the reason that caused the
termination of the search at that branch, which can either be the absence of attackers, or
the impossibility to make legal moves. [J
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6. Implementation

The algorithm has been implemented in the object-oriented scripting language Ruby. Its
operation can be inspected through
http://www.cs.uu.nl/"gv/code/grd_adm/.

6.1. Testing

To test the implementation, a benchmark suite of typical argument systems (i.e., a collec-
tion of typical di-graphs) was composed. At April 2006, this collection consisted of 47
problems. Now and then the collection is extended with new problems thanks to the input
of students and peers. Besides standard problems, the benchmark suite contains prob-
lems that are known to be computationally difficult or conceptually problematic [15,5].
The benchmarks can also be accessed through the above mentioned URL.

Although the collection of benchmark problems is mainly written for the purpose of
testing the implementation (rather than the algorithm), experiments reveal that in many
examples search is pruned either by (early) losses of PRO or else by constraints that
either one of the two parties ran in to due to Conditions 1-2 (Sec. 4).

6.2. Practical use

By now the algorithm is used to compute defence sets in Stevie, a knowledge represen-
tation architecture for the construction of stories based on interpretation and evidence
[16].

7. Complexity

In [17] it was proven that that the preferred membership problem—and hence the ad-
missible membership problem—is NP-complete. From [17] one could conclude that the
admissible membership problem has been “solved” and leave it at that. However, this is
a non-productive viewpoint. Many argumentation tools are in need of an algorithm to
compute grounded or admissible defences, and it may well be that in spite of the results
from a worst case analysis there exist algorithms that perform acceptably in average or
typical cases. This section shows that the algorithm indeed behaves exponentially in a
worst case. However, it also shows that the algorithm seems to behave acceptably in other
cases. This section concludes with a proposal of a definition of the average case.

7.1. Worst case

The following example shows that the algorithm may behave exponentially on the size
of its input.

Example 7.1 (Outline.) Consider the family of argument systems with arguments a, b;
and ¢; j, suchthatn > 1,1 <i <nandj € {1,2}, and such that ¢ < b; and b; — ¢; ;
for all 4, 7. With a simple induction argument it can be proven that the total number of
elements that needs to be verified is O(2").
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7.2. Best case

Example 7.2 Let n > 1 and consider the argument system with elements a, b1, bs,
€2,1,-.-,C2n,suchthat a < b; and by < c ;.

Then a is defeated by b; so that further exploration of the sub-graph at by is unnec-
essary. Hence, the input complexity goes to zero if n increases.

7.3. Other cases

This section presents examples that give insight in the decrease of complexity when one
moves away from a worst case, and in the increase of complexity when one moves away
from a best case.

The following example shows that the complexity drastically decreases when the
worst-case example is slightly modified.

Example 7.3 Consider the collection of argument systems that arises when we take the
argument system from Example 7.1 where some of the b;’s are no longer attacked at
all.! Based on the distribution we may adopt the hypothesis that the probability that by,
is attacked equals 1/2. If by, is not attacked, then search immediately stops at k, and an
empty set of CSSs is returned. Accordingly, the expected input complexity is

1 "1 5n2 + 9n
N Bk p (ke 1)2k) = 2 T
1+3n;2k(3 +k+1)2Y) = o

The last expression is O(n). O

I conclude with an example that generalizes the above approach and shows that in cases
where PRO is likely to fail, the complexity of the algorithm still is acceptable.

Example 7.4 Consider the argument system that arises out of the tree 7" that is 2n levels
deep and has a branching factor of B at even levels and a branching factor of 1 at odd
levels. Thus, at every point, PRO’s response is unique while CON may choose out of B
responses.

If we denote the number of nodes in the tree owned by PRO by N, then N =
(B"*1 —1)/(B — 1). It follows that the number of nodes in the tree owned by CON is
N — 1 (for all PRO nodes are a unique response to a CON node, except the root node).

Since the depth of this tree is even, PRO would win every dispute. In such a case
2(1+2+43+...+ BY) —1 checks needed to be executed, which exponentially depends
on N.

Now suppose that the probability that PRO is able to deliver a reply at all is, at any
point, equal to p. This yields a collection of N argument systems, where the duration of
the search typically depends on the place where PRO does not respond. For one particular
system, he expected number of checks is two times 1 + (1 + 2p) + (1 + 2p + 3p?) +
(14 2p+3p? +4p® + ...+ Np™N~1) minus one. (Le., one time calculated for PRO and
then doubled for CON.) By applying the reduction formula for geometric series twice,
this number can be reduced to an expression of O(np™).

'Nudelman [18] calls this “Choosing a Hypothesis Space,” which adequately reflects the subjectivity of the
process.
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Thus, PRO’s success depends on [N weakest links. If one such link fails we know that
PRO failed entirely, so that the search stops at that point. Example 7.4 can be generalized
further but this is an issue of further research.

7.4. Average case

This section presents a preliminary proposal for a definition of what constitutes to be an
average case. However, it does not contain an analysis of such cases.
For the formulation of the average case I adopt the following three hypotheses:

1. Every argument has a finite number of attackers at its most.

2. The number of attackers of an arbitrary argument does not depend, on the aver-
age, on (the structure of) the argument, but on extra-logical factors such as the
presence of logical material to formulate counter-arguments.

3. Two attackers of an argument are independent. Their existence does not depend
on the existence of possibly other attackers for that argument.

In the theory of probability these three hypotheses are known as ordinarity, stationarity,
and lack of post-influence, respectively, and are necessary (but not sufficient) require-
ments for a Poisson random distribution.

Definition 7.1 (Average case) Let N be an integer greater than zero and let A > 0.
The average input determined by (N, \) is an argument system with arguments A =
{ai,...,a,} with main query a; where the number of attackers of each argument is a
Poisson random variable with mean A where attackers are randomly selected from A.

Thus, P(#attackers = k) = e~*\*/k!. It follows from Definition 7.1 that parts of the
di-graph that are not reachable from a; through attackers are irrelevant for a complexity
analysis. In particular, such parts need not be produced when one generates random input
graphs in experiments. Instead, a straightforward way to produce random graphs would
be to start at a; and generate attackers from there recursively.

8. Future research
The algorithm as well as the analysis of its complexity can be further improved.
8.1. Complexity of elementary checks

Currently, an elementary check amounts to verifying whether two arguments attack each
other. In the first-order case, where arguments are dynamically generated, we may as-
sume that the arguments to be checked are already generated and we may assume that
their corresponding attack relation is cached.

