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1 Introduction 

In two previous papers on the prospects for intelli- 
gent legal information systems 122, 271, I advocated 
the development of “deep conceptual models” of par- 
ticular legal domains. My motivation was both prac- 
tical and theoretical. On the practical side, I ar- 
gued, our long-term goal should be an integrated analy- 
sis/planning/retrieval system that matches as closely as 
possible the way a lawyer actually thinks about a legal 
problem. On the theoretical side, my work with Sridha- 
ran on the TAXMAN project [31, 32, 441 had clarified 
the importance of an adequate domain theory in any at- 
tempt to model the arguments of lawyers in hard cases, 
For both purposes, I claimed, deep conceptual models 
are essential. 

Although some commentators have expressed pursle- 
ment about the meaning of the term “deep conceptual 
model” [45, pages 149-1551, the basic idea is easy to 
state. There are many common sense categories un- 
derlying the representation of a legal problem domain: 
space, time, mass, action, permission, obligation, cau- 
sation, purpose, intention, knowledge, belief, and so on. 
The idea is to select M small set of these common sense 
categories, the ones that are most appropriate for a 
particular legal application, and then develop a know- 
ledge representation language that faithfully mirrors the 
structure of this set. The language should be formal: it 
should have a compositional syntax, a precise semantics 

Pcrmigiontocopywithoutfccrllorprtofthirrmtcdrlir~~aovidod~t 
the copies am not mud. cc dim-i- for direct cant114 advantage. the ACM 

copyright notice md the title of the publiatim and ita date qpsr, md notice in 
given that ccpyring is by pamission of the Auociation fm Comw M=h+q. 

TO copy othcmisc, or to xt@lisb. mpita s f& and/or specific permissian. 
0 ACM 0-S9791-322-l/89/0600/0180 $1.50 

and a well-defined inference mechanism. The semantic 
interpretation of the common sense categories should be 
intuitively correct, that is, it should generate exactly 
those entailments that ordinary people (and ordinary 
lawyers!) generate in similar situations. The inference 
mechanism for the language should be complete and 
sound, in principle, but, in practice, completeness and 
soundness would often be sacrificed for computational 
tractability, just as they are in ordinary human (and 
ordinary legal!) reasoning. Clearly, if a language of 
this sort could be developed, it would provide a uni- 
form framework for the construction of a legal anal- 
ysis/planning/retrieval system, and a solid foundation 
for further theoretical work. 

In this paper, I will describe the basic features of a 
Language for Legal Discourse (LLD), which takes a first 
concrete step towards the realization of this goal. An 
example of the surface syntax of LCD is shown in Fig- 
ure 1. This example is from the TAXMAN II project, 
and it shows the influence of the frame-based repre- 
sentation language AIMDS [43] in which TAXMAN II 
was originally implemented. The difference lies in the 
fact that each syntactic feature of LLD has a precisely 
defined semantic interpretation and an associated in- 
ference procedure, which was not the case for the AI 
representation languages of the late 1970’s. The design 
of LLD has also been influenced by the work of Bonner 
[S] and McGuinness 1331 on a seller’s remedies for breach 
of contract under Article 2 of the Uniform Commercial 
Code, and by my joint work with Dean Schlobohm on 
estate planning with prototypes [40]. As of this writing, 
the language has been partially implemented (in Com- 
mon LISP on a SUN/3 workstation): the various in- 
ference mechanisms have been specified, a parser from 
the surface syntax of Figure 1 to the compiled proof 
procedures has been written, and a unification algo- 
rithm that handles sorted count terms and mass terms 
(see Sections 2.2 and 2.3) has been thoroughly tested. 
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However, most of the work on LLD to date has been 
devoted to the theoreticsl foundations of the language 
[23, 24, 25, 26, 28, 29, 301. 

My plan is to write several papers on a Language 
for Legal Discourse, of which this paper is the first. 
Section 2 explains some of the peculiar features of the 
atomic formulae in LLD, and Section 3 describes the 
rules and proofs for the first-order sub-language, which 
is intuitionistic rather than classical. Section 4 then ex- 
plains how these rules and proofs are extended to handle 
various modal features, such 8s time, action, permis- 
sion and obligation. One important issue in the design 
of LLD concerns the integration of these several fe8- 
tures into a single language, and this issue is addressed 
in Section 5. My point here is that the intuitionistic 
semantics at the core of the language facilitates the de- 
velopment of an integrated system, and simplifies the 
proof procedures for the various modalities. 

