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Foreword

The software systems that we need to run our society in the twenty-first century

are becoming increasingly complex. We need to build large systems by integrating

existing systems and components from a range of suppliers. These systems have to

be responsive, dependable, and secure. Our reductionist, top-down software engi-

neering techniques—which have helped us create the large, reliable software systems

that we depend upon—are now struggling to cope. To meet the demands for twenty-

first century systems, we need new approaches to software engineering that can cope

autonomously with a rapidly changing environment and that can take advantage

of new features as they become available. We need systems that can cope with the

unexpected—in terms of both reacting autonomously to problems and communicat-

ing these problems to other agents in the system. Agent-oriented software engineer-

ing is an important emerging technology that can help us build such systems.

In any developing technology, books in the area go through stages. Initially, the

only works are the proceedings of specialist conferences for researchers, where the

book includes advanced research papers. The second stage is typified by multiauthor

books and specialist books aimed at researchers and early adopters, which focus on

a specific topic. These works assume that readers understand basic concepts and

principles. Finally, student textbooks are written, aimed at people who need to start

from the beginning. Agent-oriented software engineering has now reached this final

stage of maturity. This book is one of the first textbooks on agent-oriented software

engineering. It aims to disseminate knowledge about this important topic to a wide

audience.

The Art of Agent-Oriented Modeling is an introduction to agent-oriented software

development for students and for software developers who are interested in learning

about new software engineering techniques. Although the principal focus of the book

is agent-oriented modeling, it is an excellent general introduction to all aspects of

practical, agent-oriented software engineering. Building on Leon Sterling’s and Kul-

dar Taveter’s courses in this topic, this book uses everyday examples to illustrate the

notion of agents and how agents can interact to create complex, distributed systems.



A key di¤erence between this book and other books in the field is that this book rec-

ognizes that if agent-oriented development is to enter the mainstream, it must be

done with consideration of practical software engineering issues. As well as deliver-

ing the required functionality, agent-oriented systems have to be reliable and secure;

their development has to fit into a software engineering life cycle, where systems must

meet externally imposed requirements and have to be maintained over many years.

This book has many important insights and it is perhaps invidious to pick on only

one of them as an example. However, I think the key point that Leon and Kuldar

make in this book is that agent-oriented technology is an e¤ective way to construct

sociotechnical systems, which take into account organizational and human issues as

well as technical issues. Agents are a useful abstraction that helps us think about how

sociotechnical systems deliver the services required by their users. We should think

about this without regard to whether the agents that deliver these services are people

or automated systems. Modeling a system as agents gives us a way of establishing

flexible boundaries for the automated system that can be extended as our under-

standing of human tasks improve. Over time, these systems can evolve with more

and more functionality being taken over by automated agents.

Barry Boehm, one of the most respected software engineering researchers and

practitioners, has called the twenty-first century the ‘‘software century.’’ The chal-

lenges for humanity are to improve the lives of people around the world without

making unsustainable demands on the environment. We can achieve this only with

the help of large and small software systems that coordinate resources from di¤erent

places and di¤erent providers and that break down cultural barriers between di¤er-

ent civilizations. Many of these systems will be agent-oriented and Leon Sterling and

Kuldar Taveter have made an important contribution in this book to the develop-

ment of agent-oriented software engineering.

Ian Sommerville, St. Andrews, Scotland, July 2008
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Preface

The introduction of the personal computer changed society’s view of computer sys-

tems. No longer was a computer a complicated machine doing a task, tucked away

in a separate room or a far-o¤ corner of an o‰ce or work environment. A computer

was a machine on your desk that was ready for daily interaction. No longer was a

computer only for specialist programmers—it was a tool to be used by virtually all

o‰ce workers.

The rapid rise of the World Wide Web in the mid-1990s changed society’s view

still further. No longer was the personal computer restricted to a desk or a small of-

fice network. The machine on your desk could be part of a global network. In addi-

tion, the use of computers at home skyrocketed. Almost every home in the developed

world acquired a computer. Laptops were mandated for school children in many

schools. The volume and visibility of email addresses and domain names exploded.

In the mid-2000s, as this book is written, our interaction with computers is ever-

expanding. Businesses depend on software for many—if not most—of their core

activities. Cars and appliances have embedded software of which we are barely

aware. Teenagers and young adults engage in social networking, and share music

and videos on Web sites such as LimeWire and YouTube. We look up knowledge

on Wikipedia. Skype is a common method for making telephone calls over the

Internet.

So how do we develop computer software to interact with the ever-increasing com-

plexity of the technical world and the increased fluidity of social organizations? It is

not an easy task. Having been involved in research and teaching of software engi-

neering and software development projects, we find a need for changing conceptual

models. We want to develop software that is open, intelligent, and adaptive. We

are becoming convinced that such software needs to be conceived, designed, and

developed di¤erently from existing applications that assume fixed requirements and

an unchanging environment.

One consideration we believe is important is the need to take a systems view. The sys-

tem of people and technology has a life cycle of inception, design, implementation,



testing, and maintenance. Processes need to be understood for each of the stages of

the life cycle. A systems view implies being able to take a holistic approach and to

include considerations of all stakeholders.

In this book, we advocate an agent-oriented view. An agent is a concept and

metaphor that is familiar for people with and without technical background or inter-

est. An agent allows the blurring of the boundary between people and technology to

allow more people to be engaged with the process of building software. Thinking in

terms of agents can change the way that people think of software and the tasks it can

perform.

The concept of an agent is not new to computing. Agents have been discussed in

regard to artificial intelligence (AI) from its early days. More recently, agents have

been discussed in the context of object-oriented technology, with many researchers

and practitioners viewing them as an extension of object-oriented technology. Agent

models have been added to established object-oriented modeling approaches, most

notably based around UML (Unified Modeling Language). Agent programming

extensions have been developed for languages such as Java and Prolog.

We prefer viewing an agent-oriented approach as di¤erent from an object-oriented

approach. Agent-oriented models need to be described independently of object-

oriented models, though sensible reuse of notation is advisable. The reason for di¤er-

entiation is that people can be sometimes trapped into thinking only in ways familiar

to them. As the saying goes, if all you have is a hammer, everything looks like a nail.

In our experience, thinking in terms of agents requires a di¤erent mindset. Students

and practitioners who insist in thinking about building from their existing (object-

oriented) methods are less successful in developing agent-oriented applications.

Our interest in writing this book is to encourage a wide variety of stakeholders in

the software development process to engage with an agent-oriented approach. This is

a challenge. Software developers, software acquirers, software users, and software

maintainers have di¤erent concerns. Models are needed that are understandable for

all stakeholders. The variety of concerns suggests a variety of models. If the models

are understandable, the stakeholder is more likely to be engaged. We believe that en-

gagement throughout the process will improve the development of systems consisting

of people and software that will interoperate and evolve successfully.

So why another book? One factor in the adoption of a technology is having text-

book material in support. There has been an increase in agent-oriented theory, lan-

guage, and methodology books over the past several years. This progress is to be

encouraged. Nonetheless we feel that this book fills a niche not currently being filled.

There are three main features of this book that we feel add significantly to the lit-

erature. The first is the presentation of substantial new examples that range from

requirements through design to deployment. The more examples that potential users
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of technology see, the more likely a technology is to be adopted. The second is the

use of abstract agent-oriented models at various levels of abstraction and geared

to di¤erent stakeholders. The models relate to a range of agent-oriented software

engineering methodologies that are being actively developed. The third is related—

namely, the emphasis on models rather than languages—and the philosophy that

models can be mapped to a variety of deployment platforms, possibly including con-

ventional languages, makes the concepts accessible to a wider audience. Our recent

discussions with colleagues in both academia and industry have reinforced our appre-

ciation for the need for di¤erent models for open, distributed domains.

There are often forces working against trying to show how an approach covers a

range of implementation languages. Agent language vendors want companies to be

locked into their technology. Indeed, one of the initial motivations for the research

underlying this book was a request by an industrial partner on what agent models

would be ‘‘future-proof.’’ The industry partner had been burned by using an agent-

based vendor platform that was no longer supported. Research groups also want to

encourage others to use their specific methods. Though this motivation is under-

standable, the agent community will benefit from broadly supportable models.

Why do we use the word ‘‘art’’ in the title of the book? We have experienced mod-

eling as a creative process that does not always follow clear-cut rules. Many decisions

are left to the discretion of the modeler and his or her background and intuition.

Modeling is also iterative. Usually one cannot—and should not—end up with final

models right away. Even some of the models in the book would improve through

further rounds of iteration. Given that we cannot give definitive advice on building

‘‘perfect’’ models, we settle for the more modest aim of providing guidance for creat-

ing models.

Having explained some of the motivation that prompted the book, we address the

issue of timing. Why now? We have each been working with agent applications for

the past ten years. Only now, in our opinion, do we perceive that agent concepts are

known widely enough to allow agent-oriented modeling. Modeling tools are emerg-

ing: an essential development, if agent concepts are to be used by industry. Also, re-

cent developments in the research areas of autonomic systems, event-based systems,

and multiagent systems seem to indicate that the paradigm of peer-to-peer comput-

ing in the broad sense is gaining momentum.

Our conclusion that agent concepts have matured su‰ciently has been developed

through our delivering of seminars and courses on agent technology in academia and

industry. We have been involved in teaching graduate students (and advanced under-

graduates) for more than ten years. In 2000, Leon was involved in an Australian

government project on the rapid di¤usion of technology from academia to industry

using agent technology as an example. With the benefit of hindsight, the project was
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premature. Providing students with the models presented in this book has greatly

increased their ability to conceptualize and design agent-oriented systems. The mod-

els have been progressively polished over the past three years and are now ready for

broader engagement. By the time the reader finishes reading this book, we hope that

his or her capacity and confidence for the design and modeling of agent-oriented sys-

tems will have improved.

Leon Sterling, Melbourne, Australia, November 2008

Kuldar Taveter, Tallinn, Estonia, November 2008
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I MODELS

This book presents an approach for modeling complex systems consisting of people,

devices, and software agents in changing environments. In part I, a set of models is

presented at three levels of abstraction: a motivation layer, where the purpose, goals,

and requirements of the system are described; a design layer; and an implementation

layer. The first chapter advocates conceiving of the world in which software operates

as a multiagent system operating in an environment subject to rules and policies. The

conceptual space that we look at will be discussed in more detail in chapter 2. The

models themselves will be presented in chapter 3 and applied in later chapters. Chap-

ter 4 focuses on nonfunctional requirements or quality goals. Chapter 5 describes

four di¤erent platforms, and chapter 6 presents a viewpoint framework that is used

in part II to analyze methodologies.



 

1 Introduction

We live today in a complicated world. Complexity comes in many guises, and ranges

from small-scale to large-scale concerns. On the small scale, we interact with an ever-

increasing array of devices, most of them new and incompletely understood, such as

mobile phones and portable digital music players. On the large scale we live in com-

plex institutions—governments, corporations, educational institutions, and religious

groups. No one can understand all that goes on in such institutions.

A sensible response to dealing e¤ectively with the complexity is to seek help. Help

can come from other people. We may hire a consultant to help us deal with govern-

ment. We may get a friend to help us install a home wireless network, or we may use

software tools to automate tasks like updating clocks and software. It might even be

sensible to combine both people and software. An underlying purpose of this book is

to help us conceptualize a complicated environment, where many parts—both social

and technical—interact. The key concepts we use are agents and systems.

The underlying question in this book is how to design systems that work e¤ectively

in the modern environment, where computing is pervasive, and where people interact

with technology existing in a variety of networks and under a range of policies and

constraints imposed by the institutions and social structures that we live in. We use

the word ‘‘system’’ in the broadest sense. Systems encompass a combination of

people and computers, hardware, and software. There are a range of devices, from

phones to MP3 players, digital cameras, cars, and information booths.

We are particularly interested in systems that contain a significant software com-

ponent that may be largely invisible. Why the interest? Such systems have been hard

to build, and a lot of expensive mistakes have been made. We believe that better con-

ceptualization of systems will lead to better software.

In this first chapter, we discuss our starting philosophy. There are particular chal-

lenges within the modern networked, computing environment, such as its changeabil-

ity and consequent uncertainty. We discuss challenges of the computing environment

in the first section. In the second section we address agents, and why we think they

are a natural way to tame complexity. In the third section, we discuss multiagent



systems. The fourth section addresses modeling. In the fifth section, we discuss sys-

tems engineering, which we believe is a good background for conceptualizing the

building of systems. Using multiagent systems to better understand systems with a

significant software component is really the raison d’être of the book. The sixth

section briefly describes a complementary view of multiagent systems that proceeds

‘‘bottom-up,’’ where desired behavior emerges from the interaction of components

rather than being designed in ‘‘top-down.’’ The final section in the first chapter

frames our discussion in the context of the history of programming languages and

paradigms over the last fifty years.

An aspect of our philosophy is a strongly pragmatic streak. This book is intended

to encourage people to model systems from an agent-oriented perspective. From our

teaching experience, we know that describing abstract concepts is insu‰cient. Clear

examples of concept use are extremely helpful, and methods are needed to use the

concepts. We strongly believe that developers and students can learn to model by

looking at good examples and adapting them. The development of good examples

from our teaching and research experience was why we felt ready to write this book.

We decided to write this book only when convinced that people could build practical

things, and our modeling approach would help people envisage multiagent systems

operating in complex environments.

1.1 Building Software in a Complex, Changing World

The task of building software has never been more challenging. There is unprece-

dented consumer demand and short product cycles. Change in the form of new tech-

nology is happening at an increasing rate. Software needs to be integrated with

existing systems and institutions as seamlessly as possible, and often in a global

network where local cultural factors may not be understood.

In this section, we identify several key characteristics of the modern computing

environment for which software must be written. These characteristics suggest five

attributes that software should have in order to be e¤ective within the environment.

These desirable software attributes are motivating factors for the multiagent perspec-

tive being advocated in this book.

Complexity is the first characteristic we highlight. Essentially, the modern world is

complicated, and that complexity a¤ects software. As an example, consider a billing

system for mobile phone usage or consumption of utilities such as electricity or gas.

At first thought, billing may seem reasonably straightforward. All you need is a mon-

itoring mechanism, such as a timer for phone calls or a meter for electricity, and a

table of rates. Then it will be a simple calculation to determine the bill. However,

billing is not simple in practice. There have been expensive software failures in build-

ing billing systems. New taxes could be introduced that change the way billing must

4 Chapter 1



be done, and complications when taxes should apply. The government may allow

rebates for certain classes of citizens, such as the elderly, with complicated rules for

eligibility. There may be restrictions on how such rebates are to be reported. Phone

calls that cross calendar days or have di¤erential rates cause complications. Interna-

tional calls have a myriad of other factors. The phone company may decide on

special deals and promotions. In other words, the potentially simple billing system is

complex, as it is complicated by a range of social, commercial, and technical issues—

a common occurrence.

Another characteristic of many modern systems is that they are distributed, both

computationally and geographically. Web applications are the norm, and they

engender a whole range of issues. For example, if the Web application has an inter-

national customer base, does it make sense to have mirror sites for storing and down-

loading information? If the web tra‰c is high volume, does there need to be load

balancing? Are multilingual versions of the interface necessary, or at least a change

of terms in di¤erent places where the software is delivered? Such considerations

change the nature of an application.

Most software applications are time-sensitive. Time is an issue both in response to

consumer demand and for consumption of resources. For the former, we expect

instantaneous responses to our queries. Indeed, too slow a response can cause a

product to fail. For the latter, if too many computational resources are necessary to

process information, an application may be infeasible. Architectures and designs

need to be analyzed for speed and other qualities.

The surrounding environment is uncertain and unpredictable. Not all of the infor-

mation that we receive is reliable. Some of the information is caused by genuine

uncertainty, like weather predictions or future prices of stock. Some information is

fraudulent, such as emails that are part of phishing attacks or scams. Although un-

predictability may make life interesting in some circumstances, it is a challenge for

software developers. There is no guarantee that the environment can be controlled,

which has been the prevailing style for standard software methods. Software has to

be developed to expect the unexpected.

The final characteristic of the modern environment that we highlight is that it is

open. There is new information and new realities. New software viruses are written

that must be protected against. There are new policies promulgated by institutions

and new legislation developed by governments. And it is not just new information

that a¤ects the environment. The external environment is changing. Bank interest

rates change; mobile phone plans change. To be e¤ective in the environment, behav-

ior must change accordingly.

Having identified these challenging characteristics of the modern environment, let

us suggest desirable attributes for software if it is to perform e¤ectively and serve us

well.
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The first attribute desirable for software is adaptivity. As the world changes, we

would like our software to reflect the change. As new facts enter the world, the soft-

ware should not break. Brittleness was a problem with expert systems and has limited

their applicability. An obvious area where adaptivity is essential is security. As a new

virus or security threat is determined, it would be good if the virus checking/firewall/

security system incorporated the information automatically. Indeed, software is be-

ginning to run automatic security updates, and this trend needs to continue.

The second attribute is intelligence. Consumer ads already sometimes claim that

their product is more intelligent than its competitors—for example, an air condition-

ing system or a mobile phone. Presumably they mean more features. We would hope

that increased intelligence would lead to better integration. We certainly appreciate

when a computer clock automatically adjusts for Daylight Saving Time, and when

memory sticks and digital cameras work seamlessly across a range of computers

and operating systems. Intelligence is a way of dealing with complexity and uncer-

tainty, and being able to determine when knowledge may be false. One dimension

of intelligence that we would expect is awareness. A system that was unaware of

what was going on around it would not seem intelligent.

A third desirable attribute is e‰ciency. There is a need and expectation for instan-

taneous responses, which will be achieved only by e‰cient implementations in light

of the complexity. E‰ciency may well determine the possibility of solutions—for ex-

ample, file sharing or downloading large video files.

A more abstract fourth attribute is purposefulness. In light of the complexity and

changing nature of the environment, it will be di‰cult—if not impossible—for all

requirements to be stated. It is better to work at a higher level and to explain pur-

poses in terms of goals, and, in certain circumstances, to have the system determine

the appropriate path of action. This approach can aid system design and clarity,

which leads to the next attribute.

The final attribute is a little bit di¤erent and perhaps less obvious; namely, the

software should be understandable, at least in its design and overall purpose. We

need ways of thinking about and describing software that simplify complexity, at

least with regard to describing behavior. The desire for understandability is influ-

enced by the software engineering perspective undertaken within this book. There

are many potential advantages of understandable software, including better instruc-

tions for how to use it.

These are a lot of demands, and we need to address them. Let us explore one

way of thinking about them. Indeed, the rationale for developing the agent-

oriented modeling techniques that form the essence of this book is that they better

address the characteristics of the world around us and can meet the desirable soft-

ware objectives.
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1.2 What Is an Agent?

This book advocates adoption of the concept of agents in thinking about software in

today’s world. Agents are suitable for the current software development challenges

outlined in the previous section. In our opinion, the applicability of agents is likely

to increase over the coming years.

An agent has existed as a concept for thousands of years. The Oxford American

Dictionary gives two meanings for the word ‘‘agent,’’ both of which are relevant. Per-

haps the more fundamental definition of the two is ‘‘a person or thing that takes an

active role or produces a specified e¤ect.’’ The connotation is that agents are active

entities that exist in the world and cause it to change. The phrase ‘‘agent of change’’

springs to mind, and indeed was mentioned in the dictionary entry. The concepts of

roles and e¤ects mentioned in the definition are key. They will be discussed in the

next chapter and throughout the book.

The more common sense meaning is the other definition: ‘‘a person who acts on

behalf of another, for example, managing business, financial, or contractual matters,

or provides a service.’’

In human communities and societies, an agent is a person who carries out a task

on behalf of someone else. For example, a travel agent can make enquiries and

bookings for your holiday; a literary agent interacts with publishers to try and find

a book publisher; and a real estate agent helps you buy, sell, or rent a house or fac-

tory. In a well-known biblical story from the Old Testament (Gen. 24:1–67), Abra-

ham sends his servant Eliezer to act as a marriage agent to find a bride for his son

Isaac.

Computer science researchers have used the word ‘‘agent’’ for more than twenty-

five years with a range of di¤erent meanings. For the purpose of this chapter, we

define an agent as ‘‘an entity that performs a specific activity in an environment of

which it is aware and that can respond to changes.’’ Depending on their background,

readers are likely to bring initially di¤ering emphases and understanding of the word

‘‘agent’’ to the book. We anticipate that the reader will gain an increased under-

standing of the word ‘‘agent’’ through engagement with this book, its associated

exercises, and attempts to construct agent-oriented models.

One obvious consequence of our informal definition that is worth explicitly point-

ing out is that people are agents. People live in the world, are aware of changes in the

world in many di¤erent factors and attributes, including weather, politics, and social

organizations. People act in the world. For example, they might protect themselves

against the weather by carrying an umbrella or putting on sunscreen or a snow

suit—usually not all three simultaneously. They might vote in an election to influ-

ence politics; they might form networks of friends.
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Let us look at some agents from the world of computing over the past decade.

Some readers may be surprised at what we consider to be an agent. However,

whether you agree or disagree with the classification should not a¤ect your apprecia-

tion of the book.

The first successful robot in the consumer market has been Roomba. Its Web site

proclaims that Roomba is ‘‘the world’s top-selling home robot, with over two million

sold.’’ Roomba is an automated vacuum cleaner, designed to clean rooms. It senses

the shape of your room and determines a cleaning pattern for traversing the room. It

is flat and capable of vacuuming under beds and couches. Most models have a charg-

ing base to which they return when they are running out of power. Why we describe

it as an agent is that it senses its environment, a house, and its own state, and per-

forms a task—namely cleaning a floor. It responds to changes in the environment,

such as moving furniture, people, and its own power level. In 2006, the company

introduced the Scooba, which washes floors rather than vacuuming, but is otherwise

similar. A video clip distributed on the Internet shows it sucking up Diet Coke and

‘‘eating’’ pretzel crumbs.

The next example we consider is a Tamagotchi, a toy developed in Japan and

popularized in the late 1990s. In one sense, a Tamagotchi is just a simple interactive

simulation. It has ‘‘needs’’: food, bathroom, sleep; its owner, usually a young child,

must provide for those needs. If the needs are not met, the Tamagotchi ‘‘gets sick’’

and can even ‘‘die.’’ Later models interact with other Tamagotchis, and recently,

Tamagotchi Towns have been created on the Internet. We model Tamagotchis in

detail in chapter 3.

The most popular robot in Japan is AIBO, a robot produced by Sony Entertain-

ment. Sony marketed AIBO as an electronic pet. AIBO comes with preprogrammed

behaviors, including walking, wagging its tail, flashing its eyes, and electronic bark-

ing (or making some sound). The behaviors are sophisticated, including a great

ability to right itself if it falls over on an uneven surface, for example. Several of the

behaviors are a¤ected by its interaction with people, such as being patted on the

head: hence the marketing as a pet.

As well as preprogrammed behaviors, Sony provided a programming environment

for AIBO. It promoted the use of the programming environment through the addi-

tion of a special league to RoboCup, a robot soccer-playing competition held annu-

ally since 1997. The Sony dog league, started in 2000, has teams of three AIBO dogs

playing soccer on a field larger than two table-tennis tables. The dogs have improved

their play over time. While playing a game of soccer, an AIBO dog is certainly

an agent. It must sense where the ball is, move to the ball, propel the ball forward

toward the goal, and play out its assigned team role—for example, attacker or de-

fender. A photo of an AIBO dog is shown in figure 1.1.
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These three examples are tangible. The agents can be identified with a physical de-

vice, a vacuum cleaner, a toy, or a dog. Let us be a bit more abstract, as we consider

four software examples.

In addition to the so-called gadget-based digital pets mentioned previously, such as

Tamagotchis, there are other types of digital pets. They can be Web site–based, such

as digital pets that can be obtained and played with in the Neopets, Webkinz, and

Petz4fun Web sites. There are also game-based digital pets running on video game

consoles, such as Nintendogs by Nintendo and HorseZ by Ubisoft, both for Nin-

tendo DS game consoles.

The second example is a virus of the software kind. Essentially a computer virus is

a computer program written to alter the way a computer operates, without the per-

mission or knowledge of the user. We believe a virus should be able to self-replicate

and be able to execute itself. Consequently, we regard a computer virus to be an

agent because it needs to sense the status of the networked environment that it is in,

and to act by a¤ecting files and computers. Viruses can certainly be e¤ective. The

MyDoom virus is reported to have infected more than two hundred thousand com-

puters in a single day. Viruses can be regarded as a malevolent agent, as opposed to a

benevolent agent.

The next example is one always discussed in the graduate agent class at the Uni-

versity of Melbourne. Consider a program for handling email, such as Microsoft

Outlook, Eudora, or the native Mac OS X mail program, Mail. Is such a program

Figure 1.1
The AIBO by Sony
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an agent? In our opinion, it is. The mail handling program needs to be aware of the

network environment, and whether particular hosts are receiving email. If hosts are

not receiving mail, messages are queued up and sent later without further human

intervention. The email program performs actions such as filtering spam. Further,

the email program is an agent in the sense of acting as a person’s representative. It

has detailed knowledge of network protocols that both Leon and Kuldar would

need to research. It knows what networks you are connected with—for example,

Ethernet or a wireless network—and chooses which one to use appropriately. Stu-

dents, however, are initially reluctant to regard Outlook or the other programs as

agents, instead regarding them as merely programs.

To consider this issue further, how about a RIM BlackBerry? Is the physical de-

vice the agent, or is the software running the device the agent? In our opinion, there

is no precise answer. What you are modeling determines the response.

Another standard example used in the agent class at the University of Melbourne

is considering whether a Web crawler is an agent. Here, students usually regard the

Web crawler as an agent. Certainly a Web crawler takes action in the environment,

but whether it is aware of its environment is less clear. There are many more exam-

ples that could be explored, but we will encourage further discussion via the exercises

at the end of the chapter.

To conclude this section, we note that the agent is not a precisely defined entity.

There is an associated metaphor of an agent as a representative that suggests several

qualities. We highlight three qualities now. One quality is being purposeful in both

senses of agents mentioned earlier. Another important quality of an agent is con-

trolled autonomy, or the ability to pursue its own goals seemingly independently.

The third quality is the agent needs to be situated—that is, aware of the environment

around it. It must be capable of perceiving changes and responding appropriately.

All of the examples that we have discussed are situated in an environment they

must respond to, and possess the qualities of purposefulness and autonomy, at least

to some extent. We consider this topic in more detail in chapter 2.

1.3 From Individual Agents to Multiagent Systems

Individual agents can be interesting. Interactions between agents can also be interest-

ing, as can interactions between an agent and the environment in which it is situated.

Adopting the agent metaphor for developing software raises both the visibility and

abstraction level of interactions between agents. To appreciate the value in being

able to understand agents and their interactions, we need to consider a broader sys-

tems view.

Loosely, a system is a set of entities or components connected together to make a

complex entity or perform a complex function. If several—or perhaps all—of the
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connected entities are agents, we have a multiagent system. This book is about mod-

eling systems as multiagent systems.

The term sociotechnical system is sometimes used to refer to systems that contain

both a social aspect, which may be a subsystem, and a technical aspect. Although the

term sociotechnical system has some attraction, we prefer the term multiagent system

for two reasons. First, it emphasizes our interest in agent-oriented modeling. Second,

it avoids any existing associations with di¤erent meanings of sociotechnical system.

In using the term ‘‘multiagent system,’’ we typically convey the sense that the whole

is greater than the sum of the parts; also, that the agents interact, and that there will

be a focus on interactions.

A note on words: a strength (and weakness) of this book is its attempt to bridge

the gap between the everyday world and a strictly formal world. It does so by appro-

priating terms from our language, such as agent, model, goal, and role, and imbuing

them with a technical meaning. Giving precise technical definitions is a mathematical

skill, which can be learned but does not come easily, and many people struggle with

learning this skill. We aim for accuracy in our use of words, but we do so unobtru-

sively. We tend not to define terms formally, but will describe specific models care-

fully. How to progress from general, abstract requirements to precise computer

systems is a challenge that will be partly addressed in chapter 7 on methodologies

and demonstrated in chapters 8, 9, and 10 on applications.

What is an example of an interaction between agents? A prototypical example

from the domestic environment, among others, is an agent encountering and greeting

another agent. Microwaves and DVD players often display a welcome message when

they are turned on. The message is only for the purpose of interaction. We model

greeting in chapters 4 and 9 in the context of a smart home.

Several agents interacting produce interesting behavior that is not predictable. A

popular game in the first years of the twenty-first century is ‘‘The Sims,’’ which was

originally released in 2000 and which comes in several variants. People play the game

by controlling activities, appearances, and other attributes of a set of computer-

animated characters. The game engine executes the activities, e¤ectively allowing a

(simple) simulation of a family. A key feature of the interest in the game is in seeing

how the characters interact.

A wonderful example of the power of defining simple characters and activities

and letting the interactions produce interesting behavior comes from the movie tril-

ogy Lord of the Rings. The movie producers had the challenge of creating realistic

large-scale battle scenes between the coalition of the heroes and their followers and

the coalition of their enemies. Clearly, participants in a battle are agents, having

to observe the actions of others attacking them and having to e¤ect a mortal

blow. The key actors of the movie are agents in the battle and need to be filmed.

However, it would be expensive getting thousands of extras to enact a battle. Instead,
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the key human protagonists were superimposed on a computer animation of a

battle. The animation of the battle was generated by software agents run under

simulation. Each software agent had simple motions defined. It was the interac-

tion between them that made the scene interesting. Very realistic battle scenes were

produced.

Simulations are a good source of examples of multiagent systems. The military in

Australia and the United States, among other countries, have successfully developed

multiagent simulations. We mention here two examples that illustrate possibilities for

agent applications.

The Smart Whole Air Mission Model (SWARMM) was developed as a collabora-

tive project between the Air Operations Division of DSTO and the Australian Artifi-

cial Intelligence Institute in the mid-1990s. It integrated a physics simulation of flying

aircraft with pilot tactics and reasoning. SWARMM was written in the multiagent

reasoning system dMARS. The types of tasks modeled in SWARMM were air de-

fense, attack, escort, and sweep (the use of a fighter to clear a path for an incoming

fighter plane or planes). SWARMM allowed the pilots’ reasoning to be traced graph-

ically during execution of the simulation. The simulation was developed in coopera-

tion with F-18 pilots who liked the rapid feedback and high-level understandability

of the simulation. The simulation had tens of agents who formed small teams, and

several hundred tactics. The project was very successful. Taking the agent perspective

helped develop an understandable system from which the pilots received visual feed-

back on their tactics, and the interaction between tactics could be seen in the soft-

ware and understood.

In the late 1990s, the U.S. military conducted Synthetic Theater of War (STOW

97), an Advanced Concept Technology Demonstration jointly sponsored by the De-

fense Advanced Research Projects Agency (DARPA) and the United States Atlantic

Command. STOW 97 was a training activity consisting of a continuous forty-eight

hour synthetic exercise. Technically, it was a large, distributed simulation at the level

of individual vehicles. Five U.S. sites participated (one each for the Army, Navy,

Marines, Air, and Opposing Forces), plus one in the United Kingdom (UK). All

told, there were approximately five hundred computers networked together across

these sites, generating on the order of five thousand synthetic entities (tanks, air-

planes, helicopters, individual soldiers, ships, missile batteries, buses, and so on).

Agent-based software controlled helicopters and airplanes in part of the exercise.

Eight company-level missions were run, ranging in size from five to sixteen helicop-

ters (plus automated commanders for Army missions), each of which succeeded in

performing its principal task of destroying enemy targets.

We conclude this section by considering multiagent systems in two domains: an in-

telligent home and e-commerce. Both of them are naturally modeled as multiagent

systems, and demonstrate both social and technical characteristics. Social character-
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istics apply to how humans interact with technology and how humans interact with

each other by the mediation of the technology, and technical characteristics obvi-

ously portray the technology to be used.

Let us consider a smart home where appliances interoperate seamlessly for the

benefit of the home occupants, a promising area of application for intelligent agents.

According to Wikipedia, the intelligent home ‘‘is a technological achievement aimed

at connecting modern communication technologies and making them available for

everyday household tasks. With intelligent home systems, it becomes possible to call

home from any telephone or desktop computer in the world to control home appli-

ances and security systems. Intelligent home systems guide the user to perform any

operation, to control lighting, heating, air conditioning, or to arm or disarm the

security system, and to record or to listen to messages. Other themes envisioned in

intelligent home systems are automation, connectivity, wireless networking, enter-

tainment, energy and water conservation, and information access.’’

An intelligent home system is easily envisaged with separate agents controlling the

separate subsystems such as heating, lighting, air conditioning, security, and enter-

tainment, and the agents interacting to facilitate the comfort and convenience of the

home owner. Here are some small examples. When the phone rings, the entertain-

ment agent could be aware and turn down the volume of any loud music in the

vicinity. An alarm clock set to wake up the home owner for an early morning flight

could reset the alarm after it contacted the airport and discovered that the flight was

delayed. A security system could track any person in the house. If the person in the

house was not recognized by the system, an intruder alert could be initiated, whereby

the home owner and the police were contacted, provided with a photo of the in-

truder, and any visitors or tradespeople scheduled to visit the house were warned to

stay away. Some of these example scenarios will be elaborated in chapter 9.

The intelligent home needs knowledge about the technical devices, including their

communication capabilities, parameters that can be set, and functions that they can

achieve. The intelligent home also needs to be aware of legal and social restrictions.

Examples are not playing music too loudly late at night, and not running automatic

watering systems in gardens during times of severe water restrictions. The home also

needs considerable general knowledge.

We turn to e-commerce. According to Wikipedia (October 11, 2006), e-commerce

‘‘consists primarily of the distributing, buying, selling, marketing, and servicing of

products or services over electronic systems such as the Internet. . . . It can involve

electronic funds transfer, supply chain management, e-marketing, online marketing,

online transaction processing, electronic data interchange (EDI), automated inven-

tory management systems, and automated data collection systems. . . . It typically

uses electronic communications technology such as the Internet, extranets, email,

e-books, databases, catalogues, and mobile phones.’’
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E-commerce in its broadest sense is already a big business. Buyers and sellers, both

institutions and individuals, can and should clearly be modeled as agents. They form

organizations such as company hierarchies, virtual enterprises, and markets. Interac-

tion protocols such as auctions are relevant for modeling and understanding the

behaviors of such organizations and their constituent individual agents. A key activ-

ity to be understood is negotiation, which has been thoroughly studied in the agent

community. E-commerce also implies agents’ detailed knowledge about their envi-

ronment, which consists of environment objects, such as Enterprise Resource Plan-

ning (ERP) and Enterprise Application Integration (EAI) systems, servers, Web

services, and databases. In business processes are also relevant cultural values, prod-

ucts, and their pricing. All these examples show the complexity of multiagent sys-

tems. Business-to-business e-commerce is illustrated in chapter 8.

1.4 What Is Modeling?

The underlying motivation of this book is to help people write software that can

work e¤ectively in the modern software context, such as a sophisticated smart home

or global e-commerce. To deal with the complexities in such environments, we need

to model the systems, highlighting which features are important for the software and

how they will be enacted and which features can be ignored.

This section addresses modeling, or the construction and description of models.

Modeling is empowering in a practical sense. If you can model, you are a significant

part of the way to building something useful.

Let us consider the question: ‘‘What is a model?’’ A definition taken from the Web

is that a model is a ‘‘hypothetical description of a complex entity or process.’’ A

model is constructed to aid in building the system that we have in mind. To para-

phrase Parnas’s well-known characterization of specifications, a model should be as

complex as it needs to be to reflect the issues the system is being built to address, but

no more complex.

What are some examples of models? A common school project for primary school

children is to build a model of the solar system. In such a model, there is at least

some depiction of individual planets, and the sun. More detailed models may include

moons of planets and asteroids. More advanced students may try and get some idea

of distance of planets from the sun, by either placing the planets in an order, or with

some scaled representation of distance. Yet more ambitious students may add a

dynamic element to the model by having the planets move around their orbit. Build-

ing a good model of the solar system clearly stretches the abilities of primary school

children—and usually their parents.

Many years ago, Leon had the experience of visiting a steel plant in northern Ohio

to pitch a project to build an expert system that could troubleshoot flaws while mak-

14 Chapter 1



ing steel. He was accompanied by a professor of mechanical engineering, who was

o¤ering to build a model of the steel plant. The model would be built at a consistent

scale, and would involve pouring liquid from a model of the steel furnace and trans-

porting the molten steel in carts on a track to the location where it would be shaped

into sheets. Key discussion points were the layout of the plant, viscosity of the model

liquid, and what aspects of the model would be useful for the engineers ultimately

designing and building the plant, so that they could be confident the plant would

work correctly from the moment it started operating.

Kuldar had the experience of visiting the Melbourne Museum and seeing a display

of gold mining. The model of the gold mine at the museum was a useful way of vis-

ualizing how the gold mine would have operated in its heyday. Without the model, it

would have been di‰cult to understand.

These examples are of tangible, concrete models. The world of software is more

abstract, and accordingly, more abstract models are needed to help envisage and

build software systems. We note that software professionals or computing students,

the likely readers of this book, possibly spend less time thinking about models than

other engineering disciplines or construction areas. Perhaps they don’t think in terms

of models at all.

One field in which modeling has been used is the development of object-oriented

systems. It is usual to build a UML description, which is in fact a model. UML is

an acronym for Unified Modeling Language, which reminds us of its modeling na-

ture. UML models can be checked and reviewed to see whether the system is under-

stood and correct before code is generated and the system implemented. Modeling

notations for systems built in a procedural style have also been developed, but are

perhaps not as widely used.

Models abstract information. For object-oriented programming, interfaces be-

tween classes are given, and the actual data passing mechanisms are finalized when

the code is implemented. The model limits what we focus on at various stages of the

software development life cycle.

To summarize this section, we advocate building appropriate models in order to

understand how to design and implement a complex system. It is essential to have

intuitively understandable models. The models must have su‰cient detail to be use-

ful, but not so much detail as to overwhelm.

1.5 Systems Engineering

How does one build a multiagent system? The research community has diverse opin-

ions on what to emphasize. The conference title of an early set of workshops devoted

to all things ‘‘agenty,’’ ATAL, reflects that diversity of opinion. ATAL is an acro-

nym for Agent Theory, Architecture, and Languages. The theoreticians claim that
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once the theory is established, the practice will be straightforward to implement, and

so emphasis should be on theory. The architects claim that if you have the right ar-

chitecture, all the rest will follow. The language developers claim that given the right

programming language, it is straightforward for agent developers to build multiagent

systems.

This book makes a di¤erent claim. A multiagent system is a system with a signifi-

cant software component. We must build on what has been learned about developing

software over the last forty years. The perspective that needs to be taken for building

multiagent systems is a software engineering perspective, which we loosely identify

with a systems engineering perspective. So we choose not to focus on theory, archi-

tecture, or language, though of course we don’t ignore them. Indeed, chapters 5 and

7 discuss some of the architectures, languages, and tools that have emerged from

agent research and development.

In this section, we give some motivation for software and systems engineering, a

field often slighted and misunderstood by computer scientists and AI researchers.

We mention the software engineering life cycle, which motivates the models that

we discuss in chapter 3 and illustrate in our examples. We also relate the software

engineering life cycle to the systems engineering life cycle by using the analogy of

constructing a building. Chapter 4 discusses quality, an important issue to consider

when taking a software engineering perspective.

To gain a perspective of software engineering, we o¤er the following analogy.

Consider the task of building a small shed for storage in the backyard of a house, a

common hobby for men, especially in previous decades. Many men and women

could be successful with this task, particularly if they have a practical bent. However,

just because someone built such a storage shed would not immediately qualify him or

her to build a thirty-floor o‰ce building. There is extra knowledge needed about

building materials, structures, and regulations—to mention just a few issues. Now

consider the task of writing a computer program to process data. Many men and

women could be successful with this task, particularly if they have a technical bent.

However you wouldn’t automatically trust that person to program an air tra‰c

control system. The missing discipline and knowledge is loosely covered in the area

of software engineering.

A definition of software engineering developed for Engineers Australia is ‘‘a disci-

pline applied by teams to produce high-quality, large-scale, cost-e¤ective software

that satisfies the users’ needs and can be maintained over time.’’

Significant words and phrases in the definition include discipline, which implies an

underlying body of knowledge; users, which implies the need for requirements; teams,

which implies the need for communications and interfaces; over time, which implies

that the system should be able to be changed without becoming brittle; high-quality,

which suggests performance criteria, not only functional capabilities; and large-scale,
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which means di¤erent architectural consideration about performance and other qual-

ities. Understanding costs and trade-o¤s in design will be important. Also important

will be recognizing the needs of stakeholders, not only users.

Although all aspects of software engineering are not explicitly addressed, we have

been influenced by taking a software engineering view. Models have been proposed

that we believe can be understood by a variety of stakeholders at varying levels of

abstraction. We take a systems view because multiagent system designers and devel-

opers should have a broad awareness of how the software they are designing and

building interacts with other hardware, software, and agents more generally.

We presume that the multiagent system will follow a systems development life

cycle. There will be a stage of gathering requirements. Once the requirements

have been elicited, they are analyzed. The analysis goes hand in hand with design,

where trade-o¤s are expected to be needed to allow the building of a system that

meets users’ requirements, both functional and nonfunctional. The system must be

implemented, tested, and maintained. Explicit languages, methodologies, and tools

for the latter stages are presented in chapters 5 and 7. But the models of chapter

3 and 4 have been developed in the belief that good engineering practices can be

followed.

As discussed in section 1.3, this book takes a systems engineering approach by

conceiving of the final product as a system. Systems engineering has been defined as

the process of specifying, designing, implementing, validating, deploying, and main-

taining sociotechnical systems. A useful analogy is the process of constructing a

building. When someone plans the building of a house, the first thing that needs

to be done is a sketch. The sketch roughly specifies the location, size, shape, and

purpose of the building and the layout and purposes of its rooms. It proceeds from

conversations between the customer and architect.

Next, the architect turns the sketch into the architect’s drawings, which include

floor plans, cutaways, and pictures of the house-to-be. The purpose of the drawings

is to enable the owner to relate to them and either agree or disagree with its di¤erent

parts and aspects. We can call this process requirements engineering, because its main

purpose is to understand and specify requirements for the building. Moreover, as the

architect normally creates the drawings by using a computer-aided design (CAD)

system of some sort, it could also be possible to simulate some aspects of the build-

ing, such as how doors and windows are opened, or what kind of interior and func-

tionalities the building should include. Both the sketch and the architect’s drawings

model the final product—the building—from the owner’s perspective.

As the next step, the architect’s drawings are turned into the architect’s plans.

The plans constitute the designer’s perspective of the final product. They consist of

detailed descriptions of the building-to-be from di¤erent aspects, including site work,

plumbing, electrical systems, communication systems, masonry, wood structure, and
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so forth. The architect’s plans specify the materials to be used for construction work

and serve as a basis for negotiation with a general contractor.

Finally, the contractor transforms the architect’s plans into the contractor’s plans,

which represent the builder’s perspective. The contractor’s plans essentially provide a

‘‘how to build it’’ description. They define the order of building activities and con-

sider the technology available to the contractor. There can also be the so-called

shop plans, which are out-of-context specifications of the parts, or functional areas

that are outsourced to subcontractors.

A systems engineering process is in many ways similar to the process of construct-

ing a building. First, we sketch the system as situated in its environment. The models

employed for this purpose may, for example, include use cases—a means of specify-

ing required usages of a system. This is the system modeled from the owner’s perspec-

tive. The owner’s perspective may also comprise scenarios that can be simulated. The

designer’s perspective consists of various models that describe from di¤erent aspects

how the system should be designed. A standard widely accepted by the software in-

dustry for this purpose is UML. The builder’s perspective is based on the designer’s

perspective, but considers specific languages, technologies, and tools to be used and

defines the order of systems engineering activities. Changing perspectives is not al-

ways straightforward. For example, a designer has to consider the languages, tech-

nologies, and tools of the problem domain.

The order in which we represent an agent-oriented modeling process in this book

has been influenced by the systems engineering perspective. Di¤erent kinds of models

to be presented in Chapter 3 are to allow inclusion of di¤erent perspectives of the

system.

1.6 Emergent Behavior

Models proceed from the requirements of an owner to the design expertise of a de-

signer, and are then handed over to a developer to be implemented and deployed.

Implicit in this previous sentence, and indeed in our discussion in this chapter, has

been that building a multiagent system proceeds from the top down. If the three

stakeholders—the owner, the designer, and developer—are di¤erent people, it is

more natural for the order to proceed top-down. It is possible, though not advisable,

for development of a system to proceed from the bottom up. The developer can im-

plement a system, which can retrospectively be designed, and the underlying motiva-

tion and purpose be determined through use. This makes some sense if the three

perspectives are that of the same person, and the bottom-up approach essentially

becomes rapid prototyping. Otherwise, the owner is completely dependent on the

will of the developer.
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To contrast the top-down and bottom-up approaches, let us reconsider the exam-

ple of building a house. The top-down approach starts with the goal of building a

house with particular objectives. These days, for example, one objective might be to

be environmentally friendly. The objectives are explained to an architect, who comes

up with a design. The design is then fully specified and agreed upon and given to a

builder to construct. The bottom-up approach has builders starting to build. This is

presumably what happens in the insect world. Termites build quite complex nests for

the termite colony to live in, assembled from the bottom up. To the best of our

knowledge, there is no ‘‘head termite’’ with an overall plan. Rather, the nest emerges

from the simple behavior of the termites. This is sometimes called emergent behavior

or self-organizing behavior.

Emergent behavior is not just a feature of the insect world. City life or group cul-

ture is often emergent. Creative cities work by collocating a group of people and

hoping that synergies happen. Several successful cities have developed in this way

throughout history.

We are aware of two classes of agent-oriented applications in which an explor-

atory, bottom-up approach is natural, and in which there has been extensive re-

search. One is the field of mobile robots. Two of the agents discussed in section 1.2,

the Roomba vacuum cleaner and the AIBO robotic dog, are essentially mobile

robots. Vacuum cleaning can be approached both from the top down and from the

bottom up. Top-down, there is a clear overall goal of removing dust, especially from

carpets. At the design stage, deciding which agent cleans which surface needs to be

determined. Then appropriate devices are deployed. Bottom-up, a vacuuming device

is built. How well it works is factored in and other steps may be needed either to

improve the overall quality goal, or to augment the cleaning with other devices.

Roomba clearly fits in the bottom-up stage. Similarly, AIBO is a robotic pet

designed with particular capabilities that it is hoped are entertaining to the owners

that buy them. Although Sony, the manufacturer, clearly had design specifications,

once they are in an environment, they interact in their own way.

The second class of examples in which emergent behavior is interesting is that of

simulation and modeling. To give an example, suppose that one was holding a large

sport event with tens of thousands of attendees. One would like to know whether the

event was suitably hosted. One way to do this is to build a model and run it to see

what behaviors by attendees may emerge.

Many researchers have investigated ‘‘ant algorithms,’’ which are essentially

bottom-up explorations by simple agents to achieve an objective. Such algorithms

are interesting and worthy of further research. We do not explore them, or the larger

issue of emergent behavior, any further in this book. For additional information, the

reader is referred to De Wolf and Holvoet 2005.
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1.7 A Quick History of Programming Paradigms

We used the previous sections to set the development of agent concepts in context.

We mentioned in section 1.2 that agents connote intelligent assistance. The desire to

create intelligence in a computer has been a constant theme for computing, dating

back to Alan Turing, the father of computer science. Sixty years of research on com-

puting, fifty years of research in AI, and forty years of research in software engineer-

ing are all relevant to how agents are conceptualized and deployed. We give a brief

history here.

Early computing research focused on programming, not modeling. The earliest

programming languages reflected a procedural view of the computer world. Pro-

grammers wrote instructions in the languages for the computer, which was envisaged

as a machine for executing a sequence of instructions. Analysts, perhaps loosely

equivalent to modelers, used flow charts to represent the instructions that needed to

be followed at a more abstract level.

Early computer languages, such as Fortran and COBOL, typify the procedural

view. A business application written in COBOL could be viewed as a collection of

financial agents cooperating to produce a business report. The analyst, however,

had to specify the complete control flow for the coder, and there was no advantage

in the agent perspective. It is worth noting that the SWARMM system mentioned

earlier in this chapter superseded a system written in Fortran. It was hard to main-

tain the Fortran system and very di‰cult to engage with the end users—the pilots.

The agent-oriented system worked much better.

Object orientation is an alternate to the procedural view of computing. It views a

program as a collection of objects sending messages to each other rather than as a

sequential list of instructions. Though object-oriented languages such as Simula

appeared as early as the 1960s, the popularity of object-oriented computing grew

through Smalltalk and especially Cþþ only in the 1980s. By the 1990s, object orien-

tation had become the preferred paradigm for developing applications for a distrib-

uted, complex world.

It is plausible to view agent-oriented computing as an extension of object-oriented

computing. Amusingly, agents have been described as ‘‘objects on steroids.’’ Such a

description, however, is not helpful for developers, or politically correct in a climate

of cracking down on drugs in sport. In our experience teaching programming, trying

to understand one paradigm in terms of another often limits one’s understanding. In-

deed, some of the models to be described in chapter 3 were prompted by a need to

di¤erentiate them from object-oriented models that students were using without

gaining an appreciation of how to think from an agent perspective. So although we

do appropriate some object-orientation notation in our models, we downplay the
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connection between the agent-oriented and object-oriented ways of thinking in this

book.

The meteoric rise of the Internet’s popularity and the need to deploy applications

on a variety of platforms led to the emergence and popularity of Java. To some

extent, Java is an object-oriented applications development language, in contrast to

Cþþ, which is more of an object-oriented systems development language. Java’s

simplification of network interactions has made it popular for developing agent

applications, as has its platform independence. It is no coincidence that most of the

agent programming languages described in chapter 5 are built on Java.

Having described Java as a language suitable for developing applications, we

briefly mention scripting languages. These languages make it quick to develop and

deploy applications. Some have been developed for agents such as the now-defunct

Telescript and Aglets from IBM. Using a scripting language tends to discourage

thinking in terms of systems and models. Although we are not averse to people using

scripting languages, such languages are not relevant to the book and are not dis-

cussed further.

We turn now to another programming paradigm: declarative programming. The

declarative paradigm has been influential in agent research. It is connected with the

body of work in formalizing agent behavior using various logics. Early researchers in

AI advocated the physical symbol system hypothesis, that a machine manipulating

physical symbols had the necessary and su‰cient means to be intelligent and exhibit

intelligent behavior. Lisp was an early programming language that was adopted in

applications that manipulated symbols.

Predicate logic was natural to use when taking a symbolic view. A prototypical AI

project conducted from 1966 to 1972 at the Artificial Intelligence Center at what was

then the Stanford Research Institute in the United States is illustrative. The project

centred on a mobile robot system nicknamed Shakey. Shakey moved around in a

physical environment consisting of makeshift ‘‘rooms’’ and blocks that could be

pushed from room to room. Shakey can definitely be considered an agent.

Part of the project involved Shakey formulating and executing plans to move

blocks from room to room. Shakey’s world was described in terms of logic formulae

such as in(room1,shakey), denoting that Shakey was in room 1. The planning

problem for Shakey was to move blocks from room to room. Knowing which room

the robot was in was a challenge for the vision system of the time, but that need

not concern us here. The planning problem was formulated in terms of STRIPS

(Stanford Research Institute Problem Solver) operators. Operators were expressed

in terms of preconditions, which needed to be true if the operator were applicable,

and postconditions, which became true after the operator was executed. For exam-

ple, an operator’s instruction move(block1, room1, room2) might be invoked to
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move block1 from room 1 to room 2. The precondition would be that Shakey was in

room 1, and the postcondition that Shakey was in room 2 and no longer in room 1.

Of course, the operators were expressed more generically. Planning was stringing to-

gether a sequence of operators that could achieve a desired state. STRIPS, the plan-

ning approach, is intuitive, and has been influential in AI.

Shakey’s system is declarative, in the sense that the system developer merely

expressed (declared) a set of operators. The underlying planning was left to the sys-

tem. Declarative programming is ideal in theory. In practice, how the operators are

expressed can have considerable influence on the e¤ectiveness of the planner. The

analogous declarative view of systems is to express a series of axioms as statements

of logic, and leave it to an underlying theorem prover to draw the conclusions or

reason appropriately. How axioms are expressed a¤ects how well a system may

perform.

Around the time of the Shakey project, experiments with theorem proving led to

the development of the programming language Prolog. Prolog is a good language

for many AI applications. In particular, Prolog is useful for prototyping logic reason-

ing systems. Several of the agent programming languages described in chapter 5

build on Prolog, or are at least influenced by it.

Formulating statements in logic and relying on an underlying theorem prover to

prove whether they are correct or to generate a plan is orthogonal to the concerns

of this book. Declarative programming is a good paradigm. Being precise in one’s

knowledge is to be commended. Also, it would be helpful, as many researchers advo-

cate, to delegate the reasoning to some interpreter. However, considering the execu-

tion as proving a theorem masks the systems approach of how agents interact and

whose responsibilities and what constraints there are, which is how we model sys-

tems. So despite the large amount of research in logic, we do not take that focus

here.

There was a strong reaction to the declarative view of intelligence in the 1980s.

The contrasting view was a reactive approach to achieve intelligence. The idea is

to build more intelligent activities on top of core functionalities. An analogy can

be made with human learning. Infants learn to walk and talk in their first years.

Greater intelligence comes later, built on top of our skills in walking and talking.

Our robust intelligence depends to a great degree on the robustness of the underlying

mechanism. This book is not, however, a book about intelligence, but rather about

models, and how they can be developed top-down as part of a systems engineering

life cycle.

To summarize the chapter, we advocate conceiving of the world in which software

must operate as a multiagent system operating in an environment subject to rules and

policies. There will be models to reflect important aspects of multiagent systems to
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aid understanding. The conceptual space that we look at will be discussed in more

detail in chapter 2. The models themselves will be presented in chapter 3, and applied

in later chapters.

1.8 Background

The background section at the end of each chapter is where we will supply more

detailed information about the references cited in each chapter, a more informal

way of handling references than footnotes. It also serves as a place for suggesting

further reading. Needless to say, the size and style of the background section will

vary from chapter to chapter.

This first chapter sets the scene for agents. The agent paradigm has become much

more prevalent over the past decade. For example, the agent metaphor is used as the

unifying image for AI in the leading AI textbook by Russell and Norvig (2002).

In the late 1990s, there was a spate of survey articles about intelligent agents,

which make useful additional readings. Two of the better known examples are Wool-

dridge and Jennings 1995 and Nwana 1995. The one most useful in our experience

for graduate students is Wooldridge 1999.

A common approach to introducing agents is to spend time discussing definitions.

The amusing definition of ‘‘objects on steroids’’ mentioned in this chapter has been

introduced by Parunak (2000, p. 13). For those readers seeking a more extensive dis-

cussion of definitions, we recommend the article by Franklin and Graesser (1997). In

this book, we have not agonized over the definition of an agent. In classes, votes are

taken on what people regard as agents. There is always diversity, and usually some

change of opinion by the end of the class. Indeed, a popular examination question

used in the University of Melbourne agent class is why does it not matter that there

is no exact agreed-upon definition of an agent.

The digital pet Web sites for Neopets, Webkinz, and Petz4fun mentioned in

the chapter are http://www.neopets.com, http://www.webkinz.com, and http://www

.petz4fun.com, respectively.

The analogy between constructing a building and developing a software system is

by John Zachman (1987).

UML is defined in OMG 2007.

A place to read more about the SWARMM system is Heinze et al. 2002. More

information about the STOW-97 simulation can be found in Laird et al. 1998.

Our understanding of the role of agents in the film trilogy Lord of the Rings

came from footage on the extended DVDs of the movies. In fact, the film pro-

ducer Peter Jackson explaining agents is the best endorsement of agents that we

have seen.
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The leading proponent of the reactive approach to intelligence is Rodney Brooks.

One of the most well-known papers by him is Brooks 1991.

Another influential critic of classical AI in the 1980s was Terry Winograd. He pub-

lished a book with Fernando Flores entitled Understanding Computers and Cognition

(1986) that argued that there were limits to computer intelligence and that computers

should be used to facilitate human communication. Although we don’t explore the

connection, philosophically, our holistic view of multiagent systems and thinking

about roles, responsibilities, and constraints are in keeping with this Winograd and

Flores philosophy. Their philosophy also influenced William Clancey, who devel-

oped a theory of activity that we draw on in chapters 2 and 3.

Having given the references, we’d like to comment on the following. Many of the

references were acquired by searching the Web using Google. For example, the defi-

nitions of models were extracted from the answers generated from typing the ques-

tion ‘‘What is a model?’’ into Google. The exercise was interesting and illustrates

well the diversity of the use of a common English word across a range of fields. We

encourage readers to try such searches for themselves.

Several of the sources were adapted or quoted directly from Wikipedia articles.

Wikipedia’s status as a reference of record is admittedly controversial. However, it

typically reflects popular opinion, supports the impression that we are imparting of

complex distributed sociotechnical systems, and is appropriate for our purposes in

this chapter. It would be fun to discuss why aspects of Wikipedia are controversial

relating to authorship and the ability to change records, but that is beyond the scope

of this book.

The Wikipedia references on e-commerce and intelligent homes are respectively

Wikipedia 2006a and 2006b. The Wikipedia reference on computer viruses is Wiki-

pedia 2006c.

Exercises for Chapter 1

1. Discuss which of the following you would consider an agent, and explain why or

why not. If you are unfamiliar with the example, try looking it up on the Internet.

� The Furby toy

� The Australian device for autonomously cleaning swimming pools, known as a

Kreepy Krauly

� An unmanned aerial vehicle (UAV)

� A search engine such as Google

2. Identify the various agents involved in the following:

� A book publishing company
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� A university

� A church or your local religious organization

� Australia, Estonia, or a country of your choice

3. Search the Internet for an application of agents in an area of personal interest.

4. The robotic soccer competition was augmented by having a competition, called

RoboCup Rescue, for teams of robots working in a rescue site. This was partly trig-

gered by the devastation caused by the Kobe earthquake in 1995. Discuss what needs

to be modeled to make such a competition useful. What features should be included

in a model?

5. Consider what would be useful to model in the transportation system of your city.
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2 Concepts

The first chapter discussed the complex world in which software and people intero-

perate and the rationale for agents and a multiagent system perspective. In this

chapter, we map out the conceptual landscape that underlies the book. This is not a

mathematical treatment, but rather a carefully worded description. We explain con-

cepts descriptively. In chapter 3, we give an extended example that shows how the

concepts apply in practice.

After covering the conceptual landscape, we provide some ontological grounding

for the chosen modeling notions. This helps the reader to understand how the mod-

eling notions that we have chosen relate to the attempts to represent the real world as

precisely as possible using ontologies.

2.1 The Conceptual Space

As introduced in chapter 1, this book is concerned with modeling systems with mul-

tiple agents, both human and manmade, interacting with a diverse collection of hard-

ware and software in a complex environment. The term ‘‘sociotechnical system’’ has

sometimes been used to indicate such systems. A sociotechnical system has been

defined as one that includes hardware and software; has defined operational pro-

cesses; and o¤ers an interface, implemented in software, to human users. However,

we prefer to call it simply a ‘‘system.’’

When thinking about the world, people form sets of interrelated concepts. Such

concept sets are often implicit. We believe they should be made explicit in designing

and building multiagent systems. Prompted by our desire for explicit concepts, we in-

troduce a conceptual space within which to view systems. The conceptual space is an

open concept set for systems engineering rather than a fixed concept set. By ‘‘open,’’

we mean that new concepts can be added and existing ones replaced or deleted.

The conceptual space consists of three layers: a motivation layer, a system design

layer, and a deployment layer. They embody the owner’s perspective, designer’s per-

spective, and builder’s perspective on systems engineering, which were discussed in



chapter 1. A design process in systems engineering can be understood as transform-

ing the models of the motivation layer into the models of the system design layer.

Likewise, an implementation process is the transformation of design models into the

models of the deployment layer—deployment models. A depiction of the conceptual

space and the design and implementation processes is given in figure 2.1.

We describe the three layers from the highest to the lowest as drawn in the figure.

The motivation layer contains abstract modeling concepts needed for defining

requirements and purposes of a system. Arguably, the most foundational are the

goals of the system, which must be modeled, as well as roles for achieving the goals.

For example, a home security system has the goal ‘‘Handle intruder’’ and the role of

Security Manager. Goals and roles are further addressed in section 2.2.

The system design layer consists of the notions required for modeling and design-

ing a sociotechnical system. The central one among them is the concept of agents.

We define an agent as an autonomous entity situated in an environment capable of

both perceiving the environment and acting on it. Each agent belongs to some agent

type that in turn is related to one or more roles from the motivation layer. Agent

types are determined by the system to be designed; roles belong to the problem do-

main. Agents enact roles by performing activities. Each activity instantiates some

activity type that specifies functionalities defined by goals at the motivation layer.

For example, in a home security system, activities of types ‘‘Identify intruder’’ and

‘‘Respond’’ realize the respective goals. They are performed by one or more agents

enacting the role of Security Manager. We further discuss agents and activities in

section 2.3.

Agents and activities are situated in an environment that is represented at the

deployment layer of the conceptual space shown in figure 2.1. For example, greeting

someone at home is di¤erent from greeting a person in a workplace. On the other

hand, agents are not just surrounded by the environment but form parts of it. Envi-

ronment is thus the real material world inhabited by various kinds of entities. The

environment is treated in more detail in section 2.4.

The conceptual space naturally comprises the owner’s, designer’s, and builder’s

perspectives on systems engineering and the analysis, design, and implementation

processes of systems engineering.

2.2 Roles, Goals, and Organizations

The fundamental concept underlying this book is that of an agent that is actively

situated in an environment. The agent is assumed as being purposeful. Where does

the purpose come from? The deliberate choice within our conceptual space is that

purpose is modeled within the motivation layer. This section describes the con-

cepts from the motivation layer—namely goals, roles, and aggregates such as
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Figure 2.1
The layers and processes of the conceptual space
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organizations—that determine social policies. The motivation layer is depicted in

figure 2.2.

The models of goals, roles, and organizations refer to knowledge about the prob-

lem domain of the system to be designed. At the motivation layer, such knowledge is

represented as a set of domain entities and relationships between them. Though do-

main knowledge is distributed throughout the conceptual space, we choose to depict

it at the motivation layer; we explain this concept more in chapter 3 when describing

our models in detail.

How does one express the purpose of an agent? This di‰cult question has

absorbed the attention of many philosophers over thousands of years. For this

reason, we almost called the motivation layer ‘‘the metaphysical layer,’’ but later on

decided to downplay the philosophical side.

The two primary concepts that we use throughout the book are goals and roles.

‘‘Goals’’ and ‘‘roles’’ are both common words. They have been appropriated by

many agent and other computing researchers to use in a technical sense—often in

quite di¤erent ways. So we will discuss these terms at some length.

A goal can be defined as a situation description that refers to the intended state of

the environment. For example, in the case of dealing with an intruder within an in-

telligent home, the goal of handling an intruder denotes the state of the environment

where an intruder has been noticed, identified, and the case has been handed over to

the police or security company.

Goals are measurable—how else do you know when you have attained your goal?

However, we still want to express an aspirational side of goals. Reflecting a compro-

mise, a goal has also been dubbed ‘‘a dream with a deadline.’’

Goals are based on motives. For human agents, there is a variety of motives. They

are generally divided into physiological, psychological, interactional, and intellectual

motives. Examples of physiological motives are hunger, sexual attraction, and fa-

tigue. Examples of psychological motives are stress or other emotions, ambitions,

and aesthetic pleasure. Finally, examples of interactional and intellectual motives are

Figure 2.2
The motivation layer
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the respective needs for interpersonal relationships and curiosity. Manmade agents

may have simulated motives. For example, a Tamagotchi may perform certain activ-

ities out of ‘‘hunger’’ or because it has ‘‘pee need.’’ A Tamagotchi may then be seen

as having a goal to get its need satisfied by a certain time, or otherwise it will ‘‘be-

come sick.’’

Goals can be categorized into achievement goals, cease goals, maintaining goals,

avoidance goals, and optimization goals. Achievement goals and cease goals are re-

spectively targeted at achieving or ceasing a certain state of a¤airs or world state,

maintaining goals and avoidance goals respectively aim at preserving or avoiding a

certain state of a¤airs, and optimization goals strive for maximizing or minimizing a

specific optimization function. For example, in air tra‰c management, there can be

an achievement goal to allocate the airport resources, a maintaining goal to maintain

a minimal distance between landing planes, an avoidance goal to avoid simultaneous

landings on crossing runways, and an optimization goal to have an optimal mixture

of takeo¤ sequence and departure flow.

Goals can be measurable, to a greater or lesser extent. For example, the goal of

playing soccer can be to win a soccer game or to have fun, or both at the same

time. We have decided to represent goals that are not easily measured as quality

goals. A quality goal, as its name implies, is a nonfunctional or quality requirement

of the system. For example, in air tra‰c management, we may have an optimization

goal of maximal safety, for which it might be hard to construct an optimization func-

tion. However, there may also be a quality goal of achieving maximal throughput of

the airport, the attainment of which is easier (but not simple) to measure.

Goals are expressed by using nouns, verbs, and (optionally) adjectives. The noun

tends to be more of a state, and the verbs more into the activities that are needed to

achieve a goal. For example, there can be a goal to have a million dollars or become

rich. However, sometimes it may be reasonable to represent the state to be achieved

as a quality goal associated with a functional goal. For example, in the New Testa-

ment, Jesus urges us to forgive each other seventy times seven times (according to

most translations). Here ‘‘to forgive each other’’ should be modeled as a functional

goal and ‘‘seventy times seven times’’ as a quality goal associated with it. We explain

this example in more detail in section 4.5.

Goals can have subgoals. For example, in an intelligent home, a goal of handling

an intruder might consist of the subgoals of noticing a person, identifying an in-

truder, responding, and evaluating.

We begin our treatment of roles by considering the question of how to understand

behavior of an agent in a complex system. Complexity is best handled if it can

be decomposed into simpler pieces. A natural decomposition of agents and their

behaviors can be produced by consideration of roles. Therefore, roles characterize

the functions that agents perform. To put it in a personal context, people have
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many roles. Leon and Kuldar are sons, husbands, fathers, teachers, students, and

academics, to name just a few. Each role carries expectations. We go through a

complicated, largely unconscious evaluation of which of the roles may be appropri-

ate at a particular time, place, and circumstance, and how we fulfil the role(s) in that

circumstance.

We emphasize the naturalness of considering roles. We are involved in role-play

from an early age. Children play mothers and fathers, house, doctors and nurses,

and teachers and school. We will not develop the psychological implications of role-

play, but we reiterate that role as a concept is very natural to help understand behav-

ior in simple and especially in complicated systems.

