

Whitestein Series in Software Agent Technologies and Autonomic

Computing

Series Editors:
Marius Walliser
Stefan Brantschen
Monique Calisti
Stefan Schinkinger

This series reports new developments in software agent technologies and
autonomic computing, with particular emphasis on applications in a variety of
scientific and industrial domains. The spectrum of the series includes research
monographs, high quality notes resulting from research and industrial projects,
outstanding Ph.D. theses, and the proceedings of carefully selected conferences.
The series is targeted at promoting advanced research and facilitating know-how
transfer to industrial use.

About Whitestein Technologies

Whitestein Technologies AG was founded in 1999 with the mission to become a
leading provider of advanced software agent technologies, products, solutions, and
services for various applications and industries. Whitestein Technologies strongly
believes that software agent technologies, in combination with other leading-edge
technologies like web services and mobile wireless computing, will enable attractive
opportunities for the design and the implementation of a new generation of
distributed information systems and network infrastructures.

www.whitestein.com

Radovan Cervenka
Ivan Trencansky

The Agent Modeling
Language - AML
A Comprehensive Approach to Modeling
Multi-Agent Systems

Birkhäuser
Basel · Boston · Berlin

Authors:

Radovan Cervenka Ivan Trencansky
Whitestein Technologies Whitestein Technologies
Panenska 28 Panenska 28
811 03 Bratislava 811 03 Bratislava
Slovakia Slovakia
rce@whitestein.com itr@whitestein.com

2000 Mathematical Subject Classification: 68T35

Library of Congress Control Number: 2007923777

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic
data is available in the Internet at <http://dnb.ddb.de>.

ISBN 978-3-7643-8395-4 Birkhäuser Verlag AG, Basel · Boston · Berlin

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation,
broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of
use permission of the copyright owner must be obtained.

© 2007 Birkhäuser Verlag AG
Basel · Boston · Berlin
P.O. Box 133, CH-4010 Basel, Switzerland
Part of Springer Science+Business Media
Printed on acid-free paper produced from chlorine-free pulp. TCF
Printed in Germany
ISBN 978-3-7643-8395-4 e-ISBN 978-3-7643-8396-1

9 8 7 6 5 4 3 2 1 www.birkhauser.ch

Preface

Today, in 2007, the field of study known as multi-agent systems has
been in existence for more than 25 years. However, only during the
mid-1990s did the field begin to draw widespread attention as the
hype-curve approached its zenith. Now as the first decade of the 21st
century begins to wane, we find the field ever more active with
branches in a myriad of disciplines and aspects of multi-agent sys-
tems theory and engineering in use throughout multiple application
domains and business sectors. However, one important aspect of
multi-agent systems that still lacks complete and proper definition,
general acceptance and practical application, is that of modeling, de-
spite the substantial efforts of an active research community.

In short, software agents are a domain-agnostic means for building
distributed applications that can be used to create artificial social sys-
tems. Their facility for autonomous action is the primary differentiat-
ing property from traditional object-oriented systems and it is this as-
pect that most strongly implies that standard UML is insufficient for
modeling multi-agent systems.

The focus of this book is thus on an approach to resolving this insuf-
ficiency by providing a comprehensive modeling language designed
as an extension to UML 2.0, focused specifically on the modeling of
multi-agent systems and applications. This language is AML—the
Agent Modeling Language—the design of which is informed by previ-
ous work in this area while explicitly addressing known limitations
relating to managing complexity and improving coverage and com-
prehension.

But why modeling in the first place, and moreover why model multi-
agent systems? Software modeling is now a pervasive technique used
to simplify the view of a software system by offering abstracted per-
spectives and hiding non-essential details. In fact one of the key ben-
efits of traditional object-oriented modeling is the availability of easy-
to-use semi-formal modeling languages such as UML. As a result, al-
most all contemporary software development processes make use of
UML modeling for visually documenting aspects of requirements
capture, software analysis, design and deployment. And so given that
multi-agent systems are essentially a paradigmatic extension of object
orientation principles, it is clear that a properly formulated extension

vi Preface

to UML is feasible for software agent modeling. AML offers such an
extension by addressing the particular characteristics associated with
multi-agent systems including entities, behavior abstraction and de-
composition, social aspects, mental aspects, communicative interac-
tions, observations and effecting interactions, mobility, deployment,
services and ontologies.

But the availability of AML alone is not in itself sufficient to assist
adoption; methodological support is also a critical concern. Therefore
AML is supported by a software development methodology called
ADEM (Agent DEvelopment Methodology) which provides guidelines
for the use of AML in general software development processes. ADEM
follows the Situational Method Engineering approach to provide flex-
ibility in defining concrete methods customized to specific condi-
tions of particular system development projects. One other critical as-
pect of modeling language utility is tool support, without which
widespread adoption is essentially an unobtainable goal. In recogni-
tion of this, AML is supported by implementations of its UML profiles
for several well-known UML CASE tools including IBM Rational Rose,
Enterprise Architect and most recently, StarUML.

As AML is still quite new, adoption is still in an early phase but it is
hoped that the public availability of the specification, methodology,
tools and of course this book will help encourage widespread use.
Currently Whitestein Technologies is at the vanguard of adoption
having recognized a strong business need for AML and thus sup-
ported its creation and evolution. Whitestein, as a leading vendor of
multi-agent systems applications, now actively employs AML
throughout their product lines spanning telecommunications, logis-
tics and business process management.

As a final note, the objective of this book is to familiarize the reader
with the Agent Modeling Language by explaining its foundation, de-
sign principles, specification, and usage. The book however makes no
attempt to educate the reader in the techniques of software modeling
and thus a reasonable understanding of object-oriented design princi-
ples and especially UML is recommended.

Acknowledgements

Very special thank goes to Dominic Greenwood, not only for the pre-
cious discussions and advice which have inspired and shaped many
ideas, but also for his generous and unfailing help concerning lan-
guage refinements and wording polishing. Without his encourage-
ment this book would hardly be published.

We are indebted also to the AML technical reviewers, namely Stefan
Brantschen, Monique Calisti, and Giovanni Rimassa, for their fruitful
comments and suggestions which have substantially influenced the
current version of AML.

We would also like to thank professor Branislav Rovan for his encour-
agement and valuable contribution to the form and content of the
work.

Thanks to Whitestein Technologies for their support and provision of
sufficient time, team of professionals, and other resources which we
utilized in our work.

We are also obliged to Hilary Greenwood for her thorough proof
reading of the final text resulting in substantially improved legibility
and understandability.

Our thank belongs also to the members of the FIPA Modeling and
Methodology technical committees and AgentLink AOSE technical
forum groups for the discussions about various topics of agent-ori-
ented modeling and agent-oriented software engineering.

Last, but not least, to our families for their love, unconditional sup-
port, and patience.

Contents

1 Introduction . 1
1.1 Overview . 1
1.2 Goals of this Work . 6
1.3 Outline of the Book . 7

Part I: Background Information . 9

2 Survey on Agent-Oriented Modeling Languages . 11
2.1 Gaia . 11
2.2 AUML . 13
2.3 MESSAGE . 15
2.4 Tropos . 17
2.5 MAS-ML . 19
2.6 AOR . 21
2.7 Summary of Today’s MAS Modeling Languages 23

3 Requirements on a MAS Modeling Language . 27

Part II: Solution Summary . 29

4 The AML Approach . 31
4.1 The Purpose of AML . 31
4.2 The Scope of AML . 31
4.3 The Development of AML . 32
4.4 AML Sources . 33
4.5 The Language Architecture . 35

5 Concepts of AML . 37
5.1 Multi-Agent System . 37
5.2 MAS Semi-entities and Entities . 38
5.3 Structural Aspects . 41
5.4 Social Aspects . 42
5.5 MAS Deployment and Mobility . 44
5.6 Behaviors . 46
5.7 Mental Aspects . 48
5.8 Ontologies . 50

6 AML Modeling Mechanisms . 53
6.1 Generic Modeling Mechanisms . 54
6.2 Modeling Entity Types . 57

x

6.3 Modeling Social Aspects . 62
6.4 Modeling MAS Deployment and Mobility . 70
6.5 Modeling Capabilities and Behavior Decomposition 73
6.6 Modeling Interactions . 76
6.7 Modeling Mental Aspects . 87
6.8 Modeling Ontologies . 92
6.9 Modeling Contexts . 93

7 Related Work . 95
7.1 CASE Tool Support . 95
7.2 Methodological Support . 101
7.3 Practical Application of AML . 120
7.4 Standardization Activities . 121

Part III: AML Specification . 123

8 Extensions to Standard UML Notation . 125
8.1 Stereotyped Classifier . 125
8.2 ConnectableElement with a Stereotyped Type 126
8.3 Connector with a Stereotyped Type . 127
8.4 Lifeline with a Stereotyped Type . 127
8.5 Composed Lifelines in Communication Diagrams 129
8.6 ObjectNode with a Stereotyped Type . 129
8.7 Bi-directional Dependencies . 130
8.8 Internal Structure of ConnectableElements . 131

9 Organization of the AML Specification . 133
9.1 Overall AML Package Structure . 133
9.2 Specification Structure . 133

10 Architecture . 137
10.1 Entities . 137
10.2 Agents . 140
10.3 Resources . 142
10.4 Environments . 143
10.5 Social Aspects . 145
10.6 MAS Deployment . 166

11 Behaviors . 175
11.1 Basic Behaviors . 175
11.2 Behavior Decomposition . 181
11.3 Communicative Interactions . 183
11.4 Services . 221
11.5 Observations and Effecting Interactions . 237
11.6 Mobility . 249

12 Mental . 261
12.1 Mental States . 261
12.2 Beliefs . 274
12.3 Goals . 277
12.4 Plans . 281
12.5 Mental Relationships . 289

xi

13 Ontologies . 299
13.1 Basic Ontologies . 299

14 Model Management . 303
14.1 Contexts . 303

15 UML Extension for AML . 307
15.1 Extended Actor . 307
15.2 Extended BehavioralFeature . 308
15.3 Extended Behavior . 309

16 Diagrams . 311
16.1 Diagram Frames . 311
16.2 Diagram Types . 313

17 Extension of OCL . 317
17.1 New Operators . 317

Part IV: Final Remarks . 321

18 Conclusions . 323
18.1 Context of the Work . 323
18.2 Solution . 324
18.3 Challenges . 325
18.4 Results . 327
18.5 Summary of Original Contribution . 330

19 Further Work . 331
19.1 Improvements of AML . 331
19.2 Broader Application of AML . 332
19.3 Assurance of Future Work . 335

Bibliography . 337

List of Acronyms . 351

Index . 353

Chapter 1

Introduction

1.1 Overview

Agents and
multi-agent

systems

Agent-based systems are one of the most vibrant and important areas
of research and development to have emerged in information tech-
nology in recent years, underpinning many aspects of broader infor-
mation society technologies [82].

The underlying concept of agent-based systems is an agent. Jennings,
Sycara and Wooldridge in [65] propose a classical definition of the
term agent1, where the central concept is autonomy:

“An agent is a computer system, situated in some environ-
ment, that is capable of autonomous actions in this environ-
ment in order to meet its design objectives. …

Situatedness means that the agent receives sensory input from
its environment and that it can perform actions which change
the environment in some way.

By autonomy we mean that the system should be able to act
without the direct intervention of humans (or other agents),
and that it should have control over its own actions and inter-
nal state.”

Beyond these fundamental properties of an agent, there are also sev-
eral additional capabilities that allow the formation of special classes
of agents, called intelligent agents. The following list of capabilities
was suggested by Wooldridge and Jennings in [160]:

Reactivity
Intelligent agents are able to perceive their environment, and re-
spond in a timely fashion to changes that occur within it.

1 From now on we will use the term agent to talk about software agents, un-
less another meaning is noted explicitly in a particular context.

2 Chapter 1 Introduction

Proactiveness
Intelligent agents are able to exhibit opportunistic, goal-directed
behavior and take the initiative when appropriate.

Social ability
Intelligent agents are capable of interacting with other artificial
agents and possibly humans.

Agents rarely exist alone. To provide the required functionality and to
solve problems they are dedicated to, agents are socialized into larger
groups. Environments, in which communities of agents exist, mutu-
ally interact, and possibly also cooperate, are known as Multi-Agent
Systems (MAS).

Multi-agent systems are based on the idea that a cooperative working
environment comprising synergistic software components can cope
with problems which are hard to solve using the traditional central-
ized approach to computation. Software agents with special capabili-
ties (autonomous, reactive, pro-active and social) are used instead to
interact in a flexible and dynamic way to solve problems more effi-
ciently.

Applicability
of agents

The features provided by multi-agent systems predetermine their ap-
plicability in development systems that are open, heterogeneous,
highly dynamic, unpredictable, and complex. Agents are a natural
metaphor to model social structures that are within the sphere of in-
terest of information systems, artificial social systems, simulators, etc.
MAS architecture can be successfully applied to environments with
distributed data, control or expertise. In such environments to build a
centralized system would be extremely complicated or even impossi-
ble.

Multi-agent systems have already found their place in a diverse range
of information technology sub-disciplines, including networking,
software engineering, agent-oriented programming, artificial intelli-
gence, human-computer interaction, distributed and concurrent sys-
tems, mobile systems, telematics, computer-supported cooperative
work, control systems, mining, decision support, information re-
trieval and management, and electronic commerce. It has been recog-
nized that agents appear to be a promising approach to developing
complex applications in several business and industry domains, for
example, business-to-business exchange, supply management, manu-
facturing, logistics, telecommunications, or traffic control.

Agents as a
design

metaphor

Agents provide designers and developers with a way of structuring an
application around autonomous, communicative elements, and lead
to the construction of software tools and infrastructure to support the
design metaphor [64]. The use of agents as an abstraction tool, or a
metaphor, for the design and construction of systems provided the
initial impetus for developments in the field. On the one hand,

1.1 Overview 3

agents offer an appropriate way to consider complex systems with
multiple distinct and independent components. On the other hand,
they also enable the aggregation of different functionalities that have
previously been distinct (such as planning, learning, coordination,
etc.) as a conceptually embodied and situated whole. Thus these no-
tions provide a set of technology areas that relate directly to these ab-
stractions in the design and development of large systems, of individ-
ual agents, of ways in which agents may interact to support these con-
cepts, and in the consideration of societal or macro-level issues such
as organizations and their computational counterparts [83].

Many specialists believe that agents represent the most important
new paradigm for software development since object orientation.

Agent-
oriented
software

engineering

However, building large-scale multi-agent systems is a very complex
problem. To design, implement, test, and maintain distributed and
concurrent systems built up of possibly many autonomous, rational
and proactive entities (agents) is a challenge. The problem becomes
more complicated in open multi-agent systems, where the developers
have to cope with problems such as heterogeneity (agents may have
different and possibly conflicting goals, are created by different peo-
ple, etc.), communication problems (agents use different communica-
tion protocols and/or ontologies, etc.), security problems (e.g. authori-
zation, rights, trust, or communication and data storage security), etc.

To cope with these problems, very active research in this area has
been ongoing for almost twenty years to determine abstractions, lan-
guages, methodologies and toolkits for modeling, verifying, validat-
ing and finally implementing applications of this kind. These activi-
ties resulted in forming the Agent-Oriented Software Engineering (AOSE)
domain, which is the one of the most recent contributions to the
field of software engineering. AOSE is being described as a new para-
digm [78] for the research field of software engineering. But in order
to become a new paradigm for the software industry, robust and easy-
to-use methodologies and tools must be developed.

The main goal is to determine how agent qualities affect software en-
gineering, and what additional tools and concepts are needed to ap-
ply software engineering processes and structures to agent systems.
The purpose of AOSE is to create methodologies and tools that enable
effective development and maintenance of agent-based software
[145].

Luck, McBurney and Preist in [82] identify the following specific ar-
eas of AOSE’s interest:

requirements engineering for agent systems,

techniques for specification of (conceptual) designs of agent sys-
tems,

4 Chapter 1 Introduction

verification techniques,

agent-oriented analysis and design,

specific ontologies for agent requirements, agent models and or-
ganization models,

libraries of generic models of agents and agent components,

agent design patterns,

validation and testing techniques, and

tools to support the agent system development process (such as
agent platforms).

To date, this work has largely concentrated on analysis and design
methods, development tools and languages for programming and
communication [153].

AOSE has made a substantial progress in recent years, and nowadays
is becoming ready for the process of transformation from the pre-
dominantly academic environment, where it was originally invented,
to the mainstream software industry. However, further achievements
(such as wider application to the development of real-world systems,
creation of reliable agent-based technologies, standardization, etc.)
are necessary to overcome the current problems with AOSE and to
provide high-quality solutions for software engineers.

Agent-
oriented

modeling
languages

Modeling is a crucial aspect of all software engineering methodolo-
gies. Methodologies generally aim at building a collection of models
which describe various aspects of the system being considered. A
model is a simplified view of a system, which shows the essentials of
the system from a particular perspective and hides the non-essential
details [56]. The development process can be understood as a succes-
sive transformation of one model to another. Starting from a model
of requirements, through models of analysis, design, implementa-
tion, until a model of testing. Models and their parts usually repre-
sent artifacts of methodologies and the underlying modeling con-
cepts are used to describe the development process (workflow).

In order to capture specific features of agent-based systems, specific
modeling languages had to be created. Traditional software engineer-
ing methodologies are insufficient for use in the development of
such systems because of the particular characteristics of autonomous
agents [9].

Several agent-oriented modeling languages and modeling approaches
have appeared in past few years, for instance, Gaia [161,168], AUML
[7,8,9,10, 92,93,96,113], MESSAGE [40,86], TROPOS [12,143],
Prometheus [111,112], PASSI [25,26], TAO [128], and AOR [150,151].
They are mostly developed as parts of methodologies, but we can en-

1.1 Overview 5

counter also “stand-alone” agent-oriented modeling and specifica-
tion languages.

In spite of quite a considerable effort in the area of agent-oriented
modeling, we can observe that currently available agent-oriented
modeling languages do not adequately support the features required
by potential industrial application of AOSE. In many cases they are
often deficient with respect to qualities of traditional modeling ap-
proaches represented, for instance, by Unified Modeling Language
(UML) [102, 104]. As Cervenka et al. identify in [22], current agent-
oriented modeling languages are often:

Insufficiently documented and/or specified.

Using proprietary and/or non-intuitive modeling constructs.

Aimed at modeling only a limited set of MAS aspects.

Applicable only to a specific theory, application domain, MAS ar-
chitecture, or technology.

Mutually incompatible in concepts, metamodel, and notation.

Insufficiently supported by CASE2 tools.

Achievements and problems of the current MAS modeling ap-
proaches are further discussed in section 2.7.

Industry
challenges

Unfortunately, existing agent-oriented modeling languages do not
address a sufficiently wide community of software engineers. Some of
the reasons relate to the problems mentioned previously and their
elimination is one of the hot topics in the AOSE community.

The solution lies in creating a new unified modeling language that
overcomes the identified problems. This language should intention-
ally incorporate solutions to the problems into its design, and be
based on solid theoretical foundations of MAS and practical experi-
ences in the areas of agent-oriented and object-oriented modeling.
This will provide an effective modeling means to software engineers.
There are intentions within the AOSE community to design and con-
sequently standardize such a language, similarly to UML in the area
of object-oriented modeling. Unfortunately these activities have not
succeeded to date, resulting in no widely accepted MAS modeling
standard yet being available. However, it is generally expected that a
MAS modeling standard emerge within the next few years, that would
be a next important step toward industrialization of AOSE and dis-
semination agent-oriented modeling (and subsequently also architec-
tonic concepts and technologies) into a broader community of soft-
ware engineers.

2 Computer-Aided Software Engineering.

6 Chapter 1 Introduction

1.2 Goals of this Work

Goals
summary

In this book we present the results of more than 6 years of intensive
research and practice in the area of AOSE and MAS modeling in par-
ticular. During that period our activities were driven by the following
goal:

To design and specify a semi-formal3 visual modeling language,
called Agent Modeling Language (AML), for specifying, model-
ing and documenting systems in terms of concepts drawn from
MAS theory.

The modeling language had to be designed to address and resolve the
deficiencies of the state-of-the-art and practice in the area of MAS
modeling languages identified in the previous section.

The most significant motivation driving the development of a new
modeling language stemmed from the extant need for a ready-to-use,
complete and highly expressive modeling language suitable for the
industrial development of real-world software solutions based on
multi-agent technologies.

Rationale
behind the

goals

Michael Wooldridge said in one of his papers [158] published in
1997: “Unless researchers recognize that agent-based systems are
about computer science and software engineering more than they are
about AI4, then within a decade, we may well be asking why agent
technology suffered the same fate as so many other AI ideas that
seemed good in principle.”

We believe that the results of our work can contribute to the today’s
efforts of the AOSE community to obtain a generally accepted and
widely (even commercially) used language for modeling MAS appli-
cations, a possible candidate for industrial standardization.

Our intention is to provide software developers with a high-quality
modeling language. The first properly documented, consistent, un-
ambiguous, and comprehensive general-purpose “out of the box”
agent-oriented modeling language supported by CASE tools, which
achieves qualities of existing object-oriented modeling solutions, like
UML.

By successful achievement of the stated goals (see the results later in
the book) we see a real potential for contribution to the AOSE in the
following ways:

3 The term “semi-formal” implies that the language offers the means to spec-
ify systems using a combination of natural language, graphical notation, and
formal language specification. It is not based on a strict formal (e.g. mathe-
matical) theory.
4 Artificial intelligence.

1.3 Outline of the Book 7

Encourage the growth of the MAS tools market.
By enabling vendors to support a modeling language used by
most users and tools, the industry benefits. While vendors can
still add value in their tool implementations, enabling interopera-
bility is essential. Interoperability requires that models can be ex-
changed among users and tools without loss of information. This
can only occur if the tools agree on the format and meaning of all
of the relevant concepts.

Help to define new MAS development methodologies.
AML can become a modeling language used for MAS development
methodologies. Particularly, AML would provide the concepts and
MAS abstractions which can be applied in defining the methodol-
ogy process, and the AML models and their parts can directly be-
come artifacts.

Accelerate convergence of existing MAS modeling approaches.
Unification of divergent modeling concepts from different agent-
oriented modeling languages into one language should aid “con-
version” of software engineers to a new modeling language that
provides richer modeling possibilities. This is applicable especial-
ly in the case that the unified modeling language is standardized.

Support standardization.
AML itself or some of its modeling concepts have the potential to
become standard(s) in the area of MAS modeling.

Contribute to wider dissemination of AOSE.
Having a high-quality agent-oriented modeling language avail-
able would encourage software engineers, tool vendors, technolo-
gy developers, and software companies to use it and/or to produce
supporting technologies. This would be an important step toward
acceptance of agent-oriented modeling, but also MAS, AOSE,
agent-based technologies, etc. in a broader community of soft-
ware engineers.

1.3 Outline of the Book

The remainder of the book is structured as follows:

Part I: Background Information—This part presents, in Chapter 2, a
survey on existing agent-oriented modeling languages. In order to
demonstrate the current state-of-the-art in this area we focus only on
the most frequently discussed languages which significantly influ-
enced the MAS modeling discipline. In Chapter 3 we then declare, in
terms of quality criteria, the requirements which were used in the de-
velopment of AML as the mandatory criteria that our solution had to
unconditionally adhere in order to achieve high quality.

8 Chapter 1 Introduction

Part II: Solution Summary—This part describes the main concepts
and design principles which guided us in the development of AML.
Chapter 4 explains the main motivational and design aspects which
influenced the construction of AML, and describes the overall lan-
guage architecture and principles of its extensibility mechanisms. In
Chapter 5 we outline the fundamental concepts used to describe an
abstract metamodel of MAS, which were then used as a basis for the
design of AML. In Chapter 6 the core AML modeling constructs are
explained and demonstrated by examples. In Chapter 7 we discuss
activities that were not originally included in the goals of this work,
but relate to introduction of AML and its underlying ideas into prac-
tice, namely: implementation of AML in CASE tools, creation of a
software development methodology based on AML, application of
AML in concrete software development projects, and standardization
activities related to AML.

Part III: AML Specification—This part contains a detailed technical
specification of the AML metamodel, notation and demonstrates the
defined modeling elements using examples. Chapter 8 specifies sev-
eral presentation options to some UML elements in order to provide a
more intuitive and comprehensive notation. In Chapter 9, the over-
all package structure of the AML metamodel is presented. Chapters
10, 11, 12, 13, and 14 contain specification of all packages from the
AML Kernel (Architecture, Behaviors, Mental, Ontologies and Con-
texts), their sub-packages and metaclasses. In Chapter 15 we discuss
the AML-related extensions of UML. Chapter 16 contains the specifi-
cation of the AML-specific diagrams and diagram frames, and
Chapter 17 definition of AML extensions of OCL.

Part IV: Final Remarks—This part provides a summary of the achieved
results in Chapter 18, and outlines the possible directions of further
development and application of AML in Chapter 19.

Part I

Background Information

This part provides a survey on existing agent-oriented modeling lan-
guages, summarizes applied modeling mechanisms, and states the re-
quirements put on an agent-oriented modeling language in general.

Chapter 2

Survey on Agent-Oriented
Modeling Languages

In this chapter we give an overview of the work that has been carried
out on the development of agent-oriented modeling languages.
These languages are intended to assist first in gaining an understand-
ing of a particular system, and, secondly, in designing it.

Since the mid-nineties, when the first tentative agent-based method-
ologies and their modeling languages started to appear, there came
into existence quite a large number of languages for analysis and de-
sign of agent systems. We selected the ones that significantly influ-
enced the domain of MAS modeling and that can demonstrate differ-
ent modeling approaches. All the presented agent-oriented modeling
languages have been taken into account for designing the concepts
and modeling principles of AML, see Chapter 4.

Our main intention is to introduce the basic underlying concepts and
modeling constructs for each of the presented languages, in order to
understand their scope and the main modeling principles. For details
about the semantics, notation, modeling guidelines or the modeling
process of a particular language we refer to the respective literature.

2.1 Gaia

Introduction Wooldridge, Jennings and Kinny present in [161] the Gaia methodol-
ogy for agent-oriented analysis and design. The requirements capture
phase, independent of the paradigm used for analysis and design, is
not included in Gaia. Gaia is a general methodology that supports
both the micro-level (agent structure) and macro-level (agent society
and organization structure) of agent development; however, it is not
a “silver bullet” approach, since it requires that inter-agent relation-
ships (organization) and agent abilities are static at run time. The mo-
tivation behind Gaia is that object-oriented methodologies fail to rep-

12 Chapter 2 Survey on Agent-Oriented Modeling Languages

resent the autonomous and problem-solving nature of agents; they
also fail to model agents’ ways of performing interactions and form-
ing organizations. Using Gaia, software designers can systematically
develop an implementation-ready design based on system require-
ments.

Modeling
concepts

Analysis and design can be thought of as a process of developing in-
creasingly detailed models of the system to be constructed moving
from abstract to more concrete concepts. Abstract entities are those
used during analysis to conceptualize the system, but which do not
necessarily have any direct realization within the system. Concrete
entities, in contrast, are used within the design process and will typi-
cally have direct counterparts in the runtime system. See Tab. 2-1.

Gaia, in its analysis model, specifies the roles in the system and the in-
teractions between the roles identified. Roles are described in terms of:
responsibilities, permissions, activities and protocols. Responsibilities
are of two types: liveness properties—the role has to add something
good to the system, and safety properties—prevent and disallow that
something bad happens to the system. Permissions represent what the
role is allowed to do, in particular, which information it is allowed to
access. Activities are tasks that a role performs without interacting
with other roles. Protocols are the specific patterns of interactions de-
scribed in terms of purpose, initiator, responder, inputs, outputs, and
processing. Gaia provides formal operators and templates for repre-
senting roles and their attributes; it also has schemes that can be used
for the representation of interactions.

In the Gaia design, the analysis models are refined by the agent model
(specification of various agent types in terms of a set of roles they
play), the service model (identification and specification of services as-
sociated with the roles), and the acquaintance model (a directed graph
identifying the communication links between agents types).

Summary Gaia is appropriate for the development of systems with the follow-
ing main characteristics:

Abstract concepts Concrete concepts

Roles
Permissions
Responsibilities
Protocols
Activities
Liveness properties
Safety properties

Agent Types
Services
Acquaintances

Tab. 2-1 Abstract and concrete concepts in Gaia

2.2 AUML 13

Agents are coarse-grained computational systems, each making
use of significant computational resources (think of each agent as
having the resources of a Unix process).

It is assumed that the goal is to obtain a system that maximizes
some global quality measure, but which may be sub-optimal from
the point of view of the system components. Gaia is not intended
for systems that admit the possibility of true conflict.

Agents are heterogeneous, in that different agents may be imple-
mented using different programming languages, architectures,
and techniques. Gaia makes no assumptions about the deploy-
ment platform.

The organization structure of the system is static, in that inter-
agent relationships do not change at run time.

The abilities of agents and the services they provide are static, in
that they do not change at run time.

The overall system contains a comparatively small number of dif-
ferent agent types (less than 100).

Due to the above-mentioned restrictions, Gaia is of less value in the
open and unpredictable domains; on the other hand it has been
proven as a good approach for developing closed domain agent-sys-
tems. As a result of the domain restrictions of the Gaia method, Zam-
bonelli et al. [168] propose some extensions and improvements with
the purpose to support the development of open MAS applications,
i.e. the systems in which agents are not designed to share common
goals, have been (possibly) developed by different people to achieve
different objectives, and the composition of which can dynamically
change as agents enter and leave the system.

Further extension of Gaia toward larger scope (specification of re-
quirements, domain knowledge, the execution environments, etc.)
and more precise models (advanced models of roles, interactions, in-
dividual agent characteristics and social aspects, system decomposi-
tion, etc.) is represented by the ROADMAP methodology [68].

2.2 AUML

Introduction Bauer, Odell, and colleagues designed the agent-oriented modeling
language Agent UML (AUML) [7,8,9,10,92,93,94,95,96,113,116] as an
extension of UML. Exploiting the extension mechanisms such as ste-
reotypes, tagged values and constraints, AUML provides specific agent
modeling mechanisms over object-oriented ones. The core parts of
AUML are interaction protocol diagrams and agent class diagrams,
which are extensions of UML’s sequence diagrams and class dia-
grams, respectively.

14 Chapter 2 Survey on Agent-Oriented Modeling Languages

Modeling
concepts

Interaction protocols was the first aspect of multi-agent system design
that the AUML community considered. The original idea proposed in
[9,10] was to use the UML 1.x sequence diagrams to represent mes-
sage exchange between agents. The UML sequence diagrams were en-
riched by explicit specification of the formal protocol parameters, rep-
resentation of communicative acts by UML messages (performatives as
message names and payload as the parameters), specification multi-
plicities for sending and reception of messages, threads of interaction,
and nesting protocols. Either the communicating agents or their roles
were modeled as interaction lifelines.

In a new version of AUML [7,54,93], based on UML 2.0, the threads of
interaction were replaced by UML standard combined fragments and
the protocol nesting by the interaction reference. With significant
updating of the UML interaction diagrams from version 1.* to 2.0,
most of the original AUML extensions became redundant, and only a
few specific modeling elements have remained, such as protocol pa-
rameters specified as a note, multiplicity of lifelines and messages,
blocking constraints, and extended notation of continuations.

To model types of agents and their features, Bauer in [8] first pro-
posed the extension of UML class diagrams. In this approach an agent
class, in addition to a UML class, can also contain a set of roles its in-
stances can play, state description, actions, capabilities, service de-
scriptions, a set of supported protocols, constraints, society names,
and a reference to the “agent head automata” (an extended state ma-
chine).

In the new version of AUML, presented e.g. in [91], a new metamodel
for the agents, roles and groups is introduced. The metamodel defines
the agent classifier as a specialized UML classifier. There are two spe-
cialized agent classifiers, agent physical classifier and agent role classi-
fier. Agent is defined as specialized UML instance specification and
group is defined as a special UML structured classifier. Two kinds of
groups are defined: agentified group (inherited also from the agent
metaclass) and non-agentified group. Even if the metamodel is not
complete and does not define concrete modeling language, it basi-
cally explains the main AUML concepts.

Poggi et al. in [116] also introduce extensions of the UML deploy-
ment diagrams used to model the agent platforms, deployment of
agents, and a static models of the agent mobility.

Summary AUML is probably the best-known representative of the agent-ori-
ented modeling languages based on UML. But we can observe several
deficiencies. Despite of few attempts, AUML has no clearly defined
metamodel so far.

2.3 MESSAGE 15

One of its main drawbacks, though, is the absence of precisely speci-
fied semantics for defining the different modeling elements, which
can lead to misinterpretation of AUML models.

AUML also needs to populate a set of diagrams. Initial work on AUML
focused on interaction protocols and agent design. The newer version
also provides static structure diagrams for modeling internal and ex-
ternal aspects of agent types, agents, role types, and groups.

However, the metamodel defined for AUML class diagrams is just an
explanation of the basic concepts, but it does not represent specifica-
tion of the language used. AUML interaction diagrams are not speci-
fied in terms of a matamodel at all.

Another of AUML’s drawbacks is the absence of modeling tools dedi-
cated to it.

Finally, it is necessary to challenge the AUML notation against indus-
trial and real-world applications to verify its completeness. This is a
very difficult task, because it’s hard to find proper real world indus-
trial applications. Nevertheless, the AUML community is encouraging
companies to participate in its efforts to develop a strong and useful
agent-based modeling language.

2.3 MESSAGE

Introduction MESSAGE (Methodology for Engineering Systems of Software Agents)
[40,86] is an agent oriented software engineering methodology, de-
veloped in particular for the needs of the telecommunications indus-
try. However, it covers most of the fundamental aspects of the MAS
development, and it can also be thought of as a generic methodology
applicable to other domains.

Modeling
concepts

MESSAGE modeling language extends UML 1.* metamodel with
‘knowledge level’ agent-oriented concepts, and it uses the same meta-
model language as UML for description of its abstract syntax.

The MESSAGE modeling language uses the following concepts (mod-
eling elements):

Agent—an atomic autonomous entity that is capable of performing
some (potentially) useful functions. An agent can play roles, provide
services, perform tasks, achieve goals, use resources, be a part of an
organization, and participate in interactions and interaction proto-
cols.

Organization—a group of agents working together to a common pur-
pose. An organization can provide services, achieve goals, use re-
sources, be a part of another organization, group subordinates into
one collection, and participate in interactions and interaction proto-

16 Chapter 2 Survey on Agent-Oriented Modeling Languages

cols. Behavior of an organization is achieved collectively by its con-
stituent agents.

Role—a concept that allows the part played by an agent to be sepa-
rated logically from the identity of the agent itself. A role describes
the external characteristics of an agent in a particular context. A role
can be played by agents or organizations, provide services, perform
tasks, achieve goals, use resources, be a part of an organization, and
participate in interactions and interaction protocols.

Agent, organization and role are commonly called autonomous enti-
ties.

Resource—a concept used to represent non-autonomous entities such as
databases or external programs. A resource can be used by autono-
mous entities.

Task—a unit of activity with a single prime performer. Composite
tasks can be expressed in terms of causally linked sub-tasks. A task can
be performed by an autonomous entity and is causally connected to
other tasks or goals.

Interaction—an act of exchanging messages among participants in or-
der to achieve some purpose.

Interaction protocol—defines a pattern of message exchange associated
with an interaction.

Goal—an intention of an autonomous entity to achieve some desired
state. Goals are “wished” by autonomous entities, can be decomposed
into sub-goals, and can imply execution of tasks.

Information entity—an object encapsulating a chunk of information.

Message—an object communicated between agents. Transmission of a
message takes finite time and requires an action to be performed by
the sender and also the receiver. The attributes of a message specify
the sender, receiver, a speech act (categorizing the message in terms
of the intent of the sender) and the content (an information entity).

In addition to the basic concepts, MESSAGE defines a number of
views (or perspectives) that emphasize different aspects of the full
model. Each view focuses on a limited but consistent aspect, but to-
gether they provide a comprehensive view of the whole system. The
following views are defined:

Organization view—this view shows concrete entities (agents, organi-
zations, roles, and resources) in the system and its environment, and
the coarse-grained relationships between them.

Goal/task view—this view shows goals, tasks, and the dependencies
among them. Goals and tasks can be linked by logical dependencies
to form graphs that show, for instance, that achieving a set of sub-

2.4 Tropos 17

goals implies that a higher level goal is achieved and how tasks can be
performed to achieve goals.

Agent/role view—this view focuses on the individual agents and roles.
For each agent/role it uses schemata supported by diagrams to its
characteristics such as what goals it is responsible for, what events it
needs to sense, what resources it controls, what tasks it knows how to
perform, ‘behavior rules’, etc.

Interaction view—this view shows interactions, the binding of interac-
tion participant roles into concrete agents/roles, the relevant infor-
mation supplied/achieved by each participant, the events that trigger
the interaction, and other relevant effects of the interaction (e.g. an
agent becoming responsible for a new goal).

Domain view—this view shows the domain specific concepts and rela-
tions that are relevant for the system under development. MESSAGE
uses UML class diagrams for this purpose.

Summary MESSAGE modeling language represents one of the best of today’s
agent-oriented modeling languages. It enables modeling of at least
the fundamental elements of a MAS, and it is applicable across several
domains and MAS architectures. Furthermore, the provided notation
is relatively comprehensive.

However, MESSAGE modeling language does not cover all aspects of
MAS, deployment, mobility, internal structure of entities, social dy-
namics, etc.

One of the main community-related deficiencies of MESSAGE is that
it is no longer developed and supported.

2.4 Tropos

Introduction Tropos [12,143] is an agent-oriented software development methodol-
ogy which is founded on the concepts of goal-based requirements
adopted from i* [4,163,164] and GRL [51,80]. Tropos deals primarily
with modeling needs and intentional aspects of the agent system,
from the early requirements analysis to the late design.

Modeling
concepts

Tropos applies actors and goals as fundamental modeling concepts to
all phases of the software development process. It adopts concepts
from organization theory of strategic alliance to model MAS architec-
tures. Tropos defines the following modeling elements:

Actor—an entity that has strategic goals and intentionality within the
system or the organizational setting. An actor represents a physical or
a software agent as well as a role or position.

18 Chapter 2 Survey on Agent-Oriented Modeling Languages

Goal—a strategic interest of an actor. Hard goals are distinguished
from soft goals, the second having no clear-cut definition and/or crite-
ria for deciding whether they are satisfied or not.

Plan—represents, at an abstract level, a way of doing something. The
execution of a plan can be a means for satisfying a goal.

Resource—a physical or an informational entity.

Dependency—a relation between two actors, which indicates that one
actor depends, for some reason, on the other in order to attain some
goal, execute some plan, or deliver a resource. The former actor is
called the depender, while the latter is called the dependee. The ob-
ject around which the dependency centres is called dependum. De-
pendum can be either a goal, a resource, or a task.

Contribution—a relationship between goals or plans representing how
and how much goals or plans can contribute, positively or negatively,
in the fulfillment of the goal.

Decomposition—a relationship between goals or plans representing
AND/OR decomposition of root goal/plan into subgoals/subplans.

Capability—the ability of an actor to define, choose and execute a plan
for the fulfilment of a goal, given certain world conditions and in
presence of a specific event.

Belief—the actor’s knowledge of the world.

Tropos also defines the following specific diagrams:

Actor diagram—describes the actors, their goals and the network of de-
pendency relationships among actors. This diagram type is used ei-
ther to define needs and intentional relationships of the business ac-
tors or users of the system (a kind of a “goal-based requirements busi-
ness model” built in early requirements phase) or to show intentions
of and relations between the inner system’s actors (representing ar-
chitectural requirements and organization).

Goal diagram—shows the internal structure of an actor—its goals,
plans, resources and relationships among them.

In the detailed design phase Tropos, to be able to also cover other as-
pects of MAS architecture, uses class diagrams, activity and interac-
tion diagrams from UML, or sequence diagrams from AUML.

Summary Tropos is an interesting approach resting on the idea of using require-
ments modeling concepts to build a model of the agent-based system.

However, specific Tropos models provide just a restricted view of the
system. The agent architecture, behavior, and deployment are de-
scribed insufficiently. Furthermore, improvements of the existing
modeling concepts would also help to create semantically richer

2.5 MAS-ML 19

models, for example, better logical structuring of goals (constraints),
or better definition of still fairly unclear concepts about plans, capa-
bilities and resources.

2.5 MAS-ML

Introduction Silva et al. contribute to the set of agent-modeling languages based on
UML by their language Multi-Agent System Modeling (MAS-ML) [127,
130]. Based on the Taming Agents and Objects (TAO) [128] conceptual
framework, the MAS-ML extends the UML metamodel describing new
metaclasses, extending the class and sequence diagrams and propos-
ing two new diagrams: organization and role diagram.

Modeling
concepts

TAO (MAS-ML) defines the static and dynamic aspects of MAS. The
static aspect captures the system’s elements and their properties and
relationships. The elements defined in TAO are:

Object—a passive or reactive element that has state and behavior and
can be related to other elements.

Agent—an autonomous, adaptive and interactive element that has a
mental state (such as beliefs, goals, plans and actions).

Environment—an element that is the habitat for agents, objects and or-
ganizations. An environment can be heterogeneous, dynamic, open,
distributed and unpredictable.

Organization—an element that groups agents, which play roles and
have common goals. An organization hides internal characteristics,
properties and behaviors represented by agents inside it.

Role—defined in the context of an organization, a role is an element
that guides and restricts the behavior of an agent or an object in the
organization. The social behavior of an agent is represented by its role
in an organization. MAS-ML defines two types of roles:

Object role—guides and restricts the state and behavior of an
object. It may restrict access to the state and behavior of an ob-
ject but may also add information, behavior and relationships
to the object that plays the role.

Agent role—guides and restricts the behavior of an agent by de-
scribing its goals, beliefs, and the actions that an agent must
and/or may perform while playing the role. An agent role adds
new goals and beliefs to the set of goals and beliefs associated
with an agent and describes duties, rights and protocols relat-
ed to an agent while it is playing the role.

20 Chapter 2 Survey on Agent-Oriented Modeling Languages

TAO also defines a set of relationships that link the mentioned ele-
ments, namely inhabit, ownership, play, specialization, control, depen-
dency, association, and aggregation.

The dynamic aspects of TAO are directly related to the changes of re-
lationships between the elements in time. The dynamics of MAS in-
volve the creation of the elements, the destruction of the elements
and the interaction between the elements. The elementary dynamic
processes defined by TAO are domain-independent dynamics that are
the basis for other higher level dynamic patterns and domain specific
behavior.

MAS-ML transforms the TAO concepts into the corresponding meta-
classes extending the UML metaclasses. MAS-ML extends the set of
UML static diagrams with organization and role diagrams.

Organization diagram models an organization, showing the environ-
ment it inhabits, the roles it defines and the objects, agents and sub
organizations that play those roles.

Role diagram defines the relationships between agent roles, between
agent roles and object roles, between object roles and roles and the
classes that they use/define.

MAS-ML extends the UML sequence diagram to represent the interac-
tion between agents, organizations and environments. The exten-
sions proposed to the UML sequence diagram were based on the do-
main-independent dynamic processes described in [129].

Summary MAS-ML allows modeling of the static as well as the dynamic aspects
of a MAS, and defines the modeling elements based on a well-defined
set of concepts from TAO. From the conceptual point of view (be-
cause of TAO), the MAS-ML is one of the best specified agent-oriented
modeling languages.

However, the concrete modeling mechanisms and the way they are
defined do not reach this quality. MAS-ML extends the UML meta-
model and defines its UML profile in a relatively strange way, for ex-
ample, not all MAS-ML-specific metaclasses are represented by stereo-
types, there are some stereotypes defined without corresponding
metaclasses, and some constraints from the TAO metamodel are not
preserved by the MAS-ML metamodel. Furthermore, not all elements
from TAO are reflected by the MAS-ML metamodel. Notation of the
MAS-ML elements is quite non-standard and difficult to draw.

Due to the problems with defining the MAS-ML metamodel, UML
profile, and its notation, it would be very difficult (if even possible) to
implement MAS-ML in a UML-based CASE tool.

2.6 AOR 21

2.6 AOR

Introduction Wagner in [151] suggests an agent-oriented approach to the concep-
tual modeling of organizations and organizational information sys-
tems called Agent-Object-Relationship (AOR). AOR proposes a concep-
tual framework for agent-oriented modeling that is based on a set of
19 ontological principles, including those of Entity-Relationship (ER)
modeling, and a corresponding diagram language called AOR Model-
ing Language (AORML).

In [150] Wagner presents a UML profile for AOR. Casting the AOR
metamodel as a UML profile allows AOR models to be notated using
standard UML notation.

Modeling
concepts

In the AOR, an entity is either an agent, an event, an action, a claim, a
commitment, or an ordinary object. Special relationships between
agents and events, actions, claims and commitments supplement the
fundamental association, aggregation/composition and generaliza-
tion relationship types of ER and UML class modeling.

In the AOR approach, behavior is primarily modeled by means of in-
teraction patterns expressed in the form of reaction rules that are vi-
sualized in interaction pattern diagrams. It is also an option to addi-
tionally use UML activity and state machine diagrams.

There are two basic types of AOR models: external and internal ones.
An external AOR model adopts the perspective of an external observer
who is observing the (prototypical) agents and their interactions in
the problem domain under consideration. An internal AOR model
adopts the internal (first-person) view of a particular agent to be mod-
eled.

Typically, an external AOR model has a focus, that is an agent or a
group of agents, for which we would like to develop a state and be-
havior model. In this external-observer-view, the application domain
consists of various types of agents, communicative and non-commu-
nicative action events, non-action events, commitments/claims be-
tween two agent types, ordinary objects, various designated relation-
ships, such as send and do, and ordinary associations. An external
AOR model may comprise one or more of the following diagrams:

Agent Diagrams—depicting the agent types of the domain, certain
relevant object types, and the relationships among them.

Interaction Frame Diagrams—depicting the action event types
and commitment/claim types that determine the possible interac-
tions between two agent types (or instances).

Interaction Sequence Diagrams—depicting prototypical instanc-
es of interaction processes.

22 Chapter 2 Survey on Agent-Oriented Modeling Languages

Interaction Pattern Diagrams—focusing on general interaction
patterns expressed by means of a set of reaction rules defining an
interaction process type.

In an internal AOR model, the internal view of a particular agent to
be modeled is adopted. In this view the domain of interest consists of
various types of: other agents, actions, commitments towards other
agents to perform certain actions, events (many of them created by
actions of other agents), claims against other agents that certain ac-
tion events happen, ordinary objects, various designated relation-
ships, and ordinary associations. An internal AOR model may com-
prise of one or more of the following diagrams:

Reaction Frame Diagrams—depicting other agents (or agent
types) and the action and event types, as well as the commitment
and claim types that determine the possible interactions with
them.

Reaction Sequence Diagrams—depicting prototypical instances
of interaction processes in the internal perspective.

Reaction Pattern Diagrams—focusing on the reaction patterns of
the agent under consideration expressed by means of reaction
rules.

Summary AOR, by virtue of its agent-oriented categorization of different classes,
allows more adequate models of organizations and organizational in-
formation systems than plain UML.

The author identifies the following main strengths of AORML with
respect to conceptual modeling:

1. AORML has a richer set of basic ontological concepts, allowing it
to capture more semantics of a domain, as compared to ER, UML
and AUML.

2. AORML includes and unifies many of the fundamental domain
modeling concepts found in enterprise modeling approaches such
as CIMOSA and the Eriksson-Penker business extensions.

3. Unlike UML, AORML allows the integration of state and behavior
modeling in one diagram.

4. AORML allows the inclusion of the deontic concepts of rights and
duties for organization modeling in an ER/UML-based informa-
tion model.

5. AORML seems to be the first approach that enables the systematic
distinguishing between external and internal models and ac-
counts for the phenomenon of internalization.

6. AORML seems to be the first approach that employs and visualizes
the important concept of reaction rules for behavior modeling.

2.7 Summary of Today’s MAS Modeling Languages 23

However, weaknesses of AOR modeling in its current form include:

1. The entire development path from analysis to implementation is
not yet fully defined.

2. AORML does not currently include the concept of activities. It will
be added, however, in future work.

3. AORML does not include the concept of goals which is fundamen-
tal in several other approaches, such as [39,166].

4. AORML does not allow modeling of the proactive behavior of
agents. This type of behavior, which is the focus of Artificial Intel-
ligence approaches to agents, is based on action planning and
plan execution for achieving goals.

2.7 Summary of Today’s MAS Modeling Languages

Achieved
results

In the last few years we were witnesses to rapid progress in the area of
MAS modeling. A considerably large number of agent-oriented mod-
eling languages came into existence as reaction to the urgency of ap-
plication of an organized way of development agent-based systems.

In general, most of the existing agent-oriented modeling languages
share the common basic concepts coming from solid foundations of
MAS theories, such as the concept of agent, role, or interaction. How-
ever, the current modeling languages differ in their approach to mod-
eling these concepts. Several MAS modeling and specification para-
digms used in various (AI, MAS, and computer science) theories and
software engineering approaches are reflected by the current model-
ing languages, including logic-based, knowledge-based, require-
ments-based, BDI5-based, UML-based, etc. languages.

The majority of the current agent-oriented modeling languages were
developed by people with mostly academic backgrounds. This fact,
on one hand, generally assures the creation of theoretically sound so-
lutions, but on the other hand, results in insufficient testing and the
lack of proof of their applicability in modeling real-world problems.
There are only a few known examples of successful application of
MAS modeling approaches in development of large-scale real-world
systems.

Deficiencies
of existing

approaches

In spite of interesting results in the area of agent-oriented modeling,
the currently available agent-oriented modeling languages, in gen-
eral, are:

5 Belief-Desire-Intention—an agent architecture based on the notion of agents
as intentional systems. Introduced by Rao and Georgeff in [119].

24 Chapter 2 Survey on Agent-Oriented Modeling Languages

Insufficiently documented and/or specified.
It is difficult to correctly understand and properly use a modeling
language described informally, without exact specification of syn-
tax and semantics of the comprised modeling constructs.

Using proprietary and/or non-intuitive modeling constructs.
Exploiting modeling constructs which are not natural abstractions
of the particular MAS concepts in a modeling language can de-
crease the level of its comprehensibility and usability. People
might learn and use it with difficulties and undesirable overhead.

Aimed at modeling only a limited set of MAS aspects.
The smaller set of aspects of a system that can be expressed using a
modeling language, the narrower applicability and usability that
language has. Those languages which cover just a limited set of
modeled aspects are restricted in providing complex models of
systems.

Applicable only to a specific theory, application domain, MAS
architecture, or technology.
Many modeling languages are not generally applicable, but only
within the scope of a particular theory, application domain, MAS
architecture, or technology. Even though such modeling languag-
es may be used to create fine quality models, the range of model-
able systems is usually restricted.

Mutually incompatible in terms of concepts, metamodel, and
notation.
We identify three problems connected to this fact: (1) The lack of
agreement among agent-oriented modeling languages discourag-
es new users from entering the agent technology market and from
undertaking agent-oriented modeling. (2) It might be difficult, or
even impossible, to interchange artifacts and information be-
tween MAS development teams using different modeling languag-
es and to transform models from one language to another. In this
case a modeling language fails to represent a common communi-
cation and interchange language. (3) Producers of tools are dis-
couraged from entering the agent modeling area because of the
need to support many different modeling languages and means of
interoperability.

Insufficiently supported by CASE tools.
Success in the practical usability of software modeling languages
is empowered by the CASE tools provided for modeling, model
maintenance, validation, forward and reverse engineering, etc.
Languages that do not provide automation support of sufficient
quality are significantly weakened. Even existing MAS-specific
modeling CASE tools, for instance, ISLANDER [60], INGENIAS IDE
[59], or Prometheus Design Tool [117], mostly do not achieve the
level of quality required of industrially applicable tools.

2.7 Summary of Today’s MAS Modeling Languages 25

Conclusions Existing agent-oriented modeling languages represent the first step in
defining high-quality, generally accepted and practically used MAS
modeling solutions, applicable not only in academia, but also in the
area of industrial software development.

But still, due to the existence of many divergent MAS modeling ap-
proaches and their insufficient industrial quality, none of them have
achieved general acceptance and use in wider community of software
engineers. Current agent-oriented modeling languages either remain
practically unused, or are being used just by isolated groups of soft-
ware developers, usually closely cooperating with the authors of the
particular modeling languages. Therefore, the wider community of
software engineers is not yet aware of the current MAS modeling ap-
proaches. “Agent-orientation” is still usually perceived as “yet an-
other buzzword” from the side of traditional software engineers still
mostly focused on the object-oriented approaches.

Fortunately, the problems of the current agent-oriented approaches
have been identified and teams of specialists, from both academia
and industry, are working together on their elimination.

Chapter 3

Requirements on a MAS
Modeling Language

General
quality
criteria

In order to determine the quality of a modeling language explicitly, it
is necessary to state its quality criteria. In the following we will define
the general quality criteria of MAS modeling languages based on our
analysis of the existing agent-oriented modeling languages (provided
in Chapter 2), but also coming out of more than 10 years of our expe-
rience in the area of software modeling.

To qualify this more precisely, a MAS modeling language is intended
to be:

theoretically sound—integrates best practices from AOSE and
OOSE6 domains and is built on proven technical foundations,

well specified and documented—provides detailed and compre-
hensive specification of its syntax, semantics, and use,

comprehensive—is highly expressive and enables to create com-
plex models of systems, capturing various aspects of the system
modeled,

consistent—is internally consistent from the conceptual, semantic
and syntactic perspectives,

easy to use—provides the modeling constructs which are easy to
learn and apply,

extensible—allows to specialize and extend the provided model-
ing means,

generic—is independent of any particular theory, software devel-
opment process or technology, and

automatable—is easily supportable by CASE tools.

6 Object-Oriented Software Engineering.

28 Chapter 3 Requirements on a MAS Modeling Language

To build a modeling language that would satisfy these quality criteria
is a non-trivial and ambitious task, vindicated by the fact that none of
the existing agent-oriented modeling languages are able to satisfy
them completely.

Application of
the quality

criteria

In order to achieve high level of AML’s quality, it was necessary to
take into account also the stated quality criteria. They represented the
fundamental requirements which were used in the development of
AML as the mandatory criteria that our solution had to uncondition-
ally adhere.

However, the aforementioned quality criteria are specified generi-
cally enough, so they can be used as general rules for designing any
other software (but not necessarily) modeling/specification language,
or/and to be used as evaluation criteria to determine the quality of
some of existing modeling/specification languages.

Part II

Solution Summary

This part describes the main concepts and design principles which
guided us in the development of AML. We outline the fundamental
AML concepts used to describe an abstract metamodel of MAS. The
core AML modeling constructs are explained and demonstrated by ex-
amples. We also discuss results that go beyond satisfaction of the pri-
mary goals of this work, but relate to the introduction of AML and its
underlying ideas into practice in terms of software development and
standardization.

Chapter 4

The AML Approach

In this chapter we discuss the main motivational and technical as-
pects which influenced our design of AML, and we describe the over-
all language architecture and its extensibility mechanisms.

4.1 The Purpose of AML

The Agent Modeling Language (AML) is a semi-formal visual model-
ing language for specifying, modeling and documenting systems in
terms of concepts drawn from MAS theory [18].

The primary application context of AML is to systems explicitly de-
signed using software multi-agent system concepts. AML can, how-
ever, also be applied to other domains such as business systems, so-
cial systems, robotics, etc. In general, AML can be used whenever it is
suitable or useful to build models that:

consist of a number of autonomous, concurrent and/or asynchro-
nous (possibly proactive) entities,

comprise entities that are able to observe and/or interact with
their environment,

make use of complex interactions and aggregated services,

employ social structures,

capture mental characteristics of systems and/or their parts, etc.

4.2 The Scope of AML

AML is designed to support business modeling, requirements specifi-
cation, analysis, and design of software systems that use MAS con-
cepts and principles.

32 Chapter 4 The AML Approach

The current version of AML offers:

Support for the human mental process of requirements specifica-
tion and analysis of complex problems/systems, particularly:

• mental aspects, which can be used for modeling intentionality
in business and use case models, goal-based requirements,
problem decomposition, etc. (for details see section 6.7, and
chapter 12), and

• contexts, which can be used for situation-based modeling (see
sections 6.9, and 14.1).

Support for the abstraction of architectural and behavioral con-
cepts associated with multi-agent systems:

• MAS entities (see sections 6.2, 10.2, 10.3, and 10.4),

• social aspects (see sections 6.3, and 10.5),

• behavior abstraction and decomposition (see sections 6.5,
11.1, and 11.2),

• communicative interactions (see sections 6.6, and 11.3),

• services (see sections 6.6.3, and 11.4),

• observations and effecting interactions (see sections 6.6.4, and
11.5),

• mental aspects used for modeling mental attitudes of entities
(see section 6.7, and chapter 12),

• MAS deployment (see sections 6.4, and 10.6),

• agent mobility (see sections 6.4, and 11.6), and

• ontologies (see section 6.8, and chapter 13).

Outside the
scope of AML

AML does not cover most operational semantics of the modeling ele-
ments, which is often dependent on a specific execution model given
by an applied theory or deployment environment (e.g. agent plat-
forms, reasoning engines, or other technologies used). However, the
basic operational semantics is inherited from UML which is the un-
derlying modeling language; for details see later in this chapter.

4.3 The Development of AML

In forming the main principles and the design of AML we applied a
systematic approach based upon unification of significant, well de-
fined, generally accepted and practically useful principles and con-
cepts from the broadest possible set of existing multi-agent theories
and abstract models, modeling and specification languages, method-

4.4 AML Sources 33

ologies, agent-based technologies and multi-agent driven applica-
tions.

Toward achieving the stated goals, we used the process that should be
basically characterized by the following steps:

1. Identification and study the relevant sources.

2. Determination of the applicable concepts, modeling mechanisms
and techniques from the selected sources.

3. Unification of the concepts and building the AML conceptual
framework. This framework determines the scope of AML and
modeling mechanisms used.

4. Identification of the additional requirements for building AML,
which are aimed at improvement of the specified concepts to pro-
vide their richer models, or to support for modeling of MAS as-
pects still covered insufficiently, inappropriately or not at all, etc.

5. Transformation of the concepts and the additional requirements
onto modeling elements. In the case where UML modeling is in-
sufficient or inappropriate, we have defined specific AML model-
ing elements.

6. Assembling the AML modeling elements into a consistent frame-
work specified by the AML metamodel (covering abstract syntax
and semantics of the language) and notation (covering the con-
crete syntax).

7. Creation of the UML 2.0 and 1.5. profiles based on the AML meta-
model.

The process could be characterized as iterative and incremental. Thus
the above-mentioned procedure was repeated several times, once per
iteration, and the language specification was built stepwise by succes-
sively adding new features.

4.4 AML Sources

Tab. 4-1 provides a summary of the most significant AML sources and
their contribution to the language.

Source Used for

UML 1.5 [102],
UML 2.0 [103,104]

the underlying foundation of AML, language
definition principles (metamodel, semantics
and notation), and extension mechanisms

OCL 2.0 [100] the constraints language used in AML specifica-
tion

Tab. 4-1 AML sources (1/2)

34 Chapter 4 The AML Approach

MESSAGE [40,86] inspiration for the core AML modeling princi-
ples, partially also notation

AUML [7,8,9,10,92,93,94,
95,96,113,116]

inspiration for modeling of interactions, mobil-
ity and partially class diagrams

i* [4,163,164],
GRL [51,80],
TROPOS [12,143],
KAOS [31,146],
NFR [23,88], GBRAM [5],
etc.

inspiration for and principles of goal-based
requirements and modeling of intentionality

Gaia [161,168],
ROADMAP [68], Styx [15],
PASSI [25,26],
Prometheus [111,112]
MAS-ML [127,129,130],
AOR [150,151],
CAMLE [125],
OPM/MAS [55,136],
INGENIAS [52,59,114],
MASSIVE [77],
ADELFE [11],
Cougaar Design Method-
ology [27],
etc.

inspiration for modeling techniques, concepts,
and constructs

OWL [110,132],
DAML [30,43],
OIL [41,43,97], etc.

inspiration for the specification and modeling of
ontologies

FIPA standards [47] principles of MAS architecture and communica-
tion

Web services [149],
OWL-S [84]

inspiration for the specification of services

existing agent-oriented
technologies, e.g. agent
platforms

architectural principles

modal, deontic, temporal,
dynamic, and epistemic
logics [147,152]

formal approach to the specification of distrib-
uted artificial intelligence (DAI) systems, exten-
sions of the constraint language

MAS theories and abstract
models, e.g. DAI [152],
BDI [119], CDL [155],
SMART [35]

identification of problems to model and princi-
ples of formal system specification

Source Used for

Tab. 4-1 AML sources (2/2)

4.5 The Language Architecture 35

4.5 The Language Architecture

UML 2.0 as a
base

AML is based on the UML 2.0 Superstructure [104], augmenting it with
several new modeling concepts appropriate for capturing typical fea-
tures of multi-agent systems.

The main advantages of this approach are:

Reuse of well-defined, well-founded, and commonly used con-
cepts of UML.

Use of existing mechanisms for specifying and extending UML-
based languages (metamodel extensions and UML profiles).

Ease of incorporation into existing UML-based CASE tools.

Structure of
AML

AML is defined at two distinct levels—AML Metamodel and Notation
and AML Profiles. Fig. 4-1 depicts these two levels, their derivation
from UML 2.0 and optional extensions based on UML 1.* and 2.0.

With reference to Fig. 4-1, the UML level contains the UML 2.0 Super-
structure which defines the abstract syntax, semantics and notation
of UML. AML uses this level as the foundation upon which to define
MAS-specific modeling constructs.

The AML Metamodel and Notation level defines the AML abstract syn-
tax, semantics and notation. The AML Metamodel is further structured
into two main packages: AML Kernel and UML Extension for AML.

The AML Kernel package is the core of AML where the AML specific
modeling elements are defined. It is logically structured into several

Fig. 4-1 Levels of AML specification

UML

AML Profiles

AML Profile Extensions

AML Metamodel

UML 2.0 Superstructure

and Notation

AML Metamodel
AML

NotationAML KernelUML Extension for AML

UML 1.* Profile for AML UML 2.0 Profile for AML

A
M

L

UML 1.* Profiles
Extending AML

UML 2.0 Profiles
Extending AML

36 Chapter 4 The AML Approach

packages, each of which covers a specific aspect of MAS. The AML Ker-
nel is a conservative extension7 of UML 2.0

The UML Extension for AML package adds meta-properties and struc-
tural constraints to the standard UML elements. It is a non-conserva-
tive extension of UML, and thus is an optional part of the language.
However, the extensions contained within are simple and can be eas-
ily implemented in most of the existing UML-based CASE tools and
other technologies based on UML and XML Metadata Interchange
(XMI) [106].

At the level of AML Profiles, two UML profiles built upon the AML
Metamodel and Notation are provided: UML 1.* Profile for AML (based
on UML 1.*) and UML 2.0 Profile for AML (based on UML 2.0). These
profiles, inter alia, enable implementation of AML within UML 1.*
and UML 2.0 based CASE tools, respectively.

Based on AML Profiles, users are free to define their own language ex-
tensions to customize AML for specific modeling techniques, imple-
mentation environments, technologies, development processes, etc.
The extensions can be defined as standard UML 1.* or 2.0 profiles.
They are commonly referred to as AML Profile Extensions.

Extensibility
of AML

AML is designed to encompass a broad set of relevant theories and
modeling approaches, it being essentially impossible to cover all in-
clusively. In those cases where AML is insufficient, several mecha-
nisms can be used to extend or customize AML as required.

Each of the following extension methods (and combinations thereof)
can be used:

Metamodel extension. This offers first-class extensibility—as de-
fined by the Meta Object Facility (MOF) [99]—of the AML meta-
model and notation.

AML profile extension. This offers the possibility to adapt AML
Profiles using constructs specific to a given domain, platform, or
development method, without the need to modify the underlying
AML metamodel.

Concrete model extension. This offers the means to employ alter-
native MAS modeling approaches as complementary specifica-
tions to the AML model.

7 A conservative extension of UML is a strict extension of UML which retains
the standard UML semantics in unaltered form [144].

Chapter 5

Concepts of AML

In order to properly understand AML, it is necessary to understand its
underlying concepts. This chapter provides the reader with a descrip-
tion of the fundamental concepts used to describe an abstract meta-
model of a MAS, referred to as the MAS metamodel [44]. The intention
is not to provide a comprehensive metamodel for all aspects and de-
tails of a MAS (such as detailed architectural design, system dynamics,
or operational semantics), but rather to explain the concepts that
were used as the underlying principles of AML and influenced the de-
sign of comprised modeling constructs. The presented conceptual
MAS metamodel is used as a basis for the design of the AML meta-
model described in Part III.

The conceptual MAS metamodel is described in the form of UML class
diagrams, where each class represents a particular concept. UML rela-
tionships (generalizations and associations) are used in the meta-
model with their standard semantics.

The conceptual MAS metamodel is described by several diagrams,
each of which represents the portion capturing a particular MAS as-
pect. The following sections present the diagrams and brief descrip-
tions of the defined concepts and their relationships.

Note: In the metamodel diagrams presented in the following sec-
tions, the filled (gray) classes represent the concepts defined within a
particular diagram, and the outlined classes represent concepts de-
fined within other diagrams.

5.1 Multi-Agent System

Scope This part of the conceptual MAS metamodel specifies the overall
model of a multi-agent system.

38 Chapter 5 Concepts of AML

Metamodel Fig. 5-1 shows the metamodel of a multi-agent system.

Metaclasses Description of the defined concepts follows:

Multi-agent system
Is a system composed of several agents, capable of mutual interac-
tion [156]. In the AML framework, a multi-agent system consists
of, in addition to agents, other entity types, e.g. environments or
resources (see section 5.2). In general we say that a multi-agent
system comprises entities. Physically, such a system can be de-
ployed on several agent execution environments (see section 5.5).

5.2 MAS Semi-entities and Entities

Scope This part of the AML conceptual model of MAS deals with the model-
ing of constituents of a multi-agent system. MAS may consist of a set
of interconnected entities of different types, namely agents, resources
and environments. They are represented by concrete classes in the
MAS conceptual metamodel. Furthermore, these entities are catego-
rized, according to their specific characteristics, into several catego-
ries expressed in the conceptual metamodel by abstract classes used
as superclasses to the concrete ones.

Semi-entities In order to maximize reuse and comprehensibility of the concepts,
AML defines several auxiliary abstract metamodeling concepts called
semi-entities. Semi-entity is a modeling concept that defines certain
features specific to a particular aspect or aspects of entities, but does
not itself represent an entity. All entities inherit their features from
semi-entities. Because semi-entities are abstractions, the metaclasses
representing semi-entities in the MAS conceptual metamodel are ab-
stract, and therefore they cannot be instantiated at a system’s run
time. The AML conceptual metamodel of MAS defines the following
semi-entities:

Structural semi-entity
Represents the capability of an entity to have attributes, to be de-
composed into other structural semi-entities, and to be linked to
other structural semi-entities. For details see section 5.3.

Fig. 5-1 Conceptual metamodel of a multi-agent system

Ent it y

Agent Execut ion
Environment

Multi-Agent
System

*

*

*

*
Comprise

** **

Deployed at

5.2 MAS Semi-entities and Entities 39

Socialized semi-entity
Represents the capability of an entity to form societies and to par-
ticipate in social relationships. See section 5.4 for details.

Behaviored semi-entity
Represents the ability of an entity to own capabilities, interact
with other behaviored semi-entities, provide and use services, to
observe and effect their environment by means of perceptors and
effectors, and to be decomposed into behavior fragments. For de-
tails see section 5.6.

Mental semi-entity
Represents the capability of an entity to possess (or to be charac-
terized in terms of) mental attitudes, for example, which informa-
tion it believes in, what are its objectives, needs, motivations, de-
sires, what goal(s) it is committed to, when and how a particular
goal is to be achieved, or which plan to execute. For details see
section 5.7.

Metamodel Fig. 5-2 shows the metamodel of the MAS entities.

Metaclasses Description of the defined concepts follows:

Entity
Is an abstract specialized structural semi-entity used to represent
an object, which can exist in the system independently of other
objects. An entity can be hosted by agent execution environments
and can be mobile (see section 5.5).

Entity is represented by the EntityType metaclass in the AML
metamodel, see section 10.1.1.

Fig. 5-2 Conceptual metamodel of MAS entities

Agent

Resource Autonomous Entity

Entity Social ized
Semi -Enti ty

Environment

Behavioral Entity

Behaviored
Semi-Enti ty

Mental
Semi-Entity

Structural
Semi -Ent ity

40 Chapter 5 Concepts of AML

Behavioral entity
Is an abstract specialized entity which represents entities having
the features of behaviored semi-entities (see section 5.6) and so-
cialized semi-entities (see section 5.4), and can play entity roles
(see section 5.4).