2 Atomic Formulae 

An atomic formula in LLD has both an internal syntax, 
for use by the proof procedures, and a surface syntax for 
communication with an external user. Some examples 
of the internal syntax are: 

(Opn 01 (Actor A> (Property P)). 

(Own ‘Own-2 (Actor ‘John) 
(Property ‘Book-t)), 

(Own - (Actor ‘John) (Property ‘Book-3)), 

in which constants are quoted, and the symbol ‘-’ de- 
notes an anonymous existential variable. The surface 
syntax adds identifiers to the arguments: 

(Own - Csubjsct (Actor A)3 
(object (Property P)>), 

and permits relationships to be inverted, so that we can 
talk about “an actor A who is the subject of the owntr- 
ship of a property P.” Several examples of this construc- 
tion are evident in Figure 1. Note also in Figure 1 that 
the same syntactic form is used for objects, relations 
and actions, and this syntactic uniformity is extended 
to permissions, obligations and the other modalities 8s 
well. 

Since this treatment of atomic formulae is standard, 
this section will discuss only three points that are some- 
what distinctive: (1) the use of reified relationships; (2) 
sorts and subsorts; (3) count terms and m8ss terms. 

2.1 Reified Relationships 

Note that every relationship in LLD is treated as an 
individual object, either a constant or a variable. Thus 
we can t8lk about an “ownership 01” or the “owner- 
ship ‘own-2”. There are several reasons for this: First, 
the reification of relationships accords with common lin- 
guistic practice, which means that it has become part 
of legal practice 8s well. Second, it provides a useful 
technical device for representing changes in the state of 
the world, as in the “holds” formalism of Kowalski [17]. 
Third, the device can be generaliied in a natural way to 
represent individual events, actions, obligations, beliefs, 
etc., and it therefore contributes to the integration of 
several mod&ties in a single system. These advantages 
have been recognieed by stversl authors [19,5, 161, but 
the logical status of reified relationships is unclear. My 
own view on this issue is developed in a forthcoming 
paper [30]. 

2.2 Sorts and Subsorts 

All terms in LLD are order sorted, e.g., Person < 
Actor, Corporation C Actor, and the unification al- 
gorithm respects the sorts. This means: (1) the unifica- 
tion of two variable terms succeeds if the sorts of both 
variables have a common subsort; and (2) the unifica- 
tion of a constant term and a variable term succeeds if 
the sort of the constant term is less than or equal to the 
sort of the variable term. In either case, the sort of the 
unified term is the common subsort. This treatment is 
standard, and is based on [3, 35, 111. 

Somewhat more novel is the treatment of exclusive 
and exhaustive subsorts. Suppose we wanted to say that 
an Actor cannot be both a Parson and a Corporation. 
This could be represented by a Horn clause (see Sec- 
tion 3.1): 

PALSB <== (Forron A) 

AND (Corporation A), 

in which the atom FALSE denotes a contradiction. To 
say that the two subsorts Person and Corporation are 
mutually exhaustive, we could write: 

(Person A) 

C== (Actor A) 

AND BOT (Corporation A) 

and 

(Corporation A) 
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<== (Actor A) 

AND NOT (Porron A), 

using the intuitionistic negation rules from Section 3.2. 
Because of the characteristics of intuitionistic negation, 
however, the effects of these rules can be efficiently en- 
coded in the unification algorithm itself. I will develop 
this point further in a future paper. 

2.3 Count Terms and Mass Terms 

Parron and Corporation are count terms; Cash and 
Stock are mass terms. Either form can be used in LLD, 
but the semantic interpretation in each case is different. 
A mass term is treated as an infinite set of infinitesimal 
particles, and it may have one or more meaauwz at- 
tached to it: 

(Cash P (mubjmctof 

(Value - 

{Upit (Dollar -)I 
{quantity (Number E)))]). 

Although the logic of mass terms iz complex in general 
[9], the intuitioniztic semantics of Section 3.2 allows a 
substantial simplification in which Horn clauses involv- 
ing mass terms have a structural similarity to Horn 
clauses involving count terms. Aa a rest&, all infer- 
ences involving mass terms can be incorporated into 
the proof procedures that work for count terms. I will 
develop this point further in a future paper. 