Further, a closer look at Conditions 1-2 (Sec. 4) reveals that this particular imple-
mentation of an elementary check may be replaced by the simple verification whether an
argument has been proposed by CON. We then have to take along all arguments proposed
by CON but that should be no problem. If the algorithm can indeed be simplified thus,
then the conceptual (not the computational) complexity of an elementary check would
reduce considerably.
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8.2. Empirical analysis of complexity

A possible line of research that was not explored in this article, is to empirically test
the algorithm’s complexity. An empirical analysis basically amounts to running the al-
gorithm over multiple cases and measuring the amount of elementary computation steps
the algorithm has executed on average. Nudelman [18] describes in detail how to such
tests may be executed.

Section 6.1 (implementation and testing) and Definition 7.1 (average case) provide
enough material to define experiments. Although there are several reasons in favor of
running empirical complexity tests, I did not conduct such an empirical analysis. The
reason not to report on empirical testing, apart from space considerations, is that I believe
that the presentation of an algorithm must be accompanied by a conventional complexity
analysis first, before it can be subject to practical tests.

9. Related research

Related research falls apart in two categories, viz. algorithms and complexity.

With respect to algorithms, Dung et al. [10] present a family of dialectic proof pro-
cedures for the admissibility semantics of assumption-based argumentation. Compared
to [10], the algorithm presented in this paper returns all defence sets (instead of one) and
interleaves the search for grounded and admissible defense in one pass. Further, Dung
et al. is more focused on the construction of assumption-based arguments and on the
fact that assumption-based arguments may share identical assumptions. Cayrol et al. [9]
present decision algorithms (rather than query-answering or answer set algorithms) for
credulous preferred acceptance and skeptical preferred acceptance in coherent argument
systems. (An argument system is coherent iff preferred and stable extensions coincide.)
Dunne et al. [7] showed that the problem to determine whether an argument system is co-
herent in the first place, is Hép )-complete. Every call of CredQAa, (R, d, O) (the func-
tion that computes credulous acceptability) contains four membership tests and two sub-
set tests. Since such tests are known to be computationally expensive, it remains unclear
how well these decision algorithms perform in practice. Verheij [12] presents argument
software named ArguMed in which argument elements may be created and linked either
positively (support) or negatively (attack). ArguMed contains an algorithm to compute
all stable extensions (dialectical interpretations in Verheij’s terminology). It does so by
extending the grounded extension to (possibly different) stable extensions by means of
a conventional breadth-first search procedure. It is known that plain breadth-first search
procedures that suffers from multiple backtracking and trashing (resetting portions of a
partial solution that had nothing to do with the reason for the failure). Unfortunately,
[9,10,12] all lack a (partial) complexity analysis.

With respect to complexity, Dimopoulos et al. [6] and Dunne et al. [7,8] determine
the complexity of worst-case argument decision problems, but do not venture into an
analysis of average cases. Finally, [19,20] and later [18] are concerned with average-case
complexity but then applied to problems outside the realm of argumentation.

Acknowledgement. Many thanks to colleagues and anonymous reviewers for shar-
ing thoughts and counterexamples, particularly Bart Verheij, Matt South and Martin
Caminada.
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Semi-Stable Semantics !

Martin Caminada ®
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Abstract. In this paper, we examine an argument-based semantics called semi-
stable semantics. Semi-stable semantics is quite close to traditional stable seman-
tics in the sense that every stable extension is also a semi-stable extension. One of
the advantages of semi-stable semantics is that there exists at least one semi-stable
extension. Furthermore, if there also exists at least one stable extension, then the
semi-stable extensions coincide with the stable extensions. This, and other proper-
ties, make semi-stable semantics an attractive alternative for the more traditional
stable semantics, which until now has been widely used in fields such as logic pro-
gramming and answer set programming.

Keywords. argumentation frameworks, argument based semantics, stable semantics,
preferred semantics

1. Introduction

In the field of argumentation and defeasible reasoning, stable semantics is one of the
oldest ways of determining which arguments or statements can be considered as justified.
Well-known examples of formalisms in which stable semantics is applied are default
logic [1] and stable models of logic programs [2]. Although alternative semantics have
been stated over the years, like for instance grounded semantics which has its origins in
Pollock’s 0SCAR [3] and in the well-founded semantics of logic programming [4], stable
semantics has kept considerable support and is currently used even in relatively modern
fields such as Answer Set Programming [5].

The popularity of stable semantics is not entirely without reason. It is a quite simple
and straightforward semantics in which every argument is assigned a status of either
in or out [6]. Furthermore, it is also a very credulous semantics in the sense that the
intersection of the stable extensions is a superset of the intersection of the preferred
extensions, which is in its turn a superset of the grounded extension. In some domains,
like using argumentation for belief revision, one may prefer to use a credulous approach.

Nevertheless, stable semantics has its shortcomings, of which the potential absence
of stable extensions is the most obvious one. Preferred semantics has been proposed as
an alternative [7], but it has as a side effect that additional non-stable extensions can
be introduced, even in situations where stable extensions already exist. An interesting
question is whether one could find a semantics that is “backward compatible” to stable
semantics in the sense that it is equivalent to stable semantics in situations where stable
extensions exist and still yields a reasonable result (preferably quite close to stable) in

IThis work has been sponsored by the EU ASPIC project.
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situations where stable extensions do not exist. In this paper we show that a relatively
simple and straightforward principle can be used to form the basis of such a semantics.
We propose this semantics as a practical alternative for domains and applications where
stable semantics is still being applied.

2. Basic Definitions

We first start with some basic definitions regarding abstract argumentation based on [7].

Definition 1 (argumentation framework). An argumentation framework is a pair
(Ar, def) where Ar is a finite set of arguments and def C Ar x Ar.

The shorthand notation AT and A~ stands for, respectively, the set of arguments de-
feated by A and the set of arguments that defeat A. If A C Ar then we write (A7, def)|4
as a shorthand for (A, {(4, B) | (4,B) € def and A, B € A}).

Definition 2 (defense / conflict-free). Let A € Ar and Args C Ar.

We define At as {B | A def B} and Argst as {B | A def B for some A € Args}.
We define A~ as {B | B def A} and Args— as {B | B def A for some A € Args}.
Args defends an argument A iff A= C Args™.

Args is conflict-free iff Args N Argst = 0.

In the following definition, F'(Args) stands for the set of arguments that are accept-
able (in the sense of [7]) with respect to Args. Notice that the definitions of grounded,
preferred and stable semantics are provided in terms of complete semantics, which has
the advantage of making the proofs in the remainder of this paper more straightforward.
Although these definitions are different from the ones provided by Dung [7], it is proved
in the appendix that they are in fact equivalent to Dung’s versions of grounded, preferred
and stable semantics.

Definition 3 (acceptability semantics). Let Args be a conflict-free set of arguments and
F : 24795 — 24798 be a function with F(Args) = {A | A is defended by Args}.

- Args is admissible iff Args C F(Args).

- Args is a complete extension iff Args = F(Args).

- Args is a grounded extension iff Args is the minimal (w.r.t. set-inclusion) com-
plete extension.

- Args is a preferred extension iff Args is a maximal (w.r.t. set-inclusion) complete
extension.

