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Preface

Intelligent recognition techniques, applications, systems and tools are extremely useful in a number
of academic and industrial settings. Specifically, intelligent recognition plays a significant role
in multidisciplinary problem solving. It is extremely useful for personal identification in various
situations like security, banking, police, postal services, etc. In particular, various problems like
character recognition, iris recognition, license plate recognition, fingerprint recognition, signature
recognition, recognition in medical pattern understanding, mine recognition, and many others can be
intelligently solved and automated. In addition to its critical importance in the traditional fields of
character recognition, natural language processing and personal identification, more recently, intelligent
recognition methods have also proven to be indispensable in a variety of modern industries, including
computer vision, robotics, medical imaging, visualization, and even media.

This book aims to provide a valuable resource, which focuses on interdisciplinary methods and
affiliated up-to-date methodologies in the area. It aims to provide the user community with a variety
of techniques, applications, systems and tools necessary for various real-life problems in areas such as:

• Information Technology
• Education
• Security
• Banking
• Police
• Postal services
• Manufacturing
• Mining
• Medicine

• Multimedia
• Entertainment
• Communications
• Data visualization
• Knowledge extraction
• Pattern classification
• Pose estimation
• Virtual reality
• Others

It aims to collect and disseminate information in various disciplines including:

• Pattern recognition
• Artificial Intelligence
• Computer vision
• Computer graphics
• Image processing
• Neural networks
• Cryptography

• Fuzzy logic
• Databases
• Evolutionary algorithms
• Shape analysis and

description
• Numerical analysis
• Others

The major goal of this book is to stimulate views and provide a source from which students,
researchers and practitioners can find the latest developments in the field of intelligent recognition.
Due to speedy scientific developments, there is a great deal of thirst within the scientific community
worldwide to be equipped with state-of-the-art and up-to-date theory and practice to get their problems
solved in diverse areas of various disciplines. Although a good deal of work has been done by
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researchers, yet interest is increasing tremendously everyday due to complicated problems being faced
in academia and industry.

The twenty-four chapters within this book will cover computer-aided intelligent recognition
techniques, applications, systems and tools. The book is planned to be of most use to researchers,
computer scientists, practising engineers, and many others who seek state-of-the-art techniques,
applications, systems and tools for intelligent recognition. It will also be equally and extremely useful
for undergraduate senior students, as well as graduate students, in the areas of computer science,
engineering, and other computational sciences.

The editor is thankful to the contributors for their valuable efforts towards the completion of this
book. A lot of credit is also due to the various experts who reviewed the chapters and provided helpful
feedback. The editor is happy to acknowledge the support of King Fahd University of Petroleum and
Minerals towards the compilation of this book. The project has been funded by King Fahd University
of Petroleum and Minerals under Project # ICS/INT.RECOGNITION/271.

M. Sarfraz
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On Offline Arabic Character
Recognition

Muhammad Sarfraz
Department of Information and Computer Science, King Fahd University of Petroleum and
Minerals, Dhahran 31261, Kingdom of Saudi Arabia

Abdulmalek Zidouri
Department of Electrical Engineering, King Fahd University of Petroleum and Minerals,
Dhahran 31261, Kingdom of Saudi Arabia

Syed Nazim Nawaz
Information Technology Department, College of Business Administration, Jeddah 21361,
Kingdom of Saudi Arabia

Machine recognition of characters has received considerable research interest in the area of pattern

recognition in the past few decades. This chapter presents the design and implementation of a system

that recognizes machine printed Arabic characters. The proposed system consists of four stages:

preprocessing of the text, segmentation of the text into individual characters, feature extraction using

the moment invariant technique and recognition of characters based on two approaches. In the

preprocessing of the text we deal with two problems: isolated pixel removal and drift detection and

correction. Next, the given text is segmented into individual characters using horizontal and vertical

projection profiles. Moment invariants are used for feature extraction for each character. Finally, the

system is trained and the characters are recognized. Recognition of characters is attempted using two

approaches, a syntactic approach and a neural network approach.

1. Introduction

In the past two decades, valuable work has been carried out in the area of character recognition and
a large number of technical papers and reports have been devoted to this topic. Character recognition
systems offer potential advantages by providing an interface that facilitates interaction between man

Computer-Aided Intelligent Recognition Techniques and Applications Edited by M. Sarfraz
© 2005 John Wiley & Sons, Ltd



2 Offline Arabic Character Recognition

and machine. Some of the applications of OCR include automatic processing of data, check verification
and a large variety of banking, business and scientific applications. OCR provides the advantage of
little human intervention and higher speed in both data entry and text processing, especially when the
data already exists in machine-readable forms.

With all the above advantages considered, Arabic character recognition proves to be an interesting
area for research. Many papers concerned with Optical Character Recognition (OCR) have been
reported in the literature [1]. Several recognition techniques have been used over the past few decades
by many researchers. These techniques were applied for the automatic recognition of both machine
and hand-printed characters. An immense amount of research has been carried out on the recognition
of Latin and Chinese characters. Against this background, only few papers have addressed the problem
of Arabic character recognition. One of the main reasons behind this is the difficulty involved in
processing printed Arabic text. The connectivity and variant shape of characters in different word
positions present significant difficulty in processing of the text. Some of the features of Arabic script
that have limited the research in this area are the following:

• Arabic script constitutes 28 characters, in addition to ten numerals.
• Each character can appear in four different shapes/forms depending on the position of the word
(Beginning form, BF; Middle form, MF; Isolated form, IF; and End form, EF). Table 1.1 shows
some Arabic characters in their different forms.

• The Arabic characters of a word are connected along a baseline. A baseline is the line with the
highest density of black pixels. This calls for different segmentation methods from those used in
other unconnected scripts.

• Characters in Arabic script are connected even when typed or printed.
• In addition to connectivity, vowel diacritic signs are an essential part of written Arabic. Vowels are
represented in the form of overscores or underscores (see Figure 1.1).

Table 1.1 Different forms of Arabic characters.
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Figure 1.1 The baseline and diacritics of a given Arabic text.

Figure 1.2 Example of different characters with the same body.

• Many Arabic characters have dots, which are positioned above or below the letter body. Dots can
be single, double or triple. Different Arabic letters can have the same body and differ in the number
of dots identifying them, as shown in Figure 1.2.

• The problem of overlapping makes the problem of determination of spacing between characters and
words difficult.

• Characters in an Arabic script usually overlap with their neighboring letters depending on their
position in the word. The degree of overlapping varies depending on the size and style of the
character.

Figure 1.3 depicts some of the features of Arabic script. As shown in the figure, the ligature in the
beginning and the middle of the figure consists of two vertically stacked characters. The text baseline
is between the two horizontal lines. The text shown in Figure 1.3 is a text with diacritics.

These and other special characteristics make it impossible to directly adapt English or other text
recognition systems to Arabic text recognition.

The rest of the chapter is organized as follows: Section 2 describes the structure of the proposed
OCR system and the work that has been carried out in this area. The preprocessing stage is explained in
Section 3. Section 4 discusses the proposed method for segmentation of text into individual characters.
Section 5 explains feature extraction based on the moment invariant technique by Hu [2]. Section 6

Under segmented
Character

diacritics

ligature
no overlapbaseline

overlap

Figure 1.3 The characteristics of an Arabic text.
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discusses the two approaches that have been used for recognition of characters. Finally, Section 7
discusses experimental analysis and the chapter is concluded in Section 8.

2. Structure of the Proposed OCR System

Figure 1.4 shows the block diagram of the proposed character recognition system. The system involves
four image-processing stages: Preprocessing, Segmentation, Feature Extraction and Classification. The
recognition of any script starts by acquiring a digitized image of the text using a suitable scanning
system. Next, the preprocessing of the image takes place. There are two processes for handling the
acquired image in the proposed system: drift correction and removal of isolated pixels. In the second
stage, the segmentation of the text into individual characters takes place. Segmentation of connected
script text into individual characters is the most important and difficult stage in an Arabic optical
character recognition system. To achieve good recognition rate and performance, a character recognition
system should have a good segmentation algorithm.

Since the early eighties there have been reports about successful research projects in the field of printed
Arabic character recognition. Connectivity of characters being an inherent property of Arabic writing
mean that it is of primary importance to tackle the problem of segmentation in any potentially practical
Arabic OCR system. A state of the art on offline Arabic character recognition can be found in [1].

Segmentation of the text into individual characters can be achieved using a variety of techniques.
Different approaches for the segmentation of the text in to individual characters are presented in [3].
Segmentation of text in to characters can be achieved based on the geometrical and topological features
of the characters [4,5,6], closed contours [7] and horizontal and vertical projection of pixel rows and
columns [8–11].

Document Image

Preprocessing

Pixel Removal

Drift Correction

Segmentation

Char Segmentation

Word Segmentation

Line Segmentation

Classification and

Recognition

Syntactic Approach

Template Matching

Feature Extraction

Neural Approach

RBF Networks

Moment Invariant

Normalization

Figure 1.4 Structure of the proposed OCR system.
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Almuallim and Yamaguchi [4] proposed a structural recognition technique for Arabic handwritten
words. In their approach, an Arabic word is segmented into strokes which are classified based on their
geometrical and topological properties. The relative positions of the classified strokes are examined
and the strokes are combined in several steps into the string of characters that represents the recog-
nized word.

Segmentation of text can also be achieved using closed contours. The SARAT system [7] used outer
contours to segment Arabic words into characters. The word is divided into a series of curves by
determining the start and end points of words. Whenever the outer contour changes sign from positive
to negative, a character is segmented.

Hamami and Berkani [8] employed a simple segmentation method. Their method is based on
the observation of projections of pixel rows and columns, and uses these projections to guide the
segmentation process. In their method, undersegmentation of characters, which is a common problem,
is treated by considering the entire undersegmented set of characters as a single character. On the other
hand, the other common problem of oversegmentation is solved by taking care of the situations in
which it may occur and resolving them accordingly.

After segmentation, numerical features of the character are extracted. Features of the characters are
extracted and matched with the existing ones to identify the character under investigation. Trier et al.
[12] present a survey of the different feature extraction methods available in the literature. Features
can be extracted using template matching [13], closed contours [7], zoning [14] and moment invariants
[2,4,15–18].

Fakir and Hassani [19,20] utilized moment invariant descriptors developed by Hu [2] to recognize the
segmented Arabic printed characters. A look-up table is used for the recognition of isolated handwritten
Arabic characters [21]. In this approach, the character is placed in a frame which is divided into six
rectangles and a contour tracing algorithm is used for coding the contour as a set of directional vectors
using a Freeman Code. Jambi [22] adopted a look-up table for the recognition of isolated Arabic
characters.

Using nonlinear combinations of geometric moments, Hu [2] derived a set of seven invariant
moments, which has the desirable property of being invariant under image translation, scaling and
rotation. Abdul Wahab [15] has shown, based on the work of Hu [2], that there exists a set of invariant
momentum features that can be used for classification purposes.

The step following the segmentation and extraction of appropriate features is the classification and
recognition of characters. Many types of classifier are applicable to the OCR problem. Recognition of
a pattern can be done using a statistical approach (decision theoretic), a syntactic approach or a neural
approach. Among the three, syntactic and neural approaches are showing promising results compared
to the statistical approach.

Chinveerphan et al. [23] and Zidouri et al. [11,24,25] presented a structural approach for the
recognition of Arabic characters and numerals. Their approach is based on the modified Minimum
Covering Run (MCR) expression. The given Arabic text is represented in its MCR form and its feature
values are extracted. From the feature values, the different character shapes are described and the
reference prototypes are built. Finally, the character is identified by matching the data of the document
image with the reference prototypes.

Sadoun et al. [26] proposes a new structural technique for the recognition of printed Arabic text.
Here, the recognition is done by parsing the sentence in which the given image occurs. The advantage
of this technique is that it is font independent.

Among the many applications that have been proposed for neural networks, character recognition
has been one of the most successful. Compared to other methods used in pattern recognition, the
advantages most often stated in favor of a neural network approach to pattern recognition are:

• it requires less input of knowledge about the problem than other approaches;
• it is amenable to high-performance parallel-processing implementation;
• it provides good fault tolerance compared to statistical and structural approaches [1].
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Altuwaijri et al. [16] used a multilayer perceptron network with one hidden layer and back-
propagation learning to classify a character. Their input layer consisted of 270 neurons. Smagt [27]
tested the performance of three general purpose neural networks: the feed-forward network, the Hopfield
network and the competitive learning network for OCR applications. The classification capabilities of
the network are compared to the nearest neighbor algorithm applied to the same feature vectors. The
feed-forward and the competitive learning networks showed better recognition rates compared to the
Hopfield network. Each of the three techniques is based on learning approaches where an adjustment
to the weight is made following each iteration.

One problem with the neural networks approach is that it is difficult to analyze and fully understand
the decision making process [28]. It is often quite difficult to analyze which kind of classifier is most
suitable for a recognition process. An unbiased comparison between each of the recognition processes
is quite difficult and many conditions need to be fulfilled. To have an efficient comparison between the
three approaches, the best statistical or structural classifiers have to be compared with the same quality
neural network classifier [29]. In this work we try to compare the results of the syntactic approach
and the neural network approach for the Arabic OCR problem. The first two stages of preprocessing
and segmentation are common to both approaches. The features used and recognition stage has been
attempted using the two approaches. Results and discussion about the two methods are illustrated. The
syntactic approach gave a higher recognition rate than the neural network approach. Recommendations
on how to improve the recognition rate and performance of the system are given at the end of this
chapter.

3. Preprocessing

In the preprocessing stage for this work we concentrate on removal of non-useful information that can
be considered as noise and skew detection and correction. To remove the noise as isolated pixels for
any given pixel, we check for the existence of a neighboring pixel in all the possible eight directions
(Figure 1.5). If a pixel exists in any of the possible directions, then the pixel is not an isolated pixel.
However, if there is no pixel in any of these directions, then the pixel under investigation is considered
to be an isolated pixel and is removed.

The text to be recognized may be transferred to the system slanted. This affects the accuracy
of segmentation and recognition. To tackle the problem of skew detection and correction we have
employed the following drift correction procedure. First we determine the rotation angle of the text
by computing the tangents of all the line segments that can be constructed between any pair of black
pixels in the image. Then, the corresponding angles are computed. To reduce the computation cost,
one could apply this process just to a selected window of text instead of the whole image, assuming
that the whole page is skewed in the same way everywhere.

The angle that has the highest number of occurrences is assumed to be the angle of rotation of the
image. After determining the angle of rotation, the baseline drift is corrected by rotating the image by

Pixel under
Investigation

Figure 1.5 Eight-connected components.
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(a) (b)

Figure 1.6 (a) Original image skewed by 36 �; (b) image after drift correction.

the same angle in the opposite direction. Figure 1.6(a) and Figure 1.6(b) show the original image and
the result obtained by applying the preprocessing on an image that is severely skewed by 36 degrees
with respect to the horizontal.

4. Segmentation

Segmentation is the process of isolating the individual characters to be passed to the recognition
phase. Character segmentation is the most crucial and the most difficult step in Arabic OCR. A poor
segmentation process produces misrecognition or rejection. The segmentation process for the character
recognition problem can be divided into three levels: line segmentation, word segmentation and
character segmentation. Figure 1.7 illustrates the entire segmentation process for the proposed system.

Figure 1.7 The overall segmentation process.
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4.1 Line Segmentation and Zoning

After preprocessing, the given Arabic text is first segmented into individual lines of text. Segmentation
of text into lines is done using the horizontal projection profile of an image. This is popular because it
is efficient and easily implemented. Next, the segmented line of text is divided into four zones; namely
the baseline zone, the middle zone, the upper zone and the lower zone (Figure 1.8).

4.1.1 Line Segmentation Using Horizontal Projection

First we determine the size of the image. For an image of a particular size we project horizontally
along each row of the image. If the number of black pixels encountered during horizontal projection
is zero, then we just increment the row number, i.e. we project horizontally (determine the number of
black pixels) in the next row. This process is repeated until the number of black pixels along a row
is not equal to zero. When this happens we initialize the row number to a variable. The moment it
happens it means that a line of text has just started. We again repeat the above process but this time we
check for a row number with zero pixels. The occurrence of a row number with zero pixels indicates
the end of the line of text. The values of the row numbers indicate the starting and ending positions of
a line in the text, and the line is extracted.

4.1.2 Zone Classification

The baseline zone is the zone with the highest density of black pixels. In Figure 1.8 this zone can be
identified as the area within the horizontal lines of the histogram. The region just above the baseline
zone is the middle zone and then the upper zone. Anything below the baseline is classified to belong
to the lower zone. Any zone that is just above the baseline and twice the thickness of the baseline
is the middle zone. This middle zone is useful for segmenting the words into individual characters.
Figure 1.8 gives the horizontal projection profile of a sample Arabic text.

4.2 Word Segmentation

Next, the line of text is segmented into words or subwords. This is done using the vertical projection
of the image. Segmentation of a line of text into words is simple and is similar to the horizontal
projection. The only difference between the horizontal and vertical projections is that in the latter, we
count the number of black pixels on each column of the image line by line of text. If the number
of black pixels is not equal to zero, it indicates a connected part and consequently the text is not
segmented. On the other hand, if the number of black pixels in a particular column is equal to zero,
the word is segmented. Figure 1.9 shows the vertical projection profile for a given image.

Figure 1.8 Horizontal projection profile for a given Arabic text.
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Figure 1.9 Vertical projection profile for a given Arabic text.

4.3 Segmentation of Words into Individual Characters

Finally, the word or subword is segmented into characters. First, the vertical projection of the middle
zone is created. The middle zone is the zone right above the baseline. Next, the word is scanned
from right to left. A fixed threshold is used for segmenting the word into characters. Whenever the
value of the vertical profile of the middle zone is less than two thirds of the baseline thickness, the
area is considered a connection area between two characters. Then, any area that has a larger value
is considered as the start of a new character, as long as the profile is greater than one third of the
baseline. This process is repeated until the full length of the line is exhausted.

The overall segmentation procedure is as follows:

Procedure 1: Line segmentation

1. Identify the height and width of the image.

2. Traverse from top to bottom of the entire image.

3. For each row, identify the number of black pixels.

While the number of black pixels is zero:

(a) Increment row number;

(b) Move until the number of black pixels is not equal to zero;

(c) Initialize the row number to startx.

While the number of black pixels is not zero:

(a) Increment startx.

(b) If the number of black pixels is zero:

(a) Assign startx to endx.

(b) Row numbers between startx and endx indicate a line of text.

4. End for.

Procedure 2: Word and character segmentation

1. Project vertically and repeat the above process to segment lines into

individual parts or words.

2. For each word:

(a) Project horizontally and determine the rows with the highest value.

This zone of large row values is the baseline zone.

(b) Middle zone = 2∗baseline zone thickness.

(c) If vertical projection(middle zone area) >1/2 (baseline zone) or

< 2/3 (baseline zone) The area is a connection area.

Else isolate the character.

End if.

3. End for.
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5. Feature Extraction

The next stage in our Arabic recognition system is the feature extraction stage. This is a very important
stage in any recognition system. The performance of the classifier depends directly on the feature
selection and extraction. The main advantage of feature extraction is that it removes redundancy from
the data and represents the character image by a set of numerical features. These features are used by
the classifier to classify the data.

In our implementation, moment invariants used by Hu [2] have been utilized to build the feature
space. Using nonlinear combinations of geometric moments, we derived a set of invariant moments
which has the desirable property of being invariant under image translation, scaling and rotation.

The central moments, which are invariant under any translation, are defined as

Mpq =
�
∫

−�

�
∫

−�

�x−x�p�y−y�qf�x� y�dx dy (1.1)

where

x = M10

M00

� y = M01

M00

and

Mpq =
�∫

−�

�∫

−�
xpyqf�x� y�dxdy













(1.2)

However, for images, the continuous image intensity function f�x� y� is replaced by a matrix, where
x and y are the discrete locations of the image pixels. The integrals in Equations (1.1) and (1.2) are
approximated by the summations:

Mpq =
m
∑

x=0

n
∑

y=0
�x−x�p�y−y�qf�x� y�dxdy (1.3)

Mpq =
m
∑

x=0

n
∑

y=0
xpyqf�x� y�dxdy (1.4)

where m and n are dimensions of the image. The set of moment invariants that has been used by Hu
are given by:

�1 =M20+M02 (1.5a)

�2 = �M20−M02�
2+4M2

11 (1.5b)

�3 = �M30−3M12�
2+ �3M21−M03�

2 (1.5c)

�4 = �M30+M12�
2+ �M21+M03�

2 (1.5d)

�5 = �M30−3M12��M30+M12���M30+M12�
2−3�M21+M03�

2�

+ �3M12−M03��M21+M03�∗ �3�M30+M12�
2− �M21+M03�

2�
(1.5e)

�6 = �M20−M02���M30+M12�
2− �M21+M03�

2�

+4M11�M30+M12��M21+M03�
(1.5f)

�7 = �3M21−M03��M30+M12���M30+M12�
2−3�M21+M03�

2�

+3�M21−M03��M21+M03�∗ �3�M30+M12�
2− �M21+M03�

2�
(1.5g)
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Table 1.2 Moment invariants
represented by a 4×4 array.

M 0 1 2 3

0 X X
√ √

1 X
√ √

X
2

√ √
X X

3
√

X X X

Table 1.3 Moment invariant values for some characters.

� � � � ¨

�1 −1.180 −1.422 −1.595 −1.536 0.375
�2 −4.027 −5.823 −4.790 −6.244 0.636
�3 −7.293 −9.088 −7.642 −8.935 −2.668
�4 −6.459 −8.621 −10.190 −13.024 −2.804
�5 −13.338 −17.739 −19.181 −24.368 −5.541
�6 −8.576 −11.578 −12.584 −16.325 −2.582
�7 −13.175 −17.404 −20.016 −23.981 −9.058

These functions can be normalized to make them invariant under a scale change by using the
normalized central moments instead of the central moments. The normalized central moments are
defined by

mpq =
Mpq

Ma
00

where a= �p+q�
2

+1 (1.6)

These, when substituted into the above equations, will give seven moments which are invariant to
translation, scale change and rotation.

The �s have large dynamic values. Thus, it was found that it was more practical to deal with the
logarithms of the magnitudes of the �s [15] Thus, the seven moment invariants used in the proposed
system are replaced by their logarithmic values.

In the final implementation to consider all the four possible positions of the characters, the four
shapes of the letter are represented in the feature space. From Table 1.2 it can be noted that for seven
moment invariants if a 4×4 matrix is constructed, only moments M02�M03�M11�M12�M20�M21�M30

(upper diagonal elements) are used. However, if the number of moments is increased, other cells are
also expected to be filled. For each character, the above moment invariant descriptors are calculated
and fed to the artificial neural network. Table 1.3 shows the rounded values of � obtained for some of
the characters in the training set. Each of the characters is a 100×100 binary image.

6. Recognition Strategy

The process of recognizing a pattern is basically dealt with by three possible approaches: statistical,
syntactic and neural approaches [30]. The statistical approach is based on decision making (the
probabilistic model), the syntactic approach deals with the structural description of pattern (formal
grammar) and the neural approach is based on training the system with a large input data set and
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storing the weights (stable state), which are used later for recognition of trained patterns. A survey on
character recognition shows that the syntactic and neural approaches have gained widespread attention
compared to the decision theoretic approach. This is due to the simplicity and efficiency of the first
two approaches compared to the latter. Not surprisingly, in our system we also discuss the recognition
of Arabic characters using the syntactic and neural approaches.

6.1 Recognition Using the Syntactic Approach

In the structural approach, recognition is based on the stored structural pattern information. The
information stored is the pixel value for the investigated character and the prototyped character. For
the proposed system, the pattern of the character is stored as a matrix. Each cell stores the information
related to each pixel of a particular character. The pixel value can be either 0 (indicating a black pixel),
or 1 (indicating a white pixel). Recognition is done by matching the investigated character with the
prototype character. The segmented character is passed through the following two stages to achieve
recognition.

1. Normalization.
2. Recognition using template matching.

6.1.1 Normalization

In this phase, first the extracted characters are refined to fit the characters into a window without white
spaces on all four sides. Figure 1.10(a) shows the template of the extracted character ‘�’. Now, each
character image is normalized to a size of 30×30. Figure 1.10(b) shows the character ‘�’ normalized
to 30× 30. The normalization is done using a window to view port transformation. This mapping is
used to map every pixel of the original image to the corresponding pixel in the normalized image.
The image obtained is invariant to scaling because the characters were refined (i.e. all the white
spaces on the top, bottom, left and right were removed, so as to fit the character exactly into the
window).

6.1.2 Template Matching using the Hamming Distance

Template matching for character recognition is straightforward and is reliable. This method is more
tolerant to noise. In this approach, the templates are normalized to 30× 30 pixels and stored in the

Figure 1.10 (a) Original template for character ‘�’ (b) normalized 30×30 template for character ‘�’.
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database. The extracted character, after normalization, is matched with all the characters in the database
using a Hamming distance approach. This approach is shown in Equations (1.7) and (1.8).

nrows
∑

i=1

ncols
∑

j=1
mismatchi�j (1.7)

where

mismatchi�j =
{

1� if originali�j �= extractedi�j
0� if originali�j = extractedi�j

(1.8)

where nrows and ncols are the number of rows and columns in the original and extracted images. In
our case, nrows = ncols = 30, as the image is normalized to 30× 30. The mismatches for each of
the extracted characters are found by comparison with the original characters in the database, and the
character with the least mismatch value is taken as the recognized character. The database consists of
a total of 33 classes of character. There are 149 characters in all the 33 classes of character. In addition
to the usual 28 classes of character, oversegmented ones (such as ¿) are also included in the database.

6.2 Recognition Using the Neural Network Approach

Characters are classified according to their computed modified moment invariants by means of artificial
neural networks. Among the many applications that have been proposed for neural networks, character
recognition has been one of the most successful.

Many neural network architectures have been used in OCR implementation. MLP is usually a
common choice. Unfortunately, as the number of inputs and outputs grow, the MLP grows quickly
and its training becomes very expensive. In addition, it is not easy to come up with a suitable network
design and many trial-and-error cycles are required. Radial Basis Function (RBF) networks, on the
other hand, offer better features for recognition applications. In addition to highly efficient training, no
design details are required since the network automatically adjusts its single hidden layer.

However, before implementing the neural network, numerical features of the character are extracted
and the system is trained to associate the segmented character with the desired character. In our
implementation, we used the invariant moment technique by Hu [2] to build the feature space. This
measure is invariant with respect to size, translation and scaling.

Characters are classified according to their computed moment invariants by means of artificial neural
networks. In our method, we used a Radial Basis Function (RBF) network with a back-propagation
error learning algorithm. In implementing the RBF network architecture, the Brain Construction Kit
(BCK) has been a very helpful tool. BCK is a Java package developed in the public domain that
enables users to create, train, modify and use Artificial Neural Networks (ANNs).

RBF networks have been successfully applied to solve some difficult problems by training them in a
supervised manner with an error back-propagation algorithm [31]. This algorithm is based on the error
correction learning rule. Basically, error back-propagation learning consists of two passes through the
different layers of the network: a forward pass and a backward pass [31]. In the forward pass, an input
vector is applied to the nodes in the input layer and its effect propagated through the network layer by
layer. Finally, a set of output is produced as the actual response of the network. During the forward
pass, the weights of the network are all fixed. During the backward pass, the weights of the network
are all adjusted in accordance with the error correction rule, i.e. the actual response of the network
is subtracted from the desired response to produce an error signal. This error is then back propagated
through the network and the weights are adjusted to make the actual response of the network move
closer to the desired response. Figure 1.11 shows the block diagram of the implemented RBF network.
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Figure 1.11 Three-layered radial basis function network.

In an RBF network there is an important difference between a normal synapse and a
BCKNetConnection. During a forward pass through a network, in which an input vector is fed into the
input layer and each non-input neuron evaluates a response to the supplied input, synapses are used
to transfer the output of one neuron to the input of another. BCKNetConnections cause the output of
the source neuron to provide the output of the target neuron, that is, during a forward pass through
cascaded networks, the output vector of the source network is used as the input vector for the target
network, not as inputs to the neurons in the target network input layer. The activation is calculated as
the Euclidean distance of the weight vector from the input vector, output is calculated using a Gaussian
transfer function. This neuron contains an extra parameter, the standard deviation value, for use in the
transfer function.

The RBF network consists of three layers, an input layer of dummy neurons, a hidden layer of radial
neurons and an output layer of linear neurons. Unlike the other architectures, which contain a fixed
number of nodes, the RBF architecture is dynamic, in that it adds neurons to its hidden layer as it
is trained. There are a total of 20 nodes in the hidden layer in the implemented systems, determined
heuristically. The input layer is composed of seven neurons. These seven input neurons are the seven
moment invariant features extracted from the feature extraction phase. Based on the input features that
are passed to the neural network, the output layer gives the output character belonging to a particular
class. The number of the output depends on the number of the characters in the character set. The
output layer consists of five neurons, each neuron represented by a bit ‘1’ or ‘0’. For example, for the
character ‘®’, the output layer gives the output ‘00011’. This output is then converted to a decimal
value and this decimal value represents a particular character of that class. For example, ‘00011’ when
converted to a decimal value gives a value 3, which is the index for the class of character ‘®’.
The learning time is reduced by partitioning the classes of characters into four sets, one for each

character form (Arabic characters have four forms: beginning, middle, end and isolated). The training
set is composed of a total of 33 classes of character. There are 149 characters in all the 33 classes of
character. In addition to the usual 28 classes of character, oversegmented ones (such as ¿) are also
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included in the training set. The training document that is passed to the neural network is a 100×100
character image.

7. Experimental Results and Analysis

This section presents the implementation details and the results obtained using the proposed system.

7.1 System Training

In the syntactic approach, the training set is sampled data. The Hamming distance of the investigated
character is matched with each character present in the sample data. The sampled data set consists of
a total of 149 characters. To make the reference prototypes cover a wide range of possible variations
without causing misrecognition, the sample data may be increased as new character samples are
encountered. In the neural approach, the training of the system is based on the features extracted using
the moment invariant technique. First, the RBF network computes an output for a given input. Next, the
training of the system takes place using a weight adjustment strategy until the actual output converges
with the desired output.

7.2 Experimental Set-up

Experiments have been performed to test the above system. The developed Arabic text recognition
system has been tested using randomly selected text. The system is designed in JDK 1.4.1 for the
recognition of a popular font called Naskh font. The system developed is a single font, multisize
system. The image to be tested is captured using a scanner and is passed to the system as a bitmap
file. The system has been tested with many different sizes of Naskh font. The experiments for the
above system were implemented under different situations, i.e. the experiments were carried out for
both document images in normal shapes and images that are skewed with some angle of slant.

As stated earlier, classification and recognition of characters is done using both the structural
approach and the neural approach. In the structural approach, after the text is segmented into characters,
each segmented character is normalized to a 30×30 image. The normalized character is matched pixel
by pixel with the characters present in the training set using the Hamming distance approach. The
character with the least distance is considered to be the output character. Even though this technique
is costly in terms of time, the accuracy of the system is greatly improved.

In the neural approach, first the features of the character are extracted and the system is trained for
the extracted features. The RBF network adopted consists of three layers, an input layer of dummy
neurons, a hidden layer of radial neurons and an output layer of linear neurons. The input to the
system is the seven moment invariant features. The single hidden layer consists of 20 nodes. Based
on the input features that are passed to the neural network, the output layer gives the output character
belonging to a particular class. The training set is composed of a total of 33 classes of character. There
are 149 characters in all the 33 classes of character. The training document that is passed to the neural
network is a 30×30 character image.

7.3 Results Achieved

The implemented system shows a recognition rate of 89%–94% using the structural approach, and
an 83% recognition rate using the neural network approach. When recognition is performed on small
words or text with isolated characters ‘»�·�¨,	¢è , 
¢è’, the recognition rate achieved using the structural
approach is 98–100%, and the recognition rate achieved using neural networks is 88%.
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The experimental results show that the shortcoming of the system using neural networks is mainly
due to the closeness among the features of the characters. The features obtained using the moment
invariant technique are not unique themselves, but closely related to the features of other characters.
This prevents the neural network from clear classification. However, one possible solution is to improve
the number of moments for better recognition. Dabi et al. [18] have shown that if the number of
moments used in the feature extraction technique is increased to 11, the recognition rate can be
improved considerably.

Figure 1.12(a) shows a test document used for verification of the system accuracy. The recognition
rate achieved for this image using the syntactic approach was 94%, and using the neural approach
was 83%. Most of the failures in the recognition of the text using the syntactic approach are due
to improper segmentation of the text into individual characters. To improve the accuracy using the
syntactic approach, one solution is to increase the number of classes in the training set. The test

Figure 1.12 (a) Image used to test the system after preprocessing; (b) horizontal and vertical
projections of the test document image.
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document consisted of approximately 580 characters. Figure 1.12(a) shows an image that has been
used to test the system. The original image was skewed by 18 degrees with respect to the horizontal.
Figure 1.12(a) shows the resultant image when the image is passed through the preprocessing stage
of the proposed system. The resultant image is inclined to zero degrees with respect to the horizontal.
This shows that the proposed system is highly invariant to the rotation transformation. Figure 1.12(b)
shows the horizontal and vertical projections of this test document image.

8. Conclusion

A method for offline recognition of Arabic text has been presented. Two approaches have been
investigated: the syntactic approach and the neural network approach. In the preprocessing stage, we
solved the problem of skew when scanning the documents. Even though the system developed is
being tested for Naskh font only, it provides an ample scope for research towards the development of
a system for multifont recognition. Extending the system to other most used fonts by extending the
existing technique can be of great interest. We have shown the algorithms in detail for both recognition
approaches and have suggested ways of improving the system. On the general improvement of the
recognition rate using neural networks, an increase in the number of features extracted from seven
to nine, or some higher number, may help in increasing the recognition rate. Other improvements on
increasing the accuracy of the system include: computing the variance between the different momentum
values obtained for a character; and trying to increase the variance among the momentum values. This
will be important, especially for multifont recognition. The system is implemented in Java and is still
in progress.

Acknowledgment

The authors also acknowledge the support of King Fahd University of Petroleum and Minerals for
funding this work under the Project No. EE/AUTOTEXT/232.

References

[1] Amin, A. “Off-Line Arabic Character Recognition system: State of the Art,” Pattern Recognition, 31(5),
pp. 517–530, 1998.

[2] Hu, M. K. “Visual Pattern Recognition by Moment Invariant,” IRE Transactions on Information Theory,
IT – 8, pp. 179–187, 1962.

[3] Amin A. and Al-Sadoun, H. B. “A new Segmentation Technique of Arabic Text,” 11th IAPR, The Hague 2,
pp. 441–445, 1992.

[4] Almuallim, H. and Yamaguchi, S. “A method of recognition of Arabic Cursive Handwriting,” IEEE

Transaction Pattern Analysis and Machine Intelligence, PAMI – 9, pp. 715–722, 1987.
[5] Cheung, A., Bennamoun, M. and Bergmann N. W. “An Arabic optical character recognition system using

recognition-based segmentation,” Pattern Recognition, 34, pp. 215–233, 2001.
[6] Zidouri, A. “A Structural Description of Binary Document Images: Application for Arabic Character

Recognition,” Proceedings of International Conference On Image Science, Systems, and Technology,
Las Vegas, I, pp. 458–464, June 25–28, 2001.

[7] Margner, V. “SARAT: A system for the Recognition of Arabic Printed Text,” Proceedings of the 11th Inter-

national Conference on Pattern Recognition, pp. 561–564, 1992.
[8] Hamami, H. and Berkani, D. “Recognition System for Printed Multi-Font and Multi-Size Arabic Characters,”

Arabian Journal for Science and Engineering, 27(1B), pp. 57–72, 2002.
[9] Nazim Nawaz, S., Sarfraz, M., Zidouri, A. B. C. and Al-Khatib, W. “An Approach to Offline Arabic Character

Recognition using Neural Networks,” 10th International Conference on Electronics, Circuits and Systems,

ICECS 2003, Sharjah, UAE, 2003.



18 Offline Arabic Character Recognition

[10] Sarfraz, M., Nazim Nawaz, S. and Al-Khoraidly, A. “Offline Arabic Text Recognition System,” International
Conference on Geometric Modelling and Graphics, GMAG 2003, London, England, 2003.

[11] Zidouri, A. B. C., Sarfraz, M., Nazim Nawaz, S. and Ahmed, M. J. “PC Based Offline Character Recognition
System,” Seventh International Symposium on Signal Processing and its Applications, ISSPA 2003, Paris,
France, 2003.

[12] Trier, O. D., Jain, A. K. and Taxt, T. “Feature Extraction methods for character recognition: A Survey,”
Pattern Recognition, 29(4), pp. 641–662, 1996.

[13] Tubbs, J. D. “A Note on Binary Template Matching,” Pattern Recognition, 22(4), pp. 359–365, 1989.
[14] Mori, S. Suen, C. Y. and Yamamoto, K. “Historical review of OCR research and development,” Proceedings

of the IEEE, 80, pp. 1029–1058, 1992.
[15] Abdul Wahab, O. A. “Application of Artificial Neural Networks to Optical Character Recognition,” Thesis

Dissertation, King Fahd University of Petroleum and Minerals, Dhahran, K. S. A, June 1994.
[16] Altuwaijri, M. and Bayoumi, M. “Arabic text recognition using Neural Networks,” Proceedings International

Symposium on Circuits and Systems – ISCAS’94, pp. 415–418, 1994.
[17] Boyce, J. F. and Hossack, W. J. “Moment Invariants for pattern recognition,” Pattern Recognition Letters, 1,

pp. 451–456, 1983.
[18] El-Dabi, S. S., Ramsis, R. and Aladin Kamel, R. “Arabic Character Recognition System: A Statistical approach

of recognizing cursive typewritten text,” Pattern Recognition, 23(5), pp. 485–495, 1990.
[19] Fakir, M. and Hassani, M. M. “Automatic Arabic Character recognition by moment invariants,” Colloque

international de telecommunications, Fes, Morocco, pp. 100–103, 1997.
[20] Fakir, M., Hassani, M. M. and Sodeyama, C. “Recognition of Arabic Characters using Karhunen–Loeve

Transform and Dynamic Programming,” Proceedings of the IEEE International Conference on Systems, Man

and Cybernetics, 6, pp. 868–873, 1999.
[21] Sadallah, S. and Yacu, S. “Design of an Arabic Character Reading Machine,” Proceedings of Computer

Processing of Arabic Language, Kuwait, 1985.
[22] Jambi, K. “Arabic Character Recognition: Many approaches and one Decade,” Arabian Journal for Science

and Engineering, 16, pp. 499–509, 1991.
[23] Chinveerphan, S. and Zidouri, A. B. C. “Modified MCR Expression using Binary Document Images,” IEICE

Transactions Information & Systems, E78 –D(4), pp. 503–507, 1995.
[24] Zidouri, A. B. C. Arabic Document Image Analysis and Recognition Based on Minimum Covering Run, Thesis

Dissertation, Tokyo Institute of Technology, Japan, 1995.
[25] Zidouri, A. B. C., Chinveerphan, S. and Sato, M. “Classification of Document Image Blocks using Stroke

Index,” IEICE Transactions Information & Systems, E78 –D(3), pp. 290–503, 1995.
[26] Al–Sadoun, H. B. and Amin, A. “A new structural technique for recognizing printed Arabic Text,” International

Journal on Pattern Recognition and Artificial Intelligence., 9, pp. 101–125, 1995.
[27] Smagt, P. P. V. “A Comparative Study of Neural Network Algorithms Applied to Optical Character

Recognition,” IEA/AIE, 2, pp. 1037–1044, 1990.
[28] Duin, R. P. W. “Superlearning and Neural Network Magic,” Pattern Recognition Letters, 15, pp. 215–217,

1994.
[29] Jain, A. K. and Mao, J. “Neural Networks and pattern recognition,” In Proceedings of the IEEE World congress

on Computational Intelligence, Orlando, Florida, 1994.
[30] Schalkoff, R. J. Pattern Recognition: Statistical, Structural and Neural Approaches, John Wiley and Sons

Inclusive.
[31] Haykin, S. Neural Networks: A Comprehensive Foundation, second edition, Prentice Hall, 1999.



2

License Plate Recognition System:
Saudi Arabian Case

Muhammad Sarfraz
Department of Information and Computer Science, King Fahd University of Petroleum and
Minerals, Dhahran 31261, Kingdom of Saudi Arabia

Mohammed Jameel Ahmed
Information Technology Department, College of Business Administration, Jeddah 21361,
Kingdom of Saudi Arabia

License Plate Recognition (LPR) is one kind of intelligent transport system and is of considerable

interest because of its potential applications to areas such as highway electronic toll collection, traffic

monitoring systems and so on. It was developed to identify vehicles by the contents of their license

plate. Research is in progress for the recognition of Korean, Chinese, European and other license

plates. However, the proposed work seems to be the first attempt towards the recognition of Saudi

Arabian license plates.

This chapter proposes an automatic license plate recognition system for Saudi Arabian license plates.

The system captures images of the vehicles with a digital camera. An algorithm for the extraction of

the license plate has been designed and an algorithm for segmentation of characters is proposed. The

performance of the system has been investigated on real images of about 610 vehicles captured under

various illumination conditions. Recognition of about 95% shows that the system is quite effective.

1. Introduction

Vehicle License Plate Recognition (LPR) is one form of automatic vehicle identification system. Real-
time LPR plays a major role in automatic monitoring of traffic rules and maintaining law enforcement
on public roads. This area is challenging because it requires an integration of many computer vision
problem solvers, which include object detection and character recognition [1]. The automatic identifi-
cation of vehicles by the contents of their license plates is important in private transport applications.
There are many applications of such recognition systems, some of them are: border crossing control;

Computer-Aided Intelligent Recognition Techniques and Applications Edited by M. Sarfraz
© 2005 John Wiley & Sons, Ltd
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identification of stolen vehicles; automatic parking attendants; petrol station forecourt surveillance;
speed limit enforcement; security; and customer identification enabling personalized services [2].

There are multiple commercial license plate recognition systems available in the current literature [3].
Applications such as SeeCar, Perceptics, and Pearpoint are commercially available and some of the
research projects include Esprit 5184 Locomotive [4], software architecture using DLLs [2]. The steps
involved in recognition of a license plate are image acquisition, license plate extraction, segmentation
and recognition. Image acquisition is the first step in an LPR system. The current literature discusses
different image acquisition methods. Naito et al. [5] developed a sensing system that uses two CCDs
(Charge Coupled Devices) and a prism to split an incident ray into two lights with different intensities.
Salgado et al. [4] used a sensor subsystem involving a high-resolution CCD camera supplemented by
a number of new digital operation capabilities. The proposed system uses a high-resolution digital
camera for image acquisition.

License plate extraction is the key step in an LPR system, it influences the accuracy of the system
significantly. Different approaches for the extraction of the license plate depending upon the background
color of the image are presented in [6]. Hontani et al. [7] proposed a method for extracting characters
without prior knowledge of their position and size in the image. Kim et al. [1] used two neural network-
based filters and a postprocessor to combine two filtered images in order to locate the license plates.
Park et al. [8] devised a method to extract Korean license plates depending on the color of the plate.
The proposed approach uses matching of vertical edges. This approach involves three steps, vertical
edge detection, filtering and vertical edge matching.

In the segmentation phase, individual characters are isolated from the license plate. Various
approaches have been proposed in the literature. Nieuwoudt et al. [9] used region growing for
segmentation of characters. Morel et al. [10] used a Partial Differential Equation (PDE) based technique
for image segmentation. The proposed approach for segmentation is based on vertical projections on
the extracted license plate and then counting the number of black pixels in each column.

Recognition of characters is the last phase in the LPR system. A wide variety of approaches have
been considered for individual character recognition. Cowell et al. [11] discussed the recognition of
individual Arabic and Latin characters. Their approach identifies the characters based on the number
of black pixel rows and columns of the character, and comparison of those values to a set of templates
or signatures in the database. Cowell et al. [12] used thinning of Arabic characters to extract essential
structural information, which may be later used for the classification stage. Mei Yu et al. [6] and Naito
et al. [5] used template matching. In the proposed system, recognition is done using template matching
based on the Hamming distance between the characters.

The chapter is organized as follows: Section 2 provides an overview of the overall system, listing
different stages in the LPR system. The image acquisition phase is explained in Section 3. Section 4
discusses the proposed method for license plate extraction. Section 5 gives a brief description of
the segmentation of individual characters using vertical projection with pixel count. Section 6 deals
with recognition of characters based on the Hamming distance of each character. Section 7 discusses
experimental analysis and the chapter is concluded in Section 8.

2. Structure of a Typical LPR System

The system presented is designed to recognize license plates from the front and rear of the vehicle.
Input to the system is an image containing the license plate acquired by a digital camera, and its output
is the characters on the license plate. The system consists of four modules: image acquisition, license
plate extraction, segmentation and recognition of individual characters. The structure of the system is
shown in Figure 2.1.

The first task is to acquire the image of a vehicle containing the license plate using a digital camera.
The second task then extracts the region that contains the license plate. The third task isolates the six
characters (consisting of three letters and three numerals) and the last task identifies the individual
characters.
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License Plate

Extraction

Vertical Edge Detection

Size and Shape Filtering

Vertical Edge Matching

B/W ratio and Plate Extraction

Segmentation

Recognition

NormalizationResult

Template Matching

Pixel Count Strategy

Image Acquisition

Figure 2.1 The structure of a license plate recognition system.

3. Image Acquisition

This is the first phase in the LPR system. There are basically three ways of acquiring an image [11].
They are as follows:

• using a conventional analog camera and a scanner;
• using a digital camera;
• using a video camera and a frame grabber (capture card) to select a frame.

The first method, using a conventional analog camera, is clearly not appropriate for the LPR system
since it is time consuming, tedious and impractical. The second method, i.e. using a digital camera, is
more practical, cost effective and reliable. The third one uses a video camera with a frame grabber,
which could be used in a real-life system to make the system automated, and is suitable for real-time
processing.

In the proposed system, a high-resolution digital camera is used to acquire the image. This is shown
in Figure 2.2(a). The acquired image is first converted to a grayscale image. Conversion to a grayscale
facilitates the extraction of the license plate. The grayscale image is shown in Figure 2.2(b).

4. License Plate Extraction

License plate extraction is the key step in an LPR system, it influences the accuracy of the system
significantly. The goal of this phase is, given an input image, to produce a number of candidate regions
with high probability of containing a license plate. In the adopted approach, extraction of the license
plate is divided into three steps which are explained in the following subsections.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.2 Results showing different stages in a license plate recognition system (a) original image;
(b) grayscale image; (c) vertical edges; (d) vertical edge regions; (e) extracted license plate; (f) cropped
license plate; (g) binary image; (h) histogram depicting the vertical projections on (g).
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4.1 Vertical Edge Detection

For the transformed grayscale image, its corresponding vertical edges are detected using Sobel or
Prewitt edge detectors. The proposed system uses the Sobel edge detector because it shows better
results. The threshold used by the edge detector is dynamic because the system takes an automatic
value from the algorithm. The Sobel edge detector uses a 3× 3 mask, which is applied on the input
image to give the resultant edged image. The edge detection algorithm is not time consuming, since the
algorithm used is a built-in feature of MATLAB6.1 [13]. Figure 2.2(c) shows an image with vertical
edges. It is observed that most of the vehicles usually have more horizontal lines than vertical lines [6].
To reduce the complexity of the algorithm, the vertical edges are detected. If two of the vertical edges
are detected correctly, the four corners of the license plate can then be located. This helps in extracting
the license plate exactly from the input image, even if it is out of shape.

4.2 Filtering

Filtering is basically used to remove objects that do not satisfy some specific features. In the proposed
approach, the seed-filling algorithm by Smith [14] is used to filter the unwanted objects. After filtering,
the result is shown in Figure 2.2(d). The process of filtering starts by first detecting all the regions.
Any group of white pixels is called a region if they are eight-connected pixels. In Figure 2.3, any of
the eight pixels around the shaded pixel are called eight-connected pixels of the shaded pixel.

Once all the pixels of a region are marked, the region is checked for its size and shape. Through
filtering, our target is to select the regions that can serve as possible license plate boundaries and
discard the others by filling black colors in their place.

To achieve this target, any region of interest must be a straight line of specific length. So, for each
region, the size and shape filter is applied. The first pixel of the region is marked as P0 and the last is
marked as Pend.

An overall filtering algorithm is presented as follows:

For each row:

1. Traverse from first column to last column (West to East).

2. If a white pixel is encountered and is not marked as part of any other

region:

(a) Select the pixel as P0.

(b) Select the white pixels on East, SW, South and SE recursively until

a white pixel having no eight-connected white pixel is found.

(c) Mark the last white pixel as Pend.

(d) if the slope and distance of line P0�Pend falls in the desired range:

(i) mark all the pixels in the region as they are a part of a selected

region.

else:

(i) fill all the pixels in the current region with black color,

i.e., discard them.

4. End for.

Figure 2.3 Eight-connected components.
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Pend

P0

Figure 2.4 Example of an eight-connected region.

The shape of the region is detected through the slope of the line joining P0 and Pend. The size of
the region is the distance between P0 and Pend. If the distance falls within the thresholded value, it is
taken as the region of interest. A threshold of 50 to 100 pixels is taken as the distance between P0 and
Pend with an angle of deviation of around ±15�. The region in Figure 2.4 is discarded on the basis of
the slope of the line P0�Pend.

4.3 Vertical Edge Matching

In this phase, the width to height ratio of the license plate is used to match the vertical edges for
finding the region of where there is a probability of a license plate. The ratio of width to height
of Saudi Arabian license plates is about 2:1. After the filtering step, the image in Figure 2.2(d) is
extracted, having several vertical regions. Only two of the regions could be the possible boundary of
the license plate. The task of vertical edge matching is to find out the correct pair of regions that
include the license plate. To achieve this task, the width to height ratio of the rectangular area between
two vertical regions is compared with the actual standard ratio of a license plate. The standard ratio
is taken between 1.75 : 1 to 2.25 : 1. Figure 2.2(e) shows the extracted license plate for the matched
vertical edges.

An algorithm for vertical edge matching is as follows:

1. For i= 1 to no. of extracted regions

2. For j = i+1 to no. of extracted regions

(a) if width to height ratio of region (i) and region (j) falls in the

range 1.75:1 to 2.25:1

(i) select the two regions in the list of possible license plate

regions.

3. End for.

4. End for.

Figure 2.5 explains how the vertical edge matching algorithm computes the horizontal and vertical
distances between two regions. In the figure, Region 1 and Region 2 are processed for the possibility
that they form two vertical edges of a license plate. The width to height ratio of Region 1 and Region
2 certainly does not match with the specified ratio (i.e. between 1.75:1 to 2.25:1), so this pair cannot
be the region of interest. In Figure 2.5, Region 2 and Region 3 are the possible pair of vertical edges
of the license plate.
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Region 1

Region 2

Region 3

Width

Height

Figure 2.5 Computation of horizontal and vertical distances between two extracted regions.

 

 

Figure 2.6 Three extracted license plate regions of a vehicle satisfying the width to height constraint.

In some cases, there is a possibility of more than one pair of regions that satisfy the above threshold.
This case is shown in Figure 2.6, where there are three regions satisfying the constraint of width to
height ratio. To overcome this problem, the black to white ratio of these regions is taken, to get the
probable license plate.
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4.4 Black to White Ratio and Plate Extraction

This phase is considered when more than one pair of probable license plate regions are obtained
after the matching of vertical regions for their width to height ratio, as shown in Figure 2.6. All the
coordinate points for every pair of matched regions are stored and the black to white ratios of the
stored regions are calculated with respect to Figure 2.2(c). Since the characters on the license plate in
Figure 2.2(c) contain white pixels, so the B/W ratio for the probable plate region is much less than
the ratio of any of the extracted regions which do not contain a license plate. Therefore, if the pair is
a possible license plate, then the ratio is within a specified threshold. The threshold is selected based
on tests performed on a number of plates.

5. License Plate Segmentation

After the extraction phase, the license plate is segmented into individual characters. To ease the process
of identifying the characters, it is preferable to divide the extracted plate into six images. This is
done because the Saudi Arabian license plates consists of six characters, with three letters and three
numerals.

For the segmentation phase, the proposed strategy used is based on vertical projections and counting
the number of pixels in each column. In the proposed strategy, first the upper part (about 30 %) of
the extracted license plate is cropped to remove �è'��À�¨. This is shown in Figure 2.2(f). Presence
of bolts and logos in the license plates may prove cumbersome during the segmentation process.
The Saudi Arabian license plate template does not contain any logos. Since the bolts are usually
on the upper part of the plate, they are removed in the process of cropping. The image is then
converted into binary form (as shown in Figure 2.2(g)) and vertical projections are made. Then,
the number of black pixels in each column is counted and a histogram is plotted, as shown in
Figure 2.2(h). The characters are segmented depending on the transition from a crest to its corresponding
trough. In this strategy, some threshold is taken to avoid unnecessary segmentation by some unwanted
black pixels.

6. Character Recognition

This is the last phase in the LPR system. This phase is divided into two stages:

1. Normalization of individual characters.
2. Recognition using template matching.

6.1 Normalization

In this phase, first the extracted characters are refined to fit the characters into a window without white
spaces on all four sides. Figure 2.7(a) shows the template for the extracted character ‘�’ with respect
to the above refinement. Now, each character image is normalized to a size of 40×40. Figure 2.7(b)
shows the character ‘�’ normalized to 40×40. The characters are normalized using a window to view
port transformation. This mapping is used to map every pixel of the original image to the corresponding
pixel in the normalized image. The image obtained is in variant to scaling because the characters were
refined (i.e. all the white spaces on the top, bottom, left and right were removed, so as to fit the
character exactly into the window).



Experimental Analysis and Results 27

(a) (b)

Figure 2.7 (a) Original template for character, ‘�’; (b) normalized 40×40 template for character ‘�’.

6.2 Template Matching

Template matching for character recognition is straightforward and is reliable. This method is more
tolerant to noise than the structural analysis method. In this approach, the templates are normalized
to 40×40 pixels and stored in the database. The extracted character, after normalization, is matched
with all the characters in the database using the Hamming distance approach. This approach is shown
in Equation (2.1).

nrows
∑

i=1

ncols
∑

j=1
mismatchi�j (2.1)

where

mismatchi�j =
{

1� if originali�j �= extractedi�j
0� if originali�j = extractedi�j

where nrows and ncols are the number of rows and columns in the original and extracted images. In
our case, nrows = ncols = 40, as the image is normalized to 40× 40. The mismatches for each of
the extracted characters are found by comparison with the original characters in the database, and the
character with the least mismatch value is taken as the recognized character.

In the case of Saudi Arabian license plates, containing three letters and three numerals, recognition
is done by matching each extracted character to all the 38 (28 letters and ten numerals) characters in
the database.

7. Experimental Analysis and Results

Experiments have been performed to test the above system. The system is designed in MATLAB6.1
[13] for recognition of Saudi Arabian license plates. The image to the system is a grayscale of size
640× 480. The test images were taken under various illumination conditions (i.e. noon and in the
evening).

The experiments for the above system were performed under different situations, i.e. the experiments
were carried out for the following cases:

• license plates in normal shapes (as shown in Figure 2.8);
• license plates that are leaning with some angle of view (as shown in Figure 2.9);
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Figure 2.8 The overall process of an LPR system with the front part of the car in view and the
license plate in normal shape.

• license plates that have a similar color to the car (as shown in Figure 2.10);
• dirty license plates (as shown in Figure 2.11).

The whole system is working fine, achieving a high recognition rate. Table 2.1 gives results for the
percentage recognition of license plate extraction, segmentation and character recognition. A failure
results if a character of the license plate is incorrectly interpreted. This normally happens due to the bad
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Figure 2.9 The overall process of an LPR system with the rear part of the car in view and slanted
towards the right, taken before sunset.

quality of the extracted plate. It is shown that the system has correctly recognized 581 license plates
out of 610 test images. The system was implemented on PIII (700MHz) using MATLAB6.1 [13].

The experimental results show that the shortcoming of the proposed system is mainly due to bad
quality of the input image during the acquisition stage (i.e. the bad quality is due to the presence
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Figure 2.10 The overall process of an LPR system showing a car having a similar color to the license
plate body.

of dirty or unclear license plates), or unclear detection or extraction of the edges. The segmentation
phase gives good results because the image is converted into binary form. In character recognition
there is some form of misrecognition. This is due to the nuts and bolts appearing within the character.
Otherwise, there is a standard font for all the Arabic characters used in the license plates, which does
not cause any problem during the recognition phase.
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Figure 2.11 The overall process of an LPR system showing a car and license plate with dust and
scratches.

Table 2.1 Recognition rate for license plate extraction, license plate
segmentation and license plate recognition.

License plate
extraction

License plate
segmentation

License plate
recognition

Correct recognition 587/610 574/610 581/610
Percentage recognition 96.22% 94.04% 95.24%
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8. Conclusion

Although there are many running systems for recognition of various plates, such as Singaporean, Korean
and some European license plates, the proposed effort is the first of its kind for Saudi Arabian license
plates. The license plate recognition involves image acquisition, license plate extraction, segmentation
and recognition phases. Besides the use of the Arabic language, Saudi Arabian license plates have
several unique features that are taken care of in the segmentation and recognition phases. The system
has been tested over a large number of car images and has been proven to be 95% accurate.
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In this chapter, we present a new robust algorithm for extracting text in digitized color video. The

algorithm first computes the maximum gradient difference to detect potential text line segments from

horizontal scan lines of the video. Potential text line segments are then expanded or combined with

potential text line segments from adjacent scan lines to form text blocks, which are then subject to

filtering and refinement. Color information is then used to more precisely locate text pixels within

the detected text blocks. The robustness of the algorithm is demonstrated by using a variety of color

images digitized from broadcast television for testing. The algorithm performs well on JPEG images

and on images corrupted with different types of noise. For video scenes with complex and highly

textured backgrounds, we developed a technique to reduce false detections by utilizing multiframe

edge information, thus increasing the precision of the algorithm.

1. Introduction

With the rapid advances in digital technology, more and more databases are multimedia in nature,
containing images and video in addition to the textual information. Many video databases today
are manually indexed, based on textual annotations. The manual annotation process is often tedious
and time consuming. It is therefore desirable to develop effective computer algorithms for automatic
annotation and indexing of digital video. Using a computerized approach, indexing and retrieval are
performed based on features extracted directly from the video, which directly capture or reflect the
content of the video.

Currently, most automatic video systems extract global low-level features, such as color histograms,
edge information, textures, etc., for annotations and indexing. There have also been some advances in
using region information for annotations and indexing. Extraction of high-level generic objects from
video for annotations and indexing purposes remains a challenging problem to researchers in the field,
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and there has been limited success on using this approach. The difficulty lies in the fact that generic
3D objects appear in many different sizes, forms and colors in the video. Extraction of text as a
special class of high-level object for video applications is a promising solution, because most text in
video has certain common characteristics that make the development of robust algorithms possible.
These common characteristics include: high contrast with the background, uniform color and intensity,
horizontal alignment and stationary position in a sequence of consecutive video frames. Although there
are exceptions, e.g. moving text and text embedded in video scenes, the vast majority of text possesses
the above characteristics.

Text is an attractive feature for video annotations and indexing because it provides rich semantic
information about the video. In broadcast television, text is often used to convey important information
to the viewer. In sports, game scores and players’ names are displayed from time to time on the screen.
In news broadcasts, the location and characters of a news event are sometimes displayed. In weather
broadcasts, temperatures of different cities and temperatures for a five-day forecast are displayed. In
TV commercials, the product names, the companies selling the products, ordering information, etc. are
often displayed. In addition to annotation and indexing, text is also useful for developing computerized
methods for video skimming, browsing, summarization, abstraction and other video analysis tasks.

In this chapter, we describe the development and implementation of a new robust algorithm for
extracting text in digitized color video. The algorithm detects potential text line segments from
horizontal scan lines, which are then expanded and merged with potential text line segments from
adjacent scan lines to form text blocks. The algorithm was designed for texts that are superimposed
on the video, and with the characteristics described above. The algorithm is effective for text lines of
all font sizes and styles, as long as they are not excessively small or large relative to the image frame.
The implemented algorithm has fast execution time and is effective in detecting text in difficult cases,
such as scenes with highly textured backgrounds, and scenes with small text. A unique characteristic
of our algorithm is the use of a scan line approach, which allows fast filtering of scan line video data
that does not contain text. In Section 2, we present some prior and related work. Section 3 describes
the new text extraction algorithm. Section 4 describes experimental results. Section 5 describes a
method to improve the precision of the algorithm in video scenes with complex and highly textured
backgrounds by utilizing multiframe edge information. Lastly, Section 6 contains discussions and gives
concluding remarks.

2. Prior and Related Work

Most of the earlier work on text detection has been on scanned images of documents or engineering
drawings. These images are typically binary or can easily be converted to binary images using simple
binarization techniques such as grayscale thresholding. Example works are [1–6]. In [1], text strings
are separated from non-text graphics using connected component analysis and the Hough Transform.
In [2], blocks containing text are identified based on a modified Docstrum plot. In [3], areas of text lines
are extracted using a constrained run-length algorithm, and then classified based on texture features
computed from the image. In [4], macro blocks of text are identified using connected component
analysis. In [5], regions containing text are identified based on features extracted using two-dimensional
Gabor filters. In [6], blocks of text are identified based on using smeared run-length codes and connected
component analysis.

Not all of the text detection techniques developed for binary document images could be directly applied
to color or video images. The main difficulty is that color and video images are rich in color content
and have textured color backgrounds. Moreover, video images have low spatial resolution and may
contain noise that makes processing difficult. More robust text extraction methods for color and video
images, which contain small and large font text in complex color backgrounds, need to be developed.

In recent years, we have seen growing interest by researchers on detecting text in color and video
images, due to increased interest in multimedia technology. In [7], a method based on multivalued
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image decomposition and processing was presented. For full color images, color reduction using bit
dropping and color clustering was used in generating the multivalued image. Connected component
analysis (based on the block adjacency graph) is then used to find text lines in the multivalued image.
In [8], scene images are segmented into regions by adaptive thresholding, and then observing the
gray-level differences between adjacent regions. In [9], foreground images containing text are obtained
from a color image by using a multiscale bicolor algorithm. In [10], color clustering and connected
component analysis techniques were used to detect text in WWW images. In [11], an enhancement
was made to the color-clustering algorithm in [10] by measuring similarity based on both RGB color
and spatial proximity of pixels. In [12], a connected component method and a spatial variance method
were developed to locate text on color images of CD covers and book covers. In [13], text is extracted
from TV images based on using the two characteristics of text: uniform color and brightness, and ‘clear
edges.’ This approach, however, may perform poorly when the video background is highly textured and
contains many edges. In [14], text is extracted from video by first performing color clustering around
color peaks in the histogram space, and then followed by text line detection using heuristics. In [15],
coefficients computed from linear transforms (e.g. DCT) are used to find 8× 8 blocks containing
text. In [16], a hybrid wavelet/neural network segmenter is used to classify regions containing text.
In [17], a generalized region labeling technique is used to find homogeneous regions for text detection.
In [18], text is extracted by detecting edges, and by using limiting constraints in the width, height and
area of the detected edges. In [19], caption texts for news video are found by searching for rectangular
regions that contain elements with sharp borders in a sequence of frames. In [20], the directional and
overall edge strength is first computed from the multiresolution representation of an image. A neural
network is then applied at each resolution (scale) to generate a set of response images, which are then
integrated to form a salience map for localizing text. In [21], text regions are first identified from an
image by texture segmentation. Then a set of heuristics is used to find text strings within or near the
segmented regions by using spatial cohesion of edges. In [22], a method was presented to extract text
directly from JPEG images or MPEG video with a limited amount of decoding. Texture characteristics
computed from DCT coefficients are used to identify 8×8 DCT blocks that contain text.
Text detection algorithms produce one of two types of output: rectangular boxes or regions that

contain the text characters; or binary maps that explicitly contain text pixels. In the former, the
rectangular boxes or regions contain both background and foreground (text) pixels. The output is useful
for highlighting purposes but cannot be directly processed by Optical Character Recognition (OCR)
software. In the latter, foreground text pixels can be grouped into connected components that can be
directly processed by OCR software. Our algorithm is capable of producing both types of output.

3. Our New Text Extraction Algorithm

The main idea behind our algorithm is to first identify potential text line segments from individual
horizontal scan lines based on the maximum gradient difference (to be explained below). Potential text
line segments are then expanded or merged with potential text line segments from adjacent scan lines
to form text blocks. False text blocks are filtered based on their geometric properties. The boundaries
of the text blocks are then adjusted so that text pixels lying outside the initial text region are included.
Color information is then used to more precisely locate text pixels within text blocks. This is achieved
by using a bicolor clustering process within each text block. Next, non-text artifacts within text blocks
are filtered based on their geometric properties. Finally, the contours of the detected text are smoothed
using a pruning algorithm.

In our algorithm, the grayscale luminance values are first computed from the RGB or other color
representations of the video. The algorithm consists of seven steps.

1. Identify potential text line segments.
2. Text block detection.
3. Text block filtering.
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4. Boundary adjustments.
5. Bicolor clustering.
6. Artifact filtering.
7. Contour smoothing.

Steps 1–4 of our algorithm operate in the grayscale domain. Step 5 operates in the original color
domain, but only within the spatial regions defined by the detected text blocks. Steps 6 and 7 operate
on the binary maps within the detected text blocks. After Step 4, a bounding box for each text string in
the image is generated. The output after Step 7 consists of connected components of binary text pixels,
which can be directly processed by OCR software for recognition. Below is a high-level description
of each step of the algorithm.

3.1 Step 1: Identify Potential Text Line Segments

In the first step, each horizontal scan line of the image (Figure 3.1 for example) is processed to identify
potential text line segments. A text line segment is a continuous one-pixel thick segment on a scan
line that contains text pixels. Typically, a text line segment cuts across a character string and contains
interleaving groups of text pixels and background pixels (see Figure 3.2 for an illustration.) The end
points of a text line segment should be just outside the first and last characters of the character string.

In detecting scan line segments, the horizontal luminance gradient dx is first computed for the scan
line by using the mask [−1, 1]. Then, at each pixel location, the Maximum Gradient Difference (MGD)

is computed as the difference between the maximum and minimum gradient values within a local
window of size n×1, centered at the pixel. The parameter n is dependent on the maximum text size
we want to detect. A good choice for n is a value that is slightly larger than the stroke width of the
largest character we want to detect. The chosen value for n would be good for smaller-sized characters
as well. In our experiments, we chose n = 21. Typically, text regions have large MGD values and
background regions have small MGD values. High positive and negative gradient values in text regions
result from high-intensity contrast between the text and background regions. In the case of bright text
on a dark background, positive gradients are due to transitions from background pixels to text pixels,
and negative gradients are due to transitions from text pixels to background pixels. The reverse is
true for dark intensity text on a bright background. Text regions have both large positive and negative
gradients in a local region due to the even distribution of character strokes. This results in locally large
MGD values. Figure 3.3 shows an example gradient profile computed from scan line number 80 of the

Figure 3.1 Test image ‘data13’.
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Figure 3.2 Illustration of a ‘scan line segment’ (at y = 80 for test image ‘data13’).
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Figure 3.3 Gradient profile for scan line y = 80 for test image ‘data13’.

test image in Figure 3.1. Note that the scan line cuts across the ‘shrimp’ on the left of the image and
the words ‘that help you’ on the right of the image. Large positive spikes on the right (from x= 155 to
270) are due to background-to-text transitions, and large negative spikes in the same interval are due
to text-to-background transitions. The series of spikes on the left (x= 50 to 110) are due to the image
of the ‘shrimp.’ Note that the magnitudes of the spikes for the text are significantly stronger than those
of the ‘shrimp.’ For a segment containing text, there should be an equal number of background- to-text
and text-to-background transitions, and the two types of transition should alternate. In practice, the
number of background-to-text and text-to-background transitions might not be exactly the same due to
processing errors, but they should be close in a text region.

We then threshold the computed MGD values to obtain one or more continuous segments on
the scan line. For each continuous segment, the mean and variance of the horizontal distances
between the background-to-text and text-to-background transitions on the gradient profile are computed.
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A continuous segment is identified as a potential text line segment if these two conditions are satisfied:
(i) the number of background-to-text and text-to-background transitions exceeds some threshold; and
(ii) the mean and variance of the horizontal distances are within a certain range.

3.2 Step 2: Text Block Detection

In the second step, potential text line segments are expanded or merged with text line segments from
adjacent scan lines to form text blocks. For each potential text line segment, the mean and variance of its
grayscale values are computed from the grayscale luminance image. This step of the algorithm runs in
two passes: top-down and bottom-up. In the first pass, the group of pixels immediately below the pixels
of each potential text line segment is considered. If the mean and variance of their grayscale values are
close to those of the potential text line segment, they are merged with the potential text line segment
to form an expanded text line segment. This process repeats for the group of pixels immediately below
the newly expanded text line segment. It stops after a predefined number of iterations or when the
expanded text line segment merges with another potential text line segment. In the second pass, the
same process is applied in a bottom-up manner to each potential text line segment or expanded text
line segment obtained in the first pass. The second pass considers pixels immediately above a potential
text line segment or an expanded text line segment.

For images with poor text quality, Step 1 of the algorithm may not be able to detect all potential text
line segments from a text string. But as long as enough potential text line segments are detected, the
expand-and-merge process in Step 2 will be able to pick up the missing potential text line segments
and form a continuous text block.

3.3 Step 3: Text Block Filtering

The detected text blocks are then subject to a filtering process based on their area and height to width
ratio. If the computed values fall outside some prespecified ranges, the text block is discarded. The
purpose of this step is to eliminate regions that look like text, yet their geometric properties do not fit
those of typical text blocks.

3.4 Step 4: Boundary Adjustments

For each text block, we need to adjust its boundary to include text pixels that lie outside the boundary.
For example, the bottom half of the vertical stroke for the lower case letter ‘p’ may fall below the
baseline of a word it belongs to and fall outside of the detected text block. We compute the average
MGD value of the text block and adjust the boundary at each of the four sides of the text block to
include outside adjacent pixels that have MGD values that are close to that of the text block.

3.5 Step 5: Bicolor Clustering

In Steps 1–4, grayscale luminance information was used to detect text blocks, which define rectangular
regions where text pixels are contained. Step 5 uses the color information contained in a video to more
precisely locate the foreground text pixels within the detected text block. We apply a bicolor clustering
algorithm to achieve this. In bicolor clustering, we assume that there are only two colors: a foreground
text color and a background color. This is a reasonable assumption since in the local region defined
by a text block, there is little (if any) color variation in the background, and the text is usually of the
same or similar color. The color histogram of the pixels within the text block is used to guide the
selection of initial colors for the clustering process. From the color histogram, we pick two peak values
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that are of a certain minimum distance apart in the color space as initial foreground and background
colors. This method is robust against slowly varying background colors within the text block, since the
colors for the background still form a cluster in the color space. Note that bicolor clustering cannot be
effectively applied to the entire image frame as a whole, since text and background may have different
colors in different parts of the image. The use of bicolor clustering locally within text blocks in our
method results in better efficiency and accuracy than applying regular (multicolor) clustering over the
entire image, as was done in [10].

3.6 Step 6: Artifact Filtering

In the artifact filtering step, non-text noisy artifacts within the text blocks are eliminated. The noisy
artifacts could result from the presence of background texture or poor image quality. We first determine
the connected components of text pixels within a text block by using a connected component labeling
algorithm. Then we perform the following filtering procedures:

(a) If text_block_height is greater than some threshold T1, and the area of any connected component
is greater than (total_text_area)/2, the entire text block is discarded.

(b) If the area of a connected component is less than some threshold T2= (text_block_height/2), it is
regarded as noise and discarded.

(c) If a connected component touches one of the four sides of the text block, and its size is larger than
a certain threshold T3, it is discarded.

In Step (a), text_block_height is the height of the detected text block, and total_text_area is the
total number of pixels within the text block. Step (a) is for eliminating unreasonably large connected
components other than text characters. This filtering process is applied only when the detected text
block is sufficiently large, i.e. when its height exceeds some threshold T1. This is to prevent small
text characters in small text blocks from being filtered away, as they are small in size and tend to
be connected together because of poor resolution. Step (b) filters out excessively small connected
components that are unlikely to be text. A good choice for the value of T2 is text_block_height/2. Step
(c) is to get rid of large connected components that extend outside of the text block. These connected
components are likely to be part of a larger non-text region that extends inside the text block.

3.7 Step 7: Contour Smoothing

In this final step, we smooth the contours of the detected text characters by pruning one-pixel thick
side branches (or artifacts) from the contours. This is achieved by iteratively using the classical pruning
structuring element pairs depicted in Figure 3.4. Details of this algorithm can be found in [23].

Note that in Step 1 of the algorithm, we compute MGD values to detect potential text line segments.
This makes use of the characteristic that text should have both strong positive and negative horizontal

Figure 3.4 Classical pruning structuring elements.
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gradients within a local window. During the expand-and-merge process in the second step, we use the
mean and variance of the gray-level values of the text line segments in deciding whether to merge them
or not. This is based on the reasoning that text line segments belonging to the same text string should
have similar statistics in their gray-level values. The use of two different types of measure ensures the
robustness of the algorithm to detect text in complex backgrounds.

4. Experimental Results and Performance

We used a total of 225 color images for testing: one downloaded from the Internet, and 224 digitized
from broadcast cable television. The Internet image is of size 360×360 pixels and the video images
are of size 320× 240 pixels. The test database consists of a variety of test cases, including images
with large and small font text, dark text on light backgrounds, light text on dark backgrounds, text
on highly textured backgrounds, text on slowly varying backgrounds, text of low resolution and poor
quality, etc. The algorithm performs consistently well on a majority of the images. Figure 3.5 shows a
test image with light text on a dark background. Note that this test image contains both large and small
font text, and the characters of the word ‘Yahoo!’ are not perfectly aligned horizontally. Figure 3.6

Figure 3.5 Test image ‘data38’.

Figure 3.6 Maximum Gradient Difference (MGD) for image ‘data38’.
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Figure 3.7 Text blocks detected from test image ‘data38’.

shows the result after computing the MGD of the image in Figure 3.5. Figure 3.7 shows the detected
text blocks after Step 4 of the algorithm (boundary adjustment). In the figure, the text blocks for the
words ‘DO YOU’ and ‘YAHOO!’ touch each other and they look like a single text block, but the
algorithm actually detected two separate text blocks. Figure 3.8 shows the extracted text after Step 7 of
the algorithm. Figure 3.1 showed a test image with dark text on a light colored background. Figure 3.9
shows the extracted text result. Figure 3.10 shows another test image with varying background in the
text region. The second row of text contains small fonts that are barely recognizable by the human
eye; yet, the algorithm is able to pick up the text as shown in Figure 3.11. Note that the characters are
connected to each other in the output image due to poor resolution in the original image.

To evaluate performance, we define two measures: recall and precision. Recall is defined to be the
total number of correct characters detected by the algorithm, divided by the total number of actual
characters in the test sample set. By this definition, recall could also be called detection rate. Precision
is defined to be the total number of correctly detected characters, divided by the total number of
correctly detected characters plus the total number of false positives. Our definitions for recall and

Figure 3.8 Binary text extracted from test image ‘data38’.

Figure 3.9 Binary text extracted from test image ‘data13’.
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Figure 3.10 Test image ‘data41’.

Figure 3.11 Binary text extracted from test image ‘data41’.

precision are similar to those in [18], except that ours are defined for characters, and theirs were
defined for text lines and frames. The actual number of characters was counted manually by visually
inspecting all of the test images. Our algorithm achieves a recall or detection rate of 88.9%, and a
precision of 95.7% on the set of 225 test images. Another way to evaluate performance is to compute
the number of correctly detected text boxes that contain text, as has been done in some papers when
the algorithm’s outputs are locations of text boxes. We view character detection rate (or recall) as a
stricter performance measure since the correct detection of a text box does not necessarily imply the
correct detection of characters inside the text box. Our algorithm has an average execution time of
about 1.2 seconds per image (of size 320×240 pixels) when run on a SUN UltraSpark 60 workstation.

We conducted experiments to evaluate the performance of the algorithm on images that went through
JPEG compression and decompression. The purpose is to see whether our text extraction algorithm
performs well when blocking effects are introduced by JPEG compression. Eleven images were selected
from the test data set for testing. Figure 3.12 shows one of the test images after JPEG compression and
decompression (the original is shown is Figure 3.5), and Figure 3.13 shows the text extraction result.
Column three of Table 3.1 shows the recall and precision for the 11 images after JPEG compression and
decompression. The rates are about the same as those of the original 11 images shown in column two
of the same table. This shows that our algorithm performs well on JPEG compressed–decompressed
images. Note that the rates shown in column two for the original images are not the same as the rates
for the complete set of 225 images (88.9% and 95.7%) because the chosen 11 images comprise a
smaller subset that does not include images with poor quality text. But for performance comparison
with JPEG compressed and decompressed images, and later with noisy images, these 11 images serve
the purpose.

We also conducted experiments to evaluate the performance of our algorithm on noisy images.
Three types of noise were considered: Gaussian, salt and pepper and speckle. We added Gaussian
noise to the same set of 11 test images to generate three sets of 11 noisy images with 30 dB, 20 dB
and 10 dB Signal-to-Noise Ratios (SNRs). Figures 3.14 to 3.16 show the noisy images generated from
test image ‘data38’ (shown in Figure 3.5) with SNRs equal to 30 dB, 20 dB and 10 dB, respectively.
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Figure 3.12 Test image ‘data38’ after JPEG compression–decompression.

Figure 3.13 Text extracted from test image ‘data38’ after JPEG compression–decompression.

Table 3.1 Recall and precision for the original, JPEG and images with Gaussian noise.

Original JPEG 30 dB Gaussian 20 dB Gaussian 10 dB Gaussian

Recall 0�93 0�94 0�93 0�90 0�74
Precision 0�96 0�97 0�97 0�97 0�98

Figures 3.17 to 3.19 show the test results for the three noisy images respectively. The precision and
recall rates for the noisy images are listed in columns 4 to 6 of Table 3.1. From the results, we do not see
degradation in performance for 30 dB SNR images. If fact, the precision is slightly higher because after
adding noise, some false positives are no longer treated by the algorithm as text. The recall for 20 dB
SNR images decreases slightly. Like 30 dB SNR images, the precision also slightly increases. For
the very noisy 10 dB SNR images, recall decreases to 74% and precision increases to 98%. This
shows that the algorithm is robust against Gaussian noise, with no significant degradation in recall for
images with up to 20 dB SNR, and with no degradation in precision for images up to 10 dB SNR. For
very noisy images with 10 dB SNR, recall decreases to 74%, indicating that the algorithm can still
detect a majority of the text. We also observed that precision slightly increases as SNR decreases in
noisy images. Similarly, the performance statistics for images corrupted with salt and pepper noise
and speckle noise are summarized in Table 3.2. It can be observed that for salt and pepper noise,
the performance at 24 dB and 21 dB SNR is about the same as that of the original images. At 18 dB,
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Figure 3.14 Test image ‘data38’ with Gaussian noise �SNR= 30�.

Figure 3.15 Test image ‘data38’ with Gaussian noise �SNR= 20�.

Figure 3.16 Test image ‘data38’ with Gaussian noise �SNR= 10�.
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Figure 3.17 Text extracted from test image ‘data38’ with Gaussian noise �SNR= 30�.

Figure 3.18 Text extracted from test image ‘data38’ with Gaussian noise �SNR= 20�.

Figure 3.19 Text extracted from test image ‘data38’ with Gaussian noise �SNR= 10�.

Table 3.2 Recall and precision for images with Salt And Pepper (SAP) and speckle noise.

24 dB SAP 21 dB SAP 18 dB SAP 24 dB 16 dB 15 dB
Speckle Speckle Speckle

Recall 0�93 0�93 0�83 0�93 0�91 0�72
Precision 0�97 0�95 0�90 0�95 0�95 0�97

the recall and precision drop to 83% and 90% respectively. For speckle noise, the performance is
about the same as the original at 24 dB and 16 dB SNR. At 15 dB, the recall value drops to 72%. To
save space, we will not show the image results for salt and pepper noise or speckle noise here.

It is difficult to directly compare our experimental results with those of other text detection algorithms,
since there does not exist a common evaluation procedure and test data set used by all researchers.
A data set containing difficult images, e.g. texts on a low contrast or highly textured background,
texts of small font size and low resolution, etc., could significantly lower the performance of a
detection algorithm. Here, we cite some performance statistics from other published work for reference.
The readers are referred to the original papers for the exact evaluative procedure and definitions of
performance measures. In [7], a detection rate of 94.7% was reported for video frames, and no false
positive rate was reported. It was noted in [7] that this algorithm was designed to work on horizontal
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text of relatively large size. In [11], a detection rate of 68.3% was reported on a set of 482 Internet
images, and a detection rate of 78.8% was reported when a subset of these images that meets the
algorithm’s assumptions was used. No false positive rate was reported. The reported detection and
false positive rates in [16] were 93.0% and 9.2%, respectively. The output from [16] consists of a
set of rectangular blocks that contain text. In [17], high detection rates of 97.32% to 100% were
reported on five video sequences. No false positive rate was reported. In [18], an average recall
of 85.3%, and a precision of 85.8% were reported. The outputs from [11,17,18] consist of pixels
belonging to text regions (as with our algorithm.) In [20], 95% of text bounding boxes were labeled
correctly, and 80% of characters were segmented correctly. No false positive rate was reported. In
[21], a detection rate of 55% was reported for small text characters with area less than or equal to ten
pixels, and a rate of 92% was reported for characters with size larger than ten pixels. An overall false
positive rate of 5.6% was reported. In [22], detection and false positive rates of 99.17% and 1.87%
were reported, respectively, for 8×8 DCT blocks that contain text pixels. Table 3.3 summarizes the
detection and false positive rates for our algorithm and the various text detection algorithms. Note that
we have used uniform performance measures of detection rate and false positive rate for all algorithms
in the table. The performance measures of recall and precision used in this chapter and in [18] were
converted to detection rate and false positive rate by the definition we gave earlier in this section. It
should be noted that for many detection algorithms, detection rate could be increased at the expense
of an increased false positive rate, by modifying certain parameter values used in the algorithms. The
detection rate and false positive rate should therefore be considered at the same time when evaluating
the performance of a detection algorithm. Table 3.3 also summarizes the execution time needed for
the various text detection algorithms. Listed in the fourth, fifth and sixth columns are the computers
used, the size of the image or video frame, and the corresponding execution time for one image frame.
Note that our algorithm has comparable execution time with the algorithms in [16,17]. The execution
time reported in [7] for a smaller image size of 160×120 is faster. The algorithm in [21] has a long
execution time of ten seconds. The algorithm in [22] has a very fast execution time of 0.006 seconds.
Further processing, however, is needed to more precisely locate text pixels based on the DCT blocks
produced by the algorithm. Furthermore, the current implementation of the algorithm in [22] cannot
extract text of large font size. Unlike our work, none of the above published work reported extensive
experimental results for images corrupted with different types and degrees of noise.

Table 3.3 Performance measures for various text detection algorithms.

Detection
rate

False positive
rate

Computer
used

Image size Execution
time

Our algorithm 88.9% 4.0% Sun UltraSparc
60

320×240 1.2 s

�7� 94.7% NRb Sun UltraSparc I 160×120 0.09 s
�11� 68�3%a NR NR NR NR

78�8%a

�16� 93.0% 9.2% Sun UltraSparc I 320×240 1 s
�17� 97.3%–100.0% NR Pentium I PC NR 1.7 s
�18� 85.3% 14.1% NR NR NR
�20� 95%80%a NR NR NR NR
�21� 55%92%a 5.6% Pentium Pro PC 320×240 10 s
�22� 99.17% 1.87% Sun Sparc ∼350×240 ∼0�006 s

a See Section 4 for an explanation of entries with two detection rates
b NR in the above table indicates ‘Not Reported’
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5. Using Multiframe Edge Information to Improve Precision

In video scenes with complex and highly textured backgrounds, precision of the text extraction
algorithm decreases due to false detections. In this section, we describe how we can use multiframe
edge information to reduce false detections, thus increasing the precision of the algorithm.

The proposed technique works well when the text is stationary and there is some amount of
movement in the background. For many video scenes with complex and highly textured backgrounds,
we have observed that there is usually some amount of movement in the background; for example,
the ‘audience’ in a basketball game. In a video with non-moving text, characters appear at the same
spatial locations in consecutive frames for a minimum period of time, in order for the viewers to
read the text. The proposed technique first applies Canny’s edge operator to each frame in the frame
sequence that contains the text, and then computes the magnitudes of the edge responses to measure the
edge strength. This is followed by an averaging operation across all frames in the sequence to produce
an average edge map. In the average edge map, the edge responses will remain high in text regions
due to the stationary characteristic of non-moving text. The average edge strength, however, will be
weakened in the background regions due to the movements present. We have found that even a small
amount of movement in a background region would weaken its average edge strength. Computation
of the average edge map requires that we know the location of the frame sequence containing a text
string within a video. We are currently developing an algorithm that will automatically estimate the
locations of the first and last frames for a text string within a video.

After computing the average edge map of a frame sequence containing a text string, Step 3 of the
text extraction algorithm described in Section 3 is modified into two substeps 3(a) and 3(b). Step 3(a) –
text block filtering based on geometric properties – is the same as Step 3 of the algorithm described
in Section 3. Step 3(b) is a new step described below.

5.1 Step 3(b): Text Block Filtering Based on Multiframe Edge Strength

For every candidate text region, look at the corresponding region in the average edge map computed
for the frame sequence containing the text. If the average edge response for that region is sufficiently
large and evenly distributed, then we keep the text region; otherwise, the candidate text region is
eliminated. To measure whether the edge strength is sufficiently large, we set a threshold T and count
the percentage of pixels C that has average edge strength greater than or equal to T . If the percentage C
is larger than a threshold, then the edge strength is sufficiently large. To measure even distribution, we
vertically divide the candidate region into five equal-sized subregions and compute the percentage of
pixels ci with edge strength greater than or equal to T in each region. The edge response is considered
to be evenly distributed if ci is larger than C/15 for all is. Here the parameter C/15 was determined
by experimentation.

Experimental results showed that by using multiframe edge information, we can significantly
decrease the number of false detections in video scenes with complex and highly textured backgrounds,
and increase the precision of the algorithm. Details of the experimental results can be found in [24].

6. Discussion and Concluding Remarks

We have developed a new robust algorithm for extracting text from color video. Given that the test
data set contains a variety of difficult cases, including images with small fonts, poor resolution and
complex textured backgrounds, we conclude that the newly developed algorithm performs well, with
a respectable recall or detection rate of 88.9%, and a precision of 95.7% for the text characters.
Good results were obtained for many difficult cases in the data set. Our algorithm produces outputs
that consist of connected components of text character pixels that can be processed directly by OCR
software. The new algorithm performs well on JPEG compressed–decompressed images, and on images
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corrupted with Gaussian noise (up to 20 dB SNR), salt and pepper noise (up to 21 dB SNR) and
speckle noise (up to 16 dB SNR) with no or little degradation in performance. Besides video, the
developed method could also be used to extract text from other types of color image, including images
downloaded from the Internet, images scanned from color documents and color images obtained with
a digital camera.

A unique characteristic of our algorithm is the scan line approach, which allows fast filtering of scan
lines without text when processing a continuous video input stream. When video data is read in a scan
line by scan line fashion, only those scan lines containing potential text line segments, plus a few of
the scan lines immediately preceding and following the current scan line need to be saved for further
processing. The few extra scan lines immediately preceding and following the current scan line are
needed for Steps 2 and 4 of the algorithm, when adjacent scan lines are examined for text line segment
expansions and text block boundary adjustments. The number of extra scan lines needed depends on
the maximum size of text to be detected, and could be determined experimentally.

For video scenes with complex and highly textured backgrounds, we described a method to increase
the precision of the algorithm by utilizing multiframe edge information.
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A new approach to separating single touching handwritten digit strings is presented. The image of the

connected numerals is normalized, preprocessed and then thinned before feature points are detected.

Potential segmentation points are determined, based on a decision line that is estimated from the

deepest/highest valley/hill in the image, with one agent dedicated to each. The first agent decides on a

candidate cut-point as the closest feature-point to the center of the deepest top-valley, if any. On the

other hand, the second agent argues for a candidate cut-point as the closest feature point to the center

of the highest bottom-hill, if any. After each of the two agents reports its candidate cut-point, the two

agents negotiate to determine the actual cut-point based on a confidence value assigned to each of

the candidate cut-points. A restoration step is applied after separating the digits. Experimental results

produced a successful segmentation rate of 96%, which compares favorably with those reported in

the literature. However, neither of the two agents alone achieved a close success rate.

1. Introduction

Character recognition in general, and handwritten character recognition in particular, has been an
important research area for several decades [1–5]. Machine-typed characters have well-known, easy
to detect and recognizable features [6–8]. On the other hand, the difficulty in recognizing handwritten
characters is highly proportional to the quality of writing, which ranges from very poor to excellent.
However, we cannot avoid having some connected digits, which cannot be recognized automatically
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before they are separated. Therefore, segmentation of connected handwritten numerals is an important
issue that should be attended to.

Segmentation is an essential component in any practical handwritten recognition system. This is
because handwriting is unconstrained and depends on writers. It is commonly noted that whenever
we write adjacent digits in our day-to-day lives we tend to connect them. Segmentation plays a
pivotal role in numerous applications where digit strings occur naturally. For instance, financial
establishments, such as banks and credit card firms, are in need of automated systems capable of
reading and recognizing handwritten checks and/or receipt amounts. Another application could be
seen in postal service departments to sort the incoming mail based on recognized handwritten postal
zip codes. Separation can be encountered with other sets of characters, including Hindi numerals,
Latin characters, Arabic characters, etc. One crucial application area is handling handwritten archival
documents, including Ottoman and earlier Arabic documents, where adjacent characters were written
as close to each other as possible. The target was not to leave even tiny spaces that would allow
deliberate illegal modifications.

Based on numeral strings’ lengths, segmentation methods can be broadly classified into two classes.
The first one deals with separating digit strings of unknown length, as in the example of check values.
The second class, however, deals with segmenting digit strings with specific length. A variety of
applications fall into this class, such as systems that use zip codes and/or dates. Although knowing the
length makes the problem simpler than the first class, it remains challenging.

We are proposing an algorithm for separating two touching digits. Our approach is summarized
by the block diagram depicted in Figure 4.1. The proposed algorithm accepts a binary image as
input, and then normalizing, preprocessing and thinning processes are applied to the image. Next, the
segmentation process is carried out. Although thinning is computationally expensive, it is essential
to obtaining a uniform stroke width that simplifies the detection of feature points. Besides, parallel
thinning algorithms may be used to reduce computational time. We assume that the connected digits’
image has reasonable quality and one single touching. Connected digits that are difficult to recognize
by humans do not represent a good input for our proposed system. Different people usually write
numerals differently. The same person may write digits in different ways based on his/her mood and/or
health, which of course adds to the complexity of the segmentation algorithm. The basic idea is to
detect feature points in the image and then determine the position of the decision line. The closest locus
of feature points specifies potential cut-points, which are determined by two agents. While the first
agent focuses on the top part of the thinned image, the other one works on the bottom side of the image.
Each one sets, as a candidate cut-point, the closest feature point to the center of the deepest valley and
highest hill, respectively. Coordination between the two agents leads to better results when compared
to each one alone. Negotiation between the two agents is necessary to decide on the segmentation or
cutoff point, which could be either one or a compromise between them. The decision is influenced by
a degree of confidence in each candidate cut-point.

The rest of the chapter is organized as follows. Previous work is presented in Section 2. Digitizing and
processing are described in Section 3. The segmentation algorithm details are introduced in Section 4.
Experimental results are reported in Section 5. Finally, Section 6 includes the conclusions and future
research directions.

2. Previous Work

A comprehensive survey on segmentation approaches is provided in [9]. An overview of various
segmentation techniques for printed or handwritten characters can be found in [10,11]. Touching
between two digits can take several forms such as: single-point touching (Figure 4.2), multiple
touching along the same contour (Figure 4.3), smooth interference (Figure 4.4), touching with a ligature
(Figure 4.5), and multiple touching. Robust segmentation algorithms are the ones which handle a variety
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Figure 4.1 Block diagram of the proposed algorithm.

of these touching scenarios. Segmentation algorithms can be classified into three categories: region-
based, contour-based and recognition-based methods. Region-based algorithms identify background
regions first and then some features are extracted, such as valleys, loops, etc. Top-down and bottom-up
matching algorithms are used to identify such features, which are used to construct the segmentation
path. Examples of work reported in this class may be found in [12–14]. However, such methods tend
to become unpredictable when segmenting connected digits that share a long contour segment. For
example, see Figure 4.3.

Contour-based methods [4,15,16] analyze the contours of connected digits for structure features such
as high curvature points [17], vertically oriented edges derived from adjacent strokes [18], number of
strokes crossed by a horizontal path [8], distance from the upper contour to the lower one [4], loops and
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Figure 4.2 Segmentation steps of numeral strings of Class 1. (a) Original image; (b) output after
thinning; (c) extraction of feature points and noise reduction; (d) identifying segmentation points;
(e) segmentation result; (f) restoration.

Figure 4.3 Segmentation steps of two numeral strings from Class 2.

arcs [6], contour corners [17], and geometric measures [19]. However, such methods tend to become
unstable when segmenting touched digits that are smoothly joined, have no touching point identified,
(Figure 4.4) or have ligature in between (Figure 4.5).

The recognition-based approach involves a recognizer [1,20] and hence it is a time consuming
process with the correctness rate highly dependent on the robustness of the recognizer. The work
described in [21] handles the separation of single-touching handwritten digits. It simply goes back and
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Figure 4.4 Segmentation steps of two numeral strings from Class 3.

Figure 4.5 Segmentation steps of two numeral strings from Class 4.

forth between selecting a candidate touching point and recognizing lateral numerals until the digits are
recognized.

Finally, the work described in [22] employs both foreground and background alternatives to get
a possible segmentation path. One approach for the construction of segmentation paths is discussed in
[23]. However, improper segmentation may leave some of the separated characters with artifacts, for
example, a character might end up losing a piece of its stroke to the adjacent character. In addition,
such methods fail to segment touching digits with a large overlapping contour.

Our approach, which is thinning-based [24], addresses the above-mentioned shortcomings and
successfully segments pairs of touching digits under different scenarios, as discussed in this chapter.
Our approach reports two results, mainly correct and erroneous segmentation results.
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3. Digitizing and Processing

Preprocessing of handwritten numerals is done prior to the application of the segmentation algorithm.
Besides thinning, this usually involves scanning and normalizing the input image. The output is a
binary image of the input numeral image, which has been transformed into a set of simple digital
primitives (lines, arcs, etc.) that lie along their medial axes. This process deletes points of a region but
it does not remove end points or connectivity, neither does it cause excessive erosion of the region.

Normalization, in general, includes several algorithms to correct the numeral’s slant [2], to orient
the numeral relative to a baseline, and to adjust its size to a preset standard. In our work, we adjust the
size of the input character image to 30× 60 pixels. Therefore, small-size numerals are enlarged and
large ones are reduced.

As stated in [25], a good thinning algorithm should preserve the connectivity and reduce the width
of the skeleton to unity. Furthermore, the skeleton of the thinned image should not be affected by
rotation and translation, should be insensitive to boundary noise, and revolve around its medial axis.
A thinning algorithm can be either parallel or sequential. In parallel algorithms, all thinning templates
are applied simultaneously. On the other hand, sequential algorithms apply the templates iteratively to
the input pattern. In order to reduce the time of processing, we use a parallel thinning algorithm based
on the one described in [25]. Figures 4.2–4.5(b) show the resulting skeletons after the application of
the thinning algorithm on the input images shown in Figures 4.2–4.5(a).

4. Segmentation Algorithm

Character segmentation is an operation that aims to decompose the two-touching-digits image into two
subimages. Each resulting subimage contains a digit. Our proposed segmentation algorithm is based on
background and foreground features, with agents, and consists of four steps: extraction of feature points
and noise reduction, identifying cutoff points, negotiation and restoring the two digits. For example,
check the output of Figure 4.2 to Figure 4.5 to study the output of each phase. Spatial domain methods
are used to process the input image at each step. Such methods can be simply expressed as:

g�x� y�= T�f�x� y�� (4.1)

where f�x� y� is the input image, T is an operator and g�x� y� is the output image. Operators are
defined as small 2D masks or filters (3×3 and 5×5), referred to as templates too. The value of the
coefficients of a certain mask determines the nature of the operator. Figure 4.6 is an example of such
operators. In general, segmentation is a time consuming process. However, the use of templates in
a proper way can help to fully parallelize this process and therefore cut down tremendously on the
computation time cost.

4.1 Extraction of Feature Points

Feature points are extracted from the thinned image. We differentiate between three types of feature
point, namely end, branch and cross points. An end point is the start or end of a line segment or an
arc. A branch point connects three branches like a capital ‘T’ rotated by different angles. A cross point
connects four branches; it is like a ‘+’ sign, again rotated by different angles.

Feature points are extracted by matching each pixel in the image against all template images of
feature points. To obtain all possible templates, each template in Figure 4.6 is rotated by multiples of
��/2�. Once feature points are identified, they are stored for further manipulation and analysis.

Noise reduction is the process of cleaning up the image from any redundant feature point, which
mainly takes the form of a ligature (a curve joining an end point with a branch or a cross point;
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Figure 4.6 Templates for extracting feature points. End points, branch points and cross points are
extracted using templates [e1, e2], [b1, b2, b3, b4] and [c1, c2], respectively.

or a small loop joining two branch points). Such redundant features are eliminated by using specific
templates which test for end points and other feature points in a 3× 3 neighborhood. Examples of
noise reduction and feature extraction are shown in all figures from Figure 4.2 to Figure 4.5(c). Each
end point is marked with ‘3’, whereas branch and cross points are designated by ‘2’.

In this chapter, we are mainly dealing with single touching numeral strings, which can be classified
into the following classes:

1. Single point touches, where the pair of digits are sharing one point. Such a point is a branch or
cross feature point (Figure 4.2).

2. Single segment touches, where the pair of digits are sharing part of a stroke (or contour). Such a
stroke is identified by a combination of branch and/or cross feature points (Figure 4.3).

3. Smooth touches, where the two digits are sharing, smoothly, one stroke. In this case, no feature
points can be identified in the touching area because it is smooth (Figure 4.4).

4. Single touches with ligature, where the two digits are connected together by an extra segment
(ligature). Such a stroke may be identified with feature points (Figure 4.5).

Although the proposed algorithm is intended for single touching numeral strings, it can still handle
multiple touching numeral strings if the touching points are very close.

4.2 The Employed Agents

Two agents have been employed in the process of separating connected numerals. While the first
(top-valley agent) focuses on the top part of the numeral and locates the deepest valley, the second
(bottom-hill agent) processes the bottom part of the numeral to locate the highest hill. Both are
presented next.

4.2.1 Top-Valley Agent

In this section, we present the agent that locates a candidate cut-point by considering characteristics
of the upper side of the thinned image. The basic idea is that the segmentation path lies somewhere
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close to the deepest top-valley between two connected digits, if there are any. In other words, the
closest feature point to the center of the deepest valley lies somewhere along the segmentation path.
The success of this agent depends on the availability of at least one valley from the upper side of the
image. In the case where no such valley exists, this agent predicts the segmentation path to include
the closest feature point to the center of the image. It is identified as candidate cut-point with a low
degree of confidence. This will probably be resolved during the negotiation with the other agent, which
may report to the negotiation process a candidate cut-point with a higher degree of confidence. We
elaborate more on the degree of confidence later in this section.

The top-valley-based agent works as follows. It traces the contour of the thinned image of a
handwritten numeral string, starting at the upper leftmost end point, to locate all existing valleys, if
any. While doing this, it always keeps track of the deepest encountered valley. The depth of a valley
is calculated as the difference between the position of two pixels; the top-most pixel, at which the
contour changes direction downwards, and the bottom-most pixel, after which the contour changes
direction upwards. Of course, the two highest points on the two sides of a valley are considered in
calculating its depth, as formalized below.

There are three important pixels related to each valley; the top pixels on both sides and the deep
pixel at the bottom, denoted as A�B and C, respectively. Each point has two coordinates x and y, with
the bottom left end point of the image as the origin, the horizontal axis is the x-axis, and the vertical
axis is the y-axis. Then, the depth D of a valley is calculated as follows:

D =min�yA� yB�−yC (4.2)

where min��� is a function that returns the minimum of its arguments. It is important to have
abs�yA−yB�≤ T , where abs��� returns the absolute value and T is a threshold chosen as �2H/3�, with
H denoting the average height of the thinned image.

The center of a valley is calculated as the average distance between each of the corresponding
opposite points L and R along the two sides of a valley, from point C up to point M = min�A�B�.
Formally,

xcenter = average
(
∑M

C
�xR−xL�

)

(4.3)

ycenter = yC+
D

2
(4.4)

The closest feature point F to the center of the deepest valley is the point with min�abs�xF −xcenter��
of all feature points. However, if more than one feature point qualify according to this rule, then the
one with min�abs�yF −ycenter�� is selected as a candidate cut-point to be brought up in the negotiation
process. The selected candidate cut-point is marked by replacing its feature point marker (‘2’ or ‘3’)
by ‘y’, and its degree of confidence is calculated as follows:

Confidence�x�= D

min�abs�xF −xcenter��
(4.5)

where D is either the depth of a valley or the height of a hill, depending on the involved agent.
The success of the top-valley-based agent depends on the degree of confidence in the reported

candidate cut-point. A low degree of confidence does not lead to successful segmentation of connected
digits. As the degree of confidence increases, the segmentation of connected digits becomes more
successful. Experimental results showed that segmentation based on a low degree of confidence leads
to two distorted parts, which cannot be restored into recognizable digits. This example illustrates the
importance of the negotiation process between multiple agents in resolving the conflict.
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4.2.2 Bottom-Hill Agent

In this section, we present the bottom-hill-based agent. The idea is simple. The original image is
inverted (upside down) and the same methodology as the top-valley agent is applied to locate a
candidate cut-point. Hence, almost the same problems encountered with the top-valley-based agent can
be faced with the bottom-hill-based agent. The center, centerv, of the deepest valley in the inverted
image is reflected into the normal image as the center, centerh, of the highest bottom-hill. It is formally
done by applying the following two formulae:

xcenterh = xcenterv (4.6)

ycenterh =H−ycenterv (4.7)

The selected candidate cut-point is marked by replacing its feature point marker (‘2’ or ‘3’) by ‘x’,
and its degree of confidence is determined.

As is the case with the top-valley-based agent, the success of the bottom-hill-based agent depends
on the degree of confidence in the reported candidate cutoff point.

4.2.3 Negotiation and Conflict Resolution

After each agent derives its input required for the negotiation process, namely the two candidate cut-
points marked as ‘x’ and ‘y’ on the thinned connected image, the two agents cooperate to resolve the
conflict, if any. Although every agent concentrates on its reported cut-point with the highest confidence,
each agent keeps track of the confidence of the other candidate cut-point sorted in descending order
by confidence. The latter candidate cut-points are utilized only in cases where the other agent does
not agree on the cut-point with the highest confidence. In this case, a cut-point is selected as an actual
cut-point only if the sum of its confidence values reported by both agents is maximal.

Every agent starts by declaring its detected candidate cut-point with the highest confidence. There
are three possible cases to consider. The two agents may report:

• the same candidate cut-point;
• two candidate cut-points with the same x coordinate and different y coordinates; or
• two candidate cut-points with different x coordinates and different y coordinates.

The last case is the worst, where negotiation and conflict resolution is employed. The first two cases
increase the degree of confidence in the candidate cut-point and the image is separated vertically along
the reported x coordinate. However, the degree of confidence of each agent in its proposed candidate
cut-points is important.

As the degree of confidence increases, the agent gets higher priority during the negotiation process.
If the depth of the reported valley or the height of the reported hill is zero, then the degree of confidence
also reaches zero, giving little chance to the corresponding agent during the negotiation process.

What remains are touching cases that cause conflict. The two agents negotiate to resolve this conflict
based on the calculated degrees of confidence in each of the two reported candidate cut-points.

1. Let Fv and Fh be the two reported candidate cut-points.
2. If Confidence�Fv�= Confidence�Fh� then the actual cut-point is reported as having

xactual =
xFv +xFh

2
(4.8)
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3. ElseIf Confidence�Fv� > Confidence�Fh� then the actual cut-point is reported as having

xactual = xFv ×
1∓ Confidence�Fh�

Confidence�Fv�

2
(4.9)

4. ElseIf Confidence�Fh� > Confidence�Fv� then the actual cut-point is reported as having

xactual = xFh ×
1∓ Confidence�Fv�

Confidence�Fh�

2
(4.10)

Notice the∓ sign above, where the degree of confidence related fraction is either added or subtracted.
It is added in the case where the other candidate cut-point (Fv or Fh� lies on the right-hand side of
the candidate cut-point (Fh or Fv) of the x coordinate used in the right-hand side of the equation; it is
subtracted otherwise.

The negotiation and conflict resolution process has been successfully applied to different images
with single touching, multiple touching and long touching segments and overlapping. Examples will
be introduced in Section 5.

4.2.4 Restoration

Segmenting the image into two parts by a vertical line through the already selected actual cutoff point
will lead to several situations. The first is to have a single connected component for each numeral,
where some parts could be shared between the two numerals (Algorithm Restore is used). Another
result is to have a single connected part on one side and a single connected part with some small
isolated strokes on the other side. This requires restoration to be applied after moving the extra strokes
to the other side. The last scenario is to have two or more isolated parts on one side and a single
connected part on the other side. In such a case, slices of the connected part are moved to the other
side until some feature point(s) is (are) encountered on the connected side, or the other side becomes
a single connected component. Then, Algorithm Restore is applied.

Algorithm Restore investigates the possibility of restoring each part of a segmented image into
a recognizable digit by moving necessary strokes between the two parts. However, Algorithm
Restore utilizes what we call artificial end points. An end point, e, is said to be artificial if and
only if:

1. e lies in one of the two parts of a segmented image;
2. e faces the other part; and
3. e is not marked as ‘3’.

Algorithm Restore

Input: The two parts obtained after initial segmentation.

Output: The two parts (hopefully digits) after restoration.