What is a role? This perhaps is the least clear for the reader, as in the agent and

computing literatures the term is used in many senses. We define a role as some ca-

pacity or position that facilitates the system to achieve its goals. In our view, roles

express functions, expectations, and obligations of agents enacting them. We encom-

pass these senses in the term responsibilities, which determine what an agent enacting

the role must do in order for a set of goals and quality goals to be achieved. In addi-

tion, a role may also have constraints specifying conditions that the role must take

into consideration when performing its responsibilities. For example, in an intelligent

home, the role of home security manager has responsibilities to detect the presence of

a person in the environment, to check the house schedule for strangers scheduled to

be there, to record an image of the person, and so on. The same role also has con-

straints that the owner and each person pointed out by him/her needs to provide in

advance personal information (face) to be recognized, that a subject to be detected

needs to be visible within the camera’s image area, and that the owner must maintain

the house schedule, among others.

A natural way of expressing some of the behaviors of roles is scenarios. A com-

mon game that Leon played with his daughters and that Kuldar occasionally still

plays with his daughters, admittedly reluctantly in both cases, is house. How do you

play house? You assign roles, such as mother (mummy or mommy depending on

your country and culture), daddy, big sister, and so on, and then enact scenarios.

For kids, enacting scenarios is a way of coming to terms with things and processes

in the world.

We define a scenario as the specification of a purposeful sequence of activities by

the agents involved. By purposefulness, we mean that a scenario has to achieve a

goal specified in the goal model. For example, the intruder-handling scenario

includes an activity of type ‘‘Handle intruder’’ performed by the enactor of the

role of home security manager and its subactivities of identifying an intruder and

responding, which achieve the goal of handling an intruder with its associated quality

goals. Scenarios are thus derived from goals by specifying how they map into activ-
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ities and the order of performing the activities. We talk more about scenarios and

propose a way to model them in section 3.8.

Another natural concept that manifests itself from childhood is that of an organi-

zation. A dictionary (Apple Dictionary 2.0.2) gives the definition of ‘‘an organized

body of people with a particular purpose.’’ We find ourselves in numerous organiza-

tions. Some are inevitable, such as families and schools. Some are optional, such as

sporting clubs or religious groups. Some are community-based and provide services,

such as police, garbage removal, or, more abstractly, government. Several of the

organizations may overlap.

Roles aggregate into organizations, because an agent may need to rely on other

agents for fulfilling its responsibilities defined by the goals of the corresponding

role. For example, the roles of wife and husband constitute the core of a family

organization.

Di¤erent kinds of organizations can be distinguished depending on the types of

relationships between roles. The three example types of organizations are hierarchies,

markets, and networks. In a hierarchy, the enactor of a parent role delegates some of

its responsibilities to the enactors of its children roles. In this case, the enactor of a

child role cannot decide which responsibilities it will get but must accept whichever

responsibilities are delegated to it by the agent playing its parent role. An example of

a hierarchical organization is a traditional family, in which the husband may dele-

gate responsibilities to a wife, but never the other way round. An organization of

this type has the control relationship between a parent role and its children roles.

In a market, each agent can choose its responsibilities so that they best fit the goals

and quality goals applying to the agent. For example, in an auction, the organizer

announces the responsibilities to be fulfilled and the participants bid thereafter. This

organization type is based on benevolence relationships between self-interested roles,

in which an agent performing a role o¤ers to fulfil responsibilities for an agent per-

forming another role whenever it appears beneficial to it.

In a network, a responsibility can either be delegated by the enactor of a parent

role or requested by the enactor of a child role, which means that those roles have

equal status. For example, in a modern family, the husband can delegate his respon-

sibilities to the wife, as well as the other way around (with the exception of giving

birth to children). This implies peer relationships between equal roles.

Scale is a key factor in considering organizational structure. To use a biblical ex-

ample, the Israelites in the desert had a flat structure for making judgments. All ques-

tions were referred to a single judge, Moses. His father-in-law, Jethro, pointed out

that a single judge didn’t scale if the number of complaints increased, and that Moses

was being worn out from all the judgments. This realization led to a hierarchical

structure with chiefs for groups of tens, fifties, hundreds, and thousands.
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Roles can also be related by means of an authorization relationship, in which an

agent playing a role needs to be empowered to fulfil its responsibilities by an agent

playing another role. For example, there is an authorization relationship between

the roles of security manager and owner meaning that the security manager requires

an authorization from the owner in order to enter the house.

Responsibilities of roles often map to social relators—sets of commitments and

claims—between agents playing the roles. For example, in a modern family, the

wife may delegate to the husband the responsibility of looking after their children

for a particular time period. This delegation means that the husband has a commit-

ment toward his wife to look after the children in that period and the wife conversely

has a claim against her husband to fulfil the responsibility delegated to him. Rela-

tionships between roles can thus be described by the sets of commitments and claims

that may occur between the agents playing the roles. Checking and enforcing com-

mitments are di‰cult tasks, and it is really a research topic to see how they might

be implemented. However, one of the methodologies to be addressed in chapter 7

provides at least a partial solution to this.

Organizations constrain the achievement of goals, and the formation and satisfac-

tion of commitments and claims by agents within them by means of social policies.

For example, the social policy of binding commitments may apply to the goal of

negotiating a deal. This social policy requires that if agents agree on a deal, they

should not be allowed to decommit on that deal. Social policies can be modeled as

quality goals over functional goals. For example, the social policy of binding com-

mitments can be represented as a quality goal ‘‘commitment is binding’’ attached to

the goal to ‘‘negotiate a deal.’’ Social policies can be modeled as scenarios, for exam-

ple, how to greet members of the royal family or behavior patterns at a social event.

Social policies can also be embedded in the responsibilities and constraints of roles.

In general, we are influenced by social policies. For example, in di¤erent countries,

how to tip, an example of a social policy, can pose a real problem for travelers. To

make things simpler, in some countries a tip in the form of a service tax is automati-

cally added to one’s invoice. In Estonia, there is the social policy of bringing flowers

to a wedding ceremony. As another example, in many Asian countries there is the

social policy of handling business cards with two hands.

Social policies sometimes are blurred with roles and knowledge. For example,

while how much to tip is a social policy, it is also a piece of knowledge relevant for

the role of customer. Social policies can be evaluated by di¤erent quality attributes

attached to them, such as security, privacy, fairness (in the context of a market orga-

nization), and e‰ciency, which a¤ect activities that agents are engaged in.

Social policies can be anything from access rights, to social norms or obligations.

Social policies are identified based on the relationships and dependencies between
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roles. When we turn goals and the related responsibilities of roles into scenarios,

these scenarios must be defined in a manner consistent with social policies. For ex-

ample, the scenario of talking to someone may be a¤ected by the social policy about

waiting until someone stops speaking. Similarly, the scenario of greeting elders in

some Asian societies is very sophisticated, and sometimes opaque. In an intelligent

home, the scenario of handling an intruder must include consideration of the safety

of the homeowner and his or her family and possible visitors.

Policies of the motivation layer are reflected in the rules of the system design layer.

Just having rules may be su‰cient for most uses of a system. Having the policy is

helpful when knowing whether it is appropriate to break the rules.

2.3 Agents and Activities

Agents and activities are modeled at the conceptual space’s system design layer,

which is shown in figure 2.3. The system design layer provides the concepts necessary

for modeling agents and their activities. The concepts used for modeling at the

system design layer are types. Ideally, the instances of these types could be directly

implemented. However, to reflect the diversity of implementation techniques, like

programming languages and platforms, the types modeled at the system design layer

are related to the corresponding types of concrete agents and objects represented at

the deployment layer. For example, agent types used in modeling can be related to

software agent types represented in a particular programming language. Neverthe-

less, in modeling it may be useful to talk about hypothetical instances or occurrences

of the types modeled at the system design layer. This is reflected by the depiction of

the system design layer in figure 2.3 and by the discussion in this section.

Agents are entities that enact roles. Roles are discussed in the previous section. We

define an agent as an entity that can act in the environment, perceive events, and rea-

son. Events that an agent perceives by, for instance, receiving a message or sensing a

Figure 2.3
The system design layer
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temperature change, are caused by agents or other entities in the environment. Con-

versely, through acting, agents can a¤ect entities in the environment. By reasoning,

we mean drawing inferences appropriate to the situation.

We can ascribe to an agent a mental state. By doing so, we can attribute to it an-

thropomorphic qualities like beliefs, responsibilities, expectations, capabilities, goals,

desires, and intentions, and social relators, such as commitments and claims. An ex-

ample of an agent with anthropomorphic qualities and social relators is a Tama-

gotchi, the popular digital pet which was mentioned in section 1.2 and described in

more detail in section 3.1. It becomes hungry; it needs to go to the bathroom; it has

to be entertained; it needs to associate with other Tamagotchis and humans; and so

on. The owner of a Tamagotchi e¤ectively has commitments against it and the Tam-

agotchi, conversely, has claims against its owner, or otherwise the Tamagotchi—a

creature appearing on the screen of the physical toy—ceases to function, or, as the

manufacturers describe it, dies. As Kuldar and his daughters Eliise and Sanne have

felt, for a human, it is surprisingly easy to begin feeling guilty about his or her behav-

ior toward a digital pet that cannot even speak. Because it is just a toy, however, a

new Tamagotchi can be ‘‘hatched’’ within the toy.

We demonstrate our view of agents by presenting a simple abstract agent architec-

ture, shown in figure 2.4. An agent receives information from the environment,

including messages from other agents, through one or more sensors and stores infor-

mation received from them in its knowledge base. The agent’s behavior is determined

by a controller that performs actions a¤ecting the environment, including messages

sent to other agents, through the agent’s actuators. The controller receives its input

knowledge from the knowledge base and from the sensors. Besides acting through

Figure 2.4
An abstract agent architecture
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actuators, the controller also performs local actions that change the knowledge

stored in the agent’s knowledge base.

The controller performs the execution loop depicted in figure 2.5 while the agent is

unfulfilled, the meaning of which is specific to a particular agent. For example, a

Tamagotchi performs the loop while it is alive. The loop involves sensing the envi-

ronment and updating the agent’s knowledge base accordingly, reasoning on the

newly updated knowledge base, choosing actions based on the information received

from the sensors ( perceptions), the state of the knowledge base, and acting. Percep-

tions can directly lead to choosing actions, which is represented by the arrow from

the sensors to the controller in figure 2.4.

The abstract agent architecture is refined by specific agent architectures, such as

the Belief-Desire-Intention (BDI) agent architecture described in section 5.1. In the

BDI architecture, an agent’s actions are specified as based on its intentions that,

in turn, proceed from the agent’s desires and beliefs. Alternatively, actions can be

specified in terms of the agent’s perceptions and beliefs.

We distinguish between various categories of agents. Examples of human agents

are the employees Leon and Kuldar of the University of Melbourne, the student

Andrea of the same university, and the nurse who treated Kuldar yesterday, where

‘‘yesterday’’ denotes a time span relative to the current time. Examples of manmade

agents are the Mars Exploration Rover, a Sim from the Sims game, the software

agent that represents a particular company in an automated contract negotiation,

an email client, and an industrial robot that performs welding a car body. We can

group individual agents into agent types. For example, Leon and Andrea are respec-

tively instances of the agent types Employee and Student. All the human agent exam-

ples presented are also instances of the agent type Person. Similarly, we can talk

about the manmade agent types ContractNegotiationAgent and WeldingRobot.

The idea for this book arose from research projects devoted to software agents but

later on, we have concluded that the distinction between software agents and other

kinds of manmade agents can be blurry. For example, should the Mars Exploration

Figure 2.5
The execution loop of an abstract agent
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Rover or a Blackberry be categorized as software agents? Therefore, we prefer to talk

about agents in general.

The notion of institutional agent serves as a useful modeling abstraction. We

define an institutional agent as an aggregate that consists of internal human and

manmade agents, which share collective knowledge, and that acts, perceives, and

communicates through these internal agents. Examples of institutional agents are

organizations, such as a bank or a hospital; organization units; and groups. Institu-

tional agents are used in the examples of B2B electronic commerce and manufactur-

ing in chapter 8.

Agents—and especially institutional agents—can relate to each other through

commitments and claims. For example, it may be helpful to model that one institu-

tional agent, a factory, has a commitment to provide another institutional agent,

a wholesale company, with a product set. Further examples of commitments and

claims are provided in chapters 7 and 8.

There is a consensus that autonomy is central to the notion of agency. An agent

can thus be defined as an autonomous device, person, or software component that

can interact with its environment. What do we mean by ‘‘autonomy’’ here? Some

people define autonomous agents as agents that create and pursue their own agendas,

as opposed to functioning under the control of another agent. Although a philosoph-

ically and psychologically important concept, it is questionable whether manmade

agents pursuing their own agendas can e‰ciently help human agents in their daily

activities. In fact, from the numerous industry-related case studies in which Leon

and Kuldar have participated, they cannot remember even one where such agents

were needed. Moreover, as pointed out in section 1.2, the very term ‘‘agent’’ stands

for an entity that acts on someone’s behalf rather than in a completely autonomous

manner. Industry accordingly prefers to talk about controlled autonomy. We can con-

clude this discussion by saying that autonomy of an agent should be regarded as a

relative rather than an absolute characteristic.

More important than the autonomy of an agent from the practical point of view is

its situatedness in the environment. Agents are capable of perceiving events that

occur in the environment, which includes receiving messages from other agents, and

performing actions that a¤ect the environment, which includes sending messages to

other agents. This is reflected by the concepts of perceptions and actions depicted in

figure 2.3.

Some authors have emphasized the notion of intelligent agents. According to them,

an intelligent agent is required to be reactive, proactive, and social. An agent is reac-

tive if it is able to perceive its environment and respond in a timely fashion to

changes that occur in it. An agent is proactive if it does not simply act in response

to its environment, but is able to exhibit opportunistic, goal-directed behavior and

to take the initiative where appropriate. Finally, an agent is social if it is able to
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interact, when appropriate, with other manmade agents and humans in order to

complete their own problem solving and to help others with their activities.

So, is a Tamagotchi an intelligent agent? It is certainly responsive, because it can

perceive its environment through two kinds of sensors: infrared sensors and button

sensors. A Tamagotchi is also social, because it is able to interact with other Tama-

gotchis and humans, for example, to play a game, which can be viewed as a problem-

solving activity. Is a Tamagotchi proactive, as well? It certainly can exhibit behavior

arising from its mental state, for example, by requiring socializing when it ‘‘feels

lonely.’’ Can this sort of behavior be characterized as goal-directed? Yes, but it is

not always necessary to represent goals explicitly for modeling and representing

goal-directed behavior. As we argue later in this section, explicit representation of

goals is fully justified only for modeling problem-solving activities, which make up

only a specific part of human activities. We conclude the discussion on intelligence

by saying that Tamagotchi is certainly intelligent according to the definition pre-

sented earlier. However, this shows only Tamagotchi’s conformance to the definition

rather than real intelligence. As a reality check, when Kuldar posed the question ‘‘Is

a Tamagotchi intelligent?’’ to his then eight-year-old daughter Eliise, he received a

very confident ‘‘Yes’’ in reply!

An agent’s knowledge is represented in its knowledge base by knowledge items. It

may help in modeling to use knowledge items to determine the agent’s mental state.

For example, a Mars Exploration Rover has knowledge items for representing its

state and location.

Agents are engaged in activities. Activities for manmade agents should be designed

so that they best support activities performed by humans. Broadly speaking, an activ-

ity is what an individual agent does in its role. We daily perform all kinds of ac-

tivities: sleep, eat, groom, study, write, rest, run, play, explore, swim, worship, wait,

sing, clean, and so on. An activity can be defined as an agent’s engagement situated

in a specific social context that takes time, e¤ort, and application of knowledge.

We can distinguish between private activities, such as walking, and collective activ-

ities, such as playing tennis. A collective activity can be defined as an activity involv-

ing agents performing two or more roles; a private activity is performed solely by

an agent playing a particular role. As we show in chapter 8, in modeling it can be

helpful to consider collective activities as being performed by institutional agents,

like organizations and companies, or groups.

In a sociotechnical system, an activity can be performed by a human agent, or

more generally by a biological agent, such as a dog, or by a manmade agent, such

as a software agent. Sociotechnical systems exist to support human activities, such

as guarding of a building, trading, planning a route, and flirting. Various kinds of

agents can be involved in sociotechnical systems. For example, a building can be

guarded by human(s), dog(s), or software agent(s).
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As has been implied, an activity may consist of other activities—subactivities. At

the most basic level, an activity consists of actions. There can be communicative

actions, like sending a message; physical actions, like starting a machine; and episte-

mic (knowledge changing) actions, like storing the image of a potential intruder. We

thus view an agent’s action more broadly as something that the agent does and that

may be perceived as an event by another agent. In particular, communicative and

physical actions can be perceived as events and are thus capable of changing the

environment state. For example, as we explained previously, a Tamagotchi is capa-

ble of changing the mental states of another Tamagotchi, as well as of its owner.

Each activity belongs to some activity type, which we define as a prototypical job

function that specifies a particular way of doing something by performing elementary

epistemic, physical, and communicative actions. For example, the activity of han-

dling an intruder contains the elementary actions of taking an image of an intruder,

storing it, and sending a message to the police.

The quality of performing an activity can be evaluated by quality attributes, such

as privacy, politeness, appropriateness, and playfulness, which are derived from qual-

ity goals. Quality attributes are defined for activities like quoting a price and flirting.

Quality attributes may have quantitative values such as that performance of a net-

work was 1 MB/sec, or qualitative values such as that network performance was

satisfactory. Quality is discussed in more detail in chapter 4.

Intrinsic to activities is the context of their performance. An activity’s context can

be understood as a subset of the agent’s environment that is characterized by the

time and space of performing the activity, as well as by other contextual activities

that enclose the given activity. For example, for evaluating the quality attribute of

appropriateness applied to a greeting, any enclosing activities need to be considered.

For a greeting, relevant enclosing activities might be having a business lunch or cele-

brating a family event.

We use situation-action rules or simply rules to model when an activity is created

and for how long it stays active, as well as what actions are performed in its course.

Rules depend on goals and social policies that have been defined for the correspond-

ing role(s). Rules are contained by the controller component of the abstract agent

architecture represented in figure 2.4. A rule prescribes an agent’s behavior in a given

situation that is determined by the agent’s perceptions and its mental state. For ex-

ample, there can be a rule for flirting, which states that if an incoming touch has

been registered (perception) and the partner is available (mental condition), the flirt-

ing activity is started. This rule may additionally require the mental condition to be

true for the whole duration of the flirting activity. This flirting rule comes from the

Secret Touch application described in chapter 9.

In modeling, rules are usually attached to agent types. Rules are instantiated for

individual agents of these types. For example, the rule for flirting is attached to an
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agent type IntimacyMediator and is instantiated for an agent of type Intimacy-

Mediator when it receives a message containing a touch from another agent of that

type.

In addition to the most common condition-action pattern illustrated previously,

there can be other rule patterns. For example, in a manufacturing control system

that consists of agents representing manufacturing resources and orders, if too many

order agents query a given resource agent for its availability to perform a manufac-

turing process step, the complete production system may slow down. In order to pre-

vent this situation, a rule is established that measures the response time and if

needed, requests the order agents to reduce their query sending intervals to minimize

the number of concurrent queries. This rule has two conditions: an activation condi-

tion, query response time out of bounds, and an expiration condition, query response

time within bounds.

It is helpful to distinguish between activities and tasks. We understand a task as a

modeling construct that defines the actions performed by an agent in terms of prob-

lem solving with goals and operators—plans. Tasks and plans are further discussed

in section 2.6.

2.4 Environment

Agents are deployed in a (usually preexisting) environment. An environment can be

either a real physical environment or a virtual one, like a simulated environment. For

example, a scenario of intruder detection can take place in a real physical environ-

ment where software entities interact with humans and physical devices like sensors

and cameras. Alternatively, the same scenario can take place in a simulated environ-

ment where some events caused by the physical environment, like sensing an in-

truder, are simulated by software.

The environment is populated by concrete agents and concrete objects, which

are shown at the deployment layer of the conceptual space in figure 2.6. By con-

crete agents and objects, we mean entities, which have concrete manifestations—

concretizations—in the environment. Examples of concrete agents are a human, a

robot, a dog, and a software agent, and examples of concrete objects are a book, a

car, and a Web service. Concrete agents and objects subsume software agents and

objects, even though it may be di‰cult to understand in which sense a software entity

exists in the real world.

A concrete agent like a human may be a concretization of the corresponding agent

modeled at the system design layer. Analogously, a concrete object of the deploy-

ment layer may correspond to a conceptual object—a kind of knowledge item—

modeled at the system design layer. Concrete agents and objects belong to the

respective concrete agent types and concrete object types, such as agent and object
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types of a specific software platform. They are derived from the agent types and con-

ceptual object types of the system design layer.

A concrete agent or object can be described by a set of attributes where an attri-

bute is either a numeric attribute or a nonnumeric attribute. A numeric attribute, like

weight, is represented quantitatively as a numerical value, while a nonnumeric attri-

bute, like color, can be subjective and is better represented qualitatively. The onto-

logical grounding of attributes is presented in section 2.6.

Concrete agents perform concrete actions. A concrete action performed by one agent

can be perceived as an event by other agents. For example, a message sent by one soft-

ware agent to another is perceived as a ‘‘message received’’ event by the latter. As an-

other example, a security agent can perceive events such as movement in the building.

Behavioral constructs related to a particular concrete agent determine how the en-

vironment state is related to concrete actions performed by the agent. For example, a

software agent representing a company in electronic trade may have a behavioral

construct determining the actions to be performed upon receiving a message from

the software agent of another company. The behavioral construct may state that if

the message received contains a production order, it should be stored in the agent’s

knowledge base and a confirmation should be sent to the other agent.

Behavioral constructs of the deployment layer are based on rules of the system de-

sign layer. Behavioral constructs are represented in the language of a particular im-

plementation platform. Some examples of agent-oriented implementation languages

and platforms are provided in chapter 5.

We distinguish between a physical environment, like a factory floor, and a virtual

environment, like the Internet. From the perspective of a system designer, the envi-

ronment is not a passive set of entities but rather provides an exploitable design

abstraction for building multiagent systems. For this purpose, the environment can

be utilized in the following three ways.

First, the environment embeds resources and services that can be utilized by agents.

For example, in the early days of human civilization, the natural environment imme-

Figure 2.6
The deployment layer
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diately provided humans with the natural resources that they required for surviving.

In our time, resources and services are provided through mediators, such as pro-

ducers, wholesale and retail sellers, and service providers. In the virtual Internet

environment, resources are various information resources, such as databases and

Web sites, and services are Web services to be accessed by agents.

Second, the environment serves as a container and a means for communication for

agents. For example, a geographical location, like a city, provides a container for hu-

man agents and institutional agents (organizations), where they can be found with

the help of a phone directory. Human agents and institutional agents represented by

them rely for communication on the postal and electronic services. Similarly, a soft-

ware agent platform provides an agent management system, a directory facilitator,

and a message transport system for software agents.

Third, the environment functions as a coordination infrastructure for agents. For

instance, in a hospital setting, coordination artifacts, such as the patient’s record,

the patient list on the wall, and paper trays, play a crucial role in coordination of

work among doctors and nurses. Coordination artifacts are especially important

in the context of open systems, where the environment is subject to change, and col-

lective goals, norms, and organizational rules must be adapted accordingly. For ex-

ample, we as members of an open human society do not memorize all the rules and

regulations applying to us at any given moment but instead rely on the information

published by authorities, which thus becomes a coordination artefact. In software

agent systems, blackboard systems were the first type of mediated interaction models

proposed. In addition, tuplespaces can be used as artifacts for communication and

synchronization purposes. They essentially function as logic-based blackboards that

agents associatively access by writing, reading, and consuming logic tuples—ordered

collections of heterogeneous information chunks.

We end this section by a definition stating that the environment is a first-class ab-

straction that provides the surrounding conditions for agents to exist and that medi-

ates both the interaction among agents and the access to resources.

2.5 Relationships between the Layers

As is implied by figure 2.1, the concepts at di¤erent layers of the conceptual space are

related to each other. Abstractly, a design process in systems engineering transforms

models of the motivation layer into models of the system design layer. In the design

process, the concepts of the motivation layer are related to corresponding concepts of

the system design layer. In particular, goals are attached to activities for achieving

them and also become parts of agents’ knowledge. The activities consist of atomic

actions, and rules are required for starting and sequencing the activities. Social
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policies and the responsibilities and constraints associated with roles are sources for

rules. Agents are decided upon based on roles and domain entities (e.g., by coupling

and cohesion analysis). Social policies also influence the agent perceptions to be

modeled.

Abstractly, an implementation process is the transformation of design models into

models of the deployment layer—deployment models. In the implementation pro-

cess, actions of the system design layer become concrete actions of the deployment

layer. Activities and rules of the system design layer are expressed as behavioral con-

structs that aggregate concrete actions performed by concrete agents. Concrete

agents are decided based on the agents modeled at the system design layer. Percep-

tions of the system design layer are related to the events to be perceived and the

behavioral constructs that implement perceiving. The set of knowledge items and

their relationships of the system design layer are represented as concrete objects and

relations between them.

The relationships between the concepts of the conceptual space are represented in

figure 2.7. In chapter 6, we discuss the Model-Driven Architecture and how models

can be related across layers in a three-layer conceptual framework. There are useful

parallels that can be drawn with the relationships between layers as we have

described them, and the relationships between types of models in the Model-Driven

Architecture.

2.6 Ontological Foundations of the Conceptual Space

The preceding sections of this chapter introduced a conceptual space within which to

view systems. In this section, we provide some ontological grounding for the chosen

modeling notions. In the philosophical sense, ontology is the study of existence and

modes of existence. Going through the grounding presented in this section is not

needed for understanding the rest of the book, as the concepts introduced in sections

2.2, 2.3, and 2.4 can be applied to modeling without considering their ontological

foundations. We have chosen not to include the formalizations of the ontological

grounding, but instead refer the reader to the background information provided in

section 2.7 to the sources where the formalization is readily available.

Two kinds of entities inhabit the conceptual space: universals and particulars. Par-

ticulars are entities that exist in reality, possessing a unique identity. Particulars can

also be defined as entities that exist at least in time. They subsume physical entities

that exist in both time and space, and virtual entities that exist merely in time. Exam-

ples of physical entities are humans and machines, and actions and events are exam-

ples of virtual entities. A software system exists in time, but it is debatable whether it

also exists in space. On the other hand, universals are patterns of features, which can

be realized in a number of di¤erent particulars. Universals exist neither in space nor
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Figure 2.7
The relationships between the concepts
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in time; that is, they cannot be localized. Examples of universals are mathematical

objects, like numbers and sets; modeling abstractions, like goals and roles; as well as

types, such as agent, object, and activity types. An alternative way of distinguishing

between particulars and universals is based on the ‘‘causality criterion’’: universals

possess no causal power, and particulars do. In this book, we assume a commonsense

understanding of causality as the relationship between cause and e¤ect.

We now describe universals and particulars. It seems to us preferable to under-

stand the real world before attempting to create its abstractions, models. So we will

start with particulars. This approach enables us to cover the most fundamental con-

cepts first and subsequently treat the other concepts based on them.

In contrast to universals, particulars are entities and events that respectively exist

or occur in the real world. The notion of the ‘‘real world’’ used here includes soft-

ware systems. Particulars of the conceptual space are represented in figure 2.8. The

figure uses the UML notation described in table 2.1 for representing generalization

and aggregation relationships, as well as relationships between concepts.

There are two kinds of particulars: endurants and perdurants. The di¤erence be-

tween the two is related to their behavior over time. To put it simply, endurants

‘‘are in time’’ and perdurants ‘‘happen in time.’’ We presume a commonsense under-

standing of time. An endurant is defined as an entity that persists in time while keep-

ing its identity. Examples are a house, a person, the moon, and a pile of sand. In

contrast to this, whenever a perdurant is present, it is not the case that all its temporal

parts are present. Examples of perdurants are a human race, a conversation, the

Second World War, and a manufacturing or business process. The distinction be-

tween endurants and perdurants can be understood in terms of the intuitive distinc-

tion between things and processes. For example, the book that you are reading now

is an endurant because it is present as a whole, while ‘‘your reading of the book’’ is a

perdurant, because your reading of the previous section is not present now.

An endurant can be a physical object or an amount of matter. Particulars subsume

physical entities and software entities. A physical object, like a house, a person, the

moon, or a computer program, is a kind of endurant that satisfies a condition of

unity, and one for which certain parts can change without a¤ecting its identity. In

contrast to this, an amount of matter, like a pile of sand, does not satisfy the condi-

tion of unity and, in general, cannot change any of its parts without changing its

identity. A physical agent is a kind of physical object that can act, perceive, and rea-

son. Physical agents subsume software agents.

To understand software agents, it is useful to compare them with (software) objects

that are defined as computational entities that encapsulate some state, are able to

perform actions or operations on this state, and communicate by message passing.

An agent’s autonomy means that an agent’s behavior and its outcome may not be

predictable as observed from the outside. For example, the criteria for buying a gift
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given to the shopping agent may not predict exactly what gift it will choose. In con-

trast, the outcome of invoking an operation attached to some object is usually more

precisely defined.

In this book, we frequently refer to resources. A resource can be ontologically

defined as a physical object used by a physical agent for achieving the goals defined

for the system. Resources participate in the actions performed by agents.

Endurants are characterized by moments. They are endurants that are existentially

dependent on other endurants, which are named their bearers. There are two kinds of

moments: intrinsic moments and relational moments.

Figure 2.8
Particulars of the conceptual space
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An intrinsic moment is a special kind of moment that is existentially dependent on

one single individual. For example, the color of an apple depends upon the existence

of the apple itself. Intrinsic moments can be divided into qualities and mental

moments.

A quality, like the color, height, weight, and electric charge of a physical object, or

the age of a software agent, inheres in exactly one endurant and can be represented in

several quality dimensions. For example, the color of an apple can be represented in

terms of the dimensions of hue, saturation, and brightness. In section 4.1, we discuss

the relationship of quality in this sense to the quality goals introduced in section 2.2.

A mental moment, like a belief, a thought, a desire, an intention, a perception, a

skill, a symptom, or a headache, is a specialization of intrinsic moment referring to

mental components of a physical agent. A mental moment can bear other moments,

each of which can be a moment or quality. For example, Kuldar’s headache can be

characterized by the qualities of duration and intensity. In the context of this book,

we single out the following mental moments: perception, belief, (logic) goal, desire,

and intention.

A relational moment, a relator, like a particular flight connection between cities, a

kiss, or a handshake, is an endurant that is existentially dependent on more than one

physical object. Because of the topic of this book, we are especially interested in rela-

tors between physical agents, which we term social relators. A social relator is a kind

of relator that appears between two or more physical agents. Relators and social

relators are shown in figure 2.8.

We now turn to perdurants. The two fundamental types of perdurants are states,

which are sometimes termed ‘‘states of a¤airs,’’ and events, also depicted in figure

2.8. The distinction between them can be explained through the notion of their imag-

ined elementary temporal parts, snapshots. The state of an entity is a perdurant char-

acterizing the entity whose snapshots express the same perdurant (state) type. For

Table 2.1
The UML notation

Symbol Meaning

Generalization

Aggregation

Relationship

48 Chapter 2



example, the state of John can be described as ‘‘sitting in a chair.’’ Whenever the

snapshot of the state ‘‘sitting in a chair’’ is taken, the state description still holds.

On the other hand, ‘‘John is running’’ is the description of a process rather than a

state, because there are no two snapshots of running that can be described by the

same expression. In other words, snapshots taken of the ‘‘running’’ are not them-

selves examples of ‘‘running.’’

It is important to understand that state and process are modeling abstractions rep-

resented at a specific level of granularity. For example, if the functioning of John’s

internal organs is taken into consideration, one would have to conclude that ‘‘John

is sitting in a chair’’ is a process rather than a state.

An event is a perdurant that is related to exactly two states—the collective state of

the entities of the environment before and after it has occurred. For example, ‘‘John

rose from the chair’’ is a description of the event that separates the state of the envi-

ronment where John was sitting in the chair from the environment state where John

is no longer sitting in the chair.

One can distinguish between atomic events that are modeled as happening instan-

taneously, like an explosion or a message reception by a software agent, and complex

events that are composed of other events, like a storm, a birthday party, or the

Second World War. Atomic events and complex events and the relationship between

them are depicted in figure 2.8.

Particulars possess causal power. Accordingly, it may be useful to distinguish be-

tween action events and nonaction events, depending on the cause of an event. An

action event is an event that is caused by the action of an agent, like sending a mes-

sage, starting a machine, or storing an intruder description. Three kinds of action

events, which correspond to the kinds of actions mentioned in section 2.3, are repre-

sented in figure 2.8. On the other hand, there are nonaction events that are not caused

by actions—for example, the fall of a particular stock value below a certain thresh-

old, the sinking of a ship in a storm, or a timeout in an auction. Action events and

nonaction events are shown in figure 2.8.

Some researchers understand action as an intentional event resulting from a

social commitment or an internal commitment of the performing agent. We do not

subscribe to this definition, because actions performed by a manmade agent or dog,

which may form parts of a sociotechnical system, are not necessarily intentional.

An interaction between two physical agents can be ontologically understood as

performing an action by one agent that is perceived as an event by the other agent.

Turning to software agents, we again use the comparison between software agents

and (software) objects for understanding interactions between software agents. Send-

ing a message from one agent to another is di¤erent from operation invocation of an

object in several important aspects. First, while an object requests another object to

perform an operation via a message structured in a very idiosyncratic and accurately
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specified way, agents communicate by using an agent communication language

where message content is a character string. Indeed, the following definition of a

software agent has been proposed: ‘‘An entity is a software agent if and only if it

communicates correctly in an agent communication language.’’ Although we do not

subscribe to this definition, it serves as a vivid illustration of the topic.

Another di¤erence between agent and object communication is that the underlying

agent communication model is asynchronous. Asynchronous communication tempo-

rally separates the receiving of a message from the responding to it. For example, if I

receive an email, it is up to me to decide when I reply to it. An asynchronous com-

munication model thus implies that an agent may autonomously initiate an activity

at any time, not just when it is sent a message. Asynchronous messaging also makes

agents suitable for implementing conversations like negotiations. Agent communica-

tion languages usually enable the tracking of conversations by assigning each conver-

sation a separate identifier. For the same reason, agents easily lend themselves to

facilitating third-party interactions, such as brokering and recruiting.

Figure 2.8 includes the notions of process, activity, task, and plan. A process is

defined as a complex event that consists of two or more possibly parallel occurrences

of events. Examples of process are a storm, a football game, a conversation, a birth-

day party, and a Web shop purchase. At the system design layer, we model a process

that can be attributed to one or more agents as an activity. For example, running

is an activity because it is performed by an agent (e.g., John), but boiling is a chemi-

cal process without any performing agent involved. An activity consists of actions.

Figure 2.8 also shows the two kinds of activities—collective activities and private

activities—which were introduced in section 2.3. Collective activities are termed

interactions by some researchers.

Activity occurrence is an execution of actions comprising the activity. As figure 2.8

reflects, activity occurrence is a special kind of action event. An activity occurrence

creates an instance of the activity type.

A problem-solving activity, a task, is a private activity related to one or more

plans, each of which consists of actions. We can say that for a problem-solving activ-

ity, the postcondition to be achieved by the activity, which is termed a logic goal in

the tradition of the logic approach to the formalization of AI, has been defined

explicitly before the activity is started. For example, the Mars Exploration Rover

may need to perform a planning task with the logic goal to get to a specified location

on the Martian surface. Please note that what we generally mean by a goal in this

book reflects a state of a¤airs to be achieved by a sociotechnical system as a whole

rather than an expected postcondition of an activity performed by some agent of the

system.

For a problem-solving task, a plan is the means to achieve a logic goal. A plan

consists of actions. Plans may be defined at the time of designing a sociotechnical
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system or at runtime. For example, a software agent may need to choose between

di¤erent predefined plans to achieve the goal of allocating a car to the rental order

in a car rental company. An example plan is to allocate a car of the given car group,

or, if there is no available car in the given car group, to allocate a car of the next

higher car group or to allocate a car from another branch. The Mars Exploration

Rover again may need, at runtime, to create the plan to get to a specified location

on the Martian surface. As is shown in figure 2.8, plan execution is a kind of activity

occurrence.

In contrast to tasks, a logic goal associated with an activity is usually implicit

rather than explicit. For example, even though a service provider agent may not rep-

resent its goals explicitly, it always adopts the whole or part of the customer’s goal in

attempting to provide the service. For example, given a customer wanting to rent a

car, the goal of a car rental company is to provide the customer with a car, which is,

of course, a subgoal of the company’s overall goal of earning money through renting

cars. The car rental company tries to achieve the overall goal by adopting as many

customer goals as possible. It does so by performing an activity of the corresponding

type that does not need to have as an explicitly defined logic goal providing the cus-

tomer with a car. More important than explicit representation of goals is an agent’s

capability to modify its behavior based on the current situation, which entails both

the events perceived and the knowledge in the agent’s knowledge base. Note that

some researchers view all activities as tasks.

We turn our attention now to universals. Figure 2.9 lists the universals that we re-

fer to. As pointed out at the beginning of this section, universals are entities that exist

neither in space nor in time; that is, they cannot be localized. At all three layers of

the conceptual space, modeling is dominantly performed in terms of universals.

Universals are either types or modeling abstractions. A type is a universal that

carries a principle of identity for its instances and whose every instance maintains its

identity in every circumstance considered by the model. For example, Intruder is a

type, because it carries a principle of identity for deciding who is considered to be an

intruder within the system. Additionally, every instance of Intruder handled by the

security system is the same person throughout the life span of the system.

Types can also be classified according to the categories of particulars that instanti-

ate the types. The resulting categories of types are depicted in figure 2.9.

Types can be divided into kinds, subkinds, phases, and roles. A kind is a rigid type;

a role and phase are antirigid. In simple terms, a type is said to be rigid if every in-

stance is necessarily its instance, that is, cannot change its type. For example, Leon

and Kuldar can cease being academics (if, for example, we receive better o¤ers from

industry) but cannot switch from being persons to beings of some other kind. A type

is said to be antirigid if its instance can change its type. As another example, Dog is

rigid, while Guard is antirigid. The ontological distinction between a role and an

Concepts 51



F
ig
u
re

2
.9

U
n
iv
er
sa
ls
o
f
th
e
co
n
ce
p
tu
a
l
sp
a
ce

52 Chapter 2



agent type is that the type of an agent, once fixed, cannot be changed, because it is

rigid, yet an agent may change its role because the role is antirigid. We return to

roles shortly after explaining relations.

Kinds can be specialized into other rigid subtypes—subkinds. A subkind inherits

the principle of identity of its parent type and represents its parent type’s subset of

instances. For example, if we take Person to be a kind, then some of its subkinds

are Male Person and Female Person. The subkind relationship expresses that both

individual man and woman obey a principle of identity carried by the type Person.

Phases, which are also named states, are antirigid types that constitute possible

stages in the history of a type instance. For example, Boy, Male Teenager, and

Adult Male constitute the phases of an instance of Male Person. Phases are special-

izations of kinds. For example, being an adolescent is being a person who is between

thirteen and nineteen years old.

In addition to types, important modeling abstractions used in this book are goal,

relation, role, social policy, domain entity, knowledge item, and rule, all of which

are represented in figure 2.9.

A goal in the ontological sense is a set of states of a¤airs or world states intended

by one or more agents. This definition reflects how a goal can be achieved by several

similar states of a¤airs. For instance, if Kuldar’s goal is to spend holidays on a warm

tropical beach, this goal can be satisfied by spending holidays on the Gold Coast as

well as on the Sunshine Coast. Goals that we use in modeling are goal types rather

than goal instances. A goal can be instantiated for each particular situation at hand.

Another modeling abstraction is relation. Relation, also known as association, is a

type whose instances are tuples of connected by the relation entities. A formal rela-

tion holds between two or more entities directly, without any intermediating entity.

An example of a formal relation is ‘‘Leon is older than Kuldar.’’ Conversely to

a formal relation, a material relation is founded on the existence of an intermediat-

ing entity termed as relator. Relator types occur between object and agent types.

An example is the relator type Marriage between the roles Husband and Wife. An

instance of the relator type Marriage between, say, John and Mary, is created with-

in the wedding ceremony. This instance includes the wedding date and describes the

commitments and claims resulting from the marriage between John and Mary. The

relator type Marriage is therefore a social relator type, which is represented as one

of the types in figure 2.9.

Goals can be related by various formal relations, which are termed goal formal

relations. Goal decomposition is a kind of goal formal relation between goals. Goal

decomposition groups several subgoals related to the same supergoal. Goal decom-

position is represented in figure 2.10.

A goal can also be understood as a mental moment. We elaborate on this interpre-

tation further shortly.
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The next modeling abstraction to be discussed is role. We define a role as an anti-

rigid type where agents playing the role need to achieve certain goals. This formal

relation between a goal and role is shown in figure 2.10. For example, an agent

playing the role Security Manager, a human or manmade agent or perhaps a dog,

needs to achieve the goal of handling an intruder. To put it more informally, goals

represent functionalities expected from the system, and roles are capabilities of the

system required for achieving the functionalities. A role is relationally dependent,

meaning that the role is defined in the context of its relation to some entity. For ex-

ample, a student is a person in the context defined by a relation to an educational

institution. In the goal and role models presented in this book, relational dependence

means that a role is related to the system to be designed. Finally, we understand roles

as social roles. A social role is characterized by a set of general commitments toward

other agents by an agent playing the role. In our role models, these general commit-

ments are represented as responsibilities.

Another modeling abstraction—social policy—can be ontologically defined

through the concepts of rights, prohibitions, and obligations. A social policy defines

the actions that agent(s) subject to the policy may, should not, or must perform on

target agent(s) when specific relevant events occur. Social policies constrain the inter-

actions and behavior of agents playing the roles. For example, the social policy of

Pareto e‰ciency requires that the deal achieved by two agents must be Pareto-

e‰cient; that is, there must be no other deal that makes one party better o¤ without

making the other party worse o¤. This policy is a common requirement for auto-

mated negotiations between self-interested agents.

Figure 2.10
Formal relations between goals and roles
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The modeling abstraction to be described next is knowledge item. There is the im-

plicit modeling concept of knowledge, which permeates the entire conceptual space. It

defines the basic concepts of the environments in which the system will be situated. It

also includes the definitions of relations between concepts. At the motivation layer,

we label these concepts as domain entities. Ontologically, a domain entity is an object

type.

At the system design layer, the knowledge possessed by a physical agent is modeled

as a set of knowledge items. In ontological terms, knowledge items are used for rep-

resenting moments, which were treated previously. A knowledge item is either a

knowledge attribute or a conceptual object attributed to some agent.

A knowledge attribute represents an intrinsic moment. There are two kinds of

attributes: numeric and nonnumeric attributes. A numeric attribute represents one

quality dimension quantitatively as a numerical value. For example, the color of an

apple can be represented through the numeric attributes of hue, saturation, and

brightness. To simplify things, in many cases we represent qualities by means of

generalized nonnumeric attributes. A nonnumeric attribute represents one or more

quality dimensions qualitatively, for example, as an enumeration value. For example,

there can be a nonnumeric attribute of color with possible values of red, yellow,

green, and black. As another illustration, the pilot of a combat aircraft may not be

interested in the precise number of fuel liters in the tank, but rather in qulitative

interpretations of the amount of fuel, which can be full, quarter-full, quarter-empty,

and nearly empty. Examples of knowledge attributes of a human agent are age,

height and address. In modeling, we represent for an attribute its name and type.

Conceptual objects are knowledge items used for representing mental moments.

For example, the beliefs of the student Andrea about the subjects she has to take

can be represented by the respective conceptual objects. The intrinsic moments of a

subject are represented by the attributes attached to the corresponding conceptual

object, such as the subject name, lecturer, and the number of credits to be earned.

Both conceptual objects and their attributes are characterized by names and types.

Analogously, a goal attributed to a particular agent and its elaborations—desire

and intention—can be conceived as mental moments, which are existentially depen-

dent on the agent, forming an inseparable part of its mental state. This special mean-

ing of ‘‘goal’’ is elaborated in chapter 5. However, what we usually mean by ‘‘goal’’

in this book is a set of states of a¤airs intended by one or more agents.

Relational moments or relators are represented by material relations between

conceptual objects. For example, the knowledge of a security agent may include

a conceptual object of type HouseSchedule. The object type HouseSchedule

can be related to another object type, GuestProfile, through the relator type

ScheduledEvent, whose instances are material relations representing relational

moments.
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The behavior of an agent is modeled by rules. A rule can be ontologically understood

as a relator type between the agent type to which it is attached and types of mental

moments, events, and actions. An instance of a rule is evaluated for the combination

of a physical agent and specific mental moments, events, and actions. For example,

there can be a rule attached to the agent type SecurityAgent stating that if a per-

son is detected in the house (event) and the person is not known by the agent (mental

moment), the corresponding message is sent to an agent of type Police (action).

2.7 Background

This book is concerned with modeling sociotechnical systems with multiple agents.

Our definition and understanding of a sociotechnical system or simply a system is

based on Sommerville 2007.

Our treatment of roles, goals, and quality goals emerged from extended discussion

within the Intelligent Agent Laboratory at the University of Melbourne, and discus-

sing how to improve the agent-oriented software engineering methodologies Gaia

(Wooldridge, Jennings, and Kinny 2000) and Tropos (Bresciani et al. 2004). This

particular set of concepts emerged from the ROADMAP metamodel described by

Juan and Sterling (2003) and the discussion by Chan and Sterling (2003a). A clear

discussion is presented in Kuan, Karunasekera, and Sterling 2005.

The kinds of motives behind goals—physiological, psychological, interactional, and

intellectual—have been defined by Leontief (1979). The distinction between achieve-

ment goals, cease goals, maintaining goals, avoidance goals, and optimization goals

has been proposed by Dardenne, Lamsweerde, and Fickas (1993). The quotation

that a goal is ‘‘a dream with a deadline’’ comes from Farber 2003.

Social policies have been addressed by Rahwan, Juan, and Sterling (2006). The

three basic types of organizations—hierarchies, markets, and networks—have been

proposed by Dignum (2004). The control, benevolence, and peer relationships that

dominate between roles in the organizations of the corresponding types mentioned

previously were conceived by Zambonelli, Jennings, and Wooldridge (2001). Di¤er-

ent kinds of organizational relationships—goal, task, and resource dependencies—

have been proposed by Yu (1995) and elaborated in the Tropos methodology

(Bresciani et al. 2004).

We view agents as active entities with anthropomorphic qualities as contrasted

with passive entities—objects. Our abstract agent architecture is rooted in the

SMART agent framework proposed by d’Inverno and Luck (2001). The treatment

of agents by us encompasses human agents, artificial agents, and institutional agents,

as defined by Guizzardi and Wagner (2005b).

We also explain social relators—commitments and claims. One of the first

approaches that addressed commitments was the Action Workflow by Medina-
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Mora et al. (1992). It describes commitments in loops representing a four-step

exchange between a customer and a performer. Singh (1999) treats commitments as

ternary relationships between two agents and a ‘‘context group’’ to which they both

belong. For simplicity, we treat commitments in this book as binary relationships be-

tween two agents, based on Wagner (2003).

Di¤erently from this book, many other authors confine the treatment of agents to

manmade agents of a specific kind—software agents. d’Inverno and Luck (2001)

have defined autonomous agents as agents that create and pursue their own agendas.

Intelligent agents as responsive, proactive, and social software systems have been

defined by Jennings, Sycara, and Wooldridge (1998). Jennings (2000) emphasizes

the importance of agent as a modeling abstraction by arguing that the agent-oriented

worldview is perhaps the most natural way of characterizing many types of prob-

lems. Odell (2002) argues that agent as a software unit constitutes a natural new

step in the evolution of programming approaches due to its unpredictable behavior

and asynchronous communication model.

There are di¤erent standard proposals for agent communication languages, such

as the FIPA ACL (2002) and KQML (Labrou and Finin, 1997). Genesereth and

Ketchpel (1994) define agents as entities communicating in an agent communication

language.

Taveter (2004a) portrays a sociotechnical system in the sense followed in this

book; namely, as a system composed of active entities, agents, that manipulate a

number of passive information resources or Web services consisting of conceptual

objects.

Because agents as central components of sociotechnical systems need to facilitate

di¤erent aspects of everyday life, we prefer to talk about activities rather than

problem-solving tasks performed by agents. Our treatment of activities is rooted in

activity theory put forward by Leontief (1979). We have adopted the definition of

activity provided by Sierhuis, Clancey, and van Hoof (2003), which emphasizes the

context in which an activity is performed. An activity’s context has been discussed

by Clancey (2002) and Lister and Sterling (2003).

Taveter (2004a) provides our definition of ‘‘activity type.’’ He also describes the

types of human, automated, and semiautomatic activities. We elaborate activities

into communicative, physical, and epistemic actions based on Wagner (2003).

The Mars Exploration Rover, which we have used as an example of an agent per-

forming problem-solving activities, is described at http://marsrovers.jpl.nasa.gov.

In general, a rule is a sentence of the form ‘‘IF condition THEN consequence.’’

Such rules are, for example, the rules of Prolog, as described by Sterling and Shapiro

(1994). In the context of this book, rules define behavior patterns of agents. Taveter

and Wagner (2001) and Taveter (2004a) have classified rules into condition-action

rules and event-condition-action-rules, but our treatment is not confined to these types
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of rules. Our example of a di¤erently structured rule, which has activation as well as

expiration condition, is based on Kasinger and Bauer (2005).

An environment of a sociotechnical system has long been viewed as an implicitly

defined container for a multiagent system providing ‘‘an infrastructure specifying

communication and interaction protocols’’ (Huhns and Stephens 1999). Only

recently, agent research communities have started to view an environment as an es-

sential and utilizable part of every multiagent system. One of the first methodologies

that included explicitly defined environment models was ROADMAP, as described

by Juan, Pearce, and Sterling (2002) and more extensively by Juan (2008). We view

the environment as an exploitable design abstraction for engineering sociotechnical

systems. As has been described by Weyns, Omicini, and Odell (2007), the environ-

ment embeds resources and services, serves as a container and a means for communi-

cation, and functions as a coordination infrastructure for agents.

Because agents are situated in the real world and themselves form parts of the

world, our agent-oriented models should be based on descriptions of the world that

are as precise as possible. Ontologies are clearly relevant. According to Peirce (1935),

the business of ontology is ‘‘to study the most general features of reality.’’ However,

as opposed to that of ontologists, our purpose is to describe the world in such a way

and at the level that it would be useful for engineering sociotechnical systems. To

that end, we allow for many simplifications.

Our conceptual space is inhabited by two kinds of entities: universals and particu-

lars, also known as abstract entities and concrete entities. An ontological distinction

between them is made by Masolo et al. (2003) and Guizzardi, Falbo, and Guizzardi

(2008). A somewhat similar, but not ontologically founded, conceptual space has

been proposed by Kavakli and Loucopoulos (1998).

The notation used by us for representing relationships between particulars in figure

2.8 and between universals in figure 2.9 has been borrowed from UML (OMG 2007).

The foundational concepts for agent-oriented modeling endurant, perdurant, physi-

cal object, physical agent, quality, and relator have been defined by Guizzardi and

Wagner (2005a, 2005b) and have been refined by Guizzardi (2005). Likewise, the

notion of quality dimensions and their relation to attributes as well as the catego-

rization of types into kinds, subkinds, phases, and roles have been borrowed from

Guizzardi 2005.

Roles as antirigid types have been defined first by Guarino and Welty (2001) but

this notion has been elaborated by ‘‘roles as antirigid and relationally dependent

types’’ by Guizzardi (2005) and by Guizzardi et al. (2004) and then by the notion of

social roles by Guizzardi and Guizzardi (2008).

Di¤erent ontological interpretations of the concept of goal are described by Guiz-

zardi et al. (2007). The concepts of activity and resource have been ontologically

characterized by Guizzardi, Falbo, and Guizzardi (2008).
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The distinction between state and process is explained by Masolo et al. (2003). We

follow Guizzardi (2005) for the definitions and explanations of types and moments.

The ontological definition of social policy has been formed after Kagal, Finin, and

Joshi (2003). The definitions for the notions of event, process, action event, and

nonaction event are again provided by Guizzardi and Wagner (2005b).

Exercises for Chapter 2

1. Analyze your university, company, or organization as a sociotechnical system and

try to identify the following elements for the system:

� goals

� roles

� social policies

� domain entities

� agents

� perceptions by the agents

� knowledge items

� activities and actions performed by the agents

� rules
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3 Models

Chapter 2 described a conceptual space for designing and implementing sociotechni-

cal systems. In this chapter, models are defined that fit into the conceptual space.

These models are examples of the types of models that one would use for developing

multiagent systems.

The kinds of models described in this chapter are not intended as the basis of a

new agent-oriented methodology. Rather, we present a set of models to reflect the

concepts of the conceptual space. We also point out how di¤erent types of models

are related to each other, but leave specific modeling processes to particular agent-

oriented methodologies, some of which are described in chapter 7. For each model

type, we provide examples using notation that has been working well, in our experi-

ence. As shown in chapters 5 and 7, these models are compatible with a wide range

of agent programming languages and agent-oriented methodologies.

3.1 The Running Case Study

We demonstrate and explain our models with a case study of designing digital pets—

Tamagotchis, which were mentioned briefly in chapters 1 and 2. We have chosen

Tamagotchis as a case study because they are relatively simple and transparent.

Nonetheless, they enable the illustration of all types of models needed for designing

multiagent systems. As pointed out in section 2.3, a Tamagotchi can be viewed as

responsive, as well as social and proactive. Further, the example of Tamagotchis

involves both how humans interact with manmade agents and how manmade agents

interact with each other. Last but not least, a Tamagotchi toy is widely available, so

anyone can build a simple multiagent system with two or more Tamagotchis.

We describe Tamagotchi version 4 in some detail in this section in order to be able

to give concrete examples of models in sections 3.2–3.10.

A Tamagotchi is a digital pet that is housed in a small and simple egg-shaped

handheld computing environment known as the Tamagotchi’s ‘‘shell.’’ Three buttons

(A, B, and C) on the shell allow the owner to select and perform an activity, including



� hatching a Tamagotchi

� feeding the Tamagotchi a piece of food or a snack

� cleaning up the Tamagotchi’s messes (‘‘excrement’’)

� playing a game with the Tamagotchi

� checking its age, discipline, hunger, weight, and happiness levels

� connecting with other Tamagotchis

A Tamagotchi evolves from egg to baby to child to teenager to adult. It can be fe-

male or male. When a Tamagotchi needs something, it calls its owner with a beep

and highlights the attention icon on its shell’s screen. The owner is then supposed to

check what its digital pet needs with the Tamagotchi’s health meter and play with it,

feed it, or discipline it. A Tamagotchi’s shell comes with around ten predefined meals

and snacks. The owner can use his or her digital pet’s ‘‘gotchi points’’ to buy addi-

tional food items from the shop of the Tamagotchi’s shell. Up to fifteen kinds of food

items can be stored. Overfeeding might make a Tamagotchi sick or overweight,

which may also eventually lead to sickness (very realistic and educational, isn’t it?).

Another basic need of a Tamagotchi is to have its mess cleaned by means of flushing

the toilet with the corresponding icon on the screen of the Tamagotchi’s shell. When

the Tamagotchi becomes sick, the skull icon or tooth icon appears. If the Tama-

gotchi has not been sick for too long, it can be nursed back to health with the help

of one dose of medicine, or occasionally more, provided by the shell.

Sometimes a Tamagotchi might be very naughty and need to be disciplined. This

purpose is served by the discipline icon on the shell’s screen, which has two options:

time out and praise. For instance, the owner has to discipline his or her Tamagotchi if

it calls the owner when it is not hungry or if it refuses food when it is hungry.

A Tamagotchi can be entertained by playing games with it. As the Tamagotchi

grows, the number of games that can be played with it increases up to the following

five games: jumping rope, mimic, shape fit, dancing, and flag. Games are also the

means by which the Tamagotchi can earn gotchi points. In addition to games, the

owner can also let his or her Tamagotchi play with an item, such as a ball or makeup

set. Items can be bought from the shop or Tamagotchi Town using gotchi points, as

explained shortly.

A Tamagotchi also has social needs, which can be satisfied by connecting it

through its shell’s infrared port to other Tamagotchis. For connection, the shells of

two Tamagotchis are positioned together with the infrared ports at their tops fac-

ing each other. Following, the owner of a Tamagotchi can choose to connect with

another toy. Upon successful connection, the owner can further choose one of the

following three options: game, present, or visit. If the owner chooses game, the two

Tamagotchis will compete in a randomly chosen game for gotchi points. If the owner
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chooses present, its Tamagotchi gives the other Tamagotchi a gift. Before a present

can be given, it needs to be wrapped by selecting the appropriate menu item. If the

Tamagotchi gives its friend an unexpected present, such as a snake, its training level

is not high enough. The owner needs to discipline his or her Tamagotchi then. If the

owner chooses visit, its Tamagotchi goes to the other Tamagotchi’s shell and gives it

a present and/or plays a game with it. Relationships between Tamagotchis improve

and develop the more connections the owner(s) make between them. A Tamagotchi’s

level of friendship with another Tamagotchi can develop from acquaintance to buddy

to friend to good friend to best friend to partner. After several (at least five) connec-

tions, a Tamagotchi may become a good companion with his or her favorite part-

ner of the opposite sex. If this happens, an egg will appear on the screen of the female

Tamagotchi’s shell. For the first twenty-four hours after the new Tamagotchi

hatches, the ‘‘mother’’ Tamagotchi takes care of all the needs of the new Tama-

gotchi, unless it becomes sick. On such an occasion, the owner must nurse it back to

health with a dose or two of medicine. Once the parent leaves, the owner is asked to

name his or her new Tamagotchi and must take care of it.

Figure 3.1 shows two interconnected version 4 Tamagotchis, where the top Tama-

gotchi with the pink shell is visiting the bottom one with the blue shell.

When a female Tamagotchi grows old without finding a partner, another char-

acter—a Matchmaker—may appear to suggest a partner for the Tamagotchi. The

Matchmaker will go through the Tamagotchi’s friend list and ask for each compan-

ion ‘‘Love? Yes, No’’. If the owner selects ‘‘Yes,’’ a new egg will appear.

In addition to the interaction features, a Tamagotchi can be involved in simulated

communication by receiving letters in the mailbox of its shell. The Tamagotchi noti-

fies the owner of receiving a letter by means of the blinking post icon of the shell. A

Tamagotchi may, for example, get mail from the Tamagotchi King or may receive a

letter if a teacher wants to invite the Tamagotchi to go to school.

The owner of a Tamagotchi can enter the Tamagotchi Town Web site with his or

her digital pet. A snapshot of Tamagotchi Town is shown in figure 3.2. In Tama-

gotchi Town, a Tamagotchi can go to preschool, school, or kindergarten (depending

on its age), play games, visit its parents or the Tamagotchi King, and buy food or

other items. The owner is able to see its Tamagotchi character on the computer

screen and guide it. To visit the Tamagotchi King, the owner has to make a dona-

tion, which can be done under the points item of the shell’s menu. For logging into

the Tamagotchi Town Web site, a Tamagotchi shell generates a fourteen-character

alphanumeric password that along with the owner name uniquely identifies each

Tamagotchi in Tamagotchi Town. A Tamagotchi shell is paused while visiting Tama-

gotchi Town. Upon logging out from Tamagotchi Town, the Web site generates

another password to be input by the owner into the shell. The password registers

that the Tamagotchi has gone to kindergarten or school, has visited the Tamagotchi
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King, or followed some other option. Tamagotchi Town also generates additional

passwords that the owner can input into the shell to receive and store souvenirs that

the Tamagotchi has received in Tamagotchi Town. ‘‘Souvenirs’’ are items that the

Tamagotchi can collect but cannot play with or eat. Passwords are also used to

obtain the gotchi points that the Tamagotchi has earned by playing games in Tama-

gotchi Town. Passwords also give access to the items and food that the Tamagotchi

through its owner has bought for gotchi points in Tamagotchi Town. The Tama-

gotchi can eat the food and play with the items bought in Tamagotchi Town.

If the owner does not take good care of his or her digital pet, the Tamagotchi will

pass away. If this happens, a new egg can be hatched by pressing and holding

together the A and C buttons of the Tamagotchi’s shell.

Figure 3.1
Two interconnected version 4 Tamagotchis
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These features we have mentioned do not cover all the features of the version 4

Tamagotchi. However they are more than su‰cient for our purposes of demonstrat-

ing concretely the range of agent models introduced in the coming sections.

3.2 Goal Models and Motivational Scenarios

A system’s raison d’être is defined by the goals set for it. For achieving the goals, the

system needs capacities or functions, which are described as roles. Goals can also be

used for defining social policies, which shape interactions between agents playing the

roles. As pointed out in section 2.2, the notions of goals and roles are intended to

be intuitive and easy to understand for nontechnical people, such as customers and

other kinds of external stakeholders.

Goal models express goals and roles. We explicitly identify a subset of goals called

‘‘quality goals.’’ We represent quality goals in the models in this chapter and include

a lengthy discussion about them in chapter 4. Goal models describe the goal hierar-

chy of the system to be developed, starting with the purpose of the system. For our

running example, we assume that the overall goal for a Tamagotchi is to entertain

and educate the owner. The purpose of an intruder detection system presumably is

Figure 3.2
A snapshot of Tamagotchi Town
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to handle intruders and the purpose of an air tra‰c management system is to allocate

airport resources to arriving and departing flights. The main objective of goal models

is to enable a customer, domain analyst, and system designer to discuss and agree on

the goals of the system and the roles the system needs to fulfil in order to meet those

goals.

Goal models serve roughly the same function as use cases in object-oriented mod-

eling. Indeed, several agent-oriented methodologies have chosen to utilize use cases.

However, use cases impose limitations when the system to be developed is a multi-

agent one. Use cases inherently impose a system boundary. This is unsuitable for

several reasons. First, it forces one to distinguish prematurely between which roles

might be performed by human agents and which by manmade agents. Second, use

cases focus on user actions, which can give only a restricted view of the system. Fi-

nally, use cases naturally suggest closed systems, rather than open systems where any

number of agents may enter or leave. In our experience, use cases restrict design

choices, as they prompt the designer to start thinking about the user interface earlier

than needed.

In multiagent systems, unlike in traditional systems, agents or actors appear as

proactive components of the system rather than just its users. For example, a Tama-

gotchi can initiate a behavior based on its needs. Precisely for this reason, we model

both Tamagotchi and its owner as roles in our example and model interactions be-

tween them. We thus avoid the term ‘‘user’’ and employ the names of appropriate

roles like Owner in its place. However, as goal models are at least as simple as use

cases, we could regard them as use cases for open and distributed systems.

A goal model can be considered as a container of three components: goals, quality

goals, and roles. A goal is a representation of a functional requirement of the system.

For example, the goal of the example system to be developed is ‘‘Entertain and edu-

cate owner.’’

A quality goal, as its name implies, is a nonfunctional or quality requirement of the

system. For example, the goal ‘‘Entertain and educate owner’’ is associated with the

quality goal ‘‘The owner has fun.’’

A role is some capacity or position that the system requires in order to achieve its

goals. For example, for achieving the goal ‘‘Entertain and educate owner’’ along

with its associated quality goal, the roles MyTamagotchi and Owner with specific

responsibilities are required. Table 3.1 shows the notation that we have adopted for

representing our models. The symbols introduced by table 3.1 have been used in

figure 3.3, which depicts the goal model for a system consisting of humans and

Tamagotchis.

Goals and quality goals can be further decomposed into smaller related subgoals

and subquality goals. This seems to imply some hierarchical structure between the

goal and its subgoals. However, this is by no means an ‘‘is-a’’ or inheritance relation-
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ship, as is common in object-oriented methodologies. Rather, the hierarchical struc-

ture is just to show that the subcomponent is an aspect of the top-level component.

For example, the goal ‘‘Entertain and educate owner’’ has the subgoal ‘‘Sustain

Tamagotchi,’’ which, in turn, has been decomposed into the subgoals ‘‘Cure Tama-

gotchi,’’ ‘‘Clean the Tamagotchi’s environment,’’ ‘‘Socialize Tamagotchi,’’ and ‘‘En-

tertain Tamagotchi.’’ Each of them represents a di¤erent aspect of sustaining the life

of a digital pet by its owner. The hierarchical structure of the goals set for Tama-

gotchis is reflected by figure 3.3.

Di¤erent quality goals have di¤erent purposes. For example, the quality goal

‘‘easy and fun-to-use interface’’ deals with how the Tamagotchi should be designed.

In contrast, the quality goals ‘‘My Tamagotchi healthy,’’ ‘‘My Tamagotchi happy,’’

and ‘‘My Tamagotchi well-behaved’’ describe social policies between the owner and

the Tamagotchi that guide interactions between them at runtime. The quality goals

mentioned are represented in figure 3.3.

Because of the importance of quality goals and their analysis in systems design, we

devote the whole of chapter 4 to discussing quality. Note that we are comfortable

Table 3.1
The notation for goal models

Symbol Meaning

Goal

Quality goal

Role

Relationship between goals

Relationship between goals and quality goals
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expressing high-level quality goals in goal models to be understood in their own

right, without the need to fully define them.

Some agent-oriented methodologies distinguish various kinds of relationships be-

tween goals, such as AND and OR relationships between goals. However, we have

deliberately avoided them for the sake of retaining the simplicity of goal diagrams.

It is worthwhile to emphasize here that simplicity of models is very important when

eliciting requirements in cooperation with nontechnical people.

Roles required in the system are determined from the goals. Each goal is analyzed

to ascertain the types of roles needed to achieve it. Roles may share common goals

and quality goals. In some situations, comprehensibility of models can be improved

by representing a role hierarchy where the capacity of the parent role is divided

among its subroles. For example, the role MyTamagotchi has the subrole Match-

maker, which is responsible for finding a partner for the Tamagotchi. Role hierar-

chies and organization models are discussed in section 3.3.

Who—or which—human or manmade agent fulfils a particular role is not a con-

cern at this stage. An agent may also play more than one role.

Goal models go hand in hand with motivational scenarios that describe in an infor-

mal and loose narrative manner how goals are to be achieved by agents enacting the

Figure 3.3
The goal model for a system of humans and Tamagotchis
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corresponding roles. They are similar to tabular use cases. In contrast to tabular use

cases, motivational scenarios model interactions between agents rather than between

the user and the system. A motivational scenario consists of a narrative scenario

description and a declarative quality description. A quality description reflects quali-

tative aspects of the scenario. A motivational scenario may also refer to external

services employed by agents for achieving the goals. Service models are described in

section 3.10. A motivational scenario for the goal model depicted in figure 3.3 is

shown as table 3.2. There is considerable overlap between the motivational scenario

and the goal model. We envisage that in some circumstances the goal model would

be developed first, but in others we would start with the motivational scenario. Moti-

vational scenarios are elaborated by scenarios in section 3.8.

The goal model shown in figure 3.3 can be extended, but we have chosen to repre-

sent its extensions as separate diagrams, which are easier to understand. Figure 3.4

refines the goal ‘‘Socialize Tamagotchi’’ that appears in the goal model in figure 3.3.

This model reflects the ideas that the customer and designers have about introducing

a digital pet to other digital pets of the same kind by using a means of interaction of

some kind, which is not refined at this stage. Figure 3.4 includes an additional role

FriendTamagotchi, which is required to model socializing. It describes another Ta-

magotchi with which the agent playing the role MyTamagotchi interacts.