- Args is a stable extension iff Args is a complete extension that defeats every
argument in Ar\ Args.

Note that there is only one grounded extension. It contains all the arguments which
are not defeated, as well as those arguments which are directly or indirectly defended by
non-defeated arguments.

We say that an argument is credulously justified under a particular semantics iff it
is in at least one extension under this semantics. We say that an argument is sceptically
Jjustified under a particular semantics iff it is in each extension under this semantics.
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3. Semi-Stable Semantics

The notion of semi-stable semantics, as put forward in the current paper, is quite similar
to that of preferred semantics. The only difference is that not .Args is maximized, but
Args U Args™.

Definition 4. Let (Ar, def) be an argumentation framework and Args C Ar. Args is
called a semi-stable extension iff Args is a complete extension where Args U Args™ is
maximal.

If Args is a complete extension, then Args U Args™ is called its range — a notion
first introduced by Bart Verheij [8].
The first thing to notice is that every stable extension is also a semi-stable extension.

Theorem 1. Let Args be a stable extension of argumentation framework (Ar, def).
Args is also a semi-stable extension of (Ar, def ).

Proof. Let Args be a stable extension of (Ar, def). Then Args is a complete extension
that defeats every argument in Ar\.Args. This means that Args U Args™ = Ar. There-
fore, Args U Args™ is maximal (it cannot be a proper superset of Ar). Therefore, Args
is a semi-stable extension. o

The converse of Theorem 1 does not hold. That is, it is not the case that each semi-
stable extension is also a stable extension. This is illustrated by the following example.

Example 1. Let (Ar, def) be an argumentation framework with Ar = {A, B,C, D}
and def = {(4,4),(4,C),(B,C),(C,D)}. A graphical representation is shown in

figure 1. Here, { B, D} is a semi-stable extension which is not a stable extension.

Figure 1. {B, D} is a semi-stable but not a stable extension.

Another interesting property of semi-stable semantics is that every semi-stable ex-
tension is also a preferred extension.

Theorem 2. Let Args be a semi-stable extension of argumentation framework ( Ar, def).
Then Args is also a preferred extension of (Ar, def).

Proof. Let Args be a semi-stable extension of (Ar, def ). Suppose Args is not a pre-
ferred extension of (Ar, def ). Then there exists a set Args’ 2 Args such that Args' is
a complete extension. But from .Args’ D Args it follows that Args't D Argst. There-
fore, (Args’ U Args'") 2 (Args U Args ™). But then .Args would not be a semi-stable
extension, since Args U Args™ would not be maximal. Contradiction. O
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The converse of Theorem 2 does not hold. That is, it is not the case that every pre-
ferred extension is also a semi-stable extension. This is illustrated by the following ex-
ample.

Example 2. Let (Ar, def ) be an argumentation framework with Ar = {A, B, C, D, E}
and def = {(A,B),(B, A),(B,C),(C,D),(D,E),(E,C)}. A graphical representa-
tion is shown in figure 2. Here, { A} is a preferred extension which is not a semi-stable
extension. The only semi-stable extension is { B, D}.

.D
A
o .—».C >
AY——B
k.E

Figure 2. {A} is a preferred but not a semi-stable extension.

The overall position of semi-stable semantics is shown in figure 3. Each stable exten-
sion is a semi-stable extension; each semi-stable extension is a preferred extension; each
preferred extension is a complete extension and the grounded extension is a complete
extension.

stable
semi-stable

preferred grounded

complete

Figure 3. A brief overview of argument based semantics.

It is interesting to observe that in argumentation frameworks where there exists at
least one stable extension, the semi-stable extensions coincide with the stable extensions.

Theorem 3. Ler (Ar, def) be an argumentation framework that has at least one stable
extension. Let SE = {SE1,...,SE,} be the set of stable extensions and let SSE =
{SSE,...,SSE,,} be the set of semi-stable extensions. It holds that SE = SSE.

Proof. We need to prove that:

1. SECSSE
This follows directly from Theorem 1.

2. SSECSE
Let SE; € SE (such an SE; exists since it is assumed that (Ar, def) has at
least one stable extension). It holds that SE; U SE;L = Ar. Therefore, every
semi-stable extension SSE; will also have to satisfy that SSE; U SS E;r = Ar
(otherwise SSE; U SS E:r would not be maximal). This means that every semi-
stable extension is also a stable extension.
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O

For every argumentation framework there exists at least one semi-stable extension.
This is because there exists at least one complete extension, and a semi-stable exten-
sion is simply a complete extension in which some property (the union of itself and the
arguments it defeats) is maximal.

Apart from the guaranteed existence of extensions, semi-stable semantics has yet
another advantage to stable semantics. In determining whether an argument is sceptically
or credulously justified with respect to semi-stable semantics, one only has to take into
account arguments that are relevant.

Definition 5. Let (Ar, def) be an argumentation framework. An argument A € Ar is
relevant with respect to an argument B € Ar iff there exists an undirected path between
A and B.

In stable semantics, irrelevant arguments can influence whether an argument is jus-
tified or not. This is illustrated by the following example.

Example 3. Ler (Ar, def) be an argumentation framework with Ar = {A,B,C, D}
and def = {(A, A)}(B, ), (C,D)}. A graphical representation is shown in figure 4.
Here, arguments B, C' and D are relevant with respect to each other, and argument A is
not relevant with respect to B, C' and D. Yet, argument A is the reason why there is no
stable extension containing B and D.

OC e—>0—> 0
A B (¢} D

Figure 4. Stable semantics does not satisfy relevance.

Semi-stable semantics, however, does satisfy relevance. Irrelevant arguments have
no influence whatsoever on the question whether an argument is justified under semi-
stable semantics. To prove this, we first state two lemmas.

Lemma 1. Let (Ar, def) be an argumentation framework, let A € Ar and A C Ar
such that A is the set of arguments relevant with respect to A. If Args is a semi-stable
extension of (Ar, def ) then Args N A is a semi-stable extension of (Ar, def )| 4.

