Lecture Notes in Artificial Intelligence 2403

Subseries of Lecture Notes in Computer Science
Edited by J. G. Carbonell and J. Siekmann

Lecture Notes in Computer Science
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

Springer
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan

Paris

Tokyo

Mark d’Inverno Michael Luck
Michael Fisher Chris Preist (Eds.)

Foundations
and Applications
of Multi-Agent Systems

UKMAS Workshops 1996-2000
Selected Papers

&) Springer

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jorg Siekmann, University of Saarland, Saarbriicken, Germany

Volume Editors

Mark d’Inverno

University of Westminster, Cavendish School of Computer Science
9-18 Euston Centre, London NW1 3ET, UK

E-mail: dinverm @wmin.ac.uk

Michael Luck

Southampton University, Department of Computer Science
Southampton S017 1BJ, UK

E-mail: mml@ecs.soton.ac.uk

Michael Fisher

University of Liverpool, Department of Computer Science
Liverpool L69 7ZF, UK

E-mail: M.Fisher@csc.liv.ac.uk

Chris Preist

Hewlett-Packard laboratories Bristol

Filton Road, Stoke Gifford, Bristol BS12 6QZ, UK
E-mail: cwp@hplb.hpl.hp.com

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Foundations and applications of multi agent systems : selected papers /
UKMAS Workshops 1996 - 2000. Mark d’Inverno ... (ed.). - Berlin ;
Heidelberg ; New York ; Barcelona ; Hong Kong ; London ; Milan ;
Paris ; Tokyo : Springer, 2002

(Lecture notes in computer science ; Vol. 2403 : Lecture notes in

artificial intelligence)

ISBN 3-540-43962-5

CR Subject Classification (1998): 1.2.11,1.2, C.2.4

ISSN 0302-9743
ISBN 3-540-43962-5 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are

liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2002
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Steingriber Satztechnik GmbH, Heidelberg

Printed on acid-free paper SPIN: 10873633 06/3142 543210

Preface

Though the field of multi-agent systems has been growing rapidly and markedly over
a number of years, it perhaps became especially established with the first International
Conference on Multi-Agent Systems in San Francisco in 1995. That was also where
the idea for a UK Special Interest Group was formed, and shortly afterwards, in the
late summer of 1995, Mark d’Inverno, Michael Fisher, Nick Jennings, Michael Luck,
and Mike Wooldridge met for a research meeting at the University of Westminster, and
began a series of meetings that eventually became the UK Workshops on Multi-Agent
Systems (UKMAS).

The UKMAS workshops have now been running for five years, in 1996 and 1997
under the heading of FOMAS (Foundations of Multi-Agent Systems) both organized by
Michael Luck at University of Warwick and then subsequently in its current incantation,
UKMAS, first by Michael Fisher at Manchester Metropolitan University, then by Chris
Preist at Hewlett Packard Laboratories, Bristol, and finally by Mark d’Inverno at St.
Catherine’s College, Oxford in 2000.

The UK has been particularly strong in this area, and the MAS community’s strength
has been reflected by high rates of participation, high quality presentations and discus-
sions, and by an impressive range of invited speakers. Though the workshops were
always intended to provide a forum for discussion rather than more formal presentation
or publication, we have sought to represent the discussions through summary papers
that have been published in the Knowledge Engineering Review each year. After five
years of very successful workshops, however, it seemed appropriate to provide a record
of the more detailed and specific contributions from some of the speakers who have
contributed over this time.

In consequence, we decided to produce an edited volume of selected papers repre-
senting the best of the first five years of UKMAS. As should be clear from the author
list, we have been fortunate to welcome some of the most prestigious names in the field.
Others who have contributed to the workshops include Aaron Sloman, Stan Franklin,
Cristiano Castelfranchi, Ken Binmore, lan Dickinson, and Craig Boutilier, and we thank
them all for their input.

Over the years, numerous individuals have also contributed to the success of the
workshops, most importantly the participants and speakers, but others must also be
mentioned including Loretta Pletti, Serena Raffin, Chris Havill, Sam Akhtar, Ursula
Brown, Anna Hemmings and Caroline Carpenter. We have been sponsored by BT Labs,
FIPA, HP Labs, and more regularly by the UK’s Engineering and Physical Sciences
Research Council and AgentLink II, the European Commission’s IST-funded Network
of Excellence for Agent-Based Computing. We are immensely grateful to all for their
support, which has enabled us to create a truly accessible and successful event.

Mark d’Inverno
May 2002 Michael Luck

Organization

UKMAS is organized by the UKMAS steering committee and runs effectively only
through the contribution of the program committees.

Steering Committee

Mark d’Inverno University of Westminster
Michael Fisher University of Liverpool
Nick Jennings University of Southampton
Michael Luck (Chair) University of Southampton
Michael Wooldridge University of Liverpool

Program Committee

Ruth Aylett University of Salford

Rachel Bourne Queen Mary, University of London
Alex Coddington University of Durham

Kerstin Dautenhahn University of Hertfordshire

Jirgen Dix University of Manchester

Jim Doran University of Essex

Peter Edwards University of Aberdeen

Michael Fisher University of Liverpool

Nick Jennings University of Southampton

Luc Moreau University of Southampton

Tim Norman University of Aberdeen

Simon Parsons Massachusetts Institute of Technology
Jeremy Pitt Imperial College, London

Chris Preist Hewlett Packard Laboratories, Bristol
Omer Rana University of Wales, Cardiff

Chris Reed University of Dundee

Nir Vulkan University of Oxford

Michael Wooldridge University of Liverpool

Sponsoring Institutions

AgentLink II, the European Network of Excellence for Agent-Based Computing
BT Laboratories, Ipswich

FIPA (The Foundation for Intelligent Physical Agents)

Hewlett Packard Laboratories, Bristol

EPSRC (The Engineering and Physical Sciences Research Council)

Table of Contents

Coordinating Intelligent Agentst 1
Keith Decker

Strategies for Discovering Coordination Needs in MultiAgent Systems 19
Edmund H. Durfee

Agent-Mediated Interaction.
From Auctions to Negotiation and Argumentation 27
Carles Sierra, Pablo Noriega

Game Theory and Artificial Intelligence........... 49
Moshe Tennenholtz

Rights for Multi-agent Systems 59
Eduardo Alonso

Infrastructure Support for Agent-Based Development 73
Ronald Ashri, Michael Luck, Mark d’Inverno

An Anthropological Approach to the Discovery
of Ontologies in Multi-agent Societies.......... 89
Rafael H. Bordini, Renata Vieira, John A. Campbell

Scalability in Multi-agent Systems: The FIPA-OS Perspective 110
Phil Buckle, Tom Moore, Steve Robertshaw, Alan Treadway,
Sasu Tarkoma, Stefan Poslad

Agents and MAS in STaMs i 131
Jim Doran
Semantics of Agent Communication: An Introduction................... 152

Rogier M. van Eik

Agents with Bounded Temporal Resources 169
Michael Fisher, Chiara Ghidini

A Model of Delegation for Multi-agent Systems 185
Timothy J. Norman, Chris Reed

Agent Specification Using Multi-context Systems....................... 205
Simon Parsons, Nicholas R. Jennings, Jordi Sabater, Carles Sierra

An Adaptive Choice of Messaging Protocol in Multi Agent Systems 227
Chris Preist, Siani Pearson

X Table of Contents

On Partially Observable MDPs and BDI Models
Martign Schut, Michael Wooldridge, Simon Parsons

Author Index

Coordinating Intelligent Agents*

Keith Decker

Department of Computer and Information Sciences,
University of Delaware, Newark, DE 19716,
decker@udel.edu

Abstract. This chapter will focus on how to get organizations — multiple soft-
ware agents and perhaps humans — to coordinate thier activities when they are
working on shared, loosely coupled problems, such as engineering design or in-
formation gathering. It will describe some useful representations (including tems
[Task Analysis and Environment Modeling System]) for annotating an agent’s
representation of its activities, and some approaches (including GPGP [Gener-
alized Partial Global Planning]) to designing coordination mechanisms that are
adapted to some particular problem-solving environment. Examples will be drawn
from various projects in distributed information gathering and distributed hospital
patient scheduling.

1 Introduction

Our research program is involved in developing intelligent software agents (large, per-
sistent, autonomous, communicative, goal- and data- driven computer programs) and
organizations of these agents (sometimes including humans) that can operate in envi-
ronments where there is a lot of uncertainty about what is happening and where there
may be time pressures or deadlines. The agents will in general have many goals, some
partially overlapping or conflicting. We are not (and can not) realistically look for opti-
mal solutions, but instead must satisfice — try to find a solution that is “good enough” in
the time and resources that are available. No agent can work completely alone.

This research program can be divided into three areas. First, how to formally rep-
resent and reason about these sorts of problems, both externally as a human software
engineer and internally as a software agent. To this end we developed the tems task
structure description language (representing what we think are the important concepts)
and the GPGP approach to coordination (a way to reason about tems descriptions within
each software agent so that a team of them acts coherently together). Secondly, we ac-
tually build software and tools for building actual software agents. This includes the
RETSINA project that started with Dr. Katia Sycara at CMU, and the current DECAF
project at the University of Delaware that combines features of RETSINA and those
from tems and GPGP. Finally, we are also interested in understanding, modeling, and
even imitating human organizational structures in the context of software agents (both
organizations of ALL software agents, and mixed human/software agent hybrid organi-
zations). This is very important both because complex problems often need more than

* This work was supported by the National Science Foundation under grant I1S-9733004.

M. d’ Inverno et al. (Eds.): UKMAS 1996-2000, LNAT 2403, pp. 1-[I8] 2002.
(© Springer-Verlag Berlin Heidelberg 2002

2 Keith Decker

trivial organizaitonal solutions, and because most real systems are embedding in existing
human organizations (so they had darn well respect the boundaries of those organiza-
tions and the roles of the people with whom they interact). This chapter, then, serves as
a brief overview of the work in these three general areas.

2 Representing Coordination Problems: TAEMS

Coordination has been abstractly defined by Malone as the act of managing the inter-
dependancies between activities [22]. A percieved difficulty with writing about coor-
dination problems was that most approaches either sacrificed realistic complexity for
precise specification (e.g. game theoretic models that assumed agent choice from static,
well-known alternatives [27]]), or sacrificed any rigorous specification for the sake of re-
alistic complexity (e.g. text-based descriptions of domains like the DVMT [Distributed
Vehicle monitoring Testbed] [20]). tems (Task Analysis and Environment Modeling
System) was developed to bring some rigor to the specification of complex environ-
ments by carefully representing the structure of the tasks in those environments. By
“complex” we mean environments where there are alternative tasks, uncertainty in task
outcomes, and timing considerations with respect to task completion and the effect of
any task interdepedencies.

The tems language is used to formally define what a task strucure is, what parts are
known by what different agents, and what happens when agents execute these parts. tems
is often used as an annotation language on top of HTN (Hierarchical Task Network [[16]))
plans, based on careful, functional descriptions and an underlying state-based model of
computation. The basic idea is that each agent is trying to maximize performance, as
described by some set of utility characteristics (summarized as “quality” for good char-
acteristics, and “cost” for bad characteristics). Since the time that something gets done
often affects these things a lot, we also track the “duration” of various activities. tems
task structure annotations describe how the actions of any agent effect the perfomance of
that agent or others (by changing quality, cost, or duration). Thus it extends HTN ideas
toward specifying “worth-oriented” domains [27]. The basic relationship here is the
“subtask” relationship; but more important are various hard and soft relationships that
might exist between tasks (i.e. “enables” where A must come before B, or “facilitates”,
where doing A will cause B to be done better, cheaper, or quicker). All relationships
have a formal, quantitative mathematial definition. tems agents can reason about these
task structures, and even use them as a language for communicating about coordination
problems (see the next section on GPGP). Recent extensions to tems have included
multiple outcome specifications (contingencies) [33/31].

In utility theory, agents have preferences over possible final states (action or plan
outcomes), and preference-relevant features of an outcome are called attributes. A sub-
stantial body of work exists on relating attribute values to overall utilities [32]. At its
core, tems is about specifying these attributes and the processes by which they change
— what we call a model of the task environment. In the following example we will stick
to two attributes, quality and duration; typically a third cost attribute is also used.

Actions. A tems action (or executable method) represents the smallest unit of
analysis. In an implementation such as DECAF (see later), this corresponds to a Java

Coordinating Intelligent Agents 3

procedure or procedures over whose internals we do not wish to reason. do(M) is
the initial duration of action M, and qo(M) is the initial maximum quality of ac-
tion M. d(M, t) is the current duration, and q(M,t) is the current maximum qual-
ity of action M at time t. Q(M,t) is the current quality of action M. Q(M,t) = 0
at times ¢t before the execution of M. If an agent begins to execute M at time ¢
(written Start(M)) and continues until time ¢ + d(M,t) (written Finish(M)), then
Q(M,Finish(M)) = q(M, Finish(M)) (i.e. the current actual quality becomes the
maximum possible quality). For the purposes of this example, the amount of work
done on an action M here is simply Work(M) = Finish(M) — Start(M). If there
were no interrelationships (non-local effects, NLEs) between M and anything else, then
a(M,t) = qo(M) and d(M,t) = do(M). The execution of other actions and tasks
effect an action precisely by changing the current duration and current maximum quality
of the action (that is, d(M, t) and (M, t), as specified below). For the purposes of this
chapter, we will also assume that Q(M, t) = 0 for Start(M) < t < Finish(M); other
definitions of @ are possible to represent anytime algorithms, etc. Action pre-emption
and resumption may also be modeled by extending these simple definitions [6]].

Tasks. A tems task (or subtask) represents a set of related subtasks or actions, joined
by a common guality accumulation function. For example, in an AND/OR tree, an AND
task indicates that all subtasks must be accomplished to accomplish the task, while an
OR task indicates that only one subtask needs to be accomplished. Since tems is about
worth-oriented environment modeling, we use continuous rather than logical quality
accumulation functions (for example min instead of AND, max instead of O. Given
a subtask relationship subtask(T}, T') where T is the set of all direct subtasks or actions
of T, then if T is an AND task we may recursively define Q(71,t) = Qumin(T1,t) =
minyer Q(T,t). For the purposes of evaluation, the amount of work done on a task is
the sum of all the work done on its subtasks, and the finish time of a task is the latest
(max) finish time of any subtask.

Non-local Effects (NLEs). Any tems action/method, or a task 7" containing such a
method, may potentially affect some other method M through a non-local effect e. We
write this relation (a labeled arc in the task structure graph) as nle(T, M, e, p1, pa, . . .),
where the p’s are parameters specific to a class of effects. For this chapter, there are
three possible outcomes of the application of a non-local effect on M under our model:
d(M,t) (current duration) is changed, q(M, t) (current maximum quality) is changed,
or both. An effect class e is thus a function e(T', M, t,d, q, p1, p2, - . .) : [task x method x
time x duration X quality X parameter 1 x parameter 2 X ...] — [duration x quality].
For the purposes of this example, we will ignore the details regarding where information
is available, i.e. non-local effects that depend on the transmission of information. Let us
consider the two most popular NLEs: enables and facilitates.

Enables. If task T}, enables action M, then the maximum quality (M, t) = 0 until
T, is “completed”, at which time the current maximum quality will change to the initial
maximum quality q(M, t) = qo(M). Another way to view this effect is that it changes
the “earliest start time” of enabled method, because a rational scheduler will not execute
the method before it is enabled.

! The full set of quality accumulation functions, including alternate definitions for AND and OR,
is discussed in [6].

4 Keith Decker

[1d,0] t < O(Ty,0)
enables(T,, M,t,d,q,0) = { (. qo(M)] t > O(Th, 0) (1)
The term O(T,, #) computes the earliest time at which task T}, reaches quality 6.

Facilitates. Computationally, facilitation occurs when information from one task,
often in the form of constraints, is provided that either reduces or changes the search
space to make some other task easier to solve. A simple to understand example of this
relationship in computation is the relationship between sorting and searching. It is faster
to retrieve an item from a sorted data structure, but sorting is not necessary for retrieval.
Hence the sorting task facilitates the retrieval task.

In our framework, one task may provide results to another task that facilitates the
second task by decreasing the duration or increasing the quality of its partial result.
Therefore the facilitates effect has two constant parameters (called power parameters)
0 < ¢q <1and0 < ¢4 < 1, thatindicate the effect on duration and quality, respectively.
The effect varies not only through the power parameters, but also through the quality
of the facilitating task available when work on the facilitated task starts (the ratio R,
defined below).

_ Qavail(Tcm 5)
R,) = q(Tu,s)
facilitates(T,, M, t,d, q, ¢a, ¢q) = [d(1 — paR(T,, Start(M))),
4(1 + 6y R(T,, Start (M)))] @

So if T, is completed with maximal quality, and the result is received before M is
started, then the duration d (M, t) will be decreased by a percentage equal to the duration
power ¢4 of the facilitates effect. The second clause of the definition indicates that
communication after the start of processing has no effect. In this paper we will only use
the duration effect power ¢4. Negative values for power parameters produce “hindering”
or “inhibition” effects.

Computing d(M, ¢) and g(M, t). Underlying a tems model is a simple state-based
computation. Each method has an initial maximum quality qo(M) and duration do(M)
so we define q(M,0) = qo(M) and d(M,0) = do(M). If there are no non-local
effects, thend(M,t) = d(M,t—1)and q(M, t) = q(M,t—1). If there is only one non-
local effect with M as a consequent nle(T, M, e, p1,pa, . ..), then [d(M, t),q(M,t)] +
e(T,M,t,d(M,t—1),q(M,t—1),p1,pa2, - . .). If there is more than one non-local effect,
then the effects are applied in the order enables, then facilitates.

tems has been extended quite a bit since its original definition. Most importantly,
the number of quality accumulation functions has risen from 4 to 11 [19], resource
usage can be modeled [5], and contingency plans can be represented [31]]. In particular,
contingencies are represented by indicating that tasks have more than one outcome, with
some probability. Each outcome may then differentially express non-local effects (e.g. a
“successful” outcome may enable downstream actions, while an “error” outcome does
not).

Coordinating Intelligent Agents 5

2.1 Using TEMS

A tems model of environmental and task characteristics has three levels: generative,
objective, and subjective. The generative level describes the statistical characteristics
of objective problem instances (called episodes) in a domain. A generative level model
consists of a description of the generative processes or distributions from which the
range of alternative problem instances can be derived, and is used to study performance
over a range of problems in an environment. The objective level describes the essential,
‘real’ task structure of a particular problem-solving situation or instance over time.
Typically no agent ever has access to this complete and total information in the model
or simulation. Finally, the subjective level describes the agents’ view of the situation. A
subjective level model is essential for evaluating coordination algorithms, because while
individual behavior and system performance can be measured objectively, agents must
make decisions with only subjective information.

An objective coordination problem instance (usually called an episode) is defined as a
set of root tasks, each with a deadline. The root tasks may arrive at different times. For the
purposes of abstract evaluation, a solution S to an episode can be represented abstractly
as a set of after-the-fact schedules for each agent, indicating the Start and Finish times
for each action. We can then calculate the finish time of .S, Finish(.S), as the latest action
finish time, the amount of work done as the sum of the work done in each action, the total
quality as the sum of the root task qualities at the finish time (or at the task deadlines),
or other performace functions. This abstract problem formulation and evaluation has
been instantiated for several particular multi-agent problem-solving environments, such
as randomly generated problems [11]], the distributed vehicle monitoring problem [8,9],
distributed data processing [25], and hospital patient scheduling [5].

For example, one of the first applications of the approach was to explain the results
of Durfee, Corkill, and Lesser [[15]] that showed that no single coordination algorithm
uniformly outperformed the others. In [8/9] we went on to predict the performance effects
of changing:

the number of agents

the physical organization of agents (i.e., the range of their sensors and how much
the sensed regions overlap)

the average number of vehicles in an episode

the agents’ coordination algorithm

the relative cost of communication and computation

By building a tems model of the DVMT problem and then describing a physical
organization and coordination algorithm, we can derive and verify an expression for the
time of termination of a set of agents in any arbitrary simple DVMT-like environment.

A particular episode in this environment can be described by the tuple D =<
A,r,0,7T1,..., T, > where n is arandom variable drawn from an unknown distribution
representing the number of vehicles.

Each root task 77 is associated with a vehicle track of length /; and has the same
basic objective task structure, based on the DVMT:

— I; Vehicle Location Methods (VLM’s) that represent processing raw signal data at
a single location to a single vehicle location hypothesis.

6 Keith Decker

1 method

! {executable task)
(T task with quali

| mi accrual ﬁmm:?uun

subtask relationship
---- enables relationship

Fig. 1. Objective task structure associated with a single vehicle track.

— l; — 1 Vehicle Tracking Methods (VTM’s) that represent short tracks connecting the
results of the VLM at time ¢ with the results of the VLM at time ¢ + 1.

— 1 Vehicle Track Completion Method (VCM) that represents merging all the VITM’s
together into a complete vehicle track hypothesis.

Non-local enables effects exist between each method at one level and the appropriate
method at the next level as shown in Figure [[l- two VLMs enable each VTM, and all
VTM’S enable the lone VCM.

With appropriate analysis, one can derive estimates for how much low-level (VLM)
data is seen at the most highly loaded agent (under some coordination scheme for dis-
tributing the load), S; the number of root tasks seen at this agent, N’; and the average
number of agents that see a single root task, a. The total time until termination in such
an episode is the time to do local work at the busiest agent, combine results from (a — 1)
other agents, and build the completed results, plus two communication and information
gathering actions:

Sdi + (S — N)dz + (a — 1)Ndz + Nds + 21 + 2C A3)

We can use Eq. Blas a predictor by combining it with the probabilities for the values
of S and N (see Figure). Our analysis also explained another observation that has
been made about the DVMT - that the extra overhead of meta-level communication is
not always balanced by better performance. These analytical models are validated by
statistical methods on detailed simulations and/or application systems.

3 An Abstract Approach to Coordination: GPGP

Now that we have talked about “representation”, let us move onto designing coordination
mechanisms (using these representations). GPGP is a domain independent scheduling
approach. The term “planning” in the name is historical, from Durfee’s PGP. In the
modern Al view of a continuum between planning and scheduling, both GPGP and PGP
focus on the scheduling side. The GPGP approach makes several architectural assump-

Coordinating Intelligent Agents 7

B %% Likellhood Interval _4
[5% Likedibood Enserval i
a0 — Expected Termination

——— Actual Mean Termination (10 repetitiors)

Fig. 2. Actual system termination versus analytic expected value and analytically determined 50%
and 90% likelihood intervals. Runs arbitrarily ordered by expected termination time.

tions. Most important of these is that the agent represents its current set of intended tasks
using the tems task structure representation language.

An agent using the GPGP approach provides a planner or plan retriever to create
task structures that attempt to achieve agent goals, and a scheduler that attempts to
maximize utility via choice, serialization, and absolute temporal location of basic actions
in the task structure. Each GPGP mechanism examines the changing task structure for
certain situations, such as the appearance of a particular class of task relationship, and
responds by making local and non-local commitments to tasks, possibly creating new
communication actions to transmit commitments or partial task structure information to
other agents. The set of coordination mechanisms is extendible, and any subset or all of
which can be used in response to a particular task environment situation. By defining them
in tems terms, they can (and have been) applied to domains quite different from vehicle
monitoring, such as hospital scheduling and software process management. Initially,
GPGP defined the following five coordination mechanisms based on Durfee’s PGP:

Updating Non-local Viewpoints. Each agent detects the possible coordination rela-
tionships and then communicates the related task structures. A coordination rela-
tionship is simply a task interrelationship (e.g. enables, facilitates, etc.) that ex-
tends between the task networks of two different agents. Detecting the existence of
such relationships is domain dependent. In a domain such as distributed sensor net-
works, possible coordination relationships are detected geographically with respect
to physical sensor locations[[10]. In an application such as financial information
gathering[|14] possible relationships are recorded before a partial plan is distributed
to multiple agents. In the hospital scheduling problem, the set of “possible relation-
ships” are well-known medical domain knowledge, and are based on the particular
set of tests ordered by the examining doctor and recorded by the nursing unit.

Communicate Results when They Will Be Used by Others. For example, if the re-
sults of task A at agent A will enable the execution of task B at agent B, then actually
send those results when they become available. In our previous GPGP studies, we
modeled the performance of communicating whenever it seemed advantageous ver-
sus only when tasks had been committed to, with respect to environmental features

8 Keith Decker

such as rate of dynamic change, message size, and likelihood of distraction [9,11].
The standard result communication mechanism also sends notifications when a re-
sult cannot be delivered due to some failure, and when an agent believes all of its
work on a joint goal has been completed (similar to the Cohen & Levesque model
of teamwork [21]).

Handling Simple Redundancy. When more than one agent wants to execute a redun-
dant method, one agent is randomly chosen to execute it and send the result to the
other interested agents. This can lead to more complex load-balancing mechanisms
for handling redundancy [8l6]. Like all the mechanisms, this one can be switched
on or off for different domains or parts of a domain — sometimes redundancy is
desirable.

Handling Hard Relationships from the Predecessor Side. Here, A is required to
come before B. A is the “predecessor” task, B is the “successor”. The idea used
in PGP and generalized in GPGP is that the agent with the predecessor task will
commit to a completion time locally, and then transmit the commitment to the agent
responsible for B. Note that this is not the only way to handle this relationship (see
below).

Handling Soft Relationships from the Predecessor Side. A “soft” relationship exists
between A and B if when A is executed before B, the execution of B will be perhaps
faster or will return better results, but it is not strictly necessary. A simple example
is sorting versus searching: sorting facilitates searching, but sorting is not strictly
necessary before searching. In this PGP generalization, again the agent with the
predecessor task commits to a completion time and transmits the commitment to
the successor.

The most important thing about the GPGP approach is that it assures the generality
of the mechanisms, because each mechanism is specified as a response to some pattern
in a tems task structure. Although the specific task structure differs from task instance
to task instance and domain to domain, these coordination relationship show up over
and over again in different locations in each new domain. Thus the GPGP approach
allows us to apply the five Durfee mechanisms to domains other than distributed vehi-
cle monitoring (such as randomly generated problems, distributed data processing[24],
choosing organizational forms[7], local area network diagnosis [28], or hospital patient
scheduling and information gathering as discussed in this paper). The only limitation is
the reliance on a teems specification of the underlying task.

3.1 Task-Structure-Based Coordination

To achieve its desires, an agent must build appropriate structures outlining possible
paths to achievement (traditional Al planning or simple plan retrieval) and has to select
appropriate actions at suitable times with the right sequence (task/action scheduling).
Task structures might be created in agent architectures by various means: table lookup,
reactive planning, task reduction, classical HTN planning, etc. We assume the result
is a tems -style HTN. An agent scheduler can be implemented with any number of
algorithms (cf. comparisons in [[L7]). However, because of the inevitability of non-local
dependencies, and the associated uncertainty of the action characteristics, the ability of

Coordinating Intelligent Agents 9

the scheduler is severely limited if it can not acquire information about when and how
the non-local dependencies are to be handled. It is this information that is provided by
coordination mechanisms.

Previous work on GPGP coordination mechanisms [[12] had described them in an
abstract way, which made implementation and analysis difficult. Our more recent ob-
servation is that we can specify a specific coordination mechanism generally as a set of
protocols (i.e., more task structures) specific to the mechanism, and a pattern-directed
re-writing of the HTN. For example, if Act2 at Agent 2 enables Actl at Agent 1, then one
coordination mechanism (out of many) might be for Agent 1 to ask Agent 2 to do Act2,
and to commit ahead of time to a deadline by which Act2 will be completed. Here the pro-
tocols are a reservation and a deadline commitment protocol, and the re-writing changes
“Act2 enables Actl” into “reserve-act enables deadline-commitment enables Act2 en-
ables Actl”. To support this activity, an agent architecture must provide a facility for
examining patterns of relationships in the current task structures between local tasks
and non-local tasks, and re-writing them as required by the mechanism. This approach
enables the cataloging of potential coordination mechanisms for a relationship, much
more clear comparisions, and the real possibility of supporting automated coordination
in an agent architecture such as DECAF (leaving aside for the moment the important
question of which coordination mechanism to use for any particular relationship and
context).

For example, we have catalogued at least seventeen coordination mechanisms for
enablement relationships. Many of these are subtle variations, while some are quite
different. For example, if a task TB at agent B enables task TA at agent A, one could:

— Have B commit to a deadline for TB (the original PGP-inspired mechanism [12]);

— Have B send the result of TB (“out of the blue”, as it were) to A when available;

— Have A request that B complete TA by some deadline;

Have A poll for the completion of TB (Our model of current hospital practice [13]));

— Have B commit (once and for all) to a timetable for carrying out instances such as
TB without commiting to this specific instance individually)

— ...etc.

The seventeen mechanisms are not an exhaustive list, and many are simply varia-
tions on a theme. They include avoidance (with or without some sacrifice), reservation
schemes, simple predecessor-side commitments (to do a task sometime, to do it by a
deadline, to an earliest-start-time, to notify or send result directly when complete), simple
successor-side commitments (to do a task with or without a specific EST), polling ap-
proaches (busy querying, timetabling, or constant headway), shifting task dependencies
by learning or mobile code (promotion or demotion), various third-party mechanisms,
or more complex multi-stage negotiation strategies.

In order that these mechanisms be applicable across task structures from any domain,
the result of the mechanism is some alteration of the task structure. This might be a
structural alteration (i.e. removing or adding tasks) or an alteration of the annotations on
the task structure. As an example of the latter, consider the scheduling problem imposed
by a task structure that includes a non-local task. In general the local agent may have no
knowledge about the characteristics of that non-local task. Thus even though the agent
may have perfect knowledge about all of its local tasks, it cannot know the combined

10 Keith Decker

characteristics of the complete task structure. Coordination mechanisms that rely on
commitments from other agents to remove this uncertainty and allow the local agent to
make better scheduling decisions.

3.2 Using GPGP

Probably the most well-studied use of the GPGP approach in an application was our
study of the hospital patient scheduling problem [5]. Our model was drawn from a case
study of an actual hospital [23]18]:

Patients in General Hospital reside in units that are organized by branches of
medicine, such as orthopedics or neurosurgery. Each day, physicians request
certain tests and/or therapy to be performed as a part of the diagnosis and
treatment of a patient. [. ..] Tests are performed by separate, independent, and
distally located ancillary departments in the hospital. The radiology department,
for example, provides X-ray services and may receive requests from a number
of different units in the hospital.

Furthermore, each test may interact with other tests in relationships such as enables,
requires—delay (a slight variation on enables where the second task must be both af-
ter and delayed), and inhibits (a negative variation of the soft facilitates relationship
where the performance of some test within some timeframe invalidates the results of
another). These task relationships indicate when the execution of one task changes the
characteristics (here, primarily duration) of another task [10].

Experiments simulating the hospital’s current coordination structure showed a mis-
match between the structure and the current hospital environment. Although the modern
hospital task environment is quite complex and interrelated (see Figure[3d)), the coordina-
tion structure actually used by the hospital assumes that there are no interrelationships!
Each ancillary acts independently, without communication with either nursing units or
other ancillaries (except for the initial patient order from the nursing unit). Unit nurses try
to make sure the proper prerequisite tests (represented here by enablement constraints)
are done first. While this structure seems sorely lacking when compared to the current
environment, it may historically have been a reasonable, low overhead arrangement.

Vm... Unit 1 Numn Unit 2 method (executable task)

Pt | | sttt
@ @ @ @ @ @ 0 @ @ @ accrual function min

task already communicated
to ancillary
, —— subtask relationship
e \
> e > enables relationship
//‘ \/ \

e

- \ requires delay

/Ls(inhibits

- N 3 inhibits

@ / @ \ ‘ }\\ .\. resource
D[F i EL)ﬂ Theran <-—>> resource-constrains

Ancillary 1 Ancillary 2 Ancillary 3

Fig. 3. High-level, objective task structure and subjective agent views for a typical hospital patient
scheduling episode.

Coordinating Intelligent Agents 11

In this environment, the GPGP mechanisms to communicate task structures, partial
results, and handling hard and soft relationships were demonstrated to be useful (even
though they were originally developed for the DVMT environment). However, we also
developed a new GPGP coordination mechanism oriented toward handling mutually
exclusive resource constraint relationships between tasks at different agents (here, the
patients are the mutex resources). The approach was that of a simple single stage, multi
round cooperative negotiation, which has good flow properties and low overhead, which
is important in an environment where the task mix may change dynamically with new
patients, and where there is uncertainty over exactly how long procedures will take.
The experimental results showed that the new mechanism increases the performance of
agents by both decreasing patient stays and increasing throughput when there are many
inter-ancillary relationships.

4 Building Real Software Agents: DECAF

Finally, we may discuss using these ideas to build real software agents. DECAF (Dis-
tributed, Environment-Centered Agent Framework) is an agent toolkit which provides
a platform to design, develop, and execute agents to achieve solutions in complex soft-
ware systems. DECAF provides the necessary architectural services of a large-grained
intelligent agent [[14J29]: communication, planning, scheduling, execution monitoring,
and coordination. This is essentially, the internal “operating system” of a software agent,
to which application programmers have strictly limited access.

Functionally, DECAFis based on RETSINA [29/4]14134]33]] and teems[[10J31]]. TEMS
provides the framework for defining action alternatives, tradeoffs, and agent coordination
information. RETSINA provides the idea of adaptability by allowing multiple outcomes,
and reactive data flow constructs. The information provided by the tems modeling lan-
guage is not enough to actually be used to program an agent (via a simple task-reduction
planner or more complex HTN planner). This is because teems abstracts away the spe-
cific inputs (“provisions”) and outputs (“results”) associated with each action or task. In
the RETSINA project, a data-flow based method was used to record this information.
By combining these two ideas, a fully useful agent programming language is created.
Both RETSINA and tems (and thus DECAF) allow multiple outcomes from a task for
representing contingency plans, branches, or loops.

Figure f] represents the high level structure of the DECAF architecture. Structures
inside the heavy black line are internal to the architecture and the items outside the
line are user-written or provided from some other outside source (such as incoming
KQML messages). There are five internal execution modules (square boxes) in the
current DECAF implementation, and seven associated data structure queues (rounded
boxes).

4.1 Agent Initialization

The execution modules control the flow of a task through its life time. After initialization,
each module runs continuously and concurrently in its own Java thread. When an agent is
started, the agent initialization module will run. The Agent Initialization module will read

12 Keith Decker

Plan File Incoming KOQML messages

DECAF Task and Control Structures

ncoming Uhjertl\:::\\ lask Agenda
MESSE'EB QUEUE Queu Queue Queue

L] .-\‘\‘\'_\. \'71 .:"1. -\‘
Agent Dispatcher Planner | |Scheduler | | Executor

nitialization|
i 7 k]
./"" /
_—L
EISI("By Lates Pending ~ Action
ashtab Action QUB_H/ Results Queus

LY - -

Momain Facts and Beliets - | &

Outgoing —] :
KOML Messages Action Modules

Fig. 4. DECAF Architecture Overview

plan file(s) containing the tems task structure templates. Each task reduction specified
in the plan file will be added to the Task Templates Hash table (plan library).

Next, the Agent Initialization Module registers with an ANS (Agent Name Server, or
FIPA Directory Service) and sets up all socket and network communication. Finally, the
agent may make use of a Startup root task. The Startup task is special since no message
will be received to begin its execution. If such a Startup root task is part of the plan file,
the initialization module will add it to the Task Queue for immediate execution. Agent
initialization is done once and then control is passed to the other four main agent threads,
described next.

4.2 Dispatcher

The Dispatcher waits for incoming messages which are placed on the Incoming Message
Queue. An incoming message contains a KQML performative (or FIPA communicative
act). An incoming message can result in one of three actions by the dispatcher:

— The message is attempting to communicate as part of an ongoing conversation. The
Dispatcher makes this distinction mostly by recognizing the : in-reply-to field
designator, which indicates the message is part of an existing conversation. In this
case the dispatcher will find the corresponding action in the Pending Action Queue
and set up the tasks to continue the agent action.

— The message indicates that it is part of a new conversation. This will be the case
whenever the message does not use the : in-reply-to field. If so a new objective
is created (equivalent to the BDI “desires” concept[26]) and placed on the Objectives
Queue for the Planner. The dispatcher assign a unique identifier to this message
which is used to distinguish all messages that are part of the new conversation.

Coordinating Intelligent Agents 13

— The dispatcher is responsible for is the handling of error messages. If an incoming
message is improperly formatted or if another internal module needs to sends an
error message the Dispatcher is responsible for formatting and send the message.

4.3 Planner

The Planner monitors the Objectives Queue and matches new goals to an existing task
template as stored in the Plan Library. The initial, top-level objectives are roughly equiv-
alent to the BDI “desires” concept[26], while the expansion into plans is only part of the
traditional notion of BDI “intentions”, which for DECAF is divided into three reasoning
levels, planning, scheduling, and execution. A copy of the instantiated plan, in the form
of an HTN corresponding to that goal is placed in the Task Queue area, along with a
unique identifier and any provisions that were passed to the agent via the incoming mes-
sage. If a subsequent message comes in requesting the same goal be accomplished, then
another instantiation of the same plan template will be placed in the task queue with a
new unique identifier. The Task Queue at any given moment will contain the instantiated
plans/task structures (including all actions and subgoals) that should be completed in
response to an incoming request.

4.4 Scheduler

The Scheduler waits until the Task Queue is non-empty. The scheduling functions are
actually divided into two separate modules; the Task Scheduler and the Agenda Manager.

The purpose of the Task Scheduler is to evaluate the HTN task structure to determine
a set of actions which will “best” suit the users goals. The input is a task HTN will all
possible actions, and the output is a task HTN pruned to reflect the desired set of actions.