3 Rules and Proofs 

All rules in LLD have a standard form: The left-hand 
side of the rule is an atomic formula, and the right-hand 
side is a compound expresssion. If the right-hand side is 
a conjunction of atomic formulae, of course, the rule is 
a Horn clause (see Section 3.1). But the right-hand side 
of the rule could also be a negation or an embedded im- 
plication (see Section 3.2), and it could include a default 
ezpression (see Section 3.3). By using an intuitionistic 
semantics for LLD, we guarantee that the proof proce- 
dures for these more complex expressions have some of 
the same computational properties as the proof proce- 
dures for Horn clauses [25, 26, 281. Finally, although 
the standard form of a rule does not allow disjunctive 
assertions, we can achieve a similar effect by using pro- 
totypes and deformations, az described in Section 3.4. 

All of these features are necessary for the proper rep- 
resentation of legal rules. For example, consider 51.-(2) 
of the British Nationality Act, which was shown in 1411 
to pose difficult problems for a language restricted to 
Horn clauses: 

l.-(2) A new-born infant who, after com- 
mencement, is found abandoned in the United 
Kingdom shall, unless the contrary is shown, 
be deemed for the purposes of subsection (1) 

(a) to have been born in the United King- 
dom after commencement; and 

(b) to have been born to a parent who at 
the time of the birth was a British citizen or 
settled in the United Kingdom. 

Stripped to its essentials, $1.-(2)(b) says that at least 
one of the parents of an abandoned infant is presumed 
to be a British citizen, unless proven otherwise. This 
is clearly a default rule. See Section 3.3. To show the 
contrary, we would have to identify both parents and 
show that neilher one iz a British citizen. Thus, for 
each parent, we would have to prove a negative fact. 
In Section 3.2, I suggest that the proper approach here 
is to abaume that the mother (respectively, the father) 
iz a British citizen, and then to try to show that this 
azsumption leads to a contradiction. But the only way 
that the mother (respectively, the father) could have be- 
come a British citizen is by the operation of the statute 
itself, or by the operation of a prior statute, and thus 
the sufficient conditions for British citizenship listed in 
the statute (and its predecessors) would be construed 
as necessary conditions az well. See Section 3.4. Tak- 
ing $1.-(2)(b) literally, then, we would have to show 
that every possible route by which the mother or father 
could have acquired British citizenship leads to a con- 
tradiction, and this requires a general mechanism for 
constructing disjunctive proofs. In practice, of course, 
a ptimo facie showing on the major categories of British 
citizenship would probably be sufficient to shift the bur- 
den of proof back to the other party. This phenomenon 
can be explained by a theory of prototypes and defor- 
mations. 

The actual definition of British citizenship is fairly 
complex. In the following sections, I will illustrate these 
rules with much simpler examples: controlled corpo- 
rations; sterile containers; unowned properties; unem- 
ployed dropouts; and red and green blocks. 

3.1 Horn Clauses 

Since many legal rules can be represented by Horn 
clauses [1, 21, 411, these are one of the more important 
building blocks of LLD. The following is an example of 
a Horn clause in LLD syntax: 

(Control - 
(subject (Actor A)) 
{object (Corporation C))>> 
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<== (Own - 
{subject (Actor A>) 

{object (Stock S))) 

AND 

(Issued - 

Csubjoct (Corporation C)) 
(object (Stock S)) 

This is a simplified version of the definition of “con- 
trol” in $368(c) of the Internal Revenue Code. For a 
more realistic representation of a fragment of the In- 
ternal Revenue Code in Horn-clause logic, see [2X]. I 
will assume that the reader is familiar with Horn-clause 
logic programming, however, and I will not discuss it 
further here. 

One point to note: The logic of Horn clauses is the 
same whether interpreted classically or intuitionistically 

PI. 

3.2 Negations and Embedded hnplica- 
tions 

To extend LAD further, we allow Horn clauses to be 
embedded on the right-hand side of a rule. For example, 
we can say that “C is a sterile container if every bug B 
inside c is dead.” This rule would be written in LLD 
syntax as follows: 

(Sterile - <object (Container C))) 

<== FOR ALL (Bug B): 

(Dead - Cobjsct (Bug B))) 

<r= 

(Inside - (subject (Bug B)) 
(object (Container C)>). 