Behavioral entity is represented by the BehavioralEntityType
metaclass in the AML metamodel, see section 10.1.2.

Autonomous entity
Is an abstract specialized behavioral entity and mental semi-entity
(see section 5.7), used to represent self-contained entities that are
capable of autonomous behavior in their environment, i.e. enti-
ties that have control of their own behavior, and act upon their
environment according to the processing of (reasoning on) per-
ceptions of that environment, interactions and/or their mental at-
titudes. Autonomous entity can be characterized in terms of its
mental attitudes (see section 5.7).

Autonomous entity is represented by the AutonomousEntity-
Type metaclass in the AML metamodel, see section 10.1.3.

Resource
Is a concrete specialized behavioral entity used to represent a
physical or an informational entity within the system, with which
the main concern is its availability and usage (e.g. quantity, access
rights, conditions of consumption).

Resource is represented by the ResourceType metaclass in the
AML metamodel, see section 10.3.1.

Agent
Is a concrete specialized autonomous entity representing a self-
contained entity that is capable of autonomous behavior within
its environment. An agent is a special object8 having at least the
following additional features:

• autonomy, i.e. control over its own state and behavior, based
on external (reactivity) or internal (proactivity) stimuli, and

• ability to interact, i.e. the capability to interact with its environ-
ment, including perceptions, effecting actions, and speech act
based interactions.

Other features such as mobility, adaptability, learning, etc., are
optional in the AML framework.

Agent is represented by the AgentType metaclass in the AML
metamodel, see section 10.2.1.

8 Object is defined in the object-oriented paradigm as an entity (in a broader
sense) having identity, status and behavior. We do not narrow the concept of
object to an object-oriented programming concept.

5.3 Structural Aspects 41

Environment
Is a concrete specialized autonomous entity representing the logi-
cal or physical surroundings of a collection of entities which pro-
vides conditions under which those entities exist and function.
Environment defines a particular aspect or aspects of the world
which entities inhabit, its structure and behavior. It can contain
the space and all the other objects in the entity surroundings, and
also those principles and processes (laws, rules, constraints, poli-
cies, services, roles, resources, etc.) which together constitute the
circumstances under which entities act. One entity can appear in
several environments at once, and one environment can comprise
several entities.

Environments are not considered to be static. Their properties,
structure, behavior, mental attitudes, participating entities and
their features, etc. can change over time.

Environment is represented by the EnvironmentType metaclass
in the AML metamodel, see section 10.4.1.

5.3 Structural Aspects

Scope Entities can be structured internally and externally. The internal struc-
ture of an entity is given by values of owned attributes and by nesting
of entities. The external structure of an entity is specified by means of
links to other entities.

Attribute represents a set of value-key pairs that are used to specify
properties of its owner. Values of all attributes of an entity determine
its state.

In order to model hierarchical structures, entities can be nested, i.e.
one entity can contain other entities.

An entity can also be linked to other entities. A link represents a se-
mantic relationship of two or more entities that know each other and
can communicate.

Metamodel Fig. 5-3 shows the metamodel of structural aspects.

Fig. 5-3 Conceptual metamodel of structural aspects

Structural Semi-Entity
attribute[*]

** *

Link

*

*0..1 *

Consist of

0..1

42 Chapter 5 Concepts of AML

Metaclasses A description of the defined concepts follows:

Structural semi-entity
Is a semi-entity used to represent the capability of an entity to
have attributes, to be decomposed into other structural semi-enti-
ties, and to be linked to other structural semi-entities.

The AML metamodel does not contain representation of the
structural semi-entity explicitly, because the possibility to own
attributes, to be decomposed and to be linked is inherited
from the UML Class which is used as a common superclass to
all semi-entity types defined in the AML metamodel.

5.4 Social Aspects

Scope Social aspects define the concepts used to model organizational struc-
ture of entities, their social relationships and the possibility to play
(social) roles.

Note: A detailed discussion about the conceptual background and
mechanisms of modeling social aspects of multi-agent systems in
AML is provided in [20,21].

Metamodel Fig. 5-4 shows the metamodel of social aspects.

Metaclasses A description of the defined concepts follows:

Organization unit
Is a concrete specialized environment type (see section 5.2) used
to represent a social environment or its part. Organization units
are usually used to model different kinds of societies, e.g. groups,
organizations, and institutions.

Fig. 5-4 Conceptual metamodel of social aspects

Organization Unit

Environment

Behaviored
Semi-Entity

Mental
Semi-Entity

Socialized Semi-Entity
* ** *

Social Realt ionship
kind

Entity RoleBehavioral Entity
*1 *1

Play

Structural
Semi-Entity

5.4 Social Aspects 43

From an external perspective, organization units represent co-
herent autonomous entities which can have external structure
(see section 5.3), perform behavior, interact with their envi-
ronment, offer services (see section 5.6), possess mental atti-
tudes (see section 5.7), play roles, etc. Properties and behavior
of organization units are both:

• emergent properties and behavior of all their constituents, and

• the properties and behavior of organization units themselves.

From an internal perspective, organization units are types of en-
vironments that specify the social arrangements of entities in
terms of structures, interactions, roles, constraints, norms, etc.

Organization unit is represented by the OrganizationUnitType
metaclass in the AML metamodel, see section 10.5.1.

Socialized semi-entity
Is a semi-entity used to represent the capability of an entity to
form societies and to participate in social relationships with other
socialized semi-entities.

Socialized semi-entity is represented by the SocializedSemiEn-
tityType metaclass in the AML metamodel, see section 10.5.2.

Social relationship
Is a particular type of connection between socialized semi-entities
related to or having to deal with each other. A social relationship
is characterized by its kind. AML predefines two generic kinds of
social relationships: peer-to-peer and superordinate-to-subordi-
nate. The set of supported social relationship kinds can be extend-
ed as required, e.g. by producer-consumer, competitors, or kinds
of interpersonal relationships inspired by sociology, for instance,
intimate relationships, sexual relationships, friendship, acquain-
tanceship, or brotherhood.

Social relationship is represented by the SocialProperty, Social-
RoleKind, and SocialAssociation metaclasses in the AML meta-
model, see sections 10.5.3, 10.5.4, and 10.5.5.

Entity role9

Is a concrete specialized structural semi-entity (see section 5.3),
behaviored semi-entity (see section 5.6), mental semi-entity (see
section 5.7), and socialized semi-entity, and is used to represent
either a usage of structural properties, execution of a behavior,
participation in interactions, or possession of a certain mental

9 AML uses the term ‘entity role’ rather than the commonly used ‘role’
[26,40,92,168] to differentiate agent-related roles from the roles defined by
UML 2.0 Superstructure, i.e. roles used for collaborations, parts, and associa-
tions.

44 Chapter 5 Concepts of AML

state by a behavioral entity in a particular context (e.g. interaction
or social). We say that the behavioral entity, called entity role play-
er (or simply player), plays a given entity role. One behavioral enti-
ty can play several entity roles at the same time and can change
them dynamically. The entity role exists only while a behavioral
entity plays it. Entity role is an abstraction of features required
from the behavioral entities which can play it. Each entity role
should be realized by a specific implementation possessed by its
player. Thus an entity role can be used as an indirect reference to
behavioral entities, and as such can be utilized for the definition
of reusable patterns (usually defined at the level of types).

Entity role is represented by the EntityRoleType metaclass in
the AML metamodel, see section 10.5.6. Playing of entity roles
by behavioral entities is modeled by the RoleProperty and Play-
Association metaclasses, see sections 10.5.7 and 10.5.8 respec-
tively. The possibility to create new and dispose of existing en-
tity roles dynamically is modeled by special AML actions repre-
sented by the CreateRoleAction and DisposeRoleAction meta-
classes, see sections 10.5.9 and 10.5.10.

5.5 MAS Deployment and Mobility

Scope MAS deployment specifies the set of concepts that are used to define
the execution architecture of a MAS in terms of the deployment of
MAS entities to a physical execution environment. The execution en-
vironment is modeled by one or more, possibly interconnected and
nested, agent execution environments. The placement and operation
of entities at agent execution environments is specified by the con-
cept of hosting.

The AML deployment model also supports mobility, i.e. movement
or cloning of entities among different agent execution environments,
that is modeled by the dynamic reallocation of hostings. A moving
entity changes its present hosting to a new one located at another
agent execution environment. Cloned entity creates its copy (called
clone) with a new hosting placed at the same or different agent execu-
tion environment.

5.5 MAS Deployment and Mobility 45

Metamodel Fig. 5-5 shows the metamodel of MAS deployment.

Metaclasses A description of the defined concepts follows:

Agent execution environment
Is a concrete specialized structural semi-entity (see section 5.3)
and behaviored semi-entity (see section 5.6), used to represent an
execution environment of a multi-agent system. Agent execution
environment provides the physical infrastructure in which MAS
entities can run. One entity can run in, at most, one agent execu-
tion environment at one time. An agent execution environment
can run at one computational resource (computer) or can be dis-
tributed among several nodes possibly connected by a network. It
can provide (use) a set of services that the deployed entities use
(provide) at run time. Owned hostings specify entities hosted by
(running at) the agent execution environment.

Agent execution environment is represented by the AgentExe-
cutionEnvironment metaclass in the AML metamodel, see sec-
tion 10.6.1.

Hosting
Is a relationship between an entity and the agent execution envi-
ronment where the entity runs. It can be characterized by the
hosting kind, which is one of the following:

• resident—the entity is perpetually hosted by the agent execu-
tion environment, or

• visitor—the entity is temporarily hosted by the agent execution
environment.

Hosting is represented by the HostingProperty, HostingKind,
and HostingAssociation metaclasses in the AML metamodel,
see sections 10.6.2, 10.6.3, and 10.6.4.

Fig. 5-5 Conceptual metamodel of MAS deployment in AML

Ent ity

Agent Execution Environment

*

1

*

1

Hosting
Hosting

kind

Structural
Semi-Entity

Behaviored
Semi-Entity

46 Chapter 5 Concepts of AML

5.6 Behaviors

Scope This part of the conceptual MAS metamodel specifies the concepts
used to model behavioral aspects of MAS entities, namely:

behavior abstraction and decomposition,

communicative interactions,

services, and

observations and effecting interactions.

Note: The AML conceptual metamodel of MAS is very brief in this
part, because AML reuses many of the concepts from UML (concept of
behavior, interactions, activities, state machines, etc.), and therefore
they do not need to be explicitly mentioned in the AML conceptual
metamodel. For principles about how AML utilizes behavioral aspects
of UML see sections 6.5 to 6.6.4. The details are described in Chapter
11.

Metamodel Fig. 5-6 shows the metamodel of behaviors.

Metaclasses A description of the defined concepts follows:

Behaviored semi-entity
Is a semi-entity used to represent the ability of an entity to have
capabilities, to interact with other behaviored semi-entities, to
provide and use services, to perceive and effect, and to be decom-
posed into behavior fragments.

Fig. 5-6 Conceptual metamodel of behavior abstraction and decom-
position

Capability

Behavior Fragment

Service

PerceptorBehaviored Semi-Entity

* 0..1* 0..1

Has

*

*

*

*
Comprise

* 1* 1

Provide

*

*

*

*

Use

*

*

*

Interact

*

*1 *1

Has

Entity
*

*

*

*
Percept

Effector
*1 *1

Has

*

*

*

*
Effect

5.6 Behaviors 47

Behaviored semi-entity is represented by the Behaviored-
SemiEntityType metaclass in the AML metamodel, see section
11.1.1.

Capability
Is used to model an abstract specification of a behavior that allows
reasoning about and operations on that specification. Technical-
ly, a capability represents a unification of common specification
properties of UML’s behavioral features and behaviors expressed
in terms of inputs outputs, pre- and post-conditions.

Capability is represented by the Capability metaclass in the
AML metamodel, see section 11.1.2.

Behavior fragment
Is a concrete specialized behaviored semi-entity used to represent
a coherent reusable fragment of behavior. It is used to decompose
a complex behavior into simpler and possibly concurrently exe-
cutable fragments. A behavior fragment can be shared by several
behaviored semi-entities and behavior of a behaviored semi-entity
can be (possibly recursively) decomposed into several behavior
fragments.

Behavior fragment is represented by the BehaviorFragment
metaclass in the AML metamodel, see section 11.2.1.

Service
Is a coherent block of functionality provided by a behaviored
semi-entity, called service provider, that can be accessed by other
behaviored semi-entities, called service clients.

Specification of a service is represented by the ServiceSpecifica-
tion and ServiceProtocol metaclasses in the AML metamodel,
see sections 11.4.1 and 11.4.2. The possibility to provide and
use services is represented by the ServiceProvision and Service-
Usage metaclasses, see sections 11.4.6 and 11.4.7 respectively.

Perceptor10

Is a means to enable its owner, a behaviored semi-entity, to ob-
serve, i.e. perceive a state of and/or to receive a signal from its en-
vironment (surrounding entities).

Perceptor and its type is represented by the Perceptor, Percep-
torType and PerceivingAct metaclasses in the AML metamodel,
see section 11.5.3, 11.5.2, and 11.5.1. Perceiving action is
modeled by the PerceptAction metaclass, see section 11.5.4,
and the relationship between the perceiving behaviored semi-
entity and perceived entity is represented by the Perceives
metaclass, see section 11.5.5.

10 Called also sensor.

48 Chapter 5 Concepts of AML

Effector11

Is a means to enable its owner, a behaviored semi-entity, to bring
about an effect on others, i.e. to directly manipulate with (or mod-
ify a state of) some other entities.

Effector and its type is represented by the Effector, EffectorType
and EffectingAct metaclasses in the AML metamodel, see sec-
tions 11.5.8, 11.5.7, and 11.5.6. Effect action is modeled by the
EffectAction metaclass, see section 11.5.9, and the relationship
between the effecting behaviored semi-entity and effected en-
tity is represented by the Effects metaclass, see section 11.5.10.

5.7 Mental Aspects

Scope Autonomous entities can be characterized by their mental attitudes
(such as beliefs, goals, and plans), which represent their informa-
tional, motivational and deliberative states. This part of the concep-
tual MAS metamodel deals with modeling these aspects.

Metamodel Fig. 5-7 shows the metamodel of mental aspects.

Metaclasses A description of the defined concepts follows:

Mental semi-entity
Is a semi-entity used to represent the capability of an entity to
have mental attitudes.

Mental semi-entity is represented by the MentalSemiEntityType
metaclass in the AML metamodel, see section 12.1.7.

11 Called also actuator.

Fig. 5-7 Conceptual metamodel of mental aspects

GoalBelief Plan

Contribution
kind
degree

Decidable
Goal

Undecidable
Goal

Mental Semi-Entity Mental State
1.. *1..*

** **

Mental Attitude
degree

5.7 Mental Aspects 49

Mental state
Is an abstract concept serving as a common superclass to all the
metaclasses which can be used to specify mental attitudes of men-
tal semi-entities. Mental states can be related by contributions.
Mental states referred to by several mental semi-entities simulta-
neously represent their common mental states, e.g. common be-
liefs or common goals.

Mental state is represented by the MentalState, MentalClass,
and ConstrainedMentalClass metaclasses in the AML metamod-
el, see sections 12.1.1, 12.1.2, and 12.1.3.

Mental attitude
Is a relationship between a mental semi-entity and a mental state
representing that the mental semi-entity possesses the mental
state as its mental attitude, i.e. it believes a belief, is committed to
a goal, or is intended to perform a plan. Mental attitude is charac-
terized by the degree attribute of which the semantics may vary
with the concrete type of the linked mental state. It represents ei-
ther the subjective reliability or confidence of the linked mental
semi-entity in the information specified by belief, relative impor-
tance of a goal, or preference of a plan.

Mental attitude is represented by the MentalProperty and Men-
talAssociation metaclasses in the AML metamodel, see sections
12.1.8 and 12.1.9.

Belief
Is a concrete specialized mental state used to model information
which mental semi-entities have (believe) about themselves or
their environment, and which does not need to be objectively
true.

Belief is represented by the Belief metaclass in the AML meta-
model, see section 12.2.1.

Goal
Is an abstract specialized mental state used to model conditions of
states of affairs, the achievement or maintenance of which is con-
trolled by an owning (committed) mental semi-entity. Goals are
thus used to represent objectives, needs, motivations, desires, etc.
of mental semi-entities.

Goal is represented by the Goal metaclass in the AML meta-
model, see section 12.3.1.

Decidable goal
Is a concrete specialized goal used to model goals for which there
are clear-cut criteria according to which the mental semi-entity
controlling the goal can decide whether the goal has been
achieved or not.

50 Chapter 5 Concepts of AML

Decidable goal is represented by the DecidableGoal metaclass
in the AML metamodel, see section 12.3.2.

Undecidable goal
Is a concrete specialized goal used to model goals for which there
are no clear-cut criteria according to which the mental semi-entity
controlling the goal can decide whether the goal has been
achieved or not.

Undecidable goal is represented by the UndecidableGoal meta-
class in the AML metamodel, see section 12.3.3.

Plan
Is a concrete specialized mental state used to represent an activity
(expressed e.g. by a series of steps) that a mental semi-entity is in-
tended to perform.

Plan is represented by the Plan metaclass in the AML meta-
model, see section 12.4.1.

Contribution
Represents a logical relationship between mental states. Contribu-
tion specifies the manner in which the contributor (a mental state
which contributes) influences its beneficiary (a mental state which
is contributed to). Contribution refers to the conditions which
characterize related mental states (e.g. pre-conditions, post-condi-
tions, and invariants) and specifies their logical relationship in
terms of logical implication. AML thus defines three kinds of con-
tribution: necessary, sufficient, and equivalent. Contribution’s de-
gree can be used to specify the extent to which the contributor in-
fluences the beneficiary.

Contribution is represented by the Contribution metaclass in
the AML metamodel, see section 12.5.1.

5.8 Ontologies

Scope The basic means for modeling ontologies in AML are ontology classes
and instances, their relationships, and ontology utilities. Ontologies
are structured by means of the ontology packages. This model is rela-
tively simple, but general enough and flexible.

5.8 Ontologies 51

Metamodel Fig. 5-8 shows the metamodel of ontologies.

Metaclasses A description of the defined concepts follows:

Ontology element
Is an abstract concept representing any element which is a part of
an ontology.

There is no equivalent of the ontology element in the AML
metamodel, because the association Contain (which is the
main purpose of existence of the ontology element) from the
conceptual MAS metamodel, is already expressed in the UML
metamodel and inherited by AML metaclasses12.

Ontology
Is a concrete specialized ontology element used to specify a single
ontology. Ontology can contain a set of ontology elements, in-
cluding other ontologies. Ontology can import elements from
other ontologies and can also merge several other ontologies. The
mechanism of ontology import is identical to the UML package
import, and the mechanism of ontology merge is analogous to the
UML package merge. See [104] for details.

Ontology is represented by the Ontology metaclass in the AML
metamodel, see section 13.1.1.

Ontology class
Is a concrete specialized ontology element used to represent an
ontology class defined as the specification of a group of individu-
als that belong together because they share some properties [110].
An ontology class can be characterized by attributes and opera-
tions. Attributes state relationships between individuals or from
individuals to data values. Operations represent the invocation of

Fig. 5-8 Conceptual metamodel of ontologies

Ontology
Utility

at tribute[*]
operation[*]

Ontology Element

Ontology

*

*

*

Import*

* **

Merge

*

*

0..1

*

0..1

Contain

Ontology
Class

attribute[*]
operation[*]

** *

Relate

*

Ontology
Instance

slot[*] ** **

Instance of

** *

Link

*

12 AML metaclass Ontology specialize UML Package and AML metaclasses On-
tologyClass and OntologyUtility both specialize UML metaclass Class. Because a
UML class, as specialized named element, can be member of a package, which
is specialized namespace, also AML ontology classes and utilities can therefore
be members of ontologies.

52 Chapter 5 Concepts of AML

related behavior. Ontology classes can be related to each other by
different relationships, which are for the sake of simplicity not
specified in detail here, and AML fully relies on UML relationships
allowed for classifiers (associations, dependencies, generalization,
etc.). Ontology classes can be used to classify ontology instances.

Ontology class is represented by the OntologyClass metaclass
in the AML metamodel, see section 13.1.2.

Ontology instance
Is a concrete specialized ontology element used to define an indi-
vidual that can be specified as an instance of one or several ontol-
ogy classes that classify the instance. Slots of an ontology instance
refer to the values that characterize status of the instance. Slots
correspond to the properties defined for classifying ontology
classes, if specified. Ontology instances can be linked to each oth-
er to represent their acquaintance and interactions.

To model ontology instances, AML reuses the mechanism of
instance specifications from UML. Therefore the AML meta-
model does not contain any explicit representation of the on-
tology instance.

Ontology utility
Is a concrete specialized ontology element used to cluster global
ontology constants, ontology variables, and ontology functions/ac-
tions/predicates modeled as owned attributes and operations. Prop-
erties of a ontology utility can be used by (referred to by) other
ontology elements within the owning and importing ontologies.

Ontology utility is represented by the OntologyUtility meta-
class in the AML metamodel, see section 13.1.3.

Chapter 6

AML Modeling Mechanisms

This chapter describes the principles of modeling systems by AML.
Formation of the AML modeling mechanisms, expressed by the lan-
guage’s metamodel and notation, comes out of the concepts from the
AML conceptual MAS metamodel expressed by means of the (ex-
tended and customized) modeling constructs of UML. Therefore the
main, immediate sources for designing AML language were firstly, its
conceptual model (see Chapter 5) and secondly, the UML 2.0 Super-
structure [104].

Our intention is to discuss in this chapter the selected modeling prin-
ciples that differentiate AML from other modeling approaches and
those that significantly influence the character of modeling systems
with AML. For a detailed description of all particular modeling ele-
ments, including their notation which is not explained in this chap-
ter, we refer to Part III. For details about the AML architecture and the
way in which it extends the UML 2.0 Superstructure see Fig. 4-1 in
Chapter 4.

Used example Throughout this chapter we will demonstrate the explained AML
modeling mechanisms on examples taken from a simplified case
study of the software soccer simulator. The system:

1. Enables two teams of simulated autonomous players to play a soc-
cer match and visualizes it for the user. This part of the system is
similar e.g. to the RoboCup Soccer Simulator [122], Java RoboCup
Simulator [62], or the MiS20 - Robotic Soccer simulator [87].

2. Simulates some activities of a soccer league related to its organiza-
tion and operation. The focus is on social constitution and inter-
actions of soccer associations organizing leagues, clubs, players,
referees, etc.

Note: The presented modeling examples use the AML notation de-
scribed in Part III, not in this chapter. However, we believe that the
textual descriptions explaining the examples are sufficient to under-
stand the presented models without frequent consultation of Part III.

54 Chapter 6 AML Modeling Mechanisms

6.1 Generic Modeling Mechanisms

This section describes the generic AML modeling mechanisms ap-
plied in the design of several modeling constructs.

6.1.1 Class and Instance Levels

All kinds of the AML semi-entities, and inherently also entities, are
modeled as types (AgentType, EnvironmentType, EntityRoleType, etc.).
All types are specialized UML classes. This principle, in accordance
with the four-layer metamodeling specification model defined by
MOF, allows the modeling of (semi-)entities either at the class level,
or by exploiting the UML instantiation mechanism, at the instance
level, or at both levels.

The class level specifies the types of (semi-)entities, their properties
and relationships. This level of abstraction allows the explicit specifi-
cation of the principal features of entities without needing to specify
particular individuals. The class level model is specified as a UML
class model, with the specification of classes, other classifiers (Agent-
Type, ResourceType, EnvironmentType, EntityRoleType, etc.) and their
relationships (associations, dependencies, generalizations, etc.).

The instance level models allow, by means of instances, the represen-
tation of snapshots of the running system. The instances represent
(semi-)entities with the specification of values of their structural fea-
tures and the concrete links among them. The instance level is mod-
eled by means of the UML instance specification. There is the possi-
bility to explicitly refer to the class level modeling elements which
have been instantiated into the modeled instance level elements by
the mechanism of instance classification.

UML, and therefore also AML, allows the specification of multiple
and dynamic classification [8,10,94]. Multiple classification allows one
instance to be classified by several classifiers13 to determine that the
instance is an instance of all its classifiers. In this case the instance
can possess values to all the properties specified by all its classifiers.
Multiple classification is used to combine the classifiers and their fea-
tures into entities at the instance level. This is an important mecha-
nism which allows flexibility in application types and their features
in the instance specification.

Dynamic classification means that the set of classifiers of one instance
can change over time. This mechanism allows dynamic reclassifica-
tion of instances in the system and therefore also dynamic change of

13 Class is a specialized (i.e. inherits from) Classifier in the UML metamodel.
Therefore also AML (semi-)entities are classifiers and can be used to classify in-
stances.

6.1 Generic Modeling Mechanisms 55

their owned features and behaviors (not values of their slots, but the
set of slots as such). Because UML 2.0 provides a special action Reclas-
sifyObjectAction to change instance’s classification, the dynamic
change of classifiers can be modeled in the context of activity dia-
grams and can be incorporated into an entity’s behavior. Entities can
change their own classification or classification of other entities, de-
pending on the level of autonomy.

6.1.2 Utilization of Structural Features

The modeling of (semi-)entity types as specialized UML classes allows
AML to make use of UML structural features14 to model specific char-
acteristics of the (semi-)entity types corresponding to specific MAS as-
pects. In addition to the traditional usage of structural features as
owned attributes or ports, AML exploits them to also model:

social relationships of specific kinds among socialized semi-enti-
ties,

possibility to play entity roles of a given type under specific condi-
tions,

hosting and running entities at the agent execution environ-
ments,

provision and usage of services, and

possessing mental attitudes.

Technically, this is realized by specialization of the UML Property15

metaclass into several specific properties, each of which corresponds
to one of the aforementioned purposes.

In general, the AML-specific properties are used to represent relation-
ship, see Fig. 6-1 (a), between their owning (semi-)entities and their
types (also (semi-)entities). A property can be owned either as an
owned attribute or as a navigable end of a connected association.

An owned attribute represents a unidirectional relationship of its
owner to its type. The (semi-)entity type referred to by the property’s
type is not aware of the relationship. See Fig. 6-1 (b).

To allow modeling of bidirectional relationships where one (semi-
)entity type is aware of other(s) and vice versa, associations connect-
ing several (two or more) properties can be utilized. A navigable end

14 A structural feature is an abstract typed feature of a classifier that specify
the structure of instances of the classifier [104]. It is in the UML 2.0 Super-
structure represented by the StructuralFeature metaclass. Its concrete subclass-
es are Property and Port.
15 In UML metamodel, the metaclass Property is a subclass of the metaclass
StructuralFeature.

56 Chapter 6 AML Modeling Mechanisms

of a connected association represents a relationship of its owner to
the opposite end type (the type of corresponding property). See
Fig. 6-1 (c).

The kind of represented relationship varies for different property
kinds. The following specialized AML properties are defined:

social property (for details see section 6.3.1),

role property (for details see section 6.3.1),

hosting property (for details see section 6.4),

service property (for details see section 6.6.3), and

mental property (for details see section 6.7).

Exploiting UML structural features for representing specialized MAS
aspects gives us another advantage which resides in convenient and
straightforward definition of dynamic changes of their values (mod-
eled by means of UML state machines), and also incorporation of
their changes and reasoning about their values into the system’s algo-
rithms (modeled by means of UML activities). For this purpose a spe-
cial UML event ChangeEvent (which may also occur when some val-
ues of structural features and/or links change) can be used in state
machines to trigger transitions or actions based on changing MAS-
specific properties. UML also specifies a rich set of actions for manip-
ulating the structural feature values and links (AddStructuralFeature-
ValueAction, ClearStructuralFeatureAction, CreateLinkAction, Create-
LinkObjectAction, ReadStructuralFeatureAction, RemoveStructuralFea-

Fig. 6-1 Representation of relationships by owned properties: (a) rela-
tionship in principle, (b) one-directional relationship modeled as an
owned attribute, and (c) possibly bi-directional relationship repre-
sented by association.

(a)

(b)

(Semi-)Entity Type 1owner

(Semi-)Entity Type 2
type

(c)

property

relationship
(Semi-)Entity Type 2(Semi-)Entity Type 1

association typetype

owner

owner

property1 property2
(Semi-)Entity

Type 2
(Semi-)Entity

Type 1

6.2 Modeling Entity Types 57

tureValueAction etc.), which can be used to model accessing the MAS-
specific properties within activities.

In addition, by combining these actions with other UML actions (e.g.
used to create or destroy objects), AML also defines higher-level ac-
tions for structural changes (CreateRoleAction, DisposeRoleAction,
CommitGoalAction, CloneAction, etc.) that cumulate more commonly
used operation sequences into single actions thus simplifying activity
models.

6.2 Modeling Entity Types

All entity
types as

specialized
classes

As discussed in section 6.1.1, all AML semi-entities and entities are
modeled as specialized UML classes. Consequently, (semi-)entity
types inherit, and therefore can make use of, a rich set of the model-
ing possibilities allowed for UML classes. They can:

be placed into packages,

be named and commented,

own attributes,

own operations and receptions,

define nested classes (including other entity types),

be specialized and redefined by inheritance,

be connected by associations, dependencies,

be decomposed into parts, ports, and their connectors,

be used as type for attributes, parts, operations, parameters, etc.,

own behaviors (activities, state machines, use cases, etc.),

characterize associations as the association classes,

provide and/or realize interfaces,

define tagged values, etc.

For details on the aforementioned features see UML 2.0 Superstruc-
ture [104].

Because all of these features are inherited from UML, the AML meta-
model does not need to define them explicitly, even if the entity
types can exploit them. Such a simplified AML metamodel and quite
rich set of modeling features was the primary motivation to designate
the UML Class metaclass as a common superclass to all AML semi-en-
tity type metaclasses (i.e. SocializedSemiEntityType, Behaviored-
SemiEntityType, and MentalSemiEntityType).

58 Chapter 6 AML Modeling Mechanisms

Some other agent-oriented modeling languages based on UML
(AUML, MAS-ML, etc.) define their metamodels of MAS entities
(agents, groups, environments, etc.) based on an abstract UML meta-
class Classifier. If such a language intends to provide a subset of the
modeling features taken e.g. from the UML Class, its metamodel must
define semantically similar (or the same) meta-elements as in the
UML metamodel. We consider this approach as cumbersome, which
can lead to inconsistencies between UML and the modeling language
based upon UML. Furthermore, it would be difficult to define the im-
plementable UML profile for such a language, because the stereotypes
should be based on concrete UML modeling element types (i.e. con-
crete metaclasses in UML), not on abstract ones.

Abstract
entity types

In order to maximize reuse and comprehensibility of the metamodel,
AML defines an abstract entity type for each of the abstract entities
defined in section 5.2. The AML metamodel, therefore, defines the
following metaclasses: entity type, behavioral entity type, and auton-
omous entity type.

Entity type (metaclass EntityType) is an abstract specialized UML
metaclass Type used to represent types of entities of a multi-agent sys-
tem.

Behavioral entity type (metaclass BehavioralEntityType) is an abstract
specialized entity type, behaviored semi-entity type (see section 6.5),
and socialized semi-entity type (see section 6.3.1) used to represent
types of behavioral entities. In addition to the modeling features in-
herited from these semi-entity types, and indirectly also from UML
class, a behavioral entity type can also specify playing of entity roles
modeled as owned role properties, see section 6.3.1 for details.

Autonomous entity type (metaclass AutonomousEntityType) is an ab-
stract specialized behavioral entity type and mental semi-entity type
(see section 6.7) used to model types of autonomous entities.

The aforementioned AML metaclasses representing the abstract entity
types are used within the metamodel to specify common characteris-
tics and features inherited by other (abstract or concrete) metaclasses.

Concrete
entity types

AML defines three modeling constructs used to model types of funda-
mental MAS entities: agents, environments, and resources.

Agent type (metaclass AgentType) is a specialized autonomous entity
type used to model the type of agents.

Resource type (metaclass ResourceType) is a specialized behavioral
entity type used to model the type of resources within the system16.

16 A resource positioned outside a system is modeled as a UML actor.

6.2 Modeling Entity Types 59

Environment type (metaclass EnvironmentType) is a specialized au-
tonomous entity type used to model the type of a system’s inner envi-
ronment17.

To model the internal structure of enclosed entities and objects, envi-
ronment types usually utilize the possibilities inherited from UML
structured classifier and model them by means of contained parts,
ports and connectors. Aggregation and composition associations are
also used.

Modeling
autonomy

Because autonomy is one of the fundamental characteristics of MASs,
it is worth mentioning how it is modeled within the framework of
AML.

Autonomy cannot be modeled as a single element or as a declaration
that a given entity is autonomous or not. Autonomy is a relatively
vague concept that can be obtained only by analysis of the entity’s
behavior, structural features, and how they can be accessed by other
entities.

In real situations absolute autonomy rarely exists, if at all. Entities are
usually autonomous only to some extent or only in some aspects of
their behavior. One entity can expose full autonomy over some part
of its behavior, while only partial or non autonomy over another one.

By providing specific autonomous entity types, AML can model au-
tonomous entities. But it must be clarified that not every entity classi-
fied as an autonomous entity (e.g. an agent) must be really autono-
mous (even agents can be with certain respects or with certain situa-
tions fully dependent). AML autonomous entity type does not auto-
matically guarantee autonomy; it just enables entities to be modeled
at different levels of autonomy.

Autonomy is technically realized by the combination of the follow-
ing modeling elements and their properties:

Visibility of features.
The public or protected features of an entity that are accessible
from other entities can be used for the direct manipulation of an
entity’s state (by accessing attributes) or for the direct invocation
of an entity’s behavior (by calling operations) that decreases its
autonomy. Private features increase autonomy.

Ownership of receptions.
If an entity owns receptions, it is obliged to provide a certain be-
havior for processing a corresponding signal from its environ-
ment. The behavior is executed each time the signal occurs, and
possibly certain conditions (modeled as reception’s pre-condi-

17 Inner environment is that part of an entity’s environment that is contained
within the boundaries of the system.

60 Chapter 6 AML Modeling Mechanisms

tions) are fulfilled, independently from an entity’s current inten-
tions. Declaring receptions decrease an entity’s autonomy, be-
cause it can be directly influenced from environment.

Performing actions on other entities.
Several kinds of UML actions can directly change the status of oth-
er entities (AddStructuralFeatureValueAction, RemoveStructuralFea-
tureValueAction, etc.), call their operations (CallOperationAction),
send signals (SendSignalAction), execute their behavior (CallBe-
haviorAction), etc. Their use in activities can decrease the level of
autonomy.

Using triggers based on changes of other entities.
If a trigger, used within a state machine owned by an entity, is
based on changes of other entities (i.e. it uses the UML change
event), it may decrease autonomy of its owning entity, because its
state and/or executed actions may depend on the state of the
watched entities.

Effecting other entities.
An entity being effected by other entities is less autonomous, be-
cause its state can be affected or its behavior can be triggered by
the effecting entities.

Dependent owned mental states.
If mental states (beliefs, goals, and plans) of an entity depend on
mental states of other entities, it looses its autonomy. Autono-
mous entities eliminate influences of other entities on their own
mental attitudes.

Based on these properties, fully autonomous entities are characterized
as entities with no public and protected features, no receptions, no
owned behavior called from external behaviors, no triggers in their
state machines based on changes of other entities, no effects by other
entities, and no owned mental states depending on the mental states
of other entities. Partially autonomous entities can break any of these
rules. Non-autonomous entities either break all the rules, or have the
respective modeling properties unspecified (do not own attributes,
operations, behaviors, etc.).

Example 1: Fig. 6-2 shows a model of MAS entity types, classes, and
their relationships used to model constituents of a physical environ-
ment for a soccer game. An abstract class 3DObject represents spatial
objects, characterized by shape and position, existing inside a con-
taining space. An abstract environment type 3DSpace represents a
three dimensional space. This is a special 3DObject and as such can
contain other spatial objects. Three concrete 3DObjects are defined:
an agent type Person, a resource type Ball and a class Goal. 3DSpace is
furthermore specialized into a concrete environment type Pitch repre-
senting a soccer pitch containing two goals, one ball, and several per-
sons participating in the game.

6.2 Modeling Entity Types 61

Example 2: Fig. 6-3 shows the specification of the agent type Person.
It has the attribute name, and possesses parts referring to the behavior
fragments Reasoning, Sight and Mobility, which provide the person
with corresponding sets of capabilities; for details see section 6.5. The
agent type Person interacts with its environment by means of the per-
ceptor eyes, and effectors hands and legs; for details see section 6.6.4.
The owned perceptors and effectors require corresponding services,
namely Localization, Manipulation and Motion, provided by the per-
son’s environment.

Comparison
to other

approaches

Because MAS entities are the fundamental concepts of multi-agent
systems, they appear as modeling elements in all existing agent-ori-
ented modeling languages. Agents are represented in each modeling
language, resources appear relatively rarely (for example, in
Prometheus, Tropos, or MESSAGE), but the concept of environments
as autonomous entities is unique. Even if the notion of environment

Fig. 6-2 Example of MAS entity types

Fig. 6-3 Example of an agent type

shape

3DObject

Pitch

goal:Goal[2] {subsets object}

BallPerson

ball:Ball {subsets object}

person:Person[*] {subsets object}

position

3DPlacement

space *

*

/object

3DSpace Goal

{union}

Person

name: String

:Reasoning

:Mobility

hand:Hand[2]

eye:Eye[2]

:Sight

leg:Leg[2]

Localization

Motion

Manipulation

62 Chapter 6 AML Modeling Mechanisms

exists also in TAO, it represents rather a passive object with an inter-
nal structure comprising other entities that is incapable of autono-
mous behavior and external manifestation of own behavior, as it is al-
lowed in AML.

Modeling MAS entities as classes is quite common practice in almost
all agent-oriented modeling languages based on UML 1.*, e.g. MAS-
ML, or AOR.

However, AML provides more specific features (in the sense of UML)
used to represent various aspects of the owning MAS entities.

In more recent approaches based on UML 2.0 (e.g. AUML) there ap-
pears the trend to derive entities from UML classifiers instead of
classes. The potential disadvantages of this were discussed previously
in this section.

Categorization of the AML entity types (expressed by the structure of
the abstract entity types) was inspired by metamodels of other model-
ing languages, e.g. AUML, or MESSAGE, as well as theoretical MAS
metamodels, e.g. SMART.

6.3 Modeling Social Aspects

This section presents mechanisms of AML to model social aspects of
multi-agent systems. The modeling of structural as well as behavioral
aspects of multi-agent systems from the social perspective is discussed
and demonstrated by examples.

The discussed modeling constructs are used to represent the concepts
described in section 5.4.

6.3.1 Modeling Social Structure

For modeling structural aspects of agent societies, to some extent,
modeling elements of UML can be used. However, to allow the build-
ing of more concise and comprehensive models of MAS societies,
AML offers several modeling elements designated to explicitly repre-
sent various (MAS) society abstractions. In particular these are: social-
ized semi-entity types, organization unit types, entity role types, so-
cial relationships, role properties and play associations.

Modeling
social entities

Organization unit type (metaclass OrganizationUnitType) is a special-
ized environment type, and thus inherits features of behaviored, so-
cialized and mental semi-entity types, as well as of UML class. It is
used to model the type of organization units, i.e. societies (groups, or-
ganizations, institutions, etc.) that can evolve within the system from

6.3 Modeling Social Aspects 63

both the external as well as internal perspectives, as described in sec-
tion 5.4.

For modeling organization unit types from the external perspective,
in addition to the features defined for UML classes (structural and be-
havioral features, owned behaviors, relationships, etc.), all the fea-
tures of behaviored, socialized, and mental semi-entity types can also
be utilized.

To model the internal perspective of organization unit types, they
usually utilize the possibilities inherited from UML structured classi-
fier, and model their internal structure by contained parts and con-
nectors, in combination with entity role types used as types of the
parts.

Socialized semi-entity type (metaclass SocializedSemiEntityType) is a
specialized UML class used to model the type of socialized semi-enti-
ties. Possible participation of socialized semi-entities of a given type
in social relationships is modeled by means of owned social proper-
ties.

Socialized semi-entity types represent modeling elements, which
would most likely participate in communicative interactions, and
therefore they can specify related properties, particularly: a set of
agent communication languages, a set of content languages, a set of
message content encodings, and a set of ontologies they support.

Modeling
social

relationships

Apart from other general-purpose UML relationships applicable in so-
cial models (generalization, aggregation, association, etc.), AML de-
fines a special kind of UML property, called social property, and a spe-
cial kind of UML association, called social association, used to model
social relationships.

The social property (metaclass SocialProperty) is a specialized UML
property used to represent a social relationship of the property’s
owner, a social semi-entity type, to the social semi-entity type re-
ferred to by the property’s type. In addition to UML property, social
property allows the specification of the relationship’s social role kind.
AML supports two predefined kinds of social relationships, peer-to-
peer and superordinate-to-subordinate, and the analogous social role
kinds: peer, superordinate, and subordinate. The set of supported so-
cial role kinds can be extended as required (e.g. to model producer-
consumer, competitive, or cooperative relationships). Social property
can be used either in the form of an owned social attribute or as the
end of a social association.

Social association (metaclass SocialAssociation) connects two or more
social properties in order to model bi-directional social relationships.
In addition to social attributes, the social associations also provide an
alternative way of modeling social relationships in the form of UML
relationships.

64 Chapter 6 AML Modeling Mechanisms

Example 1: Fig. 6-4 shows a simplified model of a soccer league. A
league is represented by the organization unit type SoccerLeague. It is
organized by (subordinated to) some entity or entities modeled as an
abstract organization unit type LeagueOrganizer. SoccerLeague com-
prises many registered referees (modeled by the entity role type Ref-
eree) and soccer teams (represented by entity role type SocerTeams).
Soccer teams compete with each other. Each soccer team has many
players (modeled by entity role type TeamPlayer) who play for the
team. Soccer team is superordinated to each team player. The dia-
gram also depicts players who are not in teams but are their potential
members. Such players are modeled by the entity role type FreePlayer.
Common properties of TeamPlayer and FreePlayer are extracted to
their common superclass, an abstract entity role type Player.

Example 2: Fig. 6-5 depicts a simplified model of the organization
structure of a soccer match.

The top-most organization unit type SoccerMatch represents a soccer
match itself. It is played at a pitch (modeled as an environment type

Fig. 6-4 Example of a soccer league organization structure

Fig. 6-5 Example of a soccer match organization structure

**
1

*

Play for

Organize
*
1

Compete

*

*

Referee

SoccerTeamSoccerLeague

FreePlayer TeamPlayer

LeagueOrganizer

Player

*

*

Cooperate

SoccerMatch

Lead

Pitch

Keeper ForwardMidfielderDefender

Played at

* 1

3

*

2

*

1..3

1

1..*
SoccerTeam Coach

Control
*

**
*

3
2match

Referee

TeamPlayer
11..16

match

6.3 Modeling Social Aspects 65

Pitch) and comprises three referees and two soccer teams. Entity role
type Referee models referees of a soccer match who control the two
soccer teams within a given soccer match. Organization unit type
SoccerTeam represents participating soccer teams. Each consists of
one to three coaches and eleven to sixteen players. The entity role
type Coach models coaches of a soccer team who supervise (are super-
ordinated to) the players in a team (modeled by social association
Lead). Abstract entity role type TeamPlayer models soccer players of a
team who cooperate with each other (modeled by social association
Cooperate). The TeamPlayer is specialized into several concrete entity
role types representing specific roles of players in a team, in particular
Keeper, Defender, Midfielder and Forward.

Modeling
entity roles

Entity roles are used to define a normative behavioral repertoire of
entities and thus provide the basic building blocks of MAS societies.
For modeling entity roles, AML provides entity role type (metaclass
EntityRoleType), a specialized behaviored semi-entity type (see section
6.5), socialized semi-entity type (see section 6.3.1), and mental semi-
entity type (see section 6.7). It is used to model a coherent set of fea-
tures, behaviors, relationships, participation in interactions, observa-
tions, and services offered or required by entities participating in a
particular context. Each entity role type, being an abstraction of a set
of capabilities, should be realized by a specific implementation pos-
sessed by a behavioral entity type that can play that entity role type.

Entity roles types can thus be effectively used to specify (1) social
structures, (2) positions18, and also (3) required structural, behavioral
and attitudinal features of their constituents.

The AML approach provides the possibility to model social roles at
both the class level—where the required types of features and behav-
ior are defined, and the instance level—where the concrete property
values and behavior realization of a particular role playing can be
specified explicitly.

Example 3: Fig. 6-6 shows a simplified example of the entity role type
Player representing the type of a soccer player and its specialization
TeamPlayer representing a player as a member of a soccer team. The
Player specifies attribute active to determine whether the player is in
the field or on the bench and association Possess to model the situa-
tion if a player has a ball in possession. In addition to Player, the en-
tity role type TeamPlayer has an attribute number to identify him in
his team.

18 A position is a set of roles typically played by one agent [4]. Positions are in
AML explicitly modeled by means of composed entity roles types.

66 Chapter 6 AML Modeling Mechanisms

Entity role
playing

The possibility of playing an entity role by a behavioral entity is mod-
eled by the role property and the play association.

Role property (metaclass RoleProperty) is a specialized UML property
used to specify that an instance of its owner (a behavioral entity type)
can play one or several entity roles of the entity role type specified as
the property’s type.

An instance of a role property’s owner represents the entity role
player (or simply player). An instance of the role property’s type rep-
resents the played entity role. The role property can be used either in
the form of a role attribute or as the member end of a play associa-
tion.

One entity can at each time play several entity roles. These entity
roles can be of the same as well as of different types. The multiplicity
defined for a role property constraints the number of entity roles of a
given type that the particular entity can play concurrently. Additional
constraints which govern playing of entity roles can be specified by
UML constraints.

The AML approach to model role playing allows:

Specification of the possibility to play particular entity roles by
entities expressed at the class level, and the actual playing of enti-
ty roles by instances expressed at the instance level.

Separation of an entity’s own features and behaviors from the fea-
tures and behaviors required for playing an entity role in a partic-
ular situation.

Separation of a specification of the features, behavior, and atti-
tudes required (or expected) from a potential player of that entity
role from their actual realization by actual players.

Specification of the behavior related to role playing, for instance,
role playing dynamics, life cycle of roles, or reasoning about roles
(for more details see section 6.3.2)

Fig. 6-6 Example of an entity role type

Player

active : Boolean 0..10..1

Possess
Ball

TeamPlayer

number : Integer

6.3 Modeling Social Aspects 67

Play association (metaclass PlayAssociation) is a specialized UML asso-
ciation used to specify a role property in the form of an association
end.

Example 4: Fig. 6-7 models that an agent of type Person can play en-
tity roles of type FreePlayer, TeamPlayer, Coach, and Referee. The pos-
sibility of playing entity roles of a particular type is modeled by play
associations. A person cannot be a free player and a team player at the
same time, that is expressed by a constraint on corresponding play as-
sociations.

Comparison
to other

approaches

Social ability of agents is one of their most fundamental properties
and therefore of central concern for the majority of the MAS model-
ing approaches.

Modeling of organization units, usually known as organizations,
groups or institutional agents, is contained in most of the socially
aware modeling languages, e.g. MESSAGE, AUML, and MAS-ML.

Explicit modeling of social relationships similar to AML social associ-
ation, known as acquaintance relationships (Gaia, MESSAGE,
Prometheus, etc.) or plain associations in UML-based modeling lan-
guages (AUML, PASSI, etc.), appear in some modeling languages.
However, classification of the social relationship kind (peer-to-peer or
superordinate-subordinate) is new for AML. Notion of the social
property is new as well.

Also, the modeling of roles is quite an obvious feature available in
Gaia, AUML, PASSI, MESSAGE, MAS-ML, etc. Nevertheless, the AML
approach to model entity roles as complex semi-entities with social,
behavioral, and mental properties is unique. Similarly, the AML inter-
pretation of entity roles (i.e. instances) do not appear in other ap-
proaches. Therefore, AML mechanism of modeling entity roles at the
level of classes and instances is considered to be a very interesting
and useful feature.

Modeling the entity role playing by utilizing structural features is also
a very effective and useful mechanism introduced by AML, which al-
lows the expression of static and dynamic aspects of the role playing.
This does not appear in other modeling languages.

Fig. 6-7 Example of role properties specified as play association ends

Person

Coach Referee

coach
0..1

freePlayer
0..1

referee
0..1

FreePlayer TeamPlayer

teamPlayer
0..1

{xor}

68 Chapter 6 AML Modeling Mechanisms

6.3.2 Modeling Social Behavior

Social behavior is the behavior of a social entity (behavior of a single
social entity, or emergent behavior of a society) which influences or
is influenced by the state (social features, attitudes, etc.) or behavior
of other social entities (members of the society or the society itself).
Social behavior thus covers social dynamics, social interactions, and
social activities.

This section briefly describes how AML extensions to UML behavioral
models can be used to model social behavior.

Social
dynamics

The central modeling mechanism for modeling social dynamics are
state machines as they are one of the most appropriate techniques for
modeling state transitions in reaction to events. Incorporation of
AML specific actions into the UML state machines allows explicit
modeling of: the formation/abolition of societies, the entrance/with-
drawal of an entity to/from a society, acquisition/disposal/change of
a role by an entity, etc.

Social
interactions

To model social interactions, AML defines specialized modeling con-
structs for modeling speech act based interactions (see section 6.6 for
details), observations and effecting interactions (see section 6.6.4 for
details).

Social
activities

For modeling social activities UML activities can be used. However, to
allow development of more concise and comprehensive models, AML
offers several additional modeling concepts and mechanisms.

To allow modeling of modification of social features (i.e. social rela-
tionships, roles played, social attitudes), they are modeled as struc-
tural features of entities. This allows the use of all UML actions for
manipulation with structural features (AddStructuralFeatureValueAc-
tion, ClearStructuralFeatureAction, CreateLinkAction, CreateLinkObject-
Action, ReadStructuralFeatureAction, RemoveStructuralFeatureValueAc-
tion, etc.) to model modification of social structures, reasoning about
played entity roles, access and reason about social attitudes, execute
social behavior, etc.

Furthermore, to allow explicit manipulation of entity roles in UML
activities and state machines, AML defines two actions for entity role
creation and disposal, namely create role action (metaclass Create-
RoleAction) and dispose role action (metaclass DisposeRoleAction).

6.3 Modeling Social Aspects 69

Example: Fig. 6-8 shows an example of the activity describing the sce-
nario of recruitment of a new free soccer player into a team.

The activity comprises two activity partitions: an organization unit
club representing a SportClub which recruits a new player and an
agent candidate representing the recruited free player (candidate’s
role property freePlayer is set and therefore the candidate plays an en-
tity role of the type FreePlayer, see Fig. 6-7). The presented scenario is
simplified and does neither comprise some actions nor involve some
concerned entities (e.g. the player’s agent) as it is in reality. However,
it is sufficient to demonstrate the discussed modeling mechanisms.

Fig. 6-8 Example of role manipulation actions

freePlayer Stop to

club:SportClub

[accepted]

candidate:Person

Create
proposal

propose(bid)

bid

propose(bid)

Consider bid

inform(answer)inform(answer)

[rejected]

Change
proposal

[conditionally
rejected]

Join Team
(self.teamPlayer)

new:TeamPlayer

be free

bid bid

answer

[still
interesting]

[not
interesting]

Administer
new player

{self.freePlayer->notEmpty()}

70 Chapter 6 AML Modeling Mechanisms

The club, after previous selection of a potential candidate, creates a
proposal for the contract (modeled as an object named bid), and pro-
pose it to the candidate. The candidate, after receiving a bid, considers
it and forms an answer, which in turn is returned to the club. After re-
ceiving the answer, the club decides about further process. In the case
of bid rejection, the process terminates. In the case of conditional re-
jection, if the conditions are feasible the original offer is modified
and sent again. If the candidate’s conditions are not feasible and/or
the club lost interest, the process terminates. In the case of accep-
tance, the club manages all formalities, the candidate stops being a
free player (disposes the entity role referred to by the partition’s role
property freePlayer within the dispose role action called Stop to be
free), becomes a new team member (modeled by the create role ac-
tion named Join Team), and the scenario terminates.

Comparison
to other

approaches

The possibility to model the social dynamics appears mostly in UML-
based agent-oriented modeling languages. However, they do not pro-
vide special modeling mechanisms, but rather utilize standard UML
models (state machines and activity diagrams) to change role playing
or social structures. Of course these models lack specific semantics,
because it is not possible to decide e.g. what events or actions are “so-
cially sensitive”. The AML approach to model special social properties
and special actions to manipulate entity role playing is more explicit
and therefore semantically rich.

6.4 Modeling MAS Deployment and Mobility

The means provided by AML to support modeling of MAS deploy-
ment and agent mobility comprises the support for modeling:

1. the physical infrastructure onto which MAS entities are deployed
(agent execution environment),

2. which entities can occur on which nodes of the physical infra-
structure and what is the relationship of deployed entities to those
nodes (hosting property),

3. how entities can get to a particular node of the physical infrastruc-
ture (move and clone dependencies), and

4. what can cause the entity’s movement or cloning throughout the
physical infrastructure (move and clone actions).

MAS
deployment

Agent execution environment (metaclass AgentExecutionEnvirion-
ment) is a specialized UML execution environment used to model
types of execution environments within which MAS entities can run.
While it is a behaviored semi-entity type, it can specify e.g. a set of

6.4 Modeling MAS Deployment and Mobility 71

services that the deployed entities can use or should provide at run
time.

Agent execution environment can also own hosting properties,
which are used to classify the entities which can be hosted by that
agent execution environment.

Hosting property (metaclass HostingProperty) is used to specify what
entity type, referred to by the property’s type, can be hosted by an
agent execution environment, an owner of the hosting property. The
property can also specify the type of hosting which specifies the rela-
tionship of the referred entity type to the owning agent execution en-
vironment. It is either resident (an entity of the given type is perpetu-
ally hosted by the agent execution environment), or visitor (an entity
of the given type can be temporarily hosted by the agent execution
environment, i.e. it can be temporarily moved or cloned to the speci-
fied agent execution environment).

Hosting association (metaclass HostingAssociation) is a specialized
UML association used to specify hosting property in the form of an
association end.

MAS mobility AML also supports modeling of mobility, which is understood as
moving or cloning the deployed entities between different hosting
properties. To model these moving/cloning paths in the class dia-
grams explicitly, AML defines two relationships: move and clone.

Move (metaclass Move) is a specialized UML dependency between
two hosting properties, used to specify that the entities represented
by the source hosting property can be moved to the instances of the
agent execution environment owning the destination hosting prop-
erty.

Clone (metaclass Clone), a specialized UML dependency between two
hosting properties, is used to specify that the entities represented by
the source hosting property can be cloned to the instances of the
agent execution environment owning the destination hosting prop-
erty.

AML does not specify the type and other details of moving or cloning,
which may be technology dependent.

MAS
deployment-

related
behavior

For modeling deployment-related activities (action of placement and
displacement of entities into agent execution environments, reason-
ing about the place of entity’s deployment, etc.), standard UML ac-
tions for manipulation structural features can be used. The reason is
that the deployment of MAS entities into agent execution environ-
ments is modeled by means of the hosting properties, which are spe-
cialized structural features.

72 Chapter 6 AML Modeling Mechanisms

Mobility-
related

behavior

AML provides two additional actions to explicitly model acts of mov-
ing and cloning, namely move action (metaclass MoveAction) and
clone action (metaclass CloneAction).

Move and clone actions are specialized UML add structural feature ac-
tions used to model actions that cause movement or cloning of an en-
tity from one agent execution environment to another one. Both the
actions thus specify:

1. which entity is being moved or cloned,

2. the destination agent execution environment instance where the
entity is being moved or cloned, and

3. the hosting property where the moved or cloned entity is being
placed.

Example: Fig. 6-9 shows the example of a MAS deployment model.

Fig. 6-9 Example of a MAS deployment and mobility model

PC

sls:SoccerLeagueSimulator

Server

1

*

schedule:LeagueSchedule

stats:MatchStats[*]

league:SoccerLeague
{resident}

referees:Person[*]
{resident}

freePlayer:Person[*]
{resident}

sms:SoccerMatchSimulator

match:SoccerMatch
{resident}

referees:Person[*]
{visitor}

homeTeam:SoccerTeam
{resident}

visitingTeam:SoccerTeam
{visitor}

<<move>>

<<move>>

6.5 Modeling Capabilities and Behavior Decomposition 73

The diagram depicts a part of the soccer league simulator’s physical
deployment model. A node Server runs an agent execution environ-
ment SoccerLeagueSimulator used to run the soccer league simulator.
It comprises one organization unit SoccerLeague (referred to by the
hosting property league), a pool of referees (agents of type Person
playing the entity role referee, see Fig. 6-7) registered in the league,
free players (agents of type Person playing entity role freePlayer, see
Fig. 6-7), league schedule (part schedule), and statistics of the soccer
matches and their results (part stats). The Server is connected to sev-
eral PC nodes, each of which runs an agent execution environment
SoccerMatchSimulator. The SoccerMatchSimulator enables the perfor-
mance of a simulated soccer match of the homeTeam against the visit-
ingTeam under supervision of referees. The agents referred to by the
referees hosting property move to a SoccerMatchSimulator from a
pool of registered referees within the SoccerLeagueSimulator. A Soc-
cerTeam referred to by the visitingTeam hosting property moves from
another PC. After a match the referees and the visitingTeam move
back to their resident hosting places.

Comparison
to other

approaches

Only a few agent-oriented modeling languages deal with modeling of
mobility explicitly. m-GAIA [137], an extension of GAIA towards mo-
bility, provides concepts similar to AML (place types, movement and
travelling paths) but with less comprehensive modeling language.
Furthermore it does not provide the mobility-related dynamics and
behavior.

The second approach that is able to model mobility is the extension
of AUML presented in [116]. This approach extends the UML 2.0 de-
ployment diagrams, in a similar way as AML does. The used modeling
constructs allow the modeling of the deployment only at the instance
level of nodes and components, and the used notation is relatively
confusing. In reality, the deployment diagrams become easily un-
readable, because this approach enforces the use of many relation-
ships (reside, acquaintance, etc.). Similar to m-GAIA, the authors do
not provide any mechanisms for the mobility-related dynamics and
behavior.

Compared to the existing modeling approaches, AML allows the
modeling of mobility more complexly, and covers the static deploy-
ment structure, as well as the mobility dynamics and behavior.

6.5 Modeling Capabilities and Behavior Decomposition

AML extends the capacity of UML to abstract and decompose behav-
ior by two other modeling elements: capability and behavior frag-
ment.

74 Chapter 6 AML Modeling Mechanisms

Modeling
behaviored

semi-entities

To better understand AML behavioral models, we first explain the
modeling concept of behaviored semi-entity type, which is com-
monly used in the AML metamodel to represent the possibility of an
entity type to make use of AML-specific extensions of the UML behav-
ior modeling.

Behaviored semi-entity type (metaclass BehavioredSemiEntityType) is
a specialized UML class and serviced element used to model the type
of behaviored semi-entities. Technically, it can own capabilities, be
decomposed into behavior fragments, provide and use services (see
section 6.6.3), and own perceptors and effectors (see section 6.6.4).

Modeling
capabilities

Capability (metaclass Capability) is an abstract specification of a be-
havior which allows reasoning about and operations on that specifi-
cation. Technically, a capability represents a unification of the com-
mon specification properties of UML’s behavioral features and behav-
iors, expressed in terms of their inputs, outputs, pre-conditions, and
post-conditions.

Example: Fig. 6-10 (b) shows some of the capabilities of a soccer
player modeled as operations of behavior fragments. Furthermore,
the explicit pre- and post-conditions are specified for the capability
BallManipulation::shoot().

Modeling
behavior

decomposi-
tion

Behavior fragment (metaclass BehaviorFragment) is a specialized be-
haviored semi-entity type used to model a coherent reusable frag-
ment of behavior and related structural and behavioral features. It en-
ables the (possibly recursive) decomposition of a complex behavior
into simpler and (possibly) concurrently executable fragments, as
well as the dynamic modification of an entity behavior at run time.
The decomposition of a behavior of an entity is modeled by owned
aggregate attributes of the corresponding behavior fragment type.

Example: Fig. 6-10 (a) shows the decomposition of an entity role
type’s behavior into behavior fragments. The behavior of the entity
role type Player is decomposed into three behavior fragments: Soccer-
PlayerThinking, Teamwork, and BallManipulation. Fig. 6-10 (b) shows
the definition of the used behavior fragments. SoccerPlayerThinking
comprises different strategies and ad-hoc behaviors of a soccer player.
Strategy allows the execution of a certain strategy which influences
the global long-term behavior of a player. AdHocReaction allows
short-term behaviors triggered by a particular situation, e.g. certain
pre-learned tricks. Teamwork comprises social capabilities of a soccer
player within his team. BallManipulation is used to manipulate the
ball.

6.5 Modeling Capabilities and Behavior Decomposition 75

Comparison
to other

approaches

An agent’s capabilities are explicitly modeled in very few agent-ori-
ented modeling languages. The notion ‘capability’ is used rather in-
formally and other terms are used instead, for example, service (in
Gaia), task (in PASSI), or plan (in TROPOS). These approaches under-
stand capabilities as the concepts similar to the UML behavior, which
is a quite restrictive view. In addition, most of them do not provide
meta-information used to specify the capability characteristics (i.e.
inputs, outputs, pre- and post-conditions) as in AML.

The AML approach was inspired mainly by the Capability Description
Language (CDL) [155], providing a formal basis for specification and
reasoning about capabilities of agents in a MAS. We transformed the
CDL concepts into the context of UML modeling and, by unification
of behavioral features and behaviors, we provided a unique approach
to model capabilities.

Explicit modeling of behavior fragments, as reusable libraries of capa-
bilities, does not appear in any other modeling language. The AML
concept of behavior fragment was inspired by several agent-based
technologies, e.g. message handlers or fragments in LS/TS [81], capabili-
ties in Lars [89], or plugins in Cougaar [27]. Therefore, due to AML be-
havior fragments, it is possible to represent these technology-specific

Fig. 6-10 Example of behavior fragments: (a) decomposition of a
behavior of an entity role, (b) definition of used behavior fragments.

Player

BallManipulation

catch(ball)
receive(ball)
lead(ball)
pass(ball, to)
shoot(ball)

SoccerPlayerThinking

Strategy

offend()
defend()

AdHocReaction

trick1()
trick2()
trick3()

1..*
strategy

*
adHoc

(a)

(b)
Teamwork

findTeammate()
cooperate()

thinking:SoccerPlayerThinking

bm:BallManipulationteamwork:Teamwork

<<precondition>>
{has ball}

<<postcondition>>
{ball is moving away}

76 Chapter 6 AML Modeling Mechanisms

constructs by a common high-level modeling mechanism. This prin-
ciple has already been applied in practice, when the AML-based de-
sign models for various agent technologies have been created, see sec-
tion 7.3 for details.

6.6 Modeling Interactions

To support modeling of interactions in MAS, AML provides a number
of UML extensions, which can be logically subdivided into:

1. generic extensions to UML interactions (described in section
6.6.1),

2. speech act based extensions to UML interactions (described in sec-
tion 6.6.2),

3. services (described in section 6.6.3), and

4. observations and effecting interactions (described in section
6.6.4).

6.6.1 Modeling Generic Extensions to UML Interactions

Generic extensions to UML interactions provide the means to model:

1. interactions between groups of entities (multi-lifeline and multi-
message),

2. dynamic change of an object’s attribute values to express changes
in state, internal structure, relationships, played entity roles, etc.
of entities induced by interactions (attribute change),

3. messages and signals not explicitly associated with the invocation
of corresponding methods and receptions (decoupled message),

4. mechanisms for modification of interaction roles of entities (not
necessary entity roles) induced by interactions (subset and join
dependencies), and

5. actions of dispatch and reception of decoupled messages in activi-
ties (send and decoupled message actions, and associated trig-
gers).

Multi-lifeline (metaclass MultiLifeline) is a specialized UML lifeline
used to represent (unlike UML lifeline) multiple participants in inter-
actions.

Multi-message (metaclass MultiMessage) is a specialized UML mes-
sage which is used to model particular communication between (un-
like UML message) multiple participants, i.e. multiple senders and/or
multiple receivers.

6.6 Modeling Interactions 77

Decoupled message (metaclass DecoupledMessage) is a specialized
multi-message used to model asynchronous dispatch and reception
of a message payload without (unlike UML message) explicit specifi-
cation of the behavior invoked on the side of the receiver. The deci-
sion of which behavior should be invoked when the decoupled mes-
sage is received is up to the receiver what allows the preservation of
its autonomy in processing messages.

Attribute change (metaclass AttributeChange) is a specialized UML
interaction fragment used to model the change of attribute values
(state) of interacting entities induced by the interaction. Attribute
change thus enables the expression of addition, removal, or modifica-
tion of attribute values, as well as the expression of the added at-
tribute values by sub-lifelines. The most likely utilization of attribute
change is in the modeling of dynamic change of entity roles played
by behavioral entities represented by lifelines in interactions and in
the modeling of entity interactions with respect to the played entity
roles (i.e. each sub-lifeline representing a played entity role can be
used to model interaction of its player with respect to this entity
role).

Subset (metaclass Subset) is a specialized UML dependency between
event occurrences owned by two distinct (superset and subset) life-
lines. It is used to specify that, since the event occurrence on the su-
perset lifeline, some of the instances it represents (specified by the
corresponding selector) are also represented by another, the subset
lifeline.

Similarly, join (metaclass Join) dependency is also a specialized UML
dependency between two event occurrences on lifelines (subset and
union ones). It is used to specify that a subset of instances, which
have been until the subset event occurrence represented by the subset
lifeline, is, after the union event occurrence, represented by the
union lifeline. Thus after the union event occurrence, the union life-
line represents the union of the instances it has previously repre-
sented and the instances specified by the join dependency.

Send decoupled message action (metaclass SendDecoupledMessage-
Action) is a specialized UML send object action used to model the ac-
tion of dispatch of a decoupled message, and accept decoupled mes-
sage action (metaclass AcceptDecoupledMessageAction) is a special-
ized UML accept event action used to model reception of a decoupled
message action that meets the conditions specified by the associated
decoupled message trigger.

Example: Fig. 6-11 shows an example of the communicative interac-
tion in which the attribute change elements are used to model
changes of entity roles played by agents. The diagram realizes the sce-
nario of the change of a captain which takes place when the original
captain is substituted.

78 Chapter 6 AML Modeling Mechanisms

At the beginning of the scenario the agent player2 is a captain (mod-
eled by its role property captain). During the substitution, the main
coach gives the player2 order to hand the captainship over (handCap-
tainshipOver() message) and the player1 the order to become the cap-
tain (becomeCaptain() message). After receiving these messages,
player2 stops playing the entity role captain (and starts playing the
entity role of ordinary player) and player1 changes from ordinary
player to captain.

Comparison
to other

approaches

Interactions, as the primary mechanism used in agents’ communica-
tion, are covered by almost all agent-based modeling languages. For
this purpose, most of the UML-based modeling languages use stan-
dard UML interaction diagrams without modifications. However, this
approach is insufficient, because agents do not treat messages in the
traditional object-oriented approach, where messages represent the
direct invocation of the respective methods. Rather, an agent, after re-
ceiving a message, (autonomously) decides which method (capability
or behavior) to invoke, if any.

Only AUML and MAS-ML extend the UML interaction model. Both
provide several specific modeling mechanisms to allow modeling ad-
vanced interactions which occur in MAS. However, AUML does not
address all related problems and does not provide technical solutions
for decoupling a message reception from the execution of receiver’s
method, discriminating receivers of multi-messages, effective model-
ing of role changing, and so on. MAS-ML provides only mechanisms
related to the social dynamics, namely lifecycle of playing roles and
occurrence within organizations and environments. Therefore it has
relatively limited scope.

AML provides a consistent framework for modeling advanced interac-
tions which solves all the aforementioned problems. Furthermore, all
the aforementioned AML extensions to the UML 2.0 interaction mod-
eling represent innovations (or any semantically equivalent model-
ing constructs) which do not appear in other UML-based agent-ori-
ented modeling languages.

Fig. 6-11 Example of a social interaction with entity role changes

coach[main]
:Coach

player2:Personplayer1:Person

player captain

handCaptainshipOver()

becomeCaptain()

captain player

{has been substituted}

6.6 Modeling Interactions 79

It is also worth mentioning that AML, as the only UML-based agent-
oriented modeling language, also provides notational equivalents to
all its UML interaction model extensions for the communication dia-
grams.

6.6.2 Modeling Speech Act Specific Extensions to UML Interactions

Speech act specific extensions to UML interactions comprise model-
ing of:

1. speech acts (communication message),

2. speech act based interactions (communicative interactions),

3. patterns of interactions (interaction protocols), and

4. actions of dispatch and reception of speech act based messages in
activities (send and accept communicative message actions and
associated triggers).