There are two ways of socializing a Tamagotchi. It is natural to model the social-

izing methods as subgoals of ‘‘Socialize Tamagotchi.’’ The subgoals ‘‘Visit the

friend’’ and ‘‘Find a partner for the Tamagotchi’’ represent di¤erent aspects of

socializing. The latter subgoal mentioned—‘‘Find a partner for the Tamagotchi’’—

is to be achieved by an agent playing MyTamagotchi’s subrole Matchmaker. This

subgoal is dependent on the ‘‘Visit the friend’’ subgoal in that the Matchmaker

finds a partner from among the Tamagotchis with which the agent playing the

Table 3.2
The motivational scenario of playing with the Tamagotchi

Scenario name Playing with the Tamagotchi

Scenario description The owner has to take care of his/her digital pet—the Tamagotchi. This
involves the following activities:
(a) feeding the Tamagotchi
(b) curing the Tamagotchi if it becomes sick
(c) cleaning the Tamagotchi’s environment if it produces excrement
(d) socializing the Tamagotchi by introducing it to other Tamagotchis
(e) entertaining the Tamagotchi by, for example, playing games with it and
taking it to visit Tamagotchi Town
(f ) disciplining the Tamagotchi if it is naughty

Quality description Playing with the Tamagotchi should be fun for the owner. The Tamagotchi
should have an attractive and easy-to-operate user interface. If the
Tamagotchi is not well taken care of, it will die.
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MyTamagotchi role has connected. This dependency is an example of a relationship

other than AND or OR between goals that is not refined in goal models. The subgoal

‘‘Find a partner for the Tamagotchi’’ has the next-level subgoal ‘‘Hatch a new Ta-

magotchi,’’ which represents a procreational outcome of matchmaking.

When we visit a friend, we may have a meal together, exchange presents, provide

an opportunity for our children to play together, or engage in many other activities.

The two options of visiting between Tamagotchis, giving a present and playing to-

gether, have been reflected by the corresponding third-level subgoals ‘‘Give the friend

a present’’ and ‘‘Play with the friend.’’

The subgoal of giving a friend a present is associated with the quality goal ‘‘Ap-

propriate presenting.’’ What is meant by ‘‘appropriateness’’ here? First, this quality

goal represents a possible social policy that only the visitor can give a present. This

social policy in fact applies to interactions between two version 4 Tamagotchis. In

our experience, it is more usual for the visitor to bring a present, but hosts can also

give presents to visitors. Second, this quality goal means that the Tamagotchi strives

to give another Tamagotchi a present that is appropriate. This can be viewed as an-

other social policy guiding the interactions between two digital pets. However, a

quality goal does not necessarily guarantee anything but rather serves as a criterion,

whose fulfilment can be improved through either designing the system or interacting

with it. The given quality goal thus reflects the decision by the stakeholders—

customer and designers—to let the owner ‘‘discipline’’ his or her Tamagotchi to

Figure 3.4
The subgoals of socializing a Tamagotchi
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decrease and eventually eliminate the occasions of presenting another Tamagotchi

with something like a snake. In section 3.3, we show how quality goals can be elabo-

rated as constraints attached to roles.

Figure 3.5 elaborates the goal ‘‘Entertain Tamagotchi,’’ which was introduced in

figure 3.3. This model reflects the ideas by the customer and designers on how a dig-

ital pet could be ‘‘cheered up’’ by its owner. The quality goal ‘‘The game is fun for

the owner’’ attached to the goal ‘‘Play a game with the Tamagotchi’’ elaborates the

quality goal ‘‘The owner has fun’’ associated with the goal ‘‘Entertain and educate

owner.’’

The subgoal ‘‘Visit Tamagotchi Town’’ of the goal ‘‘Entertain Tamagotchi’’ has

been elaborated in figure 3.6. This model reflects ideas the customer and designers

have about designing the Tamagotchi in such a manner that the owner can visit

Tamagotchi Town, the virtual environment in the Internet, with his or her Tama-

gotchi. That environment contains a virtual school, preschool, workplace, shopping

mall, food court, theater, game center, town hall, king’s castle, and travel agency.

The Tamagotchi Town environment is sketched in section 3.4.

3.3 Role and Organization Models

Section 3.2 focused on describing goals. Roles were also defined, and these are

associated with goals. In this section, roles are explained in more detail. In order

Figure 3.5
The subgoals of entertaining a Tamagotchi

Models 71



F
ig
u
re

3
.6

T
h
e
su
b
g
o
a
ls
o
f
v
is
it
in
g
T
a
m
a
g
o
tc
h
i
T
o
w
n

72 Chapter 3



to achieve the goals, the system requires some capacities or positions, which are

described as roles. For example, because of the Tamagotchi’s purpose to entertain

and educate the owner, it has to behave in a certain way to enable the owner to

take care of it. At the stage of conceptual domain modeling, we represent this

required behavior as a set of responsibilities of the role MyTamagotchi. Similarly,

there can also be constraints—conditions that the agent playing the role must take

into consideration when exercising its responsibilities. For example, the responsibility

to misbehave occasionally is influenced by the constraint stating that the higher the

level of the Tamagotchi’s training, the less it misbehaves.

The properties of a role can be expressed by a role model. The term ‘‘role schema’’

is used interchangeably with the term ‘‘role model.’’

A role model consists of the following four elements:

Role name A name identifying the role.

Description A textual description of the role.

Responsibilities A list of responsibilities that agent(s) playing the role must perform

in order for a set of goals and their associated quality goals to be achieved.

Constraints A list of conditions that agent(s) playing the role must take into consid-

eration when exercising its responsibilities.

Table 3.3 shows a role schema created for the role MyTamagotchi. A role model

lists responsibilities of the role without saying anything about the order in which or

under which conditions those responsibilities are to be exercised. When we look at

the responsibilities of the role MyTamagotchi, we notice that the first six of them

model various kinds of proactive behavior by a digital pet, and the rest describe

how a Tamagotchi should behave when it is connected to another Tamagotchi. Visit-

ing another Tamagotchi requires an additional role FriendTamagotchi, which is

modeled in table 3.4.

As was stated previously, a role model may also include constraints pertaining to

the role. For example, the role schema for the role Matchmaker shown in table 3.5

has the constraint ‘‘a partner to be proposed must be of the opposite sex,’’ which is a

commonsense requirement for hatching a new Tamagotchi.

Because this book is about designing sociotechnical systems consisting of human

and manmade agents, the roles played by human agents are also characterized by

responsibilities and constraints. Table 3.6 represents the role schema for the role

Owner.

Role models are orthogonal to goal models, because although goal models repre-

sent the goals of the system to be developed as a whole, role models represent the

responsibilities and constraints of individual roles required by the system. In socio-

technical systems, both human and manmade agents have responsibilities. However,
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Table 3.3
The role model for MyTamagotchi

Role name MyTamagotchi

Description The role of my digital pet.

Responsibilities Grow from baby to child to teenager to adult.
Express hunger.
Become sick.
Produce excrement.
Express loneliness.
Misbehave occasionally:
� express hunger when not hungry
� refuse food when hungry
� present a friend with an inappropriate gift
Visit a friend.
Give a friend a present.
Play with friends.
Visit Tamagotchi Town.

Constraints Any present given needs to be appropriate.
Only the visitor can give a present.
The higher the level of training, the less the Tamagotchi misbehaves.
The Tamagotchi needs to be of appropriate age to play with certain items.
The Tamagotchi must be of the appropriate age to go to preschool or school in
Tamagotchi Town.
The Tamagotchi must graduate from school to go to work in Tamagotchi Town.
The Tamagotchi must have a su‰cient amount of gotchi points to buy items
from the shopping mall, food court, or travel agency in Tamagotchi Town.
The Tamagotchi must donate a certain number of gotchi points to visit the
king’s castle in Tamagotchi Town.

Table 3.4
The role model for the role FriendTamagotchi

Role name FriendTamagotchi

Description The role of a friend to my digital pet.

Responsibilities Host the visiting Tamagotchi.
Play games with the visiting Tamagotchi.
Receive a present from the visiting Tamagotchi.

Constraints Only the visitor can give a present.

Table 3.5
The role model for Matchmaker

Role name Matchmaker

Description The role of my Tamagotchi’s personal helper to find a partner.

Responsibilities Propose a partner from the friends list.

Constraints A partner to be proposed has to be of the opposite sex.
The partners should be proposed in order of suitability.
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as we saw in section 3.2, goals of the system are modeled from the perspective of

human agents, even though it is conceivable to think about manmade agents per-

forming activities for other manmade agents. Indeed, Isaac Asimov wrote about

responsibilities and constraints applying to robots more than fifty years ago.

Clearly, a role model is analogous to the delegation of work through the creation

of positions in a human organization. Every employee in the organization holds a

particular position in order to realize business functions. Di¤erent positions entail

di¤erent degrees of autonomy, decision making, and responsibilities. Using this anal-

ogy, a role schema for a particular role makes up the position description for that

role. Indeed, in their interactions with industry, Leon and Kuldar have noticed that

positions in organizations are described in terms of responsibilities and constraints.

Being a position, a role is partially defined through its relationships with other

roles. For example, the definition of the role MyTamagotchi involves its relation-

ships with the roles Owner and FriendTamagotchi. As we explained in section 2.2,

there can be control, benevolence, and peer relationships between roles. Such rela-

tionships are represented by organization models and can be helpful for defining

interactions between agents. Figure 3.7 depicts an organization model for a system

consisting of humans and Tamagotchis. This organization model includes control

Table 3.6
The role model for Owner

Role name Owner

Description The role of the owner of my digital pet.

Responsibilities Wake up the Tamagotchi.
Feed the Tamagotchi.
Cure the Tamagotchi.
Flush the toilet.
Discipline the Tamagotchi.
Play games with the Tamagotchi.
Let the Tamagotchi play with an item.
Initiate a visit with another Tamagotchi:
Take the Tamagotchi to visit Tamagotchi Town:
� take the Tamagotchi to pre-school
� take the Tamagotchi to school
� take the Tamagotchi to workplace
� take the Tamagotchi to theater
� take the Tamagotchi to shopping mall
� take the Tamagotchi to food court
� take the Tamagotchi to travel agency
� take the Tamagotchi to the game center
� take the Tamagotchi to the town hall
� take the Tamagotchi to the king’s castle

Constraints For interacting with another Tamagotchi, the owner needs to establish infrared
connection with correct parameters between the two Tamagotchis.
To visit Tamagotchi Town, the owner must have a computer with Internet connection.
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and peer relationships, as well as the aggregation relationship between the parent

role MyTamagotchi and its subrole Matchmaker. Organization models will be fur-

ther illustrated by the case studies of B2B electronic commerce and manufacturing

presented in chapter 8.

3.4 Domain Models

When a stakeholder models goals and roles for a system, he or she also has some

idea of the environment(s) in which the agents of the system will be situated. Each

of those environments comes with particular knowledge that the system is supposed

to handle. The model of that knowledge is called a domain model. It consists of

domain entities and relationships between them. A domain entity is a modular unit

of knowledge handled by a sociotechnical system. As stated in chapter 2, a domain

entity is conceptually an object type. An instance of a domain entity is hence called

an environment object. An environment itself can be modeled as one of the domain

entities. If the system is related to just one environment, the environment may not be

explicitly represented in the domain model.

In our running example, a Tamagotchi is always situated in a local virtual environ-

ment, which is embedded in its plastic container. Since the representation of an

environment in a domain model should have a name, we call this environment the

‘‘Tamagotchi Shell.’’ Section 3.1 also described how an owner can enter with his or

her Tamagotchi a global virtual environment in the Internet called Tamagotchi

Town. Note that the owners of an increasing number of other physical devices—

for example, iPods and other PDAs—can switch between physical and virtual

environments.

Figure 3.7
The organization model for a system of humans and Tamagotchis
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An important dimension of the environment is time. In our running example, con-

sidering changes that happen to all domain entities over time is important for meet-

ing the quality goal ‘‘The owner has fun,’’ which is attached to the goal ‘‘Entertain

and educate owner,’’ as modeled in figure 3.3. Indeed, a prerequisite of having fun is

the evolution of Tamagotchis over time. Evolution is also reflected by the responsi-

bility of the role MyTamagotchi ‘‘Grow from baby to child to teenager to adult,’’ as

depicted in table 3.3. There are a number of ways of modeling time, and we do not

claim to be exhaustive here. Our goal models do not represent any temporal se-

quence or order in which goals are to be achieved. Temporal aspects will be included

by interaction and behavior models, described in sections 3.6 and 3.9, respectively.

An environment consists of two kinds of environment objects: services and re-

sources. Services are modeled as reactive entities that provide functionality to the

agents. Services are discussed in section 3.10.

An environment can produce and store objects to be accessed and used by agents.

Such objects are modeled as resources. As pointed out in chapter 2, in the context of

this book, we are interested in various information resources provided by environ-

ments. For example, resources of type Letter are produced by the mailbox of the

Tamagotchi Shell environment and resources of type Food are provided by both the

Tamagotchi Shell and Tamagotchi Town environments. Resources of both types can

be stored within the Tamagotchi Shell environment to be used by the digital pet.

Sometimes information resources simulate material resources. For example, rental

cars in the information system of a car rental company reflect rental cars used in

the company. Similarly, a mold set in a manufacturing simulation system reflects

the mold set used in the manufacturing process. An important di¤erence between in-

formation resources and material resources is that information resources are infi-

nitely renewable—they do not disappear after consumption—yet material resources

will be sooner or later exhausted. This di¤erence also needs to be reflected by the

corresponding information resources. For example, after a Tamagotchi has ‘‘eaten’’

a resource of type Food, this resource is removed from its Tamagotchi Shell

environment.

Table 3.7 lists the types of resources in the Tamagotchi Shell and Tamagotchi

Town environments. For each resource, the table also shows the role(s) with which

it is associated. The most essential resource type for a Tamagotchi is Food. Re-

sources belonging to the Meal and Snack subtypes of Food are provided by the

Tamagotchi Shell environment. Resources of both types are associated with the role

MyTamagotchi and also with the role Owner, because it is the owner’s responsibility

to feed his or her digital pet. A Tamagotchi, as mediated by its owner, can obtain

additional food items from the Tamagotchi Town environment.

In addition to the roles MyTamagotchi and Owner, the resource types Snack and

Item are associated with the role FriendTamagotchi, because resources of these
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types can appear as presents given by my digital pet to another. To reflect this, the

two types have been generalized into the Present resource type.

After a Tamagotchi has entered Tamagotchi Town, that environment can produce

resources of the Food, Item, and Souvenir types. These resources can then be trans-

ferred into the Tamagotchi’s local Tamagotchi Shell environment and consumed

from there.

Resources of type Letter are associated only with the Tamagotchi Shell environ-

ment as they are generated by it.

We conclude this section with a more precise definition of a domain model. Do-

main models represent the environments, the types of resources produced and stored

by them, and the relationships between roles, environments, and resources. For ex-

ample, an agent playing the MyTamagotchi role is situated in the Tamagotchi Shell

environment and can enter the Tamagotchi Town environment. Both environments

contain resources of type Present that can be given by an agent playing the

MyTamagotchi role to the agent playing the FriendTamagotchi role. When accessing

the environments, a Tamagotchi interacts with its owner. All this is modeled in figure

3.8. The names of both environments have been underlined to denote that there is

just one instance of each environment.

3.5 Agent and Acquaintance Models

The models of the motivation layer of the conceptual space—goal models, role and

organization models, and domain models—represent the problem domain in abstract

terms. Both customers and other external stakeholders on one side and experts in sys-

Table 3.7
The types of resources consumed by a Tamagotchi

Resource(s) Role(s) Environment(s)

Present (Snack or Item) MyTamagotchi, Owner,
FriendTamagotchi

Tamagotchi Shell,
Tamagotchi Town

Food (Meal or Snack) MyTamagotchi, Owner Tamagotchi Shell,
Tamagotchi Town

Meal (Hamburger, Omelet, Fish,
Pizza, . . .)

MyTamagotchi, Owner Tamagotchi Shell,
Tamagotchi Town

Snack (Popcorn, Banana, Grapes,
Watermelon, Ice-Cream, . . .)

MyTamagotchi, Owner,
FriendTamagotchi

Tamagotchi Shell,
Tamagotchi Town

Item (Racing-game, Chest,
Flower, Shovel, . . .)

MyTamagotchi, Owner,
FriendTamagotchi

Tamagotchi Shell,
Tamagotchi Town

Souvenir MyTamagotchi, Owner Tamagotchi Town,
Tamagotchi Shell

Letter MyTamagotchi, Owner Tamagotchi Shell
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tem design on the other should be capable of understanding these models. The pur-

pose of agent models is to transform the abstract constructs from the analysis stage,

roles, to design constructs, agent types, which will be realized in the implementation

process. The agent model outlines the agent types in the system. The acquaintance

model complements the agent model by outlining interaction pathways between the

agents of the system.

The agent model is created by designing agent types to fulfil the roles. Each role may

be mapped to one or more agent type(s). Conversely, two or more roles may be

mapped to one agent type.Mapping to agent types does not mean disregarding roles, as

we continue using roles in design models whenever they enhance the clarity of models.

Figure 3.8
The domain model for the Tamagotchi case study
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How to decide agent types? There are no strict rules—only a few guidelines. The

agent-oriented methodologies overviewed in chapter 7 discuss deciding agent types in

more detail.

First, if two roles are peers, they should probably be mapped to the same agent

type. For example, the roles MyTamagotchi and FriendTamagotchi, which are

peers according to the organization model represented in figure 3.7, are mapped to

the same manmade agent type Tamagotchi. Similarly, roles of individuals who

are supposed to interact in a peer-to-peer manner, such as TouchInitiator and

TouchResponder in the flirting example explained in chapter 9, and institutional

roles at the same level, such as Arriving Flights Controller and Departing Flights

Controller in air tra‰c control, are in many cases mapped to the same agent

types. The rationale behind this is that individuals or groups of individuals playing

those roles may change their roles so that, for example, an agent enacting the role

TouchInitiator starts to play the role TouchResponder, or a group of agents enacting

the role Arriving Flights Controller starts to play the role Departing Flights Control-

ler. For this reason, it makes sense if an agent type incorporates the responsibilities

defined by several roles.

Second, two roles that are related to each other by a control relationship tend to

be mapped to di¤erent agent types. For example, the role MyTamagotchi is mapped

to the manmade agent type Tamagotchi and the role Owner—to the human agent

type Person. In the same manner, roles of individuals where one role is controlled

by another, or institutional roles, where one role is subordinated to another, like

AccountingDepartment and ManagingBoard in the manufacturing simulation exam-

ple presented in chapter 8, are usually mapped to di¤erent agent types. The reason is

that the same agent is not likely to play two disparate roles.

If one role is benevolent toward another, like in market relationships, the roles are

generally mapped to di¤erent agent types. However, if one agent can play both roles,

these roles should be mapped to the same agent type. For example, in the business-

to-business e-commerce example in chapter 8, an agent that represents an organiza-

tion may be involved in both buying and selling. In that case, the roles Seller and

Buyer, where a Seller is benevolent toward the Buyer, should be mapped to the

same agent type. On the other hand, the same agent cannot play the roles Doctor

and Patient in a system created for telemedicine, where medical information is

transferred via the Internet for consulting and remote medical examinations and

procedures. Consequently, these roles should be mapped to di¤erent agent types.

The designer should decide, for each agent type of the system, the number of agent

instances of that type at runtime. The agent model can be annotated accordingly.

Figure 3.9 shows the agent model produced for the multiagent system of hu-

mans and Tamagotchis. The figure reflects that the roles MyTamagotchi and

FriendTamagotchi, used in the previous sections, have been mapped to the manmade
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agent type Tamagotchi, of which there are exactly two instances. This is because

only two Tamagotchis can interact with each other—there is no multilateral interac-

tion between Tamagotchis. This mapping also implies that the responsibilities and

constraints attributed to the roles MyTamagotchi and FriendTamagotchi should be

amalgamated in the design phase. This is shown in section 3.9.

Additionally, figure 3.9 models that the roles Owner and OwnerOfFriendTama-

gotchi have been mapped to one or two human agents of type Person. It reflects

that generally, each Tamagotchi has an owner, but both Tamagotchis may also be-

long to the same person. We have excluded the cases of shared ownership from our

case study for pedagogical reasons. A multiagent system of Tamagotchis and their

owners thus consists of two instances of the agent type Tamagotchi and one or two

instances of the agent type Person.

Next, we have to design interaction pathways between agent types. This results in

an agent acquaintance model. This model is a directed graph between agent types. An

arc from agent type A to agent type B signals the existence of an interaction link,

allowing an agent of type A to initiate interactions with an agent of type B. An inter-

action may be sending a message to another agent or performing a physical action

a¤ecting it. Information about interactions can be extracted from responsibilities of

role models. For example, the responsibilities associated with the role MyTama-

gotchi, such as expressing hunger, becoming sick, producing excrement, and express-

ing loneliness, define messages sent from an agent of type Tamagotchi to an agent

of type Person. Conversely, responsibilities of the role Owner define ‘‘press-the-

button’’ actions performed by a person toward a Tamagotchi. The purpose of the

acquaintance model is to allow the designer to visualize the degree of coupling be-

tween agents. Further details such as message types are ignored. Coupling analysis

is handled thoroughly in the Prometheus agent-oriented methodology, which we dis-

cuss in chapter 7.

Figure 3.9
The merged agent and acquaintance model
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The acquaintance model may be merged with the agent model as can be seen in

figure 3.9. This model represents how a Tamagotchi may interact with one other

Tamagotchi and one person at a time, whereas any party may initiate an interaction.

3.6 Interaction Models

The interaction links described in section 3.5 show only which agents interact with

which other agents and which party can initiate an interaction. Interaction models

represent interaction patterns between agents in more detail. They are based on

responsibilities defined for the corresponding roles. As we have repeatedly empha-

sized, modeling interactions is crucial and central in agent-oriented modeling.

We distinguish between pure interaction modeling and protocol modeling. Pure in-

teraction modeling adopts the perspective of an external observer who is looking

at the (prototypical) agents and their interactions in the problem domain under con-

sideration. An external observer just observes what messages flow and interactions

occur between agents without knowing anything about how an agent comes to a de-

cision to send a particular message or perform a particular action. We can capture

pure interaction models by interaction diagrams, interaction-sequence diagrams,

and interaction-frame diagrams. Protocol modeling combines interaction modeling

with the modeling of some aspects of agents’ behavior.

A (UML-style) interaction diagram models (some part of ) a prototypical interac-

tion process. It defines the order of interactions by the order of the corresponding

graphical arrows. In an interaction diagram, time increases as one moves downward.

The fact that the agents involved in the interactions are agent instances rather than

types is conveyed by underlining their names. The interaction diagram represented in

figure 3.10 models interactions between two interconnected Tamagotchis and the

owner of the first Tamagotchi. The diagram represents both physical interactions

and communication. The physical interaction modeled in the figure is pushing a but-

ton of a Tamagotchi Shell by a human agent, which triggers a visit by the Tama-

gotchi to the other. Communication is either sending a message by the Tamagotchi

to its owner or sending a message to the other Tamagotchi. A visit occurs through

the exchange of messages by the two Tamagotchis that results in the visual represen-

tation in the Tamagotchi Shells’ screens of one Tamagotchi going to the other Tama-

gotchi’s local environment and performing di¤erent activities there. The activities

can be playing with the hosting Tamagotchi and giving the hosting Tamagotchi a

present. A visit in progress is shown in figure 3.10.

The notation employed by interaction diagrams does not distinguish between

physical interactions, such as ‘‘Please visit your friend’’ in figure 3.10, and communi-

cation. Also, representing the order of interactions by the order of interaction arrows

can be tricky for more complicated cases. These deficiencies can be overcome by
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interaction-sequence diagrams. An interaction-sequence diagram models interactions

as action events. As is explained in section 2.6, an action event is an event that is

caused by the action of an agent, like sending a message or starting a machine. An

action event can thus be viewed as a coin with two sides: an action for the perform-

ing agent and an event for the perceiving agent. A message is a special type of action

event—communicative action event—that is caused by the sending agent and per-

ceived by the receiving agent. On the other hand, there are nonaction events that are

not caused by actions—for example, the fall of a particular stock value below a cer-

tain threshold, the sinking of a ship in a storm, or a timeout in an auction. In our

conceptual space explained in chapter 2, both action events and nonaction events

are represented as perceptions, because both are always related to an agent that per-

ceives them. The notation for modeling action events is represented in figure 3.11.

An interaction-sequence diagram models a sequence of action events, performed/

sent and perceived/received by agents. The fact that the agents as well as the action

events modeled are instances rather than types is conveyed by underlining their

names. In the diagram, each action event is characterized by its number. The num-

bers constitute an interaction sequence between the agents involved. It is important

to emphasize that an interaction sequence represented by an interaction-sequence

diagram is just an example realizing one option out of several possibilities. Figure

3.12 represents an interaction-sequence diagram that is equivalent to the interac-

tion diagram shown in figure 3.10. Di¤erently from an interaction diagram, an

Figure 3.10
An interaction diagram
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interaction-sequence diagram explicitly represents the order of interactions and dis-

tinguishes between messages and physical interactions.

There may be a need to generalize the types of action events occurring between

agents and the types of agents themselves. This can be accomplished by interaction-

frame diagrams. An interaction-frame diagram models possible interactions between

two or more types of agents. For example, the interaction-frame diagram represented

in figure 3.13 models the types of action events that can occur between two Tama-

gotchis and the owner of the first Tamagotchi. This interaction-frame diagram

consists of two interaction frames. The first interaction frame models the types of

interactions between a Tamagotchi and its owner and the other one the types of

interactions between two Tamagotchis. Please note that all the modeling elements in

interaction frames are types: agent types and the types of action events.

As pointed out in section 2.2, greeting and visiting scenarios can be rather sophis-

ticated depending on the age and status of the agents involved. In our example inter-

action model, represented in figure 3.13, we have reflected this by assuming that a

Tamagotchi may refuse a visit by another Tamagotchi younger than he or she is. In

our example, it is also assumed that a Tamagotchi can refuse to play with another

Tamagotchi.

Interaction-frame diagrams can model all interaction alternatives for both physical

interactions and communication. They do not say anything about the order in which

the agents interact or about the conditions under which one or another alternative

occurs. For example, the interaction frame between two Tamagotchis that is shown

in figure 3.13 represents both alternatives: when the second Tamagotchi agrees to

host the first one and when it refuses to do so. In other words, interaction frames do

not model the behaviors of the agents involved. They view agents as ‘‘black boxes’’

that interact following unknown principles. However, action events in interaction

frames are usually represented in the rough order of their sending/occurrence.

Aspects of the agents’ behavior are included by mixed interaction and behavior

modeling. The resulting models may be termed protocols. For example, the UML-

Figure 3.11
The notation for modeling action events
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style sequence diagram depicted in figure 3.14 models the interaction protocol be-

tween two Tamagotchis and the owner of the first Tamagotchi, where one Tama-

gotchi visits the other. This protocol assumes that a visit may include giving a

present and playing. The protocol includes four modeling constructs: option, alterna-

tive, interleaving, and loop, which are specified using boxes. The protocol repre-

sented in figure 3.14 uses an Option box for expressing how after a human agent

initiates a virtual visit between two Tamagotchis, interactions between the Tama-

gotchis start only if there is an operational connection between the Tamagotchis.

The latter condition is modeled as the guard [Connection operational]. If the

connection is not operational, nothing happens in response to the action by the

owner.

In figure 3.14, there is another box labeled ‘‘Alternative’’ nested within the Option

box. An Alternative box can have a number of regions, each possibly with a guard,

and exactly one region will be executed, depending on the guards, if any. The Alter-

native box in figure 3.14 has been divided into two regions. The alternative specified

by the upper region is that the second Tamagotchi refuses the visit by the first one.

We know that this happens if the first Tamagotchi is younger than the second one,

even though the modeler has chosen not to represent the corresponding guard in the

figure. The alternative specified by the lower region executes the interactions of the

virtual visit. The lower region contains the third-level nested box labeled ‘‘Loop

(1, *), Interleaved’’ This label models that the regions of the box, two in the given

case, should be executed at least once and may be executed any number of times,

and can be executed in any order. A Tamagotchi thus has to give the other Tama-

gotchi a present and play with it at least once. How many times and in which order

giving a present and playing are actually repeated is specified by scenarios and be-

havior models, explained in sections 3.8 and 3.9. Please note that both interleaved

alternatives contain boxes labeled ‘‘Critical region.’’ This means that no interleaving

should take place within the contents of the box. For example, the messages related

to giving the other Tamagotchi a present must occur precisely in the order shown

within the ‘‘Critical region’’ box. The upper ‘‘Critical region’’ box is also labeled

‘‘Option’’ and has the guard [Enough presents]. The guard denotes that the con-

tents of the box are executed only if the Tamagotchi has enough presents on store.

Each ‘‘Critical region’’ box contains another nested box labeled ‘‘Alternative.’’

The upper ‘‘Alternative’’ box models that the hosting Tamagotchi either thanks the

other for the present or reprimands the visiting Tamagotchi if the latter attempts to

present it with something like a snake. The second ‘‘Alternative’’ box indicates that

the hosting Tamagotchi either agrees to play with the visiting Tamagotchi or refuses

to do so.

A modeler chooses suitable types of interaction models based on the nature of the

problem domain and the requirements for the system. For example, if the system to
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Figure 3.14
An interaction protocol
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be developed does not involve any physical interactions between human and man-

made agents, interaction diagrams will do. In a di¤erent situation, interaction-

sequence and interaction-frame diagrams might pose a better option.

There is one more aspect to interaction modeling. One may need to model events

that are not caused by agents or one may not want to include in the models agents

causing the events. Such events can be modeled as nonaction events that were briefly

explained earlier in this section. Nonaction events are modeled as occurring in an

environment in which the agents are situated. For example, receiving a letter by a

Tamagotchi should be modeled as a nonaction event, because resources of type

Letter are generated by the Tamagotchi Shell environment rather than sent by

other agents. As another example, a modeler may choose not to represent a human

agent performing the role Intruder, who causes by his or her physical movements in

the guarded area an action event of type move, which is perceived by a home security

agent. The notation for modeling nonaction events is represented in figure 3.15. As

described in chapter 7, some agent-oriented methodologies model nonaction events

as percepts from an environment.

A modeler may also need to represent an action performed by an agent on an en-

vironment without indicating a specific agent a¤ected by the action. For example,

when modeling climate change, it would be sensible to represent the actions of man-

made agents a¤ecting the natural environment without singling out particular agents

a¤ected. A notation for modeling actions on the environment is depicted in figure

3.15. An example including events originating in an environment and actions per-

formed on an environment will be provided in chapter 4.

3.7 Knowledge Models

Section 3.4 describes role-based domain models representing at an abstract level

knowledge that the system is supposed to handle. The domain model also identifies

relevant parts of the knowledge for roles. This section discusses at a more concrete

level how to model the knowledge of agents using knowledge models. A knowledge

model can be viewed as an ontology providing a framework of knowledge for the

agents of the problem domain.

Figure 3.15
The notation for modeling nonaction events and actions on an environment
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Knowledge is carried by agents rather than roles. However, roles may be needed in

knowledge models, because the knowledge that is to be represented by an agent

depends on the role(s) the agent plays. For example, in the example of business-to-

business electronic commerce to be treated in chapter 8, an agent playing the Buyer

role needs to represent knowledge about sellers and the types of products sold by

them, and an agent of the same type enacting the Seller role needs to know about

buyers.

An agent’s knowledge model represents knowledge about the agent itself and

about the agents and objects in its environment. An agent can represent information

about itself by knowledge attributes. Recall from chapter 2 that an attribute repre-

sents one or more quality dimensions of an entity. For example, each of us can be

characterized by the date of birth, height, weight, hair color, eye color, and so forth.

The knowledge attributes of a Tamagotchi are represented in table 3.8.

The most frequently used knowledge attribute types are String, Integer, Real,

Boolean, Date, and Enumeration. Their meanings should be obvious, but short

explanations will follow. An instance of String is a sequence of characters in some

suitable character set. The types Integer and Real represent the mathematical con-

cepts of integer and real numbers. The Boolean type is used for logical expressions,

consisting of the predefined values ‘‘true’’ and ‘‘false.’’ The Date type represents

a day, month, and year. An Enumeration type defines a number of enumeration

literals that are the possible values of an attribute of that type. For example, the

possible values of the attribute Tamagotchi gender listed in table 3.8 are ‘‘male’’

and ‘‘female.’’

An agent can also represent knowledge about itself and about the agents and

objects in its environment by means of conceptual objects that can be related to each

other in a potentially complex way. As an example, an agent’s knowledge can be

Table 3.8
The knowledge attributes of a Tamagotchi

Knowledge attribute Type

Tamagotchi name String

Tamagotchi age Integer

Tamagotchi gender Enumeration (male; female)

Tamagotchi generation Integer

Tamagotchi weight Real

Tamagotchi hunger level Integer

Tamagotchi happiness level Integer

Tamagotchi training level Integer

Tamagotchi life points Integer

Tamagotchi gotchi points Integer
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embodied in a relational database that stores conceptual objects representing cus-

tomers and orders and the relationships between them. Just like agents, conceptual

objects can be characterized by attributes, where an attribute describes the quality

of an object. For example, the attributes of an order include the type of product

ordered and the quantity ordered. Agent architectures, such as the Belief-Desire-

Intention (BDI) architecture discussed in section 5.1, generally refer to the knowl-

edge of an agent as its beliefs. How some agent programming languages represent

agents’ beliefs is described in chapter 5.

An agent uses conceptual objects for representing knowledge about resources

consumed by it. For example, a Tamagotchi requires knowledge about food items

and souvenirs that can be acquired when visiting Tamagotchi Town. There is a con-

ceptual object type corresponding to each resource included in table 3.7, the most

generic object types being Food and Item.

Another purpose of knowledge models is to provide di¤erent agents with a com-

mon framework of knowledge so that they can understand each other in interactions.

For instance, two humans need a joint understanding of the terms related to an issue

before they can discuss the issue. This knowledge is represented as a set of inter-

related conceptual objects shared by several agents.

An example of a shared conceptual object type is Present, which corresponds to

a resource shown in table 3.7. This object type is necessary, because two Tama-

gotchis require common knowledge about the types of presents that one Tamagotchi

can give to another. As table 3.7 reflects, this knowledge is also related to the local

environments of both agents because a present is transferred from the local Tama-

gotchi Shell environment of the first agent to the local environment of the second

agent. Each Present object has an attribute containing the name of the present,

such as ‘‘Ice-Cream’’ or ‘‘Flower.’’

A conceptual object of type Owner represents knowledge a Tamagotchi has

about its owner. The attributes of an object of type Owner describes the name and

birth date of the owner. The latter is used to ensure a Tamagotchi celebrates its

owner’s birthday. Note that the conceptual object type Owner and the role Owner

are di¤erent.

Conceptual objects of types Friend_list and Friend represent the knowledge a

Tamagotchi has about other Tamagotchis with which it has connected. A conceptual

object of type Friend has attributes describing the name of another Tamagotchi and

its friendship level.

Conceptual objects of type Password exchange knowledge between a Tamagotchi

and its owner and the virtual environment Tamagotchi Town. As pointed out in sec-

tion 3.1, Tamagotchi Town identifies each Tamagotchi through a unique fourteen-

character alphanumeric password generated by the Tamagotchi Shell of the digital

pet and returns another fourteen-character alphanumeric password to be entered by
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the owner into the Tamagotchi Shell. By means of this password, Tamagotchi Town

ensures that a Tamagotchi is at the appropriate age to visit either the school or kin-

dergarten and registers that the Tamagotchi has attended the school or kindergarten.

The password thus captures a part of the Tamagotchi’s knowledge base, in addition

to catering for security. Password is a subtype of the String type that was briefly

explained earlier.

Finally, a Tamagotchi needs to have knowledge about its environments. Hence we

have included the environment objects TamagotchiShell and TamagotchiTown as

knowledge items.

Conceptual objects may be subject to derivations and constraints. A derivation is a

statement of knowledge that is derived from other knowledge by an inference or a

mathematical calculation. An example of a derivation is that the partner of the Ta-

magotchi is a friend who has connected with it five times. A constraint is an assertion

that must be satisfied in all evolving states and state transition histories of the system.

An example constraint is that to go to school, the Tamagotchi must be from two to

five years of age.

Conceptual objects can be related to each other in many ways. The most common

types of relationships are generalization and aggregation. Generalization is a taxo-

nomic relationship between more general and more specific conceptual object types.

For example, there is a generalization relationship between the object type Food and

the object types Meal and Snack. Aggregation is a binary association that specifies

a whole/part relationship between conceptual object types. For instance, there is an

aggregation relationship between the object types Friend_list and Friend.

We are neutral as to knowledge representation languages and notations. For ex-

ample, one might use the logic programming language Prolog for representing the

generalization and aggregation relationships mentioned previously. Possible Prolog

code is as follows. The first two clauses express that food is a meal or a snack. The

third and fourth clauses for the relationship friend_list(T, Xs) expresses that Xs

is a friend list of T if every member of Xs is a friend of T:

food(X) :- meal(X).

food(X) :- snack(X).

friend_list(T, []).

friend_list(T, [X|Friends]) :-

friend(T, X), friend_list(T, Friends).

Knowledge can be represented for an agent as a collection of Prolog facts and

rules. We can also create knowledge models by employing a UML-like notation, as

has been done in figure 3.16. This figure represents a partial knowledge model for

agents of the Tamagotchi type. The generalization hierarchy on the lefthand side of
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the figure models that a Present can be a Snack or Item. Another generalization

hierarchy at the top of the figure represents that an instance of Password is of

type String. The aggregation relationship on the righthand side represents that a

Friend_list consists of instances of type Friend.

In the knowledge model shown in figure 3.16, agent types are distinguished from

object types by means of the UML-like stereotype <<AgentType>>. The model also

shows roles played by di¤erent agents of the Tamagotchi type by using an Agent

Type Name/Role Name notation inspired by AUML, an extension of UML that is

oriented toward agents. This distinction is needed for representing who knows what:

an agent playing the role MyTamagotchi knows about its owner, friend list,

passwords, and environments, and agents playing the roles MyTamagotchi and

FriendTamagotchi share knowledge about conceptual objects of type Present. In

addition, the model includes attributes for the conceptual object types Present,

Owner, and Friend.

The model represents cardinalities of relationships between entity types, showing

how many instances of agents or objects can participate in relationships. For exam-

ple, a Tamagotchi knows about several presents and passwords but of only one

owner and friend list.

3.8 Scenarios

Section 3.6 explained interaction models. Interactions between agents are determined

by the activities performed by them. The activities that an agent performs, in turn,

depend on the decisions made by the agent. Making decisions and performing activ-

ities is addressed by behavior modeling. A scenario is a behavior model that describes

how the goals set for the system can be achieved by agents of the system. Section 3.2

illustrates goal models with motivational scenarios that describe in an informal and

loose narrative manner how goals set for the system can be achieved by agents enact-

ing the corresponding roles. In this section, we elaborate motivational scenarios by

turning them into scenarios of the multiagent system to be developed.

As shown in chapter 7, several agent-oriented methodologies include scenarios. A

scenario can be defined as a collective activity that models how a particular goal is

achieved by agents enacting particular roles. A collective activity was defined in

chapter 2 as an activity involving two or more agents performing several roles. For

example, an activity for achieving the goal ‘‘Entertain and educate owner’’ repre-

sented in figure 3.3 involves the roles Owner and MyTamagotchi. In contrast, a pri-

vate activity ‘‘Tamagotchi is hatching’’ is performed solely by an agent playing the

MyTamagotchi role. In most cases, goals are achieved through interactions between

agents performing the corresponding roles. This is natural, because as we have
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repeatedly pointed out in chapters 1 and 2 and earlier in this chapter, achieving goals

through interactions is intrinsic to multiagent systems.

A scenario may contain subscenarios, which straightforwardly correspond to sub-

goals. For example, the scenario corresponding to the goal ‘‘Sustain Tamagotchi’’

modeled in figure 3.3 has six subscenarios that realize the respective subgoals ‘‘Feed

Tamagotchi,’’ ‘‘Cure Tamagotchi,’’ ‘‘Clean the Tamagotchi’s environment,’’ ‘‘Social-

ize Tamagotchi,’’ ‘‘Entertain Tamagotchi,’’ and ‘‘Discipline Tamagotchi.’’ Among

them, the subscenarios ‘‘Socialize Tamagotchi’’ and ‘‘Entertain Tamagotchi’’ include

the corresponding third-level subscenarios ‘‘Visit the friend’’ and ‘‘Visit Tamagotchi

Town.’’ Activities that are not scenarios, such as ‘‘Cure the Tamagotchi’’ or ‘‘Give

the friend a present,’’ may be called routine activities. A clue for deciding which

activities should be modeled as routine activities is provided by responsibilites of

roles. A routine activity does not have an implicitly assigned goal, but a goal may

be assigned to it if the activity is a problem-solving activity. As pointed out in section

2.6, such an activity is termed a task and its goal is called a logic goal. For example,

we can assign a goal to the ‘‘Cure the Tamagotchi’’ activity if curing is modeled as a

problem to be solved rather than a simple interaction.

A logic goal associated with a task may be achieved by alternative sets of subactiv-

ities and their constituent elementary actions. We can also say that a task may have

various plans for achieving the goal. As a simple example, the goal of feeding the

Tamagotchi can be accomplished through di¤erent action sequences, because a Tama-

gotchi can be fed with sushi as well as with ice cream. It is the Tamagotchi’s owner

who decides, but a Tamagotchi capable of preferring healthy food to junk food by

selecting an appropriate nutrition plan is easily imagined.

A scenario is triggered by a situation involving the agent initiating the scenario.

For example, the scenario for the goal ‘‘Sustain Tamagotchi’’ is triggered by the

actions ‘‘Wake up’’ or ‘‘Reset’’ by the owner, and the subscenario corresponding to

the subgoal ‘‘Socialize Tamagotchi’’ is triggered by the expression of a Tamagotchi’s

state of unhappiness. The former scenario represents a reactive behavior; the latter is

an example of a proactive behavior that is initiated by the agent itself. Interestingly

and arguably, we claim that any proactive behavior is reactive at some level, be-

cause, for example, the state of unhappiness can be reduced to specific events that

have caused it. However, this distinction is not relevant for our modeling purposes.

To discover triggers, it is worthwhile to have a look at the rsponsibilities defined

for the roles of the system. For example, table 3.3 includes the following responsibil-

ities that have been defined for the role MyTamagotchi: ‘‘express hunger,’’ ‘‘become

sick,’’ ‘‘produce excrement,’’ ‘‘express loneliness,’’ and ‘‘misbehave occasionally.’’

As shown in table 3.9, a scenario can be modeled as a table showing the scenario’s

identifying number, goal, initiator, and trigger, and its constituent steps. Some sce-

narios also show what will happen if the agents involved fail to act as is prescribed
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Table 3.9
A scenario for achieving the goal ‘‘Sustain Tamagotchi’’

SCENARIO 1

Goal Sustain Tamagotchi

Initiator Owner

Trigger Waking up or resetting by the owner

DESCRIPTION

Condition Step Activity Agent types/roles Resources Quality goals

1 Set the date and time Person/Owner,
Tamagotchi/
MyTamagotchi

2 Set the birthday of the
owner

Person/Owner,
Tamagotchi/
MyTamagotchi

3 Choose the owner name Person/Owner,
Tamagotchi/
MyTamagotchi

4 A Tamagotchi is
hatching

Tamagotchi/
MyTamagotchi

5 Choose a name for the
Tamagotchi

Person/Owner,
Tamagotchi/
MyTamagotchi

Interleaved 6 Feed the Tamagotchi
(Scenario 2)

Person/Owner,
Tamagotchi/
MyTamagotchi

Food My Tamagotchi
healthy

7 Cure the Tamagotchi
(Scenario 3)

Person/Owner,
Tamagotchi/
MyTamagotchi

My Tamagotchi
healthy

8 Clean the Tamagotchi’s
environment (Scenario 4)

Person/Owner,
Tamagotchi/
MyTamagotchi

My Tamagotchi
healthy

9 Socialize Tamagotchi
(Scenario 5)

Person/Owner,
Tamagotchi/
MyTamagotchi,
Tamagotchi/
FriendTamagotchi

Present My Tamagotchi
happy,
Appropriatre
presenting
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by the scenario. For example, the scenario represented in table 3.10 specifies in the

‘‘Failure’’ row that the Tamagotchi would die if it is not fed.

Each step of a scenario represents an activity. An activity may be modeled as a

subscenario, like the activities modeled as steps 6–9 in table 3.9.

Scenarios identify, for each activity, both the agent type and the role that an agent

of that type is playing. For example, we describe the agent types and roles involved

in the activity ‘‘Socialize Tamagotchi’’ represented in table 3.13 as Person/Owner,

Tamagotchi/MyTamagotchi, Tamagotchi/FriendTamagotchi, and Tamagotchi/

Matchmaker.

When modeling scenarios, we have to decide under which conditions subscenarios

and other constituent activities of scenarios are to be performed. For this purpose,

the first column in a scenario table is used. For example, the scenario shown in table

3.9 defines the condition ‘‘Interleaved’’ for the steps 6–9, which means that these

activities may be performed in any order, depending on the triggers. Similarly, the

scenario represented in table 3.10 defines for steps 2–3 the condition ‘‘Options, repeat

if necessary,’’ specifying that one of the activities is to be performed at a time, and

the activity may be repeated. In addition, the keywords ‘‘Sequential’’ and ‘‘Loop’’

can be used for expressing the condition for performing activities. The implicit order

of performing activities is sequential. For example, according to the scenario mod-

eled in table 3.14, the activities ‘‘Give the friend a present’’ and ‘‘Play with the

friend’’ are performed sequentially. This reflects a design decision that has elaborated

the interaction protocol represented in figure 3.14.

The fifth column of a scenario table shows the resources associated with the

activity. For example, according to the scenario modeled in table 3.9, the activity

‘‘Socialize Tamagotchi’’ accesses resources of type Present.

Table 3.10
A scenario for achieving the goal ‘‘Feed Tamagotchi’’

SCENARIO 2

Goal Feed Tamagotchi

Initiator MyTamagotchi

Trigger The Tamagotchi is hungry.

Failure The Tamagotchi dies.

Condition Step Activity Agent types and roles Resources Quality goals

Options,
repeat if
necessary

1 Have meal Person/Owner,
Tamagotchi/
MyTamagotchi

Food My Tamagotchi
healthy

2 Have snack Person/Owner,
Tamagotchi/
MyTamagotchi

Food My Tamagotchi
healthy
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The last column of a scenario step indicates quality goals relevant for the step. For

example, two quality goals, ‘‘My Tamagotchi happy’’ and ‘‘Appropriate presenting,’’

are relevant for step 9 of the scenario presented in table 3.9.

The scenarios for achieving the goal ‘‘Sustain Tamagotchi’’ and the first four of its

subgoals represented in figure 3.3 are modeled in tables 3.9–3.15. More examples of

scenarios are presented in the application chapters in part II.

3.9 Behavior Models

Scenarios focus on how a multiagent system achieves the goals set for it rather than

what individual agents do. Behavior models address what individual agents do. We

Table 3.11
A scenario for achieving the goal ‘‘Cure Tamagotchi’’

SCENARIO 3

Goal Cure Tamagotchi

Initiator MyTamagotchi

Trigger The Tamagotchi is sick.

Failure The Tamagotchi dies.

DESCRIPTION

Condition Step Activity
Agent types
and roles Resources

Quality
goals

Repeat if
necessary

1 Nurse the
Tamagotchi
to health

Person/Owner,
Tamagotchi/
MyTamagotchi

My
Tamagotchi
healthy

Table 3.12
A scenario for achieving the goal ‘‘Clean the Tamagotchi’s environment’’

SCENARIO 4

Goal Clean the Tamagotchi’s environment

Initiator MyTamagotchi

Trigger The Tamagotchi has produced excrement.

Failure The Tamagotchi becomes sick.

DESCRIPTION

Condition Step Activity
Agent types
and roles Resources

Quality
goals

Repeat if
necessary

1 Flush the
toilet

Person/Owner,
Tamagotchi/
MyTamagotchi

My
Tamagotchi
healthy
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Table 3.13
A scenario for achieving the goal ‘‘Socialize Tamagotchi’’

SCENARIO 5

Goal Socialize Tamagotchi

Initiator MyTamagotchi

Trigger The Tamagotchi is unhappy.

Failure The Tamagotchi dies.

DESCRIPTION

Condition Step Activity Agent types and roles Resources Quality goals

1 Visit the friend
(Scenario 6)

Person/Owner,
Tamagotchi/
MyTamagotchi,
Tamagotchi/
FriendTamagotchi

Present My Tamagotchi
happy

2 Find a partner for
the Tamagotchi
(Scenario 7)

Person/Owner,
Tamagotchi/
Matchmaker

Friend_list My Tamagotchi
happy

Table 3.14
A scenario for achieving the goal ‘‘Visit the friend’’

SCENARIO 6

Goal Visit the friend

Initiator MyTamagotchi

Trigger The owner has chosen to visit.

DESCRIPTION

Condition Step Activity Agent types and roles Resources Quality goals

1 Connect with another
Tamagotchi

2 Go to the friend’s
place

Person/Owner,
Tamagotchi/
MyTamagotchi,
Tamagotchi/
FriendTamagotchi

My Tamagotchi
happy

Loop 3 Give the friend a
present

Tamagotchi/
MyTamagotchi,
Tamagotchi/
FriendTamagotchi

Present My Tamagotchi
happy, appropriate
presenting

4 Play with the friend Tamagotchi/
MyTamagotchi,
Tamagotchi/
FriendTamagotchi

My Tamagotchi
happy

5 Return home Tamagotchi/
MyTamagotchi,
Tamagotchi/
FriendTamagotchi

My Tamagotchi
happy
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distinguish between two kinds of behavior models: behavioral interface models and

agent behavior models. A behavioral interface model identifies behavioural units

and defines an interface for each behavioral unit. As shown in chapter 7, di¤erent

agent-oriented methodologies name behavioral units di¤erently—services, activities,

capabilities, agents’ skills and aptitudes—to mention just a few. For the example

models in this section, the behavioral unit is an activity and a behavioral interface is

expressed in terms of a trigger, preconditions, and postconditions for performing the

corresponding activity. The behavioral interfaces for the activities performed by a

Tamagotchi ‘‘Have meal’’ and ‘‘Go to the friend’s place’’ are represented in table

3.16. These activities are included in the scenarios presented in tables 3.10 and 3.14.

Table 3.15
A scenario for achieving the goal ‘‘Hatch a new Tamagotchi’’

SCENARIO 7

Goal Find a partner for the Tamagotchi

Initiator Matchmaker

Trigger The Tamagotchi has reached a certain age and hasn’t found a partner of the opposite sex.

DESCRIPTION

Condition Step Activity
Agent types
and roles Resources Quality goals

1 Suggest a partner for
the Tamagotchi from
among his/her friends

Person/Owner,
Tamagotchi/
Matchmaker

Friend_list My Tamagotchi
happy, suitable
partner

2 Produce an egg Tamagotchi/
MyTamagotchi

My Tamagotchi
happy

3 A new Tamagotchi is
hatching

Tamagotchi/
MyTamagotchi

My Tamagotchi
happy

Table 3.16
Behavioral interfaces for ‘‘Have meal’’ and ‘‘Go to the friend’s place’’

Activity Trigger Pre-conditions Post-conditions

Have meal Meal selection
by the owner

� The Tamagotchi is hungry
� The selected meal is in the
Tamagotchi Shell

� The Tamagotchi’s level of
hunger has decreased
� The Tamagotchi has
consumed the meal from its
Tamagotchi Shell

Go to the
friend’s place

Request to visit
by the owner

� The connection to the other
Tamagotchi is operational
� The Tamagotchi is in its
Tamagotchi Shell

� The Tamagotchis is back in
its Tamagotchi Shell
� The Tamagotchi’s happiness
level is increased
� The Tamagotchi holds any
items received as presents
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An agent behavior model describes the behavior of an agent of the given type.

Because agent behavior models are platform-independent, we cannot make any

assumptions about the underlying system architecture. Agent behavior models can

thus be expressed only in terms of the abstract agent architecture that was introduced

in section 2.3. According to the execution loop of an abstract agent represented

in figure 2.5, an agent’s behavior is determined by a controller based on the agent’s

perceptions and knowledge. The controller can be modeled in terms of rules. As

explained in section 2.3, a rule is our basic behavior modeling construct.

During each execution cycle of an abstract agent, the rules that can be triggered

are found. A rule can be triggered by a perception. An agent can perceive a message

sent by another agent or a physical action performed by another agent. An agent can

also perceive an event that is not caused by any agent. A rule that is not triggered

by a perception is triggered by a start event that occurs once per each execution cycle

of an abstract agent. The start event activates a rule as soon as the rule’s condi-

tion becomes true. The condition of a rule checks some aspect of the agent’s mental

state.

Rules start and sequence activities, which in turn consist of actions. The concepts

of rules, activities, and actions were explained in chapter 2. According to chapter 2,

there are three kinds of actions: communicative actions, like sending a message;

physical actions, like starting a machine; and epistemic actions, like storing a pur-

chase order in the agent’s knowledge base.

A visual notation capable of representing rules, activities, and actions is required

for behavior modeling. Figure 3.17 introduces a suitable notation. The notation is

based on activity diagrams of UML, which are used in several agent-oriented meth-

odologies. The notation also incorporates modeling elements from the Business Pro-

cess Modeling Notation (BPMN).

A rule is modeled as capable of starting activities and performing actions. In addi-

tion, a rule provides a universal modeling element for representing agent behavior

modeling constructs such as decisions and forks, and defining the order in which

activities are performed.

As opposed to UML activity diagrams and BPMN, we have included agent inter-

actions in behavior models. The notation used for interaction modeling is the one

introduced in section 3.6 by interaction-sequence and interaction-frame diagrams.

Messages sent or actions performed can be modeled as prescribed by rules, but the

modeling notation also enables designers to attach sending of messages or perform-

ing of actions to activities.

Agent behavior models focus on a specific agent type. Figure 3.18 represents the

behavior of an agent of type Tamagotchi who initiates a visit with another Tama-

gotchi. This involves the routine activities ‘‘Express unhappiness,’’ ‘‘Connect with

another Tamagotchi,’’ ‘‘Go to the friend’s place,’’ ‘‘Give the friend a present,’’
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‘‘Play with the friend,’’ and ‘‘Return home.’’ The first activity is modeled in table

3.13 and the rest are modeled in table 3.14.

Agent behavior models enable both proactive and reactive behaviors to be repre-

sented. Proactive behavior is modeled as initiated by values of the agent’s knowledge

items, representing its mental state, or by values of knowledge items embedded in

some environment object computationally accessible to the agent, such as a database.

In contrast, reactive behavior is modeled as initiated by some perception by the

agent. For example, in figure 3.18, proactive behavior that results in the sending of

a message of type ‘‘I am not happy’’ by a Tamagotchi is modeled with the help of

rule R1. This rule is triggered by the start event and is activated if the Tamagotchi’s

mental state is characterized as unhappy. As shown in chapter 5, in practice this is

ascertained by the value of the Tamagotchi’s knowledge attribute happinessLevel

being below a certain threshold value. What causes the value of the knowledge attri-

bute to change is determined by other rules briefly illustrated further in what follows.

As a result, the behavior of a Tamagotchi can be described as ‘‘intelligent,’’ just like

Kuldar’s eight-year-old daughter Eliise said.

As an example of reactive behavior, in the same figure an activity of type ‘‘Con-

nect with another Tamagotchi’’ is started by rule R2 in reaction to perceiving the

corresponding action by a human agent.

Figure 3.17
A notation for modeling agent behavior
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Figure 3.18
An agent behavior model of a Tamagotchi
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The condition attached to rule R3 in figure 3.18 means that the rule is triggered

only if there exists another Tamagotchi connected to the given one—that is, if an

activity of type ‘‘Connect with another Tamagotchi’’ has resulted in an operational

connection with another Tamagotchi. When triggered, this rule starts an activity of

type ‘‘Visit the other Tamagotchi.’’ Returning to the models of interaction protocols

explained in section 3.6, rule R3 elaborates the outermost Option box and the re-

spective guard modeled in the interaction protocol in figure 3.14.

Rule R4 models that upon the start of a ‘‘Visit the other Tamagotchi’’ activity, its

‘‘Request visit’’ subactivity is started. After performing that activity, according to

rule R5 the Tamagotchi waits for a reply from the other Tamagotchi. Upon receiving

a confirmation message from the hosting Tamagotchi, an activity of type ‘‘Go to the

friend’s place’’ is started. This happens if the visiting Tamagotchi is older than the

hosting one. If not, a refusal message is received, which is not shown in figure 3.18.

As an example of a behavior modeling construct expressed by a rule, rule R6 in

figure 3.18 represents that upon the start of an activity of type ‘‘Give a present and

play,’’ if the Tamagotchi has a present, an activity of type ‘‘Give the friend a pres-

ent’’ is performed. Otherwise, an activity of type ‘‘Play with the friend’’ is performed.

Similarly, the condition of rule R7 models that an activity sequence of giving a pres-

ent and playing is repeated if the Tamagotchi is still unhappy. If the Tamagotchi is

happy, an activity of type ‘‘Return home’’ is performed and the enclosing activity

of type ‘‘Visit the other Tamagotchi’’ finishes. Rule R7 elaborates the Loop box

depicted in the interaction protocol in figure 3.14.

For clarity, rules R1–R7 are modeled in table 3.17. The table shows for each rule

its trigger and condition and the action prescribed by the rule.

The behavior of a Tamagotchi within the noninterruptible critical regions of the

interaction protocol shown in figure 3.14 is modeled by presenting both ‘‘Give the

friend a present’’ and ‘‘Play with the friend’’ as activity types, which must always be

executed as units. We have chosen not to represent complete agent behavior models

in figure 3.18 for the activity types ‘‘Give the friend a present’’ and ‘‘Play with the

friend’’ to demonstrate that behavior modeling is an iterative process where we can

model only some parts of the agent’s behavior at each step.

As stated previously, actions include epistemic actions that change the agent’s

knowledge or mental state. We demonstrate in figure 3.19 separately how rules can

model epistemic actions by using an example of a rule within the ‘‘Give the friend a

present’’ activity type. The notation used in figure 3.19 denotes that when an activity

of type ‘‘Give the friend a present’’ is performed, rule R8 increases the value of the

Tamagotchi’s happinessLevel knowledge attribute by 40.

Alternatively, the agent behavior model represented in figure 3.18 can be modeled

as a UML statechart, as is shown in figure 3.20. This notation represents activities as

states and rules as state transitions.
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3.10 Service Models

The fundamental property of an agent is being situated in some environment and be-

ing capable of perception and action. Agents have knowledge of environment objects

and how to utilize them. Section 3.4 identified two types of environment objects:

services and resources. In this section, we discuss services. At the time of writing

this book, ‘‘service’’ is an overly hyped term. There are attempts to model nearly ev-

erything as a service. However, services do exist for agents and are utilized by them.

For instance, consider a taxi hiring system with a centralized service represented by a

lady called Kitty.1 Obvious services that taxi drivers need for their work are getting

new customers and providing directions as necessary. Less obvious services that a taxi

driver might use are information about tra‰c conditions and unexpected situations.

Such information could be directly exchanged by the taxi drivers in a peer-to-peer or

broadcast fashion. It would be unrealistic to have Kitty mediating all that informa-

tion. Instead, we could regard the service provided by a taxi center as a system sup-

plying a communication infrastructure for taxi drivers and Kitty.

Table 3.17
The models for rules R1–R7

Rule Trigger Condition Action if condition true
Action if
condition false

R1 Start event Tamagotchi is
unhappy

Send ‘‘I am not
happy’’ message to
the owner

—

R2 Request ‘‘Please visit your
friend’’ by the owner

— Start ‘‘Connect with
another Tamagotchi’’
activity

—

R3 End of ‘‘Connect with
another Tamagotchi’’
activity

There exists a
connected friend

Start ‘‘Visit the other
Tamagotchi’’ activity

—

R4 Start of ‘‘Visit the other
Tamagotchi’’ activity

— Start ‘‘Request visit’’
activity

—

R5 End of ‘‘Request visit’’
activity AND receiving of
‘‘Please come!’’ message
from the other Tamagotchi

— Start ‘‘Go to the
friend’s place’’ activity

—

R6 Start of ‘‘Give a present
and play’’ activity

Tamagotchi has
enough presents

Start ‘‘Give the friend
a present’’ activity

Start ‘‘Play with
the friend’’ activity

R7 End of ‘‘Give a present
and play’’ activity

Tamagotchi is
still unhappy

Start ‘‘Give a present
and play’’ activity

Start ‘‘Return
home’’ activity

1. Kitty is the traditional term used by taxi drivers in Estonia.

Models 105



Figure 3.20
An agent behavior model of a Tamagotchi represented as a statechart

Figure 3.19
Modeling an epistemic action
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Services are modeled as reactive entities that provide functionality to the

agents. For example, according to the description presented in section 3.1 and the

models given in sections 3.2 and 3.3, a Tamagotchi Shell consists of six important

facilities—toilet, shop, storehouse, physician, mailbox, and communicator—that

can be manipulated by the Tamagotchi as mediated by the owner. They are modeled

as the respective services in the Tamagotchi Shell environment. Similarly, the school

and preschool, as well as the workplace, shopping mall, food court, theater, game

center, town hall, king’s castle, and travel agency are modeled as services in the Ta-

magotchi’s virtual environment—Tamagotchi Town.

As the term ‘‘service’’ implies, only an agent can invoke a service object—never

the other way round. For example, a Tamagotchi in Tamagotchi Town can manipu-

late service objects such as a theater, school, and travel agency. In the domain of

intelligent homes, a home security agent can manipulate alarm devices and a face

comparison Web service.

As pointed out in section 2.4, an environment can be physical or virtual. For ex-

ample, a Tamagotchi is placed in a physical environment that is inhabited by its

owner and possibly another Tamagotchi. At the same time, a Tamagotchi is always

situated in the Tamagotchi Shell virtual environment and can also enter another

virtual environment—Tamagotchi Town. In section 3.7, both physical and virtual

environments are modeled as environment objects that agents know about.

A physical environment can be made computationally accessible by agents. Com-

putationally accessible environments are called computational environments. A physi-

cal environment can be made accessible by equipping agents with sensors and

actuators. For example, intelligent homes can be furnished with sensors that detect

intruders and cameras that take images of an intruder. Similarly, a home security

agent can have actuators that enable it to open and shut doors and start alarm

devices. Sensors register events occurring in the physical world and transform their

occurrences into digital signals. Conversely, actuators transform digital signals into

physical actions. The digital signals that are received from sensors and fed into

actuators are at a low abstraction level. We therefore need a computational environ-

ment layer between sensors and actuators on one hand and agents on the other. The

layer consists of services for perceiving events and for performing actions in the

physical environment. For example, in the Intelligent Home application in chapter

9, obvious services are detecting and recognizing a possible intruder and greeting

the homeowner by voice.

Virtual environments, for example, agent platforms such as JADE and JACK

(which are discussed in chapter 5) can be viewed as computational environments.

The JADE platform has services ReceiverBehavior and SenderBehavior for re-

spectively receiving and sending messages. In our running Tamagotchi example, the

communicator service of a Tamagotchi Shell environment fulfils a similar purpose.
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Services are stateless, meaning that a service does not maintain information about

its state between its invocations. For example, the communicator service of a Tama-

gotchi Shell does not check whether a message sent by a Tamagotchi to another one

is followed by a reply. This is done by the Tamagotchis involved instead. All the

information that a stateless service needs is passed to it by the calling agent or is

retrieved by the service from some other environment object, such as a database.

Service models reflect our view of a multiagent system as consisting of agents and

services, where services make up a computational environment for the system. What

exactly should be regarded as an agent and what as a service? The answers to this

question essentially determine the software architecture of the system that is being

designed. Software architecture defines the structures of the system implemented in

software, which comprise architectural elements and the relationships between the

elements. Which architectural elements should be regarded as agents and which

ones as services depends on the available hardware and software platforms, financial

and administrative constraints, and many other factors.

In general, the architecture of a multiagent system can be viewed as consisting of

agents and services, as is depicted in figure 3.21. Services, in turn, rely on the lower

abstraction layer of functional objects, which are basic software building blocks. In

the generic multiagent system architecture, agents interact with each other in an

asynchronous manner and invoke services in a synchronous way. A synchronous

invocation means that an agent waits until the service invoked by it finishes. In the

contrary, agents involved in an asynchronous interaction do not have to wait for

the replies to the messages sent to each other.

Service objects are passive objects, which are invoked by agents and which do not

interact with each other. Di¤erent services may, however, be connected at the ab-

Figure 3.21
The generic architecture of a multiagent system
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straction layer of functional objects. For example, the agents B and D in figure

3.21 interact but use di¤erent services X and Y that are connected through functional

objects 3 and 4 that synchronously invoke each other’s operations. The services X

and Y may, for example, represent di¤erent agent platforms. The layers of service

objects and functional objects are sometimes jointly termed as middleware. How to

engineer service objects and functional objects is beyond the scope of this book and

is thoroughly treated in numerous books on object-oriented modeling and design.

In our running example, a Tamagotchi dwells in the virtual environment of the

Tamagotchi Shell and can enter the virtual environment of Tamagotchi Town.

In the domain model and knowledge model that were created in sections 3.4 and

3.7, we modeled the environments of a Tamagotchi as environment objects Tama-

gotchiShell and TamagotchiTown. In this section, we elaborate these objects into

their constituent service objects. For example, the service objects Toilet, Shop,

Storehouse, Physician, Mailbox, and Communicator of the Tamagotchi Shell

virtual environment are identified. The resulting service model is given in figure

3.22, using a UML-like notation. An environment is denoted in the figure as an ob-

ject labeled with the UML-like stereotype <<Environment>> and its constituent

services are marked with the stereotype <<Service>>. The names of service objects

depicted in the figure are underlined to convey that there is just one instance of each

service. The figure uses the UML notation introduced in table 2.1.

To be manipulated by agents, service objects need handles that enable agents to

consume resources from the environment and operate on it. For example, a Tama-

gotchi needs such handles for consuming resource objects, representing food for the

Tamagotchi, from the Storehouse. We design and implement such handles for ser-

vice objects as operations, a term that originates in object-oriented design. An opera-

tion can be defined as a procedure or transformation performed by an object. For

instance, the Toilet object will be equipped with the flush operation for cleaning

‘‘excrement’’ produced by the Tamagotchi. An operation may take arguments and

return a value. The types of arguments and the type of the return value are defined

by the operation’s signature. Arguments taken by operations and values returned by

them are information resources. For example, the service for greeting the homeowner

in the Intelligent Home application by voice has an operation with the signature

speakText (String text, Integer volume, Real readingSpeed, Integer

voiceType). This operation converts a character sequence into synthesized speech.