Once the set of actions have been determined, the Agenda Manager (AM) is respon-
sible for setting the actions into execution. This determination is based on whether all
of the provisions for a particular module are available. Some provisions come from the
incoming message and some provisions come as a result of other actions being com-
pleted. This means the Tasks Queue Structures are checked any time a provision becomes
available to see which actions can be executed now.

The other responsibility of the AM is to reschedule actions when a new task is
requested. Every task has a window of time that is used for execution. If subsequent
tasks can be completed while currently scheduled are running then a commitment is
made to running the task on time. Otherwise the AM will respond with an error message
to the requester that the task cannot be completed in the desired time frame.

4.5 Executor

The Executor is set into operation when the Agenda Queue is non-empty. Once an
action is placed on the queue the Executor immediately places the task into execution.
One of two things can occur at this point: The action can complete normally. (Note that
“normal” completion may be returning an error or any other outcome) and the result is
placed on the Action Result Queue. The framework distributes the result as provisions to

14 Keith Decker

downstream actions that may be waiting in the Task Queue. Once this is accomplished
the Executor examines the Agenda queue to see if there is further work to be done.

The other case is when the action partially completes and returns with an indication
that further actions will take place later. This is a typical result when an action sends
a message to another agent requesting information, but could also happen for other
blocking reasons (i.e. user or Internet I/O). The remainder of the task will be completed
when the resulting KQML message is returned. To indicate that this task will complete
later it is placed on the Pending Action Queue. Actions on this queue are keyed with a
reply-to field in the outgoing KQML message. When an incoming message arrives, the
Dispatcher will check to see if an in-reply-to field exists. If so, the Dispatcher will check
the Pending action queue for a corresponding message. If one exists, that action will be
returned to the Agenda queue for completion. If no such action exists on the Pending
action queue, an error message is returned to the sender.

4.6 Using DECAF

While DECAF has been used as a platform for experimenting with soft-realtime action
scheduling and GPGP, it has also been used for education and information-gathering
applications, with about 90 registered users [http://www.cis.udel.edu/ decaf/].
One of the most complete applications is an bioinformatics information-gathering system
for genomic annotation, BioMAS [3/2].

One part of the annotation problem for biologists is that there is a large set of het-
erogeneous and dynamically changing databases, all of which have information to bring
to bear on the biological problem of determining genomic function. There are biolo-
gists producing thousands of possible genes, for which functions must be hypothesized.
Historically, for all but the largest sequencing projects, this must be done by hand by a
single researcher and their students.

Multi-agent information gathering systems have a lot to contribute to these efforts.
Several features make a multi-agent approach to this problem particularly attractive:
information is available from many distinct locations; information content is hetero-
geneous; information content is constantly changing; much of the annotation work for
each gene can be done independently; biologists wish to both make their findings widely
available, yet retain control over the data; new types of analysis and sources of data are
appearing constantly.

BioMAS is a prototype multi-agent system for automated annotation and database
storage of sequencing data using DECAF. The resulting system eliminates tedious and
always out-of-date hand analyses, makes the data and annotations available for other re-
searchers (or agent systems), and provides a level of query processing beyond even some
high-profile web sites. Figure B shows an overview of the system as four overlapping
multi-agent organizations. The first, Basic Sequence Annotation, is charged with inte-
grating remote gene sequence annotations from various sources with the gene sequences
at the Local KnowledgeBase Management Agent (LKBMA). The second, Query, allows
complex queries on the LKBMAs via a web interface. The third, Functional Annotation
is responsible for collecting information needed to make an informed guess as to the
function of a gene, specifically using the three-part Gene Ontology [30]. The fourth

Coordinating Intelligent Agents 15

e ll-l-l-l-l-l-l-l-l-l

4 =
Sequence Addition H Functional Annotation! E User Query| H EST Entry !
Applet H Applet H Applet ! Chromatograph/FASTA I
E H ! Proxy i
H H I Agent] i
Proxy = Proxy] |Ontology| = Proxy =

. e | EST i
: H H . 1
H Ontology Reasoning é Query Processing ! ProceSSlng I
el o e I e wperza
Processing Agen Agent §F . H 5 Processing Sequence || SNP-Finder| 8
Functional : Quer I i
‘Annotation: YL '
Basic Annotation: | ~_ __Hl :
S Tgungnnnnnge 1
n i : |
mhotation & ey | | i

senisan LKBMA |} = A
Annotation info Esraction Agen I : ;
=TT 1 1 ¢ ¢ 1 1]

PSort

Flybase
IEA

IEA

ProDomain’|| SwissProt/
IEA ProSite
1IEA

‘Mouse Genome DB || SGD (yeast)
IEA

Fig. 5. Overview of DECAF Multi-Agent System for Genomic Analysis

organization, EST Processing enables the analysis of expressed sequence tags (ESTs) to
produce gene sequences that can be annotated by the other organizations.

An important feature to note is that we are focusing on annotation and analysis ser-
vices that are not organism specific. In this way, the resulting system can be used to
build and query knowledgebases from several different organisms. The original subsys-
tems (basic annotation and the simple query system) were built to annotate the newly
sequenced Herpesvirus of Turkey (the bird), and then to compare it to the other known
sequenced herpesvirusesﬂ. Work is well underway to build a new knowledgebase from
chicken ESTs, using the same set of agents.

Such an information gathering system is actually a very straightforward application
of DECAF. It requires no sophisticated coordination, for example. However, even in such
a simple system the use of t@ms -style representations can help. For example, we are
working on providing alternative task structures for queries that allow a user to specify
that they would prefer a high quality answer over a quick one (perhaps, because they are
preparing for publication). This would allow certain analyses and external annotation
queries to be re-run at query time, instead of relying on locally cached data.

5 Conclusions

This chapter has discussed the study of coordination in multi-agent systems. We began
with a discussion of how to represent the problem or task structures at hand in the
environment. The teems language was an attempt to formalize features of complex multi-
agent task environments — that is, environments with alternative actions, various types
of uncertainty, deadlines, and so on. We discussed using t@ms purely as an abstract
representation that is amenable to analysis, usually coupled with simulation. Thus one
can examine the linkages between features of a task environment and the mechanisms
that the agents use to deal with those features.

2 See http://udgenome.ags.udel.edu/herpes/.

16 Keith Decker

An abstract tems specification poses many problems for an agent designer, such
as the local real-time scheduling problem, but also the problem of managing the inter-
dependencies between the actions located at different agents. The GPGP Generalized
Partial Global Planning (or scheduling) approach views every non-local-effect that ex-
tends between a task at one agent and that of another as a potential coordination point.
Each potential coordination point can be addressed by a wide variety of coordiantion
mechanisms. Each coordination mechanism can be thought of as re-writing the task
structure near the coordination point, adding other processing or communication actions
(or perhaps, removing some). The result is a local task strucure annotated with some
non-local (i.e., partial global) information to improve local scheduling decisions.

Finally, we discussed DECAF, a Java-based agent framework that uses a tems -like
language for specifying agent programs. We like to think of DECAF as an agent oper-
ating system because it provides certain standard services to integrate individual agent
capabilities. These include plan retrieval and instantiation, local scheduling, communi-
cation dispatching, and execution monitoring. DECAF is in use for educational purposes
and also for building information gathering applications such as the BioMAS genomic
annotation system. Currently, DECAF is being fitted with a GPGP coordination service
to provide automated coordination of multi-agent tasks [I1].

References

[1] W. Chen and K. Decker. Coordination mechanisms for dependency relationships among
multiple agents (poster). In Proceedings of the 1st Intl. Joint Conf. on Autonomous Agents
and Mult-Agent Systems, Bologna, 2002.

[2] K. Decker, S. Khan, C. Schmidt, and D. Michaud. Extending a multi-agent system for
genomic annotation. In M. Klusch and F. Zambonelli, editors, Cooperative Information
Agents 1V, pages 106—117. Springer-Verlag, 2001.

[3] K. Decker, X. Zheng, and C. Schmidt. A multi-agent system for automated genomic anno-
tation. In Proceedings of the 5th Intl. Conf. on Autonomous Agents, Montreal, 2001.

[4] K.S.Decker, A.Pannu, K. Sycara, and M. Williamson. Designing behaviors for information
agents. In Proceedings of the 1st Intl. Conf. on Autonomous Agents, pages 404—413, Marina
del Rey, February 1997.

[5] Keith Decker and Jinjiang Li. Coordinating mutually exclusive resources using gpgp. Au-
tonomous Agents and Multi-Agent Systems, 3(2):133—-157, 2000.

[6] Keith S. Decker. Environment Centered Analysis and Design of Coordination Mechanisms.
PhD thesis, University of Massachusetts, 1995.
http://dis.cs.umass.edu/ decker/thesis.html.

[7] Keith S. Decker. Task environment centered simulation. In M. Prietula, K. Carley, and
L. Gasser, editors, Simulating Organizations: Computational Models of Institutions and
Groups, pages 105-131. AAAI Press/MIT Press, 1997.

[8] KeithS. Decker and Victor R. Lesser. An approach to analyzing the need for meta-level com-
munication. In Proceedings of the Thirteenth International Joint Conference on Artificial
Intelligence, pages 360-366, Chambéry, France, August 1993.

[9] Keith S. Decker and Victor R. Lesser. A one-shot dynamic coordination algorithm for dis-
tributed sensor networks. In Proceedings of the Eleventh National Conference on Artificial
Intelligence, pages 210-216, Washington, July 1993.

[10] Keith S. Decker and Victor R. Lesser. Quantitative modeling of complex computational task
environments. In Proceedings of the Eleventh National Conference on Artificial Intelligence,
pages 217-224, Washington, July 1993.

(1]

[12]

[13]
[14]

[15]

[16]

(7]
(18]
[19]
[20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]
(28]
[29]

(30]

Coordinating Intelligent Agents 17

Keith S. Decker and Victor R. Lesser. Designing a family of coordination algorithms. In
Proceedings of the First International Conference on Multi-Agent Systems, pages 73-80,
San Francisco, June 1995. AAAI Press. Longer version available as UMass CS-TR 94-14.
Keith S. Decker and Victor R. Lesser. Designing a family of coordination algorithms. In
Proceedings of the First International Conference on Multi-Agent Systems(ICMAS-95), San
Francisco, 1995.

Keith S. Decker and J. Li. Coordinating mutually exclusive resources using gpgp. Au-
tonomous Agents and Multi-Agent Systems, 3, 2000.

Keith S. Decker and Katia Sycara. Intelligent adaptive information agents. Journal of Intel-
ligent Information Systems, 9(3):239-260, 1997.

Edmund H. Durfee, Victor R. Lesser, and Daniel D. Corkill. Coherent cooperation among
communicating problem solvers. IEEE Transactions on Computers, 36(11):1275-1291,
November 1987.

K. Erol, D. Nau, and J. Hendler. Semantics for hierarchical task-network planning. Technical
report CS-TR-3239, UMIACS-TR-94-31, Computer Science Dept., University of Maryland,
1994.

J.Graham and K.Decker. Towards a distributed, environment-centered agent framework. In
Intelligent Agents IV, Agent Theories, Architectures, and Languages. Springer-Verlag, 2000.
A. Kumar and P.S. Ow. A study of distributed problem solving for patient scheduling. In
Proc. ORSA/TIMS, Washington, D.C., 1988.

V. Lesser, B. Horling, R. Vincent, A. Raja, and S. Zhang. The taems white paper.
http://mas.cs.umass.edu/research/taems/white/, 1999.

Victor R. Lesser and Daniel D. Corkill. The distributed vehicle monitoring testbed. Al
Magazine, 4(3):63—109, Fall 1983.

Hector J. Levesque, Philip R. Cohen, and José H. T. Nunes. On acting together. In Pro-
ceedings of the Eighth National Conference on Artificial Intelligence, pages 94-99, July
1990.

Thomas W. Malone. Modeling coordination in organizations and markets. Management
Science, 33:1317-1332, 1987.

P.S. Ow, M. J. Prietula, and W. Hsu. Configuring knowledge-based systems to organizational
structures: Issues and examples in multiple agent support. In L. F. Pau, J. Motiwalla, Y. H.
Pao, and H. H. Teh, editors, Expert Systems in Economics, Banking, and Management, pages
309-318. North-Holland, Amsterdam, 1989.

M.V. Nagendra Prasad, K. S. Decker, A. Garvey, and V.R. Lesser. Exploring organizational
designs with TEMS: A case study of distributed data processing. In Proceedings of the
Second International Conference on Multi-agent Systems, Kyoto, Japan, December 1996.
M.V. Nagendra Prasad and V.R. Lesser. Learning situation-specific coordination in gener-
alized partial global planning. In AAAI Spring Symposium on Adaptation, Co-evolution and
Learning in Multiagent Systems, Stanford, March 1996.

A.S. Rao and M.P. Georgeff. BDI agents: From theory to practice. In Proceedings of the
First International Conference on Multi-Agent Systems, pages 312-319, San Francisco, June
1995. AAAI Press.

J. S.Rosenschein and G. Zlotkin. Rules of Encounter: Designing Conventions for Automated
Negotiation among Computers. MIT Press, Cambridge, Mass., 1994.

Toshiharu Sugawara and Victor R. Lesser. On-line learning of coordination plans. Computer
Science Technical Report 93-27, University of Massachusetts, 1993.

K. Sycara, K. S. Decker, A. Pannu, M. Williamson, and D. Zeng. Distributed intelligent
agents. IEEE Expert, 11(6):36—46, December 1996.

The Gene Ontology Consortium. Gene ontolgy: tool for the unification of biology. Nature
Genetics, 25(1):25-29, May 2000.

18 Keith Decker

[31] T. Wagner, A. Garvey, and V. Lesser. Complex goal criteria and its application in design-
to-criteria scheduling. In Proceedings of the Fourteenth National Conference on Artificial
Intelligence, Providence, July 1997.

[32] M.P. Wellman and J. Doyle. Modular utility representation for decision-theoretic planning.
In Proc. fo the First Intl. Conf. on Artificial Intelligence Planning Systems, pages 236-242,
June 1992.

[33] M. Williamson, K. S. Decker, and K. Sycara. Executing decision-theoretic plans in multi-
agent environments. In AAAI Fall Symposium on Plan Execution, November 1996. AAAI
Report FS-96-01.

[34] M. Williamson, K. S. Decker, and K. Sycara. Unified information and control flow in hier-
archical task networks. In Proceedings of the AAAI-96 workshop on Theories of Planning,
Action, and Control, 1996.

Strategies for Discovering Coordination Needs
in MultiAgent Systems!

Edmund H. Durfee

Computer Science and Engineering Division,
EECS Department, University of Michigan,
Ann Arbor, MI 48109,
durfee@umich.edu

Abstract. While numerous techniques have been developed by which agents
can coordinate over the allocation of scarce resources or the pursuit of
interdependent goals, less is understood about how agents discover, in the first
place, with whom they should worry about coordinating and about what. We
have studied several strategies for making such discoveries, ranging from
communicating abstract information to anticipate potential interactions ahead of
time, to learning from interactions as they occur to anticipate future interactions.
In this paper, we briefly summarize some of the strategies we have been
investigating, and opportunities for further exploration.

1 Introduction

When multiple computational agents share a task environment, interactions between
the agents generally arise. An agent might make a change to some feature of the
environment that in turn impacts other agents, for example, or might commandeer a
non-sharable resource that another agent desires. When the decisions that an agent
makes might affect what other agents can or should decide to do, agents will typically
be better off if they coordinate their decisions.

Numerous techniques exist for coordinating decisions about potential interactions.
These include appealing to a higher authority agent in an organizational structure,
instituting social laws that avoid dangerous interactions, using computational markets
to converge on allocations, explicitly modeling teamwork concepts, using contracting
protocols to strike bargains, and iteratively exchanging tentative plans until all
constraints are satisfied. There is a rich literature on these and other mechanisms for
coordinating agents; the interested reader can see [6].

However, each of these mechanisms takes as its starting point that the agents
requiring coordination know, at the outset, either with whom they should coordinate,
or what issues they should coordinate about. As examples, an organizational structure

! This article was originally published in the DoD Software Tech News, Volume 5, Number 1,
www.dacs.dtic.mil

M. d’Inverno et al. (Eds.): UKMAS 1996-2000, LNAI 2403, pp. 19-26, 2002.
© Springer-Verlag Berlin Heidelberg 2002

20 Edmund H. Durfee

inherently defines how agents are related to each other, and a computational market
corresponds to some resource or “good” that was somehow known to be contentious.

A central thrust of our research is in pushing back the boundaries of what is
assumed known in a multiagent setting in order to bootstrap the coordination process.
That is, we want to develop techniques by which agents can discover whom they
should coordinate with, or what they should coordinate about, so that the rich variety
of coordination techniques can then be employed. This paper briefly summarizes
some of our progress, results, and plans on this front.

2 Unintended Conflicts

An important case in which agents need to discover coordination needs is the
following. Agents occupy an open, dynamic environment, and each agent has its own
independent objectives. Yet, in pursuing its objective, an agent can unintentionally
interfere with others, sometimes catastrophically. Therefore, it is important for each
agent to discover whether something it is doing needs to be coordinated with others.

We have been studying coalition operations as an example application domain
where this kind of problem arises. In a coalition, objectives and responsibilities are
distributed among multiple functional teams, where operational choices by one team
can infrequently and unintentionally affect another team. The repercussions of
unintended interactions can range from merely delaying the accomplishment of
objectives (such as waiting for assets that were unexpectedly borrowed by someone
else) to more catastrophic outcomes (such as so-called friendly fire). We have been
developing computational techniques in which each team is represented by a
computational agent, and these agents predict the unintended interactions and resolve
them before they occur. The resulting coordinated plans of the agents should be
efficient (e.g., agents should not have to wait unnecessarily for others), flexible (e.g.,
agents should retain room in their plans to improvise around changing local
circumstances), and realizable (e.g., agents should not have to message each other at
runtime in a manner that outstrips communication capabilities).

Conceptually, our techniques begin by assuming that each agent can represent its
plans in a hierarchical task network (HTN), capturing the possible decompositions of
abstract plan steps into more detailed plans. As a simple example, consider the case of
agent A moving through a grid world to reach a destination (Figure 1). The HTN for
this agent is in Figure 2. At the most abstract level (wide upper arrow in Figure 1, top
node in the HTN), the plan is simply to go from the initial location to the destination.
This is in turn composed of the three sequential steps of going to the door, through the
door, and beyond the door (the other solid arrows in Figure 1, the second tier of nodes
in Figure 2). The ordering constraints are captured in the HTN (Figure 2) by the
arrows labeled “B” for “before.” For both the first and last step at this level, there are
two ways of accomplishing the step. For example, for getting to the door, the upper
route or the lower route could be chosen. Each of these in turn can be decomposed into
a sequence of two movements; the upper, for example, is to the right and then down.

Strategies for Discovering Coordination Needs in MultiAgent Systems 21

0 1 2 3 4

0 %//////////%

W

Fig. 1. Example Movement Task

B B B

B

Fig. 2. Example Hierarchical Task Network (HTN)

An advantage of using the hierarchical representation is that each agent has,
simultaneously, a model of itself at multiple levels of detail. In an open environment
populated by numerous agents, being able to communicate about and exchange
abstract information can enable agents to quickly determine which (small) subset of
agents in the world they actually could potentially interact with (Figure 3a to Figure
3b). In the simple movement task example, for instance, the grid might be much
larger, and the subset of agents is small whose planned movements, even abstractly
defined, indicate a potential collision with agent A. For those agents, it might even be
possible to impose constraints at the abstract level to ensure against unintended
collisions, such as sequentializing the overall plans so that only one of the affected

22 Edmund H. Durfee

a.
b.
O
c.
[
=)
d.
O

Fig. 3. Example Hierarchical Task Network (HTN)

agents moves at a time. Or, for the remaining agents, additional details of the HTNs
can be exchanged. As a result, agents that were potentially interacting might be
determined to not interact at all, reducing the number of agents further and introducing
constraints between only substeps of plans leaving agents to do their other substeps as

Strategies for Discovering Coordination Needs in MultiAgent Systems 23

they wish (Figure 3c). Finally, further investigation might indicate that the potential
conflict can be isolated to a particular choice that an agent might make; a commitment
by the agent to forbid that choice leaves the plans coordinated without imposing any
ordering constraints between the agents’ plans at all (Figure 3d).

This example illustrates that, by working from the top down, agents can more
efficiently identify and zoom in on the problematic interactions. By digging down
deeply, they might be able to impose commitments (on relative timing or on choices
of ways in which they will accomplish their tasks) that lead to very crisp coordination.
However, in dynamic environments, sometimes it is better to impose constraints at
more abstract levels: while this might require more sequential operation than desired,
it also allows agents to avoid commitments to details that they might regret. As is
intuitive in human coordination, each agent retains more flexibility for improvising

when it makes more vague commitments to others. Moreover, digging down
deeply requires more rounds of communication and analysis, so coordinating at
abstract levels incurs less overhead. Among our ongoing research activities are
developing methods for quantitatively evaluating tradeoffs between coordination
“crispness”, overhead, and flexibility.

We have developed techniques for formulating summaries in HTNs that permit the
kind of top-down reasoning that we have just described, and have shown that such
techniques can indeed much more efficiently coordinate agents [3]. These techniques
have been shown to be sound and complete. At the cost of completeness, we have
also developed a version of these techniques that can be used on-line [5]. The on-line
techniques allow agents to postpone decisions about which of the alternative ways
they will use to accomplish a task until that task is the next to be done. This in turn
provides increased flexibility to the agents, leading to more reliable agent operation in
dynamic domains than methods that require agents to make selections before
execution begins.

3 Dealing with Centralization

The techniques just outlined have the feature that, to ensure that all possible
interactions are detected and dealt with, some agent or agents need to compare all
agents’ most abstract plans. This implies that, at some point, information about all
agents needs to be known in one place, which is antithetical to decentralized
multiagent systems. Certainly, our current implementations rely on a central
coordinator to discover potential agent interactions, although in principle once these
are discovered the job of working with the agents to resolve the interactions can be
delegated to multiple sub-agents, where each handles a different partition of the agent
population.

How can we get around the need for centralization? Well, first of all, it should be
noted that our use of centralization for detecting interactions does not imply that
authority, or even knowledge about agent preferences, is centralized. In our model,
the coordination process merely detects potential interactions and finds possible
resolutions (more detailed resolutions as time goes on). To agree upon which

24 Edmund H. Durfee

resolution to use, the affected agents can employ any of the various coordination
mechanisms mentioned at the beginning of this paper. That is, these are appropriate
once the agents know about the interactions and who is involved.

In turn, this suggests that one way of eliminating the centralization of the detection
process requires that agents are initialized with some knowledge. For example, the
organizational structure in which they reside might inherently partition the agents,
such that coordination can be carried out in parallel in different partitions. Or agents
might be initialized with knowledge of the possible actions of other agents that can be
used to anticipate interactions. For example, our research is using these ideas to
coordinate resource-limited agents in a multiagent world [4]. In the simplest sense, a
resource-limited agent needs to decide how to allocate its limited capabilities in order
to meet its performance goals across the scope of worlds that it might encounter. By
employing knowledge about what actions other agents might take in particular
situations, it can better predict what worlds it might encounter, and can even use its
uncertainty to focus communication with those other agents to ask them which of the
alternative actions they plan to take for a critical situation. Such communications
could also permit agents to avoid taking redundant actions in situations where they
would react the same way. In the long run, agents can even engage in negotiation to
convince others to favorably change how they react to particular circumstances.

4 Congregating over Mutual Concerns

An alternative means of determining coordination needs, instead of centralizing
information or inherently distributing key coordination knowledge, is to instead permit
coordination needs to be discovered through interactions. While this would be
inappropriate in applications where uncoordinated interactions could be catastrophic
(such as when friendly fire arises in coalition operations), there are many applications
where the consequences of poor coordination are not so dire.

Consider, for example, interactions among groups of people with similar interests,
such as in an electronic newsgroup. A well-defined group permits an efficient
exchange of relevant information among interested people, with a minimum of
tangential communications that waste readers’ time. A poorly-defined group, on the
other hand, wastes readers’ time and might lose readership quickly, but with no
significant lasting effects on the participants. In this case, then, it is possible that
people might congregate around newsgroup topics in an emergent way, through
experimentation and exploration in the space, until they converge on relatively stable
newsgroups that lead to productive interactions.

We have been conducting research in understanding the dynamic processes of
congregating in open environments [2]. In our model, agents move among
congregations until they find places where they are satisfied, where satisfaction
depends on the other members of their congregation. Since these other agents are also
moving around to find satisfactory congregations, agents are engaged in non-
stationary (“moving target”) search. In general, convergence in such systems is slow if
it happens at all, and we have been studying mechanisms that enhance convergence

Strategies for Discovering Coordination Needs in MultiAgent Systems 25

such as: varying the movement costs of agents so that some “hold still” while others
move; allowing like-minded agents to move as a coalition; giving agents the ability to
remember and return to previously-experienced congregations; and allowing agents in
a congregation to summarize their common interests and advertise this information to
other agents.

As a specific form of congregating, we have been particularly interested in
information economies, where competing producers of information goods must bundle
and price their goods so as to attract (a subset of) the information consumers. Where a
producer ends up in the product-and-price space is influenced not only by the
consumer preferences, but also by the positioning decisions of other producers.
Among our research results are that we have defined some of the conditions that
promote the discovery of niche markets in the information economy, such that
producers engage in stable relationships with an interested subset of the consumer
population, and avoid mutually-harmful interactions (price wars) with other producers
[1]. As suggested above, the price paid for this decentralized technique for
discovering which agents should coordinate (interact) with each other is that, on the
way to the ultimate mutually-profitable result, producers will sometimes compete with
each other and do poorly temporarily as a result.

5 Summary and Future Directions

In this paper, we have claimed that, while powerful techniques exist for coordinating
agents that already know whom or about what to coordinate, there are still many
issues that need to be explored in designing efficient mechanisms by which to
determine what needs to be coordinated in the first place. We briefly described some
mechanisms that we are exploring for this purpose. One of these involves agents
iteratively exchanging plan information at increasingly detailed levels to isolate
potential interactions and impose effective commitments to resolve conflicts. Another,
on the other hand, permits suboptimal interactions to occur, and allows the agent
population to self-organize, over time, into congregations that emphasize beneficial
interactions.

There are many directions in which we are, or are considering, extending these
research activities. We need to develop heuristic means by which agents can decide on
the level of detail at which they should coordinate, and metrics for comparing
alternative coordination decisions in uncertain environments. We need to extend the
soundness and completeness proofs, as well as the complexity analyses, of the
techniques as we continue to augment and improve them. Coordination commitments
that are derived between agents should be generalized and remembered to form the
core of a suite of team plans, and the processes by which coordination needs are
discovered should apply not only between agents but also between agent teams.
Finally, these techniques need to be implemented and evaluated in the context of
challenging applications, such as in the domain of coordinating coalition operations.

26 Edmund H. Durfee

References

1. Christopher H. Brooks, Edmund H. Durfee and Aaron Armstrong. “An Introduction to
Congregating in Multiagent Systems.” In Proceedings of the Fourth International
Conference on MultiAgent Systems (ICMAS-2000), pages 79-86, July 2000.

2. Christopher H. Brooks, Edmund H. Durfee and Rajarshi Das. “Price Wars and Niche
Discovery in an Information Economy.” In Proceedings of the ACM Conference on
Electronic Commerce 2000 (EC-00), October 2000.

3. Bradley J. Clement and Edmund H. Durfee. “Theory for Coordinating Concurrent
Hierarchical Planning Agents Using Summary Information.” In Proceedings of the National
Conference on Artificial Intelligence (AAAI-99), pages 495-502, July 1999.

4. Haksun Li, Edmund H. Durfee, and Kang G. Shin “Multiagent planning with internal
resource constraints.” To appear in Proceedings of the AAAI 2002 Workshop on Planning
With and For MultiAgent Systems, July, 2002.

5. Pradeep M. Pappachan and Edmund H. Durfee. “A satisficing multiagent plan coordination
algorithm for dynamic domains.” (abstract) Proceedings of the ACM Conference on
Autonomous Agents (Agents-01), June 2001.

6. Gerhard Weiss (editor). Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence. MIT Press: Cambridge Massachusetts, 1999.

Acknowledgements

The ideas and results described in this paper were developed with numerous
collaborators. In particular, I’d like to thank my students, including Brad Clement,
Pradeep Pappachan, Chris Brooks, Haksun Li, and Jeff Cox. The work was supported,
in part, by DARPA under the Control of Agent-Based Systems Initiative (F30602-98-
2-0142), by DARPA under the Automated Negotiating Teams Initiative (subcontract
to Honeywell on F30602-00-C-0017), and by NSF grant I11S-9872057.

Agent-Mediated Interaction.
From Auctions to Negotiation
and Argumentation

Carles Sierra and Pablo Noriega

Artificial Intelligence Research Institute — ITIA,

Spanish Council for Scientific Research — CSIC,
08193 Bellaterra, Barcelona, Catalonia, Spain,
sierra@iija.csic.es, pablo@iiia.csic.es

Abstract. Most approaches to modelling agent interactions tend to fo-
cus just on the mechanism: the protocol and language used for the in-
teraction, and forget the context where that interaction takes place. We
hold that although the complexity of the problem to be solved is asso-
ciated to the complexity of the mechanism, modelling the mechanism
alone is insufficient. We argue that an appropriate representation of the
context and pragmatics associated to the interaction, as well as a prac-
tical way of enforcing the accepted interaction conventions are essential
for the design of successful MAS applications. The concept of Electronic
Institution is presented both as a way to reconcile mechanisms with their
corresponding pragmatic and contextual aspects, and a way of extending
familiar notions of mediation to MAS.

1 Introduction

In this paper we explore two dimensions that we believe should be present in the
design of multi-agent systems. One is the relationship between the complexity
of the problem that participating agents attempt to solve, and the complexity
of the interactions among them; more specifically, the complexity of the lan-
guage these agents use to communicate. The other dimension has to do with the
use of some sort of mediation among participating agents in order to achieve,
or facilitate, successful interactions. By exploring these two dimensions in three
familiar examples of agent interactions — auctions, structured negotiation and
persuasive argumentation — we will argue in favour of the notion of an Electronic
Institution as a powerful device to handle complex agent interactions. We will
show that electronic institutions are a natural device to make explicit not only
the interaction mechanisms required in MAS, but also the contextual and prag-
matic features that are needed for adequate MAS modelling of complex problem
solving tasks.

M. d’ Inverno et al. (Eds.): UKMAS 1996-2000, LNAI 2403, pp. 27-[48] 2002.
© Springer-Verlag Berlin Heidelberg 2002

28 Carles Sierra and Pablo Noriega

2 Interaction Mechanisms. The Myopic View

In this section three increasingly complex interaction mechanisms are briefly
overviewed. We will see how the increasing complexity of the mechanisms leads
to the solution of more complex problems, and we will argue that ignoring the
pragmatics of the interaction makes the mechanisms almost inapplicable in real
settings.

2.1 Auctions

When participating in auctions, buying agents use a rather simple language to
communicate, both in terms of the illocutionary particles they hear or utter —
basically offer goods and accept prices — and of the content language: in most
auctions, the buyer simply accepts a posted price, the auctioneer, hence, needs to
communicate buyers only those elements that characterize the item that is being
auctioned and the current bidding-price. Overall an extremely simple ontology.
In fact, quite similar to the language of ants in an ant algorithm! The problem
to be solved is the allocation of the good to the buyer that values the good most,
or more precisely, to the buyer that is ready to pay more for the good. A simple
language for an, in principle, simple unidimensional search problem.

To more accurately illustrate this simple communication language here is a
brief description of a real auction house.

A Fish Auction House in the Catalonian Seashore. Twice a day the
fishing fleet of the town of Blanes (Costa Brava) sells its catch in the local market
place. The market is managed by the fishermen’s guild under a lease from the
government. Fishermen get their revenues from the auctioning of their catches
using the traditional Dutchll] auction protocol (see Figure[ll). The Blanes market
is nowadays mechanised to a certain extent: it has a panel showing the high pace
decreasing prices of the auctioned item, and information about the boat and the
boxes being auctioned; infra-red sensors permit buyers wandering around to stop
the decreasing pace by pointing with a personal infra-red bidder to the ceiling of
the room; a complete information system to support registering, payment, credits
and so on, is maintained by the auction house. However, although the Blanes
fish market has evolved to a certain degree, its main features are the traditional
ones (documents on this specific market date back to the XVth Century). For a
complete account of the details of this example of an auction house refer to [13].

There are three types of participants in this auction house: sellers, buyers
and different types of market intermediaries. They interact in order to perform
a series of activities:

— Sellers and Buyers Admission. This activity is performed by a market
intermediary (that is usually different for buyers and sellers) that authen-
ticates, manages the credit of buyers and sellers, and is responsible for the

! This downward bidding protocol is called Dutch because it is similar to the one used
in Holland to sell flowers.

Agent-Mediated Interaction 29

' (= p B[(o= [=[=[= [

auction-roaom-scane |

buyer
auctionee

-

1 e | »]

Fig. 1. Dutch Auction Bidding Protocol Diagram. It involves the roles of an auc-
tioneer and buyer agents. Numbers denote illocution schemata as explained in the
text of the paper; for instance, label 1 corresponds to inform(?z : auctioneer, all :
buyer, open_auction(?n)). As in other figures, boxes represent conversation states, ar-
rows represent transitions triggered by the utterance of the illocutions matching the
corresponding label, and rectangles denote access (+) and exit (-) states for partici-
pating roles.

assignment of bidding devices to the buyers. The sellers’ admitter is respon-
sible for the registration process of the goods on sale (assignment of initial
auctioning prices and quality of fish) and on the sequencing of the boxes to
be auctioned.

— Sellers and Buyers Settlements. This activity is mediated by another
type of staff members who are responsible for invoicing and payment proce-
dures to and from sellers and buyers.

— Auctioning. Again, a scene mediated by a staff auctioneer. This activity
involves the actual assignment of boxes to buyers according to the Dutch
protocol. The auctioneer takes care of incidents like collisions (more than one
buyer bid at the same price), invalid bids (someone made a bid before the
auction clock was started), or cancellation due to unforeseen circumstances
(malfunctioning of a device, erroneous bid, ...).

These activities are dialogical in the sense that all observable interactions
are tagged with an illocution, an interaction has social consequences only if
tagged by an illocution, and only admissible illocutions are uttered and uttered

30 Carles Sierra and Pablo Noriega

according to explicit conventions. Notice that the type of electronic auctioning
used in Blanes could be argued not to be dialogical in stricto-senso since there is
an electronic device mediating between the buyer and the auctioneer, although
its role is a mere substitution of the old time dialogical utterances by equivalent
infra-red emissions.

As mentioned before, if we look in detail into the auctioning activity — or,
more appropriately, the bidding scend] — we see that the language needed to
model it is rather simple: the auctioneer (either verbally or through the panel)
announces a good to be auctioned, which can be modelled as a term in a simple
fish ontology, and then there is a sequence of prices from the auctioneer to buyers
and a signal (the actual mine uttered in a traditional live auction) from a buyer
to the auctioneer. Nothing too complex.

The language used by the interacting agents is simple because the problem
to solve is simple, but also for empirical reasons:

— Fish must be sold quickly. The use of protocols not bounded in time, like for
instance an English protocol, would be impractical.

— Only price is involved. The remaining elements of the transaction: weight of
the box and quality, are fixed by the auction house.

Here is the actual list of illocutions that model the bidding rounds in a Dutch
auction, as labelled in Figure [Tk

1 inform(?z : auctioneer, all : buyer, open_auction(?n))

2 inform(1z, all : buyer, open_round(?r))
3 inform(1z, all : buyer, to_sell(?good _id))
4 inform(lz, all : buyer, buyers(?h))
5 inform(lz, all : buyer, offer(lgood_id, ?price))
6 inform(1z, all : buyer, offer(!good_id, ?price))
7 commit(?y : buyer,z : auctioneer, bid('good_id, ?price))
8 commit(?y : buyer,\x : auctioneer, bid(!good_id, ?price))
9 inform(lz, all : buyer, withdrawn(!good_id, ?price))
10 inform(1z, all : buyer, collision(?price))
11 inform(1z, all : buyer, sanction(?buyer_id))
12 inform(lz, all : buyer, expulsion(?buyer_id))
13 inform(z, all : buyer, sold(!good_id, ?price, ?buyer_id))
14 inform(1z, all : buyer, end_round(?r))
15 inform(lx, all : buyer, end_round(!r))
16 inform(lz, all : buyer, end_auction(In))

2 We'll refer to these dialogical activities as scenes because they are performed or
enacted much like scenes in the script of a theater play are performed: agents (actors)
engage in dialogues according to their pre-assigned role (character).

Agent-Mediated Interaction 31

It should be noted that although this list of illocutions — and their pragmatic
impact — may adequately model the auction scene, it is by no means sufficient
to properly model a complete auction house, as we shall show below.

2.2 Negotiation

Other negotiation protocols are used to solve more complex problems: service
agreements, selection of products and their associated payment conditions, or to
agree on a co-ordinated action to perform a task. Such protocols are defined in
order to facilitate agents the exploration of the space of potential agreements.
Mathematically speaking, this means a set of points in a multidimensional space
defined by the attributes of the negotiation object, such as, for instance, condi-
tions of the service, characteristics of products, or responsible agents for given
actions. Auctions are, in a sense, degenerated negotiation dialogues where the
only negotiable dimension is price. This is the reason why dialogues in auctions
tend to be rather simple. To illustrate a slightly more complex type of negotia-
tion, specially in terms of content of the illocutions, see in Figure[2 a standard
negotiation protocol — the one we propose for supply chain negotiations — and
compare it with the auction protocol in Figure [l

=y

s 2%

o

[@[p>[e]p[B[[B]=] [@]=]

29 Primary_market |

supplier
customear

rsupplier
toustome

supplier
reustomet

[«]

Fig. 2. Negotiation Protocol diagram.