Communication message (metaclass CommunicationMessage) is a
specialized decoupled message used to model communicative acts of
speech act based communication within communicative interactions
with the possibility of explicit specification of the message performa-
tive and payload.

Communicative interaction (metaclass CommunicativeInteraction) is
a a specialized UML interaction used to represent a speech act based
interaction.

Both the communication message and communicative interaction
can also specify used agent communication and content languages,
ontology and payload encoding.

Interaction protocol (metaclass InteractionProtocol) is a parameter-
ized communicative interaction template used to model reusable
templates of communicative interactions.

Send communication message action (metaclass SendCommunica-
tionMessageAction) is a specialized UML send object action used to
model the action of dispatching a communication message, and ac-
cept communication message action (metaclass AcceptCommunica-
tionMessageAction) is a specialized UML accept event action used to
model reception of a communication message action that meets the
conditions specified by the associated communication message trig-
ger.

Example: A simplified interaction between entities taking part in a
player substitution is depicted in Fig. 6-12. Once the main coach de-
cides which players are to be substituted (p1 to be substituted and p2
to be the substitute), he first notifies player p2 to get ready and then
asks the main referee for permission to make the substitution. The

80 Chapter 6 AML Modeling Mechanisms

main referee in turn replies by an answer. If the answer is “accepted”,
the substitution process waits until the game is interrupted. If so, the
coach instructs player p1 to exit and p2 to enter. Player p1 then leaves
the pitch and joins the group of inactive players, and p2 joins the
pitch and, thus, the group of active players.

Comparison
to other

approaches

Despite the quite common incorporation of interaction modeling
into existing MAS modeling languages, most of them do not provide
sufficient means to model speech act based interactions explicitly.
For instance UML-based languages (AUML, MAS-ML, etc.) model the
speech acts implicitly, i.e. as plain UML messages. It is then difficult
to decide at the level of model semantics what is UML message and
what is speech act based message. Furthermore, none of the exam-
ined agent-oriented modeling languages provides explicit modeling
of the speech act characteristics (like communication language, con-
tent language, ontology, etc.).

AML differentiates between speech act messages and the traditional
UML messages. This allows the combination of both interaction ap-
proaches mentioned above.

Modeling of interaction protocols can also be found in other agent-
oriented modeling languages (Gaia, AUML, MAS-ML, PASSI, etc.), but
they mostly use less comprehensive modeling elements. For instance

Fig. 6-12 Example of a communicative interaction

sd PlayerSubstitution

referee[main]

{acl=FIPA-ACL, cl=FIPA-SL, encoding=XML}

prepareForSubstitution()

:Referee
coach[main]

:Coach
player[active]
:Player[7..11]

player[inactive]
:Player[11..15]

Select
p1 and p2

[is p2]

requestSubstitution(p1,p2)

reply(answer)

opt [answer==accepted]

{game interrupted} exit() [is p1]

enter() [is p2]

par
<<join>> [is p1]

<<join>> [is p2]

6.6 Modeling Interactions 81

AUML uses stereotyped UML note to express the formal protocol pa-
rameters, instead of the more natural template parameters as in AML.

In some modeling languages the interaction protocols are specified at
an insufficient level of detail. For instance, Gaia describes protocols
textually in terms of their purposes, initiators, responders, inputs,
outputs, and descriptions of processing; instead of by a detailed speci-
fication of exchanged messages. On one hand this kind of specifica-
tion provides a high level abstraction, but on the other hand it is in-
sufficient to describe actual communication and therefore cannot be
straightforwardly used for designing interactions.

Another deficiency is that even if the interaction protocols can be
modeled, the existing modeling languages do not provide mecha-
nisms for binding the formal protocol parameters to actual values
and therefore do not enable the specification of concrete interactions
in this way. The only endeavor to solve this problem can be found in
an older version of AUML, which has already been deprecated by
FIPA.

AML can solve all of the aforementioned problems.

6.6.3 Modeling Services

A service is a coherent block of functionality provided by a behaviored
semi-entity, called service provider, that can be accessed by other be-
haviored semi-entities (which can be either external or internal parts
of the service provider), called service clients.

The AML support for modeling services includes:

1. the means for the specification of the functionality of a service
and the way a service can be accessed (service specification and
service protocol),

2. the means for the specification of what entities provide/use servic-
es (service provision, service usage, and serviced property), and

3. the means for the specification of the distinct interaction points
for provision and use of services (serviced port).

Service specification (metaclass ServiceSpecification) is used to spec-
ify a service by means of owned service protocols. A service specifica-
tion can also contain structural features to model additional struc-
tural characteristics of the service, e.g. attributes can be used to model
the service parameters. A service specification can, in addition to the
service protocols, also own other behaviors describing additional be-
havioral aspects of the service; for instance, interaction overview dia-
grams used to describe the overall algorithm (also called the process)
of invoking particular service protocols, etc.

82 Chapter 6 AML Modeling Mechanisms

Service protocol (metaclass ServiceSpecification) is a specialized inter-
action protocols extended with the ability to specify two mandatory,
disjoint and non-empty sets of (not bound) parameters, particularly:
provider and client template parameters.

The provider template parameters of all contained service protocols
specify the set of the template parameters that must be bound by the
service providers, and the client template parameters of all con-
tained service protocols specify the set of template parameters that
must be bound by the service clients. Binding of these complemen-
tary template parameters specifies the features of the particular ser-
vice provision/usage which are dependent on its providers and cli-
ents. Binding of all these complementary template parameters results
in the specification of the communicative interactions between the
service providers and the service clients.

Service provision (metaclass ServiceProvision) and service usage
(metaclass ServiceUsage) are specialized UML dependencies used, in
combination with the binding of template parameters that are de-
clared to be bound by service providers/clients, to model provi-
sion/use of a service by particular entities.

Technically, the services can be provided and/or used only by behav-
iored semi-entity types, serviced properties, and serviced ports, com-
monly called serviced elements.

Serviced property (metaclass ServicedProperty) is a specialized UML
property used to model attributes that can provide or use services.

Analogously, serviced port (metaclass ServicedPort) is a specialized
UML property used to model ports that can provide or use services.

Example 1: Fig. 6-13 shows a specification of the Motion service de-
fined as a collection of three service protocols. The CanMove service
protocol is based on the standard FIPA protocol FIPA-Query-Protocol
[46] and binds the proposition parameter (the content of a query-if
message) to the capability canMove(what, to) of a service provider.
The participant parameter of the FIPA-Query-Protocol is mapped to a
service provider and the initiator parameter to a service client. The
CanMove service protocol is used by the service client to ask if an ob-
ject referred by the what parameter can be moved to the position re-
ferred by the to parameter. The remaining service protocols MoveFor-
ward and Turn are based on the FIPA-Request-Protocol [46] (see also
Fig. 11-48 and Fig. 11-49) and are used to change the position or di-
rection of a spatial object.

6.6 Modeling Interactions 83

Example 2: Binding of the Motion service specification to the pro-
vider 3DSpace and the client Person is depicted in Fig. 6-14.

Comparison
to other

approaches

Explicit specification of services as patterns of interactions, together
with obligations of the service provider and user is a unique approach
and does not appear in other agent-oriented modeling languages.

6.6.4 Modeling Observations and Effecting Interactions

To extend the repertoire of supported interaction mechanisms by
providing high-level abstractions of information exchange, AML en-
ables modeling of observations and effecting interactions.

Observation is the act of perceiving the environment, or its part, with
the purpose of obtaining information about its state or changes of its
state. In observation, the observed entity does not need to be aware of
observing, and therefore observations are not considered to be inter-
actions.

Effecting interaction is the act of directly manipulating the state of an-
other entity. The affected entity does not need to be aware that it is
being changed, and also it cannot avoid the subsequent execution of
its own behavior caused by an effecting interaction after it happens.

AML provides several mechanisms for modeling observations and ef-
fecting interactions in order to:

Fig. 6-13 Example of service specification

Fig. 6-14 Example of service provision and usage

Motion

sp CanMove:Fipa-Query-Protocol

{acl=fipa-acl, cl=fipa-sl0, ontology=3D-motion}

<proposition->canMove(what,to)>

initiator
participant

sp MoveForward:Fipa-Request-Protocol
<action_spec->move(what,to)>

initiator
participant

sp Turn:Fipa-Request-Protocol
<action_spec->turn(what,angle)>

initiator
participant

Motion

3DSpace Person

84 Chapter 6 AML Modeling Mechanisms

1. allow modeling of the ability of an entity to observe and/or to
bring about an effect on others (perceptors and effectors),

2. specify what observation and effecting interactions the entity is
capable of (perceptor and effector types and perceiving and effect-
ing acts),

3. specify what entities can observe and/or effect others (perceives
and effects dependencies), and

4. explicitly model the actions of observations and effecting interac-
tions in activities (percept and effect actions).

Observations Observations are modeled in AML as the ability of an entity to per-
ceive the state of (or to receive a signal from) an observed object by
means of perceptors (metaclass Perceptor), which are specialized
UML ports. Perceptor types (metaclass PerceptorType) are used to
specify (by means of owned perceiving acts) the observations an
owner of a perceptor of that type can make.

Perceiving acts (metaclass PerceivingAct) are specialized UML opera-
tions which can be owned by perceptor types and thus used to specify
what perceptions their owners, or perceptors of given type, can per-
form.

The specification of which entities can observe others is modeled by a
perceives (metaclass Perceives) dependency. For modeling behavioral
aspects of observations, AML provides a specialized percept action
(metaclass PerceptAction) used to specify invocation of a perceiving
act from within activities.

Effecting
interactions

Different aspects of effecting interactions are modeled analogously,
by means of effectors (metaclass Effector), effector types (metaclass
EffectorType), effecting acts (metaclass EffectingAct), effects depen-
dencies (metaclass Effects), and effect actions (metaclass EffectAction).

Example 1: Fig. 6-15 shows a specification of the perceptor type Eye,
which is used to provide information about status of the environ-
ment where the Player, described in Fig. 6-17, is placed. The Eye pro-
vides two perceiving acts (look and localize), which return informa-
tion about surrounding objects and their positions, and can process
the signal newObjectAppeared, which is raised when a new object ap-
pears in a view angle.

6.6 Modeling Interactions 85

Example 2: Fig. 6-16 shows a specification of the effector type Leg,
which is used to move in the environment of the Player, described in
Fig. 6-17. The Leg provides several effecting acts: step used to move a
player one step in the specified direction, walk to enable a player to
walk to the specified position, run to enable a player to run to the
specified position, kick to perform kicking of a player to the specified
object, and soccer-specific leadBall to combine running with leading
a ball.

Example 3: Fig. 6-17 shows an entity role type Player having two
eyes—perceptors named eye of type Eye, and two legs—effectors
named leg of type Leg. Eyes are used to see other players, the pitch
and the ball. Legs are used to change the player’s position within the
pitch (modeled by changing of internal state implying that no effects
dependency need be placed in the diagram), and to manipulate the
ball.

Fig. 6-15 Example of perceptor type

Fig. 6-16 Example of effector type

Fig. 6-17 Example of perceives and effects dependencies

Eye

<<perceiving acts>>

look(direction):Objects
localize(object):Position

<<signals>>

newObjectAppeared(object)

Leg

<<effecting acts>>

step(direction)
walk(to)
run(to)
kick(what, direction)
leadBall(ball, direction, distance)

eye:Eye[2]

leg:Leg[2]

Player

Ball

Pitch

86 Chapter 6 AML Modeling Mechanisms

Example 4: Fig. 6-18 shows an example of the forward’s plan to at-
tack if the forward has a ball. The precondition for executing the plan
is that the forward has a ball and his team is attacking. If the oppo-
nent team obtains the ball or the game is interrupted, the plan execu-
tion is cancelled, which is expressed in the cancel condition. The
post-condition says that after successful accomplishment of the plan
the forward’s team is in a scoring chance or one of the teammates has
the ball. The plan starts with obtaining information about the sur-
roundings of the player as the result of an execution of the percept ac-
tion look. If the opponent’s goal is near the team reached the scoring
chance, the plan terminates successfully. In the other case, the for-
ward either leads the ball towards the opponent’s goal (if no oppo-
nent is near), or tries to find a free teammate to whom to pass the
ball. This is expressed by the leadBall effect action and Find free team-
mate action, respectively. If a free teammate is found, the forward
passes him the ball (kickBall effect action). Otherwise, the forward
tries to avoid attacks of opponents by leading the ball away from
them. After leading the ball one step in the desired direction, the for-
ward returns to looking around, and the whole algorithm is repeated
until it terminates or is not interrupted by satisfaction of the plan’s
cancel condition.

Fig. 6-18 Example of percept actions and effect actions used in plan

[opponent goal is far]

Forward::AttackWithBall

leadBall(ball,

<<pre>> {self.hasBall and self.team.isAttacking}

[opponents are near]

<<cancel>> {self.team.opponontHasBall or self.game.isInterrupted}
<post>> {self.team.scoreChance or self.team.hasBall}

look(around)

[opponents are far]

Score chance

[opponent goal is near]

to opponent goal,
Find free teammate

[free teammate]1 step)

[no free teammate]

leadBall(ball,
away from opponents,

1 step)

kickBall(ball,
free teammate)

Teammate has ball

6.7 Modeling Mental Aspects 87

Comparison
to other

approaches

Very simple and semantically weak modeling of observations and ef-
fecting interactions appears in Prometheus. Agents can declare what
percepts they can receive and what actions they can do in order to ef-
fect their environment.

Complex modeling of non-communicative interactions and effecting
acts, as well as explicit modeling of perceptors and effectors in AML is
a unique approach that does not appear in other agent-oriented mod-
eling languages to this extent.

6.7 Modeling Mental Aspects

Mental semi-entities can be characterized in terms of their mental at-
titudes, i.e. motivations, needs, wishes, intentions, goals, beliefs,
commitments, etc. To allow modeling all the above, AML provides:
goals, beliefs, plans, contribution relationships, mental properties
and associations, mental constraints, and commit/cancel goal ac-
tions.

Modeling
mental semi-

entities

Mental semi-entity type (metaclass MentalSemiEntityType) is a spe-
cialized UML class used to model the type of mental semi-entities.

Possible mental attitudes of mental semi-entity types are modeled by
means of a special type of UML property called mental property. Men-
tal property (metaclass MentalProperty) is used to specify that in-
stances of its owner, i.e. mental semi-entities, have control over in-
stances of the mental classes (see section 12.1.2) referred to by prop-
erty’s type, for example, can decide whether to believe or not (and to
what extent) in a belief, or whether and when to commit to a goal.

Mental property can be used either in the form of an owned mental
attribute or as the end of a mental association.

In general, two kinds of mental attitudes can be recognized:

1. mental attitudes shared by several entities within a society, such
as common beliefs, goals, and plans which include collaboration
of several entities, etc. By shared mental attitudes we can express
the kinds of cooperation between mental semi-entities, and in
this way refine their social relationships (implicit, or modeled ex-
plicitly). For instance cooperative entities share their goals, trust-
ed entities share their beliefs, superordinate entities dictate their
goals or form goals of subordinate entities, competitive entities
have goals in contradiction, etc., and

2. mental attitudes of individual entities toward anything of a social
value, for example, commitments to perform social actions, or be-
liefs in some facts about other entities.

Both cases can be modeled by AML.

88 Chapter 6 AML Modeling Mechanisms

Mental states Belief (metaclass Belief) is a specialized UML class used to model a
state of affairs, proposition or other information relevant to the sys-
tem and its mental model.

Goal (metaclass Goal) is an abstract specialized UML class used to
model types of goals, i.e. conditions or states of affairs with which the
main concern is their achievement or maintenance. Goals can thus
be used to represent objectives, needs, motivations, desires, etc.

AML defines two special kinds of goals:

Decidable goal (metaclass DecidableGoal)
A goal for which there are clear-cut criteria according to which the
goal-holder19 can decide whether the decidable goal (particularly
its post-condition) has been achieved or not.

Undecidable goal (metaclass UndecidableGoal)
A goal for which there are no clear-cut criteria according to which
the goal-holder can decide whether the post-condition of the un-
decidable goal is achieved or not.

Beliefs and goals are modeled as specialized UML classes which allows
their modeling at both class and instance levels. The belief and goal
classes can therefore be used as the types of mental properties. The at-
titude of a mental semi-entity to a concrete belief (e.g. ‘Player
Ronaldo in 8th minute of the match recognized a scoring chance.’) or
commitment to a concrete goal (e.g. ‘Player Ronaldo decided to score
a goal.’) is modeled by the belief or the goal instance being held in a
slot of the corresponding mental property.

Plan (metaclass Plan) is a specialized UML activity used to model pre-
defined plans or fragments of behavior from which the plans can be
composed.

All the mentioned mental states can be characterized by various kinds
of conditions (pre-conditions, post-conditions, commit conditions,
cancel conditions and invariants) that are technically specified by
means of mental constraints.

Mental constraint (metaclass MentalConstraint) is a specialized UML
constraint used to specify properties of owning beliefs, goals and
plans which can be used within the reasoning processes of mental
semi-entities.

Mental
relationships

Contribution (metaclass Contribution) is a specialized UML directed
relationship used to model logical relationships between goals, be-
liefs, plans and their mental constraints. The manner in which the
specified mental constraint (e.g. post-condition) of the contributor

19 Goal-holder is the stakeholder or mental semi-entity which has control over
a goal. Stakeholder is an individual who is affected by the system or by the sys-
tem modeling process.

6.7 Modeling Mental Aspects 89

influences the specified mental constraint kind of the beneficiary
(e.g. pre-condition) as well as the degree of the contribution can also
be specified.

Responsibility (metaclass Responsibility) is a specialized UML realiza-
tion used to model a relation between a belief, goal or plan (called re-
sponsibility object) and an element (called responsibility subject) which
is obligated to accomplish (or to contribute to the accomplishment
of) this belief, goal, or plan (e.g. modification of the belief, achieve-
ment or maintenance of the goal, or realization of the plan).

Mental
actions

AML provides two special actions to explicitly model commitments to
and de-commitments from goals within activities.

Commit goal action (metaclass CommitGoalAction) is a specialized
UML create object action and add structural feature value action, used
to model the action of commitment to a goal by instantiating the
goal (type) and adding the created instance as a value to a mental
property of the committing mental semi-entity.

Cancel goal action (metaclass CancelGoalAction) is a specialized UML
destroy object action used to model de-commitment from goals by
destruction of the corresponding goal instances.

Even though these actions can be used in any activities, they are usu-
ally used in plans.

Example 1: Fig. 6-19 shows the detail of a decidable goal named Ob-
tainBall which represents a desire of a soccer player to obtain the ball.
Keyword ‘self’ from the owned mental constraints is therefore used to
refer to the player (an entity playing an entity role of type TeamPlayer,
see Fig. 6-5). The goal is committed to whenever the player’s team
looses the ball. In order to commit to the goal, the player must be free
(no opponent is blocking the player). If its team (some teammate) ob-
tains the ball or the game is interrupted, the player abandons this
goal. The goal is successfully accomplished when the soccer player
obtains the ball. The default degree of committing to this goal is 0.5;
however it can be overridden by any goal instance owner.

Fig. 6-19 Example of decidable goal

ObtainBall

{not self.teamHasBall}

{degree=0.5}

<<commit>>

{self.isFree}
<<pre>>

{self.teamHasBall or self.game.isInterrupted}
<<cancel>>

{self.haveBall}
<<post>>

ball:Ball

90 Chapter 6 AML Modeling Mechanisms

Example 2: Fig. 6-18 shows an example of the plan.

Example 3: Fig. 6-20 shows the class-level mental model of the soccer
player’s basic tactics by means of beliefs, decidable goals and their
mutual contributions. The semantics of the model is as follows: The
player is either attacking or defending, depending on which team
keeps the ball. During attacking the player can create the scoring
chance, score goal (if he has the ball and possibly there occurs a scor-
ing chance), or block opponents (if a teammate has the ball). During
defending the player blocks opponents and tries to obtain ball. If dur-
ing defence a teammate obtains the ball, the player switches to attack-
ing.

Example 4: Fig. 6-21 shows an example of usage of the previously de-
fined mental classes (see Fig. 6-20) to express the mental model of
particular mental semi-entity types, particularly the entity role types,
in the form of mental properties. The entity role type TeamPlayer de-
clares beliefs (teamHasBall, haveBall, scoringChance, etc.) shared by all
its subclasses. All beliefs are optional and can occur at most once
within one instance. The subclasses of the TeamPlayer, the entity role
types Forward and Defender, define the same goals but with different
degrees which express their distinct preferences for achievement the
goals. Generally speaking, the main intention of the Forward is to at-
tack; whereas the main intention of the Defender is to defend.

This example, together with the example depicted in Fig. 6-20, also
demonstrates the possibility to define mental states at the class level

Fig. 6-20 Example of mental model

Obtain
Ball

TeammateHasBall

Attack

ScoreGoal CreateScoring
Chance

Block
Opponents

TeamHasBall

Defend

--

HaveBall

OpponentHasBall

++

+ + +

++
++

ScoringChance

+

+ +

++

+ ++

6.7 Modeling Mental Aspects 91

once in the model and then to reuse them as types of mental proper-
ties of different mental semi-entities.

Comparison
to other

approaches

Modeling beliefs, goals and plans of agents (or other autonomous en-
tities) also appear in several other modeling languages, for instance
TROPOS, MAS-ML, Prometheus, etc. However, these languages partic-
ularly do not provide sufficient explicit specification of mental states
in terms of pre-conditions, post-conditions, commit conditions, can-
cel conditions and invariants, allowed in AML.

The ability to model mental states at both class and instance levels, as
well as the ability to express the attitudinal characteristics of mental
entities by means of specific owned attributes, is unique for AML.

Some other modeling languages (mainly goal-driven approaches,
such as i*, GRL, NFR, or TROPOS) allow the structuring of mental
models by special relationships of different types, for example,
means-ends relationship, decomposition relationship, contribution
relationship, satisficing link, dependency link, and justification-for-
selection. AML tries to avoid possible ambiguities in interpretation of
these different relationships and therefore it introduces the concept
of contribution, which serves the purpose of a universal mental rela-
tionship with the semantics derived from formal logics.

Fig. 6-21 Example of mental properties

Defender

<<goals>>
attack:Attack[0..1] {degree=0.2}
scoreGoal:ScoreGoal[0..1] {degree=0.2}
createSC:CreateScoringChance[0..1] {degree=0.7}
blockOpponents:BlockOpponents[0..1] {degree=1.0}
defend:Defend[0..1] {degree=1.0}
obtainBall:ObtainBall[0..1] {degree=1.0}

Forward

<<goals>>
attack:Attack[0..1] {degree=1.0}
scoreGoal:ScoreGoal[0..1] {degree=1.0}

TeamPlayer

<<beliefs>>
teamHasBall:TeamHasBall[0..1]
oppHasBall:OpponentHasBall[0..1]
haveBall:HaveBall[0..1]
teammateHasBall:TeammateHasBall[0..1]
scoringChance:ScoringChance[0..1]
isFree:IsFree[0..1]

createSC:CreateScoringChance[0..1] {degree=1.0}
blockOpponents:BlockOpponents[0..1] {degree=0.7}
defend:Defend[0..1] {degree=0.3}
obtainBall:ObtainBall[0..1] {degree=0.8}

92 Chapter 6 AML Modeling Mechanisms

In contrast to other agent-oriented modeling languages, AML speci-
fies precise semantics for all mental elements. This assertion can be
demonstrated by the fact that each AML mental model can be directly
transferred to a set of modal logic expressions with formally specified
semantics.

6.8 Modeling Ontologies

AML supports modeling of ontologies in terms of ontology classes
and instances, their relationships, constraints, ontology utilities, and
ontology packages.

Ontology (metaclass Ontology) is a specialized UML package used to
specify a single ontology. By utilizing the features inherited from the
UML package (package nesting, element import, package merge, etc.),
ontologies can be logically structured.

Ontology class (metaclass OntologyClass) is a specialized UML class
used to represent an ontology concept. Attributes and operations of
the ontology class represent its slots. Ontology functions, actions,
and predicates belonging to a concept modeled by the ontology class
are modeled by its operations. Ontology class can use all types of rela-
tionships allowed for UML class (association, generalization, depen-
dency, etc.) with their standard UML semantics.

Ontology utility (metaclass OntologyUtility) is a specialized UML
class used to cluster global ontology constants, variables, functions,
actions, and predicates, which are modeled as its features. These fea-
tures can be used by (referred to) other elements within the owning
ontology. One ontology package can contain several ontology utili-
ties allowing logical clustering of the features.

Example: The diagram in Fig. 6-22 depicts a simplified version of a
SoccerMatch ontology. Rectangles with the icon “C” placed in a
rounded square represent ontology classes that model concepts from
the domain. Their relationships are modeled by standard UML rela-
tionships with standard semantics.

6.9 Modeling Contexts 93

Comparison
to other

approaches

AML provides relatively simple but generic mechanisms for modeling
ontologies by extending the UML class diagrams. There are also other
agent-oriented modeling languages used to model ontologies by spe-
cialized UML class diagrams, but usually they provide more specific
ontology modeling constructs. For instance PASSI defines concepts,
actions, and predicates instead of a generic AML ontology class. On
one hand specific ontology elements allow the building of more pre-
cise models, but on the other hand, they restrict a set of ontology cat-
egories (element types).

Instead, AML defines the basic concepts more generically. The pro-
vided extension mechanisms can then be used to specialize these
concepts into more specific ontology element types, possibly mapped
to the constructs of a particular ontology specification language
(OWL, DAML, OIL, etc.).

6.9 Modeling Contexts

Situation-
based

modeling

Multi-agent systems are usually aimed at solving complex, non-trivial
problems, and many times are also the systems having complex be-
havior and architecture difficult to model. To cope with the complex-
ity of the problem to be solved or the system to be specified, we have
developed a specific approach called situation-based modeling. In this
approach a system is examined from the perspective of possible situa-
tions that can occur during a system’s lifetime and influence behav-
ior of the system or some of its parts. The developer identifies such
situations and for each of them models the relevant part of the sys-

Fig. 6-22 Example of ontology

SoccerMatch

CSoccerMatch

1..3

1

O

*

3
Refered byPlayed by

*

2
With
*

1

*

1

Played at

CBall CPitchCReferee

CKeeper CDefender CMidfielder CForward

CPlayer

CSoccerTeam

CCenterCircle CGoal

1

11..16

1 1

1 2

CCoach

94 Chapter 6 AML Modeling Mechanisms

tem (structure and behavior) in a separate model package, called con-
text. All the contexts together form the complete model of structure
and behavior of the whole system. This kind of logical model struc-
turing reflects natural human thinking when trying to cope with
complex systems. Together with functional and structural decompo-
sition, it is a useful means to structure the system model. Further-
more, as our practical experience shows, the situation-based model
structuring makes understanding of MAS models easier, mainly in the
case of new users of the model.

Modeling
contexts

Context (metaclass Context) is a specialized UML package used to
contain a part of the model relevant for a particular situation, i.e.
modeling elements involved in of affected by handling the situation.
The situation is specified either as a constraint or an explicitly mod-
eled state associated with the context.

Example: Examples of defining and using contexts are shown in
Fig. 14-5 and Fig. 14-6 respectively.

Comparison
to other

approaches

Mechanisms of contexts is a unique modeling approach that does not
appear in any other agent-oriented modeling language. The situation-
based modeling approach has been brought into existence by AML.

Chapter 7

Related Work

In addition to the work aimed directly at fulfilling the stated goals,
i.e. to develop an agent-oriented modeling language, we also made an
effort to bring AML into practice and to disseminate our ideas in the
community of software developers and engineers. Practically, we
were engaged in the following activities:

To implement AML in CASE tools.

To support AML by a methodology.

To apply AML in real-world projects.

To involve AML into the related standardization processes.

This chapter provides a summary of these activities.

7.1 CASE Tool Support

Importance of
language

automation

An important factor of the practical applicability of a software model-
ing language is its implementation in CASE tools supporting the soft-
ware development process. Having such tools enables automating or
assisting in the creation of the model, checking and validating the
model, generation and/or reverse engineering the code to/from sup-
ported development platforms, producing the model documentation,
storage and providing the model to several cooperating software de-
velopers, etc. By the use of appropriate supporting tools, we can sig-
nificantly improve the effectiveness of the software development pro-
cess.

Implementa-
tion of the

AML profiles

Thanks to the UML profiles defined for AML (see [18] for details), the
language’s incorporation into existing UML-based CASE tool is possi-
ble, and furthermore also relatively easy. To provide analysts and
other users of AML with the AML-based modeling tools, we have im-
plemented the AML profiles in three CASE tools:

96 Chapter 7 Related Work

1. Enterprise Architect (EA) [38]—a commercial UML 2.0 modeling
tool,

2. StarUML [135]—a free UML 2.0 modeling tool, and

3. IBM Rational Rose [57]—a commercial UML 1.5 modeling tool.

All three tools provide the customizing mechanisms for defining and
applying UML profiles in the application models, and therefore im-
plementation of UML profiles for AML is very straightforward.

Fig. 7-1 shows screenshots of three CASE tools extended by AML.

LS/TS Modeler In addition to the general-purpose modeling tools, we have also de-
signed (and a team of programmers from Whitestein Technologies
under our supervision also implemented) an AML-based tool for
modeling and forward engineering implementation-specific applica-
tions. The tool, LS/TS Modeler, is integrated into Whitestein’s com-
mercial agent-based software development and runtime suite Living
Systems Technology Suite (LS/TS) [81].

Fig. 7-1 AML Add-ins. (a) UML 2.0 Profile for AML implemented in
Enterprise Architect, (b) UML 2.0 Profile for AML implemented in
StarUML, and (c) UML 1.5 Profile for AML implemented in IBM Ratio-
nal Rose.

(a)

(b)

(c)

7.1 CASE Tool Support 97

LS/TS Modeler is based on implementation of the UML 2.0 Profile for
AML in EA and augments it with several LS/TS-specific modeling ex-
tensions in the form of new stereotypes and tagged values. By incor-
poration it into EA, the Modeler inherits without further implementa-
tion efforts important modeling features such as: comprehensive sup-
port for UML 2.0, flexible documentation generation, forward and re-
verse code engineering (for Java, C++, C#, Delphi, PHP, Visual Basic,
and VB.NET), support for testing, support for model maintenance,
import/export into XMI, multi-user capabilities, etc.

The LS/TS Modeler therefore serves as a tool for:

General-purpose AML modeling.
Creation of general-purpose, platform independent models of
multi-agent systems by means of AML and UML modeling con-
structs and diagrams.

Modeling LS/TS applications.
Creation of the LS/TS-specific design models, enabled by adding
the specific modeling constructs into AML, and also defining the
specific modeling guidelines. For convenient manipulation with
the LS/TS-specific modeling constructs the LS/TS Modeler also
provides some GUI elements (dialogs, pop-up menus, etc.).

Checking consistency of the LS/TS application models.
Checking the AML models against the modeling guidelines speci-
fied for the LS/TS application models, constraints specified for the
AML profile, and also UML consistency constraints which are not
checked by EA itself, but, nevertheless, are important for code
generation.

Generation of the LS/TS code.
Automatic analysis of the model, transformation of the AML mod-
eling constructs to the LS/TS architectural constructs according to
the specified pattern-based rules, and transformation of the re-
sults to the LS/TS Developer (a programming tool within LS/TS).

The integration of the LS/TS Modeler within LS/TS is depicted in
Fig. 7-2.

Architecture The LS/TS Modeler consists of two components:

1. UML 2.0 Profile for AML, and

2. the LS/TS Modeler Add-in.

The UML 2.0 Profile for AML is the implementation of the standard
UML 2.0 profile for AML (see [18] for details) extended by LS/TS-spe-
cific modeling elements. It can be used either as generic-purpose or
LS/TS-specific modeling tools based on AML.

The LS/TS Modeler Add-in is an EA add-in20 implementing the specific
GUI functionality, the model checker and the LS/TS code generator.

98 Chapter 7 Related Work

The overall architecture of the LS/TS Modeler is shown in Fig. 7-3.
The boxes represent particular components, and the arrows represent
flows of data and mutual interconnection of components.

The LS/TS Modeler Add-in consists of the following components:

Model Explorer
By means of the EA Automation Interface it browses the model,
visits particular elements, recognizes the element patterns, and

20 EA add-in is an ActiveX COM component used to extend EA by additional
functionality.

Fig. 7-2 Architecture of LS/TS

Fig. 7-3 Architecture of the LS/TS Modeler

CAL
Personal
Edition

Java
J2EEJ2SE

CAL
Business
Edition

CAL
Enterprise

Edition

Vi
su

al
iz

er

M
od

el
er

D
ev

el
op

er

D
eb

u
gg

er

Te
st

er

D
ep

lo
ye

r

Eclipse

AML

A
d

m
in

is
tr

at
or

Living Systems
Development

Living Systems
Runtime Suite

Suite

Repository

conceptual
layer

Common Agent Layer (CAL)

Application
Development
Methodology

Enterprise Architect

LS/TS Modeler Add-in

LS/TS Developer

LS
/T

S
M

od
el

er

Repository

Model(s)

Enterprise Architect Automation Interface (COM)

UML 2.0
Profile

for AML

Eclipse

Internal Model
Representation

TAMAX File

LS/TS Code

GUI Model Explorer

Code Generator

7.1 CASE Tool Support 99

creates an internal model representation. The Model Explorer also
implements checking of the model according to the AML con-
straints, LS/TS modeling guidelines, and selected UML con-
straints.

Code Generator
Based on the internal model representation, it generates a
TAMAX21 file.

GUI
Creates the Modeler-specific menus, implements Modeler’s GUI,
processes events from EA, starts the Model Explorer, and displays
the model checking and code generation progress in the EA’s out-
put window.

Mapping of
AML to LS/TS

A crucial part of analysis and design of the LS/TS code generator was
the creation of the mapping from the AML modeling constructs to
the LS/TS architectonic constructs. For each LS/TS construct we iden-
tified a corresponding pattern of the AML modeling elements which
can be used for its modeling. On the contrary, for each AML element
or patterns of elements, we identified a pattern of the LS/TS con-
structs used to implement them. Some mappings were straightfor-
ward (e.g. class and activity diagrams), but some were very compli-
cated (e.g. state machines and sequence diagrams). The AML to LS/TS
mapping was consequently used to describe the LS/TS application
modeling guidelines. By following these guidelines in the modeling
process, the code generator's features can be utilized to their maxi-
mum extent, which allows the transformation of as large as possible
portions of models to the LS/TS code.

In addition to the relatively common generation of a code from the
static structure diagrams (implemented by most UML code genera-
tors), a very important aspect of the LS/TS code generator is its sup-
port for the UML behavioral models, i.e. activities, state machines,
and interactions. The code used to implement the application’s busi-
ness logic can therefore be generated (to a relatively high extent) di-
rectly from the UML behavior diagrams.

In order to make the code generation easier, we have developed a uni-
fied metamodel of the mentioned UML 2.0 behavior models. We per-
ceive this as a very important achievement also from the theoretical
point of view. We practically proved that it is possible to create a
common metamodel of UML 2.0 activities, state machines, and inter-
actions, unifying their operational semantics. It is therefore possible

21 TAMAX is an XML-based interchange format used to represent LS/TS mod-
els in the form independent form the LS/TS application programming inter-
face (API). By means of TAMAX we can increase the independence of the Code
Generator from other LS/TS tools which directly use the LS/TS API.

100 Chapter 7 Related Work

to transform a model of any of these kinds to a model of another
kind, without altering its semantics.

Based on the unified behavior and static structure metamodels, we
designed an internal AML model representation format. The repre-
sentation format specifies semantics that is extracted from the inter-
nal model and UML diagrams in EA. This format is reflected by the in-
ternal representation of AML model within the LS/TS Modeler Add-in,
as well as by the XML-based interchange format TAMAX used be-
tween the LS/TS Modeler and the LS/TS Developer. Because TAMAX
shares the same concepts as the internal representation of AML mod-
els, the transformation of a model from the internal format to
TAMAX is very straightforward.

Design and
implementa-

tion pitfalls

Unfortunately most of the existing CASE tools, including the selected
ones, support the UML specification just partially, as for instance they
provide a limited set of modeling elements, incomplete UML nota-
tion, restricted implementation of the UML extensibility features, etc.
We had, therefore, to tailor the UML profile for AML and the code
generator’s implementation to adapt them to these specific con-
straints. The following list enumerates some of the problems we faced
in design and implementation of the LS/TS Modeler:

Impossibility of specifying constraints in the UML profile speci-
fication.
In general, the constraints specified for a UML profile help to cre-
ate semantically consistent models. Because EA does not provide
sufficient generic tools for specifying such constraints, the EA Au-
tomation Interface had to be used to implement the constraint
checking within the implemented model checker.

Restricted set of UML elements.
EA does not provide all modeling elements specified by the UML
2.0 Superstructure. Because some of the missing element types
were used for the specification of the UML profile for AML, we ei-
ther removed them from the profile’s implementation (Subset,
Join, AttributeChange, etc.) or we defined modeling workarounds
that enabled us to model the same semantics but with other types
of underlying modeling elements (ProviderParameters and Client-
Parameters modeled as a stereotyped note, etc.).

Stereotypes cannot be specified for all modeling element types.
EA, as most of the existing CASE tools, provides the possibility to
define stereotypes just for a restricted set of modeling element
types it supports. If AML implementation required the use of ste-
reotypes for unsupported element types, we identified “similar”
(from the semantics and/or notation point of view) types and de-
fined stereotypes for them.

7.2 Methodological Support 101

Restricted automation API.
The AML model checker and the LS/TS code generator were built
upon the EA Automation Interface, a CASE tool automation inter-
face which does not sufficiently allow access to and manipulation
of the stored UML model. The only possible way was therefore to
extract the required model semantics from the topology of UML
diagrams. For instance a partial ordering of the messages in a se-
quence diagram is obtained from their vertical positions in the di-
agram. On one hand this kind of model processing decreases flex-
ibility of implementation, but on the other hand it allows extract-
ing and processing of the required semantics which extends the
implemented functionality.

With successful solutions to these problems we were finally able to
realize the implementation which, to the maximum possible extent,
provides users with the modeling elements, their notation and the
dynamic semantics as originally specified by the UML 1.*/2.0 Profiles
for AML.

Summary Implementations of AML in Enterprise Architect, StarUML, and IBM
Rational Rose have proved that AML can be automated by means of a
quite easy integration into UML 1.* and 2.0 based CASE tools. AML
implementation can effectively extend the functionality of existing
UML-based CASE tools by the possibility of modeling MAS applica-
tions. These facts indirectly point out the appropriateness and useful-
ness of the AML language architecture, the provided extension mech-
anisms, as well as the CASE tool support.

7.2 Methodological Support

Purpose of a
methodology

The full potential of a software modeling language can usually be un-
derstood only if it is practically used. Organized approach to software
development requires a controlled process, driven by explicitly speci-
fied software development methods. Since the software development
process also includes the creation and usage of models of the system
being developed, it is necessary for the given method to also include
procedures and techniques specifying how to apply the particular
modeling language.

On that account, we have defined a methodology to define the pro-
cess of applying AML and to incorporate the MAS modeling activities
into a framework of a complete software development process.

ADEM The Agent-Oriented Development Methodology (ADEM) [19] is a
comprehensive agent-based system development methodology with
a special focus on modeling aspects. ADEM provides guidelines for

102 Chapter 7 Related Work

the use of AML in the context of a MAS development process, by ex-
tending and making use of the best practices of AOSE.

Goals ADEM was developed to be a methodology that:

completely covers at least all models and modeling techniques de-
fined in AML,

is applicable in as many software development process disciplines
(see and [105] and [56]) as possible,

is applicable for any system application domain, technology, or
specific circumstances of the development case (see [56]) to the
maximum possible extent,

is built on proven theoretical and technical foundations,

integrates the best practices from AOSE and OOSE domains,

is comprehensive, well specified and documented,

is consistent, methodically complete and methodically minimal
(see [134]),

is effectively maintainable and easy to extend, and

can be supported by CAME22 tools.

The scope of
ADEM

ADEM is a general-purpose development methodology that consists
of method fragments, techniques, artifacts and guidelines for creat-
ing and evolving MAS models. Guidelines on how to transform ge-
neric ADEM into a concrete situational software development
method are also provided.

The current version of ADEM is designed to support several disci-
plines including Business Modeling, Requirements, and Analysis &
Design (see [56] for details).

Outside the
scope of

ADEM

Defining a concrete, detailed software development method applica-
ble to a particular project environment with detailed descriptions of
concrete workflow, worker roles, artifacts, guidelines of application
of concrete automation tools, etc. (called a situational method), is
outside the scope of ADEM. However, ADEM provides an adequate
framework for defining such concrete development methods.

Context of
ADEM

As already mentioned, the primary intention of ADEM is to cover the
modeling aspects of the MAS development process. Even though
modeling is a substantial part of the technical activities performed
within disciplines such as Business Modeling, Requirements, and
Analysis & Design, it is less applicable in other areas of the software
development process, e.g. Implementation, Test, Deployment, Con-

22 Computer-Aided Method Engineering.

7.2 Methodological Support 103

figuration & Change Management, Project Management, and Envi-
ronment (for details see [56]) which are not specifically covered by
the current version of ADEM.

To provide a methodology covering the whole software development
process, ADEM extends Rational Unified Process (RUP) [56]. ADEM de-
fines solely the MAS-specific parts of the process, while RUP defines
everything else. In combination this produces a complete methodol-
ogy, with ADEM providing guidelines that describe the specific com-
bination process. Furthermore, the ADEM specification can be used
to define a MAS extension of RUP in the form of a RUP plug-in.

Fig. 7-4 depicts the relationships between AML, UML, ADEM, and
RUP.

AML is the primary modeling language used in ADEM-specific model
artifacts. ADEM extends RUP and defines MAS-specific aspects of the
software development process. RUP makes use of UML and provides
the conventional object-oriented parts of the process. Extended RUP is
the result of combining ADEM with RUP. It represents a complete
methodology for the MAS development process.

Application of
situational

method
engineering

In order to build a flexible methodology, the Situational Method Engi-
neering (SME) approach has been adopted as the reference paradigm
(see [13], [29], [90], [123], [124], [134], [139], and [157]). The key idea
behind SME is the conviction that system development is unique and
different each time. This is the opposite of universal applicability of
methods. For every project, variations occur in factors (such as exper-
tise of the development team and customers, complexity of the sys-
tem, experience with technology, etc.) that force developers to place
different emphasis on aspects of the systems development process. In
this context the concrete situational method23 is constructed by select-

Fig. 7-4 Context of ADEM

Modeling language:

Method specification:

MAS-specific Part OO-specific Part

AML UML

ADEM RUP

extends

uses uses

Method integration:
(complete MAS
Extended RUP

RUP Plug-in for ADEM

extends

defines MAS
part of

defines conventional
part of

development method)

104 Chapter 7 Related Work

ing and assembling coherent pieces of the process. To simplify the
process of selecting and assembling parts of the process into situa-
tional methods, the methodology provides the system of predefined
method fragments called the method base.

ADEM process
framework

The basic ADEM process framework is adopted from RUP [56]. Fig. 7-5
shows its two orthogonal dimensions and how the effort emphasis
over time.

The horizontal dimension shows the dynamic aspect of the process
in terms of phases, iterations, and milestones.

The vertical dimension shows disciplines which logically group ac-
tivities, workflows, artifacts, roles, and guidances.

Lifecycle The Software Process Engineering Metamodel Specification (SPEM) [105]
defines a process lifecycle as a sequence of phases that achieve a spe-
cific goal. It defines the behavior of a complete process to be enacted
in a given project. The ADEM lifecycle is characterized as iterative—
consisting of several iterations repeated in time, and incremental—the
system is built by adding more and more functionality at each itera-
tion.

The lifecycle of ADEM is structured as the lifecycle in RUP [56], see
Fig. 7-6.

23 Called development case in RUP.

Fig. 7-5 ADEM (RUP) process framework

Disciplines
Business Modeling

Requirements
Analysis & Design

Implementation
Test

Deployment
Configuration &

Change Management

Project Management
Environment

Iterations

Phases

Elaboration

time

Inception Construction Transition

Preliminary
iteration(s)

Iter.
#1

Iter.
#2

Iter.
#n

Iter.
#n+1

Iter.
#n+2

Iter.
#m

Iter.
#m+1

A
D

EM

(E
xt

en
de

d)
 R

U
P

7.2 Methodological Support 105

The software lifecycle of ADEM is decomposed over time into four se-
quential phases: Inception, Elaboration, Construction, and Transi-
tion. A phase is the span of time between two major project mile-
stones of a development process, during which a set of objectives is
accomplished and artifacts are produced or refined.

Each phase concludes by a major milestone at which management
makes crucial go/no-go decisions and decides on schedule, budget,
and requirements on the project.

Each phase is further divided into several iterations, distinct se-
quences of activities conducted according to devoted iteration plans
and evaluation criteria that result in releases (internal or external).

One pass through the four phases resulting in a generation of the
software product, is a development cycle, see Fig. 7-7. The subse-
quent product generations are produced by repeating the develop-
ment cycle, but each time with a different emphasis on the various
phases. These subsequent cycles are called evolution cycles.

For further information about the lifecycle see RUP [56].

Fig. 7-6 ADEM lifecycle

Fig. 7-7 Development cycles

Lifecycle
objectives
milestone

Elaboration

time

Inception Construction Transition

Preliminary
iteration(s)

Iteration
#1

Initial
operational
capability
milestone

Lifecycle
architecture
milestone

Product
release

milestone

Iteration
#2

Iteration
#n

Iteration
#n+1

Iteration
#n+2

Iteration
#m

Iteration
#m+1

ElaborationInception Construction Transition

Generation 2Next evolution cycle

ElaborationInception Construction Transition

Generation 1Initial development cycle

...

106 Chapter 7 Related Work

Basic elements The ADEM description utilizes the basic process structure elements
from RUP, see Fig. 7-8.

The software engineering process is an organized set of activities, ar-
tifacts and guidances intended to develop or enhance a software
product. In RUP (and therefore also in ADEM) the process is orga-
nized into a set of disciplines that further define the workflows and
other process elements.

A discipline is a set of activities, artifacts and guidances of a process
grouped according to a common area of concern. ADEM covers the
following RUP disciplines: Business Modeling, Requirements, and
Analysis & Design.

A workflow is a partially ordered set of activities that produces a re-
sult of observable value. Workflows are used to describe the proce-
dural aspects of the software engineering process. In RUP, workflows
are expressed in a simplified form of the UML activity diagram built
upon workflow details.

A workflow detail is a set of activities that are usually performed to-
gether, the roles that perform those activities, and the resulting arti-
facts.

An activity is a unit of work that provides a meaningful result in the
context of the project. It has a clear purpose, which usually involves
creating or updating artifacts. Every activity is assigned to a specific

Fig. 7-8 Basic Elements of ADEM (RUP)

Activity

Role

Model

Workflow

ModelDocument

Software Engineering

Guidance

Process

Workflow
Detail

Fragment
in

d
es

cr
ib

ed
 b

y

Discipline

organized by

regulates

used for

Artifact

perfo
rm

s

responsible for

out

ex
p

re
ss

ed
 a

s

7.2 Methodological Support 107

role. Activities may be repeated several times, especially when exe-
cuted in different iterations.

A role defines the behavior and responsibilities of an individual, or a
team, within the organization of a software engineering process.
ADEM, rather than defining its own roles, reuses roles from RUP and
extends their responsibilities.

An artifact is a physical or information entity that is produced, modi-
fied or used during the execution of the process. Examples of artifacts
include documents, models, model fragments, model elements,
source files, binary executable files, databases, etc. ADEM makes use
of three special artifacts: document, model, and model fragment.

A document is a special artifact capturing the information in a textual
form regardless of its physical representation.

A model is an artifact representing an abstraction of a system.

A model fragment is a part of the model, usually modeling a particu-
lar aspect of the system.

A guidance provides more detailed information to practitioners
about the associated element. Possible types of guidance are for ex-
ample: guidelines, techniques, measurements, examples, UML pro-
files, tool mentors, checklist, templates, etc.

For further information about the basic process elements see RUP
[56] and SPEM [105].

Method
fragments

The software engineering process specified in ADEM is defined as a
system of well-defined method fragments used to compose situa-
tional methods in an effective way.

A method fragment24 is a coherent portion of the process specifica-
tion that may be used with other method fragments to assemble a
complete method.

Method fragments are defined at different levels of granularity.
Lower-level fragments are combined into higher-level fragments to
from the hierarchical (tree) structure of a method base—a repository
of method fragments. This structuring allows flexible and effective
specification and maintenance of the fragments. We differentiate two
kinds of method fragments:

Atomic method fragment
A method fragment which comprises no other method fragments.
An atomic method fragment usually represents a portion of the
process at the level of RUP or SPEM activities.

24 Called also method component, see [157].

108 Chapter 7 Related Work

Composite method fragment
A method fragment composed of other (atomic or composite)
method fragments. It is used to group related method fragments
that together represent a well-defined portion of the process with
clearly specified purpose and interfaces.

The concepts used in the ADEM method base are depicted in Fig. 7-9.

ADEM method fragments are specified in terms of:

Type
The type of the method fragment. It can be either atomic or com-
posite.

Purpose
Textual description of the purpose and goals of the method frag-
ment.

Enclosing fragment
Name of the method fragment which encloses the specified frag-
ment.

Inputs (only for atomic method fragment)
A list of artifacts which serve as a source of information for the
method fragment.

Common inputs (only for composite method fragment)
A list of artifacts which serve as a source of information for each of
the enclosed method fragments.

Outputs (only for atomic method fragment)
A list of artifacts produced by the method fragment.

Fig. 7-9 ADEM Method Fragments

Guidance

Role

Artifact

Software Engineering
Process

Method Base

Portion of

contains

defines

regulates

performs

in

out

in
cl

ud
es

Atomic Method
Fragment

Composite Method
Fragment

Method Fragment

Process

d
ef

in
ed

 b
y

7.2 Methodological Support 109

Aggregated outputs (only for composite method fragment)
A list of artifacts produced by all enclosed fragments. It is not nec-
essary to also list the model fragments if their models are speci-
fied.

Role (only for atomic method fragment)
A role responsible for performing the method fragment.

Steps (only for atomic method fragment)
List of atomic elements specifying the actions preformed by the
method fragment to transform inputs to outputs. In this docu-
ment we use simple steps, but the UML activity diagrams can be
used to describe the portion of the process more precisely. Each
step is specified as to whether it is added to RUP or modifies an ex-
isting RUP step (if the name of the modified RUP step is not ex-
plicitly stated, it is identical to ADEM step).

Enclosed fragments (only for composite method fragment)
A list of enclosed method fragments that together form the speci-
fied method fragment.

RUP application
An explanation of how the method fragment is incorporated into
RUP to obtain the complete software engineering method.

Rationale
A brief explanation of the reasons why a given method fragment
is defined within ADEM.

SPEM
compatibility

Concepts used in ADEM are compatible with SPEM. Even if ADEM pri-
marily uses the terminology of RUP, the concepts used in the meth-
odology specification are identical or can be directly mapped to the
concepts defined by SPEM. The mapping is depicted in Tab. 7-1.

ADEM/RUP concept SPEM concept

Role ProcessRole

Workflow, Workflow Detail WorkDefinition

Activity Activity

Step Step

Artifact, Document, Model,
Model Fragment

WorkProduct

Discipline Discipline

Process Lifecycle

Phase Phase

Iteration Iteration

Guidelines, ToolMentors,
Templates

Guidance

Tab. 7-1 Mapping of ADEM to SPEM concepts (1/2)

110 Chapter 7 Related Work

Method base Fig. 7-10 shows a hierarchy of all ADEM method fragments. Names of
the composite method fragments are depicted in bold. Detailed de-
scription of the ADEM method base can be found in [19].

Artifacts ADEM artifacts reflect the AML diagram types and the corresponding
model aspects. One AML diagram type (or a model aspect) can be
used for several ADEM artifacts (usually produced in different
method fragments) expressing different concepts but technically
modeled by the same modeling constructs, e.g. AML Society Diagram
can be used to model ADEM Business Organization Structure Model
as well as Social Model.

Several ADEM artifacts correspond to some RUP artifacts. The main
purpose is:

either to provide more appropriate models, e.g. RUP Glossary (a
“flat” textual document) is in ADEM replaced by the Domain On-
tology Model (the system domain concepts modeled in the form
of AML ontology), or

to enrich them by additional semantics expressed by means of the
AML modeling constructs, e.g. RUP Business Use Case Model is ex-
tended in the ADEM Extended Business Use Case Model by mental
modeling concepts of agentified business actors and explicitly
modeled responsibilities of business use cases for realization par-
ticular actor’s mental states and goal-based requirements.

Method Base Set of ProcessComponents

Method Fragment ProcessComponent

Situational Method Process

ADEM/RUP concept SPEM concept

Tab. 7-1 Mapping of ADEM to SPEM concepts (2/2)

7.2 Methodological Support 111

Fig. 7-10 Hierarchy of the ADEM method fragments

ADEM Root

Model Bus. Observations and Effecting Interactions

Detail Business Architecture

Model Business Services

Model Business Interactions

Model Business Deployment

Model Business Organization Structure

Build MAS Business Analysis Model

Structure the Extended Business Use-Case Model

Identify Business Use-Case Responsibilities

Detail a Business Actor

Model Business Goals

Build Extended Business Use-Case Model

Define the Business Domain Ontology

Extended Business Modeling

Structure the Extended Use-Case Model

Identify Use-Case Responsibilities

Detail an Actor

Build Extended Use-Case Model

Define the Domain Ontology

Extended Requirements

Model System Goal-Based Requirements

Model Observations and Effecting Interactions

Detail an Entity

Model Services

Model Interactions

Model Deployment

Model Society

Build MAS Model

Detail Design

MAS Analysis & Design

Model Interaction Ontology

Model Mental Attitudes

Structure Behavior

112 Chapter 7 Related Work

Tab. 7-2 lists all ADEM artifacts and their mapping to the correspond-
ing AML diagram types. Detailed description of the ADEM artifacts
can be found in [19].

ADEM artifact AML diagrams Description

Ex
te

n
de

d
Bu

si
n

es
s

M
od

el
in

g
Business
Domain Ontol-
ogy Model

Ontology Dia-
gram

The knowledge of the business
domain expressed in terms of AML
ontology modeling concepts.

Extended Busi-
ness Use-Case
Model

Mental Dia-
gram, Entity
Diagram, and
Use-Case Dia-
gram (RUP)

A model of the business goals and
intended functions, which extends
the RUP Business Use-Case Model
by AML mental modeling concepts.
The Extended Business Use-Case
Model is composed of the Business
Goals Model, Business Actor Detail,
and Extended Business Use-Case.

Business
Goals Model

Goal-Based
Requirements
Diagram

A model of business goals captured
by means of AML Mental Diagrams.

Business
Actor Detail

Entity Diagram An AML Entity Diagram, possibly
accompanied with the AML Mental
Diagrams, capturing the details of
the business actor as an AML auton-
omous entity, mainly its mental
model.

Extended
Business
Use-Case

Use-Case Dia-
gram (RUP) and
Mental Dia-
gram

A coherent unit of functionality
provided by a business to business
actors. The expressiveness of the
RUP Business Use-Case is enhanced
by the facility to express responsi-
bilities for (contributions to) the
accomplishment (maintenance) of
a business goal or a goal of an busi-
ness actor in terms of AML responsi-
bility relationship.

Tab. 7-2 Mapping of ADEM artifacts to AML diagram types (1/5)

7.2 Methodological Support 113

Ex
te

n
de

d
Bu

si
n

es
s

M
od

el
in

g

Extended Busi-
ness Analysis
Model

All kinds of
UML and AML
diagrams.

An extension of the RUP Business
Analysis Model.
The Extended Business Analysis
Model is composed of the Extended
Business Use-Case Realization, Busi-
ness Organization Structure Model,
Extended Business Worker,
Extended Business Entity, Business
Organization Unit Type, and Busi-
ness Deployment Model.

Extended
Business
Use-Case
Realization

UML and AML
interaction dia-
grams, AML ser-
vice diagrams,
and Activity
Diagram (UML)

Describes how business workers,
business entities, and business
events collaborate to perform a par-
ticular Business Use-Case. The
extension to the RUP Business Use-
Case Realization involves several
AML modeling concepts, such as:
communicative interactions, inter-
action protocols, observations and
effecting interactions, services, and
AML extensions to activities.

Business
Organiza-
tion Struc-
ture Model

Society Dia-
gram

Used to capture the business organi-
zation structure in terms of AML
Society Diagrams containing
mainly: (extended) business work-
ers, (extended) Business Entities,
AML entity roles, AML organization
units, and all kinds of relationships.

Extended
Business
Worker

Entity Diagram A RUP Business Worker enriched by
the features of AML autonomous
entity.

Extended
Business
Entity

Entity Diagram A RUP Business Entity extended by
the features of the AML behavioral
entity.

Business
Organiza-
tion Unit
Type

Entity Diagram A specialized AML Organization-
UnitType used to model a type of
unit of a business organizational
structure.

Business
Deploy-
ment Model

Deployment
Diagram (UML)

A model of the physical deployment
of the business organization struc-
ture (possibly capturing its geo-
graphical distribution, physical
interconnections, mobility of
deployed entities, etc.) specified by
means of the AML modeling con-
cepts for deployment and mobility.

ADEM artifact AML diagrams Description

Tab. 7-2 Mapping of ADEM artifacts to AML diagram types (2/5)

114 Chapter 7 Related Work

Ex
te

n
de

d
Re

qu
ir

em
en

ts

Domain Ontol-
ogy Model

Ontology Dia-
gram

The knowledge of the business
domain expressed in terms of AML
ontology modeling concepts.
The system domain concepts
expressed in terms of AML ontology
modeling mechanisms.

System Goal-
Based Require-
ments Model

Goal-Based
Requirements
Diagram

A model of functional and non-
functional requirements which uti-
lizes AML goals as the central means
of their specification.

Extended Use-
Case Model

Mental Dia-
gram, Entity
Diagram, and
Use-Case Dia-
gram (RUP)

A model of the system’s intended
functions and its environment,
which extends the RUP Use-Case
Model by AML mental modeling
concepts, particularly: agentified
actors, and responsibility relation-
ships for explicit modeling of
responsibilities (contributions) of
Use-Cases for (to) fulfillment or
maintenance of goal-based require-
ments and goals of actors.
The System Goal-Based Require-
ments Model is composed of the
Actor Detail, and Extended Use-
Case.

Actor Detail Entity Diagram An AML Entity Diagram, possibly
accompanied with the AML Mental
Diagrams, capturing the details of
the actor as an AML autonomous
entity, mainly its mental model.

Extended
Use-Case

Use-Case Dia-
gram (RUP),
and Mental Dia-
gram

A coherent unit of functionality
provided by a system to actors. The
expressiveness of the RUP Use-Case
is enhanced by the facility to
express responsibilities for (contri-
butions to) the accomplishment
(maintenance) of goal-based
requirements or goals of actors in
terms of AML responsibility rela-
tionship.

ADEM artifact AML diagrams Description

Tab. 7-2 Mapping of ADEM artifacts to AML diagram types (3/5)

7.2 Methodological Support 115

M
AS

 A
n

al
ys

is
 &

 D
es

ig
n

MAS Model All kinds of
UML and AML
diagrams.

A model describing the system in
terms of concepts drawn from MAS
theory.
The MAS Model is composed of the
Social Model, Interaction Model,
Interaction Ontology Model, Ser-
vice Model, Entity Detail, Behavior
Decomposition Model, Mental
Model, Perceptor/Effector Model,
and MAS Deployment Model.

Social Model Society Dia-
gram

A model of the system architecture
developed in terms of AML Society
Diagrams.

Interaction
Model

UML and AML
interaction dia-
grams and AML
service dia-
grams

A model of interactions and interac-
tion patterns that can occur
between entities of the system, or
between entities and actors. For this
purpose the concepts of AML com-
municative interactions and inter-
action protocols are used.

Interaction
Ontology
Model

Ontology Dia-
gram

AML Ontology Diagrams which cap-
ture the ontology used within the
communicative interactions and
services.

Service
Model

Service Dia-
gram and Ser-
vice Protocol
Sequence
(Communica-
tion) Diagram

AML Service Diagrams specifying
the services offered and used by the
entities and actors.

Entity Detail Entity Diagram An AML Entity Diagram specifying
the details of the internal structure
of an AML entity in terms of its
owned features and behaviors.

Behavior
Decomposi-
tion Model

Behavior
Decomposition
Diagram

A set of AML Behavior Decomposi-
tion Diagrams specifying AML
behavior fragments and their
mutual relationships.

Mental
Model

Mental Dia-
gram

A model of mental attitudes of AML
mental semi-entities describing
their goals, plans, beliefs, and rela-
tionships thereof. It is composed of
a set of AML Mental Diagrams.

ADEM artifact AML diagrams Description

Tab. 7-2 Mapping of ADEM artifacts to AML diagram types (4/5)

116 Chapter 7 Related Work

Methodology
maintenance

An organization which wants to adopt ADEM should establish spe-
cific business processes to customize, maintain and effectively apply
the methodology to software development projects. The fundamental
adoption, application and maintenance process comes from the prin-
ciples of SME. This process is outlined in Fig. 7-11.

M
AS

 A
n

al
ys

is
 &

 D
es

ig
n

Percep-
tor/Effector
Model

(Composite)
Structure Dia-
gram (UML)

A model of AML perceptor and
effector types.

MAS Deploy-
ment Model

Deployment
Diagram (UML)

A RUP Deployment Model enriched
by AML MAS deployment and
mobility facilities.

Detailed Design
Model

All kinds of
UML and AML
diagrams.

A design model specifying the
implementation and runtime char-
acteristics of the system. It serves as
an abstraction of the implementa-
tion model and its source code.

ADEM artifact AML diagrams Description

Tab. 7-2 Mapping of ADEM artifacts to AML diagram types (5/5)

Fig. 7-11 The process of ADEM adoption, application and mainte-
nance

Method

Characterization
of Project

project
characterization

Generation of Project
Engineering Method

method
fragments

Engineer

System
Engineer

Generation of Organization
Engineering Methodology

project
factors

organization-specific
methodology

Method
Administration

project-specific
situational method

Project
Running

experience
accumulation

organization
factors

“off-the-shelf”
ADEM

techniques,
methods,

tools, etc.

additions/updates
method fragment

(Tailored) RUP

other method
parts

ADEM
Method Base

7.2 Methodological Support 117

Note: Even if not shown in the diagram, each activity can also pro-
vide feedback to the activities performed earlier on, for instance,
Characterization of Project reports back to the project management
problems with the project setup, or Project Running requests a method
engineer to perform the Generation of Project Engineering Method to de-
liver further method adaptations.

Generation of Organization Engineering Methodology. Prior to its
application in concrete projects, a generic “off-the-shelf” ADEM spec-
ification is customized to reflect the specific environment and condi-
tions of the organization. Factors specific to the organization (laws,
regulations, standards, specific application domains, available tech-
nologies, etc.) must be taken into account to customize the method-
ology and to increase efficiency of its application in concrete projects.

This activity comprises:

Customizing the method base by:

• adding new method fragments to enrich the method with new
activities,

• changing specifications of existing method fragments to cus-
tomize them to local conditions, and

• removing method fragments which are not expected to be
used.

Changing the set of artifacts.

Defining new, changing existing or removing redundant roles.

Adding or updating existing guidances. Usually, local regulations,
standards, guidelines, tool mentors, artifact templates, etc. are ex-
pressed in a compatible form and are included in the localized
ADEM. Redundant guidances may be removed.

Customizing the ADEM generic process workflow or defining a
new one.

Customizing the tools to provide specific features required by
ADEM and AML.

Characterization of Project. If a new software development project
begins, its characterization will identify contextual and contingency
factors derived from the project. The produced project environment
characterization is important for supporting the selection of the ap-
propriate method fragments from the method base and their assem-
bly.

The contingency factors are determined during project characteriza-
tion as a result of interviews, brain-storming sessions, questionnaires
or other knowledge acquisition techniques.

118 Chapter 7 Related Work

The following contingency factors are usually evaluated (see [148] for
details):

management commitment for the project,

importance of the project,

impact of the project,

resistance and conflict (to what extent stakeholders have different
or conflicting interests),

time pressure,

shortage of human resources,

shortage of means,

formality (of the project procedures),

knowledge and experience of the project team,

required and acquired skills,

project size,

relationships to other systems,

dependency of the project to external factors,

clarity of the project goals, objectives, etc.,

stability of the project goals and requirements, and

level of innovation.

Generation of Project Engineering Method. Based on the available
method fragments, the project-specific situated method is con-
structed at this stage. The construction is supported by rules to assem-
ble fragments and constraints to be satisfied by the constructed
method. The method construction based on ADEM consists of: (1) se-
lection of appropriate method fragments, (2) assembly of selected
fragments, (3) incorporation of the fragments with (possibly already
tailored) RUP, and (4) defining specific process workflow.

The selection process is driven by the project characterization and
should result in a complete but minimal configuration of the method
fragments. According to Spit, Lieberherr, and Brinkkemper [134],
these fragments should be:

situationally complete—completely fulfilling the needs of the situa-
tion in which they are applied, and

situationally minimal—no superfluous artifacts should be pro-
duced.

Once the method engineer has decided which ADEM method frag-
ments she/he wants to use, integration to form a MAS method can

7.2 Methodological Support 119

take place. After preparing this complete ADEM-based MAS method, it
should also be optionally integrated with (already tailored) RUP to
obtain the complete software engineering method.

If required, either a new process workflow can be defined, or the ge-
neric workflow can be tailored to the project situation and possibly
also detailed. In some cases the ADEM generic workflow can be used
without customization.

The resulting situational method should be [134]:

consistent—the various method fragments should not contradict
each other,

methodically complete—containing all method elements (roles, ar-
tifacts, guidances, etc.) referred to by the fragments of which it is
constructed, and

methodically minimal—all parts are necessary to derive the prod-
ucts of the method.

Project Running. Once a project-specific situational method is pre-
pared, it can be applied to the project. During the project execution,
the method engineer supervises the process, identifies problems, and
collects different inputs applicable to method or methodology im-
provement.

Method Administration. Evaluations during and after project execu-
tion may yield new knowledge about situated method development,
which is captured in the method base. Existing method fragments
can be modified, or new method fragments can be added to the re-
pository for future use.

Apart from project running, method engineers can also obtain fur-
ther know-how from external sources. This know-how can also be
used to improve the adopted methodology.

Summary ADEM is a coherent and extensible methodology based on RUP,
which utilizes concepts drawn from MAS theory as specified by AML.
The methodology follows the SME approach in order to provide flexi-
bility in defining concrete methods customized to specific conditions
of particular system development projects.

In particular, the basic underlying concepts, the methodology meta-
model, the initial set of method fragments forming the ADEM
method base, the artifacts used as inputs and outputs of the method
fragments, and the generic process workflow are specified. Beyond
that, the principles of the adoption, application and maintenance are
outlined.

We feel confident that ADEM is a useful methodological framework
for software engineers to build systems based on, or exhibiting char-
acteristics of, multi-agent technology. In this respect we anticipate

120 Chapter 7 Related Work

that ADEM may form a significant contribution to the effort of bring-
ing about widespread adoption of intelligent agents across varied
commercial marketplaces.

7.3 Practical Application of AML

Projects Driven by the project demands for documenting the requirements
and the solution, as well as by our need to test AML in solving practi-
cal problems, AML has been applied as a language for modeling re-
quirements, analysis and design of applications in several research
and commercial software development projects at Whitestein Tech-
nologies. The applications were built in the following domains:

Planning/scheduling.
Advanced planning and scheduling of intra-hospital coordination
in the areas of surgical operations and preparation, personnel,
equipment and materials, patient treatment, patients stay, tests,
and therapy.

Simulations.
Real-time simulation and visualization of group behavior in a
game. Each member of a group (represented by an agent) changes
its position in space in accordance with observed and communi-
cated position changes of the other group members.

Network management.
Efficient and flexible Service Level Agreement (SLA) Management
in telecommunication networks. This includes a number of as-
pects like the negotiation and the conclusions of new SLAs, the
provisioning and monitoring of the requested Quality of Service
(QoS) level of a service, automatic reporting to the customer, an
optimal deployment of network resources and a statistical analysis
of customer requirements and system load (e.g. to help the pro-
vider to decide about new commercial offers) to mention the
most important ones. The processes are controlled by correspond-
ing policies. The top-level policy (Domain policy) from which all
the lower-level policies are derived, is specified by the network
provider. [70]

Lessons
learned

Application of AML in these projects gave it a chance to be tested un-
der real-world conditions.

