
A Language for Legal Discourse

I. Basic Features

L. Thorne McCarty
Computer Science Department

and
Faculty of Law

Rutgers University

1 Introduction

In two previous papers on the prospects for intelli-
gent legal information systems 122, 271, I advocated
the development of “deep conceptual models” of par-
ticular legal domains. My motivation was both prac-
tical and theoretical. On the practical side, I ar-
gued, our long-term goal should be an integrated analy-
sis/planning/retrieval system that matches as closely as
possible the way a lawyer actually thinks about a legal
problem. On the theoretical side, my work with Sridha-
ran on the TAXMAN project [31, 32, 441 had clarified
the importance of an adequate domain theory in any at-
tempt to model the arguments of lawyers in hard cases,
For both purposes, I claimed, deep conceptual models
are essential.

Although some commentators have expressed pursle-
ment about the meaning of the term “deep conceptual
model” [45, pages 149-1551, the basic idea is easy to
state. There are many common sense categories un-
derlying the representation of a legal problem domain:
space, time, mass, action, permission, obligation, cau-
sation, purpose, intention, knowledge, belief, and so on.
The idea is to select M small set of these common sense
categories, the ones that are most appropriate for a
particular legal application, and then develop a know-
ledge representation language that faithfully mirrors the
structure of this set. The language should be formal: it
should have a compositional syntax, a precise semantics

Pcrmigiontocopywithoutfccrllorprtofthirrmtcdrlir~~aovidod~t
the copies am not mud. cc dim-i- for direct cant114 advantage. the ACM

copyright notice md the title of the publiatim and ita date qpsr, md notice in
given that ccpyring is by pamission of the Auociation fm Comw M=h+q.

TO copy othcmisc, or to xt@lisb. mpita s f& and/or specific permissian.
0 ACM 0-S9791-322-l/89/0600/0180 $1.50

and a well-defined inference mechanism. The semantic
interpretation of the common sense categories should be
intuitively correct, that is, it should generate exactly
those entailments that ordinary people (and ordinary
lawyers!) generate in similar situations. The inference
mechanism for the language should be complete and
sound, in principle, but, in practice, completeness and
soundness would often be sacrificed for computational
tractability, just as they are in ordinary human (and
ordinary legal!) reasoning. Clearly, if a language of
this sort could be developed, it would provide a uni-
form framework for the construction of a legal anal-
ysis/planning/retrieval system, and a solid foundation
for further theoretical work.

In this paper, I will describe the basic features of a
Language for Legal Discourse (LLD), which takes a first
concrete step towards the realization of this goal. An
example of the surface syntax of LCD is shown in Fig-
ure 1. This example is from the TAXMAN II project,
and it shows the influence of the frame-based repre-
sentation language AIMDS [43] in which TAXMAN II
was originally implemented. The difference lies in the
fact that each syntactic feature of LLD has a precisely
defined semantic interpretation and an associated in-
ference procedure, which was not the case for the AI
representation languages of the late 1970’s. The design
of LLD has also been influenced by the work of Bonner
[S] and McGuinness 1331 on a seller’s remedies for breach
of contract under Article 2 of the Uniform Commercial
Code, and by my joint work with Dean Schlobohm on
estate planning with prototypes [40]. As of this writing,
the language has been partially implemented (in Com-
mon LISP on a SUN/3 workstation): the various in-
ference mechanisms have been specified, a parser from
the surface syntax of Figure 1 to the compiled proof
procedures has been written, and a unification algo-
rithm that handles sorted count terms and mass terms
(see Sections 2.2 and 2.3) has been thoroughly tested.

180

However, most of the work on LLD to date has been
devoted to the theoreticsl foundations of the language
[23, 24, 25, 26, 28, 29, 301.

My plan is to write several papers on a Language
for Legal Discourse, of which this paper is the first.
Section 2 explains some of the peculiar features of the
atomic formulae in LLD, and Section 3 describes the
rules and proofs for the first-order sub-language, which
is intuitionistic rather than classical. Section 4 then ex-
plains how these rules and proofs are extended to handle
various modal features, such 8s time, action, permis-
sion and obligation. One important issue in the design
of LLD concerns the integration of these several fe8-
tures into a single language, and this issue is addressed
in Section 5. My point here is that the intuitionistic
semantics at the core of the language facilitates the de-
velopment of an integrated system, and simplifies the
proof procedures for the various modalities.

2 Atomic Formulae

An atomic formula in LLD has both an internal syntax,
for use by the proof procedures, and a surface syntax for
communication with an external user. Some examples
of the internal syntax are:

(Opn 01 (Actor A> (Property P)).