Algorithm:

1. Consider each of the two parts after initial segmentation;

2. Locate artificial end points in each part;
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3. If there exists a single artificial end point, e, in any of the two

parts then:

• there is a corresponding artificial end point, e1, in the other part

such that abs (ye−ye1
�≤ 1;

• locate stroke s connecting e to the first encountered feature point

f along the contour of e’s part;

• locate stroke s1 connecting e1 to the first encountered feature

point f1 along the contour of e1’s part;

If f is an end feature point (marked ‘3’) then

Move s to e1’s part;

ElseIf f1 is an end feature point then

Move s1 to e’s part;

ElseIf (Length (s) > Length (s1)) && (Length (s1) < threshold) then

Move s1 to e’s part;

ElseIf (Length(s) < threshold) then

Move s1 to e1’s part;

EndIf

Else

• Consider artificial end points in each part in top-down order;

• For each two consecutive artificial end points, e and j, in the same

part do

� Fill the gap between e and j by moving a corresponding stroke from

the other part;

� If there are, not necessarily in the same part, two or more

feature points m and n between e and j and neither m nor n is marked

‘3’ then

The stroke that lies between m and n (inclusive) must be

duplicated in both parts;

EndIf

EndFor

EndIf .

Noise may be present between connected digits like bridging strokes. Our proposed segmentation
algorithm successfully eliminates extra strokes by applying some rules. In other words, there are cases
where there are some extra strokes located on the right-most side of the left part, or on the left-most
side of the right part. Such strokes are identified as follows.

Generate the (horizontal) histogram and then eliminate any stroke located on the right-most side of
the left part or on the left-most side of the right part with a small number of 1s per column compared
to the maximum number of 1s in a single column along the whole considered part, where this is
the only stroke across the height of its part. These types of extra stroke were not considered in [22],
which considered only special extra strokes and mainly those involving digits ‘0’, ‘8’, ‘6’ and ‘9’. Our
approach is more general to cover many other cases.

5. Experimental Results

Experiments were conducted using our own 4095 images written by 150 different people. The images
are all handwritten numeral strings with possible touchings from different categories, including single
touching, multiple touching, long touching and overlapping. All our images were scanned on a 600 dpi
scanner and stored as Bitmap files. Some examples are shown in Figure 4.7.
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Figure 4.7 Some examples of the numeral strings from the test database.

The segmentation results are verified by a recognition system [26]. The performance of the
proposed segmentation algorithm relies on the recognition and manual checking of the rejected and/or
misrecognized digits. However, recognition does not affect the decision making of the segmentation
process. It is just used for verifying the results produced by the proposed segmentation algorithm.
Examples of the segmentation algorithm are depicted in Figures 4.8–4.11. Some of these samples are
unsuccessfully segmented by other proposed segmentation algorithms in the literature. Examples of
unsuccessful segmentation results obtained by the proposed algorithm are depicted in Figure 4.12. This
is due to the overlap between the two numeral digits. In particular, when the overlap results in a hole
as illustrated in the same figure.

It is worth noting that although the proposed algorithm is intended for separating single touching
digits, it has the potential to separate multiple touching digits, as shown in Figure 4.13, provided that
the touching points are close.

Table 4.1 shows a performance evaluation comparison among different segmentation algorithms, of
which some use recognition as a deciding factor in the segmentation process. The overall performance
of our algorithm is 96%, which compares favorably with existing ones in the literature.

Figure 4.8 Examples of segmentation results from Class 1.
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Figure 4.9 Examples of segmentation results from Class 2.

Figure 4.10 Examples of segmentation results from Class 3.
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Figure 4.11 Examples of segmentation results from Class 4.

Figure 4.12 Examples of unsuccessful segmentation.

Figure 4.13 Example of successful multiple touching segmentation.
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Table 4.1 A comparative performance evaluation.

Algorithm Success segmentation rate

�20� 75�9%
�17� 89�0%
�15� 95�1%
�11� 92�5%
�16� 85�7%
Proposed algorithm 96�2%

6. Conclusions and Future Work

We elaborated on the importance of utilizing multiple agents in recognizing touching in handwritten
numeral strings. We mainly introduced two agents that we have developed to work on the thinned
image. Every agent looks at the image from a different perspective and detects a candidate cut-point,
which may lead to correct segmentation based on a computed degree of confidence. In general, the
derived two candidate cut-points are not the same. The difference requires the two agents to negotiate
and resolve the conflict and decide on the actual cut-point. The experiments conducted were successful
and encouraging. We realized that each of the two agents was not able to achieve on its own the
same recognition rate achieved after the cooperation and negotiation strategy was applied. Finally, our
approach successfully removes extra strokes, if any.

We are planning to test more agents that will help to increase the correct rate. Adding more agents
will improve the result without affecting the performance because agents work in parallel. Another
area that we are concentrating on is to apply the same approach to other sets of characters, including
Latin and Arabic.
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A novel prototype-based handwriting recognition system is explained in detail, covering all stages.

First, a segmentation method based on handwriting generation theories is illustrated. A small set of

informative features representing the character is then constructed. Then, a prototype extraction method

is carried out, in two stages. First, using Fuzzy ARTMAP, we group character instances according

to classification criteria. Then, an algorithm refines these groups and computes the prototypes. This

method is illustrated with examples using digits, lower-case and upper-case letters from the UNIPEN

international database. When these prototypes are used to initialize the recognizer, an average

recognition rate of 90.15% is achieved, which is comparable to that reached by human readers.

1. Introduction

Online handwriting recognition has been a hot research topic for a long time [1,2], but lately it has
become more important due to the expansion of pen-based devices, such as cell phones, Personal Digital
Assistants (PDAS) and pocket PCs, in which handwriting is the most ergonomic way for humans
to interact with machines. However, though simple for humans, automatic character recognition is
regarded as one of the most difficult problems in the field of pattern recognition. This is because
handwritten characters present an intrinsic variability that stems from the complexity of the handwriting
generation process [3]. More specifically, variability is due to the existence of more than one shape
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Figure 5.1 Tasks commonly performed in handwriting recognition systems.

to represent most characters, the possibility of tracing a character shape in several different ways (e.g.
upwards vs. downwards, clockwise vs. counterclockwise), and the noise introduced by writers when
drawing the shape. Authors mentally choose a shape for the character they are going to write, then
plan how they will trace it (e.g. upwards, clockwise, etc.) and finally move their hand in response to
a sequence of very simple impulses [3,4].

Therefore, online handwriting recognition systems that take this fact into account, usually consist of
a number of stages, depicted in Figure 5.1, that try to invert the handwriting recognition process [2].
Filtering and preprocessing of data is performed in order to remove noise from the electronic device
capturing the pen movement, or to perform some coordinate transformation that reduces the impact of
escalation, rotation or translation of the handwritten path along the digitizing pad. Afterwards, since
the actual character path traced results from the superimposition of fast, simple hand movements,
the character can be broken into the strokes, which are pieces of handwriting generated by these
movements [3], through a character segmentation process [4]. Then, a feature extraction process
is convenient to find out a representation of the strokes in terms of informative features, such as
pad coordinates, length, angles, trace velocity, etc., that will allow the classifier to distinguish one
stroke from another, and thereafter one character from another. Finally, the classification stage is a
general pattern recognition problem, for which many different techniques can be suitable [5]. There
are many examples in the literature, from statistical [6] or syntactic recognition [7], to the use of
neural networks [8] or neuro-fuzzy systems [9]. Though each approach has its advantages, a broad
number of techniques perform prototype-based classification [10–12], which is closer to the handwriting
generation theories, i.e. recognizing a character consists of making a guess on which prototype the
writer had in mind when he generated the actual instance to be labeled [11].

In this chapter we will describe a prototype-based classifier that is based on the well-known LVQ
algorithm [13], but initialized with the prototypes extracted through a two-stage process that we
presented in [14]. Though many other initialization techniques are available, we shall show that our
prototype extraction method has several advantages: it determines the number of prototypes from the
complexity of the data and extracts prototypes that are human-recognizable, thus enabling uses of the
prototypes other than initializing a classifier.

This chapter will continue with a brief explanation of the relationship between the handwriting
generation process and how handwriting recognition can be performed, in Section 2. Then, Section 3
describes how characters are segmented into strokes, using a method we proposed in [15] that is inspired
by handwriting generation theories. In addition, the feature extraction process carried out in our study
will be explained. Section 4 describes in detail the prototype extraction method that we proposed
in [14] and evaluates its suitability in terms of the number of prototypes generated and their visual
appearance. Section 5 will use these prototype collections to implement a prototype-based classifier that
will be evaluated on unseen real data. Finally, Section 6 will present the main conclusions of this work.

2. A Handwriting Generation Process Model

Usually, each character concept may be written using several different shapes. For example, the letter
concept {a} can be written in different ways, such as an upper case, a block printed or a cursive variant.
The digit concept {0} may in turn be drawn using a normal zero or a slashed zero. Each of the shape
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models that a writer can choose to represent a character concept is called a character allograph [7,16],
i.e. an allograph may be considered as the shape model or shape prototype that the writer tries to
imitate in order to represent the character concept.

Once the choice of the shape model or allograph of the character concept to be represented has been
made, there is the matter of how the writer will trace that shape. Character allographs may be drawn
in several ways; for example, the drawing of the normal zero allograph can be started upwards or
downwards and may be done clockwise or counterclockwise. Before starting to write, the author must
choose an execution plan defining the order and sequence of the allograph’s strokes [3,17]. Thus, we
may give the label character shape and execution prototype (or execution prototype for brief) to the
model that provides information about the shape model that must be drawn, as well as about the order
of the strokes the shape may be divided into. In the handwriting execution process, the writer will
draw a character instance, trying to make it as similar as possible to the model given by the character
shape and execution prototype.

Conversely, handwriting recognition consists of labeling character instances in order to recover the
character concept from the instance. Therefore, the execution prototype extraction method described
here would allow identification of the different execution prototypes of a character concept, as illustrated
in Figure 5.2.

Three sources of variation in handwriting can thus be identified in this handwriting generation
model: allograph variation, execution plan variation and instance variability. Allograph variation refers
to the large amount of different shapes used by individuals to represent character concepts. The
shapes used by the writer depend mainly on his education at primary school and personal preferences.
Execution plan variation is related to the different possible ways of drawing a given shape. Again,
execution plans used by writers depend on education, as well as on the context of neighboring letters.
Finally, instance variability holds for a given writer, and refers to the ‘noise’ (e.g. different slants
and sizes, movement noise) introduced by the author when trying to reproduce a character execution
prototype.

To suit a prototype-based classifier, a character shape and execution prototype extraction method
should retain both allograph and execution plan variation, and reject instance variability, i.e. the
extraction method must try to find a representative prototype for each group of character instances
that has been drawn following a given allograph and execution plan. In such a task, knowledge about
characters’ shape and execution existing in a large number of character instances is condensed in a
collection of prototypes that can be used in the classifier.

Character
concepts

{a} (A), (a), (a)

Shape choice Execution plan choice

Allograph extraction

Handwriting recognition

Character
allographs

[A], [a], [a]

Character
instances

a

Handwriting execution

Prototype extraction

Character
prototypes

Figure 5.2 A conceptual model of the handwriting generation process that shows how handwriting
recognition is related through allographs and execution prototypes.
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This chapter will describe the automatic shape and execution prototype extraction method that we
proposed in [14], serving several purposes. First, it can help to formalize the study of the different

handwriting styles used by humans according to several factors like age or culture [18]. In addition, the
study of execution plans is a very important topic in handwriting generation research [1,19]. Finally,
although human recognizable shape and execution prototypes are not a priori thought of for character
recognition, the knowledge they enclose may be used to initialize online handwriting recognition

architectures [11]. Therefore, the method described here has been designed to meet three objectives:
a low number of prototypes, human recognizable prototypes and knowledge condensation.

3. The First Stages of the Handwriting Recognition System

As stated in the introduction, a common handwriting recognition system consists of a preprocessing
stage, in which raw data is filtered, scaled or otherwise prepared; a segmentation stage, to divide
characters into strokes; a feature extraction stage, in which an informative feature set is built to
represent characters; and the actual classification stage.

In the research presented here, the preprocessing was quite simple: an FIR low-pass filter was applied
to the velocity signal, with a cutoff frequency of 10Hz [20] and a window length of f /10, where f
is the sampling frequency of the digitizer pad. After this preprocessing, the segmentation takes place
using the method we proposed in [15], also described in Section 3.1. Characters were then represented
by a few features, selected as explained in Section 3.2.

3.1 Character Segmentation

The objective of segmentation is to divide complex handwriting pieces into simpler ones, in order to
reduce input pattern variability and thus simplify the classifier structure. In this work, data are isolated
characters composed of one or more components (a component is the piece of handwriting between
each pen-down and its successive pen-up), which are to be segmented into strokes. Segmentation
methods can be derived from handwriting generation theories, as well as heuristic studies of the
geometric features in handwritten specimens.

According to [3,4], handwriting is generated by a sequence of superimposed simple movements,
each with a delta-lognormal velocity profile. Some examples of such profiles are shown in Figure 5.3.
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Figure 5.3 Some typical delta-lognormal velocity profiles (velocity in cm/s, time in s). These profiles
describe movements produced by the synergy of an agonist and an antagonist system synchronously
activated with a pair of impulse commands, each described by a lognormal impulse response [3].
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Segmentation procedures should then divide the velocity profile of a component into simpler delta-
lognormal profiles, each corresponding to one stroke.

It can be observed that the first part (with the form ‘c’) of the trajectory of several characters
is similar, e.g. in ‘a’, ‘c’, ‘d’, ‘g’, ‘o’ and ‘q’. It should therefore be reasonable to expect that any
character could be built from a finite base of strokes [21]. Then, segmentation should aim to discover
such a stroke base, assuming that character prototypes correspond to sequences of strokes picked up
from the aforementioned base.

Besides the extensive use of this generic approach in oriental character recognition, biology-inspired
segmentation methods based on minima in velocity profiles have been proposed in the literature
[10,22]. These algorithms require preprocessing of real data, and therefore the quantification of the
signal, inaccurate sampling rates or human trembling may introduce irregularities.

The character instances used in the experiments described here have been segmented using a method
inspired by handwriting generation theories [3,4]. This method tries to eliminate perturbations in the
velocity signal with minimum modifications of the character geometry. After the preprocessing stage,
angle 	�t�, angular velocity 	′�t� and linear velocity v�t� signals are obtained according to:

	�t�= arctan
vx�t�

vy�t�
≈ arctan


y�t�


x�t�
(5.1)

	′�t�≈ 
	�t� (5.2)

v�t�=
√

vx�t�
2+vy�t�2 ≈

√

�
x�t��2+ �
y�t��2 (5.3)

This information is jointly exploited in order to obtain the segmentation points, as follows:

• Initial candidates are determined according to singularities of the angle signal, which are crosses
with 0, 90 � and −90 �. Crosses with 0 will determine peaks (due to sudden changes in orientation),
loops (in which there is a transition to a different angular region), and crosses with horizontal
baselines. Also, crosses with 90 � or −90 � can be used to detect crosses with vertical baselines.
These candidates can be seen in Figure 5.4(a) and Figure 5.4(b) for a sample of letter ‘a’.

• In this step, we look for extrema of the angular velocity signal in the vicinity of the candidate points
chosen in the previous step. This second criterion is not used independently because of its extreme
sensibility to possible perturbations that might have passed through the low-pass filter stage. The
output of this stage is shown in Figure 5.4(c) and Figure 5.4(d) for the same character as above.

• Finally, minima in linear velocity next to remaining candidates determine the final set of segmentation
points. The use of this information, which is theoretically dual to extrema in angular velocity, permits
us to reduce the number of local singularities that were previously accepted as segmentation points.
In Figures 5.4(e) and 5.4(f), the final segmentation points are shown for our example.

• Besides this basic segmentation procedure, we can use any available pen-up information in order to
delete small strokes that are due to a too early contact of the pen with the pad or a too late withdrawal,
at the beginning or at the end of the component respectively. Information on the linear velocity
profile can also be used to delete small pulses (ornamental strokes), as shown in Figures 5.4(g)
and 5.4(h).

In [15] we showed how this segmentation method is computationally simple, consistent (similar
characters are segmented into similar strokes), and produces a reduced number of strokes (which is
desirable in order to achieve a small number of character prototypes).

3.2 Feature Extraction

Feature extraction or codification is necessary in order to cluster strokes within our effort to build
a base of character primitives and classify stroke sequences that correspond to complete characters.
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Figure 5.4 Steps of the segmentation method based on biological models. Character ‘a’ with
segmentation points and the associated signal information is shown. (a,b) Singularities in angle signal
are selected as segmentation candidate points; (c,d) extrema in angular velocity are found in the vicinity
of candidates; (e,f) minima in linear velocity next to candidates are selected as final segmentation
points; (g,h) pen-up information is used to delete some strokes.
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Figure 5.5 Some geometrical features extracted from a stroke are the sine and cosine of �1, �2 and
�3, that code its curvature, and length L, that codes its size.

Then, features should be discriminant, geometrically significant and consistent for each character class.
To select a set of them, we considered a large number of candidate features used in the literature [10]
or suggested by our knowledge about the problem [9]. The feature selection was handled through the
well-known Sequential Forward Selection (SFS) [23], which implicitly assumes that they are used
for classification. We used the classifier proposed later in Section 5.1 to assess the quality of these
features.

After the selection procedure, each stroke contributed ten features to the feature set of the character,
as follows:

• mean x-coordinate value and mean y-coordinate value, that inform about the position of the stroke
within the box containing the character;

• sine and cosine of the three phases (�1��2 and �3) defined by three segments approaching the
stroke, as shown in Figure 5.5, that inform of the curvature of the stroke;

• length of the stroke (L), also shown in Figure 5.5, that informs of the size of the stroke;
• a sequential feature showing whether the stroke starts and/or ends a component or is inside the
component, which is relevant when characters are made up of several components (e.g. ‘t’ or ‘i’).

In addition, the character’s height to width ratio was added to the feature set. Therefore, a character’s
feature set has 10n+1 features, where n is the number of strokes resulting from its segmentation.

It is noteworthy that since these features condense geometrical information about the character,
characters can be reconstructed from feature vectors. It is important to have human recognizable
prototypes, as will be shown later.

4. The Execution of the Prototype Extraction Method

As stated above, character instances are represented using feature vectors, and if these features are
discriminant, the vectors will spread along the feature space forming separate clouds. Each cloud is
in fact a group of character instances around a prototype. This prototype is a priori unknown and
can in turn be considered the generating execution prototype in our case of handwriting. The more
one character instance resembles the prototype, the smaller the distance between the prototype and the
instance feature vector will be.
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Thus, the aim of our prototype extraction method is first to find groups of character instances
generated by the same prototype, and then to compute the latter. The mean of the feature vectors
belonging to the same group is employed to calculate the prototype. This assures the minimization of the
distance between the prototype vector and the set of instance vectors employed for its calculation [23].

As described in Section 3.2, feature vectors associated to character instances are built by
concatenating the fixed-length feature vectors individually computed for each stroke extracted from
the instance. The concatenation is made according to the order they were drawn. The use of this
concatenation is an important point in our system because it assures that instance feature vectors store
the information about the execution plan that has been followed to write the character; i.e. the order in
which the strokes were drawn is always known, thus describing the execution plan. After this stage,
prototype extraction proceeds. For this task, the technique employed is based on the idea of performing
the grouping in two stages [14].

First, instances are grouped in sets according to classification criteria, i.e. all instances within a
group represent the same character concept (they have the same label). The number of created groups
depends only on classification needs, i.e. the proximity of instances of different character concepts.
Therefore, each of these groups may contain instances generated following one or more different
character execution prototypes, since this fact does not affect classification.

A refinement of the grouping is then performed, but based on the search of clouds of instances
within the already existing groups, instead of on classification criteria. These two steps are shown in
Figure 5.6. Figure 5.7 shows an example of the prototype extraction method performance.

4.1 Grouping Training Samples

A rough division of the feature vectors is performed in the initial grouping stage. This division is made
according to classification criteria and tries to gather under the same group sets of prototypes having
the same label that may or may not have been drawn using the same prototype. The labels of the
training data are thus employed to make this first division, in the grouping stage. In the next stage, the
prototype extraction method will try to separate the clusters generated by different prototypes within
each group.

For the grouping stage we have used Fuzzy ARTMAP, a supervised neural network architecture
that follows the principles of Adaptive Resonance Theory (ART) [24]. In this network, two Fuzzy
ART unsupervised modules, one grouping feature vectors �ARTa� and another classifying the label
�ARTb�, are joined by an inter-ART map. ARTa divides the input space using hyperboxes according
to the data label. Fuzzy ARTMAP is a popular neuro-fuzzy scheme that has shown its validity in other
handwriting recognition systems [9,15].
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Figure 5.6 Block diagram of the execution prototype extraction method.
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Figure 5.7 An illustrative example of the prototype extraction method (note that in the real extraction
experiments, the dimensionality of the feature space is much higher). The character instances in (a)
belonging to two character concepts {a} and {b}, are then clustered according to label and distance
criteria in (b), while in the second phase, we extract the prototypes in (c) using the refinement phase.

Since the strokes’ number of instances is not fixed, feature vectors are processed by a different neural
network depending on the number of strokes of each character (i.e. a different network must be used
for 1-stroke characters, 2-stroke characters, etc.) as shown in Figure 5.6. After training, the n-stroke
network will have created a number of hyperboxes dividing the n-stroke input feature space, as can be
seen in Figure 5.7. All instances within a given hyperbox have the same label, unless also contained by
a smaller hyperbox. Sometimes zero-volume hyperboxes containing just one feature vector are found.
These hyperboxes are usually produced by noisy samples, although they may appear because of the
Fuzzy ARTMAP training algorithm itself. Zero-volume hyperboxes are rejected prior to finding out
the final prototypes in the next stage. The output groups are thus made by the feature vectors activating
the same hyperbox. This assures that vectors belonging to the same group have the same label and are
close in the input space.

4.2 Refinement of the Prototypes

The previous stage produces groups of instance vectors according to classification criteria. This is
performed by a series of Fuzzy ARTMAP neural networks that divide the input space using labeled
hyperboxes, thus creating groups of character instances having the same label. However, these groups
may enclose instances stemming from different execution prototypes, as shown in Figure 5.7. To
correct this, a refinement stage proceeds, redistributing the instances within previously determined
hyperboxes and identifying the generating prototypes. This second stage allows generation of a low
number of prototypes, easily recognizable by human readers, that represent the knowledge acquired by
the neural networks.

This procedure incrementally builds the prototype lexicon from the existing hyperboxes. For each
iteration, a number of permanent prototypes exist, as well as a candidate prototype that can vary until
it becomes permanent.

Initially, only one permanent prototype exists: it is calculated as the mean of the vectors grouped in
the smallest hyperbox, i.e. this will be the most specific prototype.

Afterwards, the next hyperbox in ascending order of size is selected, so that its patterns can be used
to create new prototypes. In order to do this, one vector among them is randomly selected as a candidate
prototype. Then, all the patterns closer to this candidate than to any other are said to have been
generated by the current candidate prototype, that in turn can be recalculated as the mean of all these
vectors. Because of the random choice of the initial candidate, its new value can differ significantly.
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Therefore, all patterns in the processed hyperbox are newly assigned to the closest prototype, permanent
or candidate, and another more precise value for the candidate prototype is calculated. Eventually, this
process stops when the variation between two successive values for the candidate prototype is under
a predefined threshold. When this occurs, the prototype becomes permanent and it is added to the
prototype lexicon.

However, it may well happen that not all vectors in the processed hyperbox are closer to the newly
generated prototype. If some vectors remain, they are closer to another already existing prototype that
may have the correct label associated. If, however, they are closer to a prototype with a different
class label, it means that a new prototype should be created. This new prototype can be seen as the
generator of another ‘cloud’ of character instances that significantly differ from others describing the
same character concept.

To calculate this new prototype, a vector is randomly selected among the remaining patterns of the
hyperbox being processed. The prototype is then refined through the same iterative process described
above, until it becomes a permanent prototype. The process continues, so that even more than two
prototypes could actually be extracted from a given hyperbox.

When all the patterns in a given hyperbox are finally processed, the next largest hyperbox is taken.
The procedure continues until all existing hyperboxes have been processed. Therefore, this algorithm
starts from very specific prototypes, continuing to more general ones, while also incrementing the
generality of those already existing.

In addition, processing the groups of feature vectors proceeds in ascending order of size of their
associated hyperboxes, dealing first with compact hyperboxes that contain only one cloud of vectors
(i.e. one prototype). Since larger hyperboxes are processed later, they may contain some of the previous
hyperboxes, and thus already generated prototypes. The detection of instances belonging to the same
group and lying on both sides of a previously computed allograph, lets us determine the existence of
different prototypes within the group.

A step-by-step description of this algorithm can be found in Table 5.1.

4.3 Experimental Evaluation of the Prototype Extraction Method

The prototype extraction method proposed can be experimentally evaluated to comply with the
objectives of a low number of prototypes, human recognizable prototypes and knowledge condensation.
Such evaluation will be performed using the UNIPEN [25] training data sets, using versions 2 and 7
(train_r01_v02 and train_r01_v07). Since the UNIPEN project has already collected over
five million characters generated by 40 organizations in a common human-readable format, the use of
the character database provided by UNIPEN ensures a large amount of data representing a wide range
of allographs, author independence and comparability to other systems.

The extraction method was tested independently on digits, upper-case letters and lower-case letters.
The number of labels used in each set was 10, 26 and 26 respectively, according to the English
alphabet. Every set was divided into two subsets of the same size, guaranteeing the presence of
samples by any writer in both of them. The first subset was used to perform the prototype extraction
experiments and later to train the character recognition systems. The second subset was only used for
handwriting recognition tests. Table 5.2 shows the distribution of data. Characters were segmented
using the method described in Section 3.1 and then a feature vector was collected to represent each
character, as explained in Section 3.2.

The number of Fuzzy ARTMAP networks employed in the prototype extraction system was set
to six for digit and upper-case letter experiments, and to seven for lower-case letters. Characters
having a larger number of strokes were considered as segmentation errors due to the preprocessing
stage. However, the number of incorrectly segmented characters was never more than 0.2% of the
total amount of data used for the experiments. The training of all networks was made setting design
parameters � = 0�001� � = 0 and  = 1, so that large (i.e. general) hyperboxes would be created if
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Table 5.1 Summary of the refinement algorithm.

Notation The hyperboxes created in the grouping refinement stage are denoted
R1�R2� � � � �RN , and it is assumed that �R1�< �R2�� � � � �< �RN �.
The hyperbox being processed is denoted by r.
The vectors associated to hyperbox Rr are denoted �r = �vr1� v

r
2� � � � � v

r
Mr�.

The collection of prototypes is denoted by T .

Initialization Take r = 1 (the smallest hyperbox), compute the first prototype a1 as the mean
of the vectors related to R1. Make T = �a1�.

Step 1 Select the next category in size, i.e. r = r+1. Mark all vectors in �r as not related
to any prototype.

Step 2 Select any random vector not related to any prototype from �r , and let it be the
candidate prototype ac.

Step 3 Compute the distances from every vector vri to ac and all other prototypes in T .

• If vector vri is closer to ac than to any other prototype, or vector vri is closer to
some permanent prototype aj than to ac but ��ac− vri ��< ��ac−aj ��, then mark
vector vri as related to prototype ac.

• If vector vri is closer to some permanent prototype aj than to ac, prototype aj
has the same associated label as hyperbox Rr and ��ac− vri ��> ��ac−aj ��, then
mark vector vri as related to prototype aj .

• If vector vri is closer to some permanent prototype ak than to ac, prototype ak
has a different associated label to hyperbox Rr and ��ac−vri ��> ��ac−aj ��, then
do not relate vector vri to any prototype.

Step 4 Compute a new value for prototype ac as the mean of all vectors in �r associated
to it.

• If the prototype has changed too much ���ac−aoldc ��> 	� mark all vectors in �r
as not associated to any prototype and go to step 3.

• If the prototype has changed very slightly ���ac−aoldc �� < 	�, add ac to T and
remove all vectors associated to ac from �r .

• If �r still contains vectors not related to any prototype, go to step 2 to process
them.

• Otherwise, go to step 1 to process the next category.

possible [26]. Training patterns were presented to the networks until null prediction error on the training
data was reached. The threshold parameter of the refinement algorithm was set to 0.00001.

4.3.1 An Example of Prototype Extraction

Figure 5.8(a) shows an example of the prototypes extracted for the character concept {Ø} (zero) from
the UNIPEN version 2 data set. Prototypes in Figure 5.8(a) are sorted by the number of strokes; the first
row contains one-stroke prototypes, the second contains two-stroke prototypes, and so on. The system
extracted 16 prototypes within which were the two allographs expected a priori (the normal zero (0)
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Table 5.2 Available data from UNIPEN database is distributed in subsets for prototype extraction
and learning, and test.

Version 2 Version 7

Digits Upper-case
letters

Lower-case
letters

Digits Upper-case
letters

Lower-case
letters

Prototype extraction/ 1916 2109 6100 7245 12105 23710
learning

Test 1917 2109 6101 7242 12104 23714
Number of labels 10 26 26 10 26 26

Figure 5.8 Reconstruction of the prototypes extracted for (a) the ‘0’ digit; (b) the upper-case letter
‘M’; and (c) the lower-case letter ‘b’ of the version 2 UNIPEN data learning set. Prototypes in each
row correspond to the same number of strokes. The percentage of training samples represented by each
prototype is also shown.

and the slashed zero (Ø)), as well as several different execution plans for both of them. For example, the
first and the last two-stroke zeros have been made following the same model (0) but different execution
plans: both drawings started upwards but were made clockwise and counterclockwise respectively.
This agrees with the studies on handwriting generation in which the possibility of designing different
motor plans for the same allograph is stated [1].

Most of the extracted prototypes are easily recognizable at first glance. Exceptionally, the one-
stroke prototype is hardly recognizable. This is clearly due to a wrong segmentation performed in the
preprocessing stage. Nevertheless, this prototype has been generated from just four character instances,
which represents 2.3% of the zero characters found in the training data, a percentage low enough to
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be considered not too significant. In addition, it must be said that the example shown and discussed
here is one of the worst cases found among version 2 experimental results on digits.

It can also be seen in Figure 5.8 that the same execution prototype is found with different numbers
of strokes (e.g. the fourth two-stroke and the second three-stroke zeros). Therefore, the segmentation
method should be revised, since ideally all instances generated from a given prototype should have
been segmented into the same number of strokes.

On the other hand, very similar prototypes are sometimes identified having been segmented into
an equal number of strokes. However, it is also appreciated in Figure 5.8(a) that these ‘repeated’
prototypes are generated by a reduced number of instances, while prototypes representing a much
larger number of instances (i.e. more general prototypes) can be found (e.g. the first, third and fourth
four-stroke slashed zeros represent the same prototype, but they have been generated from 1, 28 and
1 character instances respectively). Figures 5.8(b) and 5.8(c) show the execution prototypes extracted
for the upper-case letter ‘M’ and the lower-case letter ‘b’, confirming the issues discussed above.

The category proliferation problem present in Fuzzy ARTMAP architecture [26] could be considered
as one of the main reasons of the existence of repeated prototypes. This problem can produce the
separation of instances generated by the same prototype in many hyperboxes that will turn into the
appearance of repeated prototypes produced by few character instances.

The chosen feature set may be responsible for the appearance of repeated prototypes as well.
The features used to describe character instances may not include enough information to avoid the
superposition in the input space of instances drawn following different prototypes. When this happens,
the grouping stage splits prototypes, thus producing repeated models. The improvement of the proposed
prototype extraction methods could overcome these difficulties.

Some more reasons can be considered to cause system performance degradation. Erroneously labeled
data have been found in the UNIPEN data sets, since not all characters have been checked by human
recognizers. Also, ambiguous data that even a human would hardly recognize are quite frequently
found. Both factors can produce the appearance of incorrect prototypes, usually generated by just one
character instance.

4.3.2 Evaluation of the Number of Prototypes

Table 5.3 shows that a reasonable number of prototypes are retrieved in all cases when compared to the
number of character instances employed. It can also be observed that the total number of prototypes
extracted for version 7 sets is larger than for those of version 2, although the compression rate (number
of prototypes per label) has been significantly enhanced. Ideally, the system should retrieve the same
number of prototypes, regardless of the number of instance vectors, as long as they are representative
of the underlying problem.

Table 5.3 Number of prototypes extracted from each data set compared to the original number
of instances.

Version 2 Version 7

Digits Upper-case
letters

Lower-case
letters

Digits Upper-case
letters

Lower-case
letters

Number of
instance vectors

1916 2109 6100 7245 12105 23710

Number of prototypes 108 186 558 278 723 1577
Prototypes per label ratio 10�8 7�2 21�5 27�8 27�8 60�7
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Figure 5.9 Distribution of the extracted prototypes according to the number of character instances
related to them.

The distribution of the extracted prototypes according to the number of character instances employed
for their generation can be seen in Figure 5.9. This figure states that significant amounts of the extracted
prototypes for every test set were generated by either one character instance or by a group of two to
five character instances. The reasons for the appearance of this phenomenon were discussed in the
previous section. As has also been mentioned, these are usually repeated prototypes that represent the
same allograph and execution plan as other extracted prototypes associated with a much larger number
of instances. Later, we will study the possibility of discarding these prototypes according to the number
of instances that they represent.

On the contrary, a low number of highly general prototypes have been extracted for each data set,
therefore allowing the definition of a prototype dictionary. In the next section, it will be shown that
these general prototypes are easily recognizable by humans.

The distribution of the number of prototypes extracted per character concept can also be seen in
Figure 5.10. Figure 5.10(a) shows that for most digits and upper-case letters in version 2, the number
of prototypes extracted is between one and ten. For lower-case letters, the distribution has moved
to the right, showing that 11 to 20 prototypes are needed to represent most character concepts. This
result is due to the larger size of the third data set and the greater variability of lower-case characters.
The distributions found for version 7 data are shown in Figure 5.10(b). Again, the greater instance
variability and the larger amount of data employed turns into an increase of the number of extracted
prototypes per character.

4.3.3 Evaluation of the Prototype Recognition by Humans

One of the main goals of our system is the extraction of human recognizable prototypes. In order to
measure this quality, the extracted prototypes for version 2 data sets were used for a human recognition
test. For this purpose, three volunteers not related to this research were employed. The reconstructions
of the extracted prototypes were shown in a console, one pattern at a time, and the volunteers were
asked to label it. The average recognition results are shown in Table 5.4.

It is especially remarkable that the recognition rates for prototypes representing a low number of
instances are significantly below the corresponding average recognition rate. This supports the idea
that these groups of prototypes are mainly made up of repeated prototypes and exceptions. On the other
hand, the more general extracted prototypes show, in almost all cases, much higher recognition rates
than the average. This result is also consistent with the ideas exposed previously in Sections 4.3.1 and
4.3.2: the system is able to retrieve a low number of general prototypes that are easily recognizable by
humans.
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Figure 5.10 Distribution of the number of prototypes extracted per character concept in (a) UNIPEN
version 2; (b) UNIPEN version 7.

Table 5.4 Recognition rates for the human recognition test of prototypes extracted from UNIPEN
v.2 data, according to the number of related character instances. Rates below the average are shown
in italics.

1 2∼ 5 6∼ 10 11∼ 15 16∼ 20 21∼ 30 31+ Mean

Digits 71.43 64.81 89.75 76.67 76.92 100.00 93.75 77.47

Upper-case 57.58 72.73 67.95 100.00 100.00 91.67 95.00 76.53

Lower case 43.49 48.02 60.45 72.38 69.56 75.44 90.48 54.12

Another interesting point of study may be the comparison of prototype recognition results with the
recognition rates achieved by humans when they are shown character instances instead of prototypes.
This experiment was made in [15] using the character instances of version 2 UNIPEN digits, upper-case
and lower-case letters. In order to make a fair comparison, a weighted prototype recognition rate is
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Table 5.5 Human recognition rates on character instances
of UNIPEN v.2 data (reported in [15]), and weighted
recognition rates using the prototypes extracted in this work.

Digits Upper case Lower case

Character instances rate 96�17 94�35 78�79
Prototype weighted rate 88�74 89�41 74�63

used, so that correctly or incorrectly identifying a prototype contributes to the final recognition rate
proportionally to the number of character instances that the prototype represents. This is computed by
the expression:

Weighted rate= a1 ·p1+· · ·+ai ·pi+· · ·+aN ·pN
p1+· · ·+pi+· · ·+pN

(5.4)

where ai = 1 if the ith prototype has been correctly identified, and 0 if it has been incorrectly identified;
pi is the number of character instances represented by the ith prototype and N is the number of
extracted prototypes.

The results of this comparison in Table 5.5 indicate that the recognition rates calculated using
Equation (5.4) are close to those achieved on the actual instances. This states again that the extracted
prototypes are easily recognizable. Incorrect performance of the prototype extraction system, the use of
less visual information describing the prototype than describing character instances (i.e. prototypes are
drawn performing a reconstruction from their feature vectors, while character instance shape is drawn
according to the information recorded from the digitizer), and errors introduced in the reconstruction
phase are considered to be the main factors in prototype rate falls.

5. Prototype-based Classification

The method to extract shape and execution prototypes described in Section 4 is intended to condense
the knowledge about characters’ shape and execution provided by large amounts of data, i.e. the
extraction method tries to represent every group of character instances generated following a given
allograph and execution plan by one prototype. If this is made correctly, the collection of extracted
models will be made up of prototypes that should help to build prototype-based classifiers.

In this section, we will show that our prototype extraction system achieves knowledge condensation
by using the extracted prototypes to initialize a handwriting recognizer. If these prototypes are
representative of the training data, good recognition rates should be obtained.

5.1 The Prototype-based Classifier Architecture

Since the prototypes, as constructed here, are models close to the group of character instances they are
computed from (i.e. training patterns), it seems reasonable to apply recognizers based on the comparison
of distances between prototypes and test instances (i.e. test patterns). For this purpose, Learning Vector
Quantization (LVQ) codebooks [13] can be used, while other initialization methods can be used for
comparison purposes. LVQ is a supervised version of vector quantization and generates code vectors
to produce near-optimal decision borders between the classes, even in the sense of classical Bayesian
decision theory [27]. The handwriting recognizer thus employed consists of a series of LVQ codebooks.
Different codebooks are employed to classify the characters according to their number of strokes.
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The prototypes extracted by five different methods were used to initialize the LVQ codebooks:
method (1) is the prototype extraction method proposed in this chapter. Methods (2) and (3) are two
methods called propinit and eveninit, proposed in [13] as the standard initialization methods for the
LVQ, that choose initial codebook entries randomly from the training data set, making the number of
entries allocated to each class proportional (propinit) or equal (eveninit). Both methods try to assure
that the chosen entries lie within the class edges, testing it automatically by k-NN classification.
Method (4) is k-means clustering [23], which is also widely used for LVQ initialization [28,29] and
obtains prototypes by clustering the training data of each class (characters having the same label and
number of strokes) independently. Finally, method (5) is the centroid hierarchical clustering method
[23,30], one of the most popular hierarchical clustering algorithms [30]. This is used in the same way
as k-means clustering.
The first advantage of the proposed extraction method comes out when setting the different

parameters for the comparison experiments: the number of initial entries must be fixed a priori for
the propinit, eveninit, k-means and hierarchical initialization methods, while there is not such a need
in the extraction algorithm presented in this chapter. Consequently, in order to make comparisons as
fair as possible, the number of initial vectors for a given codebook to be generated by the propinit

and eveninit methods was set to the number of prototypes extracted by the algorithm proposed here
for the corresponding number of strokes. In addition, the number of prototypes to be computed with
k-means and hierarchical clustering algorithms was fixed to the number of prototypes extracted by the
method proposed here, for the same number of strokes and the same label. In all cases, the OLVQ1
algorithm [13] was employed to carry out the training. It must be mentioned that either the basic
algorithm LVQ1, the LVQ2.1 or the LVQ3 [31] may be used to refine the codebook vectors trained
by the OLVQ1 in an attempt to improve recognition accuracy.

5.2 Experimental Evaluation of the Prototype Initialization

Two different experiments have been made using the five aforementioned initialization methods with
the different data sets. First, the system was tested without any kind of training. This would show
that indeed the prototypes retain the problem’s essential information (i.e. allograph and execution plan
variation), which can be used for classification without further refinement. Second, the test was carried
out after training the LVQ recognizer. The chosen training lengths were always 40 times the total
number of codebook vectors. The initial value of the parameter � was set to 0.3 for all codebook
entries. The k-NN classifications for propinit and eveninit initializations were made using k= 3. These
values correspond to those proposed in the documentation of the LVQ software package [13]. The
achieved results are shown in Table 5.6.

The recognition rates yielded in the first experiment show a very poor performance of the propinit

and eveninit initialization methods because, given their random nature, they do not assure the existence
of an initial entry in every cloud found in the training data, nor its placement in the middle of the cloud.
On the contrary, the other three methods give much better results, especially the k-means method,
which shows the best rates, followed by our extraction method. Thus supporting the idea that the
extracted prototypes retain the problem’s essential information.

However, the entries computed by k-means and hierarchical clustering methods do not try to represent
clusters of instances having the same allograph and execution plan, as the prototypes extracted from
Fuzzy ARTMAP boxes do, but just groups of characters with the same label. In addition, the clustering
methods tend to create prototypes in strongly represented clusters (i.e. clusters with a large number of
instance vectors) and not in poorly represented clusters, while the proposed extraction method is able
to compute prototypes for every cluster found in the training data, no matter their number of instances.
This idea is also supported by the recognition rates achieved after training the system: once the OLVQ1
algorithm refines the prototypes’ positions according to classification criteria, our prototype extraction
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Table 5.6 Results of recognition experiments using different initialization methods, with or without
further training of the system. Entries in bold show the highest recognition rates for each experiment.

Train Initialization Version 2 Version 7

Digits Upper-case
letters

Lower-case
letters

Digits Upper-case
letters

Lower-case
letters

No Prototype 92.80 86.96 83.87 91.12 87.28 83.53
No Propinit 75.85 70.65 67.30 83.97 75.78 75.50
No Eveninit 75.74 58.04 65.25 79.51 70.86 70.63
No k-means 90.40 85.90 84.51 93.22 87.58 87.54

No Hierarchical 90.87 88.00 79.45 89.74 82.51 77.33

Yes Prototype 93.84 87.81 86.76 95.04 89.68 88.28

Yes Propinit 88.47 78.38 76.71 89.23 80.92 83.49
Yes Eveninit 85.08 73.11 75.40 89.42 80.02 82.28
Yes k-means 93.32 87.58 86.34 94.61 89.05 88.24
Yes Hierarchical 91.91 86.86 84.43 93.17 88.15 86.84

method achieves the best results. This is due to the existence of test instances belonging to unusual
prototypes that are captured by the proposed method but not by the others.

Therefore, the proposed extraction method is considered to be the best of the five initialization
methods for the following reasons:

1. There is no need to fix a priori the number of prototypes to be extracted.
2. The best recognition rates are yielded for all the data sets.

5.3 Prototype Pruning to Increase Knowledge Condensation

A new experiment can be made in order to both have a measure of the knowledge condensation
performed by the extracted prototypes and to try to decrease their number. This experiment consists
of successively removing the prototypes having the smallest number of character instances related to
them. This way, we can have an idea of the importance of the prototypes and the knowledge they
provide. In this case, the recognition system is initialized using the remaining prototypes and then
trained following the criteria mentioned previously. The experiment was made for version 7 lower-case
letters, which showed the worst numeric results in prototype extraction and form the most difficult
case from the classification point of view.

Removing the prototypes representing ten or less instances strongly reduces the number of models,
from 1577 to 297, while the recognition rate decreases from 88.28% to 81.66%. This result shows that
the number of instances related to a prototype can be taken as a measure of the quantity of knowledge
represented by the given allograph. This is consistent with related works for Fuzzy ARTMAP’s
rule pruning [26]. The new distribution of extracted prototypes per character concept can also be
seen in Figure 5.11(b). It is noteworthy that the distribution has significantly moved to the left (see
Figure 5.10(a)), while a good recognition rate is preserved.

As a result, we can state that the number of character instances related to a prototype can be used as an
index to selectively remove prototypes, thus alleviating the problem of prototype proliferation detected
in Sections 4.3.1 and 4.3.2, while increasing the knowledge condensation. In addition, prototypes
related to a large number of instances are usually more easily recognized by humans.
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Figure 5.11 Distribution of the number of extracted prototypes per character concept in UNIPEN
version 7 lower-case letters. (a) initial set of prototypes (extracted from Figure 5.9(b)); and (b) removing
prototypes representing ten or less instances.

5.4 Discussion and Comparison to Related Work

The comparison of our recognition results with those found in the literature of some other researchers
working with the UNIPEN database is not straightforward, due to the use of different experimental
conditions. Fair comparisons can only be made when the same release of UNIPEN data is employed;
training and test data sets are generated the same way; and data are preprocessed using the same
techniques; otherwise, results can only be taken as indicative. This is the case of the results found
in [32], in which 96.8%, 93.6% and 85.9% recognition rates are reported for digits, upper-case and
lower-case letters respectively for the 6th training release of UNIPEN data after removing those that
were found to be mislabeled (4% of the total); [33] reports 97.0 and 85.6% for isolated digits and
lower-case letters using the 7th UNIPEN release for training and the 2nd development UNIPEN release
for test. These numbers confirm the good performance of our recognition system.

The recognition rates of the system proposed here can be fairly compared with those achieved by
the neuro-fuzzy classifier studied in [15]. In this chapter, recognition experiments were carried out
using similar version 2 UNIPEN data sets. The results achieved are shown in Table 5.7. It can be seen
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Table 5.7 Comparison of the recognition results of the LVQ system initialized using prototypes
proposed in this chapter with the two recognizers presented in [15], a Fuzzy-ARTMAP based system,
the asymptotic performance of the 1-NN rule and human recognition rates reported in [9]. Entries in
bold show the highest recognition rates for each experiment.

Version 2 Version 7

Digits Upper-case
letters

Lower-case
letters

Digits Upper-case
letters

Lower-case
letters

LVQ system 93.84 87.81 86.76 95.04 89.68 88.28

System 1 proposed in [15] 85.39 66.67 59.57 — — —
System 2 proposed in [15] 82.52 76.39 58.92 — — —
Fuzzy-ARTMAP based system 93.75 89.76 83.93 92.20 85.04 82.85
1-NN rule 96.04 92.13 88.48 96.52 91.11 —
Human recognition 96.17 94.35 78.79 — — —

that the LVQ system based on prototype initialization clearly exceeds all the results achieved by the
other system.

In [9] it is also possible to find experiments on handwriting recognition using version 7 UNIPEN
digit data sets. The best rate achieved by the two recognition architectures proposed there is 82.36%
of correct predictions. Again, the system presented in this chapter improves this result.

In order to have a more accurate idea of the LVQ system’s performance, one more comparison can
be made using the same test data with a recognizer based on the already trained Fuzzy ARTMAP
networks used for the first grouping stage. The results of both recognizers are also shown in Table 5.7.
The LVQ-based system performs better in all cases except for version 2 upper-case letters. As is
shown in [34], the high recognition rate achieved by the Fuzzy ARTMAP architecture is due to the
appearance of an extraordinarily large number of categories after the training phase.

Considering that the LVQ algorithm performs a 1-NN classification during the test phase, it is
interesting to notice the asymptotic performance of the 1-NN classifier which was proved in [35] to
be bounded by twice the Bayesian error rate. In order to approach this asymptotic performance, 1-NN
classification of the test characters was made using all the training patterns of every set except for
version 7 lower-case letters due to the excessive size of this set, which was not affordable in terms of
computation. The rates yielded with 1-NN classification are also shown in Table 5.7. It is noticeable that
the results of our recognition system are quite near to the computed asymptotic performance. This is
especially remarkable for version 7 digits and upper-case letters, where the differences are below 1.5%.

Another reasonable performance limit of our system can be obtained by comparing the achieved
recognition rates to those of humans. Thus, the expected average number of unrecognizable data can be
estimated for the different test sets. This experiment was carried out in [15] for the version 2 UNIPEN
data. The comparison of the LVQ-based system rates and human recognition performance is also shown
in Table 5.7. It is quite surprising to notice that the LVQ recognizer performs better than humans do in
lower-case recognition. This can be due to different facts. First, humans did not spend too much time
on studying the shapes of the training data, although they have a previous knowledge already acquired.
In addition, humans get tired after some hours on the computer, and thus their recognizing performance
can degrade with time. Finally, humans do not exploit movement information, while the recognizer
does, as seen in the prototype samples shown above, which can help to distinguish certain characters.

Finally, it can be said that the main sources of misclassification in the LVQ-based recognizer are
common to the prototype extraction method, i.e. erroneously labeled data, ambiguous data, segmentation
errors and an insufficient feature set. These problems affect the recognizer in two ways: first, the error
sources previously mentioned may cause the appearance of incorrect prototypes that would generate
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erroneous codebook entries. In addition, the presentation of erroneous patterns during the training phase
maycauseadeficient learning.The improvementof theseaspects in theprototypeextractionmethodshould
turn into a decrease of the number of codebook vectors used and an increase in recognition accuracy.

6. Conclusions

The prototype-based handwritting recognition system presented in this chapter achieves better
recognition rates than those extracted from the literature for similar UNIPEN datasets, showing that
the prototypes extracted condense the knowledge existing in the training data, retaining both allograph
and execution variation while rejecting instance variability. In addition, it has been shown that the
number of character instances that have generated a prototype can be employed as an index of the
importance of prototypes that can help to reduce the number of extracted prototypes.

These benefits stem from the method to extract the prototypes: groups of training patterns are
identified by the system in two stages. In the first one, Fuzzy ARTMAP neural networks are employed
to perform a grouping stage according to classification criteria. In the second, a refinement of previous
groups is made, and prototypes are finally extracted. This ensures that prototypes are as general as
possible, but that all clouds of input patterns are represented. This way, a low number of easily
recognizable prototypes is extracted, making it affordable to build a lexicon, though reducing this
number would be a desirable objective. The study of prototype recognition performed by humans stated
that the more general prototypes were easy to recognize, while a few repeated prototypes were harder
to label.

Besides their importance in initializing the classifier, the prototypes extracted can serve other
purposes as well. First, they may help to tackle the study of handwriting styles. In addition,
establishing the relationship between character instances, allographs and execution plans may also help
to comprehend handwriting generation.
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We propose an approach for detecting logos in document images with complex backgrounds. The

detection works with documents that contain non-logo images and are subjected to noise, translation,

scaling and rotation. The methods are based on the mountain clustering function, geostatistics and

neural networks. The proposed logo detection system is tested with many logos embedded in document

images, and the results demonstrate the effectiveness of the approach. It is also more favorable when

compared with other existing methods for logo detection. The learning algorithm described herewith

can be useful for solving general problems in image categorization.

1. Introduction

As a component of a fully automated logo recognition system, the detection of logos contained in
document images is carried out first in order to determine the existence of a logo that will then be
classified to best match a logo in the database. In comparison with the research areas of logo or
trademark retrieval [1–9], and classification [10–15], logo detection has been rarely reported in the
literature of document imaging. In the published literature of logo detection, we have found but a single
work by Seiden et al. [16] who developed a detection system by segmenting the document image into
smaller images that consist of several document segments, such as small and large texts, picture and
logo. The segmentation proposed in [16] is based on a top-down, hierarchical X–Y tree structure [17].
Sixteen statistical features are extracted from these segments and a set of rules is then derived using
the ID3 algorithm [18] to classify whether an unknown region is likely to contain a logo or not.

Computer-Aided Intelligent Recognition Techniques and Applications Edited by M. Sarfraz
© 2005 John Wiley & Sons, Ltd
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This detection algorithm is also independent of any specific logo database, as well as the location of
the logo.

A new method is introduced in this chapter to detect the presence of a logo in a document image
for which the layout may be a page of fax, a bill, a letter or a form with different types of printed and
written texts. The detection is unconstrained and can deal with complex backgrounds on document
images. In other words, first, the presence of a logo can be detected under scaling, rotation, translation
and noise; secondly, the document may contain non-logo images that make the classification task
difficult. To fix ideas, the detection procedure consists of two phases: the initial detection is to identify
potential logos that include logo and non-logo images, and if there exist any potential logos; then, the
verification of the identity of a logo is carried out by classifying all potential logos based on their
image contents against the logo database. The following sections will discuss the implementations
of the mountain function for detecting potential logos, and geostatistics for extracting content-based
image features that will be used as inputs for neural networks to verify the identities of logos in
document images.

2. Detection of Potential Logos

The detection is formulated based on the principle that the spatial density of the foreground pixels (we
define foreground pixels as the black pixels) within a given windowed image that contains a logo, or
an image that is not a logo, is greater than those of other textual regions.

We seek to calculate the density of the foreground pixels in the vicinity of each pixel within a window
size by considering each pixel as a potential cluster center of the windowed image and computing
its spatial density as follows. First we apply an image segmentation using a threshold algorithm such
as Otsu’s method [19] that is developed for grayscale images, to binarize the document image into
foreground and background pixels.

Let I be a document image of size M×N , and �⊂ I a window of size m×n, which is chosen to be
an approximation of a logo area, k be the location of a pixel in �, 1≤ k≤ �m×n�, and p the midpoint
of �. Such a function for computing the density of the foreground pixels around a given point k ∈ �
is the mountain function M�p� which is defined as [20]:

M�p�=
∑

k∈��p �=k
��k� exp�−�D�p�k�� a < x�p�≤ b� a < y�p�≤ d (6.1)

where � is a positive constant, D�p�k� is a measure of distance between p and the pixel located at
k, x�p� and y�p� are the horizontal and vertical pixel coordinates of p respectively, a= round�m/2�,
where round�·� is a round-off function, b=M−round�m/2�� c= round�n/2�, and d=N−round�n/2�.
The function ��k� is defined as:

��k�=
{

1 � fk = foreground

0 � fk = background
(6.2)

A typical distance measure expressed in Equation (6.1) is defined by:

d�p�k�= �x�p�−x�k��2+ �y�p�−y�k��2 (6.3)

The reason for using the mountain function instead of simply counting the number of foreground
pixels in the windowed region is that the foreground pixels of the logo region are more compact
than those of non-logo regions. Therefore, using Equation (6.1), a region of pixels which are closely
grouped together as a cluster tends to have greater spatial density than that of scattered pixels. For
example, the number of foreground pixels of a textual region can be the same or greater than that of
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a region having a fine logo; however, using the mountain function, the results can be reversed with
respect to the measure of spatial density. We will illustrate this effect in the experimental section
by comparing the mountain function defined in Equation (6.1) and the counting of foreground pixels
within a window �, denoted as C���, which is given by:

C���=
∑

k∈�
��k� (6.4)

where ��k� has been previously defined in Equation (6.2).
Finally, the window �∗ is detected as the region that contains a logo if:

�∗ = argmax
p
M�p�≥ � (6.5)

where � is a threshold value that can be estimated easily based on the training data for logo and
non-logo images.

Furthermore, we can see that the use of the mountain functionM�p� is preferred to the pixel-counting
function C��� because the former, based on the focal point p∗ ∈�∗, can approximately locate the central
pixel coordinates of a logo, which is then easily utilized to form a bounding box for clipping the whole
detected logo. By using the mountain function to estimate the pixel densities, we can detect potential
logos that will then be verified by matching their image content-based features against those of the logo
database. This verification task is to be carried out by neural networks, where the image-content-based
features are determined by a geostatistical method known as the semivariogram function.

3. Verification of Potential Logos

3.1 Feature Extraction by Geostatistics

The theory of geostatistics [21] states that when a variable is distributed in space, it is said to
be regionalized. A regionalized variable is a function that takes a value at point p of coordinates
�px� py� pz� in three-dimensional space and consists of two conflicting characteristics in both local
erratic and average spatially structured behaviors. The first behavior yields to the concept of a random
variable; whereas the second behavior requires a functional representation [22]. In other words, at a
local point p1, F�p1� is a random variable; and for each pair of points separated by a spatial distance h,
the corresponding random variables F�p1� and F�p1+h� are not independent but related by the spatial
structure of the initial regionalized variable.

By the hypothesis of stationarity [22], if the distribution of F�p� has a mathematical expectation for
the first-order moment, then this expectation is a function of p and is expressed by:

E �F�p��= ��p� (6.6)

The three second-order moments considered in geostatistics are as follows.

1. The variance of the random variable F�p�:

Var �F�p��= E
{

�F�p�−��p��2
}

(6.7)

2. The covariance:

C�p1� p2�= E ��F�p1�−��p2���F�p2�−��p2��� (6.8)
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3. The variogram function:

2��p1� p2�= Var �F�p1�−F�p2�� (6.9)

which is defined as the variance of the increment F�p1�−F�p2�. The function ��p1� p2� is therefore
called the semivariogram.

The random function considered in geostatistics is imposed with the four degrees of stationarity
known as strict stationarity, second-order stationarity, the intrinsic hypothesis and quasi-stationarity.
Strict stationarity requires the spatial law of a random function that is defined as all distribution
functions for all possible points in a region of interest, and is invariant under translation. In
mathematical terms, any two k-component vectorial random variables �F�p1��F�p2�� � � � � F�pk�� and
�F�p1+h��F�p2+h�� � � � � F�pk+h�� are identical in the spatial law, whatever the translation h.

Second-order stationarity possesses the following properties:

1. The expectation E�F�p��=��p� does not depend on p, and is invariant across the region of interest.
2. The covariance depends only on separation distance h:

C�h�= E �F�p+h�F�p��−�2�∀p (6.10)

where h is a vector of coordinates in one- to three-dimensional space. If the covariance C�h� is
stationary, the variance and the variogram are also stationary:

Var �F�p��= E
{

�F�p�−��2
}

= C�0��∀p (6.11)

��h�= 1

2
E
{

�F�p+h�−F�p��2
}

= 1

2
E
{

F�p�2
}

+ 1

2
E
{

F�p�2
}

−E �F�p+h�F�p�� (6.12)

= E
{

F�p�2
}

−E �F�p+h�F�p�� (6.13)

= E
{

F�p�2
}

−�2− �E �F�p+h�F�p��−�2� (6.14)

= C�0�−C�h� (6.15)

The intrinsic hypothesis of a random function F�p� requires that the expected values of the first
moment and the variogram are invariant with respect to p. That is, the increment �F�p+h�−F�p��
has a finite variance which does not depend on p:

Var�F�p+h�−F�p��= E��F�p+h�−F�p��2�

= ��h��∀p (6.16)

Quasi-stationarity is defined as a local stationarity when the maximum distance �h� =
√

h2x+h2y+h2z ≤ b. This is a case where two random variables F�pk� and F�pk+h� cannot be considered
as coming from the same homogeneous region if �h�> b.
Let f�p� ∈ ℜ be a realization of the random variable or function F�p�, and f�p+h� be another

realization of F�p�, separated by the vector h. Based on Equation (6.9), the variability between f�p�
and f�p+h� is characterized by the variogram function:

2��p�h�= E
{

�F�p�−F�p+h��2
}

(6.17)

which is a function of both point p and vector h, and its estimation requires several realizations of the
pair of random variables �F�p�−F�p+h��.
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In many applications, only one realization �f�p�� f�p+h�� can be available, that is the actual measure
of the values at point p and p+h. However, based on the intrinsic hypothesis, the variogram 2��p�h�
is reduced to the dependency of only the modulus and direction of h, and does not depend on the
location p. The semivariogram ��h� is then constructed using the actual data as follows.

��h�= 1

2N�h�

N�h�
∑

i=1
�f�Pi�−f�Pi+h��2 (6.18)

where N�h� is the number of experimental pairs �f�Pi�−f�Pi+h�� of data separated by h. Based on
this notion, the function ��h� is said to be the experimental semivariogram.

There are several mathematical versions for modeling the theoretical semivariograms [23–24] that
allow the computation of a variogram value for any possible distance h. However, in order to fit
an experimental variogram into any of the above theoretical variogram models, manual fitting and
subjective judgments are usually required to ensure the validity of the model. To overcome this problem
for the task of automatic recognition, we have chosen to use neural networks to learn the variogram
functions from their experimental data.

3.2 Neural Network-based Classifier

Neural networks have been well known for their capabilities for function approximation and are applied
herein for approximating the variogram functions from discrete values of the experimental variograms.
The multilayer feed-forward neural network consists of one input layer, one hidden layer and one
output layer. The input layer receives ten input nodes which are the first ten values of the experimental
semivariograms, ��h = 1����h = 2�� � � � � ��h = 10� as defined in Equation (6.18). There are twenty
nodes, which are chosen arbitrarily, in the hidden layer. The output layer has two nodes that represent
the two strength values in the range [0,1] for logo and non-logo images. Thus, when given a logo
image for training, the neural network is to respond with the values of 1 and 0 for the nodes of logo and
non-logo images respectively. Likewise, when given a non-logo image for training, the neural network
is to produce the values of 0 and 1 for the logo and non-logo output nodes respectively. The logistic
sigmoid transfer function is selected because it interprets the network outputs as posterior probabilities
that can produce powerful results in terms of discrimination.

4. Experimental Results

We extract the semivariogram values of 105 logos obtained from the University of Maryland
(UMD) logo database (ftp://ftp.cfar.umd.edu/pub/documents/contrib/databases/UMDlogo database.tar)
and 40 non-logo images. Figure 6.1 shows a sample of fifteen logos obtained from the UMD database.

Back propagation is used to train the network that has been described above. The neural network
is trained until its sum squared error falls below 10−5. We then use ten document images scanned
from letters, forms and billing statements to embed the same 105 logos and another 40 new non-logo
images on various locations of the scanned documents. All potential logos are correctly detected by the
mountain function during the initial phase of detection. The potential logos are then cropped out using
an average size of the logos in the database and their first ten semivariogram values are computed, to
be used as the input values for the neural network-based classification. Some images of potential logos
detected and cropped out by the mountain function are shown in Figure 6.2. If the output value of a
potential logo is above a threshold �, then it is accepted as a logo, otherwise it is rejected. For this
experiment, we set �= 0�8 and we obtained a total detection rate = 96% and substitution rate = 0%.
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Figure 6.1 Logo numbers 2–16 from the UMD database.

Figure 6.2 Images of detected potential logos.
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Figure 6.3 Sample of a document image.

Figure 6.3 shows a sample of the document images, which contains text, photos and logos being
placed unconstrainedly within the document space. To test against noise, scaling and rotation, the same
testing document images are then degraded with Gaussian noise of zero mean and 0.005 variance, and
rotated by five degrees. A sample document is shown in Figure 6.4, that can be considered as practical
for real applications. While the mountain function can still detect all the expected potential logos, the
verification rate is now reduced by 3% given the same threshold value.

To study the usefulness of the geostatiscal features extracted from the potential logo images, we train
the neural network with other statistical features such as means and variances of the logo and non-logo
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Figure 6.4 Degraded and rotated document image.

images. The testing results show that the trained neural network cannot classify properly between
logo and non-logo images. The reason for this is that there are no obvious differences of means and
variances between logos and non-logo images. Furthermore, we use the Higher Order Spectral (HOS)
features [25] to extract features from the potential images to train the neural network. These features
are obtained by the following steps [26]:

1. Normalizing the image.
2. Applying a smoothing filter to the image.
3. Then, for each angle between 0 and 180 degrees, computing a 1D projection and bispectral features.
4. Concatenating the bispectral features from each angle.

Using the HOS features, the detection rate is 90%, as compared to the 96% detection rate using the
geostatistical features, but the HOS-based neural network fails to verify all the same rotated logos.
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5. Conclusions

We have presented an approach for detecting logos that are contained within complex backgrounds of
document images. The procedures of this approach start with detecting all potential logos that include
logos and images, and then classification is carried out by neural networks to verify the identity of each
potential logo against the database. We have also discussed the concept of geostatistics as a useful tool
for capturing distinct spatial features of logo images that are used for the learning and classification
of neural networks. Many test results have shown the effectiveness of the proposed method, that can
also be useful for solving problems in content-based image categorization, particularly for web-based
image documents [27]. Applications in this field have become an increasing demand for multimedia
industries, such as broadcast news that may contain different categories of image corresponding to
news stories, previews, commercial advertisements, icons and logos.
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The study of human signatures has a long history, but online signature verification is still an active

topic in the field of biometrics. This chapter starts with a detailed survey of recent research progress

and commercial products, then proposes a typical online dynamic signature verification system based

on time-dependent elastic curve matching. Rather than using special dynamic features such as pen

pressure and incline, this system uses the 1D curves of signatures which can be captured using a

normal tablet. Static and dynamic features can be well extracted from these two curves about x- and

y-coordinates and applied to verification. To improve the performance, we introduce into the system

different local weight, personal threshold and auto-update algorithms for reference samples. Finally,

we present applications of online signature verification for PDAs and in Internet E-commerce.

1. Introduction

Handwriting is a skill that is personal to individuals. A handwritten signature is commonly used to
authenticate the contents of a document or a financial transaction. Along with the development of
computer science and technology, automatic signature verification is an active topic in the research
and application of biometrics. Technologies and applications of automatic offline (static) and online
(dynamic) signature verification are facing many real challenges. For example, there are challenges
associated with how to achieve the lowest possible false acceptance and false rejection rate, how
to get the best performance as fast and as inexpensively as possible, and how to make applications
commercially viable. Nonetheless, it is never long before more new ideas and technologies are employed
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in this area, or useful applications and ideas are deployed out of this area. Automatic signature
verification systems powered by neural networks, parallel processing, distributed computing, network
and computer systems and various pattern recognition technologies, are increasingly applicable and
acceptable in business areas driven by the growing demands of wired and wireless business. For
instance, offline (static) signature verification can be applied in automatic bank processes, document
recognition and filing systems, while online (dynamic) signature verification can be applied in automatic
personal authentication, computer and network access control, online financial services and in various
e-business applications [1,2].

Currently, the identification of a person on the Internet and within an intranet depends on a password,
usually stored or communicated as an encrypted combination of ASCII characters. Yet no matter
how strong such an encrypted security system is, whether it uses SSL (Secure Socket Layer: 40–
100 bit) or the newer SET (Secure Electronic Transaction: 1024 bit) with digital certificates, such
conventional password approaches still have fatal shortcomings. For example, passwords are easy
to forget, particularly when a user has to remember tens of passwords for different systems, and
passwords can be stolen. New verification techniques such as biometrics can be the basis of better
authentication systems. Of the many possible biometric schemes, voice is a good candidate, but it
depends significantly on an individual’s physical condition (e.g. having a cold may degrade verification
quality). Use of fingerprints is another good candidate, but fingerprint images can be degraded when
an individual perspires or where heavy manual work has damaged the individual’s fingers. The eye
is yet another strong candidate, but to obtain a good iris image, an individual’s eyes must be open
and the individual must not be wearing glasses. In addition, to obtain the image, very strong light
must be shone onto the retina and the device used to capture an iris or retina image is expensive.
Compared with other biometrics, a signature is easily obtained and the devices are relatively cheap.
The features of a signature (speed, pen pressure and inclination) are never forgotten and are difficult
to steal, meaning that an online human signature verification system has obvious advantages for use
in personal identification. Yet, signature verification also has some drawbacks. Instability, emotional
and environmental variations may lead to variation in the signature. How to overcome this potential
instability and improve the precision of verification is an important topic.

1.1 Process and System

There are two types of signature verification system: online systems and offline systems [3,4]. In offline
systems, the signature is written on paper, digitized through an optical scanner or a camera, and verified
or recognized by examining the overall or detailed shapes of the signature. In online systems, the
signature trace is acquired in real time with a digitizing pen tablet (or an instrumented pen or other touch
panel specialized hardware), which captures both the static and dynamic information of the signature
during the signing process. Since an online system can utilize not only the shape information of the
signature, but also the dynamic time-dependent information, its performance (accuracy) is normally
considered to be better than that of an offline system. A typical automatic online signature verification
and recognition process was presented by Giuseppe Pirlo in 1993 [5], and is shown in Figure 7.1.
Normally, the process of signature verification and recognition consists of a training stage and a testing
stage. In the training stage, the system uses the features extracted from one or several training samples
to build a reference signature database. These include the stages of data acquisition, preprocessing and
feature extraction. During the enrollment stage, signers get their own ID (identification) linked to the
signer’s reference in the database. In the testing stage, users input their ID and then sign into the input
device, either for verification or for recognition. The verification system then uses this ID information
to extract the reference from the database, and compares the reference with the features extracted
from the input signature. Alternatively, to identify the most similar signatures, the recognition system
extracts the features from the input signature and compares them with the features of other signatures
in the database, allowing the decision to be made as to whether the test signature is genuine. This
chapter will mainly focus on the methods and system design of an online signature verification system.
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Figure 7.1 Typical automatic online signature verification process.

1.2 The Evaluation of an Online Signature Verification System

There are many online signature verification algorithms. The performance of such algorithms and
systems is largely measured in terms of their error rate.

1.2.1 Error Rate

Two types of error rate are commonly used to evaluate a verification and recognition system: the Type
I error rate (False Reject Rate or ERR) and the Type II error rate (False Acceptance Rate or FAR). Type
II errors imply the recognition of false identifications as positive identifications, e.g. the acceptance
of counterfeit signatures as genuine. If we take steps to minimize such false acceptance, however, we
will normally increase Type I errors, the rejections of genuine signatures as forgeries [6]. Generally,
security will have a higher priority, so, on balance, systems may incline to be more willing to accept
Type I errors than Type II, but this will obviously depend on the purpose, design, characteristic and
application of the verification system. For example, credit card systems may be willing to tolerate
higher Type II error rates rather than risk the possibility of alienating customers whose signatures are
frequently rejected. Bank account transactions would not tolerate similar error rates, but would require
the lowest level Type II error rate. Figure 7.2 illustrates widely adopted error trade-off curves [7] that

ERR
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False
acceptances

False
rejects

Error rate (%)

Threshold
0

20

(a)

False acceptances (Type II) (%)

False rejects (Type I) (%)
0

(b)

ERR

Figure 7.2 Error rate curves. (a) Error rate vs. threshold; (b) error trade-off curve.
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(a) (b) (c)

Figure 7.3 (a) Genuine signature and (b,c) two forgeries – (b) being a trained forgery and (c) an
untrained forgery.

are used to distinguish the relationship between Type I and Type II error rates and their thresholds.
The error rate at TO is called the Equal-Error Rate (EER), at which Type I and Type II error rates are
the same.

1.2.2 Signature Database

To evaluate an online signature verification system, we must build a large signature database of the
unique signatures of many individuals. Such a database requires each individual to sign his or her
name many times. We call these genuine signatures. Some of these signatures are used as reference
samples and others are used as testing samples.

Valid testing also requires that for each signer whose signature is in the database there be several
forgeries. The forgeries are of three kinds: random, untrained and trained. Figure 7.3 shows a genuine
signature and two forgeries. Random forgeries are very easily obtained, as we simply regard the
signatures of other signers in the database as belonging to this class. An untrained forgery is a signature
produced by a signer who possesses no information about the genuine signature. Trained forgeries are
produced by a professional forger who is in possession of both static and dynamic information about
the genuine signature. Obviously, from the point of view of evaluating a system, the trained forgery is
the most valuable but it is also very complex to obtain.

So far, there is no public normative signature database, owing to all kinds of reasons.

2. Literature Overview

Signatures have been verified online using a wide range of methods. Depending on the signature
capture device used, features such as velocity, pen pressure and pen inclination are used, in addition to
spatial (x, y-coordinates) features. Different approaches can be categorized based on the model used for
verification. This section introduces several signature verification methods. Since a normative signature
database does not exist in the public domain, every research group has collected its own data set. This
makes it difficult to compare the different signature verification systems.

2.1 Conventional Mathematical Approaches

Mathematical approaches are still popular in the area of automatic signature verification. The following
introduces some of the latest mathematical methods.

Dr Nalwa presented an approach to automatic online signature verification that broke with tradition
because it relied primarily on the detailed shape of a signature for its automatic verification, rather
than primarily on the pen dynamics during the production of the signature [8]. He challenged the
notion that the success of automatic online signature verification hinges on the capture of velocities or
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forces during signature production. Nalwa contended that, because of observed inconsistency, it was
not possible to depend solely, or even primarily, on pen dynamics and proposed a robust, reliable and
elastic local-shape-based model for handwritten online curves. To support his approach, he fleshed
out some key concepts, such as the harmonic mean, jitter, aspect normalization, parameterization
over normalized length, torque, weighted cross correlation and warping, and subsequently devised the
following algorithm components for local and purely shape-based models, and global models based on
both shape and time:

• normalization, which made the algorithm largely independent of the orientation and aspect of a
signature, and made the algorithm inherently independent of the position and size of a signature;

• description, which generated the five characteristic functions of the signature;
• comparison, which computed a net measure of the errors between the signature characteristics and
their prototypes.

Nalwa’s model was generated by first parameterizing each online signature curve over its normal arc
length. Then, along the length of the curve in a moving coordinate frame, he represented the measures
of the curve within a sliding window. The measures of the curve were analogous to the position of the
center of mass, the torque exerted by a force, and the moment of inertia of a mass distribution about
its center of mass. He also suggested the weighted and biased harmonic mean as a graceful mechanism
for combining errors from multiple models, of which at least one, but not necessarily more than one,
model is applicable. He recommended that each signature be represented using multiple models, local
and global, shape based and dynamics based. Using his shape-based models, it is also possible to apply
his approach to offline signature verification. Finally, he outlined a signature verification algorithm that
had been implemented and tested successfully, both on databases and in a number of live experiments.
Below is a list of the sample size for three different databases that Nalwa used.

• Database 1 (DB1) used a Bell Laboratories in-house developmental LCD writing table with a tethered
pen, a total of 904 genuine signatures from 59 signers, and a total of 325 forgeries with an equal-error
rate of 3%.

• Database 2 (DB2) used an NCR 5990 LCD writing table with a tethered pen, a total of 982 genuine
signatures from 102 signers, and a total of 401 forgeries with an equal-error rate of 2%.

• Database 3 (DB3) used an NCR 5990 LCD writing table with a tethered pen, a total of 790 genuine
signatures from 43 signers, and a total of 424 forgeries with an equal-error rate of 5%.

Using the analysis-of-error trade-off curve, the false rejects rate (Type I) versus the false accepts
rate (Type II), he obtained an overall equal-error rate that was only about 2.5%.

One system designed using his approach for automatic on-site signature verification had the principal
hardware components of a notebook PC, an electronic writing table, a smart card and a smart card
reader. The threshold zero, which distinguished forgeries from genuine signatures, corresponded to
0.50 on the scale in the database experiment, and corresponded roughly to a 0.7% false rejects rate
and a 1% false accepts rate.

Nelson, Turin and Hastie discussed three methods for online signature verification based on statistical
models of features that summarize different aspects of signature shape and the dynamics of signature
production [9], and based on the feature statistics of genuine signatures only.

• Using a Euclidean distance error metric and using a procedure for selecting ten out of twenty-two
features, their experiments on a database of 919 genuine signatures and 330 forgeries showed a
0.5% Type I error rate and a 14% Type II error rate.

• Using statistical properties of forgeries as well as the genuine signatures to develop a quadratic
discriminant rule for classifying signatures, the experiments on the same database showed a 0.5%
Type I error rate and 10% Type II error rate.
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In 1997, Ronny Martens and Luc Claesen presented an online signature verification system that
identified signatures based on 3D force patterns and pen inclination angles, as recorded during
signing [10]. Their feature extraction mechanism used the well-known elastic matching technique but
emphasized the importance of the final step in the process: the discrimination based on the extracted
features by choosing the right discrimination approach to drastically improve the quality of the entire
verification process. To extract a binary decision out of a previously computed feature vector, they
used statistical, kernel and Sato’s approaches, as well as Mahalanobis distances.

Martens’ and Claesen’s database consisted of 360 genuine signatures from 18 signers and 615
random forgeries from 41 imitators. Using a kernel function to estimate Gaussian PDFs (Probability
Density Functions), they achieved a 0.4% to 0.3% equal-error rate. Their techniques, however, were
not specific to signature verification, and they should be considered carefully in every process where
a classification decision is made using a set of parameters.

2.2 Dynamic Programming Approach

Dynamic Time Warping (DTW) is a mathematical optimization technique for solving sequentially
structured problems, which has over the years played a major role in providing primary algorithms for
automatic signature verification.

This useful method of nonlinear, elastic time alignment still has a high computational complexity
due to the repetitive nature of its operations. Bae and Fairhurst proposed a parallel algorithm that used a
pipeline paradigm, chosen with the intention of overcoming possible deadlocks in the highly distributed
network [11]. The algorithm was implemented on a transputer network on the Meiko Computing
Surface using Occam2 and produced a reduction of the time complexity of one order of magnitude.

In 1996, Martens and Claesen discussed an online signature verification system based on Dynamic
Time Warping (DTW) [12]. The DTW algorithm originated from the field of speech recognition, and
had several times been successfully applied in the area of signature verification, with a few adaptations
in order to take the specific characteristics of signature verification into account. One of the most
important differences was the availability of a rather large number of reference patterns, making it
possible to determine which features of a reference signature were important. This extra amount of
information was processed by disconnecting the DTW stage and the feature extraction process. They
used a database containing 360 signatures from 18 different persons and used original signatures
produced by the other signers as forgeries. The optimal classification was achieved by using Gabor
transform-coefficients that described signal contents from 0Hz to+/−30Hz. As a result, the minimum
ERR was 1.4%.

In their second paper on the use of DTW for signature verification, Martens and Claesen sought to
get an alternative DTW approach that was better suited to the signature verification problem [13]. They
started by examining the dissimilarities between the characteristics of speech recognition and signature
verification and evaluated the algorithm using the same signature database that they used in their 1996
experiment. The optimized EER was about 8% using the alternative DTW, and about 12% using the
classical DTW. The useful signing information was concentrated in a very small, 20–30Hz, bandwidth
and in their equations, a sample rate faster than 60Hz was sufficient according to the Nyquist terms.

Paulik, Mohankrishnan and Mikiforuk proposed a time-varying vector autoregressive model for use
in signature verification. They treated a signature as a vector random process, the components of which
were the x and y Cartesian coordinates and the instantaneous velocity of the recording stylus [14]. This
multivariate process was represented by a time-varying pth order Vector Autoregressive (VAR) model,
which approximates the changes in complex contours typical in signature analysis. The vector structure
is used to model the correlation between the signature sequence variables to allow the extraction
of superior distinguishing features. The model’s matrix coefficients are used to generate the feature
vectors that permit the verification of a signer’s identity. A database with 100 sample signatures from
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16 signers yielded an equal-error rate from 2.87% to 5.48% for experiments with different VAR
(variance) or 1D (one-dimensional) global or individual thresholds.

Wirtz presented a new technique for use in dynamic signature verification that used a Dynamic
Programming (DP) approach for function-based signature verification. Dynamic data, such as pen
writing pressure, was treated as a function of positional data, and therefore evaluated locally [15].
Verification was based on strokes as the structural units of the signature. This global knowledge was
fed into the verification procedure. The application of a 3D (three-dimensional) nonlinear correlation of
the signature signals used the stroke index as the third DP index. In conjunction with the definition of a
finite state automaton on the set of reference strokes, the system was correctly able to handle different
stroke numbers and missing or additional strokes. The correct alignment of matching strokes and the
signature verification process were determined simultaneously. An additional alignment stage before
the actual nonlinear correlation was obsolete. Wirtz’s experimental database collected 644 genuine
signatures and 669 forgeries within two months. The best equal-error rate achieved was 1% to 1.4%.

2.3 Hidden Markov Model-Based Methods

Due to the importance of the warping problem in signature verification, as well as in handwriting
recognition applications, the use of Hidden Markov Models (HMMs) is becoming more and more
popular. HMMs are finite stochastic automata and probably represent the most powerful tool for
modeling time-varying dynamic patterns. There is a good introduction to the basic principles of HMMs
in [16]. There are several papers applying HMMs to handwriting signature verification problems
as well.

To represent the signature, L. Yang et al. use the absolute angular direction along the trajectory,
which is encoded as a sequence of angles [17]. To obtain sequences of the same length, each signature
is then quantized into sixteen levels. Another sixteen levels are introduced for pen-up samples. Several
hidden Markov model structures were investigated, including left-to-right models and parallel models.
The model is trained with the forward–backward algorithm and the probabilities estimated with the
Baum–Welch algorithm. In preliminary experiments, the left-to-right model with arbitrary state skips
performed the best. Sixteen signatures obtained from thirty-one writers were used for evaluation; eight
signatures were used for training and the other eight for testing. No skilled forgeries were available.
The experiments showed that increasing the number of states and decreasing the observation length
led to a decrease in the false rejects and an increase in false accepts. The best results reported are an
FAR of 4.4% and ERR of 1.75%.

A method for the automatic verification of online handwritten signatures using both global and local
features was described by Kashi, Hu and Nelson in 1997 [18]. These global and local features captured
various aspects of signature shape and dynamics of signature production. They demonstrated that with
the addition (to the global features) of a local feature based on the signature likelihood obtained from
hidden Markov models, the performance of signature verification improved significantly. They also
defined a hidden semi-Markov model to represent the handwritten signature more accurately. Their
test database consisted of 542 genuine signatures and 325 forgeries. The program had a 2.5% EER.
At the 1% ERR point, the addition of the local information to the algorithm, which was using only
global features, reduced the FAR from 13% to 5%.

Dolfing et al. addressed the problem of online signature verification based on hidden Markov models
in their paper in 1998 [19]. They used a novel type of digitizer tablet and paid special attention to
the use of pen pressure and pen tilt. After investigating the verification reliability based on different
forgery types, they compared the discriminative value of the different features based on a Linear
Discriminant Analysis (LDA) and showed that pen tilt was important. On the basis of ‘home- improved’,
‘over-the-shoulder’, and professional forgeries, they showed that the amount of dynamic information
available to an imposter was important and that forgeries based on paper copies were easier to detect.
In their system, training of the HMM parameters was done using the maximum likelihood criterion
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and applying the Viterbi approximation, followed by an LDA. Verification was based on the Viterbi
algorithm, which computed the normalized likelihood with respect to the signature writing time. Their
database consisted of 1530 genuine signatures, 3000 amateur forgeries written by 51 individuals and
240 professional forgeries. Their results showed an EER between 1% and 1.9%.

2.4 The Artificial Neural Networks Approach

Along with the vigorous growth of computing science, Artificial Neural Networks (ANNs) have
become more and more popular in the area of automatic signature verification. ANNs brought a more
computerized and programmable approach to this complex problem.

Lee described three Neural Network (NN) based approaches to online human signature verification:
Bayes Multilayer Perceptrons (BMP), Time-Delay Neural Networks (TDNN) and Input-Oriented Neural
Networks (IONN). The back perceptron algorithm was used to train the network [20]. In the experiment,
a signature was input as a sequence of instantaneous absolute velocities extracted from a pair of
spatial coordinate time functions �x�t�� y�t��. The BMP provides the lowest misclassification error rate
among these three types of network. A special database was constructed with 1000 genuine signatures
collected from the same subject, and 450 skilled forgeries from 18 trained forgers. The obtained EERs
for BMP, TDNN and IONN were 2.67%, 6.39% and 3.82% respectively.

In their paper in 1997, Mohankrishnan, Lee and Paulik examined the incorporation of neural
network classification strategies to enhance the performance of an autoregressive model-based signature
classification system [21]. They used a multilayer perceptron trained with the back-propagation
algorithm for classification. They also presented and compared the results obtained using an extensive
database of signatures with those from the use of a conventional maximum likelihood classifier. Using
800 genuine and 800 forged signatures, on the average, the Type I and Type II error rates were about
1.7% each, while they claimed their identification accuracy was about 97%.

Matsuura and Sakai presented a stochastic system representation of the handwriting process and its
application to online signature verification [22]. Their stochastic system characterizes the motion in
writing a signature as a random impulse response. The random impulse response was estimated in
terms of the horizontal and vertical components of the handwriting motion, which were considered as
the input and output of the system, respectively. They found that, using the random impulse response,
it was possible to verify whether a signature was genuine. Their database of 2000 signatures was
collected from ten individuals over a six-month period and the EER was claimed to be 5.5%.

2.5 Signature Verification Product Market Survey

As a new market, the automatic signature verification system is not yet popular. However, there are
several small to medium companies working on delivering solutions and systems. These products have
been adopted mostly in financial, insurance and computer system securities. Among these suppliers,
Communication Intelligence Corporation, PenOp Technology and Cyber-SIGN Inc. are known.

Communication Intelligence Corporation (CIC) scientists patented the first mechanism for capturing
the biometric qualities of a handwritten signature [23]. CIC’s products include ‘Signature Capture’,
‘Verification’ and ‘Document or Mail Binding’. Signatures are captured along with timing elements
(e.g. speed, acceleration) and sequential stroke patterns (whether the ‘t’ was crossed from right to
left, and whether the ‘i’ was dotted at the very end of the signing process). They called these
dynamics derived from a person’s muscular dexterity ‘muscle memory.’ Recently, IBM and CIC
have announced their plan to add CIC’s ‘Jot’ handwriting recognition and ‘WordComplete’ shorthand
software applications to the IBM ‘ThinkPad’ and ‘WorkPad’ hardware [24].

Cyber-SIGN Inc. is a worldwide market and technology leader in the area of biometric signature
verification, signature capture and display [25]. Cyber-SIGN analyzes the shape, speed, stroke
order, off-tablet motion, pen pressure and timing information captured during the act of signing.
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The data-capturing device used is a graphic tablet with a pressure sensitive pen from WACOM [26].
It distributes its system with a software development kit, which allows users to develop their own
applications.

The system distributed by DATAVISION uses a signature pad from the same company [27]. The
software is integrated with a signature display program. The software is used for account management.
Five signatures are used to enroll into the system, from which a template is generated. The template
can be updated. The electronic representation of the signature has a size of 108 bytes in addition to
an image of the signature that is stored. The software uses both representations for verification. The
capabilities of the signature pad used to capture the data are not mentioned.

PenOp Technology was founded in 1990 to be the worldwide leader in electronic signature technology
that enables secure e-commerce [28]. PenOp owns a robust and growing portfolio of intellectual
property related to electronic signatures and authentication. The PenOp signature software allows
signing and authenticating documents online. A digitizing tablet is used to capture a stamp that is based
on the captured signature. With a different user verification method (password, etc.), the signature stamp
can be affixed to a document with additional information concerning when and where the document
was signed. The recipient can extract and verify the signature on the document. Three signatures are
used to build a signature template and the template can be updated.

SQN Signature Systems is one of the largest providers of PC-based signature verification systems
for banks [28]. SQN customers range from small community banks to large commercial banks.
Their signature-related biometric products include ‘SQN Safe Deposit Management System’, ‘SQN
VERITAS’, ‘SQN Signature Sentry’ and ‘SQN STOP Payment System’.

Gateway File Systems Inc. is a research and development company specializing in application-
specific computer Web-based imaging solutions. It provides SignatureTrust™ to, speed up the
processing of transactions involving verification of the signing agents authority [29].

The ASV Company provides a banking technology team dedicated to electronic pattern matching
solutions. The solutions group focuses on the computerized verification tools that financial institutions
require in their signature verification operations, such as eBank™ DISCOVERY for bank check
processing [30].

The survey in this section reveals that most of the signature verification and recognition applications
are targeted at efficiency improvement in bank processing, or for enhanced security in computer
systems. Most of the applications are standalone and even if there is a client–server system, the use
of the network is only for the transfer and storage of signatures, and not for real-time signature data
acquisition.

3. A Typical Online Signature Verification System

In this section, we propose a typical low-cost online signature verification system based on the elastic
matching of 1D curves about x- and y-coordinates, attaching some dynamic features. Just as for a
person verifying a signature by eye, different local weights and unfixed thresholds are introduced to
improve the performance of the signature verification system.

3.1 Data Acquisition

Differentiating from an offline signature verification system that captures signatures with a scanner or
camera, a special pen and tablet is selected as capture device for data acquisition. Four kinds of capture
device shown in Figure 7.4 are used in the online system. The former two devices are simpler and
cheaper than the others and they can only capture the trajectory of the pen tip with a fixed sampling
frequency. The latter is more comfortable to the signer than the former, as the signer can see the
trajectory of the pen tip from the LCD when he is signing. The third device is complex and expensive
but can collect various kinds of dynamic signature information at high resolution, such as pen-tip
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Figure 7.4 All kinds of capture device. (a) A normal pen and tablet; (b) an LCD Tablet and pen;
(c) a tablet that can capture pen pressure and incline; (d) a wireless pen that can write on common paper.

pressure and pen incline. The last device is also expensive and wireless. It makes the signer more
comfortable as it can be used to write on paper freely, just like a common pen.

According to the different requirements of applications, we can select different capture devices
for data acquisition. For example, in Internet and intranet applications, asking all clients at different
locations to use the same special pen and tablet has unavoidable limitations on availability, calibration
and cost. Network response is also an important consideration. Therefore, a practical Internet and
intranet application requires a simple generic pen and tablet. Furthermore, the velocity and acceleration
information can be easily calculated from the pen-tip coordinates and the related time information,
see Figure 7.5.

We can divide a signature into two sequences, �xi� ti� and �yi� ti�, corresponding to x- and
y-coordinates (shown in Figure 7.6). These two sequences include both static features and dynamic
features.

Different signatures of the same signer may have different size and noise coming from the capture
device and hand jitters. So it is necessary to normalize the signature and smooth with a sliding window.
In this chapter, the Gauss function is used as this sliding window to smooth the x- and y-curves of a
signature.

g���= exp�−�2/�2�2��
∫ +L
−L exp�−�2/�2�2��d�

�−L≤ �≤+L (7.1)

where L is the width of the sliding window and � ≈ L/2. Curves about the x- and y-axes after
preprocessing are shown in Figure 7.7.
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Figure 7.5 Original signature (a) shown in 2D; (b) shown in 3D and including time information.
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Figure 7.6 Original curves of a signature about the x-axis and y-axis.
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Figure 7.7 Curves of a signature about the x-axis and y-axis after preprocessing.
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3.2 Feature Extraction

There is a consensus in the online signature verification research area that feature extraction and
classification are the most difficult parts among all the processing steps. The feature extraction process
cannot be too complicated and consume too much time because online signature verification in a
network is restricted by the response requirement and network bandwidth. Methods of verification can
be classified into two sets: those based on parameters and those based on functions. Methods based
on parameters always spend much time on the preprocessing and the feature extraction, but methods
based on functions have higher performance and less time costs. In this section, a low-cost verification
mechanism based on functions is devised.

As we know, if a person wants to imitate others’ signatures, usually, he first tries to make the shapes
similar, and then imitates the dynamic features. However, the dynamic features are very difficult to
imitate. So the verification is classified into two steps: comparing the curves of two signatures about
the x- and y-axis, and then comparing their dynamic features according to the result of the first step.

For the first step, the sequence of inflexions in troughs and crests is detected and marked in each
curve. A series of features for a pair of neighboring inflexions to compare two curves is defined as
follows:

• The length of these two neighboring inflexions in t-coordinates:

li = ti− ti−1 (7.2)

• The obliquity of the line connecting these neighboring inflexions:

	i = arctan�
yi−yi−1
ti− ti−1

� (7.3)

• The position of the inflexion:

pi = ti− t0
Ts

(7.4)

where �ti� yi� is the ith inflexion, to is the t-coordinate of the first inflexion and Ts is the length of
the whole signature in t-coordinates, see Figure 7.8.

Now we can use these respective static features to describe a curve with a sequence of vectors as
follows:

S = �s1� s2� � � � � sN �� si = �li� 	i� pi� (7.5)

where N is the number of inflexions.

yi

yi  – 1

t0

t

ti  – 1 ti

Ts
y

Figure 7.8 Feature description of a 1D curve.
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With this sequence S, we can only distinguish genuine signatures from forgeries which are not
very similar in shape. But some forgeries produced by a few trained forgers are very similar to
genuine signatures in shape. How to distinguish between these forgeries and genuine signatures?
Dynamic features can be used to solve this problem. Curves of dynamic features such as velocities
and accelerations cannot be used simply as in the above methods, because they are not very similar in
terms of the shape of these curves. According to the above inflexions, we can segment a signature into
some parts. For each part, the average velocity, the maximum velocity and the deviation of velocity
are computed as a vector to describe this signature’s dynamic information. For example, these features
of a segment of a signature about the y-axis are defined as follows:

• The mean velocity between these two neighboring inflexions in t-coordinates is:

V i
mean =

M∑

j=1
V
j
i

M
�V

j
i =

y
j
i −y

j−1
i

t
j
i − t

j−1
i

(7.6)

• Maximum velocity:

V i
max =max

j
�V

j
i � (7.7)

• Deviation of velocity:

V i
d =

√
√
√
√
√

M∑

j=1
�V

j
i −V

j
mean�2

M
(7.8)

where i is the serial number of a segment and M is the number of sample points of this segment.

We obtained a sequence of dynamic features:

W = �w1�w2� � � � �wN ��wi = �V i
mean�V

i
max�V

i
d� (7.9)

where N is the number of inflexions.
We have a new sequence of vectors to describe a whole signature about the x-axis.

H = �h1� h2� � � � hN ��hi = �lix� 	
i� pi�V i

mean�V
i
max�V

i
d� (7.10)

The sequence of vectors about the x-axis can be deduced just as for the sequence of vectors about
the y-axis.

3.3 Feature Matching

There are some differences in either the shape or the dynamics of characters between two signatures
produced by the same signer. When we compare the curves of two genuine signatures about the x- or
y-axis, the number of their inflexions or the shape of local curves may be different. So the comparison
of static features S = �s1� � � � � sN � is implemented with Dynamic Time Warp (DTW), see Figure 7.9.
To compare reference sequence R = �r1� r2� � � � � rI� with test sequence T = �t1� t2� � � � � tJ �, a DTW
algorithm is introduced as follows:

Di�j =min





Di�j

Di+1�j+d2�1

Di�j+1+d1�2



 �1≤ i ≤ I�1≤ j ≤ J (7.11)

where Di�j is the distance between ri and tj , d1�2 and d2�1 are punishments.
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Figure 7.11 Matching between a genuine signature and a skilled forgery.

For each step in computing the distance, the best matching path is recorded (see Figures 7.10
and 7.11). At the same time, we compute the distance of dynamic features wi = �V i

mean�V
i
max�V

i
d�

between the segment (or the combination of some segments) of the test signature and the corresponding
segment (or the combination of some segments) of the reference signature.

3.4 Verification

3.4.1 Local Weight and Threshold

Some corresponding segments of two signatures produced by the same signer are very similar and
others are not. In other words, some of the distances between each pair of corresponding segments
coming from two genuine signatures may be different. Taking all parts of a whole signature as the
same weight is unreasonable. So a local weight vector C is introduced for each pair of segments when
a signature is compared with a reference. This vector has been deduced after a signer enrolled his
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signatures. When a signer enrolls his signatures, distance vectors between each signature and others
are computed at the same time. The weight vector C is deduced and unified by the average reciprocal
of these distance vectors.

C= �c1� c2� � � � � cN �� ci =
d
−1
i

N∑

i=1
d
−1
i

�1≤ i ≤ N (7.12)

where I is the number of segments and di is the distance of the ith pair of matching segments.
Signatures produced by different signers have different stability. If a fixed threshold is given for

all signers in an online signature verification system, its performance will be reduced. So personal
thresholds are given for different signers. This personal threshold has been computed according to
references after a signer enrolled his signatures. If the signatures of someone are steadier, his threshold
is higher, and forging his signature is more difficult. According to the inner class distances and
deviation of a signer’s enrollments, his personal threshold is given as follows:

Th= �1Dinner+�2Ddev (7.13)

where Dinner is the average of the inner class distances of signer enrollments, and Ddev is the deviation
of the signer’s enrollments. �1 and �2 are coefficients.

Now, with the personal threshold, we can verify a signature as a genuine signature or a forgery.
If the distance of a test signature compared with the reference is lower than the given threshold, the
signature is accepted as a genuine signature. Otherwise, it is rejected as a forgery.

3.4.2 Auto-update of References

As time passes, the signature of a signer will be changed. The change of signature is gentle and not
mutational. So it is very important and necessary that we research the auto-update of references in an
online signature verification system.

In this section, a simple strategy of auto-update of references is introduced. At first, we define a
coefficient, Reference Value (RV), for each reference signature. Then, during each time of signature
verification, the coefficient RV of each reference will be recomputed and modified if a test signature
is accepted as a genuine signature. The algorithm is as follows:

if interval > threshold of updating reference interval

if distance < advance threshold (less than verification threshold)

(1) Update reference, new signature takes the place of the signature

for which RV is minimum;

(2) Recompute verification threshold;

else

Continue;

else

Recompute and update the RV of each reference;

4. Proposed Online Signature Verification Applications

4.1 System Password Authentication

Online signature verification provides a new and reliable method for system password authentication.
Actually, this is not a completely new idea because there have been several proposals and systems in
this field. The survey in Section 2.5 presents several applications in this market. However, what is
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new is that we apply online signature verification to the system authentication of palm devices, such
as PDAs. HP Inc. produces a new type of PDA, iPAQ 5450, which has been provided with fingerprint
verification by adding a biometric finger scanner [31]. The user can choose to input a password or
fingerprint when he wants to enter the system. But its price is also higher because of the new device.
To use biometric security on PDAs, most schemes need to add an additional device as with the iPAQ
5450. As we know, a special feature of PDAs is that the user inputs any information with a stylus,
and that signature verification schemes only need a stylus to write on the tablet, without any other
additional device. So, online signature verification is more suitable to system authentication for PDAs.
A demo of an authentication system for PDAs is shown in Figure 7.12.

4.2 Internet E-commerce Application

The fast growing area of e-commence is affected by Internet security issues in personal identification,
especially credit card verification, where the number of cases of illegal use of credit card information
is rising with the growth of e-commerce. Therefore, a Web-based online signature verification system
via the Internet and intranet is proposed in this section to provide a higher level of security in personal
identification for e-commerce. As a security enhancement, a combination of traditional character-based
password and signature verification can be applied. Public key-based digital signatures are also an
important personal information protection method in such network security.

Figures 7.13 and 7.14 show the interpretation of such a system. If we define a trade transaction as
a process, the preprocess, such as pretrade registration and agreement, should be performed first. The
enrollment and maintenance part includes the following necessary steps:

• The standards and contracts of the signature verification approaches are agreed among all parties –
card center, Internet store and cardholder.

• The Internet store enrolls and acquires the access to the bankcard center server.
• The cardholder enrolls in the bankcard center server by training and storing her/his signature
information in the server database.

• The cardholder registers herself/himself with the Internet store.
• As an enhancement, the cardholder may require a traditional password as well. After the successful
preprocess, the Internet trade transaction can be performed.

(a) (b)

Figure 7.12 System password authentication for PDAs. (a) Enrollment and set-up; (b) Verification.
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Figure 7.13 Enrollment and maintenance of an Internet E-commerce application.
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The process part includes the following necessary steps:

• The cardholder inputs an order into the store server.
• The cardholder inputs card information into the store server.
• The store sends the signing window to the cardholder using a Java applet.
• The cardholder signs on the window of his browser.
• The Java applet sends the captured signature to the card center.
• The card center routes confirmation or rejection information to the cardholder.
• The card center routes the confirmation or rejection information to the store as well.
• The store accepts or rejects the order based on the signature verification result.

In the applications market, it is not difficult to find products that are based on automatic signature
verification, but most of these are stand-alone systems. In other words, the signer and the verification
system execute on the same hardware. With the dramatic growth of the Internet, these applications are
not suitable for e-commerce, where a customer and supplier are located in different places.

However, the above system for Internet commerce would be able to deal with geographically separate
customers and suppliers. There are a lot of advantages in such a system that uses technology such as
Java applets, CGI (Common Gateway Interface), Java Servlets, JDBC (Java Database Connectivity), a
DBMS (Database Management System) and the Internet. Different customers can use different input
interfaces, such as a pen, mouse or touch screen, for signing, provided they can keep on using this tool
after their signature is recorded in the signature server. Internet stores can serve customers worldwide
without worrying about the correctness of the credit card information. Such a system can be ported
and installed on any Internet server and run on any popular browsers that support Java, such as NS
(Netscape) Communicator 4 or MS (Microsoft) Internet Explorer 5.

However, there is still an unresolved issue: security on the Internet. This is a side topic that we
believe will be either balanced with Internet business demands or settled in the near future.

5. Conclusions

This chapter has introduced recent progress in online signature verification research. A typical low-
cost online signature verification system based on time-dependent elastic curve matching has been
introduced in detail. Lastly, some application approaches for online signature verification systems
have been presented. This chapter foresees the great potential of signature verification in Internet
E-commerce and system password authentication of palm devices.

With the vigorous growth of computer science and technology, the application of automatic signature
verification will become increasingly accepted in the real world.
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This chapter presents a novel minutiae matching method that uses a thin-plate spline model to describe

elastic distortions in fingerprints. The thin-plate spline model is estimated using a local and a global

matching stage. After registration of the fingerprints according to the estimated model, the number

of matching minutiae can be counted using very tight tolerance boxes. For deformed fingerprints, the

algorithm gives considerably higher matching scores compared to rigid matching algorithms, while

only taking 100ms on a 1GHz P-III machine. The additional step of shape matching after elimination

of the elastic deformations helps to reduce the error rates further. Furthermore, it is shown that

the observed deformations are different from those described by theoretical models proposed in the

literature. This chapter is an extension of earlier work that is reported in [1].

1. Introduction

Recognition of people by means of biometric characteristics is an emerging phenomenon in our
society. It has received more and more attention during recent years due to the need for security in
a large range of applications. Among the many biometric features, the fingerprint is considered one
of the most practical ones. Fingerprint recognition requires a minimal effort from the user, does not
capture information other than that which is strictly necessary for the recognition process and provides
relatively good performance. Another reason for the popularity of fingerprints is the relatively low
price of fingerprint sensors, which enables easy integration into PC keyboards, smart cards and wireless
hardware.

Eventhough many academic and commercial systems for fingerprint recognition exist, there is a
necessity for further research on the topic in order to improve the reliability and performance. Noise in
the captured fingerprint image, elastic distortion of the skin when pushing the finger onto the sensor,
the partial image of a finger that is obtained, performance problems occurring with recognition in
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large databases, etc. make it difficult to achieve high performance figures for fingerprint recognition
systems. The development of better algorithms can reduce the error rates to levels that are acceptable
for a wide range of applications.

The topic of this chapter is fingerprint matching, i.e. the task of comparing a test fingerprint that
is actually provided, to a template fingerprint that has been provided earlier, during enrollment. Most
fingerprint-matching systems are based on the minutiae, which are the end points and bifurcations
of the elevated line structures in the fingerprint, called ridges. A minutiae-based fingerprint-matching
system roughly consists of two stages. In the minutiae extraction stage, the minutiae are extracted from
the grayscale fingerprint, while in the minutiae matching stage, two sets of minutiae are compared in
order to decide whether the fingerprints match. This chapter deals with the compensation of elastic
distortions for the sake of improving the performance of minutiae matching.

In minutiae matching, two stages can be distinguished. First, registration aligns both fingerprints as
well as possible. Most algorithms use a combination of translation, rotation and scaling for this task.
In the rest of this chapter, a transformation that is based on rotation, translation and scaling only will
be called rigid. A non-rigid transformation for registration will be called elastic. After registration, the
matching score is determined by counting the corresponding minutiae pairs between both fingerprints.
Two minutiae correspond if a minutia from the test set is located within a bounding box, or tolerance
zone, around a minutia from the template set. The matching score, which is a number in the range from
0 to 1, is calculated as the ratio of the number of matched minutiae and the total number of minutiae.

Unfortunately, there are a lot of complicating factors in minutiae matching. First of all, both sets may
suffer from false, missed and displaced minutiae, caused by imperfections in the minutiae extraction
stage. Second, the two fingerprints to be compared may originate from a different part of the same
finger, which means that both sets overlap only partially. Third, the two prints may be translated,
rotated and scaled with respect to each other. The fourth problem is the presence of nonlinear plastic
distortions or elastic deformations in the fingerprints, which is generally recognized as the most difficult
problem to solve. This problem is addressed in this chapter.

This chapter is organized as follows. First, in Section 2, elastic deformations are discussed and an
overview is given of other matching methods that try to deal with them. Next, in Section 3, an elastic
minutiae matching algorithm is proposed that estimates a deformation model and uses this model for
improved minutiae matching. After the relative distortions have been eliminated, Section 4 presents a
method for matching the shape of fingerprints in order to improve the matching performance. Finally,
in Section 5, experimental results of the elastic minutiae matching algorithm are given.

2. Elastic Deformations

Elastic distortions are caused by the acquisition process itself. During capturing, the 3-dimensional
elastic surface of a finger is pressed onto a flat sensor surface. This 3D-to-2D mapping of the finger
skin introduces nonlinear distortions, especially when forces are applied that are not orthogonal to the
sensor surface. This is a realistic situation, especially when dealing with non-cooperative users that
deliberately apply excessive force in order to create intentional elastic deformations. The effect is that
the sets of minutiae of two prints of the same finger no longer fit exactly after rigid registration. This
is illustrated in Figure 8.1(a), where the ridge skeletons of two prints of the same finger have been
registered optimally and displayed in one figure.

In order to tolerate minutiae pairs that are further apart because of plastic distortions, and therefore to
decrease the False Rejection Rate (FRR), most algorithms increase the size of the bounding boxes [2].
However, as a side effect, this gives non-matching minutiae pairs a higher probability to get paired,
resulting in a higher False Acceptance Rate (FAR). Therefore, changing the size of the bounding box
around minutiae only has the effect of exchanging FRR for FAR, while it does not solve the problem
of plastic distortions. An alternative approach is to use only local similarity measures, as addressed in
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(a) (b)

Figure 8.1 Ridge skeletons of elastically distorted fingerprints that are registered by means of
(a) rigid and (b) thin-plate spline algorithms.

Section 3.1, since those are less affected by elastic distortions [3,4]. However, this also decreases the
required amount of similarity, and therefore also exchanges FRR for FAR.

Recently, some methods were presented that deal with the problem of matching elastically distorted
fingerprints more explicitly, thus avoiding the exchange of error rates. The ideal way to deal with
distortions would be to invert the 3D-to-2D mapping and compare the minutiae positions in 3D.
Unfortunately, there is no unique way of inverting this mapping. It is therefore reasonable to consider
methods that explicitly attempt to model and eliminate the 2D distortion in the fingerprint image.
In [5], a method is proposed that first estimates the local ridge frequency in the entire fingerprint and
then adapts the extracted minutiae positions in such a way that the ridge distances are normalized
all over the image. Although the stricter matching conditions slightly increase the performance of the
matching algorithm, this method is not able to solve all possible nonlinear deformations.

Since it is not known in advance whether captured fingerprints contain any distortion, true
normalization of the fingerprints to their genuine shape is not possible. The fact that no reference
without distortion is available makes normalization in 2D a relative, rather than an absolute, matter.
Instead of normalizing each fingerprint on its own, the nonlinear distortions of one fingerprint with
respect to the other have to be estimated and eliminated.

