
Introduction to AIML

Witold Paluszyński
Department of Cybernetics and Robotics

Faculty of Electronics
Wroc law University of Technology

http://kcir.pwr.edu.pl/~witold/

2014

This work is licensed under the
Creative Commons Attribution-
Share-Alike 3.0 Unported License

Permission is granted to copy, distribute and/or modify this document
according to the terms in Creative Commons License, Attribution-ShareAlike
3.0. The license requires acknowledging the original author of the work, and the
derivative works may be distributed only under the same conditions (rights may
not be restricted or extended in any way).

Background

AIML is an XML-based description language designed for creating natural
language software agents. It was developed by Richard Wallace starting in 1995
and was the basis for the conversation agent A.L.I.C.E. (“Artificial Linguistic
Internet Computer Entity”), which won the annual Loebner Prize Competition in
Artificial Intelligence three times (2000, 2001, and 2004), and was also the
Chatterbox Challenge Champion in 2004.

The A.L.I.C.E. AIML set was released under the GNU GPL license and the
development of the language was continued with the participation of the free
software community.

This document describes the basic elements of AIML corresponding mostly to
version 1 of AIML. In 2013 work has been started on version 2 of AIML. As of
March 2014 a working draft is available.

Introduction to AIML — background 3

Rule-based language

AIML is a rule-based language, which means the program is created as
a collection of rules. This represents the so-called data-driven programming
paradigm, which is different from sequential programming.

The rules are small entities consisting of two parts: condition and action.
The system works by selecting one rule which has its condition satisfied, and
then executing the action of the selected rule. More precisely, an instantiation of
the rule’s action is executed, since during the evaluation of the rule’s condition,
some variables can be assigned values, which instantiates the action part of the
rule.

The execution of some rule’s action is called its firing. The process of selecting
and firing a rule forms the basic work cycle of the system, performed by
a language interpreter. In general, the interpreter of a rule-based system may
repeat the cycle some specified number of times, or as long as there is at least
one rule, which has the condition part satisfied. The AIML interpreter fires
exactly one rule (if at all possible), and may fire additional rules if so instructed
under the recursion mechanism (see the srai tag below).

Introduction to AIML — rule-based systems 4

The ordering of firing rules

More than one rule can have their conditions satisfied at any time. If so
happens, it is called a conflict. The interpreter must have a strategy for
resolving conflicts, so that exactly one rule is selected for firing. If no rule has
the condition satisfied, the system stops, or fails.

It is important to note, that in most rule-based systems, the order in which the
rules are written in the program has no influence on the selection of the rules
for firing. In other words, ordering of the rules in the program does not affect
the order of their execution. The sequence of the fired rules is only determined
by their content, and the data provided to the rules.

Introduction to AIML — rule-based systems 5

The AIML program

An AIML program is an XML document consisting of the elements defined in
the AIML schema. It must consist exactly one aiml element:

<aiml>

</aiml>

Theoretically, a file might just contain a plain aiml tag like that. In practice,
many AIML interpreters might require a more complete XML header pointing to
the AIML schema location:

<?xml version="1.0" encoding="UTF-8"?>

<aiml version="1.0.1"

xmlns="http://alicebot.org/2001/AIML-1.0.1"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://alicebot.org/2001/AIML-1.0.1

http://aitools.org/aiml/schema/AIML.xsd">

</aiml>

Introduction to AIML — program structure 6

The elements of a rule

A rule is defined with the category element, so the AIML document should
contain a sequence of the category elements. Each one should contain one
pattern element and one template element, which define the condition and
action parts, respectively:

<aiml>

<category>

<pattern>HELLO</pattern>

<template>Hi, how are you?</template>

</category>

</aiml>

The above program will answer“Hi, how are you?” if the user first says
“HELLO”. If the user says anything else, the program will fail, since there is no
rule possible to select.