A similar construction is used for negation. For ex- 
ample, we can say that UP is unowned property if, for 
every actor A, it is not the case that A owns Pan This 
rule would be written as follows: 

(Unowned - {object (Property P))) 

<== FOR ALL (Actor A>: 

FALSE <== 

(Own - <subject (Actor A)> 
(object (Propertip P)]) . 

Note that we are construing ‘BOT A’ as an abbreviation 
for 'FALSE c== A’. 

If the negation and embedded implication rules were 
interpreted classically, they would be equivalent to full 
first-order logic. But interpreted intuitionistically, as 
explained in [25, 261, they generate a proper subset of 
first-order logic with useful semantic and computational 
properties. First., they possess an analogue of the unique 
minimal model property of Horn-clause logic [46, 41, so 
that every successful query has a definite answer sub- 
stitution, exactly as in PROLOG. Second, and closely 
related, the tableau proof procedure for these rules is 
a straightforward generalization of SLD-refutation for 
Horn clauses. 

For example, suppose we wanted to show that a par- 
ticular container, JPetriDish-1, is sterile. We would 
begin our proof in the initial tableau 70. When we en- 
counter the definition of a “sterile container,” however, 
we would construct an auziliary tableau71 with 

(Insid* - Csubjoct (Bug !B-1)) 
(object (Container JPstriDish))) 

in its data base, and we would try to show that 

(Dead - {object (Bug !B-1))) 

is provable in 71. Here, !B-1 is a newly created symbol 
that is interpreted as a constant in every unification 
step inside 71. How can we prove that !B-1 is dead? 
Suppose we have some additional Horn clauses in our 
rule base stating that “bugs are killed by heating,” and 
that “anything inside a container is heated whenever 
the container is heated.” Suppose we have also been 
told that JPetriDirh-1 has been heated. Then the 
Horn-clause proof would succeed in 71, and the proof 
that JPetriDirh-i is asterile container would succeed 
in 70. 

The proofi for the negation rules are similar. To 
prove that ‘Blackacre is “unowned property,” we 
would construct an auxiliary tableau 71 with 

(oun - habjoct (Actor !A-1)) 
<object (Property JBlackacrs))) 

in its data base, and we would try to show that FALSE is 
provable in II. For this proof to succeed, of course, we 
would have to find some rule in our rule base that makes 
an explicit negative assertion. For example, if we are 
told authoritatively that ‘Blackacre is “unregistered 
property,” and if WC know that “registration” is a nec- 
essary condition for J‘ownership,J’ then the proof in ‘I; 
would succeed. Note the overall strategy of this proof: 
We assume that some actor !A-1 owns JBlackacrs and 
we show that this assumption leads to a contradiction. 
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For a more detailed discussion of this proof procedure, 
including a soundness and completeness theorem, the 
reader should consult [26]. Further results appear in 

[7, ‘31. 

3.3 Default Rules and Default Proofs 

The use of default rules in legal reasoning has been an- 
alyzed by Gordon [13, 141. In general, whenever we see 
the words “unless” or “except” in a statute [2], a proper 
representation of the rule requires the use of some form 
of default reasoning. In LLD, this facility is provided by 
combining a failure operation with intuitionistic nega- 
tion in a particular way. For example, to say that “an 
adult is presumed to be employed unless shown to be a 
dropout” [39], we would write the following rule: 

(Employed - {object (Person P))) 

<== (Adult - (object (Parson P))) 

ABB FAIL POT BOT 

(Dropout - Cobjsct (Person Pj3). 

To use this rule, the system would try to prove PALSB 
from the assumption that P is not a Dropout, and if the 
attempt failed the rule would succeed. 

This approach to default reasoning is similar to the 
approach of Poole [37]. When several default rules in- 
teract, however, the inferences become quite complex, 
and it is necessary to provide a semantics and a proof 
theory to clarify the intended behavior of the system. 
The default proofs in LLD are based on the theory in 
[28], which has several advantages over alternative ap 

proaches in the literature. First, the proof procedure 
in LLD is local rather than global, as it is in Reiter’s 
default logic [38] and Moore’s autoepistemic logic [34]. 
Second, the revision of a default proof in LLD is sim- 
ple and straightforward, and the proof tree itself can 
serve as the principal data structure for a truth main- 
tenance system [12]. Third, it is possible to “tune” a 
set of default rules very precisely in LLD, to block un- 
intended contrapositive inferences and to enforce prior- 
ities among defaults. I argue in [28] that these features 
are essential for 8 practical system of default reasoning. 