32 Carles Sierra and Pablo Noriega

The fact that we move from a one-dimensional space into a multi-dimensional
one makes the agent interaction language change substantially. The dialogue, al-
though pragmatically remains almost identical — offers and acceptance of offers
— is now open to new strategic possibilities like making trade-offs between at-
tributes, deciding to concede less on important attributes and more on the less
important ones, using time as a relevant element in defending a deal, ... The
language gets more complex for a more complex problem: distributed search for
an agreement in multidimensional spaces.

While in auctions it can be argued that the proper strategy of a buyer is
to simply bid the perceived value of an item, the strategic decisions are far
more involved for participants in the type of structured negotiation we are
mentioning[23]. Negotiating agents need to decide not only if an offer is ac-
ceptable, but what counteroffer to respond with, and what criteria are more
relevant to consider in the computation of counteroffers in a given environment:
remaining negotiation time?, available resources? Also, the guessing of the op-
ponent preferences (or the assumption of some default preferences as explored
in [5]), or past experiences, may be of critical importance in order to develop
successful negotiation strategies.

Summarizing, in terms of the problem to be solved negotiation can be viewed
as a distributed search through a space of potential agreements [7J10]. The di-
mensionality and topology of this space is determined by the structure of the
negotiation object. In terms of language complexity we observe an increase in the
complexity of the illocution content although the pragmatics are not specially
more sophisticated than in the auction case.

Supply Chain Negotiations. A common example for negotiation interaction
between agents is that of Supply Chains. Supply chains have been a traditional
focus of attention in the design of multi-agent systems [21] because of the signif-
icant role supply chains play in the structuring of the manufacturing economy
and because they are a naturally distributed system where agents try to max-
imise their own profit, therefore permitting a classical economical analysis of
their strategies. Thus, a MAS in supply chain will typically consist of a group
of selfish agents that will trade by buying one level below in the chain, adding
value to the purchased goods, and selling the improved good up to the next level
in the chain. Although the true model is generally a supply tree or a supply
graph, a simple supply chain is rich enough to show the potential complexities
of a MAS design process.

Let us consider an example of a supply chain consisting of three levels: Sy,
processing rough materials to produce goods to be sold to level Sy which, in
turn, processes the goods bought to S; to re-sell them to the final consumers
represented as level S3. The mechanism that the agents use to buy and sell
products is a one-to-one negotiation. The agent model must specify a range of
strategies and tactics that agents can employ to generate initial offers, evaluate
proposals and offer counter proposals. Figure [shows a protocol that could be
used to model this sort of negotiation, where the buyers play the customer role

Agent-Mediated Interaction 33

and sellers play the role of supplier. The following list contains the illocutions
associated to the labels in figure

1 offer(?s : supplier,?c : customer, sign(?d : deal, ?date), ?date)
2 offer(?c : customer,?s : supplier, sign(?d : deal,?date), ?date)
3 offer(!s : supplier,!c : customer, sign(?d : deal,?date), ?date)
4 offer(lc: customer,!s : supplier, sign(?d : deal, ?date), ?date)

5 reject (! ccustomer, s : supplier, sign(!d : deal,!date))
6 reject(!s : supplier,!ccustomer, sign(1d : deal,!date))
7 withdraw(!c : customer,!s : supplier)

8 withdraw (s : supplier,!c : customer)

9 accept(lc : customer,!s : supplier, sign(!d : deal,!date))

10 accept(!s : supplier,!c : customer, sign(!d : deal,!date))

2.3 Argumentation

Argumentation is a key form of interaction in multi-agent systems where inde-
pendent agents behave autonomously. Since under those conditions agents have
no direct control on one another, the only way they can influence one another’s
behaviour is through persuasion. In this situation, agents are not, as in negotia-
tion, looking for a point in a multidimensional space that is acceptable to both
parties, but rather trying to change the opponent’s mind in order to change
his/her preferences, beliefs or goals. The pragmatics of the dialogues thus are
far richer than in negotiation or auctions. Here agents try to persuade by threat-
ening, by appealing to authority or by promising a reward in the future, just
to mention a few possibilities. Figure shows a protocol for argumentative
dialogues.

Again, in this case, the language gets more complex. Not only the set of
illocutionary particles needs to be expanded to include the likes of threaten,
reward or appeal [24], but the content of the illocutions has to contain arguments
to try and convince our opponent of, for instance, the impossibility of accepting
a proposal or the preferability of certain attribute values over others, as well as
permitting the critique of certain aspects of a proposal. Broadly speaking agents
need to use a language rich enough to build arguments. Propositional logic, or
even better first order logic seems necessary for this purpose. The language gets
more complex for a more complex problem: distributed search for an agreement
(in multidimensional spaces) with dynamically changing preference sets.

The decision procedures to be used by agents are again, in this case, more
complex. On top of the action choices that an agent already has in negotiation —
such as, for example: “how much do I concede”, “do I wait?”, “should I trade-off
issues a and b, or do I better concede?” — there is a complete new set of possible
decisions to consider: “should I trade-off or should I argue?”, “what argument
should I send?”, “should I argue in favour of my last proposal?”, “should I attack
my opponent’s last argument or should I send a new argument in favour of my

34 Carles Sierra and Pablo Noriega

last proposal?”. The decisions are more complex because we have the possibility
of using the current search space to proceed on the search (as in negotiation)
and we have the new possibility of changing the search space by arguing, so that
offers become interesting to the opponent.

In terms of language complexity, in argumentation we observe a richer set of
illocutionary particles, and richer pragmatics as well. Also, the content language
gets necessarily enriched by the fact that the some of the new illocutionary
acts involve arguments or explanations, that in several cases will have reflexive
capabilities to refer to previous arguments or previous offers. A much more
complex language scenario for a far more complex problem to be solved.

In all these three cases, even in the simplest one, the underlying context of
the negotiation is far more complex than we have been able to describe in terms
of the negotiation mechanisms, and the agent interactions involved require some
sort of social structure to properly support the interaction conventions, as we
will argue next.

BT Quoting. We shall exemplify argumentative dialogues with an illustrative
scenario motivated by work in the ADEPT project [§] which developed nego-
tiating agents for business process management applications. In particular, the
researchers considered a multi-agent system for managing a British Telecom

E [=[>[p[p]p]] [0]=] [

‘f_pSuwey‘

=) (B2

Fig. 3. Argumentation protocol example. The protocol corresponds to an argumenta-
tive protocol between agents DD and SD.

Agent-Mediated Interaction 35

(BT) business process — namely, providing a quotation for designing a telecom-
munications network which offers particular services to a commercial customer.
The overall process receives a customer service request as its input and gener-
ates as its output a quote specifying how much it would cost to build a network
to realise that service. Here we consider a subset of the agents involved in this
activity: the customer service division (CSD) agent, the design division (DD)
agent, the surveyor department (SD) agent, and the various agents who provide
the out-sourced service of vetting customers (VC agents). A full account of all
the agents and their negotiations is given in [23].

In order to properly model this problem domain, we found that agents would
need to exchange, at least, three types of argument. These are: threats (failure
to accept this proposal means something negative will happen to you), rewards
(acceptance of this proposal means something positive will happen to you), and
appeals (you should prefer this option over that alternative for some reason).
Not surprisingly, these argument types are also amongst the most common in
the general argumentation literature [9/26].

Figure [illustrates the argumentative dialogue between DD and SD agents.
The following list enumerates the arc labels.

1 offer(?a: DD,?b: SD, ?wff)
2 request(?a : DD, ?b : SD, Twff)
3 offer(la: DD,!b: SD, ?wff)
4 threaten(la : DD,!b : SD,?wff)
5 reward('a : DD,1b : SD, ?wff)
6 appeal('a: DD,!b: SD, Twff)
7 offer(!b: SD,la : DD, ?wff)
8 threaten(!b : SD,!a : DD, Twff)
9 reward(!b : SD,!a : DD, ?wff)
10 appeal(!b : SD,!a : DD, Twff)
11 accept(la : DD,b : SD, Twff)
12 accept(!b : SD,'a : DD, ?wff)
13 withdraw(!a : DD,'b : SD)
14 withdraw('b : SD,!a : DD)
15 reject(la : DD,'b : SD, Twff)
16 reject(!b : SD,la : DD, Twff)

3 Electronic Institutions

3.1 Intuitive Notions

Human interactions very often follow conventions; that is, general agreements on
language, meaning, and behaviour. By following conventions, humans attempt

36 Carles Sierra and Pablo Noriega

to make their interactions more effective by decreasing uncertainties in the be-
haviour of others, removing conflicts on meaning, having clearer expectations on
the possible outcomes of the interaction and, in general, simplifying the decision
process by restricting the potential actions that may be undertaken to a limited
set. These benefits explain why conventions — of different sorts — have been so
widely used in various domains of human interaction such as trading, public
service, games, and the like.

In some situations, conventions become foundational and, in a sense, those
conventions become norms [2] that establish how interactions of a certain sort
will and must be structured within an organisation. Such is the essence of what
is commonly understood as a human institutions [I5]. Human institutions not
only structure human interactions, but they are also supposed to enforce indi-
vidual and social behaviour by obliging every one involved to act according to
its norms [20]. This is the case of, for instance, auction houses, courts of law,
parliaments or stock exchanges where, in order to achieve a goal, participants —
be they staff members of the institution or external participants — must behave
within the institution according to the explicit conventions of that institution.

The benefits derived in human organisations by establishing and following
conventions become even more apparent when we move into an electronic world
where human interactions are mediated or carried out by software agents [12]. In
such cases, conventions are necessary to avoid conflicts in meaning, to structure
interaction protocols, and to limit the action repertoire of participants, much
in the same way that human institutions work; however, the electronic world
is a setting where participants may be software entities endowed with limited
rationality. The notion of electronic institution thus becomes a natural extension
of human institutions by permitting not only humans, but also autonomous
agents, to interact with one another.

Considering the computer realisation of an institution, we take the stance
that all interactions among agents are realised by means of message interchanges.
We take a strong dialogical stance in the sense that we view multi-agent systems
as a type of dialogical system [IZJ13]. The interaction between agents within an
electronic institution therefore becomes an exchange of illocutions. In accordance
with the classic understanding of illocutions (e.g. Austin [1] or Searle [22]), il-
locutions “change the world” by establishing or modifying the commitments
or obligations of the participants. Therefore, formally speaking, an agent in an
electronic institution is any entity capable of establishing commitments. In other
words, an entity not capable of establishing commitments should not (must not)
speak in an institution. The notion of being capable of establishing commitments
is the cornerstone of the construction of institutions because otherwise no notion
of enforcement or penalty could arguably be used. In a sense, institutions exist
because they are the warrants of the satisfaction of the commitments established
by the participants.

In the next subsection we describe the various types of convention that, we
think, need to be established in order to properly specify an electronic institution
[13/19].

Agent-Mediated Interaction 37

3.2 Electronic Institutions Basic Concepts

Electronic institutions, as well as human institutions deal with two complemen-
tary aspects of the conventions that articulate interactions. On one hand, they
need to make explicit for participating agents what is significant (or pertinent)
in such interactions and therefore institutions need to address ontological (and
contextual) issues that are to be used by participating agents in their illocutory
exchanges, with a shared meaning and with specific intended effects. On the
other hand, institutions need to make explicit those deontological aspects that
govern the accepted behaviour of participants and may in the end warrant the
satisfaction of commitments made within the institution. In order to address
these aspects, we have found useful to organize the conventions that govern elec-
tronic institutions into three types: ontological and communication conventions,
social conventions that govern collective interactions, and rules that normalise
(mostly) individual behavior. Each of these three types of conventions are dis-
cussed immediately below in a separate section (for a formal account of these
components see [13[19/18]).

Ontological and Communicational Conventions: The Dialogical
Framework

These conventions help to clarify the meaning of the illocutions exchanged
among participants. In order to do so, one needs to make explicit what are the
entities the institution deals with, that is, the goods, participants, roles, loca-
tions, time intervals, and so on [13]. Likewise, the precise language for interaction
should become explicit as part of these conventions. To this end, we propose that
communicating agents must share a dialogical framework [14]. This is composed
of a communication language, a representation language for domain content and
an ontology. By sharing a dialogical framework, heterogeneous agents can ex-
change knowledge and co-ordinate actions with one another.

Definition 1. A dialogical framework DF is a tuple (R,SS, O, L,I, CL, Time)
where

— R stands for a role set (or a set of accepted roles);

— 8§ € Rx SR x R stands for a social structure with SR a set of social relations
identifiers;

— O stands for an ontology (vocabulary);

— L stands for a representation language for domain content;

— I is the set of illocutionary particles;

— CL is the (agent) communication language;

— Time is a discrete and partially ordered set of instants.

The role set provides an abstract characterization of the functioning of the
different agents in the system [16]. The representation language (e.g., KIF [6] or
first-order logic) allows the encoding of the knowledge to be exchanged among
agents using the vocabulary offered by the ontology O. The ontology contains
constants and terms relative to the domain, including predicate identifiers like
sold, withdrawn, collision, or startingprice, and constants like cod, 20USD, or

38 Carles Sierra and Pablo Noriega

Titanic. Propositions built with the aid of L, the “inner” language, are embedded
into an “outer language”, CL, which expresses the intentions of the utterance by
means of the illocutionary particles in I. A possible set of illocutions could be
{assert, not_assert, request, declare, offer, deny, accept, command }. We take this
approach in accordance with speech act theory which postulates that utterances
are not simply propositions that are true or false, but attempts on the part of the
speaker that succeed or fail [22]. We consider that CL expressions are constructed
(like in KQML) as formulae of the type t(a; @ pi, a5 : pj, ¢, 7) where ¢ € I,
and a; are terms which can be either agent variables or agent identifiers, p; and
p; are terms which can be either role variables or role identifiers, ¢ € L and 7 is
a term which can be either a time variable or a value in Time.

To illustrate these concepts consider the following dialogical framework for a
bidding round of a Dutch auction in a fish market (previously described in 2T]).
The set of roles is

R = {boss, auctioneer, buyer manager, buyer admitter, seller manager,
seller admitter, buyer, seller}
SS = {(boss, has_power, auctioneer),
boss, has_power, buyer manager),

boss, has_power, buyer admitter),

(

()
(boss, has_power, seller manager),
(boss, has_power, seller admitter),
(
(

auctioneer, has_authority, buyer),
)}

The chief staff agent of the auction house plays the role of boss. It exerts
power over all agents playing the other staff roles of the institution: auction-
eer responsible of the actual fish auctioning and the different buyer and seller
managers and admitters responsible of payments to and from sellers and buyers
and of the admittance of participants respectively. Auctioneers have authority
over sellers and buyers because the boss delegates power to them about deci-
sions on winner determination and on modification of auction conditions (order
of auctioning, withdrawal of products, etc.).

Social Conventions: Scenes and Performative Structure

These conventions regulate the interactions among participants. They con-
tain agreements on protocols and on the sequence of activities in the institution.
Scenes regulate the protocol to follow for each individual activity and the Per-
formative Structure establishes the links and traversal paths between the scenes.

The overall activity within an electronic institution is a composition of mul-
tiple, well-separated, and possibly concurrent, dialogical activities, each one in-
volving different groups of agents playing different roles. For each such activity,
which we will call a scene, interactions between agents are articulated through
the meeting of various groups of agents that follow well-defined communica-
tion protocols. Thus, for example, in the context of an auction house, there are

auctioneer, has_authority, seller

Agent-Mediated Interaction 39

the following scenes involving the following agents and the following protocols:
buyer and seller admission scenes subject to an information seeking protocol
(staff members acquire information concerning the goods to be auctioned and
the credit of buyers), an auction scene subject to the corresponding auction pro-
tocol (for instance, English or Dutch), and scenes corresponding to the buyer
and seller settlements that correspond to contract signing protocols (buyers get
the goods in return for money and sellers get money in return for the goods that
have been sold). In fact, with this model no agent interaction can take place out-
side of the context of a scene. We consider the protocol of each scene to model
the possible dialogical interactions between the group of agents playing specific
roles. In other words, scene protocols are patterns of multi-role conversation [13].

A scene protocol is specified by a graph whose nodes represent the different
states of the conversation and the arcs connecting the nodes are labelled with
illocutions that make the scene state change (see Figure [). The graph has a
single initial state (non-reachable once left) and a set of final states representing
the different acceptable endings of the conversation. There is no arc connecting
a final state to some other state.

Figure Blshows an example of a scene protocol specified with the ISLANDER
toolbox [3]. This scene corresponds to the Survey scene of the institution pre-
sented in Figure [6l Normally, the correct evolution of a conversation protocol
requires a certain number of agents for each of the various roles involved in it,
in the example in Figure[3 we have two roles a Surveyor Department agent (SD)
and a Design Division agent (DD). The set of roles will be denoted by the symbol
R. Then a minimum and maximum number of agents per role is defined and the
number of agents playing each role has to be in this interval — in this example,
it happens to be one agent both as minimum and maximum — (denoted by two
functions min and Maz). Because we need to model multi-agent conversations
in which the set of participants may dynamically vary, scenes need to be spec-
ified such that agents can either join in or leave at particular moments during
an ongoing conversation. For this purpose, we differentiate the sets of entrance
(denoted by WA) and the exit states (denoted by WE) for different roles. The
entrance or exit of agents has to satisfy the restriction mentioned above about
the number of agents for each role. Obviously, the final states ought to have exit
states for each role, in order to allow all the agents to leave when the scene is
finished. In contrast, the initial state has to be an access state for the roles whose
minimum is greater than zero, in order to start the scene.

Definition 2. Formally, a scene is a tupltﬁ where:
S = (R, W,wo, Wy,(WA,)rer, (WE;)rer, ©, A\, min, Maz)

— R is the set of roles of the scene, a subset of R in Definition [;
— W is a finite, non-empty set of scene states;
— wo € W is the initial state;

3 When we need to differentiate the elements of two scenes s and s’ we will use a
superindex s or s’.

40 Carles Sierra and Pablo Noriega

Wy € W is the non-empty set of final states;

— (WA,)rer C W is a family of non-empty sets such that WA, stands for the
set of access states for the role r € R;

— (WE,)rer € W is a family of non-empty sets such that WE, stands for the
set of exit states for the role r € R;

— O C W x W is a set of directed edges;

— A\ : @ — CL is a labelling function relating each transition with an illocution
schema expressed in the language CL.

— min, maz : R — IN min(r) and maz(r) return respectively the minimum

and mazimum number of agents that must and can play the role r € R;

Notice that not every illocution scheme is valid to label an arc. In general, a
CL expression ¢(«; : p;,aj : pj, ¢, 7) from Definition [l can label an arc if:

— o4 and «; are agent variables;
— p; and p; are either role variables or role identifiers in R,; and
— 7T is a time variable;

These variables will be bound to concrete values during the execution of the
scene. For example, agent variables in an illocution scheme will be bound, re-
spectively, to the identifier of the agent that has uttered the illocution and to
the identifier of the agent who has received the illocution. Then at each moment,
the bindings of the variables will be the context of the scene execution. These
variables have a local scope within a scene execution that, as said, represents an
actual activity undertaken by a group of agents. There are several such activities
within any possible institution, so there must be a way of modelling their in-
terconnections. The notion of a performative structure is the most complex and
interesting of the proposed formalism, since it precisely models the relationships
among scenes.

Notice that although conversations (scenes) are currently admitted as the
unit of communication between agents, limited work has been done concerning
the modelling of the relationships between different scenes. This issue is particu-
larly significant when conversations are embedded in a broader context, such as,
for instance, organisations and a hierarchy of institutions. If this is the case, it is
important to capture the relationships between scenes. Our argument is that this
is precisely the main difference with classic Mechanism Design, understood with
the narrow view of the description of the central activity of an interaction. We
believe that for MAS specification, a specification model that has a holistic view
of the pragmatics and the web of activities (central and peripheral) is essential.
Electronic Institutions aim at playing this role.

In general, the activity represented by a performative structure can be de-
picted as a collection of multiple, concurrent scenes. Agents navigate from scene
to scene constrained by the rules defining the relationships between scenes. More-
over, the same agent can potentially participate in multiple scenes at the same
time. From a structural point of view, performative structures’ specifications
must be regarded as networks of scenes. At execution time, a performative struc-
ture becomes populated by agents that make it evolve whenever these comply

Agent-Mediated Interaction 41

with the rules encoded by the specification. Concretely, an agent participating
in the execution of a performative structure devotes its time to jointly start new
scene executions, to enter active scenes where the agent interacts with other
agents, to leave active scenes to possibly enter other scenes, and finally to aban-
don the performative structure.

At this point it should be noted that the way agents move from scene to
scene depends on the type of relationship holding between the source and target
scenes. Sometimes we might be interested in forcing agents to synchronise before
jumping into either new or existing scene executions, or offering choice points
so that an agent can decide which target scene to incorporate itself into, and
so on. Summarizing, in order to capture the type of relationships listed above,
we consider that any performative structure can contain special elements (that
we call transitions) whose function is to mediate different types of connections
among scenes. Each scene may be connected to multiple transitions, and in
turn each transition may be connected to multiple scenes. In both cases, the
connection between a scene and a transition is made by means of a directed
arc. Then we can refer to the source and target of each arc. And given either a
scene or a transition, we shall distinguish between its incoming and outgoing arcs.
Notice that there is no direct connection between two scenes (i.e., all connections
between scenes are mediated by transitions). Also we do not allow the connection
of transitions. Each arc connecting a scene with a transition is labelled with the
roles played by the agents that traverse it and a set of constraints that must be
satisfied by the agents. Any agent playing a different role from those marked on
the arc or not satisfying the constraints will not be authorised to abandon the
scene at the beginning of the arc. Similarly, arcs connecting a transition with
a scene are labelled with the roles that the agents traversing it will play in the
target scene. See an example of performative structure in Figure [0

Agents move from a scene instance (execution) to another by traversing the
transition connecting the scenes and following the arcs that connect transitions
and scenes. Transitions should therefore be regarded as a kind of router that con-
tains local information about the scene instances that they connect. Therefore,
instead of modelling some activity, they are intended to route agents towards
their destinations in different ways, depending on the type of transition. The
arcs connecting transitions to scenes also play a fundamental role. Notice that
as there might be multiple (or perhaps no) scene executions of a target scene, it
should be specified whether the agents following the arcs are allowed to start a
new scene execution, whether they can choose a single or a subset of scenes to
incorporate into, or whether they must enter all the available scene executions.
Formally:

Definition 3. A performative structure is a tuple
PS = <S7 T? 805 8§25 E,flnfT)fEa 07 1y ML>
where

— S is a finite, non-empty set of scenes; defined according to Definition [2

42 Carles Sierra and Pablo Noriega

T is a finite and non-empty set of transitions;

— So € S is the root scene;

— sp € S is the output scene;

— E =ETUE®? is a set of arc identifiers where ET C S x T is a set of edges
from scenes to transitions, and E€ C T x 8 is a set of edges from transitions
to scenes;

— i+ E — 2VaXE 45 the labelling function associating each arc with pairs of
agent variables and roles;

— fr : T — 7 maps each transition to its type — where T = {sync/parallel,
choice/ choice, sync/choice, choice/parallel} corresponds to the behaviour of
the transition with respect to the incoming and outgoing arcs;

— fg : E9 — € maps each arc from transition to scene to its type - where
e = {1, some, all, new} correspond to one, several, all, or a newly created
running execution of the target scene respectively;

— C : E — ML maps each arc to a meta-language expression representing the
arc’s constraints that agents must satisfy to follow the arc;

—u: S — IN sets an upper bound to the number of allowed simultaneous
running executions of a given scene; and

— ML is a meta-language over CL and L as defined in Definition [

Behaviour Conventions: Normative Rules

These conventions determine the socially pertinent commitments for the par-
ticipating agents and describe their various obligations and rights. As discussed
so far, a performative structure can be seen to constrain an agent’s behaviour
at two levels:

1. intra-scene: Scene protocols dictate, for each agent role within a scene, what
can be said, by whom, to whom, and when.

2. inter-scene: The connections among the scenes, given by the performative
structure, define the possible paths that agents may follow depending on
their roles. Furthermore, the constraints over output arcs impose additional
limitations on the agents when attempting to reach a target scene.

Although these may appear distinct, an agent’s actions within a scene may
have non-local consequences in that it may either limit or enlarge its acting
possibilities in subsequent scenes. Such consequences may have effect along two
different directions. On the one hand, some actions will introduce subsequent
acting commitments that have to be interpreted as acting obligations. While
on the other hand, consequences occurring locally within a scene may vary the
paths that an agent can follow in the performative structure because they affect
the satisfaction and contravention of the constraints labelling the paths. Both
types of consequences need to be kept by an institution on a per agent basis so
that the different obligations and restrictions may be subsequently enforced.

In order to represent the deontic notion of obligation (see [27] for background
details) we set out the predicate Obl as follows:

Obl(z,4, s) = agent x is obliged to do (in fact, to ‘say’)ty in scene s. (1)

Agent-Mediated Interaction 43

where 1 is taken to be an illocution scheme. We will note by Obl the set of
obligations and by obl; € Obl any concrete obligation.

Behaviour conventions of an Electronic Institution are specified as a special
type of rule, called a normative rule, that captures which agent actions (illocu-
tions) have consequences that need to be kept in its context. Given a performa-
tive structure, the normative rules are written in its meta-language according to
the following schema:

(s1,71) Ao o A (SmYm) A = (St Yma1) A oo A= (SmtnYmagn) — 0bli Ao A obl,

where (81,71),- -+, (Sm+tn, Ym+n) are pairs of scenes and illocution schemes, — is
a defeasible negation, and obl; A ... A obl, are obligations. The meaning of these
rules is that if the illocutions (s1,71) A ... A (Sm,7¥m) have been uttered, and
the illocutions (Sm+41,Ym+1) A «++ A (Smtn,s Ym+n) have not been uttered, the
obligations obl; A ... A obl, hold. Therefore, the rules have two components,
the first one is causing the obligations to be activated (for instance winning an
auction round by saying ‘mine’ in a downwards bidding protocol, generates the
obligation to pay) and the second is the part that removes the obligations (for
instance, paying the amount of money at which the round was won).

We can now show how these ideas are put to work to extend the three ex-
amples of agent interaction mechanisms we discussed earlier.

4 Revisiting the Mechanisms. The Big Picture

4.1 Auctions

Although Auction houses can be seen as a very simple co-ordination mechanism
(in a sense as simple as an ant algorithm), some economists (such as Smith [25]
or McAfee and McMillan[I1]), however, refer to them as institutions [15] and are
careful to point out that, in addition to the bidding conventions, other equally
relevant conventions and elements are used in an auction house to achieve a
proper co-ordination of buyers and sellers: conventions for the registration of
participants and goods, conventions on guarantees and payment, commissions,
starting prices, etc.

The actual auctioning of goods (what we would call the auctioning scene)
can certainly be understood as governed by a simple language and protocol,
according to the point of view introduced in Section[2l It is when looking at the
global picture of all the activities that take place around that kernel dialogue
that we can appreciate that even auctions involve many more and more complex
interactions, and are hence supported by complex institutions. Any model that
concentrates just on the auction mechanism and ignores the full picture will lead
to systems difficult to use in the real world and difficult to integrate with the
existing legacy systems. An auction does not end when the auctioneer has the
last standing bid in an English auction and assigns the good after the sequence
‘going-going-gone’ is finished. A process of credit checking, payment procedures,
document generation starts that is essential for the successful completion of the
transaction.

44 Carles Sierra and Pablo Noriega

xRuyer

X aud{ioneer

Fig. 4. Performative structure of the FishMarket Institution. Each rectangle represents
a scene and the labelled links correspond to the movements of agents between scenes.
Transitions are represented as triangles. root is the initial scene to enter the institution,
and output is the scene through which all agents leave the institution.

When analyzing the example of the fish market as introduced in this paper
from this broader perspective, we observe a series of activities that complement
and modify the simple auction protocol: the buyers’ and sellers’ registration and
settlements. Also, many pragmatic elements have to be modelled (even for this
simple mechanism). For instance, the fact that buyers have an associated credit
in the auction house changes the winner determination protocol by introducing
the fact that the bid of a buyer has to be supported by its current credit, and
therefore the auctioneer has to check that. As argued in this paper, even simple
mechanisms have complex societal restrictions that require elaborated specifica-
tion languages. See in Figure [the performative structure of the FishMarket.

4.2 Negotiation

In the supply chain example, we have to realise that each chain level is a global
view of a reality consisting of many individual agents, and that the transactions
modelled as those flows are the result of the social interaction of the agents
following particularly well established conventions. For instance, the interaction
between the agents at levels 57 and S, is modelled as negotiation. The interac-

Agent-Mediated Interaction 45

E =belpe= o= =)=

= Pstructured |

Fig. 5. Performative structure of the Supply Chain Institution.

tion between levels So and S3 could probably be better modelled by fixed-price
mechanisms. Electronic Institutions offer the necessary principled way to model
such interactions. In our Institution specification for the example we consider two
scenes: One, primary_market, for the interaction between agents of S; and S, and
another, retailing, for the interaction between S; and Ss. Scene primary_market
is endowed with a protocol as the one in Figure

4.3 Argumentation

In the case of the argumentation example, its electronic institution has to account
for many complex activities a part from the scenes where the argumentation
takes place. The first stages of the Provide_Customer_Quote service involve the
CSD agent capturing basic information about the customer and vetting the
customer in terms of their credit worthiness. The latter service is performed by
one of the VC agents and negotiation is used to determine which one is selected.
If the customer fails the vetting procedure, then the quote process terminates.
Assuming the customer is satisfactory, the CSD agent maps their requirements
against a service portfolio. If the requirements can be met by a standard off-the-
shelf portfolio item then an immediate quote can be offered based on previous
examples. In the case of bespoke services the process is more complex. The CSD
agent negotiates with the DD agent for the service of costing and designing
the desired network service. To prepare a network design it is usually necessary
to have a detailed plan of the existing equipment at the customer’s premises.

46 Carles Sierra and Pablo Noriega

B = o === E_1]
| " PStructured |

Jepreans. 1 T
[t

| \, ne / H
e | e 9 ®UEON Cumemar new | B EOE Sy sramer ? ¥ @ RlyiSapamar o
[} -
| \‘\.DD I
\ i x
.
Vo
\
\
I\I\I\u
\.ll\ \\
e\
'\.\-\ h{\c

Fig. 6. Performative structure of the BT Institution. As before, each rectangle repre-
sents a scene and the labelled links correspond to the movements of agents between
scenes. Transitions are represented as triangles.

Sometimes such plans might not exist and sometimes they may be out of date.
In either case, the DD agent determines whether the customer site(s) should
be surveyed. If such a survey is warranted, the DD agent negotiates with the
SD agent for the Survey_Customer_Site service. This negotiation differs from
the others present in this scenario in that the two agents are part of the same
department. Moreover, the DD agent has a degree of authority over SD. Agent
negotiation is still required to set the timings of the service, but the SD agent
cannot simply refuse to perform the service. On completion of the network design
and costing, the DD agent informs the CSD agent which informs the customer
of the service quote. The business process then terminates. Figure Blsummarises
this institution.

Agent-Mediated Interaction 47

5 Conclusions

In this paper we argued for the concept of Electronic Institutions as a method-
ological tool to specify multi-agent systems, as they permit a view that is broader
than that offered by the usual mechanism design approach. Electronic Institu-
tions give a handle to designers of multi-agent systems to address the difficult
problem of specifying the many inter-related activities required for successful
complex agent interactions.

We also explored the correspondence between the complexity of the problem
to be solved and the complexity of the communication language of participating
agents. We used three interaction examples — of growing complexity — to illustrate
this point, as summarized in the following table:

Interaction Pragmatics Content
Auctions Offer, Accept simple terms, integers
Negotiation Offer, accept complex terms
Argumentation | Offer, Critique, Appeal, Threaten | complex terms, FOL formulae

Acknowledgements

Most of the material of this paper is the result of collaborative work with dif-
ferent researchers among which we’d like to mention Nick Jennings, Simon Par-
sons, Julian Padget, Juan Antonio Rodriguez, and Peyman Faratin. This line
of research is currently being supported by the MCYT research project eIN-
STITUTOR (TIC2000-1414) and the IST project SLIE (IST-1999-10948). The
graphics in the paper have been produced with the help of Marc Esteva using
the Electronic Institution specification tool ISLANDER [4].

References

1. J. L. Austin. How to Do Things With Words. Oxford University Press, 1962.

2. C. Castelfranchi, F. Dignum, C. Jonker, and J. Treur. Deliberate Normative
Agents: Principles and Architectures, pages 364-378. Intelligent Agents VI (LNAI-
1757). N. Jennings and Y. Lesperance (eds.). Springer-Verlag, 2000.

3. M. Esteva and C. Sierra. ISLANDERI1.0 Language Definition. Technical report,
ITTA-CSIC, 2001.

4. Marc Esteva, David de la Cruz, and Carles Sierra. ISLANDER: an electronic
institutions editor. In AAMAS’02, page in press. ACM Press, 2002.

5. P. Faratin, C. Sierra, and N. R. Jennings. Using similarity criteria to make nego-
tiation trade-offs. In Proc. Fourth Int. Conf. on Multi-Agent Systems, ICMAS’00,
pages 119-126, 2000.

6. Michael R. Genesereth and Richard E. Fikes. Knowldege interchange format ver-
sion 3.0 reference manual. Technical Report Report Logic—92—1, Logic Group,
Computer Science Department, Standford University, June 1992.

7. N. R. Jennings, P. Faratin, A. R. Lomuscio, S. Parsons, M. Wooldridge, and
C. Sierra. Automated negotiation: Prospects, methods and challenges. Group De-
cision and Negotiation, 10:199-215, 2001.

48

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27

Carles Sierra and Pablo Noriega

N. R. Jennings, P. Faratin, T. J. Norman, P. O’Brien, and B. Odgers. Autonomous
agents for business process management. Int. Journal of Applied Artificial Intel-
ligence., 14(2):145-189, 2000.

M. Karlins and H. I. Abelson. Persuasion. Crosby Lockwood & Son, London, UK,
1970.

B. Laasri, H. Laasri, S. Lander, and V. Lesser. A generic model for negotiating
agents. International journal of Intelligent and Cooperative Information Systems,
1(2):291-317, 1992.

R. P. McAfee and J. McMillan. Auctions and bidding. Journal of Economic Lit-
erature, XXV:699-738, 1987.

P. Noriega and C. Sierra. Auctions and multi-agent systems. In Matthias Klusch,
editor, Intelligent Information Agents, pages 153—175. Springer, 1999.

Pablo Noriega. Agent-Mediated Auctions: The Fishmarket Metaphor. Number 8 in
ITTA Monograph Series. Institut d’Investigacié en Intel.ligencia Artificial (IITA),
1997. PhD Thesis.

Pablo Noriega and Carles Sierra. Towards layered dialogical agents. In Third Inter-
national Workshop on Agent Theories, Architectures, and Languages, ATAL-96,
1996.

Douglas C. North. Institutions, Institutional Change and Economics Perfomance.
Cambridge U. P., 1990.

P. Panzarasa, T. J. Norman, and N. R. Jennings. Social mental shaping: modelling
the impact of sociality on autonomous agents’ mental states. Computational In-
telligence, 2001.

N. Rescher. Dialectics: A controversy-oriented approach to the theory of knowledge.
SUNY, 1977.

Juan A. Rodriguez-Aguilar, Francisco J. Martin, Pablo Noriega, Pere Garcia, and
Carles Sierra. Towards a test-bed for trading agents in electronic auction markets.
AI Communications, 11(1):5-19, 1998.

Juan Antonio Rodriguez-Aguilar. On the design and construction of Agent-
mediated Institutions. Number 14 in Monografies de 'TITA. IITA-CSIC, 2002.

L. Royakkers and F. Dignum. Organisations and collective obligations. In 11th
International Conference on Databases & Expert Systems Applications (LNCS-
1873), pages 302-311. Springer-Verlag, 2000.

N. Sadeh-Koniecpol, D. Hildum, D. Kjensta, and A. Tseng. Mascot: An agent-
based architecture for coordinated mixed-initiative supply chain planning and
scheduling. In Workshop notes, Agent-Based Decision Support for Managing the
Internet-Enabled Supply Chain, Third International Conference on Autonomous
Agents (Agents ’99), 1999.

J. R. Searle. Speech acts. Cambridge U.P., 1969.

C. Sierra, P. Faratin, and N. R. Jennings. A service-oriented negotiation model
between autonomous agents. In MAAMAW’97, number 1237 in LNAI, pages 17—
35, Ronneby, Sweden, 1997.

C. Sierra, N. R. Jennings, P. Noriega, and S. Parsons. A framework for
argumentation—based negotiation. In Intelligent Agents IV, pages 177-192, 1997.
Vernon L. Smith. Auctions, pages 39-53. The new Palgrave: a dictionary of Eco-
nomics. John Eatwell, Murray Milgate and Peter Newman (eds). McMillan, Lon-
don, 1987.

K. P. Sycara. Persuasive argumentation in negotiation. Theory and Decision,
28:203-242, 1990.

. G. H. von Wright. Deontic logic. Mind, (60):1-15, 1951.

Game Theory and Artificial Intelligence

Moshe Tennenholtz

Faculty of Industrial Engineering and Management,
Technion — Israel Institute of Technology, Haifa 32000, Israel

Abstract. Game Theory and Artificial Intelligence are two mature ar-
eas of research, originating from similar roots, which have taken different
research directions in the last 50 years. Recent research however shows
that the connections between these areas are deep, and that the time
had come for bridging the gap between these research disciplines. In
this paper we concentrate on basic issues in representation, reasoning,
and learning, and discuss work that lies in the intersection of Artificial
Intelligence and Game Theory, for each of these subjects.