The relatively large scope of AML allowed the building of various
models of the developed MAS applications. This enabled us to create
complex models covering various MAS aspects, and in this way to bet-
ter understand, analyze, and document the applications.

Another important applicability aspect is the ability of a software
modeling language to express technology-specific application design.

7.4 Standardization Activities 121

Even more complications can appear when there are requirements to
cover several various technologies, as it was in the case of the afore-
mentioned projects.

For this purpose we had to practically examine the AML extensibility
mechanisms and to create technology-specific language extensions.
In order to capture specific architectonic constructs of the target im-
plementation environment (we used the agent platforms Cougaar
[27], Lars [89] and LS/TS [81]) in the design model of a created appli-
cation, we extended AML by the modeling constructs able to repre-
sent the specific implementation constructs. For instance in the case
of using Cougaar platform, we added to AML elements representing
the Cougaar concepts of task, task allocation, task aggregation, task ex-
pansion, task asset transfer, etc., because the platform is specialized in
building applications in the distributed planning domain. Similar ex-
tensions were provided also for the other technologies used.

All the technology-specific AML extensions were also implemented in
the CASE tools used for designing applications in particular projects.

Summary These projects tested AML under real-world conditions and proved
that it is a useful tool for modeling and documenting complex, con-
current, distributed and intelligent systems. Furthermore, the AML
extensibility mechanisms allowed to customize the language for de-
signing applications deployed at various target implementation tech-
nologies.

7.4 Standardization Activities

Standardiza-
tion in AOSE

Building standards in the area of MAS is seen as one possible way to
bring order into this highly heterogeneous area with many diverse
approaches. Not only to facilitate the interworking of agents and
agent systems across multiple vendor platforms (aimed e.g. primarily
by FIPA), but also unifying the used development techniques, meth-
odologies, and tools is the mission of the current AOSE standardiza-
tion. The standardization activities related to AOSE, since its begin-
ning, have been focused on standardization of agent-oriented model-
ing languages and agent-based methodologies. See for instance ef-
forts of FIPA Modeling Technical Committee [45], FIPA Methodology
Technical Committee [44], AgentLink Agent-Oriented Software Engi-
neering Technical Forum Group [2], and OMG Agents Special Interest
Group [107].

Contribution
of AML

We believe that AML, and its underlying concepts, can also signifi-
cantly contribute to formation of future standards in the area of
agent-oriented modeling. Therefore, in order to:

122 Chapter 7 Related Work

1. utilize the modeling features offered by AML in building future
standards,

2. disseminate our ideas into a broad community of the (agent-ori-
ented) software engineering specialists, and

3. influence future industrial standards,

we were actively involved in the world-wide standardization activi-
ties. Thanks to Whitestein Technologies, we had a chance to take part
in establishing, and consequently also becoming members, of the
aforementioned FIPA and AgentLink working groups. In addition, we
also contributed to the OMG Agents Special Interest Group by sub-
mitting AML as a response to the Request for Information (RFI) on Mod-
eling Agent-based Systems [108].

Summary Ongoing standardization activities in the area of AOSE are important
means for its dissemination and acceptance by the industry. Particu-
larly for agent-oriented modeling languages, it can be observed that
their considerable large amount and diversity of approaches discour-
age software engineers from their extensive use in software develop-
ment. It is believed that the current situation could be, at least par-
tially, overcome by creating a standardized unified agent-oriented
modeling language that would be accepted by industry.

Part III

AML Specification

This part contains a detailed technical specification of the AML meta-
model, notation and demonstrates the defined modeling elements
using examples.

Note: This part is intended to serve as a language specification and
reference manual. Comprehension of the details and nuances of AML
requires a deep understanding of UML 2.0 Superstructure [104].

Chapter 8

Extensions to Standard UML
Notation

This chapter specifies presentation options for some UML elements in
order to provide more intuitive and comprehensive notation. This al-
ternative notation is then commonly used in next chapters to de-
scribe specific modeling elements of AML.

8.1 Stereotyped Classifier

The stereotype of a Classifier can, additionally to the stereotype key-
word, be expressed also by an iconic notation. The possible nota-
tional variations are shown in the example of an AgentType, Fig. 8-1.

Fig. 8-1 Alternative notation for stereotyped Classifier. The stereo-
type is: (a) hidden, (b) shown as a label, (c) shown as an iconic deco-
ration, (d) shown as a label and iconic decoration, (e) shown as a
large icon.

(a) (b)

(c)

Player

Player
<<agent>>

compartments

Player
<<agent>>

compartments

Player

compartments

Player

compartments

(d) (e)

126 Chapter 8 Extensions to Standard UML Notation

8.2 ConnectableElement with a Stereotyped Type

The fundamental type25 of a ConnectableElement’s type can be visu-
ally expressed by its iconic notation, if defined. The possible notation
variations are (see Fig. 8-2):

a small stereotype icon shown in the upper right corner of the
ConnectableElement’s rectangle (so called iconic decoration), or

a large stereotype icon used instead of ConnectableElement’s rect-
angle.

The stereotype of the ConnectableElement itself (if defined) can be
specified as a label or a small icon located in front of the Connect-
ableElement’s name.

Fig. 8-3 shows an example of an OrganizationUnitType Company, that
consists of employees which are subordinates. The other Organiza-
tionUnitType Bank consists of accountOwners which are peers to the
Bank. Both parts, i.e. employees and accountOwners, are SocialProper-
ties of the corresponding OrganizationUnitTypes with their own ste-
reotypes <<sub>> (shown as a label) and <<peer>> (shown as a small
half-black triangle icon) respectively.

25 By fundamental type of a modeling element we understand the metaclass of
which this element is an instance.

Fig. 8-2 Alternative notation for a ConnectableElement with stereo-
typed type. The type’s stereotype is shown as: (a) an iconic decora-
tion, (b) a large icon.

Fig. 8-3 Example of stereotyped parts having also stereotyped types

Company Company

employee
:Employee[*]

(a) (b)

employee
:Employee[*]

bank
0..1

Bank

accountOwners
:AccountOwner[*]

accountOwner

Company

employees
:Employee[*]

<<sub>>

8.3 Connector with a Stereotyped Type 127

8.3 Connector with a Stereotyped Type

AML defines a few specialized Associations and Properties having own
notation (see sections 10.5.5, 10.5.3, etc.).

In addition to standard UML notation, AML allows the depiction of
Connectors with the notation of the fundamental types of their types,
and ConnectorEnds with the notation of the fundamental types of the
referred Properties.

Fig. 8-4 shows an example of two Connectors (typed by SocialAssoci-
ations) and their ends (referring SocialProperties) depicted by iconic
notation.

8.4 Lifeline with a Stereotyped Type

To depict the fundamental type of the type of a ConnectableElement
represented by a Lifeline, AML allows the placement of the stereotype
small icon of that fundamental type into the Lifeline’s “head”, or to
replace the Lifeline’s “head” by the iconic notation of the fundamen-
tal type of the ConnectableElement’s type. For an example see Fig. 8-5.

Fig. 8-4 Alternative notation for Connectors having SocialAssociation
as a fundamental type of their types

Environment

part2part1

part3

Fig. 8-5 Alternative notation for Lifeline. The fundamental type of
represented element is shown as: (a) an icon decoration, (b) a large
icon.

company

(a) (b)

Peter:User

128 Chapter 8 Extensions to Standard UML Notation

The same notation can be applied also for a Lifeline representing an
inner ConnectableElement (see Fig. 8-6 for an example). The corre-
sponding class diagram is shown in Fig. 10-8.

To differentiate the stereotype of the ConnectableElement represented
by a Lifeline from the fundamental type of the ConnectableElement’s
type, the ConnectableElement’s stereotype label is placed in the Life-
line’s “head” or a small stereotype icon is placed in front of the Con-
nectableElement’s name. In Fig. 8-7 an OrganizationUnitType Com-
pany contains RoleProperty employees, but it can also simultaneously
play the entity role accountOwner. The corresponding class diagram
is shown in Fig. 8-3.

Extending the Lifeline’s “head” by a stereotype of the fundamental
type of the represented ConnectableElement’s type can be applied also
for Lifelines in Communication Diagrams. See example in Fig. 8-8.

Fig. 8-6 Stereotype specified for the Lifeline representing an inner
ConnectableElement

Fig. 8-7 Stereotype specified for the Lifeline representing an entity
role

Fig. 8-8 Alternative notation for Lifeline in Communication Dia-
grams

:Player

inventory

<<role>>

Johnson&Berry:Company

accountOwner[LloydsTSB] employees [*]

:Company

2:getOffer()

:InsuranceAgent

1:wantInsure()
3:offer(products)

4:selected(products)

5:sign(contract)

6:signed(contract)

8.5 Composed Lifelines in Communication Diagrams 129

8.5 Composed Lifelines in Communication Diagrams

Lifelines that represent owned attributes of a StructuredClassifier can
be nested within the Lifeline representing their owner. Parts are de-
picted as rectangles with solid outlines, and properties specifying in-
stances that are not owned by composition are shown as rectangles
with dashed outlines. Ports can be depicted as well. See example in
Fig. 8-9.

8.6 ObjectNode with a Stereotyped Type

The presentation option described in the following text applies for all
concrete subclasses of the ObjectNode metaclass.

The fundamental type of an ObjectNode’s type can be visually ex-
pressed by its iconic notation, if defined. The possible notation varia-
tions are (see Fig. 8-10):

a small stereotype icon placed in the upper right corner of an Ob-
jectNode’s rectangle shown in a standalone style, or

a large stereotype icon used instead of a standalone ObjectNode’s
rectangle, or

a small stereotype icon placed in the middle of a pin style Object-
Node rectangle.

Fig. 8-9 Alternative notation for composite Lifelines in Communica-
tion Diagrams

whole

part

attribute

a:A

b:B

2:y()

3:z()

port
1:x()

130 Chapter 8 Extensions to Standard UML Notation

The stereotype of the ObjectNode itself (if defined) can be specified as
a label or a small icon located in front of the ObjectNode’s name.

Fig. 8-11 shows a fragment of an Activity named EliminateIntruder,
having an ActivityParameterNode intruder with its own stereotype
<<byref>>, while the stereotype of its type is depicted as an iconic dec-
oration.

8.7 Bi-directional Dependencies

If two opposite Dependencies of the same kind connect two Named-
Elements they can be alternatively drawn as one dashed line with ar-
rows at the both ends, see Fig. 8-12.

Fig. 8-10 Alternative notation for an ObjectNode with a stereotyped
type. The type’s stereotype is shown as: (a) an iconic decoration in a
standalone notation style, (b) a large icon in a standalone notation
style, (c) a small icon in a pin notation style.

Fig. 8-11 Example of a stereotyped ObjectNode having also stereo-
typed type

Employee
[new]

(a)

(b)

Employee
[new]

Employee
[new]

(c)

intruder:Robot
<<byref>>

EliminateIntruder

...

Fig. 8-12 Alternative notation for binary Dependency: (a) UML nota-
tion, (b) simplified notation.

A B

(a) (b)

A B

8.8 Internal Structure of ConnectableElements 131

Analogous mechanism applies also for n-ary dependencies, see Fig. 8-
13. In this case each connected NamedElement depends on all other
connected NamedElements.

8.8 Internal Structure of ConnectableElements

To offer a more comprehensive notation for hierarchical structures
expressed in terms of UML StructuredClassifiers, it is possible to depict
the internal structure of their owned ConnectableElements. If the type
of a ConnectableElement26 is a StructuredClassifier, the Connect-
ableElement can depict a part of the internal structure of its type (ex-
pressed in terms of Parts, Ports, Variables and Connectors) relevant for
the given ConnectableElement. ConnectableElements can be nested to
any level.

Analogously to the notation of a StructuredClassifier, the additional
compartment containing the internal structure is added below the
name compartment of a ConnectableElement, see Fig. 8-14. The com-
partment may depict only a subset of the ConnectableElements and
Connectors specified for the ConnectableElement’s type.

A structured ConnectableElement without explicitly defined type, im-
plicitly specifies a Class owned by the same element as the Connect-
ableElement, and having the identical internal structure as specified
for the ConnectableElement. This Class is virtually used as the type of
the structured ConnectableElement. Such a semantic workaround is
introduced to enable specifying structured ConnectableElements
without specified types, but still be consistent with the UML Super-
structure metamodel.

This mechanism is usually used to describe internal structure of Parts,
but can be applied also for Ports and Variables.

Fig. 8-13 Alternative notation for n-ary Dependency: (a) UML nota-
tion, (b) simplified notation.

A B

C

A B

C

(a) (b)

26 Even if the ConnectableElement metaclass does not define its type, each
concrete subclass of the ConnectableElement is a specialized TypedElement
and therefore defines the type meta attribute.

132 Chapter 8 Extensions to Standard UML Notation

Fig. 8-14 Notation for internal structure of Parts: (a) Part depicting
internal structure of its type, and (b) definition of the Part’s type.

port

StructuredClassifier

part:Type

partBpartA

(a) (b)

port

Type

partB

partA

partC

Chapter 9

Organization of the AML
Specification

9.1 Overall AML Package Structure

The overall package structure of the AML metamodel is depicted in
Fig. 9-1.

The AML Metamodel is logically structured according to the various
aspects of MAS abstractions. All packages and their content are de-
scribed in the following chapters.

9.2 Specification Structure

Although this part is intended for advanced readers, we have tried to
organize it in a way that it can be easily understood. In order to im-
prove the readability and comprehension of the specification, it is or-
ganized according to a hierarchy of packages which group either fur-
ther (sub)packages or metaclasses that logically fit together. All the
AML metaclasses are defined only within the packages on the lowest
level of the package hierarchy, i.e. within packages that do not con-
tain further subpackages. For details on the package structure of AML
see section 9.1.

Package
specification

Each metamodel package, described in a separate section, is specified
in terms of Overview and either Abstract syntax (for the lowest level
packages) or Package structure (for non-lowest level packages). The
sections describing the lowest level packages also contain subsections
for all comprised metaclasses.

134 Chapter 9 Organization of the AML Specification

Package specification sections are structured as follows:

Overview (mandatory)
Natural language introduction to the content of the package.

Abstract syntax (mandatory for lowest level packages)
AML metamodel class diagrams (i.e. the metaclasses and their rela-
tionships) contained within the package.

Package structure (mandatory for non lowest level packages)
The package diagram of (sub)packages contained within the pack-
age together with their mutual dependencies.

Fig. 9-1 Overall package structure of the AML metamodel

<<metamodel>>
AML Metamodel

UML

AML Kernel

UML Extension
for AML

Behavior
Decomposition

Behaviors

Services

Communicative
InteractionsMobility Basic

Behaviors

Observations
and Effecting
Interactions

Mental
Relationships

Mental

Mental States

Beliefs

Goals

Plans

Entities

Environments

Social
Aspects

Architecture

Agents Resources

MAS
Deployment

<<metamodel>>

Basic
Ontologies

Model
ManagementOntologies

Contexts

9.2 Specification Structure 135

Class
specification

Each AML metaclass is specified in a separate subsection of a package
section. Class specification sections contain all the mandatory and
some (possibly zero) of the optional subsections described in what
follows:

Semantics (mandatory)
A summary of semantics and an informal definition of the meta-
class specifying the AML modeling element.

Attributes (optional)
All owned meta-attributes of the metaclass are specified in terms
of:

• name,

• type,

• multiplicity,

• natural language explanation of semantics, and

• if applicable, descriptions of additional property values that
apply to the meta-attribute (ordered, union, etc.).

The structure of the meta-attribute specification is as follows:

Associations (optional)
The owned (navigable) ends of meta-associations are described in
the same way as the meta-attributes.

Constraints (optional)
Set of invariants for the metaclass, which must be satisfied by all
instances of that metaclass for the model to be meaningful. The
rules thus specify constraints over meta-attributes and meta-asso-
ciations defined in the metamodel. Specification of how the de-
rived meta-attributes and meta-associations are derived are also
included. All the invariants are defined by the Object Constraint
Language (OCL) [100] expressions accompanied with an informal
(natural language) explanation.

Notation (mandatory for all but enumerations)
In this section the notation of the modeling element is presented.

Enumeration values (mandatory for enumerations)
The values of the enumeration metaclass are described in terms
of:

• value,

• keyword, and

• semantics.

name: type[multiplicity] Description of semantics.

136 Chapter 9 Organization of the AML Specification

Presentation options (optional)
If applicable, alternative ways of depicting the modeling element
are presented.

Style (optional)
An informal convention of how to present (a part of) a modeling
element.

Examples (optional)
Examples of how the modeling element is to be used.

Rationale (mandatory)
A brief explanation of the reasons why a given metaclass is de-
fined within AML.

Chapter 10

Architecture

Overview The Architecture package defines the metaclasses used to model archi-
tectural aspects of multi-agent systems.

Package
structure

The package diagram of the Architecture package is depicted in
Fig. 10-1.

10.1 Entities

Overview The Entities package defines a hierarchy of abstract metaclasses that
represent different kinds of AML entities. Entities are used to further
categorize concrete AML metaclasses and to define their characteristic
features.

Fig. 10-1 Architecture—package structure

Entities

Environments
Social

AspectsAgents Resources
MAS

Deployment

138 Chapter 10 Architecture

Abstract
syntax

The diagram of the Entities package is shown in Fig. 10-2.

10.1.1 EntityType

Semantics EntityType is an abstract specialized Type (from UML). It is a super-
class to all AML modeling elements which represent types of entities
of a multi-agent system. Entities are understood to be objects, which
can exist in the system independently of other objects, e.g. agents, re-
sources, environments.

EntityTypes can be hosted by AgentExecutionEnvironments (see sec-
tions 10.6.1 and 10.6.2), and can be mobile (see section 11.6.3).

Notation There is no general notation for EntityType. The specific subclasses of
EntityType define their own notation.

Rationale EntityType is introduced to allow explicit modeling of entities in the
system, and to define the features common to all its subclasses.

10.1.2 BehavioralEntityType

Semantics BehavioralEntityType is an abstract specialized EntitiyType used to rep-
resent types of entities which have the features of BehavioredSemiEn-
tityType and SocializedSemiEntityType, and can play entity roles (see
sections 10.5.7 and 10.5.6).

Instances of BehavioralEntityTypes are referred to as behavioral entities.

Fig. 10-2 Entities—hierarchy of entities

EntityType

AutonomousEntityType

BehavioralEntityType

BehavioredSemiEntityType
(from Basic Behaviors)

SocializedSemiEntityType
(from Social Aspects)

MentalSemiEnt ityType
(from Mental States)

Type
(fro m U ML)

10.1 Entities 139

Associations

Constraints 1. The roleAttribute meta-association refers to all ownedAttributes of
the kind RoleProperty:

roleAttribute = self.ownedAttribute->
select(oclIsKindOf(RoleProperty))

Notation BehavioralEntityType is generally depicted as UML Class, but the spe-
cific subclasses of BehavioralEntityType define their own notation.

Rationale BehavioralEntityType is introduced to define the features common to
all its subclasses.

10.1.3 AutonomousEntityType

Semantics AutonomousEntityType is an abstract specialized BehavioralEntityType
and MentalSemiEntityType used to model types of self-contained enti-
ties that are capable of autonomous behavior in their environment,
i.e. entities that have control of their own behavior, and act upon
their environment according to the processing of (reasoning on) per-
ceptions of that environment, interactions and/or their mental atti-
tudes. There are no other entities that directly control the behavior of
autonomous entities.

AutonomousEntityType, being a MentalSemiEntityType, can be charac-
terized in terms if its mental attitudes, i.e. it can own MentalProper-
ties.

Instances of AutonomousEntityTypes are referred to as autonomous en-
tities.

Notation AutonomousEntityType is generally depicted as a UML Class, but the
specific subclasses of AutonomousEntityType define their own nota-
tion.

Rationale AutonomousEntityType is introduced to allow explicit modeling of au-
tonomous entities in the system, and to define the features common
to all its subclasses.

/roleAttribute:
RoleProperty[*]

A set of all RoleProperties owned by the Be-
havioralEntityType. It determines the Entity-
RoleTypes that may be played by the owning
BehavioralEntityType. This association is or-
dered and derived.
Subsets UML Class::ownedAttribute.

140 Chapter 10 Architecture

10.2 Agents

Overview The Agents package defines the metaclasses used to model agents in
multi-agent systems.

Abstract
syntax

The diagram of the Agents package is shown in Fig. 10-3.

10.2.1 AgentType

Semantics AgentType is a specialized AutonomousEntityType used to model a
type of agents, i.e. self-contained entities that are capable of autono-
mous behavior within their environment. An agent (instance of an
AgentType) is a special object (which the object-oriented paradigm
defines as an entity having identity, status and behavior; not nar-
rowed to an object-oriented programming concept) having at least
the following additional features27:

Autonomy, i.e. control over its own state and behavior, based on
external (reactivity) or internal (proactivity) stimuli, and

Ability to interact, i.e. the capability to interact with its environ-
ment, including perceptions and effecting actions, speech act
based interactions, etc.

AgentType can use all types of relationships allowed for UML Class,
for instance, associations, generalizations, or dependencies, with
their standard semantics (see [104]), as well as inherited AML-specific
relationships described in further sections.

Note 1: An agent in AML represents an architectonic concept, that
does not need to be necessarily implemented by a software or a phys-
ical agent. The implementation of AML agents can differ depending
on the implementation environment (which does not necessary need
to be an agent platform, or even a computer system).

Note 2: If required, potential AML extensions can define further sub-
classes of the AgentType metaclass in order to explicitly differentiate
special types of agents. For instance: biological agent, human agent
(specialized biological agent), artificial agent, software agent (special-

Fig. 10-3 Agents—agent type

AutonomousEnt ityType
(from Entities)

AgentType

27 Other features such as mobility, adaptability, learning, etc., are optional in
the AML framework.

10.2 Agents 141

ized artificial agent), robot (specialized artificial agent), embedded
system (specialized artificial agent), etc.

Notation AgentType is depicted as a UML Class with the stereotype <<agent>>
and/or a special icon, see Fig. 10-4. All standard UML class compart-
ments, user-defined compartments, internal structure of parts, ports,
connectors, etc. (see UML StructuredClassifier), supported interfaces,
provided and required services, owned behaviors, and a structure of
the owned named elements can be specified as well. Their notation is
described in further document sections or in UML 2.0 Superstructure
[104].

Examples Fig. 10-5 shows an example of the agent type named AgentSmith, hav-
ing Capabilities findIntruder and convertToSmith, the internal struc-
ture composed of connected BehaviorFragments, Perceptors eyes, and
Effectors hands and legs.

Rationale AgentType is introduced to model types of agents in multi-agent sys-
tems.

Fig. 10-4 Notation of AgentType

Name
<<agent>>

attribute list

operation list

parts

behaviors

Fig. 10-5 Example of an AgentType

AgentSmith

findIntruder()
convertToSmith(person)

:Localization

:Mobility

hands:Hand[2]

eyes:Eye[2]

:Thinking

legs:Leg[2]

142 Chapter 10 Architecture

10.3 Resources

Overview The Resources package defines the metaclasses used to model re-
sources in multi-agent systems.

Abstract
syntax

The diagram of the Resource package is shown in Fig. 10-6.

10.3.1 ResourceType

Semantics ResourceType is a specialized BehavioralEntityType used to model
types of resources contained within the system28. A resource is a phys-
ical or an informational entity, with which the main concern is its
availability and usage (e.g. quantity, access rights, conditions of con-
sumption).

Notation ResourceType is depicted as a UML Class with the stereotype
<<resource>> and/or a special icon, see Fig. 10-7.

Examples Fig. 10-8 shows an example of a usage of a ResourceType. An Agent-
Type RPG_Player, representing a player of an RPG (Role Playing
Game), owns a read-write resource inventory of the Inventory type. An
Inventory has specified capacity and contains a set of items.

Rationale ResourceType is introduced to model types of resources in multi-
agent systems.

Fig. 10-6 Resources—resource type

ResourceType

BehavioralEntityType
(from Entities)

28 A resource positioned outside a system is modeled as a UML Actor (or any
subtype of an Actor).

Fig. 10-7 Notation of ResourceType

Name
<<resource>>

attribute list

operation list

parts

behaviors

10.4 Environments 143

10.4 Environments

Overview The Environments package defines the metaclasses used to model sys-
tem internal environments (for definition see section 10.4.1) of
multi-agent systems.

Abstract
syntax

The diagram of the Environments package is shown in Fig. 10-9.

10.4.1 EnvironmentType

Semantics EnvironmentType is a specialized AutonomousEntityType used to
model types of environments, i.e. the logical and physical surround-
ings of entities which provide conditions under which those entities
exist and function. EnvironmentType thus can be used to define par-
ticular aspects of the world which entities inhabit, its structure and
behavior. It can contain the space and all the other objects in the en-
tity surroundings, and also those principles and processes (laws, rules,
constraints, policies, services, roles, resources, etc.) which together
constitute the circumstances under which entities act.

As environments are usually complex entities, different Environment-
Types are usually used to model different aspects of an environment.

Fig. 10-8 Example of ResourceType

Inventory

capacity:Integer=5

item

Item
*

0..1

1 1

RPG_Player
inventory
{readWrite}

Fig. 10-9 Environments—environment type

AutonomousEnt ityType
(from Entities)

EnvironmentType

144 Chapter 10 Architecture

From the point of view of the (multi-agent) system modeled, two cat-
egories of environments can be recognized:

system internal environment, which is a part of the system modeled,
and

system external environment, which is outside the system modeled
and forms the boundaries onto that system.

The EnvironmentType is used to model system internal environments,
whereas system external environments are modeled by Actors (from
UML).

An instance of the EnvironmentType is called environment.

One entity can appear in several environments at once and this set
can dynamically change in time.

If required, the EnvironmentType can be extended by properties
(tagged values) which can provide explicit classification of environ-
ments. For example, determinism, volatility, continuity, accessibility,
etc. Definition of such properties depends on specific needs and
therefore is not part of the AML specification.

The EnvironmentType usually uses the possibilities inherited from
StructuredClassifier, and models its internal structure by contained
parts, connectors, ports, etc. All other relationship types defined for
UML Class, and other inherited AML-specific relationships can be
used for EnvironmentType as well.

Notation EnvironmentType is depicted as a UML Class with the stereotype
<<environment>> and/or a special icon, see Fig. 10-10.

Examples Fig. 10-11 shows a definition of an abstract Class 3DObject that repre-
sents spatial objects, characterized by shape and positions within con-
taining spaces. An abstract EnvironmentType 3DSpace represents a
three dimensional space. This is a special 3DObject and as such can
contain other spatial objects.

Three concrete 3DObjects are defined: an AgentType Person, a Re-
sourceType Ball and a Class named Goal. 3DSpace is furthermore spe-

Fig. 10-10 Notation of EnvironmentType

Name
<<environment>>

attribute list

operation list

parts

behaviors

10.5 Social Aspects 145

cialized into a concrete EnvironmentType Pitch representing a soccer
pitch containing two goals and a ball.

Rationale EnvironmentType is introduced to model particular aspects of the sys-
tem internal environment.

10.5 Social Aspects

Overview The Social Aspects package defines metaclasses used to model abstrac-
tions of social aspects of multi-agent systems, including structural
characteristics of socialized entities and certain aspects of their social
behavior.

Abstract
syntax

The diagrams of the Social Aspects package are shown in figures
Fig. 10-12 to Fig. 10-17.

Fig. 10-11 Example of EnvironmentType

shape

3DObject

Pitch

goal:Goal[2] {subsets object}

BallPerson

ball:Ball {subsets object}

person:Person[*] {subsets object}

position

3DPlacement

space *

*

/object

3DSpace Goal

{union}

Fig. 10-12 Social Aspects—organization unit type

EnvironmentType
(from Environm ents)

Organizat ionUnitType

146 Chapter 10 Architecture

Fig. 10-13 Social Aspects—social property, social association, and
socialized semi-entity type

Fig. 10-14 Social Aspects—entity role type

Fig. 10-15 Social Aspects—role property and play association

SocialRoleKind
<< enumera tion>>

peer
superor dinate
subordinate

Association
(from UML)

Class
(from UML)

SocialAssociation

SocializedSemiEntityType
supportedAcl : Va lueSpecification [*]
supportedCl : ValueSpecification [*]
supportedEncoding : ValueSpecifica tion [*]
supportedOntology : ValueSpecifica tion [*]

SocialProperty
socialRole : SocialRoleKind [0..1] 0..12..*

+association

0..1

{redefines association}
+memberEnd

2..*

{ordered, redefines
memberEnd}

*

0..1

+/socialAttribute *
{ordered, subsets
ownedAttribute}

+classifier 0..1 0..1

*

+type0..1
{redefines type}

*

ServicedProperty
(from Services)

{redefines classifier}

SocializedSemiEntityType

EntityRoleType

MentalSemiEntityType
(from Mental States)

BehavioredSemiEnti tyType
(from Basic Behaviors)

Association
(from U ML)

BehavioralEntityType
(from Entities)

Ent it yRoleType

RoleProperty

0..1

*

+classifier 0..1
{redefines classifier}

+/roleAttribute *
{ordered, subsets
ownedAttribute}

*

0..1

*

+type0..1 {redefines type}

Property
(from UML)

PlayAssociation1 0..1

+roleMember
End

1

{subsets
mem berEnd}

+associat ion

0..1

{redefines association}

2

0..1

+memberEnd

2

{ordered, redefines memberEnd}

0..1

10.5 Social Aspects 147

10.5.1 OrganizationUnitType

Semantics OrganizationUnitType is a specialized EnvironmentType used to model
types of organization units, i.e. types of social environments or their
parts.

An instance of the OrganizationUnitType is called organization unit.

From an external perspective, organization units represent coherent au-
tonomous entities which can have goals, perform behavior, interact
with their environment, offer services, play roles, etc. Properties and
behavior of organization units are both:

emergent properties and behavior of all their constituents, their
mutual relationships, observations and interactions, and

the features and behavior of organization units themselves.

From an internal perspective, organization units are types of environ-
ments that specify the social arrangements of entities in terms of
structures, interactions, roles, constraints, norms, etc.

Fig. 10-16 Social Aspects—create role action

Fig. 10-17 Social Aspects—dispose role action

CreateObjectAction
(from UML)

AddSt ructuralFeatureValueAction
(from UML)

EntityRoleType OutputPin
(from UML)

RoleProperty InputPin
(from UML)

CreateRoleAction

1

*

+roleType 1
{redefines classifier}

*

1

0..1

+role1

{redefines result}

0..1

1 *

+roleProperty

1

{redefines
structuralFeature}

* 10.. 1

+player

1

{redefines object}

0.. 1

DisposeRoleAction InputPin
(from UML)0..1 1..*0..1

+role

1..*

{redefines target}

DestroyObjectAction
(from UML)

148 Chapter 10 Architecture

Notation OrganizationUnitType is depicted as a UML Class with the stereotype
<<organization unit>> and/or a special icon, see Fig. 10-18.

Style An OrganizationUnitType is usually depicted in the form of a UML
StructuredClassifier, and the contained entities (entity roles, agents,
resources, environments, their relationships, etc.) as its parts, ports
and connectors.

Examples Fig. 10-19 shows the definition of an OrganizationUnitType called
SoccerTeam which represents a simplified model of a soccer team dur-
ing a match. It groups several entity roles (for details see section
10.5.6) and their social relationships modeled by connectors of spe-
cial types (for details see section 10.5.5).

A soccer team contains seven to eleven playing players and one to
three coaches. The coaches lead the players and the players cooperate
with each other.

OrganizationUnitType is used to model organization structures.
Fig. 10-20 shows a class diagram depicting a generic organization
structure of software development project. Types of project roles,
teams, and their social associations are shown.

The types defined in the previous organization diagram are used to
model the internal structure of the SoftwareDevelopmentProject, see
Fig. 10-21. Additionally, this OrganizationUnitType offers two external
services (see section 11.4).

Fig. 10-18 Notation of OrganizationUnitType

Name
<<organization unit>>

attribute list

operation list

parts

behaviors

Fig. 10-19 Example of OrganizationUnitType’s internal structure

player:Player[11..16]

Cooperate

SoccerTeam

coach:Coach[1..3]

Lead

10.5 Social Aspects 149

Rationale OrganizationUnitType is introduced to model types of organization
units in multi-agent systems.

10.5.2 SocializedSemiEntityType

Semantics SocializedSemiEntityType is an abstract specialized Class (from UML),
a superclass to all metaclasses which can participate in SocialAssoci-
atons and can own SocialProperties. There are two direct subclasses of
the SocializedSemiEntityType: BehavioralEntityType and EntityRole-
Type.

SocializedSemiEntityTypes represent modeling elements, which would
most likely participate in CommunicativeInteractions. Therefore they
can specify meta-attributes related to the CommunicativeInteractions,
particularly: a set of agent communication languages (supportedAcl),
a set of content languages (supportedCl), a set of message content en-
codings (supportedEncoding), and a set of ontologies (supportedOn-
tology) they support. This set of meta-attributes can be extended by
AML users if needed.

Fig. 10-20 Organization structure example—definition of types

Fig. 10-21 Organization structure example—internal class structure

*

*

ProjectBoard

ProjectAssuranceTeam

ImplementationTeam DeploymentTeam

ProjectManager

TestingTeamAnalysisTeam

1..*

*

1..* 1

1

1..*

TechnicalTeam

Assists

Cooperate

Supervises

Manage

1..* 1

1

1..*

SoftwareDevelopmentProject

ProjectReporting ProductDelivery

pb:ProjectBoard

pat:ProjectAssuranceTeam

1..*

pm:ProjectManager[1..*]

imp:ImplementationTeam tst:TestingTeamana:AnalysisTeam dpl:DeploymentTeam

:Assists

:Supervises

:Manage
:Manage

:Manage
:Manage

1

1..*

1

1..* 1..*

1 1

:Manage

150 Chapter 10 Architecture

Instances of SocializedSemiEntityTypes are referred to as socialized
semi-entities.

Attributes

Associations

Constraints 1. The socialAttribute meta-association refers to all ownedAttributes
of the kind SocialProperty:

socialAttribute = self.ownedAttribute->
select(oclIsKindOf(SocialProperty))

Notation There is no general notation for SocializedSemiEntityType. The spe-
cific subclasses of the SocializedSemiEntityType define their own nota-
tion.

The meta-attributes are shown as a property string of the owning So-
cializedSemiEntityType. The following keywords are used:

acl,

cl,

encoding,

ontology.

Their values represent arbitrary lists of ValueSpecifications, but the
most commonly used types are enumerations or string literals.

supportedAcl:
ValueSpecification[*]

A set of supported agent communication
languages.

supportedCl:
ValueSpecification[*]

A set of supported content languages.

supportedEncoding:
ValueSpecification[*]

A set of supported message content encod-
ings.

supportedOntology:
ValueSpecification[*]

A set of supported ontologies.

/socialAttribute:
SocialProperty[*]

A set of all SocialProperties owned by the So-
cializedSemiEntityType. This association is
ordered and derived.
Subsets UML Class::ownedAttribute.

10.5 Social Aspects 151

Examples An example of a specification of the meta-attributes for an agent type
called Surgeon is depicted in Fig. 10-22.

Rationale SocializedSemiEntityType is introduced to define the features com-
mon to all its subclasses.

10.5.3 SocialProperty

Semantics SocialProperty is a specialized ServicedProperty used to specify social
relationships that can or must occur between instances of its type
and:

instances of its owning class (when the SocialProperty is an at-
tribute of a Class), or

instances of the associated class (when the SocialProperty is a
member end of an Association).

SocialProperty can be only of a SocializedSemiEntityType type.

SocialProperties can be owned only by:

SocializedSemiEntityTypes as attributes, or

SocialAssociations as member ends.

When a SocialProperty is owned by a SocializedSemiEntityType, it rep-
resents a social attribute. In this case the SocialProperty can explicitly
declare a social role of its type in regard to the owning class. The so-
cial role of the owning SocializedSemiEntityType in regard to the so-
cial property’s type is implicitly derived according to the rules de-
scribed in Tab. 10-1.

Ownership of a SocialProperty by a SocializedSemiEntityType can be
considered as an implicit declaration of a binary SocialAssociation be-

Fig. 10-22 Example of specification of meta-attributes for a Socialized-
SemiEntityType

Surgeon
{acl=FIPA-ACL
cl=FIPA-KIF, FIPA-SL
encoding=string, XML
ontology=Employment, MedicalTerms}

Social role of attribute’s type Derived social role of attribute owner

peer peer

superordinate subordinate

subordinate superordinate

Tab. 10-1 Rules for determining a social role of the SocialProperty
owner

152 Chapter 10 Architecture

tween owning SocializedSemiEntityType and a type of the attribute. It
is usually used to model social relationships of structured socialized
classes (e.g. EnvironmentTypes) and their parts.

When a SocialProperty is owned by a SocialAssociation, it represents a
non-navigable end of the association. In this case the SocialProperty
declares a social relation of its type (connected SocializedSemiEntity-
Type) in regard to the other association end types (SocializedSemiEn-
tityTypes connected to the other association ends).

Attributes

Associations

Constraints 1. If SocialProperty is a member end of a SocialAssociation and its so-
cialRole is set to peer, the socialRoles of all other member ends
must be set to peer as well:

(self.association->notEmpty() and self.socialRole=#peer) implies
self.association.memberEnd->forAll(socialRole=#peer)

2. If SocialProperty is a member end of a SocialAssociation and its so-
cialRole is set to superordinate, the socialRoles of all other member
ends must be set to subordinate:

(self.association->notEmpty() and self.socialRole=#superordinate)
implies self.association.memberEnd->
forAll(me|me <> self and me.socialRole=#subordinate)

3. If SocialProperty is a member end of a SocialAssociation and its so-
cialRole is set to subordinate, the socialRole of some another mem-
ber end must be set to superordinate:

(self.association->notEmpty() and self.socialRole=#subordinate)
implies self.association.memberEnd->
exists(socialRole=#superordinate)

socialRole:
SocialRoleKind[0..1]

The kind of a social relationship between So-
cialProperty’s type and the owning Social-
izedSemiEntityType.

association:
SocialAssociation[0..1]

The owning SocialAssociation of which this
SocialProperty is a member, if any.
Redefines UML Property::association.

type:
SocializedSemiEntity-
Type[0..1]

The type of a SocialProperty.
Redefines UML TypedElement::type.

10.5 Social Aspects 153

Notation When shown as an association end, the SocialProperty is depicted as a
UML association end with a stereotype specifying the social role kind.
The keyword is defined by the SocialRoleKind enumeration. See
Fig. 10-23.

When shown as an attribute, the SocialProperty is depicted as a UML
attribute with an additional keyword specifying the social role kind.
The keyword is defined by the SocialRoleKind enumeration. See
Fig. 10-24.

Presentation
options

An iconic notation for particular social role kinds can be used instead
of textual labels. Alternative notation is depicted in Fig. 10-25.

The same icons can be used also for a SocialProperty specified as an at-
tribute. See Fig. 10-26.

Examples Fig. 10-27 (a) shows an example of peer-to-peer social relationship be-
tween sellers and buyers. In case (b), an OrganizationUnitType Market
comprises many market members who are subordinated to their

Fig. 10-23 Notation of SocialProperty shown as an association end

Fig. 10-24 Notation of SocialProperty shown as an attribute

0..* 0..*

<<social role kind>><<social role kind>>

role1 role2

SocializedSemiEntityTypeSocializedSemiEntityType

SocializedSemiEntityType

...
<<social role kind>> name:SocializedSemiEntityType
...

Fig. 10-25 Alternative notation for SocialProperty shown as an associ-
ation end: (a) peer, (b) superordinate, (c) subordinate.

Fig. 10-26 Alternative notation of SocialProperty shown as an
attribute

(a)

(b)

(c)

SocializedSemiEntityType

...
name1:SocializedSemiEntityType

...

name2:SocializedSemiEntityType
name3:SocializedSemiEntityType

154 Chapter 10 Architecture

home market. The case (c) is semantically similar to the case (b), but
the Market is depicted as a StructuredClassifier and its market mem-
bers are represented as a part.

Rationale SocialProperty is introduced to model social relationships between en-
tities in multi-agent systems.

10.5.4 SocialRoleKind

Semantics SocialRoleKind is an enumeration which specifies allowed values for
the socialRole meta-attribute of the SocialProperty.

AML supports modeling of superordinate-subordinate and peer-to-
peer relationships, but this set can be extended as required (e.g. to
model producer-consumer, competition, or cooperation relation-
ships).

Enumeration
values

Tab. 10-2 specifies SocialRoleKind’s enumeration literals, stereotypes
used for notation and their semantics.

Fig. 10-27 Examples of SocialProperty

0..* 0..*
BuyerSeller

<<peer>><<peer>>

1 0..*
MarketMember

memberhomeMarket

(a)

(b)

(c)
Market

member
:MarketMember[0..*]

Market

Value Stereotype Semantics

peer <<peer>> A social role kind used in the peer-to-peer rela-
tionships of the entities with the same social sta-
tus and equal authority.

superordinate <<super>> A social role kind specifying higher authority
and power for its owner than for other associ-
ated subordinate entities. Superordinate entity is
able to constrain the behavior of its subordi-
nates.

subordinate <<sub>> A social role kind specifying lower authority and
power than associated superordinate entity.

Tab. 10-2 SocialRoleKind’s enumeration literals

10.5 Social Aspects 155

Rationale SocialRoleKind is introduced to define allowed values for the social-
Role meta-attribute of the SocialProperty.

10.5.5 SocialAssociation

Semantics SocialAssociation is a specialized Association (from UML) used to
model social relationships that can occur between SocializedSemiEn-
tityTypes. It redefines the type of the memberEnd property of Associ-
ation to SocialProperty.

An instance of the SocialAssociation is called social link.

Associations

Notation SocialAssociation is depicted as a UML Association with stereotype
<<social>>. Ends of SocialAssociation can use a special notation that is
described in section 10.5.3. Notation of binary SocialAssociation is
shown in Fig. 10-28.

Notation of n-ary social association is shown in Fig. 10-29.

Style The Association’s stereotype is usually omitted if the association ends
are stereotyped by social role kinds.

memberEnd:
SocialProperty[2..*]

At least two SocialProperties representing
participation of socialized semi-entities in a
social link. This is an ordered association.
Redefines UML Association::memberEnd.

Fig. 10-28 Notation of binary SocialAssociation

Fig. 10-29 Notation of n-ary SocialAssociation

SocializedSemiEntityType SocializedSemiEntityType
1

<<social>>

8..*

Name

role2role1

SocializedSemiEntityTypeSocializedSemiEntityType
<<social>> *

Name role3role2
*

0..1role1

SocializedSemiEntityType

156 Chapter 10 Architecture

Examples Fig. 10-30 shows a peer-to-peer SocialAssociation named Deal of two
entity role types Seller and Buyer.

Other examples of SocialAssociations can be found in Fig. 10-11,
Fig. 10-19, Fig. 10-20, Fig. 10-27, Fig. 10-33, and Fig. 10-40.

Rationale SocialAssociation is introduced to model social relationships between
entities in multi-agent systems in the form of an Association.

10.5.6 EntityRoleType

Semantics EntityRoleType is a specialized BehavioredSemiEntityType, Mental-
SemiEntityType, and SocializedSemiEntityType, used to represent a co-
herent set of features, behaviors, participation in interactions, and
services offered or required by BehavioralEntityTypes in a particular
context (e.g. interaction or social).

Each EntityRoleType thus should be defined within a specific larger
behavior (collective behavior) which represents the context in which
the EntityRoleType is defined together with all the other behavioral
entities it interacts with. An advisable means to specify collective be-
haviors in AML is to use EnvironmentType or Context.

Each EntityRoleType should be realized by a specific implementation
possessed by a BehavioralEntityType which may play that EntityRole-
Type (for details see sections 10.5.7 and 10.5.8).

EntityRoleType can be used as an indirect reference to behavioral enti-
ties, and as such can be utilized for the definition of reusable pat-
terns.

An instance of an EntityRoleType is called entity role. It represents ei-
ther an execution of a behavior, or usage of features, or participation
in interactions defined for the particular EntityRoleType by a behav-
ioral entity (see section 10.1.2 for details). The entity role exists only
while a behavioral entity plays it.

An entity role represented in a model as an InstanceSpecification clas-
sified by an EntityRoleType represents an instance of any Behavioral-
EntityType that may play that EntityRoleType, if the player (a behav-
ioral entity which plays that entity role) is not specified explicitly.

When an EntityRoleType is used to specify the type of a TypedElement,
values represented by that TypedElement are constrained to be in-

Fig. 10-30 Example of SocialAssociation

0..* 0..*

Deal

BuyerSeller

10.5 Social Aspects 157

stances of those BehavioralEntityTypes that may play given EntityRole-
Type.

An EntityRoleType, composed of other EntityRoleTypes (i.e. owning ag-
gregated attributes having types of EntityRoleType), represents a posi-
tion type. Its instantiation results in particular positions. A position can
also be expressed implicitly by specifying several entity roles repre-
senting a specific position to be played by one behavioral entity hold-
ing this position.

Notation EntityRoleType is depicted as a UML Class with the stereotype
<<entity role>> and/or a special icon, see Fig. 10-31.

Examples Fig. 10-32 shows an example of detailed modeling of EntityRoleTypes.
The abstract EntityRoleType called Employee is used to model a type of
employees. It defines a set of attributes which characterize their play-
ing, namely employed_from, salary, and responsibilities. A social asso-
ciation Work for represents the social relationship of employees (in-
stances of the Employee EntityRoleType) who are subordinated to their
employer(s) (instances of the Employer EntityRoleType). EntityRole-
Type Driver is a specialized Employee used to model profesional car
drivers who drive and maintain cars. In addition to the structural fea-
tures defined by Employee, it models also the connection of a driver
with the farmed out car modeled by the Drive association, and two ca-
pabilities driveCar and maintainCar.

Fig. 10-31 Notation of EntityRoleType

attribute list

operation list

parts

behaviors

Name
<<entity role>>

Fig. 10-32 EntityRoleType example—employee and driver

Employer
* *

driveCar(car)
maintainCar(car)

Employee

employed_from : Date
salary : Integer
responsibilities : Responsibility [*]

**
Car

Driver
driver car

employeremployee

Work for

Drive

158 Chapter 10 Architecture

Fig. 10-33 shows instantiation of EntityRoleTypes. In this example an
agent Oliver plays an entity role master (depicted as an instantiated
PlayAssociation). An agent John holds an implicitly specified position
of a driver and a valet which can be possibly played simultaneously.
Slots shown for the driver entity role specify its property values. An
agent Mary plays an entity role cook. The figure shows also the links
which represent instances of social associations defined on respective
EntityRoleTypes. The corresponding class diagram is depicted in
Fig. 10-37.

Other examples of EntityRoleTypes can be found in Fig. 10-19, Fig. 10-
20, and Fig. 10-21.

Rationale EntityRoleType is introduced to model roles in multi-agent systems.

10.5.7 RoleProperty

Semantics RoleProperty is a specialized Property (from UML) used to specify that
an instance of its owner, a BehavioralEntityType, can play one or sev-
eral entity roles of the specified EntityRoleType.

The owner of a RoleProperty is responsible for implementation of all
Capabilities, StructuralFeatures and metaproperties defined by Social-
izedSemiEntityType which are defined by RoleProperty’s type (an En-
tityRoleType).

Instances of the played EntityRoleType represent (can be substituted
by) instances of the RoleProperty owner.

One behavioral entity can at each time play (instantiate) several en-
tity roles. These entity roles can be of the same as well as of different
types. The multiplicity defined for a RoleProperty constrains the num-

Fig. 10-33 EntityRoleType example—instances

:Serves :CookesFor

:DrivesFor

Oliver:Person

John:Person Mary:Person

cook:Cookvalet:Valet

driver:Driver

master:Master

employed_from=1995-01-20
salary=$2000
car=Lincoln Limousine
responsibilities=drive, maintain cars

10.5 Social Aspects 159

ber of entity roles of a given type that the particular behavioral entity
can play concurrently.

Associations

Constraints 1. The aggregation meta-attribute of the RoleProperty is composite:

self.aggregation = #composite

Notation When shown as the end of a PlayAssociation, the RoleProperty is de-
picted as a UML association end.

When shown as an attribute, the RoleProperty is depicted as a UML at-
tribute with the stereotype <<role>>, see Fig. 10-34.

Presentation
options

The role properties of a BehavioralEntityType can be placed in a special
class compartment named <<roles>>. The stereotype <<role>> of a par-
ticular RoleProperty is in this case omitted. See Fig. 10-35.

association:
PlayAssociation[0..1]

The owning PlayAssociation of which this
Role-Property is a member, if any.
Redefines UML Property::association.

type:
EntityRoleType[0..1]

The type of a RoleProperty.
Redefines UML TypedElement::type.

Fig. 10-34 Notation of RoleProperty shown as an attribute

BehavioralEntityType

...
<<role>> name:Type=default_value
...

Fig. 10-35 Alternative notation for RoleProperty placed in a special
class compartment

BehavioralEntityType

<<roles>>
role property 1

attribute list

operation list

role property 2
...

parts

behaviors

160 Chapter 10 Architecture

Examples Fig. 10-36 shows an example of specifying RoleProperties as attributes
in a special class compartment. An agent Person can play four kinds of
entity roles: master, valet, driver and cook.

Fig. 10-37 shows a semantically identical model, but the RoleProper-
ties are specified as ends of PlayAssociations.

Rationale RoleProperty is introduced to model the possibility of playing entity
roles by behavioral entities.

10.5.8 PlayAssociation

Semantics PlayAssociation is a specialized Association (from UML) used to specify
RoleProperty in the form of an association end. It specifies that entity
roles of a roleMemberEnd’s type (which is an EntityRoleType) can be
played, i.e. instantiated by entities of the other end type (which are
BehavioralEntityTypes).

Each entity role can be played by at most one behavioral entity.
Therefore:

The multiplicity of the PlayAssociation at the BehavioralEntityType
side is always 0..1, and thus is not shown in diagrams.

If there are more than one PlayAssociations attached to an Entity-
RoleType then an implicit constraint applies, stating that no more
than one PlayAssociation link can exist at any given moment.
These constraints are implicit and thus not shown in diagrams.

Fig. 10-36 Example of RoleProperties specified as attributes

Fig. 10-37 Example of RoleProperties specified as association ends

Person

<<roles>>
master:Master[0..1]
valet:Valet[0..1]
driver:Driver[0..1]
cook:Cook[0..1]

Person

ValetMaster Driver

0..1
driver

0..1
valet

0..1
cook

0..1
master

Serves

CooksFor

DrivesFor

0..1 *** *0..1

Cook

10.5 Social Aspects 161

Multiplicity on the entity role side of the PlayAssociation constrains
the number of entity roles the particular BehavioralEntityType can in-
stantiate concurrently.

An instance of the PlayAssociation is called play link.

Other notation parts defined for UML Association (qualifier, property
string, navigability, etc.) can be specified for the PlayAssociation as
well. Their semantics are specified in UML 2.0 Superstructure [104].

Associations

Notation PlayAssociation is depicted as a UML Association with the <<play>> ste-
reotype, see Fig. 10-38. The multiplicity at the BehavioralEntityType
side is unspecified.

Presentation
options

Instead of a stereotyped Association, the PlayAssociation can be de-
picted as an association line with a small thick semicircle as an arrow
head at the end of EntityRoleType. See Fig. 10-39.

Style Stereotype labels or icons of association ends are usually omitted be-
cause their end types determine them implicitly. An association end
connected to an EntityRoleType represents a RoleProperty and there-
fore the <<role>> stereotype may be omitted.

Even if the aggregation meta-attribute of the RoleProperty is always
composite, a solid filled diamond is usually not shown in the PlayAs-
sociation.

Examples Fig. 10-40 shows an example where each instance of an AgentType
Person and an OrganizationUnitType Bank can play several entity roles
of type Buyer. Each of these entity roles is used to specify a deal with a
specific seller.

memberEnd:
Property[2]

Two associated Properties. This is an ordered
association.
Redefines UML Association::memberEnd.

roleMemberEnd:
RoleProperty[1]

Associated RoleProperty.
Subsets PlayAssociation::memberEnd.

Fig. 10-38 Notation of PlayAssociation

0..8
EntityRoleType

entityRole
BehavioralEntityType

<<play>>
Name

Fig. 10-39 Alternative notation of PlayAssociation

0..8
EntityRoleType

entityRole
BehavioralEntityType

Name

162 Chapter 10 Architecture

Rationale PlayAssociation is introduced to model the possibility of playing en-
tity roles by behavioral entities.

10.5.9 CreateRoleAction

Semantics CreateRoleAction is a specialized CreateObjectAction (from UML) and
AddStructuralFeatureValueAction (from UML), used to model the ac-
tion of creating and starting to play an entity role by a behavioral en-
tity.

Technically this is realized by instantiation of an EntityRoleType into
an entity role of that type, and adding this instance as a value to the
RoleProperty of its player (a behavioral entity) which starts to play it.

The CreateRoleAction specifies:

what EntityRoleType is being instantiated (roleType meta-associa-
tion),

the entity role being created (role meta-association),

the player of created entity role (player meta-association), and

the RoleProperty owned by the type of player, where the created
entity role is being placed (roleProperty meta-association).

If the RoleProperty referred to by the roleProperty meta-association is
ordered, the insertAt meta-association (inherited from the AddStruc-
turalFeatureValueAction) specifies a position at which to insert the en-
tity role.

Because the value meta-association (inherited from UML WriteStruc-
turalFeatureAction) represents the same entity role as is already repre-
sented by the role meta-association, the properties of the InputPin re-
ferred to by the value meta-association are ignored in CreateRoleAc-
tion, and can be omitted in its specification.

Fig. 10-40 Example of PlayAssociation relationship

Person

Buyer0..*
Deal

sellerbuyer

1 1

Seller

security
buyerRole

amount
price

Bank

buyerRole
0..*

10.5 Social Aspects 163

Associations

Constraints 1. If the type of the InputPin referred to by the player meta-associa-
tion is specified, it must be a BehavioralEntityType:

self.player.type->notEmpty() implies
self.player.type.oclIsKindOf(BehavioralEntityType)

2. If the type of the OutputPin referred to by the role meta-associa-
tion is specified, it must conform to the EntityRoleType referred to
by the roleType meta-association:

self.role.type->notEmpty() implies
self.role.type.conformsTo(self.roleType)

3. If the type of the RoleProperty referred to by the roleProperty meta-
association is specified, the EntityRoleType referred to by the role-
Type meta-association must conform to it:

self.roleProperty.type->notEmpty() implies
self.roleType.conformsTo(self.roleProperty.type)

Notation CreateRoleAction is shown as a UML Action with the stereotype
<<create role>> and/or a special icon, see Fig. 10-41.

Optionally, the name of the player, delimited by a period from the
name of the RoleProperty referred to by the roleProperty meta-associa-

roleType:
EntityRoleType[1]

Instantiated EntityRoleType.
Redefines UML CreateObjectAction::classifier.

role: OutputPin[1] The OutputPin on which the created entity
role is put.
Redefines UML CreateObjectAction::result.

player: InputPin[1] The InputPin specifying the player of the cre-
ated entity role.
Redefines UML StructuralFeatureAction::
object.

roleProperty:
RoleProperty[1]

The RoleProperty where the created entity
role is being placed.
Redefines UML StructuralFeatureAction::
structuralFeature.

Fig. 10-41 Notation of CreateRoleAction

role: roleType

Name
<<create role>>

(player.roleProperty[insertAt])

164 Chapter 10 Architecture

tion, may be specified in parentheses below the action’s name. If the
RoleProperty is ordered, the value of the insertAt meta-association can
be placed after the RoleProperty’s name in brackets.

If the player itself executes the CreateRoleAction, it can be identified
by the keyword ‘self’ in place of player name.

A created entity role is specified as an OutputPin. All notational varia-
tions for the UML OutputPin are allowed. The EntityRoleType referred
to by the roleType meta-association is specified as the type of the Out-
putPin.

A mandatory InputPin referred to by the value meta-association has
unspecified properties and is not drawn in diagrams.

Examples Fig. 10-42 shows an example of the activity describing the scenario of
creating and matching a sell order at the stock exchange.

The activity comprises three activity partitions: an agent marketMem-
ber representing a Person who is playing an entity role of type Market-
Member, organization unit stockExchange, and an entity role buyer.

Fig. 10-42 Example of CreateRoleAction and DisposeRoleAction

Register seller
(marketMember.seller)

marketMember
buyer:Buyer

sellOrder

Try to match
sell order

Accept matching
by seller

seller:Seller buyer:Buyer

Settlement

:Person,MarketMember
stockExchange
:StockExchange

[matched]

[unmatched]

create role action

dispose role action

Sell security

seller:Seller

[open]

Accept matching
by buyer

10.5 Social Aspects 165

The marketMember, wanting to sell some securities, creates a sellOr-
der and submits it to the stockExchange. The stockExchange registers
this order and creates a new seller entity role (we can say: “a new
seller position is opened at the stock exchange”). The marketMember
becomes a seller by this registration. Then the stockExchange tries to
match the sellOrder. If the matching was unsuccessful, the scenario
terminates. If the matching was successful, the marketMember (now
also seller) and the buyer concurrently confirm the match. When
complete, the stockExchange performs a settlement and both the
seller and buyer entity roles are disposed.

Rationale CreateRoleAction is introduced to model an action of creating and
playing entity roles by behavioral entities.

10.5.10 DisposeRoleAction

Semantics DisposeRoleAction is a specialized DestroyObjectAction (from UML)
used to model the action of stopping to play an entity role by a be-
havioral entity.

Technically it is realized by destruction of the corresponding entity
role(s). As a consequence, all behavioral entities that were playing the
destroyed entity roles stop to play them.

Associations

Constraints 1. If the types of the InputPins referred to by the role meta-associa-
tion are specified, they must be EntityRoleTypes:

self.role->forAll(ro | ro.type->notEmpty() implies
ro.type.oclIsKindOf(EntityRoleType))

Notation DisposeRoleAction is drawn as a UML Action with the stereotype
<<dispose role>> and/or a special icon, see Fig. 10-43. Disposed entity
roles are depicted as InputPins.

Examples See Fig. 10-42.

role: InputPin[1..*] The InputPins representing the entity roles
to be disposed.
Redefines UML DestroyObjectAction::target.

Fig. 10-43 Notation of DisposeRoleAction

Name
<<dispose role>>

166 Chapter 10 Architecture

Rationale DisposeRoleAction is introduced to model the action of disposing of
entity roles by behavioral entities.

10.6 MAS Deployment

Overview The MAS Deployment package defines the metaclasses used to model
deployment of a multi-agent system to a physical environment.

Abstract
syntax

The diagrams of the MAS Deployment package are shown in figures
Fig. 10-44 and Fig. 10-45.

10.6.1 AgentExecutionEnvironment

Semantics AgentExecutionEnvironment is a specialized ExecutionEnvironment
(from UML) and BehavioredSemiEntityType, used to model types of
execution environments of multi-agent systems. AgentExecutionEnvi-
ronment thus provides the physical infrastructure in which MAS enti-
ties can run. One entity can run at most in one AgentExecutionEnvi-
ronment instance at one time.

Fig. 10-44 MAS Deployment—agent execution environment

Fig. 10-45 MAS Deployment—hosting

AgentExecutionEnvironment

Execut ionEnvi ronment
(from UML)

BehavioredSemiEntityType
(from Basic Behaviors)

Association
(from UML)

HostingKind
<<enumeration>>

resident
visitor

AgentExecutionEnvironment EntityType
(from Entities)

HostingProperty
hostingKind : Ho stingKind [*]

*

0..1

+/hostingAttr ibute *
{order ed, subsets
ownedAttribute}

+classifier 0..1
{redefines classifier}

0.. 1

*

+type0.. 1
{ redef ines type}

*

Property
(from UML)

HostingAssociation
1 0..1

+hosting
Member

End

1

{subsets memberEnd}

+association

0..1

{redefines
association}

2

0..1

+memberEnd 2

{ordered, redefines
memberEnd}

0..1

ServicedProperty
(from Services)

10.6 MAS Deployment 167

If useful, it may be further subclassed into more specific agent execu-
tion environments, for example, agent platform, or agent container.

AgentExecutionEnvironment can provide (use) a set of services that de-
ployed entities use (provide) at run time. AgentExecutionEnvironment,
being a BehavioredSemiEntityType, can explicitly specify such services
by means of ServiceProvisions and ServiceUsages respectively.

Owned HostingProperties specify kinds of entities hosted by (running
at) the AgentExecutionEnvironment. Internal structure of the AgentEx-
ecutionEnvironment can also contain other features and behaviors
that characterize it.

Associations

Constraints 1. The internal structure of an AgentExecutionEnvironment can also
consist of other attributes than parts of the type Node. The con-
straint [1] defined for UML Node, and inherited by the AgentExe-
cutionEnvironment, is therefore discarded (see [104] for details).

2. The hostingAttribute meta-association refers to all ownedAt-
tributes of the kind HostingProperty:

hostingAttribute = self.ownedAttribute->
select(oclIsKindOf(HostingProperty))

Notation AgentExecutionEnvironment is depicted as a UML ExecutionEnviron-
ment with the stereotype <<agent execution environment>> and/or a
special icon, see Fig. 10-46.

Examples Fig. 10-47 shows the example of a MAS deployment model. A Node
called StockExchangeServer runs an AgentExecutionEnvironment of
type TradingServer and this in turn enables the hosting of agents of
type Broker (modeled by a HostingProperty), resources of type Account
and one environment of type OrderPool. A Node ClientPC runs an
AgentExecutionEnvironment of type TradingClient in which agents of

/hostingAttribute:
HostingProperty[*]

A set of all HostingProperties owned by the
AgentExecutionEnvironment. This associa-
tion is ordered and derived.
Subsets UML Class::ownedAttribute.

Fig. 10-46 Notation of AgentExecutionEnvironment

<<agent execution environment>>
Name

owned features,
behaviors,
deployed artifacts, etc.

168 Chapter 10 Architecture

type Broker can be hosted. All hosting entities are modeled as hosting-
Attributes.

Fig. 10-48 shows an instance-level example of the AgentExecutionEn-
vironment called AgentPlatform, distributed over several Nodes. Each
Node contains its own specific AgentContainer, where the local agents
operate. The mainNode, in addition to the main agent container
mainAc, has also deployed the central database centralDB used by the
agent container.

For another example see also Fig. 11-117.

Rationale AgentExecutionEnvironment is introduced to model execution envi-
ronments of multi-agent systems, i.e. the environments in which the
entities exist and operate.

Fig. 10-47 MAS deployment example—class diagram

Fig. 10-48 MAS deployment example—instance diagram

tradingServer:TradingServer

StockExchangeServer

orderPool account tc:TradingClient

ClientPC

broker:Broker[*]
{resident}

* *

broker:Broker[*]
{visitor}

:OrderPool :Account[*]

ap:AgentPlatform

ac1:AgentContainer

node1:PC

:Agent
{resident}

ac2:AgentContainer

node2:PC

:Agent
{resident}

mainAc:AgentContainer

mainNode:PC

:Agent
{resident}

centralDB:Database

<<use>>

10.6 MAS Deployment 169

10.6.2 HostingProperty

Semantics HostingProperty is a specialized ServicedProperty used to specify what
EntityTypes can be hosted by what AgentExecutionEnvironments.

Type of a HostingProperty can be only an EntityType.

HostingProperties can be owned only by:

AgentExecutionEnvironments as attributes, or

HostingAssociations as member ends.

The owned meta-attribute hostingKind specifies the relation of the re-
ferred EntityType to the owning AgentExecutionEnvironment (for de-
tails see section 10.6.3).

Attributes

Associations

hostingKind:
HostingKind[*]

A set of hosting kinds that the owning
AgentExecutionEnvironment provides to the
HostingProperty’s type.

association:
HostingAssociation
[0..1]

The owning HostingAssociation of which this
HostingProperty is a member, if any. It repre-
sents a hosting place.
Redefines UML Property::association.

type:
EntityType[0..1]

The type of a HostingProperty. It represents
an entity that resides at the hosting AgentEx-
ecutionEnvironment.
Redefines UML TypedElement::type.

/move: Move[*] A set of the Move dependencies that refer to
the HostingProperty as source of moving.
This is a derived association.

/moveFrom: Move[*] A set of the Move dependencies that refer to
the HostingProperty as destination of mov-
ing. This is a derived association.

/clone: Clone[*] A set of the Clone dependencies that refer to
the HostingProperty as source of cloning.
This is a derived association.

/cloneFrom: Clone[*] A set of the Clone dependencies that refer to
the HostingProperty as destination of clon-
ing. This is a derived association.

170 Chapter 10 Architecture

Constraints 1. The move meta-association refers to all clientDependencies of the
kind Move:

move = self.clientDependency->select(oclIsKindOf(Move))

2. The moveFrom meta-association refers to all supplierDependencies
of the kind Move:

moveFrom = self.supplierDependency->select(oclIsKindOf(Move))

3. The clone meta-association refers to all clientDependencies of the
kind Clone:

clone = self.clientDependency->select(oclIsKindOf(Clone))

4. The cloneFrom meta-association refers to all supplierDependencies
of the kind Clone:

cloneFrom = self.supplierDependency->select(oclIsKindOf(Clone))

Notation When shown as the end of a HostingAssociation, the HostingProperty
is depicted as a UML association end (see section 10.6.4 for details).

When shown as an attribute, the HostingProperty is depicted as a UML
attribute with the stereotype <<hosting>>, see Fig. 10-49.

The hostingKind meta-attribute is specified as a tagged value with the
keyword ‘hostedAs’ and a value containing a list of HostingKind liter-
als separated by ampersands (‘&’).

Alternatively, the HostingProperty can be depicted as a Connect-
ableElement with the stereotype <<hosting>>, see Fig. 10-50.

Presentation
options

All HostingProperties of an AgentExecutionEnvironment can be placed
in a special compartment named <<hosting>>. The stereotype
<<hosting>> of a particular HostingProperty is in this case omitted. See
Fig. 10-51.

Fig. 10-49 Notation of HostingProperty shown as an attribute

Fig. 10-50 Notation of HostingProperty shown as a ConnectableEle-
ment

AgentExecutionEnvironment

...
<<hosting>> name:Type=default_value {hostedAs=value}
...

AgentExecutionEnvironment

<<hosting>>

name:Type=default_value {hostedAs=value}

10.6 MAS Deployment 171

To recognize the fundamental type of HostingProperty’s type visually
and to specify just one stereotype, AML offers a notation shortcut to
combine both stereotypes when the HostingProperty is depicted as a
ConnectableElement. The basic shape of the modified stereotype icon
represents an original EntityType’s stereotype icon placed under a
“shelter”, which means hosting. Variants of stereotype icons for all
concrete EntityTypes are depicted in Fig. 10-52.

If the only displayed tagged value is the hostingKind, its keyword may
be omitted and only its value is specified. Alternatively, the property
string may be placed under the name/type string.

Examples See Fig. 10-47, Fig. 10-48, and Fig. 11-117.

Rationale HostingProperty is introduced to model the hosting of EntityTypes by
AgentExecutionEnvironments.

Fig. 10-51 Alternative notation for HostingProperty placed in a special
class compartment

Fig. 10-52 Alternative notation for HostingProperty depicting a stereo-
type of its type’s fundamental type: (a) hosting of an agent, (b) host-
ing of a resource, (c) hosting of an environment, (d) hosting of an
organization unit.

AgentExecutionEnvironment

<<hosting>>
hosting property 1

attribute list

operation list

parts

hosting property 2
...

behaviors

environment

resource

(a)
agent

organization unit
(b)

(c)

(d)

172 Chapter 10 Architecture

10.6.3 HostingKind

Semantics HostingKind is an enumeration which specifies possible hosting rela-
tionships of EntityTypes to AgentExecutionEnvironments. These are:

resident—the EntityType is perpetually hosted by the AgentExecu-
tionEnvironment.

visitor—the EntityType can be temporarily hosted by the AgentExe-
cutionEnvironment, i.e. it can be temporarily moved or cloned to
the corresponding AgentExecutionEnvironment.

If needed, the set of available hosting kinds can be extended.

Enumeration
values

Tab. 10-3 specifies HostingKind’s enumeration literals, keywords used
for notation and their semantics.

Rationale HostingKind is introduced to define possible values of the hostingKind
meta-attribute of the HostingProperty metaclass.

10.6.4 HostingAssociation

Semantics HostingAssociation is a specialized Association (from UML) used to
specify HostingProperty in the form of an association end. It specifies
that entities classified according to a hostingMemberEnd’s type
(which is an EntityType) can be hosted by instances of an AgentExecu-
tionEnvironment representing the other end type.

HostingAssociation is a binary association.

An instance of the HostingAssociation is called hosting link.

Other notation parts defined for UML Association (qualifier, property
string, navigability, etc.) can be specified for the HostingAssociation as
well. Their semantics are specified in UML 2.0 Superstructure [104].