3.4 Prototypes and Deformations 

The standard syntax for a rule in LLD does not allow 
disjunctive or existential assertions, but we can achieve 
a similar effect by using prototypes and deformations. 
Imagine that every rule is a definition giving sufficient 
conditions for the atomic formula that appears on its 

left-hand side, and imagine that certain rules provide 
necessary conditions as well. Obviously, these “if-and- 
only-ifs definitions could be used to make disjunctive 
assertions, but it would then be necessary to construct 
arbitrary disjunctive proofh. Instead, in LLD, we desig- 
nate a particular disjunct in the definition as prototyp- 
ical, and we represent every other disjunct as a trans- 
formation of the prototype. Then, whenever we need 
to use the definition in a proof, we simply construct the 
“prototypical proof” using the “prototypical disjunct” 
and we update it, as needed, by applying the transfor- 
mations. 

For example, consider the following rule giving suffi- 
cient conditions for the concept of a “Christmas block”: 

(ChristmasBlock B) 

<== (Block B) AYD 

[(Painted - 
Cobjoct (Block B)3 
{quality (Color ‘Red))) 

OR 

(Painted - 
(object (Block B)3 
(quality (Color *Groan))>]. 

This rule is equivalent to a pair of Horn clauses, and 
it tells us that both red blocks and green blocks are 
“Christmas blocks.” If, in the course of a proof, we 
discover that a particular block ‘B-1 is a “Christmas 
block,” what would we conclude? If we assume that 
the rule expresses necessary as well as sufficient condi- 
tions, then we would conclude that 'B-1 is either red 
or green, and WC would be forced to split the proof at 
this point. Instead, we will designate a red block as the 
prototypical example of a Yhristmas block,” and we 
will continue the proof on the assumption that ‘B-1 is 
red. Now suppose this proof succeeds. We then have 
two choices: We could apply the ‘red:green’ transfor- 
mation directly to the prototypical proof, and check to 
see if the transformed proof still succeeds. This would 
give us a sound and complete disjunctive proof proce- 
dure. Or we could terminate the computation at this 
point, and apply the ‘red:green’ transformation only if 
the prototypical assumption later leads to 8 contradic- 
tion. In this latter case, our proof procedure would be 
complete, but not sound, and yet it might be justifiable 
if we knew that an unsound conclusion could always be 
revised in the light of conflicting information. 

A theory justifying this approach is presented in [29]. 
In the “Christmas block” example, the necessary con- 
ditions are given by Clark’s predicate completion [lo], 
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as suggested above, but whenever the rules are recur- 
sive the necessary conditions are given by McCarthy’s 
circumscription [20] and the “proofs” (which cannot be 
complete) are specified by a set of induction schemes. I 
suggest in [29] that there is a relationship between these 
prototypical proofs and our intuitive sense of conceptual 
coherence. A concept is coherent (in a certain context, 
and for a certain purpose) if its representation in terms 
of prototypes and deformations yields a tractable in- 
ference problem (in the specified context, and for the 
specified purpose). The theory is thus intended ss a 
formalization of my earlier work with Sridharan on the 
use of prototypes and deformations in legal argument 
[31, 32, 441. 

A further example of the use of prototypes and de- 
formations, this time in a modal context, is outlined in 
Section 4.3. 

4 Modalities 

The rules in Section 3 constitute a (somewhat uncon- 
ventional) first-order language, but most of our com- 
mon sense categories involve modal concepts: time, ac- 
tion, permission, obligation, causation, purpose, inten- 
tion, knowledge, belief, and so on. In this section, I will 
discuss the modalities that have been incorporated into 
LLD so far: time (Section 4.1); events and actions (Sec- 
tion 4.2); and permissions and obligations (Section 4.3). 