(Own ‘Own-2 (Actor ‘John)
(Property ‘Book-t)),

(Own - (Actor ‘John) (Property ‘Book-3)),

in which constants are quoted, and the symbol ‘-’ de-
notes an anonymous existential variable. The surface
syntax adds identifiers to the arguments:

(Own - Csubjsct (Actor A)3
(object (Property P)>),

and permits relationships to be inverted, so that we can
talk about “an actor A who is the subject of the owntr-
ship of a property P.” Several examples of this construc-
tion are evident in Figure 1. Note also in Figure 1 that
the same syntactic form is used for objects, relations
and actions, and this syntactic uniformity is extended
to permissions, obligations and the other modalities 8s
well.

Since this treatment of atomic formulae is standard,
this section will discuss only three points that are some-
what distinctive: (1) the use of reified relationships; (2)
sorts and subsorts; (3) count terms and m8ss terms.

2.1 Reified Relationships

Note that every relationship in LLD is treated as an
individual object, either a constant or a variable. Thus
we can t8lk about an “ownership 01” or the “owner-
ship ‘own-2”. There are several reasons for this: First,
the reification of relationships accords with common lin-
guistic practice, which means that it has become part
of legal practice 8s well. Second, it provides a useful
technical device for representing changes in the state of
the world, as in the “holds” formalism of Kowalski [17].
Third, the device can be generaliied in a natural way to
represent individual events, actions, obligations, beliefs,
etc., and it therefore contributes to the integration of
several mod&ties in a single system. These advantages
have been recognieed by stversl authors [19,5, 161, but
the logical status of reified relationships is unclear. My
own view on this issue is developed in a forthcoming
paper [30].

2.2 Sorts and Subsorts

All terms in LLD are order sorted, e.g., Person <
Actor, Corporation C Actor, and the unification al-
gorithm respects the sorts. This means: (1) the unifica-
tion of two variable terms succeeds if the sorts of both
variables have a common subsort; and (2) the unifica-
tion of a constant term and a variable term succeeds if
the sort of the constant term is less than or equal to the
sort of the variable term. In either case, the sort of the
unified term is the common subsort. This treatment is
standard, and is based on [3, 35, 111.

Somewhat more novel is the treatment of exclusive
and exhaustive subsorts. Suppose we wanted to say that
an Actor cannot be both a Parson and a Corporation.
This could be represented by a Horn clause (see Sec-
tion 3.1):

PALSB <== (Forron A)

AND (Corporation A),

in which the atom FALSE denotes a contradiction. To
say that the two subsorts Person and Corporation are
mutually exhaustive, we could write:

(Person A)

C== (Actor A)

AND BOT (Corporation A)

and

(Corporation A)

181

<== (Actor A)

AND NOT (Porron A),

using the intuitionistic negation rules from Section 3.2.
Because of the characteristics of intuitionistic negation,
however, the effects of these rules can be efficiently en-
coded in the unification algorithm itself. I will develop
this point further in a future paper.

2.3 Count Terms and Mass Terms

Parron and Corporation are count terms; Cash and
Stock are mass terms. Either form can be used in LLD,
but the semantic interpretation in each case is different.
A mass term is treated as an infinite set of infinitesimal
particles, and it may have one or more meaauwz at-
tached to it:

(Cash P (mubjmctof

(Value -

{Upit (Dollar -)I
{quantity (Number E)))]).

Although the logic of mass terms iz complex in general
[9], the intuitioniztic semantics of Section 3.2 allows a
substantial simplification in which Horn clauses involv-
ing mass terms have a structural similarity to Horn
clauses involving count terms. Aa a rest&, all infer-
ences involving mass terms can be incorporated into
the proof procedures that work for count terms. I will
develop this point further in a future paper.

3 Rules and Proofs

All rules in LLD have a standard form: The left-hand
side of the rule is an atomic formula, and the right-hand
side is a compound expresssion. If the right-hand side is
a conjunction of atomic formulae, of course, the rule is
a Horn clause (see Section 3.1). But the right-hand side
of the rule could also be a negation or an embedded im-
plication (see Section 3.2), and it could include a default
ezpression (see Section 3.3). By using an intuitionistic
semantics for LLD, we guarantee that the proof proce-
dures for these more complex expressions have some of
the same computational properties as the proof proce-
dures for Horn clauses [25, 26, 281. Finally, although
the standard form of a rule does not allow disjunctive
assertions, we can achieve a similar effect by using pro-
totypes and deformations, az described in Section 3.4.