Value Keyword Semantics

resident resident Instances of AgentExecutionEnvironment repre-
sent home for resident entities, i.e. execution
environments where the entities are deployed
and operate perpetually.

visitor visitor Instances of AgentExecutionEnvironment repre-
sent hosts for visiting entities, i.e. temporary
operational environments.

Tab. 10-3 HostingKind’s enumeration literals

10.6 MAS Deployment 173

Associations

Notation HostingAssociation is depicted as a UML Association with the stereo-
type <<hosting>>, see Fig. 10-53.

Presentation
options

Instead of a stereotyped Association, the HostingAssociation can be de-
picted as an association line with a small thick “V” shape at the end of
EntityRoleType, pointing in the direction of the AgentExecutionEnvi-
ronment. See Fig. 10-54.

Examples Fig. 10-55 shows an example of hosting Broker, Account and an Order-
Pool EntityTypes by the TradingServer AgentExecutionEnvironment.
Broker is hosted as a visitor.

Rationale HostingAssociation is introduced to model the hosting of EntityTypes
by AgentExecutionEnvironments in the form of an Association.

memberEnd:
Property[2]

Two associated Properties. This is an ordered
association.
Redefines UML Association::memberEnd.

hostingMemberEnd:
HostingProperty[1]

Associated HostingProperty.
Subsets HostingAssociation::memberEnd.

Fig. 10-53 Notation of HostingAssociation

AgentExecutionEnvironment EntityType
*

<<hosting>>

3..7

Name

role2role1

Fig. 10-54 Alternative notation of HostingAssociation

AgentExecutionEnvironment EntityType* 3..7Name
role2role1

Fig. 10-55 Example of HostingAssociation

TradingServer *
broker
{visitor}

1
server

*
account

1
orderPool

Broker

OrderPool

Account

Chapter 11

Behaviors

Overview The Behaviors package defines the metaclasses used to model behav-
ioral aspects of multi-agent systems.

Package
structure

Fig. 11-1 depicts the package diagram of the Behaviors package.

11.1 Basic Behaviors

Overview The Basic Behaviors package defines the core, frequently referred
metaclasses used to model behavior in AML.

Fig. 11-1 Behaviors—package structure

Behavior
Decomposition Services

Communicative
InteractionsMobility

Basic
Behaviors

Observations
and Effecting
Interactions

176 Chapter 11 Behaviors

Abstract
syntax

The diagram of the Basic Behaviors package is shown in Fig. 11-2.

11.1.1 BehavioredSemiEntityType

Semantics BehavioredSemiEntityType is an abstract specialized Class (from UML)
and ServicedElement, that serves as a common superclass to all meta-
classes which can:

own Capabilities,

observe and/or effect their environment by means of Perceptors
and Effectors, and

provide and/or use services by means of ServicedPorts.

Furthermore, behavior of BehavioredSemiEntityTypes (and related fea-
tures) can be explicitly (and potentially recursively) decomposed into
BehavioralFragments.

In addition to the services provided and used directly by the Behavior-
edSemiEntityType (see the serviceUsage and the serviceProvision meta-
associations inherited from the ServicedElement), it is also responsi-
ble for implementation of the services specified by all ServiceProvi-
sions and ServiceUsages owned by the ServicedProperties and Serviced-
Ports having the BehavioredSemiEntityType as their type.

Instances of BehavioredSemiEntityTypes are referred to as behaviored
semi-entities.

Fig. 11-2 Basic Behaviors—behaviored semi-entity type and capabil-
ity

Class
(from UML)

Parameter
(from UML)

Constraint
(from UML)

BehavioredSemiEntityType
Capability

*0..1 +/input *

{ordered, subsets
ownedMember}

0..1

*0..1 +/output *
{ordered, subsets
ownedMember }

0..1

0..1

*

0..1

+/postcondition
*

{subsets ownedMember}

0..1

*

0..1

+/precondition
*

{subsets ownedMember}

0.. 1 *0.. 1

+/capability

*

{subsets
ownedMember}

RedefinableElement
(from UML)

Namespace
(from UML)

11.1 Basic Behaviors 177

Associations

Constraints 1. The capability meta-association is union of owned BehavioralFea-
tures and Behaviors:

capability = self.ownedBehavior->union(self.feature->
select(oclIsKindOf(BehavioralFeature)))

2. The behaviorFragment meta-association comprises types of all
owned aggregate or composite attributes having the type of a Be-
haviorFragment:

behaviorFragment = self.ownedAttribute->
select(oa|(oa.aggregation=#shared
or oa.aggregation=#composite)
and oa.type->notEmpty()
and oa.type.oclIsKindOf(BehaviorFragment)).type

3. The ownedServicedPort meta-association refers to all owned ports
of the kind ServicedPort:

ownedServicedPort = self.ownedPort->
select(oclIsKindOf(ServicedPort))

4. The ownedPerceptor meta-association refers to all owned service
ports of the kind Perceptor:

ownedPerceptor = self.ownedServicedPort->
select(oclIsKindOf(Perceptor))

/capability:
Capability[*]

A set of all Capabilities owned by a Behavior-
edSemiEntityType. This is a derived associa-
tion.

/behaviorFragment:
BehaviorFragment[*]

A set of all BehaviorFragments that decom-
pose a BehavioredSemiEntityType. This is a
derived association.

/ownedServicedPort:
ServicedPort[*]

A set of all ServicedPorts owned by a Behav-
ioredSemiEntityType. This is a derived associ-
ation.

/ownedPerceptor:
Perceptor[*]

All owned Perceptors. This is a derived asso-
ciation.
Subsets BehavioredSemiEntityType::
ownedServicedPort.

/ownedEffector:
Effector[*]

All owned Effectors. This is a derived associa-
tion.
Subsets BehavioredSemiEntityType::
ownedServicedPort.

178 Chapter 11 Behaviors

5. The ownedEffector meta-association refers to all owned service
ports of the kind Effector:

ownedEffector = self.ownedServicedPort->
select(oclIsKindOf(Effector))

Notation There is no general notation for BehavioredSemiEntityType. The spe-
cific subclasses of BehavioredSemiEntityType define their own nota-
tion.

Rationale BehavioredSemiEntityType is introduced as a common superclass to all
metaclasses which can have capabilities, can observe and/or effect
their environment, and can provide and/or use services.

11.1.2 Capability

Semantics Capability is an abstract specialized RedefinableElement (from UML)
and Namespace (from UML), used to model an abstraction of a behav-
ior in terms of its inputs, outputs, pre-conditions, and post-condi-
tions. Such a common abstraction allows use of the common features
of all the concrete subclasses of the Capability metaclass uniformly,
and thus reason about and operate on them in a uniform way.

To maintain consistency with UML, which considers pre-conditions
as aggregates (see Operation and Behavior in UML 2.0 Superstructure
[104]), all pre-conditions specified for one Capability are understood
to be logically AND-ed to form a single logical expression represent-
ing an overall pre-condition for that Capability. This is analogously
the case for post-conditions.

Capability, being a RedefinableElement, allows the redefinition of
specifications (see UML Constraint::specification) of its pre- and post-
conditions, e.g. when inherited from a more abstract Capability. Spec-
ification of redefined conditions are logically combined with the
specification of redefining conditions (of the same kind), following
the rules:

overall pre-conditions are logically OR-ed, and

overall post-conditions are logically AND-ed.

Input and output parameters must be the same for redefining Capa-
bility as defined in the context of redefined Capability.

The set of meta-attributes defined by the Capability can be further ex-
tended in order to accommodate specific requirements of users
and/or implementation environments.

Capabilities can be owned by BehavioredSemiEntityTypes.

11.1 Basic Behaviors 179

Capability is part of the non-conservative extension of UML, while it
is a common superclass to two UML metaclasses: BehavioralFeature
and Behavior.

Associations

Constraints 1. The input meta-association refers to all parameters having the di-
rection set either to in or inout:

input = if self.oclIsKindOf(BehavioralFeature) then
self.oclAsType(BehavioralFeature).parameter->
select(direction=#in or direction=#inout)

else
self.oclAsType(Behavior).parameter->
select(direction=#in or direction=#inout)

endif

2. The output meta-association refers to all parameters having the di-
rection set either to out or inout:

output = if self.oclIsKindOf(BehavioralFeature) then
self.oclAsType(BehavioralFeature).parameter->
select(direction=#out or direction=#inout)

else
self.oclAsType(Behavior).parameter->
select(direction=#in or direction=#inout)

endif

/input: Parameter[*] An ordered list of input parameters of the
Capability. This is a derived association.
Subsets UML Namespace::ownedMember.

/output: Parameter[*] An ordered list of output parameters of the
Capability. This is a derived association.
Subsets UML Namespace::ownedMember.

/precondition:
Constraint[*]

An optional set of Constraints on the state of
the system in which the Capability can be in-
voked. This is a derived association.
Subsets UML Namespace::ownedMember.

/postcondition:
Constraint[*]

An optional set of Constraints specifying the
expected state of the system after the Capa-
bility is completed. This is a derived associa-
tion.
Subsets UML Namespace::ownedMember.

180 Chapter 11 Behaviors

3. The precondition meta-association is identical either to the pre-
condition meta-association from Operation or the precondition
meta-association from Behavior:

precondition = if self.oclIsKindOf(Behavior) then
self.oclAsType(Behavior).precondition

else
if self.oclIsKindOf(Operation) then

self.oclAsType(Operation).precondition
else

Set{} -- self.oclIsKindOf(Reception)
endif

endif

4. The postcondition meta-association is identical either to the post-
condition meta-association from Operation or the postcondition
meta-association from Behavior:

postcondition = if self.oclIsKindOf(Behavior) then
self.oclAsType(Behavior).postcondition

else
if self.oclIsKindOf(Operation) then

self.oclAsType(Operation).postcondition
else

Set{} -- self.oclIsKindOf(Reception)
endif

endif

Notation There is no general notation for Capability. The specific subclasses of
Capability define their own notation.

Usually, the capability conditions are specified as a hidden informa-
tion, not shown in the diagram. However, if a user needs to express
them explicitly in the diagram, the conditions can be shown as a note
symbol structured into sections specifying pre-conditions and post-
conditions, see Fig. 11-3. Any of the sections can be omitted.

Fig. 11-3 Notation of the Capability meta-attribute specification

Agent

capability()

<<precondition>>
constraint
<<postcondition>>
constraint

11.2 Behavior Decomposition 181

Presentation
options

Each single capability condition can be depicted as a separate note
symbol connected to the Capability itself, see Fig. 11-4.

Rationale Capability is introduced to define common meta-attributes for all
“behavior-specifying” modeling elements in order to refer them uni-
formly, e.g. while reasoning.

11.2 Behavior Decomposition

Overview The Behavior Decomposition package defines the BehaviorFragment
which allows the decomposition of complex behaviors of Behaviored-
SemiEntityTypes and the means to build reusable libraries of behav-
iors and related features.

Abstract
syntax

The diagram of the Behavior Decomposition package is shown in
Fig. 11-5.

11.2.1 BehaviorFragment

Semantics BehaviorFragment is a specialized BehavioredSemiEntityType used to
model coherent and reusable fragments of behavior and related struc-
tural and behavioral features, and to decompose complex behaviors
into simpler and (possibly) concurrently executable fragments.

BehaviorFragments can be shared by several BehavioredSemiEntity-
Types and a behavior of a BehavioredSemiEntityType can, possibly re-
cursively, be decomposed into several BehaviorFragments.

The decomposition of a behavior of a BehavioredSemiEntityType to its
sub-behaviors is modeled by owned aggregate attributes (having the

Fig. 11-4 Alternative notation of the Capability meta-attribute specifi-
cation

Agent

capability()

<<precondition>>
constraint

<<postcondition>>
constraint

Fig. 11-5 Behavior Decomposition—behavior fragment

BehaviorFragment

BehavioredSemiEntityType
(from Basic Behaviors)

*

*

+/behaviorFragment

*

*

182 Chapter 11 Behaviors

aggregation meta-attribute set either to shared or composite) of the Be-
haviorFragment type. At run time, the behaviored semi-entity dele-
gates execution of its behavior to the containing BehaviorFragment
instances.

Notation BehaviorFragment is depicted as a UML Class with the stereotype
<<behavior fragment>> and/or a special icon, see Fig. 11-6.

Style Decomposition of a BehavioredSemiEntityType into sub-behaviors is
usually depicted as an aggregation or composition relating the Behav-
ioredSemiEntityType to the BehaviorFragments, or as a structuring of
the BehavioredSemiEntityType into parts (or attributes not owned by
composition) of the BehaviorFragment type (see UML StructuredClas-
sifier).

Examples Fig. 11-7 shows an example of a decomposition of an AgentType into
BehaviorFragments. The behavior of the SoccerRobot AgentType is de-
composed into four BehaviorFragments: Localization, Mobility, BallMa-
nipulation and SoccerPlayerThinking. Localization manages the robot’s
position in a pitch, enables it to observe surrounding objects, and to
measure distances between them. It requires Observing and Measure-
ment services provided by a pitch. Mobility allows movement within a
physical space. BallManipulation is used to manipulate the ball. Soc-
cerPlayerThinking comprises different strategies and ad-hoc behaviors
of a soccer player. Strategy allows the execution of a certain strategy
which influences global long-term behavior of a player. AdHocReac-
tion allows short-term behaviors triggered by a particular situation,
e.g. certain pre-learned tricks.

Another example of BehaviorFragment is in Fig. 10-5.

Rationale BehaviorFragment is introduced to: (a) decompose complex behaviors
of BehavioredSemiEntities, and (b) build reusable libraries of behav-
iors and related features.

Fig. 11-6 Notation of BehaviorFragment

Name
<<behavior fragment>>

attribute list

operation list

parts

behaviors

11.3 Communicative Interactions 183

11.3 Communicative Interactions

Overview The Communicative Interactions package contains metaclasses that
provide generic as well as agent specific extensions to UML Interac-
tions.

The generic extension allows the modeling of:

interactions between groups of objects,

dynamic change of an object’s attributes induced by interactions,
and

Fig. 11-7 Example of BehaviorFragment: (a) decomposition of a
behavior of an AgentType into BehaviorFragments, (b) definition of
used BehaviorFragments.

SoccerRobot

:Mobility :BallManipulation:Localization

:SoccerPlayerThinking

Localization

myPosition

distanceTo(object)
distanceBetween(object1, object2)

camera:Camera[2]

Observing

Measurement

Mobility

turn(angle)
walk(to)
run(to)
stop()

BallManipulation

catch(ball)
receive(ball)
lead(ball)
pass(ball, to)
shoot(ball)

SoccerPlayerThinking

Strategy

offend()
defend()

AdHocReaction

trick1()
trick2()
trick3()

1..*
strategy

*
adHoc

(a)

(b)

184 Chapter 11 Behaviors

messages not explicitly associated with an invocation of corre-
sponding operations and signals.

The agent specific extension allows the modeling of speech act based
interactions between MAS entities and interaction protocols.

The focus of this section is mainly on Sequence Diagrams, however,
notational variants for the Communication Diagrams are also men-
tioned.

Abstract
syntax

The diagrams of the Communicative Interactions package are shown
in figures Fig. 11-8 to Fig. 11-18.

Fig. 11-8 Communicative Interactions—multi-lifeline

Fig. 11-9 Communicative Interactions—multi-message and decou-
pled message

MultiplicityElement
(from UML)

Mult iLi fel ine

Lifeline
(from UML)

Message
(from UML)

Constraint
(from UML)

MultiMessage
toItself : Boolean

0..10..1
+sendDiscriminator

0..1

{subsets ownedElement}

0..1

0..10..1
+receiveDiscriminator

0..1

{subsets ownedElement}

0..1

DecoupledMessagePayloadDecoupledMessage
0..1*

+payload

0..1*

11.3 Communicative Interactions 185

Fig. 11-10 Communicative Interactions—subset and join relation-
ships

Fig. 11-11 Communicative Interactions—attribute change

Fig. 11-12 Communicative Interactions—payloads

Depend ency
(from UML)

Depend ency
(from UML)

EventOccurence
(from UML)

Expression
(from UML)

Join
1 *

+subsetEvent
1

{redefines client}

*

1 *
+unionEvent

1

{redefines supplie r}

* 0..10..1

+selector

0..1

{subsets ownedElement}

0..1

EventOccurence
(from UML)

Lifeline
(from UML)

Subset
1 *

+supersetEvent

1

{redefines client}

* 1..**

+subset

1..*

{redefines supplier}

*

Interact ionFragment
(from UML)

EventOccurence
(from UML)

AttributeChange
0..1 10..1

+when

1

L ifeline
(from UML)

0..1

*

0..1

+destroyedLifeline
*

{subsets covered}

*

0..1

*

+owningLifeline
0..1

0..1

*

0..1

+createdLifeline

*

{subsets covered}

Class
(from UML)

DecoupledMessagePayload

CommunicationMessagePayload
performative : String [0..1]

186 Chapter 11 Behaviors

Fig. 11-13 Communicative Interactions—communication specifier
and communication message

Fig. 11-14 Communicative Interactions—communicative interaction

Fig. 11-15 Communicative Interactions—interaction protocol

Fig. 11-16 Communicative Interactions—send message actions

CommunicationSpecif ier
acl : ValueSpecification [0..1]
cl : ValueSpecification [0..1]
encoding : ValueSpecification [0..1]
ontology : ValueSpecification [*]

CommunicationSpecifierDecoupledMessage

CommunicationMessagePayload

Communic ationMessage

0..1

*

+payload0..1
{redefines payload}

*

Interaction
(from UML)

CommunicativeInteraction

CommunicationSpecifi er

CommunicativeInteraction

RedefinableTemplateSignature
(from UML)

Interact ionProtocol
11

+ownedSignature

1

{redefines ownedSigna ture }

1

SendObjectAction
(from UML)

InputPin
(from UML)

SendDecoupledMessageAc tion
1..*0..1

+target

1..*

{redefines target}

0..1

SendCommunicationMessageAction

CommunicationSpecifier

11.3 Communicative Interactions 187

11.3.1 MultiLifeline

Semantics MultiLifeline is a specialized Lifeline (from UML) and MultiplicityEle-
ment (from UML) used to represent a multivalued ConnectableEle-
ment (i.e. ConnectableElement with multiplicity > 1) participating in
an Interaction (from UML). The multiplicity meta-attribute of the Mul-
tiLifeline determines the number of instances it represents. If the mul-
tiplicity is equal to 1, MultiLifeline is semantically identical with Life-
line (from UML).

The selector of a MultiLifeline may (in contrary to Lifeline) specify
more than one participant represented by the MultiLifeline.

Notation MultiLifeline is depicted by a Lifeline symbol having specified the mul-
tiplicity mark. Information identifying the MultiLifeline has following
format:

lifelineident ::= [connectable_element_name [‘[’ selector ‘]’]]
[‘:’class_name ‘[’multiplicity‘]’] [decomposition] |
‘self’ ‘[’multiplicity‘]’

Syntax and semantics of connectable_element_name, selector,
class_name, decomposition, and ‘self’ is defined in UML Lifeline. Syntax

Fig. 11-17 Communicative Interactions—accept message actions

Fig. 11-18 Communicative Interactions—message triggers

AcceptEventAction
(from UML)

DecoupledMessageTrigger

AcceptDecoupledMessageAction

1

0..1

+trigger 1

{ redef ines
trigger}

0..1

CommunicationMessageTriggerOutputPin
(from UML)

1

0..1

+result 1
{redefines result}

0..1

AcceptCommunicationMessageAction

1

0..1

+trigger1

{redefines
trigge r}

0..1

1

0..1

+result1
{redefines result}

0..1

CommunicationMessageTrigger

Trigger
(from UML)

Expression
(from UML)

DecoupledMessageTrigger
10..1

+filter

10..1

188 Chapter 11 Behaviors

and semantics of the multiplicity is given by UML MultiplicityElement.
See Fig. 11-19.

The same extension of Lifeline’s notation (including the presentation
options) applies also for Lifelines in Communication Diagrams.

Presentation
options

The multiplicity for a MultiLifeline may also be shown as a multiplic-
ity mark in the top right corner of the “head” box, see Fig. 11-20.

Examples Fig. 11-21 presents a usage of MultiLifelines in a specification of the
FIPA Contract Net Protocol (see [47] for details).

The initiator issues call for proposal (cfp) messages to m participants.
The participants generate n responses (n<=m). Within the participants
two subgroups can be identified: n-j refusers who refuse the cfp and j
proponents who propose to perform the task, by sending the propose
message (j<=n). Once the deadline passes, the initiator evaluates the
received j proposals and selects agents to perform the task. The k
(k<=j) rejected agents will be sent a reject-proposal message and the

Fig. 11-19 Notation of MultiLifeline

name[selector]:class_name[multiplicity]
ref interactionident

Fig. 11-20 Alternative notation of MultiLifeline

name[selector]:class_name
ref interactionident

[multiplicity]

Fig. 11-21 FIPA Contract Net Protocol

inform-done

participants [m]initiator

refusers [n-j]

proponents [j]

accepted [j-k]

rejected [k]

cfp
<<sub>>

refuse

propose
<<sub>>

reject-proposal

accept-proposal

[
]

alt

failure

inform-result

deadline

[single]

[single]

[single]

[
]

11.3 Communicative Interactions 189

remaining j-k accepted proponents will receive an accept-proposal
message. Once each single accepted proponent has completed the
task, it sends a completion message to the initiator in the form of an
inform-done or an inform-result act. If the task completion fails, a fail-
ure message is sent back to the initiator.

Rationale MultiLifeline is introduced to represent a multivalued ConnectableEle-
ment participating in an Interaction.

11.3.2 MultiMessage

Semantics MultiMessage is a specialized Message (from UML) which is used to
model a particular communication between MultiLifelines of an Inter-
action.

If the sender of a MultiMessage is a MultiLifeline, the MultiMessage
represents a set of messages of a specified kind sent from all instances
(potentially constrained by the sendDiscriminator) represented by
that MultiLifeline.

If the receiver of a MultiMessage is a MultiLifeline, the MultiMessage
represents a set of messages of a specified kind multicasted to all in-
stances (potentially constrained by the receiveDiscriminator) repre-
sented by that MultiLifeline.

If a message end of a MultiMessage references a simple Lifeline (from
UML), it represents a single sender or receiver.

When a sender and/or receiver of a MultiMessage are represented by
MultiLifelines, the owned constraints sendDiscriminator and receive-
Discriminator can be used to specify what particular representatives of
the group of ConnectableElements represented by the particular Mul-
tiLifeline are involved in the communication modeled by that Multi-
Message.

Within an alternative CombinedFragment (from UML), it is useful to
differentiate between:

all of the ConnectableElements represented by the MultiLifeline,
and

each of the ConnectableElements represented by the MultiLifeline.

The keyword ‘single’ used as the corresponding discriminator indi-
cating the latter of the above cases.

The receiver of a MultiMessage can be a group of instances containing
also the senders themselves. In this case the MultiMessage can specify
(by the toItself meta-attribute) whether the message is sent also to the
senders themselves or not.

190 Chapter 11 Behaviors

Attributes

Associations

Constraints 1. At least one end of the MultiMessage must be a MultiLifeline:

self.sendEvent.covered.oclIsKindOf(MultiLifeline) or
self.receiveEvent.covered.oclIsKindOf(MultiLifeline)

2. The sendDiscriminator meta-association can be specified only if
the sender is represented by a MultiLifeline:

self.sendDiscriminator->notEmpty() implies
self.sendEvent.covered.oclIsKindOf(MultiLifeline)

3. The receiveDiscriminator meta-association can be specified only if
the receiver is represented by a MultiLifeline:

self.receiveDiscriminator->notEmpty() implies
self.receiveEvent.covered.oclIsKindOf(MultiLifeline)

Notation MultiMessage is depicted as a UML Message having the discriminator
labels placed within brackets near the message ends and the keyword
toItself, shown as a property string, placed near the name, if it is true.
The <<multi>> stereotype label , or a small icon placed near the arrow-
head, can be shown as well. See Fig. 11-22.

toItself: Boolean[1] If true, the MultiMessage is sent also to its
sender when the sender belongs to the
group of receivers. If false, the sender is ex-
cluded from the group of receivers.

sendDiscriminator:
Constraint[0..1]

The Constraint which specifies the subset of
MultiMessage senders when it is sent from a
MultiLifeline. Senders are those instances
represented by the MultiLifeline for which
the sendDiscriminator is evaluated to true.
Subsets UML Element::ownedElement.

receiveDiscriminator:
Constraint[0..1]

The Constraint which specifies the MultiMes-
sage receivers when it is sent to a MultiLife-
line. Receivers are those instances repre-
sented by the MultiLifeline for which the re-
ceiveDiscriminator is evaluated to true.
Subsets UML Element::ownedElement.

Fig. 11-22 Notation of MultiMessage

name(arguments) {toItself}[send discriminator] [receive discriminator]
<<multi>>

11.3 Communicative Interactions 191

The previous picture shows just an extension of an asynchronous
message, but all other types of messages defined by UML (e.g. syn-
chronous, reply, signal, and object creation messages) can be used for
MultiMessage. Their notation is identical with standard UML nota-
tion, but it is extended by the multi message-specific parts as in the
case of the asynchronous message.

MultiMessages in Communication Diagrams use the following for-
mat:

multimessageident ::= [sequence_expression]
[‘[’ send_discriminator ‘]’] messageident
[‘[’ receive_discriminator ‘]’] [‘/’]

The syntax and semantics of sequence_expression and messageident are
defined in UML [104] Communication Diagrams and Message sec-
tions respectively. The send_discriminator and receive_discriminator
variables represent constraint expressions of the discriminators de-
scribed above. A slash character (‘/’) is specified if the toItself meta-at-
tribute is false.

Presentation
options

Alternatively, if the toItself meta-attribute is false, a small slanted bar
is placed near the arrow head instead of the slash character specified
in the name. See Fig. 11-23.

Style The stereotype is usually omitted.

Examples Examples of MultiMessages can be found in Fig. 11-21.

Rationale MultiMessage is introduced to model messages with multiple senders
and/or recipients.

11.3.3 DecoupledMessage

Semantics DecoupledMessage is a specialized MultiMessage which is used to
model a specific kind of communication within an Interaction (from
UML), particularly the asynchronous sending and receiving of a De-
coupledMessagePayload instance without explicit specification of the
behavior invoked on the side of the receiver. The decision of which
behavior should be invoked when the DecoupledMessage is received
is up to the receiver (for details see sections 11.3.17 and 11.3.15).

Fig. 11-23 Alternative notation of MultiMessage: (a) toItself = true,
(b) toItself = false.

(b)

(a)

192 Chapter 11 Behaviors

The objects transmitted in the form of DecoupledMessages are De-
coupledMessagePayload instances.

Because all the decoupled messages are asynchronous, the message-
Sort meta-attribute (inherited from the UML Message) is ignored.

Associations

Constraints 1. The constraints [2], [3], and [4] imposed on the UML Message are
released, i.e. the DecoupledMessage’s signature does not need to
refer to either an Operation or a Signal.

Notation DecoupledMessage is shown as an asynchronous MultiMessage, but
the stereotype label is <<decoupled>>, or a different small icon is
placed near the arrowhead. See Fig. 11-24.

Syntax for the DecoupledMessage name is the following:

dm-messageident ::= payload[‘(’ arguments ‘)’]

If the meta-attribute payload is specified, the DecoupledMessage’s
signature must refer to the DecoupledMessagePayload, in other
words:

the payload must correspond to the referred DecoupledMessage-
Payload’s name, and

the arguments use the same notation as defined for UML Message,
and must correspond to the attributes of the DecoupledMessage-
Payload (i.e. the name of an argument must be the same as the
name of one of the attributes of the referenced DecoupledMes-
sagePayload, and the type of the argument must be of the same
kind as the type of the attribute with the corresponding name).

If the meta-attribute payload is not specified, the payload can be any
string and the arguments can be any values.

Presentation
options

As for MultiMessage.

Style The stereotype is usually omitted.

payload: Decoupled-
MessagePayload[0..1]

The type of the object transmitted.

Fig. 11-24 Notation of DecoupledMessage

payload(arguments) {toItself}[send discriminator] [receive discriminator]
<<decoupled>>

11.3 Communicative Interactions 193

Argument names may by omitted if mapping of argument values to
the payload attributes is unambiguous.

Examples An example can be obtained by the replacement of all MultiMessages
in Fig. 11-21 by DecoupledMessages.

For another example see Fig. 11-26.

Rationale DecoupledMessage is introduced to model autonomy in message pro-
cessing.

11.3.4 DecoupledMessagePayload

Semantics DecoupledMessagePayload is a specialized Class (from UML) used to
model the type of objects transmitted in the form of DecoupledMes-
sages.

Notation DecoupledMessagePayload is depicted as a UML Class with the stereo-
type <<dm payload>> and/or a special icon, see Fig. 11-25.

Style The DecoupledMessagePayload usually specifies only attributes, and
possibly also corresponding access operations.

Examples Fig. 11-26 (a) shows an example of DecoupledMessagePayload named
SendOrder. Its instances represent the payloads of the DecoupledMes-
sages used to send an order from broker to the stock exchange.

Example of such a DecoupledMessage is depicted in Fig. 11-26 (b).

Rationale DecoupledMessagePayload is introduced to model objects transmit-
ted in the form of DecoupledMessages.

Fig. 11-25 Notation of DecoupledMessagePayload

Name
<<dm payload>>

attribute list

operation list

parts

behaviors

194 Chapter 11 Behaviors

11.3.5 Subset

Semantics Subset is a specialized Dependency (from UML) used to specify that
instances represented by one Lifeline are a subset of instances repre-
sented by another Lifeline. The Subset relationship is between:

an EventOccurrence owned by the “superset” Lifeline (client), and

the “subset” Lifelines (suppliers).

It is used to specify that since the occurrence of the supersetEvent,
some of the instances represented by the “superset” Lifeline are also
represented by the “subset” Lifeline.

The “subset” Lifeline’s selector (for the details about the selector see
Lifeline [104] and section 11.3.1) specifies the instances of the “super-
set” Lifeline that are also represented by the “subset” Lifeline.

All instances represented by the “subset” Lifeline are still represented
also by the “superset” Lifeline.

One Lifeline can represent a “subset” of several “superset” Lifelines, i.e.
more than one Subset relationships can lead to one “subset” Lifeline.

Termination of the “subset” Lifeline (the Stop is placed at the end of
Lifeline) destroys all instances it represents.

Associations

Fig. 11-26 Example of DecoupledMessagePayload

:StockExchangebkr:Broker

SendOrder(buyOrder, currentTime, bkr)

(a)

(b)

SendOrder

order: Order
when: DateTime
sender: Person

supersetEvent:
EventOccurrence[1]

An EventOccurrence owned by the “super-
set” Lifeline. It specifies the time point when
the subset of represented instances is identi-
fied.
Redefines UML Dependency::client.

subset: Lifeline[1..*] The “subset” Lifeline.
Redefines UML Dependency::supplier.

11.3 Communicative Interactions 195

Constraints 1. All types of the “subset” Lifelines must conform to the type of the
“superset” Lifeline:

self.subset->forAll((represents.type->notEmpty() and
self.supersetEvent.covered.represents.type->notEmpty())
implies self.subset.represents.type.conformsTo(
self.supersetEvent.covered.represents.type))

Notation The Subset relationship is depicted as a UML Dependency with the
stereotype <<sub>>. The dependency arrowhead is always connected
to the “subset” Lifeline “head”. See Fig. 11-27 and Fig. 11-28.

When shown in a Communication Diagram, the Subset relationship
can also specify a sequence-expression in order to identify a relative
time since which the subset Lifeline has been identified. If the Subset
relationship does not specify a sequence-expression, the subset Life-
line exists from the time when the superset Lifeline exists in the inter-
action. See Fig. 11-29.

Style The name is usually omitted.

Examples Examples of Subset relationship can be found in Fig. 11-21, and
Fig. 11-32.

Rationale Subset is introduced to specify that instances represented by one Life-
line are a subset of instances represented by another Lifeline.

Fig. 11-27 Notation of Subset: (a) the subset is identified from the
beginning of the superset’s existence, (b) the subset is identified dur-
ing the life time of the superset.

Fig. 11-28 Notation of Subset—multiple subsets created at once

<<sub>>

superset

subset[selector]

<<sub>>
superset subset[selector]

(a)

(b)

<<sub>>

superset

subset1

subset1

196 Chapter 11 Behaviors

11.3.6 Join

Semantics Join is a specialized Dependency (from UML) used to specify joining
of instances represented by one Lifeline with a set of instances repre-
sented by another Lifeline. The Join relationship is between:

an EventOccurrence owned by a “subset” Lifeline (client), and

an EventOccurrence owned by a “union” Lifeline (supplier).

It is used to specify that a subset of instances, which have been until
the subsetEvent represented by the “subset” Lifeline, is, after the
unionEvent represented only by the “union” Lifeline. Thus after the
unionEvent occurrence, the “union” Lifeline represents the union of
the instances it has previously represented and the instances specified
by the Join dependency.

The subset of instances of the “subset” Lifeline joining the “union”
Lifeline is given by the AND combination of the Join’s selector and the
selector of the “union” Lifeline.

If the selector of the Join dependency is not specified, all the instances
represented by the “subset” Lifeline conforming to the “union” Life-
line’s selector are joined.

Between subsetEvent and unionEvent occurrences, the set of instances
joining the “union” Lifeline is not represented by any of the two Life-
lines.

One EventOccurrence can be a client or a supplier of several Joins.

Associations

Fig. 11-29 Notation of Subset in Communication Diagram: (a)
subset1 starts to be identified from when superset1 occurs, (b) subset2
is identified when an “event” 2.3 occurs during Interaction.

<<sub>>

superset1

subset1

(a)

2.3: <<sub>>

superset2

subset2

(b)

selector: Expression
[0..1]

Specifies the subset of instances represented
by the “subset” Lifeline, which are being
joined.
Subsets UML Element::ownedElement.

11.3 Communicative Interactions 197

Constraints 1. The Lifeline owning the EventOccurrence referred to by the union-
Event meta-association must be a MultiLifeline:

self.unionEvent.covered.oclIsKindOf(MultiLifeline)

2. The type of the subsetEvent’s Lifeline must conform to the type of
the unionEvent’s MultiLifeline:

(self.subsetEvent.covered.represents.type->notEmpty() and
self.unionEvent.covered.represents.type->notEmpty()) implies
self.subsetEvent.covered.represents.type.conformsTo(
self.unionEvent.covered.represents.type)

Notation The Join relationship is depicted as UML Dependency with the stereo-
type <<join>>. The dependency arrowhead is always connected to the
union Lifeline. Optionally a selector expression can be specified in
brackets. See Fig. 11-30.

When shown in a Communication Diagram, the Join relationship can
optionally specify a sequence-expression in order to identify a rela-
tive time when it occurs. See Fig. 11-31.

subsetEvent:
EventOccurrence[1]

An EventOccurrence owned by the subset
Lifeline. It specifies the time point when the
subset of instances resented by the “subset”
Lifeline is detached from others.
Redefines UML Dependency::client.

unionEvent:
EventOccurrence[1]

An EventOccurrence owned by the “union”
Lifeline. It specifies the time point when the
subset instances are joined with the union
set of instances.
Redefines UML Dependency::supplier.

Fig. 11-30 Notation of Join

Fig. 11-31 Notation of Join in Communication Diagrams

<<join>> [selector]

subset union

<<join>>

subset

union

2.3:[selector]

198 Chapter 11 Behaviors

Style The name is usually omitted.

Examples Fig. 11-32 shows an interaction representing a communication of
parties concerned with the processing of a job application, which ex-
ploits the Join relationship.

The Applicant sends a message applyForJob to a Company. The Com-
pany replies with an invitation message that specifies all the details
about the interview. The interview is described by a separate interac-
tion between the Applicant and a StaffManager. If the applicant is ac-
cepted after the Interview, she/he becomes an employee (joins a
group of employees) and the entity role apl is disposed (but the in-
stance which was playing that entity role still exist).

Fig. 11-33 shows a part of an interaction representing a situation
when an actively playing soccer player is substituted by another
player during the match.

A player selected from a group of actively (currently) playing players
joins a group of passive players placed outside the soccer pitch. Then
a selected passive player becomes active.

Rationale Join is introduced to specify the joining of instances represented by
one Lifeline with a set of instances represented by another Lifeline.

Fig. 11-32 Example of Join

Fig. 11-33 Example of a Join with selector

<<join>>

company:Company

applyForJob

opt

sm:StaffManager
<<sub>>

emp:Employee[*]

apl:Applicant

invitation

Interviewref

[admitted]

passive:Player[11..15]

<<join>> [is substituted]

<<join>> [is substitute]

active:Player[7..11]

11.3 Communicative Interactions 199

11.3.7 AttributeChange

Semantics AttributeChange is a specialized InteractionFragment (from UML) used
to model the change of attribute values (state) of the ConnectableEle-
ments (from UML) represented by Lifelines (from UML) within Inter-
actions (from UML).

AttributeChange enables to add, change or remove attribute values in
time, as well as to express added attribute values by Lifelines (from
UML). Attributes are represented by inner ConnectableElements.

AttributeChange can also be used to model dynamic changing of en-
tity roles played by behavioral entities represented by Lifelines. Fur-
thermore, it allows the modeling of entity interaction with respect to
the played entity roles, i.e. each “sub-lifeline” representing a played
entity role (or entity roles in the case of MultiLifeline) is used to model
the interaction of its player with respect to this/these entity role(s).

If an AttributeChange is used to destroy played entity roles, it repre-
sents disposal of the entity roles while their former players still exist
as instances in the system. To also destroy the player of an entity role,
the Stop element (from UML) must be used instead. Usage of the Stop
element thus leads to the disposal of the player as well as all the entity
roles it has been playing.

Associations

Constraints 1. If createdLifeline is specified, the owningLifeline must be specified
as well:

self.createdLifeline->notEmpty() implies
self.owningLifeline->notEmpty()

createdLifeline:
Lifeline[*]

A set of Lifelines representing the added or
changed attribute values.
Subsets UML lnteractionFragment::covered.

destroyedLifeline:
Lifeline[*]

A set of lifelines representing the removed
attribute values.
Subsets UML lnteractionFragment::covered.

owningLifeline:
Lifeline[0..1]

The Lifeline representing an owner of the
created attribute values.

when:
EventOccurrence[1]

The EventOccurrence specifying a time point
when the AttributeChange occurs.

200 Chapter 11 Behaviors

2. Each createdLifeline must represent an attribute of the Classifier
used as the type of the ConnectableElement represented by the
owningLifeline meta-association:

(self.createdLifeline->notEmpty() and
self.owningLifeline.represents.type->notEmpty()) implies
self.owningLifeline.represents.type.attribute->
includesAll(self.createdLifeline.represents)

Notation AttributeChange is depicted as a bold horizontal line. The created Life-
lines are shown as Lifelines with the top sides of their “heads” at-
tached to the AttributeChange line. The owner of new Lifelines is iden-
tified by drawing a small solid circle at the intersection of its Lifeline
and AttributeChange’s line. If necessary, the AttributeChange’s line is
enlarged to touch the owner’s Lifeline. Vertical lines of Lifelines repre-
senting the destroyed attribute values terminate at the At-
tributeChange’s line. Lifelines that’s vertical lines cross the At-
tributeChange’s line and continue below are unaffected by the At-
tributeChange. See Fig. 11-34.

In Communication Diagrams, the AttributeChange is shown as a
small solid circle placed into a Lifeline representing the owner of
newly created or destroyed Lifelines. A sequence number can be
placed near the circle, to identify the relative time at which the At-
tributeChange occurs. Destroyed Lifelines are identified by arrows
with bold crossing bars as arrow heads and lead from the At-
tributeChange circle. Created Lifelines are identified by arrows with
open arrow heads leading from the AttributeChange circle. Fig. 11-35
shows a Communication Diagram semantically identical to the Se-
quence Diagram shown in Fig. 11-34.

Fig. 11-34 Notation of AttributeChange

attribute3

owner

attribute1 attribute2

destroyed Lifeline

created Lifeline

unaffected
Lifeline

owning
Lifeline

11.3 Communicative Interactions 201

Style The name is usually omitted.

Examples The change of an entity role played by one entity is shown in Fig. 11-
36. An agent worker is a programmer. After receiving a message ad-
vancement from the ProjectBoard it changes its entity role to the pro-
jectManager. At this point he is no longer a programmer. The argu-
ment values of the advancement message specify details of advance-
ment (including the type of a new entity role) but for simplicity they
are hidden in the diagram.

An addition of a new entity role to the entity is shown in Fig. 11-37.
An agent worker is an analyst. At a certain time the projectManager de-
cides to also allocate this worker to testing. He informs the worker
about this decision by sending a takeResponsibility message. The
worker then also becomes a tester, but still remains an analyst. The ar-
gument values of the takeResponsibility message specify details of the
new entity role being played but for simplicity they are hidden in the
diagram.

Fig. 11-35 Notation of AttributeChange in Communication Diagrams

attribute3

owner

attribute1

attribute2

destroyed Lifeline

created
unaffected
Lifeline

owning
Lifeline

2.3:
sequence
number

Lifeline

Fig. 11-36 Example of AttributeChange—entity role change

programmer

pb:ProjectBoardworker:Person

projectManager

advancement

202 Chapter 11 Behaviors

Fig. 11-38 shows an example of swapping the players of (virtually)
one entity role played within an organization unit. The diagram real-
izes the scenario of replacing an existing project manager by another
person. The agent worker1 is a project manager (modeled by its role
property projectManager). After receiving a message resignResponsi-
bility from the project board (pb) it stops playing the role of a project
manager. At the same time another person, named worker2, takes the
responsibility, as the result of previously received message takeRe-
sponsibility sent by the project board, and starts to play the role of the
project manager (modeled by the manager property of worker2).

Fig. 11-39 shows the difference between destroying the entity role’s
Lifeline by the AttributeChange and stopping the Lifeline by the Stop
element. The diagram shows two employees, John and Robert. After
John betrayed the confidential company information he is fired and
is no longer an employee. But he still exists. The AttributeChange was
used in this case. The owning Lifeline does not need to be specified
because no Lifeline was created.

On the other hand, after a fatal injury Robert dies, i.e. Robert as a per-
son no longer exists. The Stop was used in this case.

Fig. 11-37 Example of AttributeChange—entity role addition

Fig. 11-38 Example of AttributeChange—change of entity role players

analyst

worker:Person projectManager

takeResponsibility

tester

projectManager

resignResponsibility

worker1:Person worker2:Person

takeResponsibility

projectManager

pb:ProjectBoard

11.3 Communicative Interactions 203

Rationale AttributeChange is introduced to model a change of the attribute val-
ues (state) of ConnectableElements in the context of Interactions.

11.3.8 CommunicationSpecifier

Semantics CommunicationSpecifier is an abstract metaclass which defines meta-
properties of its concrete subclasses, i.e. CommunicationMessage,
CommunicativeInteraction, and ServiceSpecification, which are used to
model different aspects of communicative interactions.

CommunicationMessages can occur in CommunicativeInteractions,
and parameterized CommunicativeInteractions can be parts of Service-
Specifications. All of them can specify values of the meta-attributes in-
herited from the CommunicationSpecifier. Potential conflicts in speci-
fications of the CommunicationSpecifier’s meta-property values are re-
solved by the overriding principle that defines which concrete sub-
classes of the CommunicationSpecifier have higher priority in specifi-
cation of those meta-attributes. Thus, if specified on different priority
levels, the values at higher priority levels override those specified at
lower priority levels.

The priorities, from the highest to the lowest are defined as follows:

1. CommunicationMessage,

2. CommunicativeInteraction,

3. ServiceSpecification.

For example, if an encoding value is specified for a particular Commu-
nicationMessage it overrides the encoding specified for the owning
CommunicativeInteraction. If the encoding is not specified for the
CommunicationMessage, its value is specified by the owning Commu-
nicativeInteraction. If not specified for the owning Communica-
tiveInteraction and the CommunicativeInteraction is a part of a Service-
Specification, the value is taken from that ServiceSpecification. If the

Fig. 11-39 Example of destruction and stopping of an entity role’s
Lifeline

employee employee

Betray
confidential
information

Fatally
injured

John:Person Robert:Person

204 Chapter 11 Behaviors

encoding is not specified even in the ServiceSpecification, it remains
unspecified in the model.

Attributes

Notation There is no general notation for CommunicationSpecifier. Its specific
subclasses define their own notation.

The CommunicationSpecifier’s meta-attributes are specified as tagged
values. The following keywords are used:

acl,

cl,

encoding, and

ontology.

Their values represent arbitrary ValueSpecifications, but the most
commonly used types are: enumerations, string literals, or lists of lit-
erals (used for the ontology specification).

Style Usually, the CommunicationSpecifier’s meta-attributes are specified as
a hidden information, not shown in diagrams.

Rationale CommunicationSpecifier is introduced to define meta-properties
which are used to model different aspects of communicative interac-
tions. It is used in definitions of its subclasses.

11.3.9 CommunicationMessage

Semantics CommunicationMessage is a specialized DecoupledMessage and Com-
municationSpecifier, which is used to model communicative acts of
speech act based communication in the context of Interactions.

acl: ValueSpecification
[0..1]

Denotes the agent communication language
in which CommunicationMessages are ex-
pressed.

cl: ValueSpecification
[0..1]

Denotes the language in which the Commu-
nicationMessage’s content is expressed, also
called the content language.

encoding:
ValueSpecification
[0..1]

Denotes the specific encoding of the Com-
municationMessage’s content.

ontology:
ValueSpecification[*]

Denotes the ontologies used to give a mean-
ing to the symbols in the Communication-
Message’s content expression.

11.3 Communicative Interactions 205

The objects transmitted in the form of CommunicationMessages are
CommunicationMessagePayload instances.

Associations

Notation CommunicationMessage is shown as a DecoupledMessage, but the
stereotype label is <<communication>>, or a different small icon is
placed near the arrowhead. See Fig. 11-40.

Syntax for the CommunicationMessage name is the following:

cm-messageident ::= [payload ‘^’] performative[‘(’ arguments ‘)’]

If the meta-attribute payload is specified, the CommunicationMes-
sage’s signature must refer to the CommunicationMessagePayload, in
other words:

the payload (optional) must correspond to the referred Communi-
cationMessagePayload’s name,

the performative must correspond to the performative of the Com-
municationMessagePayload, and

the arguments use the same notation as defined for UML Message,
and must correspond (for details see section 11.3.3) to the at-
tributes of the CommunicationMessagePayload.

If the meta-attribute payload is not specified, the performative can be
any string and the arguments can be any values. In this case the pay-
load part is omitted from the signature.

Presentation
options

As for MultiMessage.

Style When used in a CommunicativeInteraction containing only Communi-
cationMessages, their stereotypes are usually omitted.

Argument names may by omitted if mapping of argument values to
the payload attributes is unambiguous.

Usually, the specification of tagged values is a hidden information,
not shown in diagrams.

payload:
Communication-
MessagePayload[0..1]

The type of the object transmitted.
Redefines DecoupledMessage::payload.

Fig. 11-40 Notation of CommunicationMessage

payload^performative(arguments)[send discriminator] [receive discriminator]
<<communication>>

{property-string}

206 Chapter 11 Behaviors

Examples See Fig. 11-42 and Fig. 11-48.

Rationale CommunicationMessage is introduced to model speech act based
communication in the context of Interactions.

11.3.10 CommunicationMessagePayload

Semantics CommunicationMessagePayload is a specialized Class (from UML)
used to model the type of objects transmitted in the form of Commu-
nicationMessages.

Attributes

Notation CommunicationMessagePayload is depicted as a UML Class with the
stereotype <<cm payload>> and/or a special icon, see Fig. 11-41.

If specified, the value of the meta-attribute performative is depicted as
a property string (tagged value) with name ‘performative’, placed in
the name compartment.

Presentation
options

If the only displayed tagged value is the performative, its keyword
may be omitted and only its value is specified.

Style The CommunicationMessagePayload usually specifies only performa-
tive, attributes, and possibly also corresponding access operations.

Examples Fig. 11-42 (a) shows an example of a CommunicationMessagePayload
named PerformTask. Its instances represent the payloads of the Com-
municationMessages used to send the request to perform a task.

Examples of such CommunicationMessages are depicted in Fig. 11-42
(b). Presented notational alternatives are semantically equivalent (for
details see section 11.3.9).

performative: String
[0..1]

Performative of the CommunicationMes-
sagePayload.

Fig. 11-41 Notation of CommunicationMessagePayload

Name
<<cm payload>>

{performative=value}

attribute list

operation list

parts

behaviors

11.3 Communicative Interactions 207

Rationale CommunicationMessagePayload is introduced to model objects trans-
mitted in the form of CommunicationMessages.

11.3.11 CommunicativeInteraction

Semantics CommunicativeInteraction is a specialized Interaction (from UML) and
CommunicationSpecifier, used to model speech act based communica-
tions, i.e. Interactions containing CommunicationMessages.

CommunicativeInteraction, being a concrete subclass of the abstract
CommunicationSpecifier, can specify some additional meta-attributes
of interactions, which are not allowed to be specified within UML In-
teractions, particularly:

acl, i.e. the agent communication language used within the Com-
municativeInteraction,

cl, i.e. the content language used within the CommunicativeInter-
action,

encoding, i.e. the content encoding used within the Communica-
tiveInteraction, and

ontology, i.e. the ontologies used within the CommunicativeInter-
action.

For the above meta-attributes, the overriding principle defined in sec-
tion 11.3.8 holds.

Notation CommunicativeInteraction is depicted as UML Interaction with the op-
tionally specified meta-attribute tagged values (shown as a property

Fig. 11-42 Example of CommunicationMessagePayload

PerformTask

task: TaskSpecification
deadline: DateTime
role: TaskRole = #performer

:ProjectManager

request(fixBug)

(a)

(b)

{request}

:Worker

request(fixBug, 05/21/04, #consultant)

PerformTask^request(task=fixBug,
deadline=05/21/04, role=#consultant)

208 Chapter 11 Behaviors

string) placed into the name compartment of the diagram frame. See
Fig. 11-43.

Examples See Fig. 11-48.

Rationale CommunicativeInteraction is introduced to model speech act based
communications.

11.3.12 InteractionProtocol

Semantics InteractionProtocol is a parameterized CommunicativeInteraction tem-
plate used to model reusable templates of CommunicativeInteractions.

Possible TemplateParameters of an InteractionProtocol are:

values of CommunicationSpecifier's meta-attributes,

local variable names, types, and default values,

Lifeline names, types, and selectors,

Message names and argument values,

MultiLifeline multiplicities,

MultiMessage discriminators,

CommunicationMessage meta-attributes,

ExecutionOccurrence's behavior specification,

guard expressions of InteractionOperands,

specification of included Constraints, and

included Expressions and their particular operands.

Partial binding of an InteractionProtocol (i.e. the TemplateBinding
which does not substitute all the template parameters by actual pa-
rameters) results in a different InteractionProtocol.

A complete binding of an InteractionProtocol represents a Communi-
cativeInteraction.

Fig. 11-43 Notation of CommunicativeInteraction

sd name(interaction parameters)
{property-string}

social interaction content

local attributes

11.3 Communicative Interactions 209

Associations

Notation InteractionProtocol is depicted as a parameterized Communica-
tiveInteraction, with the keyword ‘ip’ used for the diagram frame
kind. Specification of template parameters is placed into a dashed
rectangle in the upper right corner of the diagram frame. See Fig. 11-
44.

Binding of an InteractionProtocol is shown either as a TemplateBind-
ing relationship, or named bound CommunicativeInteraction, or as an
anonymous bound CommunicativeInteraction, see Fig. 11-45.

ownedSignature:
RedefinableTemplate-
Signature[1]

A template signature specifying the formal
template parameters.
Redefines UML Classifier::ownedSignature.

Fig. 11-44 Notation of InteractionProtocol

Fig. 11-45 Notation of InteractionProtocol binding: (a) as a Template-
Binding relationship, (b) as a named bound CommunicativeInterac-
tion, (c) as an anonymous bound CommunicativeInteraction.

ip name(interaction parameters)
{property-string}

interaction protocol content

local attributes

formal parameters

ip interaction protocol
formal parameters

sd bound interaction protocol

<<bind>>

(a)

(b) sd interaction_name : interaction protocol
<template paramarer substitutions>

(c)

<template parameter
substitutions>

sd interaction protocol
<template parameter substitutions>

210 Chapter 11 Behaviors

All notational variants are defined in UML 2.0 Superstructure [104].

Presentation
options

Binding of a formal template parameter representing a type used
within the InteractionProtocol (e.g. a type of comprised Lifeline) can
be alternatively shown as a dashed line from the bound Interaction-
Protocol to the Type substituting the formal parameter. The line is la-
belled with a name of the substituted template parameter. See Fig. 11-
46.

A partially bound InteractionProtocol can show remaining unbound
(free) template parameters explicitly in a dashed rectangle placed in
the upper right corner of the diagram frame, see Fig. 11-47.

Examples Fig. 11-48 shows the FIPA Request Interaction Protocol [47] modeled
as InteractionProtocol.

The initiator requests the participant to perform some action by send-
ing a request CommunicationMessage. The participant processes the
request and makes a decision whether to accept or refuse it. If a refuse
decision is taken, the participant communicates a refuse Communica-
tionMessage and both entity roles are destroyed. Otherwise the inter-
action continues.

If conditions indicate that an explicit agreement is required (that is,
“notification necessary” is true), the participant communicates an
agree CommunicationMessage. Once the request has been agreed
upon and the action has been completed, the participant must com-
municate the action result as either failure, or inform-done, or inform-
result CommunicationMessage. After the interaction has finished,
both entity roles are destroyed.

Fig. 11-46 Alternative notation of InteractionProtocol binding

Fig. 11-47 Alternative notation of partially bound InteractionProtocol

sd bound interaction protocol

Type1 Type2

parameter1 parameter2 parameter3

ip new_protocol : interaction_protocol
free formal parameters

<partial parameter binding>

11.3 Communicative Interactions 211

Fig. 11-48 Example of InteractionProtocol depicted as a Sequence Dia-
gram

ip FIPA-Request-Protocol

:Participant:Initiator

{acl=FIPA-ACL
cl=FIPA-SL
encoding=XML}

request(action)

alt
refuse

[refused]

[agreed]

agree

opt [notification necessary]

alt failure

inform-done

inform-result

Initiator : AutonomousEntityType
Participant : AutonomousEntityType
action : String
decideAbout : Capability
perform : Capability

decideAbout(action)

perform(action)

212 Chapter 11 Behaviors

Fig. 11-49 shows a simplified version of the previously defined inter-
action protocol FIPA-Request-Protocol in the form of Communication
Diagram.

Fig. 11-50 shows binding of the previously defined interaction proto-
col FIPA-Request-Protocol.

Fig. 11-49 Example of InteractionProtocol depicted as a Communica-
tion Diagram

Fig. 11-50 Example of InteractionProtocol binding

ip FIPA-Request-Protocol

:Participant

:Initiator

{acl=FIPA-ACL
cl=FIPA-SL
encoding=XML}

1:request(action)

2[refused]:refuse
3[agreed & notification necessary]:agree
4[agreed & failed]:failure
5[agreed & done & not result]:inform-done
6[agreed & done & result]:inform-result

Initiator : AutonomousEntityType
Participant : AutonomousEntityType
action : String

2.1:7:

Initiator Participant

sd BuyRequest

ip FIPA-Request-Protocol

Initiator : AutonomousEntityType
Participant : AutonomousEntityType
action : String
decideAbout : Capability
perform : Capability

<<bind>>

Personal Portfolio

<action -> “buy(what, amount, price)”
decideAbout -> buyingAssessment
perform -> do>

<<realize>>

Assistant Manager

11.3 Communicative Interactions 213

The result of the binding is a new CommunicativeInteraction called
BuyRequest, used to model an interaction of a personal assistant
agent with a portfolio manager agent when the personal assistant re-
quests the portfolio manager to buy some securities.

The initiator template parameter is substituted by the PersonalAssis-
tant AgentType, participant by the PortfolioManager AgentType, action
by a string specifying the buying action, decideAbout by the buying-
Assessment operation, and the parameter perform by the do opera-
tion. The diagram also shows that the SocialAssociation between the
PersonalAssistant and the PortfolioManager is realized by the BuyRe-
quest CommunicativeInteraction which specifies this relationship at
the detailed level of abstraction.

Rationale InteractionProtocol is introduced to model reusable templates of Com-
municativeInteractions.

11.3.13 SendDecoupledMessageAction

Semantics SendDecoupledMessageAction is a specialized SendObjectAction
(from UML) used to model the action of sending of DecoupledMes-
sagePayload instances, referred to by the request meta-association, in
the form of a DecoupledMessage to its recipient(s), referred to by the
target meta-association.

Associations

Notation SendDecoupledMessageAction is depicted as a rectangle with convex
rounded right side, see Fig. 11-51.

Syntax of the SendDecoupledMessageAction name is the same as de-
fined for the dm-messageident by DecoupledMessage:

dm-messageident ::= payload[‘(’ arguments ‘)’]

The payload represents the type of the sent DecoupledMessagePay-
load instance, and the arguments can be used to indicate the values of
the attributes of the sent payload instance. If the type of the InputPin
referred to by the request meta-association is specified, the payload
must correspond to the name, and arguments must correspond to its
attributes of the type.

target: InputPin[1..*] The target objects to which the Decoupled-
Message is sent.
Redefines UML SendObjectAction::target.

214 Chapter 11 Behaviors

Recipients of the sent DecoupledMessage are indicated by a comma
separated list of recipient names placed below the message name in
parentheses.

Presentation
options

If the action’s name does not conform to the syntax of the dm-mes-
sageident, the dm-messageident may optionally be placed after the
list of recipients separated by the double colon. See Fig. 11-52.

SendDecoupledMessageAction can be alternatively depicted as a UML
Action with stereotype <<send decoupled message>> and/or a special
decoration icon, see Fig. 11-53.

Examples See Fig. 11-57. All SendCommunicationMessageActions from the dia-
gram should be replaced by SendDecoupledMessageActions.

Rationale SendDecoupledMessageAction is introduced to model the sending of
DecoupledMessages in Activities.

11.3.14 SendCommunicationMessageAction

Semantics SendCommunicationMessageAction is a specialized SendDecoupled-
MessageAction, which allows to specify the values of the Communica-
tionSpecifier's meta-attributes.

Notation SendCommunicationMessageAction is depicted as a rectangle with
convex rounded right side and doubled left side, see Fig. 11-54.

Fig. 11-51 Notation of SendDecoupledMessageAction

Name
(recipients)

Fig. 11-52 Alternative notation of SendDecoupledMessageAction—
indication of recipients and sent decoupled message

Fig. 11-53 Alternative notation of SendDecoupledMessageAction—
action with stereotype and/or decoration icon

Name
(recipients::dm-messageident)

Name
<<send decoupled message>>

(recipients::dm-messageident)

11.3 Communicative Interactions 215

Syntax of the SendCommunicationMessageAction name is the same as
defined for the cm-messageident by CommunicationMessage:

cm-messageident ::= [payload ‘^’] performative[‘(’ arguments ‘)’]

The payload represents the name, the performative denotes the perfor-
mative, and the arguments the values of the attributes of the type of
the sent CommunicationMessagePayload instance. If the type of the
InputPin referred to by the request meta-association is specified, the
payload must correspond to its name, the performative to its performa-
tive meta-attribute, and arguments must correspond to its attributes.

Recipients of the sent CommunicationMessage are indicated by the
comma separated list of recipient names, placed below the message
name in parentheses.

If specified, the values of the CommunicationSpecifier’s meta-at-
tributes are depicted as a property string (tagged values).

Presentation
options

If the action’s name does not conform to the syntax of the cm-mes-
sageident, the cm-messageident may optionally be placed after the list
of recipients separated by the double colon. See Fig. 11-55.

SendCommunicationMessageAction can be alternatively depicted as a
UML Action with stereotype <<send communication message>> and/or
a special decoration icon, see Fig. 11-56.

Examples An activity diagram of participant’s behavior within the FIPA Con-
tract Net Protocol (see [47] for details) is depicted in Fig. 11-57.

Fig. 11-54 Notation of SendCommunicationMessageAction

Name
(recipients)

{property-string}

Fig. 11-55 Alternative notation of SendCommunicationMessageAc-
tion—indication of recipients and sent communication message

Fig. 11-56 Alternative notation of SendCommunicationMessageAc-
tion—action with stereotype and/or decoration icon

Name
(recipients::cm-messageident)

{property-string}

Name
<<send communication message>>

(recipients::cm-messageident)
{property-string}

216 Chapter 11 Behaviors

The participant waits until a cfp CommunicationMessage arrives. If so,
the cfp is evaluated, and based on this evaluation the cfp is either re-
fused, and the refuse CommunicationMessage is sent to the initiator,
or accepted. In the case of acceptance, the bid is computed and pro-
posed to the initiator by sending the propose CommunicationMes-
sage. Then the initiator sends either the reject-proposal, which termi-
nates the algorithm, or the accept-proposal. In the second case the
participant performs the action and informs the initiator of the result
of the action execution, by sending the inform-result Communication-
Message.

Fig. 11-57 Example of SendCommunicationMessageAction and
AcceptCommunicationMessageAction

[propose][refuse]

[failure][ok]

result

Compute bidrefuse

propose(bid)

cfp

cfp

Evaluate cfp

bid

accept-proposalreject-proposal

Perform

failureinform-result(result)

11.3 Communicative Interactions 217

The diagram does not show recipients of CommunicationMessages
because the only recipient is the initiator of the FIPA Contract Net
Protocol.

For more examples see also Fig. 11-120 and Fig. 11-122.

Rationale SendCommunicationMessageAction is introduced to model the send-
ing of CommunicationMessages in Activities.

11.3.15 AcceptDecoupledMessageAction

Semantics AcceptDecoupledMessageAction is a specialized AcceptEventAction
(from UML) which waits for the reception of a DecoupledMessage
that meets conditions specified by the associated trigger (for details
see section 11.3.17). The received DecoupledMessagePayload in-
stance is placed to the result OutputPin.

If an AcceptDecoupledMessageAction has no incoming edges, the ac-
tion starts when the containing Activity (from UML) or StructuredAc-
tivityNode (from UML) starts. An AcceptDecoupledMessageAction
with no incoming edges is always enabled to accept events regardless
of how many are accepted. It does not terminate after accepting an
event and outputting the value, but continues to wait for subsequent
events.

Associations

Constraints 1. If the type of the OutputPin referred to by the result meta-associa-
tion is specified, it must be a DecoupledMessagePayload:

self.result.type->notEmpty() implies
self.result.type.oclIsKindOf(DecoupledMessagePayload)

Notation AcceptDecoupledMessageAction is depicted as a rectangle with con-
cave rounded left side, see Fig. 11-58.

trigger:
DecoupledMessage-
Trigger[1]

The DecoupledMessageTrigger accepted by
the action.
Redefines UML AcceptEventAction::trigger.

result: OutputPin[1] The OutputPin holding the event object that
has been received as a DecoupledMessage.
Redefines UML AcceptEventAction::result.

Fig. 11-58 Notation of AcceptDecoupledMessageAction

Name

218 Chapter 11 Behaviors

The name of the AcceptDecoupledMessageAction is the associated
trigger.

The event object received as a DecoupledMessage may be specified as
an OutputPin.

Presentation
options

AcceptDecoupledMessageAction can be alternatively depicted as a
UML Action with stereotype <<accept decoupled message>> and/or a
special decoration icon, see Fig. 11-59.

Examples An example can be obtained by the replacement of all AcceptDecou-
pledMessageActions in Fig. 11-57 by AcceptCommunicationMessage-
Actions.

Rationale AcceptDecoupledMessageAction is introduced to model the reception
of DecoupledMessages in Activities.

11.3.16 AcceptCommunicationMessageAction

Semantics AcceptCommunicationMessageAction is a specialized AcceptEventAc-
tion (from UML) which waits for the reception of a Communication-
Message that meets conditions specified by associated trigger (for de-
tails see section 11.3.18). The received CommunicationMessagePay-
load instance is placed to the result OutputPin.

If an AcceptCommunicationMessageAction has no incoming edges,
then the action starts when the containing Activity (from UML) or
StructuredActivityNode (from UML) starts. An AcceptCommunication-
MessageAction with no incoming edges is always enabled to accept
events regardless of how many are accepted. It does not terminate af-
ter accepting an event and outputting a value, but continues to wait
for subsequent events.

Associations

Fig. 11-59 Alternative notation of AcceptDecoupledMessageAction

Name
<<accept decoupled message>>

trigger:
Communication-
MessageTrigger[1]

The CommunicationMessageTrigger ac-
cepted by the action.
Redefines UML AcceptEventAction::trigger.

result: OutputPin[1] The OutputPin holding the event object that
has been received as a CommunicationMes-
sage.
Redefines UML AcceptEventAction::result.

11.3 Communicative Interactions 219

Constraints 1. If the type of the OutputPin referred to by the result meta-associa-
tion is specified, it must be a CommunicationMessagePayload:

self.result.type->notEmpty() implies
self.result.type.oclIsKindOf(CommunicationMessagePayload)

Notation AcceptCommunicationMessageAction is depicted as a rectangle with
concave rounded left side and doubled right side, see Fig. 11-60.

The name of the AcceptCommunicationMessageAction is the associ-
ated trigger.

The event object received as a CommunicationMessage may be speci-
fied as an OutputPin.

Presentation
options

AcceptCommunicationMessageAction can be alternatively depicted as
a UML Action with stereotype <<accept communication message>>
and/or a special decoration icon, see Fig. 11-61.

Examples See Fig. 11-57, Fig. 11-120, and Fig. 11-122.

Rationale AcceptCommunicationMessageAction is introduced to model the re-
ception of CommunicationMessages in Activities.

11.3.17 DecoupledMessageTrigger

Semantics DecoupledMessageTrigger is a specialized Trigger (from UML) that
represents the event of reception of a DecoupledMessage, that satis-
fies the condition specified by the boolean-valued Expression (from
UML) referred to by the filter meta-association.

The Expression can constrain the signature name and argument val-
ues of the received DecoupledMessage, or alternatively, the type and
attribute values of the received DecoupledMessagePayload instance.

Fig. 11-60 Notation of AcceptCommunicationMessageAction

Name

Fig. 11-61 Alternative notation of AcceptCommunicationMessageAc-
tion

Name
<<accept communication message>>

220 Chapter 11 Behaviors

Associations

Notation DecoupledMessageTrigger is denoted as a boolean-valued Expression
which represents the value of the filter meta-attribute.

Style In the case of simple filtering, the following syntax of the Decoupled-
MessageTrigger can be used:

triggerident ::= dm-messageident-list
dm-messageident-list ::= dm-messageident [‘,’ dm-messageident-list]

The dm-messageident-list represents a comma-separated list of dm-mes-
sageidents as defined by the DecoupledMessage. The DecoupledMes-
sageTrigger accepts all DecoupledMessages that match the specified
payload and argument values.

Examples The DecoupledMessageTrigger specified as:

CancelOrder, SendOrder(when=today)

accepts all DecoupledMessages CancelOrder, or SendOrder from to-
day.

Rationale DecoupledMessageTrigger is introduced to model events representing
reception of DecoupledMessages.

11.3.18 CommunicationMessageTrigger

Semantics CommunicationMessageTrigger is a specialized DecoupledMessage-
Trigger that represents the event of reception of a Communication-
Message, that satisfies the condition specified by the boolean-valued
Expression (from UML) referred to by the filter meta-association.

The Expression can constrain the signature name and argument val-
ues of the received CommunicationMessage, or alternatively, the type,
value of performative meta-attribute, and attribute values of the re-
ceived CommunicationMessagePayload instance.

Notation The same as for DecoupledMessageTrigger.

Style In the case of simple filtering, the following syntax of the Communi-
cationMessageTrigger can be used:

triggerident ::= cm-messageident-list
cm-messageident-list ::= cm-messageident [‘,’ cm-messageident-list]

filter: Expression[1] A boolean-valued Expression filtering re-
ceived DecoupledMessages.

11.4 Services 221

The cm-messageident-list represents a comma-separated list Communi-
cationMessage names as defined by the CommunicationMessage. The
CommunicationMessageTrigger accepts all CommunicationMessages
that match the specified payload, performative and argument values.

Examples The CommunicationMessageTrigger specified as:

accept-proposal

accepts all CommunicationMessages with performative accept-pro-
posal.

Rationale CommunicationMessageTrigger is introduced to model events repre-
senting reception of CommunicationMessages.

11.4 Services

Overview The Services package defines metaclasses used to model services, par-
ticularly their specification, provision and usage.

Abstract
syntax

The diagrams of the Services package are shown in figures Fig. 11-62
to Fig. 11-66.