Proof. Let Args be a semi-stable extension of (Ar, def). Suppose Args N A is not a
semi-stable extension of (Ar, def )| 4. Then there exists a complete extension .Args’ of
(Ar, def ) 4 with (Args' N Args™) D (Args N A) U (Args N A)t. As A is the largest
(w.r.t. set inclusion) set of arguments that are relevant to each other, it holds that (Args N
A) U (Args N A)T = (Args U Args™) N A. But then Args could not be a semi-stable
extension because Args U (Args'\.A4) would be a complete extension with a larger range.
Contradiction. O

Lemma 2. Let (Ar, def) be an argumentation framework, let A € Ar and A C Ar
such that A is the set of arguments relevant with respect to A. If Args is a semi-stable
extension of (Ar, def)| 4 then there exists a semi-stable extension Args' of (Ar, def)
with Args' N A = Args.
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Proof. Let Args be a semi-stable extension of (Ar, def)| 4. Suppose there exists no
semi-stable extension Args’ of (Ar, def) with Args’' N A = Args. Then every com-
plete extension Args' of (Ar, def) with Args' N A = Args does not have a maximal
range. Let Args’ be a complete extension of (Ar, def), with Args’' N A = Args, such
that Args'\ A is a semi-stable extension of (Ar, def )|¢ar\ 4). Such an extension always
exists since the arguments in .4 are not relevant with respect to the arguments in Ar\A.
The fact that Args’ is not a semi-stable extension of (Ar, def) means that there exists
a complete extension with a bigger range. As the range of Args’\ A is already maximal
in (Ar, def)|(ar\ 4y this can only mean that the range of .Args’ N A is not maximal in
(Ar, def)| 4. Butas Args' N.A = Args this means that Args would not be a semi-stable
extension of (Ar, def )| 4. Contradiction. O

Theoremd4. Let (Ar, def) be an argumentation framework and let A € Ar and A C Ar
such that A is the set of arguments that is relevant with respect to A.

L. There exists a semi-stable extension of (Ar, def) iff there exists a semi-stable
extension of (Ar, def )| 4.

2. A is in every semi-stable extension of (Ar,def) iff A is in every semi-stable
extension of (Ar, def)| 4.

Proof. This follows directly from Lemma 1 and Lemma 2. O

As each semi-stable extension is also a preferred extension, a straightforward way
of computing semi-stable semantics would be to compute all preferred extensions (using
an algorithm like [9]) and then to determine which of these are also semi-stable. If one
is only interested in whether an argument A is credulously or sceptically justified under
semi-stable semantics, one does not have to take into account the entire argumentation
framework. Instead, as stated by Theorem Theorem 4, one only has to take into account
the arguments that are relevant with respect to A when calculating the preferred exten-
sions. In many cases, however, there also exist alternative ways of determining whether
an argument is credulously or sceptically justified under semi-stable semantics.

Theorem 5. Let (Ar, def) be an argumentation framework, and let A € Ar.

1. If A is in the grounded extension, then A is in every semi-stable extension.

2. If A is not part of an admissible set, then A is not in any semi-stable extension.

3. If A is part of an admissible set but is not defeated by any admissible set then
there exists a semi-stable extension containing A.

1. This follows from the fact that the grounded extension is a subset of each com-
plete extension [7], and the fact that each semi-stable extension is a complete
extension.

2. This follows from the fact that each semi-stable extension is an admissible set.

3. The fact that A is not defeated by an admissible set also means that A is not
defeated by a complete extension, and therefore that A is also not defeated by
a semi-stable extension. That is, for any semi-stable extension .4rgs, it holds
that A ¢ Args™. The fact that A is part of an admissible set means that there
is a preferred extension containing A. Let Args’ be a preferred extension that
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contains A and where (within the constraint that it contains A) Args’ U Args'™ is
maximal. As for any semi-stable extension .Args it holds that A & Args™, it also
holds for any semi-stable extension not containing A that A ¢ Args U Args™.
Thus, Args' U Args'T cannot be enlarged without losing A. Therefore, Args’ is
a semi-stable extension.

O

An example of point 3 of Theorem 5 can be found in Figure 2. Here, argument D
is in an admissible set but is not defeated by an admissible set. This is because its only
defeater (C) is not part of any admissible set. Hence, D is part of a semi-stable extension.

4. Discussion and Research Issues

The idea of semi-stable semantics is not entirely new. It is quite similar to Verheij’s
concept of an admissible stage extension, which fits within Verheij’s general approach of
using stages to deal with the issue of argument reinstatement [8].

Definition 6. An admissible stage extension is a pair (Args, Argst) where Args is an
admissible set of arguments and Args U Args™ is maximal.

It can be shown that Verheij’s approach of admissible stage extensions is in fact
equivalent to the notion of a semi-stable semantics. This is stated and proved by Propo-
sition 3 in the appendix.

Verheij also studied the relation between stable, semi-stable and preferred semantics,
but has done so in terms of his stages approach, which received little following. This,
and the fact that his work was published in a relatively small local conference has caused
his work not to receive the attention that one may argue it should have received.

Semi-stable semantics can be seen as having a quite natural place within Dung’s
traditional semantics. One possible way of looking at the issue of argument reinstatement
is to label each argument either in, out or undec according to the following postulate.

Postulate 1 ([6]). An argument is labelled in iff all its defeaters are labelled out. An
argument is labelled out iff it has a defeater that is labelled in.

It can be shown that labellings satisfying this postulates coincide with complete ex-
tensions [6]. Furthermore, for labellings that satisfy Postulate 1 it holds that (1) those
in which in is maximized coincide with preferred extensions, (2) those in which out
is maximized coincide with preferred extensions, (3) those in which undec is maxi-
mized coincide with the grounded extension, (4) those in which in is minimized coin-
cide with the grounded extension, and (5) those in which out is minimized coincide with
the grounded extension. Semi-stable extensions then coincide with labellings in which
undec is minimized (6).

One possible application of semi-stable semantics would be in the field Answer Set
Programming [5]. The implementation of semi-stable semantics with respect to Answer
Set Programming, however, involves more than just a change at the level of the abstract
semantics. As logic programming, of which the Answer Set Programming approach can
be seen as a special instance, can be regarded from the perspective of abstract argumen-
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tation [7,10], the most obvious way of implementing semi-stable semantics would be at
the level of the argumentation framework. Recent research, however, indicates that this
may not be enough, since there is an issue regarding the potential violation of argumen-
tation quality postulates [11,12]. For the well-founded semantics, this issue can be dealt
with by stating syntactical restrictions on the content of the extended logic program in
question [10]. One of our research aims is to study whether a similar approach is also
possible in the context of semi-stable semantics.
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Appendix

Proposition 1. Let (Ar, def) be an argumentation framework and let Args C Ar. The
following statements are equivalent:

1. Args is the grounded extension
2. Args is a minimal fixpoint of F'

Proof.

from 1 to 2: Let Args be the grounded extension. Suppose that .Args is not a minimal
fixpoint of F. Then there exists a proper subset Args’ C Args which is a fixpoint
of F. As Args is already the smallest fixpoint of F' that is conflict-free, this can
only mean that 4Args’ is not conflict-free. But this is impossible as a subset of a
conflict-free set is also conflict-free. Contradiction.

from 2 to 1: Let .4rgs be a minimal fixpoint of F'. As a monotonic increasing function
like has a unique minimal fixpoint, the minimal fixpoint of F' must be unique.
From the previous point of this proof it then follows that the grounded extension
is equivalent to this fixpoint.