All of these features are necessary for the proper rep-
resentation of legal rules. For example, consider 51.-(2)
of the British Nationality Act, which was shown in 1411
to pose difficult problems for a language restricted to
Horn clauses:

l.-(2) A new-born infant who, after com-
mencement, is found abandoned in the United
Kingdom shall, unless the contrary is shown,
be deemed for the purposes of subsection (1)

(a) to have been born in the United King-
dom after commencement; and

(b) to have been born to a parent who at
the time of the birth was a British citizen or
settled in the United Kingdom.

Stripped to its essentials, $1.-(2)(b) says that at least
one of the parents of an abandoned infant is presumed
to be a British citizen, unless proven otherwise. This
is clearly a default rule. See Section 3.3. To show the
contrary, we would have to identify both parents and
show that neilher one iz a British citizen. Thus, for
each parent, we would have to prove a negative fact.
In Section 3.2, I suggest that the proper approach here
is to abaume that the mother (respectively, the father)
iz a British citizen, and then to try to show that this
azsumption leads to a contradiction. But the only way
that the mother (respectively, the father) could have be-
come a British citizen is by the operation of the statute
itself, or by the operation of a prior statute, and thus
the sufficient conditions for British citizenship listed in
the statute (and its predecessors) would be construed
as necessary conditions az well. See Section 3.4. Tak-
ing $1.-(2)(b) literally, then, we would have to show
that every possible route by which the mother or father
could have acquired British citizenship leads to a con-
tradiction, and this requires a general mechanism for
constructing disjunctive proofs. In practice, of course,
a ptimo facie showing on the major categories of British
citizenship would probably be sufficient to shift the bur-
den of proof back to the other party. This phenomenon
can be explained by a theory of prototypes and defor-
mations.

The actual definition of British citizenship is fairly
complex. In the following sections, I will illustrate these
rules with much simpler examples: controlled corpo-
rations; sterile containers; unowned properties; unem-
ployed dropouts; and red and green blocks.

3.1 Horn Clauses

Since many legal rules can be represented by Horn
clauses [1, 21, 411, these are one of the more important
building blocks of LLD. The following is an example of
a Horn clause in LLD syntax:

(Control -
(subject (Actor A))
{object (Corporation C))>>

182

<== (Own -
{subject (Actor A>)

{object (Stock S)))

AND

(Issued -

Csubjoct (Corporation C))
(object (Stock S))

This is a simplified version of the definition of “con-
trol” in $368(c) of the Internal Revenue Code. For a
more realistic representation of a fragment of the In-
ternal Revenue Code in Horn-clause logic, see [2X]. I
will assume that the reader is familiar with Horn-clause
logic programming, however, and I will not discuss it
further here.

One point to note: The logic of Horn clauses is the
same whether interpreted classically or intuitionistically

PI.

3.2 Negations and Embedded hnplica-
tions

To extend LAD further, we allow Horn clauses to be
embedded on the right-hand side of a rule. For example,
we can say that “C is a sterile container if every bug B
inside c is dead.” This rule would be written in LLD
syntax as follows:

(Sterile - <object (Container C)))

<== FOR ALL (Bug B):

(Dead - Cobjsct (Bug B)))

<r=

(Inside - (subject (Bug B))
(object (Container C)>).

A similar construction is used for negation. For ex-
ample, we can say that UP is unowned property if, for
every actor A, it is not the case that A owns Pan This
rule would be written as follows:

(Unowned - {object (Property P)))

<== FOR ALL (Actor A>:

FALSE <==

(Own - <subject (Actor A)>
(object (Propertip P)]) .

Note that we are construing ‘BOT A’ as an abbreviation
for 'FALSE c== A’.

If the negation and embedded implication rules were
interpreted classically, they would be equivalent to full
first-order logic. But interpreted intuitionistically, as
explained in [25, 261, they generate a proper subset of
first-order logic with useful semantic and computational
properties. First., they possess an analogue of the unique
minimal model property of Horn-clause logic [46, 41, so
that every successful query has a definite answer sub-
stitution, exactly as in PROLOG. Second, and closely
related, the tableau proof procedure for these rules is
a straightforward generalization of SLD-refutation for
Horn clauses.

For example, suppose we wanted to show that a par-
ticular container, JPetriDish-1, is sterile. We would
begin our proof in the initial tableau 70. When we en-
counter the definition of a “sterile container,” however,
we would construct an auziliary tableau71 with

(Insid* - Csubjoct (Bug !B-1))
(object (Container JPstriDish)))

in its data base, and we would try to show that

(Dead - {object (Bug !B-1)))

is provable in 71. Here, !B-1 is a newly created symbol
that is interpreted as a constant in every unification
step inside 71. How can we prove that !B-1 is dead?
Suppose we have some additional Horn clauses in our
rule base stating that “bugs are killed by heating,” and
that “anything inside a container is heated whenever
the container is heated.” Suppose we have also been
told that JPetriDirh-1 has been heated. Then the
Horn-clause proof would succeed in 71, and the proof
that JPetriDirh-i is asterile container would succeed
in 70.