Fig. 11-62 Services—service specification

Fig. 11-63 Services—service protocol

ServiceProtocol

ServiceSpecification

1..*

1

+/serviceProtocol 1..*
{ subse ts ow nedBehavior}

1

BehavioredClassifier
(from UML)

CommunicationSpecifier
(from Communicative Interactio...)

InteractionProtocol
(from Communicative Interactions)

TemplateParameter
(from UML)

ServiceProtocol
1..*0..1

+providerParameter
1..*0..1

1..*0..1
+clientParameter
1..*0..1

222 Chapter 11 Behaviors

Fig. 11-64 Services—serviced elements

Fig. 11-65 Services—service provision

Fig. 11-66 Services—service usage

Port
(from UML)

Serv icedElement

NamedElement
(from UML)

Property
(from UML)

Servi cedPortBehavioredSemiEntityType
(from Bas ic Behaviors)

*1

+/ownedServicedPort

*

{subsets ownedPort}

1

{redefines
redef initionContext}

0..1 *

+type

0..1

{redefines type}

*

ServicedProperty

0..1*

+type

0..1

{redefines type}

*

Realization
(from UML)

ServiceSpecification

Interact ionProtocol
(from Communicative Interactio...)

ServiceProvision

1

*

+service1
{redefines supplier}

*
1..*0..1

+providingIP

1..*

{subsets ow nedElement}

0..1

ServicedElement

*

1

+/serviceProvis ion *
{subsets ow nedElement,

subsets clientDependency}

+provider 1

{redefines owner,
redefines client}

Usage
(from UML)

ServiceSpeci fi cation

InteractionProtocol
(from Communicative Interactio...)

ServiceUsage

1

*

+service1
{redefines supplier}

*
1..*0..1

+usageIP

1..*

{subsets ownedElement}

0..1

ServicedElement

*

1

+/serviceUsage *
{subsets ow nedElement,

subsets clientDependency}

+client 1

{ redef ines owner,
redefines client}

11.4 Services 223

11.4.1 ServiceSpecification

Semantics ServiceSpecification is a specialized BehavioredClassifier (from UML)
and CommunicationSpecifier, used to specify services.

A service is a coherent block of functionality provided by a behaviored
semi-entity, called service provider, that can be accessed by other be-
haviored semi-entities (which can be either external or internal parts
of the service provider), called service clients. The ServiceSpecification
is used to specify properties of such services, particularly:

the functionality of the services and

the way the specified service can be accessed.

The specification of the functionality and the accessibility of a service
is modeled by owned ServiceProtocols, i.e. InteractionProtocols ex-
tended with an ability to specify two mandatory, disjoint and non-
empty sets of (not bound) parameters of their TemplateSignatures,
particularly:

provider template parameters, and

client template parameters.

The provider template parameters (providerParameter meta-association)
of all contained ServiceProtocols specify the set of template parame-
ters that must be bound by the service providers, and the client tem-
plate parameters (clientParameter meta-association) of all contained
ServiceProtocols specify the set of template parameters that must be
bound by the service clients. Binding of all these complementary
template parameters results in the specification of the Communica-
tiveInteractions between the service providers and the service clients.

For the meta-attributes defined by CommunicationSpecifier the over-
riding priority principle defined in section 11.3.8 applies.

Note 1: The ServiceSpecification can, in addition to the ServiceProto-
cols, also own other Behaviors (from UML) describing additional be-
havioral aspects of the service. For instance, Interaction Overview Dia-
grams (see UML for details) used to describe the overall algorithm
(also called the process) of invoking particular ServiceProtocols.

Note 2: The ServiceSpecification can also contain StructuralFeatures to
model additional structural characteristics of the service, e.g. at-
tributes can be used to model the service parameters.

Associations

serviceProtocol:
ServiceProtocol[1..*]

Owned ServiceProtocols.
Subsets UML BehavioredClassifier::
ownedBehavior.

224 Chapter 11 Behaviors

Notation ServiceSpecification is depicted as a UML Classifier symbol (i.e. a solid-
outline rectangle containing the Classifier’s name, and optionally also
compartments separated by horizontal lines containing features or
other members of the Classifier). A ServiceSpecification is marked with
the stereotype <<service specification>> and/or a special decoration
icon placed in the name compartment. The name compartment can
also contain specification of tagged values, e.g. setting of meta-at-
tributes inherited from the CommunicativeInteractionSpecifier meta-
class.

The ServiceSpecification shows a compartment which comprises
owned ServiceProtocols, but other standard UML or user-defined com-
partments can be used as well.

Notation of the ServiceSpecification is depicted in Fig. 11-67.

Style When defined, the ServiceSpecification usually uses the rectangular
notation with the compartment showing owned ServiceProtocols.

When used to specify provision or usage of the service, the Service-
Specification is usually depicted just as an icon.

Examples Fig. 11-68 presents the specification of the FIPA-compliant Directory-
Facilitator [47] service with its functions: Register, Deregister, Modify,
and Search. All functions use the Fipa-Request-Protocol, see [47] and
Fig. 11-48 for details. Binding of the template parameters decide-
About and perform is omitted from this example, for the purpose of
simplicity. The DirectoryFacilitator also specifies the acl, cl, and ontol-
ogy meta-attributes used commonly in all comprised ServiceProtocols.

Rationale ServiceSpecification is introduced to model the specification of ser-
vices, particularly (a) the functionality of the service, and (b) the way
the service can be accessed.

Fig. 11-67 Notation of the ServiceSpecification

Name
<<service specification>>

service protocols

{meta-attribute values}

and other behaviors

11.4 Services 225

11.4.2 ServiceProtocol

Semantics ServiceProtocol is a specialized InteractionProtocol, used only within
the context of its owning ServiceSpecification, extended with an abil-
ity to specify two mandatory, disjoint and non-empty sets of (not
bound) parameters of its TemplateSignature (from UML), particularly:

providerParameter, i.e. a set of parameters which must be bound
by providers of the service, and

clientParameter, i.e. a set of parameters which must be bound by
clients of the service.

Usually at least one of the provider/client parameters is used as a Life-
line's type which represents a provider/client or its inner Connect-
ableElements (see UML StructuredClassifier).

The ServiceProtocol can be defined either as a unique InteractionProto-
col (a parameterized CommunicativeInteraction) or as a partially
bound, already defined InteractionProtocol.

Associations

Fig. 11-68 Example of ServiceSpecification

DirectoryFacilitator

sp Register:Fipa-Request-Protocol <action->register> Initiator

{acl=fipa-acl, cl=fipa-sl0, ontology=fipa-agent-management}

Participant

sp Deregister:Fipa-Request-Protocol <action->deregister> Initiator
Participant

sp Modify:Fipa-Request-Protocol <action->modify> Initiator
Participant

sp Search:Fipa-Request-Protocol <action->search> Initiator
Participant

providerParameter:
TemplateParameter
[1..*]

The set of TemplateParameters which must
be bound by a provider of the service.

clientParameter:
TemplateParameter
[1..*]

The set of TemplateParameters which must
be bound by a client of the service.

226 Chapter 11 Behaviors

Constraints 1. The providerParameter refer only to the template parameters be-
longing to the signature owned by a ServiceProtocol:

self.ownedSignature.parameter->includesAll(providerParameter)

2. The clientParameter refers only to the template parameters be-
longing to the signature owned by a ServiceProtocol:

self.ownedSignature.parameter->includesAll(clientParameter)

3. The providerParameter and clientParameter are disjoint:

self.providerParameter->intersection(self.clientParameter)->
isEmpty()

4. The providerParameter and clientParameter together cover all pa-
rameters of the template signature:

self.providerParameter->union(self.clientParameter) =
self.ownedSignature.paramater

Notation ServiceProtocol is shown as an InteractionProtocol, having a list of for-
mal template parameters divided into two parts: provider parameters
and client parameters. The provider parameters are preceded with the
keyword <<provider>> and the client parameters with the keyword
<<client>>. The keyword ‘sp’ used for the diagram frame kind. Nota-
tion of ServiceProtocol is depicted in Fig. 11-69.

Presentation
options

Alternatively, the provider parameters can be separated from the cli-
ent parameters by a solid horizontal line, see Fig. 11-70.

Alternatively a ServiceProtocol can be shown textually with the fol-
lowing format:

service_protocol ::= name ‘/’ provider_parameters ‘/’ client_parameters

The name is the name of the ServiceProtocol, the provider_parameters is
a comma-separated list of the provider parameters, and the
client_parameters is a comma-separated list of the client parameters.

Fig. 11-69 Notation of ServiceProtocol

sp name
<<client>>

client parameters

<<provider>>
provider parameters

Fig. 11-70 Alternative notation of ServiceProtocol

sp name
client parameters

provider parameters

11.4 Services 227

Examples Fig. 11-71 shows the FIPA Propose Interaction Protocol [47] modeled
as ServiceProtocol.

The initiator sends a propose CommunicationMessage to the partici-
pant indicating that it will perform some action if the participant
agrees. The participant responds by either rejecting or accepting the
proposal, communicating this with the reject-proposal or accept-pro-
posal CommunicationMessage, accordingly.

Fig. 11-72 shows a simplified version of the previously defined service
protocol FIPA-Propose-Protocol in the form of Communication Dia-
gram.

Fig. 11-68 shows an example of the FIPA DirectoryFacilitator service
containing several ServiceProtocols obtained by binding of the Fipa-
Request-Proposal InteractionProtocol’s template parameters to the ac-
tual, provider and client parameters. Semantically identical specifica-
tion of the DirectoryFacilitator service using the textual notation of
the contained ServiceProtocols is depicted in Fig. 11-73.

Rationale ServiceProtocol is introduced to specify the parameters of an Interac-
tionProtocol that must be bound by service providers and clients. Ser-
viceProtocols are necessary to define ServiceSpecifications.

Fig. 11-71 Example of ServiceProtocol depicted as a Sequence Dia-
gram

sp FIPA-Propose-Protocol

:Participant:Initiator

{acl=FIPA-ACL
cl=FIPA-SL
encoding=XML}

propose(proposal)

alt
reject-proposal

[rejected]

Initiator : AutonomousEntityType

Participant : AutonomousEntityType
decideAbout : Capability

decideAbout(proposal)

accept-proposal

[accepted]

228 Chapter 11 Behaviors

11.4.3 ServicedElement

Semantics ServicedElement is an abstract specialized NamedElement (from UML)
used to serve as a common superclass to all the metaclasses that can
provide or use services (i.e. BehavioralSemiEntitiyType, ServicedPort,
and ServicedProperty).

Technically, the service provision and usage is modeled by ownership
of ServiceProvisions and ServiceUsages.

Associations

Fig. 11-72 Example of ServiceProtocol depicted as a Communication
Diagram

Fig. 11-73 Example of ServiceSpecification with textual notation of
ServiceProtocols

sp FIPA-Propose-Protocol
{acl=FIPA-ACL
cl=FIPA-SL
encoding=XML}

1:propose(proposal)
2[rejected]:reject-proposal
3[accepted]:accept-proposal

4:

Initiator : AutonomousEntityType

Participant : AutonomousEntityType

:Participant

:Initiator

DirectoryFacilitator
{acl=fipa-acl, cl=fipa-sl0, ontology=fipa-agent-management}

Register:Fipa-Request-Protocol <action->register>/Participant/Initiator
Deregister:Fipa-Request-Protocol <action->deregister>/Participant/Initiator
Modify:Fipa-Request-Protocol <action->modify>/Participant/Initiator
Search:Fipa-Request-Protocol <action->search>/Participant/Initiator

/serviceProvision:
ServiceProvision[*]

The ServiceProvision relationships owned by
a ServicedElement. This is a derived associa-
tion.
Subsets UML Element::ownedElement and
NamedElement::clientDependency.

11.4 Services 229

Constraints 1. The serviceProvision meta-association refers to all client depen-
dencies of the kind ServiceProvision:

serviceProvision = self.clientDependency->
select(oclIsKindOf(ServiceProvision))

2. The serviceUsage meta-association refers to all client dependen-
cies of the kind ServiceUsage:

serviceUsage = self.clientDependency->
select(oclIsKindOf(ServiceUsage))

Notation There is no general notation for ServicedElement. The specific sub-
classes of ServicedElement define their own notation.

Rationale ServicedElement is introduced to define a common superclass for all
metaclasses that may provide or require services.

11.4.4 ServicedProperty

Semantics ServicedProperty is a specialized Property (from UML) and ServicedEle-
ment, used to model attributes that can provide or use services. It de-
termines what services are provided and used by the behaviored semi
entities when occur as attribute values of some objects.

The type of a ServicedProperty is responsible for processing or mediat-
ing incoming and outgoing communication. The ServiceProvisions
and ServiceUsages owned by the the ServicedProperty are handled by
its type. For details see section 11.1.1.

Associations

Notation ServicedProperty is depicted as a UML Property with the stereotype
<<serviced>>.

Additionally, it can be connected to the ServiceProvision and the Ser-
viceUsage relationships, to specify the provided and the required ser-
vices respectively. See Fig. 11-74.

/serviceUsage:
ServiceUsage[*]

The ServiceUsage relationships owned by a
ServicedElement. This is a derived associa-
tion.
Subsets UML Element::ownedElement and
NamedElement::clientDependency.

type:
BehavioredSemiEntity-
Type[0..1]

The type of a ServicedProperty.
Redefines UML TypedElement::type.

230 Chapter 11 Behaviors

Style The stereotype label is usually omitted and the ServicedProperty is
identified only by the owned ServiceProvision and the ServiceUsage
relationships.

Examples A model of a simple mobile robot is is shown in Fig. 11-75. The dia-
gram demonstrates the use of all kinds of ServicedElements, but does
not specify details about ServiceSpecification bindings (for details see
sections 11.4.6 and 11.4.7).

The AgentType called Robot, which models the type of a mobile robot
capable of movement in a room, owns two Effectors (special Serviced-
Ports): frontWheel and rearWheels. They both provide the service
Movement enabling to change position of the robot in the room, and
the service WheelControl to the internal ServicedProperty called cpu,
representing the central robot controller. The frontWheel, in order to
detect collisions of the robot, requires from the Room Environment-
Type a service CollisionDetection.

The Robot also contains two ServicedProperties: the already described
cpu, and knowledgeBase. The knowledgeBase is used to store and ma-
nipulate a representation of the robot’s environment and state. It of-
fers a KnowledgeManipulation service that is internally used by the
cpu.

Fig. 11-74 Notation of ServicedProperty

Owner
p

ServiceA service provided

internal service

serviced port

to an internal part

p1:Type
<<serviced>>

p2:Type
<<serviced>>

ServiceB

serviced part

serviced part

Fig. 11-75 Example of ServicedElements—simple model of a mobile
robot

rearWheels

cpu:CPU[1]

Robot

:Wheel[2]

frontWheel
:Wheel[1]

Wheel
Control

knowledgeBase
:KnowledgeBase

Knowledge
Manipulation Room

Movement

Collision
Detection

11.4 Services 231

The Wheel EffectorType is responsible for realization of the Movement
and the WheelControl services, and for accessing the CollisionDetec-
tion service. Type CPU is responsible for usage of the WheelControl
and the KnowledgeManipulation services. The KnowledgeBase type
handles the KnowledgeManipulation service.

For another example see also Fig. 11-77.

Rationale ServicedProperty is introduced to model attributes that can provide or
use services.

11.4.5 ServicedPort

Semantics ServicedPort is a specialized Port (from UML) and ServicedElement that
specifies a distinct interaction point between the owning Behaviored-
SemiEntityType and other ServicedElements in the model. The nature
of the interactions that may occur over a ServicedPort can, in addition
to required and provided interfaces, be specified also in terms of re-
quired and provided services, particularly by associated provided
and/or required ServiceSpecifications.

The required ServiceSpecifications of a ServicedPort determine services
that the owning BehavioredSemiEntityType expects from other Ser-
vicedElements and which it may access through this interaction
point. The provided ServiceSpecifications determine the services that
the owning BehavioredSemiEntityType offers to other ServicedEle-
ments at this interaction point.

The type of a ServicedPort is responsible for processing or mediating
incoming and outgoing communication. The ServiceProvisions and
ServiceUsages owned by the the ServicedPort are handled by its type.
For details see section 11.1.1.

Associations

Notation ServicedPort is depicted as a UML Port with the stereotype <<ser-
viced>>.

Additionally, it can be connected to the ServiceProvision and the Ser-
viceUsage relationships, to specify the provided and the required ser-
vices respectively. See Fig. 11-76.

Style The stereotype label is usually omitted and the ServicedPort is identi-
fied only by the owned ServiceProvision and the ServiceUsage rela-
tionships.

type:
BehavioredSemiEntity-
Type[0..1]

The type of a ServicedPort.
Redefines UML TypedElement::type.

232 Chapter 11 Behaviors

Examples Fig. 11-77 shows an example of the deployment diagram of a FIPA
compliant agent platform (for details see FIPA Abstract Architecture
Specification at [47]).

The platform is modeled as an AgentExecutionEnvironment named
AgentPlatform which hosts agents. The AgentPlatform provides three
services to the contained agents: DF (Directory Facilitator), AMS
(Agent Management System), and MTS (Message Transport System).
All these services are provided through the ServicedPort called
ap4agents.

The AgentPlatform also provides services (DFProxy, AMSProxy, and
MTS) to the other agent platforms over the ap2apOut (agent plat-
form-to-agent platform output) ServicedPort, and requires the same
services from other agent platforms via the ap2apIn ServicedPort. The

Fig. 11-76 Notation of ServicedPort

Owner
p1:Type[3]

ServiceC

ServiceB

ServiceA

service provided

behavior serviced port

provided

required service

serviced port

to internal parts

<<serviced>>

p2:Type[*]
<<serviced>>

service

Fig. 11-77 Example of ServicedPort

ap4agents[1] DF

AgentPlatform

AMS

MTS

:Agent[*]

ap2apOut
[0..1]

ap2apIn
[0..1]

AMSProxy

agents:Agent[*]
{resident, visitor}

MTSDFProxy

11.4 Services 233

proxy services represent restricted versions of corresponding plat-
form-internal services.

For another example see also Fig. 11-75.

Rationale ServicedPort is introduced to model the distinct interaction points be-
tween the owning BehavioredSemiEntityTypes and other ServicedEle-
ments which can be used to provide and/or use services.

11.4.6 ServiceProvision

Semantics ServiceProvision is a specialized Realization dependency (from UML)
between a ServiceSpecification and a ServicedElement, used to specify
that the ServicedElement provides the service specified by the related
ServiceSpecification.

The details of the service provision are specified by means of owned
InteractionProtocols, which are partially bound counterparts to all Ser-
viceProtocols comprised within the related ServiceSpecification.

Owned InteractionProtocols (specified by the providingIP meta-associ-
ation) must bind all (and only those) template parameters of the cor-
responding ServiceProtocol, which are declared to be bound by a ser-
vice provider.

The constraints put on bindings performed by service providers and
clients of a service (see section 11.4.7) guarantee complementarity of
those bindings. Therefore the InteractionProtocols of a ServiceProvi-
sion and a ServiceUsage, which correspond to the same ServiceSpecifi-
cation, can be merged to create concrete CommunicativeInteractions
according to which the service is accessed.

Associations

provider:
ServicedElement[1]

The ServicedElement that provides the ser-
vice specified by the ServiceProvision.
Redefines UML Element::owner and
Dependency::client.

service:
ServiceSpecification[1]

The ServiceSpecification that specifies the
service provided by the provider.
Redefines UML Dependency::supplier.

providingIP:
InteractionProtocol
[1..*]

A set of InteractionProtocols each of which
represents a partial binding of the related
service’s serviceProtocol, where all declared
provider parameters are bound by the pro-
vider.
Subsets UML Element::ownedElement.

234 Chapter 11 Behaviors

Constraints 1. The providingIP binds all (and only) the provider parameters from
all the service’s ServiceProtocols:

self.providingIP.templateBinding.parameterSubstitution.formal =
self.service.serviceProtocol.providerParameter

Notation ServiceProvision is depicted as a UML Dependency relationship with
the stereotype <<provides>>. The ServicedElement providing the ser-
vice represents a client and the ServiceSpecification is a supplier. The
provider template parameter substitutions are placed in a Comment
symbol attached to the relationship’s arrow. See Fig. 11-78.

The provider template parameter substitutions use the following syn-
tax:

‘<’ template-parameter-substitutions ‘>’

The template-parameter-substitutions is a comma separated list of
template-parameter-substitution defined in UML. The template-pa-
rameter-name can be prefixed with a name of owning ServiceProtocol
followed by the scope operator (::) to avoid ambiguity in naming of
template parameters with the same names but from different Service-
Protocols.

Presentation
options

ServiceProvision can be alternatively depicted as a solid line connect-
ing the ServicedElement which provides the service with the Service-
Specification, see Fig. 11-79.

To simplify the diagram, the Comment containing the provider tem-
plate parameter substitutions can be hidden.

Examples See Fig. 11-75 and Fig. 11-77.

Rationale ServiceProvision is introduced to specify that the ServicedElement pro-
vides the service specified by the related ServiceSpecification.

Fig. 11-78 Notation of ServiceProvision

ServiceServicedElement
<<provides>>

<provider template
parameter_substitutions>

Fig. 11-79 Alternative notation of ServiceProvision

Service

ServicedElement

<provider template
parameter_substitutions>

11.4 Services 235

11.4.7 ServiceUsage

Semantics ServiceUsage is a specialized Usage dependency (from UML) between
a ServiceSpecification and a ServicedElement, used to specify that the
ServicedElement uses or requires (can request) the service specified by
the related ServiceSpecification.

The details of the service usage are specified by means of owned Inter-
actionProtocols, which are partially bound counterparts to all Service-
Protocols comprised within the related ServiceSpecification.

Owned InteractionProtocols (specified by the usageIP meta-associa-
tion) must bind all (and only those) template parameters of the corre-
sponding ServiceProtocol, which are declared to be bound by a client
of the service.

The constraints put on bindings performed by service providers (see
section 11.4.6) and clients of a service guarantee complementarity of
those bindings. Therefore the InteractionProtocols of a ServiceProvi-
sion and a ServiceUsage, which correspond to the same ServiceSpecifi-
cation, can be merged to create concrete CommunicativeInteractions
according to which the service is accessed.

Associations

Constraints 1. The usageIP binds all and only the client parameters from all ser-
vice’s ServiceProtocols:

self.usageIP.templateBinding.parameterSubstitution.formal =
self.service.serviceProtocol.clientParameter

Notation ServiceUsage is depicted as a UML Dependency relationship with the
stereotype <<uses>>. The ServicedElement using the service represents
a client and the ServiceSpecification is a supplier. The client template
parameter substitutions are placed in a Comment symbol attached to
the relationship’s arrow. See Fig. 11-80.

client:
ServicedElement[1]

The ServicedElement that uses the service
specified by the ServiceUsage.
Redefines UML Element::owner and
Dependency::client.

service:
ServiceSpecification[1]

The ServiceSpecification that specifies the
service used by the client.
Redefines UML Dependency::supplier.

usageIP:
InteractionProtocol
[1..*]

A set of InteractionProtocols each of which
represents a partial binding of related ser-
vice’s serviceProtocol, where all declared cli-
ent parameters are bound by the client.
Subsets UML Element::ownedElement.

236 Chapter 11 Behaviors

The client template parameter substitutions use the same notation as
the provider template parameter substitutions described in section
11.4.6.

Presentation
options

The ServiceUsage relationship can also be shown by representing the
used ServiceSpecification by an angular icon, called service socket, la-
beled with the name of the ServiceSpecification, attached by a solid
line to the ServicedElement that uses this ServiceSpecification. See
Fig. 11-81.

Where two ServicedElements provide and require the same Service-
Specification, respectively, the iconic notations may be combined as
shown in Fig. 11-82. This notation hints at that the ServiceSpecifica-
tion in question serves to mediate interactions between the two Ser-
vicedElements.

To simplify the diagram, the Comment containing the client template
parameter substitutions can be hidden.

Examples See Fig. 11-75 and Fig. 11-77.

Rationale ServiceUsage is introduced to specify that the ServicedElement uses
the service specified by the related ServiceSpecification.

Fig. 11-80 Notation of ServiceUsage

ServiceServicedElement
<<uses>>

<client template
parameter_substitutions>

Fig. 11-81 Alternative notation of ServiceUsage

Fig. 11-82 Combination of ServiceProvision with ServiceUsage

Service

ServicedElement

<client template
parameter_substitutions>

Service

ServicedElement ServicedElement

<client template
parameter_substitutions>

<provider template
parameter_substitutions>

11.5 Observations and Effecting Interactions 237

11.5 Observations and Effecting Interactions

Overview The Observations and Effecting Interactions package defines metaclasses
used to model structural and behavioral aspects of observations (i.e.
the ability of entities to observe features of other entities) and effect-
ing interactions (i.e. the ability of entities to manipulate or modify
the state of other entities).

Abstract
syntax

The diagrams of the Observations and Effecting Interactions package
are shown in figures Fig. 11-83 to Fig. 11-90.

Fig. 11-83 Observations and Effecting Interactions—perceiving act
and perceptor type

Fig. 11-84 Observations and Effecting Interactions—perceptor

Fig. 11-85 Observations and Effecting Interactions—percept action

Fig. 11-86 Observations and Effecting Interactions—perceives

Operation
(from U ML)

PerceivingActPerceptorTyp e
*1

+/ownedPerceivingA ct

*

{ordered, subsets
ownedOperation}

+perceptorType

1

{redefines class}

BehavioredSemiEnti tyType
(from Basic Behaviors)

Servi ced Port
(from Services)

BehavioredSemiEntityType
(from Basic Behav iors)

PerceptorType

Perceptor
*1

+/ownedPerceptor

*

{subsets
ownedServicedPort}

1

{redefines
redefinitionContext}

0..1

*

+type 0..1
{ redef ines type}

*

CallOperationAction
(from UML)

PerceivingActPerceptAction
1*

+perceivingAct

1

{redefines operation}

*

Dependency
(from UML)

Perceives

238 Chapter 11 Behaviors

11.5.1 PerceivingAct

Semantics PerceivingAct is a specialized Operation (from UML) which is owned
by a PerceptorType and thus can be used to specify what perceptions
the owning PerceptorType, or a Perceptor of that PerceptorType, can
perform.

Fig. 11-87 Observations and Effecting Interactions—effecting act and
effector type

Fig. 11-88 Observations and Effecting Interactions—effector

Fig. 11-89 Observations and Effecting Interactions—effect action

Fig. 11-90 Observations and Effecting Interactions—effects

Operation
(from UML)

EffectingActEffectorType
*1

+/ownedEffectingAct

*

{ordered, subsets
ownedOperation}

+effectorType

1

{redefines class}

BehavioredSemiEntityType
(from Basic Behaviors)

BehavioredSemiEntityType
(from Basic Behav iors)

EffectorType

Effector
*1

+/ownedEffector

*

{subsets
ownedServicedPort}

1

{redefines
redefinitionContext}

0..1

*

+type 0..1
{redef ines type}

*

ServicedPort
(from Services)

CallOperationAction
(from UML)

EffectingActEffectAction
1*

+effectingAct

1

{redefines operation}

*

Dependency
(from UML)

Effects

11.5 Observations and Effecting Interactions 239

Associations

Notation PerceivingAct is shown using the same notation as for UML Operation
with the stereotype <<pa>>, see Fig. 11-91.

Presentation
options

PerceivingAct can be placed in a special class compartment of the
owning PerceptorType named <<perceiving acts>>. The stereotype
<<pa>> of a particular PerceivingAct is in this case omitted. See Fig. 11-
92.

Examples See Fig. 11-95.

Rationale PerceivingAct is introduced to specify which perceptions the owning
PerceptorType, or a Perceptor of that PerceptorType, can perform.

11.5.2 PerceptorType

Semantics PerceptorType is a specialized BehavioredSemiEntityType used to
model the type of Perceptors, in terms of owned:

Receptions (from UML) and

PerceivingActs.

perceptorType:
PerceptorType[1]

The PerceptorType that owns this Perceiving-
Act.
Redefines UML Operation::class.

Fig. 11-91 Notation of PerceivingAct

PerceptorType

...
<<pa>> visibility name(parameters):ReturnType {property-string}
...

Fig. 11-92 Alternative notation of PerceivingAct—placed in a special
class compartment

PerceptorType

<<perceiving acts>>
perceiving act 1
perceiving act 2
...

240 Chapter 11 Behaviors

Associations

Constraints 1. The ownedPerceivingAct meta-association refers to all ownedOp-
erations of the kind PerceivingAct:

ownedPerceivingAct = self.ownedOperation->
select(oclIsKindOf(PerceivingAct))

Notation PerceptorType is depicted as a UML Class with the stereotype label
<<perceptor type>> and/or a special icon, see Fig. 11-93.

Presentation
options

Alternatively, the PerceptorType can, for owned PerceivingActs and
Receptions, specify special compartments marked with the stereo-
types <<perceiving acts>> and <<signals>> respectively. Stereotypes of
particular PerceivingActs and Receptions are omitted in this case. See
Fig. 11-94.

Examples Fig. 11-95 shows a specification of the Eye, which is a PerceptorType
used to provide information about status of the environment where
the Robot, described in Fig. 11-98, is placed. The Eye provides two Per-
ceivingActs (isOnFloor and isOnCube) returning an information about
positions of cubes, and can process the signal newCubeAppeared,
which is raised when a new cube appears in the environment.

/ownedPerceivingAct:
PerceivingAct[*]

A set of all PerceivingActs owned by the Per-
ceptorType. The association is ordered and
derived.
Subsets UML Class::ownedOperation.

Fig. 11-93 Notation of PerceptorType

attribute list

operation list

parts

behaviors

Name
<<perceptor type>>

Fig. 11-94 Alternative notation of PerceptorType

Name

<<perceiving acts>>
perceiving act 1
perceiving act 2
...

<<signals>>
reception 1
reception 2
...

11.5 Observations and Effecting Interactions 241

Rationale PerceptorType is introduced to model types of Perceptors.

11.5.3 Perceptor

Semantics Perceptor is a specialized ServicedPort used to model capability of its
owner (a BehavioredSemiEntityType) to observe, i.e. perceive a state of
and/or to receive a signal from observed objects. What observations a
Perceptor is capable of is specified by its type, i.e. PerceptorType.

Associations

Notation Perceptor is depicted as a ServicedPort with the stereotype <<percep-
tor>>. See Fig. 11-96.

Presentation
options

Perceptor can also be depicted as a ServicedPort with a small filled tri-
angle pointing from the outside to the middle of owner’s shape. The
stereotype label is usually omitted in this case. See Fig. 11-97.

Fig. 11-95 Example of PerceptorType

Eye

<<perceiving acts>>

isOnFloor(cube):Boolean
isOnCube(cube1, cube2):Boolean

<<signals>>

newCubeAppeared(cube)

type:
PerceptorType[0..1]

The type of a Perceptor.
Redefines UML TypedElement::type.

Fig. 11-96 Notation of Perceptor

BehavioredSemiEntityType
name:Type[multiplicity]
<<perceptor>>

Fig. 11-97 Alternative notation of Perceptor

BehavioredSemiEntityType
p3p2

p4

p1

242 Chapter 11 Behaviors

Examples Fig. 11-98 (a) shows the illustration of a robot able to move (to
change position and direction), see its environment and manipulate
the cubes placed in the environment. The robot for this purpose is
equipped with three wheels, two “eyes” (cameras with a picture rec-
ognition system able to perceive and reason about the environment),
and one manipulator used to move and lift the cubes.

Fig. 11-98 (b) shows a model of the robot. It is modeled as an Agent-
Type with attributes position and direction, and respective Perceptors
(eyes) and Effectors (wheels and manipulator). The diagram also de-
picts Perceives and Effects relationships between the robot and cubes
(meaning that the robot is able to see and to manipulate the cubes),
and the robot itself (because it is able to change its own position and
direction by means of wheels).

See also models of perceptor and effector types Eye in Fig. 11-95 and
Manipulator in Fig. 11-107.

For more examples see also Fig. 10-5 and Fig. 11-7.

Rationale Perceptor is introduced to model the capability of its owner to ob-
serve.

Fig. 11-98 Example of non-communicative interaction modeling—
mobile robot: (a) illustration of the robot, (b) AML model of the
robot.

Robot

manipulator:Manipulator[1]

eyes:Eye[2]
wheels

position
direction

Cube

<<perceives>>

<<effects>>

<<effects>>

(a)

(b)

manipulatoreyes

wheels

cubes
robot

:Wheel[3]

11.5 Observations and Effecting Interactions 243

11.5.4 PerceptAction

Semantics PerceptAction is a specialized CallOperationAction (from UML) which
can call PerceivingActs. As such, PerceptAction can transmit an opera-
tion call request to a PerceivingAct, what causes the invocation of the
associated behavior.

PerceptAction being a CallOperationAction allows to call Perceiving-
Acts both synchronously and asynchronously.

Associations

Notation PerceptAction is drawn as a UML CallOperationAction with the stereo-
type <<percept>> and/or a special icon, see Fig. 11-99. Action’s name
represents a PerceivingAct’s call, i.e. its name and possibly also param-
eter values.

Presentation
options

If the action’s name is different from the PerceivingAct’s call, the call
may appear in parentheses below the action’s name. To indicate the
Perceptor owning the called PerceivingAct, its name postfixed by a pe-
riod may precede the PerceivingAct’s call. See Fig. 11-100.

PerceptAction can use all presentation options from UML CallOpera-
tionAction.

Examples Fig. 11-101 shows an example of the Plan describing how the robot,
as in Fig. 11-98, can achieve the placement of the red cube on the
blue one. The application logic is described solely by the PerceptAc-
tions (isOnFloor) and the EffectActions (putOn and putOnFloor).

For details on how the called PerceivingAct and EffectingActs are de-
fined see Fig. 11-95 and Fig. 11-107 respectively.

perceivingAct:
PerceivingAct[1]

The PerceivingAct to be invoked by the ac-
tion execution.
Redefines UML CallOperationAction::
operation.

Fig. 11-99 Notation of PerceptAction

Name
<<percept>>

Fig. 11-100 Alternative notation of PerceptAction—indication of Per-
ceivingAct’s call

Name
<<percept>>

(perceptor.perceiving act)

244 Chapter 11 Behaviors

Rationale PerceptAction is introduced to model observations in Activities.

11.5.5 Perceives

Semantics Perceives is a specialized Dependency (from UML) used to model
which elements can observe others.

Suppliers of the Perceives dependency are the observed elements, par-
ticularly NamedElements (from UML).

Clients of the Perceives dependency represent the objects that ob-
serve. They are usually modeled as:

BehavioredSemiEntityTypes,

PerceivingActs,

PerceptorTypes, or

Perceptors.

Notation Perceives is depicted as a UML Dependency relationship with the ste-
reotype <<perceives>>. See Fig. 11-102.

Fig. 11-101 Example of Plan, PerceptAction and EffectAction

[no][yes]

RedOnBlue

isOnFloor(blue)

isOnFloor(red)

[no][yes]

putOn(red,blue)

putOnFloor(blue)

putOn(red,blue)

<<post>> {isOnCube(red, blue)}

Fig. 11-102 Notation of Perceives

<<perceives>>
NamedElement NamedElement

11.5 Observations and Effecting Interactions 245

Presentation
options

Alternatively, the Perceives dependency can be depicted as a dashed
line with a filled triangle as an arrowhead. One side of the triangle is
oriented toward the icon of the observed element. The stereotype la-
bel is usually omitted in this case. See Fig. 11-103.

Examples See Fig. 11-98.

Rationale Perceives is introduced to model which elements can observe others.

11.5.6 EffectingAct

Semantics EffectingAct is a specialized Operation (from UML) which is owned by
an EffectorType and thus can be used to specify what effecting acts the
owning EffectorType, or an Effector of that EffectorType, can perform.

Associations

Notation EffectingAct is shown using the same notation as for UML Operation
with the stereotype <<ea>> , see Fig. 11-104.

Presentation
options

EffectingAct can be placed in a special class compartment of the own-
ing EffectorType named <<effecting acts>>. The stereotype <<ea>> of a
particular EffectingAct is in this case omitted. See Fig. 11-105.

Fig. 11-103 Alternative notation of Perceives

NamedElement NamedElement

effectorType:
EffectorType[1]

The EffectorType that owns this EffectingAct.
Redefines UML Operation::class.

Fig. 11-104 Notation of EffectingAct

EffectorType

...
<<ea>> visibility name(parameters):ReturnType {property-string}
...

Fig. 11-105 Alternative notation of EffectingAct—placed in a special
class compartment

EffectorType

<<effectinging acts>>
effecting act 1
effecting act 2
...

246 Chapter 11 Behaviors

Examples See Fig. 11-107.

Rationale EffectingAct is introduced to specify which effecting acts the owning
EffectorType, or an Effector of that EffectorType, can perform.

11.5.7 EffectorType

Semantics EffectorType is a specialized BehavioredSemiEntityType used to model
type of Effectors, in terms of owned EffectingActs.

Associations

Constraints 1. The ownedEffectingAct meta-association refers to all ownedOpera-
tions of the kind EffectingAct:

ownedEffectingAct = self.ownedOperation->
select(oclIsKindOf(EffectingAct))

Notation EffectorType is depicted as a UML Class with the stereotype label
<<effector type>> and/or a special icon, see Fig. 11-106.

Presentation
options

Alternatively, the EffectorType can for owned EffectingActs specify a
special compartment marked with the <<effecting acts>> keyword. See
Fig. 11-105.

Examples Fig. 11-107 shows a specification of the Manipulator, which is an Ef-
fectorType used to manipulate the cubes placed in the environment
of the Robot, described in Fig. 11-98. The Manipulator provides two
EffectingActs: putOnFloor enabling the placement of a cube on the
floor, and putOn enabling the placement of one cube on another.

Rationale EffectorType is introduced to model types of Effectors.

/ownedEffectingAct:
EffectingAct[*]

A set of all EffectingActs owned by the Effec-
torType. The association is ordered and de-
rived.
Subsets UML Class::ownedOperation.

Fig. 11-106 Notation of EffectorType

attribute list

operation list

parts

behaviors

Name
<<effector type>>

11.5 Observations and Effecting Interactions 247

11.5.8 Effector

Semantics Effector is a specialized ServicedPort used to model the capability of its
owner (a BehavioredSemiEntityType) to bring about an effect on oth-
ers, i.e. to directly manipulate with (or modify a state of) some other
objects. What effects an Effector is capable of is specified by its type,
i.e. EffectorType.

Associations

Notation Effector is depicted as a ServicedPort with the stereotype <<effector>>.
See Fig. 11-108.

Presentation
options

Effector can also be depicted as a ServicedPort with a small filled trian-
gle pointing from middle of the owner’s shape to the outside. The ste-
reotype label is usually omitted in this case. See Fig. 11-109.

Examples See Fig. 10-5, Fig. 11-75, and Fig. 11-98.

Rationale Effector is introduced to model the capability of its owner to bring
about an effect on other objects.

Fig. 11-107 Example of EffectorType

Manipulator

<<effecting acts>>

putOnFloor(cube)
putOn(cube1, cube2)

type: EffectorType[0..1] The type of an Effector.
Redefines UML TypedElement::type.

Fig. 11-108 Notation of Effector

BehavioredSemiEntityType
name:Type[multiplicity]
<<effector>>

Fig. 11-109 Alternative notation of Effector

BehavioredSemiEntityType
p3p2

p4

p1

248 Chapter 11 Behaviors

11.5.9 EffectAction

Semantics EffectAction is a specialized CallOperationAction (from UML) which
can call EffectingActs. Thus, an EffectAction can transmit an operation
call request to an EffectingAct, which causes the invocation of the as-
sociated behavior.

EffectAction being a CallOperationAction allows calling EffectingActs
both synchronously and asynchronously.

Associations

Notation EffectAction is drawn as a UML CallOperationAction with the stereo-
type <<effect>> and/or a special icon, see Fig. 11-110. The action’s
name represents an EffectingAct’s call, i.e. its name and possibly also
parameter values.

Presentation
options

If the action’s name is different from the EffectingAct’s call, the call
may appear in parentheses below the action’s name. To indicate the
Effector owning the called EffectingAct, its name postfixed by a period
may precede the EffectingAct’s call. See Fig. 11-111.

EffectAction can use all presentation options from UML CallOperation-
Action.

Examples See Fig. 11-101.

Rationale EffectAction is introduced to model effections in Activities.

effectingAct:
EffectingAct[1]

The EffectingAct to be invoked by the action
execution.
Redefines UML CallOperationAction::
operation.

Fig. 11-110 Notation of EffectAction

Name
<<effect>>

Fig. 11-111 Alternative notation of EffectAction—indication of Effect-
ingAct’s call

Name
<<effect>>

(effector.effecting act)

11.6 Mobility 249

11.5.10 Effects

Semantics Effects is a specialized Dependency (from UML) used to model which
elements can effect others.

Suppliers of the Effects dependency are the effected elements, particu-
larly NamedElements (from UML).

Clients of the Effects dependency represent the objects which effect.
They are usually modeled as:

BehavioredSemiEntityTypes,

EffectingActs,

EffectorTypes, or

Effectors.

Notation Effects is depicted as a UML Dependency relationship with the stereo-
type <<effects>>. See Fig. 11-112.

Presentation
options

Alternatively, the Effects dependency can be depicted as a dashed line
with a filled triangle as an arrowhead. One point of the triangle
touches an icon of the the observed element. The stereotype label is
usually omitted in this case. See Fig. 11-113.

Examples See Fig. 11-98.

Rationale Effects is introduced to model which elements can effect others.

11.6 Mobility

Overview The Mobility package defines metaclasses used to model structural
and behavioral aspects of entity mobility29.

Fig. 11-112 Notation of Effects

<<effects>>
NamedElement NamedElement

Fig. 11-113 Alternative notation of Effects

NamedElement NamedElement

29 Agents are special entities and therefore agent mobility is also covered by
the AML mobility mechanisms.

250 Chapter 11 Behaviors

Abstract
syntax

The diagrams of the Mobility package are shown in figures Fig. 11-
114 and Fig. 11-115.

11.6.1 Move

Semantics Move is a specialized Dependency (from UML) between two Hosting-
Properties used to specify that the entities represented by the source
HostingProperty (specified by the from meta-association) can be
moved/transferred to the instances of the AgentExecutionEnvironment
owning the destination HostingProperty (specified by the to meta-as-
sociation).

Fig. 11-114 Mobility—mobility relationships

Fig. 11-115 Mobility—mobility-related actions

Dependency
(from UML)

Move

Host ingProperty
(from M AS Deployment)

1

*

+from
1

{redefines client}

+/move
*

{subsets
clientDependency }

1

*

+to
1

{redefines supplier}

+/moveFrom
*

{subsets
supplierDependency}

Clone

1

*

+from
1

{redefines client}

+/clone
*

{subsets
clientDependency}

1..*

*

+to
1..*

{redefines supplier}

+/cloneFrom
*

{subsets
supplierDependency}

MoveAction

OutputPin
(from UML)

CloneAction

1

0.. 1

+clone1
{subsets output}

0.. 1

Add StructuralFeatureValueAction
(from UML)

HostingProperty
(from MAS Deployment)

InputPin
(from UML)

MobilityAction
1 *

+toHostingProperty

1

{redefines
structuralFeature}

* 10..1
+to

1

{redefines object}

0..1

10..1
+entity
1

{redefines value}

0..1

11.6 Mobility 251

For example, a Move dependency between a HostingProperty A of type
T (owned by AgentExecutionEnvironment AEE1) and a HostingProperty
B of the same type T (owned by another AgentExecutionEnvironment
AEE2) means that entities of type T can be moved from AEE1 to AEE2.

AML does not specify the type and other details of moving, which
may be technology dependent. If needed, they can be specified as
specific tagged values, comments, constraints, linked/attached infor-
mation, etc.

Associations

Constraints 1. If both specified, the type of the HostingProperty referred to by the
to meta-association must conform to the type of the HostingProp-
erty referred to by the from meta-association:

(self.from.type->notEmpty() and self.to.type->notEmpty()) implies
self.to.type.conformsTo(self.from.type)

Notation Move is depicted as a UML Dependency relationship with the stereo-
type <<move>>. The from HostingProperty is specified as a dependency
client and the to HostingProperty is a dependency supplier. See
Fig. 11-116.

Examples Fig. 11-117 extends the example from Fig. 10-47 by modeling load
balancing and agent mobility. Agents of type Broker residing in the
TradingClient can be cloned to the TradingServer instances running at
the MainStockExchangeServers. Each TradingServer can control the
load of its machine, and if necessary, it can move some brokers
(agents of type Broker) to any of the BackupStockExchangeServers. The
LoadBalanceManager agents are concerned with monitoring of ma-
chine load and moving brokers to other machines. The brokers can
move back to the MainStockExchangeServers.

Rationale Move is introduced to model the movement of entities between in-
stances of AgentExecutionEnvironments.

from:
HostingProperty[1]

The HostingProperty representing the source
of moving.
Redefines UML Dependency::client.

to:
HostingProperty[1]

The HostingProperty representing the desti-
nation of moving.
Redefines UML Dependency::supplier.

Fig. 11-116 Notation of Move

<<move>>
HostingProperty HostingProperty

252 Chapter 11 Behaviors

11.6.2 Clone

Semantics Clone is a specialized Dependency (from UML) between HostingProp-
erties used to specify that entities represented by the source Hosting-
Property (specified by the from meta-association) can be cloned to the
instances of the AgentExecutionEnvironment owning the destination
HostingProperties (specified by the to meta-association).

For example, a Clone dependency between a HostingProperty A of
type T (owned by AgentExecutionEnvironment AEE1) and a Hosting-
Property B of the same type T (owned by another AgentExecutionEnvi-
ronment AEE2) means that entities of type T can be cloned from AEE1
to AEE2.

AML does not specify the type and other details of cloning, which
may be technology dependent. If needed, they can be specified as

Fig. 11-117 Example of Move and Clone relationships

tradingServer:TradingServer

MainStockExchangeServer
<<clone>>

:LoadBalanceManager

orderPool:OrderPool account:Account[*]

tc:TradingClient

ClientPC

<<move>>

broker:Broker[*]
{resident}

*

*

*

broker:Broker[*]
{visitor}

server:TradingServer

BackupStockExchangeServer

:LoadBalanceManager

orderPool:OrderPool account:Account[*]

broker:Broker[*]
{visitor}

1

11.6 Mobility 253

specific tagged values, comments, constraints, linked/attached infor-
mation, etc.

Associations

Constraints 1. If specified, the types of the HostingProperties referred to by the to
meta-association must conform to the type of the HostingProperty
referred to by the from meta-association:

(self.from.type->notEmpty() and self.to.type->notEmpty()) implies
self.to.type->forAll(conformsTo(self.from.type))

Notation Clone is depicted as a UML Dependency relationship with the stereo-
type <<clone>>. The from HostingProperty is specified as a dependency
client and the to HostingProperty is a dependency supplier. See
Fig. 11-118.

Examples See Fig. 11-117.

Rationale Clone is introduced to model the cloning of entities among instances
of AgentExecutionEnvironments.

11.6.3 MobilityAction

Semantics MobilityAction is an abstract specialized AddStructuralFeatureValueAc-
tion (from UML) used to model mobility actions of entities, i.e. ac-
tions that cause movement or cloning of an entity from one AgentEx-
ecutionEnvironment to another one. MobilityAction specifies:

which entity is being moved or cloned (entity meta-association),

the destination AgentExecutionEnvironment instance where the
entity is being moved or cloned (to meta-association), and

the HostingProperty owned by the destination AgentExecutionEn-
vironment, where the moved or cloned entity is being placed (to-
HostingProperty meta-association).

from:
HostingProperty[1]

The HostingProperty representing the source
of cloning.
Redefines UML Dependency::client.

to:
HostingProperty[1..*]

The HostingProperties representing the desti-
nation of cloning.
Redefines UML Dependency::supplier.

Fig. 11-118 Notation of Clone

<<clone>>
HostingProperty HostingProperty

254 Chapter 11 Behaviors

If the destination HostingProperty is ordered, the insertAt meta-associ-
ation (inherited from AddStructuralFeatureValueAction) specifies the
position at which to insert the entity.

MobilityAction has two concrete subclasses:

MoveAction and

CloneAction.

Associations

Constraints 1. If the type of the InputPin referred to by the entity meta-associa-
tion is specified, it must be an EntityType:

self.entity.type->notEmpty() implies
self.entity.type.oclIsKindOf(EntityType)

2. If the type of the InputPin referred to by the to meta-association is
specified, it must be an AgentExecutionEnvironment:

self.to.type->notEmpty() implies
self.to.type.oclIsKindOf(AgentExecutionEnvironment)

3. If the type of the InputPin referred to by the to meta-association is
specified, the HostingProperty referred to by the toHostingProperty
meta-association must be an owned attribute of that type:

self.to.type->notEmpty() implies
self.to.type.ownedAttribute->includes(self.toHostingProperty)

Notation There is no general notation for MobilityAction. The specific sub-
classes of MobilityAction define their own notation.

Rationale MobilityAction is introduced to define the common features of all its
subclasses.

entity: InputPin[1] The InputPin specifying the entity being
moved or cloned.
Redefines UML
WriteStructuralFeatureValueAction::value.

to: InputPin[1] The InputPin specifying the destination
AgentExecutionEnvironment instance where
the entity is being moved or cloned.
Redefines UML StructuralFeatureAction::
object.

toHostingProperty:
HostingProperty[1]

The HostingProperty where the moved or
cloned entity is being placed.
Redefines UML StructuralFeatureAction::
structuralFeature.

11.6 Mobility 255

11.6.4 MoveAction

Semantics MoveAction is a specialized MobilityAction used to model an action
that results in a removal of the entity (specified by the entity meta-as-
sociation, inherited from MobilityAction) from its current hosting lo-
cation, and its insertion as a value to the destination HostingProperty
(specified by the toHostingProperty meta-association, inherited from
MobilityAction) of the owning AgentExecutionEnvironment instance
(specified as the to meta-association, inherited from MobilityAction).

Notation MoveAction is drawn as a UML Action with the stereotype <<move>>
and/or a special icon, see Fig. 11-119.

Optionally, the name of the moved entity, followed by a greater-than
character (‘>’) and a specification of the destination may appear in pa-
rentheses below the action’s name. The movement destination is
specified as the name of the destination AgentExecutionEnvironment
instance (given by the to meta-association), delimited by a period
from the name of the destination HostingProperty (given by the to-
HostingProperty meta-association). If the destination HostingProperty
is ordered, the value of the insertAt meta-association can be placed af-
ter the destination HostingProperty’s name in brackets.

If the entity being moved is an instance which executes the MoveAc-
tion, it can be identified by the keyword ‘self’ in place of the entity
name.

Examples The diagram in Fig. 11-120 shows the Plan of the AgentType Broker
(defined in Fig. 11-117) describing how to behave if the LoadBalance-
Manager (defined also in Fig. 11-117) sends a move command.

After accepting the move command, the Broker evaluates the move. If
not possible, the Broker sends a reject CommunicationMessage to the
LoadBalanceManager. If the movement is possible, the Broker sends
an accept CommunicationMessage to the LoadBalanceManager and
moves to the destination AgentExecutionEnvironment instance, speci-
fied by the moveCommand, where it is placed in the HostingProperty
named broker.

Rationale MoveAction is introduced to model the movement of entities in Activ-
ities.

Fig. 11-119 Notation of MoveAction

Name
<<move>>

(entity > to.toHostingProperty[insertAt])

256 Chapter 11 Behaviors

11.6.5 CloneAction

Semantics CloneAction is a specialized MobilityAction used to model an action
that results in a insertion of a clone of the entity (specified by the en-
tity meta-association, inherited from MobilityAction) as a value to the
destination HostingProperty (specified by the toHostingProperty meta-
association, inherited from MobilityAction) of the owning AgentExe-
cutionEnvironment instance (specified as the to meta-association, in-
herited from MobilityAction). The original entity remains running at
its current hosting location.

The entity clone is represented by the action’s OutputPin (specified
by the clone meta-association).

Associations

Constraints 1. If the type of the OutputPin referred to by the clone meta-associa-
tion is specified, it must be an EntityType:

self.clone.type->notEmpty() implies
self.clone.type.oclIsKindOf(EntityType)

Fig. 11-120 Example of Plan and MoveAction

Broker::LoadBalanceMoving

moveCommand

Accept

Move command

Evaluate move

[cannot move][can move]

Reject

Go there
(self > (moveCommand.destination)

.broker)

clone: OutputPin[1] The OutputPin representing the entity clone.
Subsets UML Action::output.

11.6 Mobility 257

2. The type of the OutputPin referred to by the clone meta-associa-
tion must conform to the type of the InputPin referred to by the
entity meta-association, if the both specified:

(self.clone.type->notEmpty() and self.entity.type->notEmpty())
implies self.clone.type.conformsTo(self.entity.type)

Notation CloneAction is drawn as a UML Action with the stereotype <<clone>>
and/or a special icon see Fig. 11-121.

Optionally, the name of the cloned entity, followed by a greater-than
character (‘>’) and a specification of the destination may appear in pa-
rentheses below the action’s name. The movement destination is
specified as the name of the destination AgentExecutionEnvironment
instance (given by the to meta-association), delimited by a period
from the name of the destination HostingProperty (given by the to-
HostingProperty meta-association). If the destination HostingProperty
is ordered, the value of the insertAt meta-association can be placed af-
ter the destination HostingProperty’s name in brackets. The clone en-
tity is specified as an OutputPin.

If the entity being cloned is an instance which executes the CloneAc-
tion, it can be identified by the keyword ‘self’ in place of the entity
name.

Examples The activity diagram in Fig. 11-122 shows the behavior of the broker
agent (its type is defined in Fig. 11-117), running at the client, after re-
ception of a new order from a user. The broker checks the order, and
if incorrect, a report is produced. In the case of a correct order, the
broker selects the most appropriate trading server and clones itself to
the selected server. In addition to the broker’s code and status infor-
mation, the clone (called brokerClone), also carries the order informa-
tion.

When the brokerClone starts to run at the server, it tries to register. If
unsuccessful, it announces to the broker the registration refusal
which in turn reports this fact to the user. If registration was success-
ful, the brokerClone places the order onto the orderPool (see Fig. 11-
117) and negotiates the order with other brokers. If finished, the ne-
gotiation result is sent back to the broker which reports the result to
the user. After sending the result, the brokerClone terminates its exe-
cution at the server.

Fig. 11-121 Notation of CloneAction

Name
<<clone>>

(entity > to.toHostingProperty[insertAt])

258 Chapter 11 Behaviors

The diagram is partitioned by two-dimensional ActivityPartitions. The
first dimension contains ActivityPartitions representing entities re-
sponsible for performing actions. The second dimension contains Ac-
tivityPartitions representing the AgentExecutionEnvironment instances
where the entities perform relevant actions. If the diagram was speci-
fied at the class level, the ActivityPartitions would represent Entity-
Types and AgentExecutionEnvironments (and possibly also their Host-
ingProperties) respectively. This is a usual way of partitioning mobil-
ity-related Activities, that enables the specification of which entities
perform what actions at what hosting places, and also allows model-
ing the synchronization of activities performed by different entities.

Fig. 11-122 Example of CloneAction

[order is ok]

broker:Broker brokerClone:Broker

cl
ie

n
t:

Tr
ad

in
g

C
lie

n
t

se
rv

er
:T

ra
d

in
g

Se
rv

er

[order is not ok]

tradingServer

Check order

Get order

Select trading
server

Clone to server
(self > tradingServer.broker)

Registration
refused

Report
result

[confirmed]

[refused]

Place order

Register

Registration
refused

Negotiate

[matched]

Terminate

order

{joinSpec = A or B

A B C D

Report
problem

or C or D}

Order
matched

Order
expired

Order
matched

Order
expired

[expired]

11.6 Mobility 259

Orientation of partitioning can be arbitrary, i.e. ActivityPartitions rep-
resenting entities can be either horizontal or vertical, and the Activi-
tyPartitions representing the hosting places should be orthogonal.

Rationale CloneAction is introduced to model the cloning of entities in Activi-
ties.

Chapter 12

Mental

Overview The Mental package defines the metaclasses which can be used to:

support analysis of complex problems/systems, particularly by:

• modeling intentionality in use case models,

• goal-based requirements modeling,

• problem decomposition, etc.

model mental attitudes of autonomous entities, which represent
their informational, motivational and deliberative states.

Package
structure

The package diagram of the Mental package is depicted in Fig. 12-1.

12.1 Mental States

Overview The Mental States package comprises common fundamental meta-
classes used to define concrete metaclasses contained within the rest
of the Mental sub-packages, i.e. Beliefs, Goals, Plans and Mental Rela-
tionships.

Fig. 12-1 Mental—package structure

Mental
Relationships

Mental States

Beliefs Goals Plans

262 Chapter 12 Mental

Abstract
syntax

The diagrams of the Mental State package are shown in figures
Fig. 12-2 to Fig. 12-5.

Fig. 12-2 Mental States—mental states and mental semi-entity type

Fig. 12-3 Mental States—mental constraint

Fig. 12-4 Mental States—responsibility

MentalState
/degree : ValueSpecification [0..1] {union}

MentalRelationship

Class
(from UML)

MentalClass

ConstrainedMentalClass

MentalConstraint

0..1

*

+namespace 0..1

{redefines namespace}

+/mentalConstraint *

{subse ts ow nedRule }

NamedElement
(from UML)

MentalSemiEntityType

MentalConstraintKind
<<enumeration>>

commitCondition
preCondition
commitPreCondition
invariant
cancelCondition
postCondition

Constraint
(from UML)

MentalConstraint
kind : MentalConstraintKind

RedefinableElement
(from UML)

Realization
(from UML)

MentalClassNamedElement
(from UML)

Responsibility

1..*

*

+object1..*
{ redef ines supplier }

+/isResponsibilityOf*
{subsets supplierDependency}

1..*

*

+subject 1..*
{ redef ines c lient}

*

12.1 Mental States 263

12.1.1 MentalState

Semantics MentalState is an abstract specialized NamedElement (from UML)
serving as a common superclass to all metaclasses which can be used
for:

modeling mental attitudes of MentalSemiEntityTypes, which rep-
resent their informational, motivational and deliberative states,
and

support for the human mental process of requirements specifica-
tion and analysis of complex problems/systems, particularly by:

• expressing intentionality in use case models,

• goal-based requirements modeling,

• problem decomposition, etc.

Attributes

Notation There is no general notation for MentalState. The specific subclasses
of MentalState define their own notation.

Fig. 12-5 Mental States—mental property and mental association

Association
(from UML)

Property
(from UML)

MentalClass

MentalConstraint

MentalAssociation0..1

2

0..1

+memberEnd 2

{ordered, redefines
memberEnd}

MentalProperty
degree : ValueSpecification [0. .1]

0..1

*

+type0..1
{redef ines type}

*

* 0..1

+mentalConstraint

*

{subsets ownedElement}

0..1

0..1

1

+association0..1
{redefines
association}

+mentalMemberEnd1
{subsets memberEnd}

MentalSemiEntityType

*

0.. 1

+/mentalAttribute *
{ordered, subsets
ownedAttribute}

+classifier 0.. 1
{redefines classifier}

/degree:
ValueSpecification
[0..1]

The degree of a MentalState. Its specific se-
mantics varies depending on the context of
MentalState’s subclasses that subset it.
This is a derived union.

264 Chapter 12 Mental

Rationale MentalState is introduced to define the common features of all its
subclasses.

12.1.2 MentalClass

Semantics MentalClass is an abstract specialized Class (from UML) and Mental-
State serving as a common superclass to all the metaclasses which can
be used to specify mental attitudes of MentalSemiEntityTypes. Techni-
cally, MentalProperties can only be of the MentalClass type.

Furthermore, the object meta-association of the Responsibility rela-
tionship can also only be of the MentalClass type.

Associations

Constraints 1. The isResponsibilityOf meta-association refers to all supplierDe-
pendencies of the kind Responsibility:

isResponsibilityOf = self.supplierDependency->
select(oclIsKindOf(Responsibility))

Notation There is no general notation for MentalClass. The specific subclasses
of MentalClass define their own notation.

Rationale MentalClass is introduced to specify the mental attitudes of Mental-
SemiEntityTypes and objects of Responsibility relationship.

12.1.3 ConstrainedMentalClass

Semantics ConstrainedMentalClass is an abstract specialized MentalClass which
allows its concrete subclasses to specify MentalConstraints.

Note: To avoid misinterpretation of a set of multiple MentalCon-
straints of the same kind defined within one ConstrainedMentalClass,
AML allows the specification of only one MentalConstraint of a given
kind within one ConstrainedMentalClass.

Associations

/isResponsibilityOf:
Responsibility[*]

The Responsibility relationships that refer to
the MentalClass as an object of responsibil-
ity. This is a derived association.

/mentalConstraint:
MentalConstraint[*]

A set of the MentalConstraints owned by the
ConstrainedMentalClass. This is a derived as-
sociation.
Subsets UML Namespace::ownedRule.

12.1 Mental States 265

Constraints 1. Each mentalConstraint must have a different kind:

self.mentalConstraint->forAll(mc1, mc2 | mc1.kind<>mc2.kind)

2. The mentalConstraint meta-association refers to all ownedRules of
the kind MentalConstraint:

mentalConstraint = self.ownedRule->
select(oclIsKindOf(MentalConstraint))

Notation There is no general notation for ConstrainedMentalClass. The specific
subclasses of ConstrainedMentalClass define their own notation.

Rationale ConstrainedMentalClass is introduced to allow the specification of
MentalConstraints for all its subclasses.

12.1.4 MentalConstraint

Semantics MentalConstraint is a specialized Constraint (from UML) and Redefin-
ableElement (from UML), used to specify properties of Constrained-
MentalClasses which can be used within mental (reasoning) processes
of owning MentalSemiEntityTypes, i.e. pre- and post-conditions, com-
mit conditions, cancel conditions and invariants. MentalConstraint,
in addition to Constraint, allows specification of the kind of the con-
straint (for details see section 12.1.5).

MentalConstraints can be owned only by ConstrainedMentalClasses.

MentalConstraint, being a RedefinableElement, allows the redefinition
of the values of constraint specifications (given by the specification
meta-association inherited from UML Constraint), e.g. in the case of
inherited owned ConstrainedMentalClasses, or redefinition specified
by MentalProperties. Specification of a redefined MentalConstraint is
logically combined with the specification of the redefining Mental-
Constraint (of the same kind), following the rules specified in Tab. 12-
1.

MentalConstraintKind Combination kind

commitCondition OR-ed

preCondition OR-ed

invariant Overridden

cancelCondition OR-ed

postCondition AND-ed

Tab. 12-1 Redefinition rules of MentalConstraints

266 Chapter 12 Mental

Attributes

Constraints 1. The commitPreCondition literal cannot be used as the value of the
kind meta-attribute.

self.kind <> #commitPreCondition

Notation In general, the MentalConstraint is depicted as a text string in braces
(‘{’ ‘}’) with the same format as defined in UML.

MentalConstraint can occur only within the context of an (a) owning
ConstrainedMentalClass, or (b) owning MentalProperty. These meta-
classes define specific notation for MentalConstraint and its place-
ment.

Examples Pre-condition of the DecidableGoal named InterceptBall (shown in
Fig. 12-21) is specified as:

pre = {not self.team.hasBall(ball) and self.isFree()}

The pre-condition checks whether the robot is free and and its team
already has the ball. The keyword ‘self’ is used to refer to an instance
of the SoccerRobot AgentType (see Fig. 11-7 for details).

For other examples see Fig. 11-101, Fig. 12-21, Fig. 12-29, and Fig. 12-
31.

Rationale MentalConstraint is introduced to specify the properties of Con-
strainedMentalClasses which can be used within mental (reasoning)
processes of owning MentalSemiEntityTypes.

12.1.5 MentalConstraintKind

Semantics MentalConstraintKind is an enumeration which specifies kinds of
MentalConstraints, as well as kinds of constraints specified for contrib-
utor and beneficiary in the Contribution relationship.

If needed, the set of MentalConstraintKind enumeration literals can be
extended.

kind:MentalConstraint-
Kind[1]

A kind of the MentalConstraint.

12.1 Mental States 267

Enumeration
values

Tab. 12-2 specifies MentalConstraintKind’s enumeration literals, key-
words used for notation, and their semantics.

Rationale MentalConstraintKind is introduced to specify the kinds of Mental-
Constraints and ends of a Contribution relationship.

12.1.6 MentalRelationship

Semantics MentalRelationship is an abstract specialized MentalState, a superclass
to all metaclasses defining the relationships between MentalStates.

There is one concrete subclass of the MentalRelationship—Contribu-
tion.

Notation There is no general notation for MentalRelationship. The specific sub-
classes of MentalRelationship define their own notation.

Rationale MentalRelationship is introduced as a superclass to all metaclasses de-
fining the relationships between MentalStates.

Value Keyword Semantics

commitCondition commit An assertion identifying the situation
under which an autonomous entity com-
mits to the particular ConstrainedMental-
Class (if also the precondition holds).

preCondition pre The condition that must hold before the
ConstrainedMentalClass can become effec-
tive (i.e. a goal can be committed to or a
plan can be executed).

commitPreCondition commpre AND-ed combination of commitCondition
and preCondition. Used only within Contri-
bution.

invariant inv The condition that holds during the period
the ConstrainedMentalClass remains
effective.

cancelCondition cancel An assertion identifying the situation
under which an autonomous entity cancels
attempting to accomplish the Constrained-
MentalClass.

postCondition post The condition that holds after the Con-
strainedMentalClass has been accom-
plished (i.e. a goal has been achieved or a
plan has been executed).

Tab. 12-2 MentalConstraintKind’s enumeration literals

268 Chapter 12 Mental

12.1.7 MentalSemiEntityType

Semantics MentalSemiEntityType is a specialized abstract Class (from UML), a su-
perclass to all metaclasses which can own MentalProperties, i.e. Au-
tonomousEntityType and EntityRoleType.

The ownership of a MentalProperty of a particular MentalClass type
means that instances of the owning MentalSemiEntityType have con-
trol over instances of that MentalClass, i.e. they have (at least to some
extent) a power or authority to manipulate those MentalClass in-
stances (their decisions about those MentalClass instances are, to
some degree, autonomous). For example, a MentalClass instance can
decide:

which Goal is to be achieved and which not,

when and how the particular Goal instance is to be achieved,

whether the particular Goal instance is already achieved or not,

which Plan to execute, etc.

Instances of MentalSemiEntityTypes are referred to as mental semi-enti-
ties.

Associations

Constraints 1. The mentalAttribute meta-association refers to all ownedAttributes
of the kind MentalProperty:

mentalAttribute = self.ownedAttribute->
select(oclIsKindOf(MentalProperty))

Notation There is no general notation for MentalSemiEntityType. The specific
subclasses of MentalSemiEntityType define their own notation.

Rationale MentalSemiEntityType is introduced as a common superclass to all
metaclasses which can own MentalProperties.

12.1.8 MentalProperty

Semantics MentalProperty is a specialized Property (from UML) used to specify
that instances of its owner (i.e. mental semi-entities) have control
over instances of the MentalClasses of its type, e.g. can decide
whether to believe or not (and to what extent) in a Belief, or whether
and when to commit to a Goal.

/mentalAttribute:
MentalProperty[*]

A set of all MentalProperties owned by the
MentalSemiEntityType. The association is or-
dered and derived.
Subsets UML Class::ownedAttribute.

12.1 Mental States 269

The attitude of a mental semi-entity to a belief or commitment to a
goal is modeled by a Belief instance, or a Goal instance, being held in
a slot of the corresponding MentalProperty.

The type of a MentalProperty can be only a MentalClass.

MentalProperties can be owned only by:

MentalSemiEntityTypes as attributes, or

MentalAssociations as member ends.

MentalProperties (except of MentalProperties of Belief type) can own
MentalConstraints (each of a different type) to allow the redefinition
of MentalConstraints of their types. The redefinition rules are de-
scribed in section 12.1.4.

Note: The Plans controlled by MentalSemiEntityTypes are modeled as
owned UML Activities, and therefore use of Plans as types of Mental-
Properties is forbidden, even if they are specialized MentalClasses.

Attributes

Associations

Constraints 1. If the type meta-association is specified, the MentalClass referred
to by it cannot be a Plan:

self.type->notEmpty() implies (not self.type.oclIsKindOf(Plan))

2. Each mentalConstraint must have different kind:

self.mentalConstraint->forAll(mc1, mc2 | mc1.kind<>mc2.kind)

degree:
ValueSpecification
[0..1]

The degree of the MentalClass specified as
the type of the MentalProperty. If specified, it
overrides the degree value specified for the
MentalClass itself.

association:
MentalAssociation
[0..1]

The MentalAssociation of which this Mental-
Property is a member, if any.
Redefines UML Property::association.

type: MentalClass[0..1] The type of a MentalProperty.
Redefines UML TypedElement::type.

mentalConstraint:
MentalConstraint[*]

A set of MentalConstraints describing the
MentalClass specified as the type. If speci-
fied, they redefine MentalConstraints speci-
fied for the MentalClass itself.
Subsets UML Element::ownedElement.