In [6], the physical cause of the distortions is modeled by distinguishing three distinct concentric
regions in a fingerprint. In the center region, it is assumed that no distortions are present, since this
region tightly touches the sensor. The outer, or external, region is not distorted either, since it does not
touch the sensor. The outer region may be displaced and rotated with respect to the inner region, due to
the application of forces while pressing the finger on the sensor. The region in between is distorted in
order to fit both regions to each other, as shown in Figure 8.2. Experiments have shown that this model
provides an accurate description of the plastic distortions in some cases. The technique has successfully
been applied to the generation of many synthetic fingerprints of the same finger [7]. However, the
model has not yet been used in an algorithm for matching fingerprints. Accurate estimation of the
distortion parameters is still a topic of research.

Furthermore, a number of nonrigid registration methods have been proposed in other fields than
fingerprint matching, see e.g. [8,9]. Most of these methods, however, suffer from two problems. First,
they assume that the correspondences between two sets of points are known from the local image
structure around these points, which is not a realistic assumption in fingerprint matching, where all
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Figure 8.2 Elastic deformation model of [6].

minutiae points look similar. In addition, they require much processing time, ranging from one to
several minutes on a modern PC. In fingerprint matching, the available time is limited to only a few
seconds. Therefore, these methods cannot be applied to the fingerprint matching problem.

In this chapter, a minutiae matching algorithm is presented that models elastic distortions by means of
a thin-plate spline model, based on the locations and orientations of the extracted minutiae. This model
is used to normalize the shape of the test fingerprint with respect to the template. It is, therefore, able to
deal with elastically distorted fingerprints. As a consequence, the distances between the corresponding
minutiae are much smaller, and tighter bounding boxes can be used in the counting stage. This results
in an algorithm that is able to decrease FAR and FRR simultaneously.

3. Elastic Minutiae Matching

The elastic minutiae matching algorithm estimates the nonlinear transformation model in two stages.
First, the local matching that is presented in Section 3.1 determines which minutiae possibly match,
based on local similarity measures. Without this stage, a problem with too many degrees of freedom
would have to be solved. Next, the global matching that is presented in Section 3.2 uses the possible
correspondences to estimate a global nonrigid transformation. After registration, the corresponding
minutiae are counted using bounding boxes that can be chosen rather strictly since the distance between
corresponding minutiae after elastic registration is small.

3.1 Local Minutiae Matching

The first step in the proposed matching algorithm is the comparison of local structures. These structures
can be compared easily since they contain few minutiae in a small area. In addition, since the structures
originate from only a small area in a fingerprint, they are unlikely to be seriously deformed by plastic
distortions. The local matching algorithm was inspired by the approach that was described in [10].

Each minutia m in the template and test fingerprints is described by parameters �x� y� 	�, where
�x� y� are the pixel coordinates of the minutia and 	 is the orientation of the minutia. The orientation
is estimated as one of either opposite orientations of the ridge lines as estimated by the directional
field [11]. The correct orientation is selected by tracing all the ridges from the minutia over some
distance (one ridge for an end point and three ridges for a bifurcation). For an end point, this directly
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Figure 8.3 Estimation of the minutiae orientation.

gives the orientation, and for a bifurcation, the orientation that occurs twice is selected. This is illustrated
in Figure 8.3. The matching algorithm does not distinguish end points from bifurcations since the type
of a minutia can be easily confused due to acquisition noise or pressure differences during acquisition.
However, the orientation remains the same when this occurs.

Each minutia defines a number of local structures, which are called minutia neighborhoods. A minutia
neighborhood consists of the minutia itself and two neighboring minutiae. When the reference minutia
is called m0 and its closest neighbors with increasing distance from m0 are m1�m2� � � � �mn−1, with n
the number of minutiae, the neighborhoods �m0�m1�m2�, �m0�m1�m3� and �m0�m2�m3� are selected
for each minutia. Compared with selecting only one neighborhood, this provides more robustness in
the local matching stage with respect to false and missing minutiae.

The local matching algorithm compares each minutia neighborhood in the test fingerprint to each
minutia neighborhood in the template fingerprint. First, the two neighborhoods are aligned using a
least squares algorithm that determines the optimal rotation, translation and scaling. Next, a local
matching decision is made by comparing the scaling, the sum of the squared distances between the
three corresponding minutiae, and the differences of orientation to a threshold. If the neighborhoods
are considered to match, the pair of minutia neighborhoods and the transformation �t� r� s�, consisting
of translation t = �tx� ty�, rotation r and scaling s, is stored.

After each minutia neighborhood in the test fingerprint has been compared to each minutia
neighborhood in the template fingerprint, a list of corresponding minutia neighborhood pairs is obtained.
Note that this list does not necessarily contain all true correspondences and that inclusion in this list
does not necessarily indicate a true correspondence. However, its size gives a first indication of the
degree of similarity of the two fingerprints.

3.2 Global Minutiae Matching

The next step is the determination of the global transformation that optimally registers the two
fingerprints. This is called the global matching stage. From the list of local correspondences, the
global transformation is determined that is consistent with the largest number of matching minutia
neighborhood pairs. It is expected that this transformation explicitly selects the largest number of
matching minutiae pairs from the entire minutiae sets.

Several strategies to determine the optimal global transformation from the list of local transformations
exist. These methods mainly differ in handling the difficulty of false and contradictory local matches.
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In [10], the transformation of the single minutia neighborhood pair that matches best is taken. However,
using more information of other local matches certainly improves the accuracy of the registration.
Another possibility is to quantize the local registration parameters into bins and construct an accumulator
array that counts all occurrences of each quantized registration. Next, the bin that occurs most is
selected, and the average of all registrations in that bin is taken. This strategy roughly corresponds to
the work in [12], although that method is not based on matching local minutia neighborhoods.

The method that is proposed here achieves further improvement by determining the optimal
registration parameters from the positions of the matching minutia neighborhoods, instead of averaging
the individual registration parameters. First, the largest cluster of pairs that share approximately the
same registration parameters is selected. This is achieved by determining for each matching pair the
number of pairs for which the registration parameters differ less than a certain threshold. Next, the
transformation �t� r� s� that optimally registers the selected minutiae in the test set to the corresponding
minutiae in the template set is calculated in a least squares sense.

However, when applying this registration, elastically deformed fingerprints will not be registered
well, as shown in Figure 8.1, simply because an accurate registration �t� r� s� does not exist. Most
matching algorithms compensate for this in the counting stage. It has been reported in [2] that for
97.5% of the minutiae to match, a threshold on the Euclidean distance of two minutiae of r0 = 15 pixels
has to be used in 500 dpi fingerprints. As a consequence, minutiae in a rather large part of the image
(25% of the image for 30 minutiae in a 300× 300 image) are considered to match, even when they
actually do not match.

In order to allow stricter matching, i.e. a smaller value of r0, elastic registration has to be used to
compensate for plastic distortions. A transformation that is able to represent elastic deformations is the
Thin-Plate Spline (TPS) model [13]. To our knowledge, it has not been applied earlier to fingerprint
recognition. The TPS model describes the transformed coordinates �x′� y′� both independently as a
function of the original coordinates �x� y�:

x′ = fx �x� y� (8.1)

y′ = fy �x� y� (8.2)

Given the displacements of a number of landmark points, the TPS model interpolates those points,
while maintaining maximal smoothness. The smoothness is represented by the bending energy of a
thin metal plate. At each landmark point �x� y�, the displacement is represented by an additional z-
coordinate, and for each point, the thin metal plate is fixed at position �x� y� z�. The bending energy is
given by the integral of the second order partial derivatives over the entire surface and can be minimized
by solving a set of linear equations. Therefore, the TPS parameters can be found very efficiently. The
TPS model for one of the transformed coordinates is given by parameter vectors a and w:

f �x� y�= a1+a2x+a3y+
n
∑

i=1
wiU ��Pi− �x� y��� (8.3)

where U�r�= r2 log r is the basis function, a defines the affine part of the transformation, w gives an
additional nonlinear deformation, Pi are the landmarks that the TPS interpolates, and n is the number
of landmarks.

The TPS parameters that minimize the bending energy can be found by solving a set of linear
equations:

Kw+Pa = v (8.4)

PTw = 0 (8.5)



Elastic Minutiae Matching 125

where

w =
[

wx �1� wx �2� · · · wx �n�
]T

(8.6)

v =
[

qx �1� qx �2� · · · qx �n�
]T

(8.7)

a =
[

ax �1� ax �2� ax �3�
]T

(8.8)

P =








1 px �1� py �1�
1 px �2� py �2�
���

���
���

1 px �n� py �n�








(8.9)

K =









U ��P1−P1�� U ��P1−P2�� · · · U ��P1−Pn��

U ��P2−P1��
� � �

���
���

� � �
���

U ��Pn−P1�� · · · · · · U ��Pn−Pn��









(8.10)

Pi = �px�i��py�i�� is the set of landmark points in the first image, px�i� is the x-coordinate of point i in
set Pi�Qi = �qx�i�� qy�i�� is the set of corresponding points in the second image, and n is the number
of landmark points.

In [14], a method is presented to estimate approximating thin-plate splines. These splines do not
exactly interpolate all given points, but are allowed to approximate them in favor of a smoother
transformation. The smoothness is controlled by a parameter �, which weights the optimization of
landmark distance and smoothness. For �= 0, there is full interpolation, while for very large �, there
is only an affine transformation left.

For equal isotropic errors at all landmarks, the optimal TPS parameters can be found by solving the
following system of equations:

�K+�I�w+Pa = v (8.11)

PTw = 0 (8.12)

where I is the n×n identity matrix.
In fingerprint matching, it is essential to use approximating thin-plate splines, since this introduces

some insensitivity to errors. For instance, minutiae may be displaced a few pixels by the minutiae
extraction algorithm, or false local matches may be included in the global matching stage. Interpolating
TPS will include these displacement errors in the registration exactly, resulting in strange un-smooth
transformations and incorrect extrapolations. Obviously, a smoother transformation that does not take
all small details into account is much more robust. In that case, the TPS registration represents the elastic
distortions, while in the counting stage, the threshold r0 takes care of local minutiae displacements.

The TPS model is fitted in a number of iterations. First, an initial model is fitted to the minutiae in
the minutia neighborhood pairs that were found in the local matching stage. Next, the corresponding
minutiae in both sets, differing in location and orientation less than a threshold, are determined and
a new model is fitted to those corresponding minutiae. This is repeated with a decreasing threshold
r0 until the model has converged to its final state. This iterative process improves the quality of the
nonlinear registration considerably and increases the matching score significantly. Finally, the matching
score S is calculated by:

S = n2match

n1 ·n2
(8.13)
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where nmatch is the number of matching minutiae, n1 the number of minutiae in the test fingerprint and
n2 the number of minutiae in the template fingerprint. This expression provides the most consistent
matching scores when the numbers of minutiae in both fingerprints n1 and n2 are significantly different.
The match or non-match decision is then taken by comparing the matching score to a threshold.

Figure 8.1(b) shows the two deformed fingerprints after registration by means of thin-plate splines.
The figure clearly shows the much more accurate registration with respect to part (a) of the figure.
This means that a much lower threshold r0 can be used in the counting stage, leading to a considerably
lower false acceptance rate.

4. Shape Matching

Once an elastic registration model that aligns two fingerprints is available, a wide range of additional
fingerprint matching algorithms becomes available. In this section, we present a shape matching
algorithm that makes use of the directional field. The goal of this algorithm is to verify whether the
shapes of the fingerprints after alignment match, and so to discard false matches that accidentally have
a large minutiae matching score.

The first step is to warp the test print such that it is aligned with the template print. For this purpose,
the estimated TPS model is evaluated on a coarse grid, and the image is warped by a set of bilinear
transforms that are defined by the grid points. The result is that both images are aligned elastically,
and the ridge lines of both prints are on top of each other in the ideal case (see Figure 8.1(b)).

The similarity score is based on the squared directional field [11], which is encoded in vector v
of two elements with norm �v� = 1 at each point in the image. For each vector, there exists an
associated coherence value W ∈ �0�1� that indicates the reliability of the directional field estimate. The
dissimilarity or distance d between two vectors v1 and v2, given their coherence values W1 and W2 is
defined as:

d =
√

W1W2 �1−v1 ·v2� (8.14)

where v1 · v2 denotes the inner product of v1 and v2. The inner product measures the difference in
orientation of both vectors. The coherence weighting as defined in Equation (8.14) has been defined in
such a way that dissimilarities in the orientation are penalized, with lower penalties if the orientation
estimates are less reliable.

The correspondence of the shape of two fingerprints is found as the mean shape distance over the
entire valid fingerprint area after elastic registration. The shape matching score can be combined with
the elastic minutiae matching score by taking the average of the two scores.

5. Results

The proposed algorithm has been evaluated by applying it to Database 2 of FVC2000 [15] and
Database 2 of FVC2002 [16]. The FVC2000 database consists of 880 optical 8-bit grayscale fingerprints,
eight prints of each of 110 distinct fingers. The images are captured at 500 dpi, resulting in image sizes
of 256×364 pixels. The FVC2002 database consists of the same number of fingerprints, but captured
at 569 dpi, resulting in image sizes of 296×560 pixels.

Unfortunately, no benchmarks are available in the literature to measure the performance of minutiae-
based matching for given fixed sets of minutiae. Any result reported on databases such as those
of FVC2000 incorporate the performance of a minutiae extraction stage, which is not a topic of
this chapter. However, for the sake of the experiments, a straightforward method was implemented
consisting of segmentation, Gabor filtering, binarization, thinning and postprocessing [17].
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First, the estimated elastic deformation models have been evaluated visually. In Figure 8.4, the
registration results are depicted for typical and heavy distortions in the FVC2000 database. The figure
shows the superposition of both minutiae sets (indicated by ‘×’ and ‘�’) and a grid that visualizes
the deformations. The figures clearly show that elastic registration makes the minutiae sets fit much
better, i.e. the corresponding ‘×’s and ‘�’s are much closer to each other, while the fingerprints are
not heavily distorted. For the upper row, the matching scores are 0.42 for the rigid registration and

Figure 8.4 Registration results for the elastic matching algorithm: the superposition of both minutiae
sets (indicated by ‘×’ and ‘�’) and a grid that visualizes the deformations. Top row: typical distortions;
bottom row: heavy distortions; left column: rigid registration; right column: TPS registration.
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0.68 for the TPS registration, while the scores for the bottom row are 0.04 and 0.25. Furthermore, it is
worth noticing that all distortion patterns that we inspected were similar to the patterns that are shown
in Figure 8.4, while none of them resembled the distortion model that was proposed in [6].

Next, due to the lack of benchmark results for minutiae matching performance, it was decided to
compare TPS-based elastic matching to rigid matching. In both cases, r0 was chosen such that the
matching performance was optimized. With r0 = 15 for rigid matching and r0 = 5 for elastic matching,
the equal-error rates of the ROC turned out to be 4% and 2.4% respectively for Database 2 of
FVC2002. In this experiment, 5600 genuine attempts and 9900 impostor attempts have been evaluated.
The Receiver Operating Curve (ROC) for the elastic matching experiment is shown in Figure 8.5.

Analysis of false rejects resulted in two possible causes for the low matching scores. The first cause
is due to imperfections in the used minutiae extraction stage. Low-quality regions are discarded by
the segmentation that precedes the minutiae extraction, leading to very few corresponding minutiae. It
is expected that the matching performance increases when combined with better minutiae extraction
algorithms. The second cause is a very small overlapping region between the two fingerprints that
are matched. In this case too, there are only very few corresponding minutiae. This problem has been
solved partially by determining the rectangular overlapping region from the corresponding minutiae
pairs, and using only the minutiae in that region for calculation of the matching score, i.e. adjusting
n1 and n2 in Equation (8.13).

Furthermore, it is worth noticing that none of the low matching scores is caused by the presence of
elastic deformations. The algorithm correctly resolves these distortions, while in some cases, the rigid
matching algorithm is not able to do so.

The proposed elastic minutiae matching algorithm is rather fast. In a C++ implementation on a 1 GHz
P-III machine, the entire elastic minutiae matching algorithm takes less than 100ms. Furthermore, it
is only marginally more complex than the rigid matching algorithm. The local matching stage takes
approximately 50ms, rigid matching would take 10 ms and elastic matching takes 30ms.

The combination of elastic minutiae matching and shape matching has also been evaluated by
experiments on Database 2 of FVC2002. This results in an equal-error rate, EER = 2�2%, and a false

Figure 8.5 ROCs of minutiae matching, shape matching and a combination of both on Database 2
of FVC2002.



References 129

rejection rate, FRR = 5% at FAR = 0%. It is worth noticing that 52 out of 100 users are completely
error free, and 16 more users have an FRR smaller than 10% at FAR = 0%.

6. Conclusions

This chapter has proposed a novel minutiae matching algorithm that is able to deal with elastic
distortions of fingerprints. Using thin-plate splines, the algorithm handles all possible nonlinear
distortions while using very tight bounding boxes. It has been shown that it is able to register distorted
fingerprints very well. When applied to elastically deformed fingerprints, the elastic matching algorithm
provides considerably better matching scores than rigid matching algorithms. The additional step of
shape matching after elimination of the elastic deformations is able to reduce the error rates further.
Since a relatively simple minutiae extraction algorithm was used, it is expected that the matching
performance can be improved by linking the proposed matching algorithm to better minutiae extraction
algorithms.
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In this chapter, we propose a scanner-based personal authentication system by using the fusion of

multiple palm-print features. For higher accuracy rates in biometrics-based authentication systems,

three requirements should be met: personalization, fusion and adaptive thresholding. In order to

satisfy these requirements, personal reference templates, an optimal Positive Boolean Function (PBF)

and an automatically determined threshold value must be obtained from the training samples of a

specified individual. Multiple reference templates of various features are constructed to represent

the characteristics of an individual. The multiple verified scores of a query sample are determined

by matching with the reference templates in databases. An optimal PBF is found and used to fuse

the verified scores to obtain a fused value. This value is compared with the predefined threshold to

make the decision. Experimental results verify the validity of our proposed approaches in personal

authentication.

1. Introduction

Recently, biometric features have been widely used in many personal authentication applications
because they possess the following physiological properties [1]: universality, uniqueness, permanence,
collectability, performance, acceptability and circumvention. According to the above properties, many
access control systems adopt biometric features to replace the digit-based password. Biometric features
are the features extracted from human biological organs or behavior. The first book addressing various
biometric technologies for personal identification in networked society was edited by Jain et al. in
1999 [2]. In this book, they make a detailed comparison of 14 different biometric technologies.
O’Gorman [3] also surveyed six biometric features in the matching, validation, maximum independent
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samples per person, sensor cost and sensor size topics. Though fingerprint and eye features provide
very high recognition rates, they are unsuitable for identification systems. First, the sensor cost of
eye-based features is too high to implement in many low-security demanding applications such as
computers, home security systems, restricted entry control, corporate networks, etc. Besides, since
fingerprint features are used officially in criminal investigations and commercial transactions, most of
the users are unwilling to deliver their fingerprint data to a company or system for privacy reasons. Jain
et al.[2] mentioned that ‘The match between biometrics and an application is determined depending
upon the requirements of the given application, the characteristics of the applications and properties of
the biometrics.’

Two possible biometric features can be extracted from human hands. First, hand shape geometrical
features, such as finger width, length and thickness, are the well-known features adopted in many
systems [4,5,6]. For instance, Golfarelli et al.[4] extracted 17 hand shape features to verify personal
identity. Zunkei [5] introduced a commercial product of hand geometry-based recognition and applied it
to many access control systems. Jain et al.[6] used deformable matching techniques to verify individuals
via hand shapes. The hand shape of a test sample is aligned with that in the database, and a defined
distance is calculated for the evaluation of similarity. A 96.5% accuracy rate and a 2% False Acceptance
Rate (FAR) are achieved by their approaches. These hand shape-based features frequently vary due to
the wearing of rings on fingers. Besides, the width or thickness of women’s fingers may rapidly vary
in a short time due to pregnancy. According to the variation of hand geometry, it can be used in entry
control systems with low security requirements and a low rejection rate to record the entry data of
employees or users. The reference features in the database should be updated frequently.

The relatively stable features extracted from the hands are the prints of palms. Zhang and Shu [7]
applied the datum point invariant property and the line feature matching technique to conduct the
verification process via palm-print features. They inked the palm-prints on to paper and then scanned
them to obtain 400×400 images. This method is not suitable for many online security systems because
two steps are needed to obtain the palm-print images in their approach. Joshi et al. [8] captured an
image of the middle finger by using a CCD camera to generate a Wide Line Integrated Profile (WLIP)
of length 472. They also used the normalized correlation function to compute the similarity values
between the input sample and the reference templates. Furthermore, Zhang [9] proposed a texture-based
feature extraction method to obtain the global attributes of a palm. A dynamic selection scheme was
also designed to ensure the palm-print samples were correctly and effectively classified in a large
database.

In order to improve the verification performance, fusion schemes on multimodal features or verified
results have been used widely in biometric-based personal authentication systems. They generate more
accurate results than a single constituent classifier. Combinational strategies using averaging, AND,
OR, maximum, minimum or voting rules are well-known methods for multiple classifier fusion [10]. In
biometric-based authentication applications, Prabhakar and Jain [11] proposed four different fingerprint-
matching algorithms and combined them at the decision level. You et al. [12] designed a coarse-to-fine
searching process using multiple palm-print features to efficiently find the best matching sample in the
database. Chibelushi et al. [13] made a review of speech-based bimodal recognition. They combined
auditory and visual modalities instead of a single modality. Sanderson and Paliwal [14] proposed a
feature set, called maximum autocorrelation values, to improve the robustness of a text-independent
verification system. They also integrated the audio and visual information in a multimodal verification
system. Furthermore, Chatzis et al. [15] proposed three fusion schemes to combine still face and speech
features. All of their approaches improved the performance of the system with multimodal features.

In this paper, we propose a scanner-based personal authentication system by using multiple palm-
print features. Two stages, enrollment and verification, constitute the identification system, as shown
in Figure 9.1. In the enrollment stage, M hand images of an individual are collected to be the training
samples. These samples should be processed by preprocessing, feature extraction and modeling modules
to generate the matching templates. In the verification stage, a query sample is also processed by the
preprocessing and feature extraction modules, and then matched with the templates to decide whether
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Figure 9.1 The modules of biometric-based verification systems.

it is a genuine sample or not. To achieve more accuracy, a fusion scheme based on the Positive
Boolean Function (PBF) was devised to integrate the multimodal preverified results. The PBF has been
successfully applied to the design of a stack filter. Each stack filter corresponding to a PBF possesses
the weak superposition property known as threshold decomposition and the ordering property known
as the stacking property [16]. This class of stack filters includes many familiar filter types, such as
a median filter, a weighted median filter, an order statistic filter, a weighted order median filter, and
so on. The main function of a stack filter is to remove the noise, detect the edges, � � � , etc. All
their applications focus on image and signal processing. An optimal stack filter Sf was defined as a
filter whose Mean Absolute Error (MAE) value between the output of PBFs and the desired signals
is minimal. In the supervised enrollment stage of the authentication applications, the identities of the
training samples were previously defined and identified. These identities of samples can be defined to
be the desired values. The outputs of the PBFs were considered as the integrated results. The positive
Boolean function was applied to design a fusion scheme for personal authentication.

The rest of this chapter is organized as follows. In Section 2, four steps for the preprocessing module
are executed to find the location of the Region Of Interest (ROI). The feature extraction techniques,
including Sobel’s and morphological operations are described in Section 3. The modeling procedure
for verification purposes is introduced in Section 4. First, the simple and practical multiple template
matching method is described in the section to evaluate the similarity between the query and reference
samples. Next, the fusion scheme with the PBF is described to increase the system performance. In
Section 5, experimental results are demonstrated to verify the validity of our proposed algorithms.
Finally, some concluding remarks are given in Section 6.

2. Preprocessing

Image preprocessing is usually the first and most essential step in pattern recognition. In our proposed
approach, four steps are devised in the preprocessing module. Image thresholding, border tracing,
wavelet-based segmentation and Region Of Interest (ROI) location are sequentially executed to obtain
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a square region which possesses the palm-print data. In the following contexts, we will briefly present
the process of each step. More details can be found in [17].

2.1 Step 1: Image Thresholding

The hand images of 256 gray levels are acquired from a platform scanner, as shown in Figure 9.2(a).
The image thresholding operation is to binarize the gray images to obtain binary hand shape images.
Since the capturing environment is stable and controlled, the threshold value is conveniently fixed to
be 70 in our experiments.

2.2 Step 2: Border Tracing

After the image thresholding step, the binary images are traced to obtain the contours of hand shape,
as shown in Figure 9.2(b), by making use of the border tracing algorithm. The details of the border
tracing algorithm can be found in [18].

(a) (b)

(c) (d)

Figure 9.2 The preprocessing steps. (a) Image thresholding; (b) border tracing; (c) corner detection;
and (d) ROI locating.
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2.3 Step 3: Wavelet-based Segmentation

In the previous step, the border pixels of hand shape are sequentially traced and represented by a set of
coordinates �xi� yi�� i= 1�2� � � � . In this step, the wavelet-based segmentation technique is adopted to
find the locations of five fingertips and four finger roots. As we know, these points are located at the
corners of the hand shape. Since the crucial corner points Pa�Pb and P3 (see Figure 9.2(c)) determine
the ROI location in the palm table, it is very important to explicitly locate the corner points of the hand
shape. The wavelet transform can provide stable and effective segmented results in corner detection.
The detected corner points in Figure 9.2(b) are illustrated in Figure 9.2(c).

2.4 Step 4: Region Of Interest (ROI) Generation

In this step, we will find the Region Of Interest (ROI) in the palm table. Based on the result generated
in Step 3, the location of the ROI is determined from points Pa�Pb�P3 and geometrical formulae. Thus,
the square region Pe1 �Pe2 �Pe3 �Pe4 of size 256 by 256 is defined to be the region of interest, as shown
in Figure 9.2(c). From these four points, the image of the ROI is cut from the hand image, as shown
in Figure 9.2(d).

3. Feature Extraction

Feature extraction is a step to extract the meaningful features from the segmented ROI for the later
modeling or verification process. In extracting the features, we use the operator-based approach to
extract the line-like features of palm-prints in the ROI of the palm table.

First, we employ simple Sobel operators to extract the feature points of a palmprint. Four directional
Sobel operators S0� S90� S45 and S135 are designed. Consider a pixel of the ROI in the palm table, four
directional Sobel operators are performed to select the maximal value as the resultant value of the
ROI. This operation is carried out according to the following expression:

f ∗S =max�f ∗S0� f
∗S90� f

∗S45� f
∗S135� (9.1)

Here, symbol ∗ is defined as the convolution operation. The Sobel features of the ROI are thus obtained,
as shown in Figure 9.3(a).

Figure 9.3 The feature extraction module. (a) The features operated via Sobel operation; and (b) the
features operated via morphological operation and linear stretching operation.
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Next, we present other complex morphological operators to extract palm-print features. In grayscale
morphology theory, two basic operations dilation and erosion for image f are defined as follows:

Dilation � f ⊕S =max�f�s−x�+b�x���s−x� ∈Df � and x ∈Db� (9.2)

Erosion � f �S =min�f�s+x�−b�x���s+x� ∈Df � and x ∈Db� (9.3)

Here, Df and Db represent the domains of image f and structuring element b. In addition,
two combination operations called opening �f � b� and closing �f • b� are extended for further
image processing.

In [19], Song, Lee and Tsuji designed an edge detector called an Alternating Sequential Filter (ASF),
which provides perfect effects in noisy or blurry images. The mechanism of the ASF is constructed as
follows. Two filters are defined to be:

f1 = �l�l and f2 = f1⊕b3x3 (9.4)

The algebraic opening �l and closing �l are defined as:

�l =max�f �b0�l� f �b45�l� f �b90�l� f �b135�l� (9.5)

�l =min�f •b0�l� f •b45�l� f •b90�l� f •b135�l� (9.6)

where symbol b��l denotes the structuring elements of length l and angle �. In our experiments, value
l is set to be 5. Next, the morphological operator is defined to be fm = f2− f1. The edge pixels are
thus obtained by using the morphological function f ∗fm, as shown in Figure 9.3(b).

Now, the feature vectors are created in the following way. For the training samples, the ROI images
are uniformly divided into several small grids. The mean values of pixels in the grids are calculated to
obtain the feature values. These values are sequentially arranged row by row to form the feature vectors.

4. Enrollment and Verification Processes

In an authentication system, two phases, enrollment and verification, should be executed. In our
previous works [17], we have designed a simple and practical technique, multiple template matching, to
model the verifier of a specific person. In this chapter, a fusion scheme with the PBF will be designed
to increase the system performance.

4.1 Multitemplate Matching Approach

Template matching using the correlation function is a common and practical technique utilized in many
pattern recognition applications. In this study, we try to use this approach to perform the verification
task to decide if the query sample is a genuine pattern or not. Consider a query sample x and a
template sample y, a correlation function is utilized to measure the similarity between two feature
vectors as follows:

Rxy =
∑n

i=1 �xi−�x��yi−�y�

�x�y
(9.7)

In the above formula, symbols � and � represent the mean and standard deviation values, respectively.
In addition, value n is the length of the feature vectors. The coefficient value of this linear correlation
function is calculated for the similarity evaluation.
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In creating the reference templates in the enrollment stage, M samples of individual X are collected
to form the matching template database. The main advantage of this approach is that less training time
is needed in training the matching model. In the verification stage, the correlation coefficient of query
and reference samples is calculated by making use of Equation (9.7). If the reference and test patterns
are both derived from the same person, the coefficient value will be approximately one. Otherwise, if
the value of similarity approximates to zero, the query sample should be considered as a forged pattern.

From the preceding contexts, the metric we define in determining whether a query sample is genuine
or a forgery can be modified to 1−R. Based on this criterion, it is easy to verify the input pattern by
a predefined threshold value t. If the value 1−R is smaller than threshold t, the owner of the query
sample is claimed to be individual X. Otherwise, the query sample is classified as a forged pattern.

4.2 Multimodal Authentication with PBF-based Fusion

In this section, the fusion scheme with PBF for integrating several preverified results is proposed. In
authentication systems, the verification problem can be considered to be a two-category (classes�y and
�n� classification problem in pattern recognition. The similarity value of an input sample generated
from the matching algorithm with the templates in the database was compared with a given threshold.
This value would determine whether the input sample was a genuine one or not; it was critical in
determining the verified results. Since the filtering process using the PBF was performed on the domain
of integer values, all similarity values in this study had to be normalized and quantized to be integer
values in the range [0,L] by using sigmoidal normalization by means of the following equations:

�i�x�=
�i�x�−�i

�i
(9.8)

and

h��i�x��=Q

(
1

1+ exp�−t�i�x��

)

� i= 1�2� � � � � n (9.9)

Here, values �i and �i denote the mean and standard deviation of feature Ri of the training samples.
Q is a quantization function for generating the values in the range [0,L].

In considering a sample x of a specified individual X possessing n modal similarity values
x = �x1� x2� � � � � xn�, which were generated from n modal features or matching algorithms, each
element was normalized and quantized to be in the range [0,L]. In the verification stage with a single
modal rule, if sample x is a genuine sample, i.e. x ∈�y, then the similarity value should ideally be
smaller than the threshold. The similarity value is larger than the threshold value if it is a forged
sample, i.e. x ∈�n. Thus, the simple verification rule using one single similarity value xi for sample
x is designed as:

D�x�=
{

x ∈�y(genuine class) if xi < l

x ∈�n(forgery class) otherwise
(9.10)

Here, value l is a threshold value in the range �Bl�Bu�, and the two boundary values Bl and Bu are
manually predefined. The verified result of sample x is assigned to be value 0 if its similarity value
is less than the threshold. Otherwise, the verified result is set to value 1. The verification rule is
modified as:

xli =Dl�xi�=
{

0 ifxi < l� �i�e��x ∈�y�

1 ifxi ≥ l� �i�e��x ∈�y��
(9.11)

where, l= Bl+1�Bl+2� � � � �Bu. This rule is the same as for the threshold function Tl��� in [16].
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In multimodal verification, the threshold value l is compared and set from Bl+1 to Bu in determining
the verified results. The integration function Df ��� for the individual X is defined as a PBF to integrate
the n similarity values x = �x1� x2� � � � � xn� and its output value Df �x� is used to determine the
verification result. Since the PBF possesses the thresholding decomposition property, the sample x of
n similarity values can be decomposed into �Bu−Bl� binary vectors xl = �xl1� x

l
2� � � � � x

l
n� ∈ �0�1�n

by using the threshold function as defined in Equation (9.11). This function can be reconsidered as a
penalty function if a verification error occurs.

Now, let us show that the verification problem satisfies the stacking property with the PBF. Consider
two samples x and y whose corresponding similarity attributes are x = �x1� x2� � � � � xn� and y =
�y1� y2� � � � � yn�, respectively. If sample x is nearer to class �y than sample y, two relations along class
�y and two samples x and y should be satisfied as below:

C1: If sample x does not belong to class �y (e.g. Tl�Df �x��= 1�, then sample y does not belong to
class �y (e.g. Tl�Df �y��= 1�.

C2: If sample y is an element of class �y (e.g. Tl�Df �y��= 0�, then sample x should be an element
of class �y (e.g. Tl�Df �x��= 0�.

The binary vectors ul and vl are obtained from multimodal attributes x and y thresholded at
level l. Here, ul = �xl1� x

l
2� � � � � x

l
n�, v

l = �yl1� y
l
2� � � � � y

l
n�, and l = Bl�Bl+1� � � � �Bu. If u

l ≤ vl for all
dimensional elements (e.g. xi ≤ yi, i = 1�2� � � � � n� and for all levels l = Bl+1�Bl+2� � � � �Bu, then
sample x is nearer to the class �y than sample y according to the voting strategy. The verification
function for samples x and y is thus defined to be a PBF at all levels. The following are the verification
results for samples x and y if the binary vectors ul ≤ vl and l= Bl+1�Bl+2� � � � �Bu.

C1: If the verification result for sample x at level l is output 1, i.e. f�xl� = 1, then the result from
sample y will be 1, f�vl�= 1.

C2: If the result for sample y at level l is output 0, i.e. f�vl�= 0, then the result from sample x will
be 0, f�ul�= 0.

That means that if ul ≤ vl, then f�ul�≤ f�vl� for all levels. Therefore, the verification function using
the PBF satisfies the stacking property.
M genuine samples of a specified individual x�1��x�2�� � � � �x�M�, called the positive samples of

class �y, and N forged samples y�1��y�2�� � � � �y�N�, called the negative samples, were collected to
be the training set T. These samples are normalized and quantized to be in the range [0,L]. In the
training stage, the samples in class �y were previously identified to be of zero value and the samples
in class �n were assigned to one desired value, i.e.

dl�x�=
{

0 for all levels l= Bl+1�Bl+2� � � � �Bu�when x ∈�y

1 for all levels l= Bl+1�Bl+2� � � � �Bu�when x ∈�n

(9.12)

Thus, the desired values (ideal values) for the positive samples and the negative samples can be
defined in the following equation to satisfy the above requirement.

D�x�=
{

Bl when x ∈�y

Bu when x ∈�n

(9.13)

In the verification process, the cost of misclassification is defined to be the absolute value between
the desired value and the output of the integration function. For any sample in the training set T, the
absolute error is thus defined as:

C�Df �x��=
{

�Df �x�−Bl� when x ∈�y

�Df �x�−Bu� when x ∈�n

(9.14)
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Since the integration function with the PBF possesses the thresholding decomposition property, the
cost of misclassification can be formulated as the summation of misclassification errors occurring
at each level. At each level, if we make a correct decision, there is no error in the loss function.
Otherwise, the loss of one unit is assigned to any error. Therefore, verification errors will occur at (1)
the samples not belonging to class �y, i.e. the forged samples (class �n), d�·�= 1� f�·�= 0; or (2) the
samples belonging to class �y which are not the genuine samples, i.e. d�·� = 0� f�·� = 1. Thus, the
total number of Verification Errors (VE) of a specified PBF f , i.e. the MAE, can be obtained from the
following formula:

VE�f �= Ex�j�∈T
[∣
∣D�x�j��−Df �x�j��

∣
∣
]

= Ex�j�∈T

[∣
∣
∣
∣
∣

Bu∑

l=Bl+1
dl�x�j��−f�Tl�x�j���

∣
∣
∣
∣
∣

]

= Ex�j�∈T

[
Bu∑

l=Bl+1
�dl�x�j��−f�Tl�x�j����

]

(9.15)

=
Bu∑

l=Bl+1
Ex�j�∈T ��dl �x�j��−f�Tl�x�j�����

The best integration function f̂ is the optimal PBF with the minimal verification error, i.e.
f̂ = arg minfVE�f�. Furthermore, the VE value can be reformulated as the minimal sum over the 2n

possible binary vectors of length n in [20]. The best integration function is obtained from the optimal
PBF with the minimal verification errors occurring at all levels. As is known, there are 20 stack filters
of window width three, 7581 of window width five, and more than 235 of window width seven. It
takes a tremendous amount of time to compute the VE (i.e. MAE) values over a great number of stack
filters and make comparisons among them in order to find the optimal solution. Many researchers
[20,21,22] have proposed efficient approaches to find the optimal PBF. In our previous work [22], the
graphic search-based algorithm further improved the searching process. First, the problem of finding
the optimal solution was reduced to the problem of searching a minimal path in the Error Code Graph
(ECG). Secondly, two graph searching techniques, greedy and A∗ properties, were applied to avoid
the search of the extremely large volume of search space. Thus, only a few nodes need to be traversed
and examined in this graph. More details can be found in [22].

4.3 Adaptive Thresholding

In many biometric-based verification models, the selection of threshold value t is the most difficult
step in the enrollment stage. It will affect the False Acceptance Rate (FAR) and False Rejection Rate
(FRR). Basically, these two values are contradicted by each other. The higher the FAR value is, the
lower the FRR value becomes, and vice versa. In general, an identification system with lower FAR
requirement will be adopted in a higher security system. On the other hand, the systems with lower
FRR requirement are used in many user-friendly control systems. The selection of FAR or FRR value
depends on the aim of the applications. In order to evaluate the verification performance, the sum
of FAR and FRR values is defined to be the performance index I in this study. The main goal of
threshold selection is to find the minimal values of FAR and FRR for each individual, which will
depend on the characteristics of samples of individual X. In other words, an individual X should have
his own threshold value tX . The leave-one-out cross validation methodology is applied to evaluate the
performance index. More details can be found in [17].
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5. Experimental Results

In this section, some experimental results are demonstrated to verify the validity of our approach.
First, the experimental environment is set up and described in Section 5.1. Next, the verified results
generated by template matching and the PBF-based fusion schemes are demonstrated in Sections 5.2
and 5.3, respectively.

5.1 Experimental Environment

In our experimental environment, a platform scanner, as shown in Figure 9.4(a), is used to capture the
hand images. Here, the scanner that we use in our system is a color scanner which is a commercial
product of UMAX Co. Users are asked to put their right hands on the platform of the scanner without
any pegs, as shown in Figure 9.4(b). The hand images of size 845 by 829 are scanned in grayscale
format and in 100 dpi (dot per inch) resolution. Thirty hand images of each individual are grabbed three
times within three weeks to construct the database. In the enrollment stage, the first ten images are used
to train the verification model. The other 20 images are tested by a trained verifier. Experiments on
1000 positive (genuine) samples and 49 000 negative (forged) samples of 50 people were conducted
to evaluate the performance. The verification system is programmed by using the C programming
language in a Microsoft Windows environment.

5.2 Verification Using a Template Matching Algorithm

In the first experiment, three kinds of window size: 32×32, 16×16 and 8×8 were adopted to evaluate
the performance of the template matching methodology. In each window, the mean value of pixels was
computed and considered as an element of vectors. The linear correlation function was used to calculate
the similarity between the reference and test samples. Consider a person X, ten samples were chosen to
be the reference templates of the verifier. These ten positive samples of individual X and 490 negative
samples of 49 people were collected to compute the Type I and Type II errors. The results for False
Acceptance Rate (FAR) and False Rejection Rate (FRR) by all possible threshold values ranging from
0 to 1 for various grid window sizes were calculated to find the best threshold values, respectively.
The threshold value tX for individual X was chosen by the adaptive selection rule. Thereby, the query
samples were verified by the verifier of X and thresholded by the preselected value tX . The multiple
template matching algorithm can achieve accuracy rates above 91%, as tabulated in [17].

(a) (b)

Figure 9.4 The input device for palm-print images.
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5.3 Verification Using PBF-based Fusion

Three experiments are illustrated in this section to show the effectiveness of our proposed scheme.
In this first experiment, the verified results using the single feature and those results using multiple
features integrated by the PBF-based fusion scheme are given. The verified results by the PBF-based
fusion method are better than those of verifiers using a single feature (see Figure 9.5). In this
experiment, the PBF-based scheme selected the best features of size 16× 16. Moreover, four fusion
methods, minimum, maximum, average and median, were utilized to integrate the multiple features in
the second experiment. The PBF-based fusion scheme was also adopted to make a comparison with
these four methods. The Receiver Operation Characteristic (ROC) curves for these fusion strategies
are depicted in Figure 9.6. In the third experiment, the personal threshold value was determined
from the training samples. On average, the FAR and FRR values of these five fusion strategies were
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Figure 9.5 The ROC curves for three kinds of feature and the PBF-based fusion approach.
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met at the values FARPBF = 0�043�FRRPBF = 0�017, FARmax = 0�023�FRRmax = 0�058, FARmin =
0�019�FRRmin = 0�083, FARavg = 0�021, FRRavg = 0�052, and FARmed = 0�018, FRRmed = 0�044,
respectively. Actually, the results generated by the PBF-based scheme are better than those of
the others.

6. Conclusions

For this study, we have proposed a PBF-based fusion mechanism to integrate the various verified
results. This scheme has been applied to palm-print feature-based authentication systems. The hand
images were captured from a scanner without any fixed peg. This mechanism is very suitable and
comfortable for all users. Besides this, our approach satisfies the personalization, the integration and
the adaptive thresholding requirements for biometrics-based authentication systems. The experimental
results have confirmed the validity and effectiveness of our approach.
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The objective of this chapter is to present a thorough literature survey on iris recognition work. It also

presents a novel approach to iris recognition based on feed-forward neural networks. The features

used in this approach are based on the contour of the iris–pupil boundary obtained from radius vector

functions and named the ‘iris signature’. The proposed technique used is translation, rotation and scale

invariant. The classification is performed using two different neural network structures, the Multilayer

Feed-forward Neural Network (MFNN) and the Radial Basis Function Neural Network (RBFNN). For

feature extraction, the following steps are used:

1. The process starts by locating the outer and inner boundaries of the iris.

2. The second step is to find the contour of the inner boundary, i.e. the iris–pupil boundary.

3. Finally, the iris is represented by ‘radius vector functions’ and the representation is named the ‘iris

signature’.

1. Introduction

Nowadays, one of the main threats that IT systems and security environments can face, is the possibility
of having intruders in the system. This is normally solved by user identification schemes based on
passwords, secret codes or identification cards. Schemes based only on passwords or secret codes
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can be cracked by intercepting the presentation of such a password, or even by counterfeiting it (via
password dictionaries or, in some systems, via brute force attacks). On the other hand, an intruder can
attack systems based on identification cards by robbing, copying or simulating them. If the scheme
used in a system is based both on a card and a password, the intruder would need to apply more
effort to gain entry to the system, and with more advanced technologies, such as smart cards, some
vulnerabilities of the system could be avoided.

Technologies that exploit biometrics have the potential for application to the identification and
verification of individuals for controlling access to secured areas. Nowadays, a lot of biometric
techniques are being developed based on different features and algorithms. This includes recognition
of voice, fingerprints, hand shape, retinal scans, handwritten signatures, etc. [1,2]. Unfortunately, from
the human factors point of view, these methods are highly invasive. Typically, a person is required
to make physical contact with a sensing device (e.g. finger or hand contact) or otherwise take some
special action (e.g. recite a specific phonemic sequence). Similarly, there is little potential for covert
evaluation. One possible alternative to these methods that has the potential to be less invasive is
automated face recognition. As in all pattern recognition problems, the key issue is the relation between
inter-class and intra-class variability: objects can be reliably classified only if the variability among
different instances of a given class is less than the variability between different classes. Therefore, in
the case of face recognition, difficulties arise from the fact that the face is a changeable social organ
displaying a variety of expressions, as well as being an active 3D object whose image varies with
viewing angle, pose, illumination and age [3,4]. It has been shown that for facial images taken at
least one year apart, even the best current algorithms have error rates of 43%�5� to 50% [6]. Against
this, intra-class (same face) variability is limited because different faces possess the same basic set of
features, in the same canonical geometry.

Automated iris recognition is yet another alternative for noninvasive verification and identification
of people. Interestingly, the spatial patterns that are apparent in the human iris are highly distinctive to
an individual [7,8]. Like the face, the iris is an overt body that is available for remote (i.e. noninvasive)
assessment. Unlike the human face, however, the variability in appearance of any one iris might be well
enough constrained to make possible an automated recognition system based on currently available
machine vision technologies. The possibility that the human iris might be used as a kind of optical
fingerprint for personal identification was suggested originally by ophthalmologists. Therefore, the
potential of the human iris for such types of problem comes from anatomy of the eye. Some properties
of the human iris that enhance its suitability for use in automatic identification include:

1. Its inherent isolation and protection from the external environment, being an internal organ of the
eye, behind the cornea and the aqueous humor.

2. The impossibility of surgically modifying it without a high risk of damaging the user’s vision.
3. Its physiological response to light, which provides the detection of a dead or plastic iris, avoiding

this kind of counterfeit.
4. As a planar object its image is relatively insensitive to angle of illumination, and changes in viewing

angle cause only affine transformations; even the nonaffine pattern distortion caused by pupillary
dilation is readily reversible.

5. Finally, the ease of localizing eyes in faces, and the distinctive annular shape of the iris, facilitates
reliable and precise isolation of this feature and the creation of a size-invariant representation.

Several studies have shown that while the general structure of the iris is genetically determined, the
particulars of its minutiae are critically dependent on initial conditions in the embryonic mesoderm
from which it develops. Therefore, there are not ever two irises alike, not even for uniovular (identical)
twins [9].

The remainder of this chapter is organized as follows: A thorough literature survey is presented in
Section 2. Some groundbreaking techniques are discussed in Section 3. Section 4 is the introduction
to neural networks. The proposed method is presented in Section 5. In Section 6, simulation results
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are presented. A Graphic User Interface (GUI) for the proposed iris recognition algorithm is shown in
Section 7. Finally, concluding remarks are given in Section 8.

2. Literature Review

Apparently, the first use of iris recognition as a basis for personal identification goes back to efforts
to distinguish inmates in the Parisian penal system by visually inspecting their irises, especially the
patterning of color [10]. In 1987, the concept of automated iris recognition was proposed by Flom and
Safir [11]. It does not appear, however, that this team ever developed and tested a working system.
Early work towards actually realizing a system for automated iris recognition was carried out at Los
Alamos National Laboratories, CA [12]. Subsequently, two research groups developed and documented
prototype iris recognition systems; one by Daugman [9,13,14], and the other by Wildes et al. [15,16,17].
The algorithms developed by Daugman [9] are currently being used by many commercial and public
entities, including British Telecom, US SandiaLabs, UK National Physical Laboratory, NCR, Oki,
IriScan, Iridian, Sensar and Sarnoff. All these reported a false match rate near 0 in all their tests,
some of which involved millions of different iris pairings [18]. In this algorithm, the recognition
principle is the failure of a test of statistical dependence on iris phase structure encoded by multiscale
quadrature wavelets. The combinatorial complexity of this phase information across different people
spans about 244 degrees of freedom and generates discrimination entropy of about 3�2bit/mm2 over
the iris, enabling real-time decisions about personal identity with extremely high confidence. The
high confidence levels are important because they allow large databases to be searched exhaustively
(one-to-many identification mode) without making any false matches, despite so many chances. The
results of 2.3 million comparisons among eye images acquired in trials in Britain, the USA and Japan
are presented in [18].

Wildes et al. [16] in their algorithm exploit a user interface that operators should find easier and
less annoying to use. In this approach, the iris is illuminated using a diffuse light source coupled with
polarization optics. The algorithm localizes the iris in an image using a histogram-based model fitting
approach. The method for representing and matching a given iris image involves registering a captured
image to a stored model, filtering with isotropic bandpass filters and subsequent correlation matching.

Some research into automated iris recognition has been carried out in North America [19] and
Europe [20]; however, these efforts have not been well documented to date.

Recently, we have also witnessed many new algorithms, including the algorithm by Boles et al. [21],
which decomposes the iris contour using wavelet transforms, and by Sanchez-Reillo et al. [22], where
Gabor filters are used. The algorithm developed by de Martin-Roche et al. is based on dyadic wavelet
transform zero-crossing [23]. A wavelet function that is the first derivative of a cubic spline is used to
construct the representation.

Over the past few years there has been considerable interest in the development of neural network-
based pattern recognition systems because of their ability to classify nonlinear data. Shah-Hosseini
and Safabakhsh proposed a class of neural network named a Time Adaptive Self Organizing MAP
(TASOM) [24], that can automatically adjust the learning rate and neighborhood size of each neuron.
Each neuron’s learning rate is determined by a function of the distance between an input vector
and its weight vector. The width of the neighborhood function is updated by a function of the
distance between the weight vector of the neuron and the weight vectors of the neighboring neurons.
Only one time parameter initialization is sufficient throughout the lifetime of a TASOM to work
in stationary and nonstationary environments without retraining. They have tested their algorithm
with some standard data sets including the iris plant, breast cancer and BUPA liver disease data.
This method, however, has not been applied for iris recognition. In [25], El-Bakry proposed a fast
cooperative modular neural network-based iris recognition system. The method was applied earlier
to detection of human faces in cluttered scenes [26]. In the iris recognition work, he has used it to
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identify automatically human irises in a given image. Since an iris recognition system requires a large
database, nonmodular classifiers tend to introduce high internal interference because of the strong
coupling among their hidden layer weights [27]. As a result of this, slow learning or overfitting can
occur during training. Enlarging the network, increasing the number and quality of training samples,
and techniques for avoiding the local minima, will not stretch the learning capabilities of the NN
classifier beyond a certain limit, as long as hidden nodes are tightly coupled and hence there is cross
talking during learning [28]. So, the modular neural network-based classifier proposed by El-Bakry
attempts to reduce the effects of these problems via a divide and conquer approach. Furthermore,
faster iris detection is obtained through image decomposition into many subimages, and application
of cross correlation in the frequency domain between each subimage and the weights of the hidden
layers.

Another neural network for iris recognition was developed by Onsy Abdel Alim and Maha
Sharkas [29]. They proposed two feature extraction techniques based on 2D Gabor wavelets and
2D Discrete Cosine Transforms (DCT). They used a Multilayer Perceptron (MLP) NN with back
propagation, which consists of one hidden layer and three output neurons to identify three different
people. The achieved recognition rate using the DCT coefficients was about 96%, compared to 92%
obtained using the Gabor coefficients.

In [30], an iris recognition system based on a self-organizing MAP neural network was proposed.
A self-organizing MAP neural network has the ability to automatically adjust the learning rate and
neighborhood size of each neuron. For iris features, they used only a part of the iris structure. The
selected iris structure was then reconstructed into a rectangular format. For classification, a self-
organized MAP neural network was trained. The overall accuracy reached was 83%.

Hybrid pattern recognition systems, especially neuro-fuzzy networks, have gained considerable
attention in the past few years. The reason for the popularity of the neuro-fuzzy network is that it
combines the advantages of both fuzzy classifiers and neural networks. In [31], the FALCON-ART
algorithm is adapted for use in neuro-fuzzy networks and was applied to the iris recognition problem.
The average recognition rate obtained was 95.07%.

Another proposed system in [32] uses a Multilayer Perceptron (MLP) NN as a flexible classifier
with modified Co-Occurrence Matrix (COM) derived features. The co-occurrence matrix method is
a special orientational second order statistical method introduced in 1974 by R. M. Haralick. In this
method, co-occurrences of pixels with particular brightness at a particular distance and orientation are
counted. This method is based on the construction of special matrices called co-occurrence matrices,
which contain information about the statistical distribution of gray levels in the analyzed image. Then,
some statistical features are calculated on the basis of these matrices.

The implemented COM method includes a few changes introduced to the original Haralick method.
A Windows-based application called ‘Iris’ was developed that allows presentation of the co-occurrence
matrices as images.

Two pieces of preliminary research were performed with co-occurrence matrix-derived features.
First, on textures cut directly from eye images to check the chosen method, and second on images
obtained using the ‘Iris’ program – to check the ability of collaboration of the whole system. Images
of five people were taken into consideration. Then, mean values of the features were calculated on the
basis of ten images for each person – for the second piece of research, different smaller numbers of
images were used than for the first part. Such obtained features were used to compare irises. In part I
of the research, 9 out of 10 iris pairs, and in part II, 4 out of 10 iris pairs, could be distinguished.

3. Some Groundbreaking Techniques

Iris recognition is a hot area of research and currently a lot of work is going on. Here, we discuss a
few methods which are considered the fundamental work in this field.
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3.1 Daugman’s Method

3.1.1 Finding an Iris in an Image

Usually, the pupil center is nasal, and inferior, to the iris center. Its radius can range from 0.1 to 0.8 of
the iris radius. So the three parameters defining the pupillary circle must be estimated separately from
those of the iris. One effective integrodifferential operator that determines these parameters is,

max�r�xo�yo�
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where I�x� y� is an image containing the eye. The operator searches over the image domain �x� y� for
the maximum in the blurred partial derivative with respect to increasing radius r, of the normalized
contour integral of I�x� y� along a circular arc ds of radius r and center coordinates �xo� yo�. The
symbol ∗ denotes the convolution and G��r� is a smoothing function, such as a Gaussian, of scale
� . To find the contour of the pupil, the complete operator is used. This operator acts as a circular
edge detector, blurred at a scale set by � , which searches iteratively for a maximum contour integral
derivative with increasing radius at successively finer scales of analysis through the three-parameter
space of center coordinates and radius �r� xo� yo� defining a path of contour integration. The operator
in Equation (10.1) finds both the inner and the outer boundaries of the iris, although the initial search
for the outer boundary also incorporates evidence of an interior pupil to improve its robustness, since
the outer boundary itself usually has extremely soft contrast when a long-wavelength Near-Infrared
(NIR) illumination is used. When the coarse-to-fine iterative searches for both the boundaries have
reached single-pixel precision, a similar approach to detect curvilinear edges is used to localize both
the upper and lower eyelid boundaries. The path contour integration in Equation (10.1) is changed
from circular to accurate, with spline parameters fitted by standard statistical estimation methods to
describe optimally the available evidence for each eyelid boundary. The result of all these localization
operations is the isolation of iris tissue from other image regions.

3.1.2 Iris Feature Encoding by 2D Wavelet Demodulation

Each isolated iris pattern is demodulated to extract its phase information using quadrature 2D Gabor
wavelets. It amounts to a patch-wise phase quantization of the iris pattern by identifying in which
quadrant of the complex plane each resultant phase lies when a given area of the iris is projected onto
complex-valued 2D Gabor wavelets:

h�Re� Im�= sgn�Re�Im�
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where h�Re�Im� can be regarded as a complex-valued bit whose real and imaginary parts are either 1 or 0
(sgn) depending on the sign of the 2D integral; I����� is the raw iris image in a dimensionless polar
coordinate system that is size- and translation-invariant, and which also corrects for pupil dilation as
explained in a later section. � and  are multiscale 2D wavelet size parameters, spanning an 8-fold
range from 0.15mm to 1.2mm on the iris, w is wavelet frequency, spanning three octaves in inverse
propagation to ; and �ro� 	o� � represent the polar coordinates of each region of iris for which the
phasor coordinates h�Re�Im� are computed.

Although 2048 such phase bits are computed for each iris, in a major improvement over the earlier
algorithms [9], now an equal number of masking bits are also computed to signify whether any iris
region is obscured by eyelids, contains any eyelash occlusions, specular reflections, boundary artifacts
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of hard contact lenses, or poor signal-to-noise ratio, and thus should be ignored in the demodulation
code as artifacts.

Since the amplitude information is not very discriminating and it depends upon extraneous factors,
such as imaging against contrast, illumination and camera gain, phase information is used for
recognition.

3.1.3 The Test of Statistical Independence: Combinatorics of Phase Sequences

The test of statistical independence can be done using the Boolean XOR applied to the 2048 bit
phase vectors that encode the two iris patterns, masked or ANDed by both their corresponding mask
bit vectors to prevent non-iris artifacts from influencing iris comparisons. The XOR, denoted by ⊗,
detects the disagreement between any corresponding pair of bits, while the AND operator, denoted
by ∩, ensures that the compared bits are both deemed to have been uncorrupted by eyelashes, eyelids,
specular reflections or other types of noise. The norms ��� ��� of the resultant bit vector and of the
ANDed mask vectors are then measured in order to compute a fractional Hamming Distance (HD)
as the measure of the dissimilarity between any two irises having phase code bit vectors denoted by
�codeA�codeB� and mask bit vectors denoted by �maskA�maskB�:

HD = ��codeA⊗ codeB�∩maskA∩maskB��maskA∩maskB� (10.3)

The denominator tallies the total number of phase bits that mattered in iris comparisons after artifacts
such as eyelashes and specular reflections were discounted, so the resulting HD is a fractional measure
of dissimilarity; 0 would represent a perfect match.

3.2 Boles’s Method

In this algorithm, extracting unique features from images of the iris of the human eye and representing
these features using the wavelet transform zero-crossings is proposed [21]. This representation is
then utilized to recognize individuals from images of the iris of their eyes. The proposed algorithm
operates in two stages. The first stage consists of building a one-dimensional representation of the gray-
level profiles of the iris, followed by obtaining the wavelet transform zero-crossings of the resulting
representation. The second stage is the matching procedure for iris recognition.

3.2.1 Extracting Iris Features

The process of information extraction starts by locating the pupil of the eye, which can be done using
any edge detection technique. Knowing that it has a circular shape, the edges defining it are connected
to form a closed contour. The centroid of the detected pupil is chosen as the reference point for
extracting the features of the iris. The gray-level values on the contours of virtual concentric circles,
centered at the centroid of the pupil, are recorded and stored in circular buffers. In what follows, for
simplicity, one such data set will be used to explain the process and will be referred to as the iris

signature.

3.2.2 Normalization Process

The extracted data from the same iris may be different, even if the diameter of the used virtual circle
is kept constant. This is due to the possible variation in the size of the iris in the image as a result of a
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change in the camera-to-face distance. For matching purposes, the extracted data must be processed to
ensure the accurate location of the used virtual circle and to fix the sample length before constructing
the zero-crossing representation. Using the edge-detected image, the maximum diameter of the iris in
any image is calculated. In comparing two images, one will be considered as a reference image. The
ratio of the maximum diameter of the iris in this image to that of the other image, is also calculated.
This ratio is then used to make the virtual circles for extracting the iris features have the same diameter.
In other words, the dimensions of the irises in the images will be scaled to have the same constant
diameter, regardless of the original size in the images. Furthermore, the extracted information from
any of the virtual circles must be normalized to have the same number of data points.

3.2.3 Iris Pattern Representation

The next step is to generate a zero-crossing representation from the normalized iris signature. The
zero-crossing representation is a stack of inflection points of the iris signature at different resolution
levels.

3.2.4 Iris Pattern Matching

This process consists of two phases: learning and classification. In the learning phase, the system
will construct the model representations based on the irises in noise-free images. A few selected
intermediate resolution levels are used in the matching process. According to these representations, a
number, Q, of intermediate resolution levels will be defined. In practice, the value of Q depends on
the total number of resolution levels and is determined based on the magnitude of the zero-crossing
representations of the models. A number of intermediate resolution levels, containing most of the energy
of the representation, are chosen for use in the matching process. Under uniformly distributed noise,
the signal-to-noise ratio at these levels is improved and the effect of noise is reduced significantly.
Therefore, choosing a suitable value of Q will make the representation more robust. In the classification
phase, the representation of an unknown in an image is constructed with the same normalization value
used in constructing the model representations. An unknown signature will be matched with a specific
model if the degree of dissimilarity between this signature and that model is the smallest in comparison
to other models. The degree of dissimilarity can be calculated based on some dissimilarity functions.

3.3 Method of Dyadic Wavelet Transform Zero Crossing

In 2001, de Martin-Roche et al. used dyadic wavelet transform zero crossing for the identification of
irises [23]. A wavelet function is the first derivative of a cubic spline. They claimed that this technique
is translation, rotation and scale invariant.

3.3.1 Localization of Iris Image

First, the image of the eye is converted into grayscale and its histogram is stretched. Then, throughout
a gridding process, the center of the iris, as well as the outer boundary, i.e. border between the iris and
the sclera, is detected, taking advantage of the circular structure of the latter. Detection is performed
by maximizing D which is given by:

D =
∑

m

5
∑

k=1

(

In�m− In−k�m
)

(10.4)
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where

Ii�j = I �xo+ i
	 cos �j
	� � yo+ i
r sin�j
	�� (10.5)

where �xo� yo� is a point in the grid taken as center, 
r and 
	 are the increments of ratio and angle,
respectively, and Ix�y is the image in gray levels.

Once the outer bounds of the iris are detected, everything in the image outside is suppressed, and
this same process is performed in order to find the inner boundary, i.e. the frontier between the iris
and the pupil. The points inside the last border are also suppressed.

3.3.2 Conversion into a 1D Signal

In preprocessing, first of all the diameter sizes of all the irises are made the same, regardless of their
original sizes. Then, the centroid of the detected pupil is chosen as the reference point for extracting
the features of the irises. In the next step, the gray-level values on the contours of a virtual circle,
which is centered at the centroid of the pupil, are recorded. This data set is 256 bits in length and it is
named the iris signature.

3.3.3 Feature Extraction

For iris identification, some features are extracted from the iris signatures which are based on dyadic
wavelet transforms.

Discrete Dyadic Wavelet Transform
Let  �x� denote the dilation of a function  by a factor s:

 �x�= 1

s
 
(x

s

)

(10.6)

The continuous wavelet transform of a continuous function f�x� at the scale s and position x can be
written in the following convolutional form:

Wsf �x�= f ∗ s �x� (10.7)

Let  ̂ �w� be the Fourier transform of  ̂ �x�, then, according to Grossmann and Morlet [33], if  ̂ �w�
satisfies:

�
∫

−�

� ̂ �w��2

�w� dw = C <� (10.8)

then f�x� can be reconstructed from its wavelet transform. The above condition is called the
admissibility condition and it implies that

 ̂ �0�= 0 (10.9)

The term ‘wavelet’ is used for any function from L2��� which satisfies the admissibility condition. If
the condition
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is satisfied then the scale parameter can be sampled along the dyadic sequence �2j�j∈Z while preserving
the reconstruction property. Any wavelet satisfying Equation (10.10) is called a dyadic wavelet and
the sequence of functions:

{

W2jf �x�
}

j∈Z (10.11)

is called the dyadic wavelet transform. For normalization purposes, it is assumed that the finest scale
is 1 and the largest scale is 2J . Let  �x� be a scaling function whose Fourier transform satisfies:
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Now define a smoothing function S2j as:

S2jf �x�= f ∗�2j �x� (10.13)

where �2j �x� =
1

2j
�

(
x

2j

)

. It can be proven that any discrete input signal f d can be written as

f d = S1f�n�. Now define a function Sd2Jf as:

Sd2J f = �S2J f �n+w��1≤n≤N (10.14)

and

W d
2J f = �W2J f �n+w��1≤n≤N (10.15)

where N is the length of f d and w is a sampling shift that depends only on  . Now, the Discrete
Dyadic Wavelet Transform (DDWT) of f d = S1f�n� can be defined as the sequence of the discrete
signals:

{
(

W d
2J f

)

1≤j≤J � S
d
2J f

}

(10.16)

3.3.4 Zero-Crossing Representation of Iris Pattern

It is known that one can obtain the position of multiscale sharp variation points from the zero crossing
of the signal convolved with the Laplacian of a Gaussian. If f ∈ L2��� and �W J

2 f�x��j∈Z is its
dyadic wavelet transform, then for any pair of consecutive zero crossings of W2j whose abscissae are
respectively (zn−1! zn), the following can be recorded:

en =
zn∫

zn−1

W2jf dx (10.17)

For any function W j
2f , the position of the zero crossings �zn�n ∈ Z can be represented by a piece-wise

constant function:

Z2jf =
en

zn− zn−1
(10.18)

Therefore, in order to obtain a complete and stable representation, the zero crossings of the dyadic
wavelet transform of the iris signatures are considered, and the value of the wavelet transform between
two consecutive zero crossings are also recorded.



154 Iris Recognition Using Neural Networks

3.3.5 Classification and Verification

For classification, comparison is made between different users’ iris signatures based on the following
three methods:

1. The Euclidean distance, which is defined as:

dE �y�p�=
√
√
√

L
∑

i=1
�yi−pi�2 (10.19)

where L is the dimension of the feature vector, yi is the ith component of the sample feature vector
and pi is the ith component of the template feature vector.

2. The binary Hamming distance, which is defined as:

dbH �y�p�=
1

L

L
∑

i=1
yi⊕pi (10.20)

The Hamming distance measures not the difference between the components of the feature vectors,
but only the number of components that differ in value. Assuming that the feature components
follow a Gaussian distribution, the number of components of the feature vector falling outside the
area defined by the template parameters is obtained by the following Hamming distance:

dH �y�p�= # �i� � � � �L� � �yi−pmi �> pvi (10.21)

where pmi is the mean of the ith component and pvi is the factor of the standard deviation of the ith
component.

3. The third method uses the distance that directly relates to the zero-crossing representation of a 1D
signal. The dissimilarity function, which compares the unknown object y and candidate model p at
a particular resolution level j, is given by:

dj �y�p�=
∑Rj
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} (10.22)

where Zjp is the zero-crossing representation whose imaginary and real parts are ��j�r��p and
��j�r��p, respectively, and " is the scale factor and equals the ratio between the average radius of
the candidate model and that of the unknown object.

4. Neural Networks

In this work, two different structures of neural network are used, multilayer feed-forward neural
networks and radial basis function neural networks. A brief overview of each network is given below.

4.1 Multilayer Feed-forward Neural Networks (MFNNs)

Neural networks are typically organized in layers. Layers are made up of a number of interconnected
‘nodes’ which contain an ‘activation function’. Patterns are presented to the network via the ‘input
layer’, which communicates to one or more ‘hidden layers’, where the actual processing is done via a
system of weighted ‘connections’. The hidden layers then link to an ‘output layer’, where the answer
is output as shown in Figure 10.1. Most ANNs contain some form of ‘learning rule’, which modifies
the weights of the connections according to the input patterns with which it is presented. In a sense,
ANNs learn by example, as do their biological counterparts; a child learns to recognize flowers from
examples of flowers.
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Figure 10.1 Structure of an MFNN.

4.1.1 Learning Algorithm

The Back Propagation (BP) algorithm is the most widely used learning procedure for supervised neural
nets. Before beginning training, some small random numbers are usually used to initialize each weight
on each connection. BP requires preexisting training patterns, and involves a forward propagation step
followed by a backward propagation step. The forward propagation step begins by sending the input
signals through the nodes of each layer. A nonlinear activation function, called the sigmoid function,
is usually used at each node for the transformation of the incoming signals into an output signal. This
process repeats until the signals reach the output layer and an output vector is calculated. The backward
propagation step calculates the error vector by comparing the calculated and target outputs. New sets
of weights are iteratively updated until an overall minimum error is reached. The Mean-Square Error
(MSE) is usually used as a measure of the global error, which can be defined as:

MSE =
No∑

j=1

(

dj−yj
)2

(10.23)

where No is the number of output nodes and y and d are the output and target signals respectively.
Weights are updated as follows:

w
�l�
ji �n+1�

︸ ︷︷ ︸

New weights

= w
�l�
ji �n�

︸ ︷︷ ︸

Old weights

+� �
�l�
j �n�
︸ ︷︷ ︸

Local gradient

y
�l−1�
i �n�+� 
w

�l�
ji �n−1�

︸ ︷︷ ︸
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(10.24)

where

�
�l�
j �n�=
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(10.25)
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Performance of the trained network can be evaluated by some simple statistical functions such
as recognition rate (i.e. the percentage of the total number of correctly classified outcomes over the
number of sample points, or simply %Reco) and the mean-square error. If the error value on the test
data set begins to increase, training is halted and the results are examined to determine whether they
are acceptable. If the results are unacceptable, then it is possible to retrain the network, by either
modifying some network parameters (e.g. the seed value for the random number generator and the
number of nodes in the middle layer), or increasing or decreasing the variations present in the training
patterns. Once an acceptable error value is obtained during the test stage, the network is ready for
solving real problems, such as classification of input signals (e.g. well log data) into discrete classes
(e.g. lithofacies) and prediction of property values (e.g. porosity and permeability) using some input
signals (e.g. well log data).

4.1.2 Activation Function

An activation function is used to transform the activation level of a unit (neuron) into an output signal.
Typically, activation functions have a ‘squashing’ effect, i.e. they limit the permissible output range to
some finite values.

zk =
m
∑

j=1
wkjxj (10.26)

and

y = ��zk�= �
⌊

wkjxj
⌋

(10.27)

where x1� x2� � � � , are the input signals; wk1�wk2 � � � , are synaptic weights of neuron k, and � is the
activation function:

��z���= tan sig�z���= 1− e−�z
1+ e−�z �� ∈ R

+ (10.28)

��z���= log sig�z���= 1

1+ e−�z �� ∈ R
+ (10.29)

��z�����= sinmul�z�����= z+ �

��
sin���z��� ∈ Z+�0< �< 1 (10.30)

��z�= piecewise�z�=









−1� if z <−1
z� if −1≤ z≤ 1

1� if z > 1

(10.31)

Activation functions for the hidden units are needed to introduce nonlinearity into the networks.
Nonlinearity makes the multilayer networks more powerful. For back propagation, learning the
activation function must be differentiable. The more common activation functions are sigmoidals (log
and tangent), piecewise-linear and sinusoidal functions. For hidden units, sigmoidal functions are
usually preferable. With sigmoid units, a very small change in the weights will usually produce a
change in the outputs, which makes it possible to depict whether that change in weights is good or bad.

4.2 Radial Basis Function Neural Networks (RBFNNs)

An RBFNN is a type of feed-forward network. In these networks, the learning involves only one layer.
This results in a reduction in the training time and complexity in comparison with the MFNN. A SISO



Neural Networks 157

c1

c2

c3

cn0

wn0

w1

w2

w3
Σ

u(t ) x(t )

Figure 10.2 A general RBFNN.

RBFNN is shown in Figure 10.2. It consists of an input node u�t�, a hidden layer with n0 neurons and
an output node x�t�.

Each of the input nodes is connected to all the nodes in the hidden layer through unity weights
(direct connections). While each of the hidden layer nodes is connected to the output node through
some weights w1� � � � ��wn0

, where n0 is the number of hidden layer nodes (neurons). Each neuron
finds the distance, normally by applying the Euclidean norm, between the input and neuron’s center
and passes the resulting scalar through a nonlinear function. The output of the hidden neuron is given
by ���u�t�− ci��, u(t) is the input, ci is the center of the ith hidden layer node, where i= 1�2� � � � � n0,
and ��·� is the nonlinear basis function. Normally, this function is modeled by a Gaussian function of
width . The output x(t) is a weighted sum of the outputs for different hidden layers:

x�t�=W#�t� (10.32)

x�t�=
n0∑

i=1
wi���u�t�− ci�� (10.33)

where

W = �w1w2 · · ·wn0
� (10.34)

and

#�t�=
[

�u�t�− c1��u�t�− c2� · · ·
∥
∥u�t�− cn0

∥
∥
]T

(10.35)

4.2.1 Learning Algorithm

The weights of RBFNNs are updated by minimizing the performance index I given by:

I = 1

2
e2�t� (10.36)
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where e�t� is the classification error. According to the LMS principle, the weights of the RBFNN at
the kth iteration should be updated in the negative direction of the gradient as:

Wk+1 =Wk−�
�I

�Wk

(10.37)

where � is the learning parameter. The partial derivatives for the weights are derived as follows:

�I

�W
= 1

2

�e2�t�

�W

= 1

2
2e�t�

�

�W
�y�t�− ŷ�t��

= e�t�
�

�W
�y�t�−W#�t��

�I

�W
=−e�t�#�t� (10.38)

The gradient in Equation (10.38) is used to find the updated weights using Equation (10.37). The final
weight update equation will take the form:

Wk+1 =Wk+�e�t�#�t� (10.39)

5. Proposed Method

In this work, the technique used for extracting the iris features is translation, rotation and scale invariant.
The main steps of the algorithm are:

1. Feature Extraction

(i) The process starts by locating the outer and inner boundaries of the iris.
(ii) The second step is to find the contour of the inner boundary, i.e. the iris–pupil boundary.
(iii) Finally, the iris is represented by radius vector functions and the representation is named the

‘iris signature’.

2. Classification. Two neural network techniques have been implemented:

(i) Classification using a Multilayer Feed-forward Neural Network (MFNN).
(ii) Classification using a Radial Basis Function Neural Network (RBFNN).

In the next sections, these steps are discussed in detail.

5.1 Localizing the Iris

5.1.1 Edge Detection

The first step is to locate the iris outer boundary, i.e. the border between the iris and the sclera. This
is performed by edge detection on the grayscale iris image. In Matlab, the command ‘edge’ uses six
different methods of edge detection which are as follows:

1. The Sobel method. This finds edges using the Sobel approximation to the derivative. It returns
edges at those points where the gradient of the image is maximal.

2. The Prewitt method. This finds edges using the Prewitt approximation to the derivative. It returns
edges at those points where the gradient of the image is maximal.

3. The Roberts method. This finds edges using the Roberts approximation to the derivative. It returns
edges at those points where the gradient of the image is maximal.
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4. The Laplacian of Gaussian method. This finds edges by looking for zero crossings after filtering
the image with a Laplacian of Gaussian filter.

5. The Zero-cross method. This finds edges by looking for zero crossings after filtering the image with
a filter you specify.

6. The Canny method. This finds edges by finding local maxima of the gradient of the image. The
gradient is calculated using the derivative of a Gaussian filter. The method uses two thresholds to
detect strong and weak edges, and includes the weak edges in the output only if they are connected
to strong edges. This method is robust to additive noise, and able to detect ‘true’ weak edges.

In this work, the edges of the irises are detected using the ‘Canny method’ because of its better
ability at edge detection. Figures 10.3 and 10.4 show the original and edge images, respectively.

5.2 Finding the Contour

The second step is to find the inner boundary of the iris, i.e. the frontier between the iris and the pupil.
For this, the centroid of the detected pupil is chosen as the reference point (xc� yc�. Given that the
edges are represented by binary ones, the top and bottom extreme points (i.e. �xc� ymin� and �xc� ymax��

of the inner boundary are first detected from this reference point by searching for the first one. Once
these extreme points are detected, a similar search for the first one is made for all the points on the
left �x < xc�, as well as on the right �x > xc� of the reference point. Thus, all the boundary points are
stored in a one-dimensional vector.

5.3 Feature Extraction

One of the most important methods of characterizing a figure is the representation of its contour by a
function. This function can be any of the following:

1. The cross-section function (for symmetric figures).
2. The radius vector function (for star-shaped figures).
3. The supports function (mainly for convex figures).

Figure 10.3 Image of a sample iris.
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Figure 10.4 Edges of the sample iris.

Since the inner boundary of the iris is not necessarily symmetric and convex, so the radius vector is
an obvious choice for finding the contour. This vector is explained below.

5.3.1 Radius Vector Functions

The contour of a figure F is described by the radius vector function. So a reference point must be
chosen inside F . This may be, for example, the center of gravity, the center of the smallest disc that
completely contains the figure, or a biologically important point. The figure is then translated such
that this point lies at the origin o. Let the translated figure be denoted by X. It is necessary that X
must be star-shaped with respect to o. This means that for any contour point x of X, the whole line
segment from o to x must be inside X. Figure 10.5 shows a star-shaped set. Note that if the star-shaped
set is not satisfied because of small irregularities in the contour, the figure may be translated into a
star-shaped one by presmoothing it.

The radius vector function rX� � depends on the angle  made by the line emanating from o with
the x-axis (see Figure 10.5). The quantity rX� � is equal to the length of the line segment from o to
the contour point x in which the  -ray intersects the boundary. This function characterizes the contour
X precisely. That is, X can be uniquely reconstructed if we are given rX� �. It is obvious that:

r�X� �= �rX� �� X ⊂ Y ⇒ rX� � < rY � � (10.40)

The map X→ rX transforms figures into elements of a function space. If figures have the property
that the radius vector function is continuous, then the Banach space C�0�2�� is suitable.
In our scheme, the radius vector method is used to represent the iris contour. Upsampling and

downsampling processes are used to normalize the length of the obtained contour. Finally, the 1D
feature vector obtained is named the ‘iris signature’. A sample of an iris signature is shown in
Figure 10.6.
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 r (ϕ)

ϕ

Figure 10.5 A star-shaped figure. Each ray starting at o forms only one line segment in it. The length
of line segment for a ray of direction  �0 ≤  ≤ 2�� is denoted by rX� �. This is the radius vector
function.

Figure 10.6 A sample of an iris signature.
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5.4 Iris Pattern Recognition

The extracted iris signatures obtained above are used for classification. For this purpose, both the
MFNN and the RBFNN are used. The process consists of two phases:

1. Learning.
2. Classification.

The results are discussed below.

6. Experimental Results

Simulations were performed using ten different iris samples obtained by Daugman. An MFNN and an
RBFNN were used for iris recognition.

6.1 Results for an MFNN

We used an MFNN consisting of a single hidden layer with 30 neurons and an output layer with ten
neurons. The back propagation algorithm was used to update the weights. For training of the NN,
noisy iris samples were generated by adding Gaussian noise at 10 dB and 20 dB SNRs. Training was
performed on 70% of the data. Then, testing was carried out on the remaining data at different SNRs.
The SNR represents the quality of the acquired image, which may be corrupted with effects due to
environment, quantization or digitization of the image. Tables 10.1 and 10.2 represent the classification
results for different classes at 10 dB and 20 dB SNRs, respectively. In the tables, ‘Tr’ and ‘Id’ stand
for true and identified classes, respectively. Notice that an 11th class is displayed in the tables. This
class represents the case when a given iris is not assigned to any of the ten classes.

6.2 Results for an RBFNN

Using the same set-up as above, the RBFNN was then used for classification. A network with ten centers
was designed and found to be optimal for our problem. Having the same nonlinear approximation

Table 10.1 Percentage recognition for MFNN with 10 dB SNR.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

C1 97 0 0 0 0 0 0 0 0 0 3
C2 0 95�6 0 0 0 0 0 0 0 0 4�4
C3 0 0 98 0 0 0 0 0 0 0 2
C4 0 0 0 95�5 0 0 0 0 0 0 4�5
C5 0 0 0 0 94�8 0 0 0 0 0 5�2
C6 0 0 0 0 0 97�3 0 0 0 0 2�7
C7 0 0 0 0 0 0 98 0 0 0 2
C8 0 0 0 0 0 0 0 96�8 0 0 3�2
C9 0 0 0 0 0 0 0 0 97 0 3
C10 0 0 0 0 0 0 0 0 0 99 1
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Table 10.2 Percentage recognition for MFNN with 30 dB SNR.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

C1 98 0 0 0 0 0 0 0 0 0 2
C2 0 99 0 0 0 0 0 0 0 0 1
C3 0 0 99�5 0 0 0 0 0 0 0 0�5
C4 0 0 0 100 0 0 0 0 0 0 0
C5 0 0 0 0 99 0 0 0 0 0 1
C6 0 0 0 0 0 98�6 0 0 0 0 0�4
C7 0 0 0 0 0 0 99 0 0 0 1
C8 0 0 0 0 0 0 0 100 0 0 0
C9 0 0 0 0 0 0 0 0 99�2 0 0�8
C10 0 0 0 0 0 0 0 0 0 100 0
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Figure 10.7 Comparison of learning curves for an RBFNN and an MFNN.

capability as the MFNN, similar results were obtained at different SNRs. The distinguishing feature
of the RBFNN is obviously its lower computational complexity, and hence the efficiency in time
compared to the MFNN, as can be seen in Figure 10.7. The simulation time was found to be at least
half that of the MFNN. The simplicity of the architecture is also notable with just one layer and
ten neurons. Classification behavior of the RBFNN is shown in Tables 10.3 and 10.4. The average
classification obtained by both the networks was 96.9% at 10 dB SNR. This accuracy increases to
about 100% at 30 dB SNR or more.
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Table 10.3 Percentage recognition for RBFNN with 10 dB SNR.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

C1 95�5 0 0 0 0 0 0 0 0 0 4�5
C2 0 95 0 0 0 0 0 0 0 0 5
C3 0 0 98 0 0 0 0 0 0 0 2
C4 0 0 0 97 0 0 0 0 0 0 3
C5 0 0 0 0 95�8 0 0 0 0 0 4�2
C6 0 0 0 0 0 97�3 0 0 0 0 2�7
C7 0 0 0 0 0 0 98 0 0 0 2
C8 0 0 0 0 0 0 0 96 0 0 4
C9 0 0 0 0 0 0 0 0 97�5 0 2�5
C10 0 0 0 0 0 0 0 0 0 98�8 1�2

Table 10.4 Percentage recognition for RBFNN with 30 dB SNR.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

C1 99 0 0 0 0 0 0 0 0 0 1
C2 0 98�7 0 0 0 0 0 0 0 0 1�3
C3 0 0 100 0 0 0 0 0 0 0 0
C4 0 0 0 99�5 0 0 0 0 0 0 0�5
C5 0 0 0 0 99�2 0 0 0 0 0 0�8
C6 0 0 0 0 0 100 0 0 0 0 0
C7 0 0 0 0 0 0 98�8 0 0 0 1�2
C8 0 0 0 0 0 0 0 98 0 0 2
C9 0 0 0 0 0 0 0 0 99�2 0 0�8
C10 0 0 0 0 0 0 0 0 0 100 0

7. Graphic User Interface (GUI)

The GUI for the program is made in Matlab, which shows all the steps of the procedure. In the first
step, a window appears showing the database of all the iris patterns, as shown in Figure 10.8.

The user can select any of the iris patterns for testing the recognition performance by clicking on
the iris image. As a result of that click, the program starts in the background, first preprocessing the
iris data. Preprocessing gives the following in consecutive steps:

1. A grayscale image.
2. An edge-detected image.
3. The iris signature.

All these steps are presented in one window, as shown in Figure 10.9. The iris signature so obtained
is the input to the iris classifier. The result of this classification is shown in terms of a recovered iris
image. The user can continue the process by clicking the label ‘Press Any Key to Continue’.
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Figure 10.8 The GUI’s main window showing all of the iris patterns.
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Figure 10.9 Window showing all the steps of iris recognition.
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8. Concluding Remarks

In this chapter, the problem of iris recognition has been studied in detail. Several past techniques were
discussed. A novel technique is proposed for representing the iris using only its inner boundary. The
classification is performed using both an MFNN and an RBFNN. The Neural Pattern Recognition
(NeurPR) approach is found to be a promising one for iris recognition. The MFNN and RBFNN gave
similar recognition rates, although the RBFNN is preferred in terms of computation load. Our results
are currently being expanded to larger databases, such as the Chinese Iris Database.
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Biometrics refers to the growing technology of automated methods in recognizing individuals based

on their physiological or behavioral characteristics (e.g. fingerprints, irises, faces, etc.) to either

verify a claimed identity (biometric verification) or establish the identity of an individual (biometric

identification). Concerns about security, fraud and illegal access have prompted governments, airlines,

banks and others to become more interested in the technology. Face recognition, in particular, has

generated much more interest than other biometric systems because of the multitude of applications it

enables. Unfortunately, face recognition is susceptible to variations in pose, light intensity, expression,

etc. In addition to a review of biometric techniques and current approaches proposed to solve the

face recognition problem, we introduce a robust face recognition system, using subspace techniques

including Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), to both

estimate the pose and identify the individual.

1. Introduction

Physical characteristics such as face, voice, gait, etc., have been used by humans to recognize each
other for thousands of years. With the increased need for fast and reliable authentication systems,
the use of advanced automated systems based on biometrics technology became a necessity, and this
technology is now growing rapidly. The technology makes use of the fact that each person has unique
physical traits that are one’s characteristics; these cannot be lost, borrowed or stolen. Using biometrics,
it became possible to confirm or establish an identity based on ‘who the individual is,’ rather than by
‘what the individual possesses’ (e.g. an ID card) or ‘what the individual remembers’ (e.g. a password).

Passwords determine identity through user knowledge. If anyone knows the password, the person
(who could be an impostor) can gainaccess to certain systems or restricted areas and resources. The

Computer-Aided Intelligent Recognition Techniques and Applications Edited by M. Sarfraz
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problem is that a password has nothing to do with the actual owner. Passwords can be stolen, and
users can give their passwords to others, resulting in systems that are open to too many unauthorized
individuals. There is no foolproof way to make password-protected systems safe from unauthorized
users. Also, there is no way for password-based systems to determine user identity beyond doubt!

Biometrics, on the other hand, has been used during recent times to recognize people based on their
physical and behavioral characteristics. Examples of different biometric systems include fingerprint
recognition, face recognition, iris recognition, retina recognition, hand geometry, voice recognition
and signature recognition, among others. Face recognition, in particular, has received considerable
attention in recent years from both industry and the research community. The big challenge is, however,
that of identifying individuals in everyday settings, such as offices or living rooms. The dynamic,
noisy data involved in this type of task is very different to that used in typical computer vision
research, where specific constraints are used to limit variations. Historically, such limitations have
been essential in order to limit the computational resources required to process, store and analyze the
visual data. However, enormous improvements in computers in terms of speed of processing and size
of storage media, accompanied by progress in statistical techniques, have made it possible to develop
such systems.

The material presented in this work is organized as follows. The first section gives a brief motivation
for the problem of authentication. In Section 2, a review of current biometric systems is given. Section 3
discusses in detail the problem of face recognition. Section 4 discusses the different linear subspace
decomposition techniques. In Section 5, we present our algorithm called view-based LDA. And in
Section 6, concluding remarks are given.

1.1 Background

The applications of biometrics can be divided into three main groups:

1. Commercial applications such as computer network login, electronic data security, e-commerce,
Internet access, ATMs, credit cards, physical access control, cellular phones, PDAs, medical records
management, distance learning, etc.

2. Government applications such as national ID cards, correctional facilities, drivers’ licenses, social
security, welfare disbursement, border control, passport control, etc.

3. Forensic applications such as corpse identification, criminal investigation, terrorist identification,
parenthood determination, missing children, etc.

The global industry revenues of $729m in 2002 are expected to reach $4.04 b by 2007, as shown in
Figure 11.1, driven by large-scale public sector biometric deployments and the adoption of standardized
biometric infrastructures and data formats.

Face recognition has received considerable interest as a widely accepted biometric because of the
ease in collecting data, with or without the subject’s cooperation. It is being used in a number of
applications including crowd surveillance, criminal identification and criminal records, access to entry,
etc. Figure 11.2 shows that facial recognition takes 15% of the total biometric market. Even with such
a success, face recognition systems developers have to deal with major issues before such systems
become standard.

The requirements for a useful commercial face recognition system in busy, unconstrained
environments, such as domestic living rooms or offices, can be split into several categories:

1. General requirements that need to be satisfied by all parts of the system.
2. Acquisitions requirements concerned with collecting and extracting useful information.
3. Face recognition requirements for the recognition stage concerned with how the recognition

information is used [2].
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1.2 The Problem of Pose

We have seen that the major difficulty in designing robust face recognition systems is the wide variety
in the input data. In particular, the problem is to recognize a subject with a varying pose. The problem
of pose of the subject is one of the fundamental requirements of robust face recognition systems. Our
approach to the problem is to use a combination of linear subspaces.

In previous work, view-based eigenspace systems [3] have been shown to outperform single
eigenspace systems. Here, we extend this method and apply it using Linear Discriminant Analysis
(LDA). We show that LDA can also be used for pose estimation. We also show that view-based LDA
performs better than view-based PCA.
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2. Review of Biometric Systems

Person authentication is becoming a regular routine in our lives. Whether one wants to access one’s
bank account or pass through a check point, one needs to identify oneself. Traditionally, there have
been three different types of authentication:

1. Something you know – a password, PIN or a piece of personal information (such as your mother’s
maiden name).

2. Something you have – a card key, smart card or token (like a secure ID card).
3. Something you are – a biometric!

Of the above, a biometric is the most secure and convenient authentication tool. It cannot be borrowed,
stolen or forgotten, and forging one is practically impossible (replacement part surgery, by the way,
is not considered). Biometrics measures the individual’s unique physical or behavioral characteristics
to recognize or authenticate their identity. Common physical biometrics include fingerprints, hand or
palm geometry, retina, iris, or facial characteristics to mention a few. Behavioral characters include
signature, voice (which also has a physical component), keystroke pattern and gait.

A complete biometric recognition system comprises both hardware and software; the hardware
collects the data, and the software interprets the data and evaluates acceptability and accessibility. The
major steps in building an effective biometric system are as follows (see Figure 11.3):

1. Capture the chosen biometric.
2. Process the biometric and extract and enroll the biometric template.
3. Store the template in a local repository, a central repository or a portable token such as a smart

card.
4. Live-scan the chosen biometric.
5. Process the biometric and extract the feature pattern.
6. Match the scanned biometric against stored templates.
7. Provide a matching score.
8. Record a secure audit trail with respect to system use.

Biometric
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Biometric
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Biometric
Enrollment

Biometric
Verification
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Storage
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Storage

Various
Applications
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Figure 11.3 A typical biometric recognition system.
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As with any other pattern recognition system, biometric systems can be used for either: verification
(or authentication) or identification (or recognition):

• Biometric verification (Am I who I say I am?) is a one-to- one match that compares a query
biometric image against a template biometric image whose identity is being claimed. To evaluate
verification performance, the verification rate (the rate at which legitimate users are granted access)
vs. false accepts rate (the rate at which imposters are granted access) is plotted; this is called the
ROC curve.

• Biometric identification (Who am I?) is a one-to-many matching process that compares a query
biometric image against all the template images in a biometric database to determine the identity of
the query biometric. The identification of the test image is done by locating the image in the database
that has the highest similarity with the test image. The identification method is a closed test; this
means that the sensor takes an observation of an individual that is known to be in the database.

2.1 Summary of the Performance of Different Biometrics

Even though numerous biometrics have been proposed, some have been shown to be more successful
than others. Each of these has its strengths and weaknesses, with the choice usually depending on
the application. No single biometric is expected to meet effectively all the requirements for all the
applications. In other words, no biometric is optimal. The match between a specific biometric and an
application is determined depending upon the operational mode of the application and the properties
of the biometric characteristic. A brief overview of each commonly used biometric is given below.

2.1.1 Fingerprint Recognition

Fingerprint recognition systems use the distinctive patterns of the fingerprint to identify or verify
identity (see Figure 11.4). The main features used for identification are the ridge endings, bifurcations,
dots, crossovers, bridges and their relative positions. There is a variety of approaches used in fingerprint
verification. Some emulate the traditional police method of matching minutiae; others use straight

Ridge valleys

core

Ridge
bifrcation

Ridge
ending

Delta

Figure 11.4 Details of a typical fingerprint image [2].
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pattern matching algorithms. The most commonly used matching method is Minutiae-based Matching.
Two types of matching are possible: point matching and structure matching. Neural networks have
also been proposed for classification. The input to the network is usually the low-pass filtered and
averaged central region of the fingerprint. Given a certain fingerprint test pattern, the network assigns
a match probability to each of the classes.

With the advances made in computing technology, accompanied by lower prices, fingerprint
recognition systems are gaining broader acceptance, despite the common criminal stigma. Besides the
decreasing cost of fingerprint recognition systems, the main advantages are: ease of use; high levels
of accuracy achieved; and the wide range of deployment environments. Some of the disadvantages,
however, are: high false rejection rates; the requirement for high-quality images, which are not always
possible; the fact that injuries to fingers may affect successful recognition; the need for complex
feature extraction algorithms; inconsistent contact distortions due to mapping of 3D shapes onto 2D
surfaces; and non-uniform contact factors like dryness, dirt, sweat, disease, etc., which result in noisy
images.

2.1.2 Iris Recognition

The iris is the plainly visible, colored ring that surrounds the pupil. It is a muscular structure that
controls the amount of light entering the eye, with intricate details that can be measured, such as
striations, pits and furrows (see Figure 11.5). No two irises are alike. There is no correlation between
the iris patterns of even identical twins, or the right and left eye of the same individual. The amount
of information that can be measured from a single iris is much greater than that from a fingerprint.
Unlike other biometric technologies that can be used in surveillance mode, iris recognition is an opt-in
technology. In order to use the technology, the user must cooperate with the system.

The picture of an eye is first preprocessed to localize the inner and outer boundaries of the iris and
the eyelid contours, in order to extract just the iris portion. Eyelashes and reflections that may cover
parts of the iris are detected and discounted. Advanced algorithms are then used to encode the iris
pattern (such as the demodulation algorithm by Daugman) [5]. This creates a phase code for the texture
sequence in the iris, similar to a DNA sequence code. The demodulation process uses a 2D wavelet
function to represent the pattern with a 512 byte code. Some of the advantages of iris recognition
systems are: accuracy; scalability; and the lack of need for contact. The disadvantage is that recognition
accuracy is affected by eye infections and wearing glasses. Accuracy is also affected by how good the
collated images are. Note that public acceptance to this technology is still low.

Figure 11.5 Location of the iris [4].
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2.1.3 Retina Recognition

A retina-based biometric involves the analysis of the layer of the blood vessels situated at the back
of the eye, as shown in Figure 11.6. It involves using a low- intensity light source through an optical
coupler to scan the unique patterns of the retina. Retinal scanning can be quite accurate but does
require the user to look into a receptacle and focus on a given point. This is not particularly convenient
if one is wearing glasses or reluctant about close contact with the reading device. For these reasons,
retinal scanning is not warmly accepted by all users, even though the technology itself can work well.
Advantages of the retina biometric include: high accuracy (better than fingerprints) and smaller storage
requirements (35 bytes of size). Some of the disadvantages are: the system is expensive and intrusive
(the eye is illuminated by a bright light); retina recognition is susceptible to eye disease; and it needs
several images for registration.

2.1.4 Hand Geometry

To use the system, the individual aligns his/her hand according to the guide marks on the hand reader
hardware, and the reader captures a three-dimensional image of the fingers and knuckles and stores
the data in a template, as shown in Figure 11.7. Hand geometry involves analyzing and measuring the

Figure 11.6 A sample of a retinal scan [6].

Access control terminal
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Figure 11.7 A typical hand geometry reader [7].
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shape of the hand. It offers good performance and is relatively easy to use. Hand recognition systems
extract about 100 measurements of the length, width, thickness and surface of the hand of four fingers.
Hand recognition systems are usually used for verification, where the measurements are compared to a
template recorded during enrollment. Ease of integration into other systems and processes, coupled with
ease of use, made hand geometry an obvious first step for many biometric projects. Hand geometry has
been around for several years, and was used at the 1996 Olympic Games. Hand recognition systems
are mainly used for verification and can achieve an equal error rate of 0.1%.

2.1.5 Voice Recognition

Such systems are used to capture the speaker’s voice, as well as the linguistic behaviors. They are
also used in voice-to-print authentication, where complex technology transforms voice into text. Voice
biometrics has the most potential for growth as it requires no new hardware since most PCs already
have microphone input. However, poor quality and ambient noise can severely affect verification
performance. In addition, the enrollment procedure has often been more complicated than with other
biometrics, leading to the perception that voice verification is not user friendly! Its primary use
continues to be telephone-based security applications. Its accuracy can be affected by a number of
factors including noise and voice variations due to illness and fatigue. One obvious problem with voice
recognition is fraud, as the system can always be fooled using a tape of someone else’s voice.

2.1.6 Signature Recognition

Such systems have a wide public acceptance. Signature recognition systems, also called dynamic
signature verification systems, go far beyond simply looking at the shape of a signature
(see Figure 11.8). Signature verification analyzes the way a user signs his/her name, signing features
such as speed, velocity and pressure are as important as the finished signature’s static shape. Signature
verification enjoys a synergy with existing processes that other biometrics do not. People are used to
signatures as a means for transaction-related identity verification, and most would see nothing unusual
in extending this to encompass biometrics. Signature verification devices are reasonably accurate in
operation and obviously lend themselves to applications where a signature is an accepted identifier.
The problem is that our signatures vary significantly over time and from one instance to another, so

Figure 11.8 Online processing of signatures. (a) A signature before processing; (b) the signature
after preprocessing, it has been smoothed and resampled [8].
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strong accuracy requires multiple samples and an extended verification process. Surprisingly, relatively
few significant signature applications have emerged compared with other biometric methodologies.

2.1.7 Other Biometrics

Apart from the above-mentioned biometrics, there are a few others that are either appropriate for a
limited number of applications or are still under development. These include biometrics like DNA,
ear, facial thermograms, hand thermograms, hand veins, gait, etc. The pattern of heat radiated by the
human body is a characteristic that can be captured by an infrared camera in an unobtrusive way, much
like a regular (visible spectrum) photograph. The technology could be used for covert recognition.
A thermogram-based system does not require contact and is noninvasive, but image acquisition is
challenging in uncontrolled environments, where heat-emanating surfaces (e.g. room heaters and vehicle
exhaust pipes) are present in the vicinity of the body. Biometrics which use infrared technology are
facial thermograms, hand thermograms, hand veins, etc. Gait is the peculiar way one walks and is
a complex spatio-temporal biometric. Gait is not supposed to be very distinctive, but is sufficiently
discriminatory to allow verification in some low-security applications. Gait is a behavioral biometric
and may not remain invariant, especially over a long period of time, due to fluctuations in body
weight, major injuries involving joints or the brain, or due to inebriety. Acquisition of gait is similar
to acquiring a facial picture and, hence, may be used as an acceptable biometric. Since gait-based
systems use the video-sequence footage of a walking person to measure several different movements
of each articulate joint, it is input intensive and computationally expensive.

2.2 Selecting the Right Biometric Technology

What is the right biometric for my business? This question, unfortunately, does not have a single
answer, as a number of parameters need to be considered when choosing a certain technology. While
retinal scans, for example, are very accurate, the reluctance of people in using such a technology makes
it only useful in certain environments, such as highly secure sensitive areas. Different biometric systems
are appropriate for different applications, depending on perceived user profiles, the need to interface
with other systems or databases, environmental conditions and a host of other application-specific
parameters.

However, for any human physiological and/or behavioral characteristic to be acceptable as a
biometric, a number of requirements need to be satisfied, including:

1. Universality.
2. Distinctiveness.
3. Permanence.
4. Acceptability.
5. Difficult circumvention [9].

Based on the above parameters, a comparison table for various biometric technologies has been
developed (Table 11.1), where high, medium and low are denoted by H, M and L, respectively.

2.3 Multimodal Biometric Systems

Some of the limitations imposed by unimodal biometric systems can be overcome by using multiple
biometric modalities (such as face and fingerprint of a person or multiple fingers of a person). Such
systems, known as multimodal biometric systems [10], are expected to be more reliable due to the
presence of multiple, independent pieces of evidence [11]. These systems are also able to meet
the stringent performance requirements imposed by various applications [11]. Multimodal biometric
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Table 11.1 Comparison of various biometric technologies [9].
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Ear M M H M M H M
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Facial thermogram H H L H M H L
Fingerprint M H H M H M M
Gait M L L H L H M
Hand geometry M M M H M M M
Hand vein M M M M M M L
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Keystroke L L L M L M M
Odor H H H L L M L
Palm-print M H H M H M M
Retina H H M L H L L
Signature L L L H L H H
Voice M L L M L H H

systems address the problem of nonuniversality, since multiple traits ensure sufficient population
coverage. Further, multimodal biometric systems provide anti-spoofing measures by making it difficult
for an intruder to simultaneously spoof the multiple biometric traits of a legitimate user. By asking
the user to present a random subset of biometric traits (e.g. right index and right middle fingers, in
that order), the system ensures that a live user is indeed present at the point of data acquisition. Thus,
a challenge–response type of authentication can be facilitated using multimodal biometric systems.
Multibiometric systems seek to alleviate some of the unimodel biometric drawbacks by providing
multiple evidence of the same identity. These systems help achieve an increase in performance that may
not be possible using a single biometric indicator. Combinations of face and fingerprint recognition
have proven to give better performance than individual biometrics. Another scheme which used palm
geometry and face recognition was also reported to yield good results [12]. However, it is still premature
to speak about the best combination of biometrics. A number of research groups are currently working
on developing fusion techniques to combine different biometrics. Fusion itself is a growing area of
research. Different fusion techniques have been proposed, some carrying the fusion at the data level,
others at the feature level, and a third class of techniques carry the fusion at the classifier level.

3. Face Recognition Algorithms

Face recognition has received considerable attention in recent years, both from industry and the research
community. Among the popular biometric technologies considered above, facial features scored the
highest compatibility in a Machine Readable Travel Documents (MRTD) system (see Figure 11.9),
based on a number of evaluation factors. A considerable amount of research has been carried out
in this field and many techniques have been proposed and implemented. The task of applying face
recognition in real life is becoming a reality!
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Figure 11.9 Comparison of various biometrics (based on MRTD compatibility) [13].

The current face recognition techniques can be classified into four main categories based on the way
these represent the face:

1. Appearance based, which uses holistic texture features.
2. Model-based, which employs shape and texture of the face, along with the 3D depth information.
3. Template-based face recognition.
4. Techniques using neural networks.

A summary of available techniques is displayed in Figure 11.10.
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Figure 11.10 Classification of face recognition techniques.
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3.1 Template-based Face Recognition

Template matching involves the use of pixel intensity information, either as original gray-level or
processed to highlight specific aspects of the data. The template can either be the entire face or
regions corresponding to general feature locations, such as the eyes or the mouth. Cross correlation
of test images with all training images is used to identify the best match. Brunelli and Poggio [14]
compared feature and template-based methods directly with the same database of frontal face views.
Their template matching strategy was based on earlier work, except that they automatically detected
and used feature-based templates of mouth, eyes and nose, in addition to the whole face image. They
showed that template-based techniques outperform feature-based techniques.

3.2 Appearance-based Face Recognition

Here, the faces are stored as two-dimensional intensity matrices. Each image is represented in a high
vector space, i.e. a point in a high-dimensional vector space. In order to identify the different faces,
an efficient and effective representation (feature space) is derived, depending on the application of
interest. Given a test image, the similarity between the stored prototypes and the test image is then
carried in the feature space. This technique is further classified into Linear (subspace) Analysis and
Nonlinear (manifold) Analysis.

3.2.1 Linear (Subspace) Analysis

PCA, ICA and LDA are classical linear subspace analysis techniques used in face recognition. Each
classifier has its own representation of high-dimensional face vector spaces called basis vectors. For
each case, the basis vectors are formed according to some statistical considerations. After forming the
basis vectors from the face database, faces are then projected onto the basis vectors to get a feature
vector. The matching score between the projected test image and the projected training images is
calculated. This matching score is inversely proportional to the distance between the projected test
image and the projected training images. The larger the matching score, the better the match is.

3.2.2 Nonlinear (Manifold) Analysis

The nonlinear manifold is more complicated than linear models. Actually, linear subspace analysis is
an approximation of this nonlinear manifold. Direct nonlinear manifold modeling schemes are explored
to learn this nonlinear manifold. In what follows, Kernel Principal Component Analysis (KPCA) is
introduced as an example of nonlinear analysis.

Kernel PCA is seen as a nonlinear mapping from the input space Rn to the feature space RL, denoted
by ��x�, where L is larger than n. This mapping is defined implicitly by specifying the form of the
dot product in the feature space:

��xi�xj�= ��xi�•��xj� (11.1)

An example of a kernel commonly used is the Gaussian kernel:

��x�y�= exp�−�x−y�
2�2

� (11.2)

Let us say we have a training set of faces represented as vectors �xi ∈ Rn � i= 1 � � � N�. Then, we have
the corresponding set of mapped data points in feature space ���xi��. The centered points become:

�̃�xi�= ��xi�−
1

N

N
∑

i=1
��xi� i= 1� � � N (11.3)
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The kernel PCA algorithm is implemented as follows:

1. Choose an appropriate kernel function ���� ��.
2. Calculate the kernel matrix from the mapped data:

Kij ≡ ��xi�•��xj�= ��xi�xj� i� j = 1� � � � �N (11.4)

3. Using K, we construct the covariance matrix of the centered data:

K̃ij ≡ �̃�xi�• �̃�xj�=Kij−
1

N

N
∑

p=1
Kip−

1

N

N
∑

q=1
Kqj+

1

N 2

N
∑

p�q=1
Kpq i� j = 1� � � � �N (11.5)

4. Find the set of eigenvectors �b�i � i= 1�2 � � � N!�= 1�2 � � � L� of the matrix K̃, which are our set
of basis vectors �b�� in the feature space.

5. The KPCA components, which are not normalized, for a test point x are then given by:

p��x�∝ b� •��x� (11.6)

The values of the components depend on the normalization taken for the set of vectors �b��, which
are orthogonal but need not be orthonormal. The values of the components can be shifted to make
the mean of each component over the data zero.

A comparison of different subspace algorithms was conducted (for d = 20) using a five-fold cross-
validation method [13], where d is the dimensionality of the subspace. The data was taken from the
FERET database, and contained 1829 images from 706 subjects. A summary of the results obtained
is given in Table 11.2. It was found that the KPCA method of face recognition performs slightly
better than both PCA and ICA algorithms. In terms of the efficiency, PCA is better as it uses less
computations.

3.3 Model-based Face Recognition

This approach uses a model of the face to perform recognition. The model is formed from prior
knowledge of facial features. A recent technique developed by Wiskott et al. is the elastic bunch graph
matching technique [15]. Also, Cootes et al., by integrating both shape and texture, developed a new
technique called the 2D morphable face model, which measures face variations [16]. A more advanced
3D morphable face model has also been explored to capture the true 3D structure of the human face
surface.

The model-based approach usually involves three steps:

1. Developing the face model.
2. Fitting the model to the given facial image.
3. Using the parameters of the fitted model as the feature vector to calculate the similarity between

the query face and prototype faces from the database and perform the recognition.

Table 11.2 Comparison of different subspace techniques.