O

Proposition 2. Let (Ar, def) be an argumentation framework and let Args C Ar. The
following statements are equivalent:

1. Args is a preferred extension
2. Args is a maximal admissible set

Proof. This follows from Theorem 25 of [7]. O

Proposition 3. Let (Ar, def) be an argumentation framework and Args C Ar. The
following statements are equivalent:

1. Args is a semi-stable extension
2. Args is an admissible set of which (Args, Args™) maximal

Proof.

from 2 to 1: A complete extension is a stronger condition than an admissible set, so we
only need to prove that an admissible set .Args where Args U Args™ is maximal
is also a complete extension. Suppose this is not the case. Then there must be an
argument B ¢ Args that is defended by .Args. This means that every argument C'
that defeats B is defeated by an argument in 4rgs. Therefore, B ¢ Args™ (other-
wise .Args would not be conflict-free). This means that Args U { B} is conflict-free
and self-defending, and thus an admissible set. But this would mean that Args is
not an admissible set for which Args U Args™ is maximal. Contradiction.

from 1 to 2: An admissible set is a weaker condition than a complete extension. We
therefore only need to prove that maximality still holds under this weaker condi-
tion. Suppose that Args U Args™ would not be maximal. This means there exists
an admissible set Args’ such that (Args' U.Args' ") D (Args U Argst). From the
previous point (“from 2 to 1) it follows that .4rgs’ would be a complete extension.
But then Args would not have been a complete extension where Args U Argst is
maximal. Contradiction.
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O

Proposition 4. Let (Ar, def) be an argumentation framework and let Args C Ar. The
following statements are equivalent:

1. Args is a stable extension

2. Args is a preferred extension that defeats every argument in Ar\.Args
3. Args is an admissible set that defeats every argument in Ar\.Args

4. Args is a conflict-free set that defeats every argument in Ar\ Args

Proof.

from 1 to 2: Let .Args be a stable extension. This means that Args is a complete exten-
sion that defeats every argument in Ar\.Args. Suppose that .4rgs is not a preferred
extension. That means that there is a complete extension Args’ 2 Args. But as
Args defeats every argument in Ar\.Args, this means that Args’ would not be
conflict-free and therefore could not be a complete extension. Contradiction.

from 2 to 1: Trivial (every preferred extension is also a complete extension).

from 2 to 3: From Theorem 2 it follows that a preferred extension is a (maximal) ad-
missible set.

from 3 to 2: Let .Args be an admissible set that defeats all arguments in Ar\.Args. Sup-
pose that Args is not a preferred extension. This means that there exists an admis-
sible set Args' O Args. But as Args defeats all arguments in Ar\.4rgs, this would
mean that Args’ is not conflict-free and therefore could not be an admissible set.
Contradiction.

from 3 to 4: This follows directly from the fact that an admissible set is conflict-free.

from 4 to 3: Let .Args be a conflict-free set that defeats all arguments in Ar\.Args.
Then, every argument that defeats .4rgs is also defeated by .Args. This means that
Args is an admissible set.

O
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Abstract. This paper describes a generic approach to implement propositional ar-
gumentation frameworks by means of quantified Boolean formulas (QBFs). The
motivation to this work is based on the following observations: Firstly, depending
on the underlying deductive system and the chosen semantics (i.e., the kind of ex-
tension under consideration), reasoning in argumentation frameworks can become
computationally involving up to the fourth level of the polynomial hierarchy. This
makes the language of QBFs a suitable target formalism since decision problems
from the polynomial hierarchy can be efficiently represented in terms of QBFs.
Secondly, several practicably efficient solvers for QBFs are currently available, and
thus can be used as black-box engines in potential implementations of argumenta-
tion frameworks. Finally, the definition of suitable QBF modules provides us with
a tool box in order to capture a broad range of reasoning tasks associated to formal
argumentation.

1. Introduction

In daily life, we use arguments and counter-arguments in discussions in order to “con-
vince” our opponent to our point of view. Argumentation frameworks [1] have been used
to formalize the reasoning underlying argumentation. They provide what “convince”
means and how arguments may be defeated by counter-arguments.

Reasoning underlying argumentation is a general principle. Many of the well-known
non-monotonic reasoning formalisms [2,3] can be faithfully interpreted within argumen-
tation frameworks [4]. Consequently, these frameworks formalize not only the mentioned
reasoning underlying argumentation, but can be used to interpret, compare, and imple-
ment a wide range of different reasoning principles. Since the main difference between
two distinct reasoning principles is the underlying derivability operator, the interpretation
of both principles is generic except the definition of this operator. Therefore, argumen-
tation frameworks provide not only a theoretical setting for studying different reasoning
mechanisms, but also can be used as a practical underpinning for implementations. How-
ever, as shown by Dimopoulos, Nebel, and Toni [5], some combinations of derivability
operators and notions of extensions make reasoning in such argumentation frameworks
computationally involving as witnessed by hardness results up to the fourth level of the
polynomial hierarchy.
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In this paper, we propose an implementation of argumentation frameworks which
is based on the satisfiability problem of quantified Boolean formulas (QBFs), an exten-
sion of classical propositional logic in which formulas may contain quantifications over
propositional atoms. The motivation to consider QBFs is as follows:

First, in recent years we observed a parallel and mutually influencing development
of QBF solvers on the one hand, and design of applications, on the other hand. This sit-
uation is similar to the emerge of the success of satisfiability solvers in the mid nineties,
where first impressive results have been achieved by employing SAT solvers in the area
of planning [6,7]. Since QBFs are a more expressive language than propositional logic,
their range of application is naturally larger than that of SAT (under the reasonable as-
sumption that reductions are computable in polynomial time). In fact, various problems
from different areas have been considered as applications for QBFs, including confor-
mant planning [8], inconsistency tolerance [9,10], nonmonotonic reasoning [11,12,13],
verification [14,15], and theorem proving [16]. Moreover, there has been made a signifi-
cant progress in the development of QBF solvers in the last few years [17].

Second, the different semantics captured by argumentation frameworks are all uni-
formly represented in our QBF setting. Our aim is, not at least, to illustrate how basic
QBF modules can be used as building blocks for assembling realizations of numerous
reasoning tasks in different instantiations of the framework. Notably, the different com-
plexity behavior does not prohibit a uniform implementation method due to the power
of QBFs and their solvers. In fact, our encodings provide highly complex but structured
problems for benchmarking QBF solvers. Currently, such structured problems are barely
going beyond the second level of the polynomial hierarchy.

The outline of the paper is as follows. After some formal preliminaries, we start
with the description of abstract argumentation frameworks. The terminology is due to
the fact that the underlying derivability operator remains abstract in the sense that only
some necessary criteria have to be satisfied, but the operator is not specified in a concrete
way. Then we provide corresponding abstract translation schemes by means of QBFs.
Finally, we briefly describe some case studies, which instantiate the generic framework
to propositional reasoning principles. In terms of the QBF framework, this is obtained
by plugging in a QBF module which concretely describes the derivability operator of
the respective formalism. Due to space restrictions, we shall only sketch these concrete
realizations, which may serve as a basis for implementation by invoking QBF systems.