The foundation for this treatment of modalities is my 
earlier work on deontic logic [23, 241. But the present 
work goes further in two respects. First, the action lan- 
guage is based on an intuitionistic semantics, so that 
it possesses the properties discussed in Section 3.2. In 
particular, it has unique minimal models and definite 
answer substitutions. Second, the rules from Section 3 
are used here as well, to define abstract actions in terms 
of more concrete actions. This means that the proof 
procedure for the first-order language can be general- 
ized to cover both the action language and the deontic 
language, thus simplifying the overall system. 

4.1 Time 

In the terminology of Shoham [42], the temporal com- 
ponent of LLD is based on a reified tempod logic. For 
example, we can assert that the Control relationship 
holds between two corporations at a particular time: 

(Stata - 
{relation 

(Control - 
{subject (Corporation Al)) 
{object (Corporation A2)))) 

~ti.mo (Time T))), 

and we can make a similar assertion about a time in- 
terval: 

(State - 
{relation 

(Coatrol - 
(subject (Corporation Al)) 
(object (Corporation A2))>) 

itixnel (Time Tk)) 
<time2 (Time TZ))). 

These conventions then generalize easily to the language 
of events and actions. 

4.2 Events and Actions 

The action language in LLD is exactly the same as the 
action language in [23, 241, except that it is based on 
intuitionistic logic. I argued in [24] that an action lan- 
guage should be defined on partial modeb, but this be- 
comes cumbersome when the semantics for partial mod- 
els is classical. However, as I showed in [25], a more nat- 
ural semantics for partial models is intuitioniztic. This 
choice has several advantages: Most important is the 
fact that a change in the state of the world can now be 
defined by a pair of unique minimal partial modeb. 

With this modification, the representation of events 
and actions in LLD follows [23, 241 very closely. Ele- 
mentary events are represented by statechangea: 

(StatsChnnge - 
(rslationi 

(Own 01 
{subject (Actor Al)) 
(object (Property P)))) 

irelation 
(oun 01 

hub j act (Actor A211 
{object (Property P)))) 

Ctimel (Time Tl)3 
Ctime2 (Tim. T2)3), 

and complex events are constructed by the operations 
of disjunction, sequential and parallel composition, and 
universal and existential quantification applied to the 
elementary statechanges. An action is a relationship 
between an actor and an event, which may be either 
elementary or complex. In addition, the rule syntax of 
LLD can be used to define various abstract events and 
actions. For example, in Figure 1, Transf orProperty is 
defined by an elementary event, DistributeProperty 
is defined by a complex event, and both of these actions 
are used in the definition of DistributoDividmnd. Fi- 
nally, by adding to the action language an analogue of 
the default rules in Section 3.3, we obtain a solution 
to the “Game problem” [15]. The resulting language is 

185 



similar in its effects to the event cakulucr of KowaJski 
and Sergot [18]. 

4.3 Permissions and Obligations 

Since I have described the logic of permissions and obli- 
gations in my earlier papers [23, 241, I will abbreviate 
the discussion here. In LLD syntax, an obligation is 
written as follows: 

(Obligation - 
(condition 

(Issued - 
(subject (Corporation C)> 
Cobjact (CommonStock S)3)3 

(act ion 
(DistributaDividand - 

{agent (Coxporat ion C) 3 
{object (Cash LP 

Esub j actof 
(Vallla - 

<unit (Dollar -33 
(quantity (Bumbar RI31313 

(rscipfmt (Actor &A 
{subjectof 

(Orill - 
(object 

(Comlzonstock S)3)3)3 
(time1 (Time Tl)3 
(timo2 (Tim. T2)3)3 

{time (Time Tl))), 

where the obligatory action in this example is the same 
DistributaDividond action that was defined in Fig- 
ure 1. Although most systems of deontic logic would 
attempt to prove the validity of any well-formed formula 
in the language, I have argued in my earlier papers that 
this objective is both unnecessary and impractical in a 
legal reasoning system. Instead, LLD allows a user to 
construct a rule base of deontic rules in the form shown 
above, and then to query whether, under a particular 
condition 4, a particular action Q is permitted, forbid- 
den, obligatory, etc. Restricted to these PROLOG-lie 
inferences, I claim, the proof procedure for the deontic 
modalities becomes tractable. 

I will illustrate this point with a simple example from 
[24], but augmented here by the theory of prototypes 
and deformations suggested in Section 3.4. Suppose we 
have two deontic rules in our rule base: 

If C is a corporation, then C is obligated to 
transfer some security to ) Jones. 