In the StoreHouse service of a Tamagotchi Shell, the operation with the signature

store (Food food) takes as an argument a resource of type Food, and the opera-

tion with the signature Item get() returns a resource of type Item. If the type of

the value returned by an operation is not shown in the operation’s signature, the

type is Boolean. For example, the select(Item) operation of the StoreHouse ser-

vice returns the value ‘‘true’’ if the resource in the storehouse has been successfully
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Figure 3.22
The design model of Tamagotchi’s computational environments



selected. Otherwise—for example, when the storehouse is empty—this opera-

tion returns ‘‘false’’. Similarly, the faceUnknown(CVImage *image) operation of

the intruder detection and recognition service of the Intelligent Home application

returns the value ‘‘true’’ if a home security agent detects an unknown person in the

room.

Besides being handles for agents, operations may also represent laws that constrain

the e¤ect of the actions performed by agents on the environment entities. For exam-

ple, a runway allocation service used by an air tra‰c control agent must consider the

physical laws related to the number of and position of runways, wind direction, visi-

bility, and so on.

An agent may be able to figure out by itself which handles to pull—that is, which

operations of which objects to invoke. For example, a Tamagotchi can be designed

as capable of detecting when its food supply in the storehouse is low and buying

more food from the shop. However, a Tamagotchi of the current version manipu-

lates its environment objects as guided by a human agent.

Figure 3.22 includes operation signatures for both computational environments of

a Tamagotchi. Instead of the operation signature, just the operation name may be

used for referring to it.

The flush, buy, and cure operations of the respective service objects Toilet,

Shop, and Physician of a Tamagotchi Shell do not take any arguments, because

there is only one Tamagotchi for each Tamagotchi Shell environment. It is thus

easy to figure out the Tamagotchi to which these operations apply. The operations

of the StoreHouse service enable the Tamagotchi to store a resource, and select a

resource stored and fetch it so that, for example, the resource could be given to the

other Tamagotchi as a present when visiting. The tellOwner operation of the

Communicator service is used by the Tamagotchi for informing its owner about hun-

ger, sickness, or unhappiness. The connect, visit, send, givePresent, receive

and returnHome operations of the Communicator service are used for visiting. The

getLetter operation of the Mailbox service retrieves resources of type Letter that

the Tamagotchi has received by ‘‘mail.’’

As explained earlier, when entering the Tamagotchi Town environment, a Tama-

gotchi Shell transforms the Tamagotchi’s knowledge base into a fourteen-character

alphanumeric password that the owner inserts into Tamagotchi Town. This is done

by calling the goToTamagotchiTown operation of the Communicator service. Upon

the Tamagotchi leaving Tamagotchi Town, the environment generates another pass-

word that is to be inserted by the owner into the Tamagotchi Shell. The password

reflects the changes to the Tamagotchi’s knowledge items. The password is

‘‘decoded’’ for the Tamagotchi by calling the returnFromTamagotchiTown opera-

tion defined for the Communicator service. Figure 3.22 represents through cardinal-

ities that each password generated is unique.
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Each service object of Tamagotchi Town has enter and exit operations for

entering into the service a password generated by the Tamagotchi Shell and for

retrieving the password generated by the service. The latter password reflects changes

caused by the service to the knowledge items of the given Tamagotchi. In addition,

the service objects ShoppingMall, FoodCourt, and TravelAgency have an opera-

tion with the signature Password buy (Password pw) that is used by an agent for

buying food and items for its gotchi points.

Service invocations by agents can be modeled by attaching them to activities in

agent behavior models. Table 3.18 shows what operations of various services of

a Tamagotchi Shell are called when the Tamagotchi visits another Tamagotchi.

Alternatively, interactions between agents and environment objects can be captured

by sequence diagrams of UML.

In section 5.5 we refine the description given in table 3.18 by demonstrating how a

Tamagotchi implemented on the JADE agent platform employs some of the opera-

tions provided by the Communicator service.

As computational environments are essentially designed in an object-oriented way,

there is no need for us to go into more detail with environment design. We have by

now performed enough analysis for developing the system and have got a su‰cient

set of models that can be handed over to developers for implementation.

3.11 Background

Our description of Tamagotchis derived primarily from the use of the toys by Kuldar

and his daughters, aged 6 and 9. We also used information from the Tamagotchi

Web site (Tamagotchi 2008) and the relevant article on Wikipedia (2008a).

Table 3.18
Service invocations by a Tamagotchi while visiting another Tamagotchi

Activity Service invocation

Connect with another
Tamagotchi

Communicator.connect()

Request visit Communicator.send("Could I come to your place?"),
Communicator.receive()

Go to the friend’s place Communicator.visit(), Communicator.send("Good day!"),
Communicator.receive()

Give the friend a present Communicator.givePresent("Please accept my present",
Present), Communicator.receive()

Play with the friend Communicator.send("May I play with you?"),
Communicator.receive()

Return home Communicator.returnHome()
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The use of goals in requirements acquisition was pioneered by Dardenne, Lams-

weerde, and Fickas (1993). The notion of goal is employed for requirements

engineering by several agent-oriented methodologies, notably as goal diagrams by

Prometheus (Padgham and Winiko¤ 2004), as goal hierarchy diagrams by MaSE

(DeLoach and Kumar 2005), and as goal cases by MAS-CommonKADS (Iglesias

and Garijo 2005). Goals were the key concept in the ROADMAP methodology as

described in (Juan, Pearce, and Sterling 2002). The ROADMAP notation, which

has been adopted for our goal models in chapter 3, emerged from discussions at the

Intelligent Agent Lab at the University of Melbourne, with the leading voices being

Thomas Juan and Leon. The notation is clearly described in (Kuan, Karunasekera,

and Sterling 2005).

Our example notation for goal models evolved over several years. It is worth

stating the history in a little more detail as to avoid repeating ourselves later. Leon’s

interest in models for agent-oriented systems started with Gaia as described in

(Wooldridge, Jennings, and Kinny 2000). The interest was spurred by Thomas

Juan, who began his Ph.D. on agent-oriented software engineering under Leon’s

supervision in 2001. Thomas analyzed the need for additional models in Gaia, such

as for the environment, and presented this analysis as an initial set of models for

the ROADMAP methodology extension to Gaia in Juan, Pearce, and Sterling

2002. Gaia itself evolved as described in Zambonelli, Jennings, and Wooldridge

2003. ROADMAP became a separate methodology and Thomas was the primary in-

fluence in shaping it. The REBEL tool for ROADMAP was developed and described

in Kuan, Karunasekera, and Sterling 2005. This latter paper also gave a clear de-

scription of the principal ROADMAP models at the motivation layer—namely,

goal and role models. The most extensive description of ROADMAP so far is by

Juan (2008).

Related to goals are quality goals or soft goals. Our modeling notation for quality

goals was suggested by Thomas Juan based on the extensive treatment of quality by

Chung et al. (2000). Quality goals form a prominent part of the Tropos methodology

(Bresciani et al. 2004). Following the principles described by Rahwan, Juan, and

Sterling (2006), quality goals can be used for representing social policies.

The modeling concept of role is a major distinguishing factor between agent-

oriented and object-oriented modeling. Among the first researchers applying roles to

agent modeling was Kendall (1999). Separate role models are featured by the Gaia

(Wooldridge, Jennings, and Kinny 2000) and MaSE (DeLoach and Kumar 2005)

methodologies. The MESSAGE methodology (Caire et al. 2004) identifies roles and

attaches them to goals in its delegation structure diagrams. The INGENIAS method-

ology (Pavón, Gómez-Sanz, and Fuentes 2005) identifies roles within use cases. In

the PASSI methodology (Cossentino 2005), roles are identified after deciding agent
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types. Our example representation format for role models originates in the ROAD-

MAP methodology introduced in Juan, Pearce, and Sterling 2002 and refined by

Chan and Sterling (2003a).

The following famous Three Laws of Robotics coined by Asimov (1950) may also

be regarded as a role model for a robot:

� A robot may not injure a human being or, through inaction, allow a human being

to come to harm.

� A robot must obey orders given to it by human beings, except where such orders

would conflict with the First Law.

� A robot must protect its own existence as long as such protection does not conflict

with the First or Second Law.

Organization models, representing relationships between roles, appear as organiza-

tion diagrams in the MAS-CommonKADS (Iglesias and Garijo 2005), MESSAGE

(Caire et al. 2004), RAP/AOR (Taveter and Wagner 2005), and INGENIAS

(Pavón, Gómez-Sanz, and Fuentes 2005) methodologies. Based on the OpeRA meth-

odology proposed by Dignum (2004), we regard the control, benevolence, and peer

relationships between roles as the most essential ones. These relationship types were

conceived by Zambonelli, Jennings, and Wooldridge (2001). Di¤erently, the Tropos

methodology (Bresciani et al. 2004) has been built around four types of dependencies

between agents: goal dependencies, task dependencies, resource dependencies, and

soft goal dependencies.

A domain model represents the knowledge that the system is supposed to handle

about its environments. A domain model also includes roles, because agents playing

these roles function based on their knowledge about their physical and virtual envi-

ronments. Domain models are rooted in knowledge models of the ROADMAP

methodology and environment models. Knowledge models were proposed as a part

of the ROADMAP methodology by Juan, Pearce, and Sterling (2002). Their constit-

uent parts—knowledge components—were defined by Juan and Sterling (2003). En-

vironment models were introduced in the ROADMAP methodology (Juan, Pearce,

and Sterling 2002) and added to the later version of Gaia (Zambonelli, Jennings,

and Wooldridge 2003). Environment-centred domain analysis forms a part of the

MAS-CommonKADS methodology (Iglesias and Garijo 2005), where environment

objects are modeled as clouds in use case diagrams. Objects of a conceptual environ-

ment, such as servers and databases, can be represented by diagrams of the types

o¤ered by INGENIAS (Pavón, Gómez-Sanz, and Fuentes 2005) and Prometheus

(Padgham, and Winiko¤ 2004). The ADELFE methodology (Picard and Gleizes

2004) describes environment by environment definition documents, which are created

at various stages of developing a multiagent system. The example notation that we
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use in domain models is based on the Entity-Relationship Model (Chen 1976) and

UML (OMG 2007).

Mapping roles to agent types is handled by the following types of models in the

respective agent-oriented methodologies: by agent models in Gaia (Wooldridge,

Jennings, and Kinny 2000), MAS-CommonKADS (Iglesias and Garijo 2005), and

INGENIAS (Pavón, Gómez-Sanz, and Fuentes 2005), by agent/role models in

MESSAGE (Caire et al. 2004), by agent class diagrams in MaSE (DeLoach and

Kumar 2005), and by agent society models in PASSI (Cossentino 2005). In the Prom-

etheus methodology (Padgham and Winiko¤ 2004), agent types are decided based on

thorough coupling and cohesion analysis.

Interaction pathways between agent types can be decided with the help of acquain-

tance models, which were first proposed by Wooldridge, Jennings, and Kinny (2000)

as a part of the Gaia methodology. The MaSE methodology (DeLoach and Kumar

2005) uses agent class diagrams for the same purpose and the MESSAGE methodol-

ogy (Caire et al. 2004)—organization diagrams.

As interaction modeling is crucial and central in agent-oriented modeling, interac-

tion models of some kind are used by all agent-oriented methodologies. The follow-

ing methodologies rely on UML or its derivation AUML (Bauer and Odell 2005)

for interaction modeling: Tropos (Bresciani et al. 2004), Prometheus (Padgham and

Winiko¤ 2004), PASSI (Cossentino 2005), and ADELFE (Picard and Gleizes 2004).

The MESSAGE (Caire et al. 2004), INGENIAS (Pavón, Gómez-Sanz, and Fuentes

2005), MaSE (DeLoach and Kumar 2005), and RAP/AOR (Taveter and Wagner

2005) methodologies have conceived their own notations for interaction modeling.

In the chapter, we provide examples of UML-based and other kinds of interaction

modeling.

GAIA (Zambonelli, Jennings, and Wooldridge 2003) models the environment in

terms of abstract computational resources, such as variables or tuples. The agent-

environment interactions are accordingly modeled as performing the following

actions on the environment variables: sensing (reading their values), e¤ecting (chang-

ing their values), and consuming (extracting them from the environment). Prome-

theus (Padgham and Winiko¤ 2004) models agent-environment interactions in

terms of the percepts from the environment available to the multiagent system and

the actions on the environment that the system is able to perform. Interactions be-

tween environment objects and agents are addressed by the MAS-CommonKADS

methodology (Iglesias and Garijo 2005) as reactive cases, which are refined by tex-

tual templates. The INGENIAS methodology (Pavón, Gómez-Sanz, and Fuentes

2005) represents the agent’s perception mechanism as a type of association relation-

ship between the agent and an application in its environment. Recently, the MaSE

methodology was complemented by DeLoach and Valenzuela (2007) with environ-

ment models. Our example notation for modeling interactions between an agent and
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its environment is based on the RAP/AOR methodology (Taveter and Wagner

2005).

The development of a multiagent system deals with the knowledge that each agent

of a multiagent system has about its environment consisting of other agents and en-

vironment objects. The most extensive knowledge modeling framework is featured

by the MAS-CommonsKADS methodology (Iglesias and Garijo 2005). The exper-

tise model included by this methodology provides means for modeling domain

knowledge, inference knowledge, and task knowledge. The PASSI methodology

(Cossentino 2005) models knowledge by domain and communication ontologies.

The Tropos (Bresciani et al. 2004), and RAP/AOR (Taveter and Wagner 2005)

methodologies represent knowledge models as UML (OMG 2007) class diagrams.

Our treatment of derivations and constraints originates in (Taveter and Wagner

2001). Our example notation for knowledge modeling is based on UML (OMG

2007), but also makes use of AUML (Bauer and Odell 2005) for joint representation

of agent types and roles.

Most agent-oriented methodologies include a system-level behavior model of

some kind. Examples are strategic rationale diagrams in Tropos (Bresciani et al.

2004), task models in MAS-CommonKADS (Iglesias and Garijo, 2005), domain

requirements description diagrams in PASSI (Cossentino 2005), use case models in

ADELFE (Picard and Gleizes 2004), and use case diagrams in INGENIAS (Pavón,

Gómez-Sanz, and Fuentes 2005) and MaSE (DeLoach and Kumar 2005). Scenarios

as system-level behavior models are included by the Prometheus (Padgham and

Winiko¤ 2004) and RAP/AOR (Taveter and Wagner 2005) methodologies.

Behavioral units are identified by behavioral interface models as services in the

GAIA (Zambonelli, Jennings, and Wooldridge 2003) and MAS-CommonKADS

(Iglesias and Garijo 2005) methodologies, as capabilities in Prometheus (Padgham

and Winiko¤ 2004) and PASSI (Cossentino 2005), as activities in RAP/AOR (Tav-

eter and Wagner 2005), and as agents’ skills and aptitudes in ADELFE (Picard and

Gleizes 2004).

After a behavioral interface model has been created for an agent, its behavior can

be modeled. In Gaia (Wooldridge, Jennings, and Kinny 2000), agent behavior is

modeled by liveness and safety properties. In the MAS-CommonKADS methodol-

ogy (Iglesias and Garijo 2005), agent behavior is defined by an agent model that, in

turn, utilizes the agent’s expertise model. The PASSI methodology (Cossentino 2005)

models agent behavior by activity diagrams of UML (OMG 2007). The MaSE meth-

odology (DeLoach and Kumar 2005) uses for the same purpose concurrent task

models, which are based on state charts. The INGENIAS methodology (Pavón,

Gómez-Sanz, and Fuentes 2005) represents agent behavior in terms of the agent’s

mental attitudes that trigger interactions. The Prometheus (Padgham and Winiko¤

2004) and Tropos (Bresciani et al. 2004) methodologies assume BDI to be the agent
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architecture and model agent behavior accordingly in terms of capabilities and plans.

Prometheus represents plans using a derivation of UML activity diagrams. The

example notation that we have adapted for agent behavior modeling is based on

UML activity diagrams (OMG 2007) and BPMN (OMG 2006). They have been

complemented with rules as proposed by Taveter and Wagner (2005), who promote

rules as a generic agent behavior modeling construct.

The design also includes modeling service objects provided by computational envi-

ronments. These objects are known and manipulated by agents. The motivation for

the modeling paradigm encompassing objects that are subordinated to agents was

explained by Høydalsvik and Sindre (1993) and Metsker (1997). Both argued for

the need for ontologically oriented modeling and programming languages that would

allow ‘‘thinking over objects.’’ The idea was put into the agent-oriented context by

Taveter (1997) and Oja, Tamm, and Taveter (2001). Similar in sprit is also the treat-

ment of environment variables in the Gaia methodology (Zambonelli, Jennings,

and Wooldridge 2003), where each variable is associated with a symbolic name,

characterized by the type of actions that the agents can perform on it. The concept

of stateless services has been introduced by Fielding (2000).

In our example models, operations are attached to service objects that can be

accessed by agents. Service objects and the operations attached to them are modeled

in an object-oriented way, which has been described in numerous books devoted to

object-oriented modeling. In particular, we have relied on Blaha and Rumbaugh

(2005). We have used for representing service models an example notation based on

UML (OMG 2007). Services employed by agents also comprise Web services. How a

Web service should be invoked is described using the Web Services Description Lan-

guage (WSDL; W3C 2007). Conversely, an agent can be embedded in a Web service.

Exercises for Chapter 3

1. Create an acquaintance model for the case when one or both interacting Tama-

gotchis are owned by more than one person.

2. Create an acquaintance model and an interaction model for multilateral interac-

tions between three or more Tamagotchis.

Extend exercise 2 so that behaviors of one or more agents are modeled.

3. Create the following types of models for your university, company, or organiza-

tion, where agents would automate some of the activities performed by humans:

� goal model

� role models

� domain model
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� agent and acquaintance model

� interaction models

� knowledge model

� scenarios

� behavior models

� service models
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4 Quality

Chapter 3 focuses on an agent-oriented approach to describe the functional require-

ments of a system, using concepts such as goals, roles, and agents. Just concentrating

on functionality is insu‰cient to develop systems. Nonfunctional requirements are

essential. An agent greeting system is not useful if it is too slow. For example, being

greeted one hour after you arrived in a room would provide comic value at best. If

an alarm clock scheduled to wake you is unreliable, it is not useful. If an automated

banking system is insecure, it is not good for the bank that deploys it or the customer

who might want to use it.

The models we introduced allow the expression of nonfunctional requirements

by attaching quality goals to goal models, and constraints to role models. Our

motivation in encouraging explicit quality goals is to a‰rm the importance of

quality concerns. Quality considerations should not be an afterthought during system

development.

This chapter takes a more detailed look at incorporating quality considerations

within agent-oriented modeling. We believe that agent-oriented concepts enhance

the handling of quality requirements in open, distributed sociotechnical systems.

The first section discusses di¤erent meanings that people ascribe to the term quality

to clarify the sense in which we use the term. Sections 4.2, 4.3, and 4.4 give three dif-

ferent specific examples of quality concerns: performance, safety, and security. None

of the discussions provide a definitive account of the particular quality attribute.

Rather, they show how to incorporate quality requirements e¤ectively into agent-

oriented models, usually by introducing appropriate additional concepts. Section 4.5

looks at more abstract and creative requirements such as being fun or playful. Hav-

ing an explicit quality goal can spark useful discussions during requirements analysis

and design. Section 4.6 discusses analyzing and elaborating multiple quality require-

ments recognizing the need for trade-o¤s between competing requirements.



4.1 Considerations of Quality

The word ‘‘quality’’ has at least three distinct meanings that we wish to point out.

The first meaning of quality is as a standard of excellence. Artifacts such as manufac-

tured items or pieces of writing can be rated according to an assumed standard: being

described, for example, as of poor, excellent, or sterling quality. The word ‘‘quality’’

itself usually suggests a high standard.

The second meaning of quality is ‘‘fit for purpose.’’ Quality standards such as ISO

9001, SPICE, and Six Sigma are based around this meaning. The quality movement

that emerged in the United States in the twentieth century is concerned with this

meaning of quality. The idea was to take a scientific approach and measure pro-

cesses. Quality for manufacturing was mastered within postwar Japan and was a

factor in its transformation as a manufacturing power.

A good example of a quality process in this sense comes from the McDonald’s

fast-food chain. For more than fifty years, in a wide range of locations across the

world, McDonald’s franchisees control how hamburgers are made in their premises.

Consequently, a customer purchasing a McDonald’s hamburger will know exactly

how the hamburger will taste. Saying that McDonald’s has an excellent quality pro-

cess does not mean that the hamburgers are of the highest quality in the first sense of

the term, but rather that the process is completely repeatable, so that a McDonald’s

restaurant anywhere in the world can produce an identically tasting hamburger.

The third meaning of quality is as an attribute. This meaning is exemplified by the

well-known Shakesperean quote ‘‘The quality of mercy is not strained.’’ We are

interested in addressing a wide variety of quality attributes of software, including

speed, reliability, scalability, maintainability—to name just a few from the engineer-

ing mindset. We also want to include other quality attributes to cover desired

requirements such as that playing with a Tamagotchi should be fun, a game should

be entertaining, and flirting with a friend using an online device should be exciting.

In this book, we primarily use quality in the third sense of trying to add properties

and attributes to software. We use the term quality requirement to refer to any

requirement about the quality of the software, as opposed to its functionality. We

want to embed consideration of quality requirements in a systems engineering pro-

cess, and by doing so to produce software that is excellent, that is high-quality (in

the first sense of the term), as well as that has the desirable attributes.

Focusing on quality is a well-established procedure within software and systems

engineering. Software engineers are aware of the need to express quality attributes

of software as well as functional capabilities of software. Sometimes, the phrase

‘‘nonfunctional requirements’’ is used. We prefer the term ‘‘quality requirements’’

for its more positive connotations.
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Some people advocate that all quality requirements, which we express as quality

goals within goal and role diagrams, should be turned into measurable goals and spe-

cific functional requirements during requirements analysis. We do not favor such a

unilateral approach. We believe that qualitative descriptions are often more intuitive

for stakeholders. Although some quality goals, such as performance targets or system

availability, are readily quantifiable, others—such as a system being secure or a

game being fun—are less so.

Keeping a qualitative description of a constraint at the motivation layer aids fu-

ture system evolution and adaptability. We believe that it is often valuable to delay

specifying quality requirements as explicit numeric constraints to allow designers to

be able to make trade-o¤s. Indeed, there are many considerations that could a¤ect

the final design decisions that get embedded in the system specification. Human fac-

tors are an issue. The choice of implementation language may well have an impact

on quality attributes such as performance. Making a decision before all the factors

are known might lead to overspecification, and might disengage key stakeholders

from the process.

Another term that has been used to describe the type of quality goals we are dis-

cussing is soft goal. Soft goals can clearly be relaxed during design trade-o¤ discus-

sions. This term contrasts with a hard goal, which is explicitly quantifiable. We prefer

the term ‘‘quality goals’’ to connote subtly that we advocate an engineering approach

and want to build high-quality systems.

Quality considerations can be expressed in several of the models that we intro-

duced in the previous chapter. They are most visible in goal models in which quality

goals are represented as clouds. They are also present as constraints in role models.

They can also be attached to scenarios in which it is desirable to identify the key step

where the particular quality attribute is important. Quality considerations may also

a¤ect knowledge models, as discussed in section 4.4.

In the sections that follow, we present a range of examples of quality goals being

attached to goal and role models. Although the same qualitative notation can be

used to describe di¤erent quality attributes at a high level, detailed analyses of di¤er-

ent quality requirements typically need di¤erent methods. Addressing safety concerns

about personal injury naturally has a di¤erent process from analyzing a system to

guarantee speed of response, which is di¤erent again from being aware of and taking

steps to avoid hacker attacks. In complex systems with several competing quality

concerns, there may well be a need for composite methods.

To conclude this section, we reiterate the importance of explicit expression of qual-

ity requirements as quality goals. Quality attributes are often forgotten about during

software development, but are a major factor in determining system success. Quality

requirements are an important part of any software project. They are often built with
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a completely independent method of assessment. We believe it is important to take a

holistic approach, thinking about quality requirements from the earliest stages of

requirements elicitation and analysis. We represent quality requirements in such a

way that considerations of assessment arrive early. Assessing quality will require spe-

cific expertise, as becomes apparent in the next few sections.

4.2 Performance

The first and probably the most fundamental quality goal that we want to discuss

is performance. Performance is a general term that can cover a range of quality

attributes, including responsiveness, availability, reliability, and usability. We do

not attempt to define performance, but rather give examples. Performance is a key

consideration for the extended Tamagotchi example of chapter 3. If a Tamagotchi

doesn’t respond quickly enough, children will lose interest. If the interface is di‰cult

to use, children won’t play with it.

We first observe that some aspects of performance can be handled in a straightfor-

ward manner. We illustrate with an example to be elaborated upon in section 4.3

when discussing safety. Consider an automated system for palletizing fruit to be

transported to market. The palletizer has two main functions. The first function is

to pack fruit into boxes without damaging the fruit. The second function is to stack

boxes onto a pallet. Once thirty-six boxes have been placed onto a pallet, the pallet-

izer covers the packed boxes with a plastic sheet and nails the four corners of the

sheet onto the pallet. After the boxes have been covered, the pallet is moved to a

storage area, and the packing into boxes starts again.

Figure 4.1 gives a goal model for the palletizer. The overall goal for the palletizer,

‘‘Palletize,’’ is broken down to three subgoals: ‘‘Pack,’’ ‘‘Stack,’’ and ‘‘Store.’’ The

goal model includes two roles: Palletizer and Operator. The first represents the auto-

mated component of the system and the second represents a human operator

required for providing the system with fruit and boxes, as well as for collecting the

pallets. The role models for Palletizer and Operator are given as tables 4.1 and 4.2,

respectively.

In this chapter, we are interested in the quality goals. The two quality goals

attached to the left of the ‘‘Palletize’’ goal express that the palletizing should be e‰-

cient and reliable. These two quality goals can be translated into specific constraints

on performance, which clearly need to come from a domain expert. In this case, our

local domain expert has stated that to be e‰cient, the palletizer should pack six pal-

lets per hour without damaging the fruit. Whether this is a sensible number requires

engineering knowledge of what is possible.

Let us do some quick calculations. Ignoring any moving time translates into taking

ten minutes per pallet. For thirty-six boxes to be packed in ten minutes, assuming
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Figure 4.1
A goal model for the palletizer

Table 4.1
The role model for Palletizer

Role name Palletizer

Description Store fruit on a pallet to be ready for market.

Responsibilities Get boxes.
Place the boxes for packing.
Pack fruit into the boxes.
Stack the boxes onto a pallet.
Get plastic sheet.
Cover the boxes with the plastic sheet.
Nail the corners of the sheet onto the pallet.
Store the pallet.

Constraints Place a box in a correct position for packing.
Do not place more than 36 boxes on a pallet.
Pack a box in 17 seconds. (E‰ciency)
Be available for at least 167 hours with one hour down time for each week.
(Reliability)
Don’t damage fruit.
Palletize safely.
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that they are packed sequentially, each box should be packed in approximately 0.28

minutes, or 17 seconds. Constraining a box to be packed in 17 seconds would be

added to the Palletizer role. The corresponding constraint has been included in the

Palletizer role in table 4.1.

Reliability can be handled similarly to e‰ciency. According to our local domain

expert, to be reliable, the palletizer should be available for at least 167 hours, with

one hour down time for each week. The appropriate constraint has been added to

the Palletizer role in table 4.1. Adding both these constraints sets up the expectation

that they will be monitored. Output of the palletizer and its availability will need to

be measured, automatically or manually, to see whether the constraints can be met.

Reviewing the simple description of the e‰ciency requirement suggests that an-

other role is needed. Placing boxes on the pallet speedily has to be achieved without

damaging the fruit. How do we know if fruit is damaged? An inspection role is

needed, as depicted in the goal model in figure 4.1. Whether the inspection will be

done by a human or an automated inspection system is indeed a question; this issue

will be determined by cost considerations. The point is that in general, discussing

performance requirements can suggest roles.

Let us consider performance requirements in the context of an intelligent home, an

application to be discussed in chapter 9. One scenario that we investigate is being

greeted when entering the home. Here are some plausible constraints. An agent

greeter needs to respond within three seconds of someone entering a room. Face

identification needs to decide whether a face captured on a camera is a friend or an

intruder within 15 seconds. An automated music player needs to start playing an ap-

propriate piece of music within 5 seconds. Each of these is an explicitly quantified

constraint related to performance.

Let us investigate the example of recognizing a face from an image captured on a

camera a little more closely. Factors such as the necessary level of recognition accu-

racy or the size of the database of known faces against which the face is matched can

have a very large impact on performance. To be extreme, if only five members of a

Table 4.2
The role model for Operator

Role name Operator

Description Provide boxes and fruit and collect the pallets.

Responsibilities Operate the palletizer.
Provide boxes.
Provide fruit.
Collect the pallets.

Constraints Place boxes so that the palletizer can find them.
Place fruit so that the palletizer can find it.
Collect the pallet as soon as it is loaded with boxes.
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household need to be matched against, screening might be very rapid. Trying to

match a face against an internationally distributed collection of faces of people with

a criminal background would take a large amount of processing. Not the least con-

sideration would be negotiating appropriate permission and access issues.

It is unlikely that face recognition in an intelligent home security system would

need to be very elaborate and consult a worldwide database of known criminals.

What our consideration demonstrates is that a lot more needs to be known about

a specific application before the specification of performance can be finalized. The

architecture of the home network, its connectivity to the Internet, and the volume of

transactions needed to be considered, as they are all issues that potentially a¤ect

performance.

In section 3.10, software architecture is briefly discussed. Note that software archi-

tecture is a key determinant of attributes such as performance and scalability. It is

also a factor that is not well understood by many developers and is often neglected.

We don’t say a lot about architecture in this book. However we are aware of its

importance, and the need to consider architecture in detail during design, which will

a¤ect implementation.

To conclude this section, we note that experience and knowledge are needed to ad-

dress performance properly. The experience might be expressed in rules of thumb, for

example, how long an average message sent between two machines might take. Our

examples described here and elsewhere only start a way of thinking about perfor-

mance. It is beyond our scope, knowledge, and experience to give a complete analysis

of performance, or any other quality attribute. Our purpose is rather to raise issues

so that quality requirements are taken seriously and integrated holistically into

system development. Each quality requirement should ideally lead to an informed

discussion with an appropriate expert or experienced developer.

4.3 Safety

The next quality attribute we consider—safety—seems a less obvious concern than

performance, the quality attribute addressed in the previous section. Indeed, in

many systems, safety is not a concern at all. However, multiagent systems have trag-

ically been involved in loss of life. The explosion of the space shuttle Challenger in

1986 and the fatal dosage of radiation delivered by the Therac-25 X-ray machine in

the 1980s are two that readily come to mind.

The term safety-critical systems has been coined to cover systems where safety is a

critical concern. Within software and systems engineering, many methods and pro-

cesses have been developed for the analysis, modeling, and evaluation of systems

that of necessity must consider safety. The methods and processes are applied to in-

crease assurance that accidents will not happen or are mitigated when they do.
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In this section, we show how safety analysis methods may be incorporated within

agent-oriented modeling. We reiterate our observation of the previous section. Out-

side expertise will usually be needed to decide on the appropriate quality approach;

in this case, safety methods. We believe that agent-oriented models potentially have

an advantage over more traditional software engineering methods with respect to

safety requirements. The reason is twofold. First, integration will be easier, because

of the more abstract concepts such as goals and roles that can be used to connect

with safety requirements. Second, safety often needs to be considered in the interac-

tions between people and technology. Because our conceptualization of multiagent

systems encompasses people and manmade agents, the consideration of interaction

is natural.

To address safety as a quality attribute, some definitions are needed. In general,

defining appropriate terminology is a common feature of incorporating any quality

attribute into requirements elicitation and analysis.

An accident is an event that results in harm, injury, or loss. A system is regarded as

safe if the likelihood of the system causing an unacceptable accident is acceptably

low. The meaning of the term unacceptable depends on how events that trigger acci-

dents are perceived. This concept is not just related to the consequences but also re-

lated to context and culture. A hazard is a potentially harmful situation, where an

accident is possible. A hazard analysis is an analysis of a system and its environment

to identify potential hazards.

A role is safety-critical if responsibilities attached to the role will a¤ect the safety of

the system. Current standardized hazard analysis and safety engineering approaches

accomplish a high level of safety assurance by identifying the hazards for a system

and then meticulously monitoring the identified hazards during design and develop-

ment. The aim is to assure that each hazard is either neutralized or mitigated to the

extent required by the severity of the hazard. If the system’s requirements change or

if there is a change to design or to the manner in which the system must interact with

its environment, then the hazards and design must be reanalyzed for safety.

We introduce a modified method for analyzing multiagent systems influenced by

Hazard and Operability Studies, or HAZOP for short. HAZOP was initially devel-

oped for the chemical industry, but has been widely applied to di¤erent areas over

the last thirty years. The aim is to explore potential deviations from the specified or

intended behavior of the system and determine whether a deviation can lead to harm,

injury or loss in some way. HAZOP requires a su‰ciently detailed understanding

of the system, its components, and the attributes of the components. HAZOP uses

guidewords to prompt the exploration of system behavior. A team of system and

domain experts interpret the guidewords in the context of the system.

The output from a HAZOP study is a list of hazards, their causes, and the conse-

quences of each hazard. There are three typical outputs. The first is details of the
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hazards identified, and any means within the design to detect the hazard and to mit-

igate the hazard. The second is recommendations for mitigation of the hazards or

their e¤ects based on the team’s knowledge of the system and the revealed details of

the hazard in question. The third is recommendations for the later study of specific

aspects of the design when there are uncertainties about the causes or consequences

of a possible deviation from design intent.

We now elaborate the palletizer model depicted in figure 4.1 that identified the pal-

letizer’s goals ‘‘Pack,’’ ‘‘Stack,’’ and ‘‘Store.’’ Let us do a simple safety analysis for

the palletizer example given in the previous section. The analysis is in terms of roles

and agents, interactions between agents, and between agents and the environment,

activities performed by agents, and resources in the system. The palletizer must be

safe when there are humans in its vicinity.

To understand the problem domain, we first create a domain model for the

palletizer. As discussed in section 3.4, a domain model represents knowledge

about the environment that the system is supposed to handle. The entities of the en-

vironment that the palletizer needs to be aware of are Pallet, Box, and Fruit.

More specifically, an agent playing the Palletizer role, itself situated in the environ-

ment, packs fruit into boxes and loads the boxes onto pallets. This is modeled by the

domain model shown in figure 4.2. We can conclude that Fruit, Box, and Pallet

constitute resources that the palletizer needs for its functioning. The model

also reflects that a human operator perceives the operations of the palletizer via the

environment.

Our analysis elicits hazards of the system by exploring activities performed by an

agent and the agent’s manipulation of its resources using HAZOP-style guidewords.

If the environment changes, then the changes that need to be made to the activities

performed by an agent can be determined by simply looking at how the agent manip-

ulates its resources. If an agent deviates from its role, then the e¤ect on other agents

or the environment can be determined by considering the agent’s interactions with

other agents or its e¤ects on other agents via shared resources.

Because agents situated in the environment pose potential safety hazards rather

than the roles, we need to develop a design in order to do the safety analysis. As the

Palletizer role contains the distinct groups of responsibilities respectively related to

packing and stacking, it is a natural decision to map the role to two agent types:

Packer and Stacker. The design is reflected by the agent and acquaintance model

shown in figure 4.3. The model represents that a Stacker agent may interact with

one Packer agent at a time, whereas either agent may initiate an interaction. The

role Operator from figure 4.1 has been mapped to the human agent type Person. In

figure 4.3, there are no interaction pathways between the Packer and Stacker agent

types and a human agent type, because they interact via shared resources—fruits,

boxes, and pallets—in the environment.
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Figure 4.2
The domain model for the palletizer

Figure 4.3
The agent and acquaintance model for the palletizer
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We next model the interactions in more detail to learn about possible hazards

within the system. The interaction model for the palletizer is represented in figure 4.4

by means of an interaction-frame diagram. As shown in section 3.6, interaction-

frame diagrams distinguish between physical and communicative actions that may

be perceived as events by agents. Interaction-frame diagrams also enable the model-

ing of events caused by the environment and actions performed on the environment.

Figure 4.4 models a Packer agent as getting both a box and fruit from the environ-

ment. These are represented as getBox and getFruit environment events. After

packing, a Packer agent passes the box to a Stacker agent. The passing is modeled

as a passBox physical action by the Packer agent that is perceived as an event by

the Stacker agent. Finally, the Stacker agent stores the loaded boxes on the pallet

which is modeled as a storePallet action on the environment. Because physical

actions by agents of the system pose possible hazards for humans near the system,

we are now better equipped for analyzing possible hazards in the system.

The final design step to be taken before the HAZOP analysis can be performed is

mapping the responsibilities of roles to the types of activities performed by agents. In

the given case, this is straightforward. The first four responsibilities of the Palletizer

role modeled in table 4.1 are mapped to the ‘‘Get boxes,’’ ‘‘Place the boxes for pack-

ing,’’ and ‘‘Pack the boxes’’ activity types attached to the Packer agent type. In ad-

dition, a Packer agent performs activities of the ‘‘Pass the boxes’’ type that results in

passing the packed boxes to the Stacker agent as is modeled in figure 4.4. The final

four responsibilities from table 4.1 are mapped to the ‘‘Check the boxes,’’ ‘‘Get plas-

tic sheet and cover the boxes,’’ ‘‘Nail the corners of the sheet onto the pallet,’’ and

‘‘Store the pallet’’ activity types attached to the Stacker agent type.

Next, we need to identify the constraints applying to the activities. We find them

from the constraints given in the Palletizer role model in table 4.1, refining them if

necessary.

Now we are ready to perform a HAZOP-style analysis for the Stacker and

Packer agent types. To do so, the activities performed by agents of these types and

the associated constraints are listed in the respective tables 4.3 and 4.4. The tables

identify which guidewords are applicable to the activities and the constraints. For

Figure 4.4
The initial interaction model for the palletizer
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example, it can be realized from the guidewords for the ‘‘Get boxes’’ activity type

that there are hazards if an agent gets too many boxes at a time, if an agent places

a box instead of getting one, if an agent gets a box too early or late, or if an agent

performs an activity other than ‘‘Get boxes.’’ Similarly, the guidewords for the activ-

ity type ‘‘Place the boxes for packing’’ and the related constraint of placing a box in

a correct position mean that hazards are posed by the situations where a box is not

placed for packing or is not placed in a correct position, or a box is fetched instead

of placing it, or some of the boxes are fetched and some are placed, or a box is

placed too early or too late, or some activity other than placing the boxes for packing

is performed.

Table 4.3
The HAZOP guidewords analysis of the Packer agent

Activity type Constraint No More Less
Oppo-
site

Part
of

As
well
as

Early/
Late

Other
than

Get boxes X X X X

Place the
boxes for
packing

Place a box
in a correct
position

X X X X X

Pack the
boxes

Stop when
thirty-six
boxes have
been packed

X X X

Pass the
boxes

X X X

Table 4.4
The HAZOP guidewords analysis for the Stacker agent

Activity type Constraint No More Less
Oppo-
site

Part
of

As
well
as

Early/
Late

Other
than

Check the boxes Thirty-six
boxes should
be packed
correctly

X X X X X X

Get plastic sheet
and cover the
boxes

X X X X X X

Nail the corners
of the sheet onto
the pallet

X X X X X X

Store the pallet X X X
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Looking at the HAZOP-style results for a Packer agent, a number of further

constraints can be identified. For example, the realization that there are hazards if

an agent gets too many boxes at a time can lead to the conclusion that an agent

should get just one box at a time. A new constraint of only getting one box at a

time is accordingly created for the Packer agent type. By going through the list of

guidewords in table 4.3, additional constraints of getting a box in time, and not put-

ting a box back when getting a box are identified. They can be generalized into cor-

responding constraints for the Palletizer role and to an elaboration of the overall

quality goal of safety shown in figure 4.1. One could have a subgoal of the safety

quality goal with a name, such as handling boxes correctly, for example, and refine

the goal model appropriately. Constraints can be similarly identified for the Stacker

agent type and generalized for the Palletizer role and into the corresponding quality

goals.

In general, identifying a potential hazard might add a constraint for the corre-

sponding role so that an agent playing the role should avoid the potential hazard. A

new role might be introduced to monitor and mitigate the potential hazard.

The refined analysis for the Packer agent getting boxes is shown in table 4.5. For

each guideword, it includes the associated deviation, and its possible causes, conse-

quences, and mitigations. Causes can be external or internal to the agent. The source

of each internal cause is represented in terms of the abstract agent architecture

depicted in figure 2.4. For example, the reason for getting a box at the wrong time

may lie in a sensor or in the controller.

It is interesting to note that most safety analysis methods assume that the system,

once built, does not change the way it interacts with its environment. That is, the

Table 4.5
A refined analysis for getting boxes by the Packer agent

Guide word Activity type Deviation Possible causes Consequences Mitigations

More Get boxes Getting more
boxes than the
agent can carry

Box
arrangement
or sensor
error

There is a risk of
box falling and
injuring someone

Get only one
box at a time

Opposite Get boxes Releasing a
box instead of
getting it

Controller
error

A human may
get hurt

Ensure that the
activity is carried
out correctly

Early/Late Get boxes Getting a box
in wrong time

Sensor error
or controller
error

The early or late
movement may
hurt a human

Perceive humans
in the proximity
of the agent or
use barriers

Other than Get boxes Perform other
activity instead
of ‘‘Get boxes’’

Controller
error

The unexpected
activity may hurt
a human

Ensure that the
activity is carried
out correctly
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hazards, once identified, do not change. Removing an assumption that the system is

static raises some interesting questions and possibilities for agent-oriented systems.

When safety analysis methods are integrated with agent-oriented software engineer-

ing models, hazard analysis can be carried out at di¤erent levels of abstraction and

on di¤erent artifacts to those in currently used processes. If a system changes over

time, and in particular changes the way it interacts with its environment, then the

safety reanalysis will depend on the level at which changes impact the system

behavior. But, at higher levels in the agent hierarchy where the impact of changes is

absorbed, the existing safety analysis still holds.

We trust the reader can see the applicability of safety analysis in terms of agents

performing activities while playing roles to achieve goals set for the system. The ex-

ample in this section is clearly simplified. However, there are many related systems.

Leon visited a fruit canning factory in Victoria’s Goulburn Valley, where an auto-

mated pear sorting machine had been prototyped. Modeling the system in terms of

agents and using the roles, responsibilities, and the environment to guide a safety

analysis is definitely relevant in the real world.

4.4 Security

Security has become increasingly critical for multiagent systems. Security is intri-

cately connected with a system’s physical constraints and organizational needs, and

is a¤ected by requirements of compliance to laws and standards. There are growing

concerns over unauthorized access, confidentiality, data integrity, and system avail-

ability. Security can be viewed as an umbrella term for a range of quality attributes,

including confidentiality, integrity, availability, nonrepudiability, accountability, and

authenticity.

We believe that the models presented throughout the book are suitable for incor-

porating security requirements into systems. The concepts of goal, role, and agent are

intuitive for people, helping to model security requirements. Roles facilitate adminis-

tration of security that greatly reduces security risks. Roles also help to bridge the

gap between the business and technical sides of security administration. In this sec-

tion, we give the flavor of how agent-oriented models can be integrated with security

considerations.

Before looking at security as a quality attribute, we note that aspects of security

can be modeled directly as functional goals. Chapter 9 discusses an intelligent home

example that models a scenario of handling an intruder. Security is expressed

through functional requirements in that example instead of quality goals.

Consider an application where security concerns are paramount—Internet bank-

ing and commerce. The security of people’s money and their personal information
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is an essential quality attribute of any e-commerce system. A security quality goal

expressed at the motivation layer can and should be translated into a wide range of

measures at the system design layer, which may extend the original set of goals.

To show the need for extended thinking, let us contemplate a major challenge that

banking applications face today. There has been a rash of ‘‘phishing’’ attempts, that

is fake emails that ask users to disclose user information under the pretence of being

needed for some maintenance operation. Amazingly, some people must respond, be-

cause the flood of phishing attempts has endured. So the banks need to be extra clear

in their instructions. For example, banks have stated categorically that they will not

ask for information over the Internet. Furthermore, users need to be reminded not

to divulge their passwords. Now in a naı̈ve formulation, phishers would not be

modeled. However phishers are a real security threat needed to be taken into ac-

count. Note that modeling an electronic banking system with both humans and soft-

ware makes it easier to clarify responsibilities. For example, care with passwords is

an explicit responsibility of a user.

To be more concrete, we now look at a simple online shopping example, buyers

and sellers using an online Web auction site. The overall goal is to sell goods online.

There are three roles: Seller, Buyer, and Online Shopping Manager. The selling goal

can be expanded into managing ads, viewing ads, bidding for goods, and managing

trading. This goal is depicted in figure 4.5.

Figure 4.5
Goals for an online auction
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Let us analyze security issues surrounding the situation. In practice, security

experts would be consulted. Here, our knowledge of the Internet context is su‰cient

to suggest what needs to be done. There are several issues that can be raised. Is the

conducting of commerce appropriate for the domain? For example, students at the

University of Melbourne are not permitted to conduct personal business on the uni-

versity network when it is not a part of the specific educational objectives of the

course being studied. Whose responsibility is it to monitor specific users and their

behavior? Who needs to worry about the possibility of intruders compromising the

system? What degree of authorization is needed to use the relevant services? What

are the appropriate encryption standards when any financial information is trans-

mitted such as credit card details? What degree of privacy is required to be sup-

ported? What degree of accountability is needed in case something illegal is

happening, such as trading child pornography? What current scams are potentially

relevant and need to be guarded against?

Questions such as these could be gathered into a checklist for developers to be

raised with security experts. Such questions can serve as a prompt, analogous to how

guidewords were used within safety analysis in the previous section. Much of this

knowledge should also be incorporated in explicit domain and knowledge models

both at the motivation and system design layers. Domain entities and roles such as

attack, vulnerability, hacker, and unauthorized user should be included in the

domain model. Knowledge of encryption standards, hacker exploits, and relevant

organizational policies all need to be included in the knowledge model. Knowledge of

the right security techniques to use for specific hacker attacks is also needed, and what

protections should be invoked if a particular type of attack is detected, such as denial

of service. This knowledge should be included in the behavior and service models.

Are there any new roles that need to be added? Should there be an auditing role

and an auditing agent to check that security policies are being followed, and to help

prevent future attacks? Does there need to be a logging facility? Should there be sep-

arate authentication services or accountability services? Should these services and

capabilities be in the system or outsourced?

We look at one aspect in a little more detail: interaction protocols between agents.

Suppose we have two human agents, Alice and Bob, as the seller and buyer, respec-

tively, and an Auction Web site as the online shopping manager. A simple communi-

cations protocol can be designed as depicted in the interaction diagram in figure 4.6.

Alice submits information, including the ad, the due date for the auction, credit card

information, and the minimum acceptable price, denoted as Limit (Step 1). Bob

requests ad information (Step 2), which is supplied by the Auction Web site (Step

3). Bob then makes a bid for the product using his credit card (Step 4) which is

accepted by the Auction site (Step 5). Finally, Alice is notified of the successful trans-

action (Step 6).
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What are the security requirements? We need to think of the security attributes: for

example, which of the exchanged messages need to be protected, and how the secu-

rity requirements can best be incorporated into the protocol using the appropriate

security technique. For the example of an online auction, we might use a symmetric

encryption technique where each agent has its own key. Certainly any transmission

of credit card information or sensitive information would be encrypted. That leads

in our example to five of the six steps being encrypted, with each of Alice, Bob, and

the Auction Web site invoking encryption as needed. The resulting interaction dia-

gram is represented in figure 4.7.

Please note that figures 4.6 and 4.7 combine elements of interaction diagrams and

interaction-sequence diagrams introduced in section 3.6, thereby emphasizing our

neutrality as to particular modeling notations.

Figure 4.6
An interaction diagram for an online auction

Figure 4.7
An encrypted interaction diagram for an online auction
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Sending encrypted messages for e-commerce is a real issue, though our treatment

is simplified for the pedagogical purposes of the book. Whether a message was

encrypted properly was the focus of a consulting job that Leon undertook. It related

to the use of tra‰c cameras to enforce compliance to speed limits on highways. The

particular system took an image of a car speeding past. The image was downloaded

to a central processing facility where the car was identified and a fine issued. The

system of cars, motorists, police, and tra‰c cameras is a good example of a socio-

technical system best modeled in terms of agents.

The consulting job was to independently confirm that a specific cryptographic pro-

tocol was applied correctly according to the tra‰c camera tender, and circumvent

claims by motorists denying their cars were speeding. Rather than requiring a specific

cryptographic algorithm be used, a better system requirement would be to specify

that the communication between the camera and the central processing facility be

secure. Should the particular cryptographic encryption method be broken, it would

be clear that the agent should change the encryption method. This approach would

have been far better in terms of purpose and adaptability than insisting on a possibly

outdated standard.

4.5 Socially Oriented Quality Goals

The previous three sections covered common quality attributes of systems with an

engineering focus. The qualities they represent are necessary for the systems being

built. The intent is to have measurable, or at least traceable, goals that embody the

quality with which the software is being imbued.

This section discusses quality goals that have a more social dimension. Social

descriptions have been used for quality goals in previous chapters. Examples are

having fun in a soccer game, having fun playing with a Tamagotchi, being flirtatious,

and showing forgiveness. A user interface should be polite. Allowing such qualities

makes a challenge for measurement, as it is not obvious how to quantify and mea-

sure them.

Socially oriented quality goals are relevant for multiagent systems in which some

of the agents are humans and some are pieces of software. Most of our examples in

this section concern human experience. We include these examples to better illustrate

the qualitative nature of quality goals and why they are important. Although it

would be intriguing to contemplate whether an email client was having fun while

taking care of email, seriously addressing such a question is beyond scope.

Consider the goal of having fun while playing soccer, a definite goal of Leon’s

daughter Emily over several years. Clearly the goal has been satisfied, or Emily

would not have kept playing. But there was no objective way to determine in ad-
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vance what would turn out to be fun. You might think scoring a goal would be fun.

It probably is, but may not be, depending on circumstances. The day Emily made

a spectacular save as a goalie and got covered in mud was fun, but only because of

the comments of her team members. The comments were not predictable in advance.

Indeed, how the team members interacted contributed to the level of enjoyment and

fun. The team dynamics were not always predictable, either. At the end of each

game, however, we would have a constructive review of what had happened, and

whether it had been fun was part of it.

The quality goal of ‘‘being fun’’ was also raised in the context of interaction with a

Tamagotchi. Kuldar and his daughter Eliise could, and did, judge whether her inter-

action with the Tamagotchi was fun. Again, it would not be easy to write down in

advance what would constitute fun. Neither would it be possible to decompose the

goal of being fun into a set of smaller goals that, if met, would guarantee that the

experience is fun.

These two examples suggest that user studies could be helpfully involved in deter-

mining the achievement of socially oriented quality goals. Indeed, the area of usabil-

ity requires users to be assessed in their use of software. User involvement is an

important issue. As well as direct user measurement, indirect measures such as

markets can be used. If a computer game is not fun to interact with, it is extremely

unlikely to be successful.

Another quality goal that one might be tempted to add to a Tamagotchi or to a

computer game is adaptability. If a toy or game behaves exactly the same way every

time, it is usually less interesting. One can envisage having a Tamagotchi adapt to

the behavior of its owner. There is no single best way as to how this might be

achieved. For example, one might want to develop adaptation rules, and add them

to the Tamagotchi’s design. Or one might want to have a service that learns the

owner’s behavior preferences, such as playing with the Tamagotchi in the morning,

or spending more time on the weekend. The Tamagotchi might then be able to cus-

tomize its behavior based on the results of the service.

Let us reconsider the urging of Jesus to forgive each other seventy times seven

times. There is a quality of forgiveness. The measure of it is to be taken figuratively,

rather than literally. The number 490, or 7� 70, is a large number, and the religious

sentiment to be drawn from Jesus’ teaching is to be infinitely forgiving.

We believe that socially oriented quality goals should not necessarily be reduced to

measurable goals. They can remain as attributes to be evaluated after a system has

been deployed, perhaps in a user study. Socially oriented quality goals can be useful

for another purpose within the software engineering life cycle—namely, in stimulat-

ing discussions as to whether a particular design meets requirements.

Chapter 9 contains an extended example where abstract quality goals work well

with role and goal models. The project involved technology solutions for mediating
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intimacy. The quality goals usefully complement the motivation and design models

that were developed and allowed nontechnical people to engage with requirements

and design. This project has led to a new Australian government–supported project

on socially oriented requirements engineering for people in the domestic space, as

opposed to the o‰ce space. The use of nonstandard quality goals in the domestic

space is the key.

Sometimes a nonstandard quality goal may trigger a new (functional) goal. As we

were writing this book, we wanted the process to be enjoyable. We discovered that

we both like sweets such as cake and chocolate. Each of us has brought di¤erent

cakes to share with morning co¤ee or tea, and an informal protocol of bringing

cake was introduced to achieve a new goal. Bringing cake wasn’t a book-writing

requirement, but emerged from the quality goal of the book writing process being

enjoyable.

4.6 Elaborating and Analyzing Quality Goals

The quality goals that have been described so far have not been presented with much

analysis. They have been intended to reinforce the need to be explicit about quality

requirements, and to consider quality requirements alongside functional require-

ments. This section tackles analyzing and elaborating quality goals.

The simplest quality modeling case is a single quality goal attached to the top-level

goal in the overall goal model. For example, we might say that the e-commerce sys-

tem needs to be secure. As discussed in section 4.4, this would be elaborated upon in

the design stage to handle issues like intrusion detection in a piece of software or

encrypting messages sent as parts of protocols.

Sometimes it may be desirable to elaborate quality goals within the motivation

layer. For example, consider the greeting system whose goal model is represented in

figure 4.8. (This example is discussed in more detail in section 9.1.) A person arriving

at an intelligent home might expect to be greeted. In a greeting scenario, when a per-

son arrives at the intelligent home, the system must realize his or her presence and be

prepared to o¤er personalized services. The system then greets the person by his or

her name to acknowledge her presence, so that he or she knows the system is ready

to serve. Such greeting might happen when the owner wakes up in the morning and

also when a family member comes from work or other activities. The greeting sub-

system of the intelligent home should o¤er personalized greetings to friends, family

members, and visitors as they enter.

Whether a greeting is appropriate depends closely on its context. For example, in

the presence of the home owner’s—say Jane’s—parents or distinguished guests, the

greeting should be more formal and polite. If Jane is alone, the greeting can be
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more casual and playful. On the other hand, if something unfortunate has happened,

the greeting should certainly not be playful, but instead o¤er more support.

The model depicted in figure 4.8 reflects that greeting consists of noticing and iden-

tifying the person to be greeted, formulation of the greeting, articulation of the greet-

ing, and evaluation of the greeting process. There is the ‘‘Appropriate greeting’’

quality goal pertaining to the ‘‘Greet’’ goal. The diagram contains four other quality

goals—‘‘Variety,’’ ‘‘Right tone and phrase,’’ ‘‘Accurate identification,’’ and ‘‘Timely

noticing.’’ How do these goals relate to the overall quality of appropriateness? In a

word, positively, in the sense that increased variety increases appropriateness and

more accurate identification also increases appropriateness, as does timely noticing.

Some quality goals might contribute negatively. For example, a possible quality

goal—speed of greeting—might detract from appropriateness, because the faster the

response the less opportunity there is for considered reflection of appropriateness.

Some software engineering notations indicate positive or negative contributions by

annotating the appropriate visual model with ‘‘þ’’ or ‘‘�’’. We prefer to leave anno-

tations to the context of specific analysis methods rather than complexify the goal

model.

The palletizer example in figure 4.1 has three quality goals: that the palletization

be e‰cient, reliable, and safe. We treated each of these quality goals independently.

The e‰ciency and reliability goals were addressed by translating the quality goal into

a constraint in the role model. The safety goal was handled by a safety analysis of the

activities of the agents such as stacking and packing.

The independent treatment of the three quality goals masks an implicit

assumption—namely, that the three quality goals would not interfere with each

other, or that any interference would be minimal. However, a safety measure that is

introduced as a result of the safety analysis may have a negative e¤ect on the system

e‰ciency, and may lead to lower throughput of packing fruit in boxes. For another

example, the user interface for a Tamagotchi being fun and interactive may cause the

system to be unacceptably slow in consequence.

Handling the interactions between quality goals can sometimes be done with qual-

itative analysis. The idea is to decompose quality goals into factors that a¤ect them

and to express dependencies between the factors. If two factors both positively a¤ect

the quality, then the quality will be fine. If one factor a¤ects the quality strongly and

positively and the other factor weakly and negatively, the design needs to address the

impact of the combination of the factors accordingly. For example, an automated

teller machine needs to be secure and quick in response. Adding security encryption

adversely a¤ects performance, as more computation needs to be done. A trade-o¤

needs to be made as to the overhead of adding encryption to the downgrading of

performance. Such trade-o¤s can be viewed as qualitative analysis.
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4.7 Background

A good account of quality from an IT perspective can be found in Marchewka 2006.

The Shakespearean quotation is from The Merchant of Venice (act IV, scene 1).

The handling of quality requirements as an entity in their own right was pioneered

by Chung et al. (2000). The notation in that book influenced the clouds we use to

denote quality goals.

The palletizer example comes from the research of Louis Liu, who provided us

with an initial safety analysis which we adapted for section 4.3. Louis is working on

a master’s thesis at the University of Melbourne under the supervision of Dr. Ed

Kazmierczak. Leon is on Louis’ supervision committee. Ed and Louis have coined

the term Agent Hazard and Operability Analysis (AHAZOP). It is noteworthy that

the analysis presented in section 4.3 was done by Kuldar, who has little background

in safety, but who found that the safety concepts could be understood easily in terms

of the agent models.

The online shopping example is thanks to Giannakis Antoniou and Andrea Luo,

both Ph.D. students working with Leon and Kuldar at the University of Melbourne.

It is described in Luo, Antoniou, and Sterling 2007. More generally, Andrea is look-

ing at a framework for considering quality requirements as a key part of her Ph.D.

work. Using agents for security was also the subject of the Computer Science honors

thesis of Arash Arian under Leon’s supervision. The agent metaphor fitted the secu-

rity model, and Arash was able to both design and prototype a multiagent system on

the lookout for external attacks.

The title of section 4.5 comes from a project conducted with support from the

Australian Smart Internet Cooperative Research Centre. A useful discussion linking

ethnography with design can be found in Martin and Sommerville 2004.

A calculus for qualitative analysis of quality requirements is described by Chung

et al. (2000). Thomas Juan adapted it for agent concepts in his Ph.D. thesis (Juan

2008). It was also presented in a tutorial by Leon and Thomas on agent-oriented

software engineering at the 27th International Conference on Software Engineering

(Sterling and Juan 2005).

Exercises for Chapter 4

1. Add quality goals for one of the agents you discussed in chapter 1.

2. Consider a factory operating an automated machine such as a lathe. Do a simple

agent-oriented hazard analysis.

3. Consider the security of your home computer network using agent-oriented models.

4. Model another quality requirement for an application of your choice.
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5 Agent Programming Platforms and Languages

Chapter 2 described a conceptual space consisting of the motivation, system design,

and deployment layers. Chapter 3 introduced models from the motivation and sys-

tem design layers of the conceptual space. As pointed out in chapter 2, an implemen-

tation process conceptually involves mapping the concepts of the system design layer

to the concepts of the deployment layer. In other words, models from the system

design layer—knowledge models, interaction models, and behavior models—are

mapped onto the constructs of some programming platform or language.

The purpose of agent programming languages and platforms is to facilitate the

building of systems incorporating agent concepts. In this chapter, we look at several

agent programming platforms and languages to demonstrate how the modeling con-

cepts manifest themselves in the implementation constructs employed by those agent

programming platforms and languages. Although we believe that models are more

important than languages in developing multiagent systems, we acknowledge that

other researchers have a di¤erent view. We explain how the types of models based

on the conceptual space can be implemented in the languages.

Design models—behavior models, interaction models, and knowledge models—

are expressed in terms of concepts from the system design layer of the conceptual

space. In the system design layer, we defined types of activities and their constituent

actions. Two types of events perceived by agents—action events and nonaction

events—are introduced. They are subsumed under the common design term of

perceptions. Actions and events occur in a concrete environment existing in the

deployment layer of the conceptual space shown in figure 2.6. An environment can

be physical or virtual.

In the deployment layer, concrete agents perform concrete actions that can be per-

ceived as events by other concrete agents. Concrete agents also perceive other events

that are caused by environment objects rather than agents. Concrete agents manipu-

late concrete objects, such as service objects. Performing actions and manipulating

objects occur as specified by behavioral constructs, which have been derived from

rules defined at the system design layer.



It is useful to distinguish between platform-independent and architecture-

independent design models. The models introduced in chapter 3 are platform-

independent; that is, they describe the design independently of any specific

programming language or platform. Platform-dependent parts of design models are

encapsulated by services that are invoked by an agent’s actions. For example, an

agent can invoke a service for sending a message or perceiving its environment.

All the models introduced in chapter 3 are also architecture-independent; that is,

they do not prescribe or imply the usage of any specific agent architecture for imple-

menting manmade agents. Sometimes it is helpful to use architecture-dependent de-

sign models. Examples of architecture-dependent design models are capability and

plan models, which are oriented toward the well-known BDI agent architecture.

This chapter is structured as follows. Section 5.1 introduces the BDI architecture.

Sections 5.2 and 5.3 describe two agent platforms and the accompanying languages

that are (to varying degrees) based on the BDI paradigm on one hand and logic pro-

gramming on the other. These platforms are Jason and 3APL. Sections 5.4 and 5.5

describe two platforms based on the Java programming language: JACK and JADE.

JACK relies on the BDI architecture, and JADE has its own execution mechanism,

as explained in section 5.5.

To enable comparison of agent platforms and languages, we have implemented the

behavior described by the Tamagotchi behavior model (shown in figure 3.18) in each

of them. This behavior can be achieved by di¤erent implementation techniques. In

this chapter, we demonstrate some of the techniques.

Because agent programming languages historically precede agent-oriented model-

ing, several concepts in agent programming are used in a similar sense but at a lower

level of abstraction. The most fundamental such concept is a rule that in several

agent programming languages is used as a behavioral construct. Rules, in turn, refer

to goals and plans.

A goal at the deployment layer is understood as a condition referring to the state

of the environment intended by the agent. However, at the system design layer goals

are modeled as achieved through interactions between agents comprising a multi-

agent system. At the deployment layer, a goal is modeled as being achieved by a set

of concrete actions by a concrete agent. Such an action set is called a plan. There can

be several alternative plans for achieving a goal. Though at the system design layer

goals and plans are only used for modeling problem-solving activities, at the deploy-

ment layer they constitute universal behavioral constructs for concrete agents.

The reader interested in using the languages described for practical applications

needs to be aware that characteristics of the languages will almost certainly a¤ect

quality attributes discussed in the previous chapter, such as performance and secu-

rity. We do not discuss these characteristics in this book.
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5.1 The BDI Agent Architecture and Execution Model

Within the agent community, one architecture stands out as having had a large influ-

ence on agent development over the past twenty-odd years. That architecture, articu-

lated for individual agents, is the previously mentioned BDI (Belief-Desire-Intention)

agent architecture. Key to the popularity of BDI has been its use of folk psychol-

ogy terms, such as beliefs, intentions, goals, and plans. Appropriating terms in

common parlance has been appealing for those from the AI community, as they

have attempted to popularize agent systems.

The BDI agent architecture is primarily conceptual and not precisely defined. In-

deed many researchers claim that their (quite diverse) systems have BDI architecture.

One system universally agreed to accord to the BDI architecture is the Procedural

Reasoning System (PRS) which was developed in the 1980s. We describe the essen-

tial PRS architecture in this section.

The internal architecture for an agent within a PRS system can be described as

having five major components. The first is a set of facts representing knowledge

about the world that the agent currently holds. These facts get updated as the agent

experiences the world. These facts are regarded as beliefs and are the ‘‘B’’ in the

architecture. We observe that it is possible, and mostly desirable, for individual

agents in a multiagent system to have di¤ering beliefs, sometimes conflicting. In the

conceptual space of chapter 2, beliefs correspond to concrete objects and associations

between them. An agent’s beliefs are derived from knowledge items at the system

design layer.

The second component of the agent is a set of goals that the agent is trying to

achieve. The goals are regarded as desires and are the ‘‘D’’ in the architecture. Note

that the terms of the conceptual space of chapter 2 do not exactly match the BDI

concepts. The BDI architecture takes an internal agent view, rather than a system

view, and does not really have a motivation layer. Goals in the BDI architecture

can reflect a high-level purpose or motivation. More typically, however, the BDI

goals are used as behavioral constructs. They are derived from activities and rules

of the system design layer.

The third component is the ‘‘I’’ component and represents the set of goals the

agent is currently trying to achieve—its intentions. This intention structure is the

mechanism for instantiating, scheduling, executing, and monitoring plans (to be

described next). It needs to keep track of which plans are still needed as intentions

as goals are achieved and the world changes.

The fourth component is a library of plans. Plans are sequences of concrete actions

for achieving the agent goals. Plans are derived from activities and their constituent

actions from the system design layer. Having plans available means that the agent
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can be more reactive to changes in the environment. While fundamentally static,

plans can be updated during agent execution.

The fifth component is a reasoner or interpreter. The role of the reasoner is to or-

chestrate the overall behavior of the agent. It coordinates sensing and acting, updates

beliefs about the world, and chooses which plan to invoke. A diagram showing the

five components is given in figure 5.1 in the shaded box. The figure also depicts the

agent situated in an environment being monitored with sensors and planned actions

being carried out through actuators.

The BDI architecture is a refinement of the abstract agent architecture explained in

section 2.3. The reasoner of a BDI agent corresponds to the controller of an abstract

agent. Its desires and intentions form part of the knowledge base of an abstract agent.

Let us conceptualize the BDI agent reasoner. Recall from section 2.3 that each

agent is responsible for monitoring the state of the environment, choosing how to re-

spond, and acting in the environment. The simplest BDI interpreter realizes that

Figure 5.1
The BDI agent architecture (Wikipedia 2008b)
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responsibility in terms of the BDI constructs. Figure 5.2 describes a simple BDI agent

reasoner. It consists of a loop of observing the world (through its sensors), updating

its beliefs, prioritizing on its intentions, choosing a plan to achieve its prioritized in-

tention, then executing the plan and monitoring its progress. The condition on the

while loop is that there are unachieved goals. If ‘‘to exist’’ is one of the agent goals,

then the cycle of observing the world, updating beliefs, choosing and executing plans,

and monitoring progress continues.

The execution loop performed by the BDI agent reasoner refines the one carried

out by the controller of an abstract agent. The main di¤erences are that the BDI

agent views the world in terms of the goals to be achieved and has predefined plans

for achieving them.

The reasoner in figure 5.2 is very abstract and leaves many decisions for the imple-

menter. In the languages to be described, the processing of the control loop must be

done e‰ciently. Most BDI systems take an event processing approach. Updates to

the agent’s beliefs are indicated by events.