The proofi for the negation rules are similar. To
prove that ‘Blackacre is “unowned property,” we
would construct an auxiliary tableau 71 with

(oun - habjoct (Actor !A-1))
<object (Property JBlackacrs)))

in its data base, and we would try to show that FALSE is
provable in II. For this proof to succeed, of course, we
would have to find some rule in our rule base that makes
an explicit negative assertion. For example, if we are
told authoritatively that ‘Blackacre is “unregistered
property,” and if WC know that “registration” is a nec-
essary condition for J‘ownership,J’ then the proof in ‘I;
would succeed. Note the overall strategy of this proof:
We assume that some actor !A-1 owns JBlackacrs and
we show that this assumption leads to a contradiction.

183

For a more detailed discussion of this proof procedure,
including a soundness and completeness theorem, the
reader should consult [26]. Further results appear in

[7, ‘31.

3.3 Default Rules and Default Proofs

The use of default rules in legal reasoning has been an-
alyzed by Gordon [13, 141. In general, whenever we see
the words “unless” or “except” in a statute [2], a proper
representation of the rule requires the use of some form
of default reasoning. In LLD, this facility is provided by
combining a failure operation with intuitionistic nega-
tion in a particular way. For example, to say that “an
adult is presumed to be employed unless shown to be a
dropout” [39], we would write the following rule:

(Employed - {object (Person P)))

<== (Adult - (object (Parson P)))

ABB FAIL POT BOT

(Dropout - Cobjsct (Person Pj3).

To use this rule, the system would try to prove PALSB
from the assumption that P is not a Dropout, and if the
attempt failed the rule would succeed.

This approach to default reasoning is similar to the
approach of Poole [37]. When several default rules in-
teract, however, the inferences become quite complex,
and it is necessary to provide a semantics and a proof
theory to clarify the intended behavior of the system.
The default proofs in LLD are based on the theory in
[28], which has several advantages over alternative ap

proaches in the literature. First, the proof procedure
in LLD is local rather than global, as it is in Reiter’s
default logic [38] and Moore’s autoepistemic logic [34].
Second, the revision of a default proof in LLD is sim-
ple and straightforward, and the proof tree itself can
serve as the principal data structure for a truth main-
tenance system [12]. Third, it is possible to “tune” a
set of default rules very precisely in LLD, to block un-
intended contrapositive inferences and to enforce prior-
ities among defaults. I argue in [28] that these features
are essential for 8 practical system of default reasoning.

3.4 Prototypes and Deformations

The standard syntax for a rule in LLD does not allow
disjunctive or existential assertions, but we can achieve
a similar effect by using prototypes and deformations.
Imagine that every rule is a definition giving sufficient
conditions for the atomic formula that appears on its

left-hand side, and imagine that certain rules provide
necessary conditions as well. Obviously, these “if-and-
only-ifs definitions could be used to make disjunctive
assertions, but it would then be necessary to construct
arbitrary disjunctive proofh. Instead, in LLD, we desig-
nate a particular disjunct in the definition as prototyp-
ical, and we represent every other disjunct as a trans-
formation of the prototype. Then, whenever we need
to use the definition in a proof, we simply construct the
“prototypical proof” using the “prototypical disjunct”
and we update it, as needed, by applying the transfor-
mations.

For example, consider the following rule giving suffi-
cient conditions for the concept of a “Christmas block”:

(ChristmasBlock B)

<== (Block B) AYD

[(Painted -
Cobjoct (Block B)3
{quality (Color ‘Red)))

OR

(Painted -
(object (Block B)3
(quality (Color *Groan))>].

This rule is equivalent to a pair of Horn clauses, and
it tells us that both red blocks and green blocks are
“Christmas blocks.” If, in the course of a proof, we
discover that a particular block ‘B-1 is a “Christmas
block,” what would we conclude? If we assume that
the rule expresses necessary as well as sufficient condi-
tions, then we would conclude that 'B-1 is either red
or green, and WC would be forced to split the proof at
this point. Instead, we will designate a red block as the
prototypical example of a Yhristmas block,” and we
will continue the proof on the assumption that ‘B-1 is
red. Now suppose this proof succeeds. We then have
two choices: We could apply the ‘red:green’ transfor-
mation directly to the prototypical proof, and check to
see if the transformed proof still succeeds. This would
give us a sound and complete disjunctive proof proce-
dure. Or we could terminate the computation at this
point, and apply the ‘red:green’ transformation only if
the prototypical assumption later leads to 8 contradic-
tion. In this latter case, our proof procedure would be
complete, but not sound, and yet it might be justifiable
if we knew that an unsound conclusion could always be
revised in the light of conflicting information.