1 Introduction

The early 50’s at Princeton university were very fruitful. Many new ideas have
been generated, and many brave attempts of extending classical mathematical
and economic reasoning, as well as embodying these new types of reasoning in
“computing machines” have been suggested. Many of the founders of Game The-
ory and Artificial Intelligence were there at that time, as students or professors,
initiating new lines of research. Now, fifty years later, we realize that these fields
have taken different directions, but the connections between them are funda-
mental and deep. Exploring and expanding upon these connections may yield
significant contributions to both fields.

This article presents a biased perspective about the Game Theory and Ar-
tificial Intelligence connections. I will concentrate on three fundamental topics
in computer science and game theory: representation, reasoning, and learning. I
will introduce basic problems associated with these topics, and discuss the way
they are addressed in my own work.

2 Representation, Reasoning, and Learning

Both game theory and Artificial Intelligence deal with “intelligent” agents, who
are embodied in a complex world. These agents may interact with other agents,
and try to optimize their behavior, while employing various reasoning and learn-
ing techniques. The following issues are fundamental both to economics/game
theory and to CS/AT:

1. Reasoning about Distributed Systems. Work in CS discusses proto-
cols for distributed environments, emphasizing computational constraints,
such as communication complexity, and distributed systems features such

M. d’ Inverno et al. (Eds.): UKMAS 1996-2000, LNAT 2403, pp. 49-58, 2002.
© Springer-Verlag Berlin Heidelberg 2002

50 Moshe Tennenholtz

as network topology. Work in game theory discusses agent interactions that
are subject to rational constraints, i.e. agents will follow their own interests.
Needless to say that reasoning about distributed systems, incorporating both
communication constraints as well as rationality constraints, is of basic im-
portance to both disciplines. Indeed, the Internet setup is an instance of a
non-cooperative distributed system. In this environment, different users may
have different objectives, while interacting in a computational environment.

2. Learning. Learning, and in particular reinforcement learning, is a funda-
mental topic in both CS/AI and game theory/economics. Work in game
theory emphasizes learning as a descriptive tool, explaining the emergence
of Nash equilibrium or predicting agents’ behavior[8]. Work on reinforce-
ment learning in AT [18] emphasizes a normative approach, and deals with
algorithms for obtaining high payoffs in uncertain environments based on
observed feedback. Effective reinforcement learning schemes for adaptive be-
havior in hostile environments, are fundamental for both disciplines. Efficient
algorithms that deal with optimal agent’s behavior in adversarial environ-
ments will enable to introduce a normative approach to reinforcement learn-
ing in non-cooperative environments.

3. Representation. Work in game theory and in economics is centered around
modelling agents as expected utility maximizers. Work in CS/AI has consid-
ered, in addition to that classical decision criterion, other forms of decision
making. This includes, for example, competitive analysis (aka the competi-
tive ratio decision criterion) [1], and the safety-level (worst case) maximiza-
tion approaches. The understanding of the conditions under which an agent
can be viewed as using these decision-theoretic approaches is fundamental
to these disciplines. The foundations of expected utility maximization have
been provided by the “crowing achievement of the theory of choice”: Sav-
age axiomatization [16]. Savage has shown several conditions on an agent’s
choice among actions under which it can be viewed as if it were an expected
utility maximizer. However, similar foundations are required for the other
decision criteria.

In the following sections we discuss some of our previous work on these three
fundamental problems.

3 Reasoning

Consider a distributed system where resources are to be allocated among a set
of agents. Each agent associates any subset of the resources with a particular
(private) value. One way of interpreting an agent’s valuation for a set of resources
is as the agent’s maximal willingness to pay for that set. A useful approach for
dealing with resource allocation in a general non-cooperative multi-agent setup,
is by using an auction. Economists use auctions in order to try and obtain
economic efficiency. In an economically efficient allocation a center chooses an
allocation in which the sum of agents’ valuations is maximized. However, in order
to implement such desired behavior one should overcome two major obstacles:

Game Theory and Artificial Intelligence 51

1. Rationality: agents may cheat about their valuations.

2. Communication bounds: the number of possible bundles (subsets) of re-
sources might be very big, and therefore communicating an agent’s valuation
for each possible subset of the resources might become infeasible.

The first problem is addressed using the famous Clarke mechanism [5]. This
mechanism is central to the economic mechanism design literature, and deals
with general resource allocation problems in non-cooperative environments.

Given a set of resources R = {Ry,..., R, }, and a set of agents {1,2,...,n},
we conduct the following procedure:

1. Agent i (1 < i < n) is asked to report its valuation for any b C 2% Tet us
denote agent i’s report for the bundle b by v;(b).

2. Each allocation o of the resources to the agents is associated with a value
X v (R%) where R% is the set of resources assigned to ¢ by o and v;(R%)
is the value reported for that bundle by agent i. The center will choose an
allocation of maximal value. We denote this allocation by o*.

3. Given the above reports, the center can similarly compute an optimal allo-
cation o that ignores the reports of agent ¢, and does not allocate resources
to that agent.

4. Agent ¢ will pay the center A; — B;, where A; is the value of ¢}, and B; is
the sum of the other agents’ (reported) valuations in o*.

The above protocol has a desired property: it is dominant strategy for each
agent to be honest about its valuations. Regardless of the other agents’ actions,
the optimal action for an agent is to truthfully report its valuations. As a result,
the protocol is economically efficient. Typically, economists are interested in
equilibrium strategies: a strategy profile (one for each agent) is in equilibrium, if
it is irrational for each (single) agent to deviate from its strategy in that profile,
assuming that the others stick to their strategies. In particular, truth revealing
is an equilibrium of the game generated by the above protocol.

The above basic result can (and is) viewed as “very good news”. However,
given the second obstacle that we have mentioned before, one may need to
consider the case where agents can not report their valuations for every bundle.
In the following we assume that each agent assigns valuation 0 for obtaining
no resource. Assume that agent i explicitly reports valuations only for bundles
in the set B C 2%, and provide the following program for the computation of
their reported valuations for any bundle: v;(d) = mazpeppcqvi(b). The first
question is whether we can get an equilibrium where the agents report their
(true) valuations only for a small number of bundles, and provide the above-
mentioned program for computing the reported valuations for the rest of the
bundles. The answer for this is positive. Consider the case where B = {R}. In
this case we get that truth revealing is in equilibrium, while the agents report
on their valuations for a single bundle!

The above observation is fundamental to the game theory/CS interaction.
Given the non-cooperative resource allocation setting, there exists an equilib-
rium with small communication complexity for the game associated with the

52 Moshe Tennenholtz

most famous protocol in that setting. However, in this equilibrium the sum of
agents’ valuations for the selected allocation, termed the social surplus, will be
typically lower than in the more “standard” equilibrium (where agents report
their valuations on every possible bundle of resources). This observation leads to
a challenging line of research dealing with the tradeoff between communication
efficiency and economic efficiency. In this article we share with the reader one of
the basic results about that tradeoff (see Theorem 2 below).

Consider the case where the set B is a partition of the set R, i.e. the bundles
in B are mutually disjoint and their union covers the set R. The following result
has been obtained by Holzman, Kfir-Dahav, Monderer, and Tennenholtz [13]:

Theorem 1. When B is a partition of R, truth revealing (for the valuations
of the bundles in B, where v;(d) = maxpep pcqvi(b)) is an equilibrium of the
Clarke mechanism.

Let us denote by rp the ratio between the optimal social surplus that can
be obtained by allocating R to the agents (using the Clarke mechanism with
no communication constraints; i.e. the social surplus obtained in the “standard”
equilibrium), to the social surplus obtained in the equilibrium of the Clarke
mechanism where agents report their valuations only for the bundles in B, as
above. The value of rp measures the amount of “economic loss” that we have
if the agents will be bidding only for bundles in B. The communication gain
in this case will be proportional to the size of B (i.e. the valuations for only
| B] bundles, instead of 2% bundles will need to be communicated). Notice that
the center will not need to re-construct the agents’ full valuation functions, and
compute optimal allocations considering only allocations of bundles in B.

We can show [13]:

Theorem 2. Let B = {Ay, ..., Ax} be a partition of R into k non empty sets of
maximum size B(B). (That is, (B) = max{|A1]|, ..., |Ak|}.) Then

rg < B(B) - ¢(k),

where

.k
wk) = Jmax, min{j, ;}

Notice that (k) < v/(k). The above theorem gives an upper bound on “how
bad” rp might be. Many other results are presented in [13].

4 Learning

Learning is a major issue in both Artificial Intelligence and Game Theory. In
particular, work on reinforcement learning got a lot of attention by both CS/AI
researchers and game-theorists/economists in the recent years. We will illustrate
the connections between the related lines of research using the model of repeated
games. Results regarding more general models will be mentioned following that.

Game Theory and Artificial Intelligence 53

Work on learning in game theory [8] has concentrated for long time on the
attempt for providing a justification for the Nash equilibrium concept. For sim-
plicity, consider two-person games. In a (static) two person game, we have two
players, each one of them can select from a finite set of strategies. The pair of
strategies selected, one by each player, determine the payoffs to be obtained by
the players. More generally, a player may select a mixed strategy which is a
probability distribution on the set of (pure) strategies. A Nash equilibrium is
a pair of (possibly mixed) strategies, one for each player, such that a deviation
by one of the players is irrational (i.e. a deviation will not increase the agent’s
expected payoff) assuming that the other player sticks to its strategy (the above
should hold for any deviation by each single player). In the learning literature,
researchers have considered the case where the game is repeatedly played, and
each player adapts its behavior based on the feedback it receives, i.e. a player’s
selected strategy at a particular stage depends on its observed history of the
previous stages. The idea is to look for “natural learning rules” that will lead
to (and hence justify) playing a Nash equilibrium. Another, perhaps even more
challenging perspective, adopted by game-theorists is to build such adaptive
(reinforcement learning) rules that will mimic the way humans behave in such
repeated games [6].

The AI perspective on learning is mainly a normative one. The objective is,
roughly speaking, to provide the agent with a learning rule that will guarantee
it (with high probability) a high accumulated payoft after a short time [18,9].
Consider the repeated game model discussed above, and consider the payoff of
one player, who we term the “agent”, when interacting in a repeated game with
another (malicious) player, who we term the “adversary”. If the agent would
have known the game that is played, then the best that it could have done
is to choose the probabilistic maximin strategy of the game, i.e. a (potentially
mixed) strategy that its worst case payoff is maximal. More technically, for every
mixed strategy of the agent and a strategy of the adversary one can compute the
expected payoff for the agent. Given that, one can compute the expected payoff
that can be guaranteed for the agent by choosing that mixed strategy. The mixed
strategy for which this (worst case) value is maximal is the probabilistic maximin
strategy. However, when the game is unknown, it is unclear how the agent should
behave. Assuming that the agent can observe its payoffs and the other player’s
behavior in previous stages, then it can use that information to select a strategy
in a given stage. This is yet again a reinforcement learning problem, but it has
also a computational aspect: given € > 0,0 < § < 1, and a game G, which is of
size |G|, we are interested in constructing an algorithm (to be adopted by the
agent), A, for which there exists a T', polynomial in %, %, |G|, such that A has the
property that for every t > T the average payoff obtained by the agent is € close
to the probabilistic maximin value of G with probability of failure of at most
6. Such a result will complement the game-theoretic perspective, and provide
a useful normative approach to reinforcement learning in hostile environments.
Fortunately, in a recent work, Brafman and Tennenholtz [3] have shown that
such an algorithm exists. Their algorithm, called R, is applicable to general

54 Moshe Tennenholtz

stochastic games (to be discussed below), and as a result it is applicable to
repeated games as mentioned above.

The idea of the R4, algorithm when applied to repeated games is simple.
Assume that the maximal payoff that can be obtained by the agent is R. The
agent will initially assume that its payoff is R for every strategy profile. When
the agent observes the payoff obtained using a certain strategy profile then it
modifies its model of the game (i.e. the agent assigns the observed payoff to the
corresponding strategy profile in its model of the game; the payoffs for entries
that have not been visited yet remain R, the maximal possible payoff). At each
stage, the agent selects a probabilistic maximin strategy of the corresponding
(fictitious) game where the payoffs for all unknown entries are taken to be R
(notice that the payoffs assumed for the adversary are irrelevant here).

Theorem 3. Given a game G, and € > 0,0 < § < 1, there exists a number T,
polynomial in %, %, |G|, after which Ry, will have the property that for every
t > T, the average payoff obtained by the agent is € close to the probabilistic
mazximin value of G, with a probability of failure of at most §.

In the recent years, Markov Decision Processes (MDPs) [12] had become a
model of great interest to Al researchers (see e.g. [2]). In an MDP, the agent is
in one of finitely many states, and can select one of finitely many actions. The
action selected in a given state will lead to a certain payoff, and to a new state.
The identity of the new state to be reached is based on a given probabilistic
transition function. Reinforcement learning in the context of MDPs deals with
the situation where the payoffs and transition probabilities are initially unknown.
MDPs do not model multi-agent activity. However, one can consider a model
where each state of the MDP corresponds to a game, where two players need
to select their actions. The actions selected by both players will determine their
payoffs as well as the probability of moving to another state (where another
game is played). This general model is called a stochastic game [17], and it is a
very rich and expressive model. As we mentioned, the general result presented by
Brafman and Tennenholtz holds for general stochastic games. This requires the
introduction of the (so called) mixing time of the optimal policy in a stochastic
game. The R,,,, algorithm is polynomial also in the mixing time of the optimal
policy. The discussion of these are omitted from this paper.

5 Representation

The previous sections adopted the perspective of modelling agents as decision
makers, who try to optimize their payoffs. This is the typical approach in eco-
nomics/game theory, and a popular approach in the recent AI/CS literature (see
the discussion in [15]).

In economics and game theory an agent is viewed as an expected utility max-
imizer, i.e. it assigns probabilities to the states of the environment, and utilities
to various outcomes or consequences, and chooses the action, protocol, strat-
egy or policy that maximizes its expected utility. A fundamental problem faced

Game Theory and Artificial Intelligence 55

by economists is the adequacy of expected utility maximization for agent mod-
elling/representation. This problem has been addressed by the fundamental work
of Savage [16]. Savage presents several properties of an agent’s choice function
(i.e. postulates regarding the way it chooses among alternatives and ranks them)
under which it can be viewed as if it were an excepted utility maximizer. Sav-
age’s result provides foundations to the expected utility maximization decision
criterion.

Decision-theoretic approaches in computer science are not restricted to ex-
pected utility maximization. For example, in this section we discuss another
decision criterion, which is most popular in the theoretical computer science lit-
erature: the competitive ratio decision criterion [1]. Consider an agent who needs
to choose an action/protocol/strategy/policy from a finite set A. The environ-
ment may be in one of finitely many states, selected from a set S. The agent’s
payoff when selecting @ € A in state s € Sisu(a, s) > 0. The agent does not know
the state of the environment and needs to choose an action. Let as be an optimal
action for the state s and denote its payoff (when the state is indeed s) by rs. The
regret of action a is defined as Reg(a) = maxsesﬁ. The competitive ratio

decision criterion tells the agent to choose an action aqp € argmingeaReg(a).
We will refer to a,p: as a competitive action, and to Reg(aop:) as the competitive
ratio of the related problem.

The competitive ratio approach may be quite powerful. For example, if the
competitive ratio is 2, then by choosing a competitive action we are guaranteed
to obtain a payoff that is at least half of the optimal payoff that could have been
obtained had we known the actual environment state/behavior.

Given the importance of competitive analysis, a natural and fundamental
question that should be answered, is under which conditions on the agent’s
choice among actions the agent can be viewed as if it adopts the competitive ratio
decision criterion. This will provide foundations, similar to the ones provided for
the use of expected utility maximization, to the representation of agents, as used
in the recent CS literature.

The above challenge has been addressed in the work by Brafman and Ten-
nenholtz [4]. In that work the authors provide two choice axioms that serve as
sound and complete axiomatization for the competitive ratio decision criterion.
In the binary case, one of these choice axioms suffices. The second condition is
more technical, and less controversial, so the discussion of it (as well as of the
general case) is omitted from this paper.

In the case of binary decisions, an agent selects from among two actions: a
and b. The world can be in one of several states. The information available to
the agent when taking its decision is represented by its information state. An
information state [€ 29 is the set of states (or “possible worlds”) that the agent
considers possible: one of the states in [is the actual one, but the agent does not
know which state in [is indeed the “real world”. For ease of exposition, we assume
that any subset of the states in S corresponds to some information state the agent
may reach. Let L = 2% be the set of possible information states the agent may
reach. Then, a policy for the agent is a function P : L — {a,b}. Notice that

56 Moshe Tennenholtz

an explicit representation of P might be exponential in |S|. Consider however a
decision theoretic representation, using a payoff function U : S x {a,b} — R.
This representation is polynomial in the number of states. Given such function U,
and an information state [€ L, consider the projection U' : | x {a,b} — Ry. We
can now apply the competitive ratio decision criterion to U'. If the competitive
action is uniquely determined then we can check and see whether it coincides
with the action selected by P in .

Given a set of states S, with a corresponding set of information states L = 2,
we will say that a protocol P : L — {a,b} is competitive-ratio representable if
there exists a function U : S x {a,b} — R, such that for every [€ L we have
that the (only) competitive action given U’ is P(I).

Notice that the existence of a competitive-ratio representation has very use-
ful properties. First, it will imply a polynomial representation of the protocol,
rather than an exponential explicit representation. In addition, if we could find
sound and complete conditions on the agent’s protocol under which a proto-
col is competitive-ratio representable then we would provide foundations to this
fundamental decision-theoretic approach for agent modelling.

Given a protocol P, we will say that P is closed under unions if for every
l1,l2 € L, such that P(l;) = P(l3), we also have that P(l; Uly) = P(l1) = P(ls).
Intuitively, closure under unions tells us that if an agent prefers action ¢ upon
action d, where the information state is [, and also when the information state
is la, then it will still prefer ¢ to d if it is told that the information state is either
I or ly. The following theorem [4] provides the desired axiomatization:

Theorem 4. Given a binary choice problem, closure under unions is a sound
and complete aziomatization for the competitive-ratio decision criterion.

The above implies that any protocol that has a competitive-ratio representa-
tion satisfies the closure under union property (soundness). While one can easily
check this property, the other direction (completeness) is less straightforward: if
an agent’s protocol satisfies the closure under union property, one can construct
a payoff function U, such that when applying the competitive ratio decision
criterion to U', the (only) competitive action obtained is P(l), for every [€ L.

The construction algorithm for the payoff function U, used by Brafman and
Tennenholtz, is polynomial in the number of states and actions, and the com-
puted payoffs are integers. Hence, the process is constructive and practical. Clo-
sure under union tells us the exact power of the competitive ratio approach for
agent modelling and representation.

6 Discussion

Game Theory and Artificial Intelligence are mature communities. Moreover,
Game Theory has considered in the past CS-like representations (e.g. when play-
ers are modelled as automata [11]), and work in AI has considered the use of
game-theoretic mechanisms [14, 10]. However, as we have tried to illustrate in this
paper, these are only tips of the iceberg, and fundamental connections among

Game Theory and Artificial Intelligence 57

the fields do exist. In particular, the areas of general resource allocation, learn-
ing, and agent modelling, suggest fundamental challenges for both CS/AI and
economics/game theory. We have chosen to explore these topics by presenting
concrete results, that establish tight connections between AI and game theory.
Needless to say that the connections between the areas are not restricted to the
subjects covered in this paper. For example, the whole field of knowledge the-
ory [7] lies in the intersection of game theory and Al, as well the whole art of
transforming mechanisms into working protocols (see the discussion at [19]).

I see the connections between the Al and game theory as consisting of three
parts:

1. Re-visiting economic and game-theoretic approaches, in view of their use in
computational settings.
. Deal with computational issues in the context of game-theoretic approaches.
3. Integrate game-theoretic approaches and CS approaches in order to yield
new theories for non-cooperative multi-agent systems

[\

These tasks can not be tackled by one community is isolation from the other
ones, and call for real collaboration between computer scientists and Al re-
searchers, to game theorists and economists. I strongly believe that this collab-
oration will lead to significant scientific and technological contributions.

References

1. Allan Borodin and Ran El-Yaniv. On-Line Computation and Competitive Analysis.
Cambridge University Press, 1998.

2. C. Boutilier, T. Dean, and S. Hanks. Decision Theoretic Planning: Structural As-
sumptions and Computational Leverage. Journal of Artificial Intelligence Research,
11:1-94, 1999.

3. R. Brafman and M. Tennenholtz. R-max — A General Polynomial Time Algorithm
for Near-Optimal Reinforcement Learning. In Proc. of the 17th International Joint
Conference on Artificial Intelligence, pages 953-958, 2001.

4. R. I. Brafman and M. Tennenholtz. An axiomatic treatment of three qualitative
decision criteria. Journal of the ACM, 47(3), March 2000.

5. E. Clarke. Multipart pricing of public goods. Public Choice, 18:19-33, 1971.

6. I. Erev and A.E. Roth. Predicting how people play games: Reinforcement learning
in games with unique strategy equilibrium. American FEconomic Review, 88:848—
881, 1998.

7. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge.

MIT Press, 1995.

D. Fudenberg and D. Levine. The theory of learning in games. MIT Press, 1998.

9. L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A
survey. Journal of AI Research, 4:237-285, 1996.

10. S. Kraus. Negotiation and cooperation in multi-agent environments. Artificial In-
telligence, 94:79-97, 1997.

11. A. Neyman. Bounded complexity justifies cooperation in the infinitely repeated
prisoner’s dilemma. Fcon. Lett., 19:227-229, 1985.

12. M.L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley, 1994.

®

58

13.

14.

15.

16.

17.

18.

19.

Moshe Tennenholtz

Holzman R, Noa Kfir-Dahav, Dov Monderer, and Moshe Tennenholtz.
Bundling Equilibrium in Combinatorial Auctions. Working paper Technion
http://ie.technion.ac.il/ dov/rndm6.pdf, 2001.

Jeffrey S. Rosenschein and Gilad Zlotkin. Rules of Encounter. MIT Press, 1994.
S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall,
1995.

L.J. Savage. The Foundations of Statistics. John Wiley and Sons, New York, 1954.
Revised and enlarged edition, Dover, New York, 1972.

L.S. Shapley. Stochastic Games. In Proc. Nat. Acad. Scie. USA, volume 39, pages
1095-1100, 1953.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT
Press, 1998.

M. Tennenholtz. Electronic commerce: From game-theoretic and economic models
to working protocols. In IJCAI-99, 1999.

Rights for Multi-agent Systems

Eduardo Alonso

Department of Computing, City University,
London EC1V 0HB, United Kingdom, eduardo@soi.city.ac.uk

Abstract. As utility calculus cannot account for an important part of
agents’ behaviour in Multi-Agent Systems, researchers have progressively
adopted a more normative approach. Unfortunately, social laws have
turned out to be too restrictive in real-life domains where autonomous
agents’ activity cannot be completely specified in advance. It seems that
a halfway concept between anarchic and off-line constrained interaction is
needed. We think that the concept of right suits this idea. Rights improve
coordination and facilitate social action in multi-agent domains. Rights
allow the agents enough freedom, and at the same time constrain them
(prohibiting specific actions). Therefore, rights can be understood as
the basic concept underneath open normative systems where the agents
reason about the code they must abide by.

1 Introduction

So far, the Rational Choice Theory (RCT) has been the most influential theory
for designing agents in Artificial Intelligence and Distributed Artificial Intelli-
gence. According to this approach to rationality, agents with complete knowledge
make their decisions in order to maximise their own utilities. In this traditional,
non-constrained approach agents have been assumed ‘free’: They act of their
own accord and are not subject to any set of (social) rules. However fruitful this
approach has been, there have been pointed out (e.g., [17]) several drawbacks in
RCT, namely:

1. In real dynamic domains agents do not have enough information or time
to perform complex, optimal utility calculus. An agent does not know all
the alternatives, does not know the exact outcome of each, and does not
have a complete preference order for those outcomes. This problem becomes
particularly grave in Multi-Agent Systems (MAS) due to the presence of
various agents, each with their own beliefs, goals and intentions.

2. On the other hand, the utilitarian approach has failed in explaining cooper-
ation and social action. As illustarted in the Prisoner’s Dilemma, agents can
choose dominant, but socially irrational strategies. In the example depicted
in Table 1, the equilibrium point is (2,5), even though (4,8), the Pareto
solution, is more attractive. RCT says, however, that this solution is not
stable, because the agents have an incentive to deviate from this strategy.
Agents face a ‘trust dilemma’: They can take a position that, if rational, at
least one of them may be tempted not to implement.

M. d’ Inverno et al. (Eds.): UKMAS 1996-2000, LNAT 2403, pp. 59-72, 2002.
© Springer-Verlag Berlin Heidelberg 2002

60 Eduardo Alonso

Table 1. Cooperation? Social action?

Agent 1

A B C

L34 2,5 1,3
Agent 2
R4,8 12 09

Following this line of argumentation, we cannot explain either collective ac-
tion or cooperation. There is no notion of social action as a jointly planned
course of action: Agents calculate individually and separately their best op-
tions. Moreover, communication or negotiation would not help, for agents
cannot trust each other and will back down on the agreed commitments. In
a word, cooperation is futile.

In order to cope with these problems, the MAS community has adopted a
more constrained approach to rationality including conventions, norms and/or
social laws. It is well-known that agents working under norms do not need to
calculate continuously their utilities and, consequently, do not need complete
information. Agents are supposed to act in a somehow predetermined way ac-
cording to the principle of ‘mutual expectation’. Besides, norms imply that the
agents respect certain social constraints that deter them from breaking agree-
ments. Unfortunately, research in this field has fallen into two extreme positions:
Shoham and Tennenholtz [19] have studied off-line social laws, which agents must
comply with automatically. Agents are assumed to follow rules just because they
are designed to do so. Following this line of argumentation agents are not seen
as autonomous any more. Proposals so formulated are thus closer to Distributed
Problem Solving than to MAS.

Alternatively, conventions (e.g., [25]) have been introduced as rules emerging
during repeated encounters in open normative systems. The problem here is that
no notion of sanction is considered. Consequently, if the agents have the chance
to calculate their utility each time they interact, conventions are continually
under consideration. In other words, following a convention is not always a stable
strategy.

It seems, therefore, that we need a concept that allows agents to reason and
make decisions, but that implies enforcement at the same time. That is, we need
a halfway concept (neither off-line nor strictly on-line) that guides, but does not
control, the behaviour of autonomous agents. Our contention is that the concept
of ‘right’ suits these requirements.

The remainder of the paper is structured as follows. In the second section,
we present the concept of rights as liberties; in the third section, we characterise
a simple theory of rights; in the fourth section, we consider what we can gain by
introducing rights in the coordination process in terms of complexity, efficiency,

Rights for Multi-agent Systems 61

stability, and flexibility; in the fifth section, the relationships between constrained
and unrestricted behaviour in the coordination process are studied; we shall
finish with some conclusions and further research.

2 Rights

Roughly stated, a right is considered as a set of restrictions on the agents’ ac-
tivities which allow them enough freedom, but at the same time constrain them.
Not surprisingly, some authors (e.g., [24]) have expressed the same idea from a
RCT perspective, by introducing some constraints in the set of strategies avail-
able to the agents. In so doing, agents are free to converge on ‘stable social laws’
(qualitative equilibria). However interesting this approach may be, it presents
a serious handicap: To make sure that the agents choose a stable and efficient
strategy, the designer decides beforehand which strategies should be eliminated.
The designer, therefore, manipulates the process and creates an ‘illusion of free-
dom’.

We understand this concept from a more social approach, as was advanced
in [2]: To explain social behaviour we need to think of the agent as a homo
sociologicus rather than as a homo economicus.

Generally speaking, if an agent has the right to execute a set of actions then
(a) he is permitted to perform it (under certain constraints or obligations), (b)
the rest of the group is not allowed to execute any action inhibiting the agent
from exercising his right, and (c) the group is obliged to prevent this inhibitory
action.

We can illustrate this idea with a simple traffic-world example that will be
used throughout the paper. In Figure 1, z has the right to drive along the main
A road under certain constraints (to have the corresponding licence, to respect
the speed limit, to drive on the left, etc.); y is not allowed to take this road from
the B road at that junction at the same time, because this action inhibits z’s
right!; finally, the rest of the group must stop y from breaking the law and, if
needed, punish the offence. In large organizations, the group can delegate these
responsibilities to expert agents, police-traffic agents in this case.

This third point follows from Castelfranchi’s right to claim [6], according to
which any agent has the right to ask for help if his counterpart in the interaction
(a short term deal or a long term socially established pattern of behaviour) does
not abide by the terms of the contract.

We extend, nonetheless, this notion and talk about the right to be protected:
Agents have the right to be aided even when they themselves do not know that
their rights are under threat (and therefore do not make any claim). So, even if
z doesn’t know that y has the intention of breaking the law and does not claim
the group for help (right to claim), the group is obliged to assist him (right to
be protected).

! We assume that = has priority according to the current traffic code.

62

Eduardo Alonso

Fig. 1. A traffic example.

2.1 Three Facts about Rights

We are introducing now three distinctive facts about rights. These rights are
related very closely to, but are not reducible to permissions or the right to claim.
They are very basic rights, represent universal interests and form systems.

1. Liberties: Unlike in [15], rights are not considered in this paper as permis-

sions. We are interested in basic rights, in what N.P. Barry called liberties [4].
Of course, once a right is adopted, it works like a permission. The main differ-
ence between rights and permissions lies in the fact that rights are universal
statements: (a) the entire group agrees on them; (b) they establish equality;
(c) they apply for the long-term. Nobody can delegate or trade with rights.
Permissions, on the other hand, are relative.

Let’s illustrate these differences with an example. In many countries, drivers
must pay a fixed amount of money to have the permission to drive along
a motorway. Once a driver has paid, he has the right to drive along the
motorway. We can think of such a condition as the need for a permission:
There is an agreement saying that if an agent pays, say, £5 then he gets
the permission to use the road. However, this agreement is quite special,
because it is applicable to any agent anytime. Agents do not have to ask
for permission to drive along the motorway, but only to abide by certain
constraints (to pay £5).

That is not the case with mere premissions. A driver can reach an agreement
with the owner of a private parking place: To pay £30 per night. That’s a
bilateral one-shot agreement. If another driver wants to use the parking, he
has no rights until he reaches another agreement with the parking owner. The
previous agreement does not set up a precedent. Renegotiation is required.
Rights are essentially social concepts: the notion of group is a guarantee that
agents’ rights (and their corresponding obligations) are observed through
sanctions and compensations. Moreover, rights mean that all the agents in

Rights for Multi-agent Systems 63

a group are closely related: Those agents exercising a right (active agents)
are constrained by the obligations linked to that right, whereas the others
(passive agents) are constrained by prohibitions (it is forbidden to violate
others’ rights).

2. Hierarchies: Rights form systems. Permissions do not. As a consequence,
rights cannot be adopted individually, one by one. For example, I am not
allowed to accept the right to drive on the left (because it is instrumental in
satisfying my goal of driving work on time) and reject at the same time the
right to live (which may turn out to be in conflict with my goal, so I could
be tempted to run over any pedestrian crossing the road in my way).
Ideally, rights are totally ordered in a hierarchy according to the interests
they represent. The higher a right is in the hierarchy, the more important
the interest it represents. Therefore, a right is only overruled by another in a
higher position. In theory, conflicts between rights are automatically solved
according to this order, because higher rights act as constraints for lower
rights. As driving along A has precedence over driving from B to A, one
of the constraints for exercising this second right is that there is no agent
exercising the first.

3. Interests vs Utilities: The main purpose of recognising rights is to pro-
tect certain interests of individuals against additive calculations of utilities.
Utilitarians can reply that the disutility of frustrating expectations and the
utilities of honouring them should be introduced in the utility equations?.
On the contrary, rights are beyond utility calculus: They represent values or
interests. The point of speaking of rights is precisely that we do not want
such utilities calculated. Quoting Nielsen and Shiner [14]

“For the sake of security and psychological stability we want in-
terests of individuals (...) protected against such calculations, and
hence we grant them rights. (...) And where rights exist, they are
not to be overridden by mere utilities.” (Nielsen and Shiner (1977),
p. 127)

An agent is entitled to exercise a right (in a way legitimised in the stipulation
of the right) despite the greater utility realised by breaking this right. In
the traffic example, it doesn’t matter if there are three agents y, w, and z
intending to drive from B to A, so that the addition of the utilities that
these three agents would get by breaking the law would be greater than the
utility that x gets by driving along A. This kind of calculations are out of
the question, precisely because of z’s right to drive along A.

A direct implication of defining rights over utilities is that agents can exercise
their rights even though their behaviour is considered wrong. It is important
to differentiate between ‘legally’ right and ‘morally’ right. It can be ‘morally’
wrong to exercise a ‘legal’ right: Nobody is allowed to prevent a Sunday driver
from driving as long as he is abiding by the traffic code. He just drives badly.

2 This idea finds philosophical support in the Theory of Social Exchange, according
to which every social interaction is rooted in the ‘reciprocity principle’ [5, 21].

64 Eduardo Alonso

3 A Language for Describing Rights

This section presents a formal characterisation of the concept of right. Apart
from different axioms for characterising rights and permissions respectively, our
model follows Norman’s et al. [15]. Readers are referred to that paper for a
complete description of the syntax and semantics of the proposed language.

3.1 Syntax

The language L is based on dynamic logic, because we want to talk about agents
performing actions, action sequences, etc. We will have three basic sets: propo-
sitional variables, P, agents, Agents, and actions, Actions. The symbols for our
language of rights, £, are as follows: x and y denote agents. The group, an agent
after all, will be represented by the symbol g. a, (3, v, and § denote individual
actions.

The main predicates in our language refer to agents’ mental attitudes, action
expressions and normative expressions. Unlike in [12, 22] we are not using deontic
logic to express deontic notions. This is because non-forbidden actions are not
necessarily allowed actions. In our model (as in [15]) rights must be explicitly
established.

The fact that an agent x has the intention to execute action «, is represented
as I(x,«). Done(x, @) is used to denote that agent x has just performed action
«. Happens(a)) means that a does occur.

As for normative notions, that x is allowed to execute « is represented as
A(x,a); if x is forbidden to execute «, we will use F(x,«); finally, if there is
an obligation, 0(x, @) will be used. The most important predicate refers to the
concept of right: R(x, o) means that agent x has the right to execute «. The set of
potential rigths, Right, is completely ordered according to their social relevance,
(Right, <).

Atomic propositions and compound formulae of £ are defined as usual.
Inh(o, 3) means that « inhibits 8: If a happens then 5 does not happen. For-
mally, Inh(a,3) iff Happens(w) — —Happens(q;(37), where «; 8 means 'do «
followed by (’, and ¢? means ’proceed if ¢ is true’.

3.2 Semantics

The semantics for the language of rights, £, is based on a possible worlds
model [9], & la Norman et al. [15]. The class of models of £ that we are interested
in are those satisfying the constraints introduced by the following axioms.

3.3 Axiomatics
It remains to provide the axiomatics for L.

— Permission: Firstly, to have a right does not automatically allow the right-
holder to exercise its content. There are some conditions with which the

Rights for Multi-agent Systems 65

agents have to comply. That is, that an agent has the right to execute an
action does not mean that it is legal for him to execute such an action.

—3Jy(R(x,a) AR(y, B) AL(y, 8) A < B A Inh(B,) — A(x, @) (1)

It is one thing to be allowed to exercise a right; it is another to have the
intention of exercising it. Rights do not elicit actions. Social commitments
do [10]. If the agent is allowed to execute an action, he has the chance to
choose whether or not to proceed. So, rights provide the agents with freedom,
for they depend on their own motivation to make a decision and act. On
the other hand, having an intention does not entitle the agent to execute
the corresponding action in normative systems: In normative scenarios, the
agent must have the legal capability (he has to be allowed) to do so.
Prohibition: If an agent is allowed to execute an action and has the inten-
tion to do so, then no other agent is allowed to exercise a lower inhibiting
right. In the traffic example, y is allowed to exercise the right of taking the
junction A-B, as long as z does not have the intention to drive along the
main road.

(A(x,) AI(x,a) AInh(G,«)) = F(y, 5) (2)

For simplicity, we have adopted in this paper a relativistic approach in which
for an action to be forbidden it has to inhibit someone’s rights. We could,
however, introduce a more general notion of illegality: It is forbidden to drive
at more than 50mph in town, regardless an agent driving at, say, 60mph is
inhibiting someone else’s rights. In such a case, nobody has to be protected.
Nevertheless, the group has still the obligation to stop the offender.
Obligation: To prevent and/or to sanction.

Prevention If an agent has the intention of executing a banned action, [,
then the group is obliged to accomplish an inhibitory action and prevent the
crime before 3 is done.

(F(y,8) ALy, 3)) — O(g,7) 3)

where Inh(vy, 3).

Sanction: Finally, if that action has been executed, then the group has to
sanction the offender by inhibiting some of his rights (e.g. suspending his
licence).

(F(y, 8) A Done(y, 5) AR(y,6)) — 0(g,7) (4)

where Inh(7,d). Obviously, (3) and (4) refer to x’s right to be protected.
If the group has to prevent the offence, it has to be endowed with an effi-
cient mechanism to recognise intentions. On the other hand, if the crime is
eventually committed, the group has to know if it was intentional. Differ-
ent sanctions correspond to different degrees of intentionality (for instance,
murder is more severely punished than manslaughter). It is true that jus-
tice is concerned about the legality of actions. But it is also true that when

66 Eduardo Alonso

Table 2. Sample right.

CONDITIONS

® R(x,), R(y, 8) and R(y, d)
e Inh(f, @), Inh(y, (), and Inh(v,d)
ea>(

RULES

R1 A(x, o)

R2IF I(x,) THEN F(y, §)

R3IF I(y,) THEN 0(g,~y) Prevention
R4 IF Done(y, 3) THEN 0(g,y) Sanction

it comes to do justice, agents’ intentions and beliefs have to be taken into
account. If T drive over a pedestrian, no doubt I have executed an illegal
action. However, if the pedestrian was jaywalking and run unexpectedly into
my car, then it would be unfair to blame me for the accident. We will issue
intention recognition in future papers.