Another issue is the relative time spent between observing the world, reflecting,

and acting. The reasoner gives no guidance on how to allocate time between ob-

serving, reflecting, and acting. A concrete allocation policy is needed for practical

implementations.

Note that the BDI agent architecture given in figure 5.1 is concerned with a single

agent. A system view of a multiagent system would need to coordinate the individual

agent interpreters. The coordination needs to be practical for it to work for nontrivial

applications.

In the usual scenario, each agent updates its own view of the world. However, if

one is performing a simulation, there needs to be an environmental reality. A sepa-

rate environment simulator with interface to the agents is needed. The case study we

describe in section 8.2 provides some insight into how an environment simulator can

be implemented.

Many agent platforms and languages have developed these ideas into systems,

three of which are described in the following sections. The original PRS system was

Figure 5.2
The execution loop of a basic BDI reasoner
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developed in Lisp at NASA. It was redeveloped in Cþþ as the Distributed Multi-

agent Reasoning System, better known as dMARS, at the Australian Artificial

Intelligence Institute. dMARS was used for a range of applications, including the

SWARMM system mentioned in chapter 1. Developing in dMARS was accessible

to at least some developers. Graphical editors were a useful bridge between users,

who were the pilots in the SWARMM example, and developers. In order to be prac-

tical, the dMARS implementation was platform-specific, which limited widespread

availability.

It is hard to relate the abstract BDI architecture to the dMARS implementation. A

clearer mapping from the abstract BDI execution model to the implementation has

been proposed with the abstract AgentSpeak programming language. There have

been several attempts to make a practical language from the AgentSpeak model.

The most successful of them is Jason, which we describe in the next section.

5.2 Jason

Jason is the interpreter for an extended version of AgentSpeak, which is a logic-based

language for programming BDI agents. Jason allows agents to be distributed over

the Internet. It includes features for agent communication based on speech acts,

such as inform and request, and has a clear notion of environments of multiagent

systems. Jason is available as open source software.

A Jason agent includes a set of beliefs, making up the agent’s belief base, and a set

of plans which form its plan library. It corresponds to a concrete agent in the concep-

tual space shown in figure 2.6. Beliefs express relationships between concrete objects,

and plans are sequences of concrete actions of the conceptual space.

The behavioral constructs of Jason agents include goals. A goal declares that the

agent wants to achieve a state of the world where the associated predicate is true. All

plans are associated with goals in Jason.

A Jason agent reacts to two kinds of triggering events. They correspond to events

in the conceptual space. The first kind of triggering event is a change of an agent’s

beliefs through perception of the environment. Perceptions include messages received

from other agents. A Jason agent perceives its environment by first storing all its

perceptions as its beliefs and only then choosing the perceptions to which it will

react.

The second kind of triggering event is a change in the agent’s goals. The change

originates from the execution of plans triggered by previous events. Both goals and

events are architecture-dependent design and implementation constructs.

A triggering event specifies which events can initiate the execution of a particular

plan. The plan of a Jason agent has a head, specifying the events for which that plan
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is relevant, and a conjunction of beliefs representing a context. The context must be a

logical consequence of the agent’s current beliefs if the plan is to be considered appli-

cable at that moment in time. A plan also has a body, which is a sequence of atomic

actions to be performed when the plan is triggered. Figure 5.3 contains ten Jason

plans. As the figure shows, the general pattern for representing Jason plans is:

event : context -> body;

Atomic actions correspond to concrete actions of the conceptual space. The fol-

lowing kinds of actions can be distinguished in Jason:

� internal actions provided by the software platform in use, denoted by .action

name, for example, .print("I’m not happy!")

� adding a goal, denoted by !goal, for example, !givePresent(H)

� removing a goal, denoted by -!goal, for example, -!play(Friend)

� evaluating a predicate, denoted by ?predicate, for example, ?happyLevel(K)

� replacing a belief, denoted by -+predicate, for example, -+presentList(T)

In terms of service models, described in section 3.10, internal actions are the

actions that invoke services provided by the software platform in use. In addition,

there can be external actions that invoke services provided by an external environ-

ment to perceive and change it. Jason enables the implementation of such envi-

ronments in the Java programming language.

At each execution cycle of a Jason program, the Jason interpreter updates a list of

events, which may be generated from perception of the environment, or from the ex-

ecution of plans. Next, the interpreter unifies each event with triggering events in the

heads of plans. This generates the set of all relevant plans for that event. By checking

whether the context part of the plans in that set follows from the agent’s beliefs, the

set of applicable plans is determined. Thereafter, the interpreter chooses a single

applicable plan from that set and executes it.

We demonstrate in figure 5.3 how the Tamagotchi behavior model, represented in

figure 3.18, can be expressed in the Jason language.

First, we need to express an agent’s knowledge base. There are a range of facts

about the state of the Tamagotchi, each expressed as a unary predicate. For example

the fact happyLevel(10) indicates that the happiness level of the Tamagotchi is 10.

A predicate present_list would indicate the presents available to the Tamagotchi.

For example, presentList([toy,candy]) would indicate that the Tamagotchi

can give a toy or candy. We do not comprehensively list all of the predicates that

might be needed here.

Second, we need to express that if a Tamagotchi is unhappy, it will tell its

owner. We do this by using the corresponding internal action of the .send type. In
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Figure 5.3
A Jason program for Tamagotchi behavior
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accordance with the principles of the BDI agent architecture, we include this action

in the body of the plan @p1 shown in figure 5.3. This plan is invoked when its con-

text indicates that the Tamagotchi’s happiness level is less than or equal to 20.

The plan @p2 shown in figure 5.3 conveys that if the Tamagotchi’s owner requests

it to visit another Tamagotchi, which results in adding the visitFriend belief, the

Tamagotchi asks its friend to accept the visit. The value true in the plan’s context

means that there are no preconditions for executing the plan. A request to accept a

visit is expressed as performing another internal action of the .send type.

For simplicity, we have omitted establishing a connection with another Tama-

gotchi from the Tamagotchi’s behavior. It should be expressed as the invocation of

an external connectTamagotchi() action.

The plan @p3 is invoked when another Tamagotchi accepts the visit, which is

reflected by adding the corresponding please_come belief to the Tamagotchi’s

knowledge base. The body of the plan sends to the other Tamagotchi the greeting

message ‘‘Good day!’’

Figure 5.3
(continued)
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Plan @p4 is invoked when the response ‘‘Hello!’’ is received from the other Ta-

magotchi. Having received from the friend consent for a visit, this plan sets the

visit(Friend) goal for the Tamagotchi. In response to adding this goal, either

plan @p5 or @p6 is invoked, depending on their context conditions. If the Tama-

gotchi has presents left in its knowledge base, plan @p5 is invoked. If the Tama-

gotchi does not have any presents, plan @p6 is invoked. Plan @p5 sets a goal to

give the other Tamagotchi a present, and plan @p6 sets a goal to play with the

friend. These goals are achieved by plans @p7 and @p8, respectively.

The goal of giving a present is achieved by plan @p7. The body of this plan deletes

the present from the Tamagotchi’s knowledge base, increases the Tamagotchi’s hap-

piness level by 4, and sends a message to the other Tamagotchi of giving it a present.

Plan @p9 expresses that after a present has been accepted by the friend, a goal to

play is again set. This plan ensures that the Tamagotchis will play after giving a

present.

Achieving the goal of playing with the friend consists of sending a ‘‘May I play

with you?’’ message to the other Tamagotchi according to the body of the plan @p8

and receiving a reply according to the body of plan @p10. After the reply has been

received, the Tamagotchi increases its happiness level by 2. As Jason does not allow

loops to be explicitly used as behavioral constructs within plan bodies, the visiting

goal is reset at the end of each execution of @p10, until the value of the Tama-

gotchi’s happyLevel is greater than 20.

The plans @p1 to @p10 are shown in figure 5.3. A snapshot reflecting the interac-

tions between Tamagotchis and the agent simulating the owner of the first digital pet

is depicted in figure 5.4.

Jason is distributed within an Integrated Development Environment (IDE), which

comes with a number of useful tools, such as the Jason Mind Inspector. The Jason

Mind Inspector allows for checking of the agent’s mental state throughout its execu-

tion. The result of running the Jason Mind Inspector on a Tamagotchi simulated in

Jason is depicted in figure 5.5.

5.3 3APL

The Artificial Autonomous Agents Programming Language, better known as 3APL

and pronounced ‘‘triple-APL’’ is an agent programming language based on modal

agent logics. A 3APL agent consists of beliefs, plans, goals, and reasoning rules. A

3APL multiagent system consists of a set of concurrently executed 3APL agents

that can interact either directly through communication or indirectly through the

shared environment.

In order to implement 3APL multiagent systems, the 3APL platform has been

built. It allows the implementation and parallel execution of a set of 3APL agents.
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The platform includes a directory facilitator called the ‘‘agent management system,’’

a message transport system, a shared environment, and an interface that allows

agents to execute actions in the shared environment.

A 3APL agent is a concrete agent in terms of the conceptual space shown in figure

2.6. The components of a 3APL agent are a belief base, a goal base, an action base,

and two rule bases: one for goal planning rules and the other one for plan revision

rules.

The beliefs of a 3APL agent describe information the agent believes about the

world. The belief base of a 3APL agent is implemented as a Prolog program consist-

ing of Prolog facts and rules. The belief base is conceptually a set of concrete objects

and relationships between them.

The goal of a 3APL agent denotes the situation the agent wants to realize. The

goal is one of the behavioral constructs of a 3APL agent. The goal base of the agent

is a set of goals, each of which is implemented as a conjunction of ground Prolog

atoms—that is, atoms with no variables. Goals defined in a 3APL program are per-

sistent throughout the whole execution of the program. We demonstrate shortly how

this feature is used for programming loops.

Figure 5.4
A Jason snapshot of the interactions between two Tamagotchis
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Other behavioral constructs of a 3APL agent are program operators. They are used

for composing plans from basic actions. The three 3APL program operators are a

sequential operator, an iteration operator, and a conditional choice operator.

Basic actions correspond to concrete actions of the conceptual space. In 3APL, five

types of basic agent actions are distinguished. They are mental actions, communica-

tive actions, external actions, test actions, and abstract plans.

A mental action results in a change in the agent’s belief base, if successfully exe-

cuted. In a 3APL program, a mental action has the form of an atomic formula con-

sisting of a predicate name and a list of terms. The preconditions and postconditions

of a mental action should be specified in the 3APL program.

Figure 5.5
A snapshot of running the Jason Mind Inspector on a Tamagotchi
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A communicative action is used to pass a message to another agent. A message

contains the name of the receiver, the type of the message (e.g., inform or request),

and the content.

External actions are used to change an external environment in which the agents

operate. The e¤ects of external actions are determined by the environment and might

not be known to the agents. The agent can come to know the e¤ects of an external

action by performing a sensing action. External actions are performed by 3APL

agents with respect to an environment, implemented as a Java class. In particular,

the actions that can be performed on this environment are determined by the opera-

tions of the Java class. This is completely consistent with our general modeling

approach taken in section 3.10, where external actions invoke services provided by

an external environment to perceive and change it.

A test action checks whether a logical formula is derivable from the agent’s belief

base. Finally, an abstract plan is an abstract representation of a plan that can be

instantiated with a more concrete plan during execution.

In order to reason with goals and plans, 3APL has two types of rules: goal plan-

ning rules and plan revision rules. Goal planning rules are used to adopt plans to

achieve goals. A goal planning rule indicates the goal for which the plan should be

adopted and the belief precondition for executing the plan. If the goal is omitted

from a rule, the rule simply specifies that under a certain belief condition, a plan

can be adopted. Plan revision rules are used to revise plans from the plan base.

The execution cycle of a 3APL agent starts with searching for an applicable goal

planning rule to adopt a plan for one of its goals and applies the first applicable goal

planning rule it finds by marking the plan as executable. The agent then continues

with searching for an applicable plan revision rule and applies the first applicable

plan revision rule that it finds by first revising the plan and then marking it as execut-

able. After that, the agent continues searching for the executable plans in the order of

their occurrence and executes the first plan it finds. Finally, the agent repeats the

same cycle or suspends its actions until a message arrives.

In figure 5.6, we present a 3APL implementation of the Tamagotchi behavior

model shown in figure 3.18. The initial belief base of the agent is preceded by the

BELIEFBASE keyword. As in the Jason language example provided in section 5.2,

a Tamagotchi’s beliefs include the presents available for it. The belief base also

includes two derivation rules, which have been expressed in Prolog. The first of

them states that a Tamagotchi is unhappy if the value of the variable indicating

its happiness level is less than or equal to 20. The second rule logically defines the

meaning of having a present to give away.

The pre- and postconditions of mental actions are specified through capabilities. A

capability consists of three parts: the precondition, the mental action itself, and the

postcondition. In a 3APL program, the specification of capabilities is preceded by

the CAPABILITIES keyword. The 3APL program presented in figure 5.6 includes
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Figure 5.6
A 3APL program for Tamagotchi behavior
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Figure 5.6
(continued)
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Figure 5.6
(continued)
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capabilities for retrieving a present from the list of presents and for increasing a

Tamagotchi’s happiness level.

The initial goal base of a 3APL agent is preceded by the GOALBASE keyword. The

initial goal base shown in figure 5.6 includes the goals of requesting a visit, going for

a visit, giving a present, and playing.

There may be an initial plan base specified for a 3APL agent. The initial plan

base is preceded by the PLANBASE keyword and consists of a number of plans sepa-

rated by a comma. However, the initial plan base in figure 5.6 is empty, because the

plans are instead expressed in the goal planning rules section of the Tamagotchi

code.

As mentioned earlier, 3APL has two kinds of rules: plan revision rules and goal

planning rules. The set of plan revision rules is preceded by the PR-RULES keyword.

Figure 5.6 reflects that a Tamagotchi has no plan revision rules.

The set of goal planning rules is preceded by PG-RULES. Each rule is of the follow-

ing form:

goal

<- pre-condition

| { plan to be adopted }

The first three goal planning rules in the goal base in figure 5.6 deal with checking

the Tamagotchi’s happiness level. The rules adopt di¤erent plans to achieve the goal

checkHappinessLevelGoal(). The first goal planning rule expresses that if the

Tamagotchi is unhappy, it informs its owner about this. The second rule relates

checking the Tamagotchi’s happiness level to giving a present to the Tamagotchi

to which it is connected and the third rule relates checking the happiness level to

playing with the other Tamagotchis. All of the rules include the precondition of

unhappiness, meaning that the rule is applied only if the Tamagotchi is unhappy. Be-

cause the goal checkHappinessLevelGoal() to be achieved by the plans adopted

by the three rules is persistent, the rules are applied in a loop until the Tamagotchi is

happy.

The next two goal planning rules with the respective goals request_visit() and

govisit() address visiting. According to the first rule, if going for a visit is

requested by the owner of the first Tamagotchi, the Tamagotchi sends a message to

its friend with a request to accept a visit. The latter rule expresses that if the other

Tamagotchi accepts the visit, it is greeted by the first Tamagotchi.

The rule with the give_present() goal defines giving a present. This rule

expresses that if the visiting Tamagotchi has enough presents, it gives one to the host-

ing Tamagotchi. To increase the Tamagotchi’s happiness level by a value of 4 as a

result of giving a present, the plan generated by this rule invokes the Give capability

defined in the CAPABILITIES section of the program.
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The last group of rules deals with Tamagotchis playing. The plan adopted by the

rule with the play() goal increases the happiness level of a Tamagotchi by 2 by

invoking the HandleOK capability defined in the CAPABILITIES section of the

program.

We have omitted from the example program the establishment of a connection

between the two Tamagotchis. Connection can happen through invoking the

connect() operation of the corresponding environment object, which we regard as

a service.

The 3APL platform provides a graphical interface for developing and executing

3APL agents. Figure 5.7 exemplifies how the platform was used for developing

the Tamagotchi code in figure 5.6. The snapshot of the 3APL platform shown in fig-

ure 5.8 demonstrates the interactions between the two Tamagotchis and the agent

simulating the owner of the first Tamagotchi.

5.4 JACK

JACKTM Intelligent Agents (JACK) is an agent platform built on top of and inte-

grated with the Java programming language. It includes an agent-oriented program-

Figure 5.7
Developing the Tamagotchi code with the 3APL platform
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ming language, a platform with infrastructure for agent communication, and a devel-

opment environment with graphical design and debugging tools. JACK also has ad-

ditional functionality to construct hierarchical teams of agents.

JACK defines a number of concepts. Agents in JACK correspond to concrete

agents of the conceptual space depicted in figure 2.6. They are defined by the data

they have, by the events they handle and send, and by the plans and capabilities

they use.

The data a JACK agent has is expressed in terms of beliefsets. A beliefset is e¤ec-

tively a small relational database that is stored in memory, rather than on disk. A

beliefset can also post events when it is modified. Beliefsets correspond to interrelated

concrete objects of the conceptual space.

An event is an occurrence in time representing some sort of change that requires

a response. Events in JACK represent messages being received, new goals being

adopted, and information being received from the environment. Events straightfor-

wardly correspond to the events of the conceptual space.

A plan is a process for dealing with events of a given type. A plan includes an

indication of which event type it handles, a context condition describing in which

Figure 5.8
A 3APL snapshot of the interactions between two Tamagotchis
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Figure 5.9
A core definition of the Tamagotchi agent type in JACK
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situations the plan can be used, and a plan body, which can include JACK con-

structs as well as Java code. In terms of the conceptual space, plans are behavioral

constructs.

A capability in JACK is a modularization construct, corresponding to a coherent

ability of an agent. Capabilities contain beliefs and plans, and specify which events

they handle and post. As such, the concept of capability is an amalgamation of the

concrete object, event, and behavioral construct concepts of the conceptual space.

The execution cycle of a JACK agent refines the execution cycle of a BDI agent

described in section 5.1. Events, which include goals adopted by the agent and mes-

sages received from other agents, trigger plans. Each event normally has a number of

plans that handle that event, which are called the relevant plans. From among the

relevant plans, plans applicable to the agent’s current situation are determined by

evaluating the plans’ context conditions. Thereafter, an applicable plan is selected

and run. If the plan fails, its triggering event is reposted and an alternative plan is

selected and run. This pattern is repeated until an applicable plan is found or achiev-

ing of the goal fails.

We now demonstrate di¤erent features of the JACK programming language. We

do this by introducing in a step-by-step way the JACK implementation of the Ta-

magotchi behavior model shown in figure 3.18.

The JACK programming language extends Java in a number of syntactic and se-

mantic ways. First, it adds declaration types which are used to declare agents and

their beliefsets, events, plans, and capabilities. Each of the declarations is preceded

by ‘‘#.’’ We first provide in figure 5.9 a core definition of the Tamagotchi agent

type in JACK. The definition includes event and plan declarations that determine

which plans handle which events and which events are posted by a Tamagotchi.

The definition of the Tamagotchi agent type given in figure 5.9 also includes the dec-

larations of the PresentList and HappinessLevel beliefsets.

Beliefsets, events, and plans are each defined in a separate file with the correspond-

ing extension. We next provide examples of the beliefset, event, and plan declarations

of the Tamagotchi agent type.

The PresentList beliefset presented here contains the list of the presents that a

Tamagotchi has ready for giving to other Tamagotchis. The beliefset is defined as

follows:

public beliefset PresentList extends ClosedWorld {

#key field int presentId;

#value field String present;

#indexed query getPresent(int id, logical String p);

PresentList(){

try {
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add(1,"candy");

add(2,"toy");

} catch(BeliefSetException e) {

System.err.println

("Add Present Belief

failed");

}

}

}

The ClosedWorld keyword in the previous definition identifies the beliefset rela-

tion as a closed world relation that stores true tuples and assumes that any tuple not

found is false. The definition also shows that the beliefset consists of members of the

Present type and provides operations for performing queries on the beliefset. The

getPresent(int id, logical String p) operation assigns to the output parame-

ter the name of a Present in the beliefset.

In addition to the PresentList beliefset, the beliefs of a Tamagotchi include

a beliefset of the HappinessLevel type presented here, which stores the happiness

level of the Tamagotchi and initializes it to 0:

public beliefset HappinessLevel extends ClosedWorld {

#value field int h;

#indexed query getHappinessLevel(logical int i);

HappinessLevel(){

try {

add(0);

} catch(BeliefSetException e) {

System.err.println

("Add HappinessLevel Belief

failed");

}

}

}

A value change of the HappinessLevel beliefset results in posting an event of the

HappinessChanged type. The HappinessChanged event type is defined as shown in

what follows. The definition expresses that an event of the HappinessChanged type

is posted whenever the value of the Tamagotchi’s happinessLevel variable drops

below 20:

event HappinessChanged extends Event {

#uses data HappinessLevel happinessLevel;
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logical int $x;

#posted when

(happinessLevel.getHappinessLevel($x) &&

$x.as_int() <=20 &&

$x.as_int() >0);

}

When an event of the HappinessChanged type is posted, the Tamagotchi sends

the corresponding message to the agent simulating the Tamagotchi’s owner. The

owner’s agent replies by a message containing an event of the VisitYourFriend

type. This event invokes the Tamagotchi’s VisitYourFriendReact plan that sends

to the other Tamagotchi a request to accept a visit. If the other Tamagotchi accepts

the visit, the plans of sending a greeting, receiving a reply, giving a present, and play-

ing are invoked.

For giving a present, an event of the GivePresent type is posted. The

GivePresent event type is given next. A GivePresent event forms the content of

a message from a Tamagotchi to the one to which it is connected. The name of a

present appears as the content of the present field in the event. An event of this type

is posted by invoking the event’s givePresent operation:

event GivePresent extends MessageEvent {

String present = "";

#posted as givePresent(String present) {

this.present = present;

}

}

JACK extends Java by a number of statements to be used within plan bodies. Such

statements are preceded by ‘‘@.’’ In addition, Java statements can be used in plan

bodies. For example, the @send statements post events for agent communication

and the @achieve statements post events for setting goals. An event of the

GivePresent type is posted by executing the @send statement included by the plan

presented in figure 5.10. This plan prescribes giving a present to the hosting Tama-

gotchi, provided that the visiting Tamagotchi has a present to give.

In the JACK programming language, loops can be accomplished through repeti-

tive event postings. For example, the plan represented in figure 5.11 is invoked in

response to receiving an ‘‘OK’’ message from the other Tamagotchi, which results

in posting of the corresponding event. The plan’s body first checks to see whether

the Tamagotchi has presents left. If it does and the Tamagotchi is still unhappy, a

new present is given to the other Tamagotchi. If the Tamagotchi is still unhappy,

a request to play is sent to the other Tamagotchi. As a result, the Tamagotchi is in

a behavioral loop of giving a present and playing until it is happy again.
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A snapshot of the interacting Tamagotchis and the agent simulating the owner of

the first Tamagotchi is presented in figure 5.12.

Because JACK was built on top of Java, environment objects, which are used as

services by JACK agents, are implemented in Java. How service objects can be

invoked is shown in section 5.5, which provides an overview of another Java-based

agent platform: JADE.

5.5 JADE

The JADE (Java Agent Development Environment) agent platform is a software

framework to build agent systems in the Java programming language in compliance

with the standards developed for multiagent systems by the Foundation for Intelli-

gent Physical Agents (FIPA). In addition to providing an agent development model,

JADE deals with domain independent infrastructure aspects, such as agent life cycle

management, and message transport, encoding, and parsing. JADE o¤ers the follow-

ing features to the agent programmer:

� A FIPA-compliant distributed agent platform that can be split among several

hosts

Figure 5.10
A JACK plan of giving a present
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� The Java Application Programmer’s Interface, to exchange messages with other

agents

� A graphical user interface, to manage several agents from the same Remote Man-

agement Agent

� A library of FIPA interaction protocols, such as Contract Net

A JADE agent is implemented as an instance of the jade.core.Agent Java class

provided by the platform. A JADE agent is a concrete agent in terms of the deploy-

ment layer of the conceptual space depicted in figure 2.6.

The knowledge of a JADE agent is represented as a set of interrelated concrete

objects implemented in the Java programming language. They may be associated

with some persistent data storage, such as a relational database.

Figure 5.11
A JACK loop of giving a present and playing
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A JADE agent is capable of performing several concurrent tasks in response to

di¤erent events, either external or internal to the agent. JADE calls these tasks behav-

iors. Events and behaviors respectively correspond to behavioral constructs of the

conceptual space. At the elementary level, behaviors consist of actions expressed in

the Java programming language. In terms of the conceptual space, these actions are

concrete actions.

JADE agents register events through internal services provided by the JADE

platform, such as the Java Application Programmer’s Interface for message exchange

between agents, and external services implemented by developers. Behaviors are

invoked and sequenced by means of other Java-based behavioral constructs provided

by the platform.

The agent platforms overviewed in sections 5.2, 5.3, and 5.4 all relied on the BDI

agent architecture and execution model described in section 5.1. The execution model

employed by JADE is di¤erent.

Each JADE agent is composed of a single execution thread and all its behaviors

are implemented as instances of the Java object class jade.core.behaviours

Figure 5.12
A JACK snapshot of the interactions between two Tamagotchis
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.Behaviour provided by the platform. The developer implementing an agent-

specific behavior needs to define one or more subclasses of jade.core.behaviours

.Behaviour. JADE has a queue of behaviors to be executed. During execution,

behavior classes are instantiated and the resulting behavior objects are added to the

queue. The scheduler is implemented by the base jade.core.Agent class and is hid-

den for the programmer. It carries out a round-robin scheduling policy among all

behaviors available in the queue. Scheduling is performed by starting, blocking, and

restarting behavior classes derived from jade.core.behaviours.Behaviour.

The abstract class jade.core.behaviours.Behaviour has predefined subclasses

SimpleBehaviour and CompositeBehaviour. The SimpleBehaviour class is

further divided into the subclasses OneShotBehaviour and CyclicBehaviour, and

the CompositeBehaviour class has the subclasses SequentialBehaviour and

ParallelBehaviour. The functionality of a behavior is included in its start() op-

eration. Another important operation of a behavior is the block() operation, which

allows a behavior object to be blocked until some event happens (typically, until a

message arrives). The jade.core.behaviours.Behaviour class also provides the

onStart() and onEnd() operations. These operations can be overridden by user

defined subclasses of Behaviour when some actions are to be executed before

and after running the behavior. The functionality of SequentialBehaviour and

ParallelBehaviour is included in the operation onStart() in place of action().

Because JADE is a lower-level platform than the platforms described in sections

5.2, 5.3, and 5.4, we have included platform-dependent implementation details re-

lated to the sending and receiving of messages within the Communicator service of

the Tamagotchi Shell environment, which was introduced in section 3.10. This dem-

onstrates how external services can be implemented by the developer. The Communi-

cator service has been implemented as the corresponding Communicator Java class.

In particular, the send(String msg) and String receive() service operations

modeled in figure 3.22 have been implemented in JADE as shown in figure 5.13.

The String receive() operation waits for a message until it arrives.

A Tamagotchi can be implemented as an instance of the agent class Tamagotchi

extending the jade.core.Agent class provided by JADE. The knowledge of a

Tamagotchi is implemented as a set of Java variables and objects. The following ex-

ample shows that a Tamagotchi’s happiness level is encoded as the happinessLevel

variable of type int and a Tamagotchi’s list of presents is represented as a JADE

collection accessed through the Queue interface:

/* The Tamagotchi’s level of happiness */

private int happinessLevel = 0;

/** The Tamagotchi’s list of presents */

Queue<Present> presentList;
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According to the previous code fragment, the collection consists of objects of the

Present class. As Tamagotchis exchange presents, Present has to be a shared ob-

ject class of which both interconnected Tamagotchis are aware. Shared object classes

can be represented by JADE ontologies. A JADE ontology includes a set of element

schemas. Element schemas describe the structure of concepts, actions, and predicates

that are allowed in agent messages. Concepts are implemented as shared object

classes like Present.

Ontologies need to be retrieved by agents. The Tamagotchi agent class defines in

the following way the retrieval of the instance of the TamaOntology class, which

extends the jade.content.onto.Ontology class provided by JADE:

/** Information about ontology */

private Ontology ontology = TamaOntology.getInstance();

Each agent class of JADE has the setup() operation, which performs the agent

initialization, and the takedown() operation, which performs cleanup operations

at the end of its execution. The code fragment presented in figure 5.14 shows the

setup() operation for the Tamagotchi agent class. The setup() operation first

registers the ontology instance retrieved as shown earlier with the JADE agent plat-

form. Next, the operation creates a new present list for the Tamagotchi and instanti-

ates the list with three presents. The operation then adds the cyclic behavior of the

Mood_checker class, which keeps executing continuously. The Mood_checker be-

havior monitors the Tamagotchi’s knowledge, and if necessary, proactively initiates

new behaviors. Next, the setup() operation creates an instance of the Tamagotchi’s

local Tamagotchi Shell enviromment as an instance of the corresponding Tama-

gotchiShell class. The Tamagotchi Shell environment contains services that are

Figure 5.13
Service operations for sending and receiving messages implemented by JADE
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used by the Tamagotchi. Finally, the setup() operation creates a user interface for

the Tamagotchi.

If the Mood_checker behavior detects that the Tamagotchi is unhappy, it informs

the owner by means of the Tamagotchi’s user interface. To cheer up her or his Tam-

agotchi, the owner initiates a visit by connecting the Tamagotchi Shells of two digital

pets. If the connection is successful, the visit starts. Visiting is implemented by the

Visit_the_other_Tamagotchi behavior presented in figure 5.15. As the figure

reflects, the Tamagotchi first asks the Tamagotchi connected to it for permission to

come for a visit. This occurs within the Request_visit subbehavior. To receive the

reply from the other Tamagotchi, the Tamagotchi retrieves the reference to its local

Tamagotchi Shell environment, which is represented in JADE as an instance of

TamagotchiShell class, and invokes the receive() operation of its Communica-

tor service object. As an autonomous entity, the second Tamagotchi can refuse to

host a visit for various reasons, for example, by stating that the proposing Tama-

gotchi is too young to visit it, as is modeled by the interaction protocol in figure

3.14. As shown in figure 5.15, after a successful ‘‘handshake,’’ the second Tama-

gotchi replies to the first one with a ‘‘Please come!’’ message and the visit starts.

The visiting Tamagotchi is transferred to the hosting Tamagotchi’s environment by

performing the visit() operation of its environment’s Communicator object. A

successful environment change, indicated by the value true returned by the visit()

operation, results in the first Tamagotchi informing its owner that it is away from

home, similarly to as is shown in figure 3.1. This is followed by the Tamagotchis

Figure 5.14
The JADE setup() method for the Tamagotchi agent class
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Figure 5.15
The Visit_the_other_Tamagotchi JADE behavior
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exchanging greetings by executing the Go_to_the_friends_place behavior. After

that, the Give_a_present_and_play subbehavior is repeatedly invoked until the

Tamagotchi’s happiness level becomes 20 or more. Finally, the Tamagotchi returns

to its own shell by executing the Return_home subbehavior.

The sequential Give_a_present_and_play behavior has two sub-behaviors:

Give_the_friend_a_present and Play_with_the_friend. The first sub-

behavior implements the visiting Tamagotchi giving a present to the hosting one

provided that the visitor has enough presents. The second subbehavior implements

the two Tamagotchis playing. For simplicity, we have replaced several interactions

between the playing Tamagotchis with a single message exchange. Sending and

receiving messages and giving presents are implemented by invoking the respective

operations of the Communicator object.

A snapshot of the prototype of a Tamagotchi implemented by JADE is shown in

figure 5.16.

5.6 Background

The BDI model has some philosophical basis in the Belief-Desire-Intention theory of

human practical reasoning by Bratman (1987). The BDI agent architecture and exe-

cution model was proposed by Rao and George¤ (1991). The first practical imple-

mentation of the BDI agent architecture—Procedural Reasoning System (PRS)—

was developed by a team led by George¤ and was described by Ingrand, George¤,

and Rao (1992). The figure that illustrates the BDI agent architecture and execution

model in section 5.1 is based on the Wikipedia (2008b) article on PRS. The pro-

cedural reasoning loop is adapted from Wooldridge 2002. The dMARS imple-

mentation is described by d’Inverno et al. 2004. One of the pilot applications was

SWARMM. A place to read about it is Heinze et al. 2002.

Figure 5.15
(continued)
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The term agent-oriented programming was coined by Shoham (1993). In this influ-

ential article, the agent programming language AGENT-0 is described, along with

an architecture for its execution. Agents following this architecture are programmed

in terms of beliefs, commitments, and rules.

The descriptions of the Jason, 3APL, and JACK agent platforms are based on

Bordini, Hübner, and Vieira 2005; Dastani, van Riemsdijk, and Meyer 2005; and

Winiko¤ 2005, respectively. Padgham and Winiko¤ (2004) show how the modeling

process defined by the Prometheus agent-oriented methodology results in a JACK

implementation of an electronic bookstore. The JADE agent platform, including its

JADEX extension for BDI agents, is comprehensively described by Bellifemine,

Caire, and Greenwood (2005). Earlier descriptions include Bellifemine, Poggi, and

Rimassa 2001.

Most agent platforms are either implemented in Java or can be interfaced to Java

programs. Of the agent platforms overviewed in this chapter, Jason, JACK, and

JADE have been implemented in Java. All the platforms covered by this section

enable the definition of external environments that consist of Java objects and can

be accessed from within agent programs. Many books have been published on the

Figure 5.16
A snapshot of a Tamagotchi prototype implemented by JADE
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Java programming language, one of the most prominent among them being Arnold,

Gosling, and Holmes 2005.

Several agent programming languages enable the inclusion of Prolog constructs.

Among the languages described by this chapter, Jason accommodates Prolog lists.

The belief base of a 3APL agent is implemented as a Prolog program consisting of

Prolog facts and rules. A good overview of Prolog is provided by Sterling and

Shapiro (1994).

Many agent-programming languages claim to use BDI architecture. A lesser

known one is Attitude, which was used by Don Perugini in his Ph.D. thesis under

Leon’s supervision (Perugini 2007) on applying agents for logistics.

The code for all examples is available from the authors on the book’s Web site.

Agent Programming Platforms and Languages 175



 

6 Viewpoint Framework

Chapter 2 described a conceptual space for designing and implementing sociotechni-

cal systems. The conceptual space consists of three horizontal abstraction layers. In

this chapter, we overlay a conceptual framework on top of the conceptual space. A

conceptual framework addresses concerns that cross the three layers of the concep-

tual space. We also analyze how our conceptual space corresponds to the increas-

ingly popular Model-Driven Architecture (MDA).

6.1 Conceptual Frameworks

Before introducing the viewpoint framework, a specific example of a new conceptual

framework, we explain conceptual frameworks more generally. The conceptual space

introduced in chapter 2 identifies the motivation layer, the system design layer, and

the deployment layer. Orthogonal to these layers are vertical concerns that cross

the layers. The vertical concerns, sometimes referred to as aspects, are needed for a

clear understanding of the issues to be addressed when designing and implementing a

system. The models required for design and implementation lie at the intersections of

abstraction layers and cross-cutting concerns. Such vertical concerns are provided by

conceptual frameworks. Conceptual frameworks incorporate ideas from the software

engineering life cycle originating in software and information systems engineering.

In section 1.5, we identify the owner’s, designer’s, and builder’s perspectives to sys-

tems engineering. We also describe stages of systems engineering that reflect these

perspectives. Illuminated by these perspectives, we now look at four conceptual

frameworks: the Information Systems Architecture framework, the Reference Model

for Open Distributed Processing, the Enterprise Model, and the process modeling

framework. In our treatment of conceptual frameworks, we have adjusted some

of the terminology used by the frameworks to the terminology used in this book. In

particular, we prefer to talk about agents rather than actors.

One of the earliest and most extensive conceptual frameworks is the Information

Systems Architecture (ISA) framework, also known by its author as the Zachman



framework. The ISA framework refines the owner’s, designer’s, and builder’s per-

spectives into six abstraction layers: the system’s scope, enterprise or business model,

system model, technology model, models of components, and the functioning system.

These layers reflect the stages of systems engineering.

In addition to the abstraction layers, the ISA framework defines six orthogonal

aspects of a target system being described. The concepts or data aspect represents

the relevant conceptual objects and relationships between them. The function aspect

describes the activities performed within the problem domain. The network aspect is

concerned with the geographical distribution of the activities and interactions be-

tween them. The agents or actors aspect describes what human or manmade agents

perform which activities. The time aspect describes events significant to the problem

domain. The motivation aspect describes the goals of the organization owning the

system to be created and is also concerned with their translation into specific ends.

The ISA framework is best conceived as a table. Accordingly, we have presented

the framework in table 6.1. Many of the table cells reflect the historical development

of the ISA framework in the context of mainframe-based client–server systems.

It is worthwhile to remark that Kuldar got attracted to conceptual frameworks in

1987, living in Estonia under the Soviet regime. Under conditions where the only

philosophy tolerated was Marxism, associate professor Toomas Mikli teaching the

subject of information systems explained the need for thinking at di¤erent abstrac-

tion levels and from di¤erent perspectives by relying on the theory of logical positiv-

ism by Rudolf Carnap.

The next conceptual framework we consider, albeit briefly, is the Reference Model

for Open Distributed Processing (RM-ODP). It defines five viewpoints: enterprise,

information, computational, engineering, and technology. The enterprise viewpoint

addresses the purpose, scope, and policies for the organization that will own the

system to be developed. The information viewpoint covers the information handled

by the system and constraints on the use and embodiment of that information. The

computational viewpoint deals with the functional decomposition of the system into

components suitable for distribution and describes how each component works. The

engineering viewpoint covers the interactions between the components of the system.

Finally, the technology viewpoint addresses the hardware and software required by

the system. Each viewpoint of RM-ODP is accompanied by a viewpoint language,

which defines concepts and rules for specifying systems from the corresponding

viewpoint.

We turn to the Enterprise Model. The Enterprise Model was the first conceptual

framework that seriously raised the issue of motivation in requirements engineering.

It includes seven submodels named objectives, concepts, agents or actors, activities

and usage, functional requirements, nonfunctional requirements, and information

system’s submodels. The objectives submodel describes the reason or motivation for
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the activities, agents, and object types defined by the other submodels. The concepts

submodel is used to define the set of object types, relationships, and object attributes

of the problem domain we are talking about. The actors or agents submodel is used to

discuss and define the set of agents for each studied activity and the relationships

between the agents. In the activities and usage submodel, each organizational activity

is defined and described, including the existing activities and the activities to be

modified or to be developed, as well as the information and material flows between

di¤erent activities. The four submodels described lay a foundation for the functional

and nonfunctional requirements submodels that elaborate specific functional and qual-

ity objectives set for the information system. The information system’s submodel is a

complete, formal specification of the information system—the design model—that

supports the activities defined by the activities and usage submodel and the func-

tional and nonfunctional requirements submodels. The Enterprise Model is depicted

in figure 6.1.

Finally, we consider the process modeling framework, which originally was cre-

ated to describe software development processes but has also been more broadly

Figure 6.1
The Enterprise Model (Bubenko and Kirikova 1994)
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applied to modeling problem domains. The process modeling framework defines

functional, behavioral, organizational, and informational modeling perspectives.

The functional perspective represents activities to be performed, and the flows of con-

ceptual objects relevant to these activities. The behavioral perspective represents when

the activities are performed, as well as aspects of how they are performed through

feedback loops, iteration, complex decision-making conditions, entry and exit crite-

ria, and so forth. The organizational perspective represents where and by whom

(which agents) in the organization the activities are performed, the physical commu-

nication mechanisms used to transfer conceptual objects, and the physical media and

locations used for storing conceptual objects. The informational perspective repre-

sents the conceptual objects produced or manipulated by the activities; this perspec-

tive includes both the structure of the conceptual objects and the relationships among

them.

Let us now compare the four frameworks. First, we notice that there are di¤er-

ences in abstraction layers covered by the frameworks. Among the four frameworks

analyzed, only the ISA framework has six explicit abstraction layers. The process

modeling framework does not mention abstraction layers. It puts a strong empha-

sis on modeling from the designer’s and builder’s perspectives, but also covers

some aspects of the owner’s perspective. RM-ODP similarly involves the owner’s,

designer’s, and builder’s perspectives. The Enterprise Model emphasizes problem

domain modeling and requirements analysis—that is, the owner’s perspective—to

which it devotes six submodels out of the seven.

Comparing the modeling aspects of the frameworks reveals that all four frame-

works agree on the concepts aspect, which RM-ODP and the process modeling

framework call the ‘‘information viewpoint’’ and the ‘‘informational perspective,’’

respectively. This is natural because information modeling for databases was the

first area of modeling that was equipped with systematic methods, such as Entity-

Relationship Modeling.

We notice that the motivation aspect of the ISA framework corresponds to the

objectives submodel of the Enterprise Model. In contrast, the objectives of the system

are addressed by the enterprise viewpoint in RM-ODP. The process modeling frame-

work does not explicitly address motivation modeling, but it emphasizes the impor-

tance of asking the question ‘‘why?’’ in process modeling.

Further inspection of the frameworks reveals that some modeling aspects define

the functions required of the system. Three frameworks, the ISA framework, the

Enterprise Model, and the process modeling framework, define the activities to be

performed by the system under the respective function aspect, activities and usage

submodel, and functional perspective. RM-ODP defines the functions under the

enterprise viewpoint and refines them under the computational viewpoint.
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There are modeling aspects dealing with individual components of the system

required for fulfilling the functions. The ISA framework and Enterprise Model define

human and manmade agents required for performing the activities within their

agents modeling aspect, and the process modeling framework does the same within

its organizational modeling perspective. RM-ODP describes under its computational

viewpoint functional decomposition of the system into components suitable for

distribution.

Related to functions of agents or components is their behavior, which can be

viewed as consisting of the functions and their timing. In other words, behavior mod-

els define what activities are to be performed by agents or components and when they

are to be performed. The process modeling framework has an explicit behavioral per-

spective for modeling the behavior of agents. The ISA framework addresses agents’

behavior within a combination of its function and time modeling aspects, and RM-

ODP describes how each component works under its computational viewpoint.

Modeling aspects of yet other kind address interactions between the agents or

components and the infrastructure required for that. These issues are dealt with by

the network aspect of the ISA framework, the enterprise and engineering viewpoints

of RM-ODP, and the organizational perspective of the process modeling framework.

The Enterprise Model describes the relationships between the agents within its

agents submodel and the interactions between them within its activities and usage

submodel.

Table 6.2 compares two of the frameworks that were analyzed previously: the ISA

framework and RM-ODP. The table shows how the modeling aspects of the two

frameworks correspond to each other.

We are interested in the engineering of potentially open distributed systems that

span heterogeneous networks. For example, an intelligent home system involves

local area networks, as well as global cable and wireless networks, which are needed,

for example, for contacting the homeowner. Because there is currently no conceptual

framework for designing and implementing such systems, we have derived one from

Table 6.2
Comparison of frameworks for conceptual modeling

ISA
‘‘þ’’: correspondence between
concepts Concepts Function Network Agents Time Motivation

RM-ODP Enterprise þ þ þ
Information þ
Computational þ þ
Engineering þ þ
Technology þ þ þ þ þ
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the existing conceptual frameworks. Based on the earlier discussion, an information

modeling aspect should definitely be included in our new conceptual framework. As

interactions are crucial for distributed systems, we have merged the modeling aspects

related to agents and interactions between them into the interaction modeling aspect.

Similarly, we have merged the modeling aspects dealing with function and behavior

into the behavior modeling aspect. Because motivation leads to behaviors, we have

also subsumed the motivation aspect under the behavior aspect. The resulting con-

ceptual framework has three vertical modeling aspects—information, interaction,

and behavior—as compared to the six aspects of the ISA framework, which is too

many for an average person to grasp. We do not finalize our conceptual framework

here, but postpone it until section 6.3, after discussing the MDA.

6.2 Model-Driven Architecture

The Model-Driven Architecture (MDA) by the Object Management Group (OMG)

is an approach to using models in software development that separates the do-

main model of a sociotechnical system from its design and implementation models.

MDA proposes three types of models: Computation Independent Models (CIMs),

Platform-Independent Models (PIMs), and Platform-Specific Models (PSMs). In

MDA, a platform denotes a set of subsystems and technologies that provide a coher-

ent set of functionalities through interfaces and specified usage patterns. Examples

of platforms are CORBA, Java 2 Enterprise Edition, Microsoft.NET, JACK, and

JADE. Two of these examples are discussed in chapter 5.

Computation Independent Models describe the requirements for the system and

the problem domain of the system, as well as the environment in which the system

is to be situated. CIMs play an important role in bridging the gap between domain

experts on one hand, and experts in designing and constructing sociotechnical sys-

tems on the other. Platform Independent Models (PIMs) show the part of the system

design specification that does not change from one platform to another. Platform

Specific Models (PSMs) complement PIMs with the details that specify how the sys-

tem is to be implemented on a particular platform.

Figure 6.2 shows that the three abstraction layers of MDA—CIMs, PIMs, and

PSMs—naturally correspond to the motivation, system design, and deployment

layers of the conceptual space of chapter 2. The abstraction layers of the conceptual

space and the MDA layers also match with the owner’s, designer’s and builder’s per-

spectives that were discussed in section 1.5. Indeed, motivation is the concern for

owners, while designers take care of the design layer and builders situate the system

in an environment. These parallels are reassuring about the naturalness of the ab-

straction layers selected for the conceptual space. The conceptual space is populated

with models where each model is a representation of the system at the chosen
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abstraction layer and from the chosen modeling aspect—information, interaction, or

behavior. These models reflect the concepts of the conceptual space. The types of

agent-oriented models that inhabit the conceptual space were presented in chapter 3.

In section 2.5, we showed how concepts at di¤erent layers of the conceptual space

are related to each other. In chapter 3, we demonstrated how the models based on

these concepts are created. MDA uses the term ‘‘model transformation,’’ which is

the process of converting one model to another model of the same system. MDA fo-

cuses on transformations between PIMs and PSMs, leaving transformations from

Figure 6.2
The Model-Driven Architecture mapped to the conceptual space
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CIMs to PIMs aside, probably because of their anticipated complexity. However,

this is exactly where agent-oriented modeling can step in by providing an appropriate

set of CIM and PIM concepts that can be related to each another. As figure 6.2

reflects, goals, roles, social policies, and domain entities of agent-oriented modeling

can often be transformed into the activities, agents, rules, and knowledge items of

agent-oriented design. According to figure 6.2, there is also a correspondence be-

tween the design and implementation concepts. Using the MDA terminology, trans-

formations between agent-oriented PIMs and PSMs can be specified as mappings

between the platform independent types and patterns and the corresponding plat-

form dependent types, as shown in figure 6.2.

6.3 The Viewpoint Framework

We now define a conceptual framework for distributed systems that is based on the

modeling perspectives identified in section 6.1, and which is compliant with MDA,

overviewed in section 6.2. This conceptual framework, the viewpoint framework, is

depicted in table 6.3. It consists of a matrix with three rows representing di¤erent

abstraction layers and three columns representing the viewpoint aspects of interac-

tion, information, and behavior. Each cell in this matrix represents a specific view-

point (not to be confused with the RM-ODP viewpoints discussed in section 6.1),

such as ‘‘conceptual interaction modeling,’’ ‘‘computational information design,’’ or

‘‘behavior implementation.’’ The abstraction layers of the viewpoint framework—

‘‘conceptual domain modeling,’’ ‘‘platform-independent computational design,’’ and

‘‘platform-specific design and implementation’’—correspond in the conceptual space

to the motivation, system design, and deployment layers, respectively. They have as

counterparts the corresponding layers of MDA, CIMs, PIMs, and PSMs.

The models at the two higher abstraction layers of the viewpoint framework are

independent of particular software or hardware platforms. Di¤erently, the models

Table 6.3
The viewpoint framework

Viewpoint models Viewpoint aspect

Abstraction layer Interaction Information Behaviour

Conceptual domain
modeling

Role models and
organization models

Domain models Goal models and
motivational scenarios

Platform-independent
computational design

Agent models and
acquaintance models,
interaction models

Knowledge
models

Scenarios and
behavior models

Platform-specific design
and implementation

Agent interface and
interaction specifications

Data models and
service models

Agent behavior
specifications
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at the layer of platform-specific design and implementation consider specific tools

and platforms with which the system is going to be built. As is pointed out in chapter

5, in addition to being platform-independent, the models at the two higher layers are

also architecture-independent; that is, they do not prescribe or imply the usage of any

specific system or agent architecture.

The models at the lowest layer are platform-specific, sometimes also described as

platform-dependent. For example, if the technology to be used for implementing the

design constructs of the computational information design viewpoint is a relational

database, the corresponding data models at the layer of platform-specific design and

implementation have to be normalized. Similarly, if the agents modeled under the

computational interaction design viewpoint are to be implemented as having the

BDI architecture described in section 5.1, the behavior implementation models to be

utilized can be plan diagrams and capability overview diagrams.

There is a particular set of models corresponding to each abstraction layer of

the conceptual space. The models for the motivation layer express how the system

is motivated. The models for the system design layer express how the system is

designed. The models for the deployment layer express how the system is situated in

its environment. In the viewpoint framework, the models of each abstraction layer

are also categorized vertically according to the viewpoint aspects of interaction, in-

formation, and behavior. We next describe how the cells of the viewpoint framework

are populated with generic types of models introduced in chapter 3.

In the viewpoint framework represented in table 6.3, goal models and motivational

scenarios are located in the cell determined by row 1 and column 3, that is, under the

conceptual behavior modeling viewpoint. This is because motivation leads to behav-

iors. Role models and the models of relationships between roles, organization mod-

els, are to be found in the cell determined by row 1 and column 1—that is, under the

conceptual interaction modeling viewpoint. Domain models are in the cell deter-

mined by row 1 and column 2—that is, under the conceptual information modeling

viewpoint. They represent information about the problem domain and about the

environment where the system is to be situated.

Agent models and acquaintance models are positioned in the cell determined by

row 2 and column 1—that is, under the interaction design viewpoint. Agent and ac-

quaintance models define agent types and interaction pathways between agents of

these types. Interaction models, just like agent and acquaintance models, are located

in the cell determined by row 2 and column 1—that is, under the interaction design

viewpoint. In addition to modeling interactions between agents, interaction models

can also capture interactions between agents and their environment. Knowledge

models are in the cell determined by row 2 and column 2—that is, under the infor-

mation design viewpoint. Scenarios and behavior models are positioned in the cell
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determined by row 2 and column 3. Behavior models include behavioral interface

models and agent behavior models.

The models created at the platform-specific design and implementation layer of

table 6.3 are agent interface and interaction specifications, data models and service

models, and agent behavior specifications. These models are dependent on specific

agent or other kinds of architectures and platforms. Some of platform-specific de-

sign models are addressed in chapter 7 in the context of specific agent-oriented

methodologies.

The viewpoint framework represented in table 6.3 can be populated with di¤erent

types of models. In other words, there are many ways to fill in the viewpoint frame-

work. We demonstrate some of the ways in chapter 7, where we provide an overview

of six agent-oriented methodologies.

6.4 Background

The Information Systems Architecture (ISA) framework was proposed by Zachman

(1987). It is one of the earliest conceptual frameworks and is the most extensive. The

ISA framework was refined by Sowa and Zachman (1992).

RM-ODP is described by Putman (2001). The main focus of his book is on speci-

fying software architectures.

The Enterprise Model was proposed by Bubenko (1993). It was refined and further

described by Bubenko and Kirikova (1994). The Enterprise Model was the first con-

ceptual framework that explicitly addressed goals.

The process modeling framework was proposed by Curtis, Kellner, and Over

(1992). Interestingly from our agent-oriented perspective, they claim that the con-

structs that collectively form the essential basis of a process model are

� agent—an actor (human or machine) who performs a process element;

� role—a coherent set of process elements to be assigned to an agent as a unit of

functional responsibility; and

� artifact—a product created or modified by the enactment of a process element.

Several conceptual frameworks have been compared by Kirikova (2000). Taveter

(2004a) compares conceptual frameworks in the agent-oriented context and proposes

a framework consisting of the following six views of agent-oriented modeling: infor-

mational view, functional view, behavioral view, organizational view, interactional

view, and motivational view.

The Model-Driven Architecture is described in OMG 2003. It has been applied to

agent-oriented modeling by Jayatilleke, Padgham, and Winiko¤ (2005), Penserini

Viewpoint Framework 187



et al. (2006), and Taveter and Sterling (2008). Jayatilleke, Padgham, and Winiko¤

represent CIMs in terms of agent component types, such as belief, trigger, plan, and

step. Penserini et al. (2006) describe agents in CIMs with regard to their capabilities,

which are then transformed into plans consisting of activities. Taveter and Sterling

(2008) describe in more detail transformations of agent-oriented models between the

three layers of the MDA.

The viewpoint framework was first proposed by Taveter and Wagner (2005). It is

based on the framework for agent-oriented business modeling proposed by Taveter

(2004a), which is in turn rooted in the ideas of the ISA framework. The applications

of the viewpoint framework for business process automation and manufacturing

simulation have been described by Taveter (2005a, 2006a) and in Taveter 2006b,

respectively. Further, Guizzardi (2006) describes the application of the viewpoint

framework to agent-oriented knowledge management.
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II APPLICATIONS

An underlying belief of this book is that it is important for software developers and

students to be exposed to good examples of models and artifacts from the various

stages of the software life cycle. By looking at detailed models, a developer might be

expected to adapt the models to build their applications. Analogously, an important

way to teach programming is to have students read other people’s code.

People need guidance to learn to think in a di¤erent way. Two ways to encourage

others to think di¤erently are to provide a methodology and to show larger examples

where all the parts fit together. Both are demonstrated in part II.

Chapter 7 presents a sample of methodologies that have been developed within the

agent-oriented software engineering community. The methodologies are demon-

strated with a conference management example that has been developed for several

of the methodologies. Chapters 8, 9, and 10 show substantive examples from the

domains of e-commerce, smart home, and educational software. The examples have

been developed using a variety of methodologies and are of varying degrees of detail

and maturity. We believe they should be helpful for developers wishing to use agent-

oriented concepts in their systems. There are many ways to go about modeling, and

we expect the astute reader to critique the models and improve them.

Reading this book will not immediately make someone an expert agent developer.

Nonetheless, the reader should receive guidance on how to start developing multi-

agent systems. By being exposed to a range of examples and a range of method-

ologies, a reader will have a useful background for learning more about specific

modeling methods.



 

7 Agent-Oriented Methodologies

In chapter 3, various kinds of models are distinguished for agent-oriented modeling.

The process of applying these models is not explicitly described in chapter 3, because

processes are defined by particular software engineering methodologies. A software

engineering methodology is accordingly a process for the organized production of

software using a collection of predefined techniques and notational convention. An

agent-oriented software engineering methodology is a software engineering methodol-

ogy that uses the notion of agent or actor in all stages of its process.

This chapter describes five agent-oriented methodologies that have been developed

within the agent research community to guide agent system development. The five

methodologies by no means exhaust the research into appropriate methodologies.

Some of the methodologies directly use the models of chapter 3. Other methodolo-

gies use di¤erent models.

We do not give a complete description of any of the methodologies. Neither do we

present a detailed comparison of the methodologies, though we do place all in the

viewpoint framework described in chapter 6. We prefer not to be too prescriptive.

There are pointers for interested readers to follow for more information in the back-

ground section.

We do not strongly advocate any one specific methodology. We believe (and hope)

that there will be convergence around the key concepts in the next few years, analo-

gous to the settling of the object-oriented community around UML. In the interim,

experience with any of the methodologies described in this chapter will increase one’s

appreciation of agent-oriented modeling.

The chapter is organized as follows. The first section describes the domain of

conference management, which has been used as a point of comparison between

agent-oriented methodologies. It is fortunate to have such a comparison, which was

fostered by the Agent-Oriented Software Engineering Workshop held in Hawaii in

May 2007 in conjunction with the international conference on Autonomous Agents

and Multiagent Systems (AAMAS).



The next five sections describe how to develop agent-oriented models for the con-

ference management system using some of the more prominent methodologies Gaia,

MaSE, Tropos, Prometheus, and a composite of ROADMAP and RAP/AOR. This

last methodology combines the experiences of Leon and Kuldar.

Note that the viewpoint framework presented in the book in chapter 6 did not

exist at the time the agent-oriented software engineering methodologies we describe

were developed. Consequently, some of the terminology and models do not exactly

correspond. We err on the side of using the original descriptions when things do not

correspond. Although the software life cycles that the methodologies presume are not

identical, they are loosely consistent, envisioning stages of requirements elicitation

and analysis, architectural and detailed design, and implementation. We are optimis-

tic that a more unified agent-oriented methodology will emerge, combining the best

features of each.

7.1 A Conference Management System

A common example is presented to allow informal comparison between the method-

ologies we present. The specific common example is a conference management

system. The type of conference being managed is an academic one where authors

submit papers written for the conference, and a program committee (PC) chooses

between the papers based on reviews submitted by its members or reviewers dele-

gated by them. The scope of the common example is only part of conference

management—namely, preparation of the technical program. The number of papers

typically submitted is in the tens or hundreds.

The process that will be described by the various methodologies reflects what goes

on for computer science conferences across the range of computing disciplines. No

attempt has been made to generalize to other domains in the sciences or humanities.

There are several semiautomated conference management software systems avail-

able. At the time the book is being written, the EasyChair system seems to be grow-

ing in popularity. In 2006, 150 conferences used the system; in 2007, several hundred

conferences used the system.

The technical program consists of a collection of papers presented over several

days.2 Academics and students interested in presenting at the conference submit

papers for consideration. The papers must be submitted by a given deadline. The

papers are distributed by a program chair to members of the PC, which may be

slightly hierarchical for larger conferences, who in turn may delegate to reviewers

2. Programs also usually contain invited talks, which are not considered here.
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they know and whose opinion they trust. There are some constraints in that

reviewers should not review their own papers or those of close colleagues, and there

are anonymity concerns.

The reviews are completed by an internal deadline. Some chasing up of reviewers

is typically required, and occasionally late reviews need to be requested. Papers are

selected based on the reviews. The selection may happen at a meeting or electroni-

cally. Usually some mediation is needed between conflicting views. Once the papers

are selected, the authors are notified and provided with comments from the reviews.

The authors of the chosen papers submit final copies of their papers that are collated

for publication.

In principle, using a conference management system as the system for comparing

agent-oriented methodologies seems suitable. Conference management is naturally

a sociotechnical system involving people, software, and technology. Also, there are

high-level goals and roles that agents must fulfil, and important quality goals, such

as timeliness of responses by agents, the need for anonymity in reviews, and fairness

and transparency in decision making. How well the comparison works we leave the

reader to assess. We do note that the designs described in the next five sections are

idealized. It would be interesting if practical di‰culties in conference management

could be linked to the goals and roles.

To conclude this section and give some perspective on the scope of a multiagent

system for helping with preparing the technical program, we describe some of the

functionality of EasyChair. According to its Web site, the current version supports

� management and monitoring of the PC

� sophisticated and flexible management of the access of PC members and referees to

papers and conflicts of interests

� automatic paper submission

� paper assignment based on the preferences of PC members

� list of the latest events

� submission of reviews

� sending emails to PC members, referees, and authors

� monitoring email

� online discussion of papers

� author response (or ‘‘rebuttal’’) phase, when the author can respond to the reviews

� automatic preparation of conference proceedings

and many other features.
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7.2 Gaia

Gaia was the first agent-oriented development methodology to gain wide recogni-

tion. It promoted the use of organizational abstraction to model computing. It

claimed to be an architecture-independent methodology that covered the require-

ments analysis and design stages of the software development life cycle. Gaia has

undergone some evolution. In this section, we briefly describe the original Gaia with

its five models, and then the revised Gaia models that were used to model fragments

of a conference management system.

The Gaia methodology models both the macro (social) aspect and the micro

(agent internals) aspect of the multiagent system. Gaia views a system as an organi-

zation consisting of interacting roles. Figure 7.1 shows the models produced by using

Gaia as presented in the initial version of Gaia. The methodology is applied after

requirements have been gathered and specified, and covers the analysis and design

phases.

The models can easily be mapped to the viewpoint framework described in chapter

6. The two models from the analysis stage belong in the conceptual domain modeling

layer. The role model corresponds to the behavior viewpoint, and the interaction

model corresponds to the interaction viewpoint. The three models from the design

stage belong in the platform-independent design layer. The agent model corresponds

to the behavior viewpoint, the services model corresponds to the information view-

Figure 7.1
The original Gaia models (Wooldridge, Jennings, and Kinny 2000). With kind permission of Springer
Scienceþ Business Media.
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point, and the acquaintance model corresponds to the interaction viewpoint. This is

summarized in table 7.1.

During analysis, roles in the system are identified, and their interactions are mod-

eled. Roles in Gaia are abstract constructs used to conceptualize and understand the

system. They have no realization in the implemented system after the analysis stage.

In the initial version of Gaia, all roles are atomic constructs and cannot be defined in

terms of other roles. Roles are defined by role schemas, which have the following

attributes: responsibilities, permissions, activities, and protocols. Figure 7.2 is the

role schema for the role Reviewer in our conference management example. The

model describes the role. It is good practice to sum up a role in a single sentence.

The word ‘‘preliminary’’ is used in the description to indicate that it may be refined

later in the software development process.

Activities are tasks that a role can assume without interacting with other roles;

protocols are tasks a role can take that involve other roles. Two protocols,

Table 7.1
Mapping the models of Gaia to the viewpoint framework

Viewpoint models Viewpoint aspect

Abstraction layer Interaction Information Behavior

Conceptual domain modeling Interaction model Role model

Platform-independent computational design Acquaintance model Services model Agent model

Platform-specific design and implementation

Figure 7.2
The Gaia role schema for Reviewer (Zambonelli, Jennings, and Wooldridge 2003). Reprinted with per-
mission by ACM.
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ReceivePaper and SendReviewForm, and one activity, ReviewPaper, have been

attached to the Reviewer role with obvious intended meanings.

Responsibilities of a role define its functionalities. There are two types of responsi-

bilities: liveness properties and safety properties. Liveness properties describe the gen-

eral behavior of the role and are represented by a regular expression over the sets of

activities and protocols the role processes. The liveness property is represented as

(ReceivePaper.ReviewPaper.SendReviewForm)maximum_number, which means that

the two activities and one protocol are performed one after the other in the order

specified up to maximum_number times, where maximum_number is the maximum

number of papers that the reviewer is requested to review. Safety properties are

properties that the agent acting in the role must always preserve. There is a single

safety property in figure 7.2—namely, that the number of papers equals the number

of review forms.

Permissions limit the resources available to the role, usually expressed as some in-

formation that the role can read, write, or create. The permissions specify both what

the role can and cannot use. There are two permissions in figure 7.2. The reviewer

needs to be able to read the papers and fill in the review forms.

In summary, the role model for a system is a collection of role schemas, each

schema detailing the attributes for a role in the system.

An interaction model is developed based on the initial role model. It contains a

protocol definition for each protocol of each role in the system. The protocol defini-

tion describes the high-level purpose of the protocol, ignoring implementation details

such as the sequence of messages exchanged. The protocol definition outlines the ini-

tiating role, the responding role, the input and output information, as well as a brief

description of the processing the initiator carries out during the execution of this

protocol.

Figure 7.3 contains the protocol schema for the ReceivePaper protocol in the

role model. The name of this protocol is Receive Paper, the initiating role is PC

Chair or PC Member, and the responding role, or partner, is Reviewer. The input

in figure 7.3 is the information about the paper, and the output is whether the re-

viewer agrees to review the paper.

Analysis within Gaia involves refining the role model and the interaction model

iteratively. The role and interaction models serve as the initial input to the design stage.

During design, the abstract constructs from the analysis stage, such as roles, are

mapped to concrete constructs, such as agent types, that will be realized at runtime.

Gaia requires three models to be produced during the design stage. The agent model

outlines the agent types in the system. The services model outlines the services indi-

cated by the roles assigned to the agent types. The acquaintance model depicts com-

munication links between agent types.
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Assigning the roles to agent types creates the agent model. Each agent type may be

assigned one or more roles. For each agent type, the designer annotates the cardinal-

ity of agent instances of that type at runtime.

In Gaia, a service is a coherent block of functionality neutral to implementation

details. The service model lists services that agents provide. They are derived from

the activities and protocols of the roles. For each service, four attributes must be

specified—namely, the inputs, outputs, preconditions, and postconditions. They are

easily derived from attributes such as protocol input from the role model and the in-

teraction model. Please note that the concept of service in Gaia is di¤erent from the

concept of service embodied in the service models described in chapter 3.

The acquaintance model is a directed graph between agent types. An arc from A

to B signals the existence of a communication link allowing A to send messages to

B. The purpose is to allow the designer to visualize the degree of coupling between

agents. In this light, further details such as message types are ignored.

The revised version of Gaia introduced three organizational concepts: organiza-

tional rules, organizational structure, and organizational patterns. An explicit envi-

ronment model was also added into the methodology. The environment model

arguably fits into the missing box in the viewpoint framework diagram, table 7.1, as

a model at the conceptual domain modeling layer concerned with the information

viewpoint. Figure 7.4 shows the revised development models in Gaia, with the

implicit process that one starts developing the models at the top of the figure, and

proceeds with the models later in the software life cycle.

To conclude this section, we note the relative simplicity of the Gaia models. The

simplicity has contributed significantly to its success as perhaps the most cited

agent-oriented software engineering methodology. From our experience, students or

industry developers have no di‰culty understanding Gaia concepts. Anecdotally, it

Figure 7.3
The Gaia protocol schema for Receive Paper (Zambonelli, Jennings, and Wooldridge 2003). Reprinted
with permission by ACM.
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Figure 7.4
The models of Gaia 2 (Zambonelli, Jennings, and Wooldridge 2003). Reprinted with permission by ACM.
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has often been used in agent courses. However, there are limited tools—if any—to

support Gaia, and its use is being supplanted by other methodologies.

7.3 MaSE

MaSE (Multiagent Systems Engineering) is an architecture-independent methodol-

ogy that covers the complete development life cycle. MaSE was one of the earlier

agent-oriented software engineering methodologies to be developed. It was pioneer-

ing in its engineering focus. MaSE has been used to design systems ranging from

computer virus immune systems to cooperative robotics systems.

Figure 7.5 outlines the steps and models of the MaSE methodology. It proposes

nine classes of models to be developed: a Goal Hierarchy, Use Cases, Sequence

Diagrams, Roles, Concurrent Tasks, Agent Classes, Conversations, Agent Archi-

tecture, and Deployment Diagrams in the life cycle stages of analysis and design.

Analysis in MaSE starts by capturing goals of the system. Use cases are created

with sequence diagrams to clarify the system behavior and act as the intermediate

step in translating goals into system roles. Roles are created as units of system re-

quirements and the communication between roles is clarified as concurrent tasks.

Agent classes are decided based on roles, and conversations are constructed for these

agent classes.