PCA ICA KPCA

Accuracy 77% 77% 87%
Computation (floating point operation) 108 109 109

Uniqueness Yes No Yes
Projection Linear Linear Nonlinear
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3.3.1 The Feature-based Elastic Bunch Graph Matching Technique

All human faces share a similar topological structure. Wiskott et al. presented a general class recognition
method for classifying members of a known class of objects. Faces are represented as graphs, with
nodes positioned at fiducial points and edges labeled with 2D distance vectors (see Figure 11.11). Each
node contains a set of 40 complex Gabor wavelet coefficients, including both phase and magnitude,
known as a jet. Face recognition is based on labeled graphs. A labeled graph is a set of nodes connected
by edges; nodes are labeled with jets; edges are labeled with distances. Thus, the geometry of an object
is encoded by the edges, while the gray-value distribution is patch-wise encoded by the nodes. A face
bunch graph has a stack-like structure that combines graphs of individual sample faces. This provides
full combinatorial power for this representation, even if it is constituted only from a few graphs.

3.3.2 The 3D Morphable Model

This technique utilizes the fact that the human face is a surface lying in 3D space. This implies, in
principle, that the 3D model is better at representing faces, especially when handling facial variations
such as pose and illumination. Blanz et al. [17,18] proposed a method based on a 3D morphable face
model that encodes the shape and texture in terms of the model parameters, and presented an algorithm
to recover these parameters from a single image of the face (see Figure 11.12).

Performance evaluation of elastic bunch graph matching was conducted on the FERET database. The
results are given in Figure 11.13. The recognition results of this system are good on identical poses,

Figure 11.11 Multiview faces overlaid with labeled graphs [13].
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Figure 11.12 The 3D morphable face model [18].
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Figure 11.13 Recognition results of the 3D morphable model [18].

e.g. frontal views against frontal views. However, across different poses, e.g. frontal views against half
profiles, the system performs rather poorly.

4. Linear Subspace Techniques

In data mining, we often encounter situations where we have a large number of variables in the database
that need to be analyzed. In such situations it is likely that subsets of variables are highly correlated
with each other. The accuracy of classifiers was shown to suffer when highly correlated variables are
used. One of the key steps in data mining is finding ways to reduce dimensionality without sacrificing
accuracy.

Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Independent
Component Analysis (ICA) fall under the broad class of linear transformations that transform a number
of (possibly) correlated variables into a (smaller) number of variables. The objective is to reduce the
dimensionality (number of variables) of the dataset but retain most of the original variability in the
data. As such, linear subspace techniques are quite often seen as feature extraction techniques used to
reduce or remove redundant or irrelevant information from the data.

The problem of dimensionality in face recognition arises when it is not known which measurement
may be important for the application. That is, when there is inadequate knowledge about the structure
of the data that may arise in an application. Our main aim is to study and improve classification
methods, since the objective in classification is to provide a description that is well matched to the
structure of the data.

PCA, ICA and LDA are classical linear subspace techniques available for face recognition. Each
classifier has its own representation of high-dimensional face vector spaces called basis vectors. For
each case, the basis vectors are formed according to some statistical consideration. After forming
basis vectors from the faces database, faces are then projected on basis vectors to get feature vectors.
Similarly, the test face is also projected. The similarity measure is used to find a match for the test face
in the database. Hence, a matching score between the test face’s feature vector and the trained faces’
feature vectors is evaluated. The larger the matching score, the better the trained face is matched to
the test face.

The above-mentioned techniques can be considered as linear transformations from the original
images represented as vectors to the feature space:

Y=WTX (11.7)

where X = �x1�x2�x3� � � � �xN � represents the n×N data matrix. Each xi is a vector of dimension n,
concatenated from a p∗p face image, where n= p∗p. Here, n represents the total number of pixels in
the face image and N is the number of different face images in the training set, Y is the d∗N feature
vector matrix, d is the dimension of the feature vector and W is the transformation matrix. Note that
d≪ n.
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4.1 Principal Component Analysis

PCA is a technique used to uncorrelate input data. It gives an insight into the information content of
input data (facial images), emphasizing the significant local and global features. These features might
not be related to our notion of facial features such as eyes, nose and mouth. The eigenfaces algorithm
is a decomposition algorithm based on principal component analysis that finds the vectors which best
account for the distribution of facial images within the entire face database.

Recognition of images using PCA takes three basic steps. The transformation matrix W must be
created using training images. Next, the training images are projected onto the matrix W. Finally, the
test images are identified by projecting them into the subspace and comparing them to the trained
images in the subspace domain.

4.1.1 Creating Matrix W

The following steps are carried out to compute matrix W:

1. Removing the mean. Each of the training images is first mean adjusted. The mean image is subtracted
from each training image. The mean image of the Yale database is shown in Figure 11.14. Doing
so results in the following matrix:

P = �x1−��x2−��x3−�� � � � ��xN −�� (11.8)

2. Compute the covariance matrix. An estimate of the covariance matrix can then be obtained when
matrix P is multiplied by its transpose (up to a scaling factor):

Q= P×PT (11.9)

3. Computing the eigenvalues and eigenvectors of Q. The matrix Q is of size size n×n (example
10000× 10000). It is difficult, if not impossible, to compute the eigenvectors for such a large
matrix. This problem is fortunately solved using the method presented by Turk and Pentland [19].
This is done with the following lemma:
Lemma 1 For any n×m matrix L, mapping x→Lx is a one to one mapping that maps eigenvectors
of LTL �m×m� onto those of LLT�n×n�.

Therefore, we first write the new covariance matrix:

Q̃= PT×P (11.10)

Figure 11.14 Mean face of the training database.



Linear Subspace Techniques 185

where Q̃ has dimensions N ×N1, where N is the number of faces in the training set. The N largest
eigenvalues and corresponding eigenvectors of Q can be determined from the N eigenvalues and
eigenvectors of Q̃ as:

�i = �̃i�where i= 1 � � � N (11.11)

ei = �̃
−1/2
i Pẽi�where i= 1 � � � N (11.12)

4. Ordering the eigenvectors. Order the eigenvectors, eis, according to their corresponding eigenvalues,
�is, from high to low. Keep only the eigenvectors associated with the largest K eigenvalues. Form
a matrix containing these eigenvectors:

W= �e1� e2� e3� � � � � eK� (11.13)

4.1.2 Projecting the Training Images

All mean-adjusted images are projected into the eigenspace. To project an image into the eigenspace,
calculate the dot product of the image with each of the selected eigenvectors:

Y=WTP (11.14)

4.1.3 Identifying the Test Images

Each test image is first mean adjusted by subtracting the mean image, and then projected into the
same eigenspace defined by Y. The projected test images are compared to every projected training
image. A distance measure is then used to match the test image to the training image giving the least
distance. A number of similarity measures have been used in the literature, the most common one is
the Euclidean distance.

4.1.4 Experimental Results

We have performed a leave one out experiment on the Yale faces database [20]. The Yale faces
database contains images of 15 subjects in 11 different conditions, like smiling, wearing goggles,
different brightness, etc (Figure 11.15). We have trained ten images per person. The plot of eigenvalues
shown in Figure 11.16 is called the eigenvalue spectrum. We notice that 20 eigenfaces are enough
(Figure 11.17) to reach the maximum recognition accuracy of 93.33% (Figure 11.18).

4.2 Linear Discriminant Analysis

Linear discriminant analysis has been successfully used as a dimensionality reduction technique for
a number of classification problems, including speech recognition, face recognition and multimedia
information retrieval. While PCA takes complete training data as one entity, LDA’s goal is to find an
efficient way to represent the face vector space by exploiting class information.

Using linear discriminant analysis, we desire to find a linear transformation from the original image
vectors to the reduced dimension feature vectors as:

Y=WTX (11.15)

where Y is the d×N feature vector matrix, d is the dimension of the feature vectors, and W is the
transformation matrix. Note that d≪ n, for example d = 25 and n= 10000.
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Figure 11.15 Samples of different subjects [20].
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Figure 11.16 Eigenvalue spectrum.

LDA attempts not only to reduce the dimension of the data, but also to maximize the difference
between classes. To find the transformation W, a generalized eigenproblem needs to be solved:

SbW= SwW$ (11.16)

Solving the above results in the following formulation:

W=
(
argmaxWTSbW

W WTSwW

)

(11.17)
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Figure 11.17 The first six eigenfaces.

Figure 11.18 Recognition accuracy with PCA.

where Sb is the between-class scatter matrix and Sw is the within-class scatter matrix defined as:

Sw =
c
∑

i=1
P�Ci�Si (11.18)

Sb =
c
∑

i=1
P�Ci���i−����i−��T (11.19)

where c is the number of classes �c = 15� and P�Ci� is the probability of class i. Here, P�Ci�= 1/c,
since all classes are equally probable.
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Si is the class-dependent scatter matrix and is defined as:

Si =
1

Ni

∑

xk∈Xi
�xk−�i��xk−�i�

T i= 1� � � � � c (11.20)

One method for solving the generalized eigenproblem is to take the inverse of Sw and solve the
following eigenproblem for matrix S−1w Sb:

S−1w SbW=W$ (11.21)

where $ is the diagonal matrix containing the eigenvalues of S−1w Sb.
But this problem is numerically unstable as it involves direct inversion of a very large matrix,

which is probably close to singular. One method for solving the generalized eigenvalue problem is to
simultaneously diagonalize both Sw and Sb [21]:

WTSwW= I� WTSbW=$ (11.22)

The algorithm can be outlined as follows:

1. Find the eigenvectors of PT
b Pb corresponding to the largest K nonzero eigenvalues, Vc×K =

�e1� e2� � � eK� where Pb of size �n× c��Sb = PbP
T
b �.

2. Deduce the first K most significant eigenvectors and eigenvalues of Sb:

Y= PbV (11.23)

Db = YTSbY= �YTPb��P
T
bY� (11.24)

3. Let Z= YD
−1/2
b , which projects Sb and Sw onto a subspace spanned by Z, this results in:

ZTSbZ�≡ I� and ZTSwZ (11.25)

4. We then diagonalize ZTSwZ, which is a small matrix of size �K×K�:

UTZTSwZU=$w (11.26)

5. We discard the large eigenvalues and keep the smallest r eigenvalues, including the 0 s. The
corresponding eigenvector matrix becomes R �k× r�.

6. The overall LDA transformation matrix becomes W = ZR. Notice that we have diagonalized both
the numerator and the denominator in the Fisher criterion.

4.2.1 Experimental Results

We have also performed a leave one out experiment on the Yale faces database [20]. The first six
Fisher faces are shown in Figure 11.19. The eigenvalue spectrum of between-class and within-class
covariance matrices is shown in Figure 11.20. We notice that 14 Fisher faces are enough to reach
the maximum recognition accuracy of 93.33%. The result of recognition accuracy with respect to
the number of Fisher faces is shown in Figure 11.21. Using LDA, we have achieved a maximum
recognition accuracy of 93.333%.
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Figure 11.19 The first six LDA basis vectors.
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Figure 11.20 Eigenvalue spectrum of between-class and within-class covariance matrices.

4.3 Independent Component Analysis

Since PCA only considers second order statistics, it lacks information on the complete joint probability
density function and higher order statistics. Independent Component Analysis (ICA) accounts for
such information and is used to identify independent sources from their linear combination. In face
recognition, ICA is used to provide an independent, rather than an uncorrelated, image decomposition.

In deriving the ICA algorithm, two main assumptions are made:

1. The input components are independent.
2. The input components are non-Gaussian.
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Figure 11.21 Recognition accuracy with LDA.

Non-Gaussianity, in particular, is measured using the kurtosis function. In addition to the above
assumptions, the ICA has three main limitations:

1. Variances of the independent components can only be determined up to a scaling.
2. The order of the independent components cannot be determined (only determined up to a permutation

order).
3. The number of separated components cannot be larger than the number of observation signals.

The four main stages of the ICA algorithm are: preprocessing; whitening; rotation; and normalization.
The preprocessing stage consists of centering the data matrix X by removing the mean vector from

each of its column vectors.
The whitening stage consists of linearly transforming the mean removed input vector x̃i so that a

new vector is obtained whose components are uncorrelated.
The rotation stage is the heart of ICA. This stage performs source separation to find the independent

components (basis face vectors) by minimizing the mutual information.
A popular approach for estimating the ICA model is maximum likelihood estimation, which is

connected to the info-max principle and the concept of minimizing the mutual information.
A fast ICA implementation has been proposed in [22]. The FastICA is based on a fixed point iteration

scheme for finding a maximum of the non-Gaussianity of WTX. Starting with a certain activation
function g��� such as:

g�u�= tan�a1u� or g�u�= u�−u2/2� or g�u�= u3 (11.27)

the basic iteration in the FastICA is as follows:

1. Choose an initial (random) transformation W.
2. Let W+ =W+��I+g�y�yT�W, where � is the learning rate and y=Wx.
3. Normalize W+ and repeat until convergence.

The last stage in implementing the ICA is the normalization operation that derives unique independent
components in terms of orientation, unit norm and order of projections.
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Figure 11.22 The first six ICA basis vectors.
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Figure 11.23 Recognition accuracy with ICA.

4.3.1 Experimental Results

We have performed a leave one out experiment on the Yale faces database [20], the same experiment
as performed on LDA and PCA. The first six ICA basis vectors are shown in Figure 11.22 and the
curve for recognition accuracy is shown Figure 11.23.

5. A Pose-invariant System for Face Recognition

The face recognition problem has been studied for more than two decades. In most systems, however,
the input image is assumed to be a fixed size, clear background mug shot. However, a robust face
recognition system should allow flexibility in pose, lighting and expression. Facial images are high-
dimensional data and facial features have similar geometrical configuration. As such, under general
conditions where pose, lighting and expression are varying, the face recognition task becomes more
difficult. The reduction of that variability through a preliminary classification step enhances the
performance of face recognition systems.

Pose variation is a nontrivial problem to solve as it introduces nonlinear transformations
(Figure 11.24). There have been a number of techniques proposed to overcome the problem of varying
pose for face recognition. One of these was the application of Growing Gaussian Mixtures Models
[23], GMMs are applied after reducing the data dimensions using PCA. The problem is that since
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Figure 11.24 A subject in different poses.

GMM is a probabilistic approach, it requires a sufficient amount of training faces, which are usually
not available (for example, 50 faces to fit five GMMs). One alternative is to use a three-dimensional
model of the face [15]. However, 3D models are expensive and difficult to develop.

The view-based eigenspaces of Moghaddam and Pentland [3] have also shown that separate
eigenspaces perform better than using a combined eigenspace of the pose-varying images. This approach
essentially consists of several discrete systems (multiple observers). We extend this method and apply
it using linear discriminant analysis. In our experiments, we will show that view-based LDA performs
better than view-based PCA. We have also demonstrated that LDA can be used to do pose estimation.

5.1 The Proposed Algorithm

We propose, here, a new system which is invariant to pose. The system consists of two stages. During
the first stage, the pose is estimated. In stage two, a view-specific subspace analysis is used for
recognition. The block diagram is shown in Figure 11.25. To train the system, we first organize the
images from the database into three different views and find the subspace transformation for each of
these views.

In the block diagram, we show the sizes of the matrices at different stages, so as to get the notion of
dimensionality reduction. The matrices XL, XR and XF are of size 60× 2128 (three images/person,
20 people, 2128 pixels per image). WL, WR and WF are the transformation matrices, each containing
K basis vectors (where K= 20). YL, YR and YF are the transformed matrices, called template matrices,
each of size 60×K.

5.2 Pose Estimation using LDA

The pose estimation stage is composed of a learning stage and a pose estimation stage. In this work,
we are considering three possible classes for the pose. These are: the left pose at 45��C1�, the front
pose �C2� and the right pose at 45��C3�. Some authors considered five and seven possible rotation
angles, but our experiments have shown that the three angles mentioned above are enough to capture
the main features of the face.

Each of the faces in the training set is seen as an observation vector xi of a certain random vector
x. These are denoted as x1�x2� � � � �xN , Each of these is a face vector of dimension n, concatenated
from a p x p facial image (n is the number of pixels in the facial image, for the faces in the UMIST
database n= 2128). An estimate of the expected value of x can be obtained using the average:

�= 1

N

N
∑

i=1
xi (11.28)
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Figure 11.25 Block diagram of the pose-invariant subspace system. (a) View-specific subspace
training; (b) pose estimation and matching.

In this training set, we have N observation vectors �x1�x2� � � � xN ��N1 of which belong to class
C1�N2 to class C2, and N3 to class C3. These classes represent the left pose at 45�, the front pose and
the right pose at 45�, respectively.

After subtracting the mean vector � from each of the image vectors, we combine the vectors, side
by side, to create a data matrix of size n×N :

X= �x1�x2� � � � �xN � (11.29)

Using linear discriminant analysis, we desire to find a linear transformation from the original image
vectors to the reduced dimension feature vectors as:

Y=WTX (11.30)

where Y is the d×N feature vector matrix, d is the dimension of the feature vectors and W is the
transformation matrix. Note that d≪ n.

As mentioned in Section 4, linear discriminant analysis (LDA) attempts to reduce the dimension of
the data and maximize the difference between classes. To find the transformation W, a generalized
eigenproblem is solved:

SbW= SwW$ (11.31)
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where Sb is the between-class scatter matrix and Sw is the within-class scatter matrix.
Using the transformation W, each of the images in the database is transformed into a feature vector

of dimension d. To estimate the pose of a given image, the image is first projected over the columns of
W to obtain a feature vector z. The Euclidian distance is then used to compare the test feature vector
to each of the feature vectors from the database. The class of the image corresponding to the minimum
distance is then selected as the pose of the test image.

5.3 Experimental Results for Pose Estimation using LDA and PCA

The experiments were carried out on the UMIST database, which contains 20 people and a total of
564 faces in varying poses. Our aim was to identify whether a subject was in pose left, right or
front, so that we could use the appropriate view-based LDA. We performed pose estimation using
both techniques, LDA and PCA. The experiments were carried out using three poses for each of the
20 people. We trained the system using ten people and tested it using the remaining ten people. The
mean images from the three different poses are shown in Figure 11.26.

Similarly, we trained the ‘pose estimation using PCA’ algorithm, but here we did not use any
class information. Hence, we used the training images in three different poses: left 45 degrees, right
45 degrees and front. The results are show in Table 11.3.

We noticed that LDA outperformed PCA in pose estimation. The reason being the ability of LDA
to separate classes, while PCA only classifies features. As mentioned above, LDA maximizes the ratio
of variances of between classes to within classes.

5.4 View-specific Subspace Decomposition

Following the LDA procedure discussed above, we can derive an LDA transformation for each of the
views. As such, using the images from each of the views and for all individuals, we obtained three
transformation matrices: XL, XR and XF for left, right and front views respectively.

Figure 11.26 Mean images of faces in front, left, and right poses.

Table 11.3 Experimental results of pose estimation.

No. of test images PCA LDA

90 90% 100%
180 88.333% 98.888%
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5.5 Experiments on the Pose-invariant Face Recognition System

We carried out our experiments on view-based LDA and compared the results to other algorithms. In
the first experiment, we compared View-based LDA (VLDA) to the Traditional LDA (TLDA) [21].
The Fisher faces for the front, left and right poses are displayed in Figures 11.27, 11.28 and 11.29,

Figure 11.27 Fisher faces trained for front faces (View-based LDA).

Figure 11.28 Fisher faces trained for left faces (View-based LDA).

Figure 11.29 Fisher faces trained for right faces (View-based LDA).
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respectively. Figure 11.30 shows the Fisher faces obtained using a unique LDA (TLDA). The
performance results are presented in Figure 11.31. We noticed an improvement of 7% in recognition
accuracy. The reason for this improvement is that we managed to reduce within-class correlation by
training different view-specific LDAs. This resulted in an improved Fisher criterion. For the same
reason, we see that VLDA performs better than TPCA [19] (Figure 11.32). Experiments were also
carried out on view-based PCA [3] and the results compared to those of PCA [19] and VPCA [3].
We found that there is not much improvement in the results and the recognition accuracy remains the
same as we increase the number of eigenfaces (Figure 11.33). The reason for this could be that PCA
just relies on the covariance matrix of the data and training view-specific PCAs does not help much in
improving the separation.

For all experiments, we see that the proposed view-based LDA performs better than traditional LDA
and traditional PCA. Since the performance of LDA gets better if we have larger databases, we expect

Figure 11.30 Fisher faces trained for traditional LDA.
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Figure 11.31 View-based LDA vs. traditional LDA.
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Figure 11.32 View-based LDA vs. traditional PCA.
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Figure 11.33 View-based PCA vs. traditional PCA.

our view-based LDA to achieve better recognition accuracy by using more training faces for each of
the poses.

Table 11.4 summarizes the results of the experiments carried out using the pose-invariant system.
The table summarizes the recognition accuracy, and clearly shows that VLDA outperforms all other
algorithms, followed by VPCA, with the maximum number of Fisher/eigenfaces being 20. The
computational complexity and memory usage of all algorithms was comparable.
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Table 11.4 Summary of results.

Algorithm Time (in s) Max. recognition accuracy Memory usage

View-based LDA 183�650 88.333 514 320
Traditional LDA 288�719 83.333 429 200
View-based PCA 90�4850 84.444 514 320
Traditional PCA 140�9060 85 429 200

6. Concluding Remarks

In this chapter, we have presented an overview of biometric techniques and focused in particular on
face recognition algorithms. We have discussed in detail the different linear subspace techniques. We
introduced a new approach to pose-invariant face recognition using the LDA algorithm. In summary,
we would like to conclude the chapter with the following comments:

• Face recognition continues to attract a lot of attention from both the research community and industry.
• We notice that there is a move towards face recognition using 3D models rather than the 2D images
used traditionally by authors.

• Numerous techniques have been proposed for face recognition, however, all have advantages and
disadvantages. The choice of a certain technique should be based on the specific requirements for
the task at hand and the application of interest.

• Although numerous algorithms exist, robust face recognition is still difficult.
• A major step in developing face recognition algorithms is testing and benchmarking. Standard
protocols for testing and benchmarking are still being developed.

• Face recognition from video is starting to emerge as a new robust technology in the market.
• The problems of illumination, pose, etc. are still major issues that researchers need to consider in
developing robust algorithms.

• Finally, with the introduction of a number of new biometric technologies, there is an urgent need to
consider face recognition as part of more comprehensive multimodal biometric recognition systems.
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Developmental Vision: Adaptive
Recognition of Human Faces by
Humanoid Robots

Hon-fai Chia
Ming Xie
School of Mechanical and Production Engineering, Nanyang Technological University,
Singapore 639798

The objective of this chapter is to push forward the idea that machine learning should be inclined

towards the direction of developmental learning, like a human baby growing up with developmental

learning models, developed both physically and mentally. Human face recognition by humanoid robots

is chosen as the sample application to illustrate the possibility of developmental vision in humanoids.

We start with a Restricted Coulomb Energy (RCE) neural network, which enables the learning of color

prototypes and performs human presence detection through skin color segmentation. Then, we choose

hidden Markov models for the purpose of both learning and recognition of human facial images,

which depend on supervised classification training. As for feature extraction, we propose the method

of wavelet packet decomposition.

1. Introduction

Developmental visual capability is an important milestone to be conquered before achieving machine
intelligence. An ‘intelligent machine’ should develop the ability of developmental visual learning,
like a newborn who can visually adapt to his/her environment. Numerous developmental models are
currently under active investigation and implementation in order to guide young children towards
a healthy and fulfilling acquisition of knowledge, attempting to nurture an ‘intelligent’ human. The
development of a human can be broadly classified into two aspects, namely: physical and mental
growth. In the aspect of physical growth, a baby will need years to fully develop his/her body, whereas
the construction of a humanoid robot may be completed within a year with the current state-of-the-art
technology. Humanoid robots, hence, are capable of outperforming humans in the physical growth

Computer-Aided Intelligent Recognition Techniques and Applications Edited by M. Sarfraz
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stage. Then, what about mental growth? Mental growth of humanoid robots is an area with intense
challenges and research values for investigation.

Babies can adaptively learn and acquire knowledge by various means, and gain ‘intelligence’ as
they age physically. Robots, however, often operate in a ‘single-minded’ way, and perform fixed
routines with limited adaptive capabilities. Recent advances in artificial intelligence, cognitive science,
neuroscience and robotics have stimulated the interest and growth of a new research field, known
as computational autonomous mental development. This field prompts scientists to brainstorm on
formulating developmental learning models for robots. In order to benefit human–robot interaction, it
is necessary to build an interactive dual channel of communication for both robots and humans.

This chapter pushes forward the idea that machine learning should be inclined towards the direction
of developmental learning, should automated and intelligent artificial systems be desired. The situation
of adaptive recognition of human faces by humanoid robots through developmental vision is to be
discussed as a sample application. The developmental vision paradigm for human face recognition
by humanoid robots consists of four distinct stages. This chapter is organized as follows. The next
section will focus on the discussion of the supervised developmental visual learning through interaction
with human masters, which is analogous to a human baby growing up with developmental learning
models. In Section 3, we will present how developmental learning of colors is achieved by using a
probabilistic RCE neural network to address the problem of detecting the presence of human faces
based on the skin color information. Section 4 will explain how to apply methodologies of wavelet
packet analysis to perform the estimation of feature maps which are the results of facial locations.
We also demonstrate the use of Hidden Markov Models (HMMs) to learn facial image recognition
(i.e. training and classification). Finally, experimental results are presented and discussed in Section 5.
We also highlight possibilities for future humanoid robots with developmental vision to visually learn
and recognize other types of object.

2. Adaptive Recognition Based on Developmental Learning

Much research has been attempted into the development of ‘machine intelligence’, with the goal of
achieving seeing and thinking machines, and also machines incorporating the capability to ‘grow’
incrementally in both psychological and physical aspects. These ambitions are the main motivations
behind the recent proliferation of cognitive science studies in trying to discover the complex mental
capabilities of humans as a basis for inspiration or imitation.

Lifelong developmental learning by a human allows him or her to accumulate vast domains of
knowledge at different stages of life and grow mentally while the biological cycle of physical maturation
from infants to fully grown adults takes place.

Therefore, lifelong developmental learning by robots will be a crucial area of research for artificial
intelligence (‘seeing and thinking machines’) in order to allow a quantum leap from the current
computer-aided decision making to the future decision making by machines. Machines in the future will
hence be treated as agents, instead of as tools to help extend humans’ mental and physical capabilities.

2.1 Human Psycho-physical Development

The development of a human can be broadly classified into two aspects, namely: physical and mental
growth. The psychological and physical development of a human varies at different stages of life
and is dependent on a continuous and complex interplay between heredity and environment. Infants
learn about the world through touch, sight, sound, taste and smell. They incrementally learn to make
sense of the world and communicate with other individuals by representing knowledge in their self-
explanatory ways.

Philosophers have tried to conceptualize the autonomous mental development of a growing
individual, thus resulting in a controversial debate about representation in the human’s mind. Also,
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recent research in computational modeling of human neural and cognitive development tries to construct
autonomous intelligent robots, hence the importance of developmental vision systems.
A brief description of human psychological and physical development is as follows:

1. Physical development
— The biological cycle of physical maturation from infants to fully grown adults.
— Physical development involves changes in body size, proportions, appearance and the functioning

of various body systems: brain development; perceptual and motor capacities; and physical
health.

— Nature has set a general time for muscles to mature, making it possible for a human to accomplish
skills as he or she ages.

2. Psychological development
— There are various stages of growth from infancy to adulthood, formulating an individual’s value

system and beliefs.
— There are numerous psychological models suggesting discovery and assumptions of a human’s

mental growth, but none can explicitly describe an individual.
— A human developmentally learns through accumulation of various schools of knowledge at

different stages of growth.

From a human’s biological cycle, we can first observe that the motor skills of an individual rely on
his or her mental understanding and physical (muscle) maturity. Secondly, time plays a critical role in
both physical and mental development of a human. There is always a notable timeframe required for
muscle maturity and acquisition of knowledge. Thirdly, a human gains his or her knowledge through
an autonomous developmental system with incrementally self-generated representation.

2.2 Machine (Robot) Psycho-physical Development

An intelligentmachine should have developmental visual learning, like a newborn beginning to visually
adapt to his or her environment. Comparing the timeframe for physical maturity, a baby will need
years to fully develop his or her body, whereas the construction of a humanoid robot can be completed
within a year with the current state-of-the-art technology. Humanoid robots, hence, are capable of
outperforming humans in the physical development stage. Also, robots can be constructed, based on
an application’s specifications, to be of varying size, mobility, strength, etc. Hence, robots are able to
overcome humans’ physical limitations such as build, strength, senses, etc.

Babies can adaptively learn and acquire knowledge by various means, incrementally gaining
intelligence as they age physically. Robots, however, tend to operate in a ‘single-minded’ way,
performing fixed routines with limited adaptive capabilities. Recent advances in artificial intelligence,
cognitive science, neuroscience and robotics have stimulated the interest and growth of a new research
field, known as computational autonomous mental development. This field prompts scientists to
brainstorm on developing developmental learning models for robots to enable an interactive channel
of communication for both robots and humans. In order to achieve beneficial dual communication
for both robots and humans, developing a developmental vision system for robots becomes important.
Machines in the future will hence be able to extend humans’ mental capabilities when they can learn
incrementally, supplementing humans in both physical and psychological development.

A brief description of machine psychological and physical development is as follows.

1. Physical development
— There is a construction cycle of physical maturity within a short span of time (from a few months

to a few years). The stages involved are, e.g., design, debugging, simulation, fabrication, testing,
etc.

— Skills are limited by their mechanisms, kinematics and dynamic constraints, etc.
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2. Psychological development
— There is an artificial intelligence limitation; ‘rigid program routines’.
— Machines are restricted by non-interactive knowledge acquisition.
— This is a challenging area of research! How to shorten the time needed to acquire knowledge

through lifelong developmental visual learning by robots. Humanoid robots in the future may
have rapid transfer of knowledge between each other, which humans need to learn over a period
of time.

2.3 Developmental Learning

Sony AIBO is able to learn visually and identify visual objects through interactions with a human
mediator [1]. The methodology that enables visual learning by Sony AIBO is supervised learning of
words and meanings through interactions between AIBO and its human masters. This methodology is
grounded on the assumption of how a child represents and learns meanings through natural language.
They have thus demonstrated the research potential in adaptive recognition of visual objects by robots
under supervised learning.

Hilary Buxton’s [2] recent article about computing conceptual descriptions in dynamic scenes lists
various models of learning in a visual system. His article brought forth the philosophy that we are
entering an era of more intelligent cognitive vision systems, whereby visual interaction and learning
will be one of the motivations for tomorrow’s technologies. An intelligent humanoid robot should
therefore be embedded with visual interaction and learning capabilities. This is thus one of the main
motivations for developing developmental vision in humanoid robots.

The initial step to wards developmental vision by robots will be allowing robots to developmentally
‘learn’ with whom they are conversing, i.e. allowing them to identify their human masters. This will
allow humans to view robots as agents instead of simply tools for a specific task, and hence moderately
overcome the ‘cold metallic’ feeling of humanoid robots during human–robot interaction.

Parents will typically be overjoyed if their infant/child is able to recognize them and respond
positively when seen. Hence, by facilitating adaptive recognition of human faces by humanoid robots,
humanoid robots would then be analogous to infants who can gradually learn to ‘detect’ and ‘recognize’
other human counterparts through visual learning. There will be elation and recognition of the humanoid
robot as an agent when the interacting human master obtains the acknowledgment from the humanoid
robot as a recognized person.

Supervised developmental vision is being proposed in this chapter as humanoid robots are analogous
to infants, in that they are both initially untrained in their visual recognition capabilities. Infants need
to be guided and supervised during their developmental mental growth, likewise when we try to enable
developmental vision in humanoid robots. This will allow us to filter away any undesirable input
information, simplifying the nonrequired complexities involved, until humanoid robots ‘mature’ in
their developmental vision systems.

2.4 Questions to Ponder

• What is a human’s physical limitation? Hence, how can a humanoid robot (machine) assist its human
master?

• What is a human’s mental limitation? Hence, how can a humanoid robot (machine) assist its human
master?

• What are the developmental theories for humans and robots? Can developmental learning theories
for humans be applied to humanoid robots and vice versa?
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3. Developmental Learning of Facial Image Detection

Most of the face detection and recognition algorithms in early research prefer grayscale images,
primarily due to their lower computational requirement compared with color images. The identification
of color objects and surface boundaries comes naturally to a human observer, yet it has proven to be
difficult and complicated to apply to a robot.

But segmentation based on color, instead of only intensity information, can provide an easier
distinction between materials, on the condition that robustness against irrelevant parameters is achieved.
In this chapter, we focus on the detection of color facial images through developmental learning by
an RCE neural network. The RCE neural network is chosen due to its parallel distributed processing
capability, nonlinearity, tolerance to error, adaptive nature and self-learning abilities. An adaptive color
segmentation algorithm with learning ability can hence facilitate incremental color prototype learning,
part of the developmental vision system of humanoid robots.

3.1 Current Face Detection Techniques

Most research work inclines towards face recognition rather than face detection, as it assumes the face
locations are predefined. Hence, before discussing current face detection techniques, we should ask
ourselves why we need the human face detection phase (why not direct face recognition?)

Face detection is important because it is a preliminary step to following identification applications
(e.g. face recognition, video surveillance, etc.). Basically, its goal is to detect the presence of a human
in the image and extract salient features that are unique or necessary for subsequent processes. Then,
how should we go about it when we understand the importance of why we do it?

The face detection problem can be considered initially as a binary classification problem, i.e. whether
the image contains a human face (binary ‘1’) or it contains no human face (binary ‘0’). This allows the
reduction of computation requirements, as subsequent face recognition will be performed if and only
if the presence of a human is detected [3–7]. But the binary classification problem, although simple to
a human observer, poses a challenging task to robots. Hence, to achieve the objective of incorporating
a developmental vision system in humanoid robots, the face detection problem has to be resolved with
an algorithm capable of learning incrementally.

The main issues associated with the human face detection problem are as follows:

• variations in lighting conditions;
• different facial expressions by the same individual;
• the pose of an individual face (frontal, nonfrontal and profile views);
• noise in the images and background colors.

Since the beginning of the 1990s, various methodologies have been proposed and implemented for
face detection. These methods can be classified roughly into three broad categories [8] as follows:

1. Local facial features detection. Low-level computer vision algorithms are applied to detect initially
the presence of facial features such as eyes, mouth, nose and chin. Then statistical models of the
human face are used for facial feature extraction [9–13].

2. Template matching. Several correlation templates are used to detect local subfeatures, which can be
considered rigid in appearance [14,15].

3. Image invariants. It is assumed that there are certain spatial image relationships common, and
possibly unique, to all facial patterns under different imaging conditions [16]. Hence, instead of
detecting faces by following a set of human-designed rules, alternative approaches are proposed
based on neural networks [17–21] which have the advantage of learning the underlying rules from
a given collection of representative examples of facial images, but have the major drawback of
being computationally expensive and challenging to train because of the difficulty in characterizing
‘nonface’ representative images.
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Color facial image operations were considered to be computationally expensive in the past, especially
in the case of real (video) images. But with rapid enhancements in the capability of computing
chips, both in terms of reduction in size (portability) and increase in processing speed, color should
be considered as an additional source for crucial information to allow a more reliable and efficient
subsequent stage of feature extraction. Color-based approaches are hence preferred and more often
investigated in recent research. Using the role of color in the face detection problem will allow us to
make use of incremental learning of skin-tone colors to detect the presence of humans in images.

However, the presence of complex backgrounds and different lighting conditions pose difficulties
in color-based approaches. These difficulties have resulted in researchers testing the feasibility of
using combinations of different methodologies. These combinations of techniques often involve the
extraction of multiple salient features to perform an additional level of preprocessing or postprocessing
to minimize ambiguities that arise due to the difficulties.[22] Lists some of the major face detection
techniques chronologically with some of them adopting color-based approaches.

3.2 Criteria of Developmental Learning for Facial Image Detection

The objective is not to build a novel face detection algorithm and compare with available techniques,
but to develop a face detection algorithm with learning capabilities (developmental learning of color
prototypes). In this case, two criteria are observed:

• The algorithm should incorporate within it a learning mechanism that is purposeful for developmental
learning by humanoid robots.

• The algorithm should estimate and learn representative color features of each color object, since the
role of colors should not be ignored in today’s context.

3.3 Neural Networks

Neural networks, when introduced in the 1990s, prompted new prospects for AI and showed the
potential for real-life usage, as they are thought to be closely related to human mind mapping. The
original inspiration for the technique was from examination of bioelectrical networks in the brain
formed by neurons and their synapses. In a neural network model, simple nodes (or ‘neurons’ or
‘units’) are connected together to form a network of nodes – hence the term ‘neural network’[23].

In the past few years, artificial neural networks have been used for image segmentation because
of their parallel distributed processing capability, nonlinearity, adaptive nature, tolerance to error and
self-learning abilities.

In this section, a color clustering technique for color image segmentation is introduced. The
segmentation algorithm is developed on the basis of a Restricted Coulomb Energy (RCE) neural
network. Color clustering in L∗a∗b∗ uniform color space for a color image is implemented by the
RCENN’s dynamic category learning procedure. The property of adaptive pattern classification in the
RCENN is used to solve the problem of color clustering, in which color classes are represented by
both disjoint classes and nonseparable classes whose distributions overlap. To obtain the representative
color features of color objects, the RCE training algorithm is extended by using its vector quantization
mechanism, representative color features are selected based on ‘color density distribution estimation’
from the prototype color image, and stored in the prototype layer as the color prototype of a particular
object. During the procedure of color image segmentation, the RCE neural network is able to generate
an optimal segmentation output in either fast response mode or output probability mode.

The RCE neural network is supposed to fulfill the following objectives:

• explore the suitable color space representation for facial color image segmentation;
• build on the segmentation concept of ‘color clustering by prototype learning’;
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• apply itself to solving the problem of disjoint and overlapping color distributions;
• implement the procedure of representative color feature extraction based on an improved RCE neural
network;

• develop an adaptive segmentation algorithm with learning ability for color image segmentation;
• attempt the segmentation algorithm with the application of developmental learning of facial image
detection.

3.4 Color Space Transformation

There are numerous ways to represent color. In computer graphics, a common method is to have a
triplet of intensity values and, by a unique combination of the three values, a distinct color can be
obtained. The color space is hence a three-dimensional space that describes the distribution of physical
colors [24].

The color vectors in each of these color spaces differ from one another such that two colors in a
particular space are separated by a distance value that is different from the identical two colors in
another space. It is by performing some linear or nonlinear transformation that a color representation
can be changed from one space to another space.

The selection of color space normally involves consideration of the following factors:

• computional speed;
• how the color representation affects the image processing results;
• interaction between the color distance measures and the respective color spaces.

Many standard color spaces have been proposed and used to facilitate the analysis of color images,
RGB, xyz, L∗a∗b∗ and HSI are some of the most commonly used color spaces in color vision.

3.4.1 RGB Color Space

Red, green and blue are the primary stimuli for human color perception. A color in this space is
represented by a triplet of values, typically between zero and one, and is usually scaled by 255 for
an 8-bit representation. The secondary colors of RGB, cyan, magenta and yellow, are formed by the
mixture of two of the primaries and the exclusion of the third, as shown in Figure 12.1.

In color image processing, RGB color space (Figure 12.2) is the physical color representation, it
ensures that there is no distortion of the initial color information in the RGB color space [25–27].

3.4.2 RGB Color Space Limitations

Although it relates very closely to the way we perceive color with the light-sensitive receptors found
in our retinas, and RGB is the basic color model used in television, computers or any other medium,
it cannot be used for print production.

Another limitation is that it falls short of reproducing all the colors that a human can see. The color
representation in the RGB space is also sensitive to the viewing direction, object surface orientation,
highlights, illumination direction, illumination intensity, illumination color and inter-reflection; hence
creating problems in the color production of computer-generated graphics (inconsistent color output).

It also does not exhibit perception uniformity, which implies that the component values are not
equally perceptible across the range of that value for a small perturbation to the component.
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Figure 12.1 RGB color model.
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Figure 12.2 Cartesian representation in RGB color space.

3.4.3 XYZ Color Space

The XYZ color space was developed by CIE as an alternative to RGB. A mathematical formula was
used to convert the RGB data to a system that uses only positive integers as values. The reformulated
tristimulus values were indicated as XYZ. These values do not directly correspond to red, green and
blue, but approximately do so. CIE XYZ color space has the following characteristics:

• X, Y and Z are positive for all possible real stimuli.
• The coefficients were chosen such that the Y tristimulus value was directly proportional to the
luminance of the additive mixture.

• The coefficients were chosen such that X=Y= Z for a match to a stimulus that has equal luminance
at each wavelength.
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The conversion from XYZ to RGB space can result in negative coefficients; hence, some XYZ color
may be transformed to RGB values that are negative or greater than one. This implies that not all
visible colors can be produced or represented using the RGB system.

Since the XYZ space is just a linear translation of the RGB space, the color representation in the
XYZ space is sensitive to the viewing direction, object surface orientation, highlights, illumination
direction, illumination intensity, illumination color and inter-reflection, just like the RGB space.

Although all human definable colors are present in this color space, it does not exhibit perception
uniformity any more than the RGB color space.

3.4.4 L∗a∗b∗ Uniform Color Space

L∗a∗b∗ color space [28] is a uniform color space defined by the CIE in 1976; it maps equally distinct
color differences into equal Euclidean distances in space. Presently, it is one of the most popular color
spaces for color measurement. In L∗a∗b∗ color space, L∗ is defined as lightness, and a∗b∗ are the
chromaticity coordinates. The form of the L∗a∗b∗ color space is shown in Figure 12.3.

3.4.5 Other Color Spaces

There are other color spaces only available to some specific applications, such as Yxy, L∗c∗h∗�L∗u∗v∗,
YUV color spaces, etc. See the color standards of CIE [29].

3.4.6 Selection of Color Space For Segmentation

Keeping in mind the selection of color space as mentioned in the early part of Section 3.4, it is required
to select a color space with the following properties:

• Color pixels of interest can be clustered into well-defined, less overlapping groups, which are easily
bounded by segmentation algorithms in the color space.

• The color space has uniform characteristics in which equal distances on the coordinate correspond
to equal perceived color differences.

• The computation of the color space transformation is relatively simple.

Figure 12.3 L∗a∗b∗ color model.
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Among the color spaces, L∗a∗b∗ uniform color space representation possesses the uniform property
and demonstrates better segmentation results than others [30]. Hence, in this chapter, L∗a∗b∗ color
space is selected as color coordinate for clustering-based segmentation.

3.4.7 RGB to L∗a∗b∗ Transformation

The transformation of RGB to L∗a∗b∗ color space is represented as follows:

1. R, G and B values in RGB primary color space are converted into X, Y and Z tristimulus values
defined by CIE in 1931.

X = 2�7690R+1�7518G+1�1300B

Y= 1�0000R+4�5907G+0�0601B (12.1)

Z = 0�0000R+0�0565G+5�5943B

2. L∗a∗b∗ values are obtained by a cube-root transformation of the X, Y and Z values:

L∗ = 116�Y/Y0�
1/3−16

a∗ = 500
[

�X/X0�
1/3− �Y/Y0�

1/3
]

(12.2)

b∗ = 200
[

�Y/Y0�
1/3− �Z/Z0�

1/3
]

where X/X0 > 0�01�Y/Y0 > 0�01 and Z/Z0 > 0�01. X0�Y0�Z0 are XYZ tristimulus values for
reference white, which are selected as 255 for an 8-bit image data representation.

In this chapter, color image segmentation is implemented in L∗a∗b∗ color space. The RGB to L∗a∗b∗

transformation is used to convert original RGB image data into L∗a∗b∗ image data.

3.5 RCE Adaptive Segmentation

The proposed framework for developmental learning of facial image detection is shown in Figure 12.4.

3.5.1 Color Clustering by Learning

The segmentation algorithm should not be built by presetting the segmentation threshold on the basis
of color distributions of some specific color objects, as it would suffer from the problem of selecting
different thresholds for different color images. An adaptive segmentation algorithm is hence proposed,
whereby it segments the color image by various prototype modes derived from experience learning.

Prototype Mode

The prototype view of concept formation posits that a concept is represented by the summary description
in which the features need to be characterized by the concept instances. In the view of the prototype
mode, color image segmentation can be regarded as a procedure of color classification on the basis of
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(RCE)

Internal
representations

Output (facial images)

Figure 12.4 Flowchart for developmental learning of facial image detection.

various color prototypes. Each color prototype is an abstract representation of color features for one
specific color object, it represents a region of color distribution in L∗a∗b∗ color space.

Suppose one color image consists of C1�C2� � � � Cn color classes (e.g. skin, hair, clothes, etc.), each
color class Ci possesses a set of color prototypes Pi�pi1�p

i
2� � � � �p

i
m� in L∗a∗b∗ color space. Define X

as a point in L∗a∗b∗ color space, it refers to a pixel Sx in the color image. Then, pixel Sx is segmented
into color class Ci only when the point X belongs to Pi,

If X ∈ Pi then SX ∈ Ci (12.3)

The color prototype is defined as a spherical influence field with variable radius in L∗a∗b∗ color
space and is required by learning from the training set.

Spherical Influence Field
In L∗a∗b∗ color space, suppose a color class Ci possesses a set of color prototypes P

i�pi1�p
i
2� � � � �p

i
m��p

i
j

being one color prototype with in color class Ci, then it forms a spherical influence field Fi
j with the

following properties:

• Fi
j is a spherical region in L∗a∗b∗ color space.

• The center of spherical region Xi
j is called the center of the prototype.

• The radius of the spherical region, �ij , is defined as the threshold of color prototype pij .

A color class region can be accurately bounded by spherical influence fields; they are covered with
the overlapping influence fields of a prototype set drawn from the color class training set. In this case,
the influence field may extend into the regions of some different color classes to the point of incorrect
classification or class confusion. It can be modified by reducing the threshold � of the color prototype
until its region of influence just excludes the disputed class. The spherical influence field is able
to develop proper separating boundaries for nonlinear separable problems, as shown in Figure 12.5.
Moreover, it can handle the case of nonseparable color distribution by probability estimation of color
prototypes.

Adaptive Segmentation
Adaptive segmentation aims to obtain the best segmentation result by adjusting the segmentation
algorithm to meet the variations of segmentation objects, it requires that the algorithm has the ability
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Figure 12.5 Nonlinear distribution bounded by spherical influence fields.
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Figure 12.6 Neural network-based adaptive segmentation.

to interact with the environment. A supervised neural network could perform this procedure due to its
learning abilities; a block diagram of adaptive segmentation by a supervised neural network is shown
in Figure 12.6.

The improved Restricted Coulomb Energy (RCE) neural network proposed for road/traffic color
image segmentation [31,32] (initially introduced by D.L. Reilly [33]) is used to meet the objective of
developmental learning of facial image detection.

3.5.2 RCE-based Segmentation

An RCE neural network can perform adaptive pattern classification by applying a supervised training
algorithm to expand the number of color prototypes and define values for their network connections. The
mechanisms of network training and classification make it applicable for implementing face/nonface
color image segmentation. During the training procedure, color prototypes of color classes are input
into the network for clustering, representative color features of each color class are extracted in
clustering, the knowledge of color classes is then stored in the network as a set of color prototypes for
segmentation. The network generates segmentation results in fast response mode or output probabilities
mode, based on color prototypes and their probability estimations.

RCE Network Description
The RCE neural network is a general purpose, adaptive pattern classification engine; it is inspired by
systems of charged particles in three-dimensional space [34]. In our project, the architecture of the
RCE network contains three layers of neuron cells, with a full set of connections between the first and
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Figure 12.7 Architecture of our RCE neural network.

second layers, and a partial set of connections between the second and third layers, its architecture is
shown in Figure 12.7.

In the input layer, three cells are designed to receive the L∗a∗b∗ color values of a pixel in the
color image. A middle-layer cell named the color prototype cell contains all prototypes of learned
color classes that occurred in the training data. Each cell on the output layer corresponds to a different
color class represented in the training data set. In the middle layer, a color prototype P is characterized
by five elements: color class C, weight vector W , cell thresholds �min and �max, pattern count K, and
smoothing factor � .
The color prototype cell weight vector W represents the set of weighted connections between the

color prototype cell and each input layer cell. A prototype cell weight vector defines a point in L∗a∗b∗

color space, while the thresholds define the size of the spherical influence field. In response to the input
signal X, each color prototype cell calculates a distance between the input values and color prototype
stored in its weights, as follows:

di =
3
∑

j=1

∣
∣Wij−Xj

∣
∣ (12.4)

During network training, if di is less than the cell threshold �i, a color prototype Ci becomes active to
trigger the node Oi in the output layer as follows:

Oi = 1 if di < �i

Oi = 0 if di ≥ �i (12.5)

The pattern counter K stores the number of times the color prototype has been correctly triggered in
response to its color class.

Network Training
RCE network training involves three mechanisms: color prototype cell commitment, color prototype
threshold modification and the increment of color prototype pattern counts. During network training,
the RCE network allocates the position and size of the spherical influence field corresponding to each
prototype cell by prototype cell commitment and prototype threshold modification, and covers the
feature regions of each color class present in the training data. Prototype pattern counts are used to
solve the problem of nonseparable color distribution.
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The First Color Prototype Commitment
Let the first input signal X1 (L1� a1�b1) be presented to the network. The color class of X1 is C1, this
signal causes a new color prototype cell to be committed in the network, its spherical influence field
is centered in X1 (see Figure 12.8). The network reactions are as follows:

1. The input signal is loaded into the weight vector of the color prototype:

W1← X1 (12.6)

2. The color prototype is assigned a cell threshold �1, that is the radius of the spherical influence field:

�1← �m (12.7)

3. A connection is made between the color prototype cell and output cell with color class C1:

X1← C1 (12.8)

It carries a pattern counter which is set to one:

K1 = 1 (12.9)

As long as subsequent input signals with color class C1 fall within the spherical influence field of
the color prototype, there are no additional color prototype cells committed, and no change occurs to
the spherical influence field. The pattern counter of color prototypes is incremented.

If Class�X�= C1 and O1 = 1 then K1← K1+1 (12.10)

Additional Color Prototype Commitments
An input signal with color class C1 that falls outside the spherical influence fields of existing color
prototypes causes an additional color prototype to be committed for color class C1, as shown in
Figure 12.9. The same commitment process occurs as in the above description, a connection is made
between this new color prototype and the output cell with color class C1.

C1 C2

X

a∗
b∗ L∗

0

RCE network

Figure 12.8 Network response for the first input signal.
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Figure 12.9 Network response for an input signal. The signal has C1 color class, it falls outside of
the existing spherical influence fields belonging to color class C1.

Color Prototype Commitments with color class C2
Suppose an input signal with a new color class C2 is presented to the network. Assume it falls outside
the spherical influence fields of any existing class C1 color prototypes. Then, the input causes a new
color prototype with color class C2 to be committed, an output cell representing color class C2 is also
committed.

As we can see in Figure 12.10, the spherical influence field of the new color prototype may overlap
the spherical influence fields of existing prototypes with different color classes. In this case, the initial
threshold of the new color prototype is determined as follows:

�initial =min ��max�max ��min�dmin�� (12.11)

where, dmin is the distance to the closest opposing class prototype.

C1 C2

X

a∗

b∗ L∗

0

RCE network

Figure 12.10 Network response for an input signal. The signal has color class C2, it falls outside of
all spherical influence fields belonging to color class C1.
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The Modification of Incorrect Prototype Commitments
Assume a new input signal with color class C1 is presented to the network and falls into the spherical
influence field of a color prototype with color class C2. The C2 color prototype is incorrectly triggered
and causes the output cell with color class C2 to be triggered (Figure 12.11). In network training, this
mistake is corrected by reducing the threshold of the C2 prototype to such a point that the spherical
influence field of the C2 color prototype just excludes the input signal (Figure 12.12). The new threshold
of C2 is modified as follows:

�modified =max��min�d� (12.12)

where, d is the distance between the input signal and the C2 color prototype.

Representative Color Extraction
The color distribution of natural color objects is a non-even distribution, only the colors with high
dense distributions can represent the color features of the color object, these are named representative
colors.

C1

C2

X

a∗
b∗

L∗

0

RCE network

Figure 12.11 Threshold modification of the color prototype: input signal with color class C1.

C1

C2

X

a∗
b∗

L∗

0

RCE network

Figure 12.12 Threshold modification of the color prototype. The threshold of the prototype with
color class C2 is modified, so that the spherical influence field just excludes the input signal.
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In an RCE network, each natural object is defined as one color class, its representative color can
be extracted by estimating the color density of the color prototype with a given color class in the
L∗a∗b∗ color space. The function of the pattern counter is extended to estimate the local density of
each color prototype for a given color class in the L∗a∗b∗ color space, because the pattern counters
that developed during the last training pass are the most accurate color density estimators of color
classes. Suppose the network is trained by giving training sets of natural color objects until no new
color prototypes are committed and no color prototypes have their cell threshold modified. Assume
color class Ci represents the ith color object, define color prototypes Pi�pi1� � � � �p

i
m� belonging to color

class Ci, their pattern counters are K1� � � � �Km. The procedure of representative color extraction for
color class Ci is as follows:

1. Calculate the density value Qi of each color prototype pi,

Qi =
Ki
m∑

i=1
Ki

(12.13)

2. Select representative colors by a given threshold value Qthreshold,

if Qi < Qthreshold then pi is reserved

if Qi ≥ Qthreshold then pi is eliminated (12.14)

Color Prototype Segmentation
Facial color image segmentation is accomplished by two network response modes: fast response mode
and probabilities mode.

Fast Response Mode

The network computes the distances D between input color signal and color prototypes in L∗a∗b∗ color
space and compares these with the threshold values stored in each color prototype. If only one color
prototype pi with color class Ci is responding to the input color signal, a single cell in the output layer
is the response, which means,

if D< �i then Oi < 1 (12.15)

Output Probabilities Mode

If multiple output cells are active, or none are active, output probabilities mode is invoked to determine
the probabilities that the input signal belongs to each color class. The response of the output cell is a
conditional probability estimation of the input color signal relative to each color class. To compute the
output response, a decaying exponential function is defined for each color prototype:

fi = e−�iDi (12.16)

where, Di is the distance between input signal and the ith color prototype and �i is the color prototype
smoothing factor controlling the decay rate of the function.

Assume the output layer has n output cells; the color class of the jth output cell is Cj . The response
of the jth output cell is given by:

Oj =
∑

fi∈Cj
Ki fi (12.17)
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The actual conditional probability of the input signal being the on jth output cell is computed as
follows:

S�Cj �X�=
Oj

n∑

j=1
Oj

(12.18)

The output cell with maximum conditional probability generates an optimal segmentation result related
to the input signal.

3.6 Implementation

The improved RCE network can perform adaptive segmentation by applying the supervised learning
algorithm to expand the number of color prototypes and define the weights of their connections.
The mechanism of network training makes it applicable to extracting representative colors of given
color objects. The knowledge of color objects is then stored in the network as the reference set for
segmentation. The segmentation results are generated by the network response.

3.6.1 Description of the Segmentation Algorithm

The procedure of facial color image segmentation by an RCE neural network includes two processes:
extracting representative colors from given color objects and segmenting face/nonface color images
based on the network responses. The operation of RCE-based adaptive segmentation is represented as
follows:

1. Network training
— Select color objects from natural scenes and acquire their RGB color images. In these color

images, representative colors must be included.
— Transform the original color space into the L∗a∗b∗ color space for each color image.
— Construct the training set of color objects by labeling the color class of each color object.
— Train the RCE neural network using the training set of color objects.
— Extract the representative colors of each color class from the prototype layer by density estimation

of color prototypes.
2. Segmentation

— Acquire the face/nonface color image for segmentation and transform its RGB color space into
the L∗a∗b∗ color space.

— Input the L∗a∗b∗ color image into the RCE neural network, segment this color image by the two
RCE mode responses.

Diagrams of the adaptive segmentation algorithm are shown in Figures 12.13 and 12.14.
RCE-based adaptive segmentation represents an approach to color image segmentation with a good

application potential. Its application is not confined to developmental learning of facial image detection,
and can be used for color image analysis in many other fields, such as meteorology, medicine, industry,
the military, etc. To facilitate the application in other fields, an adaptive segmentation program can be
designed for general purposes, e.g. color learning by humanoid robots.

3.7 Questions to Ponder

• Why is the learning of colors important to robots?
• What are the drawbacks of neural networks?
• What other features (excluding skin segmentation) can be used for face detection (human presence
detection/face detection)?
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Figure 12.13 Flowchart of the network training algorithm.

• What are the computational issues involved, i.e. the effects of the training data set, image
size, etc?

• Is the detection of human presence important? In what areas will it be useful?
• What can and should be achieved during the detection phase?
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Figure 12.14 Flowchart of the segmentation algorithm.

3.8 Experimental Results

The segmentation algorithm has been performed on several color images of size 256× 256. Some
of them were acquired through a web-cam, representing the live capture of scenes. Figure 12.15 is
selected because it can demonstrate important aspects of segmentation. The selected color images have
the following color characteristics:

• The color object has a wide range of color distribution.
• The color object has color distribution with additional effects from variable illumination.
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(a) (b)

(c) (d)

(e)

Figure 12.15 Segmentation of a portrait. (a) Original color image; (b) Textured background
segmentation; (c) clothing segmentation; (d) skin segmentation; (e) flower segmentation.

• Color objects have overlapping color distributions.
• The color object has a textured color distribution.

Segmentation results are shown in Figures 12.15 and 12.16. The experiment results state that RCE-
based adaptive segmentation can succeed in segmenting different kinds of color image. The proposed
segmentation algorithm is an adaptive segmentation algorithm, visual navigation is one of its most
important applications. In our experiment, four images are continuously grabbed to test the performance
of continuous segmentation.
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(a) (b)

(c)

Figure 12.16 Segmentation of plants. (a) Original color image; (b) flower segmentation; (c) leaf
background segmentation.

4. Developmental Learning of Facial Image Recognition

There are a lot of face recognition techniques that are successful in their application areas. The objective
of this section is to provide a technique for developmental learning of facial image recognition, which
is a follow-up to the face detection phase. Face detection allows the detection of human presence by
applying skin segmentation using an RCE neural network. The face recognition is facilitated mainly
by applying wavelet packet analysis to perform feature extraction of skin-tone color areas [8,35] from
the face detection results obtained in Section 3. Developmental learning of facial image recognition,
however, is achieved using Hidden Markov Models (HMMs) [36,37]. The symmetric flow will be as
proposed in Figure 12.4, but with different techniques involved, as shown in Figure 12.17.

4.1 Wavelets

Wavelet analysis is a relatively new method, although its mathematical underpinnings date back to
the work of Joseph Fourier in the nineteenth century. Fourier laid the foundations with his theories
of frequency analysis, which proved to be enormously important and influential. Some of the popular
wavelet families are the Haar wavelet, Daubechies wavelets, Mexican Hat wavelet, etc. What makes
wavelets useful is that they have scale and time aspects. The scale aspect follows the notion of local
regularity, while the time aspect studies short-time phenomena as transient processes or identification
of ‘domains’.

Wavelet analysis is useful in signal analysis as time information is not lost, as compared with Fourier
analysis, which has this serious drawback when transforming to the frequency domain. Wavelet analysis
allows the use of long time intervals where we want more precise low-frequency information, and
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Figure 12.17 Flowchart for developmental learning of facial image recognition.

shorter regions where we want high-frequency information, i.e. a windowing technique with variable
sized regions.

A wavelet is a waveform of effectively limited duration that has an average value of zero, or it can
also be defined as a function with two versions of different ‘frequency’ that are orthogonal to each
other. More information about wavelet analysis and their applications can be found in [38–40].

Applications involving wavelet techniques can be generally classified into sound (one-dimensional),
image (two-dimensional) and video (three-dimensional) processing that include compression, noise
reduction, progressive transmission, etc. Wavelet analysis is hence applied in many signal processing
applications, including speech and audio processing, communications, geophysics, finance,medicine, etc.

4.2 Wavelet Packet Analysis

Classical wavelet decomposition divides an image into an approximation and detailed images; the
approximation is then further divided into a second-level approximation and details. We are going to
adopt partially the wavelet packet decomposition as proposed in [8,35], which is a generalization of
the classical wavelet decomposition. In this approach, details as well as approximations can be split,
resulting in a wavelet decomposition tree (Figure 12.18).

In the wavelet packet framework, compression and denoising ideas are exactly the same as those
developed in the wavelet framework. The only difference is that wavelet packets offer a more complex

S

A1 D1

AA2 DA2 AD2 DD2

DDD3ADD3DAD3AAD3DDA3ADA3DAA3AAA3

Figure 12.18 Wavelet packet decomposition.
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and flexible analysis because the details, as well as the approximations, are split (approximations are
the high-scale, low-frequency components of the signal; details are the low- scale, high-frequency
components).

Single wavelet packet decomposition gives a lot of bases from which you can look for the best
representation with respect to a design objective by finding the ‘best tree’ based on an entropy criterion.

The typical wavelet packet denoising, or compression, procedure involves four steps:

1. Decomposition. For a given wavelet, compute the wavelet packet decomposition of signal x at
level N .

2. Computation of the best tree. For given entropy, compute the optimal wavelet packet tree.
3. Thresholding of wavelet packet coefficients. For each packet (except for the approximation), a

threshold is selected and thresholding is applied to coefficients. In general, refinement of threshold
is by trial and error so as to optimize the results to fit particular analysis and design criteria.

4. Reconstruction. Compute wavelet packet reconstruction based on the original approximation
coefficients at level N and the modified coefficients.

4.3 Feature Extraction by Wavelet Packet Analysis

This section will discuss how to locate candidate areas in skin color filtered images, and follows the
technique proposed in [8]. Garcia and Tziritas proposed building potential candidate facial areas by
iteratively merging adjacent homogeneous skin color regions so that the skin color areas were not
treated as a whole binary mask. Candidate facial areas, when iteratively constructed, can allow a certain
level of distinguishing between different skin tones in the skin color areas. This permits a certain
degree of segmenting of the faces from surrounding skin color backgrounds.

4.3.1 Wavelet Packet Decomposition of Facial Images

The discrete wavelet series for a continuous signal s�t� is defined by the following equation:

cn�k =
1

2n/2

∫

s�t� ∗ �2−nt−k�dt (12.19)

The series use a dyadic scale factor, with n the scale level and k the localization parameter. The
function  �t� is the mother wavelet which satisfies some admissibility criteria and ensures a complete,
nonredundant and orthogonal representation of the signal. The Discrete Wavelet Transform (DWT)
results from the above series, and is equivalent to the successive decomposition of the signal by a pair
of filters h�·� and g �·�, as shown in Figure 12.19. The low-pass filter h�·� provides the approximation
of the signal at coarser resolutions, while the high-pass filter g �·� provides the details of the signal at
coarser resolutions. Dyadic scales and positions mean choosing scales and positions based on powers
of two to reduce computations.
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Figure 12.19 Dyadic decomposition of a signal.
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The extension to the 2D case is usually performed by applying these two filters separately in the
two directions. The convolution with the low-pass filter results in a so-called approximation image
and the convolutions with the high-pass filter in specific directions result in so-called detail images.
In classical wavelet decomposition, the image is split into an approximation and details. The

approximation is then split into a second-level of approximation and details. For n-level decomposition,
the signal is decomposed in the following way:

An =
[

hx
∗ [hy

∗An−1
]

↓2�1

]

↓1�2

Dn1 =
[

hx
∗ [gy

∗An−1
]

↓2�1

]

↓1�2

Dn2 =
[

gx
∗ [hy

∗An−1
]

↓2�1

]

↓1�2
(12.20)

Dn3 =
[

gx
∗ [gy

∗An−1
]

↓2�1

]

↓1�2

where ∗ denotes the convolution operator, ↓ 2�1�↓ 1�2� subsampling along the rows (columns), and
A0 = I�x� y� is the original image. An is obtained by low-pass filtering and is the approximation
image at scale n. The detail images Dni are obtained by band-pass filtering in a specific direction
(i = 1�2�3 for vertical, horizontal and diagonal directions respectively) and thus contain directional
details at scale n. The original image I is thus represented by a set of subimages at several scales:
�An�Dni�.
As stated in [8], the choice of the most suitable h and g filters for a given application is mainly

ruled by experimental results. The constraints that have been considered in order to build these filters
are closely related to the work of Smith and Barnwell concerning exact reconstruction techniques for
tree-structured sub-band coders [41,42]. Hence, h and g are built as conjugate quadrature filters. The
coefficient values and the filter support size have been chosen during series of experiments.

The z-transform of the pair of filters is

H �z�= 0�853+0�377�z+ z−1�−0�111�z2+ z−2�

−0�024
(

z3+ z−3
)

+0�038
(

z4+ z−4
)

(12.21)

G�z�=−z−1H
(

−z−1
)

With the low-pass filter symmetric and the filter pair orthogonal:

∑

n

h�n−2k�g�n−2l�= 0�∀�k� l� (12.22)

To achieve decorrelated filter responses, two measures need to be considered.
The anti-aliasing coefficient is defined and calculated as:

%=
∫ 1/4
0 �H�f��2df
∫ 1/2
0 �H�f��2df

= 0�87 (12.23)

where H�f� is the Fourier transform and h�n� the ideal value, equal to 1.
The correlation coefficient between the approximation and the detail signals is as follows:

�=

∑

k�l

h�k�g�l��s�k− lt�
√
∑

k�l

h�k�h�l��s�k− l�
√
∑

k�l

g�k�g�l��s�k− l�
(12.24)
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where �s�·� is the auto-covariance function of the input signal. For a noncorrelated (white noise) or
fully correlated input signal, it is obvious that � is zero valued. � is calculated under the assumption
of a first order Markov process for s�t� and the maximum value of � is computed as 0.06 [8].

The wavelet packet decomposition that is performed in the proposed approach [8] is a generalization
of the classical wavelet decomposition that offers a richer signal analysis (discontinuity in higher
derivatives, self-similarity, etc.) as the details, as well as the approximations, can be split. This will result
in a wavelet decomposition tree applied in Matlab, as shown in Figure 12.20, with the correspondent
wavelet coefficients of level 2 displayed in Figure 12.21.

The depth of the wavelet packet decomposition tree is ruled by the size of the areas which are
processed. A database of manually extracted facial areas which contains a large number of different
cases (size, chrominance, intensity, position and orientation) has to be built for study. The recommended
database criteria by Garcia and Tziritas are as follows [8]:

• The processed frames have a size of 288×352 pixels.
• The samples are to be classified into two categories according to their respective sizes to be used
in estimating the prototype vectors. A face is classified as medium if its height is smaller than 128,
and as large if its height is bigger than 128.

• Candidate face intensity images are decomposed with discrete wavelet packet analysis until level 3
for large areas and until level 2 for medium areas. Deeper decomposition will not be required as the
coefficient images will become too small to provide more valuable information.

According to its size, a candidate facial image is described by a set of wavelet coefficient matrices
belonging to the deepest level of decomposition (n = 16, i.e. one approximation image and 15 detail
images for medium areas and n= 64, i.e. one approximation image and 63 detail images for large areas)
which will represent quite a huge chunk of information (equivalent to the size of the input image).
Dimensionality reduction is performed by extracting discriminatory information from these images.

Figure 12.20 Wavelet packet tree.
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Figure 12.21 Level 2 coefficients of the wavelet packet tree.

4.3.2 Experimental Results

In our approach to feature extraction, we extracted statistical information from the wavelet coefficients
after performing wavelet packet decomposition on various skin-tone segmentation areas of the
approximation image, and statistical information from the wavelet coefficients of each whole detail
image.

We first located the face bounding box, but we did not divide it into multiple areas as proposed in
[8,35] to perform the wavelet packet analysis. We treated it as a whole single entity for simplicity and
investigation purposes. By extracting moments from wavelet coefficients in these areas, we were able
to obtain information about the face texture, related to different facial parts like the eyes, the nose and
the mouth, and including facial hair, all in one context. Standard deviations have been chosen as face
texture descriptor coefficients. Hence, the corresponding standard deviations of the wavelet coefficients
contained in the approximation image of the selected level of decomposition were extracted. We used
images of size 100× 120 pixels instead of 288× 352 pixels recommended in [8] to further reduce
computation. The result of the feature extraction is a two-dimensional array of vectors O�x� y� with
dimensionality 15 where,

O�x� y�= A 2D observation sequence to be used for the face recognition process
with pseudo 2D hidden Markov models (see Section 4.4.2 and [36])�

4.4 Hidden Markov Models

Preliminary studies were made using Hidden Markov Models (HMMs) to facilitate learning and feature
classification for facial image recognition. The HMMs are finite stochastic automata used for the
stochastic modeling of nonstationary vector time series. They were initially introduced and studied by
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Baum and his colleagues in the late 1960s and early 1970s [43]. With the increasingly widespread
understanding of HMM theory, it has been successfully used for pattern recognition in time series
such as speech [36] and action recognition [44], where the data are modeled as one-dimensional
vectors. In the field of computer vision, researchers have recently started to consider the application
of stochastic models in space series, one-dimensional HMMs were used for image recognition (e.g.
handwriting recognition [45], optical character and text recognition [46], face recognition [47–49],
shape classification [50], etc.)

Although successful recognition performances were given, it was limited by the fact that only
one dimensional shift was allowed in the image, an accurate alignment was still required in another
dimension, which was guaranteed by constraining the training and test set. In this case, the 2D structure
of HMMs was motivated to enhance the recognition performance. The fully connected 2D HMM was
investigated by Levin, who formulated the image alignment problem as a Dynamic Plane Warping
(DPW) problem [51], this led to the algorithm running in exponential time related to the dimension of
the image, hence making the model impractical for real applications.

With its assumption that one dimensional distortion is independent of another dimensional distortion,
the Pseudo Two-Dimensional Hidden Markov Model (P2DHMM) was able to facilitate the algorithm
running in polynomial time.

P2DHMM has gained common interest in the community of computer vision due to its two-
dimensional/elastic matching property in the image domain. It was first proposed for keyword
recognition in poorly printed documents by Kuo in 1994 with a recognition accuracy of 96% [45].
Realizing its promising performance on image alignment, [47] and [49] proposed to apply P2DHMM
for face recognition in their PhD theses, and Nefian reported the accuracy of face recognition could
reach 98% based on P2DHMM models trained with 2D DCT coefficient features [52]. Rigoll revealed
another important potential of image segmentation: that an integration of target segmentation and
classification is possible even within a complex image background [53].

4.4.1 The One-Dimensional Hidden Markov Model

Deterministic and stochastic models are two types of signal model characterizing the properties of a
given signal. The latter attempts to characterize the statistical properties of the signal when the signal
can be well characterized as a parametric random process. The Hidden Markov Model (HMM) is one
such stochastic model which had good success in modeling the speech process.

Markov Chains
Consider a system whose evolution may be described at any time as being in one of a set of N distinct
states, �Sn� n = 1�2� � � � �N − 1�N�. The system undergoes a change of state (possibly back to the
same state) according to a set of probabilities associated with the state. Let t = 1�2� � � � denote the
time instants associated with state changes, and qt denote the actual state at time t. If the evolution
of the system is such that the conditional probability distribution of qt depends only on the value of
qt−1 and is independent of all previous values, the process is called a Markov chain, with the Markov
property as follows:

P
(

qt = Sj�qt−1 = Si�qt−2 = Sk� � � �
)

= P
(

qt = Sj�qt−1 = Si
)

(12.25)

Therefore, a sequence of random variables S1� S2� � � � � Sn−1� Sn forms a Markov chain only if the
probability that the system is in state qt at time t depends exclusively on the probability that the system
is in state qt−1 at time t−1. In a Markov chain, the transition from one state to another is probabilistic.
Let aij denote the transition probability from state i at time t−1 to state j at time t,

aij = P
(

qt = Sj�qt−1 = Sj
)

(12.26)
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which are conditional probabilities with the following properties:

pij ≥ 0 for all �i� j�
∑

j

pij = 1 for all i (12.27)

The Markov chain may be regarded as a generative model (Markov model), consisting of a number
of states linked together on a pair-wise basis for possible transitions. Each time a particular state is
visited, the model outputs the symbol associated with that state.

Hidden Markov Models
The Markov model is observable when each state of the model corresponds to an observable (physical)
event, but this model is too restrictive to be applicable for many problems. The Hidden Markov Model
(HMM) is a doubly embedded stochastic process with an underlying stochastic process that is not
observable (hidden), but can only be observed through another set of stochastic processes that produce
the sequence of observations. The one-dimensional HMM is a Markov chain with a finite number of
unobservable states. Although the Markov states are not directly observable, each state has a probability
distribution associated with the set of possible observations. The observation is determined according
to a given conditional probability density function, e.g. Gaussian or Gaussian mixture. The HMM
model is characterized by an initial state probability matrix, a state transition probability matrix and a
set of probability density functions associated with the observations for each state.

The HMM provides a statistical model for a set of observation sequences. Let o1� o2� � � � � ot denote
an observation sequence with length T . An HMM consists of a sequence of states numbered 1 to N
which is best understood as a generator of observations. The states are connected together by arcs and
lines (Figure 12.22), and one state is entered each time. An observation is generated according to the
multivariate Gaussian distribution bj�ot� with mean � and covariance matrix Vj associated with that
state. The arcs have transition probabilities associated with them such that a transition from state i to
state j has the probability aij . The initial probability of the model being in state j is �j . Then, the
HMM model is characterized by the following notation:

N � The number of states in the model�
M � The number of distinct observation symbols�
T � The length of the observation sequence�

V = �v1� � � � � vM� � The discrete set of possible observation symbols�
O= �o1� � � � � oT � � The observation sequence with length T�where ot is

the observation symbol observed at time instant t�
Q= �q1� � � � � qT � � The state sequence with length T�where qt is the

actual state at time instant t�
&= ��i� � The initial state probability distribution,

where �i = P
(

q1 = Sj
)

�

a11

a12

a22

a23

a33

a34

a44

a45

a55

54321

Figure 12.22 The five-state hidden Markov model.



230 Recognition of Human Faces by Humanoid Robots

A= �aij� � The state transition probability distribution of being in
state j at time t given that we were in state i at time t−1 �

B= �bj �k�� � The observation symbol probability distribution in
state j �1≤ j ≤ N�1≤ k≤M��where bj�k� is the probability
of observing the symbol vk given that we are in state j�

�= �A�B��� � The compact notation of an HMM model�

Given the form of the HMM, three main problems must be solved for the model to be useful in real
applications, these are:

1. The evaluation problem: Given an HMM model � = �A�B��� and the observation sequence
O = �o1� � � � � oT �, how do we compute the probability of this observation sequence P �O ���
efficiently?

2. The decoding problem: Given an HMM model � = �A�B��� and the observation sequence
O= �o1� � � � � oT �, how do we choose a corresponding state sequence Q= �q1� � � � � qT �, such that
the joint probability of the observation and state sequences is maximized?

3. The learning problem: How do we adjust the HMM model parameters � = �A�B��� such that
P �O ��� or P �O� I ��� is maximized?

The evaluation problem allows us to choose the model which best matches the observations; the
decoding problem attempts to uncover the hidden part of the model, i.e. to find the optimal state
sequence; and the learning problem optimizes the model parameters to best describe how a given
observation sequence comes out. The first two problems are analysis problems, while the last problem
is a typical model training or identification problem. Much detail can be found in [47–49].

The Forward–Backward Algorithm
Given the HMM model �= �A�B���, the probability of the observation sequence O= �o1� � � � � oT �

can be simply computed by enumerating every possible state sequence of length T , but such a direct
computation will require �2T −1�N T multiplications and N T −1 additions, which is computationally
unfeasible, even for small values of N and T . An efficient computation is implemented by the forward–
backward procedure [36].

The Forward Procedure
Define the forward variable �t�i� as:

�t�i�= P �o1� o2� � � � � ot� qt = Si ��� (12.28)

which is the probability of the partial observation sequence o1� o2� � � � � oT up to time t and state Si at
time t. Given the model �, it can be solved inductively as follows:

1. Initialization:

�t �i�= �ibi�o1�� 1≤ i ≤ N (12.29)

2. Induction:

�t+1 �j�=
[

N
∑

i=1
�t�i�aij

]

bj�ot+1�
1≤ t ≤ T −1
1≤ j ≤ N (12.30)

3. Termination:

P �O ���=
N
∑

i=1
�T �i� (12.31)
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Step 1 initializes the forward probabilities as the joint probability of state Si and initial observation o1.
Induction computes the probability of partial observation sequence up to time t+ 1 and state j at
time t+ 1, the state j can be reached independently from any of the N states at time t with the
probability aij . In step 3, all possible ways of realizing the given observation sequence are summed
up. The computation of the forward procedure requires only N �N +1� �T −1�+N multiplications and
N �N −1� �T −1� additions, and involves of the order of N 2T computations. To solve the evaluation
problem, only the forward procedure is required, the backward procedure is used to help in solving
the learning problem.

The Backward Procedure
In a similar manner, define a backward variable t�i� as:

t�i�= P
(

oT+1� oT+2� � � � � oT � qt = Si ��
)

(12.32)

which is the probability of the partial observation sequence from t+1 to the end. Given the state Si at
time t and the model �, it can be solved inductively as follows:

1. Initialization:

t �i�= 1� 1≤ i ≤ N (12.33)

2. Induction:

t �i�=
N
∑

j=1
aijbj�ot+1�t+1 �j�

t = T −1� T −2� � � � �1

1≤ i ≤ N (12.34)

The initial step arbitrarily defines T �i� to be 1 for all i. The induction step shows that in order to
have been in state Si at time t, and to account for the observation sequence from time t+ 1 on, you
must consider all possible states Sj at time t+ 1, accounting for the transition from Si to Sj–aij , as
well as the observation ot+1 in state j–bj�ot+1�, and then account for the remaining partial observation
sequence from state j–t+1 �j�.

The Viterbi Algorithm
Given the HMM model �, the decoding problem is solved by searching the state sequence
Q = �q1� q2� � � � � qT � such that the occurrence probability of the observation sequence O =
�o1� o2� � � � � oT � from this sequence is greater than that from any other state sequence. There are
several possible ways to search the optimal state sequence, depending on the optimality criteria of the
state sequence.

The most widely used criterion is to find the single best state sequence to maximize P�Q �O�� �
which is equivalent to maximizing P�Q�O ���. The Viterbi Algorithm is used for finding the single
best state sequence that exists, based on dynamic programming. It is an inductive algorithm in which at
each time instant you keep the best possible state sequence for each of the N states as the intermediate
state for the desired observation sequence O = �o1� o2� � � � � oT �. In this way, the best path for each
of the N states as the last state for the desired observation sequence is found, and the one with the
highest probability is selected.

The Reformulation Procedure
Given the probability of the observation sequence O for the state sequence Q – P�O �Q�� �, the joint
probability of observation and state sequences – P�O�Q ���

P�O�Q ���= P�O �Q�� �P�Q ���



232 Recognition of Human Faces by Humanoid Robots

is derived by:

�q1
bq1aq1q2bq2�o2�� � � � � aqT−1qT bqT �oT � (12.35)

Define U�q1� q2� � � � � qT � such that

U�q1� q2� � � � � qT �=−
[

ln
(

�q1
bq1 �o1�

)

+
T
∑

t=2
ln
(

aqt−1qtbqt �ot�
)

]

(12.36)

Then P�O�Q ��� can be written as

P�O�Q ���= exp �−U�q1� q2� � � � � qT �� (12.37)

The problem of optimal state estimation, namely,

max
�qt�

T
t=1

P �O� q1� q2� � � � � qT ��� (12.38)

becomes equivalent to

min
�qt�

T
t=1

U �q1� q2� � � � � qT � (12.39)

The Viterbi Algorithm is used to find the optimum state sequence. Suppose the system is currently in
state i and is going to visit state j next. The weight on the path from state i to state j is − ln�aijbj�ot��,
which is the negative logarithm of the probability of going from state i to j and selecting the observation
symbol ot in state j. The weight of state sequence is defined as the sum of the weights on the adjacent
states, which means the multiplication of the corresponding probabilities. Thus, searching for the
optimal sequence means finding the path with the minimum weight, as follows:

1. Initialization:

�1 �i�=− ln��i�− ln�bi�o1��� 1≤ i ≤ N (12.40)

'1 �i�= 0

2. Recursion:

�t �j�= min
1≤i≤N

⌊

�t−1�i�− ln�aij�
⌋ 2 ≤ t ≤ T

1≤ j ≤ N (12.41)

't �j�= arg min
1≤i≤N

⌊

�t−1�i�− ln�aij�
⌋ 2 ≤ t ≤ T

1≤ j ≤ N

3. Termination:

P∗ = min
1≤i≤N

��T �i��

q∗T = arg min
1≤i≤N

��T �i�� (12.42)

4. Path backtracking:

q∗t = 't+1
(

q∗t+1
)

� t = T −1� T −2� � � � �1 (12.43)

The optimal state sequence isQ∗= �q∗1 � q∗2 � � � � � q∗T �with the probability of exp �−p∗�. The computation
of the Viterbi Algorithm has the order of N 2T , similar to the forward–backward procedure.
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4.4.2 The Pseudo Two-Dimensional Hidden Markov Model

The one-dimensional HMM may be extended to a two-dimensional structure by allowing each of its
states to be an HMM. The P2DHMM consists of a set of superstates; each superstate includes an
embedded HMM. In this way, superstates may be used to model two- dimensional data along one
direction, and embedded HMMs model the data along the other direction. The P2DHMM is a pseudo
2D model, which means transition between states in different superstates is not allowed, because
a fully connected 2D HMM model leads to the model running in exponential time. The difference
compared to a real 2D HMM is that the state sequences in the columns are modeled independently
of the state sequences of neighboring columns. A pseudo 2D HMM is actually a nested one-
dimensional HMM.

The P2DHMM is a stochastic automata with a special two-dimensional arrangement of the states;
one of its structures is outlined in Figure 12.23. The states along the vertical direction are superstates;
each superstate consists of a one-dimensional HMM along the horizontal direction.

In the horizontal direction, transitions are only allowed among the states of the superstate. In the
vertical direction, transitions occur among the superstates. The P2DHMM model is characterized by
the following notation:

N � The number of superstates in the vertical
direction�

S̄= �S̄j � 1≤ j ≤ N� � The superstate set�
A= �akj � 1≤ k� j ≤ N� � The superstate transition probability matrix�

where akj = P
(

qy+1 = S̄j�qy = S̄k

)

�

&= ��j � 1≤ j ≤ N� � The initial superstate probability distribution�
where �j = P�q1 = Sj��

$= ��j � 1≤ j ≤ N� � The parameter set of left–right 1D HMMs within
each superstate. In the jth superstate, each
�j is specified by the standard 1D HMM
parameters as follows �

N j � The number of states in the horizontal direction
with the jth superstate�

Figure 12.23 The P2DHMM model with four superstates.
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Aj =
{

a
j
ki � 1≤ k� i ≤ N j

}

� The state transition probability matrix,

where ajkj = P�qx+1�y = Sij

∣
∣
∣qxy = S

j
k ��

Bj =
{

b
j
i

(

oxy
)

� 1≤ i ≤ N j
}

� The observation symbol probability distribution for each state,

where bji
(

oxy
)

= P�oxy

∣
∣
∣qxy = S

j
i ��

&j =
{

�
j
i � 1≤ i ≤ N j

}

� The initial state probability distribution,

where �j
i

(

oxy
)

= P�q1y = S
j
i ��

%= �N�A�&�$� � The compact notation of a P2DHMM model�

Apseudo2DHMMforeachpersonconsistsofapseudo2Dlatticeof states, eachdescribingadistribution
of feature vectors belonging to a particular area of the face. Samaria [47] used a multivariate Gaussian
as a model of the distribution of feature vectors for each state. During testing, an optimal alignment of
the states was found for a given image (i.e. the likelihood of each pseudo 2D HMM was maximized).
Person identification was achieved by selecting the pseudo 2D HMM which obtained the highest
likelihood. Due to the alignment stage, the pseudo 2D HMM approach is inherently robust to translation.

4.5 Feature Classification by Hidden Markov Models

The primary objective is to introduce HMM as one of the techniques to enable developmental learning
of facial image recognition. It is considered to be very suitable for face recognition due to the two-
dimensional warping capabilities of P2DHMMs [37]. Also, like artificial neural networks, HMMs can
learn from training data. With an HMM for feature classification, using a wavelet feature map as the
2D observation sequence O �x� y� from the input image, the proposed classification approach partially
follows Eickeler’s [37] proposed statistical classification approach, with slight changes to the selection
of algorithm for training the HMM for each person.

For training (learning) purposes, i.e. to train the HMM for each person, the Viterbi Procedure is
applied to determine the most likely state sequence of an HMM �, and to determine the probability
of each face model for the test image for a given observation sequence. It will be able to provide
the HMM parameters corresponding to a local maximum of the likelihood function, depending on the
initial model parameters [36] (Section 4.4.1, using Equations (12.35) to (12.43)).

For recognition, the probability of an observation sequence O �x� y� for a given face model is
computed by the forward–backward procedure [36] to determine the probability of � (Section 4.4.1,
using Equations (12.28) to (12.34)).

Through training using HMMs, humanoid robots can ‘learn’ to incrementally recognize facial
images of human individuals, facilitating the first step to an effective dual-nature interaction. It will
be analogous to young children forming ‘feature maps,’ i.e. distinctive features in their minds, and
performing ‘probabilistic optimization’ to relate the input facial image with known individuals’ facial
images. The humanoid robot, likewise, should foremost establish a platform for developmental vision
(lifelong acquisition of knowledge) by equipping itself with the capabilities to model, optimize and
represent information.

4.6 Questions to Ponder

• What are the components of a full face recognition system? [54]
• What other methodologies can be used for feature extraction (e.g. Gabor wavelets, eigenfaces, etc.)
and feature classification (Gaussian mixture models, Kalman filters, etc.) in face recognition systems?

• What are the critical issues in face recognition systems (training set size, initial model)? Can they
developmentally learn? How can they be implemented into humanoid robots?
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• Why does a face recognition system not use a single technique? Can the detection and recognition
techniques be combined as one?

• On what grounds can a user justify that his/her face recognition system is robust? [55]

4.7 Experimental Results

The presented facial image recognition system was used on facial images captured using a web-cam in
the AIM laboratory at Nanyang Technological University. Multiple facial images for each of ten people
were taken at different times with slightly varying lighting conditions and different facial expressions.
The heads of the people in the images were slightly tilted or rotated. Four images of each person were
used for training of the models, while any images could be used for testing. Figure 12.24 shows the
flowchart of the proposed face recognition system.

Input (Facial images
in Lab color space)

Feature extraction
(Wavelet packet analysis)

Recognition
HMM – Forward–Backward

procedure

Classifier training
(Observation sequence –
wavelet packet analysis)
HMM- Viterbi procedure

Internal
representations

Output (Face identification)

Humanoid robot output:
“Are you Hendra?”

     ……

  ……
……

Figure 12.24 Flowchart for developmental learning of facial image recognition.
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5. Discussion

With many successful face recognition systems available, the objective of this chapter is not to
compete with these face recognition systems, but to present the problem of developmental learning
of face recognition in a new perspective; developmental vision by humanoid robots. The physical–
mental development in humans should be applicable to humanoid robots to a certain extent, such that
humanoid robots can exceed their human masters’ physical and mental limitations. The developmental
approach is motivated by human mental development from infancy to adulthood, during which each
human individual develops his cognitive and behavioral capabilities through interactions with the
environment [56]; it is hence believed that developmental vision systems by humanoid robots will be
one of the motivations in the machine vision research arena for the next ten years. Developmental
learning capabilities incorporated in humanoid robots will not only be beneficial for a dual interaction
with their human masters but may also extend human capabilities in both physical and mental aspects–
by, autonomous behaviors.

An RCE neural network implements color image segmentation based on color prototypes, its
performance is greatly affected by the threshold of the color prototype. The accuracy of image
segmentation is increased when a small threshold value is selected, but the computation time is also
greatly increased. In general, we use different prototype threshold values to segment one color image.
The computation time is decreased when the threshold value is increased. This is therefore a problem
of equilibrium between computation time and segmentation accuracy for threshold selection [31].

The advantage of neural networks is that when applying supervised learning algorithms (e.g. an
RCE neural network), they are able to adjust synaptic weights using input–output data to match the
input–output characteristics of a network to desired characteristics, providing us with an efficient
technique for learning color prototypes. Yet, we feel this is not sufficient for a robust developmental
vision system of humanoid robots with color as its primary source of information. Further research
will be needed in facilitating developmental learning of shapes by humanoid robots and, at the same
time, fine-tuning the developmental learning of color algorithm when encountering the problem of
backgrounds with similar color tones. Hence, we feel that color information will be more informative
if color can be embedded with semantic entities. Embedding learned prototypes (e.g. colors, shapes,
etc.) with semantic entities (meanings) will allow us to travel from meanings to autonomous actions
by humanoid robots [57].

We selectively adopted part of the proposed wavelet packet decomposition [8] for feature extraction,
and an HMM [36,37] for feature classification and recognition. The facial image database is considered
insufficient for a practical application, but good enough to provide some preliminary insights into issues
of establishing developmental learning of facial image recognition. Wavelet packet analysis is applied
in a Matlab environment using the wavelet toolbox. First, we found that wavelet decomposition allows
relatively fast computation for feature extraction compared to HMM recognition and the learning phase,
but the wavelet coefficients obtained after wavelet packet decomposition are sometimes too small or
nonapplicable as observation states for the HMM optimization (recognition) phase, hence resulting in
falsely learned and recognized facial images. One suggestion would be to increase the size of the facial
image database, which will be necessary to test the robustness of the face recognition system. Another
suggestion would be to attempt normalizing or postprocessing of wavelet coefficients to yield a better
result. Fully implementing wavelet packet analysis, as Garcia and Tziritas [3] have proposed for the
facial feature extraction phase, could also be feasible. Hence, developmental learning of human facial
expressions using wavelet analysis to obtain feature maps will be a challenge for future work. HMMs
have demonstrated pleasing results when applied to the feature classification and face recognition
problem; they are able to treat the face recognition problem as a learning problem which attempts to
uncover ‘hidden’ features. They are considered to be well-suited for developmental learning of facial
image recognition, analogous to young children executing ‘self- patching’ (imagination) of unobserved
information. Hence, HMMs with proven usefulness in pattern recognition [36,44–53] are a good choice
for adaptive recognition of human faces by humanoid robots.
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1. Introduction

Intelligent systems for monitoring people and collecting valuable demographics in a social environment
will play an increasingly important role in enhancing the user’s interaction experience with a computer,
and can significantly improve the intelligibility of Human–Computer Interaction (HCI) systems. For
example, a robust age classification system is expected to provide a basis for the next generation of
parental control tools. Robust age classification, along with gender and ethnicity information, can have
a profound impact in advertising (i.e. narrowcasting and gathering demographic data for marketing),
law enforcement, education, security, electronic commerce, gathering consumer statistics, etc. This
would directly impact the consumer electronics and personal computer hardware markets since they
are the key distribution channels for delivering content in today’s society. The algorithm discussed in
this chapter may be integrated into the VLSI circuit of media devices, along with features to customize
the desired type of control.

Current methods for gathering vital consumer statistics for marketing involve tedious surveys. If
it were possible to gather data such as age information about the customers within the marketing
establishments, such information could prove to be vital for deciding which sections of society need
to be targeted. This could potentially lead to enormous savings in time as well as money. Current
methods of advertising follow broadcasting techniques wherein the advertisement is for all people and
not targeted specifically towards the person watching the advertisement. In many practical scenarios,
such a method may not be the best way, and automated narrowcasting could be used. Such targeted
advertisements have a deeper impact as they are targeted specifically to the tastes of the person
watching the advertisement. Tastes, needs and desires of people change with age and if it were possible
to determine the age category of the person, then narrowcasting could be used effectively in such
scenarios. Several different visual cues could be used for determining the age category of a person
in an automated manner. Height, skin texture, facial features and hair color are some of the visual
features that change with age.

Cranio-facial research [1] suggests that as people grow older there is an outgrowing and dropping of
the chin and the jaw. This change in the skull with an increase in age changes the T-ratios (transverse
ratios of the distance between the eyes to the distance between lines connecting the eyes from the
nose/chin/top of head). This theory was validated in a study in [2], where it was found that children
up to the age of 18 have different ratios compared to people beyond the age of 18. After the age of 18
the skull stops growing and so there is no change in the ratios. Kwon et al. [2] used these results to
differentiate between children and adults after using facial feature detectors on high-resolution images.
The presence and absence of wrinkles was also used for differentiating between seniors and young
adults (refer to [3] for details). However, these methods are inadequate for use in applications that
require real-time performance with low-resolution images. The use of snakes for finding wrinkles in
seniors is difficult to compute from low-resolution facial images and takes time to stabilize the snakes.

Recent advances in image analysis and pattern recognition open up the possibility of automatic
age classification from only facial images. Classifying age with a very high degree of accuracy is a
relatively hard problem, even for human experts [1]. Automatic classification of age from only facial
images presents a number of difficult challenges. In general, five main steps can be distinguished in
tackling the problem in an holistic manner.

1. An automated robust face detection system for segmenting the facial region.
2. Preprocessing of image data to eliminate the variabilities that may occur in image data capture.
3. Suitable data representation techniques that can keep useful information and at the same time reduce

the dimensionality of the feature vector.
4. Design of a robust classifier for the classification of age.
5. Characterization of performance of the classifier.

This chapter provides an holistic approach by taking into account the five steps outlined to classify
humans according to age groups of over 50 and under 40 using only visual data. The rest of the
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chapter is organized as follows. Section 2 describes the state of the art in understanding factors that
may be used to estimate the age and automatic age classification. Following this, a brief description
of the classifier design is presented in Section 3. Section 4 presents the results of empirical analysis
conducted to understand the effects of various factors that may affect the performance of a classifier.
Finally, Section 5 ends the chapter with a few concluding remarks and ideas for future work.

2. Related Works

Automated classification of age from appearance information is largely underexplored. In [2], Kwon
et al. made an attempt to classify images of people into three age categories: children, adults and senior
adults. This work was based on the cardioidal strain transformation to model the growth of a person’s
head from infancy to adulthood, obtained from cranio-facial research [1]. The revised cardioidal strain
transformation describing head growth can be visualized as a series of ever-growing circles all attached
at a common tangent ‘base’ point, in this case the top of the head. According to this transformation,
with an increase in age, the growth of lower parts of the face is more pronounced than that of the
upper part. Thus, for example, within the top and bottom margins of the head, the eyes occupy a higher
position in an adult than in an infant due to an outgrowing and dropping of the chin and jaw. This
result was used in distinguishing between adults and babies. In order to do this the authors used facial
feature detectors to detect the eyes, nose and the mouth. These feature positions were then used to
find out certain ratios for each face and if the ratio was greater than a particular value, the face was
classified as belonging to an adult, else it was classified as belonging to a baby. In order to distinguish
between young adults and seniors the authors used snakes to determine the presence of wrinkles on
the forehead of the person. The main problem with this method is the need to detect facial features,
which is extremely error-prone. The costs and processing time of this approach limit its practicality
for use in real applications.

In [1,4] O’Toole et al. used three-dimensional information for building a parametric 3D face model.
They used caricature algorithms to exaggerate or de-emphasize the 3D facial features. In the resulting
images the perceived age is changed based on whether the feature is exaggerated or de-emphasized. This
result suggested that in older faces, the 3D facial features are emphasized. These results were verified
by a number of observers. In a related work, Lanitis et al. [5] proposed a method for simulating aging in
facial images, thus allowing them to ‘age-normalize’ faces before using them for ‘face recognition’. For
this purpose the authors used statistical model parameters that contain shape and intensity information.
Some of these parameters were then used for simulating aging effects. Empirical results reported in
this paper suggest that the face recognition accuracy improved when ‘age normalization’ was carried
out. These results indicate that the appearance of the face contains sufficient information regarding the
age of the person that in turn could be used for classification purposes.

In [2] it was shown that wrinkles could be used for differentiating between senior citizens and adults
below a certain age. From this result it could be argued that the presence and absence of wrinkles, as
indicated by the skin texture, could be detected even at low resolutions. Also, in [6] it has been stated
that after age 45, the skin begins to thin, partially because of hormonal changes, resulting in a loss of
volume and smoothness. In [3] it was found that it is easy to notice that there is a very big change in
the facial skin texture of the person from age 40 to age 50. Keeping these points in mind, the two age
categories used for classification were the age groups above 50 and below 40, keeping the ten years
in between as a buffer zone where the performance of the classifier is unpredictable.

3. Description of the Proposed Age Classification System

This section provides a detailed description of the proposed system. Figure 13.1 shows the block
diagram consisting of the main blocks used in the age category classification system. The proposed
system crops the face in the current scene and decides the age category of the person. The output
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Figure 13.1 Block diagram of the age classification system.

of the face detector passes through the preprocessing algorithms, such as histogram equalization and
brightness gradient removal, in order to present images of uniform brightness to the classifier. Before
the image is fed to the classifier, the image is passed through a feature extractor algorithm. Principal
component analysis, robust principal component analysis and non-negative matrix factorization were
used for experimentation. This representation of the image is finally fed to the classifier that decides
the age category of the person.

To design the classifier, publicly available SVMLight [7] software was used. Bootstrapping
techniques were used to learn a useful model based on available examples (see Figure 13.2 for details).
The design of the classifier was undertaken in several stages. First, the training examples were used
to train the SVMs to learn the underlying model which acts as a naïve classifier. Using the naïve
classifier, one meticulously performs a series of experiments to pick a representative set of examples
to bootstrap the classifier. A series of such new classifiers were tuned and tested on a test data set. The
best classifier was chosen for the final testing for a given resolution and all other possible combinations
that may influence the output of the classifier. A four-fold cross validation strategy was employed to
report the classification results. For each of the training and testing sets, a radial basis function was used
as the kernel function that had a fixed value of gamma, and the cost factor was varied with values of
0.1, 0.5, 1, 5, 10, 50 and 100. Thus, for each of the training and testing sets, seven different accuracies
were obtained, depending on the parameter settings. The accuracies were averaged out for all the four
sets and the best average accuracies were used as the final results. The output of the classifier was
then used in the decision fusion process in the case of the parallel paradigm of classification, or fed to
the next level of classifier in the case of the serial paradigm of classification. A detailed description of
the proposed approach is presented in the following subsections.

3.1 Database

A large database was collected using the resources from Advanced Interfaces Inc. The facial portions
of the images were segmented automatically using the face detector developed in [8] and originally
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Figure 13.2 Bootstrapping process to find the best classifier for testing.
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Face detector

Normalized

Figure 13.3 Data collection and face normalization.

proposed in [9]. The set-up used for obtaining the facial images was as shown in Figure 13.3. The pose
variation in the data set was determined by the face detector, which allowed a maximum in-plane and/or
out-of-plane rotation of about 30 degrees. The data set consisted of about 4100 grayscale images with
a minimum resolution of 29×29 distributed across the age categories of ages 20 to 40 and 50 to 80.
The database was divided up into four groups of males and females above 50 years old and below 40
years old. Table 13.1 summarizes the distribution of the database.

In the process of data collection, facial images of people of different age groups were collected. All
these images were appropriately labeled with the age of the person in the image. These labels were
used as ground truths to be used during the training of the classifiers. This data set was divided into
three parts – the training set, the bootstrapping set and the testing set, all of them mutually disjoint.

3.2 Segmentation of the Facial Region

A biological face detection system developed by Yeasin et al. [8] was used to segment the face from
the rest of the image. The following criteria were emphasized while developing the face detector:

1. The algorithm must be robust enough to cope with the intrinsic variabilities in images.
2. It must perform well in an unstructured environment.
3. It should be amenable to real-time implementation and give few or no false alarms.

An example-based learning framework was used to learn the face model from a meticulously
created representative set of face and nonface examples. The key to the success of the method was
the systematic way of generating positive and negative training examples using various techniques,
namely: preprocessing, lighting correction, normalization, the creation of virtual positive examples
from a reasonable number of facial images and the bootstrap technique to collect the negative examples
for training. A successful implementation of face detection was made using a retinally connected neural
network architecture reported in [9], this was refined later to make it suitable for real-time applications.
The average performance of the system is above 95% on facial images having 30–35 degree deviation
from the frontal facial image.

Table 13.1 Database of images.

Gender Age category Number of images

Female Over 50 631
Male Over 50 1042
Female Under 40 1283
Male Under 40 1214
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3.3 Preprocessing

The localized face from the previous stage is preprocessed to normalize the facial patterns. Several
techniques, such as illumination gradient correction, were performed to compensate or to reduce
the effect of lighting variations within the window where the face was detected. Also, histogram
equalization was performed to reduce the nonuniformity in the pixel distributions that may occur due
to various imaging situations. Additionally, normalization of the ‘training set’ was performed to align
all facial features (based on manual labeling) of the face with respect to a canonical template, so that
they formed a good cluster in the high-dimensional feature space.

3.4 Feature Extraction

The feature extraction stage is designed to obtain a meaningful representation of observations and
also to reduce the dimension of the feature vector. It is assumed that a classifier that uses a smaller
dimensional feature vector will run faster and use less memory, which is very desirable for any real-
time system. Besides increasing accuracy by removing very specific information about the images,
the feature extraction method also improves the computational speed of the classifier – an important
criterion for a real-time classifier system. In the proposed method, the following techniques were
implemented to construct a feature vector from the observations. Experiments were conducted with
the aim of achieving two goals, namely: to select the components of the PCA and NMF; and to make
comparisons between PCA and NMF and use the suitable one for classification of age. A weighted
NMF [10] scheme was used in the experimentation to alleviate the limitation of standard NMF in
optimizing the local representation of the image. Several experiments were conducted with different
numbers of bases to compare the classification results.

3.5 Classifying People into Age Groups

For the training of the classifier, about 50% of the data collected from all the age categories was used.
A method of cross validation was used to get the best possible classifier. The different parameters that
could be changed were the kernels, kernel parameters and the cost factor. Once the best classifier was
found from the cross validation method, the misclassified examples could be used in the bootstrapping
process and to further refine the classifier, thus finding the optimum classifier.

In order to improve the performance of the classifier, either the parallel or the serial or a combination
of the two paradigms could be used. The parallel paradigm is based on the fact that examples
misclassified by one classifier could be classified correctly by another, thus giving a better overall
accuracy if both classifiers are used. The classifiers can vary either in the type of parameters used or
the type of feature extraction used for them. Another way to improve the accuracy is to use the fact
that there are big differences in the facial features of different genders, as well as different ethnicities.
For example, the face of an adult female could be misclassified as a person from a lower age category.
Hence, different sets of images could be used for training the classifier for female age categories and
for male age categories. The same logic could be extended for people of different ethnicities, leading
to the need to use an ethnicity classifier before the age category classifier. Using the parallel and the
serial paradigms simultaneously would give the best possible performance.

Age category classification could be a binary age category classifier using the serial paradigm for
classification. In this example, the image fed by the camera is used by the face detector software to
detect the face in it. This face is then resized to 20 by 20 and histogram equalization and brightness
gradient removal is carried out on the image. Following the image processing, the image is passed
through a feature detector having a set of 100 basis vectors, thus giving a feature vector with 100
values. This is then fed to a gender classifier and, depending on the gender output, it is either fed to
a male age classifier or a female age classifier. The final output of the age classifier gives the age
category of the person as belonging either to the adult age category or the minor age category.
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4. Empirical Analysis

To understand the effects of various factors that may influence the performance of the classifier, a
number of experiments were conducted in order to characterize the performance of the classifier. The
tests conducted were:

1. Performance of dimensionality reduction methods.
2. The effect of preprocessing and image resolution.
3. The effect of pose variation.
4. Characterization of brightness gradients.
5. Characterization of occlusion.
6. The impact of gender on age classification.
7. Classifier accuracies across the age groups.

4.1 Performance of Data Projection Techniques

The problem known as the ‘curse of dimensionality’ has received a great deal of attention from
researchers. Many techniques have been proposed to project data. These techniques are based on the
mapping of high-dimensional data to a lower dimensional space, such that the inherent structure of
the data is approximately preserved. In this work, two linear projection methods for dimensionality
reduction were used to find a suitable representation of the image data. Three different representations,
namely: Principal Component Analysis (PCA), Robust Principal Component Analysis (RPCA) [11]
and Non-Negative Matrix Factorization (NMF) [7] were used for the experimentation. The two forms
of PCA are supposed to capture the global features of the facial image, while NMF is supposed to
capture the local image features of the facial image. Classical PCA is very sensitive to noise, so to
nullify the effect of noise, RPCA methods were tested.

PCA is designed to capture the variance in a data set in terms of principal components. In effect,
one is trying to reduce the dimensionality of the data to summarize the most important (i.e. defining)
parts, whilst simultaneously filtering out noise present in the image data. However, the decision
regarding which component of PCA captures the meaningful information for a particular problem
is not well understood in general. Hence, it poses a problem in experimentation, because whether
the age information is present in the eigenvectors corresponding to the highest eigenvalues, or those
with low eigenvalues is not known. To overcome this problem, the experiments involved varying the
number of principal components from 10 to 100 in steps of ten. A similar strategy was also used
for the RPCA-based representation. The second method for dimensionality reduction that was used is
Non-Negative Matrix Factorization (NMF) [7]. The advantage of this method is that in cases where the
age information is present in certain features of the face and not the entire face, NMF would be able
to capture that information. However, it has the same problem as PCA, i.e. basis vector determination,
and was also handled in the same way as PCA. In each case, the basis vectors were obtained using the
set of training examples.

From the experiments it was found that all representational schemes, namely: PCA, RPCA and NMF,
yielded very low accuracies of around 50% for the age classification problem. On the other hand,
classification done using raw image values for the same set of data gave accuracies around 70%. This
indicated that when the images were projected along the vector subspace for PCA, RPCA and NMF,
data crucial for age classification was lost. While this may sound counterintuitive, it is believed that
the lower accuracy has some important significance to choosing appropriate data projection techniques
used in the experimentation. According to the central limit theorem, low-dimensional linear projections
tend to be normally distributed as the original dimensionality increases. This would mean that little
information could be extracted by linear projection when the original dimensionality of data is very high.
To overcome this problem, nonlinear data projection methods (for example, self-organizing maps [12],
distance-based approaches such as multidimensional scaling [13] and local linear embedding [14])
should be investigated.
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4.2 The Effect of Preprocessing and Image Resolution

Preprocessing algorithms were designed to get rid of any variations in the lighting conditions in the
images. The two preprocessing methods tested were histogram equalization and histogram equalization
followed by brightness gradient removal. Brightness gradient removal cannot be used as a stand-alone
preprocessing step and so was used in conjunction with histogram equalization to check if it has any
significant impact on the classifier accuracies. Hence, the data set available was preprocessed to get
three sets – unprocessed images, histogram equalized images and images processed through histogram
equalization with brightness gradient removal.

In order to find out the optimum image resolution to be used for classification, the available image
set was downsampled to obtain 25× 25 and 20× 20 size images, along with the existing image
resolution of 29×29. The reason behind trying out lower image resolutions was that by downsampling,
certain high-frequency peculiarities specific to people, such as moles, etc., would be lost, leading to
better classification accuracies. Figure 13.4 shows the plot of classification accuracy at various image
resolutions under different image preprocessing conditions. The result in Figure 13.4 represents the
model obtained using male examples only. It may be noted that similar results were obtained for
models trained using females, as well as for models obtained by using combined male and female
examples. From the plot it can be seen that there is an improvement in the classification accuracy of
about 4–5% for an increase in the facial image resolution from 20×20 to 29×29. This improvement
can be seen for all image preprocessing conditions.