A theory justifying this approach is presented in [29].
In the “Christmas block” example, the necessary con-
ditions are given by Clark’s predicate completion [lo],

184

as suggested above, but whenever the rules are recur-
sive the necessary conditions are given by McCarthy’s
circumscription [20] and the “proofs” (which cannot be
complete) are specified by a set of induction schemes. I
suggest in [29] that there is a relationship between these
prototypical proofs and our intuitive sense of conceptual
coherence. A concept is coherent (in a certain context,
and for a certain purpose) if its representation in terms
of prototypes and deformations yields a tractable in-
ference problem (in the specified context, and for the
specified purpose). The theory is thus intended ss a
formalization of my earlier work with Sridharan on the
use of prototypes and deformations in legal argument
[31, 32, 441.

A further example of the use of prototypes and de-
formations, this time in a modal context, is outlined in
Section 4.3.

4 Modalities

The rules in Section 3 constitute a (somewhat uncon-
ventional) first-order language, but most of our com-
mon sense categories involve modal concepts: time, ac-
tion, permission, obligation, causation, purpose, inten-
tion, knowledge, belief, and so on. In this section, I will
discuss the modalities that have been incorporated into
LLD so far: time (Section 4.1); events and actions (Sec-
tion 4.2); and permissions and obligations (Section 4.3).

The foundation for this treatment of modalities is my
earlier work on deontic logic [23, 241. But the present
work goes further in two respects. First, the action lan-
guage is based on an intuitionistic semantics, so that
it possesses the properties discussed in Section 3.2. In
particular, it has unique minimal models and definite
answer substitutions. Second, the rules from Section 3
are used here as well, to define abstract actions in terms
of more concrete actions. This means that the proof
procedure for the first-order language can be general-
ized to cover both the action language and the deontic
language, thus simplifying the overall system.

4.1 Time

In the terminology of Shoham [42], the temporal com-
ponent of LLD is based on a reified tempod logic. For
example, we can assert that the Control relationship
holds between two corporations at a particular time:

(Stata -
{relation

(Control -
{subject (Corporation Al))
{object (Corporation A2))))

~ti.mo (Time T))),

and we can make a similar assertion about a time in-
terval:

(State -
{relation

(Coatrol -
(subject (Corporation Al))
(object (Corporation A2))>)

itixnel (Time Tk))
<time2 (Time TZ))).

These conventions then generalize easily to the language
of events and actions.

4.2 Events and Actions

The action language in LLD is exactly the same as the
action language in [23, 241, except that it is based on
intuitionistic logic. I argued in [24] that an action lan-
guage should be defined on partial modeb, but this be-
comes cumbersome when the semantics for partial mod-
els is classical. However, as I showed in [25], a more nat-
ural semantics for partial models is intuitioniztic. This
choice has several advantages: Most important is the
fact that a change in the state of the world can now be
defined by a pair of unique minimal partial modeb.

With this modification, the representation of events
and actions in LLD follows [23, 241 very closely. Ele-
mentary events are represented by statechangea:

(StatsChnnge -
(rslationi

(Own 01
{subject (Actor Al))
(object (Property P))))

irelation
(oun 01

hub j act (Actor A211
{object (Property P))))

Ctimel (Time Tl)3
Ctime2 (Tim. T2)3),

and complex events are constructed by the operations
of disjunction, sequential and parallel composition, and
universal and existential quantification applied to the
elementary statechanges. An action is a relationship
between an actor and an event, which may be either
elementary or complex. In addition, the rule syntax of
LLD can be used to define various abstract events and
actions. For example, in Figure 1, Transf orProperty is
defined by an elementary event, DistributeProperty
is defined by a complex event, and both of these actions
are used in the definition of DistributoDividmnd. Fi-
nally, by adding to the action language an analogue of
the default rules in Section 3.3, we obtain a solution
to the “Game problem” [15]. The resulting language is

185

similar in its effects to the event cakulucr of KowaJski
and Sergot [18].