2. Formal Preliminaries
2.1. Quantified Boolean Formulas

Quantified Boolean formulas (QBFs) generalize ordinary propositional formulas by the
admission of quantifications over propositional variables. In particular, the language of
QBFs contains, for any atom p, unary operators of the form Vp and 3p, called universal
and existential quantifiers, respectively. Informally, a QBF of form Vp 3¢ & means that
for all truth assignments of p there is a truth assignment of ¢ such that @ is true.

An occurrence of a propositional variable p in a QBF @ is free iff it does not appear
in the scope of a quantifier Qp (Q € {V, 3}), otherwise the occurrence of p is bound. If
® contains no free variable occurrences, then ® is closed, otherwise ® is open. Further-
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more, we write ®[p/¢] to denote the result of uniformly substituting each free occurrence
of the variable p in ® by a formula ¢. For a set P = {p1,...,p,} of propositional vari-
ables and a quantifier Q € {V, 3}, we let QP ® stand for the formula Qp1Qps - - - Qp,, .

By an interpretation, I, we understand a set of atoms. Informally, an atom p is true
under [ iff p € I. In general, the truth value, v;(®), of a QBF ® under an interpretation
1 is recursively defined as follows:

if ® =T, then v;(®) = 1;

if ® = pis an atom, then v;(®) = 1 if p € I, and v;(P) = 0 otherwise;
if ® = =0, then v;(®) = 1 — v ();

if ® = (dy A Dy), then v (@) = min({vr(P1),v1(P2)});

if ® =Vp VU, then v (®) = v (P[p/T] A ¥[p/L]);

6. if & = 3Ip U, then v;(P) = v (V[p/T]V ¥[p/L]).

Nk e

The truth conditions for L, V, —, and < follow from the above in the usual way. We
say that ® is true under I iff v;(®) = 1, otherwise ® is false under I. If v;(®) = 1,
then I is a model of ®. If ® has some model, then ® is said to be satisfiable. If ® is
true under any interpretation, then @ is valid. Observe that a closed QBF is either valid
or unsatisfiable, because closed QBFs are either true under each interpretation or false
under each interpretation. Hence, for closed QBFs, there is no need to refer to particular
interpretations. Two QBFs are logically equivalent iff they possess the same models.

In the same way as the satisfiability problem of classical propositional logic is the
“prototypical” problem of NP, i.e., being an NP-complete problem, the satisfiability
problem of QBFs in prenex form possessing k — 1 quantifier alternations is the “proto-
typical” problem of the k-th level of the polynomial hierarchy,

Proposition 1 ([18]) Given a propositional formula ¢ with its atoms partitioned into
i > 1sets Py, ..., P, deciding whether 3P\ P, ... Q;P;¢ is true is ¥ -complete, where
Q; =3 ifiisodd and Q; =V if i is even; deciding whether VP13P; ... Q;P;¢ is true is
I17-complete, where Q; =V if i is odd and Q}; = 3 if i is even.

This complexity landscape can be extended to arbitrary closed QBFs if the maximal
number of quantifier alternations along a path in the QBF’s formula tree is taken into
account. In turn, an arbitrary QBF can be transformed into an equivalent QBF in prenex
form, although this transformation is not deterministic and crucial for the performance
of QBF solvers requiring the input formula in this normal form (for details, see [19,20]).

Finally, we highlight the used reduction approach. Given a decision problem D, we
aim at finding a translation scheme 7p into closed QBFs, such that

1. Tp(+) is faithful, i.e., 7 (K) is true iff K is a yes-instance of D;

2. for each instance K, 7p(K) is computable in polynomial time with respect to
the size of K; and

3. determining the truth of the QBFs resulting from 7p(+) is not computationally
harder (by means of Proposition 1) than the computational complexity of D.

2.2. Abstract Argumentation Frameworks

In this section, we introduce the notions around argumentation frameworks, where we
basically follow the definitions in [5]. Abstract argumentation frameworks are defined on
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top of a deductive system (£ 4, R), where L 4 is some formal language over an alphabet
A and R is a set of inference rules inducing a monotonic derivability relation . For a
theory T' C L 4, we identify, as usual, its deductive closure by

Th(T)={a e L4 | T+ a}.

An abstract (assumption-based) framework is a triple (T', A, (), where T, A C L4,
with A being the set of assumptions, and (-) is a mapping from A to £ 4. Foran o € A,
@ is the contrary of a. An extension of a framework (T, A, (+)) is a theory Th(T U S)
with S C A. If no confusion can arise, an extension is often referred to as .S alone. A set
S C Aattacksan v € Aiff TUS F @, and S attacks an S’ C A iff S attacksan o € 5.
Consequently, S attacks itself iff there exists an « € S, such that S attacks a.

Aset S C Ais closed iff S = AN Th(T'US). Frameworks, in which it is guaranteed
that each such S is closed, are called flat. Given a framework (7', A, (-)), aset S C A is
stable iff

1. Sis closed,
2. S does not attack itself, and
3. Sattackseacha € A\ S.

A set S C A is admissible iff

1. Sis closed,
2. S does not attack itself, and
3. for all closed S’ C A, it holds that if S’ attacks S, then S attacks S’.

Finally, S is preferred if it is admissible and maximal with respect to set inclusion. For
aset S C A, which is stable (resp. admissible, preferred), the extension Th(T U S) is
called stable (resp. admissible, preferred).

A framework (7', A, (+)) is called normal, iff every maximal closed set not attacking
itself is stable. Finally, a framework is simple, iff, for inconsistent 7', there is no admis-
sible extension, and otherwise there exists a least admissible extension S = AN Th(T).

Given a framework (7', A, (+)), the credulous reasoning problem is to decide whether
agiven ¢ € L 4 is contained in Th(T'US) for some extension S. The skeptical reasoning
problem is to decide whether ¢ € L 4 is contained in Th(T U S) for all extensions S.

The attentive reader might have observed that we did not define what kind of deriv-
ability operator is associated with the abstract argumentation framework. This is not an
error but a feature. In the next section, we will continue with a translation of abstract
argumentation frameworks to QBFs. These translations will again be independent from
a concrete derivability operator which will come into the play when we instantiate the
framework.

3. Abstract Translation Schemes to QBFs

In this section, we discuss the general encodings, leaving the concrete check for the deriv-
ability operator + unresolved. Afterwards we shall present some concrete realizations in
detail.

Given the propositional language £ 4 underlying an argumentation framework, we
assume the language of QBFs, Lqgr, implicitly as defined over a sufficiently large al-
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phabet, consisting of all propositional atoms A in £ 4 plus a set of additional mutual
disjoint guessing variables {g,, | o € L4} which we duplicate whenever needed, i.e.,
{96 | € La} {ga | a € La},ete.