4.3 The Effect of Pose Variation

In order to be effective for real-life applications, the age classifier should provide stable classification
results in the presence of significant pose variations of the faces. In order to test the performance
of the classifier in the presence of pose variations, the following test was conducted. The faces of
12 distinct people were saved under varying poses from frontal facial image to profile facial image.
The best classifiers obtained for each resolution were used on these sets of faces to check for the
consistency of classification accuracy. Thus, if, for a given track having ten faces, eight faces were
classified correctly, the accuracy for that track was tabulated as 80%. In this way, the results were
tabulated for all three classifiers.
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Figure 13.4 The effect of preprocessing on age classification. Age classification accuracy (male only
database) at various image resolutions under different preprocessing methods.
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Figure 13.5 The effect of pose. Age classification accuracy at various image resolutions for 12 sets
of images with pose variations.

The results for the performance of the classifier under pose variation are summarized in Figure 13.5.
From this experiment it is easy to see that for all three classifiers at least 11 out of 12 sets of faces
gave an accuracy of greater than or equal to 60%. This result is significant as it points to a possibility
of using the sampled classifier output for all the faces obtained in a given track to classify the person
in the track. Figure 13.5 indicates that for all the resolutions, at least 11 of the 12 sets of images with
pose variation gave an accuracy of greater than 50%.

4.4 The Effect of Lighting Conditions

In real-life scenarios, there are changes in the lighting conditions that can produce diverse intensity
gradients across the facial images. The intensity gradients could be across the entire face or only across
half the face, depending on the position of the light source. To test the performance of the classifier
under such circumstances, gradual intensity gradients were introduced in the available set of images
and tested with the available classifiers trained from the images without the brightness gradients. The
purpose of the testing was to check the effectiveness of the preprocessing steps in taking care of
such gradients. Figure 13.6 indicates that, as expected, the brightness gradient removal method for
preprocessing worked best in the presence of vertical and horizontal gradients in the image. However,
in the presence of diagonal gradients in the image, histogram equalization gave results equally as
good as the results obtained using histogram equalization with brightness gradient removal as the
preprocessing step.

4.5 The Effect of Occlusion

Often, in the presence of crowds, there is occlusion of the face. To test the efficacy of the classifier
under such circumstances, the available set of images was occluded by darkening a certain region and
then tested with the available classifiers. Three different types of occlusion were made to simulate the
occlusion of the left eye, the right eye and the mouth. Figure 13.7 presents the results obtained from
this experimentation. From Figure 13.7 it is evident that histogram equalization as the preprocessing
step is best able to handle occlusions. This plot also indicates the fact that occlusion of the mouth
region causes a drastic reduction in the classification accuracy.
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Figure 13.6 The effect of light. Age classification accuracy for different simulations of brightness
gradients in the images for 25×25 image resolution.
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Figure 13.7 The effect of occlusion. Age classification accuracy for different simulations of occlusion
in the images for 25×25 image resolution.

4.6 The Impact of Gender on Age Classification

Studies have been conducted which indicate that men and women age at different rates. In order to
check if these variable rates of aging affect the classifier in any way, two tests were conducted. In the
first test, classifiers were trained and tested separately for each gender. In the second case, examples
of males and females were used together in the training, and in the testing, the accuracy rate for
males and females was found separately. Figure 13.8 shows the effect of gender classification on age
classification. From the plot it is evident that using a combined set of males and females for training
gives better results for female classification but a poorer result for male classification when compared
to using only females or only males respectively in the training set.
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Figure 13.8 The effect of gender. Age classification at various image resolutions for gender-specific
age classifier models.

4.7 Classifier Accuracies Across the Age Groups

In order to find out the position of the classifier hyperplane and the way the data was clustered around
it, a test was carried out to check the accuracies of the classifier for the age groups from 20s to 80s.
Thus, for the three classifiers, one for each resolution, facial images of people belonging to the age
groups from 20s to 80s were used as the test cases, and the accuracy for each group was found and
plotted. Figure 13.9 shows the plot of classification for different age groups and indicates that the
classifier hyperplane lies somewhere in the 35 to 40 age group. Figure 13.10 shows representative
sample images used for testing and also samples for failure cases.
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Male above 50 Male under 40 Female above 50 Female under 40

Figure 13.10 Sample images used for testing. Top row: images that were classified correctly; bottom
row: sample images of the failure cases.

5. Conclusions

This chapter conducted a systematic study on designing an appearance-based age classifier using
SVMs. The performance of the classifier was characterized under varying conditions of data resolution,
data representation, preprocessing methods, pose variations, brightness conditions and the presence of
occlusion. Empirical results of the experiments suggests that:

1. Classifiers employing preprocessing and normalization show a definite improvement in performance
as compared to classifiers developed using no preprocessing methods.

2. The intuitive idea of higher resolution images giving better classifier accuracy is mostly true but
not always.

3. The use of linear data projection techniques such as PCA or NMF did not improve the performance
compared to using just the plain image intensity values for classification.

4. The brightness gradient removal method along with histogram equalization gives a performance
improvement only in the presence of brightness gradients, otherwise it does not provide any
significant improvement.

5. Occlusion of the mouth area causes the maximum degradation of performance of the classifiers,
indicating that pixels around the mouth are used in a significant way for classification.

While the proposed system performs reliably in many real-world situations, it may be useful to
combine it with other modalities to achieve more robustness. Further studies may focus on finding
the causes for the failure of dimensionality reduction techniques in age classification. This work only
investigated the linear projection methods of PCA and NMF. According to the central limit theorem,
low-dimensional linear projections tend to be normally distributed as the original dimensionality
increases. This would mean that little information could be extracted by linear projection when the
original dimensionality of data is very high. To overcome this problem, nonlinear data projection
methods (for example, self-organizing maps [12], distance-based approaches such as multidimensional
scaling [13] and local linear embedding [14]) should be investigated. This work empirically studied
two age categories which are visually distinct in their skin textures. However, more work needs to
be done to check the performance of this method using lower age categories, such as people under
18 years old, as a class. Better accuracy rates could be obtained by utilizing some form of sampling of
the classifier outputs, to be undertaken as future work that will make the system viable for commercial
application.
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Appendix A. Data Projection Techniques

There are many methods for estimating intrinsic dimensionality of data without actually projecting
the data [15]. In addition to intrinsic dimensionality estimation, data projection methods are further
required to generate lower dimensional configurations. There are generally two categories of method
for projecting data to a low space: linear projection and nonlinear projection. Linear projection is
characterized by a projection matrix. Examples are Principal Component Analysis (PCA) and Non-
Negative Matrix Factorization (NMF). This appendix briefly discusses only the linear data projection
techniques.

A.1 Principal Component Analysis (PCA)

Due to the high dimensionality of data, similarity and distance metrics are computationally expensive
and some compaction of the original data is needed. Principal component analysis is an optimal linear
dimensionality reduction scheme with respect to the Mean Squared Error (MSE) of the reconstruction.

For a set of N training vectors X = �x1� � � � �xN �, the mean �� = 1

N

∑N
i=1 xi� and covariance matrix

�
∑ = 1

N

∑N
i=1 �xi−���xi−��T� can be calculated. Defining a projection matrix E composed of

the K eigenvectors of ( with highest eigenvalues, the K-dimensional representation of an original,
n-dimensional vector x, is given by the projection y= ET�x−��.

A.2 Non-Negative Matrix Factorization (NMF)

NMF is a method of obtaining a representation of data using non-negativity constraints. These
constraints lead to a part-based representation because they allow only additive, not subtractive,
combinations of the original data [10]. Given an initial database expressed by an n×m matrix V, where
each column is an n-dimensional non-negative vector of the original database (m vectors), it is possible
to find two new matrices (W and H) in order to approximate the original matrix Vi� ≈ �WH�i� =∑r

a=1WiaHa�. The dimensions of the factorized matrices W and H are n× r and r×m, respectively.
Usually, r is chosen so that �n+m�r < nm.
Each column of matrix W contains a basis vector, while each column of H contains the weights

needed to approximate the corresponding column in V using the basis from W. In the PCA context,
each column of matrix W represents an eigenvector and the factorized matrix of H represents the
eigen projections. In contrast to PCA, NMF does not allow negative entries in the factorized matrices
W and H permitting the combination of multiple basis images to represent an object. In order to
estimate the factorization matrices, an objective function has to be defined. A possible objective
function is given by F =∑∑

�Vi� log�WH�i�− �WH�i��. This objective function can be related to
the likelihood of generating the images in V from the basis W and encoding H. An iterative approach
to reaching a local maximum of this objective function is given by the following rules:

Wia←Wia

∑

�

Vi�

�WH�i�
Ha��Wia←

Wia
∑

jWja

�Ha�←Ha�

∑

i
Wia

Vi�

�WH�i�

Initialization is performed using positive random initial conditions for matrices W and H. The
convergence of the process is also ensured.

Appendix B: Fundamentals of Support Vector Machines

The foundations of Support Vector Machines (SVMs) have been developed by Vapnik [16–18], and
are gaining popularity due to their many attractive features and promising empirical performance. The
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formulation embodies the Structural Risk Minimization (SRM) principle, as opposed to the Empirical
Risk Minimization (ERM) approach commonly employed in nonparametric methods. SRM minimizes
an upper bound on the generalization error, as opposed to ERM that minimizes the error on the
training data. SVMs can be applied to both classification and regression problems. They condense
all the information contained in the training set relevant to classification in the support vectors. This
reduces the size of the training set identifying the most important points, and makes it possible to
efficiently perform classification. Finally, SVMs are quite naturally designed to perform classification
in high-dimensional spaces, even in the presence of a relatively small number of data points.

In a two-class pattern classification problem, the task of learning from examples can be formulated
in the following way. Given a set of decision functions: �f��x� � � ∈$��f� � ℜN → �−1�1�, where $
is a set of abstract parameters, and a set of examples, �x1� y1�� � � � � � �xm� ym��xi ∈ ℜN � yi ∈ �−1�1�,
drawn from an unknown probability distribution P�x� y�, i.e. the data are assumed independently drawn
and identically distributed. We want to find the function f� that provides the smallest possible value
for the expected risk:

R���=
∫

�f��x�−y�P�x� y�dxdy (13.1)

The functions f� are usually called hypotheses, and the set �f��x� � � ∈$� is called the hypothesis
space and is denoted by H. The expected risk is a measure of how good a hypothesis is at predicting
the correct label y for a point x. The probability distribution P�x� y� is unknown, and impossible
to compute. However, since we have access to samples of P�x� y�, we can compute a stochastic
approximation of R���, the so-called empirical risk, as follows:

Remp���=
1

m

m
∑

i=1
�f��xi�−yi� (13.2)

where m is the number of examples. There is no probability distribution here and Remp is a fixed
number for a particular choice of � and for a particular training set �xi� yi�. The approach now is to
converge the empirical risk rather than expected risk. As shown by Vapnik and Chervonenkis [17],
consistency takes place if and only if convergence in probability of Remp to R is replaced by uniform
convergence in probability. The theory of uniform convergence in probability developed by Vapnik
and Chervonenkis [17] also provides bounds on the deviation of the empirical risk from the expected
risk. For more details please refer to [19].
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This chapter presents a new approach to the application of picture languages for cognitive analysis

and reasoning of selected medical visualization. We will show new opportunities for applying these

methods to undertake the task of automatic understanding of image semantics in intelligent medical

information or computer-aided diagnosis systems. These systems are applied in various tasks supporting

decisions taken in the wide area of health care and medical imaging. The possibility of obtaining

information about the semantic content of medical images may contribute considerably to the creation

of new intelligent cognitive medical systems. This chapter shows that structural techniques of artificial

intelligence may be applied in the case of tasks related to automatic classification and machine

perception of semantic pattern content, in order to determine the medical meaning of the images. We

describe some examples presenting ways of applying such techniques in the creation of cognitive vision

systems for selected classes of medical image.

1. Introduction

In this chapter, a new approach to the processing and analysis of medical images is proposed. We try to
introduce the terms and methodology of medical data understanding as a new step along the way, starting
from image processing, and followed by analysis and classification [1–5]. In the chapter we try to show
that image-understanding technology, as the next step after image recognition, is useful (sometimes even
necessary), possible and also effective. This will be done using four types of selected medical image. But
in fact, the methods under consideration can also be used for many other kinds of medical image.

Computer-Aided Intelligent Recognition Techniques and Applications Edited by M. Sarfraz
© 2005 John Wiley & Sons, Ltd
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Figure 14.1 Stages of image analysis and semantic classification in visual data understanding
systems.

Further, we shall try to demonstrate that structural pattern analysis can be regarded as an effective
method for medical image understanding, replacing simple recognition (Figure 14.1). Structural image
analysis can be considered to be a totally new approach to the analysis and description of shapes of
selected organs in medical imaging in general [6]. Examples of the application of syntactic methods
of pattern recognition for the understanding and analysis of the selected medical images presented in
this chapter show its usefulness for early diagnosis of some diseases of selected organs. The results of
analysis of investigations, based on the structural analysis of selected types of medical image, confirm
very good properties of our proposed methodology and algorithms.

The chapter will discuss, in particular, disease symptom recognition tasks for four selected areas of
the body and types of medical image:

• analysis of coronary arteries seen on coronographic images [7,8]. This analysis is aimed at discovering
the symptoms of ischemic heart disease.

• the renal pelvis with ureters visible on urograms of these structures [9]. An analysis of urograms
allows diagnosis of some lesions characteristic of hydronephrosis or extrarenal uremia.

• pancreatic ducts visible on images obtained in the course of ERCP (Endoscopic Retrograde
Cholangio-Pancreatography) examinations [10]. In this case, the objective of the analysis is early
computer-aided diagnosis of neoplastic lesions and pancreatitis.

• the spine and spinal cord visualized on MR images. The objective is to detect and diagnose lesions
that might evidence a whole range of various disease units (numerous forms of inflammatory
conditions to the most serious cases of tumors).

The process of recognition will be based mainly on the use of context-free picture grammars and
languages of description of shape features, as well as graph grammars used to recognize disease
symptoms which can occur in these organs. This type of recognition may not only support the diagnosis
of disease lesions, but it also constitutes intelligent information systems imitating the method of image
interpretation and understanding used by qualified professionals.

The algorithms proposed in this chapter constitute a new proposal for an efficient and effective analysis
of selected organmorphology, aimed at diagnosing pathological lesions in them. They also expand current
analysis techniques to a considerable degree by offering possibilities to specify the semantic content of
images, which can support diagnosis and further treatment directions. Moreover, they may also serve to
provide a quick indexation and categorization of disease units in medical databases [11].

For a proper analysis of the mentioned changes, and for a verification of how advanced their level,
an attributed context-free grammar of type LR and a graph grammar of type EDT [12,13] have been
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proposed. These methods derive from mathematical linguistics and have been applied to detect changes
in the width of different structures visible in graphs. These graphs are obtained from the application of
a straightening transformation at the image preprocessing stage, which enables the production of graphs
of straightened structures, while preserving the morphological lesions occurring in them [14–16].

The general methodology for the application of structural analysis to the creation of perceptual
descriptions for analyzed structures and pathological signs is the following. First, simple shape elements
are defined and the general grammar description of the analyzed organ is built. The basis for this
description is a special kind of graph, tree or context-free grammar [13,17]. Using the actual shape
of the organ in question, we can obtain a description in the form of sequences of terminal symbols.
Such sequences belong to the languages generated by the introduced grammar. For each lesion, and in
a healthy organ, the obtained description sentences are different, because every organ is unique. The
main analysis and recognition of pathological signs are based on parsing algorithms, which analyze
input sentences and reduce them to one of several known categories. For each case of illness, it is
possible to obtain a unique parsing result, belonging to one of several classes. In the rare cases (from
a diagnostic point of view) of equivalence of some classes, it is also necessary to establish the final
result of recognition by applying simple methods based on specially defined semantic procedures [18].

Furthermore, this type of recognition in essence is an attempt to automate a specifically human
process of understanding the medical meaning and the implications of the shapes of organs on a digital
image. It is based on a perception, in other words, on a deeper understanding of the examined image
[19,20].

The main advantage of using the presented grammars is that they offer a possibility to detect, on the
obtained width profiles, both concentric stenoses, revealed on a regular cross-section by the monotonous
stenosis of the whole lumen, and eccentric stenoses, revealed only on one side of the vessel. This
property is especially useful for coronary artery diagnosis because it enables the determination of
whether the detected symptom is characteristic of stable angina pectoris, in the case of concentric
stenosis diagnosis, or unstable angina pectoris when an eccentric stenosis is revealed.

Further sections will present algorithms for initial analysis of the discussed images, as well as
recognition methods and examples of results of disease lesion recognition in coronary arteries, upper
urinary tracts, pancreatic ducts and the spinal cord.

2. Preliminary Transformation of Selected Medical Images

Cognitive analysis of the looked-for disease lesions on the discussed medical images, conducted with the
use of the syntactic methods of image recognition proposed in this chapter, is possible only due to prior
preparationof theexamined image inaveryspecial andhighly targetedway.Thismeans that theapplication
of syntacticmethods of image analysismust be preceded by the application of a special operation sequence
in the preprocessing of the examined images.Due to this, the final objective of the analysis presented in this
chapterwill be to understand the essence of selected health problems connectedwith imminentmyocardial
infarction, urinary system atresia and pancreatic failure. Thus, the starting point for the analysis will be
to visualize the pathological lesions of the respective organ shapes. Due to a need to eliminate various
factors (e.g. individual variation) which change the appearance of the organs in question on an image, and
thus change the meaning of the contents of the imaging (e.g. pointing to the occurrence of symptoms of
a given disease), we looked for a form of preprocessing which would retain the information necessary to
understand an image, and at the same time, eliminate information noise.

In the tasks presented in this chapter, we have the following examples of disturbing factors: the
general course, size and shape, as well as location, of the analyzed anatomical structures on the
image. All of these factors, ensuing both from the anatomical features of body build of an individual,
and from the method used to take the concrete X-ray photograph, influence strongly the shape of
structures visible on the image. Yet they do not determine the evaluation of the image as such (that
is, the decision as to whether a given organ is healthy or if there are signs of pathology). A medical
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doctor aiming to understand the essence of a patient’s ailment takes out those unimportant features
and focuses his/her attention on details important for the diagnosis. In the examples discussed here,
those details are stenoses or dilations (sometimes also ramifications) of the appropriate vessels. This is
why in the examples analyzed here, preprocessing of the examined images has been directed towards
obtaining straightened (which means that the vessel course is independent of individual variations) and
appropriately smoothed width diagrams of the vessel. They are the carriers of information necessary
to understand if we are dealing with a healthy organ or one with pathological lesions. Later, we shall
see examples of such width diagrams obtained as a result of preprocessing of the analyzed coronary
arteries, ureters, main pancreatic ducts and spinal cord. Those diagrams are subsequently approximated
by means of segments of an open polygon, and segments are characterized by means of symbols of
a selected grammar. Owing to this, we obtain a description of the examined organ shape, limiting
considerably the representation of those fragments (which usually take a lot of space on the image)
which can be considered to be physiologically correct; it shows all pathological lesions of interest to
us occurring on the examined structures.

The above-presented concept of preprocessing medical images in preparation for the analysis process,
with the aim of reaching an automatic understanding of the essence of pathological lesions shown on
them, contains many important and difficult details. Their solution was necessary for the functioning
of the method described here. We shall comment briefly on some of the numerous problems associated
with image preprocessing which had to be undertaken and solved before it was possible to describe
attempts at automatic understanding of the medical content and the essence of information about
deformations visible on images.

First, let us emphasize that in order to achieve the aimed-for objectives, it was necessary to obtain
width diagrams of the analyzed structures in such a way that they illustrated both concentric and
eccentric stenoses [21]. It is possible to achieve this objective by the application, at the preprocessing
stage, of an approach to determining the central line and creating a width diagram slightly different
than the ones proposed by other researchers [7,22]. The conducted research has shown that in order to
obtain the central line of the analyzed vessel, rather than the operation of morphological erosion of the
binarized vessel proposed by some researchers, or manual positioning (performed by a specialist) of the
location of the said line, we should use a different technique which gives much better results. Similar
research has demonstrated that in the course of attempts at automatic understanding of pathological
lesions of the structure of the examined organ, and of deformations of the analyzed organ shape
indicating those, the best results are obtained when the reference line is a curvilinear axis of the vessel.
This axis can be laid out by the method of skeletonization of the analyzed anatomical structures used
by the authors. The method is based on an appropriately modified Pavlidis algorithm [23]. The said
method is efficient in calculations, and the central line obtained in its result, with precisely central
location in relation to its walls (even in the case in which they are pathologically deformed), creates a
certain path along which width profiles are determined.

If we take a numerically straightened axis line of the analyzed vessel for our reference point,
then we obtain the diagrams of its unilaterals (the so-called top and bottom or left and right). These
diagrams are obtained from the use of a specialist algorithm, the so-called straightening transformation,
prepared by the authors; it allows one to obtain width diagrams of the analyzed structures, together
with morphological lesions occurring in them [8]. These diagrams are subsequently approximated with
a polygon, which constitutes the basis for the further-discussed process of automatic understanding of
pathological deformations of the analyzed organs shown on images.

To summarize the above, we can say that the following operations should be conducted in the course of
preprocessing of the examined images (in square brackets are references to bibliographic items supplying
all the necessary technical details relating both to the algorithms and details of implementation):

• Segmentation and filtering of the analyzed images [24,25].
• Skeletonization of the analyzed structures of selected vessels shown on images, e.g. on images of
coronary arteries, main pancreatic ducts, ureters and spinal cords [21,23].
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Figure 14.2 Operations conducted in the course of preprocessing of the examined images. At the top
is the original image of a pancreatic duct showing symptoms of chronic inflammation. At the bottom,
a diagram of the pancreatic duct contours with visible morphological lesions.

• Analysis of real, and verification of apparent, skeleton ramifications [26,27].
• Smoothing the skeleton by averaging its elements [28].
• The application of a specially prepared straightening transformation, transforming the external
contour of the examined structures in a two-dimensional space to the form of 2D width
diagrams, showing contours of the ‘numerically straightened’ organ. This transformation retains all
morphological details of the analyzed structures (in particular their deformations and pathological
lesions) [29]. For this reason, it is a convenient starting point for further analysis of the properties
of shape features of the analyzed structure and for detecting such deformations (with the use of
syntactic methods of image recognition). This constitutes the basis for an automatic understanding
of the nature of pathological lesions, and for a diagnosis of the disease under consideration.

Recognition and automatic understanding of the looked-for lesions of organ shapes with the use
of syntactic methods of image recognition [30] is possible with a prior application of the specified
sequence of operations, which together constitute the previously mentioned image preprocessing stage.
Details relating to individual stages of preprocessing of the analyzed images were discussed at length
in the above-quoted publications of the authors. These stages have also been specified in Figure 14.2.

3. Structural Descriptions of the Examined Structures

Syntactic image analysis, aimed at understanding the looked-for lesions, which are symptoms of some
defined diseases, has been conducted on all examples analyzed here, based only on the obtained width
diagrams of vessels shown on those images (following the above-described image preprocessing). To
diagnose and describe the analyzed lesions in the examined structures, we have used context-free
grammars of the LR(1)-type [13,30]. These grammars allow one (with an appropriate definition of
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primitive components) to diagnose and describe in an unambiguous way all lesions and pathological
deformations important from the point of view of the diagnosis tasks analyzed here. The key to success
in every task performed was an appropriate definition of the primitive component set (alphabet of graph
primitives), allowing the recording of every examined organ shape (both correct and pathologically
changed) as a regular expression in the language defined by the analyzed grammar. As has already
been stressed above, this task was simplified due to the fact that primitive components were defined on
the vessel width diagrams obtained (as a result of preprocessing) after an execution of the straightening
transformation. This did not mean, however, that indicating the necessary primitive components (and
finding terminal symbols corresponding to those components) was a very easy task.

It is at the stage of selecting the primitive components that the author of the medical image
understanding method described in this chapter must, for the first time (although not for the last time),
cooperate closely with a team of experienced medical doctors. These experienced diagnosis experts are
the only people competent to tell which features of the analyzed contour of a selected organ part are
connected with some stages of natural diagnostic reasoning. The role of the producers of the optimum
set of ‘letters’ of the created grammar is strictly divided: a doctor can (and should!) focus his/her
attention on the largest number of details possible, treating every image discussed here as a totally
new, separate case. A computer scientist must try to integrate and generalize the detailed information
in such a way that the result is a maximally compact set of as few primitive components as possible;
the components must allow the building of a computationally effective graph grammar [12,31].

To use a concrete example, we should state that in the tasks selected and discussed here, there was a
need to determine primitive components which allowed the description of pathological deformations,
i.e. which edges of the analyzed structures should appear on the obtained width profiles. In accordance
with the opinions of doctors with whom we consulted, shape features important for diagnostics are:
pathological stenoses or dilations of the examined vessels and local changes of their contour, such as
side ramifications and cysts.

After analysis of many example images, it turned out that morphological lesions with very differing
shapes played an identical role in the diagnostic reasoning of doctors. Therefore, for the aggregation
of the various forms of deformation of the contour line of the examined vessels, it was possible to use
the line approximation algorithm of the previously obtained vessel width diagram for identical sets
(sequences) of primitive components. An approximation of the complete edge line of the diagram by
means of a polygon is a method described in [32]. As a result of the application of this method for
every diagram, we obtain a sequence of segments approximating its external contours. This sequence
simplifies the analyzed image once again, yet it still retain all information important from the point
of view of the constructed automatic diagnostic reasoning sequence. It is worth noticing that, at this
stage, we have a very uneven compression of the primitive image information. This is beneficial for the
‘concentration of attention’ of the recognizing diagram operating on these contour fragments, which are
really important. If a fragment of the examined vessel at some (even very long) segment of its course
has a smooth form, deprived of morphological features, which can be important for the recognition
process, then the whole approximated segment is one section of a polygon and it will be represented by
one symbol in a notation based on a sequence of identifiers of the discovered graphic primitives. If, on
the other hand, a contour fragment is characterized by big changes of the edge line, then the proposed
form of description will attribute many segments of a polygon; this will mean a big representation in
the final linguistic notification. This is rightly so, since, for diagnosis, it is an important fragment!

Next, depending on parameters, terminal symbols are attributed to each of the polygon segments.
In the examples considered here, one parameter was enough to obtain a satisfactory specification
of the description of the analyzed images. The parameter characterized every successive segment of
the approximating polygon in the form of its inclination angle. To be more exact: the appropriately
digitized values of the angle were given in the form of primitive components. The digitation pattern
used could be treated as a counterpart of a dictionary of the introduced language of shape features.
Yet, in more complex tasks, we can imagine a situation in which the set of primitive components can
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also depend on further features of the polygon approximating the examined shape, e.g. on the length
of individual segments or their mutual location.

Of course, languages describing separate classes of medical image are different [3,30,31]. Thus,
concrete rules governing the creation of languages of primitive components for languages in each class
are different. Formulae for concrete operations, aimed at building a specialist grammar and specialist
language of description of shape features in everyone of the cases described here will be presented
below, while the task of recognition of types of disease based on appropriate X-ray images is also
described. It will be possible to notice easily that, in every case, the final result of the operation
is a sequence of terminal symbols, which are the input into appropriately designed syntax analyzers
[31,33] and syntactic transducers, the basic tools for the implementation of the process of automatic
understanding of medical images described in this chapter.

4. Coronary Vessel Cognitive Analysis

In this section, we present methods of computer-aided diagnosis for the recognition of morphological
lesions of coronary vessels with the use of syntactic methods of image recognition. Recognizing such
lesions is extremely important from the point of view of correct diagnosis of myocardial ischemic
states caused by coronary atheromatosis lesions resulting in stenoses of the artery lumen, which in turn
lead to myocardial ischemic disease. This disease can take the form of either stable or unstable angina
pectoris or myocardial infarction [7].

The objective of the methods described in this section will be to diagnose the stenoses of coronary
arteries, in particular the so-called important stenoses: artery lumen stenoses, which exceed 50% and
occur in the left coronary artery trunk, as well as stenoses exceeding 70% of the artery lumen in
the remaining segments of coronary vessels. The importance of a correct diagnosis of such lesions is
demonstrated by the fact that closing the lumen of one of the left coronary artery branches, e.g. the
interventricular anterior artery, can constitute a threat to life due to the fact that it leads to ischemia
or necrosis of more than 50% of the left ventricle cardiac muscle. Examples of images of coronary
arteries with stenoses are shown in Figure 14.3.

In order to diagnose correctly and define the degree to which lesions have advanced, we have
proposed a context-free picture grammar of the LALR(1) type. This grammar allows one to diagnose
effectively this type of irregularity shown on X-ray images obtained in the course of coronography
examinations. The main advantage of the application of context-free grammars, as compared to analysis

Figure 14.3 Images of coronary arteries obtained in the course of coronography examination. The
frames mark important strictures of the examined arteries, which will be localized and analyzed with
the use of structural pattern recognition methods. The figures also show the results of recognition of
pathological lesions. The graphs present width profiles of the examined artery sections with strictures.
On the diagrams, bold lines mark the areas diagnosed by a syntax analyzer as the places of occurrence
of pathological strictures.
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methods proposed by other researchers [7,22], is a possibility to diagnose–on the obtained width profiles
of the examined artery–both concentric strictures, which in a cross-section are seen as a monotonous
stenosis of the whole lumen, and eccentric stenoses, which occur on only one vessel wall. This fact is
important from the diagnostic point of view since it allows one to discover if the identified symptom
is characteristic for stable angina pectoris (if a concentric stricture is discovered) or unstable angina
pectoris (if an eccentric stenosis is discovered) [7].

The following attributed grammar has been proposed to diagnose various types of stenosis shape:
GCA = �VN�VT, SP, STS), where:

VN = �STENOSIS, U, H, D�–the set of non-terminal symbols
VT = �h, u, d�for h ∈ �−10��10���u ∈ �10��90���d ∈ �−10��−90��–the set of terminal

symbols
STS= STENOSIS–the grammar start symbol
Production set SP is defined in Table 14.1.

In the presented grammar, the first in the production set sequence defines the potential shapes of
stenoses which can occur in the coronary vessel lumen. Further introductory steps in this grammar
describe a linguistic formula defining the descending and ascending parts of the analyzed stricture. The
last production defines a horizontal segment, which can occur between those parts. Semantic variables
he and we define the height and length of the terminal segment labeled e. Their role in diagnosing and
presenting the diagnosis to doctors is auxiliary. The considerable simplicity of the grammar presented
here results from a small number of morphological lesions, which this grammar describes. It also
proves the significant generation power of context-free grammars applied to analyze and recognize
medical images. The use of attributes is aimed at determining additional numeric parameters of the
diagnosed stricture, which allow the determination of the percentage rate of the coronary artery lumen
stenosis, important for the prognosis of the patient’s state.

With the application of the context-free grammar presented in this section, it is possible to diagnose
various types of coronary stricture with great precision. In the case of syntactic analysis with the use of
those grammars, we are dealing with a situation in which the recognizing software almost automatically
supplies practically complete information about irregularities of the examined arteries.

The image set of test data, which was used in order to determine as a percentage the efficiency of
correct recognition of the size of stenoses in coronary arteries, included 55 different images obtained for
patients with heart disease. In this set, we considered image sequences of patients previously analyzed
at the grammar construction stage and by the recognizing analyzer. In order to avoid analyzing identical
images, we selected separate images occurring a number of positions before or after the ones used
originally (from DICOM sequences). The remaining images in the test data were obtained for a new
group of patients (25 people), including five people who had previously undergone angioplasty, and in
whose cases a restenosis of the previously dilated vessel had occurred. The objective of an analysis of
these data was to determine as a percentage the efficiency of correct recognition of an artery stenosis,
and to determine its size using the grammar introduced. On the image data tested, the efficiency of

Table 14.1 Definition of grammar rules from production set SP.

Changes Grammar rules Semantic actions

Stenosis 1. STENOSIS→D H U �D U � D H Lesion = Stenosis
2. H→H h � h wsym = wsym+wh!hsym = hsym
3. D→D d � d +hh
4. U→U u � u � � �
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recognition amounted to 93%. It is worth emphasizing that this value refers to automatic analysis and
determination of the size of the stenoses using the procedure introduced, without the need to correct the
external vessel contours manually. In this case, the value of the efficiency of recognition is determined
by the percentage fraction of the accurately recognized and measured vessel stenoses compared to the
number of all images analyzed in the test. The recognition itself meant locating and defining the type
of stenosis, e.g. concentric or eccentric.

Figure 14.3 presents examples of recognizing the looked-for lesions in coronary artery images
analyzed in this section. Recognized symptoms have been marked with a bold line.

5. Understanding of Lesions in the Urinary Tract

This section will present the methodology for analyzing and diagnosing morphological lesions occurring
in upper urinary tracts. The diagnosis of these lesions has been conducted based on analysis of
radiograms (urograms) of the renal pelvis and upper segments of urinary tracts [9]. In the case of
analysis of renal radiograms, the main task is to recognize local stenoses or dilations of upper segments
of urinary tracts (examples of these images are presented in Figure 14.4) and attempt to define the
correct morphology of the renal pelvis and renal calyxes. Lesions in these structures can suggest the
occurrence of renal calculi or deposits, which cause ureter atresia and can lead to diseases such as
acute extrarenal uremia or hydronephrosis.

An analysis of the correct morphology of the ureter lumen will be conducted with the use of
context-free attributed grammar. The analysis of the correctness of the renal pelvis and renal calyx
will be conducted with the use of a tree grammar. Tree methods of syntactic image recognition are
generally used to analyze more complex objects, textures or scenes in an image [13] and this is why

Figure 14.4 Images obtained from urography examinations showing upper sections of the urinary
tracts. Visible renal pelvises and urinary tract sections with ureterostenosis are shown in the frames.
The results of diagnosing disease symptoms using syntactic methods are also presented.
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for nephrogram analysis they have been used to verify the correctness of the morphology of the renal
pelvis and renal calyx.

Diagnosing morphological lesions in the form of ureter stenoses or dilations has been conducted
with the use of the following attributed grammar: GU = �VN�VT�SP�STS�, where, as in the previous
case, VN stands for a set of non-terminal symbols, VT a set of terminal symbols, SP the production set
and STS the start symbol.

VN = �LESION, STENOSIS, DILATATION, HOR, SLOPE_UP�
SLOPE_DOWN�

VT = �h, su, sd�for h ∈ �−8��8��� su ∈ �8��180��� sd ∈ �−8��−180��
STS= LESION
Production set SP is defined in Table 14.2.

The grammar presented here, like its counterpart used to diagnose stenoses of the coronary artery
lumen, is not a very complex grammar. This is due to the fact that it defines a small number of
morphological lesions, which can reveal ongoing disease processes. It allows one to diagnose only
various forms of stenosis and dilation characteristic of various disease units. The use of attributes also
allows determination of the numerical parameters of morphological lesions. The simplicity of grammars
introduced so far results mainly from the large generation capacity of context-free grammars, understood
mainly as possibilities to describe complex shapes by means of a small number of introductory rules,
that is grammar productions. We shall see a totally different situation in analyzing and diagnosing
pathological lesions in the main pancreatic ducts, where a larger number of symptoms to be recognized
and the variety of their shapes will result in the fact that the complexity of the looked-for pathologies
on the external contours can be ensured only by a more complex grammar, together with an auxiliary
recognition procedure based on the use of languages of description of shape features.

The analysis of the renal pelvis and renal calyx was accomplished with the use of GEDT expansive
tree grammar, generating trees with directed and labeled edges, that is EDT trees [13].

Even in the correct conditions, that is without visible lesions in the morphology, these structures are
characterized by an extraordinary variability of shape. However, it is possible to find some common

Table 14.2 Definition of grammar rules from production set SP.

Changes Grammar rules Semantic actions

Stenosis 1. LESION→STENOSIS Lesion = Stenosis
2. STENOSIS→SLOPE_DOWN HOR

SLOPE_UP
3. STENOSIS→SLOPE_DOWN SLOPE_UP
4. STENOSIS→SLOPE_DOWN HOR

Dilatation 5. LESION→DILATATION Lesion = Dilatation
6. DILATATION→SLOPE_UP HOR

SLOPE_DOWN
7. DILATATION→SLOPE_UP

SLOPE_DOWN
8. DILATATION→SLOPE_UP HOR
9. HOR→HOR h � h wsym = wsym+wh!hsym = hsym

10. SLOPE_DOWN→SLOPE_DOWN +hh
sd � sd · · ·

11. SLOPE_UP→SLOPE_UP su � su
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features characteristic for all correct structures [34]. Those features are, first of all, the number of smaller
and bigger calyxes in the renal sinus. In correct structures there are usually only two or three bigger
calyxes entering the renal pelvis; in turn, those are formed by eight to ten smaller calyxes occurring in
them. Smaller calyxes end with concave renal papillae forming peaks of renal pyramids [27,34].

Analysis of such regularities was made by means of an expansive tree grammar defined especially
to analyze the morphology of skeletons of the examined renal pelvis and renal calyx. Skeletonization
was made with the use of the Pavlidis skeletonization algorithm. The skeleton obtained as a result of
thinning was further analyzed in the following way: the first skeleton ramification point is the beginning
of skeletons of bigger calyxes, thus, finding the number of ramifications originating in them allows
one to determine the number of bigger calyxes. Determining in every bigger calyx the ramifications
of the next order calyx allows one to determine the number of smaller calyxes originating from it.

On the other hand, in smaller calyxes, the analysis of end points in a skeleton allows one to determine
if they ramify further or not. This can show if a given renal papilla is not concave towards the calyx
interior but convex towards the renal pyramid, as is the case with hydronephrosis, cysts or neoplasm
processes [31]. Skeletonization of convex renal papillae leads to the formation of skeletons of those
structures without further ramifications. The result of skeletonization of correct renal papillae, that is
concave renal papillae, is skeleton lines with visible fork-like ramifications [31].

A tree grammar describing the correct skeletons of the renal pelvis and renal calyx will be defined
in such a way that the tree root will be defined by the location of the point where bigger calyxes
ramify; its successors will be determined by ramification points of the 2nd order, that is, the beginning
of smaller calyxes. The last layer of peaks is defined by ramification points of the 3rd order, that is,
by ramifications occurring if a renal papilla has a concave shape.

To define primitive components used in the tree grammar, we can use the approximation algorithm of
skeleton ramification in the renal pelvis and renal calyx, which allows one to identify every ramification
with a single segment, whose ends are determined by the ends of the approximated ramification. Next,
edge terminal labels are attributed to each of the determined segments, depending on their angles of
inclination (see grammar definition). As a result of the operation we obtain a representation of the
analyzed object in the form of a tree.

To diagnose morphological changes in renal pelvises, the following graph grammar was used:
Gedt = �(�"� r�P�Z�, where ( = (N ∪(T is a set of terminal and non-terminal vertex labels, r is a
function which assigns to the graph vertex the number of its consequents, Z is a finite set of starting
graphs, " is a set of edge labels, and P is the production set.

(T = �renal_pelvis�bigger_calyx� smaller_calyx�papilla_renalis�
(N = �RENAL_PELVIS�BIGGER_CALYX�SMALLER_CALYX�
" = �x ∈ �30��180���y ∈ �30��−30��� z ∈ �−30��−180���
Z = �RENAL_PELVIS�

Production set P is defined in Table 14.3.

The first production group defines the different kinds of normal renal pelvis, i.e. having two or three
smaller calyxes. The succeeding productions define the form of bigger calyxes formed from two or
more smaller calyxes. The last group defines the proper form of renal papillae, which give a fork form
during the skeletonization, i.e. it finishes with short branches which arise only when it is concave to
the interior of a smaller calyx. Convex forms during skeletonization are thinned to the line without
end branches, which results from the properties of skeletonization algorithms.

Interpretation of disease lesions in the upper urinary tracts was conducted based on a test set of
images composed of 30 X-ray images showing disease lesions. These images can be divided into two
groups interpreted by a specialist as cases with in-born lesions and those with lesions acquired as
a result of ongoing disease processes (renal calculi or hydronephrosis). All of them revealed ureter
lumen stenosis or anomalies in the structure of the renal sinus. The test conducted showed that the
recognition efficiency of such lesions on the test data set equals about 90%. In the remaining cases,
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Table 14.3 Graph grammar production set P.

Structure Grammar rules

Renal pelvis RENAL_PELVIS→
renal_pelvis (x BIGGER_CALYX y BIGGER_CALYX z BIGGER_CALYX)
� renal_pelvis (x BIGGER_CALYX y BIGGER_CALYX)
� renal_pelvis (x BIGGER_CALYX z BIGGER_CALYX)
� renal_pelvis (y BIGGER_CALYX z BIGGER_CALYX)

Calyxes major BIGGER_CALYX→
→ bigger_calyx (x SMALLER_CALYX y SMALLER_CALYX

z SMALLER_CALYX)
� bigger_calyx (x SMALLER_CALYX y SMALLER_CALYX)
� bigger_calyx (x SMALLER_CALYX z SMALLER_CALYX)
� bigger_calyx (y SMALLER_CALYX z SMALLER_CALYX)

Calyxes minor SMALLER_CALYX→ smaller_calyx (x papilla_renalis) � smaller_calyx
(y papilla_renalis)

� smaller_calyx (z papilla_renalis) � smaller_calyx (x papilla_renalis
ypapilla_renalis)

� smaller_calyx (x papilla_renalis z papilla_renalis)
� smaller_calyx (y papilla_renalis z papilla_renalis)

interpretation difficulties resulted mainly from a change of the pathology character from local and
distinct to blurred. The lesions in question are very large, originating as a result of neoplastic lesions,
which lead to a complete change of shape or disappearance of the analyzed structures. Interpretation
correctness depends also on the size of the approximation threshold, which, for considerably dilated
ureters, should be selected in a way dependent on the size of the lesion observed. Such cases often
remain not fully recognized and they can impact lowering the entirety of the method’s efficiency.
Figure 14.4 shows examples of diagnosing the looked-for lesions in urinary tracts.

6. Syntactic Methods Supporting Diagnosis of Pancreatitis
and Pancreatic Neoplasm

The objective of ERCP image analysis is to diagnose morphological lesions of pancreatic ducts
characteristic of neoplasm and chronic pancreatitis. The most important symptoms characteristic for
pancreatic neoplasm are, first of all, the occurrence of local stenoses or dilations of the main pancreatic
duct, as well as the occurrence of cysts or cavernous projections on the external edges of the pancreatic
duct. Ducts with symptoms of chronic pancreatitis can be characterized by the occurrence of irregular
side ramifications, as well as local stenoses or dilations (Figure 14.5). The enumerated symptoms will
be recognized by a context-free attributed grammar specially defined for this purpose, and additionally
by languages of description of shape features allowing one to diagnose quickly various types of
pathological convexity or stenosis.

Analysis of the looked-for morphological lesions was conducted based on width diagrams obtained
during image preprocessing, with the use of context-free attributed grammars of the LR(1)-type. Such
grammars, like those in the previous tasks, with appropriate definition of primitive components on
width diagrams and primitive terminal symbols corresponding to those, allow one to diagnose on an
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Figure 14.5 ERCP images showing pancreatic ducts with symptoms of chronic pancreatitis and
pancreatic cancer. The results of disease symptom recognition using syntactic methods are also shown.

ERCP image all pathological lesions important from a diagnostic point of view, that is cysts, strictures,
dilations and ramifications.

The following attributed grammar has been used to describe morphological lesions in the examined
pancreatic ducts: G = �VN�VT�SP�STS�, where:

VN = �LESION, CYST, STENOSIS, DILATATION, BRANCH, P, S, G, I, N,
NS, NG, NI, NN�

VT = �p, s, ns, g, ng, i, ni, n, nn�
STS= LESION
Production set SP is defined in Table 14.4.

The semantic rules of the first productions specify the type of looked-for disease lesion, while the
productions define the basic types of such diseases. Further productions define possible shapes of such
pathologies. The last group specifies the shapes of descending and ascending arms in the morphology of
such disease symptoms. The semantic variables of those productions allow specification of numerical
parameters of the recognized lesion.

For a correct description and recognition of symptoms for which a 2D analysis is necessary on
the obtained width diagrams (that is, for example, big cavernous projections), additional languages of
description of shape features with multidirectional sinquad distribution have been used [26]. Those
languages have also been used due to the impossibility of defining precisely all potential shapes which
the looked-for lesions can take. The main advantage of those languages is that the recognition process
can be based on an analysis of features describing the essence of those shapes, that is, the occurrence
of lesions such as, for example, concavities or dilations. Those languages, together with the application
of a sequential transducer with multiple input, allow one to recognize some lesions without a need
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Table 14.4 Production set SP defining pathological changes in pancreatic ducts.

Lesion Grammar rules Semantic actions

Cyst 1. LESION→CYST Lesion = Cyst
2. CYST→ I P NI �G P NG � I P

NG �G P NI � I S NI �G S NG � I S
NG �G S NI � I NS NI �G NS
NG � I NS NG �G NS NI

Stenosis 3. LESION→STENOSIS Lesion = Stenosis
4. STENOSIS→NS S �NS G �NS P

S �NS P I �NG S �NI NS I �NI S
Dilatation 5. LESION→DILATATION Lesion = Dilatation

6. DILATATION→S P NG � S G
NS �S NS �G NS

Branch 7. LESION→BRANCH Lesion = Branch
8. BRANCH→ I NI � I NS � I P NI

NN � I NS NI NN �G NI �G S
NN �G P NN �G S NI NN �S
NG �S NS NN �N G NG NI

9. N→ n �N n
10. NN→ nn �NN nn � � �

11. I→ i � I i
12. NI→ ni �NI ni wsym = wsym+wterminal symbol

13. G→ g �G g
14. NG→ ng �NG ng hsym = hsym+hterminal symbol

15. S→ s �S s
16. NS→ ns �NS ns � � �

17. P→ p

to define their morphology precisely, but based only on transitions between the so-called sinquads
(that is, specified directions of the sectors approximating the width diagrams). This analysis is more
universal in its character than an analysis using grammars, due to the fact that it allows identification
of all types of convexity, ramification and stenosis–even in situations in which those lesions are not
recognized by the previously described context-free grammar.

Despite the complicated grammatical reasoning process, in this case, the syntactic methods of image
recognition also supply practically all information on morphological lesions on the external edges of
the pancreatic ducts analyzed here.

As for the grammars analyzing coronary arteries and ureters, for the sequential grammar presented
in this section, a syntax analyzer has been constructed in the form of a parser generated with the use
of the YACC compiler. This analyzer was subject to a number of experiments; as a result it obtained
very good results in recognizing the looked-for lesions on ERCP images. In the case of analysis of
those images, for the shape feature analysis procedure, a sequential transducer was also implemented,
a counterpart of the syntax analyzer for languages of description of shape features.

The efficacy of this method of computer-aided diagnosis of cancerous and inflammatory lesions
based on ERCP pictures can be estimated at 90%. This value stands for the percentage of correct
recognitions of symptoms defined in the grammar: symptoms in the form of strictures, ramifications
and lesions with cyst-like features. The remaining 10% of the analyzed pancreatic images, which were
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not fully correctly interpreted, can be considered to be cases difficult to interpret. Such images can
present, among others, incorrect ramifications looping on the main image with the pancreatic duct, or
show amputation (discontinuation) of the duct. Recognition of these may require either 3D analysis
or independent interpretation of separated duct parts. Some images, as in the case of artery and ureter
images, should be analyzed with a dynamically selected approximation threshold. These cases are
also included in the group of images that are difficult to interpret. Figure 14.5 presents examples of
recognition of looked-for lesions in ERCP images.

7. Semantic Analysis of Spinal Cord NMR Images

Another interesting application of the syntactic approach to automatic perception analysis involves the
morphological classification of diseases of the spinal cord and surrounding spinal meninges [35]. This
section provides an example of the analysis of such structures based on the scrutiny of congenital
and developmental anomalies in the cord structure, well apparent in Magnetic Resonance Images
(MRI).

There is a great variety of central nervous system and spinal cord diseases of variable etiology,
including congenital and developmental anomalies revealed as lesions of spinal cord sections, or as
dysfunctions of the nervous system. Apart from most common spinal cord diseases, the list includes
cerebrospinal meningitis caused by bacteria, viruses or pathogenic parasites entering the central nervous
system, polioencephalitis or poliomyelitis, inflammatory conditions in the whole cord width either
diffused, disseminated or focused. These serious cases might be subjected to semantic analysis using
structural classifiers. Diffuse diseases of the spinal cord may be caused by lesions in anterior and
posterior spinal arteries. The occlusion of blood vessels might cause significant deterioration of the
patient’s condition, leading to a paralysis of sometimes even all limbs. Spinal cord damage caused
by vascular problems might originate from the spinal cord tissue, sensory roots of a spinal nerve,
meninges, a vascular rete in the spinal cord, the vertebrae or organs in the direct vicinity of disks.
There might also be metastases from other organs.

In the case of analysis of backbone and spinal cord MRI images, the chief objective in the recognition
stage is to detect and diagnose lesions that might evidence a whole range of various disease units: from
myelomeningocele, numerous forms of inflammatory condition or cerebral or spinal cord ischemia, to
the most serious cases of intra- and extramedullary tumors. An unambiguous identification of all units
with the use of one recognizing software is extremely difficult, due to rather subtle differences that are
decisive for the correct classification of every one of them. All the same, structural analysis proves
to be extremely useful in the specification of the degree of the disease unit development by means of
specifying the size of lesions in the morphology of the cord and by defining the compression of the
spinal cord and meninges [35].

The analysis of this structure uses a developed context-free grammar. It allows us to identify the
symptoms and to draw diagnostic conclusions relating to the inner nature of the visible pathology.

The grammar developed for the analysis of spinal cord images is defined as follows: Gsc =
�VN�VT�STS�SP�, where:

VN = �LESION, NARROWING, ENLARGEMENT, H, E, N�
VT = �h, e, n�for h ∈ �−11��11��� e ∈ �11��180���n ∈ �−11��−180��

STS= LESION
SP is defined in Table 14.5.

This grammar permits one to detect different forms of narrowing and enlargement which may
characterize the different disease units (for example neoplasm or inflammation processes). The results
of spinal cord morphology analyses aimed at locating lesions are provided in Figure 14.6.
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Table 14.5 Production set defining changes in the spinal cord.

Lesion Grammar rules Semantic actions

Dilatation 1.LESION→ENLARGEMENT Lesion = enlargement
2.ENLARGEMENT→E H N �E N
�E H

Stenosis 3.LESION→NARROWING Lesion = narrowing
4.NARROWING→N H E �N E �N H
5.H→ h � h H wsym = wsym+wh!hsym = hsym+hh
6.E→ e � e E
7.N→ n � n N � � �

Figure 14.6 Results of disease symptom recognition and understanding in the images of the spinal
cord.

8. Conclusions

The presented methods of structural cognitive analysis are basically an attempt at automating the
specifically human process of understanding the medical meaning of various organ shapes on a digital
image; they are not only an attempt at simple recognition. In particular, a diagnosis may result
from such an automatic understanding of shape; it is also possible to draw other numerous medical
conclusions. This information may supply a method of treatment, that is, different types of therapy
may be recommended depending on the shape and pathological localization described in the grammar.
The results obtained from the application of the characterized methods confirm the immense potential
of syntactical methods in the diagnosis of cardiac ischemic diseases, urinary tract disabilities and
inflammation and neoplasm processes in the pancreas, as well as lesions of the central nervous system.

The syntactic methods of pattern recognition presented in this chapter have many applications in
the field of artificial intelligence and medical IT, especially in the fields of computer medical imaging
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and computer-aided diagnosis. The methods, originating from mathematical linguistics, allow us not
only to diagnose and create formal and advanced descriptions for complicated shapes of disease
symptoms carrying diagnostic information. They can also be used to create intelligent computer systems
constructed for the purpose of image perception: allowing us to obtain a definition and machine-
interpretation of the semantic contents of the examined image. These systems may assist the operation
of medical robots widely used in the operational field in various surgeries. They can also constitute an
integral part of CAD systems or intelligent information systems managing pictorial medical databases
located (scattered) in various places [36–38].
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Images
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Segmentation of medical imagery is a challenging problem due to the complexity of the images, as

well as to the absence of models of the anatomy that fully capture the possible deformations in each

structure. Simple, low-level vision techniques have had limited success in this domain. This chapter

provides the roadmap for automatically and effectively segmenting regions of interest. The roadmap

starts by identifying three basic operations for image segmentation: convolution, thresholding and

mathematical morphology. Based on these operations, one can develop a variety of hybrid region

identification techniques which we call ‘Visualization Operators’. The final step of the roadmap is to

add intelligent capabilities to the recognition of these regions, based on techniques like fuzzy logic or

neural networks.

1. Introduction

Image segmentation is a partitioning of an image into related regions. The segmentation process is
perhaps the most important step in image analysis since its performance directly affects the performance
of the subsequent processing steps in image analysis. Despite its importance, segmentation still remains
an unsolved problem in the general sense, as it lacks a general mathematical theory. The two main
difficulties of the segmentation problem are its underconstrained nature [1] and the lack of definition
of the ‘correct’ segmentation [2]. Perhaps as a consequence of these shortcomings, a plethora of
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segmentation algorithms has been proposed in the literature [3]. There is a variety of such segmentation
methods:

• histogram thresholding;
• edge following;
• tree/graph-based segmentation;
• region growing;
• clustering;
• probabilistic and Bayesian segmentation;
• neural network segmentation.

One major problem present in most of the above segmentation techniques is that they do not perform
well with medical images, as their gray levels of different objects are relatively similar. The other
major problem is choosing a suitable approach for isolating different objects from the backgrounds.
The combination of some of the above techniques may produce better segmentation results for some
images, but nothing is guaranteed.

In contrast to the heuristic nature of these methods, three primitive segmentation operations remain
intrinsic and suggest a more algorithmic tack if they have been tuned and geared well for medical
images. These three primitive operations are based on convolution, thresholding and mathematical
morphology. Hybridizing such operations and adding more blocks to the integration will contribute to
drawing the roadmap for segmenting medical images.

2. Convolutional Primitive Segmentation

Convolution is a mathematical operation that is fundamental to many common image processing
processes. Convolution provides a mechanism for edge detection through ‘multiplying together’ two
arrays of numbers to produce a third array of numbers of the same dimensionality. This can be used
in image processing to implement operators whose output pixel values are simple linear combinations
of certain input pixel values. In an image processing context, one of the input arrays is normally an
image. The second array is usually much smaller, and is also two-dimensional, and is known as the
kernel. Figure 15.1 shows an example image and a kernel that we will use to illustrate the convolution
operation.

The convolution is performed by sliding the kernel over the image, generally starting at the top left
corner, so as to move the kernel through all the positions where the kernel fits entirely within the
boundaries of the image. Each kernel position corresponds to a single output pixel, the value of which
is calculated by multiplying together the kernel value and the underlying image pixel value for each

K00 K01 K02

K10 K11 K12

K20 K21 K22

I00 I01 I02 I03 I04 I05 I06 I07 I08

I10 I11 I12 I13 I14 I15 I16 I17 I18

I20 I21 I22 I23 I24 I25 I26 I27 I28

I30 I31 I32 I33 I34 I35 I36 I37 I38

I40 I41 I42 I43 I44 I45 I46 I47 I48

I50 I51 I52 I53 I54 I55 I56 I57 I58

I60 I61 I62 I63 I64 I65 I66 I67 I68

I70 I71 I72 I73 I74 I75 I76 I77 I78

Figure 15.1 The convolution process requires an image and a kernel.
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Figure 15.2 Illustrating the process of convolution.

of the cells in the kernel, and then adding all these numbers together [4]. Figure 15.2 illustrates this
operation. Using convolution, the value of the output pixel O22 can be calculated as follows:

O22 = I11
∗K00+ I12

∗K01+ I13
∗K02+ I21

∗K10+ I22
∗K11

+ I23
∗K12+ I32

∗K20+ I32
∗K21+ I33

∗K22 (15.1)

The convolution process is a highly researched issue and it is affected by many factors. There
are many types of convolution operator used in the literature [5] which either use a single kernel or
multiple kernels. There are many single kernels that are only used for special effects (e.g. horizontal
line detection, smoothing). Figure 15.3 illustrates the effect of two single kernels upon an X-ray image
using smoothing and high-pass kernels:

1

16
∗

1 2 1

2 4 2

1 2 1

�Smoothing�

−1 −1 −1
−1 9 −1
−1 −1 −1

�High-pass�

Figure 15.3 Using a single convolution kernel for smoothing.
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However, multiple kernels are applied on the image in multiple stages. In particular, there are some
notable multiple kernel convolution operators that we list herewith.

The Roberts Cross operator performs a simple, quick to compute, 2D spatial gradient measurement
on an image. The operator consists of a pair of 2× 2 convolution kernels. One kernel is the other
rotated by 90�.

Gx �
1 0

0 −1 Gy �
0 1

−1 0
�G� = �Gx�+ �Gy�

These kernels are designed to respond maximally to edges running at 45� to the pixel grid, one kernel
for each of the two perpendicular orientations. We can see that the result image is very dark when
applying the Roberts Cross operator to a mammogram.

The Laplacian is a 2D isotropic measure of the second spatial derivative of an image. The Laplacian
of an image highlights regions of rapid intensity change and is therefore often used for edge detection.

−1 −1 −1
−1 8 −1
−1 −1 −1

and

−1 −4 −1
−4 20 −4
−1 −4 −1

The Sobel operator performs a 2D spatial gradient measurement on an image and so emphasizes
regions of high spatial frequency that correspond to edges. Typically, it is used to find the approximate
absolute gradient magnitude at each point in an input image. Sobel kernels are:

−1 0 1

−2 0 2

−1 0 1

and

−1 −2 −1
0 0 0

1 2 1

These kernels are designed to respond maximally to edges running vertically and horizontally relative
to the pixel grid, one kernel for each of the two perpendicular orientations. The kernels can be applied
separately to the input image, to produce separate measurements of the gradient component in each
orientation (call these Gx and Gy). These can then be combined together to find the absolute magnitude

of the gradient at each point �G� =
√

G2
x−G2

y and the orientation of that gradient. An approximate

magnitude can be computed using: �G� = �Gx�+ �Gy�.
Compass edge detection is an alternative approach to the differential gradient edge detection. When

using compass edge detection, the image is convoluted with a set of (in general eight) convolution
kernels, each of which is sensitive to edges in a different orientation. For each pixel, the local edge
gradient magnitude is estimated with the maximum response of all eight kernels at this pixel location:
�G� =max��Gi� � i= 1 to n� where Gi is the response of the kernel i at the particular pixel position and
n is the number of convolution kernels. The local edge orientation is estimated with the orientation of
the kernel that yields the maximum response. Various kernels can be used for this purpose, and best
of all are the Prewitt and the Kirsch kernels. Two templates out of the set of eight are:

0� �

−1 1 1

−1 −2 1

−1 1 1

45� �

1 1 1

−1 −2 1

−1 −2 1

The Kirsch edge detector [6] is another compass kernel. The masks given by these templates try to
model the kind of gray-level change seen near an edge having various orientations. There is a mask for
each of eight compass directions. For instance, K0 implies a vertical edge (horizontal gradient) at the
pixel corresponding at the center of the mask. To find the edge, I is convolved with the eight masks
at each pixel position. The response is the maximum of the responses of any of the eight masks and
the directions quantified into eight possibilities.
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K0 �

−3 −3 5

−3 0 5

−3 −3 5

K1 �

−3 5 5

−3 0 5

−3 −3 −3

The Canny edge detection algorithm [7] is known to many as the optimal edge detector. The Canny
edge detector first smoothes the image to eliminate noise. It then finds the image gradient to highlight
regions with high spatial derivatives. The algorithm then tracks along these regions and suppresses any
pixel that is not at the maximum (nonmaximum suppression). The gradient array is now further reduced
by hysteresis. Hysteresis is used to track along the remaining pixels that have not been suppressed.
Hysteresis uses two thresholds and if the magnitude is below the first threshold, it is set to zero (made
a nonedge). If the magnitude is above the high threshold, it is made an edge. And if the magnitude is
between the two thresholds, then it is set to zero unless there is a path from this pixel to a pixel with
a gradient above T2. Figure 15.4 illustrates the effects of various multiple kernel convolutions.

(a) (b)

(c) (d)

Figure 15.4 Results of other multiconvolution kernels. (a) Canny with sigma = 0�8; (b) Laplacian
with brightness enhancement; (c) Prewitt; (d) Kirsch.
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3. Thresholding Primitive Segmentation

Thresholding makes color changes across a programmer-determined ‘boundary’, or threshold, more
obvious. This technique uses a specified threshold value, minimum value and maximum value to control
the color component values for each pixel of an image. Color values below the threshold are assigned the
minimum value. Values above the threshold are assigned the maximum value. The threshold process is
performed for each color component of each pixel.When the operation is complete, the color components
of the destination image pixels will contain either the minimum value or the maximum value. For
example, consider what happens to an image when a threshold operation is performed with a minimum
of 0 and a maximum of 255. After the image is processed, the red, green and blue values of the pixels
will be either 0 or 255. In the following examples, we write the threshold value in (min, threshold,
max) format. We can see that the white area (indicating a higher brightness area) gets smaller as the
threshold value goes up. Thresholding is a very important morphological technique for detecting tumor
regions because a tumor represents a dense tissue area of, for example, the breast structure. However,
it is very tricky to find the right threshold value that can work for a variety of mammograms. For this
purpose, many researchers tried to arrive at a dynamic threshold which can learn its optimal value from
the type of image under analysis. Figure 15.5 illustrates the effects of using a variety of static thresholds.

4. Morphological Primitive Segmentation

Morphological operators often take a binary image and a structuring element as input and combine
them using a set operator (intersection, union, inclusion, complement). For the basic morphological
operators, the structuring element contains only foreground pixels (i.e. ones) and ‘don’t cares’. These
operators, which are all a combination of erosion and dilation, are often used to select or suppress
features of a certain shape, e.g. removing noise from images, skeletonization-thinning or selecting
objects with a particular direction. Morphological operators can also be applied to gray-level images,
e.g. to reduce noise or to brighten the image. The method is to treat the image as a sequence of binary
images by operating on each gray level as if it were the 1 value and assuming everything else to be 0.
The resulting images can then be combined by laying them on top of each other and ‘promoting’ each
pixel to the highest gray-level value coincident with that location. Mathematical morphology provides
a number of important image processing operations, including erosion, dilation, opening and closing.

4.1 Erosion

The basic effect of the operator on a binary image is to erode away the boundaries of regions of
foreground pixels (i.e. white pixels, typically). Thus, areas of foreground pixels shrink in size and holes
within those areas become larger. To compute the erosion of a binary input image by this structuring

(a) (b) (c)

Figure 15.5 Effects of some static thresholds. (a)Theoriginal image; (b) threshold80; (c) threshold100.
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(a) (b) (c)

Figure 15.6 The effects of the two morphological operations on an X-ray. (a) The original image;
(b) erosion two times; (c) dilation two times.

element, we consider each of the foreground pixels in the input image in turn. For each foreground
pixel (which we will call the input pixel), we superimpose the structuring element on top of the input
image so that the origin of the structuring element coincides with the input pixel coordinates. If, for
every pixel in the structuring element, the corresponding pixel in the image underneath is a foreground
pixel, then the input pixel is left as it is. If any of the corresponding pixels in the image are background
however, the input pixel is also set to the background value.

4.2 Dilation

The basic effect of a dilation operator on a binary image is to gradually enlarge the boundaries of
regions of foreground pixels. Thus, areas of foreground pixels grow in size while holes within those
regions become smaller.

4.3 Opening and Closing

These are both derived from the fundamental operations of erosion and dilation. The basic effect of
an opening is like erosion, in that it tends to remove some of the foreground (bright) pixels from
the edges of regions of foreground pixels. However, it is less destructive than erosion in general. As
with other morphological operators, the exact operation is determined by a structuring element. The
effect of the operator is to preserve foreground regions that have a similar shape to this structuring
element, or that can completely contain the structuring element, while eliminating all other regions of
foreground pixels. Closing is similar in some ways to dilation, in that it tends to enlarge the boundaries
of foreground (bright) regions in an image (and shrink background color holes in such regions), but
it is less destructive of the original boundary shape. Figure 15.6 illustrates the effects of applying
repetitive erosion and dilation operators on mammograms.

5. Hybridizing the Primitive Segmentation Operators

Usually, hybrids of the basic segmentation primitives are used for static image rendering or what is
known as volume visualization [8]. These techniques are used in medicine, geoscience, astrophysics,
chemistry, microscopy, mechanical engineering and other areas. Visualization is usually achieved using
either volume or surface rendering techniques. In this section we are proposing certain pipelines for
volume visualization. Such visualization pipelines are based on the proper choice of various primitive
segmentation operators in order to map the original image data into meaningful optical properties of
the volume to be visualized. The visualization operators may use other operations that affect rendering
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(e.g. add, subtract, invert and overlay). The visualization pipelines can be simple when the rendered
image is composed of using only binary operations, such as erosion and inversion (see Figure 15.7).

More complex visualization pipelines can be produced when edge detection operators are involved.
Figure 15.8 illustrates our first experiment when we used a thresholding value of 210 to segment the
image into high-brightness and low-brightness areas.

We can use more than one threshold value to highlight the various volume elements in the image,
as Figure 15.9 illustrates.

Original
image

Morphology
erosion

Invert Add

Edge

Result
image edge

Original Erosion 3 times Invert

Figure 15.7 A simple visualization pipeline.

Original
mammogram

Thresholding
(0, 210, 255)

Edge
detection

Color
edge

Overlay

Result
image

Figure 15.8 Visualization pipeline aimed at separating the image into high- and low-brightness areas.
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Threshold 15

Laplacian white
3∗3 kernel
(Outline)

Laplacian white
5∗5 kernel
(middle-density area)

Laplacian white
5∗5 kernel
(high-density area)

Threshold 210 Threshold 240

Add

Overlay

Desired edges

Result image

Original image

Figure 15.9 Visualization pipelines for separating different lightness areas.
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Original image

Threshold 15

Edge detection
Laplacian
white (outline)

Color fill Green
Low-density area

Color fill Blue
Middle-density
area

Color fill Red 
High-density
area

Threshold 210 Threshold 235 Threshold 245

Add

Overlay

Colored area

Result image

Figure 15.10 Visualization pipeline with area filling rendering effects.

We can enhance the rendered areas by filling the segmented areas with different colors. Figure 15.10
illustrates the new visualization pipelines.

The visualization pipeline operation is a good tool for image processing experts to statically render
given images, but it is difficult for health workers to use, especially when image style keeps changing.
For this purpose, we dedicate the next section to developing a single effective technique that can cope
with region identification, even if the image style keeps changing, and can be easily used by health
workers. This new approach dynamically follows the direction of the region edges using some fuzzy
membership rules. We call this new approach the Dynamic Fuzzy Classifier (DFC) [9].
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6. Region Identification Based on Fuzzy Logic

Analysis of medical images usually involves nonlinear, noisy and imprecise data which requires
methods that are not directly generated from the three primitive approaches described earlier in this
chapter. In particular, the use of fuzzy techniques has proved successful in several medical applications
such as mammography, since they take a more flexible approach to pattern recognition and edge
detection [10]. Basically, there are two different possibilities for the development of fuzzy edge
detectors or region identification:

1. Using fuzzy membership functions [9].
2. Using fuzzy identification rules (e.g. as in Figure 15.11) [11].

However, most membership functions appearing in the literature are determined heuristically, without
any additional rules used to modify the membership values. Indeed, the use of rules can smooth while
sharpening edges, but requires a rather large rule set compared to the simpler fuzzy membership
classifier methods [12–16]. For this purpose, neural networks have been used to train the process of
selecting the set of rules for detecting edges [17,18] and radial basis functional link nets [19] have
been found to be especially powerful in this direction. Training such networks is not a straightforward
process and many complications are associated with it [20,21]. Moreover, these techniques proved to
have high success rates in detecting some types of cancer abnormality with systematic shape structures
and in particular with calicification and circumscribed breast cancer types. However, stellate breast
cancer lesions express vast architectural distortions and present with an appearance of fuzzy radiating
lines. Attempts to automatically detect these abnormalities have generally concentrated on collecting
some statistical features of known importance, such as textures which can be discriminated with
low variances, radiating linear structure concurrency, spread of focus and radial distance. Hence, the
authors believe that by developing a dynamically fuzzy membership classifier we can arrive at a simple
pseudoadaptive edge detection algorithm which does not require training. This section describes this
new approach in the context of a Dynamic Fuzzy Classifier (DFC); our experiments were conducted
on mammograms (i.e. typical medical X-ray images).

IF THEN

ELSE

IF THEN

Figure 15.11 Fuzzy rules that are used for region identification.
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The DFC is intended to be a part of a soft tissue abnormality detection scheme. Design of the
algorithm is based on two main properties of mammographic lesions and patterns. First, because of
the unclear boundaries of the parenchyma and malignant masses in a mammogram, employing the
principles of fuzzy sets in assigning the image pixels to different regions is appropriate. Secondly,
since abnormal tissue lesions and masses are usually larger than a certain size, in determining which
segmented region a pixel belongs to, the effects of its neighboring pixels, as well as its own intensity
value, must be considered. The DFC method starts by moving a polygon mask on every pixel of the
given image. Each pixel will be placed at the center of the polygon (Figure 15.12).

Based on the values of the brightness of the 13 pixels of the polygon, eight brightness direction
features are extracted. These features are the magnitudes of the differences between the thirteen
neighboring pixels. Using the values within the polygon, we can calculate the direction features by
taking the different 2×3 orientations within the neighboring pixels within the polygon. For example,
to calculate the East direction feature value, we need find the value of P2−P1+P5−P4+P8−P7
(see Figure 15.13). For the Northeast direction feature, we need to find the value of P9−P0+P2−P4
+P11−P8 (see Figure 15.14). The eight feature direction values can be calculated in this way.

These eight direction features are the input to a fuzzy membership classifier that connects to two
fuzzy set membership functions that represent the set of pixels which belong to the ‘0’ (dark) region,

Northeast East

West

South

North

Southwest

Southeast

Northwest

Figure 15.12 Pixel direction polygon mask.
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Figure 15.13 Polygon reference map and the East direction feature computation.
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P8

P4
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Figure 15.14 Northeast direction feature computation.

and the set of pixels which belong to the ‘1’ (bright) region. The membership value determines how
close a pixel is to becoming a member of either set, as well as the brightness slope direction. From the
eight direction features we choose the highest value which will indicate the slope direction.

At each pixel, the fuzziness measure of each pixel is dynamically updated to reduce the error function
value. Inspired by the gradient method and the back-propagation algorithm for neural network training,
three update rules are designed to both reduce the error in each pixel iteration and to consider the
effects of brightness for all the neighboring pixels:

Rule 1: If the direction value is bigger than a brightness constant (e.g. 250), then set this pixel
brightness (P4) to white, otherwise apply Rule 2.

Rule 2: If the direction value is greater than a mammogram threshold value, then apply Rule 3;
otherwise set this pixel brightness (P4) to black.

Rule 3: To apply this rule, compute the following:

1. Choose n; an odd number of pixels along the line of the slope direction of this pixel (P4).
This pixel should be in the center. The value of n should not be greater than min(image
width, image height).

2. Put the pixel values of this line into an array A[]. We call this array a transition zone.
3. Calculate the average value of array A[] elements (i.e A�0�+A�1�+· · ·+A�n��/n�.
4. Calculate the array accumulation value (i.e. A�1�−A�0�+A�2�−A�0�+· · ·A�n�−A�0��.

This rule states that if the average value equals the pixel value, and the accumulation value is greater
than n+ (contrast constant), then set this pixel value (P4) to white; otherwise set this pixel value (P4)
to black.

The proposed DFC method introduces the concept of fuzzy contrast that depends on how far the
membership functions are stretched by an operator with respect to the middle point from data points
within the transition zone being considered. The pixel orientation and slope of the transition zone
provide the most important information, which are used for determining edge membership. Indeed
the ideal case of an edge pixel is when this pixel is right at the middle of the slope of the transition
zone (see Figure 15.15(a)). However, we cannot always find a pixel that is exactly in the middle (see
Figure 15.15(b)). In order to get a better connectivity of detected edges, a thresholding value b is used:
0�8 < b < 1�25, where b = midvalue/P4 brightness value, midvalue = �A�0�+A�n− 1��/2. Rule 3
is responsible for identifying this case. Also, in many cases the brightness changes sharply and the
middle pixel cannot be directly specified. We call such cases absolute steps. Rule 1 is designed to find
edge pixels for absolute steps (see Figure 15.15(c)). An absolute pixel case is an edge if brightness
increases sharply along the pixel direction.

The DFC method tries to intensify the contrast of those pixels which are almost at, or near to the
actual edge. The fuzzy nature of the pixel brightness can be depicted from a 3D projection to the pixel
brightness of an image segment (see Figure 15.16).
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Figure 15.15 Ideal and absolute edge membership. (a) Ideal; (b) not exactly in the middle;
(c) absolute step.
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6.1 Experimental Results

The data collection that was used in our experiments was taken from the Mammographic Image
Analysis Society [22]. This same collection has been used in other studies of automatic mammography
classification. Its corpus consists of 322 images, which belong to three big categories: normal, benign
and malign. There are 208 normal images, 63 benign and 51 malign, which are considered abnormal. In
addition, the abnormal cases are further divided into six categories: microcalcification, circumscribed
masses, spiculated masses, ill-defined masses, architectural distortion and asymmetry. All the images
also include the locations of any abnormalities that may be present. The existing data in the collection
consists of the location of the abnormality (like the center of a circle surrounding the tumor), its radius,
breast position (left or right), type of breast tissue (fatty, fatty glandular and dense) and tumor type
if it exists (benign or malign). All the mammograms are medio-lateral oblique views. Figure 15.17
shows experiments conducted on abnormal breast cases from that database with a threshold value fixed
at 12 and the number of transition elements equal to 25. Actually, we noted that with higher transition
elements the edges become sharper and more obvious. However, selecting n = 25 resulted in rather
more moderate results than among the other odd values that we may have chosen for n. The DFC
results are produced without using any preprocessing to increase the contrast or to reduce the image
noise. Figure 15.17 shows two other notable edge detection methods applied on the same original
image.

We can furthermore reduce noise, as well as nonsignificant details, by applying a smooth filter
before the DFC operation, see Figure 15.18.

Moreover, it is a well-known medical fact that dense breast tissues on mammograms indicate a
higher cancer risk [31]. A dense region in any mammogram always has high brightness values. For this
reason, we visualized low-brightness edges with different colors than those edges of high brightness.
In this direction, we used blue to identify normal region edges (i.e. no possibility of having cancerous
tissues, or 0% density type in radiologist terminology). Green has been used to identify those edges
with more dense regions indicating a higher possibility of having cancerous tissues (50–74% density
type). Finally, White is used to identify a very high possibility of having cancerous tissues (75–100%

(a) (b)

Figure 15.17 DFC method applied to two mammograms. (a) The original image of Case #1,
circumscribed cancer; (b) DFC threshold = 12� n = 25; (c) DFC with threshold = 12� n = 25 with
coloring; (d) the original image of Case #2, stellate cancer; (e) DFC with threshold = 12� n = 25;
(f) DFC with threshold = 12� n= 25 with coloring.
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(c) (d)

(e) (f)

Figure 15.17 (continued)

(a) (b)

Figure 15.18 Effect of the DFC method with smooth filters. (a) Applying median blur before DFC;
(b) applying Gaussian blur before DFC; (c) applying a morphology erosion before DFC.
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(c)

Figure 15.18 (continued)

density type). We can consider this colorization process an additional rule which is based directly on
the detected edge pixel brightness. Indeed, we tested DFC on all the normal cases of the database,
none of them revealed specious structures with white or green colors. We are not claiming that the
colorization scheme can be used to classify mammograms, but we can use it as one associative rule
for mining abnormal mammograms. This issue is our current research program, in which we are trying
to construct a data mining technique based on association rules extracted from our DFC method for
categorizing mammograms. We are also intending, for the purpose of mammogram categorization, to
use other measures besides our DFC association rules, like the brightness, mean, variance, skewness
and kurtosis for the DFC segmented image. These measures have been reported to have some success
in identifying abnormal mammograms [32]. Moreover, we experimented with all the edge detection
techniques used in Table 15.1 and proved that no single method can be as effective as our current DFC
method [33].

Figure 15.19 illustrates some comparisons for the stellate cancer image of this article.

Table 15.1 Traditional mammography techniques.

Mammography method Reference

Gray-level thresholding [23]
Comparing left and right breasts [24]
Compass filters [25]
Laplacian transform [11]
Gaussian filters [12]
Texture and fractal texture model [17,19]
A space scale approach [26]
Wavelet techniques [27]
Mathematical morphology [28]
Median filtering [29]
Box-rim method [30]
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(a) (b)

(c) (d)

(e) (f)

Figure 15.19 Results of other traditional edge detection techniques. (a) The kirsch edge detection
technique; (b) the Laplacian edge detection technique; (c) Sobel edge detection with contrast
enhancement; (d) Prewitt edge detection with contrast enhancement; (e) Cafforio edge detection with
inner window = 3 and outer window = 21; (f) Canny edge detection, � = 0�045; (g) Canny edge
detection, �= 0�065.
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(g)

Figure 15.19 (continued)

7. Conclusions

In this chapter we identified three primitive routes for region identification based on convolution,
thresholding and morphology. Experiments on medical images show that none of these routes is
capable of clearly identifying the region edges. A better recognition can be achieved by hybridizing
the primitive techniques through a pipelining sequence. Although many region identification pipelines
can be found that enable us to clearly identify regions of interest, such a hybridizing technique
remains valid when the characteristic images remain static. The problem with most of the medical
images is that their characteristics vary so much, even for one type of imaging device. With this in
mind, we are proposing a new fuzzy membership function that transforms the intensity of a pixel
into the fuzzy domain, according to the direction of the brightness slope in its neighboring transition
zone. A new intensification operator based on a polygon is introduced for determining the corrected
intensity value for any pixel. The membership fuzzification classifier dynamically evaluates every
pixel’s brightness by optimizing its contrast according to the neighboring pixels. The method needs no
preprocessing or training and does not change the brightness nature of the segmented image compared
to the original image. The DFC method has been tested on a medical mammography database and has
been shown to be effective for detecting abnormal breast regions. In comparisons with the traditional
edge detection techniques, our current DFC method shows significant abnormality details, where many
other methods (e.g. Kirsch, Laplacian) revealed irrelevant edges as well as extra noise. For Sobel
and Prewitt, the original image becomes completely black. With contrast enhancements, Sobel and
Prewitt still show extra edges and noise. However, with simpler edge detection techniques like the
Cafforio method [10], the result is completely filled with noise. Moreover, we believe that our DFC
technique can be used to generate association rules for mining abnormal mammograms. This will be
left to our future research work. Finally, we are currently involved in developing global measures for
measuring the coherence of our DFC method in comparison with the other techniques such as Canny
or Gabor GEF filters. This will enable us quantitatively to determine the quality of the developed
technique. We aim, in this area, to benefit from the experience of other researchers such as Mike Brady
(http://www.robots.ox.ac.uk/∼mvl/).
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Feature extraction is an important component of a pattern classification system. It performs two

tasks: transforming an input parameter vector into a feature vector and/or reducing its dimensionality.

A well-defined feature extraction algorithm makes the classification process more effective and

efficient. Two popular feature extraction methods are Linear Discriminant Analysis (LDA) and

Principal Component Analysis (PCA). The Minimum Classification Error (MCE) training algorithm,

which was originally proposed as a discriminative classifier, provides an integrated framework for

feature extraction and classification. The Support Vector Machine (SVM) is a recently developed

pattern classification algorithm, which uses nonlinear kernel functions to achieve nonlinear decision

boundaries in the parametric space. In this chapter, the frameworks of LDA, PCA, MCE and SVM
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classifiers using feature extraction are given on both Deterding vowels and the TIMIT continue speech

database.
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1. Introduction

Pattern recognition deals with mathematical and technical aspects of classifying different objects
through their observable information, such as gray levels of pixels for an image, energy levels in the
frequency domain for a waveform and the percentage of certain contents in a product. The objective
of pattern recognition is achieved in a three-step procedure, as shown in Figure 16.1. The observable
information of an unknown object is first transduced into signals that can be analyzed by computer
systems. Parameters and/or features suitable for classification are then extracted from the collected
signals. The extracted parameters or features are classified in the final step based on certain types of
measure, such as the distance, likelihood or Bayesian, over class models.

Conventional pattern recognition systems have two components: feature analysis and pattern
classification, as shown in Figure 16.2. Feature analysis is achieved in two steps: the parameter
extraction step and the feature extraction step. In the parameter extraction step, information relevant
for pattern classification is extracted from the input data x�t� in the form of a p-dimensional parameter
vector x. In the feature extraction step, the parameter vector x is transformed to a feature vector y,

Unknown object

Transduction

Parameter and/or
feature extraction

Classification

Observation 
information

Collected
signal x(t)

Feature
vector x

Classified
object

Figure 16.1 A typical pattern recognition procedure.

Parameter 
extraction

Feature
extraction

Class
models Λ

Pattern
classifier

Input
data

Feature analysis Classification

Recognized
classesx y

Figure 16.2 A conventional pattern recognition system.
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which has a dimensionality m�m ≤ p�. If the parameter extractor is properly designed so that the
parameter vector x is matched to the pattern classifier and its dimensionality is low, then there is no
necessity for the feature extraction step. However in practice, parameter vectors are not suitable for
pattern classifiers. For example, speech signals, which are time-varying signals, have time-invariant
components and may be mixed up with noise. The time-invariant components and noise will increase the
correlation between parameter vectors and degrade the performance of pattern classification systems.
The corresponding parameter vectors thus have to be decorrelated before being applied to a classifier
based on Gaussian mixture models (with diagonal variance matrices). Furthermore, the dimensionality
of parameter vectors is normally very high and needs to be reduced for the sake of less computational
cost and system complexity. For these reasons, feature extraction has been an important problem in
pattern recognition tasks.

Feature extraction can be conducted independently or jointly with either parameter extraction or
classification. LDA and PCA are the two popular independent feature extraction methods. Both of them
extract features by projecting the original parameter vectors into a new feature space through a linear
transformation matrix. But they optimize the transformation matrix with different intentions. PCA
optimizes the transformation matrix by finding the largest variations in the original feature space [1–3].
LDA pursues the largest ratio of between-class variation and within-class variation when projecting
the original feature to a subspace [4–6].

The drawback of independent feature extraction algorithms is that their optimization criteria are
different from the classifier’s minimum classification error criterion, which may cause inconsistency
between feature extraction and the classification stages of a pattern recognizer, and consequently
degrade the performance of classifiers [7]. A direct way to overcome this problem is to conduct feature
extraction and classification jointly with a consistent criterion. The MCE training algorithm [7–9]
provides such an integrated framework, as shown in Figure 16.3. It is a type of discriminant analysis
but achieves a minimum classification error directly when extracting features. This direct relationship
has made the MCE training algorithm widely popular in a number of pattern recognition applications,
such as dynamic time-warping based speech recognition [10,11] and Hidden Markov Model (HMM)
based speech and speaker recognition [12–14].

The MCE training algorithm is a linear classification algorithm, of which the decision boundaries
generated are straight lines. The advantage of linear classification algorithms is their simplicity and
computational efficiency. However, linear decision boundaries have little computational flexibility
and are unable to handle data sets with concave distributions. SVM is a recently developed pattern
classification algorithm with nonlinear formulation. It is based on the idea that the classification that
affords dot-products can be computed efficiently in higher dimensional feature spaces [15–17]. The
classes which are not linearly separable in the original parametric space can be linearly separated in

Parameter 
extractor

Class 
models Λ

Feature extractor 
and classifier

Input
data

x Recognized 
classes

Transformation
matrix T

Classification

Figure 16.3 An integrated feature extraction and classification system.
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the higher dimensional feature space. Because of this, SVM has the advantage that it can handle the
classes with complex nonlinear decision boundaries. SVM has now evolved into an active area of
research [18–21].

This chapter will first introduce the major feature extraction methods – LDA and PCA. The MCE
algorithm for integrated feature extraction and classification and the nonlinear formulation of SVM are
then introduced. Feature extraction and compression with MCE and SVM are discussed subsequently.
The performances of these feature extraction and classification algorithms are compared and discussed
based on the experimental results on Deterding vowels and TIMIT continuous speech databases.

2. Standard Feature Extraction Methods

2.1 Linear Discriminant Analysis

The goal of linear discriminant analysis is to separate the classes by projecting class samples from
p-dimensional space onto a finely orientated line. For a K-class problem, m=min�K−1� p� different
lines will be involved. Thus, the projection is from a p-dimensional space to a c-dimensional space [22].
Suppose we have K classes, X1�X2� � � � �XK . Let the ith observation vector from the Xj be xji, where

j = 1� � � � � J and i= 1� � � � �Nj . J is the number of classes and Nj is the number of observations from
class j. The within-class covariance matrix Sw and between-class covariance matrix Sb are defined as:

Sw =
K
∑

j=1
Sj =

K
∑

j=1

1

Nj

Nj
∑

i=1
�xji−�j��xji−�j�

T (16.1)

Sb =
K
∑

j=1
Nj��j−����j−��T

where �j = 1
Nj

Nj∑

i=1
xji is the mean of class j and �= 1

N

N∑

i=1
xi is the global mean.

The projection from observation space to feature space is accomplished by a linear transformation
matrix T:

y = TTx� (16.2)

The corresponding within-class and between-class covariance matrices in the feature space are:

S̃w =
K
∑

j=1

1

Nj

Nj
∑

i=1
�yji− �̃j��yji− �̃j�

T (16.3)

S̃b =
K
∑

j=1
Nj��̃j− �̃���̃j− �̃�T

where �̃j = 1
Nj

Nj∑

i=1
yji and �̃= 1

N

N∑

i=1
yi. It is straightforward to show that:

S̃w = TTSwT (16.4)

S̃b = TTSbT

A linear discriminant is then defined as the linear functions for which the objective function

J�T�=
∣
∣S̃b

∣
∣

∣
∣S̃w

∣
∣
=
∣
∣TTSBT

∣
∣

�TTSWT�
(16.5)

is maximal. It can be shown that the solution of Equation (16.5) is that the ith column of an optimal
T is the generalized eigenvector corresponding to the ith largest eigenvalue of matrix S−1w Sb [6].
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2.2 Principal Component Analysis

PCA is a well-established technique for feature extraction and dimensionality reduction [2,23]. It is
based on the assumption that most information about classes is contained in the directions along which
the variations are the largest. The most common derivation of PCA is in terms of a standardized linear
projection which maximizes the variance in the projected space [1]. For a given p-dimensional data
set X, the m principal axes T1� T2� � � � � Tm, where l ≤ m ≤ p, are orthonormal axes onto which the
retained variance is maximum in the projected space. Generally, T1� T2� � � � � Tm, can be given by the

m leading eigenvectors of the sample covariance matrix S= 1

N

N∑

i=1
�xi−���xi−��T, where xi ∈ X��

is the sample mean and N is the number of samples, so that:

STi = �iTi� i ∈ 1� · · · �m (16.6)

where �i is the ith largest eigenvalue of S. The m principal components of a given observation vector
x ∈ X are given by:

y = �y1� · · · � ym�=
[

TT
1 x� · · · � TT

mx
]

= TTx� (16.7)

The m principal components of x are decorrelated in the projected space [2]. In multiclass problems,
the variations of data are determined on a global basis, that is, the principal axes are derived from a
global covariance matrix:

Ŝ= 1

N

K
∑

j=1

Nj
∑

i=1
�xji− �̂��xji− �̂�T (16.8)

where �̂ is the global mean of all the samples, K is the number of classes, Nj is the number of

samples in class j, N =
K∑

j=1
Nj and xji represents the ith observation from class j. The principal axes

T1� T2� � � � � Tm are therefore the m leading eigenvectors of Ŝ:

ŜTi = �̂iTi� i ∈ 1� · · · �m (16.9)

where �̂i is the ith largest eigenvalue of Ŝ. An assumption made for feature extraction and dimensionality
reduction by PCA is that most information of the observation vectors is contained in the subspace
spanned by the first m principal axes, where m < p. Therefore, each original data vector can be
represented by its principal component vector with dimensionality m.

3. The Minimum Classification Error Training Algorithm

3.1 Derivation of the MCE Criterion

Consider an input vector x, the classifier makes its decision by the following decision rule:

x ∈ Class k if gk�x�$�= max
for all i∈K

gi�x�$� (16.10)

where gi�x�$� is a discriminant function of x to class i, $ is the parameter set and K is the number of
classes. The negative of gk�x�$� –maxfor all i �=k gi�x�$� can be used as a measure of misclassification
of x. This form, however, is not differentiable and needs further modification. In [7], a modified
version is introduced as a misclassification measure. For the kth class, it is given by:

dk�x�$�=−gk�x�$�+
[

1

N −1

∑

for all i �=k
�gi�x�$��

%

]1/%

(16.11)
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where % is a positive number and gk�x�$� is the discriminant of observation x to its known class k.
When % approaches �, it reduces to:

dk�x�$�=−gk�x�$�+gj�x�$� (16.12)

where class j has the largest discriminant value among all the classes other than class k. Obviously,
dk�x�$� > 0 implies misclassification, dk�x�$� < 0 means correct classification and dk�x�$� = 0
suggests that x sits on the boundary. The loss function is then defined as a monotonic function of
misclassification measure. The sigmoid function is often chosen since it is a smoothed zero–one
function suitable for the gradient descent algorithm. The loss function is thus given as:

lk�x�$�= f�dk�x�$��=
1

1+ e−)dk�x�$� (16.13)

where ) > 0. For a training set X, the empirical loss is defined as:

L�$�= E �lk�x�$��=
K
∑

k=1

Nk∑

i=1
lk�x

�i��$� (16.14)

where Nk is the number of samples in class k. Clearly, minimizing the above empirical loss function
will lead to the minimization of the classification error. As a result, Equation (16.14) is called the MCE
criterion [7,8]. The class parameter set $ is therefore obtained by minimizing the loss function through
the steepest gradient descent algorithm. This is an iterative algorithm and the iteration rules are:

$t+1 =$t−�*L�$�
∣
∣
$=$t

*L�$�=






�L/��1
���

�L/��d




 (16.15)

where t denotes the tth iteration, ��1� � � � � ��d ∈ $ are class parameters and � > 0 is the adaptation
constant. For s = 1�2� � � � � d, the gradient *L�$� can be computed as follows:

�L

��s
= )

Nk∑

i=1
L�i��1−L�i�� �gk�x

�i��$�

��s
if �s ∈ class k

�L

��s
=−)

Nj
∑

i=1
L�i��1−L�i��

�gj�x
�i��$�

��s
if �s ∈ class j (16.16)

In the case of Mahalanobis distance measure-based discriminant functions, $ = �����, where �
is the class mean and � is the covariance matrix. The differentiation of discriminant functions with
respect to $ is:

�gm�x
�i��$�

��
=−�x−��T�−1−�−1�x−��� m= 1� · · · �K

�gm�x
�i��$�

�(
=−�x−��T��−1�2�x−��� m= 1� · · · �K (16.17)

An alternative definition of the misclassification measure can be used to enhance the control of the joint
behavior of discriminant functions gk�x�$� and gj�x�$�. The alternative misclassification is defined
as follows:

dk�x�$�=

[

1
N−1

∑

for all i �=k
�gi�x�$��

%

]1/%

gk�x�$�
(16.18)



The MCE Training Algorithm 303

In the extreme case, i.e. %→�, Equation (16.18) becomes:

dk�x�$�=
gj�x�$�

gk�x�$�
(16.19)

The class parameters and transformation matrix are optimized using the same adaptation rules as shown
in Equation (16.15). The gradients with respect to $ are computed as

�L

��s
=−)

Nk∑

i=1
L�i��1−L�i��

gj�x
�i��$�

�gk�x
�i��$��

2

�gk�x
�i��$�

��s
if �s ∈ class k

�L

��s
= )

Nj
∑

i=1
L�i��1−L�i�� 1

gk�x
�i��$�

�gj�x
�i��$�

��s
if �s ∈ class j (16.20)

where �s ∈ $�s = 1� · · · �d. The differentiation of discriminant functions can be computed by
Equation (16.17).

3.2 Using MCE Training Algorithms for Dimensionality Reduction

As with other feature extraction methods, MCE reduces feature dimensionality by projecting the input
vector into a lower dimensional feature space through a linear transformation Tm×p, where m< p. Let
the class parameter set in the feature space be $̃. Accordingly, the loss function becomes:

lk�x� $̃�T�= f�dk�Tx� $̃��=
1

1+ e−)dk�Tx�$̃�
(16.21)

The empirical loss over the whole data set is given by:

L�$̃�T�= E
{

lk�x� $̃�T�
}

=
K
∑

k=1

Nk∑

i=1
lk�x

�i�� $̃�T� (16.22)

Since Equation (16.22) is a function of T, the elements in T can be optimized together with the
parameter set $̃ in the same gradient descent procedure. The adaptation rule for T is:

Tsq�t+1�= Tsq�t�−�
�L

�Tsq

∣
∣
∣Tsq=Tsq�t� (16.23)

where t denotes the tth iteration, � is the adaptation constant or learning rate and s and q are the row
and column indicators of transformation matrix T. The gradient with respect to T can be computed by

Conventional MCE �

�L

�Tsq

= )
K
∑

k=1

Nk∑

i=1
L�i��1−L�i��×

(

�gk�Tx
�i�� $̃�

�Tsq

−
�gj�Tx

�i�� $̃�

�Tsq

)

(16.24)

Alternative MCE �

�L

�Tsq
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K
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Nk∑
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where, in Mahalanobis distance-based discriminant functions:

�gm�Tx
�i�� $̃�

�T
= �Tx− �̃�T(−1x+xT(−1�Tx− �̃�� m= 1� · · · �K� (16.25)
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4. Support Vector Machines

4.1 Constructing an SVM

Considering a two-class case, suppose the two classes are +1 and +2 and we have a set of training
data X = �x1� x2� � � � � xN �⊂ Rp. The training data are labeled by the following rule:

yi =
{

+1� x ∈+1

−1� x ∈+2

(16.26)

The basic idea of SVM estimation is to project the input observation vectors nonlinearly into a
high-dimensional feature space F and then compute a linear function in F. The functions take the
form:

f�x�= �w ·#�x��+b� (16.27)

with # � Rp→ F and w ∈ F, where �·� denotes the dot product. Ideally, all the data in these two classes
satisfy the following constraint:

yi�w ·#�xi��+b−1≥ 0 ∀i� (16.28)

Considering the points #�xi� in F for which the equality in Equation (16.28) holds, these points lie
on two hyperplanes H1 � �w ·#�xi��+b=+1 and H2 � �w ·#�xi��+b=−1. These two hyperplanes are
parallel and no training points fall between them. The margin between them is 2/�w�. Therefore, we can
find a pair of hyperplanes with maximum margin by minimizing �w�2 subject to Equation (16.28)
[24]. This problem can be written as a convex optimization problem:

Minimize
1

2
�w�2

Subject to yi�w ·#�xi��+b−1 ∀i (16.29)

where the first function is the primal objective function and the second function is the corresponding
constraints. Equation (16.29) can be solved by constructing a Lagrange function from both the primal
function and the corresponding constraints. Hence, we introduce positive Lagrange multipliers �i�
i= 1� � � � �N , one for each constraint in Equation (16.29). The Lagrange function is given by:

LP =
1

2
�w�2−

N
∑

i=1
�iyi�w ·#�xi�+b�+

N
∑

i=1
�i (16.30)

LP must be minimized with respect to w and b, which requires the gradient of LP to vanish with
respect to w and b. The gradients are given by:

�LP

�ws

= ws−
N
∑

i=1
�iyi#�xis�= 0� s = 1� · · ·p

�LP

�b
=−

N
∑

i=1
�iyi = 0 (16.31)
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where p is the dimension of space F. Combining these conditions and other constraints on primal
functions and Lagrange multipliers, we obtain the Karush–Kuhn–Tucker (KKT) conditions:

�LP

�ws

= ws−
N
∑

i=1
�iyi#�xis�= 0� s = 1� · · ·p

�LP

�b
=−

N
∑

i=1
�iyi = 0

yi�w ·#�xi��+b−1≥ 0 ∀i (16.32)

�i ≥ 0 ∀i�

�i�yi�w ·#�xi��+b−1�= 0 ∀i

where w�b and � are the variables to be solved. From KKT condition Equation (16.32) we obtain:

w =
N
∑

i=1
�iyi#�xi�

N
∑

i=1
�iyi = 0 (16.33)

Therefore,

f�x�=
N
∑

i=1
�iyi�#�xi� ·#�xi��

=
N
∑

i=1
�iyik�xi�x�+b (16.34)

where k�xi�x� = �#�xi� ·#�xj�� is a kernel function that uses the dot product in the feature space.
Substitute Equation (16.33) into Equation (16.30). This leads to maximization of the dual function LD:

LD =−
1

2

N
∑

i=1

N
∑

j=1
�i�jyiyjkij+

N
∑

i=1
�i (16.35)

Writing the dual function incorporating the constraints, we obtain the dual optimization problem:

Maximize −1

2

N
∑

i=1

N
∑

j=1
�i�jyiyjkij+

N
∑

i=1
�i

Subject to
N
∑

i=1
�iyi = 0 (16.36)

�i ≥ 0 ∀i

Both the primal problem LP (Equation (16.30)) and the dual problem LD (Equation (16.35)) are
constructed from the same objective function but with different constraints. Optimization of this
primal–dual problem is a type of convex optimization problem and can be solved by the interior point
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algorithm [21]. However, a discussion of the interior point algorithm is beyond the scope of this
chapter. A detailed discussion on this algorithm is given by Vanderbei in [25].

4.2 Multiclass SVM Classifiers

SVM is a two-class-based pattern classification algorithm. Therefore, a multiclass-based SVM classifier
has to be constructed. So far, the best method of constructing a multiclass SVM classifier is not
clear [26]. Scholkopf et al.[27] proposed a ‘one vs. all’ type classifier. Clarkson and Moreno [26]
proposed a ‘one vs. one’ type classifier. Their structures are shown in Figure 16.4.

Both types of classifier are in fact combinations of two-class-based SVM subclassifiers. When
an input data vector x enters the classifier, a K-dimensional value vector f �i��x�� i = 1� � � � �K (one
dimension for each class) is generated. The classifier then classifies x by the following classification
criteria:

x ∈ Classi if f �i��x�= max
for all j∈K

f �i��x� (16.37)
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Figure 16.4 Two types of multiclass SVM classifier. (a) One vs. all; (b) one vs. one.
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5. Feature Extraction and Compression with MCE and SVM

5.1 The Generalized MCE Training Algorithm

One of the major concerns about MCE training for dimensionality reduction is the initialization of the
parameters. This is because the gradient descent method used in the MCE training algorithm does not
guarantee the global minimum value. The optimality of the MCE training process is largely dependent
on the initialization of T and the class parameter set $.
Among these parameters, transformation matrix T is crucial to the success of MCE training since it

filters the class information to be brought into the decision space. Paliwal et al. [9] give an initialization
of the MCE training algorithm, in which T is taken to be a unity matrix. However, in many cases, this
is a convenient way of initialization rather than an effective way, because the classification criterion
has not been considered in the initialization. In order to increase the generalization of the MCE training
algorithm, it is necessary to embed the classification criteria into the initialization process. From a
searching point of view, we can regard MCE training as two sequential search procedures: one is
a general but rough search for the initialization of parameters, and the other a local but thorough
search for the optimization of parameters. The former search procedure will provide a global optimized
initialization of class parameters and the latter will make a thorough search to find the relevant local
minimum. Figure 16.5 compares the normal MCE training process to the generalized MCE training
process. So far, no criterion for a general searching process has been proposed. However, we can
employ current feature extraction methods to this process. In our practice, we employ LDA and PCA
for the general searching process for the initialization of class parameters.

5.2 Reduced-dimensional SVM

The basic idea of Reduced-Dimensional SVM (RDSVM) to reduce the computational burden is that
the total number of computations of SVM can be reduced by reducing the number of computations in
kernel functions, since the number of observation vectors N cannot be reduced to a very low level in
many cases. An effective way of reducing the number of computations in kernel functions is to reduce
the dimensionality of observation vectors.

RDSVM is in fact a combination of feature extraction and SVM algorithms. It has a two-layer
structure. The first layer conducts feature extraction and compression, of which the objective is to
reduce the dimensionality of the feature space and obtain the largest discriminants between classes.
The second layer conducts SVM training in the reduced-dimensional feature space, which is provided
by the first layer. Thus, the kernel functions will be calculated as follows:

k�x̂� ŷ�=#�x̂� ·#�ŷ�=#�TTx� ·#�TTy�= k�TTx�TTy� (16.38)

Randomly initialize
transformation matrix

Conducting
MCE training

Input Output

General searching
process for the starting

point

Thorough
MCE training

Input OutputT

Generalized MCE training process

Normal MCE training process

Figure 16.5 A comparison between the normal and the generalized MCE training processes.
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Figure 16.6 Structure of RDSVM.

where x̂ and ŷ are feature vectors in the reduced-dimensional feature space, x and y are observation
vectors and T is the transformation optimized by the first layer. Figure 16.6 shows the structure of
RDSVM.

6. Classification Experiments

Our experiments focused on vowel recognition tasks. Two databases were used. We started with the
Deterding vowels database [28]. The advantage of starting with this is that the computational burden is
small. TheDeterding databasewas used to evaluate different types ofGMCE training algorithms andSVM
classifiers.Then, feature extractionandclassificationalgorithmswere testedwith theTIMITdatabase [29].
The feature extraction and classification algorithms involved in the experiments are listed in Table 16.1.

In order to evaluate the performance of the linear feature extraction algorithms (PCA, LDA, MCE
and GMCE), we used a minimum distance classifier. Here, a feature vector y is classified into the jth
class if the distance dj� y� is less than the other distances di� y�� i= 1� � � � �K. We use the Mahalanobis

Table 16.1 Feature extraction and classification algorithms used in our experiments.

Parameter used Dimension Feature extractor Classifier

LAR(Deterding) 10 PCA Minimum distance (Mahalanobis)
LAR(Deterding) 10 LDA Minimum distance (Mahalanobis)
LAR(Deterding) 10 MCE Minimum distance (Mahalanobis)
LAR(Deterding) 10 GMCE Minimum distance (Mahalanobis)
MFCC(TIMIT) 21 PCA Minimum distance (Mahalanobis)
MFCC(TIMIT) 21 LDA Minimum distance (Mahalanobis)
MFCC(TIMIT) 21 MCE Minimum distance (Mahalanobis)
MFCC(TIMIT) 21 GMCE Minimum distance (Mahalanobis)
LAR(Deterding) 10 NONE SVM one vs. one
LAR(Deterding) 10 NONE SVM one vs. all
MFCC(TIMIT) 21 NONE SVM one vs. one
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distance measure to compute the distance of a feature vector from a given class. Thus, the distance
di� y� is computed as follows:

di� y�= � y−�i�
T(−1i � y−�i� (16.39)

where �i is the mean vector of class i and
∑

i is the covariance matrix. In our experiments, we use the
full covariance matrix.

Three types of SVM kernel function are evaluated on the Deterding database. The formulation of
kernel functions is as follows:

Linear kernel � k�x� y�= x · y

Polynomial kernel � k�x� y�= �x · y+1�p (16.40)

RBF kernel � k�x� y�= e�x−y�
2/2�2

6.1 Deterding Database Experiments

The Deterding vowels database has 11 vowel classes, as shown in Table 16.2. This database has been
used in the past by a number of researchers for pattern recognition applications [26,28,30,31]. Each of
these 11 vowels is uttered six times by 15 different speakers. This gives a total of 990 vowel tokens.
A central frame of speech signal is excised from each of these vowel tokens. A tenth order linear
prediction analysis is performed on each frame and the resulting Linear Prediction Coefficients (LPCs)
are converted to ten Log-Area (LAR) parameters. 528 frames from eight speakers are used to train the
models and 462 frames from the remaining seven speakers are used to test the models.

Table 16.3 compares the results for LDA, PCA, the conventional form and the alternative form of
the MCE training algorithm. The results show that the alternative MCE training algorithm has the best
performance. Thus, we used the alternative MCE in the following experiments.

Two types of GMCE training algorithm were investigated in our Deterding database experiments.
One used LDA for the general search and the other used PCA. Figures 16.7 and 16.8 show the
experiment results. Since the alternative MCE training algorithm was chosen for MCE training, we
denote these two types of GMCE training algorithm as GMCE+LDA and GMCE+PCA, respectively.

Table 16.2 Vowels and words used in the Deterding database.

Vowel Word Vowel Word Vowel Word Vowel Word

i heed O hod I hid C: hoard
E head U hood A had u: who’d
a: hard 3: heard Y hud

Table 16.3 Comparison of various feature extractors.

Database Conventional
MCE (%)

Alternative
MCE (%)

LDA
(%)

PCA
(%)

Vowels (Train) 85.6 99.1 97.7 97.7
Vowels (Test) 53.7 55.8 51.3 49.1
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Figure 16.7 Results of MCE(UNIT), GMCE+LDA and LDA on the Deterding database. (a) Training
data; (b) testing data.
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Figure 16.8 Results of MCE(UNIT), GMCE+PCA and PCA on the Deterding database. (a) Training
data; (b) testing data.
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The normal alternative MCE training algorithm is denoted as MCE(UNIT). Observations from these
results can be summarized as follows:

• The GMCE training algorithm has an improved performance when LDA is used for the general
search for the initial transformation matrix and GMCE+LDA demonstrates the best performance
among MCE(UNIT), GMCE+PCA, LDA and PCA.

• The performance of the GMCE training algorithm is not improved when PCA is employed for the
general searching process.

• The performances of GMCE+LDA and GMCE+PCA on testing data show that the best
classification results are usually obtained when the dimensionality is reduced to 50 ∼ 70%.

Table 16.4 shows the classification results of different SVM classifiers. The order of the polynomial
kernel function is 3. The classification results show that the performance of the RBF kernel function
is the best among the three types of kernel. The overall performance of the ‘one vs. one’ multiclass
classifier is much better than the ‘one vs. all’ multiclass classifier. Among all the six types of
SVM classifier, the ‘one vs. one’ multiclass classifier with RBF kernel function has the best overall
performance and was thus selected for further experiments.