We relate the models included in figure 7.5 to the viewpoint framework. Four of

the models reflect the interaction viewpoint: sequence diagrams and role models at

the conceptual domain modeling layer, and conversation diagrams and agent class

models at the platform-independent computational design layer. Role models and

agent class models are shared by the interaction and behavior viewpoints. Most of

the models are concerned with the behavior viewpoint. As indicated in table 7.2, the

models are evenly divided across the three layers of the framework. We observe

the lack of emphasis on the information viewpoint. That does not necessarily mean

that MaSE ignores the concerns of the information viewpoint. As we shall see in the

following conference management example, there is a lot of information about the

domain of conference management present. However, an information model is not

extracted explicitly.

MaSE has been extended to the Organization-based Multiagent Systems Engineer-

ing (O-MaSE) framework. It allows for construction of custom methodologies, using

ideas from the Object-oriented Process, Environment and Notation (OPEN) method

engineering approach. O-MaSE was used for the comparison exercise at the 2007

Agent-Oriented Software Engineering Workshop, where several groups presented

their designs for a conference management system. We give some of the O-MaSE

models created for the case study to convey aspects of modeling in MaSE.
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A tool has been built to support O-MaSE development. The agentTool is a Java-

based graphical development environment to help users analyze, design, and

implement multiagent systems using the O-MaSE methodology. It has been designed

as an Eclipse plug-in. Tool support is essential if agent-oriented methodologies are

going to have significant uptake.

The O-MaSE process described at the workshop has seven stages, starting from

the system requirements definition. The first stage is a requirements-focused stage in

which goals are modeled to produce a requirements goal hierarchy. A goal hierarchy

Figure 7.5
The MaSE process diagram (Wood and DeLoach 2001). With kind permission of Springer Scienceþ Busi-
ness Media.
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for the conference management system is shown in figure 7.6. The top-level Manage

submissions goal is split into six subgoals: Get papers, Assign papers, Review

papers, Select papers, Inform authors, and Print proceedings. Five of these

subgoals are split into two further subgoals. For example, Assign papers is divided

into Partition papers and Assign reviewers.

The second stage of the O-MaSE process is also requirements-focused. Goals in

the goal hierarchy are refined to produce a Goal Model for Dynamic Systems

(GMoDS)—a kind of model not included by the original MaSE methodology. A

requirements-refined GMoDS model is shown in figure 7.7. The model expresses

some dependencies between goals. For example, one dependency is that collecting

Table 7.2
Mapping the models of MaSE to the viewpoint framework

Viewpoint models Viewpoint aspect

Abstraction layer Interaction Information Behavior

Conceptual domain
modeling

Sequence Diagrams Goal Hierarchy, Use
Cases, Role Model

Platform-independent
computational design

Conversation
Diagrams

Concurrent Tasks,
Agent Class Diagrams

Platform-specific design
and implementation

Agent Architecture
Diagrams, Deployment
Diagrams

Figure 7.6
A goal tree for the conference management system
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papers precedes distributing papers. Another dependency is that a decision produced

by the ‘‘Make decisions’’ goal has either of the ‘‘declined(p,a)’’ or the ‘‘accept-

ed(p,a)’’ forms, which are communicated to the ‘‘Inform declined’’ and the ‘‘Inform

accepted’’ goals, respectively.

The third stage of the O-MaSE process takes the GMoDS model and models the

organization to produce an organization model, which is another model type that

has been added to MaSE by O-MaSE. An organization model is provided in

figure 7.8. The overall organization is a conference management system that achieves

the overall goal of managing submissions. The model suggests that four actors are

involved: PC Chair, Author, Reviewer, and Printer. It describes some of the

activities in which the actors are involved. For example, the PC Chair partitions

papers, selects reviewers, and selects papers. The PC Chair actor must interact

with the Reviewer actor. The Printer actor is concerned only with printing the

proceedings.

The fourth stage of the O-MaSE process models roles using the GMoDS and

organization models. The output is a role model, shown in figure 7.9. The figure

expands the organization model in a natural way. Roles are di¤erent from how they

Figure 7.7
A GMoDS model for the conference management system
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Figure 7.8
An organization model for the conference management system

Figure 7.9
A role model for the conference management system



are described in chapter 3, corresponding to units of functionality in which an

actor may be involved. The figure shows seven roles: DecisionMaker, Assigner,

ReviewCollector, Partitioner, PCReviewer, FinalsCollector, and PaperDB.

It also shows interactions between actors and roles. For example, the Reviewer

actor writes a review and sends it to the PCReviewer, and the PCReviewer sends a

getOK to acknowledge the receipt of the review.

The fifth stage switches from analysis to design. Agent classes are modeled, with

the role model as input and an agent class model being produced. An agent class

diagram for the conference management system is given in figure 7.10. Roles have

been assigned to the agents in the system. Four agents have been chosen: a PCchair

playing the roles of ReviewCollector and DecisionMaker, a Referee playing the

role of PCReviewer, a PCmember playing the roles of Assigner and Partitioner,

and a Database playing the roles of PaperDB and FinalsCollector.

The sixth and seventh stages use the agent class diagram to model protocols and

plans, respectively. These stages correspond to constructing conversation in figure

7.5. Protocol diagrams for O-MaSE are similar to Tamagotchi protocols discussed

in chapter 3 and to other methodologies. Agent plans use a statechart notation. An

example plan is shown in figure 7.11 for a Referee agent. The plan for an agent

encompasses behavior models from chapter 3.

Figure 7.10
An agent class diagram for the conference management system
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The strength of MaSE is in its concrete processes that are easy to understand and

follow, its tool support, and its architectural independence. There has been steady

improvement in both methodology and tool support. More information can be gath-

ered from the references given at the end of the chapter.

7.4 Tropos

Tropos is derived from the Greek t%opos, which means ‘‘way of doing things’’;

also t%oph́, which means ‘‘turn’’ or ‘‘change.’’ Tropos is a software development

methodology that uses the concepts of actor, goal, and (actor) dependency to model

early and late requirements, and architectural and detailed design. It has arguably

had the most research e¤ort involved of any agent-oriented software engineering

methodology.

The overall process can be seen in figure 7.12. It covers the complete software life

cycle. There are stages for early requirements, late requirements, architectural design,

detailed design, implementation and unit testing, agent and integration testing, sys-

tem testing, and acceptance testing. The artifacts produced are a domain model,

system goals, a multiagent system architecture, interactions and capabilities, agent

code, and test suites at the agent, system, and acceptance levels.

Figure 7.12
The Tropos process diagram (Nguyen, Perini, and Tonella 2008). With kind permission of Springer
Scienceþ Business Media.
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The Tropos research team has expended considerable e¤ort in providing tool sup-

port. There is a tool support for each of the stages. The tool is called the Tool for

Agent Oriented Modeling (TAOM4E) and is an Eclipse plug-in. It is distributed as

free software under a General Public Licence (GPL).

We relate the models to the viewpoint framework. The Tropos domain model

consists of actor diagrams and goal diagrams. As shown in table 7.3, actor diagrams

belong to the interaction viewpoint at the conceptual domain modeling layer, as they

model dependencies between actors. Actor diagrams are also concerned with the in-

formation viewpoint, because they represent resources used by actors. Goal diagrams

deal with individual actors and hence belong to the behavior viewpoint at the same

layer. When further refined for the system to be developed, goal diagrams are also

concerned with the behavior viewpoint at the layer of platform-independent compu-

tational design. As goal diagrams include dependencies between actors of the system,

they reflect system architecture.

At the platform-specific design and implementation layer, the dependencies are

reflected by interactions between agents, which are modeled as agent interaction dia-

grams. The other viewpoints at the lowest abstraction layer are covered by UML

class diagrams for information modeling and capability diagrams and plan diagrams

for behavior modeling.

Table 7.3 reflects that Tropos defers detailed interaction and information modeling

until platform-dependent design, when the agent architecture and implementation

platform have been decided. Tropos assumes the agent architecture to be BDI.

We show Tropos models developed for the conference management system. In

addition, actor and goal diagrams of Tropos are used in section 8.2 for the analysis

stage of the manufacturing simulation case study.

The first stage, early requirements analysis, involves the modeling of stakeholder

intentions using goals in the context of the organization requiring the system to be

developed. Stakeholders are modeled as actors. An actor can be an agent, a role,

or a position. Dependencies between actors are modeled with a dependum, which

characterizes the nature of the dependency. The dependum can be of type hard

Table 7.3
Mapping the models of Tropos to the viewpoint framework

Viewpoint models Viewpoint aspect

Abstraction layer Interaction Information Behavior

Conceptual domain modeling Actor Diagram Actor Diagram Goal Diagrams

Platform-independent
computational design

Refined Goal
Diagrams

Platform-specific design
and implementation

Agent Interaction
Diagrams

UML Class
Diagrams

Capability Diagrams,
Plan Diagrams
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goal, soft goal, task, or resource. A soft goal is a goal with no clear-cut criteria to

determine satisfaction, usually used to represent nonfunctional requirements. Soft

goals correspond to quality goals (described in chapter 4). Tropos suggests four

questions to guide the analysis: Which are the main actors? What are their goals?

How can they achieve them? Does an actor depend on another actor to achieve

its goals?

The result of the first stage is an actor diagram, an example of which is provided in

figure 7.13. Five actors are identified: PC, PC Chair, Author, Reviewer, and Pub-

lisher. Six dependencies are modeled as goal dependencies: Publish proceed-

ings, Peer review, Manage conference, Fix deadline, Check availability,

and Publication. In a goal dependency, one actor depends on another actor for

achieving a goal. Three dependencies are modeled as resource dependencies: Sub-

mission, Review, and Assigned papers. In a resource dependency, one actor

depends on another for utilizing a resource.

The actor diagram is expanded, taking the perspective of each actor. Goals are

decomposed into subgoals. Alternative ways of achieving goals are considered. Soft

goals are considered, which may contribute to the achievement of a goal or prevent

its achievement. Figure 7.14 shows the resulting goal diagrams for the PC Chair and

PC actors. Soft goals are represented as clouds in the figure.

In the late requirements analysis stage, Tropos introduces the system into the mod-

els as a new actor that contributes to achieving the stakeholder goals. Higher-level

goals are decomposed into more concrete ones until su‰cient details are captured as

requirements. Figure 7.15 shows an expanded actor diagram for the conference man-

agement system. Decomposition, means-ends analysis, and contribution analysis are

Figure 7.13
An initial actor diagram for the conference management system
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Figure 7.14
The goal diagram for the PC Chair and PC actors

Figure 7.15
An expanded actor diagram for the conference management system



performed on the system’s goals. The result of these analyses is shown in figure 7.16.

The expanded actor diagram shown in figure 7.15 introduces the get paper task

dependency between the CMS System and Author actors. Figure 7.16 introduces the

tasks accept and reject that are required for achieving the manage decision goal.

Architectural design and detailed design in Tropos involves identifying and adopt-

ing appropriate architectural styles and design patterns to implement the goals of the

actors.

Architectural design consists of three activities: decomposing and refining the sys-

tem actor diagram including new actors as a result of various analyses, identifying

capabilities, and moving from actors to agents. An example model from the architec-

tural design stage in Tropos is given in figure 7.17. In that model, the CMS System

actor has been refined into the Conference Manager, Paper Manager, Review

Manager, and Proceedings Manager actors. The goal, task, and resource depen-

dencies between these actors are included in the model.

A further expansion of the goal diagram depicted in figure 7.17 gives us figure

7.18. That goal diagram expresses the goals to be achieved and the tasks to be per-

formed, as well as the resources to be utilized by the Conference Manager, Paper

Manager, Review Manager, and Proceedings Manager actors.

Detailed design involves specifying the internal agent behaviors taking into ac-

count the implementation platform. Though requirements analysis and architectural

design stages of Tropos are architecture-independent, the stage of detailed design

is geared toward BDI agent architecture. Four types of diagrams are produced:

Figure 7.16
The goal diagram for the CMS System actor
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capability diagrams and plan diagrams, which are similar to the behavior models

presented in chapter 3; agent interaction diagrams, which are similar to protocol

models presented in chapter 3; and UML class diagrams, for information modeling.

We do not give specific examples here, as they are similar to the models of detailed

design in other agent-oriented methodologies.

It is straightforward to map the Tropos detailed design models to BDI agents.

Some BDI agent platforms were overviewed in chapter 5. Code generation is possible

for Jadex, which is a BDI extension to JADE. Tropos has also considered test case

generation at the agent level and can produce Jadex and JADE test cases. We do not

consider them here.

7.5 Prometheus

The motivation for developing the Prometheus methodology parallels the motivation

for this book: ‘‘to have a process with associated deliverables which can be taught to

industry practitioners and undergraduate students who do not have a background

in agents and which they can use to develop intelligent agent systems.’’ Prometheus

Figure 7.17
A refined goal diagram for the CMS System actor
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focuses on three stages of the software life cycle: specification, design, and implemen-

tation. It has methods for producing artefacts at each of the three stages. The stan-

dard Prometheus process diagram is given in figure 7.19.

The system specification stage corresponds to the motivation layer of the concep-

tual space described in chapter 2. Several artefacts are produced during the system

specification stage. Scenarios describe sequences of activities that the system is sup-

posed to perform and the goals to be achieved by them. They correspond to motiva-

tional scenarios from chapter 3. System goals give the overall goals of the system and

correspond to goal models from chapter 3. Initial role descriptors are an initial de-

scription of functions that may achieve the system goals and loosely correspond to

role models from chapter 3. In addition to these three artefacts, percepts and actions

are specified as the interface between the system and the external world correspond-

ing to what the system will sense and how it will act, respectively. Prometheus

encourages the identification of a system boundary from early on. Determining the

actions and percepts is e¤ectively doing some domain modeling.

The architectural design stage also produces several artefacts. The primary deci-

sion is what agents will be in the system to deliver the functionalities described to

Figure 7.19
The Prometheus process diagram (Padgham and Winiko¤ 2004)
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meet the system goals. The agents are described by agent descriptors. Agent role

grouping diagrams and agent acquaintance diagrams are useful mechanisms to help

produce a good design. The overall architecture is summarized in a system overview

diagram, which specifies the data that the system will use, as well as protocols

between agents. Protocols can be separately refined. Note that a system overview

diagram represents a logical architecture, rather than a physical system architecture.

The detailed design stage fleshes out the agent descriptors to a level that they can

be easily deployed. Agents are specified in terms of capabilities with appropriate

capability descriptors. A capability is described by a capability overview diagram,

event descriptors, data descriptions, and plan descriptors. The protocols are used to

specify a process. Note that Prometheus intends for the underlying agents to reason

through the use of goals and plans.

The major Prometheus artifacts are placed in the viewpoint framework in table

7.4. Although the artifact names given in the Prometheus process diagram are not

identical to the artifact names in the table, the reader can see that there is good cov-

erage over all three layers and viewpoints. Placement of the artifacts is somewhat

subjective, as several models do not fit neatly in a single cell. The system overview

diagram, for example, implies interaction and behavior as well as information.

The system specification and architectural design stages are platform- and

architecture-independent. The detailed design stage is architecture-dependent, and

develops the agents further in BDI style. Agents are developed in terms of capabil-

ities, which are grouped descriptions of plans that the agent has, data that the agent

manipulates, events that the agent responds to, and messages that the agent sends.

We now demonstrate the use of Prometheus for the conference management sys-

tem. The architectural design stage of Prometheus is also used in sections 9.2 and

Table 7.4
Mapping the models of Prometheus to the viewpoint framework

Viewpoint models Viewpoint aspect

Abstraction layer Interaction Information Behavior

Conceptual domain
modeling

Analysis Overview
Diagram, System
Roles Diagram

Goal Overview Diagram,
Functionalities, Scenarios

Platform-independent
computational design

Agent Acquaintance
Diagram, Interaction
Diagrams, Protocol
Diagrams, System
Overview Diagram

Data Coupling
Diagram

Agent Descriptors

Platform-specific
design and
implementation

Event Descriptors Data
Descriptors

Agent Overview Diagrams,
Process Specifications,
Capability Overview
Diagrams
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9.3 for the Smart Music Player and Secret Touch examples. Diagrams were drawn

with the Prometheus Design Tool (PDT). The Prometheus research team realized

from the outset of its project that tool support was essential, and has expended con-

siderable e¤ort in developing and improving PDT. The tool provides some checking

capability, for example disallowing references to nonexistent artifacts, barring two

artifacts having the same name, and avoiding certain errors. PDT can produce

detailed reports about the artifacts created. It has been used successfully by a range

of students in agent courses around the world.

We turn now to the conference management example. We follow the practice of

the previous two sections and follow the presentation made at the 2007 Agent-

Oriented Software Engineering Workshop. The functionality presented there covered

paper submission, paper reviews, paper selection and author notification, and final

paper collection and printing of the proceedings.

The system specification stage of Prometheus covers four activities: producing an

analysis overview, listing scenarios, producing a goal overview diagram, and group-

ing goals into roles. We cover each of them briefly, and give an example of a model

from the conference management domain.

Developing an analysis overview diagram proceeds in two steps. The first step is to

identify the external actors and scenarios in which they participate. The second step

is to identify for each scenario the percepts that come into the system and the actions

that result from it. An analysis overview diagram for the conference management

system that has gone through the two steps is given in figure 7.20. There are five

external actors: Author, PCmember, SPCmember, Printer, and PCchair. There are

Figure 7.20
An analysis overview diagram for the conference management system
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four scenarios: print_proceedings, get_paper, review, and select_papers.

The get_paper scenario has one percept, namely paper, and performs one

action, namely acknowledgment. The select_papers scenario has two percepts—

selection_opinion and selection_decision—and two actions: opinions_in

and notification.

The next stage is to develop scenarios that the proposed system should enact. A

scenario is a sequence of steps. Each step is labeled by its type, name, role, descrip-

tion, and the data it accesses. The type of a step is a goal, action, percept, or subsce-

nario. A sample scenario for reviewing a paper is given in figure 7.21. It has six

steps. The first three steps are goals, invite_reviewers, collect_prefs, and

assign_reviewers, respectively. The fourth step is an action of giving the assign-

ments. The fifth step is a percept, namely receiving the review report, and the final

step is another goal, collect_reviews.

The next stage is to develop a goal overview diagram. It is closely linked to the

scenarios developed in the previous step. Figure 7.22 gives a goal overview diagram

for the conference management system. It represents twenty goals. The top-level goal

is manage_conference, which has four subgoals.

The next stage is to identify roles and associate them with goals. Typically, several

goals are associated with an individual role. Appropriate actions and percepts are

also attached to the role. Figure 7.23 gives a system roles diagram for the conference

Figure 7.21
The review scenario for the conference management system
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Figure 7.22
A goal overview diagram for the conference management system

Figure 7.23
A system roles diagram for the conference management system
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management system. There are six roles that cover all the goals drawn in the goal

overview diagram in figure 7.22. For example, the assignment role is responsible

for achieving the goals collect_prefs and assign_reviewers. The percepts per-

ceived by an agent playing that role are preferences and reviewer_info and the

actions performed by it are request_preferences and give_assignments.

The architectural design stage builds on the artifacts produced in the system speci-

fication stage. The initial step is to decide on the agents in the system by looking at

how roles might be grouped. The PDT tool provides support for an agent role group-

ing diagram. Standard software engineering principles of cohesion and coupling are

used to help decide the agents. Which roles share data is an important consideration;

there is a useful data coupling diagram. In our running example, four agents are

chosen: Review_manager for the roles assignment and review_management,

Paper_manager for the roles author_interaction and papersDB_management,

Publishing_manager for the role proceedings_prep, and Selection_manager

for the role decision_support. Protocols between agents are described textually

and placed automatically in the relevant diagram.

The overall architecture of the system is summarized in a system overview dia-

gram. Figure 7.24 gives a system overview diagram for the conference management

system. The four agents are shown. Protocols between agents are depicted; for exam-

ple, proceedings_finalization is a protocol between the Paper_manager and

the Publishing_manager agents. Protocols are defined and edited in PDT via a

text editor, using a notation that extends AUML. There are four protocols given in

figure 7.24. The shared data store PapersDB is shown. Also in the system overview

diagram are the percepts sensed by an agent and the actions performed by it. For

Figure 7.24
A system overview diagram for the conference management system
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example, the Selection_manager senses two percepts, selection_opinion and

selection_decision, and performs the action opinions_in.

Moving on to detailed design, we consider agents and capabilities. Agents are

described in terms of capabilities, internal events, plans, and internal data struc-

tures. An agent overview diagram depicts capabilities within an agent, events be-

tween capabilities, messages, percepts, and actions. Figure 7.25 gives the agent

overview diagram for the Review_manager agent in the conference management

system. It has three capabilities: Reviewer registration, Paper assignment,

and Review collection. It has two internal databases: ReviewersDB used by

two of the capabilities, and PapersDB used by the Paper assignment capability.

The Paper assignment capability senses three percepts: preferences, timer, and

reject_assigned_paper. It sends a paper_assigned message to the Review

collection capability and performs two actions: request_preferences and

give_assignments.

A capability overview diagram describes the internals of the capability, including

plans to handle each input. Plan descriptors consist of a name, description, triggers,

context, incoming and outgoing messages, relevant percepts and actions, used and

produced data, and the goal it is intended to achieve. Importantly, it contains a pro-

cedure and includes failure conditions and steps for failure recovery.

The artifacts produced by the detailed design stage were conceived with the BDI

agent architecture in mind. Consequently, it is straightforward to implement the

agents in a BDI-oriented agent programming language—indeed, in any of the

languages described in chapter 5, though clearly some have greater support than

others. There is actually a feature in PDT to generate JACK code. The code genera-

tion capability can maintain some level of synchronization between detailed design

and code when one or the other changes.

To conclude this section, we note that there is similarity between the methodologies

that we have presented so far. They cover similar stages of the software development

Figure 7.25
The agent overview diagram for Review_manager
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life cycle and give comparable abilities to agents, though there are di¤erences in con-

cepts and models. We believe it would be possible to merge the methodology with a

spirit of cooperation between the research groups.

7.6 ROADMAP and RAP/AOR

In this section we describe two agent-oriented methodologies: ROADMAP and

RAP/AOR. We have chosen to describe both of them in one section, because the

methodologies complement each other well. ROADMAP puts the emphasis on do-

main and systems analysis, and RAP/AOR is geared toward design. We begin the

section by giving a short overview of both methodologies.

The ROADMAP (Role-Oriented Analysis and Design for Multiagent Program-

ming) methodology was originally derived from the Gaia methodology, which was

overviewed in section 7.2. Figure 7.26 shows the models of the ROADMAP method-

ology. In ROADMAP, the models are divided vertically into domain-specific

models, application-specific models, and reusable services models. The environment

model and knowledge model represent information about a specific domain. The

Figure 7.26
ROADMAP analysis and design models
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goal model, role model, agent model, and interaction model are tied to the system

being modeled. Generic and reusable components in the system are captured by the

social model and service model. The models are also split horizontally by dotted hor-

izontal lines according to the domain analysis and design phases, so that the goal

model, the role model, and the social model are created in the domain analysis phase,

and the agent model, interaction model, and service model belong to the architec-

tural design phase. The environment model and knowledge model are created in the

domain analysis phase and refined in the architectural design phase.

The RAP/AOR (Radical Agent-Oriented Process/Agent-Object-Relationship)

methodology is aimed at creating distributed organizational information systems,

such as business process and supply-chain management systems. To cater for the de-

sign needs of such systems, RAP/AOR models the behavior of an agent as founded

on its perceptions and on its basic mental state components: beliefs and commit-

ments. The methodology is based on the Agent-Object-Relationship Modeling Lan-

guage (AORML). In AORML, the agents in a problem domain are distinguished

from the nonagentive objects. Event perceptions by the agents and their actions and

commitments are explicitly represented in the models.

The basic model type in RAP/AOR is the Agent-Object-Relationship (AOR) dia-

gram specified by figure 7.27. An AOR diagram enables the representation in a single

diagram of the types of human and manmade (e.g., software) agents of a sociotech-

nical system, together with their beliefs and behaviors. An AOR diagram can take

Figure 7.27
The modeling elements of AOR diagrams. This figure appears in Taveter and Wagner 2006. Copyright
2009, IGI Global, www.igi-global.com. Posted by permission of the publisher.
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various forms. An AOR agent diagram depicts the agent types of a problem domain,

together with their internal agent types, the beliefs of agents of these types, and the

relationships among them. An AOR interaction-frame diagram provides a static pic-

ture of the possible interactions and the evolvement of commitments/claims between

two or more types of agents without modeling any specific process instance. An

AOR interaction-sequence diagram depicts (some part of ) a prototypical instance

of an interaction process. An AOR behavior diagram is a specification of parameter-

ized behavior of agents of the type in focus that is expressed as a flow of execution

via sequencing of subordinate activities whose primitive elements are individual epis-

temic, communicative, and noncommunicative actions.

The combined process for the ROADMAP and RAP/AOR methodologies is rep-

resented in figure 7.28. The figure shows the steps of the modeling process, the result-

ing models, and how the models are derived from each other.

The best developed and most extensively used models of ROADMAP are the ones

focusing on application-specific domain modeling: goal and role models. They define

the purpose and goals for the system to be created and the roles needed for achieving

the goals. They are complemented with domain models, which have been derived

from environment and knowledge models of ROADMAP.

Goal, role, and domain models have been combined with the models of the RAP/

AOR methodology, which provides the strongest support for the abstraction layer

of platform-independent computational design. The RAP/AOR methodology also

covers platform-dependent computational design, for which it uses certain types of

UML models. The combination of models originating in the ROADMAP and

RAP/AOR methodologies is represented in table 7.5.

We next show how the process in figure 7.28 can be applied to the development of

a conference management system. In addition, the models featured by the combined

ROADMAP and RAP/AOR methodology are used in chapters 4 and 9 for the

design of a greeting system and intruder detection system in the Intelligent Home

case study. In chapter 8, RAP/AOR models form part of the design of e-commerce

automation and manufacturing simulation systems.

The purpose and requirements for the conference management system are de-

scribed by goal models, which were introduced in section 3.2 as high-level behavior

models. An overall goal model for the system is represented in figure 7.29. Recall

that goals represent functional requirements, while quality goals are nonfunctional

requirements. According to the model, the purpose of the system is ‘‘Run confer-

ence.’’ The quality goal associated with this goal expresses a general requirement

to organize and run a high-quality conference. The run conference goal has been

decomposed into seven subgoals: ‘‘Fix deadlines,’’ ‘‘Form PC,’’ ‘‘Get papers,’’ ‘‘Get

reviews,’’ ‘‘Select papers,’’ ‘‘Organize conference event,’’ and ‘‘Publish proceedings,’’

which describe di¤erent aspects of running a conference. Attached to the ‘‘Fix dead-
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Figure 7.28
The combined modeling process for ROADMAP and RAP/AOR
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lines’’ goal is the quality goal ‘‘Realistic deadlines.’’ The quality goal ‘‘Appropriate

conference venue’’ associated with the ‘‘Organize conference event’’ goal reflects the

importance of a well-functioning conference venue for holding the actual conference

event.

As seen in section 3.2, goal models include roles, which define capacities or posi-

tions with functionalities needed for achieving the goals. Various roles are required

for achieving the goals defined in figure 7.29: PC Chair, PC Member Candidate, PC

Member, Author, Reviewer, and Publisher.

The goal model represented in figure 7.29 can be further elaborated, but we do not

cover this material here.

We next move to the modeling of roles related to the system to be developed using

the role models described in section 3.3. As we know, goals in goal models apply to

the system as a whole. Di¤erently, role models model the responsibilities that need to

be exercised by enactors of individual roles to achieve the goals. Role models also

include constraints that restrict role enactors. Role models for the roles Author and

PC Chair are shown in tables 7.6 and 7.7, respectively.

The role models represented in tables 7.6 and 7.7 include but do not explicitly

model interactions between enactors of the roles. To gain a better understanding of

the problem domain that is being analyzed, we sketch interactions between enactors

of these roles using interaction-frame diagrams introduced in section 3.6. Figure 7.30

models the types of interactions between agents playing the roles Author, PC Chair,

PC Member, and Reviewer. The figure uses the notation that was introduced by

figure 7.27. In the figure, interactions that are likely to be performed by the media-

tion of the system’s user interface—submitPaper, submitFinalVersion, and

submitReview—are modeled as noncommunicative or physical action event types.

The rest of the interactions modeled in figure 7.30 are types of messages sent between

agents. Each message type is prefixed by a function: two examples are request, by

Table 7.5
The viewpoint framework filled out with the models of the ROADMAP and RAP/AOR methodologies

Viewpoint models Viewpoint aspect

Abstraction layer Interaction Information Behavior

Conceptual domain
modeling

Role models (ROADMAP)
and interaction-frame
diagrams (RAP/AOR)

Domain model
(ROADMAP)

Goal models
(ROADMAP)

Platform-independent
computational design

Interaction-sequence
diagrams (RAP/AOR)

Agent diagram
(RAP/AOR)

Scenarios and AOR
behavior diagrams
(RAP/AOR)

Platform-specific
design and
implementation

UML class and sequence
diagrams (RAP/AOR)

UML class
diagrams
(RAP/AOR)

UML class and
sequence diagrams
(RAP/AOR)
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Table 7.6
The role model for Author

Role name Author

Description The role of writing and submitting a paper.

Responsibilities Send his or her paper for the conference to the PC chair.
Receive the confirmation of paper submission.
Receive the submission number.
Receive the acceptance/rejection decision and the reviews of the paper.
Receive a request from the PC chair to submit the final version of the accepted paper.
Send the final version of the accepted paper to the PC chair.

Constraints The paper must be submitted before the submission deadline.
The final version of the accepted paper must be submitted before the submission
deadline for camera-ready papers.

Table 7.7
The role model for PC Chair

Role name PC Chair

Description The PC Chair manages the process of determining the technical program for the
conference.

Responsibilities Invite PC members.
Receive confirmations of acceptance from PC members.
Register PC members.
Advertise the conference.
Decide submission deadlines.
Decide submission format.
Receive the papers for the conference.
� Store the papers.
� Assign submission numbers to the papers.
� Confirm paper submissions with the authors.
Interact with PC members to receive their reviewing preferences.
Assign the papers to PC members for reviewing.
Re-distribute the papers rejected for review.
Receive the reviews done by PC members.
Negotiate with PC members about borderline or conflicting papers.
Make acceptance/rejection decisions on the papers.
Notify the authors of the acceptance/rejection decisions.
Send the reviews to the authors.
Request and receive final versions of the accepted papers.
Request the publisher to print the final versions of the accepted papers as the
proceedings of the conference.
Submit the final proceedings to the publisher according to an agreed deadline.

Constraints Each paper must be distributed to at least three PC members for reviewing.
There is a limit to the number of papers that a PC chair can review.
A PC member cannot review his or her own paper.
A PC member cannot review a paper with which he/she has a conflict of interest.
The authors must be notified in a timely manner whether their paper has been
accepted or rejected.
The submissions of final versions of the accepted papers to the publisher must be
complete, with all the accepted papers included.
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which the sender requests the receiver to perform an action, and inform, with which

the sender informs the receiver about something.

Central in the RAP/AOR methodology is the modeling of commitments and

claims and their creation and discharging. In the interaction model depicted in figure

7.30, the types of noncommunicative action events submitFinalVersion and

submitReview are coupled with the corresponding commitment/claim types. The

submitReview commitment occurs in the model twice, because a PC member can

delegate the reviewing to an external reviewer, which is reflected by the delegation

of the corresponding commitment. The submitPaper action event may also be

coupled with a commitment/claim. This happens if paper submission is preceded by

the submission of an abstract. Please note that a commitment and claim can be

viewed as two sides of the same coin: what is a commitment for one agent is a claim

for the other agent.

Next, we create a conceptual information model. The purpose of a conceptual in-

formation model is to model knowledge of the problem domain that is to be repre-

sented in the system and handled by it. As explained in section 3.4, a model of this

kind can also be called a domain model. A domain model is a derivation of the envi-

ronment and knowledge models in the original ROADMAP methodology. The do-

main model for the conference management system is depicted in figure 7.31. The

domain model represents the entities of the problem domain that are relevant for

the system to be developed. The model also shows relationships between entities.

Figure 7.31 expresses that a conference has a conference program consisting of

papers to be presented. Each paper is submitted by its authors. The conference pro-

gram is decided by the PC, which consists of PC members. Each PC member is re-

sponsible for reviewing papers. A PC member may delegate paper reviewing to an

external reviewer, who is then responsible for submitting the review. A conference

also has proceedings, which are published by the publisher.

So far, we have been talking about roles. At some stage, the types of agents that

are to play the roles need to be decided. The ROADMAP and RAP/AOR method-

ologies share a common feature: they decide agent types relatively late in a modeling

process. Both methodologies also allow role information to be preserved and repre-

sented at runtime, because di¤erent agents can take on the same role. For example,

di¤erent human agents can play the PC Member role. This implies that the system

should provide its functionalities in terms of roles.

In RAP/AOR, a manmade agent can automate a part or all of the activities per-

formed by a human agent enacting his or her role. When deciding which activities

should be automated, it may be helpful to analyze responsibilities attributed to the

roles of the system and interactions between agents playing the roles.

When analyzing the responsibilities of the roles modeled in tables 7.6 and 7.7,

notice that the responsibilities attributed to the roles Author and PC Member are
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human-centric, which cannot be easily automated. Indeed, how can you automate

writing a paper or review? However, it would certainly help if the human researcher

had a manmade helper agent keeping track of the commitments that its human

owner has toward other agents, such as a commitment to submit a review or a final

version of the paper.

Note that all the represented noncommunicative action event types and the

commitment/claim types coupled with them depicted in figure 7.30 are targeted at

an agent playing the PC Chair role. Agents playing the Author, PC Member, and

Reviewer roles make at various times commitments to an agent playing the PC Chair

role to submit a review and to submit a final version of the paper and then perform

the corresponding actions. As commitments and claims are like opposite sides of the

same coin, it is su‰cient if an agent playing the PC Chair role keeps track of

the claims that it has against other agents and reminds other agents about any

unsatisfied claims. For example, a PC chair can remind a PC member about an over-

due review. Consequently, we observe that the system would most benefit from the

Figure 7.31
The domain model for the conference management system
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automation of the activities performed by an enactor of the PC Chair role, which can

be done by a manmade agent of type ChairAgent.

Should the activities performed by a ChairAgent be divided among agents of

its various subtypes, such as PapersManagerAgent, ReviewsManagerAgent, and

DecisionsManagerAgent? It may not be necessary, because the activities that

would be performed by agents of the types mentioned are separated in time, as they

are triggered by di¤erent events. These activities should be modeled separately, but

can still be performed by the same agent.

The sociotechnical conference management system is accordingly designed to

consist of one manmade agent of type ChairAgent, playing the role of PC Chair,

and several human agents of type Person, playing the Author, PC Member, and

Reviewer roles. The shorthand for these agent types is ChairAgent/PC Chair,

Person/Author, Person/PC Member, and Person/Reviewer.

Having decided the types of agents, the next step is to transform the domain model

into the knowledge model. The knowledge model for the conference management

system is represented in the agent diagram in figure 7.32. According to the model,

general knowledge about the conference, including the submission deadlines and

conference dates, is publicly available for all agents of any types. The model also

shows that the knowledge about papers and their authors and reviews is shared be-

tween agents of several types, and the knowledge about the conference program, PC

members, and external reviewers is represented exclusively within an agent of type

ChairAgent. Naturally, the PC chair may choose to make a part of its private

knowledge public by, for example, by publishing the names, a‰liations, and coun-

tries (but not email addresses!) of PC members, and later by publishing the con-

ference program. The RAP/AOR methodology provides means for representing

partially public or shared knowledge. We do not discuss those means here. It may

be necessary to define what parts of shared knowledge are available for which agents

more precisely. The knows-association link between the agent type Person/PC

Member and the object types Paper and Review in figure 7.32 models that a PC

member knows about several papers and reviews.

The relationship between an object and the agent described by it is represented by

describes-associations like the association between the object type Author and the

agent type Person/Author. The describes-association models that an object of

the Author type describes an author.

After having decided the agent types and modeling the knowledge of agents of

those types, interactions between human and manmade agents of a sociotechnical

system are modeled using interaction-sequence diagrams described in section 3.6.

The next stage is agent behavior modeling. Tables 7.8 and 7.9 give example sce-

narios for achieving the ‘‘Get papers’’ and ‘‘Submit paper’’ goals of the conference

management system. The scenarios are represented in a format derived of goal-based
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Figure 7.32
The knowledge model for the conference management system

Agent-Oriented Methodologies 231



use cases, which were originally used in the RAP/AOR methodology. This format

was introduced and explained as an example scenario format in section 3.8.

As we explained earlier in this section, it is feasible to model the conference man-

agement system as consisting of one manmade agent type, three human agent types,

and one external service, publisher. The automation of human activities occurs

within a manmade agent of the ChairAgent type. The activities performed by a

ChairAgent largely depend on the activities performed by human agents playing

the Author, PC Member, and Reviewer roles. Figure 7.33 is an AOR behavior dia-

gram that models the behavior of a ChairAgent in reaction to submitting a paper by

an author. It reflects the scenario represented in table 7.9. Rule R1 in figure 7.33

specifies that in response to receiving a paper submitted along with information

Table 7.8
The scenario for achieving the ‘‘Get papers’’ goal

SCENARIO 1

Goal Get papers

Initiator ChairAgent/PC Chair

Trigger

DESCRIPTION

Condition Step Activity Agent types / roles Resources

Interleaved 1 Advertise conference Person/PC Chair

2 Submit paper
(Scenario 2)

Person/Author,
ChairAgent/PC Chair

Paper, Author

Table 7.9
The scenario for achieving the ‘‘Submit paper’’ goal

SCENARIO 2

Goal Submit paper

Initiator Person/Author

Trigger Paper submission by an author

DESCRIPTION

Condition Step Activity Agent types / roles Resources

1 Send/receive paper Person/Author,
ChairAgent/PC Chair

Paper

2 Store paper ChairAgent/PC Chair Paper, Author

3 Assign submission number ChairAgent/PC Chair Paper

4 Confirm submission Person/Author,
ChairAgent/PC Chair

Paper
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Figure 7.33
The behavior diagram for submitting a paper
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about its authors, an activity is started to receive submissions. This activity consists

of sequential subactivities of storing a paper and assigning it a submission number,

and confirming submission. The former subactivity includes rule R2, which specifies

three epistemic actions of the CREATE type. For each epistemic action, its order in the

sequence is shown in parentheses. The first epistemic action creates an object of the

Paper type. The second epistemic action creates the Author objects for the set of

authors and the third epistemic action creates associations between each Author ob-

ject and the Paper object. Also, according to the Object Constraint Language (OCL)

expression attached to rule R1, the value of the nrOfSubmissions attribute of the

ConferenceProgram object is incremented by 1. After that, rule R2 assigns this

value as the submission number to the corresponding Paper object. Rule R3 in the

confirming submission activity is responsible for sending a confirmation message to

the author.

We have seen that AOR behavior diagrams enable both an agent’s knowledge

and its behavior to be modeled. AOR behavior diagrams contain all the necessary

information required for generating platform-dependent design models and code.

For example, it has been shown by Kuldar that AOR behavior diagrams can be

straightforwardly transformed into the implementation constructs of the Java-based

JADE agent platform. JADE was one of the agent platforms overviewed in chapter

5. However, the nature of the conference management system modeled does not

require a software agent based system for implementation, but should rather be

implemented as a client-server system. This has also been done in real life, where

conference management systems such as EasyChair have been implemented.

Note that we have not used quality goals in the design. The quality goals in the

goal model in figure 7.29 are high-level. A human would determine whether they

had been met—for example, whether the conference venue was appropriate. In a

more detailed exposition of this case study, it would be natural to require that the

reviews should be completed in a timely way, which would have imposed specific

timing constraints. A di¤erent example would be that the decisions be fair, which

would be tricky to quantify.

7.7 Background

The definition of a software engineering methodology given at the outset of the chap-

ter has been provided by Rumbaugh et al. (1991).

The EasyChair conference management system repeatedly mentioned in the

chapter is described on its Web site (http://www.easychair.org). Another similar con-

ference management system is OpenConf (http://www.openconf.org). Three of the

methodologies described in this chapter—MaSE, Tropos, and Prometheus—have
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been applied to the case study of conference management. The results from the com-

parison are reported in the proceedings of the Agent-Oriented Software Engineering

Workshop 2007, edited by Luck and Padgham (2008). The applications of the

MaSE, Tropos, and Prometheus methodologies to the conference management

system case study are respectively described by DeLoach (2008), Morandini et al.

(2008), and Padgham, Thangarajah, and Winiko¤ (2008).

The first methodologies for developing multiagent systems emerged as attempts

were made to commercialize agent technology. An early group investigating agent

applications was the Australian Artificial Intelligence Institute (AAII), who devel-

oped a methodology described by Kinny, George¤, and Rao (1996). The experience

at AAII was shared with Wooldridge and Jennings, who were very active with agents

in the United Kingdom. Their discussions led to the Gaia methodology (Wooldridge,

Jennings, and Kinny 2000).

Agent-oriented software engineering (AOSE) emerged as an area in its own right

early in the 2000s (Ciancarini and Wooldridge, 2001) and has become an active re-

search area. AOSE methodologies and approaches loosely fall into one of two cate-

gories. One approach adds agent extensions to an existing object-oriented notation.

The prototypical example is Agent UML, which was first proposed by Odell, Paru-

nak, and Bauer (2001). The second approach has been taken by methodologies that

explicitly use agent concepts. The methodologies that have been described in this

chapter belong to the second group. Several methodologies have been developed

and are maturing. Gaia was updated (Zambonelli, Jennings, and Wooldridge, 2003)

and several extensions were proposed (Cernuzzi et al. 2004).

The MaSE methodology is described by DeLoach, Wood, and Sparkman (2001)

and by DeLoach and Kumar (2005). The methodology has been extended to envi-

ronment modeling by DeLoach and Valenzuela (2007). The extension of MaSE—

the O-MaSE methodology—was proposed by Garcia-Ojeda et al. (2008). The

MaSE methodology is accompanied by the agentTool. More information about the

agentTool can be found on http://agenttool.cis.ksu.edu.

Tropos is a software development methodology founded on concepts used to

model early requirements, specifically the i� modeling framework proposed by Yu

(1995). The i� framework uses the concepts of actor, goal, and (actor) dependency

to model early and late requirements, and architectural and detailed design. The Tro-

pos methodology was introduced by Bresciani et al. (2001). The methodology is

extensively described by Bresciani et al. (2004) and by Giorgini et al. (2005). Tropos

models can be created by the TAOM4E tool. More information about the TAOM4E

tool can be found at http://sra.itc.it/tools/taom4e.

The Prometheus methodology was introduced by Padgham and Winiko¤ (2003).

The citation describing the motivation for developing the Prometheus methodology

in the beginning of section 7.5 is from Padgham and Winiko¤ 2003 (see p. 174).
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The methodology is thoroughly described by Padgham and Winiko¤ (2004). Prome-

theus is accompanied by the PDT, which is described by Padgham, Thangarajah,

and Winiko¤ (2005). More information about the PDT tool can be found at http://

www.cs.rmit.edu.au/agents/pdt.

The ROADMAP methodology was originally proposed as an extension of the first

version of Gaia (Wooldridge, Jennings, and Kinny 2000) for open systems. ROAD-

MAP is the subject of Thomas Juan’s Ph.D. thesis at the University of Melbourne

(Juan 2008). The ROADMAP methodology was introduced by Juan, Pearce, and

Sterling (2002). In comparison with Gaia, it provides explicit models for require-

ments elicitation and for describing the domain and the execution environment of

the system. ROADMAP also extends Gaia by explicit models for representing social

aspects. A metamodel for the methodology was introduced by Juan and Sterling

(2003). The models evolved over several iterations, led by Thomas in his Ph.D.

work. The notation that was developed for goal and role models is described by

Kuan, Karunasekera, and Sterling (2005). The modeling aspects that address soft-

ware quality in ROADMAP are illuminated by Sterling and Juan (2005). A domain

model is derived from knowledge and environment models in the original ROAD-

MAP methodology. Knowledge models were proposed by Juan, Pearce, and Sterling

(2002). Their constituent parts—knowledge components—were defined by Juan

and Sterling (2003). Environment models were introduced by Juan, Pearce, and

Sterling (2002). The latest refinement of ROADMAP by Juan (2008) also proposes

mechanisms for runtime reflection by software agents. Building goal and role

models in ROADMAP is facilitated by the use of the ROADMAP Editor Built

for Easy deveLopment (REBEL) tool. The tool can be downloaded from http://

www.cs.mu.oz.au/agentlab/rebel.html.

The RAP/AOR methodology is based on AORML by Wagner (2003) and on the

Business Agents’ Approach by Taveter (2004a). The methodology was introduced by

Taveter and Wagner (2005). The modeling concepts used in RAP/AOR have onto-

logical foundations put forward by Guizzardi and Wagner (2005a). As is emphasized

by Taveter and Wagner (2005), RAP/AOR is more concerned with distributed agent-

based information systems (such as business process automation and supply-chain

management systems) for the business domain and not so much with AI systems.

The scenarios included by the case study of a conference management system have

been derived from goal-based use cases (Cockburn 2001), which were originally

used in the RAP/AOR methodology. RAP/AOR has been applied to the automation

of business-to-business electronic commerce as reported by Taveter (2005a) and

manufacturing simulation as reported by Taveter and Wagner (2006) and Taveter

(2006b). The descriptions of those applications have also been included in chapter 8

of this book. The RAP/AOR methodology was supported by the COnceptual Net-

work Ontology Editor (CONE) tool, which is described by Taveter (2005b).
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The ROADMAP and RAP/AOR methodologies have been used jointly in Ster-

ling, Taveter, and the Daedalus Team 2006a and in Taveter and Sterling 2008.

Many other agent-oriented software engineering methodologies exist, such as

MESSAGE (Caire et al. 2004) and TAO (Silva and Lucena 2004). It is beyond

our scope to treat them comprehensively. Many agent-oriented methodologies are

described in Henderson-Sellers and Giorgini 2005 and Bergenti, Gleizes, and Zambo-

nelli 2004. More information about the Jadex agent platform can be found at http://

vsis-www.informatik.uni-hamburg.de/projects/jadex.

Juan, Sterling, and Winiko¤ (2002) propose a modular approach enabling devel-

opers to build customized project-specific methodologies from AOSE features. An

AOSE feature is defined by Juan et al. (2003) to encapsulate software engineering

techniques and models, and supporting Computer-Aided Software Engineering

(CASE) tools and development knowledge such as design patterns. It is considered

a standalone unit to perform part of a development phase, such as analysis or proto-

typing, while achieving a quality attribute such as privacy. Another method for

building customized methodologies—OPEN (Firesmith and Henderson-Sellers

2002)—includes the notions of Work Units, Work Products, Producers, Stages, and

Languages. We describe in Sterling, Taveter, and the Daedalus Team 2006a how

these notions can be used for feature-based agent-oriented software engineering.
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8 Industry-Related Applications

This chapter explores two industry-related applications of agent-oriented modeling

undertaken by Kuldar. We show how these applications can be modeled with combi-

nations of the ROADMAP, Tropos, and RAP/AOR methodologies, which were

overviewed in chapter 7. Whenever deemed appropriate, we have complemented the

set of models included by these methodologies with additional models from chapter

3, such as domain and agent models. The case study presented in section 8.1 demon-

strates agent-based automation of business-to-business (B2B) e-commerce. This case

study has been modeled using a combination of ROADMAP and RAP/AOR. The

case study presented in section 8.2 concerns agent-oriented modeling and simulation

of a ceramics factory. This case study has been modeled by a combination of Tropos

and RAP/AOR. Section 8.3 gives some background for both case studies.

8.1 Business-to-Business E-Commerce

As pointed out in section 1.3, B2B e-commerce is fundamentally distributed and nat-

urally modeled with agents. A typical activity in B2B e-commerce is procurement by

bidding. Suppose that there is a company in need of commodities or services that are

provided by other companies. A representative of the buying company sends requests

for quotes to representative(s) of the selling companies. The representatives of the

selling companies respond by quotes. Each quote includes a price and possibly other

selling conditions, such as pickup or delivery place and time. The buyer then decides

to buy the commodity or service from one of the sellers and informs all the bidders of

its decision. This is followed by ordering, product delivery, and paying. Procurement

by bidding usually happens by email or increasingly by the mediation of e-commerce

Web portals.

In B2B e-commerce, the term ‘‘automation’’ is frequently understood to refer to

transferring from paper-based information exchange to electronic information ex-

change. However, with electronic information exchange, human operators essentially

continue doing what they did before—except by electronic means. For example,



procurement by bidding is now done by email instead of phone. Automation can also

refer to the automation of decision making performed by humans. In the bidding ex-

ample, making most of the decisions can be automated by delegation to software

agents. Such systems naturally leave the final say for humans, but still automate a

lot of mental work that is usually fully undertaken by humans.

Several computational architectures and environments for B2B e-commerce have

been developed since the Internet boom. There is a World Wide Web architecture

document that includes services and agents invoking the services. There are standard

proposals such as RosettaNet, papiNet, and ebXML (Electronic Business using

eXtensible Markup Language) that define frameworks of knowledge required for

B2B e-commerce and types of business processes between e-commerce parties. In ad-

dition, there are standard proposals for business process modeling, such as BPMN

and XML Process Definition Language (XPDL), where XML stands for eXtensible

Markup Language. However, these are all disparate approaches that do not provide

a straightforward transition from business process modeling to business process

automation. To facilitate the integration of business process modeling and business

process automation, we need to model business processes so that all the viewpoints

of the viewpoint framework, described in chapter 6, are represented. This includes

modeling how human and manmade agents representing e-commerce parties make

decisions and interact.

We now describe the modeling, design, and implementation of an agent-based pro-

curement system. The system was designed and implemented as a prototype in the

Plug-and-Trade B2B and B2BþDM research projects of the Technical Research

Centre of Finland–VTT Information Technology. Three Finnish companies partici-

pated—two large and one medium-size. The system was modeled and designed using

the RAP/AOR methodology, which was described in section 7.6. The procurement

system was implemented using the JADE agent platform described in chapter 5.

We now present a complete set of models for the application covering all the cells

of the viewpoint framework shown in table 6.2. The models from the original appli-

cation have been complemented with goal, role, and domain models from the

ROADMAP methodology described in section 7.6.

Figure 8.1 models the most generic goals of B2B e-commerce under the viewpoint

of conceptual behavior modeling. The model shows that the purpose of B2B

e-commerce is ‘‘Trade,’’ which is characterized by the quality goals ‘‘Timely pro-

cessing’’ and ‘‘Commitments are binding.’’ The lefthand quality goal in the figure

expresses that if agents agree on a deal, they should not be allowed to decommit on

that deal. The righthand quality goal expresses that trading should be timely, which

is an underlying motivatation for the automation of B2B e-commerce. The subgoals

of ‘‘Trade’’—‘‘Procure’’ and ‘‘Sell’’—reflect the interests of agents playing two sepa-

rate roles: Buyer and Seller.
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Figure 8.1
The goal model of B2B e-commerce

Figure 8.2
The goal model of procuring products
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Figure 8.2 refines the goal ‘‘Procure’’ that was introduced in figure 8.1. According

to figure 8.2, procurement consists of identifying alternatives, finding a deal, report-

ing the result, ordering, receiving the product, and paying. A directory service of

some sort enabling businesses to discover each other, such as, for example, UDDI

(Universal Description, Discovery and Integration), is used for achieving the subgoal

‘‘Identify alternatives’’—hence the role Directory Service related to the subgoal. The

subgoal ‘‘Find deal’’ is associated with the role Seller and is characterized by the

quality goal ‘‘Best deal.’’ The ‘‘Report result’’ goal is to be achieved by an enactor

of the role Evaluator. It concerns reporting the results of procurement to the relevant

stakeholders. The ‘‘Receive product’’ and ‘‘Pay’’ subgoals are associated with the re-

spective roles Transporter and Bank and with the respective quality goals ‘‘Reliable

transporter’’ and ‘‘Secure payment.’’

There are many ways of finding a deal. An important one among them is known

as a contract net: sending requests for quote (RFQs) to potential sellers and receiving

quotes back from them. The goal model for this option is represented in figure 8.3.

The goal ‘‘Find deal’’ has been decomposed into three subgoals: ‘‘Request and

Figure 8.3
The goal model of finding a deal
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receive quotes,’’ ‘‘Make decision,’’ and ‘‘Inform on decision.’’ The most crucial goal

is ‘‘Make decision,’’ the achieving of which is influenced by the quality goals ‘‘Mini-

mal price’’ and ‘‘Maximal trust toward seller.’’ The subgoal ‘‘Request and receive

quotes,’’ in turn, has been divided into the subgoals ‘‘Create RFQ,’’ ‘‘Send RFQ,’’

and ‘‘Receive quote.’’ As the RFQ and quotes constitute sensitive business informa-

tion, the quality goal ‘‘Secure communication’’ pertains to the second and third of

these goals. In addition, the goal ‘‘Create RFQ’’ has the subgoal for filling the RFQ

with the descriptions of the product items to be procured. The goal ‘‘Inform on

decision’’ and the subgoals ‘‘Send RFQ’’ and ‘‘Receive quote’’ are associated with

the role Seller. Please note that the order in which the subgoals are presented in fig-

ure 8.3 does not imply any chronological order in which they are to be achieved.

The goals of the seller in B2B e-commerce are modeled in figure 8.4. The goal

‘‘Sell’’ has three subgoals—‘‘Receive RFQ,’’ ‘‘Form quote,’’ and ‘‘Send quote’’—

which represent di¤erent stages of a contract net for a seller. The subgoal ‘‘Form

quote’’ is to be achieved in such a manner that the quality goal ‘‘Best o¤er’’ would

be met. The quality goal ‘‘Quote is binding’’ attached to the ‘‘Send quote’’ goal elab-

orates the ‘‘Commitments are binding’’ quality goal discussed earlier. The ‘‘Provide

product’’ and ‘‘Receive payment’’ subgoals are associated with the respective roles

Transporter and Bank and with the respective quality goals ‘‘Reliable transporter’’

and ‘‘Secure payment.’’

Figure 8.4
The goal model of selling products
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Having created the goal models, we describe a motivational scenario for an agent-

based system for automated procurement. It includes the technology to be used,

which is software agents in the given case study, so that customers and stakeholders

can determine how well the proposed system achieves the goals. The motivational

scenario of automated procurement is shown in table 8.1.

We now move to the conceptual interaction modeling viewpoint, where we first

model roles. Tables 8.2 and 8.3 show role schemas created for the roles Buyer and

Seller. Because the purpose of the procurement system is to buy commodities on be-

half of the buyer, the principal responsibilities in the system are fulfilled by a per-

former of role Buyer. Some responsibilities are left to the sellers. It is safe to assume

that they will be fulfilled because it is in the sellers’ interest to sell their commodities.

In addition to role schemas, the conceptual interaction modeling viewpoint is

captured by the organization model, which is represented in figure 8.5. In section

2.2, we pointed out that a market is characterized by benevolence relationships be-

tween the participating agents. Accordingly, the organization model represented in

figure 8.5 shows the isBenevolentTo relationships between the roles Seller and

DirectoryService on one hand and Seller and Buyer on the other. This relationship

Table 8.1
The motivational scenario of automated procurement

Scenario name Automated procurement

Scenario description The organizations of both the buyer and the sellers are represented by
software agents. The buyer organization requires certain commodities to be
supplied by seller organizations. In order to buy the commodities, the buyer
first identifies potential suppliers. After identifying the alternatives, the buyer
delegates the buying process to its software agent, which performs the
following activities:
(a) create RFQ;
(b) send RFQ to the software agents of the sellers;
(c) receive quotes from the sellers’ agents;
(d) decide the seller from which to buy;
(e) inform the sellers’ agents about the decision;
(f ) order the commodities;
(g) pay for the commodities.
The seller organization delegates to its software agent the following matching
activities:
(a) receive RFQ;
(b) form quote;
(c) send quote;
(d) confirm order;
(e) register payment.

Quality description Quote is binding for the seller.
The deal achieved should be the best possible for the buyer.
A seller o¤ering the minimal price should be favored.
A seller that is most trusted should be favored.
Payment should be secure.
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typically appears between the roles of a service provider and requester. It expresses

that the service provider performs the service requested if it is able and willing to do

so, but the service provider also has an option to refuse the service request. The or-

ganization model also represents that some responsibilities of the seller and buyer

roles are performed by agents enacting their respective subroles Sales Representative

and Procurement Representative.

We next move to the conceptual information modeling viewpoint. As explained

in section 3.4, a domain model represents the types of domain entities of the

problem domain and the relationships between them. The domain model of B2B

e-commerce is represented in figure 8.6. The model represents the main domain

entities in B2B e-commerce—RFQ, Quote, PurchaseOrder, and Confirmation—

and their relationships with each other and with the relevant roles. There may be a

Table 8.2
The role model for Buyer

Role name Buyer

Description The Buyer role is played by a buyer organisation in B2B e-commerce.

Responsibilities Identify alternative sellers.
Create a RFQ.
Send the RFQ to the sellers.
Receive quotes from the sellers.
Decide the seller from which to buy.
Inform the sellers on the decision.
Order the commodities from the chosen seller.
Receive the commodities.
Pay for the commodities.

Constraints The deal achieved should be the best possible for the buyer.
A seller o¤ering the minimal price should be favored.
A seller that is most trusted should be favored.
Payment should be secure.
Transporter should be reliable.

Table 8.3
The role model for Seller

Role name Seller

Description The Seller role is played by a seller organization in B2B e-commerce.

Responsibilities Receive a request for quote.
Form the quote.
Send the quote to the buyer.

Constraints Quote is binding for the seller.
The seller should benefit from the price o¤ered in the quote.
Payment should be secure.
Transporter should be reliable.
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PurchaseOrder associated with an instance of Quote. There is always an Invoice

related to the confirmed PurchaseOrder.

Having created the models necessary for the abstraction layer of computation-

independent domain modeling, we move to the abstraction layer of platform-

independent computational design. From the viewpoint of computational interaction

modeling, we first map roles to agent types.

Although an agent model belongs to neither the ROADMAP nor RAP/AOR

methodology, we present the agent model for the case study. In B2B e-commerce,

both of the roles Seller and Buyer are performed by institutional agents—companies.

The agent model of B2B e-commerce, which is depicted in figure 8.7, shows that each

of the roles Buyer and Seller is mapped to the software agent type TradeAgent and

human agent type Person. Why have these roles been mapped to just one software

agent type? As you will see toward the end of this section, our design and implemen-

tation principles enable the roles Seller and Buyer both to be played by software

agents of the same type. Figure 8.7 also shows that the multiagent system consists

of two software agents and two people.

The agent model shown in figure 8.7 is combined with the agent acquaintance

model. This model represents that a TradeAgent can interact with several other

TradeAgents and one human agent at a time, whereas any TradeAgent can initiate

an interaction with other TradeAgents and a human agent can initiate an interac-

tion with a TradeAgent.

The knowledge model of the case study of B2B e-commerce is shown in figure 8.8,

which is known as an AOR agent diagram. It reflects the computational information

Figure 8.5
The organization model of B2B e-commerce
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Figure 8.6
The domain model of B2B e-commerce
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design viewpoint. The agent diagram first represents the institutional agents whose

knowledge is modeled. An institutional agent is denoted by the agent type Organi-

zation. The diagram also shows that the institutional agents playing the roles Buyer

and Seller contain internal agents of types Person and TradeAgent that act on

behalf of the organization. The knowledge of the institutional agents is modeled by

representing conceptual object types of the problem domain, as well as their relation-

ships to the agent types and with each other. Objects of these types constitute the

agents’ common and private knowledge. The conceptual object types included in the

knowledge model originate in the RosettaNet standard for B2B e-commerce. Just

as in RosettaNet, RFQ and Quote, and PurchaseOrder and Confirmation of

the domain model have been combined into single object types. Objects of types

PurchaseOrder/Confirmation, RFQ/Quote, and Invoice are shared between

institutional agents playing the roles Buyer and Seller. In addition to shared object

types, there are private object types. An institutional agent playing the role

Buyer has knowledge about institutional agents performing the role Seller and

the product items sold by them. Similarly, an institutional agent playing the role

Seller knows about its own product items. The private object types Seller,

ProductItemOfSeller, and ProductItem are accordingly represented within

agents playing the roles Buyer and Seller.

For some object types modeled in figure 8.8, attributes and predicates are defined.

For example, an object of type QuoteLineItem in figure 8.8 satisfies one of the

Figure 8.7
The agent and acquaintance models of B2B e-commerce
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following status predicates: isBid, isNoBid, and isPending, and an object of type

ProductLineItem represented in the same figure is characterized by one of the

status predicates isAccept, isReject, and isPending.

We now move to the computational interaction design viewpoint where interactions

between agents are modeled. This has been done using AOR interaction-frame and

interaction-sequence diagrams. An interaction-frame diagram modeling the interac-

tions between the institutional agents playing the roles Seller and Buyer is repre-

sented in figure 8.9.

An AOR interaction-sequence diagram, like the one shown in figure 8.10, depicts

(some part of ) a prototypical instance of an interaction process. Figure 8.10 repre-

Figure 8.9
An interaction-frame diagram between Buyer and Seller. This figure appears in Taveter and Wagner 2005.
Copyright 2009, IGI Global, www.igi-global.com. Posted by permission of the publisher.
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sents the messages sent and actions performed between two concrete institutional

agents, where the first agent purchases from the second one a product that is identi-

fied by the value ‘‘1247’’ of the attribute globalProductIdentifier.

Next, we present models of the computational behavior design viewpoint. In the

original project, it was important to create behavior models that could be executed.

Two kinds of behavior models have been created for our case study: scenarios and

AOR behavior diagrams. As representative examples, we present behavior models

for achieving a buyer’s goal ‘‘Find deal’’ and a seller’s goals ‘‘Receive RFQ,’’

‘‘Form quote,’’ and ‘‘Send quote.’’ The corresponding scenarios are represented in

tables 8.4–8.9. They translate goals into activities, determine for each activity the

condition of its performing, and show the agent types and roles, as well as resources

involved in performing the activity. The scenarios denote for resources by ‘‘R’’ that

the resource is read and by ‘‘W’’ that the resource is written. The scenarios shown in

Figure 8.10
An interaction-sequence diagram between institutional agents. This figure appears in Taveter and Wagner
2005. Copyright 2009, IGI Global, www.igi-global.com. Posted by permission of the publisher.
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Table 8.4
The scenario for achieving the ‘‘Find deal’’ goal

SCENARIO 1

Goal Find deal

Initiator Buyer

Trigger A request by an internal human agent

DESCRIPTION

Condition Step Activity Agent types and roles Resources Quality goals

Repeat for
each seller

1 Request and
receive quotes
(Scenario 2)

TradeAgent/Buyer,
TradeAgent/Seller

RFQ/Quote
(W, R), Seller (R),
ProductItemOfSeller
(R)

Timely processing

2 Make
decision

TradeAgent/Buyer RFQ/Quote (R),
Seller (R)

Best deal minimal
price, maximal
trust towards
seller, timely
processing

3 Inform the
winner

TradeAgent/Buyer,
TradeAgent/Seller

RFQ/Quote (R),
Seller (R)

Timely processing

Table 8.5
The scenario for achieving the ‘‘Request and receive quotes’’ goal

SCENARIO 2

Goal Request and receive quotes

Initiator

Trigger

DESCRIPTION

Condition Step Activity Agent types and roles Resources Quality goals

1 Create RFQ TradeAgent/Buyer RFQ/Quote (W),
Seller (R)

Timely processing

2 Fill RFQ
with quote
line items
(Scenario 3)

TradeAgent/Buyer RFQ/Quote (W),
ProductItemOfSeller
(R)

Timely processing

3 Send RFQ TradeAgent/Buyer,
TradeAgent/Seller

RFQ/Quote (R) Timely processing,
secure
communication

4 Receive
quote

TradeAgent/Buyer,
TradeAgent/Seller

RFQ/Quote (W) Timely processing,
secure
communication
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Table 8.6
The scenario for achieving the ‘‘Insert quote line item into the RFQ’’ goal

SCENARIO 3

Goal Fill RFQ with quote line items

Initiator

Trigger

DESCRIPTION

Condition Step Activity
Agent types and
roles Resources

Quality
goals

For each
product

1 Insert the quote
line item

TradeAgent/Buyer RFQ/Quote (W),
ProductItemOfSeller (R)

Timely
processing

Table 8.7
The scenario for achieving the ‘‘Sell’’ goal

SCENARIO 4

Goal Sell

Quality goals

Initiator Buyer

Trigger RFQ sent by the buyer

DESCRIPTION

Condition Step Activity
Agent types and
roles Resources

Quality
goals

1 Receive RFQ TradeAgent/Seller,
TradeAgent/Buyer

RFQ/Quote (W) Timely
processing

2 Form quote
(Scenario 5)

TradeAgent/Seller RFQ/Quote (W),
ProductItem (R)

Timely
processing,
best o¤er

Quote is
approved by
an internal
human agent

3 Send quote TradeAgent/Seller,
TradeAgent/Buyer

RFQ/Quote (R) Timely
processing,
quote is
binding
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Tables 8.4–8.9 have been derived from goal-based use cases, which were originally

used in the research project.

Scenarios are turned into AOR behavior diagrams, which are more precise behav-

ior models. The reader may wonder why we need precise behavior models that are

attributed to organizations. The reason is that we chose an implementation approach

where executable AOR behavior diagrams were transformed into equivalent XML-

based representations that were then interpreted and executed by software agents

representing the organizations involved. In our case study of automating B2B pro-

cesses, machine-interpretable representations for business process types are crucial,

because new business process types emerge and old ones frequently change.

Table 8.8
The scenario for achieving the ‘‘Form quote’’ goal

SCENARIO 5

Goal

Initiator

Trigger

DESCRIPTION

Condition Step Activity
Agent types and
roles Resources

Quality
goals

1 Process product
item (Scenario 6)

TradeAgent/Seller RFQ/Quote (W),
ProductItem (R)

Timely
processing,
best o¤er

Table 8.9
The scenario for processing a product item

SCENARIO 6

Goal Form quote

Initiator

Trigger

DESCRIPTION

Condition Step Activity
Agent types and
roles Resources

Quality
goals

The product item
is available in the
quantity requested

1 The product item
is to be bid which
is registered in the
quote

TradeAgent/Seller RFQ/Quote (W),
ProductItem (R)

Timely
processing,
best o¤er

The product item
is not available in
the quantity
requested

1a The product item
is not to be bid
which is registered
in the quote

TradeAgent/Seller RFQ/Quote (W),
ProductItem (R)

Timely
processing,
best o¤er
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As pointed out in section 7.6, AOR behavior diagrams enable the computational

behavior modeling viewpoint to be combined in the same diagram with the computa-

tional information and interaction modeling viewpoints. This results in a single inte-

grated behavior model. The AOR behavior diagram shown in figure 8.11 models the

behavior of an agent performing the role Buyer in a procurement business process.

According to the model, rule R1 is triggered by a human agent by performing a phys-

ical action of the type issueRFQ(?String ?Integer). This action is performed by

mediation of a user interface of some kind. When triggered, rule R1 starts an activity

of type ‘‘Find deal.’’ This activity achieves the goal ‘‘Find deal’’ represented in the

goal model in figure 8.3. A ‘‘Find deal’’ activity consists of a number of sequential

subactivities, the types of which correspond to the subgoals modeled in figure 8.3.