270 Chapter 12 Mental

3. The mentalConstraints can be specified only for a ConstrainedMen-
talClass:

not (self.type->notEmpty() and
self.type.oclIsKindOf(ConstrainedMentalClass)) implies
self.mentalConstraint->isEmpty()

Notation When shown as the end of a MentalAssociation, the MentalProperty is
depicted as a UML association end, see section 12.1.9.

When shown as an attribute of an MentalSemiEntityType, the Mental-
Property is depicted as a UML attribute with the <<mental>> stereo-
type. If specified, the value of the meta-attribute degree is depicted as
a property string (tagged value) with the name ‘degree’. See Fig. 12-6.

Usually, the MentalConstraints of a MentalProperty are specified as
hidden information, not shown in the diagram. However, if a user
needs to express them explicitly, the MentalConstraints can be shown
within a property string belonging to the MentalProperty. Each speci-
fied MentalConstraint has the form of a single tagged value following
the format:

mental_constraint ::= mental_constraint_kind ‘=’ specification
mental_constraint_kind ::= ‘commit’ | ‘pre’ | ‘inv’ | ‘cancel’ | ‘post’

The specification represents the UML Constraint‘s specification meta-
association (i.e. a boolean expression), and mental_constraint_kind is a
keyword identifying the kind of the mental constraint (see section
12.1.5 for details).

Presentation
options

The MentalProperties of a MentalSemiEntityType can be placed in a
special class compartment with stereotype <<mental>>. The stereo-
type <<mental>> of a particular MentalProperty is in this case omitted.
See Fig. 12-7.

Fig. 12-6 Notation of MentalProperty shown as an attribute

MentalSemiEntityType

...
<<mental>> name:MentalClass {degree=value}
...

12.1 Mental States 271

Another notational alternative is to group MentalProperties of one
MentalSemiEntityType according to their fundamental types and to
place each group into a specific class compartment. There are defined
compartments <<beliefs>> for Beliefs, and <<goals>> for Goals. The ste-
reotype <<mental>> of a particular MentalProperty is in this case omit-
ted. See Fig. 12-8.

Style MentalConstraints are usually specified as hidden information.

Examples Fig. 12-9 shows the definition of an EntityRoleType called Striker used
to model a soccer striker, i.e. a player whose main job is to attack and
try to score goals. The possibility to commit to these two goals is ex-
pressed by the MentalProperties named scoreGoal and attack, both of
the fundamental type Goal. To commit to either of these goals, the
Striker must believe that the goal is achievable. This is expressed by
ownership of two MentalProperties named canScoreGoal and canAt-
tack of the fundamental type Belief. To achieve the goals, the Striker
defines two Plans called ScoreGoalPlan and AttackPlan.

Fig. 12-7 Alternative notation of MentalProperties—placed in a com-
mon special class compartment

Fig. 12-8 Alternative notation of MentalProperties—grouped by fun-
damental types

MentalSemiEntityType

attribute list

operation list

<<mental>>
mental property 1
mental property 2
...

parts

behaviors

MentalSemiEntityType

<<beliefs>>
belief list

...

<<goals>>
goal list

272 Chapter 12 Mental

Rationale MentalProperty is introduced to specify that mental semi-entities
have control over Goal and Belief instances.

12.1.9 MentalAssociation

Semantics MentalAssociation is a specialized Association (from UML) between a
MentalSemiEntityType and a MentalClass used to specify a MentalProp-
erty of the MentalSemiEntityType in the form of an association end.

MentalAssociation is always binary.

An instance of the MentalAssociation is called mental link.

Associations

Notation MentalAssociation is depicted as a binary UML Association with the
stereotype <<mental>>, see Fig. 12-10. The association end at the men-
talMemberEnd’s side can additionally show the value of its meta-at-
tribute degree as a property string (tagged value) with the name ‘de-
gree’.

Style Stereotype <<mental>> of the mentalMemberEnd is usually omitted.

Fig. 12-9 Example of MentalProperty

Striker

<<goals>>
scoreGoal:ScoreGoal[0..1] {degree=1.0}
attack:Attack[0..1] {degree=1.0}

<<beliefs>>
canScoreGoal:CanScoreGoal[0..1]
canAttack:CanAttack[0..1]

ScoreGoalPlan AttackPlan

memberEnd:
Property[2]

Two associated Properties. This is an ordered
association.
Redefines UML Association::memberEnd.

mentalMemberEnd:
MentalProperty[1]

Associated MentalProperty.
Subsets MentalAssociation::memberEnd.

Fig. 12-10 Notation of MentalAssociation

MentalClassMentalSemiEntityType
1

<<mental>>

0..8

Name

mentalRole {degree=value}role

12.1 Mental States 273

The MentalAssociation’s stereotype can be omitted from the diagram
as well, i.e. an Association between MentalSemiEntityType and a Men-
talClass is considered to be a MentalAssociation, if it is evident from
the context.

Examples Fig. 12-11 shows a diagram semantically equivalent to the diagram in
Fig. 12-9, but all MentalProperties are depicted as MentalAssociations.

Rationale MentalAssociation is introduced to enable modeling of MentalProper-
ties in the form of association ends. It is used to specify that mental
semi-entities have control over Goal and Belief instances.

12.1.10 Responsibility

Semantics Responsibility is a specialized Realization (from UML) used to model a
relation between MentalClasses (called responsibility objects) and
NamedElements (from UML) (called responsibility subjects) that are ob-
ligated to accomplish (or to contribute to the accomplishment of)
those MentalClasses (e.g. modification of Beliefs, or achievement or
maintenance of Goals, or realization of Plans).

Associations

Notation Responsibility is depicted as a UML Realization (Dependency) relation-
ship with the stereotype <<responsible>>. The responsibility subject (a

Fig. 12-11 Example of MentalAssociation

StrikerCanScoreGoal

CanAttack

0..1
canScoreGoal

0..1
canAttack

ScoreGoal
0..1

scoreGoal

0..1
attack

{degree=1.0}

{degree=1.0}
ScoreGoalPlan

AttackPlan
Attack

subject:
NamedElement[1..*]

The subject NamedElements responsible for
object MentalClasses.
Redefines UML Dependency::client.

object:
MentalClass[1..*]

The set of MentalClasses the subject is re-
sponsible for.
Redefines UML Dependency::supplier.

274 Chapter 12 Mental

NamedElement) represents a client and the responsibility object (a
MentalClass) is a supplier. See Fig. 12-12.

Examples Fig. 12-13 shows an AgentType named Person with a Goal named
StoreFluid. The ResourceTypes Cup, Bottle, and Glass can all realize
that Goal and therefore are responsible for it. This responsibility is
modeled by Responsibility relationships.

Rationale Responsibility is introduced to model which NamedElements are re-
sponsible for (or contribute to) the accomplishment of instances of
which MentalClasses.

12.2 Beliefs

Overview The Beliefs package defines metaclasses used to model beliefs.

Abstract
syntax

The diagram of the Beliefs package is shown in Fig. 12-14.

Fig. 12-12 Notation of Responsibility

NamedElement
<<responsible>>

MentalClass

Fig. 12-13 Example of Responsibility

*

Person

storeFluid
<<mental>>

StoreFluid
1

Cup
<<responsible>>

Bottle

Glass

<<responsible>>

<<responsible>>

Fig. 12-14 Beliefs—belief

Constraint
(from UML)

Belief
degree : ValueSpecification [0..1] {subsets degree} 0..10..1

+constraint

0..1

{subsets ownedRule}

0..1

MentalClass
(from Mental States)

12.2 Beliefs 275

12.2.1 Belief

Semantics Belief is a specialized MentalClass used to model a state of affairs,
proposition or other information relevant to the system and its men-
tal model. If an instance of a Belief is held in a slot of a mental semi-
entity’s MentalProperty, it represents the information which the men-
tal semi-entity believes, and which does not need to be objectively
true. The ability of a MentalSemiEntityType to believe in beliefs of a
particular type is modeled by the ownership of a MentalProperty of
the corresponding type.

The belief referred to by several mental semi-entities simultaneously
represents their common belief.

The degree meta-association of a Belief specifies the reliability or con-
fidence in the information specified by the Belief’s constraint, i.e. a
degree to which it is believed that the information specified by the
Belief is true. AML does not specify either the syntax or semantics of
degree’s values, users are free to define and use their own. For exam-
ple the values can be real numbers, integers, enumeration literals, ex-
pressions, etc.

The specification of the information a Belief represents is expressed
by the owned Constraint (from UML).

When inherited, the owned constraint is overridden.

It is possible to specify attributes and/or operations for a Belief, to rep-
resent its parameters and functions, which can both be used in the
owned constraint as static or computed values.

Attributes

Associations

Notation Belief is depicted as a UML Class with the stereotype <<belief>> and/or
a special icon. If specified, the value of the meta-attribute degree is
depicted as a property string (tagged value) with name ‘degree’,

degree:
ValueSpecification
[0..1]

Specification of the reliability or confidence
in the information specified by the con-
straint meta-association, i.e. a degree to
which the owning MentalSemiEntityType be-
lieves that the information specified by the
Belief is true.
Subsets MentalState::degree.

constraint:
Constraint[0..1]

The specification of the information a Belief
represents.
Subsets UML Namespace::ownedRule.

276 Chapter 12 Mental

placed in the name compartment. The constraint, enclosed with
braces (‘{’ ‘}’), is placed in a special class compartment. See Fig. 12-15.

Presentation
options

Belief can alternatively be depicted as a rectangle with beveled top-left
and bottom-right corners. The stereotype icon and keyword is omit-
ted in this case. See Fig. 12-16.

If not referred to explicitly in the model, the name of a Belief can be
unspecified. In this case the name compartment of such a Belief can
be omitted and only the constraint is specified. See Fig. 12-17.

Style Owned operations, receptions, internal structure of parts and connec-
tors, ports, supported and required interfaces, specification of owned
behaviors, and nested classifiers are not usually specified for Beliefs.

Examples Fig. 12-18 shows a Belief called NearBall, which represents the belief
that ball is nearby. The attribute near specifies what distance in
meters is meant by “near”. Its default value is 1.5, but can be changed
at run time. The constraint specifies that the distance from the ball is
less or equal than the value of near.

Rationale Belief is introduced to model beliefs.

Fig. 12-15 Notation of Belief

Name
<<belief>>

{constraint}

{degree=value}

attribute list

operation list

Fig. 12-16 Alternative notation of Belief—with a special shape

Fig. 12-17 Alternative notation of Belief—omitted name compart-
ment

Name

{constraint}

{degree=value}

attribute list

operation list

{constraint}

12.3 Goals 277

12.3 Goals

Overview The Goals package defines metaclasses used to model goals.

Abstract
syntax

The diagram of the Goals package is shown in Fig. 12-19.

12.3.1 Goal

Semantics Goal is an abstract specialized ConstrainedMentalClass used to model
goals, i.e. conditions or states of affairs, with which the main concern
is their achievement or maintenance. The Goals can thus be used to
represent objectives, needs, motivations, desires, etc.

Commitment of a mental semi-entity to a goal is modeled by con-
tainment of the corresponding Goal instance by the value of the
mental semi-entity's MentalProperty.

The goal to which several mental semi-entities are committed to si-
multaneously represents their common goal.

The meta-attribute degree specifies the relative importance or appro-
priateness of the Goal. AML does not specify either the syntax or se-
mantics of degree’s values, users are free to define and use their own.

Goals can have attributes to specify parameters of their instances, e.g.
the goal “Buy car” can have attributes carType, carColor, or maxPrice.
Goals can have also operations to compute e.g. utility function(s) to

Fig. 12-18 Example of Belief

NearBall

{distanceTo(ball) <= near}

near:Float=1.5

Fig. 12-19 Goals—goal hierarchy

DecidableGoal Und ecidableGoal

Goal
degree : ValueSpecification [0..1] {subsets degree}

ConstrainedMentalClass
(from Mental States)

278 Chapter 12 Mental

determine how valuable the goal is, or operations computing the pa-
rameters of goals, etc.

Note: Different categories of goals used in goal-based requirements
modeling approaches (KAOS [31], [146], NFR [23], [88], GBRAM [5],
etc.)30, can be specified, for instance, by special user-defined tagged
values or by special naming conventions used for Goals, e.g. ‘Main-
tain[Attack]’, ‘Achieve[ScoreGoal]’, ‘Avoid[ConcedeGoal]’. The goal
categories may depend on the domain or methodology used, and
therefore are not defined by AML. Users can define these themselves.
See example in Fig. 12-23.

Attributes

Notation There is no general notation for Goal. The specific subclasses of Goal
define their own notation.

Rationale Goal is introduced to define the common features of all its subclasses
that are used to model concrete types of goals.

12.3.2 DecidableGoal

Semantics DecidableGoal is a specialized concrete Goal used to model goals for
which there are clear-cut criteria according to which the goal-holder
can decide whether the DecidableGoal (particularly its postCondition;
for details see section 12.1.5) has been achieved or not.

Note: DecidableGoal is also called ‘hard goal’ or simply ‘goal’ in some
goal-based requirements modeling approaches (TROPOS [12], [143],
i* [4], [163], [164], GRL [51], [80], KAOS [31], [146], etc.).

Notation DecidableGoal is depicted as a UML Class with the stereotype
<<dgoal>> and/or a special icon, see Fig. 12-20.

If specified, the value of the meta-attribute degree is depicted as a
property string (tagged value) with the name ‘degree’, placed in the
name compartment.

The DecidableGoal rectangle can contain special compartments
<<commit>>, <<pre>>, <<inv>>, <<cancel>>, and <<post>> for the con-
tained MentalConstraints. These compartments may be omitted and
can be specified in any order.

30 Such as achievement, maintenance, avoidance, optimization, improve-
ment, accuracy, etc.

degree:
ValueSpecification
[0..1]

The relative importance of the Goal.
Subsets MentalState::degree.

12.3 Goals 279

If a DecidableGoal also specifies attributes, operations, behaviors, etc.
they can be depicted in standard compartments as specified in UML.

Examples Fig. 12-21 shows the detail of a DecidableGoal named InterceptBall
which represents a desire of a soccer robot to intercept the ball. Key-
word ‘self’ from the owned MentalConstraints is therefore used to re-
fer to the soccer robot (an instance of the SoccerRobot AgentType, see
Fig. 11-7). The goal is committed to whenever the ball is near the ro-
bot. In order to commit to the goal, the robot must be free and its
team cannot already have the ball. If the ball moves away from the ro-
bot, while trying to intercept the ball, the robot abandons this goal.
The goal is successfully accomplished when the soccer robot obtains
the ball. All aforementioned conditions are modeled as owned Men-
talConstraints.

Rationale DecidableGoal is introduced to explicitly model decidable goals.

Fig. 12-20 Notation of DecidableGoal

Name
<<dgoal>>

{constraint}

{degree=value}

<<commit>>

{constraint}
<<pre>>

{constraint}
<<inv>>

{constraint}
<<canel>>

{constraint}
<<post>>

attribute list

operation list

Fig. 12-21 Example of DecidableGoal

InterceptBall

{self.pitch.isNear(self,ball)}

{degree=0.8}

<<commit>>

{not self.team.hasBall(ball) and self.isFree()}
<<pre>>

{not self.pitch.isNear(self,ball)}
<<cancel>>

{self.haveBall(ball)}
<<post>>

ball:Ball

280 Chapter 12 Mental

12.3.3 UndecidableGoal

Semantics UndecidableGoal is a specialized concrete Goal used to model goals
for which there are no clear-cut criteria according to which the goal-
holder can decide whether the postCondition (see section 12.1.5 for
details) of the UndecidableGoal is achieved or not.

Note: UndecidableGoal is also called ‘soft goal’ or ‘softgoal’ in some
goal-based requirements modeling approaches (TROPOS [12], [143],
i* [4], [163], [164], GRL [51], [80], KAOS [31], [146], NFR [23], [88],
etc.).

Notation UndecidableGoal is depicted as a UML Class with the stereotype
<<ugoal>> and/or a special icon, see Fig. 12-22.

If specified, the value of the meta-attribute degree is depicted as a
property string (tagged value) with name ‘degree’, placed in the name
compartment.

The UndecidableGoal rectangle can contain special compartments
<<commit>>, <<pre>>, <<inv>>, <<cancel>>, and <<post>> for the con-
tained MentalConstraints. These compartments may be omitted and
can be specified in any order.

If an UndecidableGoal also contains attributes, operations, behaviors,
etc. they can be depicted in standard compartments as specified in
UML.

Examples Fig. 12-23 shows the fragment of a simple problem decomposition di-
agram for the development of a computer game. The diagram con-
sists solely of UndecidableGoals, where each represents a non-func-
tional requirement. Such diagrams can be used to describe system re-
quirements and their relationships in the form of a mental model.

Fig. 12-22 Notation of UndecidableGoal

Name
<<ugoal>>

{constraint}

{degree=value}

<<commit>>

{constraint}
<<pre>>

{constraint}
<<inv>>

{constraint}
<<cancel>>

{constraint}
<<post>>

attribute list

operation list

12.4 Plans 281

UndecidableGoals are decomposed using Contribution relationships.

Classification of goals into categories (maintain, achieve, provide, or
avoid) was accomplished by application of the naming convention
(for details see section 12.3.1), where the category name precedes the
goal’s object placed in brackets.

Rationale UndecidableGoal is introduced to explicitly model undecidable goals.

12.4 Plans

Overview The Plans package defines metaclasses devoted to modeling plans.

Fig. 12-23 Example of UndecidableGoal

Maintain

Achieve

Maintain

Balance

Maintain Achieve MaintainProvide

Achieve

AchieveAchieve Achieve

AchieveAvoid Achieve

+0.9 ++ +0.8
+0.6

Achieve

++
++

+0.8

+0.8

+0.9

+0.8
+0.9

[AttractUser]

[Community][Support][GoodDesign][GoodPrice]

[Extensibility][GoodPlayability][GoodTechnicalDesign]

[EasyToLearn][PlayerActive][InterestingStory][Appropriate

[GoodHumor][FightingAndThinking][NonLinearity][Stereotypes]

Difficulty]

+0.9
+0.8

+0.5
+0.8

282 Chapter 12 Mental

Abstract
syntax

The diagrams of the Plans package are shown in figures Fig. 12-24 to
Fig. 12-26.

12.4.1 Plan

Semantics Plan is a specialized ConstrainedMentalClass and Activity (from UML),
used to model capabilities of MentalSemiEntityTypes which represents
either:

predefined plans, i.e. kinds of activities a mental semi-entity’s rea-
soning mechanism can manipulate in order to achieve Goals, or

fragments of behavior from which the plans can be composed (al-
so called plan fragments).

Fig. 12-24 Plans—plan

Fig. 12-25 Plans—commit goal action

Fig. 12-26 Plans—cancel goal action

Activity
(from UML)

Plan
degree : ValueSpecification [0..1] {subsets degree}

ConstrainedMentalClass
(from Mental States)

CreateObjectAction
(from UML)

AddStructuralFeatureValueAction
(from UML)

OutputPin
(from UML)

Goal
(from Goals)

MentalProperty
(from Mental States)

InputPin
(from UML)

CommitGoalAction

1

0..1

+goalInstance1
{redefines result}

0..1*

1

*

+goalType 1
{redefines classifier}

1 *

+mental
Property

1

{redefines structuralFeature}

* 10..1

+mental
SemiEntity

1

{redefines object}

0..1

DestroyObjectAction
(from U ML)

InputPin
(from UML)

CancelGoalAction
1..*0..1

+goalInstance

1..*

{redefines target}

0..1

12.4 Plans 283

In addition to UML Activity, Plan allows the specification of commit
condition, cancel condition, and invariant (for details see section
12.1.5), which can be used by reasoning mechanisms31.

For modeling the applicability of Plans, in relation to given Goals, Be-
liefs and other Plans, the Contribution relationship is used.

The meta-attribute degree specifies the relative preference of the Plan.
AML does not specify either the syntax or semantics of degree’s val-
ues, users are free to define and use their own.

Attributes

Constraints 1. Specification of the Constraint referred to by the precondition
meta-association is identical with the specification of the Mental-
Constraint of kind preCondition referred to by the mentalConstraint
meta-association, if the both are specified:

self.precondition->notEmpty() and
self.mentalConstraint->select(kind=#preCondition)->
notEmpty() implies self.precondition.specification =
self.mentalConstraint->select(kind=#preCondition).specification

2. Specification of the Constraint referred to by the postcondition
meta-association is identical with the specification of the Mental-
Constraint of kind postCondition referred to by the mentalCon-
straint meta-association, if the both are specified:

self.postcondition->notEmpty() and
self.mentalConstraint->select(kind=#postCondition)->
notEmpty() implies self.postcondition.specification =
self.mentalConstraint->
select(kind=#postCondition).specification

3. If the context (see UML Behavior::context meta-association) for
Plan is specified, it must be a MentalSemiEntityType:

self.context->notEmpty() implies
self.context.oclIsKindOf(MentalSemiEntityType)

31 UML Activity specifies just pre-condition and post-condition.

degree:
ValueSpecification
[0..1]

The relative preference of the Plan.
Subsets MentalState::degree.

284 Chapter 12 Mental

Notation Plan is depicted as a UML Activity with the stereotype <<plan>> and/or
a special icon, see Fig. 12-27.

If specified, the value of the meta-attribute degree is depicted as a
property string (tagged value) with name ‘degree’, placed near the
Plan name.

If the mental constraints of a Plan need to be displayed explicitly,
they can be shown as stereotyped Constraints (from UML) placed into
the Plan’s rounded rectangle. For this, the stereotypes <<commit>>,
<<pre>>, <<inv>>, <<cancel>>, and <<post>> are used.

If specified, UML standard Constraints precondition and postcondi-
tion, shown as stereotyped constraints <<precondition>> and <<post-
condition>> are not shown because their values are identical to the
MentalConstraints of kind preCondition and postCondition.

Style Usually, the mental constraints of a Plan are specified as hidden infor-
mation, and are not shown in the diagram.

Examples See Fig. 11-101, Fig. 11-120, Fig. 12-29, and Fig. 12-31.

Rationale Plan is introduced to model predefined plans, or fragments of plans
from which the plans can be composed.

12.4.2 CommitGoalAction

Semantics CommitGoalAction is a specialized CreateObjectAction (from UML)
and AddStructuralFeatureValueAction (from UML), used to model the
action of commitment to a Goal.

This action allows the realization of the commitment to a Goal by in-
stantiating the Goal and adding the created instance as a value to the
MentalProperty of the mental semi-entity which commits to the Goal.

Commitment to an existing instance of a Goal can be modeled by
AddStructuralFeatureValueAction (from UML) or by CreateLinkAction
(from UML).

Fig. 12-27 Notation of Plan

<<commit>> {constraint}
{degree=value}

<<plan>>

Name

contained activity nodes

parameters
<<pre>> {constraint}
<<inv>> {constraint}
<<cancel>> {constraint}
<<post>> {constraint}

12.4 Plans 285

The CommitGoalAction specifies:

what Goal is being instantiated (goalType meta-association),

the Goal instance being created (goalInstance meta-association),

the owning mental semi-entity committed to the Goal (mental-
SemiEntity meta-association), and

the MentalProperty, owned by the type of the owning mental
semi-entity, to which the created Goal instance is added (mental-
Property meta-association).

If the MentalProperty referred to by the mentalProperty meta-associa-
tion is ordered, the insertAt meta-association (inherited from the
AddStructuralFeatureValueAction) specifies a position at which to in-
sert the Goal instance.

Because the value meta-association (inherited from UML WriteStruc-
turalFeatureAction) represents the same Goal instance as is already
represented by the goalInstance meta-association, the properties of
the InputPin referred to by the value meta-association are ignored in
CommitGoalAction, and can be omitted in its specification.

Associations

Constraints 1. If the type of the InputPin referred to by the mentalSemiEntity
meta-association is specified, it must be a MentalSemiEntityType:

self.mentalSemiEntity.type->notEmpty() implies
self.mentalSemiEntity.type.oclIsKindOf(MentalSemiEntityType)

goalType: Goal[1] Instantiated Goal.
Redefines UML CreateObjectAction::classifier.

goalInstance:
OutputPin[1]

The OutputPin on which the created Goal in-
stance is placed.
Redefines UML CreateObjectAction::result.

mentalSemiEntity:
InputPin[1]

The InputPin specifying the mental semi-en-
tity committed to the Goal.
Redefines UML StructuralFeatureAction::
object.

mentalProperty:
MentalProperty[1]

The MentalProperty where the created Goal in-
stance is being placed.
Redefines UML StructuralFeatureAction::
structuralFeature.

286 Chapter 12 Mental

2. If the type of the OutputPin referred to by the goalInstance meta-
association is specified, it must conform to the Goal referred to by
the goalType meta-association:

self.goalInstance.type->notEmpty() implies
self.goalInstance.type.conformsTo(self.goalType)

3. If the type of the MentalProperty referred to by the mentalProperty
meta-association is specified, the Goal referred to by the goalType
meta-association must conform to it:

self.mentalProperty.type->notEmpty() implies
self.goalType.conformsTo(self.mentalProperty.type)

4. CommitGoalAction can be performed only by a mental semi-enti-
ty:

self.activity().hostClassifier().oclIsKindOf(MentalSemiEntityType)

Notation CommitGoalAction is shown as a UML Action with the stereotype
<<commit goal>> and/or a special icon, see Fig. 12-28.

Optionally, the name of the committing mental semi-entity, delim-
ited by a period from the name of the MentalProperty referred to by
the mentalProperty meta-association, may be specified in parentheses
below the action’s name. If the MentalProperty is ordered, the value
of the insertAt meta-association can be placed after the MentalProp-
erty’s name in brackets.

If the committing mental semi-entity itself executes the CommitGoal-
Action, it can be identified by the keyword ‘self’ instead of commit-
ting mental semi-entity’s name.

The created Goal instance is specified as an OutputPin. All notational
variations for the UML OutputPin are allowed. The committed Goal is
specified as the type of the OutputPin.

The mandatory InputPin referred to by the value meta-association has
unspecified properties and is not drawn in diagrams.

Examples Fig. 12-29 shows the Plan of the EntityRoleType named Striker (see
Fig. 12-11 for details) to kick a ball. If the striker is near the goal of the
other team, it tries to kick towards the goal by committing to the Goal
called KickGoal. If the striker is not near, it tries to find a teammate
who is near and not offside. If such a teammate exists, the striker tries

Fig. 12-28 Notation of CommitGoalAction

Name
<<commit goal>>

(mentalSemiEntity.mentalProperty[insertAt])

goalInstance:goalType

12.4 Plans 287

to pass the ball to the teammate by committing to the Goal called
PassBall. If such a teammate does not exist, the striker simply tries to
kick the ball away by committing to the Goal called KickBallAway.

Another example of CommitGoalAction is in Fig. 12-31.

Rationale CreateRoleAction is introduced to model commitment actions within
Activities (Plans).

12.4.3 CancelGoalAction

Semantics CancelGoalAction is a specialized DestroyObjectAction (from UML)
used to model de-commitment from goals.

This action allows the realization of de-commitment from a Goal by
destruction of the corresponding Goal instance.

De-commitment from an instance of a Goal that does not need to be
destroyed can be modeled by RemoveStructuralFeatureValueAction
(from UML) or DestroyLinkAction (from UML).

Associations

Fig. 12-29 Example of Plan and CommitGoalAction

[false][true]

Striker::KickingPlan <<pre>> {self.haveBall()}

<<decisionInput>>
self.pitch.isNear(self,otherGoal)

:KickBallAway:KickGoal

[teammate->isEmpty()][teammate->notEmpty()]

<<decisionInput>>
teammate=self.team.players->
first(player|player<>self and
self.pitch.isNear(self,player) and
player.notOffside())

:PassBall

<<post>> {not self.haveBall()}teammate:SoccerRobot

KickBallAway
(self.kickBallAway)

PassBall
(self.passBall)

KickGoal
(self.kickGoal)

goalInstance:
InputPin[1..*]

The InputPins representing the Goal in-
stances to be disposed.
Redefines UML DestroyObjectAction::target.

288 Chapter 12 Mental

Constraints 1. If the types of the InputPins referred to by the goalInstance meta-
association are specified, they must be Goals:

self.goalInstance->forAll(gi | gi.type.->notEmpty() implies
gi.type.oclIsKindOf(Goal))

2. CancelGoalAction can be performed only by a mental semi-entity:

self.activity().hostClassifier().oclIsKindOf(MentalSemiEntityType)

Notation CancelGoalAction is drawn as a UML Action with the stereotype
<<cancel goal>> and/or a special icon, see Fig. 12-30. The cancelled
Goal instances are depicted as InputPins.

Examples Fig. 12-31 shows an overall Plan of the Striker’s activity (for details see
Fig. 12-11). Its main goal is to ScoreGoal and Attack. Both Goals are
committed in parallel.

If the game is interrupted, the striker has to stop its activities, and
therefore both the committed Goals are stopped, until the game con-
tinues.

Rationale CancelGoalAction is introduced to model de-commitment to goals.

Fig. 12-30 Notation of CancelGoalAction

Name
<<cancel goal>>

Fig. 12-31 Example of Plan , CommitGoalAction, and CancelGoalAc-
tion

Striker::OverallScenario <<cancel>> {game is over}

ScoreGoal
(self.scoreGoal)

sg

Attack
(self.attack)

att

Game
interrupted

attsg

Game
continue

Stop striker’s
activities

12.5 Mental Relationships 289

12.5 Mental Relationships

Overview The Mental Relationships package defines metaclasses used to model
relationships between MentalStates which can support reasoning pro-
cesses.

Abstract
syntax

The diagram of the Mental Relationships package is shown in Fig. 12-
32.

12.5.1 Contribution

Semantics Contribution is a specialized MentalRelationship and DirectedRelation-
ship (from UML) used to model logical relationships between Mental-
States and their MentalConstraints.

The manner in which the contributor of the Contribution relationship
(i.e. a MentalState referred to by the contibutor meta-association) in-
fluences its beneficiary (i.e. a MentalState referred to by the beneficiary
meta-association) is specified by values of meta-attributes of the par-
ticular Contribution.

The meta-attribute kind determines whether the contribution of the
contributor’s MentalConstraint of a given kind (specified by the meta-
attribute contributorConstraintKind) is a necessary, sufficient, or
equivalent condition for the beneficiary’s MentalConstraint of a given
kind (specified by the meta-attribute beneficiaryConstraintKind).

The meta-attribute contributorConstraintKind specifies the kind of a
MentalConstraint of the contributor which contributes in some way
to a kind of MentalConstraint of the beneficiary, specified by the ben-
eficiaryConstraintKind meta-attribute. For example, a Contribution can
specify that a postcondition of the contributor contributes in some
way (e.g. in a positive and sufficient way) to the precondition of the

Fig. 12-32 Mental Relationships—contribution

MentalState
(from Mental States)

Contribution
kind : ContributionKind
contributorConstraintKind : MentalConstraintKind [0..1]
beneficiaryConstraintKind : MentalConstraintKind [0..1]
degree : ValueSpecification [0..1] {subsets degree}

1

*

+contributor
1

{subsets source}
*

1

*

+beneficiary
1

{subsets target}

*

MentalRelationship
(fro m Mental States)

DirectedRelationship
(from UML)

ContributionKind
<<enumeration>>

sufficient
necessary
iff

290 Chapter 12 Mental

related beneficiary. For details about possible values of the constraint
kinds see section 12.1.5.

If contributor and/or beneficiary is a Belief, the contributorConstraint-
Kind and/or the beneficiaryConstraintKind meta-attribute is unspeci-
fied. In this case the Belief’s constraint is considered to contribute or
benefit.

If the contributor and/or beneficiary is a Contribution, the contribu-
torConstraintKind and/or the beneficiaryConstraintKind meta-at-
tributes are also unspecified.

The meta-attribute degree can be used to specify the extent to which
the contributor influences the beneficiary. AML does not specify ei-
ther the syntax or semantics of degree’s values, users are free to de-
fine and use their own.

Attributes

Associations

kind:
ContributionKind[1]

Determines whether the contribution of the
contributor’s MentalConstraint of a specified
kind is a necessary, sufficient, or equivalent
condition for the beneficiary’s MentalCon-
straint of a specified kind.

contributorConstraint-
Kind:MentalConstraint-
Kind[0..1]

The kind of the contributor’s MentalCon-
straint which contributes to the kind of the
beneficiary’s MentalConstraint (specified by
the beneficiaryConstraintKind meta-at-
tribute).

beneficiaryConstraint-
Kind:MentalConstraint-
Kind[0..1]

The kind of the beneficiary’s MentalCon-
straint to which the kind of the contributor’s
MentalConstraint (specified by the contribu-
torConstraintKind meta-attribute) contrib-
utes.

degree:
ValueSpecification
[0..1]

Degree of influence.
Subsets MentalState::degree.

contributor:
MentalState[1]

The contributor of the Contribution.
Subsets UML DirectedRelationship::source.

beneficiary:
MentalState[1]

The beneficiary of the Contribution.
Subsets UML DirectedRelationship::target.

12.5 Mental Relationships 291

Constraints 1. If the MentalState referred to by the contributor meta-association
is a Belief or a Contribution, the contributorConstraintKind meta-at-
tribute is unspecified:

self.contributor.oclIsKindOf(Belief) or
self.contributor.oclIsKindOf(Contribution) implies
self.contributorConstraintKind->isEmpty()

2. If the MentalState referred to by the beneficiary meta-association is
a Belief or a Contribution, the beneficiaryConstraintKind meta-at-
tribute is unspecified:

self.beneficiary.oclIsKindOf(Belief) or
self.beneficiary.oclIsKindOf(Contribution) implies
self.beneficiaryConstraintKind->isEmpty()

Notation Sufficient Contribution (i.e. kind=#sufficient) is depicted as an arrow
with double arrowhead, leading from the contributor to the benefi-
ciary. See Fig. 12-33.

Contribution’s degree is depicted as a label (usually an expression)
placed near the arrow line.

The value of the contributorConstraintKind is depicted as a keyword
placed near the Contribution’s tail. The value of the beneficiaryCon-
straintKind is depicted as a keyword placed near the Contribution’s ar-
rowhead. The keywords are specified in section 12.1.5.

Necessary Contribution (i.e. kind=#necessary) is depicted as the suffi-
cient Contribution, but the arrow line is crossed by a short line near
the arrowhead. See Fig. 12-34.

Equivalence (iff) Contribution (i.e. kind=#iff) is depicted by a line with
arrowheads placed at each end. See Fig. 12-35.

Fig. 12-33 Notation of sufficient Contribution

Fig. 12-34 Notation of necessary Contribution

Fig. 12-35 Notation of equivalence (iff) Contribution

constraint kindconstraint kind
Contributor

degree
Beneficiary

constraint kindconstraint kind

degree
Contributor Beneficiary

constraint kindconstraint kind

degree
Contributor Beneficiary

292 Chapter 12 Mental

Presentation
options

A graphical icon for particular MentalConstraintKind can be used in-
stead of textual labels. Alternative notation is depicted in Fig. 12-36.

Examples Contribution as a logical implication. Contribution can be under-
stood as a logical implication between MentalStates or their Mental-
Constraints (if specified). Tab. 12-3 provides interpretation of differ-
ent Contribution kinds using the logical implication.

Note: In this interpretation, the sufficient Contribution leading
from A to B is logically equal to a necessary Contribution lead-
ing from B to A. Even though this property of strictly logical
interpretation may tempt one to use just one kind of Contribu-
tion in models, from the domain perspective it may be re-
quired to use both, sufficient and necessary, Contribution
kinds to express the mental model in a more natural and com-
prehensive way.

Combination of sufficient and necessary Contributions. If a set of
Contributions of the same kind have the same beneficiary and the
value of their beneficiaryConstraintKind meta-attribute (if specified),
their logical interpretations can be combined according to the follow-
ing rules:

contributors of all sufficient Contributions are logically OR-ed to
form the antecedent32 of the resulting implication,
i.e. (contributor1 ... contributorn) beneficiary, and

Fig. 12-36 Alternative notation for MentalConstraintKind used for
Contribution ends: (a) commitCondition, (b) preCondition, (c) com-
mitPreCondition, (d) invariant, (e) cancelCondition, and (f) postCon-
dition.

(a)

(b)

(c)

(d)

(e)

(f)

Contribution Logic interpretation Description

C B C B C is sufficient for B

C B C B C is necessary for B

C B C B C is equivalent with B (C is sufficient
and necessary for B)

Tab. 12-3 Logic interpretation of Contribution. C stands for contribu-
tor, B for beneficiary, denotes logical implication, and logical
equivalence.

32 The antecedent is the operand of the implication which represent the suffi-
cient condition, and the consequent is the operand which represent the neces-
sary condition, i.e. antecedent => consequent.

12.5 Mental Relationships 293

contributors of all necessary Contributions are logically AND-ed to
form the consequent32 of the resulting implication,
i.e. beneficiary (contributor1 ... contributorn).

Operator stands for logical OR (disjunction), and represents logi-
cal AND (conjunction).

According to the aforementioned rules, the model presented in
Fig. 12-37 could be interpreted as follows:

P.pre (G1.commpre G2.commpre)
(G3.post B) P.post

Complex logical relationships. Contributions in combination with
Beliefs can also be used to express more complex logical expressions
between MentalStates.

Fig. 12-38 shows three semantically equivalent model variants, that
could be interpreted as the following logical formula:

((G1.post G2.post) B) P.pre

The expression G1.post denotes postcondition of DecidableGoal G1,
G2.post postcondition of the DecidableGoal G2, B1 represents con-
straints of the Belief B, and P.pre stands for precondition of Plan P1.

The example shows a usage of Beliefs for modeling complex condi-
tions and their possible decomposition. Presented model variants
show different levels of formula decomposition and modeling of con-
stituents explicitly.

Fig. 12-37 Example of combining sufficient and necessary Contribu-
tions

P

G2

G1 G3

B

294 Chapter 12 Mental

Examples of notation and semantics for degree. The degree meta-
attribute can be specified as a numeric value—a real number from in-
terval <-1,1>. Positive numbers represent a positive contribution of the
contribution to the beneficiary, negative numbers represent a nega-
tive contribution. The larger the number is, the more degree of contri-
bution it represents. Zero value represents an indifferent contribution,
i.e. the contributor does not influence the beneficiary at all.

Another method of specifying the value of the degree is by using
symbolic literals with predefined semantics. Tab. 12-4 provides exam-
ples of such literals, their interpretation and mapping to numeric val-
ues.

The both forms can be combined in one model.

Fig. 12-38 Example of modeling complex logical relationships
between MentalStates: (a) no further decomposition of the contribut-
ing Belief, (b) a simple one-level depth decomposition of the contrib-
uting Belief, and (c) a full decomposition of the contributing Belief
into its constituents modeled explicitly.

G1

(a)
P

{(G1.post and G2.post) or B}

(b)
P

B
G2

{(G1.post and G2.post) or B}

G1

(c)
P

B

{(G1.post and G2.post) or B}

{G1.post and G2.post}

G2

12.5 Mental Relationships 295

Note: The formula A A is an axiom (known also as the axi-
om T) of the basic modal logics (KT, KT4, KT5, etc.). If such
logics are used to interpret the modal operators, the degrees
implies (empty string) and contributes strongly (‘++’) are seman-
tically equivalent.

Advanced schemas for the degree can also use more complex expres-
sions.

Contribution as contributor or beneficiary.

The Contribution relationship can be the contributor as well as the
beneficiary of another Contribution. Fig. 12-39 shows an example in
which achievement of the DecidableGoal FillCoffeeMachine contrib-
utes to the precondition of the DecidableGoal PrepareCoffee, but only
if the coffee machine is not damaged. Furthermore, if preparation of
the coffee (by accomplishment of the PrepareCoffee DecidableGoal)
causes it to be drunk (by committing to the Drink DecidableGoal,
which represents drinking of a prepared beverage), it is deduced that
a person committed to these goals may like coffee.

Real-world examples. Fig. 12-40 shows a causal analysis of the Plan
PassBallPlan. The diagram depicts the necessary conditions for the

Value Interpretation

Symbolic Numeric Intuitive Modal logic

(empty) A implies C A C

0 0 C is indifferent to A A (C C)

+ +0.5 A contributes to C A C

++ +1.0 A contributes to C strongly A C

- -0.5 A conflicts with C A C

-- -1.0 A conflicts with C strongly A C

Tab. 12-4 Examples of values of the Contribution’s degree. A indi-
cates implication antecedent and C stands for implication conse-
quent (i.e. A C). The implication here represents the logic interpre-
tation of a Contribution, as defined before. The modal operator
stands for “possible”, and operator for “necessary”. See [152] for
details. Symbol denotes logical negation.

Fig. 12-39 Example of contribution to Contribution, and contributing
Contribution

DrinkPrepareCoffeeFillCoffee

{coffee machine is damaged}

Machine

+

--

{likes coffee}

+

+

296 Chapter 12 Mental

Plan execution, as well as the consequences of its successful accom-
plishment.

The diagram from Fig. 12-40 should be interpreted as a set of the fol-
lowing logical formulas:

PassBallPlan.pre TeammateIsFree
PassBallPlan.pre TeammateIsOffside
PassBallPlan.pre HaveBall.post
PassBallPlan.post HaveBall.post
PassBallPlan.post TeammateHasBall.post
HaveBall.post TeammateHasBall.post
TeammateHasBall.post HaveBall.post

Fig. 12-41 shows an example of the problem decomposition model
aimed at specifying how to win a soccer game. The main Decidable-
Goal of a soccer player WinGame is decomposed into other Decidable-
Goals and Beliefs by means of Contribution relationships.

Fig. 12-40 Example of Contribution used in causal analysis

HaveBall

+

--

TeammateHasBall

TeammateIsOffside

PassBallPlan

-

HaveBall

++
--

++

TeammateIsFree

12.5 Mental Relationships 297

Indifferent Contribution is used to explicitly model independence of
MentalStates and their MentalConstraints. Fig. 12-42 shows an exam-
ple which specifies that scoring a goal (specified by the ScoreGoal’s
post-condition) is independent of the Belief that the player is younger
than 18 years.

Another example of the Contribution can be found in Fig. 12-23.

Rationale Contribution is introduced to model logical relationships between
MentalStates and their MentalConstraints.

Fig. 12-41 Example of Contribution used for problem decomposition
analysis

Fig. 12-42 Example of indifferent Contribution

BallIsNear
OwnGoal

0.5

HaveBall TeammateHasBall

GoalScoringChance

WinGame

ScoreGoal ConcedeGoal

BallIsNear
OtherGoal

TeamHasBall

Opponent NearBall TeammateNearerBall

--

-0.9

-0.5+0.5

--

++ ++

++

++

+0.8+0.9

-- --

NearerBall

ScoreGoal
{player.age < 18}

0

298 Chapter 12 Mental

12.5.2 ContributionKind

Semantics ContributionKind is an enumeration which specifies possible kinds of
Contributions.

AML supports sufficient, necessary and equivalent (iff) contribution
kinds. If needed, the set of ContributionKind enumeration literals can
be extended.

Enumeration
values

Tab. 12-5 specifies ContributionKind’s enumeration literals and their
semantics.

Rationale ContributionKind is introduced to define possible kinds of Contribu-
tions.

Value Semantics

sufficient The contributor or its MentalConstraint of the given kind (if
specified) is a sufficient condition for the beneficiary or its
MentalConstraint of the given kind (if specified).

necessary The contributor or its MentalConstraint of the given kind (if
specified) is a necessary condition for the beneficiary or its
MentalConstraint of the given kind (if specified).

iff (if and only if) The contributor and beneficiary or their Men-
talConstraints of the given kinds (if specified) are equivalent,
i.e. the contributor or its MentalConstraint of the given kind
(if specified) is a sufficient and necessary condition for the
beneficiary or its MentalConstraint of the given kind (if speci-
fied).

Tab. 12-5 ContributionKind’s enumeration literals

Chapter 13

Ontologies

Overview The Ontologies package defines the metaclasses used to model ontolo-
gies. AML allows the specification of class-level as well as instance-
level ontologies.

Package
structure

Fig. 13-1 depicts the package diagram of the Ontologies package.

13.1 Basic Ontologies

Overview The Basic Ontologies package defines the generic means for modeling
of ontologies in AML, namely, ontology classes and their instances,
relationships, constraints, and ontology utilities. Ontology models
are structured by means of the ontology packages.

Abstract
syntax

The diagram of the Basic Ontologies package is shown in Fig. 13-2.

Fig. 13-1 Ontologies—package structure

Basic
Ontologies

Fig. 13-2 Basic Ontologies—all elements

Package
(from UML)

Ontology

Class
(from UML)

OntologyClass OntologyUtility

300 Chapter 13 Ontologies

13.1.1 Ontology

Semantics Ontology is a specialized Package (from UML) used to specify a single
ontology. By utilizing the features inherited from UML Package
(package nesting, element import, package merge, etc.), Ontologies
can be logically structured.

Notation Ontology is depicted as a UML Package with the stereotype
<<ontology>> and/or a special icon, see Fig. 13-3.

Style The ontology stereotype is usually displayed as decoration (a small
icon placed in upper-right corner) of the original UML Package sym-
bol.

Examples Fig. 13-4 shows an example of importing and merging of ontologies
in the form of a package diagram.

Rationale Ontology is introduced to specify a single ontology.

13.1.2 OntologyClass

Semantics OntologyClass is a specialized Class (from UML) used to represent an
ontology class (called also ontology concept or frame).

Attributes and operations of the OntologyClass represent its slots. On-
tology functions, actions, and predicates belonging to a concept
modeled by an OntologyClass are modeled by its operations.

Fig. 13-3 Notation of Ontology

Name
<<ontology>> O

Fig. 13-4 Example of Ontology package diagram

Medical O
Ontology

Diagnosis O
Ontology

Employment O
Ontology

Medical Processes O
Ontology

Medical Equipment O
Ontology

<<merge>> <<merge>> <<merge>> <<merge>>

<<import>>

Medical Staff O
Ontology

13.1 Basic Ontologies 301

OntologyClass can use all types of relationships allowed for UML Class
(Association, Generalization, Dependency, etc.) with their standard
UML semantics.

Even if UML predefines the “facet” used for attributes and operations
(i.e. the form of metainformation that can be specified for them, for
example, name, multiplicity, list of parameters, return value, or stan-
dard tagged values), the user is allowed to extend this metainforma-
tion by adding specific tagged values.

OntologyClass can also be used as an AssociationClass.

Notation OntologyClass is depicted as a UML Class with the stereotype
<<oclass>> and/or a special icon, see Fig. 13-5.

Examples Fig. 13-6 shows a fragment of the Medical Staff Ontology built up
from several OntologyClasses.

Fig. 13-5 Notation of OntologyClass

CName
<<oclass>>

attribute list

operation list

parts

behaviors

Fig. 13-6 Example of OntologyClass

ontology Medical Staff Ontology

CAnesthetistCSurgeon

CAnesthesia

CAnesthesia
Nurse

CWard
Nurse

insuranceType

CPatient

CSurgeon

name

CPerson

CNurse

CClinic

department

surgeon *

1 department

anesthetist *

1 department

nurse*

1

skills

CDoctor

302 Chapter 13 Ontologies

Rationale OntologyClass is introduced to model an ontology class (also called
concept or frame).

13.1.3 OntologyUtility

Semantics OntologyUtility is a specialized Class (from UML) used to cluster glo-
bal ontology constants, ontology variables, and ontology functions/ac-
tions/predicates modeled as owned features. The features of an Ontolo-
gyUtility can be used by (referred to by) other elements within the
owning and importing Ontologies.

There can be more than one OntologyUtility classes within one Ontol-
ogy. In such a way different OntologyUtilities provide clusters for logi-
cal grouping of their features.

OntologyUtility has no instances, all its features are class-scoped.

Notation OntologyUtility is depicted as a UML Class with the stereotype <<outil-
ity>> and/or a special icon, see Fig. 13-7.

Examples Fig. 13-8 shows a Goniometry ontology utility. It contains the PI con-
stant and three ontology functions sin(x), cos(x), and tan(x). The Go-
niometry ontology utility is defined within the Math Ontology.

Rationale OntologyUtility is introduced to cluster global ontology constants, on-
tology variables, and ontology functions/actions/predicates.

Fig. 13-7 Notation of OntologyUtility

UName
<<outility>>

attribute list

operation list

parts

behaviors

Fig. 13-8 Example of OntologyUtility

PI=3.14 {readOnly}

UGoniometry

sin(x):Real
cos(x):Real
tan(x):Real

ontology Math Ontology

Chapter 14

Model Management

Overview The Model Management package defines the generic-purpose model-
ing constructs which can be used to structure AML models and thus
manage their complexity and understandability.

Package
structure

The package diagram of the Model Management package is depicted
in Fig. 14-1.

14.1 Contexts

Overview The Contexts package defines the metaclasses used to logically struc-
ture models according to situations that can occur during a system’s
lifetime and to model elements involved in handling those situa-
tions.

Abstract
syntax

The diagram of the Contexts package is shown in Fig. 14-2.

Fig. 14-1 Model Management—package structure

Contexts

Fig. 14-2 Contexts—context

Package
(from UML)

State
(from UML)

Constraint
(from UML)

Context
* 0.. 1*

+situationState

0.. 1

0..1
0..1

+situationConstraint

0..1

{ subsets ownedRule }

0..1

304 Chapter 14 Model Management

14.1.1 Context

Semantics Context is a specialized Package (from UML) used to contain a part of
the model relevant for a particular situation. The situation is specified
either as a Constraint (from UML) or an explicitly modeled State (from
UML) associated with the Context.

Associations

Constraints 1. Either the situationState or the situationConstraint meta-associa-
tion can be specified:

self.situationState->notEmpty() xor
self.situationContext->notEmpty()

Notation Context is depicted as a UML Package with the stereotype <<context>>
and/or a special icon, see Fig. 14-3.

The name of the State referred to by the situationState meta-associa-
tion, or the specification of the Constraint referred to by the situation-
Constraint meta-association may be placed after or below the Con-
text’s name.

If the situation is specified as a State, it uses the following format:

‘[’ state_name ‘]’

The state_name represents the name of the State referred.

If the situation is specified as a Constraint, it uses the syntax of Con-
straint as defined in UML—a text string in braces (‘{’ ‘}’).

Presentation
options

Context can also be depicted as a dashed large rounded rectangle with
a small rectangle (a “tab”) attached to the top left side of the large
rounded rectangle.

If the members of the Context are not shown, the name and the situa-
tion is placed within the large rounded rectangle, see Fig. 14-4 (a).

situationState:
State[0..1]

The State determining the situation for the
Context.

situationConstraint:
Constraint[0..1]

The Constraint determining the situation for
the Context.
Subsets UML Namespace::ownedRule.

Fig. 14-3 Notation of Context

Name
<<context>>

situation

14.1 Contexts 305

If the members of the Context are shown within the large rounded
rectangle, the name and the situation is placed within the tab, see
Fig. 14-4 (b). The visibility of a Context member may be indicated as
for UML Package. Members may also be shown by branching lines
(“nesting” relationship) to member elements, drawn outside the
package, for details see [104].

Examples Fig. 14-5 shows the Context used to describe the substitution of soccer
players. It contains the algorithm of substitution, interaction of enti-
ties taking part in substitution, as well as definition of BehaviorFrag-
ments defining the substitution-specific Capabilities of affected Entity-
RoleTypes.

The Usage and ElementImport relationships (both from UML) can be
used to model participation of elements in Contexts. Fig. 14-6 demon-
strates application of the Usage relationships to depict dependency of
EntityRoleTypes on particular Contexts. Each Context may define the
Capabilities, Interactions, provided and used services, StateMachines,
Activities, social relationships, etc. of the related EntityRoleTypes, spec-
ified for the referred situation. The EntityRoleTypes (and possibly also
other modeling elements) are then composed of situation-specific
parts. This kind of situation-based decomposition enables to specify
complex behavior and structural features of modeling elements in a
flexible and comprehensive way.

Fig. 14-4 Alternative notations of Context: (a) members are hidden,
(b) members are shown.

Name
situation

(a) (b)

context
members

Name situation

Fig. 14-5 Example of defining Context

Substitution [Match::Substitution]

SubstitutionAlgorithm sd SubstitutionInteraction

SubstitutionForCoach

prepareSubstitution()
selectSubstitutedPlayers()
controlSubstitution()

SubstitutionForReferee

registerSubstitution()
superviseSubstitution()

SubstitutionForPlayer

prepareForSubstitution()
exit()
enter()

Roles::Player Roles::Coach Roles::Referee

1
substitution

1
substitution

1
substitution

306 Chapter 14 Model Management

Rationale Context is introduced to offer the possibility to logically structure
models according to the situations which can occur during a system's
lifetime and to model elements involved in handling those situa-
tions.

Fig. 14-6 Example of using Contexts

Player

CoachReferee

Game Opening SubstitutionPenalty Offside

<<use>><<use>><<use>><<use>>

<<use>><<use>><<use>><<use>>

<<use>>

Chapter 15

UML Extension for AML

Overview The UML Extension for AML package adds the meta-properties defined
in the AML Kernel package to the standard UML 2.0 Superstructure
metaclasses. It is a non-conservative extension of UML, and is an op-
tional part of the language.

Abstract
syntax

The diagram of the UML Extension for AML is shown in Fig. 15-1.

15.1 Extended Actor

Semantics Actor, being a specialized AutonomousEntityType, can:

own MentalProperties,

have Capabilities,

be decomposed into BehaviorFragments,

provide and/or use services (see section 11.4),

observe and/or effect its environment (see section 11.5),

play entity roles (see section 10.5),

participate in social relationships (see section 10.5), and

specify values of the meta-attributes defined by the Socialized-
SemiEntityType.

Fig. 15-1 UML Extensions for AML—UML element extensions

AutonomousEntityType
(from Entities)

Capability
(from Basic Behaviors)

Actor
(from UM L)

BehavioralFeature
(from UML)

Behavior
(from UML)

308 Chapter 15 UML Extension for AML

Examples Fig. 15-2 shows an Actor called Player which represents a user of an
RPG (Role Playing Game) computer game. Its goal, to win the game,
is modeled by a MentalAssociation with the WinGame DecidableGoal.
Additionally, the Player can either play an entity role of a hero (mod-
eled by the Hero EntityRoleType) or a creature (modeled by the Crea-
ture EntityRoleType).

Rationale Extension of UML Actor is introduced to allow the modeling of Actors
as AutonomousEntityTypes.

15.2 Extended BehavioralFeature

Semantics BehavioralFeature, being a specialized Capability, can in addition to
UML BehavioralFeature also specify meta-associations: inputs, out-
puts, pre-conditions, and post-conditions.

Notation See section 11.1.2.

Examples The Operation33 (from UML) shoot() of the SoccerRobot AgentType
specifies pre- and post-conditions, see Fig. 15-3.

Fig. 15-2 Example of extended Actor

Player

1

winGame

<<mental>>
WinGame

0..1
{degree=1.0}

CreatureHero

0..1
creatureRole

0..1
heroRole

33 Operation is a specialized BehavioralFeature.

Fig. 15-3 Example of extended BehavioralFeature

SoccerRobot

shoot(ball)

<<precondition>>
{self.haveBall}

<<postcondition>>
{not self.haveBall and
ball.position <> ball.position@pre}

15.3 Extended Behavior 309

The pre-condition constrains the soccer robot invoking the Operation
such that it must have the ball, and the post-condition specifies that
after successful execution of the shoot() Operation, the soccer robot
no longer possesses the ball and the ball will have changed its posi-
tion.

Rationale The extension of BehavioralFeature is introduced to unify common
meta-attributes of BehavioralFeature and Behavior in order to refer to
them uniformly e.g. while reasoning.

15.3 Extended Behavior

Semantics Behavior, being a specialized Capability, can in addition to UML Be-
havior also specify meta-associations: inputs, outputs, pre-conditions,
and post-conditions.

Notation See sections 11.1.2 and 12.4.1.

Examples The Activity (from UML) called SubstitutionAlgorithm, shown also in
Fig. 14-5, can specify the pre- and post-conditions, see Fig. 15-4.

For other examples see Fig. 11-101 and Fig. 12-29.

Rationale Extension of Behavior is introduced to unify common meta-attributes
of BehavioralFeature and Behavior in order to refer to them uniformly
e.g. while reasoning.

Fig. 15-4 Example of extended Behavior

SubstitutionAlgorithm
<<precondition>> {coach wants to substitute}
<<postcondition>> {players are substituted}

Chapter 16

Diagrams

16.1 Diagram Frames

AML extends the UML 2.0 notation of the diagram frames by:

an alternative syntax of the heading of the diagram frame, and

the possibility to explicitly specify the list of template parameters
for diagram frames which represent templates.

Fig. 16-1 depicts the notation of the AML diagram frame.

Heading The heading of the diagram frame has the following syntax:

heading ::= [kind][owner][‘::’diagram-name][property-string]

The kind is the type and the owner is the name (also possibly contain-
ing parameters, the type of the return value, binding information,
etc.) of the namespace enclosing, or the model element owning, ele-
ments in the diagram (as defined by UML [104]). The diagram-name is
the name of the diagram and the property-string specifies the tagged
values of the namespace enclosing, or the model element owning, el-
ements in the diagram.

If needed, the set of MentalConstraintKind enumeration literals can be
extended.

Fig. 16-1 Diagram frame notation

heading
template parameters

content area

312 Chapter 16 Diagrams

AML extends the set of UML diagram frame kinds, see Tab. 16-1. If
needed, this set can be extended also by other diagram frame kinds
(e.g. for new modeling elements added by users).

Template
parameters

AML frames representing the templates (parameterized elements) can
explicitly specify the list of TemplateParameters (from UML) of the
represented element. The list of TemplateParameters is placed in a
dashed rectangle in the upper right corner of the diagram frame.

To enable logical grouping of the TemplateParameters, their subsets
can be depicted in the form of stereotyped lists, or placed into sepa-
rate compartments. Both possible notations are depicted in Fig. 16-2.
The stereotypes of parameter lists (i.e. <<stereotype X>> and
<<stereotype Y>> in the figure) identify application of the subsequent
TemplateParameters.

Name Short form Type of owner

agent AgentType

resource res ResourceType

environment env EnvironmentType

organization unit orgu OrganizationUnitType

role EntityRoleType

agent execution envi-
ronment

aee AgentExecutionEnvironment

ontology ont Ontology

ontology class oclass OntologyClass

behavior fragment bf BehaviorFragment

interaction protocol ip InteractionProtocol

service specification sspec ServiceSpecification

service protocol sp ServiceProtocol

perceptor type pct PerceptorType

effector type eft EffectorType

plan Plan

context ctx Context

actor Actor (from UML)

Tab. 16-1 AML-specific diagram kinds

16.2 Diagram Types 313

16.2 Diagram Types

AML extends the set of diagram types defined by UML with the fol-
lowing diagram types:

Mental Diagram
A specialized Class Diagram (from UML) used to capture mental
attitudes of mental semi-entities in terms of MentalStates, i.e.
Goals, Plans, Beliefs and MentalRelationships. Mental Diagrams can
be owned either by an MentalSemiEntityType to express its mental
model, or by a Package (from UML) to express a shared mental
model. For examples see Fig. 12-37 to Fig. 12-42.

Goal-Based Requirements Diagram
A specialized Mental Diagram used to capture goal-based require-
ments. It usually contains specification of the system stakehold-
er’s mental attitudes concerning the system modeled, and their
relationships to the other elements of the system model. For an
example see Fig. 12-23.

Society Diagram
A specialized Class Diagram (from UML) used to capture the glo-
bal view of the multi-agent system’s architecture in terms of Enti-
tyTypes (e.g. AgentTypes, ResourceTypes, EnvironmentTypes, Orga-
nizationUnitTypes), EntityRoleTypes, and their relationships (e.g.
all kinds of UML relationships, SocialAssociations, PlayAssocia-
tions, Perceives and Effects dependencies, ServiceProvisions and Ser-
viceUsages). For examples see Fig. 10-11, Fig. 10-20, Fig. 10-33,
Fig. 10-37, and Fig. 10-40.

Entity Diagram
A specialized Composite Structure Diagram (from UML) used to
capture the details of the internal structure of an EntityType (in
terms of its owned Features, Behaviors and Ports), played EntityRo-
leTypes, and related ServiceProvisions and ServiceUsages. For exam-

Fig. 16-2 Grouping of template parameters: (a) template parameters
in a stereotyped list, and (b) template parameters in compartments.

(a) (b)

<<stereotype Y>>
template parameter n

<<stereotype X>>
template parameter 1

template parameter n+1

template parameter 2

template parameter n

template parameter 1

template parameter n+1

template parameter 2

...

...

...

...

314 Chapter 16 Diagrams

ples see Fig. 10-5, Fig. 10-19, Fig. 10-21, Fig. 10-32, Fig. 11-7 part
(a), Fig. 11-75, and Fig. 11-98.

Service Diagram
A specialized Composite Structure Diagram (from UML) used to
show specification of a service in terms of a ServiceSpecification
and owned ServiceInteractionProtocols. For examples see Fig. 11-
68, and Fig. 11-73.

Ontology Diagram
A specialized Class Diagram (from UML) used to show a specifica-
tion of an ontology in terms of Ontologies, OntologyUtilities and
OntologyClasses together with their mutual relationships. For ex-
amples see Fig. 13-4, Fig. 13-6, and Fig. 13-8.

Behavior Decomposition Diagram
A specialized Class Diagram (from UML) used to show Behavor-
Fragments, owned Capabilities, and their mutual relationships. For
an example see Fig. 11-7 part (b).

Protocol Sequence Diagram
A specialized Sequence Diagram (from UML) used to show the
specification of an InteractionProtocol in the form of a Sequence
Diagram. For an example see Fig. 11-48.

Protocol Communication Diagram
A specialized Communication Diagram (from UML) used to show
the specification of an InteractionProtocol in the form of a Com-
munication Diagram. For an example see Fig. 11-49.

Service Protocol Sequence Diagram
A specialized Protocol Sequence Diagram used to show the specifi-
cation of a ServiceProtocol in the form of Sequence Diagram. For
an example see Fig. 11-71.

Service Protocol Communication Diagram
A specialized Protocol Communication Diagram used to show the
specification of a ServiceProtocol in the form of Communication
Diagram. For an example see Fig. 11-72.

MAS Deployment Diagram
A specialized Deployment Diagram (from UML) used to show de-
ployment of a multi-agent system to a physical environment and
structural aspects of mobility. For examples see Fig. 10-47, Fig. 10-
48, Fig. 10-55, and Fig. 11-117.

Please note that this taxonomy provides a logical organization for the
various major kinds of diagrams. However, it does not preclude the
mixing of different kinds of diagram types, as one might do when
combining structural and behavioral elements (for instance, showing
a state machine nested inside an internal structure). Consequently,

16.2 Diagram Types 315

the distinction between the various kinds of diagram types are not
strictly enforced.

All the specialized Class Diagrams and the Entity Diagram can have
two forms: the type and the instance. The instance variations of the
diagrams are identified by the word ‘Object’ in their names, for exam-
ple, Mental Object Diagram, or Society Object Diagram.

The diagram hierarchy is depicted in Fig. 16-3.

Fig. 16-3 Taxonomy of AML diagrams

Class Diagram
(from UML Diagrams)

Mental
Diagram

Goal-based Requirements
Diagram

Society
Diagram

Entity
Diagram

Composite Structure Diagram
(from UML Diagrams)

Service
Diagram

Protocol Sequence
Diagram

Sequence Diagram
(from UML Diagrams)

Protocol Communicat ion
Diagram

Communication Diagram
(from U ML Diagrams)

Ontology
Diagram

Behavior Decomposition
Diagram

Service Protocol
Sequence Diagram

Service Protocol
Communication Diagram

Chapter 17

Extension of OCL

17.1 New Operators

Formal models of MAS usually use different types of modal family
logics to describe the system. Our intention is to allow such expres-
sions to be used within OCL expressions.

AML defines a set of operators used to extend the OCL Standard Li-
brary [100] to include expressions belonging to modal logic, deontic
logic, temporal logic, dynamic logic, epistemic logic, BDI logic, etc.
For details see [147] and [152].

Tab. 17-1 summarizes operators added to OCL.

Operator Semantics Known as

Modal Logic

possible(p : Boolean) : Boolean p is possible.

necessary(p : Boolean) : Boolean p is necessary.

Deontic Logic

obliged(p : Boolean) : Boolean p is obliged. Oblp

permitted(p : Boolean) : Boolean p is permitted. Perp

Temporal Logic

until(p : Boolean,q : Boolean) :
Boolean

p holds until q is valid. pUq

past(p : Boolean) : Boolean q held in past. Pq

future(p : Boolean) : Boolean p holds sometimes in the
future.

Fp

afuture(p : Boolean) : Boolean p holds always in the future. Gp

next(p : Boolean) : Boolean p holds in the next moment. Xp, Op

Dynamic Logic and KARO

e.ability(c : Capability) : Boolean Mental semi-entity e is able
to perform the capability c.

Aec

Tab. 17-1 New OCL operators (1/2)

p

p

318 Chapter 17 Extension of OCL

e.opportunity(c : Capability,
p : Boolean) : Boolean

Mental semi-entity e has the
opportunity to perform the
capability c, and doing so
leads to p.

<doec>p

e.possibility(c : Capability,
p : Boolean) : Boolean

If the opportunity to do c is
indeed present, doing so
leads to p.

[doec]p

e.pracPoss(c : Capability,
p : Boolean) : Boolean

Mental semi-entity e has the
opportunity and the ability
to perform c, and doing so
leads to p.

PracPosse
(c, p)

e.can(c : Capability, p : Boolean) :
Boolean

Mental semi-entity e knows
that performing c constitutes
a practical possibility to
bring about p.

Cane(c, p)

Epistemic Logic

e.knows(p : Boolean) : Boolean Mental semi-entity e knows
that p is true.

eKp, Ke p

G.cknows(p : Boolean) : Boolean p is a common knowledge
among mental semi-entities
in the set G.

EG p

e.uncertain(p : Boolean) : Boolean Mental semi-entity e is
uncertain of the truth of p. e
neither believes p nor its
negation, but believes that p
is more likely to be true than
its negation.

BDI Logic

e.believes(p : Boolean) : Boolean Mental semi-entity e believes
that p is true.

eBelp,
Bele p

e.desires(p : Boolean) : Boolean Mental semi-entity e desires p
to become true.

eDesp

e.intends(p : Boolean) : Boolean Mental semi-entity e intends
p to become true and will
plan to bring it about.

eIntp

Other operators

e.happens(c : Capability) :
Boolean

Mental semi-entity e cur-
rently preforms the capabil-
ity c.

e.done(c : Capability) : Boolean Mental semi-entity e has just
finished the execution of the
capability c.

e.achieved(g : Goal) : Boolean Mental semi-entity e has just
achieved the goal g.

Operator Semantics Known as

Tab. 17-1 New OCL operators (2/2)

17.1 New Operators 319

Examples In the following example the expression utilizing the extension to
OCL has been used to specify that possession of the ball can lead to
scoring a goal.

(TeamHasBall.post) implies (possible(ScoreGoal.post))

DecidableGoals TeamHasBall and ScoreGoal are described in Fig. 12-
41.

Another example states that if an agent believes that its team does not
possess the ball, it switches to the defending strategy.

(self.believe(not TeamHasBall.post)) implies
(next(self.happens(Strategy::defend())))

BehaviorFragment Strategy and its Capability defend() is described in
Fig. 11-7.

Part IV

Final Remarks

This part provides a summary of the achieved results and outlines the
possible directions for the further development and application of
AML.

Chapter 18

Conclusions

18.1 Context of the Work

Agent-oriented software engineering is a new software engineering
paradigm that has appeared in recent years. It is a promising ap-
proach to the development of distributed, open, heterogeneous,
highly dynamic, and intelligent systems. One of the current areas of
interest is the specification and dissemination of agent-based devel-
opment methodologies that provide software engineers with the
means to create organized, repeatable and high-quality process for
the development of multi-agent systems.

One very important aspect of a methodology, directly influencing its
applicability and usability, is the set of underlying concepts used to
represent and model the developed system. These concepts must be
reflected by both the methodology process and used modeling lan-
guage(s). In order to capture specific features of agent-based systems,
specific modeling languages and supporting methodologies must
also be created.

Therefore, the work of AOSE is now largely concentrated on the fol-
lowing tasks:

Definition of a unified, general-purpose MAS metamodel(s).
The metamodel is intended to specify the fundamental architec-
tonic, behavioral, and mental concepts used to specify an abstract
MAS.