Figure 16.9 gives a comparisonof the results of theGMCE training algorithm,LDA,SVMandRDSVM.
Since SVM can only be operated in the observation space, i.e. dimension 10, its results are presented as
dots on dimension 10. Observations from the performance of RDSVM can be drawn as follows:

• The performance of RDSVM is better than that of SVM on training data on dimension 10, while on
testing data it remains the same.

• Both SVM and RDSVM have better performances on dimensions 2 and 10 than the GMCE training
algorithm and LDA. The performance of RDSVM is comparable to that of the GMCE training
algorithm on training data and is better than that of LDA.

• On testing data, RDSVM performs slightly poorer than the GMCE training algorithm in low-
dimensional feature spaces (dimensions 3–5), while on high-dimensional feature spaces (dimensions
6–9), RDSVM has a slightly better performance than the GMCE training algorithm. On dimensions
2 and 10, RDSVM performs much better than the GMCE training algorithm.

• The highest recognition rate on testing data does not appear on the full dimension (10) but on
dimension 6.

6.2 TIMIT Database Experiments

In order to provide results on a bigger database, we used the TIMIT database for vowel recognition.
This database contains a total of 6300 sentences, ten sentences spoken by each of 630 speakers. The

Table 16.4 Deterding vowel data set classification results using
SVM classifiers.

Kernel SVM classifier Training set
(%)

Testing set
(%)

Linear one vs. all 49.43 40.91
Linear one vs. one 79.73 53.03
Polynomial one vs. all 59.85 42.42
Polynomial one vs. one 90.53 55.63
RBF one vs. all 78.98 51.95
RBF one vs. one 90.34 58.01
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Figure 16.9 Results of GMCE+LDA, LDA, SVM and RDSVM on the Deterding database.
(a) Training data; (b) testing data.

training part of this database was used for training the vowel recognizers and the test part for testing.
The vowels used in the classification tasks were selected from the vowels, semi-vowels and nasals
given in the TIMIT database. Altogether, 17 vowels, one semi-vowel and one nasal were selected
for the vowel classification experiments. The TIMIT database comes with phonemic transcription
and associated acoustic phonemic boundaries. The center 20ms segments of selected vowels were
excised from each sentence. Spectral analysis was performed on these segments and each segment
was represented by a 21-dimension Mel-Frequency Cepstral Coefficient (MFCC) feature vector. Each
vector contained one energy coefficient and 20 MFCCs. The Mahalanobis distance-based minimum
distance classifier was used as pattern classifier. Table 16.5 shows the number of segments of each
vowel used in the experiment.

6.2.1 Comparison of Separate and Integrated Pattern Recognition Systems

Figure 16.10 shows the results of separate pattern recognition systems, PCA and LDA, plus
classifier and integrated systems, MCE and SVM, in feature extraction and classification tasks. The
dimensionalities used in the experiments were from 3 to 21 – full dimension. The horizontal axis
of the figure is the dimension axis. The vertical axis represents the recognition rates. Since SVM is
not suitable for dimensionality reduction, it is applied to classification tasks only and the results of
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Table 16.5 Number of observations of selected phonemes in training and
testing sets.

Phoneme aa ae ah ao aw ax ay eh oy uh
Training 541 665 313 445 126 207 395 591 118 57
Testing 176 214 136 168 40 89 131 225 49 21

Phoneme el en er ey ih ix iy ow uw Total
Training 145 97 384 346 697 583 1089 336 106 7241
Testing 42 34 135 116 239 201 381 116 37 2550
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Figure 16.10 Results of LDA, PCA, MCE and SVM on the TIMIT database. (a) Training data;
(b) testing data.

SVM appear in the figure as single points. Observations from Figure 16.10 can be summarized as
follows:

• LDA has a fairly flat performance curve. It performs the best in the low-dimensional feature
spaces (dimensions 3–12) among LDA, PCA and the MCE training algorithm on training data.
On testing data, LDA performs better than PCA and MCE in low-dimensional spaces (dimensions
3–15) too.
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• The MCE training algorithm performs better than LDA and PCA in the high-dimensional feature
spaces (dimensions 13–21) on training data. On the testing data, the MCE training algorithm performs
better than PCA and LDA in the high-dimensional spaces from dimension 16–21.

• The performances of SVM on training data are not as good as those of LDA, PCA and the MCE
training algorithm. However, SVM performs much better than LDA, PCA and the MCE training
algorithm on testing data.

6.2.2 Analysis of the GMCE Training Algorithm

Two types of GMCE were used in this experiment. One employed LDA for the general search, which
we denote as GMCE+LDA. The other employed PCA for the general search and we denote this as
GMCE+PCA. Results of the experiments are shown in Figures 16.11 and 16.12. Observations from
the two figures can be summarized as follows:

• When GMCE uses LDA as the general search tool, the performances of GMCE are better than both
LDA and MCE in all dimensions. When GMCE uses PCA in the general search process, the general
performances of GMCE are not significantly improved.
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Figure 16.11 Results of MCE(UNIT), GMCE+LDA and LDA on the TIMIT database. (a) Training
data; (b) testing data.
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Figure 16.12 Results of MCE(UNIT), GMCE+PCA and PCA on the TIMIT database. (a) Training
data; (b) testing data.

• In high-dimensional feature spaces (dimensions 15–21), the performances of GMCE+LDA are
close to those of the MCE training algorithm, which are better than LDA.

• In medium-dimensional (dimensions 7–15) and low-dimensional (dimensions 3–7) feature spaces,
GMCE+LDA has significantly better performances than both LDA and MCE.

6.2.3 Analysis of RDSVM

Figure 16.13 compares the results of RDSVM to those of GMCE+LDA, LDA and SVM. Observations
from the results can be summarized as follows:

• Compared to SVM, the performance of RDSVM on the full-dimensional feature space is improved
on training data. RDSVM’s performance on testing data (on the full-dimensional feature space) is
also improved on some subdirectories and remains the same on the rest.

• The performance of RDSVM on training data is poorer than that of GMCE+LDA and LDA in both
medium- and high-dimensional feature spaces (dimensions 12–21). In very low-dimensional feature
spaces (dimensions 3 and 4), RDSVM performs better on training data than LDA and GMCE+LDA.
On the other dimensions, the performance of RDSVM is between that of GMCE+LDA and LDA.

• The general performance of RDSVM on testing data is much better than that of GMCE+LDA and
LDA on all dimensions. In some subdirectories, the recognition rates of RDSVM are over 5% ahead
of those of GMCE+LDA on average on all dimensions.
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Figure 16.13 Results of GMCE+LDA, LDA, SVM and RDSVM on the TIMIT database. (a)
Training data in DR2; (b) testing data in DR2.

• The performance of RDSVM is very stable throughout all the dimensions on both training and
testing data. The performance of RDSVM usually starts degrading only when the feature dimension
is less than five.

• The performance curves of RDSVM on the training data of all the eight subdirectories are fairly
smooth, as are those of GMCE+LDA and LDA. But the performance curves of RDSVM on the
testing data are not as smooth as those on the training data.

7. Conclusions

In this chapter, we investigated major feature extraction and classification algorithms. Six algorithms
were involved in the investigation; they are LDA, PCA, the MCE training algorithm, SVM, the GMCE
training algorithm and RDSVM. From the observation of the experimental results, the following
conclusions can be drawn:

1. Feature extraction. The two independent feature extraction algorithms, LDA and PCA, have close
performances. But LDA is more stable in low-dimensional feature spaces. Compared to LDA and
PCA, the integrated feature extraction and classification algorithms, MCE and GMCE training
algorithms, have generally better performances. The MCE training algorithm performs better than
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LDA and PCA in high-dimensional feature spaces. But its performance degrades rapidly with the
decrease of feature dimensionality. The GMCE training algorithm integrates the advantages of both
LDA and the MCE training algorithm and has superiority over other algorithms on all dimensions.
The experiment results show that in the GMCE training algorithm, the LDA initialization criterion
is better than the PCA initialization criterion.

2. Classification. The classification results show that the discriminative classifiers, MCE and GMCE
training algorithms, have better fitness to the training data, while the nonlinear classifiers, SVM and
RDSVM, have better generalization properties than discriminative classification algorithms.
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We propose in this chapter a fusion approach for improving anti-personnel mine recognition. Based

on three promising and complementary mine detection sensors, we first address the issue of extraction

of meaningful measures, which are then modeled as belief functions and combined within a Dempster–

Shafer framework. A starting point in the analysis is a preprocessed multisensor data set containing

some mines and false alarms. A method for detecting suspected areas is developed for each of the

sensors. A detailed analysis of the chosen measures is performed for the selected regions. A way of

including the influence of various factors on sensors in the model is presented, as well as the possibility

that not all sensors refer to the same object. For every selected region, masses assigned by each of the

measures and each of the sensors are combined, leading to a first guess on whether there is a mine or

a non- dangerous object. An original decision rule adapted to this type of application is described too.

1. Introduction

For decades, great efforts of research centers all over the world have been made in the field of
humanitarian mine detection. Unfortunately, this problem is still unsolved, mainly due to the necessarily
high detection rate that is required, as well as the large variety of types of mine and of scenarios
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where mines can be found. Consequently, there is no single sensor that works well enough in all the
possible scenarios. A conventional Metal Detector (MD) is the oldest mine detection sensor, and in
reality, it is still the one that is most often used by the deminers. Put simply, an MD detects metal.
Consequently, there are situations where it cannot be used, due to either soil type (ferrous soils),
metallic debris, that often remain on old battlefields, or, nowadays, plastic or low-metal content mines,
for which an MD is practically useless. In these cases, other sensors are preferable, and one most
often reaches for Ground-Penetrating Radar (GPR). GPR detects any object below the soil surface if it
differs from the surrounding medium [1,2] in: the conductivity (metallic targets), the permittivity or the
dielectric constant (plastic and nonconducting targets), or the permeability (ferrous metals). However,
conventional GPR has problems in detecting shallow-buried mines due to a strong air/ground interface
reflection that hides the objects placed in that layer. This is one of the situations where the role of an
Infrared (IR) camera becomes important. Therefore, one of the most promising sensor combinations
consists of an MD, GPR and IR. We propose a method of combination that can easily be adapted for
other sensors and their combinations.

In this chapter, methods for analyzing GPR, MD and IR data are described, as part of work done
within the Belgian HUDEM project [3]. In Section 2, GPR, MD and IR data presentation is briefly
described, and their preprocessing is presented. Taking into account some characteristics of the GPR,
MD and IR data in general, as well as the way that the preprocessing is done, a method for selecting
suspected regions for each of the sensors is proposed in Section 3. Once the possibly dangerous regions
are selected, a detailed analysis of each of the regions is performed, in order to extract measures
that can give information about the true nature of the alarm. Section 4 discusses measures extracted
from the preprocessed MD, IR and GPR data. After that, as shown in Section 5, each extracted piece
of information is modeled in terms of belief functions, and discounting factors are introduced. In
Section 6, the possibility that not all the sensors speak about the same object is discussed and modeled,
and discounted measures are then combined within the Dempster–Shafer (DS) framework [4,5]. Since
the combination rule is associative and commutative, the combination of measures is done first per
sensor, in order to obtain the decision of each of the sensors separately, and then all the sensors are
combined. The nonprobabilistic interpretation [6] of the DS method is chosen, on the one hand, to
compensate for the fact that the data are not numerous enough for a reliable statistical learning, and
on the other hand, so as to be able to easily include and model existing partial knowledge about the
mines and the sensors. A new decision rule is proposed, leading to a simple way of making decisions
or guesses about the true identity of each region. Finally, results obtained by applying the proposed
method on multisensor data acquired in a sand lane at the TNO test facilities [7] within the Dutch
HOM-2000 project are given and discussed in Section 7.

To our knowledge, there have been just two attempts at applying DS theory to this problem [8,9].
Both works treat an alarm as a mine, and not as an object that could be a mine, as well as a false alarm.
In addition, in [8], beliefs are obtained classically, as probabilities [10], so this method faces the same
problem as statistical ones: the lack of a sufficient amount of training data. In [9], the efficiency of
the proposed method is estimated using real data containing a few mines and no placed false alarms,
meaning that the obtained results do not show how the method deals with false alarms.

2. Data Presentation and Preprocessing

2.1 IR Data

Our concern is only a passive IR sensor, which observes and measures heat without being in contact
with the source of it. Therefore, the principle of IR mine detection is very simple. Objects (in our case
mines), having different materials and thus different thermal characteristics than their surroundings,
can be detected by IR sensors under some conditions. Namely, mines become hotter and colder faster
than their surroundings, meaning that the daily evolution of IR mine signatures can be observed.



Data Presentation and Preprocessing 321

Consequently, depending on the time of the day, a mine can appear in an IR image as lighter (warmer)
than its surroundings, as darker (colder), or it cannot be noticed due to having reached thermal
equilibrium with the surroundings. In addition, the IR contrast between an object and its surroundings
decreases strongly with the depth, so an IR sensor is most often used for direct detection of surface-laid
mines. Indirect detection of buried mines is either due to the surface effect (disturbed soil due to recent
burial of mines) or due to the volume effect (the presence of a long-buried mine changes the heat and
water flow conditions above the mine) [11].

Since the IR images result from simple and known operational principles and the images are
almost purely representing radiated energy, some classical noise reduction tools are applied in the
preprocessing step [11]. Note that most of the mines are thin cylinders and that in general, due to some
burial angle, they appear as ellipses in the IR images.

2.2 GPR Data

Earth materials are mostly nonmagnetic and the change in conductivity mainly affects absorption of the
GPR signal by the medium. Thus, it is usually the permittivity contrast that leads to a reflection of the
electromagnetic waves radiated by the transmit antenna of the GPR and the detection of backscattered
echoes by its receiving antenna.

2.2.1 Types of GPR Data Presentation

A common presentation of the signals obtained by GPR is in the form of scans: A-, B- and C-scans
(adopted from acoustic terminology), and data processing can be applied to any of them. A single
amplitude–time waveform, with the GPR antennas at a given fixed position, is referred to as an A-scan.
A B-scan presents an ensemble of A-scans gathered along one axis, or, in other words, it is a two-
dimensional (2D) image representing a vertical slice in the ground. Note that reflections from a point
scatterer located below the surface are present in a broad region of a B-scan, due to the poor directivity
of the transmitting and the receiving antenna. Finally, a C-scan is a three-dimensional (3D) data set
resulting from collecting multiple parallel B-scans, hence recording the data over a regular grid in the
soil surface plane. Usually, a C-scan is represented as a horizontal slice of this 3D data set by plotting
its amplitudes at a given time.

2.2.2 A-scan Preprocessing Methods

In order to use the information on energy contained in an A-scan, the weakening of the signal with
the depth should be compensated. Another problem that should be overcome is the strong reflection
at the air/ground interface, that, besides strongly biasing the energy contained in each A-scan, often
hides reflections from objects buried just below or placed just above the surface.

While propagating from the transmitter towards a buried object and being scattered back to the
receiver, the electromagnetic waves of the GPR are subject to some losses [12,13]. In particular, the
deeper the object is buried, the higher the losses introduced by the soil are. In order to compensate
for these attenuations in function of R or, more directly, of time t, a Time-Varying Gain (TVG) is
introduced, by which a fixed gain of X dB per second (or per meter) is added to the raw signal s, so
the amplified signal in the time domain is:

sTVG�t�= s�t� ·10 Xt
20 (17.1)

The optimal value of TVG strongly depends on the type of GPR used, on the type and characteristics
of the soil, on the level of moisture and on the depth range of interest, so it is usually chosen to meet
the operational requirements. Its values can typically vary from 0.1 dB/ns up to 100 dB/ns.
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Regarding the background removal method (also called clutter reduction [12]), it aims to reduce
clutter and eliminate strong air/ground interface reflections. Within regions where the soil surface is
not rough, where the electromagnetic properties of the soil are unchanged and where the antenna
distance from the ground is kept constant, it can be expected that the position at which these strong
reflections occur remains constant. In addition, in such regions it can be assumed that some background
disturbances affect the neighboring A-scans approximately equally. This is often the case for smaller
regions. A simple way for removing the background consists then of choosing a window within which,
for each sample number, the mean of neighboring A-scans is found and subtracted from the value
of a central A-scan at that sample number. Usually, this sliding window within which the mean is
calculated is in the direction of scanning:

snew�x� y� t�= sTVG�x� y� t�−
1

2n+1
·

n
∑

i=−n
sTVG�x� y− i� t� (17.2)

where sTVG is a signal after the TVG and before background removal, snew is the signal after background
removal, x is the cross-track coordinate, y is the scanning direction coordinate and n is the half-
width of the sliding window. The choice of n should be a compromise between the expected size of
the objects, the distance between two neighboring objects, and the possible change of the height of
the antennas. If the range of expected sizes of objects and their distances is not known, if surfaces
are rough or if the height of the antennas is not constant, this type of background removal is not
really useful. An ideal solution would be to have a ‘known-to-be-empty’ region for the background
estimation, for which the GPR distance from the soil surface is somehow (if possible) kept the same
as for the measuring region, but this request is rarely met in reality. Finally, if neither of the above
requirements for background estimation by finding the mean of several neighboring A-scans is met,
more complicated ways for background removal would have to be investigated.

2.2.3 A C-scan Containing Energy Projections of Preprocessed A-scans

The advantage of GPR in providing 3D information can be a drawback too, in terms of data quantity.
In order to reduce the amount of GPR data, we choose to project the information contained in A-scans
in one plane. Another important reason for creating a unique C-scan from 3D data is in using it later
both to select possibly dangerous regions and to fuse it with other sensors that give 2D images of the
regions, such as an IR or an MD [11]. Several possibilities for creating such C-scans as projections
of A-scans exist, of which the most useful is to sum square values of each A-scan, i.e. to represent
it by its real energy. Namely, once TVG and background removal are applied to the data, the signal
attenuation effects of the depth and the strength of the air/ground interface reflection are suppressed
to some level. It allows us to project the energy contained in one A-scan in one point, as well as to
put together all such points in one plane and by that indirectly induce comparison between different
A-scans, belonging either to objects at various depths or simply to the background. In other words,
each A-scan snew�x� y� j
T�, where j is sample number, and 
T is the sampling time, is represented
by its energy Es�x� y�:

Es�x� y�=
N
∑

j=1
s2new�x� y� j
T� (17.3)

Since the peak energy is proportional, amongst others, to the volume of the object seen from that
point, the resulting C-scan is a good start for selection of regions possibly containing (dangerous)
objects.
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2.3 MD Data

The detection principle of an MD is based on inducing electric currents in a conducting object through
exciting it by an electromagnetic field. If the frequency of the excitation is low (audio band), the
induced currents are able to penetrate deeply into the object. These eddy currents then produce a
secondary electromagnetic field, detected by a secondary coil of the MD. A traditional MD has just
a sonar signal for indicating the presence of metallic objects. These days, it is possible to convert its
signal to an image, and this type of MD is under our consideration.

The image provided by an imaging MD is a result of visualization of sonar signals gathered through
a two-dimensional scan. Such an image is blurred due to the fact that both primary and secondary
magnetic fields spread as bundles, as well as due to the fact that the footprint of the coil is large when
compared to the size of metallic objects such as AP mines. That is why deconvolution is an important
aspect in preprocessing of the imaging MD data.

2.3.1 Deconvolution

The MD response of an object, f�x� y�, is convolved with the Point-Spread Function (PSF) of the MD,
h�x� y� (x and y being, again, pixel coordinates in the image), resulting in a blurred image, i�x� y�,
given by the following degradation model:

i�x� y�= f�x� y�∗h�x� y�+n�x� y� (17.4)

Here, n�x� y� represents noise, and * stands for the 2D discrete linear convolution operator. Various
techniques of restoring the image exist [14], and one of the most widely used is the Wiener filter. It
minimizes the mean square error between the estimate of an image and the true image, using a linear
operator, under assumptions of signal-independent noise, linear degradation, stationarity of the image
and degradation filter, and 2D-periodic approximation of the PSF. For our application, a main problem
of Wiener filtering is that the PSF of the MD has to be known. It can be found either theoretically
(by developing a mathematical model of such a system) or experimentally (by acquiring the response
of the MD on a very small metallic ball that can be, in a first approximation, treated as a metallic
point). Unfortunately, the impulse response of the MD depends on various factors, amongst which
is the distance between the detector and the observed point. It limits the applicability of standard
deconvolution techniques that need to have the PSF as an input to the cases where the burial depth
of the metallic object under consideration is known. This is a great problem for real mine detection
situations. Some advanced deconvolution techniques, such as (iterative) blind deconvolution [15,16,17],
aim at overcoming such a problem. The idea of the method is to estimate both the true image and
the PSF by first randomly initializing their estimates. Based on that, a first estimate of the PSF is
found using input on the energy of the additive noise and then imposing blur constraints regarding
the size of the PSF. In a next step, a first estimate of the true image is calculated imposing image
constraints (that the image has a final support). The procedure is then iterated some preset number of
times or until the two estimates start to converge. Our results have shown that final results depend on
the initializing estimates, that both estimates converge slowly, that the PSF estimate converges even
more slowly than the true image estimate, and that the method is unstable and lacks reliability (as also
pointed out in [15]).

Thus, iterative blind deconvolution is not well-suited for our case due to its dependence on starting
estimates in the first place. On the other hand, though Wiener filtering is more reliable and faster, it
needs an adequate PSF as its input. A potential way to go could be to use measured PSFs of the MD
as a function of the depth and try to deconvolve (using Wiener filtering) a recorded blurred image
using each of the PSFs until the one is found for which the sharpest image is obtained. By that, both
the true image and the depth (by knowing which depth such a PSF corresponds to) could be estimated.
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Unfortunately, in most of the MD applications in mine detection, the data has too poor resolution in
one of the directions, and is saturated as well. Therefore, in the following, we use the raw data and
keep in mind its physical meaning described above.

3. Region Selection

In this section, for each of the sensors we propose possible ways of alarming, i.e. of finding regions
possibly containing mines, that should be further analyzed.

3.1 IR Regions

In the case of IR, alarming has to take into account the possibility of having an inversion of the contrast,
i.e. the possibility that a mine can appear both darker and lighter than its surroundings, depending
on the time of day. Furthermore, such a method has also to be able to deal with various levels, i.e.
strengths of contrast between a mine and the background, again depending on the time of day, mine
material, type of soil, etc.

One of the simplest ways for determining regions of interest is certainly by thresholding a
preprocessed IR image, but this involves a visual assessment of the best threshold level for a particular
scenario. Since we look for some automatic solutions, a way for estimating background should be
involved and then pixels that exceed significantly the estimated background would be preserved. There
are different ways for estimating the background. In the case of human intervention in the field, this
would be to find a ‘known-to-be-empty’ region near to the analyzed area, in order to be sure that
their backgrounds are similar. If such a region does not exist, the simplest and quite safe solution is to
estimate the background for each image separately, from some preset number of the bordering pixels
[18] around an IR image, small enough not to include pixels belonging to a mine, and still large enough
to be a statistically reliable estimation. In the case of daylight measurements, the thermal clutter is quite
strong, meaning that the background can significantly change from one part of the investigated region
to another, i.e. from one IR image to another, which makes this idea even more attractive and realistic.
This method is adopted here. Furthermore, a method should be determined for actually estimating the
background and using that estimation for selecting pixels of the image that differ from the background
(enough to suspect that they signal the presence of an object in the scene), and by that obtaining a
binary image of the scene. Again, several possibilities exist, amongst which three seem both simple
and realistic:

1. To find the mean of the background area, mback , and to preserve only pixels that, by absolute value
(in order to deal with contrast inversions), exceed the background mean for at least some factor f1,
i.e. to keep the pixels the values of which, v, satisfy the condition:

�v−mback�> f1mback (17.5)

2. To go a step further by finding the standard deviation of the background as well, sback , and keep
only the pixels that fulfill this condition:

�v−mback�> f2sback (17.6)

where f2 is again some factor that can be varied, depending on the situation (whether we have
information that the contrast is high or low, i.e. whether mines are mostly buried or surface-laid).
This condition is based on the assumption that the noise is of a Gaussian type, and it is the one
used in [18].
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3. One more way is to determine the maximum value of the noise in the background, nmax, as the
maximum difference between the pixels in that region and their mean, and preserve just those pixels
that satisfy the condition (with f3 being yet another factor that can be varied as a function of the
scenario):

�v−mback�> f3nmax (17.7)

Our tests have shown that all three methods lead to similar results. In the following, we use the second
one, and the value of f2 is chosen to be 3 as a compromise between being able to preserve responses of
shallowly buried targets without increasing significantly the clutter in the case of surface-laid objects.

3.2 GPR Regions

A simple means of region selection is to threshold projected A-scans. This gives good results, even
without TVG [19]. Still, a potential general problem introduced by this method is that deeper buried
objects have weaker signals and, accordingly, weaker energies. Therefore, it can happen that they are
not detected if the threshold is not low enough, while a threshold that is too low leads to an increase in
the number of false alarms. Even if TVG is applied, such a simple thresholding can rarely work well
enough in case of humanitarian mine detection, which demands the highest possible detection rates.
As shown in the previous section, the problem of correctly choosing the appropriate TVG is subtle,
and strongly depends on a variety of factors. Consequently, it is practically impossible to be sure the
chosen TVG is the right one.

In order to preserve weaker signals, possibly belonging to deeper buried objects, without causing a
strong increase in the number of false alarms, we propose a simple method for the region selection.
The idea is to find local maxima and analyze their neighborhoods by grouping together all the points
within some window around each of them, the value of which is close to the value of that local
maximum. As a result, we get a ‘blob’ within a window around every local maximum. Note that a
blob belonging to one local maximum actually can be a group of blobs, and not just one connected
blob. Namely, within a window around a local maximum there could be some regions with higher,
and some with lower, energies than the chosen threshold (on percentage of the maximum decrease of
a local maximum value) allows.

This means the local maxima method needs three pieces of information as input. The first one is
the size of the window around the local maxima within which the points are analyzed. Again (see the
previous section), it must be larger than the size of the largest expectable object convolved with the
GPR antenna opening and smaller than the minimum expectable distance between two objects in a
lane. If this interval does not exist, mistakes can hardly be avoided – either an object that is too
large could be detected twice, or a few closely placed objects could be detected as a single object.
A way to deal with this problem is mentioned in Section 7. A second input is the minimum value of
local maxima that should still be detected (thr1). Obviously, this value affects the number of detected
regions. Finally, the minimum percentage of the local maximum value so that neighboring pixels are
grouped with it �thr2� has to be chosen too. The choice of this value should not be critical, since it
should influence sizes of all obtained blobs similarly.

3.3 MD Regions

Depth estimation through deconvolution, discussed in the previous section, asks for good quality
images, i.e. with a good resolution. Thus, this method is feasible in cases of small images of single
targets, and that diminishes its usefulness for the depth estimation in cases of region selection on images
of broader areas. To our knowledge, there is no other way for determining the depth of an object in
case of imaging MD data. Since the strength of the response of a metallic object depends on its depth,
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it further means that in the case of region selection, great care has to be taken not to discard weaker
signals possibly corresponding to deeper buried metallic objects. In other words, if simple thresholding
is applied for region selection, it should be low enough to detect such signals and objects. However,
larger metallic objects leave strong and large, often saturated, signals in quite a broad area around them
(due to the fact that deconvolution cannot be performed, so their strong response is convolved with
quite a large footprint of the MD). A low threshold means that such objects would be presented on
images by huge blobs covering large areas and sometimes even hiding responses of smaller metallic
objects in their neighborhood. Finally, such strong and wide responses of neighboring objects are often
joined. Therefore, standard thresholding is not well suited here.

3.3.1 MD Region Selection on Saturated Images by the Local Maxima Method

with Windows

An important difference between the local maxima method introduced in the previous subsection
for GPR images and the one for MD data is in the fact that in the latter case, a general danger of
having saturated images exists, which should be taken into account. Namely, for GPR data, a first
local maximum that is found is immediately selected as the center of the corresponding region, the
neighborhood of which is to be analyzed and possibly grouped with it, but this approach is not well-
suited for saturated MD images. In the case of saturation, a local maximum found in such a way would
always be somewhere at the borders of saturated regions, i.e. uniformly-valued areas, meaning that a
bordering pixel of the uniform region would be chosen as a center of a window.

Therefore, the method has to be adjusted for saturated images. The modification is as follows: once
a local maximum is found, its neighborhood is checked. The checking stops either when the pixel
value starts to decrease, or when the distance from the starting point reaches the half-size of the
window, depending on what happens first. (Note that the criterion is the half-size and not the full size
of the window, in order to minimize mistakes. Otherwise, such a window would contain only uniform
maxima values, so there would later still be false alarms in regions next to it, with slightly smaller
values than these maxima.) Then, the middle pixel of the found range with a uniform pixel value is
chosen as the real local maximum and as the center of a region. After that, the procedure is the same as
for the GPR. The influence of thr1 on the number of blobs and the influence of thr2 on their size, are
similar to those explained in the previous subsection. Regarding the choice of the size of the window,
the reasoning remains the same as for the GPR data.

The choice of the size of the window is very important in avoiding artifacts, but it should not be
forgotten that this approach can be quite dangerous in reality if we do not have precise information
about the expected sizes of objects and the distances between them. A too large size of the window
can cause grouping of two objects together, as one alarm. Thus, in real applications, one should keep
in mind the size of the window chosen, and once a region is selected, one should remember which
area around the local maximum (which size of the window) is being considered while alarming, i.e.
which area really corresponds to a selected region.

3.3.2 MD Region Selection on Saturated Images by the Local Maxima Method

without Windows

When knowledge on the size of objects is available, the above method can be applied, and it will
result in a good division of one blob belonging to several objects. In general, if such knowledge does
not exist or is not completely reliable, we cannot be sure whether one large blob is a result of several
objects or of only one large metallic object. Consequently, a safer way to go is to put no restrictions
on the size of the window, i.e. not to have windows at all. This means that the no-window method
searches for a local maximum. When it finds one, it follows its value and observes its neighborhood
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as long as a decrease in the value does not occur. Then, the center of this uniform-valued region is the
central local maximum and all the pixels around it are grouped with it as long as their value does not
decrease below that defined by thr2. The procedure continues as long as there are pixels with values
above thr1. Still, some small artifacts on the borders of a found region can remain, the values of which
are too small to be grouped with that region but still larger than thr1, so that afterwards, these artifacts
can become centers of some false regions. Thus, we introduce the following: a local maximum region
is accepted as a potential suspicious region only if around its local maximum (within some resolution
circle, the radius of which, r, can be around or less than one half of the resolution, i.e. of an MD coil
radius) there are no larger values than it in the starting image. Otherwise, this region is discarded since
it can be either a remaining part of some already detected region or simply noise.

Note that the above modification can be introduced here since there are no restrictions on sizes
of windows, so it can be assumed that these are really artifacts. In the case of the previous local
maxima method for saturated images with windows, the underlying assumption is that there is some
knowledge on the size of objects. Thus, such a modification could be dangerous and that is why it is
not included there.

This method is good and safe for region selection in cases when no sure information exists on
expectable sizes of objects and their arrangement (distance).

4. Choice of Measures and Their Extraction

4.1 IR Measures

An IR provides 2D images and thus information about the shape and size of objects. Since most AP
landmines are thin cylinders, they appear as ellipses on IR images, taking into account the burial angle,
i.e. that mines are not buried ideally parallel to the ground surface. Based on the binary images obtained
by selecting regions as described in the previous section, our idea is to apply classical edge detection on
each of these images and perform shape analysis on binary, edge-detected images. Working on edges is
chosen as a way to speed up the analysis. The continuity of these edges is destroyed by several factors
[20], such as noise and natural phenomena in the scene itself, leading to the real problem investigated
here: detection of partially occluded ellipses on binary images. In [11], three methods are analyzed:
a nonparametric approach (see [21,22]), chain analysis (our contribution introduced in [23], which is
a sort of border tracing [24] or chain coding [14]) and our modifications [23] of randomized Hough
transforms for ellipses [25,26,27]. In the following, we describe only the third method since it is the
one that we use here.

4.1.1 Randomized Hough Transform (RHT) and Ellipticity Measure

This method does not preserve the original shape of an edge. As with any Hough transform [28–30],
it is necessary to decide which shape to detect. In some cases this can be a problem, but not here, as
long as mines are circular (viewed as elliptical). In the case of ellipse detection, a triplet (based on the
ideas given in [25,31]) of foreground pixels �P1�P2�P3� is randomly chosen, and, by analyzing their
coordinates and their neighborhood, parameters of the ellipse that contains these three pixels are found
as follows:

• first, by looking at a small neighborhood of each of the three pixels, the tangents of a potential
ellipse in these three pixels are determined as lines through each of the pixels and their neighbors;

• the middle lines of the angles between two pairs of tangents are found; the intersection of the two
lines represents the position of the ellipse center, C�xc� yc�;

• then, the remaining three parameters of the ellipse, a, b and c, can be estimated by replacing
coordinates of each of the three pixels of the triplet in the ellipse equation: a�x−xc�2+2b�x−xc�
�y−yc�+ c�y−yc�2 = 1, and solving the system of the three obtained equations.
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This step is repeated some preset number of times and parameters of found ellipses are stored. Hough
transforms, in general, are time consuming, but this randomized version overcomes that problem. We
propose one more way to make it even faster. Namely, instead of choosing, as the final result, ellipses
that are visited the highest number of times (which demands a high enough preset number of times
of looking for ellipses to make results valid), the number of times the procedure is repeated can be
decreased to some extent, taking into account that ellipses can be missed if this number is too low.
After that, the image should be rechecked and foreground pixels lying on each of the ellipses counted.
Ellipses that contain enough foreground pixels and that are within some dimension interval may be
chosen as the best representatives of detected elliptical objects on an image. This way, calculation time
can be spared and results remain representative. Another advantage of this method is that it does not
need good preprocessing and it does not depend on continuity of edges.

The first chosen measure is, consequently, shape ellipticity (how well the shape of the selected
region fits in an ellipse obtained using the randomized Hough transform method described here).

4.1.2 The Second Measure – Elongation

This measure tells how elongated the shape is. The method applies to the binary image of a selected
region. We calculate the center of gravity of the image and then we find:

• the minimum and maximum distance of bordering pixels from the center of gravity, and the ratio
between them (ratio1) (this works well only if the center of gravity lies inside the boundary, otherwise
it does not make sense, so checking whether the center of gravity is inside is done before this step;
if it is not inside the boundary, ratio1 is set to 0); note that only the outer boundaries (edges) of the
shape are taken into account here;

• second moments, and from them, the ratio of the minor and major axes of the obtained quadratic
form (ratio2); this can be applied on edges as well, but the influence of the noise on the position of
the center of gravity is much larger in that case.

In the later section on mass assignment, the two measures will be used.

4.1.3 The Third Measure – Area/Size

The reasoning behind choosing this measure is the following. When preliminary information about the
expected size of mines exists (e.g. on the basis of knowledge about the types of mine laid in some
particular region), a range of areas of detected object that could be a mine, but something else as well,
can always be predicted, taking into account again possible deformations because of some burial angle.
Outside that range, it is much more likely that objects are not mines.

4.2 GPR Measures

4.2.1 Choice of A-scan and C-scan Measures and Their Extraction

The selection of regions that possibly contain mines is usually the end of the detection process, resulting
in a lot of false alarms in reality. Therefore, we are looking for some useful and reliable measures that
can be relatively easily extracted from GPR data, and that should give more information regarding the
true identity of objects within each of these regions.

The acquisition step in the cross-track direction is often around the size of a typical AP mine.
Consequently, depending on its position in comparison with the gathered B-scans, the same mine can
appear on one, two or, in a limit case (taking into account the finite antenna opening, i.e. the fact
that antennas typically have a poor directivity, so objects appear larger than they really are), even
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three successive B-scans. In such cases, both the size and shape of the 2D projection are useless. In
order to overcome this problem and still extract some information from the preprocessed C-scan, two
assumptions have to be made. The first one is that the objects are not prolonged in one direction, so
that the dimension in the scanning direction can give an idea about the object size. Since GPR antennas
are usually close to the ground during the acquisition, and since analyzed objects are not too deeply
buried, it can also be assumed that the antenna opening does not change significantly with the actual
object depth (the so-called near-field assumption), meaning that the dimension of a region along the
scanning direction does not depend on burial depth. Under these two assumptions, a first measure is
chosen: the width of each selected region in the scanning direction, ysize.

Since the analyzed C-scan is obtained from energy projected A-scans preprocessed by means of
TVG and background removal, if the difference in material and shapes is ignored, it can be said that
the energy of a local maximum is proportional to the volume of the corresponding object. This is the
second chosen measure, E.
The reflection of a GPR signal on the interface causes peaks in A-scans, the strength of which

depends mainly on the type of material of the object. Once the background is removed, the first
peak should correspond to the position of the top surface of the object, i.e. to its depth. That is
the third chosen measure, expressed in number of time samples and obtained as the sample number
of the first maximum in snew. We convert the depth n1, expressed in number of samples, to d1 in
centimeters through proportionalities, by locating an object with a known depth in a calibration area,
and assuming that electromagnetic properties of the sand remain constant within the lane, and that the
soil is homogeneous and isotropic [24]. For such an object buried at depth dref , the first maximum in its
A-scan appears at the sample number nref . Analyzing the raw A-scans, it can be seen that the air/ground
interface appears around the sample number nsurf . This means that for buried objects �n1 > nsurf�, one
can estimate the depth in centimeters by:

d1 =
dref�n1−nsurf�
nref −nsurf

(17.8)

The soil surface is taken as the reference point for the depth and the negative sign indicates depths in the
ground. In the case where an object is surface-laid �n1 < nsurf�, the height of its top above the surface
could be estimated taking antennas as the reference object, and knowing its height. Unfortunately, it is
not possible to determine which sample number the antenna position corresponds to, since in practice,
sample number 0 is chosen in an arbitrary way. This makes distance estimations above the surface
unreliable. Still, the real power of GPR is in its subsurface detection abilities, and for surface-laid
objects various other sensors could be used in combination with this sensor. Therefore, we choose to
assign all positive depths to zero.

4.2.2 B-scan Hyperbola Detection and Chosen Measures

Another way of getting useful measures from GPR data is to analyze B-scans obtained from A-scans
preprocessed by the TVG and background removal methods. Namely, while A-scans can give local
information at the position of a local maximum only, B-scans can provide more global information
about its neighborhood. An interesting way to gain information about the size of an object, its 3D
position and the propagation velocity of electromagnetic waves above the object, is by analyzing
characteristic hyperbolic shapes on B-scans [32]. These shapes result from the poor directivity of GPR
antennas, due to which reflections of a small object, approximated by a point scatterer, are smeared
out [13] over a broad region in B-scans.

The geometry of GPR data acquisition can be presented as in Figure 17.1, for a given displacement of
the antennas from the starting position of a B-scan line. Yt denotes the displacement for the transmitting
(T) and Yr for the receiving (R) antenna, where their difference, 
Y = Yr−Yt is a characteristic of the
GPR. The lateral distance of the observed object from the same starting point is Yo.
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Figure 17.1 The geometry of GPR data acquisition.

The height of the antennas above the soil surface is H , and it is assumed to be constant. It is assumed
that the size of the object, d, is comparable to the wavelength of the GPR signal, �, so that it can
be approximated by a point scatterer. Note that this assumption is valid for AP mines and standard
GPR frequencies. The burial depth is equal to D. The path of electromagnetic waves traveling from
T to the object consists of two parts, one through the air �w1� and another through the soil �w2�. At
the interface between the two media, waves are refracted so that a change of path angle occurs, from
	1 to 	2, with respect to the soil surface. Similarly, the path of waves reflected from the object and
traveling back to the GPR receiver consists of two parts, w3 through the soil and w4 through the air,
with corresponding angles 	3 and 	4. A detailed analysis of this situation and corresponding complex
calculations can be found in [11]. In the following, we introduce some simplifications of the geometry
of GPR data acquisition, leading to simplified calculations that can be found in, e.g. [32]. There are
several arguments in favor of these simplifications:

• the main interest in GPR is for subsurface imaging;
• it is easy to determine the air/ground interface on A- or B-scans, due to the strong reflection at such
interfaces;

• GPR antennas often operate very close to the ground;
• the distance between T and R is often negligible in comparison with other distances.

Accordingly, at a first approximation, it can be said that H = 0 and 
Y = 0, and consequently,
Yr = Yt = Ya, where Ya is the distance of the central point between T and R from the starting position
in a B-scan line. This further means that w1 = w4 = 0 and w2 = w3 = w, with w being the (one-way)
wavepath between the antennas and the object:

w =
√

D2+ �Ya−Yo�2 (17.9)

Finally, the round-trip travel time, or Time-Of-Flight (TOF), can be found as:

TOF = 2
w

v
= 2

√

D2+ �Ya−Yo�2
v

(17.10)
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with v being the propagation velocity of the electromagnetic waves through the soil (assuming that it
is a constant value). TOF is usually expressed in discrete values, as a number of time samples j taken
every 
T :

TOF = j
T (17.11)

The data are stored in such a way that the y-axis is also discretized:

Ya = ia
Y (17.12)

Yo = io
Y (17.13)

Here, 
Y presents the acquisition step in the y-direction, while i is the number of samples, ia being
the sample number in the y-direction corresponding to one A-scan collecting position of antennas in
a B-scan line, and io being the discretized lateral position (y-coordinate) of the object. Substituting
Equations (17.11), (17.12) and (17.13) into Equation (17.10), we come to the following:

j2 = A+B�ia−C�2 (17.14)

with:

A=
(

2D

v
T

)2

(17.15)

B =
(
2
Y

v
T

)2

(17.16)

C = io (17.17)

Equation (17.14) is the parametric equation of a hyperbola, showing that indeed, due to a poor
directivity of T and R, objects appear as hyperbolae in B-scans: moving the antennas during the
acquisition of a B-scan, means that their position ia changes, and one small object leaves a hyperbola
in the acquired image.

As a next step, a way to detect or extract hyperbolae from B-scans has to be found. For that, the
Randomized Hough Transform (RHT) [26,30] for hyperbola detection [32] can be of great help. In the
following, we only briefly describe this idea, which is discussed in detail in [33], and which is based
on modifying a previously developed method for ellipse detection by RHT [22,23]. First, we randomly
choose three foreground pixels in an image containing edges of a thresholded B-scan image (after
TVG and background removal). Then, we find the three parameters �A�B�C� of the hyperbola that
contains these points by substituting their coordinates into Equation (17.10). If the obtained parameters
are realistic [33], they are stored as a potential final solution. This process is repeated a preset number
of times, chosen as a compromise between speed and accuracy. Whenever a new hyperbola is found,
it has to be checked to see whether it has already been found, and if this is the case, the number of
times it was found increases. At the end, two possibilities exist for deciding which hyperbolae are the
real solutions, by ranking them based either on the number of times each of them was found, or on the
number of foreground pixels each of them contains. If the number of times the RHT is performed is
high enough, the two ways should give the same results. If the number of times is not very high, the
second way leads to better results.

If the detection is performed in an automated way, another question is how to determine how many
highly ranked hyperbolae to preserve. It depends on how many objects can be expected in a scene.
While estimating that number, one should not forget that depth is still a free dimension, so that there
can be a few objects, placed one below the other. Therefore, in case there is no certain information
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regarding the possible number of objects in the scene, the safest way is to choose several hyperbolae
and eliminate some of them later, on the basis of how realistic the measures estimated from each of
them are. If human interaction is envisaged, the problem can be simply solved by visually estimating
how many hyperbolae indeed exist in the scene.

Equations (17.16), (17.15) and (17.17) can be rewritten, respectively, as:

v= 2
Y


T
√
B

(17.18)

D = v
T
√
A

2
(17.19)

io = C (17.20)

Thus, once the typical hyperbolic shape is extracted from a B-scan, the propagation velocity in the
medium above the object, the burial depth of the object and its cross-track coordinate xy-position (and
so its 3D position) can be estimated. In addition, the hyperbola opening is proportional to the size of
the object d [32]:

d = k
A

B
(17.21)

with k being the characteristic of the scattering function that depends on object shape. Since we
do not have information about the shapes of objects, we assume that their scattering functions are
approximately the same.

There are two ways of finding the burial depth, not always leading to the same results, so we use
two notations, D∗ and D. Taking into account that

√
A is the position of the top of the hyperbola,

D∗ is the depth obtained from it through proportionalities, as explained in the previous subsection for
depths below the soil surface (see Equation (17.8)), i.e. for values

√
A > nsurf . If this condition is not

satisfied, meaning that the top of such an object is found to be above the surface, D∗ is set to 0 (see
the previous subsection). D is the depth that is found from the velocity using Equation (17.19), taking
into account, once again, where the top of the obtained hyperbola �

√
A� is in comparison with the

position of the air/ground interface. If
√
A > nsurf is satisfied, Equation (17.19) is modified to:

D =
v
T

(

nsurf −
√
A
)

2
(17.22)

In this case, D presents the depth measured from the air/ground interface and it has a negative sign. If√
A≤ nsurf , Equation (17.19) is applied, giving the distance between the top of the hyperbola and the

sample number 0. As mentioned in the previous subsection, this number does not say much, except
that its positive sign means that such an object is laid above the surface. Consequently, D∗ and D must
not be compared directly above the surface. Below the soil surface, D∗ and D ideally should be equal.
In reality, their differences result from the way they are estimated, since D∗ assumes that v remains
the same everywhere and is equal to the one that is found for the reference object. If v estimated
from hyperbolae differs significantly from that reference value, the value of D will be affected. The
antennas of the GPR are generally not optimized for detection above the surface, which diminishes the
need for a precise depth estimation there. The only important information in that case is its positive
sign, indicating that such an object is above the surface.

The propagation velocity calculated from Equation (17.18) should have a value within a known
range of values for that type of soil if the object is buried below the soil surface (if D is negative).
If the object is placed above the soil surface (positive D), ideally, v should be equal to the propagation
velocity in the air, c = 3 ·108m/s.
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Based on the above, we select the following independent measures extracted by hyperbola detection
for further modeling:

• depth information given by D∗;
• propagation velocity v together with the sign of D;
• the ratio between the object size and its scattering function, d/k.

4.3 MD Measures

If the object is metallic, the size and shape detected by an MD should ideally correspond to those found
by GPR and IR. If it has a low metal content, the shape and size of the metal cannot be linked with the
detections of the other two sensors. The same distinction appears in the terminology of humanitarian
demining, where mines are classified, on the basis of their metal content, into three types: metallic,
low-metal content (so-called ‘minimum metal content’ [34]) and nonmetallic. In this classification, a
metallic mine is one made almost completely of metal, except e.g. handles, while a mine with low metal
content has metal only in small parts, e.g. in the fuse. In addition, depth extracted from deconvolution
of the MD image could be used in a similar way as the depth information extracted from GPR. [35].

However, in reality, the scanning resolution in one dimension is set to be around the expected size
of AP mines, as a compromise between the necessity not to miss any mine, on the one hand, and on
the other, the speed of the data acquisition and the field area to be analyzed. For such a resolution,
which is around the size of an AP mine, there is no use of the area and shape measures. Furthermore,
due to the fact that there is no knowledge on the PSF of the applied MD, and besides that the image
is saturated and the resolution is poor, depth measure extraction through deconvolution is impossible.

From each of the regions selected by the local maxima analysis method for saturated images, with
or without windows (see Section 3), three parameters can be extracted:

• number of pixels, Np;
• the value of its local maximum, Vmax;
• the width of the region in the y-direction, wy.

5. Modeling of Measures in Terms of Belief Functions
and Their Discounting

In real mine detection situations, the acquired data are far from numerous enough for reliable statistical
learning. Besides, they are highly variable depending on the context and conditions [36]. Furthermore,
not every possible object, neither mines nor objects that can be confused with them, can be modeled.
On the other hand, some general knowledge exists regarding AP mines, their sizes, shapes, burial
depths, etc., as well as regarding detection possibilities of each of the sensors. For these reasons, we
decide to model and combine the measures of each of the sensors in terms of belief functions within
the DS theory, since in this framework, ignorance, partial knowledge, uncertainty and ambiguity can
be appropriately modeled [4,5].

Note that all three sensors give images, around 90% of the mines have an elliptical (regular) top
surface seen under some angle, and the major goal of our humanitarian demining efforts is to distinguish
between a mine and a non-dangerous (friendly) object (stones, cans, etc.). Therefore, we define the
frame of discernment � as: � = �MR, MI, FR, FI�. Here, MR is a mine of regular shape, MI a mine
of irregular shape, FR a friendly object of regular shape and FI a friendly object of irregular shape.

The modeling step aims to define a mass function for each measure expressing the information
provided by this measure on the presence of a mine. Note that the mass function is the distribution
of an initial unitary amount of belief among the subsets of � [6]. In the following, we present a
model for each of the measures, based on a bibliographic survey, as well as on the single sensor trials
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within the Belgian HUDEM (HUmanitarian DEMining) project [3]. The proposed equations for mass
assignments are only examples illustrating the required tendencies. The numbers and parameters in
these mass functions are not really important. Only the general shape of these functions matters, and the
method is robust with respect to the choice of parameters. Usually, one of the difficulties when using
belief functions is the definition of focal elements, and in particular of disjunctions. The approach we
propose here relies on the specificities of the proposed measures. For example, a shape measure is not
able to separate MR and FR, and their disjunction will therefore be considered for mass assignment.
This approach is detailed for each sensor and each measure below.

5.1 IR Measures

5.1.1 Ellipse Fitting Mass Assignment

We apply the ellipse fitting algorithm described in the previous section on the edges of the selected
IR regions. The mass for the subset of regular shapes assigned by this measure indicates how well this
shape fits an ellipse:

mf�MR∪FR�=max

(

0�min

{
Aoe−5

Ao

�
Aoe−5

Ae

})

(17.23)

where Aoe is the part of the object area that belongs to the fitted ellipse as well, Ao is the object area
and Ae is the ellipse area. The subtraction of five pixels is introduced to include the limit case of an
ellipse with just five pixels, where we cannot judge about the shape at all, so ignorance should be
maximal.

The mass of the irregular subset is the larger of two values, the percentage of ellipse area that does
not belong to the object and the percentage of the object area that does not belong to the fitted ellipse:

mf�MI∪FI�=max

{
Ae−Aoe

Ae

�
Ao−Aoe

Ao

}

(17.24)

The full set gets the remaining mass:

mf���= 1−mf�MR∪FR�−mf�MI∪FI� (17.25)

5.1.2 Elongation Mass Assignment

Once ratio1 and ratio2 (see the previous section) are found, the mass value for the regular subset is
the smaller of them:

me�MR∪FR�=min�ratio1� ratio2� (17.26)

while the mass of the irregular subset is the absolute value of their difference:

me�MI∪FI�= �ratio1− ratio2� (17.27)

The full set takes the rest:

me���= 1−max�ratio1� ratio2� (17.28)
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5.1.3 Area/Size Mass Assignment

If the approximate range of expectable mine areas is from Amin to Amax, based on the reasoning given
in the previous section, masses are modeled as:

ma���= � · exp �Aà−0�5 · �Amin+Amax��
2

0�5 · �Amax−Amin�
(17.29)

ma�FR∪FI�= 1−ma��� (17.30)

The parameter � is usually set to a value close to 1. Taking it not exactly equal to 1 allows for having
nonzero values for the complement function, which avoids completely excluding some solutions (since
mass functions are combined using product operators, having zero somewhere is very strong).

5.2 GPR A-scan and Preprocessed C-scan Measures

5.2.1 ysize Mass Assignment

This measure is extracted as the width of a region selected by the local maxima method. It cannot
provide information about mines alone. Although we know the approximate range of sizes of AP mines,
still, whenever an object has a size within that range, it could be something else as well. Therefore, in
that range, masses should be mainly assigned to the full set, �. If the object is too large or too small,
it is far more likely that it is not a dangerous one, and a large part of the mass should be given to
friendly objects. Therefore, it makes sense to model masses as shown in Figure 17.2(a). The position
of the center and the width of the central interval, where masses go mainly to the full set, depend on
the available information. If there is no information regarding expectable mine size, or if a wide range
of sizes can be expected, these curves should be quite uninformative, so the central interval should be
very wide. If it is known which types of mine can be expected in a minefield and their size is similar,
the curves, and accordingly this measure, become very selective (narrow central interval).

5.2.2 E Mass Assignment

Similarly to ysize, whenever the energy is as expected for mines, it could be any other object as well,
assigning masses mainly to �. Otherwise, it is likely that an object is friendly, so masses can be
modeled as shown in Figure 17.2(b). The remaining reasoning is the same as for the previous measure.
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Figure 17.2 Masses assigned by (a) the ysize measure; and (b) the E measure.
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Figure 17.3 Masses assigned by (a) the depth; and (b) the velocity measure.

5.2.3 d1 Mass Assignment

If an object is buried too deeply, it is possibly a non-dangerous one. Otherwise, it could be anything.
Following this logic, masses can be modeled as shown in Figure 17.3(a).

5.3 GPR B-scan (Hyperbola) Measures

5.3.1 D∗ Mass Assignment

Since its meaning is the same as that of d1�D
∗ is modeled as given in Figure 17.3(a).

5.3.2 v Mass Assignment

As mentioned earlier, the value of the propagation velocity depends on the medium, so, in the case of
the soil, it should be around the values for this medium, and if it is the air, it should be close to c. In
order to decide which model should be used, the sign of D is used as an indicator. If the value of v is
expectable for a particular medium, an object that gives that estimation of v could be anything. If v
differs significantly from the expected values for that medium, it can be expected that it is something
friendly or simply background. This reasoning is illustrated in Figure 17.3(b).

5.3.3 d/k Mass Assignment

If this measure is within a range of values that can be expected for mines, such an object could be
anything from the full set. For very low or high values of this parameter, it is quite certain that the
object is non-dangerous. Following this idea, masses are modeled as shown in Figure 17.4(a).

5.4 MD Measures

5.4.1 Measures for MD Regions Selected by Local Maxima Analysis for Saturated

Images With Windows

The number of pixels of a region corresponds to its area, which is a highly unreliable parameter,
taking into account the poor x-direction resolution in real scenarios, so we discard this information.
Since the value of a local maximum depends at least on the metal content of an object and its depth,
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Figure 17.4 Masses assigned by (a) the d/k measure; and (b) the wy measure.

and since we cannot extract any of the two in any other way to our knowledge, Vmax is not useful
here either. Therefore, the only remaining information whose usefulness should be discussed here, is
the width of the region in the y-direction, wy. If we do not have information on the possible size of
metal in the mines, we can only keep regions as they are. Consequently, if MD is used alone, we
can treat all the regions as potential mines. For fusion with the other two sensors, we can also give
the highest confidence of the MD in treating these regions as mines, plus providing the local maxima
values in order to have a hint on its metallic content (by using the depth information of the GPR). On
the other hand, if we have information on the expected sizes of metal in a minefield, we can include
that information in the sense of assigning masses by this measure. For example, if it is expected that
there are no mines for which the size of the metal is smaller than around 5 cm, nor larger than around
80 cm (which is quite loose in reality), we can model mass assignments by the wy measure, as given
in Figure 17.4(b).

This reasoning can be refined if we have additional knowledge or information about the metal
content of the objects. An approach dealing with such information is proposed in [35].

5.4.2 Measures for MD Regions Selected by Local Maxima Analysis for Saturated

Images Without Windows

The discussion regarding the usefulness of the first two measures, Np and Vmax, remains the same as
in the previous case. Regarding wy information, this time we cannot make use of it at all, since an
underlying assumption for using this type of local maxima region selection is that we do not have
information on the expected sizes of objects, nor their arrangements in a minefield. This means that
this is our final output, or, taking the cautious approach, that all the MD selected regions should be
treated as potential mines. Therefore, in the case of fusion of MD with the other two sensors, each of
these regions will have the maximum value of the mass of the full set, meaning that the ignorance is
the highest possible.

5.5 Discounting Factors

The behavior of each of these sensors is strongly scenario-dependent, referring to:

• the quality of the acquired data;
• the reliability of each of the sensors under particular weather conditions, type of soil, etc.;
• the types of object under analysis.
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These are the reasons for including discounting factors [4,37,38] in the model. Discounting factors
consist of three types of parameter:

• gij – the confidence level of sensor j in its assessment when judging measure i (0 – not confident
at all, 1 – completely confident);

• bij – the level of importance of measure i of sensor j (1 – low, bscale – high, where bscale is the scale
for b parameters);

• sj – the deminer’s confidence in the opinion of sensor j (1 – low, sscale – high, where sscale is the
scale for s parameters).

Discounting and combination do not commute, so it has to be pointed out when each of the
discounting parameters is used. First, gij and bij/bscale are used to discount masses assigned by measure
i of sensor j, and that is done for all measures of that sensor. Then we combine the measures per sensor.
After that, the resulting masses are discounted using sij/sscale parameters, before combining the sensors.
These factors modify masses assigned for each measure so that:

1. For any subset A �= � and any measure i, new masses, mi�A�, are computed from the initial ones,
miIN�A�, as:

mi�A�=  ·miIN�A�� (17.31)

2. For the full set:

mi ���= 1− · �1−miIN ���� (17.32)

where  is replaced by either gij , bij/bscale or sij/sscale.
The discounting factors are presented in detail in [35].

6. Region Association, Combination of Measures and Decision

6.1 Region Association

At this point, one more problem arises, and that is how to associate the regions selected by IR, MD
and GPR, since:

• typically, they all have different resolutions in the two directions; and
• IR provides separate images of the regions, while the other two provide one image containing all
the regions.

We propose a very simple solution, and that is to analyze the distances between the centers of the
selected regions, or, to be more precise:

• the positions of the local maxima of the regions in the cases of GPR and MD;
• for IR, the coordinates of detected ellipses, or the coordinates of the center of gravity in the cases
of regions with only a few pixels.

The sensors are associated two by two, analyzing Euclidean distances between their centers and
grouping the regions the distance of which is below some maximum allowed value. In the case where
there is more than one region of one sensor close enough to some region of another sensor, the one
with the smallest distance is chosen.

Regarding the maximum allowed distance, it must be determined on the basis of the typically coarse
resolutions of MD and GPR, so it must be quite loose. Note that, instead of analyzing the Euclidean
distance, it is possible to differentiate the distance in the x-direction, with a higher tolerance due to a
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coarse resolution, and in the y-direction, where all three sensors have a good resolution. Still, our tests
have shown that there is no difference in results.

Taking into account that sensors are grouped two by two, it may happen that the results of association
are ambiguous, i.e. that, for example, Region 3 of IR is grouped with Region 20 of GPR, that Region
3 of IR is grouped with Region 7 of MD, and that Region 20 of GPR is grouped with Region 5
of MD (and no IR region is grouped with them). Of course, this situation sounds perfect for testing
possibilities of clustering sensors [39]. Unfortunately, in cases where there is no possibility of applying
the method due to severe limitations of the MD data, the only remaining possibility is to analyze all
the obtained groups, and after combination, see how to treat the results. In other cases (the same states
if the mass assignment of GPR is unchanged), since the masses are assigned only to the friendly subset
and the full set, there is no possibility of having a conflict with IR.

6.2 Combination of Masses

The combination is performed using Dempster’s rule in unnormalized form [4,6,38]:

m�A�=
∑

k�l
Ak∩Bl=A

mi �Ak� ·mj �Bl� (17.33)

where mi and mj are masses assigned by measures i and j after discounting, and their focal elements
are A1�A2� � � � �Am and B1�B2� � � � �Bn, respectively. Since Dempster’s rule is commutative and
associative, it can be applied repeatedly regardless of order, until all measures are combined. The
measures under combination have to fulfill the condition of being ‘cognitively’ independent [38],
which is weaker than the notion of statistical independence required in the probabilistic case. Measures
are cognitively independent if each of them assigns masses without any direct link to the others. This
is the case in the proposed model.

First, the fusion of measures per sensor is done and internal conflicts (masses of the empty set) of
IR and of GPR are analyzed (as mentioned earlier, it does not make sense to do that for MD). If the
internal conflict of a sensor is high, its data are corrupted by noise, occlusion, etc., so they should
be discounted. We cannot know for sure which information is more affected by this corruption than
others. Still, discounting is performed on each measure, since it is modeled in such a way that its
influence is proportional to the level of ambiguity and uncertainty of the information, as shown in the
previous subsection.

Since both GPR sets of measures provide the depth information, this offers a possibility to discount
IR in the function of depth. Taking into account knowledge about the IR camera and its reliability as a
function of the depth, we have clustered IR separately as soon as the depth extracted by GPR is below
5 cm, and in between, the measures of IR are linearly discounted as a function of the GPR depth by
the factor r = 1+ �d/5�. Here, d(cm) is the depth extracted by the GPR (and it is negative below the
soil surface).

After discounting the sensors that have high internal conflicts, the sensors for each associated region
are fused. Note that performing the combination in two steps (first for all information extracted from
one sensor and then between sensors) is consistent because of the associativity of Dempster’s rule: if
there is no discounting, the result is the same as for direct global combination. What can still happen,
however, is that the conflict after fusion (mass of the empty set) is high. In other words, although it
seemed quite possible that they refer to the same object, they actually do not. For example, although IR
could reach some depths of 5 cm, where GPR and MD detect something, it actually detects something
nonmetallic on the surface. In that case, taking into account the safety and need not to miss mines, we
declare that there is more than one object in the region and analyze the object of each of the sensors
separately.
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6.3 Decision

After clustering and combination of sensors, the resulting masses are found for each of the clusters.
On the basis of these masses, a final conclusion about the true identity of each object under analysis
has to be made for every cluster. Usual decision rules rely on beliefs, Bel, plausibilities, Pl [4], and
pignistic probabilities, P [40], defined as follows:

• for any subset B:

Bel�B�=
∑

A⊂B�A�=0
m�A� (17.34)

Pl�B�=
∑

B∩A�=0
m�A� (17.35)

• for any singleton C:

P�C�=
∑

A∈2��C∈A

m�A�

�A� �1−m�0�� (17.36)

Unfortunately, a decision rule based on any of these three functions does not lead to fruitful
conclusions, since there are no focal elements containing mines alone [41]. Namely, after combination
of the measures on the second level, the resulting focal elements are: FR, FI, (FR∪FI), (MR∪FR),
(MI∪FI) and �. Hence, as shown in [35], the following relations are always true:

Bel�M�≤ Bel�F� (17.37)

Pl�M�≤ Pl�F� (17.38)

P�M�≤ P�F� (17.39)

so the decision would always be made in favor of F . Here, M denotes mines �M =MR∪MI� and
F denotes friendly objects �F = FR∪FI�.

Since, in the case of any ambiguity, far more importance has to be given to mines, we propose to
define guesses, G�A�, where A ∈ �M�F�0�, in the following way:

G�M�=
∑

M∩B �=0
m�B� (17.40)

G�F�=
∑

B⊆F�B �=0
m�B� (17.41)

G�0�=m�0� (17.42)

The guess value of a mine is the sum of masses of all the focal elements containing mines, no matter
whether they are regular or irregular. The guess of a friend is the sum of masses of all the focal elements
containing nothing else but friends (again, either regular or irregular), and the guess of something else
is equal to the mass of the empty set. Note that the guess of a mine is equal to its plausibility, while the
guess of a friend is equal to its belief. This reflects the fact that we have to be cautious in deciding F .
In other words, the introduced guesses are but a cautious way for estimating confidence degrees. Once
guesses for the three types of object are found, they are ordered and this list, together with confidence
degrees, is given as the final result.
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7. Results

In this section, we present results that have been obtained on real data, provided by the TNO Physics
and Electronics laboratory, The Hague, The Netherlands, within the Dutch HOM-2000 project. These
data include IR, GPR and MD images obtained on a sand lane containing 21 mines and 7 friendly
objects. After the processing and region selection of each type of data, 42 regions were obtained,
28 corresponding to regions containing the actual objects, and 14 for which clutter caused alarms. This
means that finally we had to recognize 21 mines and 21 false alarms. When we combined A-scan and
C-scan measures of GPR with the other two sensors, the following results were obtained:

• 19 mines were detected and two mines were missed, due to the sensitivity of the used sensors and
not due to the method proposed here;

• six placed false alarms were correctly recognized, and one was wrongly classified as a mine; eight
clutter-caused alarms were classified as being friendly, and six were wrongly classified as mines.

If we compare these results to the ones obtained on each sensor separately, significant improvements
can be observed:

• from IR alone, we got six more undetected mines and one more false alarm;
• from MD alone, we got three more false alarms and one more undetected mine;
• from GPR alone, we got four more false alarms.

This shows that the fusion using the proposed approach allows us to improve the mine detection
rate, while decreasing the false alarm rate.

When we combined B-scan measures of GPR with the other two sensors, the results were exactly
the same for the mines and for the false alarms. However, the number of false alarms due to placed
objects increased, while those due to clutter decreased, keeping the global false alarm rate constant.
Our tests also showed that the results are robust with respect to changes of the size of the window
for MD region selection, the way MD alarms are treated (either using the region size measure or
simply considering all alarms as mines), as well as the type of the chosen set of measures of GPR.
This proves the power of the developed model, both for each of the sensors separately and for their
fusion. Furthermore, the clustering of the sensors leads to superior results in ambiguous cases with
high external conflicts, which justifies our choice of an unnormalized combination rule.

8. Conclusion

We proposed in this chapter a complete and original approach to analyzing and combining data from
different sensors for anti-personnel mine recognition. The extraction of features from sensors makes
use of the characteristics of each sensor, and is therefore specific to the sensors under study (infrared
images, metal detectors or ground penetrating radar).

The next steps are more general. These features have been modeled in the belief function framework.
The difficult step of defining the disjunctive focal elements and the corresponding masses has been
solved based on the knowledge we have about the extracted features. This way of reasoning could be
easily adapted to other sensors.

The fusion step is completely general. In particular, we have solved in an elegant way the problem
occuring when several objects are actually seen by different sensors. Reliability of sources, as well as
expert confidence values, are introduced as discounting factors.

As for the decision step, due to the fact that the errors do not have the same impact depending on
the decided object, we designed a new decision rule that favors the decision for a mine in the case of
ambiguities.

Experimental results were shown on real objects put in a sand lane. They are very good. The benefit
of fusion is demonstrated on these data: it improves significantly the decisions. This approach could
now be tested on some other real data sets, as well as on other sensors.
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This chapter presents a new method of grouping and matching line segments to recognize objects.

Weproposeadynamicprogramming-basedformulationextractingsalient linepatternsbydefiningarobust

and stable geometric representation that is based on perceptual organizations. As the end point proximity,

we detect several junctions from image lines. We then search for junction groups by using the collinear

constraint between the junctions. Junction groups similar to themodel are searched in the scene, based on

a local comparison. ADP-based search algorithm reduces the time complexity for the search of the model

lines in the scene. The system is able to find reasonable line groups in a short time.

1. Introduction

This chapter describes an algorithm that robustly locates collections of salient line segments in an image.
In computer vision and related applications, we often wish to find objects based on stored models from
an image containing objects of interest [1–6]. To achieve this, a model-based object recognition system
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first extracts sets of features from the scene and the model, and then it looks for matches between
members of the respective sets. The hypothesized matches are then verified and possibly extended to be
useful in various applications. Verification can be accomplished by hypothesizing enough matches to
constrain the geometrical transformation from a 3D model to a 2D image under perspective projection.

We first extract junctions formed by two lines in the input image, and then find an optimal relation
between the extracted junctions, by comparing them with previously constructed model relations.
The relation between the junctions is described by a collinear constraint and parallelism can also be
imposed. Junction detection acts as a line filter to extract salient line groups in the input image and
then the relations between the extracted groups are searched to form a more complex group in an
energy minimization framework. The method is successfully applied to images with some deformation
and broken lines. Because the system can define a topological relation that is invariant to viewpoint
variations, it is possible to extract enough lines to guide 2D or 3D object recognition.

Conventionally, the DP-based algorithm as a search tool is an optimization technique for the problems
where not all variables are interrelated simultaneously [7–9]. In the case of an inhomogeneous problem,
such as object recognition, related contextual dependency for all the model features always exists [10].
Therefore, DP optimization would not give the true minimum.

On the other hand, the DP method has an advantage in greatly reducing the time complexity for a
candidate search, based on the local similarity. Silhouette or boundary matching problems that satisfy
the locality constraint can be solved by DP-based methods using local comparison of the shapes. In
these approaches, both the model and matched scene have a sequentially connected form of lines,
ordered pixels, or chained points [11–13]. In some cases, there also exist many vision problems,
in which the ordering or local neighborhood cannot be easily defined. For example, definition of a
meaningful line connection in noisy lines is not easy, because the object boundary extraction for an
outdoor scene is itself a formidable job for object segmentation.

In this chapter, we do not assume known boundary lines or junctions, rather, we are open to any
connection possibilities for arbitrary junction groups in the DP-based search. That is, the given problem
is a local comparison between predefined and sequentially linked model junctions and all possible
scene lines in an energy minimization framework.

Section 2 introduces previous research about feature grouping in object recognition. Section 3
explains a quality measure to detect two line junctions in an input image. Section 4 describes a
combination model to form local line groups and how junctions are linked to each other. Section 5
explains how related junctions are searched to form the salient line groups in a DP-based search
framework. Section 6 gives a criterion to test the collinearity between lines. Section 7 tests the
robustness of the junction detection algorithm by counting the number of detected junctions as a
function of the junction quality and whether a prominent junction from a single object is extracted
under an experimentally decided quality threshold. Section 8 presents the results of experiments using
synthetic and real images. Finally, Section 9 summarizes the results and draws conclusions.

2. Previous Research

Guiding object recognition by matching perceptual groups of features was suggested by Lowe [6]. In
SCERPO, his approach is to match a few significant groupings from certain arrangements of lines
found in images. Lowe has successfully incorporated grouping into an object recognition system. First,
he groups together lines thought particularly likely to come from the same object. Then, SCERPO looks
for groups of lines that have some property invariant with the camera viewpoint. For this purpose, he
proposes three major line groups – proximity, parallelism and collinearity.

Recent results in the field of object recognition, including those of Jacobs, Grimson and Huttenlocher,
demonstrate the necessity of some type of grouping, or feature selection, to make the combinatorics of
object recognition manageable [9,14]. Grouping, as for the nonaccidental image features, overcomes
the unfavorable combinatorics of recognition by removing the need to search the space for all matches
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between image and model features. Grimson has shown that the combinatorics of the recognition
process in cluttered environments using a constrained search reduces the time complexity from an
exponential to a low-order polynomial if we use an intermediate grouping process [9]. Only those
image features considered likely to come from a single object could be included together in hypothetical
matches. And these groups need only be matched with compatible groups of model features. For
example, in the case of a constrained tree search, grouping may tell us which parts of the search tree
to explore first, or allow us to prune sections of the tree in advance.

This chapter is related to Lowe’s work using perceptual groupings. However, the SCERPO grouping
has a limitation: forming only small groups of lines limits the amount by which we may reduce the
search. Our work extends the small grouping to bigger perceptual groups, including more complex
shapes. Among Lowe’s organization groups, the proximity consisting of two or more image lines is
an important clue for starting object recognition. When projected to the image plane, most manmade
objects may have a polyhedral plane in which two or several sides give line junctions. First, we
introduce a quality measure to detect meaningful line junctions denoting the proximity. The quality
measure must be carefully defined not to skip salient junctions in the input image. Then, extracted
salient junctions are combined to form more complex and important local line groups. The combination
between junctions is guided by the collinearity that is another of Lowe’s perceptual groups. Henikoff
and Shapiro [15] effectively use an ordered set of three lines representing a line segment with junctions
at both ends. In their work, the line triples, or their relations as a local representative pattern, broadly
perform the object recognition and shape indexing. However, their system cannot define the line triple
when the common line sharing two junctions is broken by image noise or object occlusion. And the
triple and bigger local groups are separately defined in low-level detection and discrete relaxation,
respectively. The proposed system in this chapter is able to form the line triple and bigger line groups
in a consistent framework. Although the common line is broken, the combination of the two junctions
can be compensated by the collinearity of the broken lines. We introduce the following:

1. A robust and stable geometric representation that is based on the perceptual organizations (i.e. the
representation as a primitive search node includes two or more perceptual grouping elements).

2. A consistent search framework combining the primitive geometric representations, based on the
dynamic programming formulation.

3. Junction Extraction

A junction is defined as any pair of line segments that intersect, and whose intersection point either lies
on one of the line segments, or does not lie on either of the line segments. An additional requirement is
that the acute angle between the two lines must lie in a range 	min to 	max. In order to avoid ambiguity
with parallel or collinear pairs [6], 	min could be chosen to be a predefined threshold. Various junction
types are well defined by Etemadi et al. [7].

Now a perfect junction (or two-line junction) is defined as one in which the intersection point P
lies precisely at the end points of the line segments. Figure 18.1 shows the schematic diagram of a
typical junction. Note that there are now two virtual lines that share the end point P. The points P1

and P4 locating the opposite sides of P2 and P3, denote the remaining end points of the virtual lines,
respectively. Then, the junction quality factor is:

QJ =
�L1�−�

��
1 −�⊥2

�VL1�
· �L2�−�

��
2 −�⊥1

�VL2�
(18.1)

where �VLi��i = 1�2� are the lengths of the virtual lines, as shown in Figure 18.1. The standard
deviations �

��
i and �⊥i , incorporating the uncertainties in the line extraction process for the

position of the end points of the line segments along and perpendicular to its direction respectively,
may be replaced by constants without affecting the basic grouping algorithms [7]. In this chapter, the
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Figure 18.1 The junction.

two variance factors � ��i and �⊥i are ignored. The defined relation penalizes pairings in which either
line is far away from the junction point. The quality factor also retains the symmetry property.

4. Energy Model for the Junction Groups

The relational representation, made from each contextual relation of the model and scene features,
provides a reliable means to compute the correspondence information in the matching problem. Suppose
that the model consists of M feature nodes. Then, a linked node chain, given by the sequential
connection of the nodes, can be constructed.

If the selected features are sequentially linked, then it is possible to calculate a potential energy from
the enumerated feature nodes. For example, assume that any two-line features of the model correspond
to two features fI and fI+1 of the scene. If the relational configuration of each line node depends only
on the connected neighboring nodes, then the energy potential obtained from the M line nodes can be
represented as:

Etotal�f1� f2� � � � � fM�= E1�f1� f2�+E2�f2� f3�+· · ·+EM−1�fM−1� fM� (18.2)

where

EI�fI � fI+1�=
K
∑

k=1

�r2�k�fI � fI+1�−R2�k�I� I+1�� (18.3)

Here, r2�k and R2�k denote the binary relations of any two connected line features of the scene and the
model, respectively. The parameter K is the number of binary relations.

For the relational representation of junctions, the model and scene node I and fI in Equations (18.2)
and (18.3) are replaced by the model junction and corresponding scene junction, respectively.
Figure 18.2(a) presents a schematic of lines consisting of an object. Figure 18.2(b) shows the binary
relations of sequentially connected junctions for line pattern matching. Equation (18.3) for junction
chains can be rewritten accordingly as:

EI�fI � fI+1�= � · �	�fI�−��I��+ · �r�fI � fI+1�−R�I� I+1�� (18.4)

Each junction has the unary angle relation from two lines constituting a single junction, as shown in
the first term of Equation (18.4) and in Figure 18.1. 	�fI� and 	�I� are corresponding junction angles
in a scene and a model, respectively. We do not use a relation depending on line length, because lines
in a noisy scene could be easily broken. The binary relation for the scene �r� and model �R� in the
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Figure 18.2 Binary relations made from any two connected junction nodes: (a) line segments on a
model; and (b) the combination of junctions by perceptual constraints, such as proximity, collinearity
and parallelism.

second term is defined as a topological constraint or an angle relation between two junctions. For
example, the following descriptions can represent the binary relations.

1. Two lines 1 and 4 should be approximately parallel (parallelism).
2. Scene lines corresponding to two lines 2 and 3 must be a collinear pair [6] or the same line. That

is, two junctions are combined by the collinear constraint.
3. Line ordering for two junctions J1, J2 should be maintained, for example as clockwise or counter-

clockwise, as the order of line 1, line 2, line 3 and line 4.

The relation defined by the connected two junctions includes all three perceptual organization groups
that Lowe used in SCERPO. These local relations can be selectively imposed according to the type
of the given problem. For example, a convex line triplet [15] is simply defined, by removing the
above constraint 1 and letting line 2 and line 3 of constraint 2 be equal to each other. The weighting
coefficients � and  of the energy potential are experimentally given, by considering the variance
factor of the line perturbation for image noise.

5. Energy Minimization

Dynamic Programming (DP) is an optimization technique good for problems where not all variables
are interrelated simultaneously [8,16]. Suppose that the global energy can be decomposed into the
following form:

E�f1� � � � � fM�= E1�f1� f2�+E2�f2� f3�+· · ·+EM−1�fM−1� fM� (18.5)

in which M is the number of the model nodes, such as lines or junctions, and fI is a scene label that
can be assigned to the model node I .
Figure 18.3 shows a schematic DP diagram to find a trapezoidal model in the scene lines.

Figure 18.3(a) presents a typical case in which we cannot define an ordering for the scene lines due
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Figure 18.3 The DP algorithm searches a scene node corresponding to each model node. A model
feature can be matched to at least one node, among scene nodes, 1� � � � �m+1 of a column, including
NULL node (NIL). (a) Line segments for the rear view of a vehicle; and (b) a DP-based search. m is
the number of junctions detected from (a) and M is the number of predefined model junctions.

to the cluttered background. Therefore, it is difficult to extract a meaningful object boundary that
corresponds to the given model. In this case, the DP-based search structure is formulated as the column
in Figure 18.3(b), in which all detected scene features are simultaneously included in each column.
Each junction of the model can get a corresponding junction in the scene as well as a null node, which
indicates no correspondence. The potential matches are defined as the energy accumulation form of
Equation (18.5). From binary relations of junctions (i.e. arrows in Figure 18.3(b)) defined between
two neighboring columns, the local comparison-based method using the recursive energy accumulation
table of Equation (18.5) can give a fast matching solution.

The DP algorithm generates a sequence that can be written in the recursive form. For
I = 1� � � � �M−1,

DI�fI+1�=min
fI
�DI−1�fI�+EI�fI � fI+1�� (18.6)

with D0�f1�= 0. The minimal energy solution is obtained by

min
f
E�f1� � � � � fM�=min

fM
DM−1�fM� (18.7)

If each fI takes on m discrete values, then to compute DI−1�fI� for each fI value, one must evaluate
the summation �DI−1�fI−1�+EI−1�fI−1� fI�� for the m different fI−1 values. Therefore, the overall
minimization involves �M − 1�m2 evaluations of the summations. This is a large reduction from the
exhaustive search for the total evaluation of E�f1� � � � � fM�. m is the number of junctions satisfying a
threshold for the junction quality in the scene.
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6. Collinear Criterion of Lines

Extraction of the image features such as points or lines is influenced by the conditions during image
acquisition. Because the image noise distorts the object shape in the images, we need to handle the
effect of the position perturbation in the features, and to decide a threshold or criterion to discard and
reduce the excessive noise. In this section, the noise model and the error propagation for the collinearity
test between lines are proposed. The Gaussian noise distribution for two end points of a line is an
effective and general approach, as referred to in Haralick [17] and Roh [18], etc. In this section, we use
the Gaussian noise model to compute error propagation for two-line collinearity and obtain a threshold
value resulting from the error variance test to decide whether the two lines are collinear or not.

The line collinearity can be decomposed into two terms of parallelism and normal distance defined
between the two lines being evaluated.

6.1 Parallelism

The parallelism is a function of eight variables:

p= cos−1
(

a ·b
�a� �b�

)

�where a = x2−x1 and b= x4−x3 (18.8)

or p= p�x1�x2�x3�x4��where xi = �xi� yi�1�
T (18.9)

The xi�i= 1� � � � �4� denote image coordinates for four end points of the two lines and �a� presents
the length of vector a. To avoid the treatment of a trigonometric function in calculating the partial
derivatives of function p with respect to the image coordinates, we use a simpler function:

p′ = cos�p�= a ·b
�a� �b� = p′�x1�x2�x3�x4� (18.10)

Let �xi� yi� be the true value and �x̃i� ỹi� be the noisy observation of �xi� yi�, then we have

x̃i = xi+�i (18.11a)

ỹi = yi+%i (18.11b)

where the noise terms �i and %i denote independently distributed noise terms having mean 0 and
variance �2

i . Hence:

E ��i�= E �%i�= 0 (18.12)

V ��i�= V �%i�= �2
i (18.13)

E
[

�i�j
]

=
{

�2
0 if i= j

0 otherwise�
E
[

%i%j
]

=
{

�2
0 if i= j

0 otherwise
(18.14a)

E
[

�i%j
]

= 0 (18.14b)

From these noisy measurements, we define the noisy parallel function,

p̃′�x̃1� ỹ1� x̃2� ỹ2� x̃3� ỹ3� x̃4� ỹ4� (18.15)
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To determine the expected value and variance of p̃′, we expand p̃′ as a Taylor series at
�x1� y1� x2� y2� x3� y3� x4� y4�:

p̃′ ≈ p′+
4
∑

i=1

[

�x̃i−xi�
�p̃′

�x̃i
+ �ỹi−yi�

�p̃′

�ỹi

]

= p′+
4
∑

i=1

[

�i
�p̃′

�x̃i
+%i

�p̃′

�ỹi

]

(18.16)

Then, the variance of the parallel function becomes:

Var�p′�= E
[

�p̃′−p′�2
]

= �2
0

4
∑

i=1

[
(
�p̃′

�x̃i

)2

+
(
�p̃′

�ỹi

)2
]

(18.17)

Hence, for a given two lines, we can determine a threshold:


p= 3 ·
√

E��p̃′−p′�2� (18.18)

Because the optimal p′ equals 1, any parallel two lines have to satisfy the following condition:

1− p̃′ ≤ 
p (18.19)

6.2 Normal Distance

A normal distance between any two lines is selected from among two distances d1 and d2:

dnorm =max�d1�d2� (18.20)

where

d1 =
�a1x′m+b1y′m+ c1�

(

a21+b21
) 1
2

(18.21a)

d2 =
�a2xm+b2ym+ c2�

(

a22+b22
) 1
2

(18.21b)

The ai� bi and ci are line coefficients for the i-line and �xm� ym� denotes the center point coordinate
of the first line, and �x′m� y

′
m� denotes the center of the second line. Similarly to the parallel case of

Section 6.1, the normal distance is also a function of eight variables:

dnorm = d�x1�x2�x3�x4� (18.22)

Through all processes similar to the noise model of Section 6.1, we obtain:

Var�p′�= E
[

�p̃′−p′�2
]

= �2
0

4
∑

i=1

[
(
�p̃′

�x̃i

)2

+
(
�p̃′

�ỹi

)2
]

(18.23)

For the given two lines, we can also determine a threshold for the normal distance:


d = 3 ·
√

E��d̃−d�2� (18.24)

Because the optimal d equals 0, the normal distance for any two collinear lines has to satisfy the
following condition:

d̃ ≤ 
d (18.25)
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7. Energy Model for the Junction Groups

In this section, we test the robustness of the junction detection algorithm by counting the number of
detected junctions as a function of the junction quality QJ of Equation (18.1). Figure 18.4 shows some
images of 2D and 3D objects under well-controlled lighting conditions and a cluttered outdoor scene.
We use Lee’s method [19] to extract lines.

Most junctions (i.e. more than 80%) extracted from possible combinations of the line segments
are concentrated in the range 0�0∼1�0 of the quality measure, as shown in Figure 18.5. The three
experimental sets of Figure 18.4 give similar tendencies except for a small fluctuation at the quality
measure 0.9, as shown in Figure 18.5. At the quality level 0.5, the occupied portion of the junctions
relative to the whole range drops to less than 1%.

When robust line features are extracted, QJ, as a threshold for the junction detection, does not
severely influence the number of extracted junctions. In good conditions, the extracted lines are
clearly defined along the object boundary and few cluttered lines exist in the scene, as shown in
Figure 18.4(a). Therefore, the extracted junctions are accordingly defined and give junctions with a
high junction quality factor, as shown in Figure 18.4(a). The parts plot in Figure 18.5 graphically
shows the high-quality junctions as the peak concentrated in the neighbor range of quality measure 0.9.

For QJ = 0�7, the detection ratio 1.24 (i.e. number of junctions/number of primitive lines) of
Figure 18.4(a) is decreased to 0.41 for the outdoor scene of Figure 18.4(c), indicating the increased effect
of the threshold (see also Table 18.1). The effect of threshold level for the number of junctions resulting
from distorted and broken lines is more sensitive to the outdoor scenes. That is, junction detection

(a) (b) (c)

Figure 18.4 Junction extraction: the number of junctions depends on the condition of the images.
Each column consists of an original image, line segments and junctions and their intersecting points
for quality measure 0.5, respectively. The small circles in the figure represent the intersection points
of two-line junctions. (a) Parts: a 2D scene under controlled lighting conditions; (b) blocks: an indoor
image with good lighting; and (c) cars: a cluttered image under an uncontrolled outdoor road scene.
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Figure 18.5 The occupying percentage of junctions according to changes of the quality measure.

Table 18.1 Junction number vs. quality measure.

QJ = 0�3 QJ = 0�5 QJ = 0�7

# of lines �Ln� # of junctions (Vn)
Vn
Ln

Vn
Vn
Ln

Vn
Vn
Ln

Parts 100 376 3�78 196 1�96 124 1�24
Blocks 130 543 4�11 196 1�51 90 0�7
Cars 137 466 3�4 180 1�31 56 0�41

under uncontrolled lighting conditions has a higher dependence on the change of junction quality as a
detection threshold.

With some additional experiments, we identify that the number of junctions in scenes does not vary
much, in spite of a low QJ. Usually, a junction quality of 0.5 is sufficient to give an adequate number
of junctions for most test scenes while not skipping the salient junctions, and without increasing the
time complexity of the DP-based search.

8. Experiments

We applied the proposed method to find a group of optimal line junctions. Test scenes included some
lines distorted by a variation of viewpoint. First, input images were processed to detect only the
strongest step edges. Edges were further filtered by discarding shorter edge segments. Junctions were
then inferred between the remaining line segments. When junctions were extracted from the lines, then
relative relations between the junctions were searched by using the criterion of Section 4, with the
collinear constraint that links two junctions.

To reduce the repeated computation for relations between line segments, all possible relations such
as inter-angles, collinear properties and junction qualities between lines were previously computed.
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8.1 Line Group Extraction

As an example of 2D line matching for a viewpoint variation, the rear-view of a vehicle was used.
The description of the model lines was given as a trapezoidal object. The model pattern could have
a clockwise combination of the constituting lines. Figure 18.6(a-1) shows the first and the last image
among a sequence of 30 images to be tested. With the cluttered background lines, a meaningful
boundary extraction of the object of interest was difficult, as shown in Figure 18.6(a-2). Figure 18.6
(a-3) shows the extraction of junctions in the two frames. A threshold for the quality measure QJ was
set at 0.5. Figure 18.6(a-4) shows optimal matching lines having the smallest accumulation energy
of Equation (18.7). In spite of some variations from the model shape, a reasonable matching result
was obtained. Unary and binary properties of Equation (18.4) were both used. Figure 18.6(b) shows
a few optimal matching results. In Figure 18.6(b), the model shape is well matched as the minimum
DP energy of Equation (18.7), in spite of the distorted shapes in the scenes. Matching was successful
for 25 frames out of 30 – a success ratio of 83%. Failing cases result from line extraction errors in
low-level processing, in which lines could not be defined on the rear windows of vehicles.

(a-1)

(a-3) (a-4)

(a-2)

(b)

Figure 18.6 Object matching under weak perspective projection: a rear-window of a vehicle on the
highway was used. (a-1) The first and last images to be tested; (a-2) line extraction; (a-3) junction
detection for QJ = 0�5; (a-4) optimal model matching; (b) a few optimal matching results between the
first and last images.
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(a)

(b)

Figure 18.7 Object matching in a synthetic image with broken and noisy lines.

Figure 18.7 shows experimental results for extracting a 2D polyhedral object. Figure 18.7(a) shows
a model as a pentagon shape with noisy and broken lines in the background region. All lines except
for the pentagon were randomly generated. Figure 18.7(b) shows a few matching results with small
DP energy. A total of six candidates were extracted as the matched results for generating hypotheses
for the object recognition. Each one is similar to the pentagon model shape. It is interesting to see the
last result because we did not expect this extraction.

Two topological combinations of line junctions are shown as model shapes in Figure 18.8. J1 and
J2 junctions are combined with a collinear constraint that also denotes the same rotating condition as
the clockwise direction in the case of Figure 18.8(a). The three binary relations in Section 4 all appear
in the topology of Figure 18.8. In the combination of J2 and J3, the rotating direction between the
two junctions is reversed. In Figure 18.8(b), similar topology to Figure 18.8(a) is given, except for
the difference of rotating direction of the constituting junctions. Figure 18.9 presents an example of
extracting topological line groups to guide 3D object recognition. The topological shapes are invariant
to wide changes of view. That is, if there is no self-occlusion on the object, the interesting line groups
are possible to extract. Figure 18.9(a) shows the original image to be tested. After discarding the
shorter lines, Figure 18.9(b) presents the extracted lines with the numbering indicating the line index,
and Figure 18.9(c) and 18.9(d) give the matched line groups corresponding to the model shape of
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(a) (b)

Figure 18.8 Topological shapes for model description. (a) A model with clockwise rotation of the
starting junction; (b) a model with counter-clockwise direction for the starting junction.

Figure 18.8(a) and 18.8(b), respectively. In each extraction, there are enough line groups to guide a
hypothesis for 3D object recognition.

Table 18.2 presents the matching results in Figure 18.9 corresponding to the models of Figure 18.8.
All extractions are enumerated for each model.

The above experimental results demonstrate that the proposed framework can find similar shapes
even from a cluttered and distorted line set. By the local comparison-based matching criterion permitting
a shape distortion for the reference model shape, reasonable line grouping and shape matching are
possible, without increasing the time complexity. The grouping and the junction detection are all
performed in 1 s, on a Pentium II-600 desktop machine. In all test sets, any length ratio of the model
or scene lines has not been used, because the scene lines are easily broken in outdoor images. Angle
relations and line ordering between two neighboring junctions are well preserved, even in broken and
distorted line sets.

Figure 18.9 A topological shape extraction for 3D object recognition. (a) Original image; (b) line
extraction; and (c), (d) found topological shapes.
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Figure 18.9 (continued)
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Table 18.2 The topological matching results.

J1 J2 J3 J4

Model 1 (39, 80) (80, 41) (41, 70) (70, 69)
(39, 79) (86, 41) (41, 70) (70, 69)
(39, 86) (86, 41) (41, 70) (70, 69)

Model 2 (118, 41) (41, 80) (80, 38) (38, 56)
(40, 41) (41, 80) (80, 38) (38, 56)
(106, 41) (41, 80) (80, 38) (38, 56)
(94, 41) (41, 80) (80, 38) (38, 56)
(116, 41) (41, 80) (80, 38) (38, 56)

8.2 Collinearity Tests for Random Lines

We tested the stability of the two collinear functions proposed in Section 6 by changing the standard
deviation as a threshold for four end points of the two constituting lines. The noise was modeled as
Gaussian random noise having mean 0 and variance �2

0 .
A total of 70 lines were randomly generated in a rectangular region of size 100×100 in Figure 18.10,

hence the number of possible line pairs was 70C2 = 2415. Finally, only two line pairs were selected as
satisfying the two collinear conditions of Equation (18.19) and Equation (18.25) under �0 = 0�1. When
we reduced the variation value, there were a few collinear sets. By a simple definition of collinear
functions and control of the variance �0 as Gaussian perturbation, we could systematically obtain the
collinear line set without referring to heuristic parameters.
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Figure 18.10 Collinear lines according to the change of standard deviation �0 as a threshold. (a) The
randomly generated original line set; (b) line pairs detected for �0 = 0�4; (c) for �0 = 0�3; and (d) for
�0 = 0�1.
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(c) (d)(b)

Figure 18.10 (continued)

9. Conclusions

In this chapter, a fast and reliable matching and grouping method using dynamic programming is
proposed to extract collections of salient line segments. We have considered the classical dynamic
programming as an optimization technique for geometric matching and grouping problems. First, the
importance of grouping to object recognition was emphasized. By grouping together line features that
are likely to have been produced by a single object, it has long been known that significant speed-ups
in a recognition system can be achieved, compared to performing a random search. This general fact
was used as a motive to develop a new feature grouping method. We introduced a general way of
representing line patterns and of using the patterns to consistently match 2D and 3D objects.

The main element in this chapter is a DP-based formulation for matching and grouping of line
patterns by introducing a robust and stable geometric representation that is based on the perceptual
organizations. The end point proximity and collinearity comprised of image lines are introduced as two
main perceptual organizing groups to start the object matching or recognition. We detect the junctions
as the end point proximity for the grouping of line segments. Then, we search a junction group again,
in which each junction is combined by the collinear constraint between them. These local primitives,
by including Lowe’s perceptual organizations and acting as the search node, are consistently in a linked
form in the DP-based search structure.

We could also impose several constraints, such as parallelism, the same line condition and rotational
direction, to increasingly narrow down the search space for possible objects and their poses. The
model description is predefined for comparison with the scene relation. The collinear constraint acts to
combine the two junctions as a neighborhood for each other. The DP-based search algorithm reduces
the time complexity for the search of the model chain in the scene.

Through experiments using images from cluttered scenes, including outdoor environments, we have
demonstrated that the method can be applied to the optimal matching, grouping of line segments and
2D/3D recognition problems, with a simple shape description sequentially represented.
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This chapter introduces a holo-extraction method of information from paper drawings, i.e. the networks

of Single Closed Regions (SCRs) of black pixels, which not only provide a unified base for recognizing

both annotations and the outlines of projections of parts, but can also build the holo-relationships

among SCRs so that it is convenient to extract lexical, syntactic and semantic information in the

subsequent phases for 3D reconstruction. Based on the holo-extraction method, this chapter further

introduces an intelligent recognition method of digital curves scanned from paper drawings for

subsequent pattern recognition and 3D reconstruction.

1. Introduction

In order to survive worldwide competition, enterprises have tried to use the computer’s huge memory
capacity, fast processing speed and user-friendly interactive graphics capabilities to automate and
tie together cumbersome and separate engineering or production tasks, including design, analysis,
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optimization,prototyping,productionplanning, tooling,orderingmaterials, programmingforNumerically
Controlled (NC) machines, quality control, robot assembly and packaging. The technologies for all
these tasks rely on three-dimensional (3D) computer feature models of products made during design.
Some advanced computer-aided design systems have been developed so that people can use these systems
to build 3D computer feature models for new product designs, and production without drawings has
thus appeared in some enterprises of developed countries. But enterprises have had a great deal of
two-dimensional (2D) mechanical paper drawings made in the past for their existing products, which
need to be converted to 3D computer feature models for applications. The advanced computer-aided
design systems can easily convert 3D computer models made within them into their 2D orthogonal
projections, but they cannot convert the other way round. How to convert 2D mechanical paper drawings
into 3D computer feature models is one of the major issues many enterprises are very concerned about.

In order to convert 2D mechanical paper drawings into 3D computer feature models, the 2D paper
drawings are first scanned by an optical scanner and then the scanned results are input to a computer
in the form of raster (binary) images. The conversion from the raster image to 3D model needs two
processes: understanding and 3D reconstruction. The research on the understanding process has been
implemented following three phases [1]:

1. The lexical phase. The raster image is converted into vectorized information, such as straight lines,
arcs and circles.

2. The syntactic phase. The outlines of orthographic projections of a part and the annotations are
separated; the dimension sets, including their values of both the nominal dimensions and the
tolerances, are aggregated; the crosshatching patterns are identified; and the text is recognized.

3. The semantic phase.Much semantic informationneeded for 3D reconstruction is obtainedby functional
analyses of each view, including the analysis of symmetries, the recognition of technologically
meaningful entities from symbolic representation (such as bearing and threading), and so on.

After the understanding process, a 3D computer model will then be reconstructed by using geometric
matching techniques with the recognized syntactic and semantic information.

Up to now, the research on the conversion from 2D paper drawings to 3D computer feature models
has been stuck in low-level coding: essential vectorization, basic layer separation and very limited
symbol recognition [1]. One of the reasons for this is that the three phases of the understanding process
have been isolated and people have been doing their research on only one of the phases since the
whole conversion is very complicated and more difficult. For instance, the vectorization methods were
developed only for getting straight lines, arcs, circles, etc., so that much information contained in the
drawing was lost after the vectorization. Also, in some research, different methods were developed
and applied for recognizing the text and the outlines of orthographic projections of parts, respectively.
In fact, the 3D reconstruction needs not only the vectors themselves but also their relationships and
the information indicated by various symbols, from which the syntactic and semantic information can
be extracted later on. This chapter introduces a holo-extraction method of information from paper
drawings, i.e. the networks of Single Closed Regions (SCRs) of black pixels, which not only provide
a unified base for recognizing both annotations and the outlines of projections of parts, but also build
the holo-relationships among SCRs so that it is convenient to extract lexical, syntactic and semantic
information in the subsequent phases for 3D reconstruction. Based on the holo-extraction method,
this chapter further introduces an intelligent recognition method of digital curves scanned from paper
drawings for subsequent pattern recognition and 3D reconstruction.

2. Review of Current Vectorization Methods

Vectorization is a process that finds the vectors (such as straight lines, arcs and circles) from the
raster images. Much research work on this area has been done, and many vectorization methods
and their software have been developed. Although the vectorization for the lexical phase is more
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mature than the technologies used for the other two higher level phases, it is yet quite far from being
perfect.

Current vectorization methods can be categorized into six types: Hough Transform (HT)-based
methods [2], thinning-based methods, contour-based methods, sparse pixel-based methods, mesh
pattern-based methods and black pixel region-based methods.

2.1 The Hough Transform-based Method

This visits each pixel of the image in the �x� y� plane, detects peaks in its transform �m�c� space, and
uses each peak to form a straight line defined by the following equation:

y =mx+ c (19.1)

where m is its slope and c is its intercept. Since the slopes and intercepts are sampled sparsely, they
may not be as precise as the original straight lines. Moreover, this method cannot generate polylines [3].

2.2 Thinning-based Methods

Thinning is a process that applies certain algorithms to the input raster image and outputs one-pixel-
wide skeletons of black pixel regions [4–7]. Three types of algorithm have been developed, i.e. iterative
boundary erosion [5], distance transform [6] and adequate skeleton [7]. Although their speeds and
accuracies are different, they all have disadvantages: high time complexities, loss of shape information
(e.g. line width), distortions at junctions and false and spurious branches [3].

2.3 The Contour-based Method

This first finds the contour of the line object and then calculates the middle points of the pair of points
on two opposite parallel contours or edges [8–10]. Although it is much faster than thinning-based
methods and the line width is also much easier to obtain, joining up the lines for a merging junction or
a cross intersection is problematic, and it is inappropriate for use in vectorization of curved and multi-
crossing lines [3].

2.4 The Sparse Pixel-based Method

Here, the basic idea is to track the course of a one-pixel-wide ‘beam of light’, which turns orthogonally
each time when it hits the edge of the area covered by the black pixels, and to record the midpoint of
each run [11]. With some improvement based on the orthogonal zig-zag, the sparse pixel vectorization
algorithm can record the medial axis points and the width of run lengths [3].

2.5 Mesh Pattern-based Methods

These divide the entire image using a certain mesh and detect characteristic patterns by only checking
the distribution of the black pixels on the border of each unit of the mesh [12]. A control map for the
image is then prepared using these patterns. Finally, the extraction of long straight-line segments is
performed by analyzing the control map. This method not only needs a characteristic pattern database,
but also requires much more processing time. Moreover, it is not suitable for detection of more complex
line patterns, such as arcs and discontinuous (e.g. dashed or dash-dotted) lines [3].
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2.6 Black Pixel Region-based Methods

These construct a semi-vector representation of a raster image first and then extract lines based on
the semi-vector representation. The semi-vector representations can be a run graph (run graph-based
methods)[13], a rectangular graph [14] or a trapezoidal graph [15]. A run is a sequence of black
pixels in either the horizontal or vertical direction. A rectangle or trapezoid consists of a certain set
of runs.

2.7 The Requirements for Holo-extraction of Information

It can be seen from the current vectorization methods that, except for black pixel region graph-based
methods, other methods are mainly focused on the speed and accuracy of generating vectors themselves,
not on holo-extraction of information. Although black pixel region graph-based methods build certain
relationships between constructed runs, rectangles or trapezoids, the regions are so small that it is
not appropriate for curve line vectorization and it is difficult to construct the relationships among
vectors.

In fact, the understanding process for its subsequent 3D reconstruction is an iterative process for
searching different level relationships and performing corresponding connections. For instance, linking
certain related pixels can form a vector. Connecting a certain set of vectors can form primitives or
characters of the text. Combining two projection lines and a dimension line containing two arrowheads
with the values for normal dimension and tolerance can produce a dimension set, which can then be
used with a corresponding primitive for parametric modeling. Aggregating the equal-spaced parallel
thin lines and the contour of their area can form a section, which can then be used with certain
section symbols for solid modeling. Connecting certain primitives referring to corresponding symbols
recognized can form certain features (e.g. bearing and threading), which can be used for feature
modeling. Matching primitives in different views according to orthogonal projective relationships can
produce a 3D model. If the primitives extracted are accurate, their projective relationships can be
determined by analyzing the coordinates of end points of these vectors. But the primitives extracted
and their projective relationships are inaccurate in paper drawings, so that this method cannot be
applied. It needs an expert system that simulates the experienced human designer’s thinking mode to
transform the inaccurate outlines of parts’ orthographic projections into 3D object images, so that their
relationships become more important and crucial. As mentioned in the first section of this chapter, the
vectorization process in the first phase should not lose the information in a drawing or the information
needed for 3D reconstruction, which are mainly different level relationships contained in the raster
image. Accordingly, a holo-extraction of information from the raster image is needed. In order to
facilitate the iterative process for searching different level relationships and performing corresponding
connections, the method needs a compact representation of the raster image as a bridge from the raster
image to understanding, which should satisfy the following requirements:

• it can distinguish different types of linking point for different relationships of the related elements
(e.g. tangential point, intersecting point and merging junction) to provide necessary information for
extracting lexical, syntactic and semantic information in the subsequent phases;

• it can provide a unified base for further recognizing both the outlines of orthogonal projections of
parts and the annotations, and facilitate their separation;

• it can recognize line patterns and arrowheads, and facilitate the aggregation of related elements to
form certain syntactic information, such as dimension sets;

• it can facilitate recognizing vectors quickly and precisely, including straight lines, arcs and circles;
• it can provide holo-graphs of all the elements as a base for the subsequent 3D reconstruction.

The networks of SCRs reported in this chapter are developed for these purposes.
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3. Construction of the Networks of SCRs

The elements and workflow of constructing the networks of SCRs are shown in Figure 19.1, and
illustrated in more detail as follows.

3.1 Generating Adjacency Graphs of Runs

Let visiting a sequence be from top to bottom for a raster image and from left to right along the
horizontal direction for each row. When visiting a row, the first black pixel converted from a white
pixel is the starting point of a run, and the last black pixel, if the next pixel is white, is the end point
of the run. The value of its end coordinates minus the starting coordinate in the horizontal direction is
its run length, the unit of which is the pixel. If the difference of two runs’ vertical coordinates is 1 and
the value of their minimal end coordinates minus maximal starting coordinates is larger than or equal
to 1, the two runs are adjacent. If A and B are adjacent and A’s vertical coordinate is larger than that
of B, A is called the predecessor of B, and B is called the successor of A. There are seven types of
run according to adjacency relationships with other runs, as shown in Figure 19.2:

By recording the adjacency relationships of runs while visiting in the assumed way, the adjacency
graphs of runs can be made using a node to represent a run, and a line between two nodes to

Raster image

Generate adjacency graphs of runs 

Construct closed regions

Split closed regions into single closed regions

Build adjacency graphs of single closed regions

Construct networks of single closed regions

Figure 19.1 Elements and workflow of constructing the networks of SCRs.

(1) (2) (3) (4) (5) (6) (7)

y

x

Figure 19.2 Seven types of run. (1) Singular – has no predecessor and no successor; (2) beginning
run – has no predecessor and only one successor; (3) end run – has only one predecessor and no
successor; (4) regular run – has only one predecessor and only one successor; (5) branching run – has
one predecessor at most and more than one successor; (6) merging run – has more than one predecessor
and one successor at most; (7) cross run – has more than one predecessor and successor.
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Figure 19.3 The adjacency graph of runs for a run graph.

represent an adjacency relationship between the two runs. Different properties of runs (including their
starting coordinates, end coordinates, lengths and types) are stored in the node data file. Figure 19.3(b)
shows an adjacency graph of runs generated from the run graph in Figure 19.3(a). It is obvious
that the adjacency graph of runs represents not only the runs themselves, but also their adjacency
relationships.

3.2 Constructing Single Closed Regions (SCRs)

Based on the adjacency graphs of runs constructed, a higher level representation of the raster image
can be obtained by aggregating related runs into closed regions. These related runs must satisfy the
following requirements:

• they are adjacent to each other;
• the beginning run is not a branching run or a cross run, and the end run is not a merging run or a
cross run;

• the difference between their lengths is less than their shortest run length.

From the first run, the related runs can be searched via the adjacency graphs of runs, and
their starting points and end points are then recorded to construct closed regions. Figure 19.4(c)
shows a closed region graph constructed from the run graph in Figure 19.4(b) for the outlines in
Figure 19.4(a).

According to the method, the possible results obtained may be the closed region for a point, a
straight line, an arc, an arrowhead or a combined line, as shown in Figure 19.5(a), (b), (c), (d) and (e)
respectively, which are identified using a fuzzy logic method [16]. A point may be an independent
point, branching point, merging point, cross point or tangential point, as shown in Figures 19.5(a),
19.6(a), 19.6(b), 19.6(c) and 19.6(d) respectively. A straight line can be a sloping, vertical or horizontal
straight line.

Although the closed region for a point, a straight line, an arc or an arrowhead is a single closed
region, the closed region for a combined line is not an SCR, since a combined line may consist
of straight lines and/or arcs, which are linked or tangential to each other. In order to construct the
adjacency graphs of SCRs, the closed region for a combined line should be decomposed into several
SCRs, each of which represents a straight line or an arc. The method for decomposition is to find
their optimal split points with the least number of segments, each of which can be fitted to a straight
line or an arc with least error. This is an optimization problem, which can be solved by using a
genetic algorithm [17] and will be introduced in detail in Section 6. For example, with this method,
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(a) (b) (c)

Figure 19.4 A closed region graph.

(a) (b) (c) (d) (e)

Figure 19.5 Closed regions.
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Figure 19.6 Single closed regions for points.
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(a) (b)

Figure 19.7 The splitting of a combined line.

the combined line in Figure 19.7(a) can be split up into two straight lines and two arcs, as shown in
Figure 19.7(b), where the split points are indicated by small circles.