More specifically, we can explain what to exercise a right means following
the sample displayed in Table 2. We have omitted a few features in this figure:

— firstly, x has to observe some constraints if it decides to execute . If it does
not do so, then y has the right to claim;

— secondly, when an agent has performed a forbidden action, the offended agent
is usually more concerned about compensations than about sanctioning the
offender. Therefore, actions restoring (part of) their rights have to be added
to the algorithm;

— finally, sanctions should be introduced in preventive cases (like in attempted
murder), not only if the prohibited action is eventually done.

In the next section we will study how rights help us reduce coordination
complexity and gain in efficiency.

4 What Do We Gain by Using Rights?

We contend that the idea of using rights is worthy of consideration because it
makes easier to have agents coordinated. In seeking for argue this hypothesis
we present a qualitative (rather than quantitative) analysis. As it has been re-
peatedly pointed out (e.g., [16,23,26]), coordination is mainly concerned with
complexity, efficiency, stability, and flexibility. Roughly speaking, complexity
refers to how difficult it is to find a solution, and depends on the amount of
information and/or time required to represent and solve the problem; efficiency

Rights for Multi-agent Systems 67
Table 3. Coordination in different MAS approaches.

RCT Norms Rights

Complexity High Medium Low
Efficiency Low High High
Stability =~ High High High
Flexibility High Low High

speaks about the quality of the outcome, how good it is; then, the solution must
be stable, that is, agents should have no reason to diverge from it; and finally, for
a MAS to be flexible means that the agents are able to respond by themselves
to the changing environment. In dynamic MAS, we want autonomous agents to
obtain the best stable results using as few resources as possible. We illustrate in
Table 3 how different approaches work to get agents coordinated, and what we
gain by using rights:

1. Complexity: We can see rights as social conditions to execute actions. An
agent must have the legal capability to perform an action. Consequently,

— the representational complexity is reduced. Theoretically, does not need
to know from, to where, when or how other agents are driving in Figure 1.
Agents do not have to anticipate all possible course of events;

— performance itself is also improved: The conditions for success are par-
tially assured through prohibitions and obligations. Rights restrict poten-
tially harmful interactions, and avoid conflict by cutting some paths;

— moreover, rights reduce negotiation and communication costs. Obviously,
and y do not negotiate each time they meet in the A-B junction 3.

We depict the traffic problem decision tree in Figure 2, where a means that
z is driving along A and b that y is driving from B to A. The first agent has
priority, so the first and the third branches are pruned. Agents do not have to
reflect on these branches and reckon what they would individually gain or lose
by trying an alternative path. The second branch is executed directly.

If compared with other approaches, we maintain low levels of complexity by
using rights. RCT is highly complex when it comes to find a solution: Agents
have to take into consideration all possible options. As for norms, it may seem
that they cope with complexity as rights do: They, too, cut different paths, create
safety areas, and reduce communication after all. However, it is worth noticing
that it is the designer who establishes off-line the strategy to be followed. So, even
though the overall performance is satisfactory, it requires lots of representational
work.

3 Tt is also true that communication can be required even if rights are fully specified.
Typically, when one’s rights affect others’. For example, if = decides to park just
before the junction, he will have to communicate his intention to y, as this second
agent can then exercise his right of driving from B to A without delay.

68 Eduardo Alonso

t: t;

a’b/®
So a @ b @

N S

Fig. 2. Rights and complexity.

2. Efficiency and stability: Rights are essentially social notions. The group
guarantees through sanctions that agents’ rights (and their corresponding obli-
gations) are observed.

In RCT, agents must sacrifice efficiency to preserve stability. When norms are
involved, stability and efficiency (usually in terms of global utility) are assured,
but only because agents obey orders. In our approach, autonomous agents are
free to adopt efficient solutions, for the group is responsible for stability. Stability
is now a social concept, not a strategic nor a normative one. The ‘trust dilemma’
is, therefore, solved: Agents do not have to watch each other; they can cooperate
and make joint decisions.

The right to be protected is the main responsible for this dramatic change.
With this meta-right at hand, agents would choose (4,8) in Table 1: If Agent 1
does not abide by this agreement and finally executes C, then Agent 2 is entitled
to ask the group to sanction the first agent and force him to restore his rights.
In order to assure that the agents will abide by the rules, ‘Draconian laws’ can
be introduced.

In the long term, rights introduce fairness. As agents do not know before-
hand which role they are going to play in the future, they assess the situation
as ‘Kantian’ impartial judges. In the traffic world, agents have to answer this
question: Is it instrumental to drive on the left to avoid conflict? The obvious
answer is ‘yes’. No individual parameters are taken into account at this level.

3. Flexibility: Rights give the agents the chance to decide to execute a set of
actions. Right-holders are not committed to any specific action. However, if an
agent exercises a right then he is committed to do so under certain constraints.
Rights are not procedural, but they create attitudes in the agents. These agents
are not mere vehicles of established norms, but they can decide to abide by or
break their obligations. That is the reason why sanctions are indispensable. This
property is very valuable, because it puts the accent on agents’ autonomy, unlike
social laws or ‘ad hoc’ binding agreements (e.g., [11,18]).

In so doing, we can establish a clear distinction between rights and social
commitments: Social commitments elicit actions, rights do not.

Rights for Multi-agent Systems 69

5 Rights in the Coordination Process

To sum up: Rights protect interests, reduce representational as well as proce-
dural complexity, provide the agents with control mechanisms (the right to be
protected) to assure stability and efficiency both in short and long term encoun-
ters, and preserve autonomy and flexibility.

Yet, a theory of rights alone cannot account for coordination in MAS. Not all
interactions are ruled by rights. As is shown in Figure 3, coordination can be
achieved through negotiation (or other non-normative coordination mechanism)
and/or following rights.

FREE LAYER [NEGOTIATION j

Social rights . ,
Conflict rights Right to claim

NORMATIVE LAYER - E{IGHTS AND DUTIEa

Fig. 3. The coordination cycle.

The first method rules the agent’s ‘free layer’, and the second the ‘norma-
tive layer’. The free layer governs unconstrained short term behaviour according
to agents’ preferences and dependence relationships [1, 3,7, 20, 27], whereas the
normative layer guides the long term activity.

All in all, coordination results from the bidirectional interaction between
these two layers: Unconstrained behaviour and negotiation (its solver) are su-
pervised by the right to be protected, and negotiation is sometimes necessary to
complement the normative layer.

— From rights to negotiation: As it has already been mentioned, the right
to be protected does not apply only to the execution of rights (when an
agent does not abide by the constraints or obligations linked to the right
in progress, or when someone tries to inhibit others’ rights by executing
forbidden actions). It is also applied to one-shot deals: When an agent does
not fulfil his commitments, then the right to be protected is exercised by
the other part. This right compels the group to force the offender to comply
with the agreement.

70 Eduardo Alonso

— From negotiation to rights:* Conflicts can arise in the normative layer

given underspecification. Usually, agents cannot be referred to a complete,
unambiguous traffic code. Imagine that two drivers are trying to park in the
same place, one backwards, the other forwards. As the right to park does
not specify which agent has precedence, conflict follows.
Experimentation can help to detect and avoid conflict cases (in the parking
example, we can introduce a constraint on the right to park saying ‘it is
forbidden to park forwards’ or give priority to the right of ‘parking back-
wards’). However, the dynamic nature of social interaction makes it impossi-
ble to write down a perfect system of rights. Moreover, it is very difficult for
(informationally) limited agents to know exactly how legal systems work.

6 Conclusions and Further Work?®

In this paper, we have introduced a preliminary study of the concept of rights.
There have been other approaches to rights in the MAS literature: Castel-
franchi [6] explained how social commitments generate rights (to claim), and
Norman et al. [15] have presented rights (permissions) as arguments in agree-
ments. We have focused our work on more basic rights, called liberties, which
represent and protect universal interests. No doubt all these rights are closely
related. However, we understand that liberties play a very special role in a theory
of coordination and social action. They endow autonomous agents with enough
freedom and groups with enough power to assure stable and efficient solutions
in uncertain domains.

The most obvious issue to be addressed in future work is the refinement of
the model, both theoretically and formally. Specifically, some discussion must be
undertaken about the dynamic aspects of rights (already treated in [8]): Their
genesis, acceptance and abandonment.

Besides, it is obvious that the relationships between normative and social
attitudes (joint intentions, mutual beliefs, etc.) must be studied in depth.

Finally, even though the traffic-world is quite natural to explain and to un-
derstand the intuitive meaning of rights, it is also true that a more elaborated

4 In [2], we identified other cases in which normative agents have to negotiate, for
example, when they exercise ‘social rights’. Exercising our rights does not necessarily
result in achieving our goals since others’ cooperation may be required.

Since benevolence is not assumed, one’s right does not automatically trigger oth-
ers’ actions. Leaving aside physical capacity, this is specially true in the case of ‘social
rights’. We can use Levesque’s et al. ‘Convoy example’ [13] to illustrate this concept:
An agent z can have the right to drive together with another agent y as a convoy.
However, x needs y to exercise his right to drive, and to do it in a coordinated way.
That means that z will likely have to convince y to adopt that goal, and then they
will have to arrange how to drive the convoy (who drives in front, when to stop,
etc...).

5 Agents have been addressed as male because they are, undoubtedly, worse drivers
than female agents.

Rights for Multi-agent Systems 71

domain problem (for example, electronic commerce) would show better how use-
ful the framework here described may be.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

E. Alonso. How individuals negotiate protocols. In Proc. ICMAS-98, pages 18-25,
Los Alamitos, CA, 1998. IEEE Computer Science Press.

E. Alonso. Rights and coordination in multi-agent systems. In Proc. UKMAS-98,
1998.

E. Alonso. An individualistic approach to social action in Multi-Agent Systems.
Journal of Experimental and Theoretical Artificial Intelligence, 11:519-530, 1999.
N.P. Barry. An Introduction to Modern Political Theory. Macmillan, London, 1989.
P.M. Blau. Interaction: social exchange. In D.L. Sills, editor, The International
Encyclopedia of Social Sciences, New York, 1968. Macmillan.

C. Castelfranchi. Commitments: from individual intentions to groups and organi-
sations. In Proc. ICMAS-95, pages 41-48, Cambridge, MA, 1995. MIT Press.

C. Castelfranchi, M. Miceli, and A. Cesta. Dependence relations among au-
tonomous agents. In E. Werner and Y. Demazeau, editors, Decentralized A.l. 3,
Proc. MAAMAW-91, pages 215-227, Amsterdam, The Netherlands, 1992. Elsevier
Science Publishers.

R. Conte, C. Castelfranchi, and F. Dignum. Autonomous norm-acceptance. In
Muller J.P., M.P. Singh, and A. Rao, editors, Proc. ATAL-98, pages 319-333,
Berlin, 1998. Springer-Verlag.

J. Hintikka. Knowledge and Belief. Cornell University Press, 1962.

N.R. Jennings. Commitments and conventions: The foundation of coordination in
Multi-Agent Systems. The Knowledge Engineering Review, 8:223-250, 1993.

S. Kraus, J. Wilkenfeld, and J. Zlotkin. Multiagent negotiation under time con-
straints. Artificial Intelligence, 75:297-345, 1995.

C. Krogh. The rights of agents. In M.J. Wooldridge, J.P. Mulle, and M. Tambe,
editors, Intelligent Agents II: Agent Theories, Architectures, and Languages:=20
Proc. 1JCAI-95 Workshop, pages 1-16, Berlin, 1996. Springer-Verlag.

H.J. Levesque, P.R. Cohen, and H.T. Nunes. On acting together. In T. Dietterich
and W. Swartout, editors, Proc. AAAI-90, pages 94-99, Cambridge, MA, 1990.
MIT Press.

K. Nielsen and R.A. Shiner. New Essays on Contract Theory. Canadian Association
for Publishing in Philosophy, 1977.

T.J. Norman, C. Sierra, and N.R. Jennings. Rights and commitment in multi-agent
agreements. In Proc. ICMAS-98, pages 222-229, Los Alamitos, CA, 1998. IEEE
Computer Society.

G.M.P. O’Hare and N.R. Jenning (Eds.). Foundations of Distributed Artificial In-
telligence. John Wiley and Sons, New York, 1996.

R. Reiner. Arguments against the possibility of perfect rationality. Minds and
Machines, 5:373-389, 1995.

J.S. Rosenschein and G. Zlotkin. Rules of Encounter. The MIT Press, Cambridge,
MA, 1994.

Y. Shoham and M. Tennenhlotz. On the synthesis of useful social laws for artificial
agents societies. In Proc. AAAI-92, pages 276281, Menlo Park, CA, 1992. AAAI
Press.

72

20.

21.
22.

23.
24.

25.

26.

27.

Eduardo Alonso

J.S. Sichman, R. Conte, Y. Demazeau, and C. Castelfranchi. A social reasoning
mechanism based on dependence networks. In A. Cohn, editor, Proc. ECAI-94,
pages 173-177. John Wiley and Sons, 1994.

G. Simmel. The Sociology of Georg Simmel. Free Press, New York, 1908.

G. Staniford. Multi-agent system design: using human societal metaphors and nor-
mative logic. In M.J. Wooldridge and N.R. Jennings, editors, Proc. ECAI-94 Work-
shop on Agent Theories, Architectures and Languages, pages 289-293, Berlin, 1994.
Springer-Verlag.

K.P. Sycara. Multiagent Systems. Al Magazine, 19:79-92, 1998.

M. Tennenhlotz. On stable social laws and qualitative equilibria. Artificial Intelli-
gence, 102:1-20, 1998.

A. Walker and M. Wooldridge. Understanding the emergence of conventions in
multi-agent systems. In Proc. ICMAS-95, pages 384-389, Cambridge, MA, 1995.
MIT Press.

G. Weiss. Multiagent Systems: A Modern Approach to Distributed Artificial Intel-
ligence. MIT Press, Cambridge, MA, 1999.

M. Wooldridge and N.R. Jennings. Towards a theory of cooperative problem solv-
ing. In J.W. Perram and J-P. Miiller, editors, Proc. MAAMAW-94, Workshop on
Distributed Software Agents and Applications, pages 40-53, Berlin, Germany, 1994.
Springer-Verlag.

Infrastructure Support for Agent-Based Development

Ronald Ashri', Michael Luck!, and Mark d’Inverno?

! Department of Electronics and Computer Science, University of Southampton,
Southampton SO17 1BJ, UK,
{R.Ashri,mml}@ecs.soton.ac.uk
2 Cavendish School of Computer Science, Westminster University,
London W1W 6UW, UK, dinverm@westminster.ac.uk

Abstract. As the field of agent-based computing has continued to develop, there
have been several contributions to its theoretical underpinnings, and several others
to supporting the efforts of practical systems development. Yet the connection
between the two has been limited at best. In this paper we aim to address these
limitations through a consideration of appropriate agent infrastructure that can
support principled development of agent systems based on a strong conceptual
framework. As well as a general discussion of infrastructure requirements in this
context, we also describe the Paradigma implementation environment, based on
the smart agent framework, which represents our initial efforts in this direction.

1 Introduction

Increasingly, the distinguishing quality of current computing environments is the union
of loosely-coupled, heterogeneous, networked devices to form larger structures, such
as local and wide area networks, which culminate in the Internet. Not surprisingly,
this development mirrors the trend amongst organisations to increase the amount of
cooperation between disparate units, irrespective of geographic locations. The move is
towards a more decentralised, team-based and distributed structure [5], with the use
of information technology tools over the Internet acting as the main enabling force. In
addition, the personal lives of individuals have also been affected by the technological
advances with the use of the Internet in the home increasing daily. Perhaps the most
significant change in the use of personal computing devices is the spread, and rise in
influence of, embedded and mobile devices with limited computational power, which
have found favour in many aspects of everyday life, from mobile phones to personal
digital assistants (PDAs), providing a counterpoint to the tradition of desktop computing.

In line with this profile, there is an increasing demand for integrating the various
different kinds of such devices in order to provide an environment where access to in-
formation and services is available in a seamless manner, while transcending physical
location and computing platform. The decentralised collaboration structures of organi-
sations need to be supported by appropriate new solutions, whilst remaining integrated
with pre-existing applications, often termed legacy applications. Furthermore, the sim-
ple administration and effective use of existing resources has become a significant issue.
Agent-based systems, by virtue of their defining characteristics of autonomy, reactivity,
proactiveness, and social ability, have been suggested as a means of providing solutions

M. d’ Inverno et al. (Eds.): UKMAS 1996-2000, LNAI 2403, pp. 73-88, 2002.
(© Springer-Verlag Berlin Heidelberg 2002

74 Ronald Ashri, Michael Luck, and Mark d’Inverno

to some of these problems [10]. The power of this paradigm stems from the fact that
the dynamics of social interaction, such as communication and cooperation, can be used
to effectively model such heterogeneous, decentralised and loosely-coupled domains
through the interaction of agents.

Nevertheless, for the agent-based systems paradigm to gain widespread use (espe-
cially in industrial settings) there are several issues that need to be resolved, a good
review of which can be found in [3]. These range from low-level networking concerns
such as robust network protocols (e.g. the IPv6 protocol), to appropriate middleware
solutions (e.g. CORBA and Jini) and higher level agent communication language stan-
dardisation efforts (eg. FIPA ACL [4], KQML [8], etc.). All these efforts are geared
towards achieving the primary aim which is, undoubtedly, application development in
order to address the needs outlined above. Underpinning the success of these attempts,
however, is perhaps a better understanding of the theoretical aspects of multi-agent sys-
tems. This will enable the development of applications in a principled manner leading
to more robust and extensible solutions.

Theoretical research is useful because it can provide, typically through formal meth-
ods, clear concepts and definitions by tackling the ontological and epistemological issues
in a research field. In the case of agent-based systems, a good theory could provide defi-
nitions of agents as well as explicate the relationships between them and other entities in
the world. An appropriate, common theory also makes the comparison, evaluation and
sharing of research results easier and can expedite progress in the field.

One of the problems of adopting theoretical work is that it does not easily lend itself
to implementation. The reasons for this are twofold. Firstly, the theory might not take into
account complications that may arise due to the limitations of the platform on which a
program is to be developed. Secondly, the theory may be too abstract for a developer to see
adirect connection to an implementation, or the theory might lend itself to many different
interpretations at the implementation level. In a development environment where the
culture of rapid application development is overpowering, theories are often seen as a
hindering rather than facilitating factor. The result of this lack of reconciliation between
theoretical approaches on the one hand and development and deployment on the other
is that we now have a large variety of alternative concepts of what an agent is, and few
means to practically evaluate the various claims made [12].

There are several ways to address this gap between theory and practice. For example,
more detail could be added to a theory in order to bring it closer to implementation or,
alternatively, software engineering methodologies could be developed providing a path
from theoretical specification to practical implementation. In this paper, however, we
propose to address the issue through the provision of appropriate infrastructure tools
that interpret theoretical approaches and allow for the rapid development of applica-
tions. Through the methodical translation of a theory into infrastructure, developers
can more readily access the overarching concepts, allowing for a more principled use of
the theory, without radically changing their methods of application development. Such
infrastructure tools can form the basic buildings blocks required for the development
and deployment of an application. Furthermore, they can serve to verify the theory’s
applicability in real world situations, possibly leading to refinements or even rejection
of a theory. We adopt this approach in order to address two concerns. On the one hand

Infrastructure Support for Agent-Based Development 75

there is the need to evaluate, refine and make theory more accessible, and on the other we
wish to answer the question of what appropriate infrastructure for agent-based systems
actually is.

Applications development support through the provision of appropriate infrastruc-
ture typically needs to address two important issues. Firstly, we need to identify the
significant re-usable and domain independent components that can form part of the
infrastructure. Secondly, an appropriate framework through which to allow the appli-
cation designer to manipulate these elements must be constructed. Both of these tasks
are made easier if there is good theoretical work to underpin them. Such a theory can
provide suggestions as to the entities that should exist in an agent-based system and
their relationship (ontological issues) as well as what can be done with those entities
(epistemological issues). Conversely, through this principled application development
using the derived infrastructure, we can gain a better understanding of the theory, which
can enable its refinement and extension as necessary.

The challenge of developing a usable infrastructure for agent-based systems is to
produce a system at the right level of generality. For example, infrastructure that pro-
vides support only for network communication is inadequate for any substantial system,
while infrastructure that forces a developer to employ, for example, a certain planning
algorithm, may be overly specific and consequently constraining. While it is important
to realise that infrastructure support goes beyond support for general distributed systems
it is equally important to recognise that it cannot be a direct translation of a theory of
agent-based systems to a programming language. That can only be one component of
a larger structure that attempts to relate that theory to implementation concerns such as
networking communication tools, host platform operating possibilities and limitations.
This suggests that an agent infrastructure should touch upon high-level issues concerning
the structure of individual agents and their interaction as well as lower-level issues.

In this paper, we consider exactly these concerns, and offer an analysis of the re-
quirements for infrastructure to support the development and operation of agent-based
systems, informed through experience in developing an agent implementation environ-
ment based on a conceptual agent framework. We begin by grounding the discussion
through a short description of the environments that we are considering for the application
of agent-based systems and elaborate on the kind of modularity that agent infrastructure
for such environments should support. We then move on to outline our initial efforts
in attempting to realise this set of requirements in the development of the Paradigma
agent implementation environment by using appropriate conceptual and technical tools.
Finally, we review related work and suggest ways to proceed further.

2 Heterogeneous Environments

Increasingly, the range of devices used to access networks is diversifying. This, coupled
with the increase in the numbers of users accessing such networks, creates the need for
a different approach to distributed computing. While until recently the methodologies
and tools for developing distributed applications called for abstracting beyond location
issues, since assumptions could be made about the reliability and performance of net-
works, we are now forced to take into account both physical and virtual boundaries. The

76 Ronald Ashri, Michael Luck, and Mark d’Inverno

former is necessary due to the latency in information transmission, and the latter due
to the partitioning of networks according to the organisational needs of network owner-
ship and administration. In addition, solutions also need to deal with constant change in
such environments, which comes about due to the fluctuating nature of organisational
hierarchies, changes in needs, replacement of components and the underlying infrastruc-
ture, as well as limitations of that infrastructure. More specifically, the following salient
characteristics of such environments need to be considered by any attempt to develop
practical agent systems in these emerging computing environments.

The devices used to access information and services vary greatly in capability. At

one end of the spectrum, powerful desktop computers typically have much better

network support, while at the other end mobile devices have limited computational

power, poor display capabilities and uncertain network support. In addition, a whole

host of devices occupy the points in between.

— There is a multitude of operating environments and network access protocols.

— As mobile users change geographical locations, they very often also have to change
service providers, raising problems of interoperability and security.

— Devices and supporting infrastructure are continuously changed and also upgraded

through efforts to offer better support and increased capabilities.

Mobile devices and, more importantly, the need to support mobile users, mean that
applications should be able to provide a consistent method of accessing information and
services as a user changes both her geographical position and her operating platform for
accessing these services. This may entail a need for agents to migrate between devices,
such as from a desktop computer to a PDA, or between service providers in order to
continue offering support to users. It may also be beneficial, in terms of efficient use
of computational power and bandwidth conservation, for agents to migrate to more
powerful platforms in order to perform more demanding tasks before returning to a
user’s device with results.

The main challenge in providing support for agent applications within such extremely
heterogeneous environments is finding an effective means of enabling agents to adapt
to the environment. This adaptive behaviour should allow the use of different execution
mechanisms based on the computational platform, different channels of communication
with the user and other entities in the environment (based on network and display capa-
bilities) and, finally, the reconfiguration of agents to enhance their operational capability
based on changes in user needs and upgrades to devices.

Agents must thus be able to adapt and improve through the addition or removal of the
particular characteristics relating to the adoption and creation of goals to achieve on the
one hand, and the ways in which they achieve these goals on the other. For example, an
autonomous agent responsible for kitchen appliances might be modified to deal with new
devices in the kitchen by adding new goals and (values of goals), with plans to achieve
the goals, as well as new capabilities for the specific appliance control and interaction.
Alternatively, a personal assistant agent residing on a desktop computer might reduce
its normal set of actions (or capabilities) to a minimal set of those that are essential in
order to migrate to a mobile PDA while maximising the retained information relating to
user preferences, profile, and other relevant and important information.

Infrastructure Support for Agent-Based Development 77

3 Decoupling Agent Behaviour and Description

3.1 Decoupling for Flexibility and Evaluation

One way to achieve this kind of functionality is to ensure a complete separation of
architectural issues on the one hand, relating to the behaviour of agents, and the manner
in which agents are described on the other. Agent descriptions provide an enumeration
of the different components that make up an agent, almost in jigsaw-puzzle fashion,
including attributes, goals and capabilities, for example. By contrast, agent behaviour is
determined through the way in which these components come together inside an agent
architecture on a particular execution platform, with a range of complex concerns such
as how goals are activated, and capabilities selected. (We will say more about the details
of agent description in Section 4.) Separating the description of an agent from concerns
of control, execution environments, etc., not only makes for good software engineering
in terms of modular design, which enables reuse and wide-scale development, but also
enables agents to cope in the kinds of environments that we are considering.

In particular, this decoupling is crucial for the flexibility required of agents in het-
erogeneous and dynamically changing environments; because agent description is inde-
pendent of agent behaviour, we are free to develop different types of execution platform
on which to operate essentially the same agent, but using alternative architectural organ-
isation.

The approach offers benefits to both those with a research-based focus and those with
a more practical perspective aimed at real systems development. From the research side,
it allows the effective comparison of different agent behaviour algorithms applied to the
same agent description, providing a sensible and calibrated means of evaluation. From
the development side, it allows the development of execution platforms that are tailored
to their specific computing environments. For example, an agent execution platform on
a mobile device is naturally more limited in available capacity and features, and might
therefore use simpler or less sophisticated behavioural mechanisms than an execution
platform on a powerful workstation. In both cases, the same agent description can be
applied, but the resulting behaviour leveraging that description would be tailored to the
environment within which the agent is executing. In principle, systems developers should
eventually be able to access libraries of agent components which can be pieced together
and coupled to appropriate execution platforms to achieve the desired effect.

3.2 Decoupling for Mobility

Additionally, decoupling enables agent mobility to be achieved in a more lightweight and
secure manner. Mobile agents require packaging up through serialisation to be moved
between execution platforms [2, 11]; typically this includes the state of the agent, and
the agent as is. In the case of large agents, or those with many resources or capabilities,
the transport costs can become significant, and since one of the key motivating principles
behind mobile agents is to minimise transport by focusing on code rather than data, this
can be a problem.

In a decoupled system, however, agents can be packaged as a set of descriptions
coupled with specific implementation of capabilities thus minimising transport over-
heads. Moreover, one of the main problems of mobile execution platforms is effectively

78 Ronald Ashri, Michael Luck, and Mark d’Inverno

securing the underlying infrastructure from malicious agents [9, 16]. Traditionally, such
platforms provide the agent with an execution thread, and have minimal control over
what happens within that thread other than imposing access rights to the sensitive parts
of the system [17]. By imposing constraints on the structure of capabilities through the
definition of generic interfaces, we can enforce tighter control over what an agent can
and cannot do within an execution platform.

3.3 Conceptual Infrastructure

We argue that a strong and clear conceptual underpinning is required at the level of
infrastructure so as to guide its development as well as the subsequent development of
agent superstructures. In a series of papers (e.g. [7, 13, 14]), Luck and d’Inverno have
provided such a conceptual foundation through the development of a framework for
agent systems that supports many of the features that we listed above. Their smart agent
framework provides an encompassing structure that clearly differentiates between agent
and non-agent entities in the environment, and specifies agents in a compositional way.
In essence, the framework proposes a four-tiered hierarchy that includes the generic and
abstract notion of an entity from which objects, agents and autonomous agents are, in
turn, derived. Figure 1 shows a Venn diagram that describes the different levels in the
hierarchy, and outlines the ways in which they are related. Though we will not offer a
detailed exposition of the framework, we review the key concepts below.
The essential ingredients of the smart framework are the following four types:

— attributes, which are features of the world that can potentially be perceived in an
omniscient sense;

Entity Entity
State ;
n
¢
r
e
a
Object s
i i
Object / Action \ Object o
State g
1
e
v
e
Agent \ 1
i [
— Agent / State a
Perception ls’
t
r
a
Autonomous c
Agent \-\ t
Autonomous Action Aug)nomous i
gent o
Agent A State n
Agent /
Perception

Fig. 1. Structure of the smart Framework

Infrastructure Support for Agent-Based Development 79

— actions, which can change the state of the environment in which they are performed
by either adding or removing attributes;

— goals, which are states of affairs to be achieved in the environment; and

— motivations, which are non-derivative high-level structures that lead to the generation
and adoption of goals, and affect the outcome of any task intended to satisfy those
goals.

We can then define the components of the four-tiered framework using these types.
The entity serves as an abstraction mechanism; it provides a template from which objects,
agents and autonomous agents can be defined. Anything that is considered to be a single
component is represented as an entity. These entities may have complex descriptions,
but at the very highest level they are just collections of attributes.

—_ Entity
attributes : P Attribute
capabilities : P Action
goals : P Goal
motivations : P Motivation

attributes # {}

An entity must be situated in an environment and, conversely, an environment must
include all the entities within it. There may well also be other attributes that are not
associated with an entity and so the union of all the attributes from each entity will
only be a subset (in general) of all the attributes that comprise the environment. In the
following schema, the environment variable is the set of all environment attributes, and
the entities variable the set of all entities in that environment.

__Env
environment : P Attribute
entities : P Entity

environment # { }
\U{e : entities o e.attributes} C environment

Objects are then simply entities with sets of capabilities that can be performed to
change the state of the environment.

—_Object
Entity

capabilities # { }

In turn, agents are objects with sets of goals, where goals are defined as desirable
environmental states, and autonomous agents are those agents able to generate their own
goals through the motivations that drive them. Here, motivations can be regarded as
preferences or desires of an autonomous agent that cause it to produce goals and execute
plans in an attempt to satisfy those desires.

80 Ronald Ashri, Michael Luck, and Mark d’Inverno

__Agent
Object

goals 7 { }

—_AutonomousAgent
Agent

motivations # { }

For each of the four high-level components we also provide a skeletal architecture
to describe its interaction. In order to show this let us consider the description of agent.
In general, an agent is able to perceive its environment. An agent in an environment may
have a set of percepts available, which are the possible attributes that it could perceive,
subject to its capabilities and current state. We refer to these as the possible percepts
of an agent. However, due to limited resources, an agent will not normally be able to
perceive all those attributes possible, and will base its actions on a subset, which we call
the actual percepts of an agent.

To distinguish between representations of mental models and representations of the
actual environment, we introduce two types, View and Environment. The first of these is
defined to be the perception of an environment by an agent. This has an equivalent type
to that of Environment, but now physical and mental components of the same type can
be distinguished.

View == P, Attribute

Environment == P, Attribute
—_AgentPerception
Agent

perceivingactions : P Action
canperceive : Environment — P Action - View
willperceive : P Goal — View — View

perceivingactions C capabilities
Venv : Environment; as : P Action e

as € dom(canperceive env) = as = perceivingactions
dom willperceive = {goals}

In addition, an agent will be able to perform actions determined by its goals, per-
ceptions and the environment. This is specified by the agentactions function in the
AgentAction schema below, which is dependent on the goals of the agent, the actual
perceptions of the agent and the current environment. The first predicate requires that
agentactions returns a set of actions within the agent’s capabilities, while the last pred-
icate constrains its application to the agent’s goals.

Infrastructure Support for Agent-Based Development 81

__AgentAction
Agent
ObjectAction
agentactions : P Goal — View — Environment — P Action

Vgs : P Goal; v : View; env : Environment e
(agentactions gs v env) C capabilities
dom agentactions = {goals}

Now that these skeletal architectures have been described it is then possible to define
the state of an agent or autonomous agent within an environment. Once an agent is
placed in an environment, its attributes are accessible and it is possible to specify the
possible percepts and actual percepts of the agent. These are denoted by the variables,
possiblepercepts and actualpercepts, which are calculated using the canperceive and
willperceive functions respectively. The action or actions the agent actually performs in
the environment are a function of its goals, its percepts and the environment itself. The
reader will notice that the schema below also includes a schema called ObjectState (not
specified here) that defines the state of the higher-level smart object component in an
environment. This should provide an indication of how increasingly more refined and
detailed concepts are built incrementally and systematically from higher level ones. The
structure of the very basic framework and related model can be seen in Figure 1. An
arrow here simply indicates schema inclusion.

__AgentState
AgentPerception
AgentAction
ObjectState
posspercepts, actualpercepts : View

actualpercepts C posspercepts

posspercepts = canperceive environment perceivingactions
actualpercepts = willperceive goals posspercepts
perceivingactions = { } = posspercepts = { }

willdo = agentactions goals actualpercepts environment

In addition to these basic levels, and in order to further explicate the consequences
of their framework, Luck and d’Inverno introduce two additional refinements: neutral
objects are objects that are not agents, and server agents are agents that are not au-
tonomous [14]. The relationship between neutral objects and server agents is comple-
mentary, since neutral objects give rise to server agents when they are ascribed goals
by other agents in the environment. Once these goals are achieved or they are no longer
feasible, server agents revert back to neutral objects.

In short, this conceptual framework provides a basis for us to use in reasoning about
agent and non-agent entities within a coherent whole, while at the same time providing
us with the requisite level of component differentiation to underpin the division between
behaviour and description. We now move on to discuss how these concepts can be

82 Ronald Ashri, Michael Luck, and Mark d’Inverno

encapsulated within the technical framework that can provide an infrastructure for agent-
based systems.

3.4 Technical Infrastructure

Inline with the aims discussed above, and based on the conceptual infrastructure outlined,
we have developed an agent system, Paradigma, that provides a technical infrastructure
for the development of agent applications. Paradigma unites theory with practical im-
plementation in an attempt to provide an accessible and grounded set of tools for agent
development. Key to this is ease of understanding and simplicity of use, as well as an
ability for elegant expansion and adaptation to change.

An overview of Paradigma is presented in Figure 2. At the top level, the agent frame-
work provides the conceptual tools that guide the design of the agents and define the
relationships between them. Paradigma can be considered as implementing the frame-
work through the use of the standard technologies that appear at the lower level (and
which we discuss later). We have opted for the use of standard technologies for the
underlying functionality as opposed to a proprietary system not only because it provides
a sensible and robust route for development, but also because it enables interaction and
cross-development with others, and makes access to the overarching conceptual and the-
oretical issues easier. Indeed, one of the arguments advanced in justification of a certain
degree of reticence on behalf of developers in relation to agent systems is, in many cases,
areliance on non-standard technologies. We seek to ensure that this is not the case here,
and that recent convergence between the fields of autonomous agents, object-oriented
systems and distributed systems contributes to our own efforts in the agent arena.

Decoupling Behaviour and Description. In order to achieve the desired decoupling of
description and behaviour at the implementation level we have made clear distinctions
between the task of composing an agent by assembling the required building blocks,

Formal Agent Framework

Agenthood Autonomy Coordination

Paradigma

Java

Jini / Javaspaces

XML

JVM / RMI

Network Communications (TCP/IP)

Fig. 2. Paradigma overview

Infrastructure Support for Agent-Based Development 83

such as attributes, capabilities and goals and relating these components via decision
mechanisms.

A description of an entity in Paradigma is, in essence, a collection of XML doc-
uments. Each document contains within it a set of components of the same type. For
example, an attribute document, which is the simplest structure, contains a series of
type-value definitions that can be declared either constant or variable. A capabilities
document, on the other hand, contains a description and type of the capability and also a
link to the code that implements the capability (in the same spirit as AIMARS plans [6],
for example). This enables the implementations to vary in order to suit executing plat-
forms, or so as to provide newer versions of capabilities. It is envisaged that eventually
the developer will have access to libraries of capabilities that can be linked to the agent
descriptions. Goals, plans and motivations are more elaborate structures and can vary
according to the desired level of complexity required by the developer. For example, a
simple plan structure may just define a series of capabilities that an entity should per-
form, while a more complicated structure may also include invocation conditions and
postconditions, as well as elements that should remain true during the execution of the
plan.

Once such a description has been pieced together based on the requirements of the
application, the developer can insert it into an execution platform. At this stage, the
XML documents will be interpreted and the appropriate capabilities will be retrieved.
The executing environment then couples the entity to decision mechanisms in order to
effect execution.

The complete process of agent creation and execution is illustrated in Figure 3, which
is divided into two stages, initialization and operation. An agent is created by supplying
the required building blocks of attributes, capabilities, goals, plans and motivations.

PARADIGMA

Attributes

Attributecollection

DTD

Capabilities

%
4
5

sensing

ﬂ

g

CapabilityCollectioh

p—l|

P ¢lassLoader

DTl

El

T

XML zaterprete:

Goals

- E
1selects
[zaterprete: Factory]4.

XML,

Plans

ﬁ

]
=
&l

|

e
Planselectio
Factory [

Plan execution

[~ Interprete:

%
<

Motivatio

2

DTl

Factory [4

XML

[
|
i

Initiali Motive }

Operation

Fig. 3. Agent creation and agent operation

84 Ronald Ashri, Michael Luck, and Mark d’Inverno

As mentioned earlier, capabilities require specific implementations, whose location is
made part of their description. The last element required at this stage, especially for
autonomous agents, is some form of control mechanism that will dictate, for example,
how motivations change as the state of the environment changes. In the figure this
is illustrated by the MotiveControl component, to enable it to adjust its motivations
as the state of the environment changes. In the current implementation of Paradigma,
motivations are seen as a tuple of three variables: an identifying name, a strength or
salience rating and a boolean indicating whether the strength is variable. The control
component could be as simple as a set of rules indicating the values motivation strengths
should take as attributes of the environment change, though it could equally provide a
more sophisticated set of constraints.