4.3 Permissions and Obligations

Since I have described the logic of permissions and obli-
gations in my earlier papers [23, 241, I will abbreviate
the discussion here. In LLD syntax, an obligation is
written as follows:

(Obligation -
(condition

(Issued -
(subject (Corporation C)>
Cobjact (CommonStock S)3)3

(act ion
(DistributaDividand -

{agent (Coxporat ion C) 3
{object (Cash LP

Esub j actof
(Vallla -

<unit (Dollar -33
(quantity (Bumbar RI31313

(rscipfmt (Actor &A
{subjectof

(Orill -
(object

(Comlzonstock S)3)3)3
(time1 (Time Tl)3
(timo2 (Tim. T2)3)3

{time (Time Tl))),

where the obligatory action in this example is the same
DistributaDividond action that was defined in Fig-
ure 1. Although most systems of deontic logic would
attempt to prove the validity of any well-formed formula
in the language, I have argued in my earlier papers that
this objective is both unnecessary and impractical in a
legal reasoning system. Instead, LLD allows a user to
construct a rule base of deontic rules in the form shown
above, and then to query whether, under a particular
condition 4, a particular action Q is permitted, forbid-
den, obligatory, etc. Restricted to these PROLOG-lie
inferences, I claim, the proof procedure for the deontic
modalities becomes tractable.

I will illustrate this point with a simple example from
[24], but augmented here by the theory of prototypes
and deformations suggested in Section 3.4. Suppose we
have two deontic rules in our rule base:

If C is a corporation, then C is obligated to
transfer some security to) Jones.

If any actor A owns a bond, then A is forbidden
to transfer that bond to 8 Jonas.

Assume also that ‘DuPont is a corporation, and that we
want to know whether ‘Dupont is obligated to transfer
a stock to anyone, and, if so, to whom. (Intuitively, the
answer is: Yes, DuPont is obligated to transfer a stock to
) Jones.) I outlined a proof strategy in [24]: We assume
that there is no such obligation and we try to derive a
contradiction, returning an answer substitution if pos-
sible. At one point in the proof, however, we arrive at
the assumption that there exists a partial world UJ in
which the action TransferSecurity is true but the ac-
tion Trlursf orStock is not true. Since Txansf orStock
is defined by a set of suficient conditions in the ac-
tion language, this part of the proof is straightforward.
But in order to use our assumption about the action
Transf orSecurity, we need to adopt the position, from
Section 3.4, that the sufficient conditions in the defini-
tion of TransferSecurity are necessary conditions as
well, and this leads to the construction of a prototypical
proof. In this example, as the discussion in [24] indi-
cates, the prototypical proof simply contains a skolem
function for the unidentified security, and there are no
transformations. In other examples, however, the ab-
stract actions might have disjunctive definitions, and
the transformations would become important. In gen-
eral, since a deontic proof can use the definition of an
action in either a Uforward” or a Ubackward” direction,
we cannot avoid the use of both necessary and sufficient
conditions.

Deductive inference in a modal logic is notoriously
difficult [4’7, 361. But prototypical proofi are relatively
simple. If this example can be generalized, as I believe
it can, it suggests a plausible account of human common
sense reasoning in complex modal contexts.

5 An Integrated Language

Most of the components of a Language for Legal Dis-
course have appeared elsewhere, in other knowledge
representation languages, but it remains a substantial
challenge to combine these several components into a
single system. I have tried to identify in this paper
some of the features of the language that contribute to
integration: (1) the fact that every relationship, and
every event, action, obligation, etc., is treated as an
individual object; (2) the fsct that the semantics is in-
tuitionistic throughout, so that each component of the
language is defined on partial models; (3) the use at
each language level of a standard rule syntax that gen-
eralizes Horn-clause logic; and (4) the use of a tableau
proof procedure that can be extended from the first-
order case to the various modalities. In future papers,
I will explore the applications of LLD in several legal
domains, and I will try to evaluate how successful this
attempt at integration has been.

186

References

PI

PI

PI

PI

I51

PI

PI

PI

[Ql

w

WI

WI

I131

L.E. Allen. Symbolic logic: A razor-edged tool ;r
lrafting and interpreting legal documents. Yale
Cow Journal, 66:833-879, 1957.

L.E. Allen and C.S. Saxon. Some problems in de-
signing expert systems to aid legal reasoning. In
Proceedings of the First International Conference
on Artificial Intelligence and Law, pages 94-103.
ACM Press, May 1987.

II. A&-Kaci and R. Nasr. LOGIN: A logic program-
ming language with built-in inheritance. Journal
of Logic Programming, 3:185-215, 1986.

K.R. Apt and M.H. van Emden. Contributions to
the theory of logic programming. Journal of the
ACM, 29(3):841--862, 1982.