After its split points are found, the closed region for a combined line can be decomposed into several
SCRs. Thus, the original run graph can be transformed into the graph consisting of only SCRs. Each
SCR represents a higher level element of primitives or annotations, so that the relationships among
vectors can be extracted more easily.

3.3 Building Adjacency Graphs of SCRs

Based on the adjacency graphs of runs and the single closed regions constructed, the adjacency graphs
of SCRs for a raster image can be built using the following rules:

• use a node to represent a single closed region;
• add a black node for a split point of combined lines, or a linking point where there appears a
branching run, a merging run or a run between which and its predecessor the length difference is
larger than their individual shortest one, as indicated in Figure 19.6(e);

• apply a line between a node and a black node to represent an adjacency relationship between an
SCR and a split point or linking point.

Figure 19.8(a), (b), (c) and (d) show the adjacency graphs of SCRs built for the single closed region
graphs in Figure 19.6(a), 19.6(b), 19.6(c) and 19.6(e) respectively.

(a) (b) (c) (d)

1 1

1

12

2

2 2
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33 4 5

Figure 19.8 The adjacency graphs of SCRs for different connections.
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Figure 19.9 Seven types of SCR.

The single closed regions constructed can also be categorized into seven types according to their
adjacency relationships with other single closed regions, as shown in Figure 19.9:

1. A singular SCR – has no predecessor and no successor.
2. A beginning SCR – has no predecessor and only one successor.
3. An end SCR – has only one predecessor and no successor.
4. A regular SCR – has only one predecessor and only one successor.
5. A branching SCR – has one predecessor at most and more than one successor.
6. A merging SCR – has more than one predecessor and one successor at most.
7. A cross SCR – has more than one predecessor and successor.

Different properties of SCRs are stored in the node data file and include their types (one of the
seven types above), the categories of segment represented by the SCR (i.e. point, arrowhead, straight
line or arc) and characteristics. For a point, its characteristics are the coordinates of its center. For an
arrowhead, its characteristics cover the coordinates of its top point, its angle to the horizontal (x) axis,
length and width. For a straight line, its characteristics are its line width, starting coordinates, end
coordinates, length, slope and intercept. For an arc, its characters cover its line width, the coordinates
of its curvature center, its curvature radius, the starting angle to the x-axis (let the direction of the arc
be counter-clockwise.) and the end angle to the x-axis. The coordinates of each linking point and the
labels of SCRs adjacent to the linking point are stored in the black node data file as the properties
of the linking point. It is obvious that the adjacency graphs of SCRs represent all the single closed
regions, their linking points and their adjacency relationships.

3.4 Constructing the Networks of SCRs

In the adjacency graphs of SCRs, there are some black nodes, which represent the points linking the
SCRs of the elements of primitives or annotations, not the SCRs of the elements (i.e. straight lines or
arcs) themselves. It is the linking points that contain useful information about the relationships among
elements, such as their tangential relationship or intersection relationship at a certain angle. These
linking points should be further analyzed to extract different types of relationship among elements for
constructing the networks of SCRs.

Whether the elements adjacent to a linking point are intersected or tangential to each other can be
determined by calculating the angles among them. Accordingly, the networks of SCRs can be further
obtained by using the following procedure:

1. Delete each black node and all the lines between the black node and its related nodes; instead,
connect, with a line, each pair of all the nodes having an adjacency relationship with the black node.
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2. Eliminate the following nodes and the lines between the node and its related nodes:

— the node representing a branching SCR if the extensions of its successors pass the center point
of the branching SCR;

— the node representing a merging SCR if the extensions of its predecessors pass the center point
of the merging SCR;

— the node representing a cross SCR if the extensions of its predecessors and successors pass the
center point of the cross SCR. For this case, every two of the nodes for all predecessors and
successors will be connected with a line if there is no line between them.

3. Record the properties of the relationship for each pair of related nodes:

— If they represent two straight lines, compare their slopes to determine the type of their
relationship. When their slopes are very close or equal to each other, they are collinear. Then, the
type of their relationship (i.e. collinear) and the coordinates of their linking point are recorded as
the properties of the line between the two nodes in the line data file. If not, they intersect each
other, and the angle between them is calculated. The type of their relationship (i.e. intersection),
the degree of angle between them, and the coordinates of their intersecting point are thus
recorded as the properties of the line between the two nodes in the line data file.

— If they represent two arcs, compare their curvature radii and curvature center coordinates to
determine the type of their relationship. When they have the same or very close curvature
radius and curvature center coordinates, they are concyclic. Then, the type of their relationship
(i.e. concyclic) and the coordinates of their linking point are recorded as the properties of the line
between the two nodes in the line data file. If not, the distance between the two curvature centers
is calculated. When the distance is equal to the sum of their curvature radii, they are externally
tangential to each other. If the distance is equal to the difference of their curvature radii, they
are internally tangential to each other. Otherwise, they intersect each other. The type of their
relationship and the coordinates of their tangential point or intersecting point are thus recorded
as the properties of the line between the two nodes in the line data file.

— If one represents a straight line and another an arc, calculate the distance between the straight
line and the curvature center of the arc to determine the type of their relationship. When the
distance is equal to the curvature radius of the arc, the straight line is tangential to the arc. If
not, they intersect each other. Then, the type of their relationship and the coordinates of their
tangential point or intersecting point are recorded as the properties of the line between the two
nodes in the line data file.

4. Find out the node representing an SCR of the straight line, the slope of which is very close to or
equal to zero (i.e. a horizontal straight line), and check whether the intersecting point between it
and one of its predecessors is very close to or at the intersecting point between it and one of its
successors. If yes, apply a line to connect the related predecessor and successor.

Figure 19.10(a), (b), (c) and (d) show the networks of SCRs generated for the adjacency graphs of
SCRs in Figure 19.8(a), (b), (c) and (d) respectively.

For a view, like the view shown in Figure 19.11(a), its SCR graph, adjacency graphs of SCRs, and
networks of SCRs can in turn be obtained using this method, as shown in Figure 19.11(b), (c) and (d),
respectively. In its networks of SCRs, a node represents the properties of an SCR for a related element
(a straight line or an arc) and a line between two nodes represents the properties of the relationship
between the two elements. Therefore, the networks of SCRs satisfy the first requirement of a compact
representation of the raster image as a bridge from the raster image to understanding, mentioned in
the second section of this chapter. That is, the networks of SCRs distinguish different types of linking
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Figure 19.10 The networks of SCRs for different connections.
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Figure 19.11 The SCR graph, adjacency graphs of SCRs, and networks of SCRs for a view.

point for different relationships of the related elements to provide necessary information for extracting
lexical, syntactic and semantic information in the subsequent phases.

4. A Bridge from the Raster Image to Understanding
and 3D Reconstruction

The networks of SCRs are holo-extractions of information from a raster image, and can be used for
subsequent different level understanding and 3D reconstruction. The main elements and workflow of
further understanding and 3D reconstruction are shown in Figure 19.12, and illustrated in more detail
as follows.

4.1 Separating the Annotations and the Outlines of Projections of Parts

In an engineering drawing, there are outlines of orthogonal projections of parts and annotations. They
should be separated first so that the former can be used for reconstructing a 3D model of a part, and the
latter can be recognized as providing necessary information for parameters, features, etc. The former
consists of straight lines, arcs and/or points. The latter includes non-outlines (e.g. center lines), symbols
(e.g. machining and surface texture symbols) and text. The character of text may be Arabic numbers,
English characters, Chinese characters or other languages’ characters. They all consist of straight lines,
arcs and/or points as well. These straight lines or arcs may be split up into segments (i.e. shorter straight
lines or arcs), by branching, merging, cross, tangential or split points, which have been represented
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Networks of SCRs
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Vectorization Recognition
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3D reconstruction

Seperation
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Figure 19.12 The main elements and workflow of further understanding for 3D reconstruction.

(a) (b)

Figure 19.13 The SCR graphs for text characters.

by their corresponding SCRs. Figure 19.13(b) shows three graphs of SCRs generated for the English
character, Arabic number and Chinese character in Figure 19.13(a), respectively. The networks of
SCRs for each character or symbol can also be constructed using the same method for the outlines of
projections of parts introduced above. The networks of SCRs thus provide a unified base for further
recognizing the primitives and the annotations.

Normally, the extraction of text is implemented based on the areas of the region containing a set
of connected segments and the densities of black pixels in the region, since the area for the character
of text is smaller and has a higher density of black pixels than the primitives. If the character string
is not arranged horizontally, it should be identified and rotated to the horizontal position, and then
recognized using further methods. The extraction of outlines of projections of parts is done according
to their line widths, since their line width is thicker than others. The separation between non-outlines
and symbols is carried out using pattern recognition. Since one network of SCRs represents a set
of connected segments, and the networks of SCRs contain all the necessary information, including
line widths and those necessary for calculating their areas, densities, sloping angles to the x-axis and
pattern, these extractions or separations can be easily implemented and further recognizing methods
can then be applied, all based on their networks of SCRs. Therefore, the networks of SCRs meet the
second requirement of a compact representation of the raster image as a bridge from the raster image
to understanding, as mentioned in the second section of this chapter. That is, the networks of SCRs
provide a unified base for recognizing both the outlines of orthogonal projections of parts and the
annotations, and facilitate their separation.
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4.2 Vectorization

4.2.1 Recognition of Horizontal Thick Lines and Arrowheads

Since the line widths can be calculated and have been stored in the node data file, thick lines or thin
lines can be detected by comparing the line widths of all the nodes in the networks of SCRs for a
drawing. An arrowhead can also be extracted according to the change of width of its SCR. But it is
difficult to identify a horizontal thick line or a horizontal arrowhead connected with a horizontal thin
line, since an SCR for a thin line will contain a part of the SCR for a thick line or an arrowhead
connected with the thin line, as shown in Figures 19.14(a) and 19.14(b) respectively.

In these cases, the SCR for a thin line will be divided into several parts according to its adjacency
relationships with other related SCRs, as shown in Figures 19.14(c) and 19.14(d) respectively. That
part of the SCR for a thin line, which has adjacency relationships with other related SCRs, will then
be aggregated into a horizontal thick line or a horizontal arrowhead, as shown in Figures 19.14(e) and
19.14(f) respectively. Since all the information needed for the operations is contained in their networks
of SCRs, the extraction of horizontal thick lines or arrowheads connected with horizontal thin lines
can be implemented conveniently based on their networks of SCRs. Therefore, the networks of SCRs
also satisfy the third requirement of a compact representation of the raster image as a bridge from the
raster image to understanding, as mentioned in the second section of this chapter. That is, the networks
of SCRs facilitate recognition of line patterns and arrowheads.

4.2.2 Recognition of Complete Arcs and Circles

In a 2D drawing, there may be many arcs or circles, which are divided into several segments by other
straight lines, arcs or circles. These segments have their own nodes in the networks of SCRs. A circle
may also be divided into two SCRs for two halves of a circle, which have been represented in the
network of SCRs. In order to extract the vectors (i.e. the complete arcs or circles), the SCRs for these
segments should be combined together. The method is to search for the first SCR representing the arc
in the networks of SCRs as a seed SCR; then to find the SCRs that are adjacent to the seed SCR and
belong to the same arc, via the networks of SCRs; and finally, to combine the related SCRs to get a
complete arc or circle. If there is no further related SCR for an arc, the second seed SCR for the arc
will be found in the networks, and the above process will be repeated until no seed SCR for an arc
can be found. Figure 19.11(a) can be used as an example for recognizing a complete arc and a circle.
As shown in Figure 19.11(b), the arcs represented by SCRs 2 and 4 belong to the same arc, and are

(a) (b)

(c) (d)

(e) (f)

Figure 19.14 Identification of horizontal thick lines and arrowheads.
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connected by a point represented by SCR 1. The arcs represented by SCRs 7 and 8 belong to the same
circle, and are connected by linking points represented by SCRs 6 and 9. While searching for the SCR
for an arc in the networks of SCRs for the view, the SCR for arc 2 will be found as a seed SCR first,
and then the SCR for arc 4 will be found adjacent to it and belonging to the same arc via the network
of SCRs and will be combined with the seed SCR to obtain an extended arc. Since there is no other
related arc, the complete arc is extracted. Then the SCR for arc 7 will be found in the networks of
SCRs as the second seed arc, and the same process will be repeated to connect the SCR for arc 8 with
it into a complete circle. Since there are no further SCRs for arcs left, the process will be stopped and
another process for recognizing complete straight lines will be started.

4.2.3 Recognition of Complete Straight Lines

Complete straight lines can also be obtained using the same method. Figure 19.11(b) can still be used
as an example of recognizing complete straight lines. The straight lines represented by SCRs 3 and 11
belong to the same straight line, and the straight lines represented by SCRs 5 and 12 belong to another
straight line. While searching for the SCR for a straight line in the networks of SCRs for this view,
SCR 3 will be found as a seed SCR first, then SCR 11 will be found adjacent to it and belonging to the
same line via the network of SCRs, since the type of their relationship is stored in the line data file,
and SCRs 3 and 11 will be combined together as an extended straight line. Since there is no SCR for
straight lines found belonging to the same straight line, the complete straight line is extracted. Then,
SCR 5 will be found as the second seed SCR, from which SCR 12 will be found adjacent to it and
belonging to the same straight line via its network of SCRs and combined with the seed line to form
an extended straight line. Since there are no other SCRs for straight lines, which are collinear, the
vectorization process will be stopped.

4.2.4 Software Prototype

Based on the method introduced above, a software prototype has been made in C++. Many paper
drawings have been vectorized successfully by using this software prototype. As an example,
Figure 19.15(c) shows the results of running the software prototype for a view of a drawing shown in
Figure 19.15(a). Figure 19.15(b) shows its SCR graph for illustration. It is obvious that the vectorization
method based on the networks of SCRs is feasible, and that the networks of SCRs meet the fourth
requirement of a compact representation of the raster image as a bridge from the raster image to
understanding, as mentioned in the second section of this chapter. That is, the networks of SCRs
facilitate recognition of vectors quickly and precisely.

(a) (b) (c)

120 ° 120 °120 °

Figure 19.15 The results of vectorization using the software prototype based on the networks
of SCRs.
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4.3 3D Reconstruction

For 3D reconstruction, two families of methods have been developed. The first family is known as the
‘fleshing out projections’ concept [18,19]. Another family is volume-oriented instead of privileging
wire frames [20].

The former is based on the reconstruction of a wire-frame model by matching vertices and edges;
the real faces of the object are then found by propagating constraints on this wire frame. The idea is
to search for the circuits on each view by sorting the edges in trigonometric order with respect to the
normal to the surface, at each vertex, and by traversing the resulting graph of oriented edges; to create
a face for each finite circuit and a hole for each infinite circuit; and to make up a real solid with a
group of faces without violating the Moebius rule [21,22]. The Moebius rule says that when a real
edge is on the border of two real faces, the traversals along the circuits of these two faces follow the
edge in opposite directions. Figure 19.16(b) [21] shows the circuits for the view in Figure 19.16(a).
Therefore, circuits are crucial for this method of 3D reconstruction and, sometimes, a vector-based
representation yielded is not very useful [21].

The latter method decomposes each view into several predefined types of subview [23] or exterior
boundary and interior boundary [24], generates their 3D subparts and then combines them to build
the complete object [20]. Each view and its predefined types of subview or exterior boundary and
interior boundary are all circuits. Therefore, circuits are also crucial for this method and, sometimes,
a vector-based representation yielded is not very useful either.

Since a circuit consists of elements, represented by SCRs, and the networks of SCRs provide
holo-relationships of all the elements, the circuits can be searched easily via the networks of SCRs.
Moreover, 3D reconstruction also needs various features, which are also extracted from the networks
of SCRs, as indicated in Figure 19.12. It is obvious that the networks of SCRs are more useful and
can be used as a base for the subsequent 3D reconstruction. Therefore, the networks of SCRs meet the
fifth requirement of a compact representation of the raster image as a bridge from the raster image to
understanding, as mentioned in the second section of this chapter.

Based on the networks of SCRs, a 3D reconstruction method has been developed [25]. As an
example, Figure 19.17 shows the results of running the software prototype for a drawing shown in
Figure 19.18, where each SCR is represented by its corresponding symbol (e.g. F4 is the symbol for
the bottom SCR in front view). Figure 19.19 shows its networks of SCRs generated according to
the drawing, where V indicates an intersecting point by two SCRs and C by more than two SCRs.

(a) (b)

Figure 19.16 A search for circuits to create faces of 3D models.
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Figure 19.17 An example of 3D reconstruction.
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Figure 19.18 A 2D drawing of an object.
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Figure 19.19 The networks of SCRs generated from the 2D drawing.

Figure 19.20 shows circuits obtained via the networks of SCRs, which are indicated by closed chain
lines and/or symbols. For example, LF2 is the symbol for the circuit represented by a closed chain line
in front view, and LF1 is the symbol for the circuit covering LF2 and LF3, i.e. the outside outline of the
front view.
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Figure 19.20 The circuits obtained via the networks of SCRs.

5. Classification of Digital Curves

According to the holo-extraction method developed, the possible results obtained may be the closed
region for a straight line, a circular arc, an elliptical arc, a spline curve, a combined line, a point or
an arrowhead, as shown in Figure 19.21(a), (b), (c), (d), (e), (f) and 19.21(g), respectively. A point
may be an independent point or intersecting point, as shown in Figure 19.21(f) and Figure 19.4(c)
respectively, and can be recognized according to the length of its closed region and the width change
of its closed region. An arrowhead can also be extracted according to the width change of its closed
region. Therefore, the rest of them are digital curves (i.e. straight lines, circular arcs, elliptical arcs,
spline curves or combined lines), which need to be recognized.

However, ellipses and spline curves in paper drawings can be considered as combined lines. Thus,
the first task for recognition of digital curves is to classify all the digital contours into three types:
straight-line segments, circular arcs and combined lines. The procedure of classification is as follows.

5.1 Extracting the Representative Points of Digital Curves

For each closed region, the midpoint of each run in it can be recorded as the points that form a digital
curve. In order to reduce computing load, some equal-spaced points among these points are selected
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(a) (b) (c) (d) (e) (f) (g)

Figure 19.21 Types of closed region.

as the representing points for curve fitting. The number (N ) of points is determined according to the
length of segment using:

N =
{[√

d�n−1�
]

� if d�n−1� > 10 mm

10� if d�n−1�≤ 10 mm
(19.2)

where d is the distance between two adjacent points, n is the total number of points in the segment,
d�n−1� denotes the length of segment and

[√

d�n−1�
]

is the integral part of
√

d�n−1�. The longer
the segment, the more equal-spaced points will be selected for curve fitting. But the number of selected
points is not less than ten to ensure effective curve fitting. These points can be written as:

P = �Pi = �xi� yi�! i= 1� � � � �N� (19.3)

5.2 Fitting a Straight line to the Set of Points

The straight line that best fits a given set of points can be determined using the least squares criterion
that minimizes the fitting error. According to least squares regression [26], the N points can be fitted
by a straight line:

y = kx+ c (19.4)

where k and c denote the slope and intercept respectively, and can be estimated by the following
formulas:

k=
N

N∑

i=1
xiyi−

N∑

i=1
xi

N∑

i=1
yi

N
N∑

i=1
x2i − �

N∑
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xi�

2

(19.5)

c =
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x2i

N∑

i=1
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N∑

i=1
xiyi

N
N∑
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x2i − �
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i=1
xi�

2

(19.6)
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Thus, the average distance �ds� from these points �xi� yi� to the fitted straight line can be calculated
using the following formula:

ds =

N∑

i=1
��kxi+ c�−yi�

N
√
k2+1

(19.7)

5.3 Fitting a Circular Arc to the Set of Points

On the other hand, according to least squares regression, these points can also be fitted by a circular arc:

�x−a�2+ �y−b�2 = R2 (19.8)

where �a� b� and R denote the coordinates of the circle’s center and its radius respectively, and can be
estimated using the following formulas [27]:

a= b1a22−b2a12



(19.9)

b = b2a11−b1a21



(19.10)
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where
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∑
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= a11a22−a21a12 (19.17)

Thus, the average distance �dc� from these points �xi� yi� to the fitted circular arc can be calculated
using the following formula:

dc =

N∑

i=1

∣
∣
∣

√

�xi−a�2+ �yi−b�2− R�

N
(19.18)
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5.4 Determining the Type

If the average distance �ds� from the points in a digital curve to a fitted straight line is equal to
zero, the digital curve is exactly a straight line according to the least squares criterion. If the average
distance �dc� from the points in a digital curve to a fitted circular arc is equal to zero, the digital curve
is exactly a circular arc according to the least squares criterion. But the digital curves are scanned from
paper drawings that are not accurate. Therefore, an error range (double the width of the closed black
pixel region) is given. Thus, only if ds is smaller than both dc and double the width of the closed black
pixel region, is this digital curve a straight line (rule 1). Only if dc is smaller than both ds and double
the width of the closed black pixel region, is this digital curve a circular arc (rule 2). If both ds and dc
are greater than double the width of the closed black pixel region, this digital curve is neither a straight
line nor a circular arc, and should be the third possibility, i.e. a combined line (rule 3). Therefore, after
the two average distances (ds and dc) of a digital curve are obtained, the type of the digital curve can
be determined by using these three rules.

After classification, the more precise regression equation can be obtained to fit to all the midpoints
of runs in the closed region by using the above formulas if the digital curve is determined as a straight
line or a circular arc. When it is a combined line, it will then be decomposed into straight-line segments
and/or circular arcs.

6. Decomposition of Combined Lines Using Genetic Algorithms

The method for decomposition is to find the optimal split (break) points with the least number of
segments, each of which can be fitted to a straight line or a circular arc with least error. This is an
optimization problem, which can be solved by using genetic algorithms [17].

The block diagram of the algorithm is shown in Figure 19.22. This algorithm includes an encoding
scheme, a fitness function, genetic operators (crossover, mutation and selection) and control parameters;
it will be illustrated in more detail in the following sections.

6.1 Initial Population

In genetic algorithms, a possible solution (a possible combined line for this case) should be encoded
as a chromosome with length n (the number of black pixels), which is a binary gene string as follows:

C = �gp �p= 1�2� � � � � n� (19.19)

where gp = 1 if point p is a break point; otherwise gp = 0. An initial population with a set of
chromosomes is generated randomly [17], entered into a mating pool for subsequent operations, and
defined as:

�Ci �i= 1�2� � � � �m� (19.20)

where m is the number of chromosomes in a population and is equal to n/2 in this case. In digital
curves, two break points should not be adjacent or very close to each other. To avoid this, each
chromosome will be modified using the following rules:

• if the distance between two adjacent 1 genes is less than 15, change the second gene from 1 to 0;
• if there are several 1 genes, which are continuous, change the genes, except the first and the last
gene, from 1 to 0.

For example, Figure 19.23(a) shows a combined line, which consists of an elliptical arc (AB), two
straight-line segments (BC and CD), two circular arcs (DE and EF) and a spline curve (FG), and has
384 points in total. An initial population with 172 chromosomes is first generated randomly. One of
the 172 chromosomes has 17 genes labeled 1, as shown in Figure 19.24. It means that there are 17 split
(break) points and 18 segments in the combined line represented by this chromosome.
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Figure 19.22 The block diagram of the algorithm.
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Figure 19.23 A combined line.
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Figure 19.24 A chromosome for a combined line.

6.2 Fitness Function

Each segment in a combined line represented by a chromosome can be fitted by a straight line or
a circular arc. Their approximation errors (ds and dc) can be calculated using Equation (19.7) and
Equation (19.18) respectively. The smaller error will be recorded as the approximation error of the
segment. Thus, the approximation error (Err(Ci)) for the whole combined line is the sum of errors of
segments in the combined line. The fitness function is used for evaluating how well each chromosome
approximates the original shape, and is defined for the ith chromosome Ci as [28]:

Fit�Ci�=
1

Err�Ci�×Sk
(19.21)

where S is the total number of segments in Ci and k is a parameter which can adjust the effect the
number of segments will have, so that it is possible to obtain the least segments with the least fitting
error. The larger k is, the more effect the number of segments will have. For this case, k is selected to
be 0.5. For the chromosome in the initial population of the combined line shown in Figure 19.24, its
fitness function value is equal to 0.0385.

6.3 Crossover

To create the next generation, new chromosomes, called offspring, are formed first using a crossover
operator. In this algorithm, crossover proceeds in three steps. First, m/2 pairs of chromosomes are
randomly picked up from the mating pool. Secondly, the distance between the two chromosomes in
each pair is calculated using the following formula:

Di�j =
N
∑

l=1

∣
∣gi�l�−gj�l�

∣
∣ (19.22)

Since the crossover between two similar chromosomes is not useful for efficient evolution, the
probability of crossover should be reduced if their distance is smaller, and increased if their distance is
larger. The probability of crossover for each pair is adjusted according to the following formula [28]:

Pc�i� j�=
1

1+ e−�Di�j−��/
(19.23)

where � and  are the parameters which make Pc�i� j� change with Di�j in a certain way. The
pairs of chromosomes for crossover are then selected by a roulette selection scheme based on their
probabilities calculated. Thirdly, a pair of crossover points is selected randomly for each selected pair
of chromosomes, and the segments bounded by the crossover points are exchanged.

6.4 Mutation

New chromosomes or offspring can also be formed using a mutation operator, which involves
modification of the values of genes in a chromosome and increases the variability of a population.
In the case when fitness functions of chromosomes in a population converge to a small range or local
optimum, it is difficult for crossover to generate offspring with more improved fitness function values,
but mutation can play an important role here. In order to find a global optimum rapidly, the probability
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of mutation should be increased when the fitness functions of a population converge to a small range.
The probability of mutation can be adjusted using the formula [29]:

Pm =







t× Fitmax−Fit�Ci�

Fitmax−Fit
� if Fit�Ci�≥ Fit

t� if Fit�Ci� < Fit
(19.24)

where t = 0�35�Fitmax is the maximum fitness function value in the population, and Fit is the average
fitness function value of the population. In the mutation process, a random number in [0,1] for every
gene position within the chromosome string is generated and checked. If the random number is smaller
than the probability of mutation, the bit value of the gene is altered, otherwise, it is kept unchanged.

6.5 Selection

After crossover and mutation operations, an elitist selection scheme is used. The chromosome with
the highest fitness function value among the old population and its offspring is selected as an elitist
and copied directly into the new population of the next generation. With this operation, nature’s
survival-of-the- fittest mechanism can be guaranteed. The other chromosomes are selected by a roulette
selection scheme. A roulette wheel, on which each chromosome in the old population and its offspring
is represented by a slot with slot size proportional to its fitness function values, is utilized. The
probability that a chromosome Ci is selected as a member of the next generation, is:

P�Ci�=
Fit�Ci�

M∑

j=1
Fit�Cj�

(19.25)

where M = �m+�� and � is the number of offspring. The m selected chromosomes are then entered
into a mating pool as the next generation. The first iteration of the genetic algorithm is thus completed.

6.6 Convergence and Control Parameters

After the second generation is generated, the above crossover, mutation and selection operations will
be repeated until the best chromosome is obtained. Since the digital curve varies and the improvement
of fitness is not always continuous, it is not appropriate to set up the number of iterations or error
threshold. In this case, a threshold for the number of generations that have the same best chromosomes
is used. That is, if ni−n∗ is greater than a threshold q= 20, the iteration process can be stopped, where
ni is the current generation number and n∗ denotes the generation number when the best chromosome,
among all generations, is first found. Then, the best chromosome can be output as the optimal solution.
For the example of the combined line in Figure 19.23, the best combined line represented by the best
chromosome was obtained as shown in Figure 19.23(c). It can be seen that the elliptical arc (AB)
consists of two circular arcs (AH and HB), and that the spline curve (FG) comprises two circular arcs
(FK and LM) and two short straight-line segments (KL and MG).

6.7 Determination of the Relationships Between the Segments

In the best chromosome, the point corresponding to the gene labeled 1 is a break point. The segment
bounded by two break points has been fitted by a straight line or a circular arc with the least error.
The relationship between two adjacent segments can be determined using the following rules:

• If they are both straight lines, they intersect each other.
• If they are both circular arcs, the distance between their centers will be calculated. When the distance
is equal to the sum of their radii, the two arcs are externally tangential to each other. If the distance
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(a) (b) (c)

Figure 19.25 An example of digital curve recognition.

is equal to the difference of their radii, the two circular arcs are internally tangential to each other.
Otherwise, they intersect each other.

• If one segment is a straight line and another a circular arc, the distance from the center of the circular
arc to the straight line will be calculated. If the distance is equal to the radius of the circular arc, the
straight line is tangential to the circular arc. Otherwise, they intersect each other.

With the types of segment and their relationships determined, the combined line can thus be
reconstructed.

6.8 Software Prototype

Based on the method introduced above, a software prototype has been made in C++. Many
digital curves have been recognized successfully by using this software prototype. As an example,
Figure 19.25(c) shows the results of running the software prototype for a view of a drawing shown in
Figure 19.25(a). Figure 19.25(b) shows its closed region graph for illustration. It is obvious that the
recognition method based on the genetic algorithm is feasible.

7. Conclusions

Research on the conversion from 2D paper drawings to 3D computer feature models has been stuck
in low-level coding [1]. One of the reasons for this is that the three phases of understanding process
have been isolated, and people have been doing their research on only one of the phases since the
whole conversion is complicated and more difficult. For instance, the vectorization methods for the
first phase were developed only for getting straight lines, arcs, circles, etc., so that much information
contained in the drawing was lost after the vectorization. In fact, the understanding process for its
subsequent 3D reconstruction is an iterative process for searching different level relationships and
performing corresponding connections. In order to facilitate the iterative processes, a holo-extraction
of information from the raster image is needed, and a compact representation of the raster image
should be generated as a bridge from the raster image to understanding. Such a holo-extraction method
of information from paper drawings has been developed [30] by constructing the networks of single
closed regions of black pixels. The networks of SCRs are different from the vectors recognized by
vectorization. A network of SCRs represents a set of connected segments or elements and contains not
only the information about the related segments themselves but also the types of linking point among
these segments for different relationships of the related segments (e.g. tangential point, intersecting
point and merging junction) to provide necessary information for extracting lexical, syntactic and
semantic information in the subsequent phases. Therefore, the networks of SCRs are the bridges
from the raster image to understanding. The recognition method [31] of digital curves introduced in
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this chapter is developed based on the new holo-extraction methods and used for subsequent pattern
recognition and 3D reconstruction. This method first constructs the networks of single closed regions of
black pixels with all the information about both segments and their linking points, in order to classify
all the digital contours or segments represented by SCRs into three types: straight-line segments,
circular arcs and combined lines, and then decomposes the combined lines into least basic sublines
or segments (straight-line segments or circular arcs) with least errors using genetic algorithms and
determines their relationships (intersecting or tangential to each other). In the algorithm, the operation
has been improved by using sparse points, adaptive probabilities of crossover, adaptive probabilities
of mutation and selection based on an enlarged sampling space (including the old population and
offspring). It is easy to implement evolution based on an enlarged sampling space [17]. Based on the
method developed, a software prototype has been made in C++ [30,31]. Many digital curves have
been recognized successfully by using this software prototype. It has been verified that the recognition
method based on the networks of SCRs and the genetic algorithm is feasible and efficient. This method
and its software prototype can be used as a base for further work on subsequent engineering drawing
understanding and 3D reconstruction.
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A skeleton modeling procedure for computing the continuous structural orientation from the discrete

curve skeleton yielded by 3D image thinning is presented. The proposed modeling procedure consists

of three consecutive operations: (1) topological segmentation to divide a curve skeleton into branches;

(2) branch filtering to remove spurious branches induced by noise; and (3) data smoothing to correct

local noise distortions and to build a polynomial curve representation. The structural orientation is

computed directly based on the curve representation and then applied to the entire 3D image through

a uniform skeleton dilation.

1. Introduction

In a recent paper [1] we introduced a new 3D topology-preserving thinning algorithm specifically
designed for the reduction of complex 3D digital images of trabeculated biological tissues to 1D
voxel representations (curve skeletons). The algorithm is based on a rigorously defined classification
procedure and follows a directional subiteration approach. Central to the algorithm is a set of simple,
albeit rigorous and efficient, conditions for identifying ambiguous simple sets to beoperated upon in
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a parallel thinning procedure. The algorithm is shown to yield skeletons only moderately sensitive to
noise and to the image rotation.

Thinning, defined as an iterative reduction process that transforms a discrete structure to its lower
dimension, is an important operation in both 2D and 3D digital image processing, especially in
biomedical image reduction [2–5]. We use thinning to determine the local structural orientation of
trabeculated biological tissues, such as those found in the embryonic heart [6] and in trabecular bone [7].
According to experimental observations, the mechanical properties of trabeculated tissues depend
greatly on the structural orientation. In particular, the accurate measurement of structural orientation
is critical for the finite element modeling of the trabeculated myocardial tissue for biomechanical
studies of early heart development [8–10]. Structural orientation can be computed only on the 1D
representation derived from the original 3D image of the trabeculated tissue. To solve this problem, we
developed a topology-preserving 3D thinning algorithm for computing directly the curve skeleton of
a trabeculated tissue from its 3D image, based on the definition of 3D simple (removable) voxels [1].
In the present chapter we extend and refine our modeling procedure by developing algorithms for
topological segmentation, branch filtering and data smoothing of discrete 3D curve skeletons obtained
through image thinning.

Skeleton segmentation is the basic operation in the postprocessing of a discrete skeleton, either
for extracting topological properties of the original image [11] or for filtering spurious skeleton
branches [12]. We divide the curve skeleton into linear paths on which branch filtering and smoothing
can be performed. The major challenge in the curve skeleton segmentation is the topological
classification of skeleton junctions. To address this problem, we introduce a new two-phase junction
detection algorithm.

The structural orientation can be evaluated by computing the slope at the centroid of each skeleton
voxel. However, due to the discrete nature of digital images, continuous and smooth structural
orientation cannot be determined directly from the raw skeleton, which is a subset of the original image.
Also, image noise may induce spurious skeleton branches and significant geometrical distortions. In
order to overcome these problems, we develop a global data regression procedure, which is capable of
creating a stable polynomial curve representation from sparse and nonuniform data.

Finally, in the numerical modeling of biological structures with complex geometry, such as trabecular
bone and myocardium, computational meshes are often directly derived from digital images interpreted
as voxel sets [7,9]. When this happens, it becomes necessary to apply the structural orientation computed
on the skeleton back onto the original voxel set. Our thinning accomplishes this through a simple
skeleton dilation operation.

In the following sections, we first review the basic notions and definitions pertaining to a 3D
digital image and its curve skeleton. Then we introduce the three major operational components –
segmentation, filtering and smoothing – constituting the skeleton refining procedure. Finally, we present
two sets of results obtained respectively with trabecular myocardium and bone specimens.

2. Basic Definitions

In [1] we established the basic definitions and notation related to the 3D digital image and the thinning
process. Here, we summarize the notation that will be used in the present chapter.

• �P�B�W� denotes a binary 3D digital image P, consisting of a finite array of solid cubic elements,
or voxels. B�B ⊂ P�, called the original object, is the set containing all black or object voxels in the
image P. W�W = P−B� is the collection of all white or background voxels.

• p�x1� x2� x3� denotes a single voxel p, where x1� x2 and x3 are the coordinates of the voxel centroid
in the 3D Cartesian space.

• �-adjacency describes the relation between two individual voxels [13]. Two distinct voxels
p1�x1� x2� x3� and p2�y1� y2� y3� are said to be 26-adjacent if �xi−yi� = 0 or 1 for i = 1�2�3,
18-adjacent if the voxels are 26-adjacent and

∑3
i=1 �xi−yi� = 2, or 6-adjacent if

∑3
i=1 �xi−yi� = 1.
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• N��p�, called the �-dilation of p, is the voxel set consisting of p and all its �-neighbors.
• N�

e �p�= N��p�−p defines the �-envelope of p, i.e. the set of all �-neighbors of p.
• S (or any other capital letter) is used to denote a voxel set. The notion of �-adjacency can be
extended directly to voxel sets. Two distinct voxel sets S1 and S2 are �-adjacent if there exist two
�-adjacent voxels p1 ∈ S1 and p2 ∈ S2. S is �-connected if S cannot be partitioned into two subsets
that are not �-adjacent.

• An �-component of voxel set S is an �-connected subset of S which is not �-adjacent to any other
voxels in S. To avoid ambiguity, we adopt the definition of a 26-component for black voxels and a
6-component for white voxels.

• N�
e �S� denotes the �-envelope of a voxel set S = �pi�i= 0� � � � � n�:

N�
e �S�=

⋃

pi∈S
N��pi�−S (20.1)

• An �-path is an �-connected voxel set �p0� p1� � � � � pn� with pi�-adjacent to pi−1 for i= 1� � � � � n.
A path is said to be closed if p0 is �-adjacent to pn, or linear if p0 is not �-adjacent to pn.

• f 26b
v �p� is the number of black voxels within N 26

e �p�.
• f 26b

c �p� is the number of black components within N 26
e �p�.

• f 18w
c �p� is the number of white components within N 18

e �p�, each containing at least one white
6-neighbor of p. If f 18w

c �p� = 0, all 6-neighbors of p are black, and thus p is a 3D internal voxel.
If f 18w

c �p� > 1� p is classified as a surface internal voxel [14]. Conversely, p is a border voxel if
f 18w
c �p�= 1.

• max��fi�i= 1� � � � � n�� is the maximum value of a set of scalars �fi�i= 1� � � � � n�.

The skeleton F , produced by the curve thinning of an image �P�B�W �, is called a raw curve
skeleton of P. For simplicity, hereafter we omit the term curve in referring to the 3D skeleton. As
a voxel representation, F is represented as a subset of B, containing all non-removable black voxels
after the thinning process is completed. Accordingly, voxels in F are called skeleton voxels. Since
the original black set B is 26-connected, the skeleton F is also 26-connected. When concerned only
with the geometry of F , we use a point representation, which describes F as the collection of voxel
centroids joined with straight lines (Figure 20.1). While the voxel representation is essential for the
topological processing of the skeleton (e.g. skeleton segmentation), the point representation provides
the necessary basis for geometrical operations on the skeleton (e.g. skeleton smoothing).

Generally, the raw skeleton derived from the 3D image of a trabecular tissue specimen is a complex
tree-like structure of inter connected branches. A skeleton branch, which is the basic entity to be

3

2

5 6

4

1

Figure 20.1 Voxel (solid cubes) and point (dashed lines) representations of a raw curve skeleton.
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operated upon in both topological and geometrical processing of the raw skeleton, is defined as
follows:

Definition 1: A subset of the skeleton F is called a branch if it is a 26-path in F and contains two
skeleton ends. A branch is classified as linear or closed if it can be represented by a linear 26-path
or by a closed 26-path, respectively.

The first voxel p0 and the last voxel pn of a linear branch �p0� p1� ��� pn� correspond to the two
skeleton ends. However, there is no unique definition of end voxels in a closed branch. We will address
this problem in the next section.

We cannot directly evaluate the structural orientation from the raw skeleton for the following reasons:

1. With a point representation, a branch of a raw skeleton F can be viewed as a 0th continuous curve
formed with straight-line segments connecting the centroids of the skeleton voxels. Thus, the first
spatial derivatives, representing the structural orientation, are discontinuous at each voxel centroid
shared by two nonparallel line segments.

2. The noise effects, in the form of spurious branches and local geometrical distortions, may severely
undermine the accuracy of the computed structural orientation.

We solve this problem by refining the raw skeleton through topological segmentation, branch filtering
and branch smoothing.

3. Topological Segmentation

3.1 Component Counting and Labeling

Component counting is an important operation in general 2D and 3D digital image processing. Many
advanced component-counting algorithms have been introduced [15–17]. In this work, we expand a
simple recursive scanning procedure called an �-scan [1] for counting and labeling components. An
�-scan over a voxel set S involves the following steps:

1. Initialize the scanning front S′ � S′ ⊂ S.
2. Set initial scanned set A � A= S′.
3. Find the �-envelope E of S′ within S � E = N�

e �S
′�∩S.

4. Update first the scanning front S′ and then the scanned set A � S′ = E−A�A= A∪E.
5. Check the conditions for terminating the �-scan. If stopping conditions are not satisfied, update the

scanned set A�A= A∪E� and go back to step 3.

For an unrestricted �-scan, the stopping condition is simply S′ = 0. The final scanned set A obtained
from an unrestricted �-scan is an �-component in S if the initial scanning front S′ is �-connected.
Obviously, a single voxel in S constitutes the smallest �-connected initial scanning front.

Component labeling is the process of applying a certain property, e.g. an integer number indicating
uniquely a component, to the final scanned set. This type of operation can be easily achieved by
gradually assigning the property associated with the initial scanning front to the scanned set in an �-scan.

3.2 Classification of Skeleton Voxels

We need to determine the topological classification of each skeleton voxel before we can segment
the raw skeleton F into branches. A skeleton voxel can be classified as a node, tip or junction. The
definitions of node and tip are as follows:

Definition 2: A skeleton voxel p is called a branch node if p is 26-adjacent to two skeleton voxels,
i.e. f 26b

v �p�= 2.
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Definition 3: A skeleton voxel p is called a branch tip if p is 26-adjacent to one skeleton voxel, i.e.
f 26b
v �p�= 1.

The definition of a branch junction is not as straightforward. Conceptually, within a voxel
representation of the skeleton, a junction is a voxel linking three or more branches. Two typical junction
definitions can be found in the literature:

Definition: A voxel-based definition [12]: a junction is a skeleton voxel 26-adjacent to more than two
skeleton voxels, i.e. f 26b

v �p� > 2.

Definition: A component-based definition [11,14]: a junction is a skeleton voxel 26-adjacent to more
than two black components within N 26

e �p�, i.e. f
26b
c �p� > 2.

Both definitions are based on the voxel adjacency being restricted to the local 3×3×3 neighborhood
of a skeleton voxel under classification. Neither of these two definitions leads to a unique and
comprehensive detection of all valid junctions. As shown in Figure 20.1, while voxels 4, 5 and 6 are
classified as junctions with a voxel-based definition, none of them is recognized as a junction with a
component-based definition. This ambiguity in the junction classification is specifically associated with
‘thick’ junctions, each consisting of two or more 26-connected junctions detected with a voxel-based
definition. We will give later a rigorous definition of thick junctions. Presently, in order to solve this
problem, we introduce a two-phase junction classification procedure, consisting of a local classification
step and a thick junction resolution step.

3.3 Local Junction Classification

At the local level, we identify those voxels that are either an unambiguous junction or a junction
candidate requiring further investigation. The local classification is based on the following definitions:

Definition 4: A skeleton voxel p is a junction if it satisfies conditions: (1) f 26b
c �p�> 2 or (2) f 18w

c �p� �= 1
(i.e. voxel p is internal).

Definition 5: A skeleton voxel p is a junction candidate if it satisfies conditions: (1) f 26b
c �p�≤ 2, (2)

f 18w
c �p�= 1 (i.e. voxel p is a border voxel), and (3) p is not 26- adjacent to any junctions.

Observation 1: Our curve thinning algorithm reduces a 3D image to single-stranded border voxels
by progressively transforming 3D and surface internal voxels into border voxels [1]. However, the
resulting skeleton F may contain an internal voxel p if p is surrounded by other skeleton voxels.
Figure 20.2 illustrates a typical 3D nonreducible voxel configuration derived from the 2D example
in [18]. A surface skeleton voxel p is naturally identified as a junction, since p is the merging location
of its neighboring skeleton voxels in a local surface-like configuration. Adopting this classification
approach, we can always segment a surface- like skeleton into 26-paths, which then can be stored with
compact formats, e.g. a chain code [19], and further processed to determine the structural orientation.

The 26-connected junction candidates are the source of ambiguity in the junction classification.
Let Sc be the voxel set containing all junction candidates identified in the local classification. The
following definition of a thick junction is adopted:

Definition 6: A 26-connected voxel set T = �pi�i = 1� � � � � n�, where n > 1 and T ⊂ Sc, is called a
thick junction if there exists a junction candidate pj ∈ T that satisfies the conditions:

1. T ⊂ N 26�pj�∩Sc
2. f 26b

v �pj�=max��f 26b
v �pi��i= 1� � � � � n��.

We call such a voxel pj the core of the thick junction T . This definition allows us to associate a
single junction (the core) to each thick junction.
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Figure 20.2 A voxel configuration which cannot be reduced to a unit-width skeleton with a 3D
thinning algorithm based on 26-adjacency for black voxels. Shaded voxels are 3D internal skeleton
voxels.

3.4 Thick Junction Resolution

In the second phase of junction classification, we eliminate thick junctions by identifying a core from
each thick junction and restoring the status of the other junction candidates to branch nodes.

Lee et al. [12] proposed a local procedure for resolving thick junctions in a 3D curve skeleton and a
similar approach can be found in Abdullah et al. [20] for 2D junction classification. According to this
approach, any junction candidate p first encountered in the sequential visit of Sc may be selected as a
junction, and all other junction candidates 26-adjacent to p are then transformed into nodes. Doing so,
however, may produce redundant junctions if the selected voxel p is not the core of the thick junction.
As shown in Figure 20.3, voxels p, q, r and s are all junction candidates according to Definition 5.
These junction candidates form a single thick junction with voxel r, f 26b

v �r�= 4, as the junction core
(according to Definition 6). However, if Lee’s algorithm happens to select voxel p, f 26b

v �p�= 3, as the

p

q r

s

Figure 20.3 An example showing that the random selection of a junction from junction candidates
may lead to the creation of redundant branches.
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junction, voxels q and r are transformed into nodes, and the remaining candidate s is then identified as
another junction in a new sequential visit of the candidate junction set, likely yielding an undesirable
skeleton model.

To overcome this deficiency, we propose a global approach for the resolution of thick junctions:

1. Re-sort the candidate junction set Sc = �pi�i= 1� � � � � n� in a descending order by the value of f 26b
v

of each voxel in Sc such that f 26b
v �pi�≥ f 26b

v �pi+1� for i= 1� � � � � n−1.
2. Sequentially visit each voxel p in Sc and

(a) set p as a junction;
(b) transform all junction candidates in N 26

e �p�∩Sc to nodes; and
(c) update candidate voxel set Sc � Sc = Sc−N 26�p�∩Sc.

3.5 Branch Formation

After all skeleton voxels are classified, the raw skeleton is ready for the formation of branches. Here,
we introduce two additional values associated with a skeleton voxel:

Definition: f t�p� is the number of branches containing a skeleton voxel p. If p is a tip or node, then
f t�p�= 1. If p is a junction, then f t�p�= f 26b

v �p�.

Definition: f s�p� indicates the number of times a voxel p has been visited in the skeleton segmentation
process. Assuming each skeleton voxel p is visited only once in the formation of each single branch
containing voxel p, we call p unsaturated if f s�p� < f t�p�, or saturated if f s�p� = f t�p� (i.e. all
branches containing p have been determined).

Let Su be the set consisting of all unsaturated skeleton voxels, and voxel p (f t�p�= n�f s�p�=m and
m< n� be an end in Su. We build the (m−n) undetermined branches containing p with the following
branch formation procedure:

1. Identify a voxel set E, which consists of all unsaturated skeleton voxels within N 26�p� � E =
Su ∩N 26�p�.

2. Form a branch L, which contains an unsaturated skeleton voxel e�e ∈ E and e �= p�:
(a) Increase f s�e� and f s�p� by one.
(b) If e is an end, build the branch L, simply with voxels p and e � L= �p� e�, Figure 20.4(a).
(c) If e is a node, then perform a 26-scan over the voxel set Su with the voxel e as the initial

scanning front to produce a final scanned set A. Voxel set E is excluded in the first scan iteration.
The 26-scan stops when one or more unsaturated ends are reached – Figure 20.4(b).

(d) Increase f s�pi� by one, for each skeleton voxel pi in the scanned set A.
(e) Let T be a voxel set containing all unsaturated end voxels detected in this 26-scan. We increase

f s of all end voxels in T by one and pick any voxel q in T as the terminating end for the
branch L. Thus, the branch L under determination is given by �p�A�q�. Note that this branch
determination procedure can also detect closed branches containing only one distinct skeleton
end, i.e. p= q – Figure 20.4(c).

(f) Update E � E = E− �e�.
3. Repeat branch identification (steps 1 and 2) until the end voxel p is saturated.

By performing the above procedure on each unsaturated skeleton end, we segment into branches a
skeleton containing at least one skeleton end. However, this procedure is not suitable for a skeleton F
that corresponds to a single isolated closed path. We solve this problem simply by picking any skeleton
voxel p in F as a virtual junction f t�p� = 2 and then use the above procedure to form a closed path
starting with p (similar to the case illustrated in Figure 20.4(c)).
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Figure 20.4 Determination of a branch L containing an end voxel p: (a) L consists of two ends only;
(b) L consists of two distinct ends and a string of nodes (shaded voxels) identified in a 26-scan starting
with voxel e; (c) the closed branch L contains only one junction.
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Figure 20.5 26-chain representation of a branch starting with end voxel p. (a) Directional code for
the 26-neighborhood of voxel p; (b) a voxel representation of a branch; and (c) the corresponding
26-chain code.

Since all voxels are geometrically identical, we use a 26-chain code derived from the 4-chain code
in [21] to describe the 26-connected branches (Figure 20.5). The advantages of using a chain code
representation are obvious: (1) it is compact – a 26-chain code is a list of small integers ranging from
1 to 26; and (2) Lit is portable – with a chain code representation and the known physical dimensions
of a voxel, the connectivity and geometry of a branch can be easily and quickly reconstructed.
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4. Branch Filtering

4.1 Branch Classification

We call a branch produced by the image noise a noise branch. An excessive number of noise branches
leads to an undesirable skeleton representation of the original image. Therefore, noise branches must
be identified and filtered out of the skeleton.

Definition 7: A branch L is said to be free if L includes at least one skeleton tip, or fixed if L contains
no skeleton tips.

Observation 2: Curve skeletons are suitable for describing elongated objects. For a 3D solid object
without cavity, its topological property can be defined in terms of the numbers of components and
tunnels [22]. A topology-preserving thinning algorithm produces a skeleton which has the same
topological property as the original object. Let L be a branch of the skeleton F . If L is free, the removal
of L does not lead to the complete elimination of a component in F unless L= F , or the deletion of a
tunnel, since L is not included in any closed path in F [23]. However, deleting a fixed branch L may
break up a component in F if L links two branches that cannot be joined through other paths, or may
destroy a tunnel if L is contained in a closed path in F .

Based on this observation, in order to preserve the topology of the skeleton we only consider free
branches for filtering. Note that deleting a free branch L may transform fixed branches adjacent to L
into free branches. Therefore, an iterative branch filtering procedure is desirable when the compound
noise effect is significant.

A free branch can be further classified based on the following definition:

Definition 8: A free branch L is called a structural, type-1 noise or type-2 noise branch if L has
complete, empty, or partial overlap with the geometrical midline of the original object (Figure 20.6).

Type-1 noise branches are approximately perpendicular to the midline of the original object and
have a characteristic short length, i.e. half the local width of the object. Based on this property of
type-1 noise branches, Lee et al. propose a simple branch filtering criterion [12]. If the length of a free
branch L, in terms of the total number of voxels in L�is below a critical value c, L is identified as a
noise branch and removed. However, this length-based criterion suffers several drawbacks:

1. A viable critical branch length c is difficult to determine.
2. Short structural branches (such as branch 1 in Figure 20.6) may be identified mistakenly as noise

branches.
3. Long type-2 noise branches (e.g. branch 3 in Figure 20.6) cannot be detected and corrected.

3

3
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3 3 3 3 3 3

2

2

2

2

1 1 1

Figure 20.6 Three types of free branch of an elongated object: (1) a structural branch (branch 1);
(2) a type-1 noise branch (branch 2); and (3) a type-2 noise branch (branch 3).
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In order to overcome these problems, we propose a new branch filtering procedure based on the
thickness instead of the length of a branch. The definition of thickness associated with a skeleton voxel
or a branch is given as follows:

Definition 9: T he thickness of voxel p, denoted by t�p�, is the number of thinning iterations performed
before p is determined as a skeleton voxel – see the definition of our thinning procedure in [1].
Accordingly, the thickness of branch L= �p1� � � � � pn�, denoted by t�L�, is the averaged thickness
of all voxels in L, i.e. t�L�= round�

∑n
j=1 t�pj�/n+0�5�.

We notice that a noise branch usually starts off a short protrusion on the surface of the original object
and then penetrates into the object until it collides with the geometrical midline (see Figure 20.6). We
call a 26-connected subset N of a noise branch L a noise segment of L, if N is composed only with
skeleton voxels that are not located at the midline of the object. Accordingly, the subset S = L−N
is called the structural segment of L. Note that a noise branch L may have two noise segments each
starting with an end of L. Clearly, a type-1 noise branch has a void structural segment.

We propose now a viable mathematical basis for detecting noise branches and determining the
length of a noise segment. Let L= �p1� � � � � pm� � � � � pn� be a generic noise branch and the voxel sets
�p1� � � � � pm� and �pm+1� � � � � pn� denote the noise and structural segments of branch L, respectively.
We make the following simplifying assumption on the architecture of branch L:

1. t�pi+1�− t�pi�= 1 for i= 1� � � � �m−1. Therefore,
2. t�pm�=m+ t�p1�−1, and
3. t�pi�= t�pm� for i=m+1� � � � � n.

On equating this assumed local thickness distribution of L with the average branch thickness, we
obtain

�m+ t�p1�−1�!− �t�p1�−1�!+ �m+ t�p1�−1�× �n−m�= t�L�×n (20.2)

from which the length of the noise segment m can be determined. Since Equation (20.2) is nonlinear
in m, a numerical solution procedure is required. For simplicity, we approximate Equation (20.2) as:

m= t�L�+ round�
n
∑

i=1

�t�L�− t�pi��
n

+0�5�− t�p1�+1 (20.3)

where the second term is the adjustment of the branch thickness t�L� to compensate the variation
induced by the nonuniform noise segment. For example, consider branch 3 in Figure 20.6. The local
thickness t�p� associated with each voxel in branch 3 is �0�1�2�2�2�2�2�2�2� and t�L�= 2. Applying
Equation (20.3) we obtain m = 2+ 1− 0+ 1 = 4, while the approximate solution of Equation (20.2)
yields m= 3�95.

4.2 Noise Segment Removal

We now introduce our thickness-based branch filtering procedure, structured as follows:

1. Sequentially examine each free branch L= �p1� � � � � pn� in the skeleton F .
2. Check each tip of L for the start of a noise segment. If voxel p1 is a tip and t�p1� ≤ 0�25× t�L�,

compute the length m using Equation (20.3) and remove a noise segment L′ = �p1� � � � � pm� from L.
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Similarly, if pn is detected as a noise tip, a subset L′ = �pm� � � � � pn� of L is selected as a noise
segment, where m is given by:

m= n− t�L�− round

(
n
∑

i=1

�t�L�− t�pi��
n

+0�5

)

+ t�pn� (20.4)

Removing the noise segment L′ involves the following steps:
(a) Delete all branch nodes and branch tips in L′.
(b) Decrease f t�p� by one for any junction p in L′. Based on the new value of f t�p�, the junction

p is either deleted (if f t�p�= 0� or transformed into a tip or node (if f t�p�= 1�.

A change in the status of a junction p may affect the status of a branch containing p. Thus, a
branch segmentation must be performed again after branch filtering is completed to properly register
all skeleton voxels and branches.

Figure 20.7 shows the effect of image noise on the thinning procedure. The resulting raw skeleton
exhibits numerous type-1 and type-2 noise branches. As shown in Figure 20.8(a), the above branch
filtering procedure effectively filters out both types of noise branch. However, local geometrical

Figure 20.7 Raw skeleton resulting from a noisy input image. (a) 3D image of an artificial object
with 20% random noise; and (b) raw skeleton with spurious noise branches.

Figure 20.8 Skeleton after branch filtering. (a) Voxel representation of the filtered skeleton; and
(b) point representation showing significant noise distortion.
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distortions caused by image noise – clearly visible in Figure 20.8(b) – still need to be corrected. This
problem is addressed in the next section.

5. Branch Smoothing

5.1 Polynomial Branch Representation

Let L = ��xi� yi� zi��i = 0� � � � � n� be the point representation of a skeleton branch, where �xi� yi� zi�
are the global Cartesian coordinates of the centroid of a voxel pi in L. In order to derive the continuous
structural orientation from L, we first need to construct an m-continuous �m > 1� curve representation
of the branch. This is usually done by constructing x, y and z as three independent m-continuous
functions of a local variable r [24]:

x = x�A� r�� y = y�B� r�� z= z�C� r� (20.5)

where A= �ai�i= 1� � � � �m�, B = �bi�i= 1� � � � �m� and C = �ci�i= 1� � � � �m� are parameters to be
determined through either interpolation or data fitting of the centroidal coordinates of voxels in L.
A common interpolation algorithm for geometric modeling with discrete data is the cubic piecewise
spline interpolant [25]. Although cubic spline interpolation yields a robust curve representation, curve
interpolation is in general not effective for data smoothing, since the inclusion of noise data within the
control points of the interpolant leads to undesirable oscillatory curve behavior. Data fitting procedures,
on the contrary, use the entire set of discrete data to project the trend rather than to simply build a
curve that matches exactly the selected original points. Thus, data fitting is usually adopted when data
smoothing is concerned. There are two basic approaches for curve fitting: fitting with piecewise base
functions, e.g. B-splines [26], and fitting with global base functions, e.g. polynomials defined over the
entire data range.

The classical problem in curve fitting with noisy data is how to define the proper flexibility for the
selected curve function, so that the fitted curve can adequately predict the trend of the original data,
while sufficiently reducing the noise effects. While a piecewise fitting approach controls the curve
flexibility by adjusting the number and locations of ‘knots’ bounding the piecewise base functions, a
global fitting procedure achieves the same result by varying the order of the global base functions.

Curve fitting with piecewise base functions involves lower order base functions and hence yields
better numerical stability in the fitted function. However, the number and locations of ‘knots’ are
difficult to define, unless a complex nonlinear fitting procedure is employed [26]. Global fitting is
relatively simple and leads to a more compact parameter set, although it may suffer from severe
numerical fluctuations when the order of the base functions becomes too high.

In this work, we adopt the classical linear least squares fitting method [24] for modeling the raw
skeleton. The branch functions in Equation (20.5) are rewritten as follows:

x�A� r�=
m
∑

i=1
aiNi�r�� y�B� r�=

m
∑

i=1
biNi�r�� z�C� r�=

m
∑

i=1
ciNi�r� (20.6)

where Ni� i = 0� � � � �m, are polynomial base functions. We use one-dimensional isoparametric finite
element shape functions [27] as the base functions in order to control the numerical fluctuation in
the x, y and z curves [28]. The normalized indices of the skeleton voxels are selected as the local
coordinate r , with 0< r < 1. Thus, the local coordinate of voxel pj in branch L= �p0� p1� � � � � pn� is
r�pj�= j/n.
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5.2 Augmented Merit Functions

With a standard least squares fitting method, the parameter sets A, B and C in Equation (20.6) can be
computed by minimizing the following three merit independent functions:

,1�A�=
n
∑

i=1
�xi−x�A� ri��2

,2�B�=
n
∑

i=1
�yi−y�B� ri��2 (20.7)

,3�C�=
n
∑

i=1
�zi− z�C� ri��2

where n is the total number of voxels in a branch and ri is the local coordinate of voxel pi = p�xi� yi� zi�.
These standard merit functions are best suited for least squares data modeling with dense and evenly
located discrete data. However, nonuniformity in skeleton voxel location and insufficient input data
for a high-order polynomial fitting can lead to artificial fluctuations in the resulting curve. In order to
solve this problem, we expand the above merit functions with additional controlling terms:

,1�A�=Q1�A�+
n
∑

i=1
�xi−x�A� ri��2

,2�B�=Q2�B�+
n
∑

i=1
�yi−y�B� ri��2 (20.8)

,3�C �=Q3�C �+
n
∑

i=1
�zi− z�C� ri��2

Q1�Q2 and Q3 are stabilizing penalty functionals designed to impose smoothness in the fitted curve
and are defined as:

Q1�A�=
∫ 1

0
���

�x�A� r�

�r
�2+��

2x�A� r�

�r2
�2�dr

Q2�B�=
∫ 1

0
���

�y�B� r�

�r
�2+��

2y�B� r�

�r2
�2�dr (20.9)

Q3�C�=
∫ 1

0
���

�z�C� r�

�r
�2+��

2z�C� r�

�r2
�2�dr

where � and  are predefined weight coefficients.
The functionals in Equation (20.9) are analogous to the strain energy of an elastic beam subjected

to tension (the first term in the integral) and bending (the second term). Thus, the smoothing weight �
restricts large stretches in the fitted curve, while  restricts excessive bending deformation. The larger
the smoothing weights, the ‘stiffer’ the fitted curve will become (see Figure 20.9). The selection of
smoothing weights is heuristic and problem dependent. Based on the classical beam theory, we set
= 2�0×�. Therefore, only one independent smoothing weight � needs to be specified.

The saddle points of each merit function–Equation (20.8)–are obtained through first-order
differentiation with respect to the parameter sets A, B and C, respectively. For example, for the solution
of parameters A, the condition �,1�A�/�ai = 0 yields the set of linear algebraic equations

tijaj = fi for i= 1� � � � �m and j = 1� � � � �m (20.10)
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Figure 20.9 Polynomial curves fitted with various smoothing weights.

where coefficients tij and fi are given by:

tij =
n
∑

k=1
Ni�rk�Nj�rk�+

∫ 1

0
��
�Ni�r�

�r

�Nj�r�

�r
+�

2Ni�r�

�r2
�2Nj�r�

�r2
�dr

fi =
n
∑

k=1
xkNi�rk� (20.11)

The linear system given above can be solved with a standard Gaussian elimination procedure [29].
Similarly, we compute the parameter sets B and C by solving respectively the linear systems obtained
from �,2�B�/�bi = 0 and �,3�C�/�ci = 0. As shown in Figure 20.10, our global data modeling

Figure 20.10 Superimposed smoothed skeletons for the object in Figure 20.7 obtained from an image
with random noise (dashed black curve) and an image without noise (thick gray curve).
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procedure produces a smooth and stable curve representation of the discrete skeleton and effectively
corrects local distortions due to image noise.

6. Results

We present the skeleton modeling results for two typical examples of trabecular biological tissue.
Shown in Figure 20.11(a) and Figure 20.12(a) are the 3D binary images of trabeculated myocardial
tissue in an HH21 chick embryonic heart, and trabecular bone tissue sampled from the human iliac crest,
respectively. Figures 20.11(b) and 20.12(b) show the segmented and filtered discrete curve skeletons
for the trabeculated myocardium and the trabecular bone. The relevant topological and geometrical

Figure 20.11 Trabeculated myocardium specimen in an HH stage 21 chick embryo. (a) 3D binary
image; and (b) computed raw curve skeleton (point representation).
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Figure 20.12 Trabecular bone specimen from a human iliac crest. (a) 3D binary image; and
(b) computed raw curve skeleton (point representation).

properties of the two skeletons are given in Table 20.1. The smoothing weight � for the data modeling
of a branch is determined with the following heuristic formula:

�=
{

�10−4×m�/n trabeculated myocardium

�10−3×m�/n trabecular bone
(20.12)

where m is the order of polynomial curve function and n is the total number of skeleton voxels
in a branch. The smoothed polynomial curve representations of the discrete skeletons are shown in
Figure 20.13(a) and Figure 20.13(b).
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Table 20.1 Topological and geometrical properties of skeletons before and after filtering.

Specimen 1 Specimen 2

# skeleton voxels 3895 5000
# branches before filtering 387 831
# junctions before filtering 235 525
# tips before filtering 61 47
average branch length 63�6microns 353�5microns
average branch thickness 34�2microns 208�4microns
# type-1 noise branches removed 6 17
# type-2 noise branches truncated 5 6
# voxels deleted in filtering 86 112

Specimen 1: Trabeculated myocardium in an HH21 chick embryo (Figure 20.11(a)) Image
size: x×y× z= 220×220×9 voxels Voxel resolution: 3�3×3�3 microns in
the xy plane, 18 microns along z

Specimen 2: Trabecular bone tissue from human iliac crest (Figure 20.12(a)) Image size:
x× y× z= 77×77×77 voxels Voxel resolution: x× y× z= 50×50×50
microns

After the high-order continuous curve function of the skeleton is obtained, we simply evaluate the
structural orientation - at any location on the skeleton by taking the first derivative of this function
relative to the local coordinate r:

v�r�=

(
�x

�r
�
�y

�r
�
�y

�r

)

√
(
�x

�r

)2

+
(
�y

�r

)2

+
(
�z

�r

)2
(20.13)

Figure 20.13 (a) Smoothed polynomial representation of the skeleton shown in Figure 20.11; and
(b) structural orientation in the region indicated by dashed lines in (a).
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Figure 20.13 (continued)

In order to transfer the structural orientation determined on the skeleton to non-skeleton voxels, the
algorithm performs a uniform skeleton dilation, consisting of a 26-scan over the original object set
with all skeleton voxels as the initial scanning front, and recursively copies the structural orientation
from the visited voxels to the unvisited voxels (orientation labeling). A simple averaging operation is
performed when an unvisited voxel p is reached by multiple visited black voxels in N 26

e �p�.
The vector plots in Figures 20.13(b) and 20.14(b) show respectively the structural orientations of

trabeculated myocardium and trabecular bone computed through skeleton dilation.

Figure 20.14 (a) Smoothed polynomial representation of the skeleton shown in Figure 20.12; and
(b) structural orientation in the region indicated by dashed lines in (a).
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Figure 20.14 (continued)

Figure 20.15 Topological segmentation of the object shown in Figure 20.7.

Furthermore, assuming that each skeletal branch can be identified with a unique integer, we can also
propagate this label to the original object set through skeleton dilation (branch labeling). Thus, branch
formation and labeling of the skeleton can be effectively used to topologically segment the original
object, as illustrated in Figure 20.15 for the object shown in Figure 20.7.

7. Discussion

Results indicate that the skeleton refining procedures described in the present chapter effectively reduce
noise effects in terms of spurious branches and geometrical distortions. In the biomechanical modeling
of trabecular tissues, these procedures allow the extraction of crucial topological and geometrical
properties from 3D digital images of trabeculated tissues.
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In the process of performing topological segmentation of the raw skeleton, we identify and eliminate
thick junctions with a new two-phase junction classification procedure. The proposed approach
associates a core voxel to each thick junction based on the highest f 26b

v value. If, however, all
voxel candidates have the same number of 26-adjacent skeleton neighbors, additional geometry-based
conditions are required to determine an optimal junction [20].

In order to filter out noise branches/segments, we introduce a thickness-based branch-filtering
algorithm, which does not require the definition of critical geometrical values. Results indicate that
this filtering procedure can effectively detect and correct noise branches.

The proposed least squares fitting procedure incorporating global smoothing constraints yields a
smooth polynomial curve for each skeletal branch built on the discrete centroidal coordinates. The
procedure effectively controls numerical fluctuations induced by data nonuniformity and sparsity.
Finally, we adopt a uniform skeleton dilation approach to assign the computed structural orientation
from the skeleton to all non-skeletal voxels.

The complete skeleton modeling and dilation procedure is applicable to other problems in
biomechanics and in image processing and intelligent recognition. For example, by labeling each object
voxel with a unique branch index, we can divide the original image into separate domains based on
the image topology. In biomechanical applications, this topological segmentation allows us to isolate
and investigate a specific trabecula, or to filter out small trabecular columns in order to simplify the
computational modeling of trabeculated tissues.
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This chapter shows the analysis and design of feed-forward neural networks and support vector

machines using the coordinate-free system of Clifford or geometric algebra. It is shown that real-,

complex- and quaternion-valued neural networks are simply particular cases of geometric algebra

multidimensional neural networks. We design kernels for Support Multivector Machines (SMVMs)

which involve the Clifford product. The conformal neuron is used for clustering data; this idea is

very useful for alleviating the complexity and computational demand in classification problems. In

neural computing, the preprocessing is of foremost importance, that is why we introduce a novel

method of geometric preprocessing utilizing hypercomplex or Clifford moments. This method is applied

together with geometric MLPs for tasks of 2D pattern classification. The experimental part illustrates

the potential of geometric neural networks for a variety of real applications using multidimensional

representations.

1. Introduction

The literature on neurocomputing shows that there are basically two mathematical systems used
in neural computing: tensor algebra [1,2] and matrix algebra [3,4]. In contrast, in this chapter we
choose the coordinate-free system of Clifford, or geometric, algebra for the analysis and design
of Clifford-valued feed-forward neural networks and Support Multivector Machines (SMVMs). The
chapter shows that real-, complex- and quaternion-valued neural networks are merely particular cases
of geometric algebra multidimensional neural networks andthat some of them can also be generated
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© 2005 John Wiley & Sons, Ltd



412 Clifford-valued NNs in Pattern Classification

using support multivector machines. In particular, the generation of RBF networks in geometric algebra
is easier using the SMVM, as it allows us to find the optimal parameters automatically. In this chapter
we design kernels involving the Clifford product and we show the use of the conformal neuron as
preliminary data clustering. We believe that the use of SVMs in the geometric algebra framework
expands their sphere of applicability for multidimensional learning.

The chapter also introduces a novel method for geometric preprocessing using generalized
hypercomplex moments. The experimental part illustrates the potential of geometric neural networks
for a variety of real applications using multidimensional representations. The organization of this
chapter is as follows: Section 2 outlines geometric algebra. Section 3 reviews the computing principles
of feed-forward neural networks, underlining their most important characteristics. Section 4 deals with
the extension of the Multi-Layer Perceptron (MLP) to complex and quaternionic MLPs. Section 5
presents the generalization of feed-forward neural networks in the geometric algebra system. Section 6
describes the generalized learning rule across different geometric algebras and explains the training of
geometric neural networks using genetic algorithms. Section 7 introduces support multivector machines
and it explains the design of kernels involving the Clifford product, as well as the role of the conformal
neuron. Section 8 introduces hypercomplex moments as a preprocessing method useful for pattern
classification. Section 9 presents and compares the Clifford MLP and the real-valued MLP; interesting
pattern classification problems are solved using SMVMs. The last section is dedicated to conclusions.

2. Geometric Algebra: An Outline

The algebras of Clifford and Grassmann are well known to pure mathematicians, but were long ago
abandoned by physicists in favor of the vector algebra of Gibbs, which is indeed what is commonly
used today in most areas of physics. The approach to Clifford algebra we adopt here was pioneered in
the 1960s by David Hestenes [5] who has, since then, worked on developing his version of Clifford
algebra–which will be referred to as geometric algebra–into a unifying language for mathematics and
physics [6–8].

2.1 Basic Definitions

Let Gn denote the geometric algebra of n dimensions–this is a graded linear space. As well as
vector addition and scalar multiplication, we have a noncommutative product which is associative and
distributive over addition–this is the geometric or Clifford product. A further distinguishing feature of
the algebra is that any vector squares to give a scalar. The geometric product of two vectors a and b

is written ab and can be expressed as a sum of its symmetric and antisymmetric parts:

ab= a ·b+a∧b (21.1)

where the inner product a ·b and the outer product a∧b are defined by:

a ·b= 1

2
�ab+ba� (21.2)

a∧b= 1

2
�ab−ba� (21.3)

The inner product of two vectors is the standard scalar or dot product and produces a scalar. The
outer, or wedge product of two vectors is a new quantity which we call a bivector. We think of a
bivector as an oriented area in the plane containing a and b, formed by sweeping a along b–see
Figure 21.1(a).
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a

b

B = a ∧ b

T = a ∧b ∧ c

a

b

c

(a) (b)

Figure 21.1 (a) The directed area, or bivector, a∧b; (b) the oriented volume, or trivector, a∧b∧c.

Thus, a∧b will have the opposite orientation, making the wedge product anti-commutative as given
in Equation (21.3). The outer product is immediately generalizable to higher dimensions–for example,
�a∧ b�∧ c, a trivector, is interpreted as the oriented volume formed by sweeping the area �a∧ b�

along vector c see Figure 21.1(b). The outer product of k vectors is a k-vector or k-blade, and such
a quantity is said to have grade k A multivector (a linear combination of objects of different types)
is homogeneous if it contains terms of only a single grade. Geometric algebra provides a means of
manipulating multivectors, which allows us to keep track of different graded objects simultaneously –
much as one does with complex number operations.

In a space of three dimensions we can construct a trivector a∧b∧ c, but no 4-vectors exist since
there is no possibility of sweeping the volume element a∧b∧ c over a fourth dimension. The highest
grade element in a space is called the pseudoscalar. The unit pseudoscalar is denoted by I and is crucial
when discussing duality.

2.2 The Geometric Algebra of nD Space

In an n-dimensional space, we can introduce an orthonormal basis of vectors ��i�� i= 1� � � � � n, such
that �i ·�j = �ij . This leads to a basis for the entire algebra:

1� ��i��
{

�i∧�j
}

�
{

�i∧�j ∧�k
}

� � � � ��i∧�j ∧ � � � ∧�n (21.4)

Note that the basis vectors are not represented by bold symbols. Any multivector can be expressed
in terms of this basis. In this chapter we will specify a geometric algebra Gn of the n-dimensional
space by Gp�q�r , where p�q and r stand for the number of basis vectors which square to 1, −1 and 0
respectively, and fulfill n = p+ q+ r . Its even subalgebra will be denoted by G+p�q�r . For example,
G+0�2�0 has the basis:

�1��1��2��1∧�2� (21.5)

where �2
1 =−1��2

2 =−1. This means p= 0� q = 2 and r = 0. Thus, the dimension of this geometric
algebra is n= p+q+ r = 2.

In the nD space, there are multivectors of grade 0 (scalars), grade 1 (vectors), grade 2 (bivectors),
grade 3 (trivectors), etc… up to grade n. Any two such multivectors can be multiplied using the
geometric product. Consider two multivectors Ar and Bs of grades r and s respectively. The geometric
product of Ar and Bs can be written as:

ArBs = #AB$r+s+#AB$r+s−2+· · ·+#AB$�r−s� (21.6)
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where #M$t is used to denote the t-grade part of multivector M, e.g. consider the geometric product
of two vectors ab= #ab$0+#ab$2 = a ·b+a∧b.

2.3 The Geometric Algebra of 3D Space

The basis for the geometric algebra G3�0�0 of the 3D space has 23 = 8 elements and is given by:

1
︸︷︷︸

scalar

��1��2��3�
︸ ︷︷ ︸

vectors

� ��1�2��2�3��3�1�
︸ ︷︷ ︸

bivectors

� ��1�2�3�≡ I
︸ ︷︷ ︸

trivector

(21.7)

Since the basis vectors are orthogonal, i.e. �1�2 = �1 ·�2+�1�2 = �1∧�2, we write simply �1�2.
It can easily be verified that the trivector or pseudoscalar �1�2�3 squares to 1 and commutes with all

multivectors in the 3D space. We therefore give it the symbol i; noting that this is not the uninterpreted
commutative scalar imaginary j used in quantum mechanics and engineering.

2.4 Rotors

Multiplication of the three basis vectors �1��2 and �3 by I results in the three basis bivectors
�1�2 = I�3��2�3 = I�1 and �3�1 = I�2. These simple bivectors rotate vectors in their own plane by
90�, e.g. ��1�2��2 = �1� ��2�3��2 = −�3, etc. Identifying the i� j�k of the quaternion algebra with
I�1�−I�2� I�3, the famous Hamilton relations i2 = j2 = k2 = ijk = −1 can be recovered. Since the
i� j�k are bivectors, it comes as no surprise that they represent 90� rotations in orthogonal directions
and provide a well-suited system for the representation of general 3D rotations, see Figure 21.2.

In geometric algebra, a rotor (short name for rotator), R, is an even-grade element of the algebra
which satisfies RR̃= 1, where R̃ stands for the conjugate of R. If A= �a0� a1� a2� a3�∈G3�0�0 represents
a unit quaternion, then the rotor which performs the same rotation is simply given by:

R= a0
︸︷︷︸

scalar

+a1 �I�1�−a2 �I�2�+a3 �I�3�
︸ ︷︷ ︸

bivectors

= a0+a1�2�3+a2�3�1+a3�1�2 = a0+a (21.8)

a
a⊥

a||

n

–a⊥

a′ = nan–1

m

b = ma′m–1
 = m(nan–1)m–1

   = mna(mn)–1
 = RaR

∼

Figure 21.2 The rotor in the 3D space formed by a pair of reflections.
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The quaternion algebra is therefore seen to be a subset of the geometric algebra of 3D space. The
conjugate of a rotor is given by:

R̃= a0−a1�2�3+a2�3�1+a3�1�2 = a0−a (21.9)

A rotation can be performed by a pair of reflections, see Figure 21.2. It can easily be shown that the
result of reflecting a vector a in the plane perpendicular to a unit vector n is a⊥−a�� = a′ =−nan−1,
where a⊥ and a�� respectively denote projections of a perpendicular and parallel to n. Thus, a reflection
of a in the plane perpendicular to n, followed by a reflection in the plane perpendicular to another unit
vector m results in a new vector b=−m�−nan−1�m−1 = �mn�a�mn�−1 = RaR̃. Using the geometric
product we can show that the rotor R of Equation (21.8) is a multivector consisting of both a scalar
part and a bivector part, i.e. R=mn =m ·n+m∧n. These components correspond to the scalar and
vector parts of an equivalent unit quaternion in G3�0�0. Considering the scalar and the bivector parts,
we can further write the Euler representation of a rotor as follows:

R= en
	

2 = cos
	

2
+ sin

	

2
(21.10)

where the rotation axis n = n1�2�3 + n2�3�1 + n3�1�2 is spanned by the bivector basis. The
transformation in terms of a rotor a %→ RaR̃= b is a very general way of handling rotations; it works
for multivectors of any grade and in spaces of any dimension, in contrast to quaternion calculus. Rotors
combine in a straightforward manner, i.e. a rotor R1 followed by a rotor R2 is equivalent to a total
rotor R, where R= R1R2.

2.5 Conformal Geometric Algebra

In order to explain the conformal geometric algebra we introduce the Minkowski plane, ℜ1�1, which
has an orthonormal basis

{

e+� e_
}

with the property e2+ =+1� e2_ =−1. Using this basis two extra null
bases can be generated e� =

(

e++ e_
)

and e0 = 1
2

(

e++ e_
)

, so that e2� = e20 = 0 and e0 · e� = 1.
Given the Euclidean space ℜn, the conformal space is obtained via ℜn+1�1 =ℜn⊗ℜ1�1. Its associated

conformal geometric algebra is Gn+1�1. Any vector x ∈ ℜn can be embedded in the conformal space
using the following mapping:

x = F�x�=−�x− e+�e��x− e+�

= x+ 1

2
x2e�+ e0 (21.11)

so that x2 = 0. A null vector, like x, whose component e0 is unity, is called a normalized vector. Given
the normalized null vectors x and y, we can compute a Euclidean metric:

x · y=−1

2
�x−y�2 (21.12)

which corresponds to the length of a cord joining two points lying on the null cone, see [8] for more
details.

2.5.1 Lines, Planes and Spheres of the 3D Euclidean Space

Lines, planes and hyperplanes are represented in the conformal space by wedging points of the
conformal space with the point at infinity:

l = e�∧x1∧x2

�= e�∧x1∧x2∧x3 (21.13)

hn = e�∧x1∧x2∧x3∧ � � � ∧xn
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The equation of a hypersphere can be formulated considering the hypersphere centered at point x ∈ ℜn

with radius �2 = �x−p�2, here p is any point lying on the sphere. However, we can express this using
Equation (21.12) in terms of homogeneous points:

x ·p=−1

2
�2 (21.14)

Using x · e= 1, we can simplify this equation to x · s= 0, where

s= p− 1

2
�2e� = p+ 1

2

(

p2−�2
)

e�+ e0 (21.15)

The vector s has the properties s2 = �2 and e · s = −1. Note that if � = 0, Equation (21.15) becomes
the equation of a point (Equation 21.10). The same result can be obtained by first computing the
volume of

s̃= e�∧x1∧x2∧x3 � � � ∧xn+1 (21.16)

and then taking the dual of the latter with the pseudoscalar I = �1�2�3e1e2

s= s̃ · I (21.17)

Let us give as illustration the computation of a plane and a sphere of ℜ3, given four points in general
positions:

�= e�∧x1∧x2∧x3

s= s̃ · I = �e�∧x1∧x2∧x3∧x4� · I = p− 1

2
�2e� (21.18)

3. Real-valued Neural Networks

The approximation of nonlinear mappings using neural networks is useful in various aspects of signal
processing, such as in pattern classification, prediction, system modeling and identification. This section
reviews the fundamentals of standard real-valued feed-forward architectures.

Cybenko [4] used, for the approximation of a continuous function, g�x�, the superposition of weighted
functions:

g�x�=
N
∑

j=1
wj�j

(

wT
j x+	j

)

(21.19)

where ��·� is a continuous discriminatory function like a sigmoid, wj ∈ ℜ and x� 	j�wj ∈ ℜn. Finite
sums of the form of Equation (21.19) are dense in C0�In�, if �gk �x�− yk �x� � < � for a given � > 0
and all x ∈ �0�1�n. This is called the density theorem and is a fundamental concept in approximation
theory and nonlinear system modeling [4,9].

A structure with k outputs yk, having several layers using logistic functions, is known as aMultilayer

Perceptron (MLP) [10]. The output of any neuron of a hidden layer or of the output layer can be
represented in a similar way,

oj = fj

(
Ni∑

i=1
wjixji+	j

)

yk = fk

(
Nj
∑

j=1
wkjokj+	k

)

(21.20)
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where fj�·� is logistic and fk�·� is logistic or linear. Linear functions at the outputs are often used for
pattern classification. In some tasks of pattern classification, a hidden layer is necessary, whereas in
some tasks of automatic control, two hidden layers may be required. Hornik [9] showed that standard
multilayer feed-forward networks are able to accurately approximate any measurable function to a
desired degree. Thus, they can be seen as universal approximators. In the case of a training failure, we
should attribute any error to inadequate learning, an incorrect number of hidden neurons, or a poorly
defined deterministic relationship between the input and output patterns.

Poggio and Girosi [11] developed the Radial Basis Function (RBF) network, which consists of a
superposition of weighted Gaussian functions,

yj�x�=
∑

wjiGi �Di �x− ti�� (21.21)

where yj is the j-output, wij ∈ ℜ�Gi is a Gaussian function, Di an N ×N dilatation diagonal matrix,
and x� ti ∈ ℜn. The vector ti is a translation vector. This architecture is supported by the regularization
theory.

4. Complex MLP and Quaternionic MLP

An MLP is defined to be in the complex domain when its weights, activation function and outputs
are complex-valued. The selection of the activation function is not a trivial matter. For example, the
extension of the sigmoid function from ℜ to C,

f �z�= 1

1+ e−z (21.22)

where z ∈ C, is not allowed, because this function is analytic and unbounded [12]; this is also true for
the functions tanh(z) and e−z

2
. We believe these kinds of activation function exhibit problems with

convergence in training due to their singularities. The necessary conditions that a complex activation
f �z� = a�x� y�+ ib �x� y� has to fulfill are: f �z� must be nonlinear in x and y, the partial derivatives
ax� ay� bx and by must exist, axby �= bxay, and f �z� must not be entire. Accordingly, Georgiou and
Koutsougeras [12] proposed the formulation:

f �z�= z

c+ 1

r
�z�

(21.23)

where c� r ∈ ℜ+. These authors thus extended the traditional real-valued back-propagation learning
rule to the complex-valued rule of the Complex Multilayer Perceptron (CMLP).

Arena et al. [13] introduced the Quaternionic Multilayer Perceptron (QMLP), which is an extension
of the CMLP. The weights, activation functions and outputs of this net are represented in terms of
quaternions [14]. Arena et al. chose the following nonanalytic bounded function:

f �q�= f �q0+q1i+q2j+q3k�

=
(

1

1+ e−q0

)

+
(

1

1+ e−q1

)

i+
(

1

1+ e−q2

)

j+
(

1

1+ e−q3

)

k (21.24)

where f �·� is now the function for quaternions. These authors proved that the superposition of such
functions accurately approximates any continuous quaternionic function defined in the unit polydisc
of Cn. The extension of the training rule to the CMLP was demonstrated in [13].



418 Clifford-valued NNs in Pattern Classification

5. Clifford-valued Feed-forward Neural Networks

Real, complex and quaternionic neural networks can be further generalized within the geometric algebra
framework, in which the weights, the activation functions and the outputs are now represented using
multivectors. For the real-valued neural networks discussed in Section 3, the vectors are multiplied with
the weights, using the scalar product. For geometric neural networks, the scalar product is replaced by
the geometric product.

5.1 The Activation Function

The activation function of Equation (21.23), used for the CMLP, was extended by Pearson and Bisset
[15] for a type of Clifford MLP by applying different Clifford algebras, including quaternion algebra.
We propose here an activation function that will affect each multivector basis element. This function
was introduced independently by the authors [16] and is in fact a generalization of the function of
Arena et al. [13]. The function for an n-dimensional multivector m is given by:

f �m�= f �m0+mi�i+mj�j+mk�k+· · ·+mij�i∧�j+· · ·+

+mijk�i∧�j ∧�k+· · ·+mn�1∧�2∧· · ·∧�n�

= �m0�+f �mi��i+f
(

mj

)

�j+f �mk��k+· · ·+f
(

mij

)

�i∧�j+· · ·+

+f
(

mijk

)

�i∧�j ∧�k+· · ·+f �mn��1∧�2∧· · ·∧�n (21.25)

where f �·� is written in bold to distinguish it from the notation used for a single-argument function
f�·�. The values of f�·� can be of the sigmoid or Gaussian type.

5.2 The Geometric Neuron

The McCulloch–Pitts neuron uses the scalar product of the input vector and its weight vector [10]. The
extension of this model to the geometric neuron requires the substitution of the scalar product with the
Clifford or geometric product, i.e.

wTx+	 ⇒ wx+	 = w ·x+w∧x+	 (21.26)

Figure 21.3 shows in detail the McCulloch–Pitts neuron and the geometric neuron. This figure also
depicts how the input pattern is formatted in a specific geometric algebra. The geometric neuron
outputs a richer kind of pattern. We can illustrate this with an example in G3�0�0

o = f �wx+	�

= f �s0+ s1�1+ s2�2+ s3�3+ s4�1�2+ s5�1�3+ s6�2�3+ s7�1�2�3�

= f �s0�+ f �s1��1+ f �s2��2+ f �s3��3+ f �s4��1�2+· · ·+ (21.27)

+ f �s5��1�3+ f �s6��2�3+ f �s7��1�2�3�

where f is the activation function defined in Equation (21.25), and si ∈ℜ. If we use the McCulloch–Pitts
neuron in the real-valued neural network, the output is simply the scalar given by:

o = f

(
N
∑

i

wixi+	
)

(21.28)
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Figure 21.3 (a) McCulloch–Pitts neuron; and (b) geometric neuron.

The geometric neuron outputs a signal with more geometric information:

o= f �wx+	�= f �w ·x+w∧x+	� (21.29)

It has both a scalar product like the McCulloch–Pitts neuron,

f �w ·x+	�= f�s0�≡
(

N
∑

i

wixi+	
)

(21.30)

and also the outer product given by:

f �w∧x+	−	�= f�s1��1+f�s2��2+f�s3��3+f�s4��1�2+· · ·+

+f�s5��1�3+f�s6��2�3+f�s7��1�2�3� (21.31)

Note that the outer product gives the scalar cross-products between the individual components of the
vector, which are nothing more than the multivector components of points or lines (vectors), planes
(bivectors) and volumes (trivectors). This characteristic can be used for the implementation of geometric
preprocessing in the extended geometric neural network. To a certain extent, this kind of neural network
resembles the higher order neural networks of [17]. However, an extended geometric neural network
uses not only a scalar product of higher order, but also all the necessary scalar cross-products for
carrying out a geometric cross-correlation.

In conclusion, a geometric neuron can be seen as a kind of geometric correlation operator, which,
in contrast to the McCulloch–Pitts neuron, offers not only points but higher grade multivectors such
as planes, volumes, � � � , hypervolumes for interpolation.

5.3 Feed-forward Clifford-valued Neural Networks

Figure 21.4 depicts standard neural network structures for function approximation in the geometric
algebra framework. Here, the inner vector product has been extended to the geometric product and the
activation functions are according to Equation (21.25).
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Figure 21.4 Geometric network structures for approximation. (a) Cybenko’s; (b) GRBF network;
(c) GMLPp�q�r .

Equation (21.19) of Cybenko’s model in geometric algebra is:

y�x�=
N
∑

j=1
wjf �wj ·x+wj ∧x+	j� (21.32)

The extension of the MLP is straightforward. The equations using the geometric product for the outputs
of hidden and output layers are given by:

oj = f

(
Ni∑

i=1
wji ·xji+wji∧xji+	j

)

yk = fk

(
Nj
∑

j=1
wkj ·okj+wkj ∧okj+	k

)

(21.33)

In radial basis function networks, the dilatation operation, given by the diagonal matrix Di, can be
implemented by means of the geometric product with a dilation Di = e�

iī
2 [7], i.e.,

Di �x− ti�⇒ Di �x− ti� D̃i (21.34)

yk�x�=
N
∑

j=1
wkjGj

(

Dj

(

xji− tj
)

D̃j

)

(21.35)

Note that in the case of the geometric RBF we are also using an activation function according to
Equation (21.25).
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6. Learning Rule

This section demonstrates the multidimensional generalization of the gradient descent learning rule in
geometric algebra. This rule can be used for training the Geometric MLP (GMLP) and for tuning the
weights of the Geometric RBF (GRBF). Previous learning rules for the real-valued MLP, complex
MLP [12], and quaternionic MLP [13] are special cases of this extended rule.

6.1 Multidimensional Back-propagation Training Rule

The norm of a multivector x for the learning rule is given by:

�x� = �x�x�
1
2 =

(

∑

A

�x�2A

) 1
2

(21.36)

The geometric neural network with n inputs and m outputs approximates the target mapping function:

yt �
(

Gp�q�r

)n→
(

Gp�q�r

)m
(21.37)

where
(

Gp�q�r

)n
is the n-dimensional module over the geometric algebra Gp�q�r [15]. The error at the

output of the net is measured according to the metric:

E = 1

2

∫

x∈X
�yw−yt�2 (21.38)

where X is some compact subset of the Clifford module
(

Gp�q�r

)n
involving the product topology derived

from Equation (21.36) for the norm, and where yw and yt are the learned and target mapping functions,
respectively. The back-propagation algorithm [10] is a procedure for updating the weights and biases.
This algorithm is a function of the negative derivative of the error function (Equation (21.38)) with
respect to the weights and biases themselves. The computing of this procedure is straightforward, and
here we will only give the main results. The updating equation for the multivector weights of any
hidden j-layer is

wij�t+1�= %

[(
Nk∑

k

�kj⊗wkj

)

�F′
(

netij
)

]

⊗Oi+�wij�t� (21.39)

for any k-output with a nonlinear activation function

wjk�t+1�= %&�ykt− yka��F′
(

netjk
)

'⊗oj+�wjk�t� (21.40)

and for any k-output with a linear activation function

wjk�t+1�= %� ykt− yka�⊗oj+�wjk�t� (21.41)

In the above equations, F is the activation function defined in Equation (21.25), t is the update step, %
and � are the learning rate and the momentum, respectively, ⊗ is the Clifford or geometric product,
� is the scalar product, and �·� is the multivector anti-involution (reversion or conjugation).

In the case of the non-Euclidean x ∈G0�3�0, �·� corresponds to the simple conjugation. Each neuron
now consists of p+q+r units, each for a multivector component. The biases are also multivectors and
are absorbed as usual in the sum of the activation signal, here defined as netij . In the learning rules,
Equations (21.39)–(21.41), the computation of the geometric product and the anti-involution varies
depending on the geometric algebra being used [18]. To illustrate this, the conjugation required in the
learning rule for quaternion algebra is x̄ = x0−x1�1−x2�2−x3�1�2, where x ∈G0�2�0.
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Figure 21.5 Geometric MLP for training using genetic algorithms. The weights are Clifford numbers.

6.2 Geometric Learning Using Genetic Algorithms

This learning method utilizes a standard genetic algorithm (see [19]). All Clifford weights and biases
of the geometric MLP depicted in Figure 21.5 are encoded as a genotype. Note that the weights are
Clifford numbers which have a length of 2n, according to the total dimension n of the Clifford algebra
Gn. The used objective function is

E �w31�w32� � � � �w13�=
1

2

n
∑

i=1
�oi− ôi� (21.42)

where wij stands for the Clifford weights and ôi and oi for the actual and target outputs respectively.
As usual, in each iteration the standard genetic operations (mutation, crossover) are carried out and the
fitness of the population is evaluated. The procedure carries on and on until little progress is noticed.
The qualified genotype guarantees a good performance of the neural net. Interestingly enough, this
procedure takes into account the involved Clifford product.

We trained a geometric MLP using the genetic algorithm for the problem of pattern classification. For
this case, we utilized as preprocessing the hypercomplex moments. As expected, this kind of training
proved not to be trapped in a local minimum. This experiment is discussed in detail in Section 9.

7. Support Vector Machines in the Geometric Algebra Framework

The Support Vector Machine (SVM) approach of Vladimir N. Vapnik [20] applies optimization methods
for learning. Using SVMs we can generate a type of two-layer network and RBF networks, as well as
networks with other kernels. Our idea is to generate neural networks by using SVMs in conjunction with
geometric algebra, and thereby in the neural processing of multivectors. We will call our approach the
Support Multivector Machine (SMVM). We shall briefly review SVMs and then explain the SMVM.

7.1 Support Vector Machines

The SVM maps the input space ℜd into a high-dimensional feature space H , given by # � ℜd⇒ H ,
satisfying a kernel K�x!xi� = #�xi� ·#

(

xj
)

, which fulfills Mercer’s condition [20]. The SVM
constructs an optimal hyperplane in the feature space which divides the data into two clusters.

SVMs build the following mapping:

f�x�= sign

(

∑

supportvectors

yi�iK �xi�x�−b
)

(21.43)
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The coefficients �i in the separable case (and analogously in the nonseparable case), are found by
maximizing the functional based on Lagrange coefficients:

W���=
l
∑

i=1
�i−

1

2

l
∑

i�j

�i�jyiyjK
(

xi�xj
)

(21.44)

subject to the constraints
l∑

i=1
�iyi = 0, where �i ≥ 0� i= 1�2� � � � � l. This functional coincides with the

functional for finding the optimal hyperplane. Examples of SVMs include:

K�x!xi�= ��x ·xi�+1�d �polynomial learning machines� (21.45)

Ky ��x−xi��= exp�−y�x−xi�2� �radial basis function machines� (21.46)

K�x�xi�= S �v �x ·xi�+ c� �two-layer neural networks� (21.47)

7.2 Support Multivector Machines

A Support Multivector Machine (SMVM) maps the multivector input space ℜ2n ofGp�q�r�n= p+q+r�
into a high-dimensional feature space ℜnf

(

nf ≥ 2n
)

# � ℜ2n ⇒ℜnf (21.48)

The SMVM constructs an optimal separating hyperplane in the multivector feature space by using, in
the nonlinear case, the kernels:

Ngraded spaces
∑

m=1
Km

(

xmi�xmj
)

=
Ngraded spaces

∑

m=1
#�xmi� ·#

(

xmj
)

(21.49)

which fulfill Mercer’s conditions. SMVMs for multivectors x� y of a geometric algebra Gp�q�r are
implemented by the multivector mapping:

�y1� y2� � � � � ym�=
Ngraded spaces

∑

m=1
fm �xmi�

=
Ngraded spaces

∑

m=1
sign

(

∑

support vectors

ymi�miK �xmi�xm�−bm

)

(21.50)

where m denotes the grade of the spaces and ym the magnitude of the m-component (m-blade) of the
multivector y. The coefficients �mi in the separable case (and analogously in the nonseparable case),
are found by maximizing the functional based on Lagrange coefficients:

W ��mi �=W

(
Ngraded spaces

∑

m=1

l
∑

i

�mi

)

=

Ngraded spaces
∑

m=1

l
∑

i

�mi−
1

2

Ngraded spaces
∑

m=1

l
∑

i�j

�mi�mjymiymjK
(

xmi� xmj
)

(21.51)

subject to the constraint

Ngraded spaces
∑

m=1

l
∑

i=1
�miymi = 0 (21.52)

where �mi ≥ 0, for m = 1� � � � �N graded spaces and i = 1�2� � � � � l. This functional coincides with
the functional for finding the optimal separating hyperplane for the multivector feature space.
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7.3 Generating SMVMs with Different Kernels

The application of the kernel of Equation (21.45) results in a multivector classifier based on a
multivector polynomial of degree p. An SMVM with kernels according to Equation (21.46), constitutes
a Gaussian radial basis function multivector classifier. The reader can see that by using the SMVM
approach we can straightforwardly generate multivector RBF networks, avoiding the complications
of training that are encountered in the use of classical RBF networks. The number of the centers
�Ns = m×2n�m2n-dimensional multivectors), the centers themselves �si� i = 1� � � � �Ns�, the weights
��i� i = 1� � � � �Ns� and the threshold b are all produced automatically by the SMVM training. This
is an important contribution to the field, because in earlier work [16,21], we simply used extensions
of the real-valued networks’ RBFs for the so-called geometric RBF networks with classical training
methods. We believe that the use of RBF–SMVM presents a promising neurocomputing tool for various
applications of data coded in geometric algebra.

In the case of two-layer networks (Equation (21.47)), the first layer is composed of Ns1 sets of
weights, with each set consisting of the dimension of the data d = m× 2n and m2n-dimensional
multivectors, whereas the second layer is composed of Ns2 weights (the �i). In this way, according
to Cybenko’s theorem [4], an evaluation simply requires the consideration of the weighted sum of
sigmoid functions, evaluated on inner products of test data with the multivector support vectors.
Using our approach, we can see that the architecture (Ns2 weights) is found automatically by the
SMVM.

7.4 Design of Kernels Involving the Clifford Geometric Product

for Nonlinear Support Multivector Machines

The previous subsection shows that the kernels use multivectors as arguments. These kernels treat each
of the multivectors of an n-dimensional geometric algebra simply as vectors of dimension 2n. This
section presents the design of kernels which utilize the Clifford geometric product of multivectors.
For that purpose we will use nonlinear mappings which map multivectors into a higher dimensional
geometric algebra. Bear in mind that in any geometric algebra Gn we can use an appropriate involution
equivalent to the generalized inner product of the Hilbert space, consequently, the entries of the
Gramm matrix are scalars and this matrix will be positive definite. For the case of complex numbers
or quaternions, which can be found in Euclidean geometric algebras, the involution is given by
the Clifford product of a multivector with the complex conjugate of a second multivector, i.e. for
x′mi =#�xmi��x

′
mj =#�xmj� ∈G0�2�0, the involution is x′mix̃

′
mj .

Using a combination of linear mappings denoted by �i�·� we can design a new nonlinear mapping
#�·� which will transform the input multivector into a new one involving high-order products of the
components of the original multivector. Let us consider a vector x ∈ ℜn, first we embed it in a higher
dimensional linear space ℜ2n , which has its associated geometric algebra Gn, then the vector will be
transformed into a multivector by means of #�·�. This process has mapped the n-dimensional vector
into a 2n-dimensional linear space. In its associated geometric algebra the mapped multivectors are
#�xmi� = x′mi�#�xmj� = x′mj ∈ Gn. Now, in Gn we can find an equivalent to the generalized inner
product of the Hilbert space by considering the element of lowest grade of the geometric product, thus
our kernel will be computed as follows:

K�xmi�xmj�=
〈

#�xmi�#�xmj�
〉

0
(21.53)

=#�xmi� ·#�xmj�= x′mi ·x′mj

As a result we can easily compute the Gramm matrix, which requires scalar entries. Note that this
kernel fulfills Mercer’s condition, because the operation x′mi ·x′mj corresponds to the basic kernel which
uses simply the inner product.
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#�·� is computed by computing Clifford geometric products between different linear mappings �i

as follows:

#�·�= ��·�1��·�2� � � ��·�p =
m
∏

i

��·�i (21.54)

where
∏m

i stands for successive Clifford products. Depending on the kind of �i and the grade of p we
can get high nonlinear mappings. We present now two examples. Given x= x�1+ y�2, we select the
2D Euclidean geometric algebra G2�0�0 and compute #�·� and the kernel as follows:

�1�x�= x�1+y�1�2

�2�x�= x�1+y�2

#�x�= �1�x��2�x� (21.55)

= x2−y2�1−xy�2−xy�1�2

K�xi�xj�=
〈

#�xi�#�xj�
〉

0

Note that #�·� maps nonlinearly a 2D vector to a 4D multivector.
Given x = x�1+ y�2, we select the 3D Euclidean geometric algebra G3�0�0 and compute #�·� and

the kernel as follows:

�1�x�= x�1+y�3

�2�x�= x2−y2�1−xy�2−xy�1�2

#�x�= �1�x��2�x� (21.56)

=−xy2+x3�1−x2y�2−x2y�3−xy2�2�3+· · ·

K�xi�xj�=
〈

#�xi�#�xj�
〉

0

Note that #�·� maps nonlinearly a 2D vector to an 8D multivector. These examples are illustrated in
the next section.

7.5 Design of Kernels Involving the Conformal Neuron

In subsection 2.5, we outlined the conformal geometry Gn+1�1, which includes spheres. This is a
potential geometric entity which can be used for encapsulating clusters. In this section, we present a
new way to compress data in order to facilitate the learning of support multivector machines.

First we use a simple self-organizing network for the preprocessing of the clusters. Each one of
them is modeled in the conformal space using spheres, see Figure 21.6(c). Note the interesting point:
our data have been reduced to a small bunch of spheres, which in conformal geometry are represented
simply as multivectors s ∈ Gn+1�1 of (n+ 2)th dimension. Thereafter we supply these spheres to an
SMVM for obtaining the optimal hyperplane, see Figure 21.6(d). In the case of nonlinear separable
problems, we can apply the SMVM with Gaussian kernels.

You can see now the difference between the McCulloch–Pitts neuron in Figure 21.6(a) and the
conformal neuron in Figure 21.6(e), the conformal neuron gets as input geometric entities of the
conformal geometric algebra. The separating hyperplane in Figure 21.6(d) denoted by w (one element
of the version space) can be found by an SMVM. However, we cannot guarantee that the point
Figure 21.6(c) of the version space is a Tshebysheff or Bayes point. The design of an SMVM
which will yield a hyperplane which approaches the Bayes point is one of our current research
concerns.
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Figure 21.6 (a) A linear separable case; (b) the perceptron separates nonoptimally the two classes;
(c) preprocessing by clustering clouds of points using spheres; (d) a conformal neuron separates on a
hypersphere the two classes of multivector (the spheres of (c)); (f) the conformal neuron with 2+n
dimensional input. The separating hyperplane used by this neuron corresponds to the circle on the
sphere in(d).

8. Clifford Moments for 2D Pattern Classification

In this section we give a brief introduction to Clifford moments.
The real moments of 2D patterns are computed using the well-known expression:

mij =
�
∫

−�

�
∫

−�

xiyjf�x� y�dxdy (21.57)

where i� j = 0�1�2� � � � and their central moments:

�ij =
�
∫

−�

�
∫

−�

�x−x�i�y−y�jf�x� y�dxdy (21.58)

where x = m01

m00

and y = m01

m00

. Note that the central moments are invariant under a Euclidean

transformation. Similarly, the complex moments are given by:

Cij =
�
∫

−�

�
∫

−�

�x+ iy�i�x− iy�jf�x� y�dxdy (21.59)



Clifford Moments for 2D Pattern Classification 427

which can also be written in terms of z= x+ iy as follows:

Cij =
�
∫

−�

�
∫

−�

�z�i�z�jf�x� y�dxdy (21.60)

In the Clifford algebra we can generalize the standard moments to the hypercomplex moments as
follows:

Clij =
�
∫

−�

�
∫

−�

�x�i�x�if�x� y�dxdy (21.61)

where x ∈Gp�q�r and i� j = 0�1�2� � � � Note that we are still using the same 2D manifold f�x� y� but
weighted with powers of multivectors x. This kind of generalization is completely new. We claim that
it is very limited in using simply the norm of invariants [22]; conversely, using the Clifford moments
defined by Equation (21.61) we can have a much richer characterization of a 2D pattern. The next
section illustrates the power of the use of Clifford moments.

In order to illustrate the computing of the Clifford moments as a method of preprocessing data,
we take 2D regular shapes, see Figure 21.7. These were obtained by computer simulation. Note
that it will not be possible to use real-valued moments for describing such shapes, because the
real moments capture poorly the shape changes under different views of the objects. Only using
quaternion-valued moments can we observe phase changes in the curves of the moments (see
Figure 21.8).

As an illustration using different views of the patterns, we compute their moments Cl21Cl31 in the
geometric algebra of the quaternions G2�0�0. These moments are expressed as quaternions and are
depicted in Figure 21.8. This kind of moment captures different symmetries, so there is no need to use
all other moments. As a result, with this kind of preprocessing, we can keep low the input dimension
of the neural network.

(a)

(b)

(c)

(d)

Figure 21.7 Some views of 2D patterns for the classification problem. (a) Rectangle; (b) square;
(c) triangle; (d) circle.
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Figure 21.8 Curves of the quaternionic moments of (a) a rectangle; (b) a square; (c) a triangle; and
(d) a circle.

9. Experimental Analysis

This section presents tests and applications of the Clifford MLP and SMVM. We explore the use of
Gaussian kernels, kernels generated via automorphisms and one example of an SMVM which uses
clustering hyperspheres as preprocessing. In order to show the effectiveness of Clifford moments as a
preprocessing method, we consider a case of 2D shape classification.

9.1 Test of the Clifford valued MLP for the XOR Problem

In this section, the geometric MLPs were trained using the generalized gradient descendent. The power
of using bivectors for learning was confirmed with the test using the XOR function. Figure 21.9(a)
shows that the quaternion-valued geometric nets GMLP0�2�0 and GMLP2�0�0 have a faster convergence
rate than either the MLP or the P-QMLP – the quaternionic multilayer perceptron of Pearson [15],
which uses the activation function given by Equation (21.23).

Figure 21.9(a) shows the MLP with two-and four-dimensional input vectors. An epoch means one
training set comprised of four training pars. Since the MLP(4), working also in 4D, cannot outperform
the GMLPs, it can be claimed that the better performance of the geometric neural network is due not
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Figure 21.9 (a) Learning XOR using the 2-input MLP denoted in the figure as MLP(2), 4-input
MLP, denoted as MLP(4), quaternion-valued geometric nets GMLP0�2�0 and GMLP2�0�0 and P-QMLP;
(b) comparison of the geometric neural network GMLP0�2�0, the 2-input MLP, denoted MLP(2), and
the 4-input MLP, denoted MLP(4).

to the higher dimensional quaternionic inputs, but rather to the algebraic advantages of the geometric
neurons of the net.