When this activity is invoked, the String and Integer arguments of the issueRFQ

action, which contain the identifier of the product to be procured and the requested

quantity, are assigned to the activity’s parameters productCode and quantity.

Rule R2 specifies a forEach loop that executes an activity of type ‘‘Request and

receive quote’’ for each instance of the object type Seller (not to be confused with

the role Seller) satisfying the sellsProduct predicate that is evaluated with the

product identifier as the parameter. A ‘‘Request and receive quote’’ activity is thus

executed for each seller that sells the product to be procured. The activities in the

forEach loop are executed in parallel, meaning that the next activity may be started

before the previous ones are finished. This avoids deadlock situations—for example,

when a seller does not respond with a quote.

Rule R3 within a subactivity of type ‘‘Create RFQ’’ creates an instance of RFQ/

Quote. This is followed by the creation of an association between the RFQ/Quote

created and the corresponding object of type Seller. The association is needed for

relating each seller to the quotes to be received.

Rule R4 included in a subsequent ‘‘Fill the RFQ’’ activity first retrieves the

instance of ProductItemOfSeller, which describes the requested product item

according to the seller’s product identification system. It then starts an activity of

type ‘‘Insert quote line item’’ with the instance of ProductItemOfSeller as a

parameter and with the requested quantity as another parameter. Rule R5 included

in the activity creates an instance of QuoteLineItem that describes within the quote

the product to be procured. The variable assignments made when creating the

QuoteLineItem are specified in the callout attached to the mental e¤ect arrow.

Rule R6 included in an activity of type ‘‘Send RFQ’’ sends the newly created in-

stance of RFQ/Quote to the enactor of the role Seller. As just one RFQ/Quote is

sent to each seller, the instance is identified by the seller related to it. Rule R7

included in an activity of type ‘‘Receive quote’’ is triggered by receiving the quote

from the enactor of Seller. Finally, rule R8, which is triggered by a nonaction

event—time event—of type Timeout, starts an ‘‘Inform the winner’’ activity. Rule
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Figure 8.11
The behavior model for Buyer. This figure appears in Taveter and Wagner 2005. Copyright 2009, IGI
Global, www.igi-global.com. Posted by permission of the publisher.



R9 included in this activity notifies the winner of the contract net, who is determined

by evaluating the predicate isWinner.

The behavior of an agent performing the role Seller in a procurement business

process is modeled in figure 8.12. Rule R1 is triggered by receiving the request for

quote from an enactor of Buyer. Rule R2 specifies that upon the start of an enclosing

activity of type ‘‘Form quote,’’ its subactivity of type ‘‘Process product item’’ is

performed for the instance of the object type QuoteLineItem belonging to the in-

stance of RFQ/Quote received from the buyer. The subactivity ‘‘Process product

item’’ checks the availability of the given product item that is specified by the input

parameter item of type QuoteLineItem. If the product item corresponding to the

instance of QuoteLineItem is available in the quantity requested, the status of

the QuoteLineItem is updated to isBid. In the opposite case, the status of the

QuoteLineItem is updated to isNoBid. Rule R4 specifies that, upon the end of an

activity of type ‘‘Form quote’’ if the quote is approved by an internal human agent,

an activity of type ‘‘Send quote’’ is performed. Rule R5 included in this activity sends

the modified by bids instance of RFQ/Quote to the enactor of Buyer.

Quality goals are not explicitly represented in figures 8.11 and 8.12, because it is

assumed that they have been operationalized by AOR behavior diagrams. For exam-

ple, the predicate isWinner of the object type Seller modeled in figure 8.11 is

required to consider both the price o¤ered by a seller and the trustworthiness of the

seller in making an automated decision of choosing from whom to buy a particular

product.

In order to facilitate generation of XML-based representations of business process

models, we have developed the corresponding XML schema, whose instances de-

scribe business process types in a machine-interpretable way. By using the schema,

it is possible to represent business process types from di¤erent perspectives. For ex-

ample, the models of the procurement business process type created in our case study

are transformed into two XML-based representations that describe the procurement

business process type from the perspectives of the roles Seller and Buyer.

In the prototype application, interorganizational business process types were

described as AOR behavior diagrams by means of the Integrated Business Process

Editor. The latter was developed as an extension to the CONE tool of VTT Informa-

tion Technology. Figure 8.13 shows a snapshot of the model of the procurement

business process type that was created using the editor. The model represented in

the figure focuses on modeling the behavior of a Seller. The notation used by the

CONE tool is the one that preceded the notation that we currently use for AOR be-

havior diagrams.

The prototype application is represented in figure 8.14. As figure 8.14 reflects, the

XML-based representations of a business process type are automatically generated
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Figure 8.12
The behavior model for Seller. This figure appears in Taveter and Wagner 2005. Copyright 2009, IGI
Global, www.igi-global.com. Posted by permission of the publisher.
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from AOR behavior diagrams modeled by the Integrated Business Process Editor.

Business process models to be executed include accessing enterprise systems of the

company. Enterprise systems can include the Enterprise Resource Planning (ERP),

Customer Relationship Management (CRM), and Enterprise Application Integra-

tion (EAI) systems shown in figure 8.14. Interfaces to them are presented as services

to the Business Process Interpreter. The XML-based representation of a business

process type is interpreted by the Business Process Interpreter, which works in coop-

eration with the software agent representing the corresponding party—an instance

of TradeAgent. The latter has been implemented using the JADE agent platform,

which was described in chapter 5.

Agents communicate with each other using messages in the Agent Communication

Language (ACL) defined by FIPA. As figure 8.14 illustrates, an agent representing

a party first invokes the Business Process Interpreter to read the description of

the business process type, as requested by the agent’s human user, and to create its

Figure 8.13
A part of the procurement business process type focusing on Seller modeled by the Integrated Business
Process Editor. This figure appears in Taveter and Wagner 2005. Copyright 2009, IGI Global, www.igi-
global.com. Posted by permission of the publisher.
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internal representation of the business process type. Thereafter, when the agent

receives a message or ‘‘perceives’’ an input by a human user through the graphical

user interface (GUI), the agent invokes the Business Process Interpreter to act

according to the process type description. When the Business Process Interpreter

acts, it in turn invokes the JADE agent and displays messages through the agent’s

GUI.

When evaluating quotes, the software agent—an instance of TradeAgent—

representing the Buyer considers trust as another criterion in addition to price. This

is needed to achieve the quality goal ‘‘Maximal trust toward seller’’ that is modeled

in figure 8.3. Trust is determined by including in the behavior model of an agent

performing the role Buyer in a procurement business process a rule that increases or

decreases the weight of trustworthiness of a potential seller by considering its past be-

havior. A snapshot shown in figure 8.15 illustrates how the trustworthiness of sellers

is considered by the prototype application. According to the snapshot, a quote with

a higher price o¤ered but whose bidder has a considerably higher credibility ranks

better.

Figure 8.14
The business process automation system. This figure appears in Taveter and Wagner 2005. Copyright
2009, IGI Global, www.igi-global.com. Posted by permission of the publisher.
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8.2 Manufacturing

The business landscape is changing everywhere. New business models emerge in all

areas. They span from o¤shore manufacturing to the outsourcing of software devel-

opment and services. Subcontracting is a way that the countries newly admitted to

the European Union are able to participate in European manufacturing projects.

The case study in this section deals with the Tallinn Ceramics Factory Ltd. located

in Tallinn, Estonia. Introducing new business models is already reality at the Tallinn

Ceramics Factory, because a large portion of the orders received by it are subcon-

tracted orders for mug handles and stove tiles for fireplaces from Sweden and other

countries. To comply with new business models, manufacturing processes in many

cases need to be re-engineered. This is facilitated by modeling and especially by sim-

ulation of the manufacturing processes.

In this section, a combination of the Tropos and RAP/AOR modeling methodol-

ogies is applied to the modeling and simulation of manufacturing processes of

Figure 8.15
A snapshot of the Buyer’s GUI of the procurement system (Taveter 2005)
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Tallinn Ceramics Factory. An agent-oriented approach was chosen for two reasons.

First, primary components of any factory are communicating and interacting agents,

such as workers and robots. Second, an agent-oriented modeling approach lends it-

self easily to simulation. In particular, the models of the problem domain developed

by following the RAP/AOR methodology can be quite straightforwardly turned into

the implementation constructs of the simulation environment based on the JADE

agent platform. Overviews of the Tropos and RAP/AOR methodologies were pro-

vided in sections 7.4 and 7.6, respectively. The JADE agent platform was described

in chapter 5.

The core of manufacturing processes of any factory lies in the scheduling of pro-

duction operations. The purpose of applying the scheduling method briefly described

below was re-engineering—improving the existing manufacturing processes of the

factory.

The job-shop scheduling problem or factory scheduling problem can be defined

as one of coordinating sequences of manufacturing operations for multiple orders

so as to

� obey the temporal restrictions of production processes and the capacity limitations

of a set of shared resources (e.g., machines), and

� achieve a satisfactory compromise with respect to a myriad of conflicting preferen-

tial constraints (e.g., meeting due dates, minimizing work-in-progress, and so on).

Two kinds of scheduling can be distinguished:

� predictive scheduling, which concerns an ability to e¤ectively predict shop behavior

through the generation of production plans that reflect both the full complexity of

the factory environment and the stated objectives of the organization, and

� reactive scheduling, which concerns an ability to intelligently react to changing cir-

cumstances, as the shop floor is a dynamic environment where unexpected events

(e.g., machine breakdowns and quality control inspection failures) continually force

changes to planned activities.

The simplest reactive methods invoked in response to changed circumstances are

the Right Shifter and Left Shifter. The Right Shifter implements a reactive method

that resolves conflicts by simply pushing the scheduled execution times of designated

manufacturing activities forward in time. The Left Shifter provides a similar method

that pulls manufacturing activities backwards in time (i.e., closer to being performed)

to the extent that current resource availability and temporal process constraints will

permit.

We next describe modeling of the ceramics factory from the interaction, informa-

tion, and behavior aspects of the viewpoint framework considering the schedul-
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ing principles presented earlier. We distinguish between the abstraction layers of

computation-independent domain modeling and platform-independent computa-

tional design.

The models of the conceptual interaction modeling viewpoint are Tropos actor dia-

grams, as explained in section 7.4. An actor diagram for the manufacturing case

study is depicted in figure 8.16. The actors represented in the diagram are organiza-

tional roles that are played by institutional agents.

The model reflects that an institutional agent playing the Customer role depends

on the institutional agent playing the Sales Department role for achieving its goal

Product set produced. This dependency is modeled as a goal dependency rather

than a task dependency, because the Customer is interested in achieving its goal

but does not care how the goal is achieved. The Customer also depends on the

Sales Department for achieving its Smooth service soft goal and for providing

the Proposal information resource. The Sales Department, in turn, depends on

the Customer for the Payment resource and for achieving the Customer happy soft

goal.

The Sales Department depends on the Production Department for performing the

Produce product set task. This dependency is modeled as a task dependency

rather than a goal dependency, because the Sales Department requests the Produc-

tion Department to produce the product set of a specific type based on its discussions

with the Customer. That product type uniquely determines the sequence of produc-

tion operations required for producing the product set. The Sales Department also

depends on the Production Department for information on the predicted due date

of accomplishing a product set, which is modeled as a resource dependency.

An institutional agent playing the Factory Management role relies on the Sales

Department for achieving the Market share maintained and increased soft goal

and on the Production Department for achieving the Orders satisfied on time

soft goal.

An institutional agent playing the Production Department role depends on indi-

vidual institutional agents playing the Resource Unit role for performing specific

production operations. For example, the Production Department depends on the

Moldmaking Unit for performing the Make and provide molds task and on the

Combustion Unit for performing the initial combustion, post-glazing combustion,

and post-decoration combustion production operations, which have not been speci-

fied in figure 8.16. Moldmaking Unit and Combustion Unit form subclasses of

Resource Unit. For optimal scheduling, the Production Department also depends

on the Resource Unit for information on the capacities, machine breakdowns, and

so forth of manufacturing resources, which is modeled as a resource dependency.

The model shown in figure 8.16 reflects that the Production Department depends

on the Completed Production Store, which is another subtype of Resource Unit, for
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performing the Store product set task. The Completed Production Store, in turn,

depends on the Customer for the Pick up product set task.

The conceptual behavior modeling viewpoint is represented by Tropos goal dia-

grams, which provide the rationale for modeling agent behaviors. An example goal

diagram for an institutional agent playing the Production Department role is depicted

in figure 8.17.

According to the model, the Production Department satisfies the Produce prod-

uct set task dependency by performing an internal Have product set produced

task. This task consists of nine subtasks, which have in turn been elaborated into

a number of lower-level subtasks. The first five subtasks, Create product set,

Instantiate production plan, Schedule production order, Propose accom-

plishing due date, and Receive confirmation or rejection, initiate a manu-

facturing process. A Propose accomplishing due date subtask, which is linked

with the Information on accomplishing due date resource dependency, serves

to provide the Sales Department with information on the predicted due date of

accomplishing a product set. A Schedule production order subtask reflects that

the due date of accomplishing the order is found by actually scheduling the order. A

Receive confirmation or rejection subtask reflects that the order with a pro-

posed due date may be accepted or rejected by the customer. The Receive rejec-

tion subtask of Receive confirmation or rejection express that if the order

is rejected, the production operations scheduled for its accomplishment will be

canceled.

If the order is accepted, the next four subtasks—Commit, Manage order, Have

product set stored, and Inform on order completion—will be performed. A

Commit subtask expresses that the Production Department commits toward the Sales

Department to have a product set produced. A Manage order subtask is connected

with the Perform production operation task dependency on the Resource Unit.

This generic dependency and the subtasks associated with it are refined for two spe-

cific resource units: Moldmaking Unit and Completed Production Store. A Manage

moldmaking subtask is connected with the Make and provide molds task depen-

dency on the Moldmaking Unit. Similarly, a Have product set stored subtask

is associated with the Store product set task dependency on the Completed Pro-

duction Store. A Check molds subtask is linked with the Information on molds

resource dependency on the Moldmaking Unit to reflect that this kind of informa-

tion is required for performing the task. Similarly, a Receive report on storing

product set subtask is related to the Information on completed product sets

resource dependency on the Completed Production Store.

The model includes a Schedule production operation subtask of Manage

order, which is associated with the Minimal tardiness soft goal. This soft goal

characterizes the way a production operation should be scheduled. Another
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important subtask of Manage order is Manage schedule optimization. It, in turn,

consists of Receive information on resources and Optimize order schedule

subtasks. As the information on resources, including their capacity changes, is

provided by di¤erent institutional agents playing the Resource Unit role, a Receive

information on resources subtask is connected with the resource dependency In-

formation on resources. As the model reflects, an Optimize order schedule

subtask serves to achieve the Optimal order schedule goal. Next-level subtasks

of Optimize order schedule—namely, Shift order left and Shift order

right—reflect the two basic schedule adjustment methods that were described

previously.

The conceptual information modeling viewpoint is captured by a conceptual infor-

mation model. The Tropos methodology represents a conceptual information model

as resources in goal models. We now elaborate on Tropos by providing a domain

model. The domain model represented in figure 8.18 describes the manufacturing do-

main of the ceramics factory. Representing the information aspect of the viewpoint

framework for the focus organization(s) can be regarded as creating an ontology.

The ontology—the conceptual information model—of the ceramics factory has

been developed according to the principles of the OZONE (O3 ¼ Object-Oriented

OPIS, where OPIS stands for Opportunistic Intelligent Scheduler) scheduling

ontology. The OZONE scheduling ontology can be described as a meta-model of

the scheduling domain. It uses the notions of Resource, ProductionOrder, Pro-

ductionOperation, and ProductSet to represent the manufacturing environment

in which scheduling takes place. More specifically, scheduling is defined in OZONE

as a process of feasibly synchronizing the use of resources by production operations

to satisfy production orders over time. A production order is an input request for one

or more product sets that designates the commodities or services required. Satisfac-

tion of production orders is accomplished by performing production operations. A

production operation is a process that uses resources to produce commodities or pro-

vide services. The use of resources and the performing of production operations are

restricted by a set of constraints.

Having covered conceptual domain modeling, we next move to platform-

independent computational design. We do this by mapping the modeling constructs

of the conceptual domain modeling layer to those of the platform-independent com-

putational design layer. The platform-independent computational design uses the

models from the RAP/AOR methodology.

The viewpoint of platform-independent interaction design addresses interaction

modeling. Before interactions can be modeled, agent types need to be decided. The

institutional agent CeramicsFactory belongs to the agent type Organization.

The agent CeramicsFactory consists of instances of the institutional agent type

OrganizationUnit, representing departments and other internal units of the
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factory. An institutional agent playing the Customer role is also of the Organiza-

tion type. The type of an agent and the role played by it are jointly represented

with the AgentType/Role notation.

Interactions between the institutional agents related to the ceramics factory are

modeled in the interaction model in figure 8.19. Interactions are rooted in dependen-

cies represented by the Tropos actor diagram of conceptual interaction modeling,

which is depicted in figure 8.16. A set of interactions realizes a goal dependency as a

goal delegation, a task dependency as a task delegation, and a resource dependency as

a resource acquisition. For example, the resource dependency between the Customer

and Sales Department for the Proposal information resource modeled in figure

8.16 becomes the acquisition of that resource by the Customer from the Sales

Department.

Most of the communicative action event types represented in the interaction model

in figure 8.19 belong to one of two message types: request, by which a sender

requests the receiver to perform a communicative or physical action or both of

them; and inform, which identifies a communicative action. In addition, there are

messages of types propose, accept-proposal, and reject-proposal with obvi-

ous meanings.

The interaction model represented in figure 8.19 consists of several interaction

frames. The first interaction frame is between the institutional agents playing the

roles Customer and Sales Department. It is based on the Product set produced

goal dependency shown in figure 8.16 by modeling the delegation of the goal by the

Customer to the Sales Department. The interaction frame under discussion starts

with a communicative action event type representing a request by the Customer to

Figure 8.18
The domain model of the ceramics factory
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provide it with the product set that is identified by the product code (?String) and

quantity required (?Integer). The following three communicative action event

types of this interaction frame comply with the Proposal resource dependency

between the roles Customer and Sales Department in the actor diagram in figure

8.16. They reflect the acquisition of the Proposal resource by the Customer. The

acquisition is modeled by a proposal by the Sales Department to provide the Cus-

tomer with the product set according to the production order created by the Sales

Department and its acceptance or rejection by the Customer. The instance of the

production order, which includes a specific due date, is described by the ?Produc-

tionOrder data element of the corresponding communicative action event. If

the proposal is accepted, the Sales Department commits on behalf of the Ceramics-

Factory toward the Customer to provide it by the due date with the product set

defined by the production order. A commitment of this type is satisfied by an action

event of the type provideProductSet(?ProductionOrder), which is coupled with

the corresponding commitment type. As explained in section 7.6, this commitment is

viewed as a claim by the Customer. After the product set has been produced, the

Sales Department first informs the Customer about the completion and the Customer

then issues to the Completed Production Store (an internal institutional agent of the

Sales Department) a request to release the product set identified by the corresponding

ProductionOrder. The Completed Production Store provides the Customer with

the product set in question, which reflects the Pick up product set task dependency

and the corresponding task delegation between the Completed Production Store and

Customer.

The interactions of the interaction frame remaining to be analyzed are based on

the dependency for the Payment resource between the Sales Department and Cus-

tomer. They realize the acquisition of the Payment resource by the Sales Depart-

ment. As is reflected by figure 8.19, the Sales Department first sends to the

Customer the invoice (?Invoice). This is accompanied by creating a claim for the

Sales Department against the Customer that it would pay for the product set accord-

ing to the invoice by a certain date. The claim is satisfied by paying for the product

set by the Customer.

The interaction frame between the Sales Department and Production Department

models how the Production Department manufactures the products for the Sales

Department. The types of interactions included in the interaction frame realize the

Produce product set task dependency between the Sales Department and Produc-

tion Department, which is modeled in figure 8.16. These interactions reflect the dele-

gation of the Produce product set task by the Sales Department to the Production

Department.

The first two communicative action event types of the interaction frame model the

acquisition of the Information on accomplishing due date resource by the Sales
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Department. The resource dependency between the Sales Department and Produc-

tion Department involving that type of resource is represented in figure 8.16. The

information about the predicted due date of accomplishing a production order is

obtained by requesting the Production Department to schedule the production order.

Accordingly, the first communicative action event type of the interaction frame mod-

els a request by the Sales Department to the Production Department to schedule the

production order that is described by the ?ProductionOrder data element of the

action event. Because neither scheduling a production order nor producing a product

set according to it can be immediately perceived by the Sales Department, both

are modeled as making true the respective status predicates isScheduled and

isCompleted of the corresponding instance of ProductionOrder.

After the Production Department has returned the scheduled production order to

the Sales Department, it receives from the Sales Department a request to either com-

plete or delete the production order. In the first case, a commitment/claim of the type

(achieve(isCompleted(?ProductionOrder) ?Date) is formed between the Pro-

duction Department and Sales Department. The satisfaction of this commitment/

claim is expressed by the corresponding achieve-construct type which expresses a

condition to be achieved.

The interaction frame between the Production Department and the Resource Unit

in figure 8.19 is based on the Information on resources resource dependency and

Perform production operation task dependency between the Production Depart-

ment and Resource Unit roles, as modeled in figure 8.16. By means of interactions of

the types included in the interaction frame, the Production Department delegates the

tasks of performing production operations to the corresponding resource units and

acquires from the resource units information on progress and scheduling conflicts

detected.

The first communicative action event type between the Production Department

and Resource Unit models a request by the Production Department to schedule the

production operation that is described by the ?ProductionOperation data element

of the action event. In addition to initial scheduling of a production operation, a

request of this type is also sent if a time conflict in the schedule is detected within

the Production Department.3 The second message type in the interaction frame

models the scheduling confirmation by the Resource Unit. The third message type

represents a request to delete the scheduled production operation described by

?ProductionOperation. A message of this type is sent only if the production order

including the production operation to be deleted has been rejected by the Customer.

3. This situation is represented by the same interaction frame, because interaction-frame diagrams do not
model the order in which action events of specified types occur.
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Messages of the types inform(isScheduled(?ProductionOperation)),

inform(isInProcess (?ProductionOperation)), and inform(isCompleted

(?ProductionOperation)) inform the Production Department about the status

changes of the production operation described by ?ProductionOperation. A mes-

sage of the type inform(isCompleted (?ProductionOperation)) may trigger

rescheduling of the remaining production operations required to satisfy the produc-

tion order by pushing them forward or backward in time when the production

operation is completed later or earlier than scheduled.

The viewpoint of platform-independent computational information design is for rep-

resenting the knowledge for the agents of the simulation system. The knowledge

model of the simulation system is represented as an agent diagram in figure 8.20.

The knowledge model refines the domain model for the manufacturing domain rep-

resented in figure 8.18. It describes object types of the ceramics factory and their rela-

tionships and ascribes them as knowledge items to agents of the corresponding types.

In the knowledge model, the concept ProductionOrder of the domain model is

represented by the object type ProductionOrder. Knowledge about Produc-

tionOrders is shared between the agent CeramicsFactory and agents of type

Organization/Customer. A ProductionOrder is characterized by a number of

attributes and the status predicate isCompleted. The most important attributes are

releaseTime, dueTime, productCode, and quantity. The attributes release-

Time and dueTime are respectively the earliest and latest time when the production

operations for producing the product set defined by the ProductionOrder can start

and end. The attributes productCode and quantity respectively specify the type

and number of the products in the product set requested. The internal representa-

tion of the object type ProductionOrder within the agent CeramicsFactory

satisfies one of the following status predicates: isPreliminary, isScheduled,

isProposed, isAccepted, isRejected, or isDelivered. The internal representa-

tion is required because these status predicates are relevant only from the perspective

of the factory.

In addition to the object type ProductionOrder, there is another shared object

type Invoice. Knowledge of its instances is shared between the CeramicsFactory

and agents of type Organization/Customer. The object type Invoice contains

attributes orderID, productCode, quantity, and price, among others. In addi-

tion, its internal representation within the OrganizationUnit/Sales Department

has the status predicates isPreliminary, isSent, and isPaid, which are relevant

only for the Sales Department of the factory.

The type of the product requested by the customer is modeled by the object type

ProductType. An instance of ProductType is identified by its attributes product-

Name (e.g., ‘‘co¤ee cup Kirke’’) and productCode (e.g., ‘‘22882’’). The internal

representation of the object type ProductType within the OrganizationUnit/

Production Department di¤ers from its base object type by a number of relation-
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ships to other object types. Among them, an ordered sequence of instances of

ProductionOperationType associated with a ProductType defines manufacturing

operations required for producing products of the corresponding type. An instance

of ProductionOperationType is characterized by the name of the manufacturing

operation type (operationName) and the average speed of performing an opera-

tion of the corresponding type (numberOfProductsPerHour). The latter includes

the time required for setting up the resources before a ProductionOperation of

the given type can actually start. This attribute is required for predictive schedul-

ing. There are associations of type PrecedenceInterval between instances of

ProductionOperationType. Each association specifies the lower bound and upper

bound of the temporal separation between production operations of two types. The

associations of type PrecedenceInterval are intended to provide a basis for

describing generic manufacturing processes, defining sets of possible sequences of

manufacturing operations.

Specific sets of products to be produced to satisfy production orders are repre-

sented as instances of the object type ProductSet, which corresponds to the concept

ProductSet of the domain model. Each ProductSet is associated with an ordered

sequence of instances of ProductionOperation, in which each ProductionOpera-

tion belongs to the corresponding ProductionOperationType.

The object type ProductionOperation corresponds to the concept Produc-

tionOperation in the domain model. A ProductionOperation can have the sta-

tus isUnscheduled, isScheduled, isInProcess, or isCompleted. An instance of

ProductionOperation is characterized by the following attributes: activityID,

typeName, earliestStartTime, quantity, startTime, and endTime. The identi-

fying attribute operationID contains the identifier of the production operation,

which is automatically assigned upon creation of the corresponding object. The

action of scheduling a ProductionOperation results in determining values for the

attributes startTime and endTime. The attribute earliestStartTime indicates

the earliest time at which the given ProductionOperation can be started, consider-

ing the endTime of the previous production operation scheduled and the release-

Time of the ProductionOrder. The object type ProductionOperation has a

specific internal representation within the OrganizationUnit/Production De-

partment. It refines the status predicate isScheduled by the internal predicate

hasTimeConflict(ProductionOrder), because a time conflict between scheduled

activities can be detected only within the OrganizationUnit/Production De-

partment. The predicate hasTimeConflict (ProductionOrder) can be defined

using the OCL.

The notion Resource of the domain model is reflected in the knowledge model

by the object type Resource. Each institutional agent of type OrganizationUnit/

Resource Unit has knowledge about objects belonging to at least one of the
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Resource’s subtypes ReusableResource and DiscreteStateResource. A

ReusableResource, like a set of ceramic molds, is a resource whose capacity

becomes available for reuse after the ProductionOperation to which it has been

allocated finishes. As Figure 8.20 reflects, an instance of ReusableResource is char-

acterized by two attributes: cumulativeUsageTimes and numberOfResources

with obvious meaning. DiscreteStateResource is a resource like a worker or

a kiln whose availability is a function of some discrete set of possible state

values (e.g., idle and busy). Each such resource is characterized by the attributes

numberOfResources and batchSize. The latter is the number of products that the

resource can process simultaneously.

The capacity of a resource is represented as an ordered sequence of intervals like

workshifts. Each interval is represented with the object type CapacityInterval.

Such an interval indicates the instances of ProductionOperation that are

anticipated to be consuming capacity within its temporal scope and the capacity

that remains available. The specializations of CapacityInterval, not shown in

the figure, are WorkMonth, WorkWeek, and WorkShift, which were implemented

in the simulation environment. Successful scheduling results in attaching a

CapacityInterval to one or more instances of ProductionOperation. In order

to determine whether a CapacityInterval can be allocated to the given Pro-

ductionOperation, the object type CapacityInterval possesses the predicate

isSchedulable(ProductionOperation). There are two versions of this predi-

cate, which are defined for the CapacityInterval’s two subtypes UnitCapac-

ityInterval and BatchCapacityInterval. They are included in the respective

two subtypes of DiscreteStateResource: UnitCapacityResource and Batch-

CapacityResource, where a UnitCapacityResource, like a worker, can process

only one product at a time; that is, its batchSize is 1, but a BatchCapacity-

Resource, like a kiln, can process simultaneously up to batchSize products. The

available capacity of a UnitCapacityInterval is characterized by the attribute

availableProcessingTime (e.g., per work shift); the available capacity of a

BatchCapacityInterval is represented by the attribute availableCapacity,

which describes the number of products that the resource is capable of processing at

a time. The predicates isSchedulable(ProductionOperation) for the object types

UnitCapacityInterval and BatchCapacityInterval are defined using OCL.

The modeling viewpoint of platform-independent computational behavior design

addresses the modeling of what functions the agent has to perform, as well as

modeling when, how, and under what conditions work has to be done. This view-

point for the manufacturing case study has been captured by AOR behavior dia-

grams. For example, the AOR behavior diagram for the OrganizationUnit/

Production Department agent type represented in figure 8.21 is based on the Tro-

pos goal model depicted in figure 8.17.
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In the AOR behavior diagram of figure 8.21, an activity of type ‘‘Process produc-

tion order’’ is started by rule R19 in response to receiving a message containing a re-

quest to schedule a production order. As is shown in the figure, an activity of type

‘‘Process production order’’ consists of sequential subactivities reflecting the corre-

sponding internal tasks modeled in the Tropos goal diagram in figure 8.17. Only the

activity type ‘‘Schedule production order’’ is refined in figure 8.21. Rule R23 included

in this activity type specifies a forEach loop, where upon the start of an activity

of type ‘‘Schedule production order,’’ its subactivity of type ‘‘Schedule production

operation’’ is performed for each object for which the precondition shown in the cal-

lout is true. This precondition makes sure that activities of type ‘‘Schedule produc-

tion operation’’ are performed only for the production operations associated with

the given production order, which is identified by the value of the input parameter

order. In addition, the expression isNextActivity(order) ensures the scheduling

of production operations in the correct order.

The subactivity ‘‘Request scheduling’’ in figure 8.21 sends an appropriate request

while the subactivity ‘‘Register scheduling’’ waits for and registers the scheduling of

the production operation. When a time conflict is detected, a production order is

rescheduled in a similar way that pushes all the production operations included in it

forward in time.

AOR behavior diagrams can be transformed into the programming constructs of

the JADE agent platform. This is how a simulation environment for the ceramics

factory was designed and implemented.

For performing simulation experiments, an onsite survey was first performed

at Tallinn Ceramics Factory. In the survey, the average speeds of performing pro-

duction operations of di¤erent types, as well as the minimal precedence intervals

required between the operations, were found and recorded. These values were used

in simulation experiments.

The simulation environment lends itself to both predictive and reactive scheduling.

Table 8.10 represents a production schedule for producing a product set of type

‘‘Molded ceramic product 22882.’’ The production schedule reflects that kilns have

a specific work cycle because of the requirements for cleanliness and safety—they

are in operation on Mondays, Wednesdays, and Fridays. Table 8.10 shows the start

and end times of production operations before and after detecting two time conflicts

within the OrganizationUnit/Production Department. As the table reflects, the

scheduled execution times of the ‘‘Initial elaboration’’ and ‘‘Painting’’ production

operations have been pushed forward in time because their preceding production

operations have taken more time than had been initially scheduled. In a similar man-

ner, reactions to the changes in the number of available resources could be simulated.

Note that because of the requirement to warrant a homogeneous quality of ceramic

products in a product set, a production operation—once started on a product set—

should be finished on the same day.
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A snapshot of the simulation environment is given in figure 8.22. The snapshot

shows the user interfaces for the agent representing the Customer and the agents of

the Production Department and several Resource Units of the factory.

8.3 Background

B2B e-commerce was proposed as an application area for agent technology in 1996

by Jennings et al. (1996). They used agents for negotiating and information sharing

between e-commerce parties.

Blake (2002) identifies the following areas where agents can be applied in B2B

e-commerce: strategic sourcing (requisition and vendor selection), electronic procure-

ment, supply-chain and workflow automation, and supplier relationship management.

Agent as a generic modeling abstraction also appears in the Architecture of the

World Wide Web (WWW) proposed in (W3C 2003). It defines an agent as a person

or a piece of software acting on the WWW information space on behalf of a person,

entity, or process.

Table 8.10
A schedule for the production process of the ‘‘Molded ceramic product 22882’’ product set before and after
the right shift (Taveter 2006b)

Production operation Start time End time New start time New end time

Molding Mon Aug 29
08:00

Mon Aug 29
12:32

Mon Aug 29
08:00

Mon Aug 29
12:53

Initial elaboration Tue Aug 30
12:33

Tue Aug 30
13:05

Tue Aug 30
12:54

Tue Aug 30
13:26

Engobe painting Mon Sep 05
08:00

Mon Sep 05
13:20

Mon Sep 05
08:00

Mon Sep 05
13:42

Initial combustion Wed Sep 07
08:00

Wed Sep 07
16:00

Wed Sep 07
08:00

Wed Sep 07
16:00

Elaboration Fri Sep 09
08:00

Fri Sep 09
08:32

Fri Sep 09
08:00

Fri Sep 09
08:37

Painting Fri Sep 09
08:33

Fri Sep 09
11:53

Fri Sep 09
08:38

Fri Sep 09
11:58

Glazing Mon Sep 12
08:00

Mon Sep 12
13:20

Mon Sep 12
08:00

Mon Sep 12
13:20

Post-glazing
combustion

Wed Sep 14
08:00

Wed Sep 14
16:00

Wed Sep 14
08:00

Wed Sep 14
16:00

Decoration Fri Sep 16
08:00

Fri Sep 16
10:00

Fri Sep 16
08:00

Fri Sep 16
10:00

Post-decoration
combustion

Mon Sep 19
08:00

Mon Sep 19
09:30

Mon Sep 19
08:00

Mon Sep 19
09:30

Packaging Tue Sep 20
09:31

Tue Sep 20
10:19

Tue Sep 20
09:31

Tue Sep 20
10:19
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During the last decade, standards for B2B e-commerce have been proposed for

various industry areas, such as RosettaNet (http://www.rosettanet.org) for electron-

ics and information and communication technology industries and papiNet (http://

www.papinet.org) for forest and paper industries. An industry-independent stan-

dard, ebXML (Electronic Business using eXtensible Markup Language, http://

www.ebxml.org) has been proposed by the Organization for the Advancement

of Structured Information Standards (OASIS). The same organization has also

proposed a standard for dynamic discovery of Web Services—UDDI (http://www

.uddi.org). There are also standard proposals for business process modeling, such

as BPMN (http://www.bpmn.org) and XPDL (http://wfmc.org/xpdl.html). Even

though the standard proposals mentioned do not explicitly employ the notion of

agent, they could benefit from agent-oriented modeling.

The Plug-and-Trade Business-to-Business electronic commerce (Plug-and-Trade

B2B) project described in section 8.1 was conducted at the Technical Research

Figure 8.22
A snapshot of the simulation environment. This figure appears in Taveter and Wagner 2006. Copyright
2009, IGI Global, www.igi-global.com. Posted by permission of the publisher.
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Centre of Finland in 2003–2004. Three major Finnish companies participated in the

project. An interesting feature of the project not addressed in section 8.1 was the

usage of ‘‘internal’’ Web services for providing the software agents with uniform

interfaces to enterprise systems of the company.

The case study of B2B e-commerce explained in this chapter was first presented

by Taveter (2004b). Two other publications have focused on di¤erent aspects of the

case study: Taveter 2005a, on representing and reasoning about trust by agents, and

Taveter 2006a, on the markup language interpreted by agents. The markup language

is represented as an XML Schema (http://www.w3.org/XML/Schema). The model-

ing aspects of the case study have been treated by Taveter and Wagner (2005). The

CONE tool, which forms the basis for the business process modeling tool used in the

case study, has been described by Taveter (2005b). Taveter (2005a) complemented

the original RAP/AOR models of the B2B e-commerce domain by goal and role

models of ROADMAP. The goal models have been influenced by similar goal models

presented by Rahwan, Juan, and Sterling (2006).

The subject of the manufacturing case study overviewed in this chapter—Tallinn

Ceramics Factory—is described on its Web page http://www.keraamikatehas.ee.

The term ‘‘modeling by simulation’’ for manufacturing systems was proposed by

Tamm, Puusepp, and Tavast (1987) two decades ago. Simulation can be considered

a method for implementing a model over time (Smith 1998). Rothwell and Kazanas

(1997) have defined a simulation as an ‘‘artificial representation of real conditions.’’

Agent-based simulation of production environments has been applied by, for exam-

ple, Ra¤el (2005) for designing Automatically Guided Vehicle (AGV) Transport

Systems and by Labarthe et al. (2003) for simulation of supply chains. Tools for sim-

ulation of manufacturing processes have been proposed by Parunak, Baker, and

Clark (1997) and Vrba (2003).

A general scheduling solution utilized in the manufacturing case study described in

this chapter is based on the works by Ow, Smith, and Howie (1988); Smith et al.

(1990); and Smith (1995); the method proposed in them can be naturally modeled in

an agent-oriented way and simulated by software agents.

The OZONE scheduling ontology, which forms the foundation for the domain

model of the ceramics factory modeled and simulated, was proposed by Smith and

Becker (1997).

The transformation of goal, task, and resource dependency into the respective goal

and task delegation and resource acquisition has been proposed by Guizzardi (2006).

The case study of modeling and simulation of the ceramics factory described in

this chapter was introduced by Taveter and Hääl (2002). It was described in more

detail by Taveter (2004a and 2006b).
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9 Intelligent Lifestyle Applications

The previous chapter showed how agent-oriented modeling could be applied in an

industry setting. This chapter looks at agent-oriented modeling in a di¤erent context:

the intelligent home domain. The case studies in this chapter are less mature, and

were developed not in response to a direct demand for a piece of software, but for a

variety of research and teaching purposes.

The chapter is organized as follows. Section 9.1 discusses some agent-oriented

models that would be suitable for an intelligent home. Leon has found over several

years of teaching that a smart home works well as a domain for student projects. The

two main examples shown in this section are an agent greeting scenario and an in-

truder handling scenario, which have been expanded into a set of models. Parts of

the greeting and intruder detection scenarios have been prototyped in a software

engineering student team project. Section 9.2 discusses agent-oriented models for a

device for mediating intimacy, an example arising from a research project. The mod-

els facilitated interesting conversations between the members of the research team

who had widely varying technical backgrounds. The use of socially oriented quality

goals was particularly interesting, and has led to a follow-up research project. The

device was not built, however. Section 9.3 discusses an agent-oriented design of an

intelligent music player. It was developed as a student project, and is presented

in the spirit of encouraging other students and developers to experiment with agent-

oriented modeling. Section 9.4 gives some background.

9.1 Intelligent Homes

Chapters 1 and 4 discussed the smart home domain, in which appliances interoperate

seamlessly for the benefit of the home occupants. Themes within the intelligent home

are ubiquity, communication, and automation. These themes are more general than

just the home. We can talk about intelligent cars, intelligent o‰ces, intelligent

devices, and we use the overarching term here—namely, intelligent lifestyles. As

mentioned in chapter 1, it is easy to envisage an intelligent home with separate agents



working in concert to control subsystems such as air conditioning, entertainment,

and security. For example, lights might be turned on automatically when the owner

came home. They might brighten or dim to fit the occasion or to match the outdoor

light. Speakers might be distributed through the house to allow music to follow you

from room to room.

Several intelligent homes are already in existence. An example is the home of the

billionaire Bill Gates, a very modern twenty-first-century house in the Pacific lodge

style, with advanced electronic systems everywhere. Visitors to the Bill Gates house

are tracked by a microchip that is given to them upon entrance. This small chip sends

signals throughout the house, and a given room’s temperature and other conditions

will change according to preset visitor preferences.

We believe that agent-oriented modeling is suitable for capturing requirements for

an intelligent home, a complicated distributed sociotechnical system. The require-

ments models can be mapped into designs. We give a set of models for two scenarios.

The first is greeting a person arriving at the home in a manner appropriate to the

time of day and the person’s company. The second is a multiagent security system

for tracking people in the house. If a particular person is not recognized by the sys-

tem, an intruder alert could be initiated whereby the home owner and the police were

contacted, complete with photo of the intruder. Any visitors or tradespeople sched-

uled to visit the house could be warned to stay away. The ROADMAP and RAP/

AOR methodologies overviewed in section 7.6 were loosely followed for modeling

the intelligent home scenarios.

We present the greeting subsystem as if we were following an agent-oriented meth-

odology. Recall the greeting scenario in an intelligent home briefly discussed in sec-

tion 4.6. Figure 4.8 is a goal model of a greeting scenario constituting the conceptual

behavior modeling viewpoint. It includes the roles Greeter and Greetee, which are

attached to the top-level goal, ‘‘Greet.’’ Additionally, there is the Evaluator role.

An agent that performs the role monitors and reports on the satisfaction of the per-

son being greeted.

Next, we move to the conceptual interaction modeling viewpoint, where the roles

required for achieving the goals are modeled in terms of their responsibilities and

constraints. Responsibilities include the interactions required between the agents

playing the roles. Responsibilities are rooted in and extend goals. Constraints are

typically based on quality goals. Table 9.1 models the Greeter role. The Greetee

and Evaluator roles are modeled as tables 9.2 and 9.3.

We next move to the conceptual information modeling viewpoint, where we model

domain knowledge to be represented in the system. Figure 9.1 depicts the domain

model for a greeting scenario. As explained in chapter 3, domain models represent

domain entities and roles, and relationships between them. According to the model

shown in figure 9.1, an agent playing the Greeter role analyzes a person description,
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which may identify a greetee. A person description is modeled as the Person-

Description domain entity. A greeting, represented as the Greeting domain

entity, is articulated by the greeter and is perceived by the greetee. The greeting is

determined by its context, which is modeled as the Context domain entity. An

entity of type Context describes the current time and the activities in which the

greetee is currently participating, such as having a business lunch or family dinner,

doing exercises, and so on. Each greeting is paired with a response. The greeter

receives the feedback provided by an agent playing the Evaluator role. Response

and Feedback are modeled as the corresponding domain entities.

Table 9.1
The role model for Greeter

Role name Greeter

Description The Greeter role is responsible for greeting agents, referred to as greetees, entering
the environment.

Responsibilities Notice greetee.
Recognize greetee.
Formulate greeting.
Articulate greeting.
Register response to the greeting.

Constraints The greetee should be accurately noticed and identified.
Greeting should be articulated in a timely manner.
Formulation must be appropriate to the greetee and the context.

Table 9.2
The role model for Greetee

Role name Greetee

Description The entrant to the environment.

Responsibilities To be noticed by the greeter.
Perceive greeting.
Reply to the greeting.

Constraints —

Table 9.3
The role model for Evaluator

Role name Evaluator

Description The Evaluator role is responsible for evaluating the greeting.

Responsibilities Observe greeting.
Evaluate greeting.
Issue evaluation report.

Constraints Evaluation must be impartial.
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We have now covered all the viewpoints of conceptual domain modeling. The next

layer is platform-independent computational design. We first map roles to agent

types from the computational interaction design viewpoint.

There are the following three roles in a greeting scenario: Greeter, Greetee, and

Evaluator. Having an agent greeting itself makes little sense. So we map the Greeter

role and the Greetee role to di¤erent agent types. We map the Greeter role to the

GreeterAgent type. Manmade agents of this type would form part of an intelligent

home system. We assume that an agent being greeted is a human agent, although in

a really futuristic home we can envision a system that would greet a cleaning robot

on duty. We therefore map the Greetee role to the Person agent type. With these

assumptions, the only remaining issue is which agent takes on the Evaluator role.

One can envisage the agent playing the Greeter role, or the agent playing the Greetee

role, also playing the Evaluator role. To warrant impartial evaluation, which was

expressed as a constraint for the Evaluator role, we choose to map the Evaluator

role to another manmade agent type, EvaluatorAgent. The role mapping for a

greeting scenario was simple. In the context of a more complex system, role mapping

requires much more consideration.

After having decided the agent types, we next model interactions between agents.

Figure 9.2 represents a prototypical interaction sequence between agents of the three

Figure 9.1
The domain model for a greeting scenario
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types, also showing the role being played by each agent. In addition to the inter-

actions, the model also includes some behaviors of individual agents. The notation

used by the figure is a derivation of UML sequence diagrams.

Next, we move to the computational information design viewpoint, where we model

knowledge by agents of each of the three types. In other words, we map the global

knowledge that was represented from the conceptual information modeling view-

point to knowledge held by individual agents. As mentioned in chapter 3, agents

can have two kinds of knowledge: shared knowledge and private knowledge. In a

greeting scenario, knowledge about particular instances of greeting and response

is shared between the two agents of types Person and GreeterAgent involved

and the agent of type EvaluatorAgent, who is to evaluate the greeting. Relevant

domain entities from the domain model are Greetee, Context, and Feedback.

In the computational information design model, the knowledge about Greetee,

Context, and Feedback objects is shared between agents of the GreeterAgent

and EvaluatorAgent types.

There is a lot of relevant knowledge for the greeting scenario, much of it common

sense. It is well known in AI that reasoning about commonsense knowledge is di‰-

cult. Indeed expressing all the knowledge that an agent would need to ensure that a

Figure 9.2
Prototypical interactions in a greeting scenario
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greeting is appropriate is challenging, and almost certainly infeasible. The cultural

di¤erences alone defy complete and correct expression.

Nonetheless, to give a flavor of how knowledge might be modeled, we give some

simple Prolog facts and rules. For example, we can express that di¤erent classes of

people—for example, family, friends, and visitors—may come to the house. Each

class could be listed as greetees, with particular individuals identified as family or

friends:

greetee(X) :- family(X).

greetee(X) :- friend(X).

greetee(X) :- visitor(X).

family(‘John’).

friend(‘Alice’).

We can model di¤erent types of family members and friends:

family(X) :- parent(X).

family(X) :- sibling(X).

friend(X) :- colleague(X).

We might also specify a Prolog rule expressing that a person is a visitor if he or she

is not a family member or friend:

visitor(X) :- not(family(X)), not(friend(X)).

The system is capable of producing greetings using various phrases. The greeting

phrases that the system can say need to be listed. The types of greeting should also

be listed. The Prolog facts might include

greeting_phrase(‘hello’).

greeting_phrase(‘good day’).

greeting_phrase(‘good morning’).

greeting_phrase(‘welcome’).

greeting_type(formal).

greeting_type(informal).

greeting_type(welcome).

greeting_type(insult).

The attributes of the greeting could be derived from knowledge of the greetee and

her company and from the context. An overly simple example might have a family

member be greeted by a friendly phrase, which might be expressed as follows:

greeting_greetee(G,P) :-

family(G), greeting_phrase(P), friendly(P).
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The following rule expresses that if the time is morning and a family member

returns from jogging, the appropriate greeting is articulated:

greeting_greetee(G, ‘Good morning, hope you feel fresh now’) :-

family(G), time_context(morning), activity_context(jogging).

This last rule uses the notion of context, which is not clearly defined, but brings

us to our next consideration. We also need to model the interface to a service that

provides contextual information to a greeter agent upon request. From the concep-

tual information modeling viewpoint, we introduced the Context domain entity.

Without going into any additional details here, we can assume that the contex-

tual knowledge is embodied in an object of type Context that is returned by the

getContext(Greetee) operation of the ContextGateway service object.

After having decided upon agent types and knowledge contained by agents of

these types, we turn to the computational behavior design viewpoint by modeling

agent behaviors. We use for coarse-level behavior modeling the RAP/AOR method-

ology described in section 7.6. Figure 9.3 depicts an AOR diagram modeling the

behaviors of agents of types GreeterAgent and EvaluatorAgent.

Unlike in the previous chapter, we do not describe the behavior diagram in de-

tail, but instead let the reader observe that the greeting activity described in the

diagram consists of identifying the person, querying the context, formulating the

greeting, articulating the greeting, and registering the response. Communication

is needed with the EvaluatorAgent to indicate when the greeting has started and

to receive feedback.

We now model intruder handling, another scenario of an intelligent home. This

example has been used for several years in agent classes at the University of Mel-

bourne, and is universally accessible to a wide audience. It even allows for perfor-

mance to make a class more entertaining or interactive.

Intruder handling is closely related to greeting. If the person noticed is not recog-

nized as a family member, friend, or visitor, he or she is deemed to be an intruder

invoking the following relevant scenario. Suppose that a stranger appears in the

house while the homeowner, whom we named Jane in section 4.6, is away. After

capturing the image of a person, the security agent first checks the database of the

people known by the system to find out that the stranger is neither a family member

nor a friend. The security agent may also forward the image to Jane and ask whether

she knows the person. If the person is not known, family members and scheduled

visitors are warned through the most appropriate channel—for example, a mobile

phone or a PC at work—to stay away temporarily. Meanwhile, the security agent

cooperates with an agent of the police department to report the incident and provide

the image so that the suspect can be identified.

Intelligent Lifestyle Applications 287



Figure 9.3
A behavior diagram for a greeting scenario
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The conceptual behavior modeling viewpoint of the intruder handling scenario is

given by a goal model. The goal model in figure 9.4 captures the motivational sce-

nario described previously. We briefly describe the goal model. The overall goal of

the subsystem is to handle intruders, expressed by the overall goal ‘‘Handle in-

truder.’’ A quality goal is attached to the root goal to express that the response needs

to be appropriate and timely. Three roles are indicated as relevant to the overall

goal: Security Manager, Intruder, and Evaluator. The overall goal has been elabo-

rated into four subgoals: ‘‘Notice,’’ ‘‘Identify,’’ ‘‘Respond,’’ and ‘‘Evaluate.’’ Two

quality goals, ‘‘Timely notice’’ and ‘‘Accurate identification,’’ are attached respec-

tively to the ‘‘Notice’’ and ‘‘Identify’’ subgoals. The ‘‘Respond’’ subgoal in turn has

been elaborated into three subgoals: ‘‘Inform police,’’ ‘‘Inform visitors,’’ and ‘‘In-

form owner.’’ To accomplish these, the additional roles of Police, Visitor, Scheduler,

and Owner have been added.

Subsequently, the roles identified by the goal model are described by role models,

which belong to the conceptual interaction design viewpoint. Table 9.4 represents the

role model for the Security Manager role shown in figure 9.4. The model lists the

Figure 9.4
A goal model for intruder handling
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responsibilities of an agent playing the Security Manager role and the constraints

that apply to the agent exercising these responsibilities. Tables 9.5, 9.6, 9.7, 9.8, and

9.9 similarly contain the role models for the Scheduler, Visitor, Owner, Police, and

Evaluator roles.

We next move to the conceptual information modeling viewpoint, where we decide

and represent the domain entities relevant for an intruder handling scenario. The do-

main model for an intruder handling scenario is shown in figure 9.5. Central is the

PersonDescription domain entity that represents the visual information—and

possibly also voice information—captured about the person detected by the security

manager. The security manager analyzes a person description. If the person descrip-

tion does not identify a person known by the system, the person is considered to be

an intruder. In this case, the person description is forwarded to the police, who may

be able to identify a concrete suspect. To find the service people authorized to be in

Table 9.4
The role model for Security Manager

Role name Security Manager

Description The Security Manager identifies and responds to an intruder detected in the house.

Responsibilities Detect the presence of a person in the environment.
Take an image of the person.
Compare the image against the database of known people.
Contact the police and send the image to them.
Check the house schedule for planned visitors.
Notify each visitor expected that day to stay away.
Inform the owner that the police are on their way and the visitors have been
warned not to enter the house.

Constraints Photos of the owner and visitors need to be provided to the system in advance.
A subject to be detected needs to be seen within the camera’s image area.
To receive messages, the owner and visitors must be accessible by electronic
means of communication.

Table 9.5
The role model for Scheduler

Role name Scheduler

Description The Scheduler role maintains a schedule for the home.

Responsibilities Maintain a schedule of events.
Determine event priorities.
Detect event conflicts.
Notify the owner about forthcoming events.
Notify the owner about event conflicts.
Answer queries on the schedule.

Constraints Events can be entered or changed by the owner or by a person authorized
by the owner.
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Table 9.6
The role model for Visitor

Role name Visitor

Description The Visitor visits the home.

Responsibilities Provide the owner with a recent photo.
Register a visit with the owner.
Update the details of the visit with the owner if necessary.
Cancel the visit with the owner if necessary.
Receive from the security manager a request to stay away.

Constraints To receive a request to stay away, the visitor must be accessible by electronic
means of communication.

Table 9.7
The role model for Owner

Role name Owner

Description The Owner owns the home.

Responsibilities Insert the photos of the visitors, family members, and himself/herself into the system.
Register all scheduled visits with the scheduler.
Update the details of a visit with the scheduler if necessary.
Cancel the visit with the scheduler if needed.
Receive from the security manager a request to stay away.

Constraints The schedule must be kept up to date.
To receive a request to stay away, the owner must be accessible by electronic means
of communication.

Table 9.8
The role model for Police

Role name Police

Description An institutional role for keeping law and order.

Responsibilities Receive notification about the intrusion.
Notify the sta¤ on duty in the proximity of the intrusion site.
Identify the intruder from the database of suspects.

Constraints The sta¤ on duty must be notified immediately.
For identification, notification must be accompanied by a photo.

Table 9.9
The role model for Evaluator

Role name Evaluator

Description The Evaluator role evaluates the process of intruder handling.

Responsibilities Observe intruder handling.
Evaluate intruder handling.
Issue evaluation report.

Constraints Evaluation must be impartial.
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the house, like plumbers and electricians, and the scheduled visitors to be warned to

stay away, the security manager consults the house schedule, which has been mod-

eled as the HouseSchedule domain entity. An entity of the HouseSchedule type

contains the start and end times of various activities that are to take place in the

house, such as visits by friends and colleagues, family celebrations, and calls by

service people. The schedule is created by the owner.

The domain entities related to the evaluation of intruder handling are omitted

from the domain model depicted in figure 9.5 and from all the subsequent models,

because intruder handling is evaluated in essentially the same way as greeting.

Having covered all the viewpoints of conceptual domain modeling, we move to the

abstraction layer of platform-independent computational design. The first modeling

Figure 9.5
The domain model for intruder handling
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activity to be performed here is mapping roles to agent types from the computational

interaction design viewpoint.

Some roles in an intruder handling scenario are obviously performed by people.

Such roles are Intruder, Visitor, and Owner. In particular, we have chosen to map

the Visitor and Owner roles to human agent types, because their performing agents

are not involved in complex information processing. Therefore, all that is required of

a human performing one of these roles is to have a device enabling simple informa-

tion input and output, such as a Blackberry or mobile phone.

As most of the information processing in the intruder handling scenario is carried

out by an agent playing the Security Manager role, this role should undoubtedly be

mapped to the manmade agent type SecurityAgent. To meet the ‘‘appropriate

and timely response’’ quality goal, the Police role should likewise be mapped to the

PoliceAgent type of automated manmade agents. Our mappings result in human

agents of type Person playing the Intruder, Visitor, and Owner roles, and manmade

agents of types SecurityAgent and PoliceAgent playing the Security Manager

and Police roles, respectively.

Having decided the agent types, one might want to sketch interactions between

agents of these types in an intruder handling scenario. This task can be done in the

form of an interaction-sequence diagram, as depicted in figure 9.6, which models a

prototypical sequence of interactions between agents in an intruder handling sce-

nario. According to the interaction model, an intruder handling scenario starts by a

sensor-aided detection of a physical move by an intruder that is perceived as an event

by the SecurityAgent. This is followed by messages from the SecurityAgent to

the PoliceAgent, visitors, and the owner.

Having modeled from the computational interaction design viewpoint, we need to

model from the viewpoints of computational information design and computational

behavior design. What modeling from these viewpoints e¤ectively means is filling out

the agent boxes shown in figure 9.6 with the knowledge and behavior modeling

constructs for the respective agent types. A combined knowledge and behavior model

for the intruder handling scenario is given in figure 9.7.

From the computational information design viewpoint, we map the domain entities

from the domain model given in figure 9.5 to the knowledge items of individual agent

types. As shown in figure 9.7, the PersonDescription object type is shared between

agents of the SecurityAgent and PoliceAgent types, because the intruder descrip-

tion is the main information exchanged between those agents. However, the notation

used in the figure does not imply that all the instances of PersonDescription are

shared between a SecurityAgent and PoliceAgent. The figure also shows that

both agents have private knowledge of instances of the respective Subject and

Suspect object types.
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From the same viewpoint, we also model the interface to the Scheduler

service. The getSchedule() operation of that service returns an object of the

HouseSchedule type, containing the house schedule for the current time. The

HouseSchedule domain entity was first modeled in the domain model shown in

figure 9.5.

Going to the computational behavior design viewpoint, figure 9.7 combines the

knowledge model with the behavior model of an intruder handling scenario. In the

behavior model, the outermost activity is started by rule R1, which is triggered by

an action event of the move(?PersonDescription) type. This modeling construct

represents a physical move performed by an intruder that is perceived as an event

by the security agent. The precise mechanism of perceiving is of no interest at

this stage of a systems engineering process. Rule R1 also creates an instance of the

PersonDescription object type within the security agent.

A ‘‘Handle intruder’’ activity starts an ‘‘Identify intruder’’ subactivity that trig-

gers rule R2. This rule prescribes checking the Boolean value returned by the

isKnown(PersonDescription) predicate attached to the Subject object type.

If the predicate evaluates to false—that is, if the person described by the

PersonDescription is not recognized—an activity of type ‘‘Respond’’ is started.

This activity consists of sequential subactivities of types ‘‘Inform police,’’ ‘‘Lock the

doors and windows,’’ ‘‘Inform visitors,’’ and ‘‘Inform owner’’ types. These subactiv-

ity types have not been further refined in the figure. The subactivity type ‘‘Lock the

doors and windows’’ is required to facilitate arrest. The subactivity type ‘‘Inform

visitors’’ involves the invocation of the Scheduler service.

Note that most activity types modeled in figure 9.7 correspond to the goals repre-

sented in the goal model in figure 9.4. In the given case study, an activity of some

type achieves a goal of the respective type. For example, an activity of the ‘‘Re-

spond’’ type achieves a ‘‘Respond’’ goal.

A system, whose two features were described in this section, was prototyped in the

Intelligent Lifestyle project. The project was conducted in 2004 by a team of final-

year undergraduate software engineering students at the University of Melbourne.

For platform-dependent design, the project team identified two feasible ways for de-

signing the multiagent system. One way is to use a vertical layered architecture where

information is passed from low-level input devices to upper layers where that infor-

mation is converted to a high-level representation format to be used by agents and

processed by the agents. The other way is to use a horizontal design where agents

provide services relating to their interests to other agents. In this way, agents can ac-

cess situational context from a variety of agents, each of which deals with a specific

kind of context. However, in such a peer-to-peer architecture, there is little control

over contextual information, which makes it hard to process conflicting information

or achieve information accuracy. It is also di‰cult to consider the history of informa-
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tion within such a design. In addition, such design cannot handle large numbers of

agents—for example, more than a hundred agents—as it is complicated to organize

agents with diverse interests in a hierarchy.

Considering the two options, therefore, the project team decided to adopt a verti-

cal, two-tiered architecture consisting of an application tier and a context tier. The

context tier provides the application tier with the information gathered from input

devices. If needed, that information is further processed by the context tier before

being passed to the application tier. The application tier uses that information to

provide services to both humans and software agents. Humans interact with the ser-

vices of the application tier through communication devices.

The agents of the application tier need to communicate with each other. The proj-

ect team decided that designing a communication mechanism from scratch would be

beyond the scale of the project. It was decided to choose an agent framework. To

that end, three freely available frameworks—JADE (see section 5.5), Open Agent

Architecture (OAA), and 3APL (see section 5.3)—were chosen for detailed evalua-

tion. Out of the three frameworks considered, the JADE agent platform was chosen

due to its stability, language features, and simplicity. Also, as pointed out in section

7.6, the modeling constructs of the RAP/AOR methodology, used for the case study

of intelligent home in this section, can be transformed in a straightforward manner

into the implementation constructs of JADE.

9.2 Secret Touch

The second of the case studies in this chapter comes from a di¤erent source than the

first. The University of Melbourne was involved in a project entitled ‘‘Mediating

Intimacy: Strong-Tie Relationships’’ through its participation in the Smart Internet

Technology Cooperative Research Centre in 2004. The project was specifically inter-

ested in how couples may use technology and the Internet to mediate intimacy to

help them to feel closer while physically apart.

In the project, six couples were studied using ethnographic techniques. Workbooks

and diaries produced by the six couples documented interactions the couples had

throughout the day. From this data, information systems researchers created scenar-

ios suggesting technological devices to assist in mediating intimacy.

One of the scenarios developed was Secret Touch. Secret Touch was conceived as

a software system on a small pocket device that communicated wirelessly over the

Internet with a partner’s similar device. Partners in an intimate relationship could

thus interact discretely, and remotely, through physically moving the device in their

pocket, causing their partner’s device to move in an identical fashion.

The workbooks and documents produced by the couples and the designs produced

by the researchers did not obviously translate into processes and artifacts used in
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traditional software engineering methodologies. At this stage, a new project was ini-

tiated within the Smart Internet Technology Cooperative Research Centre involving

agent-oriented modeling. The intent was to see whether agent modeling could be

used to capture requirements and design for devices such as the Secret Touch in

social settings.

The project started as a series of discussions4 between an agent-oriented modeling

team and information systems researchers. The motivation-level and design-level

models presented shortly in this section were developed iteratively interleaved with

the discussions. Before presenting the models, we highlight two notable aspects of

the discussions.

The first aspect concerns the use of abstract quality goals. From the perspective of

the couple who were responsible for the Secret Touch scenario, it was necessary that

the use of the Secret Touch device required an element of flirtatiousness. Flirting was

duly added as a quality goal. Perhaps unsurprisingly, the discussants did not agree on

what constituted flirting behavior. However, after considerable entertaining conver-

sation, it was concluded that in flirting there needed to be an element of both risk

and playfulness. Neither of these qualities can be easily quantified, but were noted

in the motivation layer models. The proposed design models were assessed, albeit in-

formally, as to whether they maintained a suitable level of risk and play. This use of

abstract quality goals was considered useful by the team and was di¤erent to other

methods of using quality attributes. In the following models, the quality goals are

mentioned without the surrounding conversations.

The second notable aspect from the discussions was determining the amount of in-

teraction that should be allowed between the couples. There was diversity of opinion

as to whether the device should allow only a simple response or whether complicated

sequences of manipulations of a Secret Touch device should be allowed. It was

observed that network bandwidth and device design would a¤ect the complexity of

the device response. In discussing these trade-o¤s, it was quickly realized that one

could design a range of Secret Touch devices. Four devices were considered during

the project. Each of the di¤erent devices had di¤erent motivational goals.

The simplest of the Secret Touch devices, Flirt, is envisaged as transforming all

device movements into touches; that is, when one partner moves the device, it is

regarded by the other as a touch. The touches are instantaneously sent to the part-

ner’s device, as well as immediately transforming all touches received into move-

ments. Simultaneously incoming and outgoing movements would be resolved by the

device itself, which then moves in a direction reflecting the vector sum of both

4. The discussions were most interesting and have led in fact to ongoing research.
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touches—potentially a real tug-of-war situation examined at some detail in the

design discussion.

The discrete version, Discrete Flirt, enables partners to engage in a turn-taking

dialogue. It allows a device to be switched o¤ or set to passively receive touches and

replay them later—for example, when the important meeting at work is over. Allow-

ing the partner that much control fundamentally changes the motivation.

The third device envisaged, Fiddler’s Choice, is an intelligent, learning device. A

partner may allow the device to respond if unable to personally engage. Fiddler’s

Choice can also be used solo, in which the partner is actually a manmade agent.

The final product in the range, Guessing Game, is designed for playing hard and

fast in personal relationships. There is no longer a set partnership or connection be-

tween two devices. Instead a group of devices is available, which may be shared by

an intimate couple or may reflect multiple partners. An open, dynamic system

reflects that devices may randomly appear and disappear from the game.

The ROADMAP methodology overviewed in section 7.6 was followed for model-

ing the Secret Touch case study. A motivational scenario for the case study is pre-

sented in table 9.10. We concentrate on the Flirt device here. However there was

some discussion of how an overall goal model could cover a range of devices.

We give a goal model corresponding to motivational scenario of table 9.10. The

goal model was drawn with the REBEL tool. The notation for the REBEL tool is

slightly di¤erent than given previously in chapter 7, where the goal models were

drawn using Microsoft Visio. Table 9.11 contains the notation. REBEL was also

used for the Smart Music Player overviewed in the next section.

The goal model depicted in figure 9.8 is the overall goal model for flirting. Two

Partner roles are responsible for the goal ‘‘Flirt,’’ which by nature is ‘‘Risky’’ and

‘‘Playful,’’ the associated quality goals. The ‘‘Flirt’’ goal has two subgoals: ‘‘Initiate

flirt’’ and ‘‘Respond to flirt.’’ Initiating the flirt by an agent playing the Touch Giver

role involves translation of the device movement into a touch, reflected by the

‘‘Translate movement into giving touch’’ subgoal. Similarly, responding to the flirt

Table 9.10
A motivational scenario for Secret Touch—Discrete Flirt

Scenario name Secret Touch—Flirt

Scenario description Both partners of a couple reach in their pockets during work.
She feels that he is fiddling with the device.
She turns the device in the other direction, engaging in playful activity.

Quality description Couples want to communicate privately.
Feeling each other.
Being playful, with an element of risk.
Individuals like fiddling with toys.
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by an agent playing the Touch Acceptor role involves translation of the device move-

ment into a touch, reflected by the ‘‘Translate movement into responding touch’’

subgoal. The roles associated with both the latter two subgoals are Touch Perceiver

and Device Manager.

Figure 9.9 models the Device Manager role described by the REBEL tool, which

manages interaction between the software system and the physical device. The De-

vice Manager is responsible for translating touches received into physical movements

and vice versa. Constraints include being accurate and having a finite capacity to

perceive.

System design layer models were developed using the Prometheus methodology

discussed in section 7.5. The design for the Flirt system contains two agents of the

respective types Intimacy Handler and Device Handler. The Intimacy Handler

agent enacts two roles: Touch Giver and Touch Acceptor. The Device Handler

agent enacts two roles: Device Manager and Touch Perceiver.

Figure 9.10 shows the Prometheus system overview diagram for the Flirt device

that we are describing. Agent coupling is indicated by links between agents via pro-

tocols. The ‘‘Exchanges’’ protocol enables the Intimacy Handler agent and the

Device Handler agent to exchange touches bidirectionally as received touches are

Table 9.11
Notation for goal models in the REBEL tool

Notation Meaning

Goal

Quality goal

Role

Relationship between goals

Relationship between a goal and quality goal or between a goal and role
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passed on to be felt and created touches are passed on and then sent to the paired

Secret Touch device. The percepts and actions show the interaction of each agent

with the outside world. The Device Handler agent perceives the percept ‘‘Move-

ment’’ and also initiates the action ‘‘Move Device.’’ The Intimacy Handler agent

handles two percepts, ‘‘Arrival of Touch’’ and ‘‘Touch Returned to Sender.’’ This

agent performs one action, ‘‘Give a Touch’’ sent to the paired Secret Touch device.