We shall use these variables to guess sets of formulas: Given an interpretation / and
a subset S C L4, we say that I characterizes S iff it holds that g, € I iff « € S.
More specific, given a set T' C L 4 of propositional formulas and guessing variables
G = {g: | t € T}, as well as an interpretation I over G, we implicitly assume that
exactly those elements ¢t € T, where g, is assigned to true in I, are contained in the
currently guessed subset S C T'. Hence, the possible interpretations over I characterize
all possible subsets of T". For instance, the models of the QBF 3V (A, g: — t), where
V is the set of atoms occurring in 7', characterize exactly the consistent subsets of T (see
also Proposition 3 below, how the G’s are concretely related with a theory 7T').

We proceed as follows: First, we define an abstract QBF module for encodings of -,
which is later replaced by concrete instantiations. Then we provide the general encodings
for checking closure, the notion of attacking, and for characterizing stable, admissible,
and preferred extensions. Afterwards, we briefly discuss simplifications for frameworks
which are flat, normal, or simple.

Definition 1 Let (L 4, R) be a deductive system with an induced derivability relation +,
let T,A C L4, and o € L 4. Moreover, let 254 denote the power set of L 4. Then a
function

fG: 2LA x 2FA % Lo — LqpF

is called an encoding for &, iff

1. fO(T, A, a) has free variables G = {g, | a € A}, and,
2. for each interpretation I characterizing S via G, it holds that (T, A, &) is true
under I iff TUS F .

As an example, consider some theory 7', a set A = {3,~}, and an encoding f© for
+ with free variables gg, g,. Now consider, f&(T, A, @) is true only under the following

interpretations (over {gg, g, }): I = {gs}, I» = {g+}, and I3 = {gg, g, }. Now since
f G isan encoding, we derive from these models that

(i) TU{B}Fa,
(i) TU{v} F o, and
(i) TU{B,7} Fa

hold, while T I o does not hold since f&(T’, A, ) is not true under Iy = §.
We are now well prepared to characterize all necessary ingredients for characterizing
reasoning in argumentation frameworks via QBFs.

Theorem 1 Let F' = (T, A, (+)) be a framework over a deductive system inducing 1,
f€ an encoding of & with free variables G = {g, | a € A}, and I an interpretation
characterizing S C A via G. Then the following holds.

1. Sis closed iff I is a model of

closedg = /\ (ga o fO(T, A, a)). (1)

acA
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2. S does not attack itself iff I is a model of

noattackg = /\ (ga — —\fG(T,A,E)). 2)
a€A

3. Sis stable iff I is a model of

stable$. := closed$. A noattack$ A /\ (=ga — fG(T,A,E)) 3)
a€A
= closedg A /\ (ga o = f9(T, A,E)). ()]
acA

4. S is admissible iff I is a model of

admg = closedg A noattackg A VG [closedgl/\

(V @ansmaa)) = (V @rrf@maa)] ©

a€A acA

Observe that the third arguments in the functions f< in closedg and stableg are
different, i.e., we have a in (1) but @ in (4). However, in some cases and in particular for
a flat framework, the test for closure (i.e., the conjunct closedg) can be removed from
(4), resulting in

stableS = /\ (ga < ﬁfG(T,A,E)). (6)
acA

Concerning admissible extensions, by applying Theorem 2 in [21], the encoding can
now be considerably simplified for flat frameworks.

Proposition 2 A set S C A is admissible for a flat framework (T, A, (-)), iff S does not
attack itself, and for the set S’ = {a € A\ S | S does not attack o} U S, it holds that
S’ does not attack S.

Theorem 2 Let F = (T, A, (+)) be a flat framework over a deductive system inducing
-, fC an encoding of - with free variables G = {g, | a € A}, and I an interpretation
characterizing S C A via G. Then S is admissible iff

admg = noattackg A

36| A (90 = (gev-fS@mAD)) a N (g — - T AD)]) @

acA a€A
is true under 1.

It remains to discuss the notion of preferred extensions. In order to encode the max-
imality test, which is employed to characterize preferred sets, we use the following con-
cept.
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Definition 2 Let G = {g, | a € A} and G' = {g), | a € A} be disjoint indexed sets of
atoms with the same cardinality. Define

G<G:= (ga‘}g;>/\_‘/\ (géﬂga,)-

acA a€A

Note that an interpretation [ is true under G < G’ iff, for each a € A, it assigns ¢/,
to true, whenever g, is assigned to true as well. Additionally, at least for one element a,
g, is true under I but g, is false under I. Hence, I characterizes two subsets of A where
the set characterized by G is a proper subset of the set characterized by G.

Theorem 3 Let F' = (T, A, (-)) be a framework over a deductive system inducing 1,
f€ an encoding of & with free variables G = {g, | a € A}, and I an interpretation
characterizing S C A via G. Then S is preferred iff

pref$ = adm§ A ﬂG'((G <G A admfé')

is true under I.

Observe that the entire encoding now uses three copies of guessing variables, namely
G, G', and also G"" which occurs in adm& . Also note that we can choose between two
realizations of admg to be used in pref - depending whether F' is flat (Theorem 2) or
not (3. in Theorem 1). This leads to a different quantifier structure in pref g mirroring
the different generic complexity results for the preferability semantics from [5].

To conclude this section, we turn our attention to the basic scheme to encode the
reasoning problems. We denote by stable(F) (resp. adm(F'), pref (F')) the set of stable
(resp. admissible, preferred) extensions of a framework F'.

Theorem 4 Let F' = (T, A, (+)) be a framework over a deductive system (L, R), p €
L4, and E € {stable, adm, pref }. Then

1. ¢ is contained in some E € E(F) iff IG(EG N fO(T, A, ©)) is true;
2. pis containedin all E € E(F) iff VG(ESG — fO(T, A, p)) is true.

Another problem, we can solve immediately by combining the modules introduced
above, is coherence [22], i.e., deciding whether for a given argumentation framework,
each of its preferred extensions is also stable.

Theorem 5 A framework F' = (T, A, () over a deductive system (L 4, R) is coherent
. G G .
iff VG(pref 7 — stable}) is true.

Recall that we have already discussed that, for flat frameworks, these encodings can
be simplified. Moreover, there exist also shortcuts with respect to the encoded reasoning
tasks. For instance, since any preferred extension is also admissible and any admissible
extension is a subset of preferred extension, deciding whether ¢ is contained in some
preferred extension is the same as deciding whether ¢ is contained in some admissible
extension, which provides an easier encoding (i.e., an encoding with less quantifier al-
ternations). As well, we can apply the (easier) stable encodings in order to deal with
preferred extensions in the context of normal frameworks.
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4. Examples for Encodings
In this section, we instantiate our abstract translation framework to concrete translations.
4.1. Basic Frameworks

First, we analyze the simple framework as treated, for instance, in [10,23]. In particular,
we show that our generic approach coincides with the encodings to propositional logic
given by Besnard and Doutre in [10] and thus generalizes their methodology.