J. Barwise and J. Perry. Situations and Attitudes.
Bradford Books, MIT Press, 1983.

A.J. Bonner. A PROLOG framework for reasoning
about permissions and obligations, with applica-
tions to contract law. Unpublished seminar paper,
Rutgers University, 1985.

A.J, Bonner. Hypothetical datalog: Complexity
and expressibility. In Proceedings of the Second In-
ternational Conference on Databaae Theory, pages
144-160. Springer-Verlag, 1988. Lecture Notes in
Computer Science, volume 326.

A.J. Bonner. A logic for hypothetical reasoning. In
Proceedinga of the Seventh National Conference on
Artificial Intelligence, pages 480-484. AAAI, 1988.

H.C. Bunt. Mass Termr and Model-Theoretic Se-
mantica. Cambridge University Press, 1985.

K.L. Clark. Negation as failure. In H. Gallaire and
J. Minker, editors, Logic and Data Bases, pages
293-322. Plenum, 1978.

A.G. Cohn. A more expressive formulation of many
sorted logic. Journal of Automated Reaaoninq,
3:113-200, 1987.

J. Doyle. A truth maintenance system. Artificial
Intelligence, 12:231-272, 1979.

T.F. Gordon. OBLOG-2: A hybrid knowledge
representation system for defeasible reasoning. In
Proceedings of the First International Conference
on Artijbiol Intelligence and Law, pages 231-239.
ACM Press. Mav 1987.

1141

P51

WI

[I71

P31

Ml

PI

WI

PI

[231

1241

[251

WI

P.F. Gordon. The importance of nonmonotonicity
br legal reasoning. In H. Fiedler, F. Haft, and
R. Traunmiiller, editors, Ezpert systems in Jaw:
lmpacta on Legal Theory and Computer Law, pages
111-126. Attempto-Verlag, Tiibingen, 1988.

P. Hayes. The frame problem and related prob-
lems in artilicial intelligence. In A. Elithorn and
D. Jones, editors, Artificial and Human Thinking,
pages 45-59. Jossey-Bass, 1973.

R. Jackendoff. Semantic8 and Cognition. MIT
Press, 1983.

R. Kowalski. Logic for Problem Solving. North
Holland, 1979.

R.A. Kowalski and M.J. Sergot. A logic-based
calculus of events. New Generation Computing,
4(1):67-95, 1986.

J. McCarthy. First order theories of individual con-
cepts and propositions. In J. Hayes, D. Michie,
and L. Mikulich, editors, Machine Intelligence, vol-
ume 9, pages 129-147. Ellis Horwood, 1979.

J. McCarthy. Circumscription: A form of non-
monotonic reasoning. Artificial Intelligence, 13:27-
39, 1980.

L.T. McCarty. Reflections on TAXMAN: An ex-
periment in artificial intelligence and legal reason-
ing. Harvard Law Review, 99:837-93, 1977.

L.T. McCarty. Intelligent legal information sys-
tems: Problems and prospects. Rutgers Com-
puter and Technology Law Journal, 9(2):265-294,
1983. Also published in C. Campbell, editor, Data

Processing and the Law, pp. 125151 (Sweet and
Maxwell, 1984).

L.T. McCarty. Permissions and obligations. In
Proceedings of the Eighth International Joint Con-
ference on Artificial Intelligence, pages 287-294,
1983.

L.T. McCarty. Permissions and obligations: An
informal introduction. In A.A. Martin0 and
F. Socci Natali, editors, Automated Analysis of Le-
gal Teds: Logic, Informatics, Law, pages 307-337.
Elsevier North-Holland, 1986. Also available as
Rutgers Technical Report LRP-TR-19.

L.T. McCarty. Clausal intuitionistic logic. I. Fixed-
point semantics. Journal of Logic Programming,
5(1):1-31, 1988.

L.T. McCarty. Clausal intuitionistic logic. II.
Tableau proof procedures. Journal of Logic Pro-
gramming, 5(2):93-132, 1988.

187

WI

P31

1291

WI

WI

[321

E331

[341

[351

L.T. McCarty. Intelligent legal information sys-
tems: An update. In H. Fiedler, F. Raft, and
R. Traunmilller, editors, &pert Syatenw in Law:
Impacts on Legal Theory and Computer Law, pages
15-25. Attempto-Verlag, Tiibingen, 1988. Also
published in Law and Computers, No. 5, pp. 196-
202 (Law and Computers Association of Japan,
July 1987).

L.T. McCarty. Programming directly in a non-
monotonic logic. Technical Report LRP-TR-21,
Computer Science Department, Rutgers Univer-
sity, September 1988.