All this information is interpreted and checked before the agent is constructed by
the Factory components, based on the requirements of the execution environment in
question. Following a successful initialisation stage, the execution environment becomes
responsible for executing the supplied agent description. In the figure, we show some of
the essential components for these tasks, such as ViewCreator for collecting information
about the environment, InfoStore for maintaining acquired information so that it may be
shared with others if appropriate and, finally, plan and goal selection units.

As can be seen, by taking this approach we have a complete decoupling of all the
components that comprise an agent from the agent development and execution platform.
Furthermore, it becomes trivial to change platforms in order to suit particular situations,
or in order to incorporate other desired changes and advances. For example, if we wish
to provide different descriptions of attributes, all that is required is to develop a new
DTD or XML Schema and replace the current Factory component with a new one. We
can thus allow for the evaluation of different implementations of capabilities, decision
mechanisms, etc, while still remaining within the environment that is provided by our
conceptual infrastructure.

The next stage in the development of Paradigma is to reverse this process and capture
the state of an agent back in a set of XML files. The new set of XML descriptions
would reflect the changes that the agent has gone through during execution, and would
allow for the easy transport of the agent to another platform. There, the agent may
make use of different decision mechanisms and, crucially, different implementations of
capabilities that may be optimized for the new platform. This provides an interesting
departure from current mobile code systems, since we are not limited to any particular
programming language in order to achieve agent mobility. Furthermore, because the
actual code that will need to be loaded is reduced to the capabilities of the agent, while
the integration with decision mechanisms is up to the platform, security concerns are
slightly different. For example, although the XML descriptions may move from untrusted
to trusted environments, the code that implements capabilities may always come from
trusted environments since it is not inextricably attached to the agent. These issues, of
course, require further consideration since the problem of untrusted platforms always
remains open.

Enabling Agent Communities. The main challenge at the level of distribution and
support of agents involves the provision of a middleware infrastructure layer that is able
to support dynamic communities of entities where constant change is always part of the

Infrastructure Support for Agent-Based Development 85

agenda. For the purposes of Paradigma, we have chosen Jini because of the features that
come closest to fulfilling all the requirements discussed earlier. A more thorough review
than is possible here of the Jini infrastructure to support implementation of Luck and
d’Inverno’s framework is given in [1], but we outline and illustrate the key points below.

Entities executing in a Paradigma platform can at any time make use of available
facilities in order to announce their existence on the network. Note that this is not
a requirement but an option, since it may not always be desired or even feasible to
perform such announcements. This is important in terms of separating the issues related
to cooperation with, and discovery of, other agents from issues related to the operation of
a single agent. Nevertheless, if a decision to make an announcement has been taken, then
Paradigma will attempt to discover the available registries, represented by Jini lookup
services. Once such lookup services are discovered, the entity will guide the platform
as to the information it wants to make known about itself. This information will be
registered in the Jini lookup service along with a proxy that will allow interested parties
to make direct contact with the entity. Lookup services are managed through a leasing
mechanism that requires registered entities to renew their interest in retaining their
information within the lookup service or have their information discarded. In essence,
Jini provides the required network connectivity and administration infrastructure for
the support of heterogeneous communities of entities, thus making it suitable as an
environment for implementation of the conceptual framework described above.

By way of example, Figure 4 illustrates how neutral objects can be discovered and
used by other agents in a Jini-supported environment, and in particular Paradigma. A
device or software component, represent by a neutral object (drawn using a solid circle
line), creates an appropriate description of itself and registers the required information
relating to the attributes and capabilities in a Jini lookup service along with a proxy
(drawn using a dotted circle) that can be used to access it. If an agent (represented by
the stick figure) decides that the device is useful for its needs, it downloads the proxy
and creates a server agent with the relevant goals, and which wraps around the proxy.
Once the server agent has achieved its goals it is discarded and the neutral object is
disengaged.

4. call capabilities
implemented in
NeutralObject

Executing
Environment

Executing
Environment

Server
Agent

Autonomous
Agent

N
// Neutral®bject
" Interface

.

| Description

Jini Lookup Service

2. discovery/lookup

1. registration

Fig. 4. Using neutral objects

86 Ronald Ashri, Michael Luck, and Mark d’Inverno

In the case of autonomous agents, the registered proxy can be an interface that
implements appropriate communication protocols. Other agents could then retrieve this
implementation so as to communication with the agent. An interesting dynamic here
is that the communication interfaces can act as translators from one communication
protocol to another, and can vary according to the entities the autonomous agent wishes
to communicate with. For example, in environments where bandwidth and reliability are
important, the implemented interface could direct messages to appropriate messaging
routes that would ensure the messages are not lost.

4 Discussion

4.1 Related Work

Paradigma attempts to address a wide range of issues starting with identifying the appro-
priate concepts to support agent-based systems infrastructure, and ranging to consider
the appropriate technologies for implementing such concepts. In terms of the approach
we have adopted, which clearly distinguishes the relationship between agent and non-
agent entities, and separates issues of description from issues of behaviour, Paradigma
can be thought of as a system that integrates several different strands of agent research.
Similar work has been done with the DARPA-funded Control of Agent-Based Systems
(CoABS) program [15], whose main goal is to provide the appropriate infrastructure
to enable integration of heterogeneous agent-based systems. At the middleware layer it
makes use of Jini network technology and, similar to Paradigma, it allows for the regis-
tration of agents to the Jini lookup service along with appropriate descriptions. CoABS
also provides mechanisms for agent communication through RMI. In terms of the layers
of required infrastructure discussed earlier, CoABS addresses the middleware layer by
facilitating management and communication of agents, but it does not address the higher
level issues of mobility and intelligent agents. As such, it takes a different approach to
Paradigma by transferring the burden of addressing these concerns to application devel-
opers. CoABS could, therefore, act as an integrator of other infrastructures but, does not
provide the required functionality to allow mainstream developers to use agent concepts
directly.

4.2 Conclusions and Further Work

Agent-based systems have a vital role to play in the immediate development of applica-
tions and services across the distributed and increasingly pervasive computing fabric of
our everyday environments. The convergence of related fields of distributed computing
and object-oriented development also provides extra support and impetus for the adop-
tion of agent technology into the mainstream. Yet this provides an opportunity that can
only be taken if two conditions hold. First, mainstream technologies must be used for
infrastructural underpinning of agent applications to enable accessibility, further devel-
opment, and, importantly, integration. Second, the kinds of applications that we build
must be constructed in ways that facilitate flexibility, evaluation, and the potential for
secondary capabilities (that are still critical for many applications and environments)
like mobility.

Infrastructure Support for Agent-Based Development 87

One of the main problems that have delayed the wide deployment of agent-based
systems has been the lack of integration between different systems. The agreement on
common infrastructure would enable that integration, especially if the infrastructure
made use of other standards and systems that have already found a wider acceptance,
such as Jini at the middleware level.

In constructing Paradigma, we have done just this, through our two-levels of techni-
cal infrastructure and conceptual infrastructure, which support the decoupling of agent
behaviour from agent description to achieve exactly these aims. Paradigma is a fully
functional execution and development platform with which to build real applications,
and all the work described in this paper is fully implemented. The next stage in its devel-
opment is, at one level to build a broad range of applications to demonstrate its suitability,
and at another to examine the mechanisms required for dynamic self-modification of
agent capabilities.

References

1. Ronald Ashri and Michael Luck. Paradigma: Agent implementation through Jini. In A. M.
Tjoa, R.R. Wagner, and A. Al-Zobaidie, editors, Eleventh International Workshop on
Databases and Expert System Application, pages 453—457. IEEE Computer Society, 2000.

2. J. Baumann, F. Hohl, K. Rothermel, and M. Straer. Mole - concepts of a mobile agent system.
World Wide Web, 1(3):123-137, 1998.

3. J. Bradshaw. Agents for the masses. IEEE Intelligent Systems, 14(2):53-63, 1999.

4. Bernard Burg, Jonathan Dale, and Steven Willmott. Open standards and open source for
agent-based systems. Agentlink News, (6):2-5, 2001.

5. D. DeSanctis and B. Jackson. Co-ordination of information technology management: Team
based structures and computer-based communication systems. Journal of Management In-
formation Sciences, 4(10):85-110, 1994.

6. M. d’Inverno, D. Kinny, M. Luck, and M. Wooldridge. A formal specification of dMARS. In
Intelligent Agents 1V: Proceedings of the Fourth International Workshop on Agent Theories,
Architectures and Languages, pages 155-176. Springer-Verlag, 1365, 1998.

7. M. d’Inverno and M. Luck. A formal view of social dependence networks. In C. Zhang and
D. Lukose, editors, Distributed Artificial Intelligence Architecture and Modelling: Proceed-
ings of the First Australian Workshop on Distributed Artificial Intelligence, Lecture Notes in
Artificial Intelligence, volume 1087, pages 115-129. Springer Verlag, 1996.

8. T. Finin, Y. Labrou, and J. Mayfield. Kqml as an agent communication language. In J. Brad-
shaw, editor, Software Agents. MIT Press, Cambridge, 1997.

9. Robert Gray, David Kotz, George Cybenko, and Daniela Rus. D’agents: Security in a multiple-
language, mobile agent system. In Giovanni Vigna, editor, Mobile Agents and Security, volume
1419 of Lecture Notes in Computer Science, pages 154—187. Springer-Verlag, 1998.

10. Nicholas R. Jennings. On agent-based software engineering. Artificial Intelligence, 117:277—
296, 2000.

11. Danny Lange and Mitsuru Oshima. Programming and Deploying Java(tm) Mobile Agents
with Aglets(tm). Addisson-Wesley, 1998.

12. M. Luck. From definition to development: What next for agent-based systems. Knowledge
Engineering Review, 14(2):119-124, 1999.

13. M. Luck and M. d’Inverno. A formal framework for agency and autonomy. In 95. 254-260,
1995.

88

15.

16.

Ronald Ashri, Michael Luck, and Mark d’Inverno

. M. Luck and M. d’Inverno. Engagement and cooperation in motivated agent modelling. In
Proceedings of the First Australian DAI Workshop, volume 1087 of Lecture Notes in Artificial
Intelligence, pages 70-84. Springer Verlag, 1996.

C. Thompson, T. Bannon, T. Pazandak, and V.Vasudevan. Agents for the masses. In Workshop
on Agent-based high Performance Computing: Problem Solving Applications and Practical
Deployment, 1999.

Christian F. Tschudin. Mobile agent security. In Matthias Klusch, editor, Intelligent Informa-
tion Agents, pages 431-446. Springer-Verlag, 1999.

. Tom Walsh, Noemi Paciorek, and David Wong. Security and reliability in concordia. In 31st

Annual Hawai ‘i International Conference on System Sciences (HICSS31), 1998.

An Anthropological Approach to the Discovery
of Ontologies in Multi-agent Societies

Rafael H. Bordini', Renata Vieira?, and John A. Campbell?

1 Instituto de Informética,

Universidade Federal do Rio Grande do Sul (UFRGS),
CP 15064, CEP 91501-970, Porto Alegre, RS, Brazil,
bordinieinf.ufrgs.br
2 Centro de Ciéncias Exatas e Centro de Ciéncias da Comunicagio,
Universidade do Vale do Rio dos Sinos (UNISINOS),
CP 275, CEP 93022-000, Sao Leopoldo, RS, Brazil,
renata@exatas.unisinos.br
3 Department of Computer Science,
University College London,

Gower Street, London WCIE 6BT, UK.,
J.Campbell@cs.ucl.ac.uk

Abstract. We presented our approach to ascription of intensional ontologies to
societies of agents at UKMAS-99. The idea of an intensional ontologies is based on
apragmatic theory of intensionality. The work we presented included a mechanism
for retrieving taxonomical relations from the intensional ontologies. Both the
process of ascription of ontologies and the retrieval of taxonomical relations were
inspired by work on cultural anthropology. These ideas were formalised using a
framework for the specification of agent theories based on the Z language. This
paper reviews the main ideas of that work and introduces a new application:
extracting ontologies from text corpora.

1 Introduction

‘We have previously introduced the idea that an agent can ascribe ontological descriptions
for the terms used in the communication language to a society being observed (Bordini,
Campbell and Vieira 1997). For this particular problem, we have proposed the use of
a pragmatic theory of intensionality, which is based on the work of Martin (1959), and
has been revived and adapted to the MAS context by Vieira and da Rocha Costa (1993).
The underlying intention (cf. Bordini 1999) is that certain individual agents should be
able to interact in societies of agents which were designed using paradigms or theories
of agents different from their own, or which have had different histories of autonomous
evolution, with application to interoperability of Multi-Agent Systems (MAS).

We then extended our work on ascription of intensional ontologies to show how an
agent can work out the taxonomical relations existing among the terms in the intensional
ontology it has ascribed to a society of agents. (This was first introduced in (Bordini,
Campbell and Vieira 1998) and presented at UKMAS-99 (Bordini, Campbell and Vieira
1999).) We have noted that some initial taxonomical relations can be recovered directly

M. d’ Inverno et al. (Eds.): UKMAS 1996-2000, LNAI 2403, pp. 89-109, 2002.
(© Springer-Verlag Berlin Heidelberg 2002

90 Rafael H. Bordini, Renata Vieira, and John A. Campbell

from an ascribed intensional ontology. This process too was inspired by the methods
used by cultural anthropologists, as we shall discuss later. A taxonomy is clearly impor-
tant from an agent’s reasoning point of view; this has been a recurrent observation in
artificial intelligence (Al) research since the early days. Furthermore, from experience
in anthropology, it is known that a taxonomy can be quite revealing about the traits of a
particular culture. The extension given in that paper was, thus, related to a fundamental
aspect of the procedures of an anthropologist studying a particular society. We suggest
that the same approach is of value for an “anthropologist agent” studying a MAS, to ease
“agent migration” (Bordini 1999). All these ideas have been formalised in Z using Luck
and d’Inverno’s (1995) framework for the specification of agent theories. A complete
account of that framework can be found in a recent book by d’Inverno and Luck (2001).

Ontologies have been discussed in, and instrumental to, a variety of domains rang-
ing from philosophy to databases, including Al and natural language processing. They
function as a reference source for either domain knowledge (special domain/application
ontologies) or common knowledge (knowledge databases such as WordNet and CYC).
Ontology engineering and maintenance is very complex and expensive; that is why
much work on ontology extraction has appeared recently. One source of coded knowl-
edge for automatic ontology engineering is texts such as scientific publications, or cor-
porate documentation. Examples of proposed approaches to ontology extraction from
texts are (Hahn and Schnattinger 1998; Aussenac-Gilles, Biébow and Szulman 2000;
Madche and Staab 2000; Nobécourt 2000).

This paper reviews the main ideas on ascription of intensional ontologies and gives
a flavour of the Z specifications presented in (?). We have excluded the formalisation
related to retrieval of taxonomical relations for the sake of space. We also mention in this
paper an innovative formulation of the problem of ontology ascription which is based on
the idea of “corpora as societies”. That is to say, we are investigating the applicability
of our approach to extraction of ontologies from corpora, where the role of “informant
agents” in our previous work would be performed by texts.

This paper is structured into three main parts. The next section overviews the main
concepts and definitions which are the basis of our approach to ontology discovery.
We then give a flavour of the formal specifications we have previously produced (in
Section 3). The third main part, given in Section 4, mentions an application of our
approach to processing of text corpora. This is a recent ongoing work on which many
experiments are envisaged.

2 Background

2.1 Subjective Intensionality

This section covers only the main concepts related to subjective intensionality which we
shall use next. We have given a larger account of these concepts and some discussion of
its advantages in (Bordini, Campbell and Vieira 1997); for further details it is necessary
to refer to (Vieira and da Rocha Costa 1993), or even to their main source (Martin 1959).

The intension of an expression is what is known about it in order to identify the
object/entity to which it refers. We can say that intension is related to notions of mental
entities, properties, relations, and concepts, while extension is related to objective entities

An Anthropological Approach to Ontologies in Multi-agent Societies 91

(i.e., objects, structures). Further, we have the concept of subjective intensions. These
are associated with the intuitive notion of connotation of a term or name; that is, related
to the properties that are associated with a term in an individual’s mind in such a way
that they are normally borne in mind when the individual uses that term at a certain
time!. Further, quasi-intensions are linguistic reductions of the mental entities relative
to intensions. Therefore, the terminology subjective quasi-intensions emphasises that the
theory deals with virtual classes of expressions related to particular users of the language;
in other words, it is a linguistic reduction of the cognitive notion of connotation.

Subjective quasi-intensions and related notions (defined below) are based on the
acceptance relation between agents and expressions. The definition for the acceptance
relation, based on Martin’s original one (1959), follows.

Definition 1 (Acceptance Relation). Acceptance is an empirical relation between users
and sentences of a language, observed by an experimenter at a certain time who asks
questions by means of a set of sentences forming a logical theory. Whenever an agent
answers affirmatively to (has a positive attitude towards) one of these sentences we say
that the agent accepts that sentence (which must belong to the set of sentences given by
the experimenter) at that time.

Definition 2 (Subjective Quasi-Intension). The notion of subjective quasi-intension
for an individual constant (term) is defined as the properties a language user associates
with the term, as expressed in the sentences that the given user accepts at a certain time.

Definition 3 (Intersubjective Quasi-Intension). This concept regards groups of lan-
guage users, rather than individuals, at a certain time. An intersubjective quasi-intension
is the equivalence class of all the subjective quasi-intensions of a certain group of users
of the language.

Intertemporal Quasi-Intensions are relative to a particular language user at all times.
Objective Quasi-Intensions can also be defined on the basis of acceptance. They are at the
same time intertemporal and intersubjective quasi-intension of expressions, thatis, a class
whose members are members of the subjective quasi-intensions of all language users at all
times. They are said to be essential properties, as they are universally accepted (within a
specific community). One last type of quasi-intensions is that of Societal Quasi-Intension
which relates to a particular group of agents. In Martin’s theory, Co-Intensiveness is
defined as a relation between terms that have the same subjective quasi-intension (or
indeed for any of the types of quasi-intensions mentioned above).

In this theory, a proper “understanding” of a concept can be defined as the situa-
tion in which the subjective intension of a term relative to an agent is the same as the
intersubjective intension of all agents, some expert group or a specialist.

! Since these are notions intrinsic to the users of the language, they can also be called pragmatical
intensions.

92 Rafael H. Bordini, Renata Vieira, and John A. Campbell

2.2 The Process of Ascription of Intensional Ontologies of Terms

We take ontology to mean very much the same as proposed by Gruber (1993), i.e. the
definition of a set of representational terms’ (stated as a logical theory). However, it
is important to bear in mind that the theory of intensionality presented here deals only
with individual terms (that is, the equivalent of nouns in natural languages). The major
contribution of this approach to description of ontologies is that its underlying theory
allows us to work towards providing agents with mechanisms for dealing with ontologies
themselves (i.e., ascribe possible ontological representations to societies in case they are
not available, effect changes in ontologies without consequent interoperability problems,
etc.).
The following definition expresses our conception of ontology:

Definition 4 (Intensional Ontology of Terms). An Intensional Ontology of Terms
(IOT) is a set of terms where each one is associated with the (minimal) set of predi-
cates (properties) that is necessary and sufficient to distinguish (unequivocally) itself
from every other term in the universe of discourse of a communicating society of agents.

In our approach, the definition of a term is a set of predicates that are considered to
hold for that term. It is important to appreciate that not all predicates that hold for the
term are needed for its ontological description: there is a difference between knowledge
representation and commitment to ontological conventions (Gruber 1993). Therefore,
if some notion of order for the predicates is available (e.g., a hypernymy or hyponymy
relation?), this can reflect on the minimal set of predicates: it would include only the
most generic ones which are enough to distinguish the term unequivocally.

We have seen that based on intersubjective quasi-intensions (see Section 2.1), a
definition for an expression can be given by a set of properties that are accepted by a
group of agents as being related to the expression. This is the key point for allowing an
anthropologist agent to ascribe an ontological description to a community of agents; it
can do so by interviewing the group of informant agents that it takes from that particular
community. Properties that are associated unanimously with a term’s definition among
the informant agents should be registered in the construction of an ontology for that
community. It is important to note that the anthropologist agent itself needs a theory
(i.e., a set of attributes for each term) with which to interview the informant agents. The
sentences in such a theory will be submitted to the informant agents in order to check
whether they accept the sentences or not. In general, the set of sentences to be used in
an interview should be the result of observations of the use of language in that society,
in the fashion of ethnographers.

2.3 Discovering Taxonomies in Social Anthropology

Our previous work was based on ethnographic studies of cognitive systems as seen by
social anthropologists of the cognitive school, and the main concepts involved in the

% In our original formulation, the representational terms are those used in the communication
language of a MAS.

3 If x is a generalisation of y, one says that x is in a hypernymy relation to y; if x is a specification
of y, one says that x is in a hiyponymy relation to y.

An Anthropological Approach to Ontologies in Multi-agent Societies 93

elaboration of taxonomies by anthropologists. It relied heavily on the ideas presented by
Frake (1969)—and more generally by Tyler (1969)—which have allowed us to see that
our early approach to ontologies contained the necessary means to augment ascribed
ontologies of terms with the specification of the taxonomical relations among those
terms.

Anthropologists (or ethnographers) start their work by recording culturally signifi-
cant noises and movements from what is heard or seen during observation of a particular
community. Recording complementary names applied to the same objects (and elimi-
nating referential synonyms) may yield a recorded sequence like*:

Object A is named: something to eat, sandwich, ham sandwich.
Object B is named: something to eat, pie, apple pie.

Object C is named: something to eat, pie, cherry pie.

Object D is named: something to eat, ice-cream.

The diagram of the sub-partitioning of the segregate® “something to eat,” as revealed

by the naming responses to the four objects above, is in Figure 1.

Something to Eat

Sandvich e |

‘ Ham Sandwich ‘ ‘ Apple Pie ‘ Cherry Pie

T

Fig. 1. Sub-partitioning of the segregate “Something to Eat” based on the naming responses of
objects A-D (adapted from (Frake 1969)).

This resembles remarkably our conception of intensional ontologies. It therefore al-
lowed us to realise that we already had all the information we needed for the generation of
taxonomical relations. Instead of complementary names applied to each object, we have
the properties (attributes) that characterise each term in the communication language.
Accordingly, by retrieving properties in common and those that differ, we are able to do
exactly the same as ethnographers do, and actually create taxonomies extended with the
relevant attributes used to classify objects in one or other segregate.

* The example given by Frake (1969) concerns a conversation at a lunch counter, and has been
abridged here.

> A segregate is a terminologically distinguished array of objects (Frake 1969). The notion of
contrast is also important in taxonomies. Two categories contrast only when the difference
between them is significant for defining their use; that is, they form a contrasting set if they are
distinctive alternatives in a classifying context.

94 Rafael H. Bordini, Renata Vieira, and John A. Campbell

We formalised both those processes using the Z language, based on Luck and
d’Inverno’s (1995) framework for the specification of agent theories. A part of this
formalisation, concerning ascription of intensional ontologies, is given next.

3 A Flavour of the Formal Specifications

We now illustrate how the formalisation of our approach was carried out (we exclude
the schemas related to retrieval of taxonomical relations). The complete specification
was given in full in (Bordini, Campbell and Vieira 1998; Bordini 1999) but also in
(Bordini, Campbell and Vieira 1999); a case study on two taxonomies from a ontology
of terms from the game of cricket can also be found on those papers. Our Z schemas
make reference to the framework for formalisation of agent theories elaborated by Luck
and d’Inverno (d’Inverno and Luck 2001; 1998; 1996; Luck and d’Inverno 1995; 1996)
based on the Z formal specification language (Spivey 1992; Potter, Sinclair and Till
1996). Some familiarity with formal specification methods, in particular with the Z
language, is assumed.

3.1 The Basic Setting

Before we introduce the formalisation of how an anthropologist agent can ascribe in-
tensional ontologies to societies of agents, the basic setting in which it can occur must
be presented. This section introduces the basic types used in the formalisation, and pro-
vides the specifications for informant agents, target societies, and some global functions
needed in the rest of the specifications for access to available target societies and to deal
with time instants.

We begin by introducing the basic types:

[Term, Pred, Timelnstant)
and the following abbreviation for the type Sent:
Sent == (Pred x Term)

where Timelnstant is taken to be the set of constants representing time instants as it is
intuitively understood. Term is the set of terms® (also called individual constants) of the
Communication Language (CL) used by the agents in any Target Society (TS). Pred
is the set of predicative constants (predicates) from CL. A sentence (Sent) of CL is a
pair containing a predicate and a term, meaning that the term has the property (attribute)
indicated by the predicate. We consider here only sentences of this sort; the consistent
acceptance of sentences including the logical connectives by communicating agents
within the quasi-intensional approach is given by Vieira and da Rocha Costa (1993).
We now present the definition of an InformantAgent, which is built on the definition
of AutonomousAgent that is part of Luck and d’Inverno’s framework (see, e.g., d’ Inverno

® Note that Term (and Pred, mentioned next) are infinite domains; particular target societies will
specify the subset of terms (and predicates) they use, as we shall see later.

An Anthropological Approach to Ontologies in Multi-agent Societies 95

and Luck 1996). The only requirement that we impose on the agents that will work as
Informant Agents (IA) to the Anthropologist Agents (AA) (the specification of AA is in
the next section) is that they make available an acceptance relation accepts, in the sense
of acceptance we mentioned in Section 2.1. (Note that the relation accepts is used in the
prefix notation.) This should be seen as the interface between IAs and the world, as it is
how AAs access the information they need from these agents (for the particular purpose
of ontological ascription). The type of the relation makes it clear that each individual TA
may or may not accept a certain sentence s of its CL, given a set of sentences S, at one
particular time instant 7.

—_InformantAgent
AutonomousAgent
accepts _ : P(Sent x P Sent x Timelnstant)

Vs : Sent; S :PSent; ti : Timelnstant
accepts(s,S,ti) = s € S

The single explicit constraint in the predicate part of the schema above says that
IAs only manifest their acceptance of sentences which have been presented to/inquired
of them by an AA; this is how Martin (1959) conceived it in his theory of subjective
intensionality. Clearly, this is not sufficient to specify whether an agent accepts a sentence
or not. However, the definition of accepts is purposely left loose. A complete definition
of that relation would need to refer to particular informant agents’ mental states and their
architectures (and this is of course not desirable in a project aiming at interoperability).
For example, if the informant agent works as a theorem prover (Fisher 1995), accepting
a sentence means simply trying to prove it, and accepting it if it is a theorem (given the
agent’s current set of beliefs). If the IA is a database system with an agent “wrapping”
(Genesereth and Ketchpel 1994), all that is necessary is to check whether the information
affirmed in a particular sentence is consistent with the information in the database or
not. However agents work, it should always be quite straightforward for designers of
agent systems to add this relation as an interface to some particular agents so that they
can work as IAs. This is the only requirement that we impose to allow interoperation of
agents as far as ontological ascription is concerned. It appears to be quite a reasonable
one, especially when contrasted with the degree of constraint implied by the alternative
approach of having everything standardised—which would no doubt be preferable from
an engineering or a tidy administrative viewpoint if one could be in a position to enforce
this a priori on all the components and the agent societies in a broader system, but the
larger such a system may become in practice, the less likely it will be that this degree of
control can be exercised.

Having defined the state space of informant agents, we can now show what designers
of societies of agents need to add to their systems so that ascription of intensional
ontologies can occur (i.e., the specification of TargetSociety below). Before that, we
introduce two more basic types. These are the set of constants used as identifiers to
TSs (TSocld) and to 1As (InfAgld). The anthropologist agents and the migrant agents
(whose formal specifications are not given here for the sake of space) should be able
to refer to all existing societies of agents (the former analyse them and the latter may

96 Rafael H. Bordini, Renata Vieira, and John A. Campbell

need to migrate to them), and for each TS its set of IAs must be identified as well (by
the AAs only; remember that AAs can only ascribe IOTs by relying on the IAs of each
society). That is why we introduce the following basic type for the constants used for
identification (of TSs and IAs).

[TSocld, InfAgld)

A TargetSociety is based on the schema MASystem defining what a MAS is (d’Inverno
and Luck 2001, Section 3.2.3) to which we add all the necessary features for a society of
agents to be a farget society (i.e., agents can, in our approach, migrate to them). It has a
partial injection iag from informant agents’ identifiers to the actual informant agents in
the society. This is used to access the IAs in that particular society (which is why a partial
injection is used: two identifiers cannot correspond to the same IA). In order to make
certain predicates to be introduced later easier to specify, we add a variable ias which
is constrained to contain all members of the current domain of iag (in other words, it
contains the set of all identifiers of the IAs that are available in that TS). It is necessarily
a non-empty set (P,) because, as we have said, informant agents are fundamental in
this context. Further, a TS has three non-empty sets related to the CL used in it. First,
clterms is the specific set of terms used in that particular CL. Second, clpreds is the set
of predicates (or predicative constants) of that CL. As one can see in the predicate part
of the schema below, these sets are defined by checking all the terms and predicates that
happen to exist in the acceptance relations of all IAs. Finally, clsents is the set of all
possible sentences created from the particular terms and predicates of that CL.

—TargetSociety
MASystem
ias : P, InfAgld
iag : InfAgld -~ InformantAgent
clterms : P, Term
clpreds : P, Pred
clsents : P, (Pred x Term)

ias = dom iag
Vi:Terme (t € clterms <
Fia : InfAgld; p : Pred; S : P Sent; ti : Timelnstant |
ia € ias e iag(ia).accepts((p,t), S, ti))
Vp: Pred e (p € clpreds <
Fia : InfAgld; t : Term; S : P Sent; ti : Timelnstant |
ia € ias e iag(ia).accepts((p,t), S, 1i))

clsents = (clpreds x clterms)

We now introduce in the axiomatic description below some global variables and
functions, which will be needed in the rest of the specifications. The bijection fsoc gives
a mapping between target society identifiers and actual TSs (there should be a one-to-
one correspondence between them, thus a bijection). This is to represent the idea that
all existing societies of agents should have an identification, and that there is always a

An Anthropological Approach to Ontologies in Multi-agent Societies 97

way to access the actual TSs through their identifiers’. Again for simplicity, we add a
variable tsocs which contains the set of identifiers for all existing TSs (i.e., all members
of the current domain of tsoc).

Because some of the concepts to be formalised are dependent on time, we need some
definitions for handling it. An injective sequence over time instants the_time must be
available. It is supposed to be the clock of the system: it defines the order in which
each constant of type Timelnstant occurs. Being an injective sequence, it is assured that
a constant denoting a time instant occurs no more than once over time, and we must
add a predicate saying that all possible time instants are present in the range of the
sequence the_time, thus giving a complete order for their occurrence. We then have a
binary relation (in infix notation) before_eq stating whether a time instant #; either occurs
before or is the same as a time instant #,. It is defined by checking whether the natural
number associated with #; in the sequence the_time (we do this by using the inverse
relation denoted by “~” superscript) is less than or equal to the one associated with 7. It
will make our next definitions easier if we provide a global function most_recent which,
given a non-empty set of time instants, returns the one that is most recent (i.e., the last
to occur, the one with the largest number associated with it in the domain of the_time).
This is easily defined in terms of the relation before_eq, by means of a u-expression
which gives the one #i in the provided set of time instants for which it is true that each
time instant in the provided set either occurs before #i or is #i itself.

tsocs : P TSocld

tsoc : TSocld — TargetSociety

the_time : iseqTimelnstant

_before_eq _ : Timelnstant < Timelnstant
most_recent : P, Timelnstant — Timelnstant

tsocs = dom tsoc
ran the_time = Timelnstant

Vti,t : Timelnstant o
t before_eq to < the_time™ (t1) < the_time™ (t2)

Vtis : P, Timelnstant e
most_recent(tis) = (uti : Timelnstant | ti € tis A
(Vt: Timelnstant | t € tis e t before_eq ti))

Given these basic definitions, we are now ready to see how an anthropologist agent
can ascribe an intensional ontology to a target society.

3.2 Formalisation of the Ascription of Intensional Ontologies

First we define abbreviations for some types which will be used later. Referring back to
Section 2.2 makes it easy to understand that the signature IntensionalOntologyOfTerms
is a partial function from terms to non-empty sets of predicates. It is a partial function
because it is possible that the AA will not be able to find definitions for all terms used

7 Given the present infrastructure of network services, this is not an unrealistic supposition.

98 Rafael H. Bordini, Renata Vieira, and John A. Campbell

in the TS (and TS itself uses only a subset of them), but if there is an entry for a term in
the IOT, then there must be a non-empty set of predicates which defines it. Referring to
Section 2.1 leads to the definition of the type SubjectiveQuasilntension: the subjective
quasi-intension of a term, for a particular IA, who is from a TS, given a set of sentences
(informed by an AA), at a specific time, is a set of predicates which are the properties
that the agent accepts as being related to that term. Note that this can be an empty set
of predicates if it happens that the IA does not know the particular term in question.
The type IntersubjectiveQuasilntension is the same, except that it does not depend on a
specific IA (recall that these are relative to the whole group of IAs from a particular TS).

IntensionalOntologyOfTerms == Term -+ P, Pred

SubjectiveQuasilntension ==
(Term x InfAgld x TSocld x P Sent x Timelnstant) — P Pred

IntersubjectiveQuasilntension ==
(Term x TSocld x P Sent x Timelnstant) — P Pred

We now give axiomatic definitions for the functions subjective_quasi_intension and
intersubjective_quasi_intension, which will be used later (when defining the ascription
of 10Ts), and the related definition of the co_intensive predicate. The intuition for the
definitions below is given after them.

subjective_quasi_intension : SubjectiveQuasilntension
intersubjective_quasi_intension : IntersubjectiveQuasilntension
co_intensive _: P(Term x Term x IntensionalOntologyOfTerms)

V't : Term; ia : InfAgld; ts : TSocld; S : P Sent;
ti : Timelnstant | t € tsoc(ts).clterms N\
ia € tsoc(ts).ias N S C tsoc(ts).clsents o
subjective_quasi_intension(t, ia, ts, S, ti) = {p : Pred |
tsoc(ts).iag(ia).accepts((p,t), S, i)}
Vit : Term; ts : TSocld; S : P Sent; ti : Timelnstant |
t € tsoc(ts).clterms N S C tsoc(ts).clsents o
intersubjective_quasi_intension(t, ts, S, ti) =
N{ia : InfAgld | ia € tsoc(ts).ias e
subjective_quasi_intension(t, ia, ts, S, ti) }
Vt1,to : Term; iot : IntensionalOntologyOfTerms |
t; € domiot A ty € domiot e
co_intensive(ty, ta, iot) < iot(t1) = iot(t3)

For all terms ¢ used in the CL of that TS, all ia that are informant agents of a target
society ts, all sets of sentences S (which are necessarily from that TS’s particular CL),
and all time instants #i, the subjective_quasi_intension of t, for an ia from ts, given S, at
time #i, is the set of predicates that ia accepts as being associated with term ¢, for the set
of sentences S, at ti. The intersubjective_quasi_intension of t in the TS ts, given S, at i,
is the set of predicates accepted by all informant agents from #s: it is the intersection of
the subjective quasi-intensions of all IAs from that TS for that term ¢ (again given S and

An Anthropological Approach to Ontologies in Multi-agent Societies 99

ti). Note that we need to make use of the tsoc function and of the TS’s iag function to
map from identifiers to actual TSs or IAs.

We have also given above the definition of co_intensive, which is a predicate that
holds when two terms have the same set of predicates associated with them in a given
intensional ontology of terms. (Note that in this case we refer to co-intensiveness on the
notion of intersubjective quasi-intension, which is used in the ascription of ontologies,
as we see later.)

The definition of AnthropologistAgent is given below. It is based, as for the definition
of IA, upon the fact that it is an AutonomousAgent (provided in the framework) with
some additional particular features.

We say first that an AA is able to generate the questions that are needed to interview
the TAs (function generate_sentences). It is evident that this function is not properly
defined in the predicate part of the schema below. The process of generating the necessary
questions (i.e., the set of sentences that are submitted for IAs to accept or reject) was
discussed by Bordini, Campbell and Vieira (1998) to some extent, but no formalisation
is as yet available for this. However, it is known that the generation of sets of sentences
is dependent on the target society and the particular time instant when the interview
will take place, thus the signature of generate_sentences is as given below. Note that
this function can return an empty set in situations where the AA does not have much
experience with a particular TS at a particular time.

Next, there is the function history_of _intensional_ontologies. This is the most im-
portant part of AAs because it keeps track of all IOTs an AA has ascribed. Because
a TS’s IOT may vary over time (we shall comment further on this later), the function
history_of _intensional_ontologies maps a pair stating a TS and a time instant to the IOT
that was ascribed to that TS at that time.

The two items mentioned above are the important aspects of AAs, but we have
included a few more variables in the schema in order to make the access to the information
from the AA easier in later specifications. The set known_societies records all TSs that
have been analysed by a particular AA so far; it is the set of all 7Socld that appear as the
first members of the pairs belonging to the domain of history_of _intensional_ontologies.
There is also all_versions, which is a function that, given a target society identifier ts,
provides all the time instants at which IOTs were ascribed to ts, provided, of course,
that ts is in the set of known_societies. Finally, current_ontology maps ts (which is as
before) to the time interval ¢i that is the most_recent of the time intervals associated with
all_versions of 10Ts existing for that ts in the history_of _intensional_ontologies.

In the schema below, we also provide a relation which may be useful for migrant
agents’ reference: it is current_synonyms, which is a (reflexive and transitive) relation
over terms created with the help of the predicate co_intensive (defined above) with respect
to the current_ontology from each particular target society fs.