Specification of unified general-purpose MAS modeling lan-
guage(s).
Based on the concepts from MAS metamodel(s), an agent-oriented
modeling language is defined. It is used to model MAS applica-
tions in a concrete syntax and semantics.

Creation of MAS development methodologies.
MAS development methodologies lead developers in the analysis,

324 Chapter 18 Conclusions

design, construction, deployment, testing, administration, etc. of
systems based on MAS concepts.

18.2 Solution

Goals of the
work

This work is situated within the context of the aforementioned
AOSE’s tasks. The goal was to design and specify a semi-formal visual
modeling language for specifying, modeling and documenting sys-
tems in terms of concepts drawn from MAS theory. The Agent Model-
ing Language (AML)—the result of this work—was required to over-
come the deficiencies of the current state-of-the-art and practice in
the area of MAS modeling languages, namely: insufficient documen-
tation of modeling languages, the use of proprietary and/or non-intu-
itive modeling constructs, limited scope, mutual incompatibility, in-
sufficient support by CASE tools, etc. AML is intended to be a ready-
to-use, complete and highly expressive modeling language suitable
for the industrial development of real-world software solutions based
on multi-agent technologies. Further requirements put on AML are
specified in Chapter 3.

Analysis of
agent-

oriented
modeling
languages

The starting point for the development of our modeling language was
to obtain the necessary know-how from the area of MAS and agent-
oriented modeling in particular. Apart from studying the relevant
theories, specification and modeling approaches, abstract MAS mod-
els, technologies, and available agent-based solutions, the main
source of inspiration was drawn from existing agent-oriented model-
ing languages. The most relevant ones have been identified herein,
and by their analysis we have produced a detailed appraisal of their
scope, underlying concepts, used modeling techniques and mecha-
nisms, strengths, and weaknesses. A short summary of the selected
agent-oriented modeling languages, each of which is a significant
contributor to the area of agent-oriented modeling, is provided in
Chapter 2.

Stating
requirements

Enlightened by the discovered facts, we set forth the generally appli-
cable quality criteria of a MAS modeling language, which were then
used as the fundamental requirements in designing AML. These are
discussed in Chapter 3. The stated requirements are specified in a suf-
ficiently generic manner that they can be used as general rules for de-
signing any (software) modeling and specification language.

Conceptual
MAS

metamodel

Based on analysis of the modeled MAS aspect, we defined the basic
MAS modeling concepts and created the MAS metamodel, which
forms a conceptual basis for the design of AML. The conceptual MAS
metamodel is described in Chapter 5. Even though the metamodel is

18.3 Challenges 325

relatively simple, it can sufficiently explain the underlying AML con-
cepts.

AML In combination with the UML 2.0 metamodel, we used the previously
defined MAS concepts to define the AML modeling constructs. The
abstract syntax and semantics of AML are specified in the AML meta-
model. Based on the metamodel we also defined the language’s nota-
tion, used to specify its concrete syntax. The AML metamodel and no-
tation represent the core of the language specification.

We also extended the basic set of UML diagram types with additional
ones, to provide agent-specific views of the system model. Another
achievement of AML is the definition of a set of operators extending
the OCL Standard Library [100] with operators from modal logic, de-
ontic logic, temporal logic, dynamic logic, epistemic logic, BDI logic,
etc. These operators allow the specification of OCL constraints based
on different types of modal family logics, that provide more natural,
and commonly used, means for specification of MASs.

The fundamental AML modeling principles and the rational behind
them are discussed in Chapter 6, and a detailed specification of the
language is provided in Part III.

In addition to the AML core language specification (i.e. the meta-
model and notation), we have also defined two UML profiles, the
UML 1.* Profile for AML and the UML 2.0 Profile for AML, to specify
AML as standard extensions of UML 1.* and 2.0 respectively. The de-
scription of the AML profiles can be found in [18].

18.3 Challenges

During our work we had to cope with several fundamental problems,
and we were also frequently forced to create detours to apparent dead
ends. Here follows a summary of the most critical problems and dead
ends.

One of the problems we faced from the beginning was the sheer com-
plexity of the problem domain. DAI, MAS, and AOSE in particular,
are interdisciplinary areas influenced by many other scientific and
engineering disciplines, such as artificial intelligence, artificial life,
social sciences, software engineering, computer science, biology, eco-
nomics, robotics, etc. In each of these disciplines we identified a large
number of theories and engineering approaches relevant to the con-
text of AML. As a consequence, we had to study many theories, theo-
retical MAS models, specification and modeling languages (used in
software engineering, artificial intelligence, computer science, logic,
etc.), principles and selected areas of sociology, AI, robotics, some sys-

326 Chapter 18 Conclusions

tem engineering solutions, technologies, etc. For example, we
learned the details of more than 40 different specification languages.

The second problem was conceptual divergency of used AML
sources. Unfortunately, many of the AML sources use different princi-
ples, concepts and techniques. To harmonize such divergent ap-
proaches into a homogenous, consistent framework of AML concepts
and metamodel was a very complex task requiring a considerable
amount of conceptual and analytical work.

Another challenge was to harmonize MAS concepts with object-ori-
ented modeling mechanisms used in UML. In order to utilize the
well-defined UML modeling framework for modeling MASs, two para-
digms, object-oriented and agent-oriented, had to be harmonized.
We based our solution on the proposition that the agent-oriented
paradigm is an extension of the object-oriented paradigm. In a sim-
plified view, agents represent special objects with additional features,
such as autonomy, situatedness, reactivity, proactiveness, social abil-
ity, etc. By identifying the “essence of agent orientation” and express-
ing it in terms of concrete technical concepts, we were able to design
the AML modeling mechanisms and incorporate them into the UML
metamodel. However, this process was not trivial.

In certain cases the default UML semantics is in contrast to MAS
principles (e.g. the coupling of a message reception with the trig-
gered behavior). It was necessary to identify these cases and provide
modifications to the UML semantics and/or to provide certain model-
ing “workarounds” (e.g. to provide alternative ways of modeling the
same concept). To be able to identify such problems and to design
their solutions properly, we had to understand all nuances of the
UML semantics and also elaborate the AML modeling mechanisms at
a very fine level of detail. This amounted to an enormous volume of
work because, for instance, the UML 2.0 Superstructure Specification
[104] is approximately 800 pages, and the UML metamodel itself con-
tains 295 metaclasses.

In the design of AML we often faced the problem of contrary require-
ments and finding balanced, satisfactory solutions. For instance, we
had to decide between completeness (i.e. coverage of as many aspects
of MAS as possible, resulting in a large number of modeling ele-
ments) vs. simplicity (i.e. providing few comprehensible easy-to-use
modeling elements), precise semantics vs. understandability, generic
(i.e. independent of any particular theory, software development pro-
cess or implementation environment,) vs. applicable in modeling
real technologies (i.e. technology-specific), formal specification (rep-
resented e.g. by mathematical expressions with non-trivial semantics)
vs. semi-formal visual language (using easy-to-learn, but possibly am-
biguous and/or imprecise, pictorial notation), etc.

18.4 Results 327

Last but not least, an additional problem faced in designing AML was
the complexity of the AML specification. Many concepts had to be
organized into one consistent modeling framework and properly doc-
umented. The metamodel contains 86 metaclasses, from which 71
are concrete, i.e. they represent tangible modeling elements that can
be used in user’s models, and therefore additionally must define no-
tations.

18.4 Results

Goal
achievement

summary

Let us at this point analyze the accomplishments of the goals stated in
section 1.2.

The most crucial accomplishment is that we have achieved the cen-
tral goal of the work to define a semi-formal visual modeling lan-
guage—AML—for specifying, modeling and documenting systems in
terms of concepts drawn from MAS theory.

AML represents a consistent framework for modeling applications
that embody and/or exhibit characteristics of multi-agent systems. It
integrates best modeling practices and concepts from existing agent
oriented modeling and specification languages (they are listed in
Chapter 4) into a unique framework built on the foundations of UML
2.0 and OCL 2.0. AML is also specified in accordance with the OMG
modeling frameworks MOF 2.0 and Model-Driven Architecture (MDA).

The structure of the language definition combined with the
MDA/MOF/UML “metamodeling technology” (UML profiles, first-
class metamodel extension, etc.) gives AML the advantage of natural
extensibility and customizability. Depending on the user’s needs and
skills, the language extensions can be created at several levels,
namely: metamodel extension, AML profile extension, and concrete
model extension.

Due to the specification of UML profiles for AML, the language can be
easily and flexibly implemented within UML 1.* and UML 2.0 CASE
tools and other technologies based on UML and XMI.

AML provides a rich set of modeling constructs for complex specifica-
tion systems from different perspectives. AML covers a considerable
number of system views, each of which represents a single aspect of
MAS, that together allow the creation of complex and precise models.
Modeling the static structure, dynamics and behavior of fundamental
MAS entities (i.e. agents, resources and environments), social aspects,
MAS deployment and mobility, capabilities, behavior decomposition,
communicative interactions, services, observations and effecting in-
teractions, mental aspects (i.e. beliefs, goals, plans, and their relation-
ships), ontologies, and contexts are all covered by AML. Regarding

328 Chapter 18 Conclusions

the scope and feature set, AML is currently the most complete pub-
lished agent-oriented modeling language.

Despite the considerably large language specification, AML is inter-
nally consistent from the conceptual, semantic and syntactic perspec-
tives.

The AML specification [18] provides a comprehensive description of
the language’s syntax and semantics, and also demonstrates practical
usage of AML’s modeling constructs by means of comprehensive ex-
amples. The specification of the language achieves the quality level of
OMG standards. There is no other such in-depth and extensive speci-
fication of an agent-oriented modeling language yet available.

We feel confident that AML is sufficiently detailed, comprehensive
and tangible to be a useful tool for software architects building sys-
tems based on, or exhibiting attributes of, multi-agent technologies.
In this respect we anticipate that AML may form a significant contri-
bution to the effort of bringing about widespread adoption of intelli-
gent agents across varied commercial market sectors.

Beyond the
goals

It is also worth mentioning that we have gone beyond the originally
stated objectives to achieve the additional important results men-
tioned below:

CASE tools: In order to provide developers with AML-based modeling
tools, and also practically prove the declared straightforward imple-
mentation of AML in UML CASE tools, we have implemented UML
profiles for AML in three CASE tools: UML 2.0-based Enterprise Archi-
tect, UML 2.0-based StarUML, and UML 1.5-based IBM Rational Rose,
see section 7.1.

Furthermore, the implementation in Enterprise Architect was ex-
tended by the LS/TS code generator and was incorporated into the
commercial agent-based software development and runtime suite
Living Systems Technology Suite, as one of its tools called LS/TS Mod-
eler. A very important feature of the code generator is that apart from
relatively straightforward generation of code from the static structure
diagrams (implemented by most UML code generators), it also sup-
ports code generation from UML behavioral models, i.e. activities,
state machines, and interactions.

As a “side effect” of the LS/TS implementation we have also designed
a common metamodel of the previously mentioned UML 2.0 behav-
ior models. We perceive this as a very important achievement from a
theoretical perspective because we proved that it is possible to create
a common metamodel of UML 2.0 activities, state machines, and in-
teractions, unifying their operational semantics. It is therefore possi-
ble to transform a model of any of these kinds to a model of another
kind, without altering its semantics.

18.4 Results 329

The implementation of the code generator itself was developed by a
team of programers from Whitestein Technologies who were pro-
vided with the requirements specification, analysis, and the tool de-
sign. Apart from the analytical work we also undertook the tool’s test-
ing and overall project management.

Implementations of AML in CASE tools have proved that AML can be
automated by means of its relatively easy integration into UML 1.*
and 2.* based CASE tools. AML implementation can in this way ex-
tend the functionality of existing UML-based CASE tools with the
means to model MAS applications and to combine agent-specific
modeling mechanisms with “orthodox” object-oriented models.
These facts indirectly point out the appropriateness and usefulness of
the AML language architecture, the provided extension mechanisms,
as well as the CASE tool support.

Methodology: Besides AML we have also defined a software develop-
ment methodology based on AML. The methodology, called ADEM, is
a comprehensive agent-based system development methodology
with a special focus on modeling aspects. ADEM provides guidelines
for the use of AML in the context of a MAS development process, by
extending and making use of the best practices of AOSE. ADEM is a
coherent and extensible methodology based on RUP, which utilizes
concepts drawn from MAS theory, as specified by AML. The method-
ology follows the SME approach in order to provide flexibility in de-
fining concrete methods customized to specific conditions of particu-
lar system development projects.

AML in projects: AML has already been successfully applied as a lan-
guage for modeling requirements, analysis and design of applications
in several research and commercial software development projects.
The applications were built in various domains, e.g. planning of sur-
gical operations, simulation of artificial societies, and distributed net-
work management systems. These projects tested AML under real-
world conditions and proved that it is a useful tool for modeling com-
plex, concurrent, distributed and intelligent systems. Furthermore,
AML extensibility mechanisms allowed customizing of the language
for designing applications deployed with various target implementa-
tion technologies.

Standardization activities: An important means of disseminating
AML ideas into the (agent-oriented) software engineering community
was our participation in the related international standardization ac-
tivities. Our active involvement in the work of FIPA Modeling Techni-
cal Committee, FIPA Methodology Technical Committee, AgentLink
Agent-Oriented Software Engineering Technical Forum Group, and
OMG Agents Special Interest Group, has provided several opportuni-
ties to present AML and related ideas to forums of AOSE specialists
and to gather valuable feedback which has been taken into account
in the language design and specification.

330 Chapter 18 Conclusions

18.5 Summary of Original Contribution

A summary of original contributions to the field of agent-oriented
modeling follows:

AML is the most complete published agent-oriented modeling
language available to date. It covers modeling of the static struc-
ture, dynamics and behavior of fundamental MAS entities (i.e.
agents, resources and environments), social aspects, MAS deploy-
ment and mobility, capabilities, behavior decomposition, com-
municative interactions, services, observations and effecting in-
teractions, mental aspects (i.e. beliefs, goals, plans, and their rela-
tionships), ontologies, and contexts.

AML is one of the most completely specified and well document-
ed agent-oriented modeling languages. It is defined in the same
way as the UML 2.0 Superstructure Specification (yet more pre-
cisely and consistently), exploiting the metamodeling possibilities
of the UML 2.0 Infrastructure Specification [103] and MOF 2.0
[99]. The specification of AML is probably the most extensive
specification of an agent-oriented modeling language. It defines
metamodel, semantics, constraints, notation (including alterna-
tive notation), usage examples, and rationale for each defined
modeling element type. For instance, as we have practically dem-
onstrated in the case of the LS/TS Modeler, the language specifica-
tion provides a sufficient level of detail such as to be directly used
as an implementation specification of AML-based CASE tools.

From the technical point of view, AML provides several innovative
modeling approaches that do not appear in other MAS modeling
languages. For instance:

• using specialized UML structural features to model different
aspects of MAS entities (see section 6.1.2 for details)

• explicit modeling of environments as complex entities (see
section 10.4 for details),

• modeling entity roles as complex behaviored, socialized and
mental semi-entities (see sections 6.3 and 10.5.6 for details),

• unique modeling of MAS deployment and mobility (see sec-
tions 6.4, 10.6, and 11.6 for details),

• effective visual modeling of mental aspects having the seman-
tics of formal modal logic (see section 6.7 and chapter 12 for
details),

• unique idea of situation-based modeling supported by the ex-
plicit structuring of a model into contexts (see sections 6.9 and
14.1 for details), etc.

Chapter 19

Further Work

19.1 Improvements of AML

Continuous
improvements

Despite our confidence in the current state of AML and generally pos-
itive feedback from the AOSE community, we realize that AML is not
yet complete. It is subject to continuous reviews and improvements
which lead to enhancements of the language itself, its documenta-
tion, and related artifacts. Continuous, iterative improvement of
AML, e.g. by providing flexible incorporation of user’s findings and
change requests into the language specification, can satisfy its users
and therefore support dissemination and widespread use of AML.

Directions of
improvements

According to the feedback from official AML reviewers, informal reac-
tions from the AOSE community, and also practical experiences ob-
tained from projects at Whitestein Technologies, we anticipate possi-
ble enhancements of AML in the following directions:

Revision of the AML specification.
The current version of the AML specification [18] should be up-
dated in order to provide more comprehensive description of the
semantics, improved notation of certain modeling elements, and
more examples. Our main goal is to improve understandability of
the specification.

Improvements of existing modeling mechanisms.
Some of the AML packages could be enhanced in order to provide
more comprehensive modeling mechanisms based on concepts
found in other specification languages. In the first instance, we
are going to improve the following packages:

• Ontologies—to provide more advanced modeling of ontolo-
gies based on concepts drawn from Ontology Definition Meta-
model (ODM) [101], Web Ontology Language (OWL) [110,132],
DARPA Agent Markup Language (DAML) [30,43], Ontology Infer-
ence Layer (OIL) [41,43,97], and possibly also other ontology
specification languages.

332 Chapter 19 Further Work

• Services—to allow specification of services compatible with
Web Services [149] and OWL-based Web Service Ontology (OWL-
S) [84].

Extension of the scope.
In order to extend the scope of applicability, AML should support
additional aspects of MAS. The next foreseen extension is Security
and its interconnection with existing AML packages, such as Enti-
ties, MAS Deployment, Communicative Interactions, Observa-
tions and Effecting Interactions, and Mobility. Other extensions
of AML are possible in the future.

Defining a simplified version of AML.
On one hand, the relatively large number of elements in the cur-
rent AML specification could cause problems with its learning and
correct application by users. On the other hand, the number of el-
ements cannot be considerably reduced while retaining the cur-
rent scope of the language. To help users (mainly new users) with
learning and applying AML, we propose to define a consistent
subset of AML modeling constructs, called AML-lite, intended to
incorporate only the well-known and commonly used MAS con-
cepts, such as agent, (entity) role, social relationships, communi-
cation interaction, or agent execution environment, without spec-
ifying their details (such as specific meta-attributes). AML users
then would establish themselves by learning and using AML-lite,
and after obtaining a certain level of experience would move to
the “full” AML.

Defining a formal model of AML concepts.
In order to formalize and precisely describe the concepts used in
AML, we plan to create a formal model of the conceptual MAS
metamodel described in Chapter 5. We have yet to decide on the
formal specification language to be used, but the current top can-
didate is Object-Z [131].

19.2 Broader Application of AML

AML as a
pattern

modeling
language

There is no unified means of visually modeling the structural and be-
havioral aspects in specifications of agent design patterns (for more in-
formation see [1], [6], [36], [37], [72], [73], [71], [75], [118], and
[154]). Agent design pattern specifications usually use UML class dia-
grams to model structures, and UML state machines, activity and se-
quence diagrams (possibly extended by AUML), to model the pattern
dynamics. Since UML models, and object-oriented models in general,
are insufficient and/or inappropriate to model MAS-specific features
(a discussion on this topic can be found e.g. in [9]), specific agent-ori-
ented languages should be applied here. Another reason for the diver-
sity of employed agent pattern modeling languages is caused by the

19.2 Broader Application of AML 333

tendency of the pattern designers from a community of users of a spe-
cific agent-oriented language to also use that particular language in
the specification of their patterns. An example is the use of TROPOS
[12,143] in the agent design patterns defined in [75].

Software developers wanting to use libraries of agent design patterns
have, therefore, some problems in learning and properly applying
particular patterns, because they may be specified in various lan-
guages using different notations and semantics. In reality, this over-
head coupled with the necessity of learning several modeling lan-
guages is generally unacceptable. The result is clear: agent design pat-
terns are not commonly used in practice.

AML, with its considerably large scope, can efficiently replace the
modeling languages currently used for agent design patterns and can
become a standardized modeling language used for the specification
of agent design patterns. Furthermore, AML provides specially de-
signed modeling mechanisms to capture MAS-specific aspects which
are usually subjects of specialized agent design pattern libraries, for
instance, AML modeling of MAS deployment and mobility can be
used in the specification of mobility patterns [126], or AML modeling
of social aspects can be used for modeling organizational patterns [75]
and social patterns [37].

AML profile
extensions

and modeling
frameworks

Bringing generic AML closer to specific modeling techniques, imple-
mentation environments, technologies, development processes, etc.
may require its customization. The mechanism of creating the AML
profile extensions, described in Chapter 4, can be effectively used for
this purpose. We intend to develop AML-based UML profiles and re-
spective modeling frameworks34 for selected MAS-related specification
standards (e.g. OWL [110,132], OWL-S [84], Web Services [149], FIPA
content languages [46]), MAS abstract models (e.g. FIPA Abstract Ar-
chitecture [46]), and agent platforms (LS/TS [81], JADE [61], etc.).
This is a necessary step toward the practical use of AML as a modeling
language for designing real-world software systems.

Extension of
the CASE tools

support

We also intend to continue with providing and extending CASE tool
support for AML in the following ways:

Improvement of the LS/TS Modeler to add more features, for in-
stance, new modeling tools (LS/TS design model consistency and
completeness checkers, element creation wizards, etc.), or update
of the code generator.

34 Modeling framework is a set of predefined model elements that are needed
to model a certain kind of system. The purpose of a specific framework can be
to define the architecture of systems of a certain kind or to provide a set of re-
usable components. Frameworks are used as templates when creating a new
model.

334 Chapter 19 Further Work

Implementation of MDA-style model transformation35 in the LS/TS
Modeler, used for (semi)automatic generation of some model
parts from other parts, e.g. generation of society models from on-
tologies and interactions, or MAS deployment models from soci-
ety models.

Implementation of reverse engineering of the LS/TS applications
into AML models. This functionality would provide developers
with complete AML to LS/TS round-trip engineering integration.

Implementation of AML profile extensions and round-trip-engi-
neering tools for other MAS technologies, for instance, agent plat-
forms JADE, JACK, or Cougaar.

Implementation of the UML profile for AML, related modeling
tools (e.g. model consistency and completeness checkers), and
code generation and/or reverse engineering tools also into other
CASE tools providing automation interfaces. Possible candidates
are: IBM Rational XDE Modeler for .NET and Eclipse, IBM Soft-
ware Modeler/Architect, Poseidon for UML, Visual Paradigm for
UML, etc.

AML in other
method-

ologies

There is also the possibility to integrate AML into existing agent-
based methodologies as their common underlying modeling lan-
guage. Currently, a number of methodologies either do not provide
their own modeling languages (MASSIVE, Gaia, ROADMAP, ADELFE,
Styx, Cougaar Design Methodology, etc.) or use proprietary modeling
languages (OPM/MAS, AOR, CAMLE, PASSI, etc.). Their underlying
specification/modeling languages could be replaced by AML, in order
to utilize its modeling possibilities and also to guarantee compatibil-
ity of artifacts built by different methodologies.

Dissemination
of AML

We expect to disseminate AML and its principles throughout the
broader community of software engineers as an important task which
could result in better acceptance of our work and improvements of
the practices of AOSE in general. We will focus on the following activ-
ities:

Application AML in software development projects.
One of the main goals is integration of AML into software devel-
opment projects. Even if AML has been used, or is in use, in sever-

35 MDA-style model transformation provide a way of converting model ele-
ments from one type to another. This will typically involve converting Plat-
form-Independent Model (PIM) elements to Platform-Specific Model (PSM) ele-
ments. For example, separate transformations could convert a PIM-model to a
Java model, a C++ model and a C# model. Or a class model could be trans-
formed to a DDL model, in which each class element is converted to a table el-
ement with the appropriate database type, and with attributes converted to
columns and associations converted to foreign key associations. For details
about Model-Driven Architecture (MDA) see [98].

19.3 Assurance of Future Work 335

al projects, we need to test it within the context of further projects
with different setups varying in size, application domain, skills of
project members, technologies used, etc. In this context, a very
positive fact is that Whitestein Technologies is using AML (and
ADEM) in current and forthcoming agent-oriented software devel-
opment projects, mainly in the domains of telecommunications
and logistics. In addition to commercial application of AML, sev-
eral individuals and groups from the academic area have already
expressed their interest in the application of AML in their software
development projects and research work in the area of AOSE.

Preparing AML examples.
To support the education of AML users, we are also preparing sev-
eral practical examples of modeling. The examples will demon-
strate usage of AML in modeling selected problems of MAS re-
quirements capture, analysis and design. In addition to these rela-
tively small examples, we will also prepare some comprehensive
case studies which will demonstrate complete step-by-step model-
ing of MAS applications from different domains.

Provide training and consulting.
To educate software engineers in AML we plan to provide in-
house as well as external training courses and consulting.

Further publications.
We plan to discuss several aspects of AML in a series of additional
presentations, conference papers, journal articles, and possibly
also books. We will continue to provide users of AML and interest-
ed people with more information about AML, related artifacts and
tools via the official AML/ADEM web page:

http://www.whitestein.com/pages/solutions/meth.html

19.3 Assurance of Future Work

AML and related work has already become an important part of the
research, and also commercial, activities of Whitestein Technologies,
tightly coupled with the strategic goals of the company to provide
high-quality agent-based technologies and customer solutions. We
will do our best to assure that these activities are provided with suffi-
cient resources, effort, and enthusiasm, to allow AML to continue
along the successful path on which it has started since its creation
and first publication in December 2004.

Bibliography

[1] Agent Factory web page. URL: http://mozart.csai.unipa.it/af/

[2] Agent-Oriented Software Engineering TFG web page.
URL: http://www.pa.icar.cnr.it/~cossentino/al3tf2/default.html

[3] AgentLink web page. URL: http://www.agentlink.org/

[4] E. Alencar, J. Castro, G. Cysneiros, and J. Mylopoulos. From Early Requirements
Modeled by the i* Technique to Later Requirements Modeled in Precise UML.
In Anais do III Workshop em Engenharia de Requisitos, pages 92–109, Rio de Jan-
eiro, Brazil, July 2000.

[5] A.I. Anton. Goal Identification and Refinement in the Specification of Software-
Based Information Systems. PhD thesis, Georgia Institute of Technology, Atlanta,
GA, June 1997.

[6] Y. Aridor and D.B. Lange. Agent Design Patterns: Elements of Agent Application
Design. In Second International Conference on Autonomous Agents (Agents’98),
pages 108–115. ACM Press, 1998.

[7] AUML web page. URL: http://www.auml.org

[8] B. Bauer. UML Class Diagrams: Revisited in the Context of Agent-Based Sys-
tems. In M. Wooldridge, G. Weiss, and P. Ciancarini, editors, Proceedings of the
Second International Workshop on Agent-Oriented Software Engineering (AOSE-
2001), pages 101–118, Montreal, Canada, May 2001. Springer.

[9] B. Bauer, J.P. Müller, and J. Odell. An Extension of UML by Protocols for Multi-
agent Interaction. In Proceedings of the International Conference on Multi-Agent
Systems (ICMAS’00), pages 207–214, Boston, MA, USA, July 2000.

[10] B. Bauer, J.P. Müller, and J. Odell. Agent UML: A Formalism for Specifying Mul-
tiagent Interaction. In P. Ciancarini and M. Wooldridge, editors, Agent-Oriented
Software Engineering, pages 91–103. Springer-Verlag, 2001.

[11] C. Bernon, V. Camps, M.P. Gleizes, and G. Picard. Designing Agents’ Behav-
iours and Interactions within the Framework of ADELFE Methodology. In Pro-
ceedings of the Fourth International Workshop: Engineering Societies in the Agents
World (ESAW’03), pages 156–169, Imperial College London, UK, October 2003.
Springer-Verlag.

338 Bibliography

[12] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini. TROPOS:
An Agent-Oriented Software Development Methodology. Autonomous Agents
and Multi-Agent Systems, 2(3):203–236, May 2004.

[13] S. Brinkkemper. Method Engineering: Engineering of Information Systems De-
velopment Methods and Tools. Information and Software Technology, 38(4):275–
280, 1996.

[14] B. Burmeister. Models and Methodology for Agent-Oriented Analysis and De-
sign. In K. Fischer, editor, Working notes of the KI’96 Workshop on Agent-Oriented
Programming and Distributed Systems, June 1996.

[15] G. Bush, S. Cranefield, and M. Purvis. The Styx Agent Methodology. Technical
Report 02, University of Otago, Dunedin, New Zealand, 2001.

[16] R. Cervenka. Modeling Multi-Agent Systems. PhD thesis, Comenius University in
Bratislava, 2006.

[17] R. Cervenka, D. Greenwood and I. Trencansky. The AML Approach to Modeling
Autonomic Systems. In P. Dini, P. Ayed, C. Dini, and Y. Berbers, editors, Interna-
tional Conference on Autonomic and Autonomous Systems (ICAS 2006), Silicon
Valley, California, USA, July 19–21 2006. IEEE Computer Society.

[18] R. Cervenka and I. Trencansky. Agent Modeling Language: Language Specifica-
tion. Version 0.9. Technical report, Whitestein Technologies, December 2004.
URL: http://www.whitestein.com/pages/solutions/meth.html

[19] R. Cervenka and I. Trencansky. Agent-Oriented Development Methodology.
Overview. Version 0.9. Technical report, Whitestein Technologies, February
2005.

[20] R. Cervenka, I. Trencansky, and M. Calisti. Modeling Social Aspects of Multi-
Agent Systems. The AML Approach. In J.P. Muller and F. Zambonelli, editors,
The Fourth International Joint Conference on Autonomous Agents & Multi Agent
Systems (AAMAS 05). Workshop 7: Agent-Oriented Software Engineering (AOSE),
pages 85–96, Universiteit Utrecht, The Netherlands, July 25–29 2005.

[21] R. Cervenka, I. Trencansky, and M. Calisti. Modeling Social Aspects of Multi-
Agent Systems: The AML Approach. In J.P. Muller and F. Zambonelli, editors,
Agent-Oriented Software Engineering VI: 6th International Workshop, AOSE 2005,
LNCS 3950, pages 28–39, Springer-Verlag, February 2006.

[22] R. Cervenka, I. Trencansky, M. Calisti, and D. Greenwood. AML: Agent Model-
ing Language. Toward Industry-Grade Agent-Based Modeling. In J. Odell, P.
Giorgini, and J.P. Muller, editors, Agent-Oriented Software Engineering V: 5th In-
ternational Workshop, AOSE 2004, LNCS 3382, page 31–46, Springer-Verlag, Jan-
uary 2005.

[23] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. Non-Functional Requirements in
Software Engineering. Kluwer Academic Publishing, 2000.

[24] M. Cossentino. Different Perspectives in Designing Multi-Agent Systems. In
AGES’02 Workshop at NODe02, Erfurt, October 2002.

Bibliography 339

[25] M. Cossentino and C. Potts. A CASE Tool Supported Methodology for the De-
sign of Multi-Agent Systems. In Proceedings of the 2002 International Conference
on Software Engineering Research and Practice (SERP’02), Las Vegas, NV, USA, June
2002.

[26] M. Cossentino, L. Sabatucci, and A. Chella. A Possible Approach to the Develop-
ment of Robotic Multi-Agent Systems. In IEEE/WIC Conference on Intelligent
Agent Technology (IAT’03), Halifax, Canada, October 2003.

[27] Cougaar web page. URL: http://www.cougaar.org/

[28] S. Cranefield, S. Haustein, and M. Purvis. UML-Based Ontology Modelling for
Software Agents. In Proceedings of the Workshop on Ontologies in Agent, 2001,
May 2001.

[29] S. Cronholm and P.J. Agerfalk. On the Concept of Method in Information Sys-
tems Development. Linköping Electronic Articles in Computer and Information Sci-
ence, 4 (1999)(019), October 1999.

[30] DAML web page. URL: http://www.daml.org/

[31] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-Directed Requirements
Acquisition. Science of Computer Programming, 20:3–50, 1993.

[32] S.A. DeLoach. Multiagent Systems Engineering: A Methodology and Language
for Designing Agent Systems. In Proceedings fo the Agent-Oriented Information
Systems ’99 (AOIS’99), Seattle, WA, May 1999.

[33] S.A. DeLoach, M.F. Wood, and C. H. Sparkman. Multiagent Systems Engineer-
ing. International Journal of Software Engineering and Knowledge Engineering,
11(3):231–258, 2001.

[34] R. Depke, R. Heckel, and J.M. Küster. Improving the Agent-Oriented Modeling
Process by Roles. In Proceedings of the Fifth International Conference on Autono-
mous Agents, pages 640–647, Montreal, Canada, May/June 2001. ACM.

[35] M. d’Inverno and M. Luck. Understanding Agent Systems. Springer-Verlag, 2001.

[36] T.T. Do, M. Kolp, T.T.H. Hoang, and A. Pirotte. A Framework for Design Pat-
terns in Tropos. In Proceedings of the 17th Brazilian Symposium on Software Engi-
neering (SBES 2003), Maunas, Brazil, October 2003.

[37] T.T. Do, M. Kolp, and A. Pirotte. Social Patterns for Designing Multiagent Sys-
tems. In Proceedings of the Fifteenth International Conference on Software Engineer-
ing & Knowledge Engineering (SEKE’2003), pages 103–110, July 2003.

[38] Enterprise Architect web page.
URL: http://www.sparxsystems.com.au/products/ea.html

[39] H.E. Eriksson and M. Penker. Business Modeling with UML: Business Patterns at
Work. John Wiley Sons, 1999.

340 Bibliography

[40] R. Evans, P. Kearny, J. Stark, G. Caire, F. Garijo, G.J. Sanz, F. Leal, P. Chainho,
and P. Massonet. MESSAGE: Methodology for Engineering Systems of Software
Agents. Methodology for Agent-Oriented Software Engineering. Technical Re-
port Eurescom project P907, EDIN 0223-0907, EURESCOM, September 2001.

[41] D. Fensel, I. Horrocks, F. van Harmelen, S. Decker, M. Erdmann, and M. Klein.
OIL in a Nutshell. In Dieng, R. et al., editor, Knowledge Acquisition, Modeling,
and Management. Proceedings of the European Knowledge Acquisition Conference
(EKAW-2000). Lecture Notes in Artificial Intelligence, Springer-Verlag, October
2000.

[42] J. Ferber and O. Gutknecht. A Meta-Model for the Analysis and Design of Orga-
nizations in Multi-Agent Systems. In 3rd Int. Conference on Multi-Agent Systems
(ICMAS’98), pages 128–135. IEEE Computer Society, 1998.

[43] R. Fikes and D.L. McGuinness. An Axiomatic Semantics for RDF, RDF-S, and
DAML+OIL. December 2001.
URL: http://www.w3.org/TR/2001/NOTE-daml+oilaxioms-20011218

[44] FIPA Methodology Technical Committee. Working Area web page.
URL: http://www.pa.icar.cnr.it/~cossentino/FIPAmeth/

[45] FIPA Modeling Technical Committee web page.
URL: http://www.fipa.org/activities/modeling.html

[46] FIPA specifications repository web page.
URL: http://www.fipa.org/repository/index.html

[47] FIPA web page. URL: http://www.fipa.org/

[48] S. Flake, C. Geiger, and J.M. Küster. Towards UML-based Analysis and Design of
Multi-Agent Systems. In Proceedings of International NAISO Symposium on Infor-
mation Science Innovations in Engineering of Natural and Artificial Intelligent Sys-
tems (ENAIS’2001), pages 695–701, Dubai, March 2001. ICSC Academic Press.

[49] M.L. Ginsberg. Knowledge Interchange Format: The KIF of Death. AI Magazine,
12(3):57–63, 1991.

[50] N. Glaser. Conceptual Modelling of Multi-Agent Systems (The CoMoMAS Engi-
neering Environment). In Kluwer Series on Multiagent Systems, Artificial Societies,
and Simulated Organizations, volume 4. Kluwer, May 2002.

[51] Goal Oriented Requirement Language (GRL) web page.
URL: http://www.cs.toronto.edu/km/GRL

[52] J.J. Gomez-Sanz and R. Fuentes. Agent Oriented Software Engineering with IN-
GENIAS. In Fourth Iberoamerican Workshop on Multi-Agent Systems (Iberagents
2002) - Agent Technology and Software Engineering, Spain, November 2002. Uni-
versity of Malaga.

[53] O. Gutknecht, J. Ferber, and F. Michel. Integrating Tools and Infrastructures for
Generic Multi-Agent Systems. In Proc. of the Fifth International Conference on Au-
tonomous Agents (AA 2001), Montral, Quebec, Canada, May 2001.

Bibliography 341

[54] M.P. Huget. Agent UML Notation for Multiagent System Design. IEEE Internet
Computing, 8(4):63–71, 2004.

[55] M.P. Huget, I. Reinharts-Berger, D. Dori, O. Shehory, and A. Sturm. Modeling-
Notation Source: OPM/MAS.
URL: http://www.auml.org/auml/documents/OPM.pdf

[56] IBM Corp. Rational Unified Process. Version 2003.06.13.

[57] IBM Rational Rose web page.
URL: http://www.ibm.com/software/awdtools/developer/modeler/

[58] C. Iglesias, M. Garijo, J.C. Gonzalez, and J.R. Velasco. Analysis and Design of
Multiagent Systems Using MAS-CommonKADS. In M.P. Singh, A. Rao, and M.J.
Wooldridge, editors, Intelligent Agents IV, LNAI 1365, pages 313–326. Springer-
Verlag, 1998.

[59] INGENIAS web page. URL: http://grasia.fdi.ucm.es/ingenias/

[60] ISLANDER web page. URL: http://e-institutor.iiia.csic.es/islander/islander.html

[61] JADE web page. URL: http://jade.tilab.com/

[62] Java RoboCup Simulator web page.
URL: http://www.ifi.unizh.ch/ailab/people/nitschke/RoboCup.html

[63] N.R. Jennings. On Agent-Based Software Engineering. Artificial Intelligence,
117(2):277–296, 2000.

[64] N.R. Jennings, P. Faratin, A.R. Lomuscio, S. Parsons, M.J. Wooldridge, and C. Si-
erra. Automated Negotiation: Prospects, Methods and Challenges. Journal of
Group Decision and Negotiation, 10(2):199–215, 2001.

[65] N.R. Jennings, K. Sycara, and M. Wooldridge. A Roadmap of Agent Research
and Development. Journal of Autonomous Agents and Multi-Agent Systems,
1(1):7–38, 1998.

[66] N.R. Jennings and M. Wooldridge. Software Agents. IEEE Review, 42(1):17–21,
January 1996.

[67] C.M. Jonker, M. Klush, and J. Treur. Design of Collaborative Information
Agents. In M. Klush and L. Kerschberg, editors, Cooperative Information Agents
IV. Proceedings of CIA 2000, pages 262–283. Springer-Verlag, July 2000.

[68] T. Juan, A. Pearce, and L. Sterling. ROADMAP: Extending the Gaia Methodology
for Complex Open Systems. In Proceedings of the First International Joint Confer-
ence on Autonomous Agents and Multi-Agent Systems (AAMAS 2002), Bologna, Ita-
ly, July 2002.

[69] M. Kang, L.Wang, and K. Taguchi. Modelling Mobile Agent Applications in
UML 2.0 Activity Diagrams. In Proceedings of the 3rd International Workshop on
Software Engineering for Large-Scale Multi-Agent Systems, SELMAS’2004, pages
104–111, Edinburg, United Kingdom, May 2004.

342 Bibliography

[70] L. Keller. Service Level Agreement Management - Phase 1. SLAM. Analysis and
Design. Technical Report wt.r&c.slam.M1.phase1, v1.3, Whitestein Technolo-
gies, August 2004.

[71] E.A. Kendall, P.V.M. Krishna, C.V. Pathak, and C.B. Suresh. Patterns of Intelli-
gent and Mobile Agents. In Proc. of the second international conference on Autono-
mous agents, pages 92–99, 1998.

[72] E.A. Kendall, M.T. Malkoun, and C. Jiang. Multiagent Systems Design Based on
Object Oriented Patterns. Journal of Object Oriented Programming, June 1997.

[73] E.A. Kendall, M.T. Malkoun, and C. Jiang. A Methodology for Developing
Agent-Based Systems for Enterprise Integration. In C. Zhang and D. Luckose,
editors, Proceedings of the First Australian Workshop on DAI. Lecture Notes on Arti-
ficial Intelligence, Canberra, ACT, Australia, November 1995. Springer-Verlag.

[74] D. Kinny and M. Georgeff. Modelling and Design of Multiagent Systems. In J.P.
Müller, M.J. Wooldridge, and N.R. Jennings, editors, Intelligent Agents III: Pro-
ceedings of the Third International Workshop on Agent Theories, Architectures, and
Languages (ATAL-96), LNAI 1193. Springer-Verlag, August 1996.

[75] M. Kolp, P. Giorgini, and J. Mylopoulos. Organizational Patterns for Early Re-
quirements Analysis. In Proceedings of the 15th International Conference on Ad-
vanced Information Systems Engineering (CAiSE’03), Velden, Austria, June 2003.

[76] J.L. Koning, M.P. Huget, J. Wei, and X. Wang. Extended Modeling Languages
for Interaction Protocol Design. In M. Wooldridge, G. Weiss, and P. Ciancarini,
editors, Proceedings of the Second International Workshop On Agent-Oriented Soft-
ware Engineering (AOSE-2001), pages 93–100, Montreal, Canada, May 2001.
Springer.

[77] J. Lind. MASSIVE: Software Engineering for Multiagent Systems. PhD thesis, Uni-
versity of the Saarland, 2000.

[78] J. Lind. Issues in Agent-Oriented Software Engineering. In P. Ciancarini and M.
Wooldridge, editors, Agent-Oriented Software Engineering: First International
Workshop, AOSE 2000. Lecture Notes in Artificial Intelligence, Vol. 1957, pages 45–
58. Springer-Verlag, 2001.

[79] O. Lindland, G. Sindre, and A. Solvberg. Understanding Quality in Conceptual
Modelling. IEEE Software, 11(2):42–49, March 1994.

[80] L. Liu and E. Yu. From Requirements to Architectural Design—Using Goals and
Scenarios. In Software Requirements to Architectures Workshop (STRAW 2001),
Toronto, Canada, May 2001.

[81] Living Systems Technology Suite (LS/TS) web page.
URL: http://www.whitestein.com/pages/solutions/ls ts.html

[82] M.P. Luck, P. McBurney, and Ch. Preist. Agent Technology: Enabling Next Genera-
tion Computing (A Roadmap for Agent-Based Computing), AgentLink II, January
2003.

Bibliography 343

[83] M.P. Luck, editor. Agent Technology Roadmap: Overview and Consultation Report.
Agent Based Computing. University of Southampton on behalf of AgentLink III,
December 2004.

[84] D. Martin (ed.). OWL-S 1.0 Release. URL: http://www.daml.org/services/

[85] V.Mascardi. Logic-Based Specification Environments for Multi-Agent Systems. PhD
thesis, Università degli Studi di Genova, May 2002.

[86] MESSAGE web page.
URL: http://www.eurescom.de/public/projects/P900-series/p907/

[87] MiS20 - Robotic Soccer web page. URL: http://hmi.ewi.utwente.nl/MiS20/

[88] J. Mylopoulos, L. Chung, and B. Nixon. Representing and Using Nonfunctional
Requirements: A Process-Oriented Approach. IEEE Trans. on Sofware Engineering,
18 No. 6:483–497, June 1992.

[89] N. Nopper. Living Agents Runtime System (LARS) - The Agent Platform for Busi-
ness Applications. In AgentLink News 5, pages 5–8. AgentLink, May 2000.

[90] J. Odell. A Primer to Method Engineering. In S. Brinkkemper, K. Lyytinen, and
R.J. Welke, editors, Method Engineering Principles of Method Construction and
Tool Support. Chapman & Hall, London, 1996.

[91] J. Odell, M. Nodine, and R. Levy. A Metamodel for Agents, Roles, and Groups.
In J. Odell, P. Giorgini, and J.P. Muller, editors, Agent-Oriented Software Engineer-
ing V: 5th International Workshop, AOSE 2004. Springer-Verlag, January 2005.

[92] J. Odell, H.V.D. Parunak, and B. Bauer. Extending UML for Agents. In G. Wag-
ner, Y. Lesperance, and E. Yu, editors, Proceedings of the Agent-Oriented Informa-
tion Systems Workshop at the 17th National Conference on Artificial Intelligence,
pages 3–17, Austin, Texas, July 2000. ICue Publishing.

[93] J. Odell, H.V.D. Parunak, and B. Bauer. Representing Agent Interaction Proto-
cols in UML. In P. Ciancarini and M. Wooldridge, editors, Proceedings on the
First International Workshop on Agent-Oriented Software Engineering (AOSE 2000),
pages 121–140, Limerick, Ireland, June 2000. Springer.

[94] J. Odell, H.V.D. Parunak, S. Brueckner, and M. Fleischer. Temporal Aspects of
Dynamic Role Assignment. In P. Giorgini, G. Muller, and J. Odell, editors,
Agent-Oriented Software Engineering (AOSE) IV, LNCS 2935, Berlin, 2004. Spring-
er-Verlag.

[95] J. Odell, H.V.D. Parunak, and M. Fleischer. The Role of Roles in Designing Ef-
fective Agent Organizations. In A. Garcia, C. Lucena, F. Zambonelli, A. Omicini,
and J. Castro, editors, Software Engineering for Large-Scale Multi-Agent Systems,
Lecture Notes on Computer Science volume 2603, pages 27–28, Berlin, 2003.
Springer.

[96] J. Odell, H.V.D. Parunak, M. Fleischer, and S. Brueckner. Modeling Agents and
their Environment. In Proceedings of AOSE 2002, pages 16–31, Bologna, Italy,
July 2002. Springer.

344 Bibliography

[97] OIL web page. URL: http://www.ontoknowledge.org/oil/

[98] OMG. MDA Guide. Version 1.0.1, omg/2003-06-01, June 2003.

[99] OMG. Meta Object Facility (MOF) Core Specification. Version 2.0, formal/06-
01-01, January 2006.

[100] OMG. Object Constraint Language. Version 2.0, formal/06-05-01, May 2006.

[101] OMG. Ontology Definition Metamodel Specification. ptc/06-10-11, October
2006.

[102] OMG. Unified Modeling Language Specification. Version 1.5, formal/03-03-01,
March 2003.

[103] OMG. Unified Modeling Language: Infrastructure. Version 2.0, formal/05-07-
05, March 2006.

[104] OMG. Unified Modeling Language: Superstructure. Version 2.0, formal/05-07-
04, August 2005.

[105] OMG. Software Process Engineering Metamodel Specification. Version 1.1, for-
mal/05-01-06, January 2005.

[106] OMG. XML Metadata Interchange (XMI) Specification. Version 2.0, formal/03-
05-02, May 2005.

[107] OMG Agent Platform Special Interest Group web page.
URL: http://www.objs.com/agent/

[108] OMG Analysis & Design Task Force. Request for Information on Modeling
Agent-based Systems. ad/2004-08-05, 25 August 2004.

[109] A. Omicini. Societies and Infrastructures in the Analysis and Design of Agent
Based Systems. In P. Ciancarini and M. Wooldridge, editors, Agent-Oriented Soft-
ware Engineering Proceedings of the First International Workshop (AOSE-2000), pag-
es 185–194, Limerick, Ireland, June 2000. Springer-Verlag.

[110] OWL web page. URL: http://www.w3.org/TR/2002/WD-owl-guide-20021104/

[111] L. Padgham and M. Winikoff. Prometheus: A Methodology for Developing In-
telligent Agents. In Proceedings of the First Intemational Joint Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS 2002), Bologna, Italy, July
2002.

[112] L. Padgham and M. Winikoff. Developing Intelligent Agent Systems. A practical
guide. John Wiley & Sons Ltd, 2004.

[113] H.V.D. Parunak and J.J. Odell. Represening Social Structures in UML. In M.
Wooldridge, G. Weiss, and P. Ciancarini, editors, Proceedings of the Second Inter-
national Workshop on Agent-Oriented Software Engineering (AOSE-2001), pages
17–31, Montreal, Canada, May 2001. Springer.

Bibliography 345

[114] J. Pavon and J. Gomez-Sanz. Agent Oriented Software Engineering with INGE-
NIAS. In V. Maik, J. Muller, and M. Pchouek, editors, Multi-Agent Systems and
Applications III: 3rd International Central and Eastern European Conference on
Multi-Agent Systems, CEEMAS 2003, LNCS 2691/2003, page 394. Springer-Ver-
lag, August 2003.

[115] J. Pena, R. Corchuelo, and J. Arjona. A Top-Down Approach for MAS Protocol
Descriptions. In Proceedings of the 2003 ACM Symposium on Applied Computing
(SAC 2003), pages 45–49, Melbourne, FL, USA, March 2003. ACM.

[116] A. Poggi, G. Rimassa, P. Turci, J. Odell, H. Mouratidis, and G. Manson. Model-
ing Deployment and Mobility Issues in Multiagent Systems using AUML. In P.
Giorgini, J.P. Muller, and J. Odell, editors, Agent-Oriented Software Engineering
(AOSE) IV, LNCS 2935. Springer-Verlag, December 2003.

[117] Prometheus Design Tool web page.
URL: http://www.cs.rmit.edu.au/agents/pdt/

[118] O.F. Rana and C.A. Biancheri. A Petri Net Model of the Meeting Design Pattern
for Mobile-Stationary Agent Interaction. In Proc. of the 32nd Hawaii Internation-
al Conference on System Sciences, 1999.

[119] A.S. Rao and M.P. Georgeff. Modeling Rational Agents within a BDI Architec-
ture. In J.F. Allen, R. Fikes, and E. Sandewall, editors, KR’91: Principles of Knowl-
edge Representation and Reasoning, pages 473–484. Morgan Kaufmann, San Ma-
teo, California, 1991.

[120] RELATIONSHIP. A Vocabulary for Describing Relationships Between People.
URL: http://purl.org/vocab/relationship/

[121] E.B. Reuter. The Social Attitude. Journal of Applied Sociology, 8(1923):97–101,
1923.

[122] RoboCup Soccer Simulator web page. URL: http://sserver.sourceforge.net/

[123] C. Rolland. A Primer for Method Engineering. In Proceedings of the INFORSID
Conf. (INFormatique des Organisations et Systems d’Information et de Decision),
pages 10–13, Toulouse, France, June 1997.

[124] M. Saeki. Software Specification & Design Methods and Method Engineering.
International Journal of Software Engineering and Knowledge Engineering, 1994.

[125] L. Shan and H. Zhu. CAMLE: A Caste-Centric Agent Modelling Language and
Environment. In Proceedings of the 3rd International Workshop on Software Engi-
neering for Large-Scale Multi-Agent Systems, SELMAS’2004, Edinburg, United King-
dom, May 2004.

[126] A. Silva and J. Delgado. The Agent Pattern for Mobile Agent Systems. In Europe-
an Conference on Pattern Languages of Programming and Computing, Bad Irsee,
Germany, 1998.

346 Bibliography

[127] V.T. Silva, R. Choren, and C. Lucena. A UML Based Approach for Modeling and
Implementing Multi-Agent Systems. In Proceedings of the Third International
Joint Conference on Autonomous Agents and Multiagent Systems - Volume 2 (AA-
MAS’04), pages 914–921. IEEE Computer Society, July 2004.

[128] V.T. Silva, A. Garcia, A. Brandao, C. Chavez, C. Lucena, and P. Alencar. Taming
Agents and Objects in Software Engineering. In A. Garcia, C. Lucena, J. Castro,
A. Omicini, and F. Zambonelli, editors, Software Engineering for Large-Scale
Multi-Agent Systems: Research Issues and Practical Applications, volume LNCS
2603, pages 1–25. Springer-Verlag, April 2003.

[129] V.T. Silva and C. Lucena. Extending the UML Sequence Diagram to Model the
Dynamic Aspects of Multi-Agent Systems. Technical Report MCC 15/03, PUC-
Rio, Rio de Janeiro, Brazil, 2003.

[130] V.T. Silva and C. Lucena. From a Conceptual Framework for Agents and Objects
to a Multi-Agent System Modeling Language. In Autonomous Agents and Multi-
Agent Systems, volume 9, pages 145–189. Springer Science+Business Media B.V.,
July 2004.

[131] G. Smith. The Object-Z Specification Language. Advances in Formal Methods Se-
ries. Kluwer Academic Publishers, 2000.

[132] M.K. Smith, D. McGuinness, R. Volz, and C. Welty. Web Ontology Language
(OWL), Guide Version 1.0, W3C Working Draft.
URL: http://www.w3.org/TR/2002/WD-owl-guide-20021104/

[133] C.H. Sparkman, S.A. DeLoach, and A.L. Self. Automated Derivation of Complex
Agent Architectures from Analysis Specifications. In M. Wooldridge, G. Weiss,
and P. Ciancarini, editors, Proceedings of the Second International Workshop On
Agent-Oriented Software Engineering (AOSE-2001), pages 77–84, Montreal, Cana-
da, May 2001. Springer.

[134] M. Spit, K. Lieberherr, and S. Brinkkemper. Integrating Adaptiveness into Ob-
ject-Oriented Analysis and Design Methods – a Situational Method Engineering
Approach. Technical Report NU-CCS-95-05, Northeastern University, February
1995.

[135] StarUML web page. URL: http://staruml.sourceforge.net/

[136] A. Sturm, D. Dori, and O. Shehory. Single-Model Method for Specifying Multi-
Agent Systems. In 2nd International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS-2003), Melbourne, Australia, July 2003.

[137] W. Sutandiyo, M.B. Chhetri, S. Krishnaswamy, and S.W. Loke. From m-GAIA to
Grasshopper: Engineering Mobile Agent Applications. In G. Kotsis, S. Bressan,
and I.K. Ibrahim, editors, iiWAS’2003 - The Fifth International Conference on In-
formation Integrationand Web-based Applications Services. Austrian Computer So-
ciety, 15-17 September 2003.

[138] W.B. Teeuw and H. van den Berg. On the Quality of Conceptual Models. In
16th International Conference on Conceptual Modeling, Los Angeles, CA, 3–6 No-
vember 1997. URL: http://osm7.cs.byu.edu/ER97/workshop4/tvdb.html

Bibliography 347

[139] J.-P. Tolvanen. Incremental Method Engineering with Modeling Tools. Theoretical
Principles and Empirical Evidence. PhD thesis, Jyväskylä studies in computer sci-
ence, economics and statistics 47, University of Jyväskylä, Finland, 1998.

[140] I. Trencansky and R. Cervenka. Agent Modeling Language (AML): A Compre-
hensive Approach to Modeling MAS. Informatica, 29(4):391–400, 2005.
URL: http://ai.ijs.si/informatica/

[141] I. Trencansky and R. Cervenka. Agent Modeling Language (AML): Toward In-
dustry-Grade Agent-Based Modeling. Presented at Agent Link III–Technical Fo-
rum II, Agent-Oriented Software Engineering TFG, Ljuljana, February, 28–
March 1, 2005.
URL: http://www.pa.icar.cnr.it/~cossentino/al3tf2/docs/aml_trencansky.pdf

[142] I. Trencansky, R. Cervenka, and D. Greenwood. Applying a UML-based Agent
Modeling Language to the Autonomic Computing Domain. In OOPSLA’06:
Companion to the 21st ACM SIGPLAN Conference on Object-Oriented Programming
Languages, Systems, and Applications, pages 521–529, Portland, Oregon, USA,
October 22–26 2006. ACM Press.

[143] Tropos web page. URL: http://www.cs.toronto.edu/km/tropos/

[144] W.M. Turski and T.S.E. Maibaum. The Specification of Computer Programs. Addi-
son-Wesley, 1987.

[145] A. Tveit. A Survey of Agent-Oriented Software Engineering. In Proceedings of the
First NTNU Computer Science Graduate Student Conference. Norwegian University
of Science and Technology, May 2001.
URL: http://csgsc.idi.ntnu.no/2001/pages/papers/atveit.pdf

[146] A. van Lamsweerde. Requirements Engineering in the Year 00: A Research Per-
spective. In ICSE 2000: 22nd International Conference on Software Engineering,
pages 5–19. ACM Press, June 2000.

[147] B. van Linder, J.-J. Ch. Meyer, and W. van der Hoek. Formalizing Motivational
Attitudes of Agents Using the KARO Framework. Technical Report UU-CS (Ext.
r. no. 1997-06), Utrecht, the Netherlands: Utrecht University: Information and
Computing Sciences, 1997.

[148] K. Van Slooten and B. Hodes. Characterising IS Development Project. In IFIP
WG 8.1 Conference on Method Engineering, pages 29–44. Chapman & Hall, 1996.

[149] W3C. Web Services Activity web page. URL: http://www.w3.org/2002/ws/

[150] G. Wagner. A UML Profile for External AOR Models. In Proceedings of the Third
International Workshop on Agent-Oriented Software Engineering (AOSE-2002),
LNAI 2585, pages 99–110, Bologna, Italy, July 2002. Springer-Verlag.

[151] G. Wagner. The Agent-Object-Relationship Meta-Model: Towards a Unified
Conceptual View of State and Behavior. Information Systems, 28(5):475–504,
2003.

[152] G.Weiss. Multiagent Systems—A Modern Approach to Distributed Artificial In-
telligence. The MIT Press, 3rd edition, 2001.

348 Bibliography

[153] G. Weiss. Agent Orientation in Software Engineering. Knowledge Engineering Re-
view, 16(4):349–373, 2002.

[154] M. Weiss. On the Use of Patterns in Agent System Design. In AOIS at AAMAS’02,
Bologna, Italy, 2002.

[155] G.J. Wickler. Using Expressive and Flexible Action Representation to Reason about
Capabilities for Intelligent Agent Cooperation. PhD thesis, University of Edin-
burgh, 1999.

[156] Wikipedia web page. URL: http://en.wikipedia.org/

[157] K. Wistrand and F. Karlsson. Method Components – Rationale Revealed. In A.
Persson and J. Stirna, editors, Lecture Notes in Computer Science, Volume
3084/2004, pages 189–201. Springer-Verlag, August 2004.

[158] M. Wooldridge. Agent-Based Software Engineering. IEE Proceedings on Software
Engineering, 144(1):26–37, 1997.

[159] M. Wooldridge and P. Ciancarini. Agent-Oriented Software Engineering: The
State of the Art. In Handbook of Software Engineering and Knowledge Engineering.
World Scientific Publishing Co., 2001.

[160] M. Wooldridge and N.R. Jennings. Intelligent Agents: Theory and Practice. The
Knowledge Engineering Review, 10(2):115–152, 1995.

[161] M. Wooldridge, N.R. Jennings, and D. Kinny. The Gaia Methodology for Agent-
Oriented Analysis and Design. Journal of Autonomous Agents and Multi-Agent Sys-
tems, 3(3):285–312, 2000.

[162] Q. Yan, L. Shan, X. Mao, and Z. Qi. RoMAS: A Role-Based Modeling Method for
Multi-Agent System. In J.P. Li, J. Liu, N. Zhong, J. Yen, and J. Zhao, editors, Pro-
ceedings of the Second Internacional Conference on Active Media Technology
(ICANT2003), pages 156–161, Chongqing, China, May 2003. Chinese Electroni-
cal Industry Society, Logistical Engineering University, World Scientific.

[163] E. Yu. Modelling Strategic Relationships for Process Reengineering. PhD thesis, De-
partment of Computer Science, University of Toronto, Canada, 1995.

[164] E. Yu. Towards Modelling and Reasoning Support for Early-Phase Requirements
Engineering. In Proceedings of IEEE International Symposium on Requirements En-
gineering RE’97, Washington DC, January 1997. IEEE.

[165] E. Yu and J. Mylopoulos. Understanding “Why” in Software Process Modelling,
Analysis, and Design. In Proceedings of 16th International Conference on Software
Engineering, pages 159–168, May 1994.

[166] E. Yu and J. Mylopoulos. From ER to ’A-R’ – Modeling Strategic Actor Relation-
ships for Business Process Reengineering. Int. J. of Intelligent and Cooperative In-
formation Systems, 4(23):125–144, 1995.

[167] F. Zambonelli, N.R. Jennings, and M. Wooldridge. Organizational Rules as an
Abstraction for the Analysis and Design of Multi-agent Systems. Journal of
Knowledge and Software Engineering, 11:303–328, 2001.

Bibliography 349

[168] F. Zambonelli, N.R. Jennings, and M. Wooldridge. Developing Multiagent Sys-
tems: The Gaia Methodology. ACM Trans. on Software Engineering and Methodol-
ogy, 12(3):317–370, 2003.

[169] H. Zhu. Developing Formal Specifications of MAS in SLABS: A Case Study of
Evolutionary Multi-Agent Ecosystem. In P. Giorgini, Y. Lesperance, G. Wagner,
and E.S.K. Yu, editors, Agent-Oriented Information Systems (AOIS ’02). Proceedings
of the Fourth International Bi-Conference Workshop on Agent-Oriented Information
Systems (AOIS-2002 at AAMAS-02), Bologna, Italy, July 2002.

List of Acronyms

acl Agent Communication Language
cl Content Language
ADEM Agent-Oriented Development Methodology
AI Artificial Intelligence
AML Agent Modeling Language
AOR Agent-Object-Relationship
AORML AOR Modeling Language
AOSE Agent-Oriented Software Engineering
AUML Agent UML
BDI Belief-Desire-Intention
CAME Computer-Aided Method Engineering
CAMLE A Caste-Centric Agent Modelling Language and

Environment
CASE Computer-Aided Software Engineering
CDL Capability Description Language
DAI Distributed Artificial Intelligence
DAML DARPA Agent Markup Language
DARPA Defense Advanced Research Projects Agency
EA Enterprise Architect
ER Entity-Relationship
FIPA Foundation for Intelligent Physical Agents
GBRAM Goal-Based Requirements Analysis Method
GRL Goal-oriented Requirement Language
GUI Graphical User Interface
IDE Integrated Development Environment
KAOS Knowledge Acquisition in autOmated Specification
LS/TS Living Systems Technology Suite
MAS Multi-Agent System
MAS-ML Multi-Agent System Modeling
MASSIVE MultiAgent SystemS Iterative View Engineering
MDA Model-Driven Architecture
MESSAGE Methodology for Engineering Systems of Software

Agents
MOF Meta Object Facility
NFR Non-Functional Requirements
OCL Object Constraint Language
OIL Ontology Inference Layer

352 List of Acronyms

OMG Object Management Group
OOSE Object-Oriented Software Engineering
OPM Object-Process Methodology
OWL Web Ontology Language
OWL-S OWL-based Web Service Ontology
PASSI Process for Agent Societies Specification and

Implementation
RFI Request for Information
ROADMAP Role Oriented Analysis and Design for Multi-Agent

Programming
RUP Rational Unified Process
SMART Structured and Modular Agents and Relationship Types
SME Situational Method Engineering
SPEM Software Process Engineering Metamodel Specification
TAMAX TAP1 Agent Modeling And eXchange format
TAO Taming Agents and Objects
UML Unified Modeling Language
XMI XML Metadata Interchange
XML eXtensible Markup Language

Index

A
Accept communication message action, 79,

218
Accept decoupled message action, 77, 217
Action

Accept communication message, 79, 218
Accept decoupled message, 77, 217
Cancel goal, 89, 287
Clone, 72, 256
Commit goal, 89, 284
Create role, 68, 162
Dispose role, 68, 165
Effect, 84, 248
Mobility, 253
Move, 72, 255
Percept, 84, 243
Send communication message, 79, 214
Send decoupled message, 77, 213

Agent, 1, 40
intelligent, 1

Agent execution environment, 45, 70, 166
Agent type, 58, 140
Association

Hosting, 71, 172
Mental, 272
Play, 67, 160
Social, 63, 155

Attribute change, 77, 199
Autonomous entity, 40
Autonomous entity type, 58, 139
Autonomy, 1

B
Behavior decomposition diagram, 314
Behavior fragment, 47, 74, 181
Behavioral entity, 40
Behavioral entity type, 58, 138

Behaviored semi-entity, 39, 46
Behaviored semi-entity type, 74, 176
Belief, 49, 88, 275

C
Cancel goal action, 89, 287
Capability, 47, 74, 178
Class level, 54
Client template parameters, 82
Clone, 71, 252
Clone action, 72, 256
Commit goal action, 89, 284
Communication message, 79, 204
Communication message payload, 206
Communication message trigger, 220
Communication specifier, 203
Communicative interaction, 79, 207
Constrained mental class, 264
Context, 94, 304
Contribution, 50, 88, 289
Contribution kind, 298
Create role action, 68, 162

D
Decidable goal, 49, 88, 278
Decoupled message, 77, 191
Decoupled message payload, 193
Decoupled message trigger, 219
Diagram

Behavior decomposition, 314
Entity, 313
Goal-based requirements, 313
MAS deployment, 314
Mental, 313
Ontology, 314
Protocol communication, 314
Protocol sequence, 314

354 Index

Service, 314
Service protocol communication, 314
Service protocol sequence, 314
Society, 313

Dispose role action, 68, 165
Dynamic classification, 54

E
Effect action, 84, 248
Effecting act, 84, 245
Effecting interaction, 83
Effector, 48, 84, 247
Effector type, 84, 246
Effects, 84, 249
Entity, 39

autonomous, 40
behavioral, 40

Entity diagram, 313
Entity role, 43
Entity role type, 65, 156
Entity type, 58, 138

Autonomous, 58, 139
Behavioral, 58, 138

Environment, 41
Environment type, 59, 143
Extended actor, 307
Extended behavior, 309
Extended behavioral feature, 308

G
Goal, 49, 88, 277

Decidable, 49, 88, 278
Undecidable, 50, 88, 280

Goal-based requirements diagram, 313
Goal-holder, 88

H
Hosting, 45
Hosting association, 71, 172
Hosting kind, 172
Hosting link, 172
Hosting property, 71, 169

I
Instance level, 54
Interaction protocol, 79, 208

J
Join, 77, 196

L
Link

hosting, 172
mental, 272
play, 161
social, 155

M
MAS deployment diagram, 314
Mental association, 272
Mental attitude, 49
Mental class, 264
Mental constraint, 88, 265
Mental constraint kind, 266
Mental diagram, 313
Mental link, 272
Mental property, 87, 268
Mental relationship, 267
Mental semi-entity, 39, 48
Mental semi-entity type, 87, 268
Mental state, 49, 263
Mobility action, 253
Move, 71, 250
Move action, 72, 255
Multi-agent system, 38
Multi-lifeline, 76, 187
Multi-message, 76, 189
Multiple classification, 54

O
Observation, 83
Ontology, 51, 92, 300
Ontology class, 51, 92, 300
Ontology diagram, 314
Ontology element, 51
Ontology instance, 52
Ontology utility, 52, 92, 302
Organization unit, 42
Organization unit type, 62, 147

P
Perceives, 84, 244
Perceiving act, 84, 238
Percept action, 84, 243
Perceptor, 47, 84, 241

Index 355

Perceptor type, 84, 239
Plan, 50, 88, 282
Play association, 67, 160
Play link, 161
Proactiveness, 2
Property

Hosting, 71, 169
Mental, 87, 268
Role, 66, 158
Serviced, 82, 229
Social, 63, 151

Protocol communication diagram, 314
Protocol sequence diagram, 314
Provider template parameters, 82

R
Reactivity, 1
Resource, 40
Resource type, 58, 142
Responsibility, 89, 273
Responsibility object, 273
Responsibility subject, 273
Role property, 66, 158

S
Semi-entity, 38

behaviored, 39, 46
mental, 39, 48
socialized, 39, 43
structural, 38, 42

Semi-entity type
Behaviored, 74, 176
Mental, 87, 268
Socialized, 63, 149

Send communication message action, 79, 214

Send decoupled message action, 77, 213
Service, 47, 81
Service client, 81
Service diagram, 314
Service protocol, 82, 225
Service protocol communication diagram, 314
Service protocol sequence diagram, 314
Service provider, 81
Service provision, 82, 233
Service specification, 81, 223
Service usage, 82, 235
Serviced element, 228
Serviced port, 82, 231
Serviced property, 82, 229
Situatedness, 1
Situation-based modeling, 93
Social ability, 2
Social association, 63, 155
Social link, 155
Social property, 63, 151
Social relationship, 43
Social role kind, 154
Socialized semi-entity, 39, 43
Socialized semi-entity type, 63, 149
Society diagram, 313
Structural semi-entity, 38, 42
Subset, 77, 194

T
Trigger

Communication message, 220
Decoupled message, 219

U
Undecidable goal, 50, 88, 280

	cover-image-large.jpg
	front-matter.pdf
	fulltext.pdf
	front-matter_001.pdf
	fulltext_001.pdf
	fulltext_002.pdf
	front-matter_002.pdf
	fulltext_003.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	fulltext_006.pdf
	front-matter_003.pdf
	fulltext_007.pdf
	fulltext_008.pdf
	fulltext_009.pdf
	fulltext_010.pdf
	fulltext_011.pdf
	fulltext_012.pdf
	fulltext_013.pdf
	fulltext_014.pdf
	fulltext_015.pdf
	fulltext_016.pdf
	front-matter_004.pdf
	fulltext_017.pdf
	fulltext_018.pdf
	back-matter.pdf