L.T. McCarty. Computing with prototypes (pre-
liminary report). Technical Report LRP-T&22,
Computer Science Department, Rutgers Univer-
sity, March 1989.

L.T. McCarty. Real relationships. Forthcoming,
1989.

L.T. McCarty and N.S. Sridharan. A computa-
tional theory of legal argument. Technical Report
LRP-TR-13, Computer Science Department, Rut-
gers University, 1981.

L.T. McCarty and N.S. Sridharan. The represen-
tation of an evolving system of legal concepts: II.
Prototypes and deformations. In Proceedings of the
Seventh International Joint Conference on Art+
cial Intelligence, pages 246-53, 1981.

D.L. McGuinness. Reasoning with permissions and
obligations in contract law. Unpublished seminar
paper, Rutgers University, 1986.

R.C. Moore. Semantical considerations on non-
monotonic logic. Artificial Intelligence, 25:75-94,
1985.

D. Moshier and W. Rounds. A logic for partially
specified data structures. In Proceedings of the 14th
ACM Symposium on Principlea of Programming
Languages, pages 156-167, 1987.

[36] H.J. Ohlbach. A resolution calculus for modal log-
its. In Proceedings, Ninth International Conference
on Automated Deduction, pages 500-516, 1988.

[37] D. Poole. A logical framework for default reason-
ing. Artificial Intelligence, 36:2747, 1988.

[38] R. Reiter. A logic for default reasoning. Artificial
Intelligence, 13:81-132, 1980.

[39] R. Reiter and G. Criscuolo. On interacting de-
faults. In Proceedings of the Seventh International
Joint Conference on Artificial Intelligence, pages
276-276, 1981.

[401

[411

[421

[431

[441

WI

14'31

14'1

D.A. Schlobohm and L.T. McCarty. EPS II: Es-
tate planning with prototypes. In Proceedings of
the Second International Conference on Artificial
Intelligence and Luw. ACM Press, June 1989.

M.J. Sergot, F. Sadri, R.A. Kowalski, F. Kri-
waczek, P. Hammond, and H.T. Cory. The British
Nationality Act as a logic program. Communica-
tions of the ACM, 29:370-386, 1986.

Y. Shoham. Temporal logics in AI: Semantical and
ontological considerations. Artificial Intelligence,
33:89-104, 1987.

N.S. Sridharan. Representing knowledge in
AIMDS. Informatica e Dir&o, 7:201-221, 1981.

N.S. Sridharan. Evolving systems of knowledge. AI
Magazine, 6:108-120, 1985.

R.E. Susskind. Ezpert Systems in Law: A Ju-
risprudential Inquiq. Oxford University Press,
1987.

M.H. van Emden and R.A. Kowalski. The seman-
tics of predicate logic as a programming language.
Journal of the ACM, 23(4):733-742, 1976.

L.A. WaIlen. Matrix proof methods for modal log-
its. In Proceedings of the Tenth International Joint
Conference on Artificial Intelligence, pages 917-
923, 1987.

188

(DistributeDividend -
(agent (Corporation C>3
{object (Cash &Pi

{subjectof @alum - <unit (Dollar ->3
{quantity (19umber If))))))

Crscipiant (Actor &A
G4ubjsctof (Oun -

Cobjact (Stock kS2
iobjsctof (Issued -

Csubject (Corporation C)3)3)3)3)3
<time1 (Time Tl))
<time2 (Time T2)))

<== FOB ALL (Stock S2) (hmber mJ2):

(Issued -
Csubjsct (Corporation C))

<object (Stock S2
<subjsctof (Amount - {unit (Share ->3

{quantity (Humbar 82))))))
{time (Time Tl)))

==,

C(TransfsrProperty -
<agent (Corporation Cl3
Cobjoct (Cash LPI

hbjectof (Value (unit (Dollar -)3
{quantity Ohanber lf>333>3

<tin.1 (Tim. Ti)3
<time2 (Time T2)3)

(DistributeProperty -
Iagent (Corporation C))
(object (Cash &PI

Csubjeatof (Value

(recipient (Actor &A

. (unit (Dollar -)3
(quantity (lhambor If)))))3

Csubjactof (Own -
{object (Stock &SO

Iobjectof (Issued -
(subject (Corporation C)3)3>3>3>3

btoasuro (Stock LS2

<subjectof (Amount - {unit (Share -)3
(quantity (Humbar 192))))))

(timal (Time Tl)3
(time2 (Time T2)3)3.

Figure 1: UCorporation C distributes If dollarsin cash to the owners ofthe stockissued by corporation C."

189