100 Rafael H. Bordini, Renata Vieira, and John A. Campbell

__AnthropologistAgent
AutonomousAgent
generate_sentences : (TSocld x Timelnstant) — P Sent
history_of _intensional_ontologies :
(TSocld x Timelnstant) -+

IntensionalOntologyOfTerms
known_societies : P TSocld
all_versions : TSocld + P Timelnstant
current_ontology : TSocld + IntensionalOntologyOfTerms
current_synonyms : TSocld + Term <> Term

known_societies = {s : (TSocld x Timelnstant) |
s € dom history_of _intensional_ontologies e first s}

Vs : TSocld | ts € known_societies all_versions(ts) =
{ti : Timelnstant | (ts,1i) €
dom history_of _intensional_ontologies}
Vs : TSocld; ti : Timelnstant | ts € known_societies N\
ti = most_recent(all_versions(ts)) e current_ontology(ts) =
history_of _intensional_ontologies(ts, ti)
current_synonyms = {ts : TSocld | ts € known_societies ®
ts > {t1,10 : Term | 11 # t3 A
co_intensive(ty, ta, current_ontology(ts)) e (t1,12)}}

Having defined the state space of AnthropologistAgent, we now need to say what are
the initial values for the variables in it, so as to be precise with the Z method. The only
relevant variable is history_of _intensional_ontologies’, and its initial value is evidently
the empty set.

—InitialAnthropologistAgent
AnthropologistAgent’

history_of _intensional_ontologies’ = &

We can now specify the operation AscribelntensionalOntologyOfTerms, which alters
the state of an AA (AAnthropologistAgent). This operation is given two inputs: 57 is the
target society for which an IOT should be ascribed and the time #i? when the ascription is
taking place. The operation consist of asserting that history_of _intensional_ontologies’
should be overridden from its previous definition to map the pair (57, #7?) to the IOT
which maps each of the terms of that TS to its intersubjective quasi-intension, provided
this is not an empty set®. The set of sentences S that must be provided to the function
intersubjective_quasi_intension as a parameter (alongside 57, ti” and, of course, the term
t) is produced by the function generate_sentences for that particular ts7 at ti?.

8 Note that in the present formalisation we do not constrain the ontological description of a term
to have a minimal set of properties as we originally suggested in Definition 4.

An Anthropological Approach to Ontologies in Multi-agent Societies 101

—_AscribelntensionalOntologyOfTerms
AAnthropologistAgent

ts? : TSocld

ti? : Timelnstant

history_of _intensional_ontologies’ =
history_of _intensional_ontologies®
(let S == generate_sentences(ts?,1i?) o
{(ts?,6i?) — {t : Term | t € tsoc(ts?).clterms N
intersubjective_quasi_intension(t, ts?,S,ti?7) £ & o
t — intersubjective_quasi_intension(t, ts?,S,ti?7)}})

In brief, the non-empty intersubjective quasi-intension of a term is its definition, in
our approach. When the intersubjective quasi-intension is an empty set, the AA cannot
ascribe a definition to that term. Recall that by the type of the IOTs (i.e., a partial function)
we express the fact that there may not be definitions for all existing terms.

Because agents only accept sentences that are in the set of sentences they were
given by an AA (stated in InformantAgent), and the intersubjective quasi- intension of
a term is based on accepted sentences (stated in the axiomatic descriptions), and an
ascribed ontology only contains those terms whose intersubjective quasi-intensions are
non-empty (in the schema above), we can derive the theorem below which concerns the
state space of AnthropologistAgent (but only now are we able to introduce it). It says that
if there is a term ¢ in an ascribed IOT, it is guaranteed that there was at least one sentence
concerning that term in the set of sentences generated by the AnthropologistAgent. (A
corollary would be that if the set of generated sentences is empty, the ascribed 10T is an
empty set t0o).

AnthropologistAgent;
t: Term; ts : TSocld; ti : Timelnstant |
t € tsoc(ts).clterms N
(ts, i) € dom history_of _intensional_ontologies -
t € dom history_of _intensional_ontologies(ts, ti) =
t € {s: Sent | s € generate_sentences(ts, ti) ® second s}

We emphasise that, given that we use the notion of intersubjective quasi- intension,
which is time-specific, for the definitions of the terms in the ontology (see Ascribeln-
tensionalOntologyOfTerms), these definitions may not be valid ad infinitum. Thus, the
anthropologist agent may need to review the ontology it has ascribed to a particular
society from time to time, as autonomous evolution within societies takes place or the
AA alters its set of IAs, or the AA’s set of sentences to be given to the IAs is changed, etc.
That is why we refer to this type of ontology as evolutionary, since we intend agents to
be able to improve them with time. Since in our definitions we state that AAs keep track
of the whole history of ontologies they have ascribed to each of the TSs, this allows one
to analyse how that TS has evolved as far as ontology is concerned. Some agents may
be able to analyse the historical evolution of ontologies provided by an AA: one could
find it interesting in the future to consider historian agents, or linguist agents interested
in agent archaeology, who might make use of that information.

102 Rafael H. Bordini, Renata Vieira, and John A. Campbell

However, based on the concept of objective quasi-intentions (see Section 2.1),
some subset of the ontology may form an immutable part of it, composed of the
terms universally accepted in that community. In order to deal with this point, we
start by providing abbreviations for the types (as we did for subjective and intersub-
jective quasi-intension). One should note that IntertemporalQuasilntension is the same
as SubjectiveQuasilntension except that it does not depend upon Timelnstant. Likewise,
ObjectiveQuasilntension is the same as IntersubjectiveQuasilntension except for the
dependence on time; alternatively, one can see ObjectiveQuasilntension as based on
IntertemporalQuasilntension except that the former does not concern particular infor-
mant agents.

IntertemporalQuasilntension ==
(Term x InfAgld x TSocld x P Sent) — P Pred

ObjectiveQuasilntension ==
(Term x TSocld x P Sent) — P Pred

The axiomatic description below states that the function intertemporal_quasi_in-
tension, given a term f, informant agent ia, target society fs, and set of sentences S,
yields a set of predicates which ia accepts as being associated with term ¢ at all times,
given the set of sentences S. The objective_quasi_intension of t in society ts, given §,
is the set of predicates accepted by all [As from fzs, for that term, at all times: it is the
intersection of the intertemporal quasi-intensions of all IAs in that TS for that term ¢
(again, given S).

intertemporal_quasi_intension : IntertemporalQuasilntension
objective_quasi_intension : ObjectiveQuasilntension

Yt : Term; ia : InfAgld; ts : TSocld; S : P Sent |
t € tsoc(ts).clterms A ia € tsoc(ts).ias N
S C tsoc(ts).clsents o
intertemporal_quasi_intension(t, ia, ts,S) =
{p: Pred | (Vti: Timelnstant e
tsoc(ts).iag(ia).accepts((p,t), S, 1))}
V't : Term; ts : TSocld; S : P Sent |
t € tsoc(ts).clterms N\ S C tsoc(ts).clsents o
objective_quasi_intension(t, ts, S) =
({ia : InfAgld | ia € tsoc(ts).ias e
intertemporal_quasi_intension(t, ia, ts,S) }

In order to say that AAs may also provide immutable intensional ontologies, based
on the concepts specified above, we introduce the schema ExperiencedAnthropolog-
istAgent which is built on the schema AnthropologistAgent and includes a function
immutable_intensional_ontology which maps TSs to IOTs. (It does not depend on time
as before, as these IOTs are the ones that are not supposed to change.) As in the case
of history_of _intensional_ontologies, it only maps terms that have a non-empty set of
predicates to define them, except that in this instance the set of predicates is given by
objective_quasi_intension instead of intersubjective_quasi_intension. Note that the TS

An Anthropological Approach to Ontologies in Multi-agent Societies 103

identified by £s must necessarily be in the set of known_societies of that AA, and the set of
sentences S to be verified by informants is defined here as the union of all sentences that
the AA generates for that society at all times. Evidently, the larger this set is the better,
as the chances of finding which are the immutable terms in that society are increased.

__ ExperiencedAnthropologistAgent
AnthropologistAgent
immutable_intensional_ontology : TSocld -+

IntensionalOntologyOfTerms

Vs : TSocld | ts € known_societies o
immutable_intensional_ontology(ts) =
(let S == | J{#i : Timelnstant e generate_sentences(ts,ti)} o
{t : Term | objective_quasi_intension(t,ts,S) # & e
t — objective_quasi_intension(t,ts,S)})

Migrant agents may well find it useful to know which subset of the intensional
ontology is immutable. Note that some societies may never keep immutable terms, or
it may take a long time to arrive at a sound conclusion that there is a immutable subset
of an intensional ontology. We have further discussed this point elsewhere (Bordini,
Campbell and Vieira 1998).

We have found, as d’Inverno and Luck (2001) claim and demonstrate for other
applications, that Z is an excellent basis for clear specification of agents with special
properties. It has allowed a rapid and effective progression from the initial qualitative
ideas on agency with an anthropological flavour to the precise form given above, and to
theorems that they satisfy. Furthermore, it should allow us to formalise the missing parts
(also mentioned in our previous work) incrementally. Building on definitions from Luck
and d’Inverno’s framework (i.e., AutonomousAgent and MASystem), makes it possible
for us to integrate our approach with other agent theories specified in the same framework
(see, e.g., d’Inverno and Luck 1996), besides the obvious advantage of exempting us
from specifying those basic concepts. Also, as d’Inverno and Luck (1996) indicate, the
framework can be used directly in the implementation of simulations of the agent theories
that have been formalised. As a matter of fact, we have type-checked these specifications
using ZTC (Jia 1995) and animated a simplified’ version of them using PiZA (Hewitt
1997).

4 A Promising Application: Corpora as Societies

In the work reported above, we proposed ontological ascription as a means towards
interoperability of multi-agent systems. We have also dealt with the recovery of tax-
onomical relations from intensional ontologies in our anthropological approach to in-
teroperability. As we mentioned in Section 1, cognitive anthropologists emphasise the

° The simplifications concern mainly some of the global definitions for the basic setting (e.g.
access to TSs), which are not directly implementable in the Z tools used. All main algorithms
are shown to work as intended in the animated version.

104 Rafael H. Bordini, Renata Vieira, and John A. Campbell

importance of taxonomies in understanding cognitive systems. The importance of ontolo-
gies and taxonomies for information retrieval and extraction is also well known (Guar-
ino, Masolo and Veter 1999; Welty and Ide 1999; Barros, Gongalves and Santos 1998;
Borgo et al. 1997). The representation of semantic relations can be used in the identifica-
tion of relevant documents, yielding more accurate results. Besides information retrieval
and extraction, there are many other applications where ontologies are necessary, such
as “the semantic web”, knowledge management, and natural language generation.

Our original proposal of an intensional ontology is based on the relation between a
language user and terms of the language, more specifically the acceptance relation. In
the context of multi-agent systems, this can be formulated on the basis of interviews with
given (informant) agents. As we mentioned in Section 1, one present line of research
proposes the use of vast sources of coded knowledge that are available in corpora for
automatic ontology engineering (Hahn and Schnattinger 1998; Aussenac-Gilles, Biébow
and Szulman 2000; Madche and Staab 2000; Nobécourt 2000). In our ongoing work,
we consider the application area of ontology extraction from written texts, revisiting
our approach so that the role of an informant agent is fulfilled by a text. Texts can be
regarded as agents, in the sense that each text corpus presents an individual discourse
in which terms are used in a particular way. Some corpora, such as the ones maintained
by the international Survey of English Usage at University College London, are both
computer-based and extremely large.

The intensional ontology framework, described in the previous section, can therefore
be reused having in mind texts as the subjects of the acceptance relation. The idea of
subjective quasi-intension is related to the state of mind of a subject and is revealed
through the process of an interview. Our current line of investigation is to check whether
a corresponding notion of subjective quasi-intension can be revealed when a text is
considered as such a source of information. The properties related to terms in a text can
be retrieved through natural language processing, as outlined below.

In adjusting our previous framework to the current setting, we have to consider that
quasi-intensions are related to language in use for communication among agents, whereas
texts convey messages which refer to parts of the intensionality of terms. Closeness to
the previous notion of subjective quasi-intensions could be achieved by the union of
all properties found in a collection of texts. Similarly, properties that are accepted by
all users might well be properties expressed in all texts, across corpora. Therefore, we
would need to process a collection of corpora to extract the equivalent of intersubjective
quasi- intentions.

In the original approach, properties of a term that are accepted by an agent were used
in determining the term’s quasi-intension. Here, properties expressed with respect to a
term in a text are used instead. Such properties can be found through the identification of
the syntactic contexts associated with a given term (i.e., a noun). These syntactic contexts
can be extracted from a large collection of texts and then used to derive subjective and
intersubjective quasi-intensions in the “corpus as an agent” or “corpora as societies of
agents” metaphor. Just as an illustration, we give a simple example that should be easy
to find in most corpora of ordinary texts having some reference to intellectual activities:
the term school can be related to properties (stated as pre or post modifications) such as:
high, public, Romantic, primary, private, and Baroque.

An Anthropological Approach to Ontologies in Multi-agent Societies 105

In our future experiments, we intend to extract concrete instances of all these con-
texts. We give a sample of such an extraction below. For this, we have used the cor-
pora processing system presented by Gasperin ef al. (2001). That system is intended
for measuring similarity of words by using the syntactic contexts that they share. For
the extraction of the syntactic contexts, which is of interest here, the system uses the
“Palavras” parser (Bick 2000). The work by Gasperin et al. is based on Grefenstette’s
(1994) method for context extraction (also intended for similarity measure) and further
details the information contained in the extracted contexts.

That detailed context information is used in our example, where they are characterised
by the abbreviations given next. For any noun x, the code'® snspt y means that a
prepositional phrase with noun y modifies x, where the preposition is given in brackets;
snspl y means that a prepositional phrase with x can modify a noun y, where the
preposition is given in brackets; adjT y means that y is an adjective modifying x; subj|
y means that y is a verb whose subject is x; dobj|. y means that y is a verb whose direct
object is x; sobjT y means that y is a noun which is the direct object of a verb whose
subject is x; and SObj|. y means that y is the subject of a verb whose direct object is x.

The example given below was obtained from the Corpus of the NILC (Niicleo In-
terinstitucional de Lingiiistica Computacional), maintained by USP Sio Carlos, UFS-
Car, and UNESP. In fact, the corpus used in this experiment is a subset of the NILC
corpus with Brazilian texts related to sports (not surprisingly, mainly on football) hav-
ing some 1.4 million words. We have chosen a small set of terms to form the sam-
ple ontology below. The choice was based on the fact that there are taxonomical re-
lations among those terms. This may be useful in verifying also the applicability of
our approach for retrieving taxonomical relations from intensional ontologies, which
was not presented in this paper but appears in (Bordini, Campbell and Vieira 1998;
1999).

For each chosen word, the corpus processing system returned a large number of
syntactic contexts where they appeared. We sorted this list of contexts in decreasing
order of frequency (i.e., the number of times they occurred). We then checked which
contexts the chosen terms had in common and which were specific to each of them. The
list given below is a manual selection of these results. Portuguese words are followed
by their translation into English given in square brackets.

— Contexts found in common between terms atleta [athlete], jogador [player], ata-
cante [forward], zagueiro [defender], and goleiro [goalkeeper] (out of 17 contexts):
e subj | fazer [to make]
e subj | dizer [to say]
e adj 1 bom [good]
e sSnspT (de) selecdo [(from) squad]
— Contexts found in common between terms jogador [player], atacante [forward],
zagueiro [defender], and goleiro [goalkeeper] (out of 26 contexts):
e sobj 1 gol [goal]
e sobj 1 bola [ball]
e SObj 1 partida [match]

10 Available types of contexts that do not appear in the example given here are: adj/, subjt, dobjf,
iobjt, and iobj/, whose meanings can be inferred.

106 Rafael H. Bordini, Renata Vieira, and John A. Campbell

e sobj 1 time [team]

Contexts specific to jogador [player] (out of the first 10 in a list of 479 contexts):
e SnspT (de) futebol [(of) football]
e sSobj 1 falta [fault]
e sobj | clube [club]

Contexts specific to atacante [forward] (out of the first 56 in a list of 93 contexts):
e adj 1 meio [centre, or inside]
e subj | atingir [to reach, or get to]
e SnspT (de) ponta [(in) winger (position)]

Contexts specific to zagueiro [defender] (out of the first 6 in a list of 24 contexts):
e adj 1 central [central (full back)]
e Snsp| retorno (de) [return, or coming back (of)]
e snspt (de) drea [(of) area'']

Contexts specific to goleiro [goalkeeper] (out of the first 16 in a list of 37 contexts):
e Snspl (de) saida [leaving, or advancing (of)]
e dobj | encobrir [to chip over]
e subj | espalmar [to deflect away (with one’s hands)]

The contexts in the first item above are common to all terms we have considered in
this sample, including the most general term in the associated taxonomy, which would
be “athlete”. It is more general than (football) “player”, so in the context we do not see
contexts such as “ball” and “goal” (which appear in the second item, where “athlete”
was not included). In our approach to retrieving taxonomical relations from intensional
ontologies, properties that terms have in common (in their quasi-intensions) relate to
partitioning segregates, and properties that are specific to certain terms are used to
identify contrasting sets (refer to Section 2.3 for the meaning of these concepts in Cultural
Anthropology).

In the future, we plan to conduct a series of experiments to evaluate our approach to
intensional ontologies of terms when adapted to guide ontology extraction from corpora.

5 Conclusion

In our previous work, presented at UKMAS-99, we have reported on a way of discover-
ing ontologies used in societies of agents. It was based on a theory of intensionality, and
connected with our anthropological approach to interoperability of multi-agent systems.
Further, inspired by work on ethnography, we have provided a means for an anthropolo-
gist agent to recover taxonomical relations (augmented with the attributes defining each
term in the taxonomy) from the intensional ontologies it has ascribed to societies of
agents, and we have formalised it along with the ascription process using a Z framework
for the formalisation of agent theories.

In this paper we have presented the main ideas of that work, and have given a
flavour of the formal specification (for ascription of ontologies, in particular). We have
also mentioned here a new and promising potential application for our previous more
formal work: that of corpora processing for ontology extraction. The idea is to extract

' This is a more complete reference to defender in Portuguese.

An Anthropological Approach to Ontologies in Multi-agent Societies 107

the instersubjective quasi-intention from properties related to terms in the texts. In the
present paper, we have set out the ground for a series of future experiments associating
our approach with natural language processing for the extraction of ontologies from
corpora.

Acknowledgements

We are grateful to Ant6nio Carlos da Rocha Costa for his contributions to earlier stages
of this work, to Caroline V. Gasperin for extracting the contexts from the corpus for
the sample experiment in Section 4, and to Luis C. Lamb for translating those Brazilian
football terms into English. This work was partially supported by CNPq and FAPERGS.

References

Aussenac-Gilles, N., Biébow, B. and Szulman, S. 2000. Corpus analysis for conceptual modelling.
In Workshop on Ontologies and Texts, Knowledge Engineering and Knowledge Management:
Methods, Models and Tools, held as part of the 12th International Conference on Knowledge
Engineering and Knowledge Management (EKAW’2000), Juan-les-Pins, French Riviera, 2nd
of October. Springer-Verlag.

Barros, F. A., Gongalves, P. F. and Santos, T. L. 1998. Providing context to web searches: The use
of ontologies to enhance search engine’s accuracy. Journal of the Brazilian Computer Society
5(2). ISSN 0104-6500.

Bick, E. 2000. The Parsing System “Palavras”: Automatic Grammatical Analysis of Portuguese
in a Constraint Grammar Framework. Ph.D. Dissertation, Arhus University, Arhus.

Bordini, R. H., Campbell, J. A. and Vieira, R. 1997. Ascription of intensional ontologies in
anthropological descriptions of multi-agent systems. In Kandzia, P. and Klusch, M., eds.,
Proceedings of the First International Workshop on Cooperative Information Agents (CIA’97),
26-28 February, Kiel, Germany, volume 1202 of Lecture Notes in Artificial Intelligence, 235—
247. Berlin: Springer-Verlag. UCL-CS [RN/97/1].

Bordini, R. H., Campbell, J. A. and Vieira, R. 1998. Extending ascribed intensional ontologies with
taxonomical relations in anthropological descriptions of multi-agent systems. Journal of Artifi-
cial Societies and Social Simulation 1(4). <http://www.soc.surrey.ac.uk/JASSS/1/4/3.html>.

Bordini, R. H., Campbell, J. A. and Vieira, R. 1999. Extending ascribed intensional ontologies
with taxonomical relations in anthropological descriptions of multi-agent systems. In Preist,
C., ed., Proceedings of the Second Workshop of the UK Special Interest Group on Multi-
Agent Systems, 179-201. Hewlett-Packard Laboratories, Bristol, 6th—7th of December, 1999.
Reprinted abridged version of the JASSS paper.

Bordini, R. H. 1999. Contributions to an Anthropological Approach to the Cultural Adaptation of
Migrant Agents. Ph.D. Dissertation, University of London.

Borgo, S. etal. 1997. Using a large linguistic ontology for internet-based retrieval of object-oriented
components. In Proceedings of the Ninth International Conference on Software Engineering
and Knowledge Engineering (SEKE’97), June 18-20. Madrid.

d’Inverno, M. and Luck, M. 1996. A formal view of social dependence networks. In Zhang, C. and
Lukose, D., eds., Distributed Artificial Intelligence: Architecture and Modelling—Proceedgins
of the First Australian Workshop on DAL, in conjunction with the Eighth Australian Joint
Conference on Artificial Intelligence (AI’95), November 1995, Canberra, Australia, number
1087 in Lecture Notes in Artificial Intelligence. Berlin: Springer-Verlag. 115-129.

108 Rafael H. Bordini, Renata Vieira, and John A. Campbell

d’Inverno, M. and Luck, M. 1998. Engineering AgentSpeak(L): A formal computational model.
Journal of Logic and Computation 8(3):1-27.

d’Inverno, M. and Luck, M. 2001. Understanding Agent Systems. Springer Series on Agent Tech-
nology. Berlin: Springer-Verlag.

Fisher, M. 1995. Representing and executing agent-based systems. In Wooldridge, M. J. and
Jennings, N. R., eds., Intelligent Agents—Proceedings of the International Workshop on Agent
Theories, Architectures, and Languages (ATAL-94), held as part of ECAI-94, Amsterdam, 8—12
August, 1994, number 890 in Lecture Notes in Computer Science, 307-323. Berlin: Springer.

Frake, C. O. 1969. The ethnographic study of cognitive systems. In Tyler, S. A., ed., Cognitive
Anthropology. New York: Holt, Rinehart and Winston Inc. 28-41.

Gasperin, C., Gamallo, P., Agustini, A., Lopes, G. and Lima, V. 2001. Using syntactic contexts
for measuring word similarity. In Proceedings of the Workshop on Semantic Knowledge Ac-
quisition and Categorisation. Helsinque.

Genesereth, M. R. and Ketchpel, S. P. 1994. Software agents. Communications of the ACM
37(7):48-53. URL: http://logic.stanford.edu/sharing/papers/.

Grefenstette, G. 1994. Explorations in Automatic Thesaurus Discovery. Kluwer Academic Pub-
lishers.

Gruber, T. R. 1993. Toward principles for the design of ontologies used for knowl-
edge sharing. In Guarino, N. and Poli, R., eds., Formal Ontology in Concep-
tual Analysis and Knowledge Representation. Kluwer Academic Publishers. URL:
http://www-ksl.stanford.edu/knowledge-sharing/papers/.

Guarino, N., Masolo, C. and Veter, G. 1999. Ontoseek: Content-based access to the web. IEEE
Inteligent Systems 70-79.

Hahn, U. and Schnattinger, K. 1998. Towards text knowledge engineering. In Proceedings of
the 15th National Conference on Artificial Intelligence (AAAU-98) and 10th Conference on
Innovative Applications of Artificial Intelligence (IAAI-98), Madison, WI, 26-30 July, 524—
531. Menlo Park, CA / Cambridge, MA: AAAI Press / MIT Press.

Hewitt, M. A. 1997. PiZA: Prolog Z Animator, User Guide, version 1.0.9. URL:
http://www.noodles.demon.co.uk/PiZA/PiZADocs.html.

Jia, X. 1995. ZTC: A Z Type Checker, User’s Guide, version 2.01. Division of Software Engi-
neering, School of Computer Science, Telecommunication, and Information Systems, DePaul
University, Chicago, Illinois. Available on anonymous ftp at ise.cs.depaul.edu.

Luck, M. and d’Inverno, M. 1995. A formal framework for agency and autonomy. In Lesser, V. and
Gasser, L., eds., Proceedings of the First International Conference on Multi-Agent Systems
(ICMAS’95), 12—14 June, San Francisco, CA, 254-260. Menlo Park, CA: AAAI Press / MIT
Press.

Luck, M. and d’Inverno, M. 1996. Formalising the contract net as a goal-directed system. In Van de
Velde, W. and Perram, J., eds., Agents Breaking Away: Proceedings of the Seventh European
Workshop on Modelling Autonomous Agents in a Multi-Agent World, number 1038 in Lecture
Notes in Artificial Intelligence. Eindhoven: Springer-Verlag. 72-85.

Madche, A. and Staab, S. 2000. Discovering conceptual relations from text. In Horn, W., ed.,
Proceedings of the 14th European Conference on Artificial Intelligence (ECAI-2000), Berlin,
20-25 August. Amsterdam: IOS Press.

Martin, R. M. 1959. Toward a Systematic Pragmatics. Amsterdam: North-Holland.

Nobécourt, J. 2000. A method to build formal ontologies from texts. In Workshop on Ontologies
and Texts, Knowledge Engineering and Knowledge Management: Methods, Models and Tools,
held as part of the 12th International Conference on Knowledge Engineering and Knowledge
Management (EKAW’2000), Juan-les-Pins, French Riviera, 2nd of October. Springer-Verlag.

Potter, B., Sinclair, J. and Till, D. 1996. An Introduction to Formal Specification and 7. Hemel
Hempstead: Prentice Hall, second edition.

An Anthropological Approach to Ontologies in Multi-agent Societies 109

Spivey, J. M. 1992. The Z Notation: A Reference Manual. Hemel Hempstead: Prentice Hall, second
edition.

Tyler, S. A., ed. 1969. Cognitive Anthropology. New York: Holt, Rinehart and Winston Inc.

Vieira, R. and da Rocha Costa, A. C. 1993. The acceptance relation and the specification of com-
municating agents. In Schlageter, G., Huhns, M. and Papazoglou, M., eds., Proceedings of the
First International Conference on Intelligent and Cooperative Information Systems — Special
Track in Issues on Cooperating Heterogeneous Intelligent Agents, 247-255. Rotterdam, The
Netherlands: IEEE Computer Society Press, May, 1993.

Welty, C. and Ide, N. 1999. Using the right tools: Enhacing retrieval from marked-up documents.
Computers in the Humanities 33(10):183-216.

Scalability in Multi-agent Systems:
The FIPA-OS Perspective

Phil Bucklel, Tom Moorel, Steve Robertshawl, Alan Treadwayl,
Sasu Tarkomaz, and Stefan Poslad®

'Emorphia Ltd., Mill House, Station Approach,

Harlow Mill, Harlow, Essex, CM20 2EL, UK
{phil.buckle, tom.moore, steve.robertshaw,alan. treadway}
@emorphia.com
“Department of Computer Science, P.O.Box 26 (Teollisuuskatu 23),
00014 University of Helsinki, Finland
sasu.tarkoma@cs.helsinki.fi
3Department of Electronic Engineering, Queen Mary University of London,

Mile End Road, London, E4 INS, UK
stefan.poslad@elec.gmul.ac.uk

Abstract. As agent systems move out of the research laboratories towards
commercial application environments it is becoming increasingly apparent that
scalability issues have to be investigated. A revision of what scalability means
is proposed; especially regarding its application in the description of attributes
of agent systems. A new model of scalability is described, and investigated
through discussing qualitative as well as quantitative issues. A case study of a
current project is provided to demonstrate how measures that determine how
agent scalability might eventually be measured is presented.

1 Introduction

Intelligent agent technology is still a relatively young technology but one that is
having to grow up fast due to its inherent suitability for deploying in environments
that current technologies are proving to be unable to provide solutions for. Such
environments range from managing resources in the radio environment of 3G mobile
telephone networks to holonic manufacturing systems.

Within such environments, moreover, it is almost certain that agent systems will be
deployed on a scale not yet seen in experimental systems. The discussion contained
below will examine the scalability of agent systems; however, we will define an
extension to current views of “scalability” to reflect more accurately how agents and
agent systems might be recognised as having scaled. Before we do this we introduce
the origins of the development toolkit that we have based our measurements upon:
FIPA-OS. In recording this evolution we provide, for the reader new to agent
technology, a brief introduction to the development of agent theory and describe
efforts of international standards organisations to provide a stable and standardised
environment within which developers can work. Finally we introduce the central

M. d’Inverno et al. (Eds.): UKMAS 1996-2000, LNAI 2403, pp. 110-130, 2002.
© Springer-Verlag Berlin Heidelberg 2002

Scalability in Multi-agent Systems: The FIPA-OS Perspective 111

concepts of the FIPA-OS agent toolkit, which implements the specifications of the
main international agent standards body: FIPA!.

In the next section we begin to examine what scalability means within the context
of agent systems and discuss qualitative issues related to messaging, service discovery
and behavioural attributes. We pay particular attention to the aspects of service
discovery where some particularly useful findings have arisen out of recent work
carried out on simulated large-scale network deployments using the FIPA-OS
platform. This work is then discussed within the context of a real deployment of a
network of heterogeneous FIPA compliant platforms in the AgentCities project.

Finally, we pay attention to the special requirements of deploying agent systems in
constrained physical devices, such as those that are expected to be deployed in future
mobile telecommunications networks. An evolution of the FIPA-OS agent toolkit,
UFIPA-OS, has been developed to meet these needs and is discussed in a context
where agent scalability on small devices is addressed from many perspectives; in
terms of functionality, the partitioning of functionality, and coping with
heterogeneous hardware availability. We discuss WFIPA-OS, which is able to deploy
a number of FIPA compliant agents on any nomadic terminal. UFIPA-OS has support
for FIPA-OS tasks and conversations and agents that are programmed for FIPA-OS
can be executed in UWFIPA-OS, with certain limitations. Finally we examine the
measures taken to promote yet further footprint reductions in the UFIPA-OS
extensions to support minimal agents that further enhance the scalability of the
deployed agents.

We conclude with some observations and recommendations based on the current
work reported here as well as proposals for future work.

2 Agents

Agents have arisen as a combination of different disciplines. The major contributing
disciplines are peer-to-peer computing, distributed artificial intelligence, human-
computer interaction and artificial life. Agents evolved in the mid 1980s when
Brooks, considering whether a logic based system was viable, spawned a new branch
of distributed artificial intelligence (DAI). The basis of DAI is that intelligence is an
observed rational behavior found in the interactions between an agent and its
environment [1]. The reactive, subsumption based, multi-agent system (MAS)
architectures followed which were organised through a pyramidal hierarchy of
abstractions to deliver system level intelligence in the application of the MAS. In the
early 1990s hybrid MAS evolved where agents retained the social abstraction
hierarchy but encapsulated individual intelligence characteristics. Such hybrid MAS
were able to support complex interactions and when the practical reasoning ability of
deliberative agents became possible with the Kripkesque BDI (Belief, Desire,
Intentions) logics, agents evolved into the current, deliberative, state of the art.

! Foundation for Intelligent Physical Agents: http://www.fipa.org/ .

112 Phil Buckle et al.

2.1 Agent Definition

Any definition of an agent is open to contradiction, even the term “agent” is seen as
contentious by some, so perhaps it is better to start with what an agent is not. An
agent is not dependent upon a particular design methodology or implementation
mechanism, neither is it dependent upon any programming language, target operating
system or physicality. An agent, therefore, can only be classified through its apparent
actions and intelligence. An agent can be either a physical or virtual entity, one that

embodies one or more of the following characteristics [2,3]:

e Perception of an incomplete world model. A world model is internally held
conceptualisation of an environment that embodies the qualitative and quantitative.

e A peer communication capability within the MAS in a common format and
structure.

e Individual goals towards which an agent will work, through modifying its world
model and intentions.

e Interaction with an environment, external to the MAS, if appropriate i.e. some
agents may be exclusively communicative.

e Skills and services that may be offered to, or traded, with other agents.

e Autonomy. An agent acts independently of peers, supervisory applications and
users; however, agent behaviour can be constrained to ensure that an agent acts on
behalf of users.

e Mobility. Some agents are able move around an electronic network.

e An agent will act rationally in order to achieve its goals and will not act in such a
way as to prevent its goals being achieved insofar as its beliefs permit.

e Collaboration. An agent does not assume omnipotence in others; it will query a
user to determine appropriate actions under conflicting instructions. An agent can
refuse to execute certain tasks, if it determines the requested task would cause
damage to other users.

2.1.1 The FIPA Agent Model

In order to build an interoperable MAS, all aspects of the MAS first require clear
definition. For a MAS to be scaleable, interoperability and communications issues
must be standardised in some way. FIPA is, arguably, the leading MAS
standardisation body, it was founded in 1996 in order to produce software standards
for heterogeneous and interacting agents and agent-based systems. Since 1996, FIPA
has produced standards that define, amongst other things, agent communication,
management, resources and mobility. The viability of these standards has been proven
through independent implementations of the standards in disparate environments that
have been proven to successfully interoperate.

To allow agents to locate and communicate with one another, the FIPA MAS
architecture was defined. The FIPA MAS architecture specifies: in the directory
facilitator (DF), a yellow-pages functionality to support service discovery; in the
agent management system (AMS), a white-pages functionality to enforce proper agent
lifecycle management; and in the agent communications channel (ACC), a message
routing functionality that abstracts the issues of agent level communication above that
imposed by the message transport protocol (MTP) implementations. See Fig. 1,
below.

Scalability in Multi-agent Systems: The FIPA-OS Perspective 113

| FIPA-OS Agent Framework

' MTS

Fig. 1. The FIPA MAS Architecture

2.1.2 The FIPA-OS Implementation

FIPA-OS? is a component-based toolkit, enabling rapid development of FIPA
compliant agents. The FIPA-OS agent platform is designed to supply the platform
resources specified by FIPA, along with added functionality for assisting in the
development of agents. The components of the FIPA-OS package provide standard
components at both the platform and individual agent level; both components of the
MAS architecture exactly implement the FIPA specifications.

The FIPA-OS agent shell allows an agent developer to manage the behaviour and
communication of agents, without having to directly invoke message-sending
methods or study low-level functions such as protocol management. The FIPA-OS
agent shell uses a series of interfaces through which the agent kernel may access
suitable components. This restricts access, at the agent level, only to the appropriate
functions within the different components. Furthermore, this approach allows
different implementations of the core components to be developed and used
independently, providing flexibility in specific applications. The FIPA-OS agent shell
augments the FIPA specifications with functionality to assist the developer in
managing conversations and agent behaviour.

The platform components of FIPA-OS allow the transport and location of specified
components of the FIPA framework. The internal MTPs of the FIPA-OS agent
platform are implemented using the Sun JAVA Remote Method Invocation (RMI)
system. The topology of this system is a client-server system through which the client
may invoke methods on the server. A Naming Service is used to list and update
references to different clients and servers. In the FIPA-OS platform, agents act as both
servers and clients, allowing two-way communication between them. The role they
take is dependent on the direction of communication between agents. To support this
and to make it simpler for the user, a MTS object is included in the FIPA-OS agent
shell, which handles the binding and unbinding to the NS.

2 Available from: http://fipa-os.sf.net/ .

114 Phil Buckle et al.

2.2 Issues

“How big is big” and “what does scaleable mean” in terms of defining the bounds of
agent systems are commonly asked questions regarding MAS that are only just
starting to be addressed. One view, being explored in the DIET project[4], is that
MAS exist within [information] ecosystems and that the environmental constraints
extant in the ecosystem acts to determine the degree of scalability inherent within any
MAS. This view shows that, as in biological systems, there is an implicit relationship
between a MAS and the environment that it exists within; however, this relationship
largely constrains the definition of MAS scalability to the perception of considering it
as an issue of canonical enumeration. Such quantitative discussions, whilst crucially
important in many respects (particularly so with respect to devices capable of
supporting only small footprint MAS), restrict the definition of what agent scalability
should mean to an allegory of the problem of “how many angels fit on the head of a
pin” that so entertained mediaeval philosophers. We define a broader scalability that
considers other, qualitative, issues that relate to what it is that the agent, or the MAS
that it exists within, is able to do and, moreover, how proficient they are in achieving
what they are able to do.

2.2.1 Definitions Employed

All agents in the discussion presented here are virtual physical software entities that
exist exclusively in computer networks; no consideration is given to actual physical
agents, such as robots, or corporeal physical agents such, as human/animal delegates.
Furthermore, these virtual physical software entities are static, not mobile entities.
Static agents bring about remote change through influencing each other in exploiting
their ability to communicate in a semantic language. The agents discussed exist only
as part of a MAS and comply with the specifications laid down by FIPA, as
implemented in the FIPA-OS agent toolkit.

2.2.2 Scope of Discussion

Scalability is regarded here in two contexts: where footprint is an issue, quantitative
factors relating to the uFIPA-OS implementation are discussed, showing that where
“size” is a crucial consideration in determining scalability within tightly constrained
physical environments, novel tactics can be employed that ensure that behavioural,
qualitative, aspects are diminished as little as possible. Where footprint is not an
issue, the focus will be entirely upon the qualitative, behavioural aspects of agent
scalability. In this discussion, relating to the full version of FIPA-OS, we will
consider issues such as: communication propagation, service discovery and resource
management. Furthermore, as collaboration between agents in a MAS is one of the
key points in determining its success in delivering appropriate services, particular
attention is paid to discussing the issues associated with service discovery. A case
study follows that demonstrates how we propose to test the principles set down
below, within the framework of the AgentCities project’.