Figure 21.9(b) shows the error curves referring to the involved normalized computational time. The
demanding computer resources of the MLP with four-dimensional input vectors (MLP(4)) is almost
similar to the geometric neural network, however, its performance is lower than the geometric network.
The learning performance of the MLP with two inputs (MLP(2)) is still not as good as that of the
geometric neural net GMLP0�2�0.

The reader should see that the learning of geometric neural nets is improved due to the Clifford
product computed in a higher dimensional space. It is worth noting in Figure 21.9(b) that the
MLP(4), even working in a four dimensional space, cannot perform better than the geometric
neural net.

9.2 Classification of 2D Patterns in Real Images

Now we will show an application of Clifford moments and geometric MLP using real images
of the objects presented in Figure 21.10. The binarized images used to generate the moments

Figure 21.10 Images of the real objects.
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Cl21�Cl31 are depicted in Figure 21.11. The resulting curves of the Clifford moments are presented in
Figure 21.12.

Using binarized views of the objects unseen before by the neural network, we test the geometric
MLP. The results in Table 21.1 show that the procedure performs well.

Figure 21.11 Binarized images of the objects.
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Figure 21.12 Curves of the quaternionic moments of (a) a cylinder; (b) a cube and (c) a truncated
pyramid.
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Table 21.1 Results using real images.

Classified Misclassified

Cylinder 85% 15%
Cube 86% 14%
Pyramid 83% 17%

9.3 Estimation of 3D Pose

This experiment shows the application of SMVMs for the estimation of the 3D pose of rigid objects.
Figure 21.13(b) shows the equipment used. Images of the object were captured using a trinocular head.
This is a calibrated three-camera system which computes the 3D depth using a triangulation algorithm
[23,24]. We extracted 3D relevant features using the 2D coordinates of corners and lines of the central
view of the trinocular camera array. For this we applied edge and corner detectors and the Hough
transform (see Figure 21.14(b)). After we had found the relevant 3D points (see Figure 21.14(a)), we
applied a regression operation to gain the 3D lines in order to be note to compute intersecting points
(see Figure 21.14(b)). This helps enormously to correct distorted 3D points or to compute the 3D
coordinates of occluded points. Since lines and planes are more robust against noise than points, we
used them to describe the object shape in terms of motor algebra representations of 3D lines and planes
(see Figure 21.14(b)). In order to estimate the 3D pose of the object, we trained an SMVM using the
multivector representation of the object as training input and we chose its 3D pose (in terms of two
points lying on a 3D line) as output, which in turn also told us where the object should be held by a
robot gripper. We trained an SMVM using polynomial kernels with data of each object extracted from
trinocular views taken every 12 degrees. In recall the SMVM was able to estimate the holding line for
an arbitrary position of the object, as Figure 21.14(b) shows. The underlying idea of the experiment
using platonic objects was to test whether the SMVM could handle this kind of problem. In future,
we will apply a similar strategy for estimating the pose of real objects in order to orient a robot
gripper.

(a) (b) 

Figure 21.13 (a) Visually guided robot manipulation; (b) trinocular head for 3D object recognition.



432 Clifford-valued NNs in Pattern Classification

0.08
0.06

0.04
0.02

0
–0.02

–0.04
–0.06

–0.08

–0.06

–0.04

–0.02

0

0.02

0.04

0.06

0.08

3

2

1

0

 –1

 –2

 –3
 –3

 –2
 –1

 0
1

2
3

3
2 1 0 –1

–2 –3 –4

0.49

0.48

0.47

0.46

0.45

0.44

0.43

0.42

0.04
0.02

–0.02

–0.04
–0.06

–0.1

–0.05
0

0.05
0.1

0

180

160

140

160
180

200
220

240

140

120

120

100

100

160

180

200

220

140

120

100

80

60

180

160

140

120

100

80

60

40

2

1

0

–2
–1.5

–1
–0.5

0
0.5

1
1.5

2
4

3

2

1

0

–1

–2

–3

–4

(a) (b)

Figure 21.14 Estimation of the 3D pose of objects. (a) The 3D points of each object; (b) completed
object shape and estimated grasp points using SMVM, circle ground true and cross estimated.

9.4 Performance of SMVMs Using Kernels Involving the Clifford Product

The next tests showed the performance of the kernels involving the Clifford product. These kernels
were implemented using the functions #�·� given by Equations (21.55) and (21.56). The pseudocode
of the used algorithm is given next. The algorithm stopped if the iteration t had reached its maximum
value tmax or the margin � ≈ 1, for the latter, the algorithm should have found the optimal � s. In
the algorithm GM [i][j][0] denotes the array for the Gramm matrix using the blade of grade zero



Experimental Analysis 433

(scalar part) of the Clifford product between x′mi = #�xmi� and x′mj = #
(

xmj
)

, this is equivalent to
computing the generalized inner product of the multivectors.

Initialize �i = 0

For t= 1 to tmax

if t= 0

b0 = 0�1

else

if t= 1

b1 =−0�1
else

bt = bt−1−wt−1

(
bt−1−bt−2
wt−1−wt−2

)

for i= 1 to N

% for multivector and label x′i =#�xmi�xi�

zi =
∑
�jyjGM �i� �j� �0�


�t
i = %�1−ziyi−btyi�

if ��t
i+
�t

i�≤ 0then �t
i = 0

else �t
i← �t

i+
�t
i

end

wt =∑j
�
t
iyj

compute margin �

if � ≈ 1 then break

end�

Figure 21.15(a) to (c) show a 2D nonseparable case in a 4D space using the kernel given by
Equation (21.55). We can appreciate that our method works very well.

Figures 21.15(d)–(e) shows two nonlinear separable cases in an 8D space using in both of them, the
kernel given by Equation (21.56). Figure 21.15(f) shows a 3D nonseparable case again using the kernel
given by Equation (21.56), which works in an 8D space. We have shown that the kernels involving
the Clifford product find optimal hyperplanes.

(a) (b) (c)

Figure 21.15 (a),(b),(c) Nonlinear 2D separable classification using the kernel of Equation (21.55),
which works in 4D; (d),(e),(f) nonlinear separable classification cases using the kernel of
Equation (21.56), which works in 8D. The first two experiments are 2D cases and the third a 3D case.
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(d) (e) (f)

Figure 21.15 (continued)

9.5 An SMVM Using Clustering Hyperspheres

The last experiment clustered 3D data using the method explained in Section 7.5. Figure 21.16 shows
the spheres that were found via a self-organizing neural network. They were coded as spheres in the
conformal geometric algebra G4�1 and only these were given to the SMVM for finding the optimal
nonlinear hyperplane. Note that after training, all the vectors inside the spheres are classified correctly.
Even points near to both sides of the nonlinear optimal hyperplane are classified correctly. The coding
of the spheres, points and points near to the optimal hyperplane was as follows: we used the conformal
geometric algebra G4�1 and vectors were represented using the basis �1�2�3e+e_. Table 21.2 and
Figure 21.16 show the coding and classification results. Note the successful classification of the points
near to the decision border.

CLASS 1

CLASS 2 CLASS 2

CLASS 1

(a) (b)

Figure 21.16 Nonlinear separable classification cases using the conformal kernel. (a) Spheres;
(b) the patterns inside the spheres.
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Table 21.2 Classification of spheres, points in and out of the spheres.

Object Expected Obtained

s1= �1�2�0�1�5�2�5� 1 1
s2= �0�0�0�1�5�1�5� 1 1
s3= �−1�5�−1�5�−1�5�2�155�3�155� −1 −1
s4= �−3�−1�1�4�755�5�755� −1 −1
s5= �3�3�2�5�11�22�12�22� −1 −1
sphere inside sphere s1
s6= �1�2�5�3�09375�4�09375� −1 −1
points inside S1
ps11= �1�2�1�1�5�3�5� 1 1
ps12= �1�2�5�0�3�125�4�125� 1 1
ps13= �1�1�5�0�1�125�2�125� 1 1
ps14= �1�5�2�0�2�625�3�625� 1 1
ps15= �0�5�2�2�0�2�045�3�045� 1 1

points inside S2
ps21= �0�0�1�5�0�625�1�625� 1 1
ps22= �0�0�5�1�5�0�75�1�75� 1 1
ps23= �0�−0�5�1�5�0�75�1�75� 1 1
ps24= �0�5�0�1�5�0�75�1�75� 1 1

points inside S3
ps31= �−1�5�−1�5�−1�5�2�875�3�875� −1 −1
ps32= �−2�−2�1�−2�2�6�125�7�125� −1 −1
ps33= �−1�−1�5�−1�2�1�845�2�845� −1 −1
ps34= �−1�5�−1�5�−0�5�1�875�2�875� −1 −1
points inside S4
ps41= �−3�−1�1�5�6� −1 −1
ps42= �−2�4�−1�2�1�3�3�945�4�945� −1 −1
ps43= �−3�−0�5�0�5�4�25�5�25� −1 −1
ps44= �−3�−0�4�1�4�58�5�58� −1 −1
points inside S5
ps51= �3�3�2�5�11�625�12�625� −1 −1
ps52= �3�7�3�2�5�13�97�14�97� −1 −1
ps53= �3�3�5�2�5�13�25�14�25� −1 −1
ps54= �3�3�3�2�13�62�14�62� −1 −1
outside the spheres and near to the optimal hyperplane
po1= �2�5�2�0�4�625�5�625� 1 1
po2= �1�0�5�0�0�125�1�125� 1 1
po3= �0�−0�9�1�5�1�03�2�03� 1 1
po4= �−0�3�−0�3�−1�5�0�715�1�715� −1 −1
po5= �−0�3�−0�3�−2�5�2�715�3�715� −1 −1
po6= �−2�1�−0�3�1�2�25�3�25� −1 −1
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10. Conclusions

This chapter has shown the analysis and design of feed-forward neural networks and support vector
machines using the coordinate-free system of Clifford, or geometric, algebra. It has been shown that
real-, complex- and quaternion-valued neural networks are simply particular cases of geometric algebra
multidimensional neural networks. We designed kernels for support multivector machines, which
involve the Clifford product. The conformal neuron was used for clustering data, this idea is very
useful for alleviating the complexity and computational demand in classification problems. In neural
computing, preprocessing is of foremost importance, in this regard, we introduced a novel method
of geometric preprocessing utilizing hypercomplex or Clifford moments. This method was applied,
together with geometric MLPs, for tasks of 2D pattern classification.

The design of feed-forward neural networks and SVMs in the geometric algebra framework allows us
to expand their sphere of applicability for multidimensional learning. The experimental analysis shows
the potential of such geometric neural networks for a variety of real applications using multidimensional
representations.
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1. Introduction

A new generic approach for feature representation has been proposed [1,2] for those cases in which one-
or multidimensional Fourier transforms are used for computer-aided intelligent pattern recognition.
The approach consists of using, simultaneously, two new recognition features: the real and imaginary
components of the Fourier transform.

This approach is in contrast to intelligent recognition applications, including Fourier optics
applications, where the Power Spectral Density (PSD) or the phase spectrum are used [3–33]. It has
been shown that the new approach is more generic than the PSD and phase spectrum approaches and
provides better recognition effectiveness than the power spectral density approach.

However, the approach under discussion here was proposed and investigated [1,2] only for a particular
case, without taking into account the covariance between new features. Taking covariance between
recognition features into account may improve the intelligent recognition effectiveness [5,34–36].

Therefore, to generalize the proposed approach, we need to estimate and take into account the
covariance between the features, i.e. the Fourier components. The covariance between the real and
imaginary components of the general Fourier transform, e.g. the short-time Fourier transform, which is
an advanced time–frequency technique, has been little studied. Jenkins and Watts [37] have obtained
this covariance only for the classical (not the short-time) Fourier transform and Gaussian white noise.

In recent years, the Hartley and cosine transforms [35,38] have gained importance in pattern
recognition, image processing and applications. The Hartley transform is similar to the Fourier
transform, but is computationally much faster [35] than even the fast Fourier transform.

The purposes of this chapter are to:

• estimate the covariance and correlation coefficient between the new features for the short-time

Fourier transform of arbitrary stationary signals, generalize the approach [1,2] and estimate the
effect of generalization;

• compare the recognition effectiveness of the generalized approach with the following conventional
approaches (for the common case of nonzero covariance between the proposed features):

— the Hartley transform approach;
— the cosine transform approach;
— the PSD approach;

• employ the proposed approach in damping and fatigue diagnostics.

2. Theoretical Analysis

The approach [1,2] consists of using, simultaneously, the real XR and imaginary XI components of the
Fourier transform at the frequency �x as parameters (diagnostic features):

XR��x� T�=
T
∫

0

x�t� cos�xtdt (22.1)

XI��x� T�=
T
∫

0

x�t� sin�xtdt (22.2)

where T is the time length of the short-time Fourier transform.
We consider the general case of the Fourier transform, the short-time Fourier transform (i. e. T �=�),

which is the advanced time–frequency signal processing technique.
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The covariance between the features in Equations (22.1) and (22.2) for arbitrary stationary signals,
employing only signal stationarity, can be presented as:

KRI =m�XRXI�=
T
∫

0

T
∫

0

Kx�t2− t1� cos�t1 sin�t2dt1dt2 (22.3)

where m is the mean operator and Kx�t2− t1� is the autocovariance function of the signal x�t�.
Using a new variable . = t2− t1, reversing the orders of integration between . and t1 and carrying

out the t1 integration, after transformations we find the final equation:

KRI =
�2
x

T∫

0

rx�.��cos�.− cos��2T − .��d.

2�
(22.4)

where rx�.� is the normalized autocovariance function of the signal.
Employing Equation (22.4) and standard deviations �R and �I respectively of the components XR

and XI from [39], the correlation coefficient can be presented, after transformations, as:

rRI =
0�5

T∫

0

rx�.��cos�.− cos��2T − .��d.
√
{
T∫

0

rx�.����T − .� cos�.− sin�.�d.

}{
T∫

0

rx�.����T − .� cos�.+ sin�.�d.

}
(22.5)

Equations (22.4) and (22.5) are new and generic. They are obtained for arbitrary stationary signals.
We find from Equations (22.4) and (22.5) that, generally, for the short-time Fourier transform,

the covariance and correlation coefficient between the features in Equations (22.1) and (22.2) are
nonzero. Therefore, we generalize the approach [1,2]. The generalized approach consists of using,
simultaneously, two new recognition features taking into account the covariance between these features.

Now we employ the generalized approach for the following two-class recognition of stationary
Gaussian narrowband centered signals x�t�:

• hypothesis H0: signal variance is �2
x0; normalized autocovariance is rx;

• hypothesis H1: signal variance is �2
x1; normalized autocovariance is rx.

The recognition information is contained in the short-time Fourier transform at the frequency �x.
The recognition feature based on the short-time Hartley transform can be written in the form [35]:

XH��x� t1�=
t1∫

0

x�t��cos�xt+ sin�xt�dt = XR+XI (22.6)

The recognition feature based on the short-time cosine transform can be written in the form [38]:

XC��x� t1�=
t1∫

0

x�t� cos�xtdt = XR (22.7)

We notice that these approaches are particular cases of the proposed approach.



442 Intelligent Recognition

Likelihood ratios of the features in Equations (22.1), (22.2), (22.6) and (22.7) are defined
respectively as:

So�XR�XI�= ln
W�XR� XI�H1�

W�XR� XI�H0�
(22.8)

SH�XH�= ln
W�XH �H1 �

W�XH �H0 �
(22.9)

SC�XC�= ln
W�XC �H1 �

W�XC �H0 �
(22.10)

where W
(

XR� XI�Hj

)

, W
(

XH�Hj

)

and W
(

XC�Hj

)

are the conditional probability density functions
(pdfs) of the features in Equations (22.1), (22.2), (22.6) and (22.7) respectively, for hypothesis Hj .
Obviously, the proposed features, the cosine and Hartley-based features are Gaussian variables.
Using the bivariate Gaussian conditional pdf of the features in Equations (22.1) and (22.2), we

obtain the feature likelihood ratio Equation (22.8) in the form:

So = AX2
R+BX2

I +CXRXI+D (22.11)

where A= �2
R1−�2

R0

2�1− r2��2
R0�

2
R1

, B= �2
I1−�2

I0

2�1− r2��2
I0�

2
I1

, C = r��R0�I0−�R1�I1�

�1− r2��R0�R1�I0�I1

, D= ln
�R0�I0

�R1�I1

�Rj and

�Ij are standard deviations of the components XR and XI respectively for hypothesis Hj and r is the
correlation coefficient between features in Equations (22.1) and (22.2). This correlation coefficient is
identical for hypothesis Hj , j = 0�1, due to the identical normalized autocovariance functions of the

signals for both hypotheses. Employing [39] we obtain:
�R1

�R0

= �I1

�I0

= �x1
�x0

.

Using Equation (22.6) and the one-dimensional Gaussian pdf, we find the likelihood ratio of
Equation (22.9) in the form:

SH =DX2
H+E =D�X2

R+X2
I +2XRXI�+E (22.12)

where

D = 1

2

(
1

�2
R0+�2

I0+2r�R0�I0

− 1

�2
R1+�2

I1+2r�R1�I1

)

�

E = 1

2
ln
�2
R0+�2

I0+2r�R0�I0

�2
R1+�2

I1+2r�R1�I1

Using Equation (22.7) and the one-dimensional Gaussian pdf, we find the likelihood ratio of
Equation (22.10) in the form:

SC = EX2
R+ J (22.13)

where E = 1

2

(

1

�2
R0

− 1

�2
R1

)

, J = ln
�R0

�R1

.

One can see the difference between the likelihood ratios in Equation (22.11) and Equations (22.12)
and (22.13). We find that the likelihood ratios in Equations (22.12) and (22.13) are not even particular
cases of the likelihood ratio in Equation (22.11).

From Equation (22.11) we also note that, generally, the likelihood ratio of the proposed features is
not the PSD, which can be presented in the form (except for a constant multiplier, which is nonessential
for recognition):

SPSD = X2
R+X2

I (22.14)
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Therefore, the use of the Hartley, cosine and PSD approaches is not optimal for the recognition under
consideration.

We find from Equations (22.11) and (22.14) that if simultaneously: the features in Equations (22.1)
and (22.2) are uncorrelated, i.e. r = 0, and the standard deviations of the features XR and XI are equal
for hypothesis Hj , i.e. �Rj = �Ij = �j , the likelihood ratio in Equation (22.11) is the PSD (except for a
constant multiplier and addendum, which are nonessential for recognition). Thus, in this case, the use
of the PSD is optimal.

Now we estimate and compare the recognition effectiveness of the proposed approach and the
Hartley, cosine and PSD approaches. We use an information criterion of recognition effectiveness,
Fisher’s criterion [40]. The following Fisher’s criteria are employed for comparison:

Fo =
�m�So/H1�−m�So/H0��

2

�2�So/H1�+�2�So/H0�
(22.15)

FH =
�m�SH/H1�−m�SH/H0��

2

�2�SH/H1�+�2�SH/H0�
(22.16)

FC =
�m�SC/H1�−m�SC/H0��

2

�2�SC/H1�+�2�SC/H0�
(22.17)

FPSD =
�m�SPSD/H1�−m�SPSD/H0��

2

�2�SPSD/H1�+�2�SPSD/H0�
(22.18)

where m and �2 are the mean and variance operators respectively.
Using Equations (22.1)–(22.3), and (22.6)–(22.9), after transformations, we obtain:

Fo = 1− 2

b+ 1

b

(22.19)

GH =GC = 2 (22.20)

GPSD =
2�a2+2r2a+1�

�a+1�2
(22.21)

where GH =
Fo

FH

, GC =
Fo

FC

, GPSD =
Fo

FPSD

; GH�GC and GPSD are the effectiveness gains provided

by the proposed approach in comparison with the Hartley, cosine and PSD approaches respectively;

b = �2
x1

�2
x0

, parameter b characterizes the difference of the signal variances, parameter a characterizes

the difference between variances of the features in Equations (22.1) and (22.2). For the identical
normalized autocovariance function of the signals for hypothesis Hj we obtain from [39] the following

equation: a= �R0

�I0

= �R1

�I1

.

We find from Equations (22.19) and (22.20) that the recognition effectiveness of the proposed
approach, as well as the recognition effectiveness of the both Hartley and cosine approaches, depends
only upon the difference in the signal variances. The recognition effectiveness of the proposed approach
does not depend on the correlation coefficient between the features in Equations (22.11) and (22.2)
and the difference in the features’ variances, because the generalized approach takes into account the
correlation coefficient between the features and the difference in the features’ variances.

It can be seen from Equation (22.20) that use of the proposed approach provides essential constant
recognition effectiveness gain in comparison with the Hartley and cosine approaches for arbitrary
values of correlation coefficient between the features in Equations (22.1) and (22.2), signal variances
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and feature variances. This indicates that the features in Equations (22.1) and (22.2) have essentially
better recognition effectiveness than the Hartley and cosine-based features.

We find from Equations (22.19) and (22.21) that the recognition effectiveness of the PSD approach
depends upon the difference in the signal variances and also upon the correlation coefficient between the
features and parameter a; the recognition effectiveness of the PSD approach decreases as the correlation
coefficient departs from zero and as parameter a departs from unity, because the PSD approach
does not take into account the correlation coefficient between the short-time Fourier components in
Equations (22.1) and (22.2) and the variance difference between these components.

It can be seen from Equations (22.19) and (22.21) that the use of the generalized approach provides
a recognition effectiveness gain GPSD in comparison with the PSD approach for arbitrary values of
the correlation coefficient between the features and parameter a (except if, simultaneously, r = 0
and a = 1). The effectiveness gain depends upon nondimensional characteristics (i.e. parameter a
and correlation coefficient), and not on the dimensional statistical characteristics of the features (i.e.
conditional feature variances).

When the correlation coefficient between the features equals zero (i.e. r = 0), Equation (22.21)
coincides with the appropriate expression in [1]. The dependencies between the gain GPSD and
parameters r and a are shown in Figures 22.1(a) and (b).

We find from Equation (22.21) and Figure 22.1 that:

1. The effectiveness gain in Equation (22.21) increases as the correlation coefficient r departs from
zero for arbitrary values of the parameter a; for a = 1 (i.e. when the variances of the features in
Equations (22.1) and (22.2) are equal), the gain can be presented as GPSD = r2+1.

2. The effectiveness gain in Equation (22.21) increases as the parameter a departs from unity for
arbitrary values of the correlation coefficient.

Now we estimate the effect of the approach generalization, i.e. the effect of accounting for the
feature covariance, on the recognition effectiveness of features in Equations (22.1) and (22.2) while
estimating the likelihood ratio.

We use the relative effectiveness criterion:

f = Fo

F1

(22.22)

where

F1 =
�m�S1/H1�−m�S1/Ho��

2

�2�S1/H1�+�2�S1/Ho�
(22.23)

S1 = ln
W�XR/H1�W�XI/H1�

W�XR/H0�W�XI/H0�
� S1 = A1X

2
R+B1X

2
I +D

A1 = A�r = 0��B1 = B�r = 0�

S1 is the likelihood ratio without taking into account feature covariance, F1 is the Fisher criterion of
the likelihood ratio S1.

By using Equations (22.1), (22.2), (22.11), (22.19), (22.22) and (22.23) we obtain, after trans-
formations:

f = r2+1 (22.24)

From Equations (22.22) and (22.24) we can conclude that the approach generalization improves the
recognition effectiveness. The relative effectiveness criterion f increases as the correlation coefficient
departs from zero.

Now we consider and discuss how the recognition is accomplished in a noisy environment. We
consider the above recognition on a background of additive stationary Gaussian narrowband centered
uncorrelated interference y�t�. The normalized autocovariance function of the interference is identical
to the normalized autocovariance function of the signals.



Theoretical Analysis 445

1.0
1 3 5 7 9

1.5

2.0

G

a

r = 0.25

r = 0.5

r = 0.75

r = 1

r = 0

(a)

G

r

1.8 a = 0.25, a = 4

a = 0.5, a = 2

a = 1

1.6

1.4

1.2

1.0

(b)
–0.8 –0.4 0.0 0.4 0.8

Figure 22.1 Variation of the effectiveness gain with (a) correlation of coefficient r between features
in Equations (22.1) and (22.2); (b) parameter a, which characterizes the difference between variances
of features in Equations (22.1) and (22.2).

We utilize the real and imaginary components of the Fourier transform as recognition features:

XRy��x� t1�=
t1∫

0

�x�t�+y�t�� cos�xtdt (22.25)

XIy��x� t1�=
t1∫

0

�x�t�+y�t�� sin�xtdt (22.26)
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The Hartley and cosine-based features can be written in the form:

XHy��x� t1�=
t1∫

0

�x�t�+y�t���cos�xt+ sin�xt�dt = XRy+XIy (22.27)

XCy��x� t1�=
t1∫

0

�x�t�+y�t�� cos�xt dt = XRy (22.28)

Using the above methodology, we find, after transformations, the final results:

Foy = 1− 2

c+ 1

c

(22.29)

where

GHy =GCy = 2 (22.30)

GPSDy =
2�a2+2r2a+1�

�a+1�2
(22.31)

c = bq20 +1

q20 +1
(22.32)

GHy =
Foy

FHy

�GCy =
Foy

FCy

�GPSDy =
Foy

FPSDy

�Foy�FHy and FCy are the Fisher criteria for the likelihood ratios

of features in Equations (22.25), (22.26), (22.27) and (22.28) respectively; GHy�GCy and GPSDy are
the effectiveness gains provided by the proposed approach in comparison with the Hartley approach,
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Figure 22.2 Variation of the Fisher criterion Equation (22.29) for the proposed features with the
signal/noise ratio.
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cosine approach and PSD approach respectively in the considered noisy environment; q0 =
�x0
�y

; q0 is

the signal/noise ratio for the hypothesis H0; �
2
y is the interference variance.

When the level of interference is relatively low, e.g. at q0 ≥ 10dB, the criterion of Equation (22.29)
coincides with that in Equation (22.19). The dependency between the Fisher criterion Equation (22.29)
and the signal/noise ratio q0 is shown in Figure 22.2.

We find from Equations (22.29)–(22.32) and Figure 22.2 that the recognition effectiveness of the
proposed approach, as well as the recognition effectiveness of the Hartley approach, depends only on
the difference of the signal variances and the signal/noise ratio.

It can be seen from Equations (22.29)–(22.32) and Figure 22.2 that the effectiveness of the proposed
approach and the Hartley, cosine and PSD approaches decreases with decrements of the signal/noise
ratio q0 (e.g. increments of the noise variance) for arbitrary values of the parameter b; however, the
use of the proposed approach in the considered noisy environment provides the same recognition
effectiveness gain (see Equations (22.30) and (22.31) as in the case without a noisy environment.

3. Application

We apply the generalized approach to the intelligent recognition of object damping and fatigue. We
consider the two-class diagnostics of the object damping ratio )j for hypothesis Hj , using the forced
oscillation diagnostic method [2,41]. The method, which consists of exciting tested objects into resonant
oscillations and recognition, is based on the Fourier transform of the vibration resonant oscillations.
The basis of the method is the fact that damping ratio changes will modify the parameters of the
vibration resonant oscillations.

The differential equation of motion for the tested object – a single degree of freedom linear oscillator
under white Gaussian noise stationary excitation – is described as:

ẍ+2)j�nẋ+�nx = A�t� cos �t� (22.33)

where x is the object displacement, )j =
cj

2
√
km

; m�cj� k are the object mass, damping and stiffness

respectively, �n =
√
k/m��n is the circular natural frequency, A�t� = Ai�t�

m
�A�t� and Ai�t� are the

normalized and unnormalized random Rayleigh envelopes of the Gaussian excitation,  �t� is the
random phase, which is uniformly distributed in the range �0�2��.

From Equation (22.33), we obtain that the vibration resonant oscillations are stationary Gaussian
signals with different variances for hypothesis Hj and identical normalized autocovariance functions.
Therefore, the diagnostic under consideration is the two-class intelligent recognition of the stationary
Gaussian signals with different variances for hypothesis Hj and identical normalized autocovariance
functions. The recognition information is contained in the short-time Fourier transform of the resonant
oscillations at the resonant frequency. We employ the following recognition (diagnostic) features:

• the real and imaginary components of the short-time Fourier transform of the resonant oscillations
at the resonant frequency, taking into account the covariance between features;

• the PSD of the resonant oscillations at the resonant frequency.

We undertake computer-aided simulation using Simulink and the Monte-Carlo procedure. The
simulation parameters are: )0 = 0�095� )1 = 0�1 for hypotheses H0 and H1; the duration of the steady-
state resonant oscillations is T = 0�625 s; the circular natural frequency is �n = 2� 20 rad/s; the
sampling frequency is 128Hz, and the value b = 1�3 ·103 is used for the parameter of the pdf of the
Rayleigh envelope. The number of randomly simulated samples is 5000 for every hypothesis.

The estimate of the correlation coefficient between features in Equations (22.1) and (22.2) is nonzero:
r̂RI = 0�12; the estimate of the parameter a is 0.29; the estimate of the effectiveness gain is ĜPSD = 1�24.
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Using Equation (22.5), rx�.� = ��.� for white noise and N = 1�25, we obtain that the theoretical
correlation coefficient between features in Equations (22.1) and (22.2) is also nonzero: rRI = 0�13,
where ��.� is the Dirac function, N is the number of periods related to the resonant frequency on the
signal duration T . Using Equation (22.21), we find the theoretical effectiveness gain GPSD = 1�31. One
can see that the simulation results match the theoretical results.

We consider the experimental fatigue crack diagnostics of objects using the forced oscillation method.
The nonlinear equations of a cracked object motion under white Gaussian noise stationary excitation
can be written as follows [2,41]:

{

ẍ+2)S�Sẋ+�Sx = A�t� cos � x ≥ 0

ẍ+2)C�Cẋ+�Cx = A�t� cos � x < 0

where )S =
c

2
√

kSm
�)C =

c

2
√

kCm
��S =

√

kS
m
��C =

√

kC
m

, kS and kC are the stiffnesses at tension

and compression, )S and )C are the damping ratios at tension and compression.
At compression, the crack is closed and the object behaves like a continuum; therefore, the stiffness

is the same as that of the object without a crack, i.e. kC = k. At tension, the crack is opened and the

object is discontinuous; therefore, the stiffness decreases with the quantity 
k = kC− kS� k∗ =

k

k
,

k∗ is the stiffness ratio. A relative crack size characterizes the stiffness ratio [2,41,42]. The basis for
using this method lies in the fact that the level of the object nonlinearity changes with the crack size
[2,41,42].

We consider the two-class diagnostics of the object stiffness ratio: k∗ = k∗j for class Hj , j = 0�1.
This consideration is generic because it is independent of the correlation between the stiffness ratio
and relative crack size.

We employ the following recognition (diagnostic) features:

• the real and imaginary components of the short-time Fourier transform of the higher harmonic of
the object resonant oscillations, taking into account the covariance between features;

• the PSD of the higher harmonic of the object resonant oscillations.

Experimental investigation was undertaken with uncracked and cracked turbine blades from an
aircraft engine. The flexural resonant blade vibrations were generated using a shaker. Acoustics radiated
from the blades were received using a microphone located near the blades at a distance of 1m. The
duration of the steady state blade resonant oscillations was t1 = 2�3 s; the sampling frequency was
43 478Hz, the leakage parameter was 0.4 and the higher harmonic number was 2.

We used for comparison the effectiveness gain A, the ratio of the 95% upper confidence limit PPSD

of the total error probability for the PSD-based feature and the proposed features, PNEW. The obtained
gain estimate was Â= 1�7.

Thus, the use of the proposed generalized approach provides an effectiveness gain in comparison
with the PSD approach for the application under consideration.

4. Conclusions

1. Generalization of the feature representation approach [3,4] has been proposed and investigated. The
generalized approach consists of simultaneously using two new recognition features – the real and
imaginary components of the Fourier transform – taking into account covariance between these

features. It was shown that the generalization (i.e. accounting for the covariance between these
features) improves the recognition effectiveness. The relative effectiveness criterion increases as the
correlation coefficient departs from zero.
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2. The covariance and the correlation coefficient between the proposed features, i.e. short-time Fourier
components, were obtained for the first time for arbitrary stationary signals. The obtained generic
expressions take into account the significant parameters: the signal normalized autocovariance
function, signal variance, signal duration and Fourier transform frequency.

3. Recognition of the Gaussian signals was considered using the generalized approach. A comparison
of the recognition effectiveness of the generalized approach and the Hartley, cosine and PSD
approaches was carried out.

4. Comparing the generalized approach to the Hartley approach shows that:

— the recognition effectiveness of the proposed approach, as well as the recognition effectiveness
of the Hartley approach, depends only on the difference of the signal variances and does not
depend on the correlation coefficient between the new features and the features’ variances;

— the Hartley approach is not an optimal feature representation approach and does not represent
even a particular case of the proposed approach;

— the use of the proposed approach provides an essential constant effectiveness gain in comparison
with the Hartley approach for arbitrary values of the correlation coefficient between these
features and signal variances.

5. Comparing the generalized approach to the cosine approach shows that:

— recognition effectiveness of the proposed approach, as well as recognition effectiveness of the
cosine approach, depends only on the difference of the signal variances and does not depend on
the features’ variances;

— the cosine approach is not an optimal feature representation approach and does not represent
even a particular case of the proposed approach;

— the use of the proposed approach provides an essential constant effectiveness gain in comparison
with the cosine approach for arbitrary values of the correlation coefficient between features and
signal variances.

6. Comparing the generalized approach to the PSD approach shows that:

— the PSD approach generally is not an optimal feature representation approach and represents
only a particular case of the generalized approach;

— the use of the PSD approach is optimal only if simultaneously: the correlation coefficient between
Fourier components is equal to zero and the standard deviations of the Fourier components
are equal;

— the use of the generalized approach provides an effectiveness gain in comparison with the
PSD approach for arbitrary values of the correlation coefficient between new features and the
difference between feature variances (except for the above-mentioned case);

— the effectiveness gain increases as the correlation coefficient departs from zero and as the
parameter that characterizes the difference between variances of the features departs from unity.

7. Comparing the generalized approach to the Hartley, cosine and PSD approaches in a noisy
environment shows that the recognition effectiveness of the proposed approach and the Hartley,
cosine and PSD approaches decreases with decrements of the signal/noise ratio (e.g. increments of
the noise variance) for arbitrary values of the signal difference. However, the use of the proposed
approach provides the same essential effectiveness gain in comparison with the Hartley, cosine and
PSD approaches as in the case without a noisy environment.

8. Application of the generalized approach was considered for vibration diagnostics of object damping
and fatigue. The simulation and experimental results agree with the theoretical results.

Thus, we recommend considering simultaneous usage of the Fourier components, taking into account
covariance between these components, as the most generic feature representation approach.
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Formal Concept Analysis (FCA) offers a strong background for data classification. FCA is increasingly

applied in conceptual clustering, data analysis, information retrieval and knowledge discovery. In this

chapter, we present an approximate algorithm for the coverage of a binary context by a minimal

number of optimal concepts. We notice that optimal concepts seem to help in discovering the main

data features. For that reason, they have been used several times to successfully extract knowledge

from data in the context of supervised learning. The proposed algorithm has also been used for several

applications, such as for discovering entities from an instance of a relational database, simplification

of software architecture or automatic text summarization. Experimentation on several cases proved

that optimal concepts exhibit the main invariant data structures.

1. Introduction

Is it not normal to expect that human intelligence organizes data in a uniform and universal way? The
reason is that our natural and biological thinking structure is mostly invariant. The purpose of such a
thinking process is to understand and learn from data how to recognize similar objects or situations,
and create new objects in an incremental way. As a matter of fact, by analogy, most ‘intelligent’
information retrieval methods need to realize data classification, and minimization of its representation
in memory, in an incremental way. Classification means pattern generation and recognition. Formal
Concept Analysis (FCA) offers a simple, original, uniform and mathematically well-defined method
for data clustering. A pattern is associated with a formal concept (i.e. a set of objects sharing the
maximum number of properties). In this chapter, we minimize information representation by selecting
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only ‘optimal concepts’. We assume that data may be converted to a binary relation as a subset of
the product of a set of objects and a set of properties. This hypothesis does not represent a strong
constraint, because we can see that most numerical data may be mapped to a binary relation, with some
approximation. In this chapter, we defend the idea that coverage of a binary context with a minimal
number of conceptual clusters offers a base for optimal pattern generation and recognition [1]. We
defend the idea that while we are thinking, we incrementally optimize the context space storage. We
have generally different possible concepts for data coverage. Which one is the best? In recent years,
we applied the idea of minimal conceptual coverage of a binary relation to supervised learning and
it gave us defendable results with respect to other known methods in terms of error rate [2–7]. We
also applied it for automatic entity extraction from a database. As a last important application, we
used it for software restructuring by minimizing its complexity. Because of the huge amount of data
contained in most existing documents and databases, it becomes important to find a priority order
for concept selections to enable users to find pertinent information first. For that reason, we also
exploited these patterns (i.e. concepts) for text summarization combined with a method for assessing
word similarity [8]. In this chapter, we give all the steps of these conceptual methods and illustrate
them with significant results.

In the second section, we present the mathematical foundation of conceptual analysis. In the third
section, we give a polynomial approximate algorithm for the NP-complete problem of binary context
coverage with a minimal number of optimal concepts. In the fourth section, we explain how to apply
the idea of the optimal concept (also called the optimal rectangle) for knowledge extraction. We give
a synthesis discussion about the following applications: supervised learning, entity extraction from an
instance of a database, minimization of the complexity of software and discovering the main groups
of users communicating through one or different servers.

2. Mathematical Foundations

Among the mathematical theories found recently with important applications in computer science,
lattice theory has a specific place for data organization, information engineering, data mining and
reasoning. It may be considered as the mathematical tool that unifies data and knowledge, also
information retrieval and reasoning [9–13]. In this section, we define a binary context, a formal concept
and the lattice of concepts associated with the binary context.

2.1 Definition of a Binary Context

A binary context (or binary relation) is a subset of the product of two sets O (set of objects) and P (set
of properties).

Example 1 [10]:

O= �Leech, Bream, Frog, Dog, Spike-weed, Reed, Bean, Maize�

and

P = �a�b� c�d� e� f�g�h� i�

where O is a set of some living things, and P the set of the following properties: a = needs water;
b = lives in water; c = lives on land; d = needs chlorophyll to produce food; e = is two seed leaves;
f = one seed leaf; g = Can move around; h = has limbs; i = suckles its offspring. A binary context
R may be defined by Table 23.1.
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Table 23.1 An example of a binary context R.

a b c d e f g h i

1 Leech 1 1 0 0 0 0 1 0 0
2 Bream 1 1 0 0 0 0 1 1 0
3 Frog 1 1 1 0 0 0 1 1 0
4 Dog 1 0 1 0 0 0 1 1 1
5 Spike-weed 1 1 0 1 0 1 0 0 0
6 Reed 1 1 1 1 0 1 0 0 0
7 Bean 1 0 1 1 1 0 0 0 0
8 Maize 1 0 1 1 0 1 0 0 0

Let f be a function from the powerset of the set of objects O (i.e. 20) to the powerset of the set of
properties P (i.e. 2P), such that:

f�A�= �m�∀g ∈ A⇒ �g�m� ∈ R� (23.1)

f�A� is the set of all properties shared by all objects of A (subset of O) with respect to the context R.
Let g be a function from 2P to 2O, such that:

g�B�= �g�∀m ∈ B⇒ �g�m� ∈ R� (23.2)

g�B� is the set of objects sharing all the properties B (subset of P) with respect to the binary context
R. We also define closure�A�= g�f�A��= A′, and closure�B�= f�g�B��= B′.

The meaning of A′ is that a set of objects A shares the same set of properties f�A� with
other objects �A′ − A�, relative to the context R. A′ is the maximal set of objects sharing
the same properties as objects A. In Example 1, if A = �Leech, Bream, Frog, Spike-weed� then
A′ = �Leech, Bream, Frog, Spike-weed, Reed�. This means that the shared properties a and b of living
things in A, are also shared by a reed, the only element in A′−A. The meaning of B′ is that if an object
x of the context R verifies properties B, then x also verifies some number of additional properties
�B′−B�. B′ is the maximal set of properties shared by all objects verifying properties B. In Example 1,
if B= �a�h�, then B′ = �a�h�g�. This means that any animal that needs water (a) and has limbs (h),
can move around (g). For each subset B, we may create an association rule B→ B′−B. The number
of these rules depends on the binary context R. In [10], we find different algorithms for extracting the
minimal set of such association rules.

2.2 Definition of a Formal Concept

A formal concept of a binary context is the pair (A,B), such that f�A� = B and g�B� = A. We
call A the extent and B the intent of the concept (A,B). If �A1�B1� and �A2�B2� are two concepts,
�A1�B1� is called a subconcept of �A2�B2�, provided that A1 ⊆ A2�B2 ⊆ B1. In this case, �A2�B2�

is a superconcept of �A1�B1� and it is written �A1�B1� < �A2�B2�. The relation ‘<’ is called the
hierarchical order relation of the concepts. The set of all concepts of (G, M, I) ordered in this way
is called the concept lattice of the Context (G, M, I). Formal Concept Analysis (FCA) is used for
deriving conceptual structures from data. These structures can be graphically represented as conceptual
hierarchies, allowing the analysis of complex structures and the discovery of dependencies within the
data. Formal concept analysis is based on the philosophical understanding that a concept is constituted
by two parts: its extent, which consists of all objects belonging to the concept, and its intent, which
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Table 23.2 Formal context K.

A B C D

G1 1 1 0 0
G2 1 1 0 0
G3 0 1 1 0
G4 0 1 1 1
G5 0 0 1 1

comprises all attributes shared by those objects. One of the main objectives of this method is to
visualize the data in the form of concept lattices.

Let K be the formal context presented in Table 23.2. Then Figure 23.1 represents the structured set
of concepts.

A formal concept has been defined and introduced by different scientific communities in the world,
starting in 1948 with Riguet [14] under the name of maximal rectangle. In graph theory, a maximal
bipartite graph was exploited in the thesis of Le Than in 1986 [15] in a database to introduce a new
kind of dependencies called ‘Iso-dependencies’, independently, Jaoua et al. introduced difunctional
dependencies as the most suitable name for iso-dependencies in a database [16]. The most recent
mathematical studies about formal concept analysis have been done by Ganter and Wille. More details
may be found in [9–11].

What is remarkable is that concepts are increasingly used in several areas in real-life applications:
text analysis, machine learning, databases, data mining, software decomposition, reasoning and pattern
recognition. A complete conjunctive query and its associated answer in a database is no more nor less
than a concept (i.e. an element in a lattice of concepts). Its generality and simplicity is very attractive.
We almost may find a bridge between any computer science application and concepts. Combined with
other methods for mapping any kind of data into a binary context, it gives an elegant base for data
mining.

2.3 Galois Connection

A Galois connection is a conceptual learning structure used to extract new knowledge from an existing
context (database). The context is represented by a binary relation. We can decompose the context into

{} {G1,G2,G3,G4,G5}

{B} {G1,G2,G3,G4} {C} {G3,G4,G5}

{A,B} {G1,G2} {B,C} {G3,G4} {C,D} {G4,G5}

{B,C,D} {G4}

{A,B,C,D} {}

Figure 23.1 Concept lattice of the context K.
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A B

h (B) f (A)

Figure 23.2 A Galois connection.

a set of concepts and we can build a hierarchy of concepts also known as a ‘Galois Lattice’. A pair
(f (A), h (B)) of maps is called a Galois connection if and only if A ⊆ h�B�⇔ B⊆ f�A�, as we can
see in Figure 23.2. It is also known that f�A�= fhf�A� and h�B�= hfh�B�.

2.4 Optimal Concept or Rectangle

A binary relation can be decomposed into a minimal set of optimal rectangles (or optimal concepts).

2.4.1 Definition 1: Rectangle

Let R be a binary relation defined from E to F. A rectangle of R is a pair of sets (A,B) such that
A⊆ E�B⊆ F and A×B⊆ R. A is the domain of the rectangle and B is the co-domain or range [11].
A rectangle is maximal if and only if it is a concept. A binary relation can be represented by different
sets of rectangles. In order to save storage space, the gain function W(R) defined in Section 2.4.2
is important for the selection of a minimal significant set of maximal rectangles representing the
relation. In the next section, we use interchangeably the word ‘concept’ and ‘maximal rectangle’. We
also introduce the definition of an optimal rectangle (i.e. optimal concept). Our conviction is that
intelligence does not keep in mind the whole lattice structure of concepts, but only a few concepts
covering all the data context. As a matter of fact, this thinking process is efficient because it optimizes
the quantity of data kept in the main memory. Here, we propose a method for such coverage. But in
the future, we may propose a variety of other methods perhaps more efficient.

2.4.2 Definition 2: Gain in Storage Space (Economy)

The gain in storage space W (R) of binary relation R is given by:

W�R�= �r/dc��r− �d+ c�� (23.3)

where r is the cardinality of R (i.e. the number of pairs in binary relation R), d is the cardinality of
the domain of R and c is the cardinality of the range of R.

Note that the quantity �r/dc� provides a measure of the density of the relation R. The quantity
�r− �d+ c�� is a measure of the economy of information.

2.4.3 Definition 3: Optimal Concept

A rectangle RE ⊆ R, containing an element �x� y� of a relation R is called optimal if it produces a
maximal gain W(RE(x� y)) with respect to other concepts containing �x� y�. Figure 23.3(a) presents an



458 Conceptual Data Classification

x

y

z

1

2

3

4

5

x

y

1

2

3

W(RE1(y,3)) = 1

x

y

1

3

W(RE2(y,3)) = 0 W(RE3(y,3)) = –1

y

1

2

3

4

5

(a) (b) (c) (d)

Figure 23.3 Optimal rectangle in binary relation R. (a) Relation R; (b) RE1�y�3�; (c) RE2�y�3�;
(d) RE3�y�3�.

example of a relation R, and Figures 23.3(b), (c) and (d) represent three different rectangles containing
element �y�3�. The corresponding gains are 1, 0 , −1. Therefore, the optimal rectangle containing the
pair �y�3� of R is the rectangle of Figure 23.3(b). It is easy to prove that it must always be a concept
(maximal rectangle).

W�RE1�y�3��= �6/6��6− �2+3��=1� Here� r = 6�d = 2 and c = 3

W�RE2�y�3��= �4/4��4− �2+2��=0� Here� r = 4�d = 2 and c = 2�

W�RE3�y�3��= �5/5��5− �1+5��=−1� Here� r = 5�d = 1 and c = 5�

We can notice that function W applied to a concept RE is always greater than −1. The minimal
value −1 is reached if r = 1 or d = 1. W is equal to 0 only when r = d = 2.

2.4.4 Elementary Relation (noted PR)

If R is a finite binary relation (i.e. a subset of E×F, where E is a set of objects and F a set of properties)
and �a� b� ∈ R, then the union of rectangles containing �a� b� is the elementary relation PR (i.e. subset
of R) given by:

PR =#R�a� b�= I�b�R−1��R � I�a�R� (23.4)

where:

I is the identity relation�
R−1is the inverse relation of R (i.e the set of inverse pairs of R)�
‘o’ refers to the relative product operator, where �

R o R′ = ��x� y��∃z � �x� z� ∈ R∧�z� y� ∈ R′� (23.5)

Let A ⊆ E, then we define I�A�= ��a�a��a ∈ A�.
PR is the subrelation of R, prerestricted by the antecedents of b (i.e. b�R−1), and postrestricted by

the set of images of a (i.e. a.R).
In the next section, we use such elementary relations PR to find a coverage of a relation by some

‘minimal’ number of optimal concepts. The problem is NP-complete. For that reason, we only propose
an approximate solution based on a greedy method using the gain function W. Later, this algorithm
has been adapted to become incremental and concurrent.
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3. An Approximate Algorithm for Minimal Coverage
of a Binary Context

The search for a set of optimal rectangles that provides a coverage of a given relation R can be made
through the following steps [15]:

Example 2

Let R be a finite binary relation between two sets as illustrated in Figure 23.4.

1. Divide the relation R into disjoint elementary relations PR1�PR2� � � � �PRm.
2. For each elementary relation PRi, search the optimal rectangle which includes an element of PRi.

If PRi is a rectangle, then it is an optimal rectangle containing �a� b�, else check if PR contains other
elements �X�Y � in the form �a�Y � or �X�b� by trying all the images of a and all the antecedents of b.
The elementary relation of (1,7) as shown in Figure 23.5 is:

PR�1�7�=#R�1�7�= I�7�R−1��R � I�1�R� (23.6)

So we search in an iterative way the optimal rectangles of PR(1,7) which successively contain the
elements (1,8),(1,9),(1,11),(2,7) and (3,7).
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Figure 23.4 Binary relation R for Example 2.
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Figure 23.5 The elementary relation of (1,7).
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First Iteration
From the five elementary relations of the above-mentioned elements, select the first that gives a
maximal gain:

1. PR′1�8 =#PR1�7�1�8�!W�PR′1�8�= 0
2. PR′1�9 =#PR1�7�1�9�!W�PR′1�9�= 7/8◮ selected
3. PR′1�11=#PR1�7�1�11�!W�PR′1�11�= 7/8
4. PR′2�7 =#PR1�7�2�7�!W�PR′2�7�= 0
5. PR′3�7 =#PR1�7�3�7�!W�PR′3�7�= 7/9

The selected elementary relation PR′1�9 (Figure 23.6) is not a rectangle, so the algorithm continues on
the already selected elements, i.e.(1,7) and (1,9).

Second Iteration
Search now the optimal rectangles of PR′1�9 that successively contain elements (1,8), (1,11) and (3,9).
This step provides three elementary relations:

1. PR′′1�8 =#PR′1�9
�1�8�!W�PR′′1�8�=−1

2. PR′′1�11=#PR′1�9
�1�11�!W�PR′′1�11�= 7/8

3. PR′′3�9 =#PR′1�9
�3�9�!W�PR′′3�9�= 1◮ selected

PR′′3�9 is a rectangle (Figure 23.7), so it is an optimal one that contains element (1,7) of R.
Figure 23.8, illustrates the iterations used to search for the optimal rectangle. In bold you can see the

selected elementary relation at each level of the search tree. Each level is associated with an iteration
in the proposed algorithm. The proposed algorithm is polynomial. When we find an optimal rectangle,
we continue to search for a next optimal one containing another pair not already selected. Here, if
we select the pair (6,12), we find at the first iteration the concept: PR6�12 = �5�6�× �11�12�. Then,
if we select the pair (4,10), we obtain the concept: PR4�10 = �3�4�× �9�10�. Finally, if we select
the pair (2,8), we obtain the concept: PR2�8 = �2�1�× �7�8�. The selected coverage is composed of:
�PR′′3�9�PR6�12�PR4�10�PR2�8��.

1

3

7

8

9

11

PR (1,9)″

Figure 23.6 The selected elementary relation PR′1�9.
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PR′(3,9)

Figure 23.7 The optimal rectangle PR′3�9.
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Figure 23.8 Iterations for searching for the optimal rectangle contained in R.

Optimal_Rectangle (Relation R, int& s’, int& w’)
Problem: Determine the optimal rectangle of a binary relation R
Inputs: A binary relation R[] []
Outputs: The pair �s′�w ′� containing an optimal rectangle in R.
Begin
Let R [m][n] be the binary relation of m objects and n properties,
Emax = 0;// The maximum searched gain in R (W(R)) initialized to 0
For s = 0 to n−1

For w = 0 to m−1
If R�s�w�! = 0

Then PR= I�R�w�oRoI�s�R�; // calculating the elementary relation of (s,w)
E= economy (PR);

If E>Emax
Then �Emax = E;

Highest= PR; // Highest is the concept of maximal gain
s′ = s;
w ′ = w� 	

End if
End if

End for
End for
If Highest is not rectangle // r ! = cd

Then Optimal_Rectangle (Highest, s′�w ′) //Recursive call to function
//Optimal Rectangle starting from

//relation Highest corresponding to the
//next level in the search tree

Else return the pair�s′�w ′�
End if
End.

Figure 23.9 Algorithm calculating an optimal rectangle in a binary relation R.

In Figure 23.9, we illustrate an algorithm for extracting an optimal rectangle from a binary relation
(function optimal rectangle). In Figure 23.10, we illustrate a function to calculate the gain of a rectangle.

In the following section, we see that optimal concepts are used to discover the main patterns in data
and that they may be used in several situations to extract a different kind of knowledge.
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Problem: Determine the economy of a binary relation
Inputs: A binary relation R
Outputs: The economy
Begin
Let R [m][n] be the binary relation of m objects and n properties
Let r be the number of pairs in R.
Let c be the cardinality of domains of R.
Let d be the cardinality of the co-domain of R.
Return �r/�c∗d��∗�r − �c+d��
End.

Figure 23.10 Economy of a binary relation calculation.

4. Conceptual Knowledge Extraction from Data

Data are inherently and internally composed of related elements. We are generally able to map several
kinds of data into a binary relation linking these elements to their properties or to each other. As a first
example, assume that you want to analyze a group of computers. You first discover the general pattern
corresponding to the maximum number of properties shared by the maximum number of computers.
You then discover other subgroups of computers sharing another subset of properties, etc � � � Assume
now that you receive a million web/URLs from the Internet. If you associate, for each web page, a
list of keywords indexing it, then a user can identify the main features of this huge amount of web
references by first extracting optimal concepts. This classification of web pages should help users in
the browsing process to converge to the required documents in a shorter time. As a third example,
before deciding to read a book or document, it is useful to read its abstract. For that purpose, we
could decompose the document into sentences, then create a binary relation linking each sentence to
nonempty words belonging to it. An optimal concept linking the maximum number of sentences to
the maximum number of words (or similar words) may be used as a base for a summary extraction
from the document. As a last application, assume that you have an instance of a table in a relational
database model, how can we discover the entities of the database? In Section 4.1, we will explain
the main ideas of supervised learning using optimal concepts. In Section 4.2, we give a method to
explain how we discover entities from an instance of a database. In Section 4.3, we explain how
we can find the simplest software architecture with a minimal complexity. Finally, in Section 4.4,
we show that we can find the most important communicating groups in a network using optimal
concepts.

4.1 Supervised Learning by Associating Rules to Optimal Concepts

Assume that we start from a relation describing several objects (such as patients in a hospital, or
students, or customers in a bank). Here, data elements are objects or properties. Each object is supposed
to belong to a specific class. For example, for the table of patients, the class attribute may be associated
with the kind of disease the patient has (heart, skin, etc.). The purpose of supervised learning is to
predict the class of a new object, by using the knowledge extracted from the existing database about
already classified objects. In the proposed method, we first build a binary relation corresponding to
the relation between the set of objects and the set of attributes, as shown in Table 23.3. Using the
algorithm described in the previous section (Figures 23.9 and 23.10), we extract the minimal coverage
of optimal concepts of the binary relation R. For each concept, we create an association rule with some
degree of certainty [17].
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Table 23.3 Relation R.

P1 P2 P3 P4 P5 P6 Class

O1 1 0 0 1 0 0 C1
O2 0 1 1 0 1 1 C2
O3 1 0 0 1 0 0 C1
O4 0 1 1 0 1 1 C2
O5 1 0 0 1 0 0 C1

From this relation R between objects O1� � � � �O5 and properties P1� � � � �P6, by the algorithm of
the previous section, we find the following two concepts:

R = �O1�O3�O5�× �P1�P4�∪ �O2�O4�× �P2�P3�P5�P6�

Because all objects contained in the first concept are in the class C1, we extract the first association rule:

P1 AND P2 THEN CLASS= C1 WITH CERTAINTY DEGREE= 1

By the same means, from the second concept, we can extract the second rule:

P2 AND P3 AND P5 AND P6 THEN CLASS= C2 WITH CERTAINTY

DEGREE = 1

From the minimal coverage, we can, in this way, extract a minimal number of rules associated with
each concept. When we have to decide about the class of an object with respect to relation R, we
can use these association rules to give the ‘best’ approximation to the predicted class of this object.
However, a concept may contain objects belonging to different classes. In that case, assume that a
concept �O2�O4�× �P1�P2�P3� contains only 57% of objects belonging to class C1, then we create
the rule:

IF P1 AND P2 AND P3 THEN CLASS= C1 WITH CERTAINTY DEGREE= 0�57

So, we select the class corresponding to the majority of objects in the concept. When we have to
decide about the class of an object, we can deduce different alternatives, but we only take the best one,
corresponding to the class that we can deduce with the highest certainty degree. Experiences realized
on several public databases (such as heart disease and flower tables) have proved that the proposed
approach is defendable with respect to other known methods. The learning time corresponding to
rule generation is polynomial and lower than the other methods. By using an incremental approach,
we have been able to improve time efficiency by only updating a few concepts in each database
update.

4.2 Automatic Entity Extraction from an Instance

of a Relational Database

Assume that you start with the instance of a database in Table 23.4. This table links three different
entities: suppliers, projects and parts. We assume that initially, we ignore these entities and would
like to discover these entities automatically. We can notice that an entity is defined as a subset of
attributes. In this example, we have the following attributes: {S#, SNAME, STATUS, SCITY, P#,
PNAME, COLOR, WEIGHT, PCITY, J#, JNAME, JCITY, QTY }.
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Table 23.4 An instance SPJ of a relational database.

S# SNAME STATUS SCITY P# PNAME COLOR WEIGHT PCITY J# JNAME JCITY QTY

S1 Smith 20 London p1 Nut Red 12 London J1 Sorter Paris 200
S1 Smith 20 London p1 Nut Red 12 London J4 Console Athens 700
S2 Durand 10 Paris p3 Screw Blue 17 Rome J1 Sorter Paris 400
S2 Durand 10 Paris p3 Screw Blue 17 Rome J2 Punch Rome 200
S2 Durand 10 Paris p3 Screw Blue 17 Rome J3 Reader Athens 200
S2 Durand 10 Paris p3 Screw Blue 17 Rome J4 Console Athens 500
S2 Durand 10 Paris p3 Screw Blue 17 Rome J5 Collator London 600
S2 Durand 10 Paris p3 Screw Blue 17 Rome J6 Terminal Oslo 400
S2 Durand 10 Paris p3 Screw Blue 17 Rome J7 Tape London 800
S2 Durand 10 Paris p5 Cam Blue 12 Paris J2 Punch Rome 100
S3 Dupont 30 Paris p3 Screw Blue 17 Rome J1 Reader Paris 200
S3 Dupont 30 Paris p4 Screw Red 14 London J2 Tape Rome 500
S4 Clark 20 London p6 Cog Red 19 London J3 Console Athens 300
S4 Clark 20 London p6 Cog Red 19 London J7 Console London 300
S5 Kurt 30 Athens p1 Nut Red 12 London J4 Punch Athens 1000
S5 Kurt 30 Athens p2 Bolt Green 17 Paris J4 Console Athens 100
S5 Kurt 30 Athens p2 Bolt Green 17 Paris J2 Collator Rome 200
S5 Kurt 30 Athens p3 Screw Blue 17 Rome J4 Console Athens 1200
S5 Kurt 30 Athens p5 Cam Blue 12 Paris J5 Tape London 500
S5 Kurt 30 Athens p5 Cam Blue 12 Paris J4 Console Athens 400
S5 Kurt 30 Athens p5 Cam Blue 12 Paris J7 Punch London 100
S5 Kurt 30 Athens p4 Cam Red 14 London J4 Console Athens 800
S5 Kurt 30 Athens p6 Cam Red 19 London J2 Punch Rome 200
S5 Kurt 30 Athens p6 Cam Red 19 London J4 Console Athens 500

The entity extraction algorithm [18–20] is composed of the following steps:

1. We define elementary data as a pair of (attribute, value) written as ‘attribute.value’. The
elementary data set is: {S#.S1, S#.S2, S#.S3, S#.S4, S#.S5, SNAME.Clark, SNAME.Kurt,
SNAME.Dupont, SNAME.Smith, SNAME.Durand, STATUS.10, STATUS.20, STATUS.30,
SCITY.Paris, SCITY.Athens, SCITY.London, P#.p1, P#.p2, P#.p3, P#.p4, P#.p5, P#.p6, etc …}.

2. We then create a binary relation R relating elementary data using the following definition. We say
that a pair of items �X�x�Y�y� belongs to binary relation R if and only if x is the value for attribute
X, and y is the value for attribute Y , for the same row in the instance SPJ in Table 23.4. We then
extract the first optimal concept REopt as shown in Figure 23.11.

3. From REopt we may extract two disjoint sets of attributes: set Sleft , which contains the attributes
which appear in dom�REopt�, and set Sright , which contains the attributes which appear in
cod�REopt�.

Sleft = �S#�SNAME, STATUS, SCITY, P#�PNAME, COLOR, WEIGHT, PCITY�!

Sright = �J#� JNAME, JCITY, QUANTITY�

{S#.S2, SNAME.Durand, STATUS.10, SCITY.Paris, PNAME.Screw, COLOR.Blue, JCITY.Rome,
WEIGHT.17} X {J#.J1; JNAME.Sorter; JCITY.Paris, QTY.200, J#.J4, JNAME.Console, JCITY.Athens;
QTY.500, J#.J2, JNAME.Punch, JCITY.Rome; J#.J3; JNAME.Reader, QTY.200, J#.J5, Collator.10,
JCITY.London, QTY.600, J#.J6, JNAME.Terminal, JCITY.Oslo; J#.J7, JNAME.Tape, QTY.800};

Figure 23.11 Optimal rectangle REopt of R.



Conclusion 465

As a matter of fact, Sleft represents the two entitites Supplier and Parts, and Sright represents the two
entities Project and Quantity. Furthermore, Sleft and Sright are also disjoint.

4. By making the projection of SPJ on the attributes of Sleft , we obtain SPJSleft . Similarly, the projection
of SPJ on the attributes of Sright gives SPJSright . Then we apply steps 1 to 3 successively on SPJSleft

and SPJSright . The decomposition of SPJSleft gives exactly the two predicted entities:

Supplier = �S#�SNAME, STATUS, SCITY� and

Parts= �P#�PNAME, COLOR, WEIGHT, PCITY�

The decomposition of SPJSright gives exactly the two other predicted entities:

Project = �J#� JNAME, JCITY�and�Quantity��

As a matter of fact, Quantity cannot be associated with any other entity. Consequently, there is no
reason to associate it with Parts, Project or Supplier.

We have done similar experiments with several instances of SPJ, with different sizes, and we have
always obtained exact results. We have made other experiments with two to four attributes, and we
have also obtained good results. These results may be considered excellent, since the number of all
possible combinations of subsets of attributes is higher than 213.

4.3 Software Architecture Development

The question here is to derive a software with the simplest architecture possible: i.e. with minimal
interactions between its components. In functional programming, we may consider a function as
elementary data and include a pair of functions �x� y� if and only if function x calls function y.
Then, using the algorithm of Section 3, we can restructure the software by clustering the functions
associated with optimal concepts into the same subsystem [21,22]. The method could be reiterated
to an upper level, using a uniform algorithm. We can also relate data to functions, then change
automatically the program into an object-oriented one. When the program is already written as an
object-oriented one, we can use communication between classes to create a binary relation, then using
the algorithm in Section 3, we can create superclasses to obtain a better software structuring with a
minimal communication between the subsystems that are identified with the derived superclasses.

4.4 Automatic User Classification in the Network

Assume that an administrator of a server would like to classify the users into groups of users that
communicate the most. In this case, it becomes obvious that we can use an incremental version of
the algorithm in Section 3. First, we can create a binary relation between different users if they have
communicated at least some number of messages per month. Second, we extract the minimum number
of concepts. Each concept will identify a group of users. This incremental classification might be used
for several purposes.

5. Conclusion

In this chapter, one can find a uniform and incremental algorithm for data organization. This method
is based on formal concept analysis. Among the exponential number of concepts existing between
elementary data, we only select optimal ones. We explained here how we can use these optimal
concepts to extract association rules, or entities, from an instance of a database, or to find the best
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architecture of a software, or to discover the main communicating groups in a network. We can also
use these algorithms to generate a summary from a text, using the optimal concept in the text as the
main part which is used to generate a summary [23–27]. Each concept represents a cluster of sentences
sharing common indexing words. From each concept, the system extracts different parts of the text.
The quality of the summaries seems to be quite acceptable. In the future, we will be able to integrate
the system to abstract huge documents. This system may be integrated into search engines to filter only
web pages belonging to the optimal concept associated with the binary relations linking web pages to
their indexing words. It would also be interesting to use the system to filter successive concepts from
search engines to only deliver web pages belonging to the main concepts from the global web pages
extracted from the usual search engines. We think that we may improve the quality of the optimal
concept selected by using better heuristics. One important aspect of these algorithms is that they may
find concepts in an incremental way. So, even if the initial concept extraction is expensive in terms of
time, updating these concepts is not time consuming.
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The world of digital communications has received much attention in the last few years. Extraordinary

advances in both laser and semiconductor technologies have favored the development of new

communication systems. However, it was the emergence of the Internet and the Web that created the

largest impact on the telecommunication networks. Their open architecture has provided companies and

users with promising opportunities for both e-commerce and e-services (e-banking, e-trading, e-training

and others). However, these systems have also proved to be quite vulnerable and, consequently, new

challenges must be faced. A crucial problem in all communication technologies is security. In this

work, two different chaotic schemes for cryptographic communications with semiconductor lasers are

described. Both approaches consist of an optical fiber communication network in which the transmitter

and the receiver are both semiconductor lasers subjected to phase-conjugate feedback. The laser

parameters are carefully chosen in such a way that the lasers exhibit a chaotic behavior, which is

used to mask the message from the transmitter to the receiver. Thus, the laser parameters serve as

the encryption key. In the first scheme, chaotic masking, the message is added to the chaotic output of

the transmitter and then sent to the receiver, which synchronizes only with the chaotic component of

the received signal. The message is recovered by a simple subtraction of the synchronized signal from

the transmitted one. In the second scheme, chaotic switching, the information is binary and switches

the transmitted signal between two different attractors associated with different chaotic receivers.

Potential applications of these schemes, as well as their extraordinary advantages in comparison to

other cryptographic schemes, are also discussed.
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1. Introduction

In the last few years we have witnessed an extraordinary worldwide growth of digital communications.
Extraordinary advances in both laser and semiconductor technologies have favored the appearance of
a number of very powerful communication systems (Internet, PDAs, Web TV, high-speed industrial
networks, high-bandwidth optical fibers, etc.) and many others are still under development. However, it
was the emergence of the Internet and the Web that created the largest impact on the telecommunication
networks. The current expanding e-commerce economy, including the business-to-consumer and
business-to-business sectors, as well as e-banking, e-trading, e-training and others, will require a
network infrastructure capable of supporting the growing number of Internet transactions at an
increasing rate. As a consequence, this will create an ongoing demand for more powerful servers,
networks and increasing bandwidths. Laser technology based on specialized semiconductor equipment
will play a key role in this promising future development of digital communications. In particular, most
of the current development of digital communications is motivated by laser technology, in which optical
fibers are used for data transmission [1]. By means of optical fiber, our computers can effectively
support real-time video, multimedia, Internet, etc. and enormous amounts of information can easily be
transmitted. In this new technology, the role of semiconductor lasers (or diode lasers) is analogous to
the role of transistors in electronics. An optical telecommunication network can be seen as a network
of semiconductor lasers connected by optical fibers. These semiconductor lasers are needed for the
generation of signals, for amplification after many kilometers, and for retrieval of the information at
the end point.

On the other hand, the users of this new technology demand effective protection of their information.
While companies of all sizes increasingly are utilizing the Internet and Web technologies to lower
costs and increase efficiencies and revenues, the open architecture of the Internet and Web opens
organizations and users up to an increasing array of security threats. The need for security, evidenced
since mid 2003 by increasing series of attacks on networks and systems all over the world, introduces
new challenging problems that must be addressed.

In order to achieve a higher security and efficiency level, we must ensure first that only
authorized users will gain access to the company resources and systems. For example, in many
communication systems (army, police, medical services, etc.) it is very important to establish the
clear and unquestionable identity of the communicating parties (authentication). Current security on
the Internet involves brute-force firewalls that deny all unsolicited traffic. However, sophisticated
Web applications require more powerful methods of protection against attacks. This is also a key
issue in current banking services, since the most usual authentication tools, such as magnetic cards
and personal identification numbers currently used to access Automatic Teller Machines (ATMs),
do not provide a sufficient degree of security and are probably a source of unauthorized operations.
In addition, it is important to prevent the sender from later denying that he/she sent a message
(nonrepudiation). Because of some advantages (ease of deployment and lower costs), these features are
often checked by software. However, the highest level of reliability for (among others) authentication
and nonrepudiation involves hardware that must be associated with authorized users and that is not
easy to duplicate. As a consequence, a number of different approaches based on hardware have recently
arisen. In addition to the classical cryptographic models, we can quote those based on biometric
technology, such as fingerprint recognition, face recognition, iris recognition, hand shape recognition,
signature recognition, voice recognition, etc. (see, for example, [2] to get a quick insight about some
recent advances on this topic). The core of this new paradigm for security is to use human body
characteristics to identify and authenticate users. Unlike ID cards, passwords or keycards (which can
be forgotten, lost or shared), these new techniques try to take advantage of ‘what users are’, as
opposed to ‘what users have’. However, biometric mechanisms are still prone to errors, as they fail to
provide effective and reliable recognition. Additional shortcomings are the huge database required for
storage of biometric templates and the fact that they cannot eliminate the use of stolen or copied valid
signatures.
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To overcome these limitations, different cryptographic schemes have been applied to hide information
from unauthorized parties during the communication process [3,4]. The basic elements of these schemes
are: a sender (or transmitter), a receiver and a message to be sent from the transmitter to the receiver.
It is assumed that any communication between sender and receiver may be read or intercepted by
a hostile person, the attacker. The primary objective of cryptography is to encode the message in
such a way that the attacker cannot understand it. Furthermore, the most recent cryptographic models
incorporate additional methods for many other tasks (the interested reader is referred to [4–7] for a
gentle introduction to cryptography with many algorithms, C/C++ codes, pseudocode descriptions of
a large number of algorithms and hardware aspects of cryptography), such as:

• access control: implies protection against the unauthorized use of the communication channel;
• authentication: provides methods to authenticate the identity of the sender;
• confidentiality: protects against disclosure to unauthorized parties;
• integrity: protects against the unauthorized alteration of the message;
• nonrepudiation: prevents the sender from later denying that he/she sent a particular message on a
particular date and time;

• availability: implies that the authorized users have access to the communication system when they
need it.

Of course, some of the previous features can be combined. For example, user authentication is often
used for access control purposes, nonrepudiation is combined with user authentication, etc. To provide
the users with the previous features, a number of different methods have been developed [5–7]. Among
them, the possibility of encoding messages within a chaotic carrier has received considerable attention
in the last few years [8–19]. In this scheme, both the transmitter and the receiver are (identical) chaotic
systems. The chaotic output of the transmitter is used as a carrier in which the message is encoded
(masked). The amplitude of the message is much smaller than the typical fluctuations of the chaotic
carrier, so that it is very difficult to isolate the message from the chaotic carrier. Decoding is based
on the fact that coupled chaotic systems are able to synchronize their output under certain conditions
[18]. To decode the message, the transmitted signal is coupled to the chaotic receiver, which is similar
to the transmitter. The receiver synchronizes with the chaotic carrier itself, so that the message can be
recovered by subtracting the receiver output from the transmitted signal.

This scheme has been applied to secure communications with electronic circuits [11–13,16] and
lasers [10,15]. Unfortunately, many of these models exhibit shortcomings that dramatically restrict
their application to secure communications. The main one is that, as shown in [20–22], messages
masked by low-dimensional chaotic processes, once intercepted, are sometimes readily extracted, even
though the channel noise is rather high [23]. This fact explains why this kind of scheme has not been
extensively developed for commercial purposes yet.

Until a few years ago, the previous limitation was considered to be overcome by employing either
high-dimensional chaotic systems [24] or high-frequency devices like lasers. However, some recent
results have reported extraction of messages with very high dimensions and high chaoticity [25], thus
limiting the applicability of these systems. By contrast, high-frequency systems are still seen as optimal
candidates for chaotic cryptography.

In this context, the present chapter describes two different schemes (chaotic masking and chaotic
switching) based on chaos for cryptographic communications with semiconductor lasers. Both
approaches consist of an optical fiber communication network in which the transmitter and the receiver
are both (identical) semiconductor lasers subjected to phase-conjugate feedback. The laser parameters
are carefully chosen in such a way that the lasers exhibit a chaotic behavior, which is used to mask
the message. Thus, the laser parameters serve as the encryption key. In the first scheme, chaotic
masking, the message is added to the chaotic output of the transmitter and then sent to the receiver,
which synchronizes only with the chaotic component of the received signal. The message is recovered
by a simple subtraction of the synchronized signal from the transmitted one. In the second scheme,
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chaotic switching, the information is binary and switches the transmitted signal between two different
attractors associated with different chaotic receivers. These new systems provide all the features listed
above, they are neither hard to make nor very expensive, they are portable, they support much more
information than any other communication system and finally, they are impossible to duplicate with
current technology. Each of these statements will be adequately reasoned in the following sections.

The structure of the chapter is as follows: Section 2 describes the semiconductor lasers subjected
to phase-conjugate feedback. The steps needed for the implementation of a chaotic cryptographic
communication system based on this kind of laser are also discussed in this section. Then, Section 3
describes two different schemes (chaotic masking and chaotic switching) for applying such a
communication system to cryptographic communications. The performance of these methods is
analyzed by means of some illustrative and interesting examples. Finally, Section 4 closes with the
main conclusions of this work.

2. Semiconductor Lasers with Optical Feedback

Lasers have become one of the most remarkable technologies of recent decades. They are indispensable
in a variety of fields: the entertainment industry (laser games, light shows), dentistry and medicine
(microsurgery), manufacturing (for example, machining and welding), remote sensing, etc. However,
the most outstanding current application of lasers appears in telecommunications, where optical fibers
are used for data transmission [1,26]. A communication network based on optical fibers has several
orders of magnitude more information-carrying capacity than a copper-wire-based net (for instance, ten
million telephone conversations are considered to be feasible for lasers with short-range connections
�≤ 50km�, while a standard copper-wire connection can only carry one hundred telephone connections
over 200 meters, after which it needs amplification). For a cryptographic communication system based
on lasers to be developed, we need to work through four main steps that will be carefully analyzed in
the following paragraphs:

• choice of the laser;
• determination of the laser equations and parameters;
• choice of an accessible parameter for chaoticity;
• synchronization of the chaotic transmitter and receiver systems.

2.1 Step 1: Choice of the Laser

In this section we discuss the choice of the kind of laser and its components. This process is somewhat
similar to choosing the hardware components of a computer. Here, our decision is mostly determined
by the requirements of communication and security.

All lasers basically consist of a medium capable of amplification of light and a cavity providing an
adequate mechanism for frequency selection [27]. In the case of semiconductor lasers, various types
of semiconductor materials may be used. These materials emit, under suitable conditions, light with
wavelengths ranging from the visible to the infrared (≈ 0�55 to ≈ 2�0�m) [1]. This range is especially
attractive for optical communication purposes, because silica fibers are virtually transparent for 1.3 and
1�55�m, providing a very low distortion of optical signals when transmitted over long distances. For
these reasons, semiconductor lasers have played a key role in the replacement of the ‘old’ copper-wire-
based networks by optical fiber networks. This conversion makes it possible to transmit efficiently and
cheaply enormous amounts of information all over the world.

In addition, diode lasers are relatively easy to make and are very reliable, exhibiting a very small
size: a typical helium–neon laser (such as those in supermarket scanners) has a length of a few tens
of centimeters, whereas the typical length of a semiconductor laser is about 0.25millimeters. Finally,
they are very efficient: their efficiency ranges from 10% to 60%, whereas gas lasers have a typical
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efficiency of 1%. All these facts explain why these lasers are so popular as light sources in optical
communication networks.

Of course, semiconductor lasers also have their disadvantages: they are very sensitive to external
perturbations and can easily be destabilized, for example, when the laser is current modulated or
subjected to an external signal. This external field can be light from another laser or light source, or
light obtained by reflection from a mirror. These situations are usually referred to as optical injection
and optical feedback, respectively [28].

The optical feedback comes from an external mirror positioned at a distance
c�.

2
(where c

represents the velocity of light in a vacuum), thereby creating an external cavity with round-trip ..
Depending on the type of mirror (conventional or phase-conjugate), two different types of optical
feedback can be considered (see Figure 24.1):

• Conventional Optical Feedback (COF): the plane wave is reflected at an ordinary mirror; only the
component of the wave vector that is perpendicular to the mirror is reversed (Figure 24.1(a)).

• Phase-Conjugate Feedback (PCF): a beam is reflected by a phase-conjugate mirror; the complete
wave vector is reversed and the beam retraces its original path (Figure 24.1(b)).

The effect of optical feedback on these systems has been intensively studied since the late 1970s
from both the experimental and theoretical points of view [29–34]. For instance, it has been proven
that diode lasers with optical feedback can be stabilized in some cases [35,36], making them useful for
communications. In addition, PCF mirrors exhibit interesting advantages with respect to conventional
mirrors. The most important one is related to their distortion-undoing property. Any phase distortion
between source and phase-conjugator is fixed on the way back by the fact that light beams retrace
exactly their path to their respective sources. This property implies that PCF mirrors are a cheaper
alternative to the conventional ones, which had to be controlled.

There is, lastly, an additional major advantage of PCF lasers: perfect synchronization (zero error) is
only possible for diode lasers with a phase-conjugate mirror. Motivated by these attractive advantages,
in this chapter we will focus on semiconductor lasers subjected to PCF.

2.2 Step 2: Determination of the Laser Equations and Parameters

To understand the synchronization process described later, we need to introduce the rate equations
of the laser. They describe the behavior of the electric field E�t� and the inversion N�t� (the total

ϕ

ϕ

NORMAL
REFLECTION

(a) (b)

PHASE-CONJUGATE
REFLECTION

Figure 24.1 Two cases of optical feedback in semiconductor lasers. (a) Normal reflection; (b) phase-
conjugate reflection.



474 Communications With Chaotic Semiconductor Lasers

number of electron-hole pairs in the cavity) in a single-mode laser. Theoretical investigations of optical
feedback on semiconductor lasers are usually based on the Lang–Kobayashi equations [37], which
contain all the dominant effects observed experimentally. These rate equations are:

dE�t�

dt
= 1

2
�1− i��

[

G�t�− 1

.n

]

E�t�+�E∗ �t− .�+
√

2N�t���t� (24.1)

and

dN�t�

dt
= I

q
− N�t�

.e
−G�t� �E�t��2 (24.2)

where

G�t�= g �N�t�−N0�
(

1+ s �E�t��2
) (24.3)

The terms of the right-hand-side of Equation (24.1) can be interpreted as follows:

• the first term describes the behavior of the electric field for the solitary laser (the semiconductor
laser isolated from the outside world);

• the term �E∗�t− .� is associated with the optical feedback (the superscript ∗ of the electric field
stands for the complex conjugate). It is accounted for by two parameters: the delay time ., and the
feedback rate �;

• the last term
√

2N�t���t� is included here to account for the spontaneous emission noise that
naturally arises in real applications. Such a noise is modeled by a complex Gaussian white noise
term ��t� of zero mean, < ��t� >= 0, and correlation < �i�t��j�t

′� >= �ij�t− t′�. The parameter 
stands for the spontaneous emission rate.

The rest of the parameters, their symbols and the values used in this chapter are listed in Table 24.1.
We remark that it is not possible to create, a priori, lasers with the same parameters as those listed
in Table 24.1. What is really done in practical settings is to construct a new laser, then to determine
its parameters (which are only approximately chosen by the manufacturer) and finally to analyze its

Table 24.1 Parameter values of the semiconductor laser with
phase-conjugate feedback.

Parameter Symbol Value

Linewidth enhancement factor � 5
Photon lifetime .n 2 ns
Feedback coefficient � 0�0238ps−1

External cavity round-trip time . 200 ps
External cavity length Lext 1 cm
Spontaneous emission rate  1�5×10−9 ps−1

Bias current I 44mA
Electron charge q 1�602×10−19C
Carrier lifetime .e 2 ns
Gain parameter g 1�5×10−8

Nonlinear gain parameter s 5×10−7

Transparency carrier number N0 1�5×10−8
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dynamical behavior when varying an accessible parameter (for example, the distance between the laser
and the mirror, Lext�. Other laser and mirror parameters cannot be chosen but only determined after
construction. Especially interesting is the case of the mirror, because it is extracted from the central
part of a ‘wafer’ whose dynamical behavior changes as a function of the points of the piece. Thus,
usually only a few (typically two or three) small mirrors with the same parameters can be obtained
from the same piece. These mirrors can be used for the transmitter and the receiver lasers, so the
assumption that both systems are identical is feasible in practice. After finishing this process, no other
mirror with the same parameters can be made. This is a very important issue, because very strong
authentication requires hardware components that can be in the possession of only a few people at
a time. This situation differs radically from electronic circuits, which can easily be duplicated with
current engineering.

2.3 Step 3: Choice of Some Accessible Parameter for Chaoticity

Lasers have attracted considerable attention because of their interesting nonlinear behavior. In 1975,
Haken [38] showed that in some cases, the behavior of a laser is equivalent to that of the well-known
Lorenz equations (‘chaos’) [39]. Since then, numerous types of laser have been used to investigate
nonlinear dynamics [40,41]. Chaotic behavior of semiconductor lasers subjected to optical injection
has been analyzed in [42] and in [30] for the case of weak optical feedback.

In general, semiconductor lasers display richer chaotic dynamics in the case of PCF [29]. In fact,
the output of these lasers is chaotic due to the optical feedback from a phase-conjugate mirror. The
dynamics of the laser diode with external cavity can be generalized as a simple delay-differential model:

dX�t�

dt
= F�X�t��X�t− .�!�� (24.4)

where X�t� is a vector variable, F is a nonlinear vector field, . is the delay time introduced by the
external feedback and � is a system control parameter. In view of the dynamics of the delay-differential
system, several phase transitions among steady, periodic, quasiperiodic and chaotic states have been
appreciated.

For quantifying the laser dynamics, the use of bifurcation diagrams is well established [34]. It is a
powerful tool, since the diagram shows at a glance for which strengths of feedback the laser operates
stably, periodically or chaotically. For diode lasers with PCF, the bifurcation diagrams are obtained
by generating a time series for each feedback level and noting the carrier number N when the laser
power crossed the solitary laser value Nsol vs. ��., this last term meaning the feedback level. For the
choice of the laser parameters given in Table 24.1 and . = 200ps, we vary � such that ��. ∈ �1�5�
(i.e. � ∈ �0�005�0�025�). The corresponding bifurcation diagram is displayed in Figure 24.2. The figure
has been split into two parts: (a) shows the diagram for the whole interval � ∈ �0�005�0�025�, and
(b) a zoom of the chaotic region � ∈ �0�0235�0�025�.
As the reader may appreciate from Figure 24.2(a), the bifurcation diagram for diode lasers with

PCF is very complicated. Roughly speaking, a single crossing in the bifurcation diagram implies a
periodic output, whereas multiple crossings indicate period doublings, quasiperiodicity or chaos. In
Figure 24.2(a), the laser exhibits a steady state (corresponding to the blank regions without any dot)
on an interval for � starting at the initial value �= 0�005, which becomes unstable at a critical value
of �, and the laser becomes periodic. After a period-doubling region, quasiperiodicity (for example,
for �= 0�0187) and chaotic behaviors appear. However, chaos is interrupted by regions of nonchaotic
output although, in general, this output does not become completely stable. Figure 24.2(b) shows a
zoom of the chaotic region corresponding to � ∈ �0�0235�0�025�.
For the synchronization process to be possible we need a chaotic behavior for the laser. From

Figure 24.2, we have considered a feedback coefficient � = 0�0238, for which the laser behaves
chaotically. To check this, in Figure 24.3 we have represented both the trajectory of the laser intensity
(a) and its Fourier spectrum (b) for this parameter value.
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Figure 24.2 Bifurcation diagram for a semiconductor laser subjected to phase-conjugate feedback.
(a) Diagram for � ∈ �0�005�0�025�; (b) a zoom of the chaotic region � ∈ �0�0235�0�025�.
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Figure 24.3 Chaotic behavior of the diode laser with PCF for �= 0�0238. (a) Intensity of the chaotic
orbit during 5 ns; (b) Fourier spectrum.

2.4 Step 4: Synchronization of the Chaotic Transmitter

and Receiver Systems

The synchronization problem consists of making two or more chaotic systems oscillate in a synchronized
way. Although at first sight this seems impossible, many recent results have shown that synchronization
can be achieved under certain conditions. In 1990, Pecora and Carroll [18] showed that certain
subsystems of chaotic systems can be synchronized by linking them with common signals. Since
then, many other chaotic synchronization schemes have been reported in the literature. Among them,
some generalizations of the previous Pecora–Carroll scheme [43], the use of control [44], convex
combinations [45], system separation [46], etc. Applications of these schemes include discrete-time
chaotic systems [47,48], hyperchaos [24], spatiotemporal chaos in coupled nonlinear oscillators [49],
chaotic circuits [9,16,50], optical systems [8], lasers [10,15], model neurons [51], etc.
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In this section we explore the synchronization of two semiconductor lasers subjected to PCF and,
hence, described by Equations (24.1)–(24.3). Since the effect of the noise will be discussed later, its
associated term will be neglected, so we rewrite Equations (24.1)–(24.3) as:

dEt�r�t�

dt
= 1

2
�1− i��

(

Gt�r�t�−
1

.t�r

)

Et�r+�E∗t�r�t− .�+KrEt (24.5)
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∣
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2
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and the subscripts t and r are used to indicate respectively the transmitter and the receiver. The parameter
values are those listed in Table 24.1 with � = 0�0238, for which both lasers behave chaotically, as
shown in Section 2.3. On examining these equations, the receiver is seen to be similar to the transmitter
except for the fact that it incorporates a new term KrEt , meaning that we inject a small amount
(given by the coupling parameter Kr) of the transmitter signal Et to the receiver. Thus, by varying
this parameter Kr , we modify the amount of the injected signal. Furthermore, it can be proven that,
for certain choices of the laser parameter values, this synchronization is mathematically perfect. This
property can only be obtained for semiconductor lasers with PCF and involves a new parameter 
�t�r

(which has been assumed to be zero in our simulations), describing the frequency mismatch between
the solitary semiconductor laser and the laser used to pump the phase-conjugate mirror.

Figure 24.4 shows the synchronization for two different values of Kr: 0.025 and 0.05. The figure
represents the number of carriers of the transmitter laser N1 (above) and the difference between the
transmitter and the receiver N1–N2 (below). Of course, the difference N1–N2 should vanish for a perfect
synchronization. This occurs for both values of Kr , meaning that synchronization is robust to small
perturbations of this parameter. From these figures, it becomes clear that this kind of laser allows a
very accurate synchronization with a very brief transient, two remarkable features for communications.

The above scheme for a couple of systems can also be extended to a chain, or network, of chaotic
systems. In this case, the response system (with respect to a given drive) acts as the drive of a second
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Figure 24.4 Synchronization of chaotic lasers for different values of Kr . (a) 0.025; (b) 0.05. Each
figure represents the transmitter (above) and the difference between the transmitter and the receiver
(below).



478 Communications With Chaotic Semiconductor Lasers

response system, and so on. Thus, a cascade of synchronized systems can be obtained. We remark that
this set-up has very interesting applications in the field of secure communications.

3. Applications to Cryptographic Communications

Most of the interest in chaotic synchronization has been motivated by its potential application to
cryptographic communication [10–12,14–16]. Here, the information message is ‘coded’ by means of a
chaotic signal and then transmitted. The receiver contains a copy of the chaotic system that generates
the cipher key and produces the decoding signal by synchronizing with it. To accomplish this task,
a number of different methods have been described. Among them, perhaps the most interesting and
easiest to develop are chaotic masking and chaotic switching. They are analyzed in the following
sections.

3.1 Chaotic Masking

In this scheme, depicted in Figure 24.5, the optical carrier modulated by a small signal (the message EM)
is added to the transmitter laser output ED, i.e. ET = ED+EM, and transmitted to a response system
(the receiver), which is a replica of the laser that generates the chaotic signal (the drive). Decoding
is performed by the chaotic receiver, providing that it synchronizes only with the chaotic component
of the received signal, which is therefore available on the receiver laser output. A subtraction of the
synchronized signal ER ≈ ED from the transmitted signal ET = ED+EM results in the recovery of the
message.

We have applied this scheme to digital communications, where both the transmitter and the receiver
are semiconductor lasers with PCF. Figure 24.6 summarizes the different steps in this process: the
messageM consists of a digital signal generated by a table of bits 1 and−1, as shown in Figure 24.6(a).
The message is encoded by a small variable attenuation of the chaotic output (for example, the electric
field) of a laser subjected to PCF (transmitter) by:

�E′t�t�� = �Et�t�� �1+��M�t�� (24.8)

where � is a real number. Of course, the amplitude of the signal to be transmittedM�t� must be small in
comparison to the chaotic signal. Otherwise, information could be extracted directly from the waveform.
The transmitted signal ��E′�� (Figure 24.6(b)) is chaotic and virtually indistinguishable from that of the
chaotic drive (for instance, they both have a similar power spectrum). Therefore, no information can be
extracted from the encrypted signal. Then, it is coupled to another chaotic laser (receiver) that is similar
to the transmitter. The receiver synchronizes with the chaotic carrier itself �Er�t�� ≈ �Et�t��. The message
can be recovered from the transmitted signal as D�t� =

√

�E′t�t��2/�Er�t��2− 1 (Figure 24.6(c)) and
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Figure 24.5 Scheme of secure communication based on chaotic masking.
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Figure 24.6 Chaotic masking scheme. (a) A digital message; (b) the transmitted signal encoded;
(c) the recovered signal; (d) the recovered signal filtered; (e) the original and filtered messages.

then filtered (Figure 24.6(d)). A simple visual comparison of the original and the filtered messages
(Figure 24.6(e)) shows the excellent performance of the method.

Another interesting application of this methodology is the encoded transmission of digital images.
As an example, let us consider the image given in Figure 24.7, which consists of a 100×100 matrix
of gray-level intensities ranging from 0 to 255.

In this case, we can use the couple of drive-response drivers to encode and decode the image. In the
chaotic masking method, the chaotic signal from the transmitter is used to encode the list of gray-level
intensities after a transient of 20 iteration steps. Afterwards, the scheme displayed in Figure 24.5
is applied to recover the original image by using the synchronization process to clean the chaotic
signal out. Figure 24.8 shows the transmitted and received images. A simple visual comparison of
Figures 24.7 and 24.8(b) shows the excellent performance of the method. Note that no information
about the appearance of the initial image can be obtained from the noisy transmitted signal, shown in
Figure 24.8(a).

3.2 Chaotic Switching

Chaotic masking is not totally efficient, because only a part of the transmitted power carries information,
most being used to mask information. Chaotic switching (also known as chaotic shift keying) allows a
higher level of efficiency and security [13].
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Figure 24.7 Example of a digital image.
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Figure 24.8 (a) Transmitted and (b) recovered images.

In this case, the information is binary and switches the transmitted signal between two different
attractors associated with different chaotic receivers. This scheme is summarized in Figure 24.9. The
transmitter is switched between two different chaotic orbits by modulating the supply current of the
laser by the bit stream to be transmitted; bits M1 and M2 correspond to different pump currents P1 and
P2. Decoding at the receiver is performed by using two replicas of the chaotic drive, the first pumped
at current P1 and the second at P2. The received signal is sent to both decoders; however, only the one
having the pump current corresponding to the transmitted bit will synchronize. Signals E1 and E2 are
then obtained as the difference between the output of each decoder and the chaotic received signal.
Finally, the transmitted bits can be conveniently recovered, detecting which of E1 or E2 is zero. In
Figure 24.10, the outputs E1, E2 of the decoders for bit M1 and M2 are compared to the transmitted
signal (at the bottom). Signal E1/E0 falls to zero when system 1 synchronizes (bit M1 transmitted),
while it is chaotic when it does not (bit M2 transmitted). Signal E2/E0 from the other decoder has a
complementary trend.

It should be noticed that the selection of the laser parameters is critical, since it must guarantee
both secure communication and efficient decoding. Too closely spaced orbits would require a very
precise matching between transmitter and receiver; in addition, synchronization transients would be
long. On the contrary, too distant orbits would allow an attacker to make a working copy of the
receiver, even without an accurate knowledge of the parameters.
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4. Conclusions

In this chapter, two chaotic schemes for cryptographic communications with semiconductor lasers
have been described. Both systems consist of a network of chaotic semiconductor lasers subjected to
phase-conjugate feedback which, under the appropriate conditions, can be synchronized. This ability of
chaotic systems to synchronize can be successfully applied to secure communications. The first scheme,
chaotic masking, is simpler to implement as it requires only two systems, while the second scheme,
chaotic switching, is more efficient. The proposed methods improve substantially many other methods
based on hardware for tasks such as access control, integrity, authentication and nonrepudiation. In
particular, these systems are neither hard to make nor very expensive, they are very portable, they
support much more information than any other communication system and finally, they are impossible
to duplicate with current technology. Potential applications of the methods presented in this chapter
include all communications systems based on semiconductor lasers, ranging from e-safety on network
systems such as the Internet and the Web, to security in distributed environments. The proposed
methods also offer a reasonable alternative for authentication to the methods based on biometrics.

We remark that both systems are completely digital, thus allowing perfect matching (at the coding
level) of the receiver to the transmitter to be obtained. In addition, chaotic masking and switching
have been shown to be more secure than masking with noise, since in the latter case, data bits can be
extracted by using a correlator. This is not possible for chaotic lasers, since the correlation time of the
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Figure 24.10 Output signals E1/E0 and E2/E0 showing demodulation of bits M1 and M2.

bits and of the chaos are almost identical. Furthermore, because the systems do not include electrical
feedback (they are fully optical), these schemes are suitable for high-speed optical transmission.

Finally, it should be remarked that fiber dispersion and nonlinearities can deteriorate the transmitted
signal and make decoding impossible [26]. Although not included here because of space limitation,
we have checked that, under the appropriate circumstances (such as a fiber length not longer than
50 km and a loss coefficient 0 = 0�2dB/km, among others), this does not occur here. However, further
research is required to analyze the response of the systems under less favorable conditions. Our current
work on this issue is still in progress and the obtained results will be reported elsewhere.
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Free 129, 258, 261, 263, 397
Frequency 70, 149, 222
Front view 194, 378
Function (s) 10, 13, 58, 90, 91, 304, 305, 417, 442
Functional programming 465
Fundamentals 148, 253, 281, 416
Fusion 131, 133
Fuzzy ARTMAP, we group 67
Fuzzy logic 65, 285, 289, 368

G
Gain 150, 457
Galois 456, 457, 466
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Genetic operators 382
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Geometric algebra 411, 412, 413
Geometric learning 422
Geometric neuron 418, 419
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Geometrical transformation 346
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Grade 413
Gradient 33, 36, 40
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Grammar 11, 88, 259, 260
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Hamilton relations 414
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Hartley 439, 440, 443
Hartley transform 440, 441, 451
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Holo-relationships 363, 364, 377
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Interpolation 125, 400, 419
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Node(s) 347, 349, 350, 360, 371
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Noise reduction 54, 56, 57, 223, 321
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Non-rigid transformation 120
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Novel 67, 119, 206, 411
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O
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Object-oriented 465
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Objective function 253, 305, 422
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Observation 5, 173, 227, 229, 393
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Operator 47, 56, 136, 384
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Order 20, 47, 61, 69, 133, 404
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Orthogonal 120, 225, 366, 414
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Orthonormal axes 301
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Outdoor 346, 353, 360
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Outlines 363, 364, 373
Overlapping 3, 55, 61, 128, 211, 360

P
Packaging 364
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Parametric space 297, 299
Path 53, 58, 68, 395
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Pattern recognition systems 147, 173, 298, 312
Pattern(s) 1, 12, 76, 86, 105
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Pen-up 70, 71, 105
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Performance 4, 42, 131, 422
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Physics 167, 412, 436, 483
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Pixel 1, 4, 6
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Pixel-counting 91
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Planes 149, 245, 321, 415
Platonic 431
Point-Spread Function 323
Point(s) 51, 365, 369
Polydisc 417
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Polynomial kernel 309, 311, 431
Polynomial(s) 228, 311, 347, 390, 400
Population 178, 382, 384
Pose 431
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Possible 6, 23, 34, 353
Postprocessing 126, 236, 390
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Prediction 77, 156, 309, 416
Preprocessing 1, 4, 16
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Randomized Hough Transform 327, 331, 343
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Raw 68, 70, 391
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Real-valued 412, 416, 418, 427
Rear-view 355
Recall 41, 42, 43, 45, 46
Receiver 128, 330, 469, 471
Receiver Operating Curve 128
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Recognition rates 148, 156, 310, 311, 312
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Recognizer 54, 82, 86
Reconstruction 78, 82, 224, 253, 364, 374
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Recursive 317, 342, 350
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Redundant 56, 57, 183, 394
Reference 5, 15, 45, 65, 131
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Refinement 26, 33, 74, 75
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Region(s) 25, 382, 405, 475
Regionalized variable 91
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Registration 114, 119, 120, 124, 126

Relation(s) 146, 348, 455, 465–7
Relational 348, 453, 463, 466
Remote 146, 472
Resolution 20, 34, 41, 47, 140, 241–2
Resonance 74, 271, 274
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Restricted entry control 131, 132
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Samples 15, 72, 74, 76, 86, 100, 132, 301
Sampling 70, 72, 153, 225, 322, 408, 448
Saturated 324, 326, 327, 336, 337, 395
Saturated images 326, 327, 333, 336, 337
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Scalar(s) 157, 412, 414–15, 419, 424, 433, 483
Scaling 5, 13, 90, 120, 123, 247
Scan 33
Scanner-based 131, 132
Scattering 332, 333
Scene 35, 48, 318, 324, 345–6, 348–9, 350, 353
Searching 35, 132, 139, 143, 159, 231–2, 307, 366,
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Section 3, 4, 15, 366
Security 20, 32, 100, 107, 469
Seed 23, 156, 375, 376, 454
Segmentation 1, 4–5, 7, 8, 20, 48, 52, 133
Segments 6, 33, 35, 36, 55, 73, 89
Selection 10, 38, 73, 139, 382
Self-occlusion 356
Semantic 34, 236, 258, 264, 266, 363, 364
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Sensing 20, 146, 472
Sensitive 107, 177, 207, 247, 390
Sensor 20, 33, 120–1, 132, 255
Sensor cost 131, 132
Sensor size 131, 132
Separable 211, 423, 426, 433–4
Separation 48, 51–2, 54, 56, 60, 62, 64, 374
Sequence 47, 68–70, 104–5, 366
Sequential 56, 73, 104, 106, 133, 135–6, 269–70,

348, 394
Sequential Forward Selection (SFS) 73
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Shallow-buried mines 320
Shape 2, 21, 23–4, 28, 67, 82, 106
Shape-based 97, 103, 131, 132
Shape classification 228, 238, 428, 450
Shape matching 119, 126, 128, 129, 357
Short-time cosine transform 441
Short-time Fourier transform 439–41, 447–8
Sigmoid 93, 155, 156, 302, 416
Signal 13, 17, 32, 62, 71, 72, 133, 142, 416
Signal-independent noise 323
Signal processing 17, 32, 117, 133, 142, 143, 166, 199
Signal variances 443, 444, 447, 449
Signal/noise 446, 447, 449
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Signature recognition 170, 176, 470
Signature verification 99–100, 102–3, 107, 114,

116, 176
Signature verification system 99–102, 104, 107–8
Silhouette 346
Similarity 35, 97, 120, 122, 131
Simulation parameters 447
Simulink 447
Single-argument function 418
Single Closed Regions 363–4, 367, 369, 371, 386
Single-mode laser 474
Singular 129, 188, 367, 371
Singularities 417
Sizes 15, 34, 69, 126, 152, 226
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Skeleton model 395
Skeleton(s) 56, 120, 261, 365, 387–93
Slope(s) 23, 24, 266, 287, 293, 365, 371
Smoothing filter 96
Sobel 133
Sobel edge detector 23
Sobel operators 135, 278
Software 20, 35, 36, 47, 106, 107, 376
Software architecture 20, 453, 462, 465
Software prototype 376–7, 386–7

Soil 320–1, 324, 330, 331, 339
Soil surface 320–2, 329, 339
Solid 366, 377, 388, 390, 397
Solitary laser 474–5
Sonar signal 323
Sorting 377
Sparse 365, 387, 390
Spatial cohesion 35
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Spatiotemporal chaos 476, 484
Spectrum 166, 177, 185, 188, 440
Speech-based 131, 132, 142
Speech recognition 104, 167, 199, 238, 299
Speech signals 142, 143, 299, 309
Speed 2, 20, 100, 106, 107, 170, 176, 207
Spheres 415, 425–6, 428
Spline curves 379
Spline(s) 119, 121–2, 126, 129, 147, 379, 400
Spurious 365, 389–90, 392, 399, 407
Square 134–5, 156, 322, 413, 427
Stack filter 133, 139, 142, 143
Standard 14, 24, 30, 83, 114, 136, 137, 149, 359
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Stationarity 91–2, 323, 441
Stationary 34, 47, 92, 147, 227, 238, 439, 440
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Statistical 5, 6, 11, 18, 68, 87–8, 333
Statistical characteristics 444
Statistical features 89, 95–6, 148, 285
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Straight 23, 173, 299, 364
Straight lines 299, 364–5, 379
Strict stationarity 92
Strings 34, 35, 51, 52
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Stroke(s) 5, 18, 36, 38, 52–3, 61, 72
Structural 5, 11, 389–90, 392–3
Structural orientation 389–90, 392–3, 400, 406
Structural segment 398
Styles used 70
Subconcept 455
Subiteration 389
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Subrelation 458
Successor 367, 371, 372
Sum 123, 139, 157, 163, 322, 340, 416
Summation 10, 139, 350
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Supervised 13, 74, 82, 88, 133, 453
Support Multivector Machines 411–12, 422–4
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Surface 104, 120, 124, 174, 181, 182
Surveillance 20, 170, 174, 205
Sweeping 412, 413
Symbol recognition 87, 364
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Synchronization 472, 473, 475, 476
Syntactic 1, 11, 363
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Technologies 98, 99, 100, 131, 364
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Templates 4–5, 12, 18, 20, 57, 131
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Text 1–6, 15–17, 33–4
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Text block detection 35, 38
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Text line segments 36, 38–9, 46
Text pixels 33, 36, 38–9, 46
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Textual information 33
Texture-based 131, 132
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Theorem 247, 252, 343, 416
Theory 17, 67, 74, 82
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Thin 121–2, 124–6, 321
Thin line 375
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Thinning 20, 52–4, 365
Thinning algorithms 52, 387, 409
Threading 364
Threshold 9, 23–6, 34–5, 37–8, 58, 101
Tilt 105, 235
Time-warping 299
Tip 107, 108, 395, 398, 399
Tissues 289, 389, 390, 407, 408
Tolerance 5, 119, 120, 364, 366
Tool 13, 97, 105, 116, 172, 454
Top-down 38, 53, 61, 89, 388
Top-valley agent 57, 59
Topological 4, 5, 182, 346
Topological segmentation 389, 390, 392, 393
Topology-preserving 389–90, 397, 408

Touching 51, 52, 53, 54, 55, 61
Trabecular bone 390, 403, 404, 405, 406
Trabeculated 389–90, 403–4
Trabeculated tissues 390, 407–8
Training 11, 13–15, 100, 301, 417
Training algorithm 75, 206, 212, 219, 314
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Transitions 26, 37, 71, 228, 229, 230
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Transmission 223, 470, 472, 479, 482
Transmitter 321, 469, 471, 472, 475
Transputer 104
Trapezoidal 349, 355, 366
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Tree 89, 223, 224, 391
Tree structure 89, 225, 238
Triangle 427, 428
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Trigonometric 351, 377
Trinocular camera 431
Triplet 207, 327, 349
Trivector 413, 414, 419
Tshebysheff 425
Tuning 236, 421
Tunnels 397
Turbine blades 448

U
Unary 348, 355
Uncertainties 347
Uniform 34, 35, 46, 52, 136, 174, 206, 389
Uniform-valued region 327
UNIPEN 67, 76–7, 79, 82, 87–8
Uniqueness 131, 181
Universal approximators 417, 436
Universality 131, 177, 178
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Upper-case letters 67, 76, 78, 80
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V
Validation 131, 139, 181, 244, 246, 450
Valley 51, 52, 53, 57, 58, 59, 173
Values 131, 418, 443, 447
Variance 17, 35, 38, 91, 349
Variogram function 91, 92, 93
Vector algebra 412
Vector-based 377
Vector quantization 82, 88, 206
Vector(s) 13, 14, 68, 73–5, 77, 111, 413
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Vehicle 19–20, 25, 32, 177, 350, 355
Vehicle identification system 19
Velocity 68, 70, 72, 102, 104, 111
Velocity profile 70, 71
Verification 2, 16, 90, 95, 99, 101–3
Verification errors 138, 139
Vertical axis 312
Vertical edge matching 20–1, 24, 32
Vertical projection 1, 4, 8, 9, 16, 17, 20, 22, 26
Vertices 377
Vibration diagnostics 439, 449
Vibration resonant oscillations 447
Vibrations 448
Video 33, 34, 35, 38, 40, 42, 45, 46
Viewpoint 346, 373
Visual 17, 48, 68, 97, 131, 132
Viterbi approximation 106
Voice recognition 170, 176, 470
Volume-oriented 377
Volume(s) 75, 139, 243, 281, 413, 419
Vowels 2, 297, 300, 309, 311
Voxel 389, 390, 391, 393, 394

W
Wave vector 473
Waveform 223, 298, 321, 450, 478

Wavelet 35, 133, 135, 147, 149, 150
Wavelet-based 133, 135
Wavelet-based segmentation 135
Wavelet transform 135, 147, 150, 151, 152
Web technologies 470
Wedge 412, 413
Wedging points 415
Weight 6, 12, 15, 112, 113, 125, 401
Weighted 81, 103, 133, 154, 155, 157
Weighted Gaussian functions 417
Weighted median filter 133
Weighted prototype recognition rate 81
Weighting 126, 349
Weights 12, 13, 107, 125, 417, 421
Weights (stable state) 12
Welding 472
Wiener filter 323
Window 6, 12, 26, 36, 91
Wire-frame 377
Word segmentation 4, 5, 7, 8
Workflow 367, 373, 374

Z
Zero-volume 75
Zone 8, 9, 120, 243, 287, 293
Zone classification 8
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