Figure 9.11 displays the agent overview diagram for the Intimacy Handler agent.

The ‘‘Sending’’ capability and the ‘‘Reception’’ capability are designed to send or

receive touches for the Flirt prototype. A touch to be sent arrives in a ‘‘perceived-

Touch’’ or a ‘‘proposedTouch’’ message. The ‘‘proposedTouch’’ message would be

sent by the Resource Handler agent, which is not modeled here. The ‘‘Reception’’

capability passes the perceived touch on to the Device Handler agent to be felt and

stores the touch in the knowledge base or alternatively discards the touch.

The agent overview diagram for the Device Handler agent is shown in figure

9.12. The ‘‘TouchToMovement’’ plan is triggered by an incoming ‘‘feel’’ message.

The plan reads the touch itself, represented by a knowledge base, and executes the

Figure 9.8
The goal model for flirting
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Figure 9.9
The role model for Device Manager
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action ‘‘Move Device’’ accordingly. Similarly the plan ‘‘MovementToTouch’’ would

react to the percept ‘‘Movement’’ and create and store a ‘‘Touch’’ sent further via the

‘‘recorded’’ message.

To conclude the section, we reflect on the models produced for the Secret Touch

motivational scenario. In presenting the models, Leon has found that they are acces-

sible to a wide range of stakeholders including those without a software background.

Several informal surveys of audiences were conducted. The survey results indicated

that the models were broadly understood. The project for which the models were

produced had the intention to investigate whether data produced from ethnographic

Figure 9.10
The system overview diagram for the Flirt device

Figure 9.11
The agent overview diagram for Intimacy Handler
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studies could routinely be translated into software requirements. More research

needs to be done for a definitive answer. However the project and follow-up activities

do suggest that agent-oriented models can facilitate such a translation.

The role and goal models facilitated real communication with the researchers, who

were nontechnical clients. The flexibility and high-level nature of the models enabled

the software engineer who developed the models to present very high-level abstrac-

tions for feedback. This approach is important for communication with nontechnical

people. The usefulness of agent concepts was confirmed by survey results and other

feedback. The initial Secret Touch analysis and design was presented and discussed,

and a set of questions answered by participants was evaluated. Feedback was imme-

diate, rich, and extremely usable.

The importance of the agent-human analogy was explicitly captured in the sur-

vey responses. A survey question about whether the agent paradigm was useful

for understanding the proposed system received a unanimously positive response.

Quality goals were confirmed to be useful for highlighting intangible requirements,

as often encountered in social contexts. The interaction designers reacted very

positively to the quality goals. It was noted that the ability to capture quality goals

such as playfulness and risky behavior was unusual in software engineering

methodologies.

9.3 Smart Music Player

The objective of the case study described in this section was to design an agent-

oriented system for controlling a Smart Music Player (SMP). The purpose of the

SMP system is to improve the listener’s experience by automating most interactions

Figure 9.12
The agent overview diagram for Device Handler
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between the music player and the listener and by providing flexible system control.

We focus on SMP’s main functionalities related to playing music. There are possible

additional functionalities that a Smart Music Player may have, such as tuning in to

radio stations, playing videos, and showing photos, which we do not consider in this

book.

The main functionalities of SMP are as follows:

� Turn the SMP on or o¤ The listener can turn the SMP on or o¤ through her mo-

bile phone or PC, by a voice command, or via the SMP’s interface. If the listener has

set up a playing duration, the SMP will turn o¤ at a particular time.

� Music selection If the listener is nearby, the SMP automatically selects and plays

the music best suited to the listener’s emotions and current activities. If the listener is

not nearby, the SMP sets up a playlist based on listener preferences.

� Volume control When playing music, the SMP automatically adjusts the volume

according to the decibel level of the surrounding environment. Voice commands can

override the automatic settings.

� Track control The listener can control the music track via voice commands or by

means of the SMP interface.

� Music library management The SMP can download music files, back up and de-

lete music files, and transfer music files between di¤erent devices. Music files are rep-

resented in the form of media agents. A media agent is an ‘‘intelligent’’ audio file

stored in the system that can copy itself to a suitable device where there are enough

music files with similar pieces of music. It can also delete itself when, for example,

there is not enough space on the SMP.

The case study makes a series of assumptions. First, a personal computer (PC) is

assumed to be available to back up music files from the music player. Second, a sen-

sor package is assumed to be gathering physiological data. Third, a voice recorder is

assumed to be available to record audio files. It is also assumed that the listener

would have informed the SMP about her music preferences. The listener would also

have trained the SMP regarding voice commands. The music player is in an intelli-

gent home environment where wireless communication can occur between a mobile

phone, the SMP, and the PC. The ringtone of the phone is recorded before using the

SMP. Online music sites are assumed to be set up before a player can download

music from the Internet.

For historical reasons, the design was developed using a combination of the

Prometheus and ROADMAP methodologies, which are described in sections 7.5

and 7.6, respectively. Requirements elicitation and analysis were supported by the

ROADMAP methodology, and system design was supported by the Prometheus

methodology.
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The combination of the ROADMAP and Prometheus methodologies took advan-

tage of their tool support. The goal models presented in this section and section 9.2

were originally created with the REBEL tool for ROADMAP but have been sub-

sequently redrawn to improve visual quality. The design models were created with

the PDT tool for Prometheus.

Domain analysis involved capturing requirements at a high abstraction level by

goal models constituting the conceptual behavior modeling viewpoint. Figure 9.13 rep-

resents the overall goal model for the SMP system. The purpose of the SMP system,

as captured by the root goal ‘‘manage playing music’’ is to manage the SMP. The

Music Player role is required for achieving this goal. The ‘‘easy to use’’ quality goal

indicates that it should be easy to manage playing music with the system. The ‘‘man-

age playing music’’ goal is achieved via the following subgoals: ‘‘handle user re-

quest,’’ ‘‘determine settings,’’ ‘‘monitor environment,’’ ‘‘play music,’’ and ‘‘manage

music library.’’ These subgoals have corresponding roles and quality goals attached

to them.

Parts of the goal tree depicted in figure 9.13 can be refined by separate models.

Figure 9.14 shows the refinement of the ‘‘manage music library’’ goal.

Figure 9.15 elaborates three other goals—‘‘determine settings,’’ ‘‘monitor environ-

ment,’’ and ‘‘play music’’—to several subgoals with the associated roles and quality

goals. According to the model, to achieve the ‘‘determine settings’’ goal, we need to

Figure 9.13
The overall goal model for SMP (Luo, Sterling, and Taveter 2007)
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Figure 9.14
The goal model for managing the music library (Luo, Sterling, and Taveter 2007)

Figure 9.15
The goal model for determining settings, monitoring the environment, and playing music
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achieve the ‘‘setup duration,’’ ‘‘setup play list,’’ ‘‘setup volume,’’ and ‘‘set maximum

volume level’’ subgoals. The ‘‘setup play list’’ goal is the responsibility of the Play

List Producer role and the ‘‘set maximum volume level’’ is the responsibility of the

Listener role. The ‘‘monitor environment’’ and ‘‘play music’’ goals have been simi-

larly elaborated. The subgoal ‘‘pass related data’’ is common to several goals, includ-

ing ‘‘setup play list,’’ ‘‘monitor environment,’’ and ‘‘control volume.’’ Note that the

‘‘set maximum volume level’’ goal has been created to cater for the ‘‘safe’’ quality

goal attached to the ‘‘control volume’’ goal.

In a goal model, the achievement of quality goals associated with subgoals does

not necessarily ensure the achievement of the quality goal associated with the parent

goal. For example, according to figure 9.13, we cannot guarantee that the system is

easy to use if the listener’s requests are handled flexibly, there is timely monitoring of

the environment, suitable values of settings are determined, and music library man-

agement is reliable and e‰cient. Quality goals may conflict. For instance, if the ways

for listeners to make requests are too flexible, the system may not be easy to use, be-

cause of too many options available, which results in confusion.

We next move to the conceptual interaction modeling viewpoint where the roles

required for achieving the goals are modeled. As explained in chapter 3, role models

are orthogonal to goal models in that they define capacities or positions required for

achieving the goals, including the interactions required between the agents playing

the roles. The role model in table 9.12 models a listener—a person who requests to

Table 9.12
The role model for Listener

Role name Listener

Description The Listener role controls and monitors the music being played both in content
and sound settings.

Responsibilities Request to play music through the PC, mobile phone, by a voice command, or
by the SMP’s interface.
Control the SMP through the PC, mobile phone, by voice commands, or by
the SMP’s interface.
Provide details of settings (e.g., start time, duration, music selection principles,
maximum volume level, and volume) when requesting to play music.
Provide predefined information (e.g., ringtone, music ratings, address of an
online music store, and the times to download new popular music files from
the online music store).
Train the SMP.
Respond to messages displayed by the SMP.
Provide the necessary hardware and ensure it is correctly connected.

Constraints Must know how to use a PC to control the SMP.
Must know how to use a mobile phone to control the SMP.
Must know the voice command instructions (e.g., SMP on, SMP o¤, increase
volume, decrease volume, play, pause, stop, next, repeat, and play previous
music file).
Must know how to connect the hardware.
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play music. The Listener role is responsible for making music requests, controlling

the SMP, training the player, and determining settings. The Listener role is con-

strained to know how to use the PC to control the music player, how to use a mobile

phone to control the music player, to know voice commands, and to know how to

connect hardware.

Table 9.13 includes the responsibilities and constraints for the Environment Mon-

itor role. An environment monitor must detect ring tones, monitor ambient decibel

levels, and accept hangup signals. It also analyzes the listener’s activities and collects

physiological data about the listener when the listener is nearby. An environment

monitor has quality constraints related to performance requirements.

Tables 9.14, 9.15, and 9.16 model the respective roles Play List Producer, Library

Manager, and Music Player.

Table 9.13
The role model for Environment Monitor

Role name Environment Monitor

Description The Environment Monitor role monitors the environment to recognize and process
di¤erent signals.

Responsibilities Detect and receive ring tones and ‘‘call finished’’ signals.
Detect the decibel level of the surrounding environment.
Detect if the listener is nearby.
Monitor physiological data, such as body movements and body heat, of the listener.
Update physiological data about the listener.
Transmit environment data and physiological data to the play list producer and
music player manager.

Constraints Detect and process a signal within N seconds, where N is a performance
requirement.

Table 9.14
The role model for Play List Producer

Role name Play List Producer

Description The Play List Producer role selects the music based on listener state and history.

Responsibilities Receive physiological data from the environment monitor.
Learn the listener preferences by storing previous music selections, previous music
ratings by the listener, and the physiological data about the listener that was
associated with those selections.
Determine the average and standard deviations of the values of physiological data
obtained from the environment monitor.
Determine the current state of the listener based on pre-determined value ranges of
physiological data for the listener states active, passive, and resting.
Compare the listener’s current state and activities to previous music preferences by
the listener.
Select music files based on the data produced and the listener’s proximity.

Constraints Select a music file within N seconds, where N is a performance requirement.
The music files selected to the playlist should fit the listener’s emotions and activities.
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Table 9.15
The role model for Library Manager

Role name Library Manager

Description The Library Manager role manages the music library.

Responsibilities Download a new music file from the predefined online music store every N days,
where N is a setting by the listener.
Record and store music files.
Store new music files downloaded by the listener’s mobile phone.
Receive media agents.
Convert a non-media-agent file into a media agent.
Copy a newly downloaded music file to the music library.
When a new music file is played on the PC, copy the music file to the SMP.
Transfer a requested music file from the SMP to the mobile phone.
Delete from the SMP a music file with minimum listener preferences when there
is not enough space left on the SMP.
Double check if a music file is backed up before deleting it.
Compare the lists of music files in the music library with those on the SMP
whenever the PC and SMP are connected and back up if necessary.
Display information to the listener.

Constraints All music files must be backed up.

Table 9.16
The role model for Music Player

Role name Music Player

Description The Music Player role controls music playing.

Responsibilities Recognize and execute a command by the listener.
Turn the SMP on or o¤.
Play a music file based on the settings.
Control music track.
Receive environment data and physiological data from the environment manager.
Control volume according to the listener request or the environment data.
Determine the duration of a music file according to the listener’s current activities
and habits.
Record and update the listener preferences as metadata about music files.
Display messages to the listener.

Constraints The music player should have a friendly listener interface.
The music player should be able to recognize and process various control signals
coming from the listener, environment manager, or other sources.
The status of the environment must be recognized and acted upon within N
seconds, where N is a performance requirement.
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After having modeled the goals and roles, we revisit the conceptual behavior

modeling viewpoint, in which we model expected system behavior. We have used

Prometheus scenarios. Because the scenarios consider data to be manipulated by the

system, they also comprise the conceptual information modeling viewpoint. Prome-

theus scenarios describe system behavior in terms of system goals, system operations,

and impact on external data. Each scenario consists of several steps. Each step

belongs to one of the five types: Goal (G), Action (A), Percept (P), subScenario(S),

or Other (O). For each step, data may be read and/or produced (R: read; W: write).

Actions represent how the system acts on the external environment and percepts rep-

resent events/stimuli from the outside world to which the system reacts. Because a

scenario captures only a particular sequence of steps, small variations are indicated

with brief descriptions. Major variations are presented as separate scenarios.

Table 9.17 represents a scenario of music selection. It describes how the SMP au-

tomatically selects and plays music files best suited to the listener’s current emotions

and activities. Table 9.17 shows two variations for step 2. One of them occurs when

the listener is near by. In such a case, the SMP can choose music files to be played

Table 9.17
The music selection scenario

Scenario: music selection

Description: The SMP automatically selects the music files best suited to the listener’s current emotions and
activities.

Trigger: A request to play music by the listener.

Steps:

# Type Description Data

1 O A play list is requested

2 P The listener is nearby

3 O Determine the current
state of the listener

Listener data (R, W)

4 G Set up playlist Music playing history (R, W)

5 O Send playlist Music library (R)

Variation 1: the listener is not nearby.

Description: At step 2, if the listener is not near by, the SMP produces a playlist according to the music
preferences by the listener.

Steps:

# Type Description Data

2 P The listener is not nearby

3 G Set up playlist based on the
preferences by the listener

Music playing history (R, W)
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Table 9.18
The scenario of playing music

Scenario: playing music

Description: The SMP plays music files based on the settings by the listener.

Trigger: The SMP is requested to play music.

Steps

# Type Description Data

1 P The SMP is ready

2 P A request to play music is received

3 G Set up playing time and duration Time history (W)

4 O It is time to start playing

5 S Get music selection

6 O Determine suitable volume

7 G Play a music file Music library (R)

8 S Volume control

9 A Display music playing information

10 O It is time to stop playing Time history (R)

11 A Stop playing

12 A Turn the SMP o¤

Variation 1:

Description: The listener does not set up time and duration.

Steps: Skip the steps 3, 4, 9, and 10.

Variation 2: control track.

Description: The listener can control the track through the PC or mobile phone, by voice commands, or by
the SMP’s interface. Music playing history will be updated for learning purposes and the metadata about
the music file will be updated to change the rating of the corresponding piece of music.

Trigger: A request by the listener to forward, rewind, or repeat the playing of the music file.

Steps: Insert the following steps between the steps 7 and 10 of the main scenario:

# Type Description Data

1 P A track control request by the listener is received

2 A Execute command (forward, rewind, or repeat)

3 O Update the music playing history Music playing history (W)

4 O Update the metadata about the music file Music library (W)
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according to the listener’s current state which is based on the physiological data

about the listener.

Another scenario takes place when the listener is not near the SMP. In this case,

the SMP produces a music list by relying on the music preferences by the listener

and also on the physiological data recorded earlier that describes the reactions to dif-

ferent pieces of music by the listener.

Table 9.18 models a scenario of playing a music file; table 9.19 models a volume

control scenario. Both of these scenarios have two variations. Table 9.20 represents

a scenario of a media agent arrival. This scenario has the ‘‘Check space’’ and

‘‘Add music file’’ subscenarios, which we do not present here. The scenario has one

Table 9.19
The volume control scenario

Scenario: volume control

Description: When playing music, the SMP automatically adjusts the volume according to the environ-
ment. If the phone rings, the SMP turns down the volume for the duration of the conversation and the
volume resumes after the hangup.

Trigger: The phone rings while music is being played.

Steps:

# Type Description Data

1 P Detect ring tone

2 A Lower volume

3 P Detect that the call is finished

4 A Resume volume

Variation 1: environment changes

Description: During any steps, the decibel level of the environment changes. If the decibel level of the sur-
rounding environment is higher, the SMP accordingly increases the volume and if the decibel level is lower,
the SMP accordingly decreases the volume.

Steps:

# Type Description Data

5 P The decibel level of the surrounding environment changes

6 A Adjust volume

Variation 2: the listener requests to adjust the volume

Description: At any step, the listener can request a change in volume.

Steps:

# Type Description Data

5 P A request by the listener to change the volume is received

6 A Adjust volume
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variation for the case that there is not enough space on the SMP. The ‘‘Back up music

file’’ and ‘‘Destroy music file’’ subscenarios of the variation are not presented here.

We next move to the modeling viewpoint of computational interaction design. Here

the models produced by requirements analysis are used to determine what agents

should exist and how they should interact. Figure 9.16 shows how roles in the SMP

system have been mapped onto agent types.

Figure 9.16 reflects that some roles have been mapped to several agent types in-

stead of being mapped to just one agent type. This mapping is necessary, due to the

di¤ering concepts of role in Prometheus and ROADMAP. In Prometheus, the con-

cept of ‘‘role’’ is defined at a lower abstraction level. Roles in Prometheus are func-

tionalities. When using Prometheus in design, grouping roles into an agent type is

equivalent to grouping similar functionalities to form an agent type. However, in

ROADMAP, a problem domain is analyzed in a top-down manner at a higher

abstraction level to hide the complexity from customers and stakeholders. In ROAD-

MAP, goals are first defined and then the roles that are required for achieving the

goals are identified. After that, the responsibilities of each role are defined using a

role model. To fulfil a responsibility, a role may need several diverse functionalities.

Table 9.20
The media agent arrival scenario

Scenario: media agent arrival

Description: The SMP receives a media agent music file from another device (for example, from a mobile
phone or another SMP). It then checks the available space on the SMP and adds the music file into the
music library on the PC.

Trigger: New media agent arrives.

Steps:

# Type Description Data

1 P ‘‘I arrived’’ message received File log (W)

2 S Check space Music playing history (R)

3 S Add music file Music library (W)

Variation 1: not enough space

Description: At step 2, if there is not enough space in the music library for the new media agent music file,
the music file that is least preferred by the listener is first backed up on the PC and then destroyed.

Trigger: There is not enough space on the SMP.

Steps:

# type Description Data

1 S Back up music file Music library (W)
File log (W)

2 S Destroy music file Music library (W)
File log (W)
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As an agent in Prometheus should provide a set of similar functionalities, a role may

have to be mapped to di¤erent agent types. Therefore, in the hybrid methodology

used in this case study, several agents can work jointly to achieve the responsibilities

of one role, and one agent can play several roles. Figure 9.16 shows that the respon-

sibilities of the Play List Producer role are fulfilled by agents of types Time Agent

and Music Selection Agent. On the other hand, the Time Agent serves three roles:

Music Player, Play List Producer, and Library Manager. The newly decided agent

types are modeled by the corresponding agent descriptors in tables 9.21–9.26.

After mapping roles to agent types, agent acquaintance diagrams can be used for

sketching interaction pathways between agents of these types. The agent acquain-

tance diagram for the SMP is shown in figure 9.17. It is a variation of an ac-

quaintance diagram explained in chapter 3.

Continuing modeling from the computational interaction design viewpoint, scenar-

ios of domain modeling are used to guide the development of interaction diagrams.

For the SMP case study, a specific kind of interaction diagram, associated with a sce-

nario, was used. A variation point in this interaction diagram indicates the step at

which several variations are possible. An ‘‘M’’ denotes a message passed between

agents, a ‘‘P’’ denotes a percept from the external environment, and an arrow with

Figure 9.16
The agent-role coupling diagram for SMP (Luo, Sterling, and Taveter 2007). 6 2007 IEEE.

Table 9.21
Descriptor of the type Request Agent

Request Agent

Description An agent of the Request Agent type receives a signal from the PC or mobile phone
or given by a human voice and translates it into the corresponding instruction.

Goals achieved Handle user request, determine settings

Creation First use of the system

Destruction No
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Table 9.22
Descriptor of the type Music Selection Agent

Music Selection Agent

Description An agent of the Music Selection Agent type makes a well-founded selection of
music that best fits the listener’s emotions and activities.

Goals achieved Set up playlist

Creation A request to play music by the listener is received.

Destruction A play list has been produced.

Table 9.23
Descriptor of the type Music Player Agent

Music Player Agent

Description An agent of the Music Player Agent type reads the requested music file from the
music library and plays it. It also controls the track and volume and displays
messages to the listener’s mobile phone or PC or to the SMP’s interface.

Goals achieved Determine settings, play music

Creation A play list is received.

Destruction The music files included by the play list have been played.

Table 9.24
Descriptor of the type Library Manager Agent

Library Manager Agent

Description An agent of the Library Manager Agent type adds, deletes, and backups
music files and transfers files between di¤erent devices. It also converts other file
formats to the media agent file format that is supported by the SMP system.

Goals achieved Manage music library

Creation Initialization

Destruction No

Table 9.25
Descriptor of the type Environment Monitor Agent

Environment Monitor Agent

Description An agent of the Environment Monitor Agent type monitors the decibel level
of the surrounding environment, detects a ring tone of the phone, and
determines the state of the listener when the listener is nearby.

Goals achieved Monitor environment

Creation Initialization

Destruction No
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‘‘A’’ indicates an action executed by the agent on the environment. The abbrevia-

tions used for denoting agent types are explained in the ‘‘Notes’’ section of an inter-

action diagram.

Figure 9.18 represents an interaction diagram for music selection. It has a varia-

tion point after the first step, by which the agent of Music Player Agent type

requests the agent of Music Selection Agent type to generate a playlist. At that

point, the agent of Environment Monitor Agent type checks to see whether the lis-

tener is nearby. If the listener is nearby, his or her state is found based on his or her

current activities. After that, the agent of type Music Selection Agent proposes to

the agent of type Request Agent a number of playlists conforming to the listener’s

state. The listener then chooses the playlist to be played, which the agent of Music

Selection Agent type sends to the agent of Music Player Agent type. The model

shown in figure 9.18 reflects that the listener has an option of composing the playlist

by selecting music files from among the ones suggested by the music selection agent.

A playlist is also proposed if the listener is not nearby. In this case, playlists are pro-

posed based on the previous activities and preferences of the listener.

Figure 9.19 provides an interaction diagram for the scenario of volume control.

When the agent of type Environment Monitor Agent accepts one of three percepts,

‘‘ring tone,’’ ‘‘call finished,’’ or ‘‘surrounding environment decibel level changes,’’ it

Table 9.26
Descriptor of the type Media Agent

Media Agent

Description An agent of the Media Agent type is the agent of a music file stored in the system
that can make a copy of itself onto a suitable device.

Goals achieved Push music.

Creation The file is downloaded/pushed/transferred onto the SMP.

Destruction The music file has been deleted from the SMP and PC.

Figure 9.17
The agent acquaintance diagram for SMP
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sends the corresponding message to the agent of type Music Player Agent, which

then accordingly executes one of three actions: ‘‘increase or decrease volume,’’ ‘‘de-

crease volume,’’ or ‘‘resume.’’ Another variation modeled in figure 9.19 is related to

volume adjustment by the listener resulting in a ‘‘volume control request’’ message

being sent.

The interaction diagram in figure 9.20 models the interactions related to the arrival

of a music file, which is an instance of Media Agent. Such an agent copies itself to

the SMP only if it finds a suitable environment containing enough music files with

pieces of music similar in style. Once a Media Agent has arrived on the SMP, it

sends an ‘‘I arrived’’ message to the agent of type Library Manager Agent, which

first checks if there is enough space for the file on the SMP. If there is not enough

space on the SMP, another Media Agent music file which is least preferred by the

listener first backs itself up on the PC, and is then destroyed by the Library Man-

ager Agent. After that, the Media Agent music file that has arrived is added into

the music library on the PC.

Figure 9.18
The interaction diagram for music selection
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We now present an overview of the design using a Prometheus system overview

diagram. A system overview diagram represents interactions between the agents of

the system and interactions between the agents and their environment, as well as ma-

nipulation of data sources by the agents. A system overview diagram therefore lies in

the intersection of the computational interaction design and computational information

design viewpoints.

Figure 9.21 shows the system overview diagram for the SMP. Agents interact with

each other via protocols, indicated by double-headed arrows. Each protocol contains

the messages flowing between agents of the connected types. For instance, the ‘‘trans-

fer to environment’’ protocol between agents of types Library Manager Agent and

Media Agent serves to notify the arrival of a new instance of Media Agent and to

enable its copying to the SMP. A protocol can be refined into messages of individual

types by means of the PDT modeling tool. The percepts and actions modeled in the

system overview diagram represent interactions between the system and its external

environment. For example, ‘‘voice command’’ is input by the listener for requests,

while ‘‘turn on/o¤,’’ ‘‘play,’’ and ‘‘increase volume’’ are actions targeted at physical

devices.

Figure 9.19
The interaction diagram for volume control
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We now model the SMP from the computational behavior design viewpoint using

agent overview diagrams and capability diagrams. An agent overview diagram pro-

vides the top-level view of the agent internals. It shows the capabilities of the agent,

the task flow between these capabilities, and the data internal to the agent. An agent

descriptor, such as the one represented in table 9.24, provides a good initial set

of capabilities to be refined by an agent overview diagram. There are two types of

messages in agent overview and capability diagrams, external messages and internal

messages, where external and internal messages respectively originate outside and

inside of the agent or capability that is being modeled.

Figure 9.22 shows the top-level internal view of an agent of the Library Manager

Agent type. Such an agent has the following four capabilities: ‘‘add music file,’’

‘‘backup music file,’’ ‘‘space management,’’ and ‘‘process listener settings.’’ A music

file is added into the music library by invoking the ‘‘add music file’’ capability under

several circumstances. First, a new music file is downloaded from an online music

store when an external ‘‘check online music store’’ message is received. Downloading

is modeled as the corresponding percept in figure 9.22. Second, a new music file is

added when the listener records a new audio file, for example, by doing some kar-

aoke. This situation is triggered by an internal ‘‘record audio file request’’ message

Figure 9.20
The interaction diagram for Media Agent arrival
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and by an ‘‘audio’’ percept. Third, a new music file is added when a new music file is

detected on the PC, which is modeled as a ‘‘detect new music file’’ percept. In such a

case, adding of the file is triggered by an internal ‘‘add new music request’’ message.

The listener may also request to transfer a music file to the PC or to delete a music

file, which are triggered by the respective ‘‘transfer music request’’ and ‘‘delete music

request’’ internal messages. These messages, as well as the ‘‘record audio file re-

quest,’’ ‘‘add new music request,’’ and ‘‘online store settings’’ internal messages in-

voke the ‘‘process listener settings’’ capability and elaborate the incoming ‘‘manage

file request’’ external message shown in figure 9.22. As can be seen in the system

overview diagram in figure 9.21, the ‘‘manage file request’’ external message origi-

nates in the Request Agent.

When an external ‘‘I arrived’’ message is received from a Media Agent, the capa-

bilities ‘‘backup music file’’ and ‘‘space management’’ are also triggered, in addition

to the ‘‘add music file’’ capability, as is modeled in figure 9.22. These capabilities give

rise to the respective internal messages ‘‘push to PC’’ and ‘‘destroy’’ that elaborate

the outgoing external ‘‘copy/destroy’’ message targeted at backing up and destroying

the least popular with the listener Media Agent.

Figure 9.22
The agent overview diagram for Library Manager Agent
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An agent overview diagram can be checked against the system overview diagram

in terms of external messages and percepts, data used and produced, and actions.

After agent overview diagrams have been created, the design can be checked by com-

paring goal models and scenarios against each agent overview diagram.

An additional level of agent detail is provided by capability diagrams. A capability

diagram describes the internals of a single capability. A capability may include sub-

capabilities, plans, internal messages, and knowledge. A plan represents a subset of

functionality that becomes a chunk of code during implementation. Capabilities are

refined progressively until all capabilities have been defined.

The capability diagram for the ‘‘space management’’ capability depicted in figure

9.23 consists of two plans. The ‘‘calculate free space’’ plan is triggered when a new

Media Agent arrives. If there is not enough space left, an internal ‘‘space limit’’ mes-

sage is sent to another plan, which is ‘‘get a music file with least preference.’’ That

plan then destroys the music file that is the least popular with the listener to gain

more memory space.

A capability diagram can be checked against its enclosing context, which can be

either the agent overview diagram or another capability diagram.

As a final step of platform-independent computational design, we sketch data

dictionaries from the viewpoint of platform-independent information design. Data

dictionaries are important for ensuring consistent use of names. Tables 9.27 and

9.28 contain data dictionaries for the respective ‘‘music library’’ and ‘‘music playing

history’’ databases, which were introduced by the system overview diagram shown in

figure 9.21. The ‘‘sleep duration’’ field of the ‘‘music library’’ database is used when

there is not enough memory space on the SMP. In such a case the state of the corre-

sponding Media Agent that has been backed up is set to ‘‘sleep for 30 days on the

PC.’’

Based on the data dictionary, a database can be designed and implemented either

as a relational or an object-oriented database. Characteristics of object-oriented

Figure 9.23
The capability diagram for space management
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databases, such as simplicity, extensibility, and support for object-oriented program-

ming, could be advantageous in the design of multiagent systems.

We conclude the discussion of the SMP with three considerations for platform-

independent computational design. First, we emphasize that while agent overview

diagrams and capability diagrams are certainly platform-independent, they are not

architecture-independent, as they presume the mappings to the BDI agent architec-

ture. The notions of platform-independent and architecture-independent computa-

tional design were also considered in chapter 5.

Second, several agents can access the same database, which requires to design and

implement a database record locking mechanism of some kind. For example, accord-

ing to the system overview diagram represented in figure 9.21, the Music Selection

Agent and Media Agent both access the same ‘‘music library’’ database.

We conclude this section with some observations on our experience with the agent-

oriented methodologies used in this and the previous two sections. Note that we used

two alternative ways of designing intelligent lifestyle applications. The reader may

wonder which is the ‘‘right’’ way of designing similar applications. There is no

‘‘right’’ way, as di¤erent methodologies emphasize di¤erent features.

Table 9.27
The data dictionary for the ‘‘music library’’ database

Field name Description

Music file ID Integer (primary key)

Associated MP3 file MP3 file type

Title String

Artist String

Genre String

Album title String

Beats-per-minute Integer

Duration Time

Preference rate String

Sleep duration Time

Table 9.28
The data dictionary for the ‘‘music playing history’’ database

Field name Description

Music file ID Integer (primary key)

Play list number Integer

Played time Time

Times played Integer
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According to the combination of ROADMAP and RAP/AOR methodologies

used in section 9.1, a domain model for a problem domain is expressed in terms

of domain entities and relationships between them. After deciding agent types in

platform-independent computational design, this information model is refined as

private and shared knowledge items of agents of the identified types. In the Prome-

theus methodology used in sections 9.2 and 9.3, data sources are identified in parallel

with the creation of scenarios in conceptual behavior modeling. The elaboration of

the internal structure of these data sources is postponed until platform-independent

computational design.

In the RAP/AOR methodology, interactions between agents are explicitly mod-

eled in platform-independent interaction design based on role models created in con-

ceptual interaction modeling. The Prometheus methodology represents interactions

in platform-independent interaction design as protocols that can be refined into mes-

sages of individual types by means of the PDT modeling tool. A substantial di¤er-

ence between the two methodologies lies in the modeling of percepts and actions. In

the RAP/AOR methodology, action and percept are often seen as two sides of the

same coin, as an action performed by one agent may be perceived as an event by an-

other agent. In contrast, the Prometheus methodology distinguishes between percepts

from the environment and actions performed on the environment.

There are also di¤erences related to behavior modeling. The RAP/AOR method-

ology transforms goals modeled in conceptual domain modeling immediately to

activity types of platform-independent computational design and then determines

the order of performing activities of these types. Each activity can be modeled in

terms of how it changes the agent’s knowledge and how it sends messages and per-

forms actions on the environment. In the Prometheus methodology, goal modeling is

followed by modeling scenarios for achieving the goals. The scenarios are then elab-

orated for individual agents as agent overview diagrams and capability diagrams. We

reiterate that there is no one ‘‘right’’ way for modeling, and predict that agent meth-

odologies will converge.

9.4 Background

The description of the Bill Gates intelligent home can be found at http://labnol

.blogspot.com/2005/05/inside-bill-gates-home.html. In Australia there are several

small companies o¤ering consulting services to develop ‘‘smart homes’’ in which

there is control of lighting, security, and entertainment and possibly other systems.

One such company is Urban Intelligence (http://www.urbanintel.com.au). Also in

Estonia, intelligent homes are built and sold (http://www.juurdeveo19.ee/). The

design of an intelligent home within the Intelligent Lifestyle project conducted at
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the University of Melbourne in 2004 has been previously described by Sterling,

Taveter, and the Daedalus Team (2006a) and more extensively by Sterling, Tav-

eter, and the Daedalus Team (2006b).

The Secret Touch system was developed by Anne Boettcher in her work for the

Smart Internet Cooperative Research Centre. Another case study performed within

the same project has been described by Vetere et al. (2005).

The Smart Music Player example is courtesy of Yuxiu Luo, who investigated pre-

dicted variations in product lines using music players as an example. She developed

the design for the software agents subject taught by Sterling. The requirements engi-

neering and early design of a system controlling a Smart Music Player has been

described by Luo, Sterling, and Taveter (2007) and more extensively by Luo and

Sterling (2007).

The Smart Music Player was informed by the XPOD device, a prototype of a

human activity and emotion-aware music player, which was proposed by Dornbush

et al. 2005. That work mainly deals with the player’s capabilities to sense the

listener’s activities and emotions. The Push!Music technology that the SMP design

assumes to be utilized has been explained by Jacobsson et al. (2005).
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10 An E-Learning Application

This chapter continues our exploration of applying agent models in designing, build-

ing, and enhancing systems. We describe a system developed within the Department

of Computer Science and Software Engineering at the University of Melbourne. The

system, described in section 10.1, involves assessing student learning when interacting

with a piece of educational software for animation of algorithms manipulating data

structures. The software was written initially without agents in mind. Subsequently

agents were added and have added to the system the capability of evaluating whether

the software meets its educational objectives.

Thinking in terms of agents expanded the possibilities of what the educational

software might do and suggested how the extra capability could be designed and

implemented. The idea of agents adding to software was also applied to three other

educational software programs as part of a project between Monash University and

the University of Melbourne. These other programs are not described here, but

thinking about them encouraged us in our advocacy of agent models.

The style of this chapter is di¤erent in that it places less emphasis on the viewpoint

framework and more emphasis on the software. Some goal models are given, though

admittedly they were developed after the fact rather than to guide the agent develop-

ment. Nonetheless, we include this chapter as a reminder that agent-oriented model-

ing can take many forms rather than just being the use of a narrow set of models.

10.1 Supporting the Teaching of Algorithms with Animations

Consider teaching within a modern university. Lecturers and students interact so that

students can learn the material that the teachers wish to impart within a university

subject.5 Even such an abstract description can be captured in a goal model, as has

5. We use the Australian term ‘‘subject’’ rather than ‘‘course,’’ the more usual term in America. In any
case, the context of educational software is general, and we rely on the reader to adapt terms to their own
context.



been done in figure 10.1. An educator and a student involved in a subject have a

common goal of the student learning the subject. Subgoals may include a text that

describes the material to be learned. There are lectures—which need to be entertain-

ing, these days—and hopefully software, which has to be usable by the student.

There are, in principle, other subgoals, not explored here, but captured in the

‘‘Other’’ subgoal.

The diagram in figure 10.1 does not contain much information, but can be a useful

starting point for discussion. For example, the way the overall learning goal is

decomposed into subgoals is di¤erent from decomposing the learning goal into

learning activities. We are not advocating one view or other, but are showing how

conversations can be started.

Note that the notation for goals and roles is a little di¤erent from the notation

used elsewhere in the book. The reason is historical. The goal model was drawn by

Leon using a di¤erent drawing package on the Mac, prior to the existence of an

appropriate tool such as REBEL. We decided to leave the diagram to underscore

that we are not pedantic about a particular notation and also that we support the

principle that models can and often should be interpreted broadly.

Let us move onto the goals and roles surrounding educational software. Once it is

decided that a program is to be used in a subject, there are several roles that must

be considered. The Educator and Student roles are obvious. Less obvious roles are

Developer (to write the program) and Administrator (to oversee deployment in a

Figure 10.1
A high-level goal model for educating
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lab or over a network). To elaborate the overall goal: the program needs to be devel-

oped and used, with the roles Developer and Monitor responsible, and its use should

be evaluated. This last subgoal is the responsibility of the Evaluator role. Ideally

feedback is given to the students while using the program, with a Communicator

role responsible. The previous description is illustrated by figure 10.2. Note that we

have retained the ‘‘Usable’’ quality goal.

In reality, subjects are not developed in a pure top-down manner. Usually, subjects

are developed individually and specifically rather than generically. Software is typi-

cally added to existing subject material, rather than being an integral part of the

subject design. How could agents, goals, and roles relate to subject design, implemen-

tation, and teaching?

We turn to a particular software system which has been enhanced by software

agents. The system is a modified version of a software tool entitled Algorithms in

Action (AIA) for teaching algorithms to second-year computer science students.

The AIA software uses multimedia animations of algorithms as a pedagogical tool

for teaching computing algorithms. We present some background on the subject

and the program.

Here are the objectives of the subject in which AIA is used, as described in the ma-

terial distributed to students. At the end of the subject, the student should be able to

Figure 10.2
A high-level view of educational software
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� explain key algorithms

� describe a range of approaches to algorithmic problem solving

� apply algorithm analysis techniques

� implement algorithms in the C programming language.

� apply skills in new situations—for example, by comparing and contrasting algo-

rithms with respect to a range of properties, and evaluating the appropriateness of

algorithms for solving problems

� expose students to concepts, algorithms, and learning opportunities, and to provide

support

In fact, the software was not developed to cover any of these objectives, but to

help students to learn about algorithms. More pragmatically, AIA was developed to

reduce load on teaching sta¤ during a period of burgeoning student numbers. It was

hoped that by having a program available for self-study and review, students would

need less interaction with heavily overloaded teaching sta¤. This observation high-

lights that the software needs to be viewed as part of a complex sociotechnical multi-

agent system that includes teachers and students as well as the software.

To be more explicit, the overall educational goal in developing AIA was to assist

students in understanding the standard algorithms that are typically learned by a

second-year computer science subject. This overall goal encompassed a number of

concrete objectives. The objectives included ensuring that students would be able to

� use the software in a remedial sense—to obtain demonstrations (through anima-

tion) and explanations of algorithms not understood thoroughly through lectures

and textbooks;

� be supported in learning activities that would deepen their understanding of algo-

rithms through exploration; and

� use AIA to review the material independently and at their own pace.

Note that one remedial sense is learning from scratch, in which lectures were not

attended at all. The design of the AIA software was motivated by a goal to provide

students with a rich and flexible learning environment in which they could undertake

learning activities to suit their needs. This has been summarized in the goal diagram

in figure 10.3 developed by the ROADMAP methodology. Recall that the ROAD-

MAP methodology was overviewed in section 7.6.

We now describe the AIA software that was built. A rich and flexible environment

was provided by giving students considerable control and multiple ways to view an

algorithm. The presentation of AIA consists of a coordinated display of animation,

pseudocode (a universal computer language), and textual explanation, as shown
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in figure 10.4. Thirty di¤erent modules are available within the software: one for

each algorithm covered. Execution of each algorithm is traced with a cursor that

progresses through the pseudocode, while the animation displays a conceptual repre-

sentation of the steps in the pseudocode. Textual explanation for each line of pseudo-

code is available to the student ‘‘on request’’ by a mouse-click. Figure 10.4 shows,

from left to right, the explanation window, the pseudocode window, and the anima-

tion window for a search structure known as a multiway radix trie.

Students have a great deal of control over how they use AIA. Students are able to

choose the level of detail at which the algorithm is displayed by expanding or con-

tracting lines of pseudocode to find a level of detail appropriate to their current

learning needs. The levels of detail in the animation and in the explanation expand

and contract in concert with the level of detail the student chooses for the pseudo-

code, so that the three views are always synchronized. Students also have a high

degree of control over the direction they take when using AIA: they can single-step

through the algorithm or run in continuous mode, tailoring the pace precisely to their

needs; they can step backwards to replay previous steps; and they can explore the

Figure 10.3
The goal model for teaching algorithms

An E-Learning Application 331



e¤ects of using data of their own choosing and alternate coding of the algorithm, to

name but a few.

Educational objectives were not explicitly taken into consideration. It was as-

sumed that students would choose appropriate learning activities and carry them

out e¤ectively if they were given the right environment. Subsequent reflection has

suggested that such assumptions should have been tested. It is worth noting that

challenging such assumptions may have happened if our agent-oriented perspec-

tive would have been adopted at the outset. The agent concepts and perspectives

described in this section have been articulated subsequently to AIA’s initial

deployment.

We have partially reconstructed an agent-oriented perspective of the sociotechnical

system of students, teachers, and agents using AIA. Figure 10.3 is a part of this

reconstruction. Basically, an explicit high-level learning objective has been added to

the motivation layer as ‘‘Educate students’’ and ‘‘Teach algorithm’’ goals shown in

figure 10.3, and several learning activities have been added to the design layer as we

describe shortly. At the deployment layer, concrete objects and concrete actions, sub-

sequently referred to as simply actions, and events caused by concrete actions have

been made explicit. Notable events that have been represented are low-level actions

of students, including mouse-clicks, data input, and other keystroke operations that

control the level of detail displayed, the view available, and the execution of the

algorithm. Currently the accuracy of the learning activities and concepts that have

been introduced is being evaluated.

Figure 10.4
A view of the multiway radix trie module of AIA, as it appears to students (Stern and Sterling 2006).
Copyright 2009 by the Association for the Advancement of Computing in Education (AACE), http://
www.aace.org.
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The relatively unstructured nature of AIA as originally implemented has allowed

it to be used for a variety of learning activities, including set tasks, remedial work,

general review, and advanced exploration. Although this versatility is an asset for

supporting learning, the virtually limitless number of paths a student can take in

any given AIA session makes evaluation a complex task. We posit that students

undertake a variety of learning activities that have the potential to lead to under-

standing of an algorithm—for example, intensive learning, exploration, and reading

explanations.

In order to use agents in the evaluation of the use of AIA, the software framework

was extended to record key student actions in a log file, along with relevant parame-

ters. Actions to be logged were classified according to which view of the algorithm

they pertained.

The Control class of actions determines the animation presentation. Actions in this

class control the basic running of all algorithms. The following key control actions

common to all algorithms are currently logged:

� run/pause animation

� change speed of animation

� single-step through animation

� back up (all the way to the beginning of the session, if desired)

The following algorithm-specific control actions are also logged:

� input di¤erent data

� use di¤erent pseudocode for a part of the algorithm

� select di¤erent parameters

Data input is considered algorithm-specific, even though all algorithms allow data

input, because the range of suggested data for each algorithm is di¤erent, having

been designed to show particular features of that specific algorithm. All modules

allow the student to input data of their own design. The use of alternative coding

is appropriate for only some algorithms, and is specific to the algorithm, as is the

choice of parameters. An example of an algorithm-specific control parameter is

‘‘Di¤erentiating Bits,’’ seen in the animation window of figure 10.4; this parameter

chooses the number of bits used in branching in the multiway trie (set to 2 in the fig-

ure), but would be meaningless for other algorithms.

The Pseudocode class of actions consists of requests to expand and contract the

pseudocode, which in turn a¤ect the level of detail in the animation and explana-

tions. The Explanation class of actions consists of requests for textual explanation.

A start time is recorded for every action. Relevant parameters for the Run action

are the speed of the animation at the start of the run and at the end of the run, the
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start line in the pseudocode, the exit mode, and the degree of detail being presented.

Parameters for the Step and Backup actions are the location in the pseudocode of the

cursor.

Log files are written in XML. XML was chosen for its flexible structure and the

availability of Java parsing libraries. There is one log file for each AIA session—

where a session is defined as a single access to a particular module by a single stu-

dent. An example log file shown in figure 10.5 records a student’s actions when using

AIA to study an insertion algorithm for the multiway radix trie data structure. The

log shows that this session was dominated by requests for explanations, most of them

prior to running the animation. This is a typical pattern, in which a student uses

textual explanations to orient him- or herself to the algorithm before viewing the

animation.

Agents have been developed to monitor the use of the software by students as cap-

tured by the log files. The agents use the log files as input, and infer which, if any, of

the associated sessions were consistent with our models of learning activities. The

learning activities that have been investigated are those considered likely to lead to

the understanding of the algorithm. Prototype models have been developed for three

learning activities. The prototype model for Intensive Learning is based on a view of

a student who is using AIA to learn an algorithm that he or she does not compre-

hend. In our model, this student would be likely to iterate over the material that he

or she does not understand, using either the backup or the reset facility of AIA. A

minimum number of backups or resets is required in order for a session to be classi-

fied as Intensive Learning.

The prototype model for an Exploration learning activity captures sessions in

which the student explored an algorithm supported by the AIA facilities for using

alternative code or using a variety of user-defined data. A minimum threshold of

exploratory actions is set by the person responsible for evaluation.

The model for the use of Explanation in learning was developed after students

were observed using the textual explanations more frequently than anticipated. The

prototype model for the Explanation learning activity detects sessions where the

number of requests for textual explanations exceeds a threshold set by the evaluator.

Software agents have been developed to detect sessions conforming to the models

for the Intensive Learning, Exploration, and Explanation learning activities. Inputs

to the agent are a collection of log files and the user-defined parameters, such as

thresholds. There is an independent agent for each learning activity. The output

from the agent is a list of log files of student sessions in which the sequence of ac-

tions is consistent with our model(s) for the specified classification(s) and the user-

determined parameters. Additional information, such as the counts of particular

actions, are also available as output.
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Figure 10.5
A log file for an AIA session (Stern and Sterling 2006). Copyright 2009 by the Association for the
Advancement of Computing in Education (AACE), http://www.aace.org.



An external framework has also been implemented to allow the agents to work

together, so student sessions can be identified where multiple learning activities are

carried out. Sessions that combine a number of learning activities are relatively com-

mon. For example, a student might start session learning largely through Explana-

tion, then fill in more detailed understanding using an Intensive Learning mode, and

end the session with Exploration. The current framework supports classification

based on single models, multiple models, and any subset of a set of models. These

agents will identify files associated with student sessions where it has been inferred

that the algorithm being studied has been mastered. Models for mastery have not

yet been fully defined. In a simplistic sense, a model for mastery might require the

student to engage in some exploratory learning activities, as a way of demonstrating

mastery. Such a model might not, however, capture all sessions where the student

has mastered the material. For example, an able student might be capable of explor-

ing some of the more elementary algorithms mentally, without using the AIA explo-

ration facilities, and such a session would be missed. Similarly, a student who has

already mastered an algorithm might use AIA to quickly refresh his or her knowl-

edge. Currently, research is underway to identify such sessions and to distinguish

them from perfunctory sessions in which students are learning little.

To summarize the case study, adopting agent concepts has resulted in an expan-

sion of a piece of educational software, and has suggested ways of improving the

development of educational software in the future. Matching teacher models of

learning activities with actual student behavior extracted from log files gives powerful

information to teachers, to software developers, and potentially to students, to in-

crease their understanding of AIA in particular and learning in general.

10.2 Background

The computer animation program Algorithms in Action (AIA) is described by Stern,

Naish, and Sondergaard (1999) and by Stern and Naish (2002). More details of the

initial program can be found therein. The agent-oriented extensions came about

through the PEDANT (Pedagogical Agents for Modeling On-Line and Computer-

Interactive Learning) project, a joint project between four schools and faculties

across Monash University and the University of Melbourne under a collaborative

funding scheme between the institutions. The project is reported in Markham et al.

2003. The main aim of the project was to develop a collection of software agents

to investigate the relationship between the way students use on-line and interactive

educational tools and the quality of their learning experience. An account of the

agent extensions has been provided by Stern and Sterling (2006) and Stern and Lam

(2007).
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Beyond the project described in some detail in section 10.1, there have been several

e¤orts to adapt agents for educational software. Baylor (2001) was an early advocate

for the concept. Jafari (2002) presents scenarios where digital agents would help in

the delivery of subjects and courses. Chan and Sterling (2003b) describe an agent

framework for assisting in online course environments. One of the agents from their

framework automatically built links from exam questions set by the course coordina-

tor to the online course material, which provided feedback for students making mis-

takes while taking the online exam associated with the course.
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Glossary

Accident an event that results in harm, injury, or loss.

Achievement goal a kind of goal targeted at achieving a certain state of a¤airs.

Action something that an agent does; an elementary activity.

Action event a kind of event that is caused by the action of an agent.

Activity or activity occurrence an execution of actions constituting the activity situated in a specific
context that takes time, e¤ort, and application of knowledge.

Activity context a kind of context that is characterized by the time and space of performing the activity,
as well as by other contextual activities that enclose the given activity.

Activity type a prototypical job function that specifies a particular way of doing by performing elemen-
tary epistemic actions, physical actions, and communicative actions.

Agent a kind of physical object that can act in the environment, perceive events, and reason.

Agent acquaintance model a kind of model that complements the agent model by outlining interaction
pathways between the agents of the sociotechnical system.

Agent architecture blueprint for manmade agents that models the arrangement of agent components and
the connections between the components.

Agent behavior model a kind of model that describes the behavior of an agent of the given agent type.

Agent model a kind of model that transforms roles from the analysis stage to agent types that will be
realized at runtime.

Agent-oriented software engineering methodology a kind of software engineering methodology that uses the
notion of agent or actor in all stages of its software engineering process.

Agent type type whose instances are individual agents.

Aggregation a binary formal relation between types of entities that defines how an entity of one type
consists of or contains entities of another type.

Antirigid type a type whose every instance is not necessarily its instance, that is, can change its type.

Architecture-dependent model a kind of model that is expressed in terms of specific agent architecture for
implementing manmade agents.

Architecture-independent model a kind of model that does not prescribe or imply the usage of any specific
agent architecture for implementing manmade agents.



Asynchronous communication performing of communicative actions by agents so that sending of a
message is temporally separated from responding to it.

Atomic event a kind of event that is modeled as happening instantaneously.

Attribute a characterization of a physical agent or physical object in one or more quality dimensions.

Authorization relationship a kind of relation between agents in which an agent playing a role needs to be
empowered to fulfil its responsibilities by an agent playing another role.

Autonomous agent a kind of agent that creates and pursues its own agenda as opposed to functioning
under the control of another agent.

Avoidance goal a kind of goal aimed at avoiding a certain state of a¤airs.

Behavioral construct a modeling construct that determines how certain states of a¤airs are related to
concrete actions performed by a particular concrete agent.

Behavioral interface model a kind of model that defines an interface for a behavioral unit of an agent.

Behavioral unit a set of behavioral constructs that are applied as a whole.

Beliefs the knowledge possessed by an agent.

Benevolence relationship a kind of relation between self-interested roles where an agent performing a role
o¤ers to fulfil responsibilities for an agent performing another role whenever it appears beneficial to the
o¤ering agent.

Cease goal a kind of goal targeted at ceasing a certain state of a¤airs.

Claim a kind of social relator whereby one physical agent is entitled to expect that another physical agent
will perform a certain action or bring about a certain state of a¤airs.

Collective activity a kind of activity involving agents performing two or more roles.

Commitment a kind of social relator whereby one physical agent obliges toward another physical agent to
perform a certain action or bring about a certain state of a¤airs.

Communicative action a kind of physical action where an agent sends a message to another agent.

Communicative action event a kind of action event that is caused by sending a message by the sending
agent that is perceived by the receiving agent.

Computational environment a kind of environment that software agents can access.

Conceptual object a kind of knowledge item used for representing a mental moment.

Conceptual space an open concept space for systems engineering.

Concrete action something that a physical agent does and that may be perceived as an event by another
physical agent.

Constraint an assertion that must be satisfied in all evolving states and state transition histories of the
sociotechnical system.

Constraints components of a role that specify conditions that an agent enacting the role must take into
consideration when performing its responsibilities.

Context the interrelated conditions in which an entity exists.

Control relationship a kind of relation between a parent role and its children roles where the enactor of
the parent role can delegate its responsibilities to the enactors of its children roles.
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Controlled autonomy the notion of autonomy where an agent acts autonomously only to the extent it is
beneficial to the physical agent controlling it.

Controller the component of an agent that performs actions a¤ecting the environment, including messages
sent to other agents, through the agent’s actuators based on the input knowledge it receives from the
agent’s knowledge base and from its sensors.

Deployment layer the lower layer of the conceptual space, consisting of the sociotechnical system situated
in its environment.

Derivation a statement of knowledge that is derived from other knowledge by an inference or a mathemat-
ical calculation.

Domain entity a modular unit of knowledge handled by a sociotechnical system.

Domain model a kind of model that represents the knowledge that the sociotechnical system is supposed to
handle; represents the environments, the types of resources produced and stored by them, and the relations
between the roles, environments, and resources.

Endurant a kind of particular that persists in time while keeping its identity.

Entity anything perceivable or conceivable.

Environment a first-class abstraction that provides the surrounding conditions for agents to exist and that
mediates both the interaction among agents and the access to resources.

Epistemic action or mental action a kind of action performed by an agent that is targeted at changing the
agent’s knowledge.

Event a kind of perdurant that is related to the states of a¤airs before and after it has occurred, respec-
tively, and may be perceived by an agent.

External action a kind of action performed by an agent that is targeted at changing an environment in
which the agent operates.

Formal relation a kind of relation that holds between two or more entities directly, without any interme-
diating entity.

Generalization a taxonomic formal relation between more general and more specific types of entities.

Goal a set of states of a¤airs intended by one or more agents.

Goal decomposition a kind of goal formal relation between goals that groups several subgoals related to
the same supergoal.

Goal formal relation a kind of formal relation between two or more goals.

Goal model a kind of model representing goals set for the sociotechnical system and the goal formal
relations between them.

Hazard a potentially harmful state of a¤airs, where an accident is possible.

Hazard analysis an analysis of a sociotechnical system and its environment to identify potential hazards.

Hierarchy a kind of organization where the enactor of a parent role delegates some of its responsibilities
to the enactors of its children roles.

Human role a kind of role that is enacted by a human agent.

Individual activity an activity involving an agent performing one role.

Institutional agent an aggregate consisting of internal human and manmade agents, which share collective
knowledge, and that acts, perceives and communicates through them.
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Intelligent agent a kind of agent that is required to be reactive, proactive, and social.

Interaction diagram a kind of interaction model representing (some part of ) a prototypical interaction
process between agents of the sociotechnical system.

Interaction model a kind of model that represents an interaction pattern between agents of the sociotech-
nical system.

Interaction-frame diagram a kind of interaction model that represents possible interactions between agents
belonging to two or more agent types as types of action events.

Interaction-sequence diagram a kind of interaction diagram that models prototypical interactions as action
events.

Intrinsic moment a kind of moment that is existentially dependent on one single physical object.

Knowledge information that may change an agent either by becoming grounds for actions, or by making
an agent capable of di¤erent or more e¤ective action.

Knowledge attribute a kind of knowledge item used for representing an intrinsic moment of a physical
agent.

Knowledge item a modeling element that is used for representing a moment of a physical agent.

Knowledge model a kind of model that represents private and shared knowledge that the agents need for
functioning in the sociotechnical system.

Logic goal the postcondition to be achieved by the activity in the tradition of the logic approach to the
formalization of artificial intelligence.

Maintaining goal a goal aimed at preserving a certain state of a¤airs.

Manmade agent a kind of agent that has been implemented by humans physically or in software or as a
combination of both.

Market a kind of organization where each agent can choose its responsibilities so that they best fit the
goals and quality goals applying to the agent.

Material relation a kind of relation that is founded on the existence of an intermediating entity termed as
relator.

Mental moment a kind of intrinsic moment referring to the mental state of a physical agent.

Mental state the state of an agent that is described in terms of anthropomorphic qualities like beliefs,
responsibilities, expectations, capabilities, goals, desires, and intentions, and social relators, such as com-
mitments and claims.

Model a hypothetical simplified description of a complex entity or process.

Moment a kind of endurant that is existentially dependent on another endurant, which is named its
bearer.

Motivation layer the upper layer of the conceptual space containing abstract modeling concepts needed
for defining requirements and purposes of a sociotechnical system.

Motivational scenario a kind of model that describes in an informal and loose narrative manner how
goals are to be achieved by agents enacting the corresponding roles.

Multiagent system a kind of system where several, perhaps all, of the connected entities are agents.

Network a kind of organization with peer relationships among its roles.

Nonaction event a kind of event that is not caused by an action.
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Nonnumeric attribute a kind of attribute that represents one or more quality dimensions qualitatively, for
example, as an enumeration value.

Numeric attribute a kind of attribute that represents one quality dimension quantitatively as a numerical
value.

Object a kind of endurant that satisfies a condition of unity and for which certain parts can change
without a¤ecting its identity.

Ontology (sense 1) the study of existence and modes of existence.

Ontology (sense 2) a framework of knowledge for the agents of the problem domain.

Operation a procedure or transformation performed by a physical object.

Optimization goal a kind of goal that strives for maximizing or minimizing a specific optimization
function.

Organization an organized body of agents with a particular purpose.

Organization model a kind of model that represents the relations between the roles of the sociotechnical
system.

Organizational role a kind of role that is enacted by an institutional agent.

Particular a kind of entity that exist in reality possessing a unique identity, an entity that exists at least in
time.

Peer relationship a kind of relation between roles where a responsibility can either be delegated by the
enactor of a parent role or requested by the enactor of a child role meaning that the roles have equal status.

Perceptions the information an agent receives from its sensors.

Perdurant a kind of particular whose all temporal parts are not present at the same time.

Phases antirigid types that constitute possible stages in the history of a type instance.

Physical action a kind of action performed by an agent that may be perceived by another agent.

Physical environment a kind of environment that is inhabited by physical entities.

Physical agent a kind of physical object that can act in the environment, perceive events, and reason.

Physical entity a kind of particular that exists in both time and space.

Physical object a kind of endurant that satisfies a condition of unity and for which certain parts can
change without a¤ecting its identity.

Plan the means to achieve a logic goal by performing a set of actions.

Platform a set of subsystems and technologies that provide a coherent set of functionalities through
interfaces and specified usage patterns.

Platform-dependent model a kind of model that describes the design in terms of a particular programming
language or platform.

Platform-independent model a kind of model that describes the design independently of any particular
programming language or platform.

Private activity a kind of activity that is performed solely by an agent playing a particular role.

Proactive agent a kind of agent that does not simply act in response to its environment, but is able to
exhibit opportunistic, goal-directed behavior and take the initiative where appropriate.
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Process a complex event that consists of two or more possibly parallel occurrences of events.

Protocol a kind of interaction model that represents an interaction pattern between agents of two or more
agent types along with the aspects of the agents’ behavior.

Quality a kind of moment that inheres in exactly one endurant and can be represented in several quality
dimensions.

Quality attribute a characterization of the quality of performing an activity with respect to some quality
goal.

Quality dimension a perceivable or conceivable characterization of a quality in human cognition.

Quality goal a nonfunctional or quality requirement of the sociotechnical system.

Quality requirement any requirement about the quality of the software as opposed to its functionality.

Reactive agent an agent that is able to perceive its environment and respond in a timely fashion to
changes occurring in it.

Relation, also known as association a kind of type whose instances are tuples connected by the relation
entities.

Relational moment or relator a kind of moment that is existentially dependent on more than one physical
object.

Relator type the type whose instances are individual relators.

Resource a physical object used by a physical agent for achieving the goals defined for the sociotechnical
system; a physical object produced and stored by an environment to be accessed and used by agents.

Responsibilities components of a role that determine what an agent enacting the role must do in order for
a set of goals and quality goals to be achieved.

Rigid type a type whose every instance is necessarily its instance, that is, cannot change its type.

Role an anti-rigid type, representing some capacity or position, where agents playing the role need to
contribute to achieving certain goals set for the sociotechnical system.

Role model a kind of model representing the responsibilities and constraints pertaining to a role that are
required for achieving the goals set for the sociotechnical system.

Routine activity a kind of activity that is not modeled as a scenario.

Rule a kind of relator type between the agent type to which it is attached and types of mental moments,
events, activities, and actions, representing when an activity is created and for how long is stays active, as
well as what actions are performed in its course.

Safe system a sociotechnical system where the likelihood of the sociotechnical system causing an accident
is acceptably low.

Safety-critical role a role where the responsibilities attached to the role will a¤ect the safety of the socio-
technical system.

Safety-critical system a sociotechnical system where safety is a critical concern.

Scenario a kind of model that describes how the goals set for the sociotechnical system can be achieved
by agents of the sociotechnical system; a collective activity that models how a particular goal is achieved
by agents enacting particular roles; a specification of a purposeful sequence of activities by the agents
involved.

Service a physical object that provides functionality to the agents.
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Service model a kind of model that reflects the view of a multiagent system as consisting of agents and
services, where services make up a computational environment for the multiagent system.

Signature the definition of the types of arguments taken by an operation and the type of the return value.

Social agent an agent that is able to interact, when appropriate, with other agents in order to complete its
own activities and to help others with their activities.

Social policy a constraint set by an organization on the achievement of goals, and on the formation and
satisfaction of sets of commitments and claims by agents within the organization; defines the actions that
agent(s) subject to the policy may, should not, or must perform on target agent(s) when specific relevant
events occur.

Social relator a kind of relator that appears between two or more physical agents.

Social relator type the type whose instances are social relators.

Social role a kind of role that is characterized by a set of responsibilities toward other agents by an agent
playing the role.

Sociotechnical system a kind of multiagent system that includes hardware and software, has defined
operational processes, and o¤ers an interface, implemented in software, to human agents.

Software agent a kind of physical agent that is implemented as software.

Software architecture the definition of the structures of the system that is implemented in software,
composed of architectural elements and the relations between the elements.

Software engineering methodology a kind of software engineering process for the organized production of
software using a collection of predefined techniques and notational convention.

Software engineering process a kind of process involving activities, roles, and resources that produces
intended software of some kind.

Start event a kind of event that occurs once per each execution cycle of abstract agent architecture.

State (of an entity) a kind of perdurant characterizing the entity whose imagined elementary temporal
parts, snapshots, belong to the same type of perdurants.

Stateless service a kind of service that does not maintain information about its state between its
invocations.

State of a¤airs collective state of the entities of an environment.

Subkind a type that inherits the principle of identity of its parent type and represents its parent type’s
subset of instances.

System a set of entities connected together to make a complex whole or perform a complex function.

System design layer the middle layer of the conceptual space consisting of the notions required for
modeling and designing a sociotechnical system.

Task a kind of activity where the logic goal to be achieved by the activity has been defined explicitly
before the activity is started and where the actions performed by an agent are defined in terms of plans.

Test action a kind of action that checks whether a logical formula is derivable from the agent’s beliefs.

Type a universal that carries a principle of identity for its instances and whose every instance maintains
its identity in every circumstance considered by the model.

Universals patterns of features, which can be realized in a number of di¤erent particulars; entities that
exist neither in space nor in time, that is they cannot be localized.
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Use cases a means for specifying required usages of a system.

Viewpoint framework a matrix with three rows representing di¤erent abstraction layers and three
columns representing the viewpoint aspects interaction, information, and behavior.

Virtual entities a kind of particulars that exist merely in time.

Virtual environment a kind of environment that is inhabited by virtual entities.

346 Glossary



 

List of Acronyms

3APL Artificial Autonomous Agents Programming Language

AAII Australian Artificial Intelligence Institute

AAMAS Autonomous Agents and Multiagent Systems

ACL Agent Communication Language

AGV Automatically Guided Vehicle

AHAZOP Agent Hazard and Operability Analysis

AI Artificial Intelligence

AIA Algorithms in Action

AOR Agent-Object-Relationship

AORML Agent-Object-Relationship Modeling Language

AOSE Agent-Oriented Software Engineering

AUML Agent Unified Modeling Language

BDI Belief Desire Intention

BPMN Business Process Modeling Notation

B2B Business-to-Business

CAD Computer-Aided Design

CASE Computer-Aided Software Engineering

CIM Computation Independent Model

CONE Conceptual Network Ontology Editor

CORBA Common Object Request Broker Architecture

CRM Customer Relationship Management

dMARS Distributed Multiagent Reasoning System

DSTO Australian Defense Science and Technology Organisation

EAI Enterprise Application Integration



ebXML Electronic Business using eXtensible Markup Language

e-commerce Electronic Commerce

EDI Electronic Data Interchange

ER Entity-Relationship

ERP Enterprise Resource Planning

FIPA Foundation for Intelligent Physical Agents

GPL General Public Licence

GUI Graphical User Interface

HAZOP Hazard and Operability Studies

IDE Integrated Development Environment

ISA Information Systems Architecture

JACK Java Agent Compiler and Kernel

JADE Java Agent Development Environment

KQML Knowledge Query and Manipulation Language

MaSE Multiagent Systems Engineering

MDA Model-Driven Architecture

NASA The National Aeronautics and Space Administration

OAA Open Agent Architecture

OASIS Organization for the Advancement of Structured Information Stan-

dards

OCL Object Constraint Language

O-MaSE Organization-based Multiagent Systems Engineering

OMG Object Management Group

OPEN Object-oriented Process, Environment and Notation

OPIS Opportunistic Intelligent Scheduler

OZONE O3 ¼ Object-Oriented OPIS

PC Program Committee or Personal Computer

PDT Prometheus Design Tool

PEDANT Pedagogical Agents for Modeling On-Line and Computer-Interactive

Learning

PIM Platform Independent Model

PRS Procedural Reasoning System

PSM Platform Specific Model
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RAP/AOR Radical Agent-Oriented Process / Agent-Object-Relationship

REBEL Roadmap Editor Built for Easy deveLopment

RFQ Request For Quote

RM-ODP Reference Model for Open Distributed Processing

ROADMAP Role-Oriented Analysis and Design for Multiagent Programming

SMART Structured and Modular Agents and Relationship Types

SMP Smart Music Player

STOW Synthetic Theater of War

STRIPS Stanford Research Institute Problem Solver

SWARMM Smart Whole Air Mission Model

TAOM4E Tool for Agent-Oriented Modeling

UAV Unmanned Aerial Vehicle

UDDI Universal Description, Discovery, and Integration

UML Unified Modeling Language

WWW World Wide Web

XML eXtensible Markup Language

XPDL XML Process Definition Language
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