If any actor A owns a bond, then A is forbidden 
to transfer that bond to 8 Jonas. 

Assume also that ‘DuPont is a corporation, and that we 
want to know whether ‘Dupont is obligated to transfer 
a stock to anyone, and, if so, to whom. (Intuitively, the 
answer is: Yes, DuPont is obligated to transfer a stock to 
) Jones.) I outlined a proof strategy in [24]: We assume 
that there is no such obligation and we try to derive a 
contradiction, returning an answer substitution if pos- 
sible. At one point in the proof, however, we arrive at 
the assumption that there exists a partial world UJ in 
which the action TransferSecurity is true but the ac- 
tion Trlursf orStock is not true. Since Txansf orStock 
is defined by a set of suficient conditions in the ac- 
tion language, this part of the proof is straightforward. 
But in order to use our assumption about the action 
Transf orSecurity, we need to adopt the position, from 
Section 3.4, that the sufficient conditions in the defini- 
tion of TransferSecurity are necessary conditions as 
well, and this leads to the construction of a prototypical 
proof. In this example, as the discussion in [24] indi- 
cates, the prototypical proof simply contains a skolem 
function for the unidentified security, and there are no 
transformations. In other examples, however, the ab- 
stract actions might have disjunctive definitions, and 
the transformations would become important. In gen- 
eral, since a deontic proof can use the definition of an 
action in either a Uforward” or a Ubackward” direction, 
we cannot avoid the use of both necessary and sufficient 
conditions. 

Deductive inference in a modal logic is notoriously 
difficult [4’7, 361. But prototypical proofi are relatively 
simple. If this example can be generalized, as I believe 
it can, it suggests a plausible account of human common 
sense reasoning in complex modal contexts. 

5 An Integrated Language 

Most of the components of a Language for Legal Dis- 
course have appeared elsewhere, in other knowledge 
representation languages, but it remains a substantial 
challenge to combine these several components into a 
single system. I have tried to identify in this paper 
some of the features of the language that contribute to 
integration: (1) the fact that every relationship, and 
every event, action, obligation, etc., is treated as an 
individual object; (2) the fsct that the semantics is in- 
tuitionistic throughout, so that each component of the 
language is defined on partial models; (3) the use at 
each language level of a standard rule syntax that gen- 
eralizes Horn-clause logic; and (4) the use of a tableau 
proof procedure that can be extended from the first- 
order case to the various modalities. In future papers, 
I will explore the applications of LLD in several legal 
domains, and I will try to evaluate how successful this 
attempt at integration has been. 
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(DistributeDividend - 
(agent (Corporation C>3 
{object (Cash &Pi 

{subjectof @alum - <unit (Dollar ->3 
{quantity (19umber If)))))) 

Crscipiant (Actor &A 
G4ubjsctof (Oun - 

Cobjact (Stock kS2 
iobjsctof (Issued - 

Csubject (Corporation C)3)3)3)3)3 
<time1 (Time Tl)) 
<time2 (Time T2))) 

<== FOB ALL (Stock S2) (hmber mJ2): 

(Issued - 
Csubjsct (Corporation C)) 

<object (Stock S2 
<subjsctof (Amount - {unit (Share ->3 

{quantity (Humbar 82)))))) 
{time (Time Tl))) 

==, 

C(TransfsrProperty - 
<agent (Corporation Cl3 
Cobjoct (Cash LPI 

hbjectof (Value (unit (Dollar -)3 
{quantity Ohanber lf>333>3 

<tin.1 (Tim. Ti)3 
<time2 (Time T2)3) 

(DistributeProperty - 
Iagent (Corporation C)) 
(object (Cash &PI 

Csubjeatof (Value 

(recipient (Actor &A 

. (unit (Dollar -)3 
(quantity (lhambor If)))))3 

Csubjactof (Own - 
{object (Stock &SO 

Iobjectof (Issued - 
(subject (Corporation C)3)3>3>3>3 

btoasuro (Stock LS2 

<subjectof (Amount - {unit (Share -)3 
(quantity (Humbar 192)))))) 

(timal (Time Tl)3 
(time2 (Time T2)3)3. 

Figure 1: UCorporation C distributes If dollarsin cash to the owners ofthe stockissued by corporation C." 
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