Introduction to AIML — categories 7

The wildcards and the star tag

The condition pattern can contain wildcards * which allow writing more general
patterns:

<category>

<pattern>MY NAME IS *</pattern>

<template>OK, nice to meet you.</template>

</category>

The star tag allows using in the template the text matched to the wildcard in
the pattern:

<category>

<pattern>MY NAME IS *</pattern>

<template>OK, nice to meet you <star/></template>

</category>

Introduction to AIML — wildcards 8

The srai tag and the recursion

It often happens, that the same user question or phrase can be stated in
different ways, but should be handled in the same way. In such cases, the srai

tag can be used to refer to a specific rule from another rule:

<category>

<pattern>How do I get to the train station?</pattern>

<template>Go to the main street and then turn right.

</template>

</category>

<category>

<pattern>How do I get to the supermarket?</pattern>

<template>Follow the main street out of town.</template>

</category>

<category>

<pattern>What is the way *</pattern>

<template><srai>How do I get <star/></srai></template>

</category>

Introduction to AIML — srai and recursion 9

Randomized actions

The action part of a rule can select one of a several responses randomly:

<category>

<pattern>How are you doing?</pattern>

<template>

<random>

I’m fine.

OK, I am doing alright.

Quite well, thanks.

Good, good, and you?

</random>

</template>

</category>

Introduction to AIML — randomized actions 10

Global variables

AIML allows the program to use global variables. Any rule can assign a text
value to any variable, and it can be referenced in any rule:

<category>

<pattern>MY NAME IS *</pattern>

<template>OK, nice to meet you

<set name="userName"><star/></set> .

</template>

</category>

<category>

<pattern>MY NAME IS *</pattern>

<template>OK, nice to meet you.

<think><set name="userName"><star/></set></think>

</template>

</category>

The think tag in the last rule allows its content to be processed like the first
one, but prevents it from being merged to the output string and being displayed.

Introduction to AIML — global variables 11

Using global variables in conditionals

A value assigned to a global variable can be placed in any output test using the
get tag. It can also be used in a conditional expression:

<category>

<pattern>WOULD YOU LIKE TO DANCE WITH ME?</pattern>

<template>

Sure, it will be a pleasure.

<condition name="userName" value="">

Can you tell me your name?

</condition>

</template>

</category>

In the above rule, the template checks, in addition to answering the question,
that the program has learned the name of the user. Empty value of the
userName variable means, that the variable has not been set. In such case, the
program asks for the name. If the user provides it, the previous rule will fire,
which will record the name.

Introduction to AIML — global variables 12

Grouping rules using the topic tag

It is possible to control the topic of the conversation using the topic tag. The
topic element(s) must occur at the top level of the program, alongside other
rules (which do not belong to any topic). The topic can be changed at any
time, effectively moving to a different group of rules.

<category>

<pattern>Can I buy a train ticket?</pattern>

<template>Yes, this is the ticket office.</template>

</category>

<category>

<pattern>Can I buy a ticket to * ?</pattern>

<template>Yes, you can.

<think><set name="userDestination"><star/></set>

<set name="topic">PAYMENT</set></think>

<srai>How can i pay?</srai>

</template>

</category>

Introduction to AIML — topics 13

<topic name="PAYMENT">

<category>

<pattern>How can i pay?</pattern>

<template>You can pay cash or use a credit card.

</template>

</category>

</topic>

Introduction to AIML — topics 14

AIML interpreters — Program D

There exist many AIML interpreters — program that execute the AIML work
cycle when loaded with a set of AIML categories (from one or more files). For
some reason, most are named as Program X where X is some letter, like:
Program D, Program E, Program M, Program O, Program P, Program Q,
Program R, Program V, Program Y, Program #, etc. They are written in
a wide selection of programming languages and offer different range of
additional functionality, beside the basic AIML interpretation.

A simple but well-established interpreter written in Java is Program D. It has
a text version which can be run in a text terminal, and a window GUI which
opens a window showing the dialog.

After starting the text version, a new program can be loaded with:

/load filename

The file can be placed in the ProgramD directory, or specified with a full disk
path. After successfully loading a program, the user can start the dialog.

Introduction to AIML — AIML interpreters 15

Important references

The “home page”of AIML — a repository of resources related to AIML:

http://www.alicebot.org/aiml.html

The AIML tutorial by it author Richard S. Wallace:

http:

//www.pandorabots.com/pandora/pics/wallaceaimltutorial.html

Introduction to AIML — references 16