We recall the definition of this basic framework.

Definition 3 A basic argumentation framework is a pair (A, R) where A is a set of ar-
guments and R C A x A. If (a,b) € R then we say that a attacks b. A set S C A attacks
an argument b if some a € S attacks b.

The attentive reader might have observed that we used the letter A for denoting the set
of assumptions in the abstract framework as well as for denoting the set of arguments
in basic frameworks in Definition 3. We will see that this usage is not misleading be-
cause the arguments in the basic framework play the role of assumptions in the abstract
framework.

How can we represent a basic framework in our general abstract setting? We sim-
ply consider the logical system (A, (}), that is, the arguments are our basic vocabulary
L 4 (i.e., a set of atomic formulas) and the set of (additional) inference rules is empty.
This choice immediately implies that (i) A - a iff @ € A and (ii) Th(A) = A. With
a slight abuse of notation, we use f¢(0), A,a) := g, and, for any set of arguments
B, f¢(0,A,B) := Ve 9 in the encodings. Then a basic argumentation framework
(A, R) is simulated by the general framework (0, A, (-)) with@ = {b | (b,a) € R}.
Obviously, the framework is flat, and thus we can avoid the check for closure within our
encodings.

We start with stable extensions, where our encoding (6) reduces to

stablef? = [\ (ga = =90, 4,D) = N (9= =\ )

a€A acA bea
= /\ (ga A ( /\ _‘gb))~
a€A b:(b,a)ER

The latter formula coincides with the encoding from Proposition 5 in [10] by replacing
the guessing atoms g, with the corresponding atoms a, for each a € A.

Admissible extensions for (A, R) are characterized using (7) from Theorem 2. By
evaluating f€(0, A, @) and f (0, A, a), we get

adm$ = /\ (9a — (= \/ 96)) A

acA b:(b,a)€ER



U. Egly and S. Woltran / Reasoning in Argumentation Frameworks Using QBF's 141

Now we “plug in” the definition of the g/,’s from the first conjunct in the second line to
the second conjunct. We then can omit these definitions and the existential quantifiers
and get

admgzz/\(gaq—' \/ gb)/\/\<ga—>_‘ \/ (gb\/ﬁ \/ 90))'

a€A b:(b,a)€ER a€A b:(b,a)€ER c:(c,b)ER

We rewrite the second conjunct of adm$, viz.

A==V @v-\ o)

acA b:(b,a)ER c:(e,b)ER

to

/\(ga—ﬁ \/ gb)/\/\(ga—ﬁ \/ /\ ﬁgc). ®)

acA b:(b,a)ER acA b:(b,a)ER c:(c,b)ER

The first conjunct of this expression absorbs the first conjunct in admg, and thus admIC;v
is equivalent to (8), which itself is equivalent (module variable renaming as in the case
of stable extensions above) to the encoding presented in [10].

Finally, for the encoding of the preferred extensions, we use a different concept as
in [10], where the preferred extensions are characterized via maximal models of proposi-
tional formulas. Since we have the full power of QBFs, we can characterize these exten-
sions via ordinary models using our encoding schema from above. Maximality is checked
on the object level (i.e., within the resulting QBF). In particular, we get the following
theorem.

Theorem 6 Let (A, R) be an argumentation framework, F = (0, A, ()) the correspond-
ing abstract framework, and admg as reduced above. Moreover, let S C A, I C G, such
that a € S iff g, € I for each a € A. Then S is preferred iff

pref% == adm$ A -3G ((G <G A admg/>

is true under 1.

Using our generic scheme, we additionally get immediately the encodings for the
reasoning problems as discussed in Theorem 4.

4.2. Abductive Framework

We proceed with another simple framework, namely Theorist [24], which has been
shown to be captured by abstract frameworks as follows. We use (T, A, U), with T" and
A being sets of propositional formulas. For each a € A, @ is just —a, and |- is the classical
derivability operator. We first have to encode |-
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Proposition 3 For any propositional theories T and A, and for any formula o, let V be
the set of atoms occurring in T, A, or v, and G = {g, | a € A} be new atoms. Then,

FE(T, A, p) = vv(( AtA N (ga— a) — <p)

teT acA
is an encoding of classical derivability in the sense of Definition 1.

With this instantiation, we can encode all reasoning tasks under consideration. In partic-
ular, we can characterize extensions in the sense of [24]. Such an extension is defined as
Th(T U S), where S C A and S is a maximal subset of A (with respect to set inclu-
sion), such that 7' U S remains consistent. The relation to argumentation frameworks is
as follows.

Proposition 4 ([4]) Given a Theorist abductive framework (T, A), E is an extension of
(T, A) iff E is a stable extension of the corresponding argumentation framework.

Hence, using the concrete realization of the derivability operator from Proposition 3,
we immediately obtain an encoding for Theorist-like extensions by plugging f into the
abstract encodings for stable expansions given in Theorem 1.

4.3. Auto-epistemic Logic

We consider auto-epistemic logic (AEL) [2] in the context of argumentation frameworks.
Then AEL has as the underlying language a modal logic with the modal operator L, but
only the classical inference rules. As assumptions we have propositional atoms La and
—La. The contrary of ~La is «, and the contrary of Lo is = La.

We instantiate our encodings for stable extensions following this framework. Con-
sider ' = (T, A, (-)), with T" a modal theory, A containing literals Lo and —La, for
each subformula L« in T', and (-) is defined as above. Since - is the classical inference
operator, we use f¢ as defined in Proposition 3. The exact relation between stable exten-
sions of the framework and stable expansions of an auto-epistemic theory (cf. [2]) is as
follows, see Theorem 3.11 in [4].

Proposition 5 A theory E is a stable extension of the framework corresponding to a
modal theory T iff E is a consistent stable expansion of T

Hence, our abstract encodings (together with the concrete realization for ¢ as de-
fined in Proposition 3) capture stable expansions of 7". Moreover, one can show that these
encodings reduce (after some simplifications) to the ones presented in [12].

However, AEL provides argumentation frameworks which are neither normal, sim-
ple, or flat. Thus, none of the previously mentioned shortcuts in the encodings can be
applied and we end up, in the worst case, with QBFs possessing up to three quantifier
alternations. In fact, this holds in the case of skeptical reasoning under preferred exten-
sions, i.e., deciding whether a given formula ¢ is contained in all preferred extensions
of a given argumentation framework. This problem was shown to be II}-complete [5]
and our encodings match this intrinsic complexity. For illustration, we briefly sketch the
structure of quantifier dependencies for the QBFs which encode this particular problem.
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According to Theorem 4, we hav