3 Available at: http://www.agentcities.ore/EUNET/index.php?target=welcome .

Scalability in Multi-agent Systems: The FIPA-OS Perspective 115

3 Communication Propagation

The paramount behaviour of an agent that exists within a MAS is that of semantic
communication. In order to complete any but the most simple of tasks agents must
rely on their abilities to “persuade” other agents to assist them. The semantics of agent
communications are derived from the formal definitions of the communicative act that
defines the type of message that the agent determines is appropriate

FIPA specifies a semantic model of communicative acts[5] that grounds the stated
meanings of communicative acts and protocols in order that agents may attempt bring
about changes in the belief states of other agents that will assist them in the tasks they
have to complete. The abstract model that enables this type of interaction can be
briefly described as: Agent i has amongst its mental attitudes some goal or objective
G and some intention I. Deciding to satisfy G, the agent adopts a specific intention, I.
If the agent is unable to achieve the goal itself, intention I manifests itself in the
choice of an appropriate speech act and the construction of a message to another
agent. The express purpose of this message is to achieve the intention of Agent i,
through enlisting the help of Agent j. See Fig. 2.

Convart to transpaort form Convert from transpart form

Message delivery ftransportation service

Fig. 2. Agent Message Passing

Typically agents possess incomplete knowledge within any particular problem
domain and collaborate with each other to solve problems. Therefore, the
communications within a typical MAS can be very intensive, especially when agents
compete to deliver optimal services. Scalability issues associated with agent message
handling can be addressed from two perspectives: the individual agent and the
platform that supports the agent.

3.1 Agent Message Handling

FIPA classifies the following entities within the scope of message handling [5][6]:

[l ACLMessage: A communication between two agents.

[Envelope: Every ACLMessage has an associated Envelope that contains message
delivery information

116 Phil Buckle et al.

[Conversation: A series of ACLMessages between two agents that are related (by
either the conversation-id or reply-with/in-reply-to fields).

[1 Message Transport Service: Entity that provides ACLMessage delivery services
based upon the properties defined by the ACLMessage’s associated Envelope.

[] Message Transport Protocol: Entity used by the MTS to transfer a message from
one place to another.

[1 Agent Communication Channel: Entity that provides the MTS and acts as a
gateway between FIPA platforms.

FIPA-OS provides the following components to handle these FIPA concepts [7]:

[1 ConversationManager: Provides conversation grouping and message protocol
enforcement. At the expense of extra over-head in terms of message processing,
this simplifies the development and debugging process for FIPA-OS agents.

[J MTS (Message Transport Service): Provides ACLMessage delivery services. This
is implemented as a stack containing multiple entities which modify/adjust the
Envelope and ACLMessage (normally only to change encoding) as they pass
through them. This stack arrangement allows different facets of the FIPA-defined
MTS behaviour to be decomposed into individual entities, as well as simplifying
addition of new behaviours, at the expense of adding extra over-head to message
processing.

[J MTPs (Message Transport Protocols): There are several implementations of MTPs,
some of which are specified by FIPA, others are proprietary to FIPA-OS. An MTP
generally consists of a mini-server that listens for incoming messages using a
particular protocol, and a client that can send messages using the same protocol.

[ACC (Agent Communication Channel): The FIPA-OS ACC implementation
assumes that the ACC exists on one physical host, and primarily acts as a gateway
between platforms or agents on the same platform using mutually exclusive MTPs.
Inter-platform messaging is already catered for within the MTS instance each agent
encapsulates via the MTPs it contains.

In order for agents on the same platform to communicate with each other, naming
services for each of the proprietary MTPs are used, this assumes that agents know the
location of the naming services. FIPA-OS allows multiple naming-services per MTP
type to be used. Ensuring there is no single point of failure at this level reinforces the
robustness of the agent location mechanism. An agent will be registered with each
naming service it knows about, and will search each in turn to locate an agent on the
local platform. This process is recognised as potentially posing a scalability issue in
terms of the time taken to resolve the entity that is to receive a particular message.
FIPA-OS MTPs automatically cache name-service resolution results however, so only
the initial message/response in a conversation or set of conversations might require
either of the agents to perform a lookup.

3.2 FIPA-OS Platform Agents

A FIPA-compliant system such as FIPA-OS provides supporting services to an agent
in the form of the mandatory agent management functions specified by FIPA [§]
which are provided by the:

Scalability in Multi-agent Systems: The FIPA-OS Perspective 117

[AMS which manages agent lifecycles on a platform, and provides a white-pages
directory service.
[1 DF which provides a yellow pages directory service.

Although FIPA caters for the provision of multiple instances of these types of
Agents, it is implicit that there is only a single instance of the AMS and the DF with a
reserved name on a platform, simplifying the process of resolving the names of these
Agents. As a consequence FIPA-OS provides a single instance of the AMS and DF on
a platform by default but does not limit the number of instances to a single occurrence
of each type of agent.

This simplification diminishes the robustness and scalability of the FIPA model
due to the fact that a single point of failure is introduced within a platform for AMS
and DF services. Despite the fact that scalability is catered for through delegation to
other AMS and DF instances, this remains an issue since the reserved agent names
used for these agents are used as an initial contact point to locate the delegated AMS
and DF instances. Therefore, these agents can still be considered as single points of
failure.

3.3 Proposed Solutions

To remove the AMS and DF as central points of failure, FIPA-OS might be enhanced
to avoid this issue by providing a fallback mechanism to automatically attempt to
locate and use the services of other AMS/DF agents on the platform, not merely those
with the reserved name for AMS or DF. This might involve the use of well-known
secondary DF and AMS names that can be defined as part of the policy for the
platform in order to remove this single point of failure.

To remove the ACC as a central point of failure, multiple distributed ACCs
offering identical services could be introduced to the implementation to provide the
same functionality as the single centralised entity, but for a sub-set of the agent
platform (i.e. localised agents — on the same host/LAN). Alternatively additional
distributed ACCs could be introduced to serve the entire agent platform. In either
scenario the ability to have multiple ACC instances with configurable deployment
locations and access mechanisms would resolve this bottleneck issue. An agent
platform would simply publicise the MTP addresses of all ACCs to ensure that the
handling of incoming messages is given the same level of redundancy as outgoing
messages, where an ACC is necessary for inter-platform communication.

4 Service Discovery

FIPA-OS agents advertise and discover service offerings, in accordance with the
FIPA specifications, on the yellow pages service offered by the directory facilitator
(DF) [8]. A local DF, when attempting to satisfy a service request made by an agent,
can search federations of remote DFs. Search algorithms must be carefully chosen in
order that MAS searching algorithms do not place constraints upon the scalability of
the DF federation. It is anticipated that, as agent systems become more pervasive, a
power-law degree distribution will evolve between elements in these large-scale

118 Phil Buckle et al.

networks and, moreover, that it will be between the platform DFs where any service
level conflicts will emerge between platform implementations. The p2p nature of the
FIPA-OS platform is important, and the ability of any platform to provide any service
must remain implicit within the overall MAS concept. In its present form, FIPA-OS
efficiently implements a simple broadcast search algorithm, which is acceptable in
normal Poisson distribution networks and which we explore below.

4.1 Broadcast Search Method

The agents (DF) used in the propagation of a search may be represented as the nodes

of a graph and categorised as follows[9]:

O Source node: a node from which a search is being instigated, or from which a
current search is being propagated.

O Destination node: a vertex, which satisfies the constraints of the propagating
search.

O Relay node: a node which is neither a source nor destination node, but through
which the search propagates from source to destination.

Consider a single search starting from the source node, §; the search destination
nodes, D, form a subset of the total network, V;

De(V-s},)]
as do the relay vertices, R,
Re {(V-D-s}. (2)
Therefore, it must be the case that:
DnNR=0,s¢.D,s¢.R. 3

For any successful search, the proportion, P, of the network, V, searched is
provided by the equation:

[R[+|D) @
p, =1
v .
4
For iterative searches, discrete time steps must be introduced to the calculations.

The number of active vertices, A, at any time, f, in a broadcast search can be
characterised as:

Alt+11=Y k. ®
Alt]

Assuming that the re-searching of a node is considered as a new search, the
proportion of the network searched at any step of the broadcast search is:

Scalability in Multi-agent Systems: The FIPA-OS Perspective 119

Al +1] 4 Plel. A[O) (6)
—_— s =Ss.
4

The significance of this is that for a deep search it is possible to search more than
100% of the network before reaching all destinations. The broadcast mechanism used
in the FIPA-OS search allows for this possibility but it is clearly inefficient and not a
scalable solution.

Plt+1]=

4.2 The Highest Degree Alternative

It is expected that networks will evolve away from Poisson distribution to Power-law
distribution of the nodes as Agent systems become more pervasive. So we need to
discover other more scalable solutions to the service discovery problem if the task of
searching for services is going to be maintained within bounds that ensure acceptable
degrees of success without consuming vastly disproportionate quantities of system
resources.

If a node in a model (thought of as an agent in the FIPA-OS context) possesses a
degree that is a measure of the possible connections (message load) that the node
supports at any one time, then it should follow that some nodes in an agent system
have higher degree than others due to the popularity of the services they offer. A
number of studies [9] of real, large-scale networks show that the distribution of
degrees is asymmetric across large-scale networks, and that the Poisson distribution
represented in the broadcast algorithm is inaccurate. The trend towards there being a
large number of low-degree nodes has been observed in the Gnutella network and the
Internet [9]. The asymmetric degree distribution reflects the use of the network as a
marketplace where services are sought for consumption. Most nodes of the network
are interested in the consumption of services rather than the provision of resources
and services, hence the consuming nodes do not have as many outgoing connections
along which to provide services or to link with other service providers. A more
realistic mathematical model for large-scale networks is a power-law degree
probability distribution, which exponentially decays as degree increases.

The highest degree algorithm is a search algorithm that converges on the few high
degree nodes within the network in order to distribute a search more efficiently [10].
The highest degree search mechanism allows searches to be routed through the small
percentage of the network nodes, which have a large number of registrations and
connections. The advantages of using the highest degree mechanism are the reduced
network resources used in the search and the reduction of the probability of flooding
the network on a search request. It should be made clear that the searches which result
from this algorithm can take considerably more steps than the broadcast algorithm
currently being used in the FIPA-OS platform, and that the search algorithm is less
robust than the broadcast algorithm, since its propagation is dependent on up-to-date
network information. The highest degree algorithm is represented thus:

&)
p,=C*k " %e K.

120 Phil Buckle et al.

Where p, is the degree probability, C is a normalisation constant [see (8)], k is the
degree of outgoing connections at that node, ¢ is a constant which determines the
decay of the graph and ™ is the exponential cutoff term. n.b. K determines the size
of the largest component in the network, and assures that the degree will not exceed
the size of this giant component. Results from the analysis of real large-scale
networks show values of * ~ 2.1>3 [9]. The exponential cutoff term is observed in
real large-scale networks such as the Gnutella file-share network. The normalisation
constant is derived by:

1 ®)

= N _£
S kel s
k=1

The normalisation constant is introduced to ensure that results generated during
scaling tests on limited test suites reflect the conditions likely to pertain in large-scale
industrial deployments of FIPA-OS agent communities.

C

4.3 A Comparison of the Two Search Algorithms

Simulated testing of FIPA-OS platforms have been conducted with networks of
platforms, search connected at the default DF node. These nodes were configured in
a network of 1000 nodes with a maximum degree of 100. The Poisson distribution,
for the broadcast algorithm, is shown in the top pane of Fig. 3 and the power-law
distribution, for the highest degree algorithm, is shown in the bottom pane. The
highest degree algorithm uses values of ¢=2.1 and K = 0.5, both of which have been
measured in current large scale peer networks [9].

Comparing the two elements of Figure 3 it can be seen that the probability of
conducting successful searches is significantly increased when implementing highest
degree searching algorithms. Moreover, that success is achieved with a much-reduced
impact in terms of the search degree. The highest degree searching algorithms can,
therefore, be shown to be considerably more tolerant in terms of MAS scalability than
simple broadcast searches.

Scalability in Multi-agent Systems: The FIPA-OS Perspective 121

N° of searches
; "]

LD

| .
| | Ity I'. i' | fl .
L -

——-!!
% Proportion of network searched - Broadcast
[iF]

N? of searches

L] i |
%Proportion of network searched — Highest Degree

Fig. 3. Network proportions searched for broadcast (Top) and highest degree (Bottom)

44 Local Broadcast Search

A simpler alternative to implementing the non-scalable broadcast search in a power-
law distribution environment is to define a decay function to the life expectancy of the
search. This function will constrain the number of hops that the search can propagate
over and, thus limit the network impact of the search to just the local domain. A
Random Walk function applied to such a technique would further reduce the resource

122 Phil Buckle et al.

consumption associated with searching but at the expense of retaining local awareness
of neighbour node degree. Scalability in such a system would be ensured through
restraining the likelihood of unwanted network conditions extant in local network
domains but at the cost of reducing the success factors of each search.

4.5 Belief Based Selection of Partner DF

The capability to “know” which DF to request services from would dramatically
reduce the time and messaging overheads associated with any search. However, MAS
are p2p communities and apriori knowledge of this type is just not possible due to the
dynamic nature of such communities. Any such capability would require the
maintenance of local knowledge regarding an agent’s observations of other DF
interactions with service agents, alternatively the DFs could form ad-hoc hierarchies
to support knowledge based service discovery with super-DFs maintaining databases
of information regarding which DFs, in its sphere of influence, have which services
registered with them. In such a solution agents would make a service discovery
request to a DF in the normal manner and the DF, if it were unable to find a service
agent that satisfies the request by itself, would contact a super-DF to determine which
of the nearby DFs have suitable services registered with them. Although this does
introduce extra messaging in the early parts of service finding algorithms, it
dramatically reduces the number of unsuccessful queries to DFs that do not have
suitable services registered with them.

To allow automatic registration between DFs a system is required which will
provide the needful DF with information for registration with platforms that are of
interest. There is currently no mechanism for this employed within FIPA-OS. The
simplest solution to this involves a service that will provide information on the
available platforms and DFs within the network. To supply such information requires
a series of reliable platforms and services, which will run 24:7 and provide non-biased
listings for an enquiring DF. A system employing super-DFs will employ profiles that
may be used to initialise the DFs in the system, some of which will be predefined as
defaults within the community, while other entries could be configured and
determined by the administrator of the platform.

If the super DF configuration is not chosen then limits should be imposed on the
number of remote registrations a DF may perform, in order to limit the number of
remote searches that may be sent to the platform. This will decrease the number of
unnecessary searches that are serviced. The registration of a DF with a remote DF
that will frequently send it searches which are not serviceable by the platform (i.e.
none of the resident agents support the services being asked for) is a hindrance to the
optimum operation of that platform. The local DF will need to use its resources to
service a search request and all its ensuing communications for which there is no real
advantage for the platform. In a competitive market, where there are a number of
different commercial services in the market at different prices, time spent servicing a
search request that will definitely not lead to a contract is a waste of resources (unless
the search service itself is charged for). It would be useful to have a mechanism by
which the local DF can identify the DFs it will get the most from being registered
with and retain them within its registry. However, this facility could also be easily
grounded at a Super-DF, as an enhanced composite solution, through the
classification of its entries and the classification of a search. The Super-DF matches a
list of entries to the search, and returns a shortlist (depending on how many results are

Scalability in Multi-agent Systems: The FIPA-OS Perspective 123

requested) to the requesting local DF. This requires that each end DF has a
description of itself with which to register, that will describe the services that are
available to it. Through this type of classification, groups are formed naturally by the
DFs as they register with other relevant platforms, thus alleviating the search
propagation problem.

This solution may seem similar to the concept of index-serving databases for
network information, which is already commonplace in the Internet, and is not in
keeping with the p2p nature of the agent paradigm. However, the application of
indexes and centralised search engines has already been applied to other p2p
technologies such as the Napster music fileshare system. Moreover, the central
service in an agent system is not being used as a server or as a hierarchical gateway to
resources. The service is only used to find platforms that offer the services required,
and any communication after the initial search is performed directly between the two
platforms or agents.

5 Resource Management Scalability

In this short section we discuss one of the fundamental and most intractable of all of
the issues regarding MAS scalability: that of quantity versus quality in a MAS’s
characteristics. Moreover, we examine the issues concerning how best to distribute a
MAS across a network environment.

5.1 Behavioural Enhancement Costs

In terms of defining the benefits of deploying agent systems the main feature is that
agents autonomously solve complex problems on behalf of a user. This implies that
agents act in an environment and perform tasks that bring about desirable changes for
the benefit of other entities. Therefore, at a minimum, an agent within a community
must be able to do something: ideally, something useful. To think of deploying an
agent in a MAS that does nothing other than hold conversations but not act upon them
is depriving the system of valuable resources. At the other extreme, an agent capable
performing any task required of it would be very likely to require the support of
hardware systems that are no longer affordable to most potential consumers of a
MAS. The costs associated with the behavioural enhancement of an agent, versus the
cost associated with host resources must always be considered... is the gain worth the
pain? In the worst cases an agent that does everything required of it may not be
deployable on the target host and techniques such as those discussed in section 7, may
be required to be deployed in designing a suitable MAS. In other even more
constrained situations, sub optimality may be the only solution.

However, what is also very clear is the fact that an agent that does nothing is
useless and does not deserve to consume the resources of its host. So the conundrum
is this; how do we measure the relationship between the utility of the agent and the
resources it is likely to consume? Agents existing at or near the extremes are easy to
discriminate between; however, agents falling in the middle ground are much more
difficult to deal with. A methodology for determining the cost/value relationship

124 Phil Buckle et al.

between resource consumption and agent ability must be designed; one that can weigh
qualitative, behavioural issues against quantitative resource consumption issues.

5.2 Size of Platform

How do we best distribute agents within a MAS, on one large platform or on several
smaller scale platforms? Before we discuss this further it is worth noting that we
should consider the activity levels of agents as also being a factor in determining the
scalability of agent systems. During protracted periods of system tests of the FIPA-OS
platform it has been noticed that during periods of intense activity (periods of
aggressive n-to-n negotiations for instance) memory consumption rises rapidly.
Investigation has revealed that this is caused by garbage collection dependencies in
the VM. Therefore, when measuring the optimality of a MAS community, not only is
the number and behavioural capability of the agents to be considered but also the
current degree to which they are meeting the extent of that behavioural capability. In
other words, whilst it may be possible to launch four agents in a community on a
device, when working hard in their respective roles it might be possible that only two
could actually act at any one time due to the resource consumption of the other
agents. The additional overhead associated with this feature is related to the
messaging activities required to achieve any required result. The cost of an agent is
not just measured in terms of its memory footprint but also in terms of its messaging
activity and the resulting garbage collection activity required in freeing memory
consumed by dead conversations.

In a FIPA compliant agent system all external communications are routed through
the ACC; therefore, one big platform could be considered to be a better architectural
solution to MAS design. However, it is most unlikely that only one platform would
exist on its own; therefore, external communications are still required even in the
single very large platform situation. As a result of the number of agents likely to be
present on a very large platform, we must consider the effects of the ACC bottleneck
problem. The ACC “bottleneck” has already been discussed in section 3 where it was
suggested that a distribution of the ACC functionality was required within a MAS to
overcome this problem. It was suggested that the level of distribution might become
as high as 1 — 1 with each agent; however, if this was the case (at any level of ACC
distribution) incomplete knowledge of message routing would result. Therefore, in the
distributed ACC solution a higher degree of collaboration is required in order to route
messages (forwarding, etc) and messaging overhead increases.

In the case of small MAS communities on a platform much of the issues regarding
ACC bottlenecks are overcome but the reliance on slow interoperability protocols
(such as IIOP) being used in routine transactions now become a feature of the
problem. The optimality of agent communities in terms of size (agent and MAS),
ability and activity levels, is an area of recommended investigation in the AgentCities
project. The evolution from a small scale MAS, developed in one research project,
into an element in a large scale MAS, is discussed as a case study in section 6, below.

Scalability in Multi-agent Systems: The FIPA-OS Perspective 125

6 The AgentCities Project

The CRUMPET* project is developing a service environment that will generically
integrate the traditional Internet and wireless services to provide information and
services for a heterogeneous, modern tourist population. CRUMPET provides
information and services accessible from any location by different devices and
different network connectivity allowing the user to prepare a journey and plan
activities during that journey, or at the destination. To achieve these goals CRUMPET
applies a multi-agent system based on FIPA-OS with agents that provide content,
adapt content based on terminal or network constraints and enable value-add services
such as planning a tour of a town. The CRUMPET service aims to provide a service
for users roaming between London, Heidelberg and Helsinki and thus implements
what could be seen as a subset of the AgentCities network of agent platform nodes.

The goal of the AgentCities project is to establish a network of agents running on
different platform implementations, owned by different organisations from around the
world. On each platform node a variety of agents can be supported, such as the
fundamental agent management service agents as specified by FIPA (white and
yellow pages), ontology services and domain specific application agents (such as the
service agents produced by the CRUMPET project to enable personalised, localised
tourism solutions). The basis for interoperability between all these distributed agents
will be the FIPA agent standards [11].

Currently there are 26 individual platform nodes in the AgentCities network
spanning US, Europe, Japan, Australia and New Zealand. Each platform supports the
FIPA defined AMS and DF, plus a Ping Agent that is able to validate the
communication channel between platform nodes. At present the DFs for each
platform node are not federated as described earlier in this text, instead the MAS
relies on a single global DF.

Although the number of nodes in the AgentCities network is unlikely to grow to
the size simulated in the work described in this text, it still provides an excellent
testbed for validating these initial experiments and the scalability of the CRUMPET
project.

7 UFIPA-OS Scalability

Personal Digital Assistants (PDAs) and other small devices have become popular in
recent years and currently have enough processing power to support middleware
solutions, such as Java-based solutions. This progress in hardware motivates the use
of high-level processes on small devices, processes such as those enabled by software
agent technology. This section examines UFIPA-OS developed by the University of
Helsinki, which is a toolkit and platform for small devices derived from the FIPA-OS
system.

Agent software scalability on small devices can be addressed from many
directions; in terms of functionality, the partitioning of functionality, and coping with

4 For further details on the IST project CRUMPET (IST-1999-20147) see http://www.ist-
crumpet.org/ .

126 Phil Buckle et al.

the heterogeneous hardware available. We present the Java-based UWFIPA-OS, which
is able to host a number of FIPA agents and executing AMS and DF on the terminal.
It has support for FIPA-OS tasks and conversations and agents that are programmed
for FIPA-OS can be executed on UFIPA-OS with certain limitations. To promote
scalability the system has support for minimal agents that do not use FIPA-OS tasks
and conversations.

7.1 Scalability Issues

The term scalability encompasses several meanings depending on the context where it
is used. Generally, in distributed systems scalability means that a system can cope
with the addition of sites and users without excess cost, loss of performance or
complexity. However, in the context of small devices we are interested in scaling
down a system, providing the existing services in a new different environment. By
scalability, in the context of UFIPA-OS, we mean the ability of the system to adapt to
environments of different sizes and intensities, of physical or software resources.
Increasing and decreasing functionality based on user, agent and terminal
requirements can improve agent scalability. For example, application programmers
might require full FIPA-OS functionality on a high-end PDA, but require only the
core-messaging capability on a lower-end device and place the computationally heavy
parts on the network. Moreover, developers may want to write their own task and
conversation management routines to improve performance and garbage collection.
Interoperability between agent systems can improve scalability by allowing
network access to standards-compliant resources. This allows the distribution of
functionality across the agent domain; it is not necessary for the local device or
platform to host all the services. The same approach can be used in intra-platform
operation as well; closed solutions may offer more performance, for example an
internal communication protocol may be tuned for more optimal use of bandwidth or
system resources than, for example, a FIPA-specified message transport protocol’.
Scalability down to very limited environments can be achieved by implementing a
minimal user interface component that communicates with a more advanced
component on the network that translates requests and mediates services to end
clients. This kind of solution places the burden on the network rather than the client.
Various middleware solutions can be employed to increase the scalability of
software. The Java language is currently being introduced into the embedded world,
and different development environments and deployment solutions have become
available both from companies such as Sun Microsystems, and open source initiatives
such as Kaffe [12]. The key benefits of Java are portability of the interpreted byte
code and ease of development, with the expense of performance and memory
requirements. Although Java promises to reduce development costs when developing
software for heterogeneous hardware, it is not suitable for all purposes [13], [14],
because of issues in performance and memory consumption. Although the Java
virtual machine promotes portability across a wide variety of devices, it introduces an
extra memory overhead and the problems of indeterminist garbage collection. C and

3 FIPA specifies only interoperability standards for external platform protocols.

Scalability in Multi-agent Systems: The FIPA-OS Perspective 127

C++ offer much better performance and memory handling albeit with the cost of
being less portable.

There are several Java virtual machine specifications targeting different
requirements. The choice of the Java specification affects performance, memory
footprint, portability and reuse of code. The older PersonalJava-specification aimed
at PDA devices has both open-source and commercial implementations available [15].
The newer Java 2 Micro Edition (J2ME) introduces several configurations targeted at
PDA-devices and mobile phones. The Connected Device Configuration (CDC) is
aimed at PDAs with good connectivity and is complemented by different profiles.
PersonalJava is supported in J2ME through the use of CDC and PersonalProfile.
Moreover, the Connected Limited Device Configuration (CLDC) has been designed
for lower-end devices such as smart phones [14] that are characterized with sporadic
connections. The performance and operation of software agents on small devices can
be improved by supporting:
® Scalability through compile-time or startup-time configuration; what modules and

what functionality is required by the agent or agents. Unnecessary classes and

unnecessary processing should be avoided.

® Scalability through placing functionality on the network by using either internal or
standards-compliant means. At extreme this means that there is only a user
interface running on the terminal and the functionality is on the network.

¢ Portability, scalability supported by a virtual machine and virtual machine
specification.

7.2 Design and Implementation

UFIPA-OS is a scaled down version of FIPA-OS and simplifies the implementation of
the FIPA-OS interfaces. FIPA-OS employs software-engineering techniques that do
not scale well to resource-constrained environments [13]. From the resource
management viewpoint issues such as parsing, the use of threads, object creation, and
the use of the Java reflection API [14] create overhead. The use of heavy
communication standards such as CORBA and RMI add to the overhead, RMI for
example is not efficient in wireless environments.

Basically, WFIPA-OS uses the same interfaces with the exception of the transport
mechanism, which has been optimized for the embedded environment. Each FIPA-OS
agent has its own transport stack and transport service objects, which is not sensible in
resource-constrained environments. A new component called the multiplexer
maintains the UFIPA-OS transports and encapsulates services. Thus, the WFIPA-OS
transports are not compatible with FIPA-OS transports without modifications. pFIPA-
OS does not support RMI or CORBA, but by default uses either an internal HTTP
transport or the FIPA specified HTTP protocol for interoperability.

PersonalJava was chosen as the Java programming environment and as the virtual
machine. In addition to Personallava and proprietary lightweight Java
implementations, it is also possible to execute LUFIPA-OS on CDC, and standard Java
1.1 and 1.3 on Linux. CLDC was found to be too limiting for the requirements of the
FIPA-OS API and since the PersonalProfile for CDC was not available at the time.

UFIPA-OS agents are programmed in the same way as FIPA-OS agents, using
tasks and conversations. LUFIPA-OS supports a number of agents on the small devices,

128 Phil Buckle et al.

the sharing of transports and resource pools, and the possibility for local
communication. However, tasks, conversations and local messaging present an extra
layer of overhead.

UFIPA-OS addresses the scalability of agent implementations by supporting two
APIs for creating agents; first there is the FIPA-OS API and then the minimal API,
which supports only plain messaging and each agent needs to explicitly implement
the management of messages. Although task and conversation management
components have been optimised in WFIPA-OS, each layer adds to the overhead. Fig.
4. presents examples of the FIPA-OS agent stack and the UWFIPA-OS agent stack. A
factory object is responsible for the configuration of an agent and the initialisation of
correct management components.

Agent layer | | Agent layer, custom handlers
Task Manager Micro Task Manager (optnl.)
Conversation Manager Micro Conversation
MTS MTS, multiplexer
| RMI/IIOP | WAP /HTTP
XML profile Object-based profile
| XML, SL, RDF parser, | | Small footprint XML-parser

Fig. 4. Two concrete realisations using pluggable components. The left stack represents a
traditional FIPA-OS agent and the right stack depicts the LWFIPA-OS equivalent.

Minimal agents use the same parsers and messaging features of the UWFIPA-OS,
including transports, but they do not use conversations or tasks. Messages are directly
delivered to the corresponding callback methods and agent programmers have to
implement the necessary behaviour. This enables the programmer to create thinner
agents and custom functionality.

UFIPA-OS agents can be deployed using two different scenarios. In the first
scenario, UWFIPA-OS is a part of a greater platform and the FIPA platform agents
AMS and DF are running on the fixed network. In the second scenario, WFIPA-OS is
running an independent agent platform and hosts the AMS and DF. The first scenario
necessitates that UFIPA-OS and the agent platform are using the same internal
transport (which can be also a FIPA specified protocol) and that the agent platform is
able to forward messages to the mobile node. The latter scenario requires that the

Scalability in Multi-agent Systems: The FIPA-OS Perspective 129

UFIPA-OS is running a FIPA compatible transport and able to receive messages and
forward them to the proper agents.

8 Conclusions

Scalability in MAS is not just a factor determined through counting the number of
agents resident on a platform within in any particular hardware environment. Other
qualitative issues are also crucially important and we have suggested that a
methodology should be developed, or extended, to identify benefits and losses
associated with enhancing agent behaviour against deploying larger numbers of
agents within a MAS. We, furthermore, identified the need for this methodology to
take into account the potential states of an agent during its entire lifecycle: running
agents consume more resources than resting agents.

In terms of scaling up a FIPA compliant MAS it will become necessary to remove
the AMS and DF as central points of failure. The provision of a fallback mechanism
to automatically locate the services of other AMS/DF agents on the platform rather
than merely those with the reserved name for AMS or DF will ensure this and could
involve use of well-known secondary DF and AMS names which are defined as
platform policy. Decentralised communication mechanisms remove “server-like”
dependencies from ACC. Removing the ACC as a central point of failure would be
enabled through introducing multiple distributed ACCs that offer identical services.
To ensure the continued interoperability of platforms, an agent platform would simply
publicise the MTP addresses of all ACCs to ensure that the handling of incoming
messages is given the same level of redundancy as outgoing messages.

Service discovery issues related to MAS scalability could be overcome through
deploying sophisticated, knowledge based routing of search requests between DFs.
Peer classification of agents should be considered, in order to alleviate the effects of
power-law distribution, as the number of consumers in the network becomes
disproportionately larger than the number of service providers, this will lead to ad-hoc
hierarchies of DFs relieving searching issues in peered environments. Knowledge
based routing using highest degree searches in power law distribution networks offers
the most effective long term solution; however, random walk may offer the same
benefits in localised network domains, during the migration from normal Poisson to
power law distributions.

Within constrained devices, design considerations should take into account the
potential for the provision of remote behaviours, relieving the performance bottleneck
of the device. Such a small, inexpensive, nomadic device could appear to offer the
same degree of ability, in terms of service offerings, as a more expensive device by
exploiting services hosted in less constrained regions of a network. This would be
achieved through using different agent configurations based on the environment,
placing part of the functionality or all of the functionality on the fixed network and
taking advantage of the emerging middleware solutions that enable the execution of
high-level languages across heterogeneous platforms. WFIPA-OS supports, with minor
modifications, the execution of FIPA-OS agents in such environments. However, the
price of this portability is an increased demand for network resources, particularly in
wireless environments, and reduced performance.

130 Phil Buckle et al.

References

1. Jennings, NR., Nicholas, R., Sycara, K., Wooldridge, M.: A Roadmap To Agent
Research and Development. Kluwer Academic Publishers, Norwell and Dordrecht.

2. Ferber, J.: Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence.
Addison Wesley, Reading and Harlow.

3. Hermans, B.: Intelligent Software Agents on the Internet. Tilburg University Press,
Tilburg.

4. Marrow, P.: Scalability in Mutli-Agent Systems: The DIET Project. Available online at:
http://www.cs.cf.ac.uk/User/O.F.Rana/agents2001/papers/17 marrow.pdf

5. FIPA.: Communicative Acts Specifications. ~FIPA, Available online at:
http://209.61.157.155/specs/fipa00023/XCO0023H.html

6. FIPA.: Agent Message Transport Specifications. FIPA, Available online at:
http://209.61.157.155/repository/transportspecs.html

7. Emorphia.: FIPA-OS Developers Guide. Emorphia, Available online at:
http:/fipa-os.sourceforge.net/docs/Developers_Guide.pdf

8. FIPA.: Agent Management Specifications. FIPA, Available online at:
http://209.61.157.155/specs/fipa00037/XC00037H.html

9. Lada A. Adamic, Rajan M. Lukose, Amit R. Puniyani and Bernardo A. Huberman: Search
in Power Law Networks. , Physical Review E, The American Physical Society, Volume
64, 26 September 2001, Available online at:
http://www.hpl.hp.com/shl/papers/plsearch/PRE46135.pdf

10. Moore, T.: Large-Scale Multi-Agent Systems an Analysis and Proposal. Available on
request from: Dept of Electronics, University of York.

11. Willmott, et al. “Agentcities: A Worldwide Open Agent Network”, Agentlink News.
Issue 8, November 2001.

12. Transvirtual Technologies: Kaffe virtual machine. Available online at:
http://www.kaffe.org

13. Laukkanen, M., Tarkoma, S., Leinonen, J.: FIPA-OS Agent Platform for Small-footprint
Devices. In: John-Jules Meyer and Milind Tambe, editors, Pre-proceedings of the Eighth
International Workshop on Agent Theories, Architectures, and Languages (ATAL-2001),
pages 314-325, August 2001

14. Sun Microsystems: Java 2 Micro Edition homepage, 2001. Available online at:
http://java.sun.com/j2me/

15. Sun Microsystems: PersonalJava technology White Paper, version 1.2, 2000

Agents and MAS in STaMs

Jim Doran

Department of Computer Science, University of Essex,
Colchester, UK, CO4 3SL,
doraj@essex.ac.uk

Abstract. We propose an abstract mathematical model of space and time within
which to study agents, multi-agent systems and their environments. The model
is unusual in three ways: an attempt is made to reduce the structure and
behaviour of agents and their environment to the properties of the “matter” of
which they are composed, a “block time” perspective is taken rather than a
“past/present/future” perspective, and the emphasis is placed on discovering
agents within the model, rather than on designing agents into it. The model is
developed in a little semi-formal detail, some relevant experimental
computational results are reported, and questions prompted by the model are
discussed.

1 Introduction

The attempt to design intelligent machines has long been dominated by two broad
approaches: the symbolic and the connectionist (e.g. [12,13]). The symbolic approach
is high-level and emphasises rationality and thus mathematical logic, with the digital
computer as the natural tool. Its little brother is theoretically disreputable, but
sometimes effective, ad hoc programming: “let’s just try to write a program that does
X”. The connectionist approach is low level and concentrates on building and
analysing artificial neural networks with certain functionalities akin to those of the
brain, particularly those of control, learning and generalisation. Although research
within these paradigms over the past 50 years has been very extensive, many feel that
less of substance has been achieved than has often been hoped or predicted. However,
a new and promising paradigm has recently emerged in the literature, with an
emphasis on complexity theory, and on a particular class of dynamic systems and
associated concepts (state space, attractors, interdependence expressed by differential
equations) as the key to understanding intelligence and cognition [2,4]. Furthermore,
the idea of evolutionary learning and development has become very influential.
Against this background, we propose and develop in this paper a line of attack on
the problem of understanding intelligence, agenthood and multiple agent systems
(MAS) that has linkage with all of the “paradigms” just mentioned but does not fall
neatly within any one of them. This line of attack embodies three main ideas. The first
is to seek to understand agents (including “intelligent” agents) and multiple agent

M. d’Inverno et al. (Eds.): UKMAS 1996-2000, LNAI 2403, pp. 131-151, 2002.
© Springer-Verlag Berlin Heidelberg 2002

132 Jim Doran

systems not in terms of their formal abilities to manipulate meaningful symbols, or in
terms of networks of simple computing elements with supposed similarities to the
neural structure of the brain, but rather in terms of their underlying material structure
and its properties. The approach is therefore strongly reductionist. The advantage of
adopting such an approach is that the approach is natural (existing agents, after all, are
material), that it enables a rich array of questions to be addressed in an integrated way,
and that it prevents the intervention of intermediate high-level concepts with their
confusing propensity both to be ambiguous and to take on a controversial intellectual
life of their own. In particular, it tends to guard against the confusions that, we
suggest, frequently flow from anthropocentrism and from matter/mind dualism.

Secondly, we employ the concept of “block” space-time. Familiar enough in
space-time physics where as Minkowski space-time it is a foundation stone of the
theory of general relativity, this concept has rarely seemed relevant in artificial
intelligence work. However, in the model to be presented we seek an objective
perspective, and “block-time” avoids the anthropocentrism inherent in the notion of
“now”, with its confusing connotation of a fixed past and an open future.

Finally, we seek not to design agents, but to recognise them. The aim is to observe
and understand what can be there, rather than to specify what must be there. This is an
unusual focus and its advantage is that it opens a door to aspects of agenthood that
would not be encountered by using current agent design ideas. In particular, it makes it
easier to recognise possibilities intermediate between conceptually distinct extremes,
and to avoid our being “locked into” agents that are either useful or lifelike.

All three of these ideas tend to make the investigation simpler and more precise,
avoiding a multitude of higher-level analytic concepts, and thus limiting the impact of
misleading habitual preconceptions.

Much of the analysis of the model will be in terms of condition-consequence rules
that will be derived from its particular structure. At first sight the use of rules in this
form may seem an arbitrary limitation, but it should be noted that such rules are
central elements of Turing Machines and are computationally very powerful.
Furthermore, in the way that we shall use them, these rules also generalise important
types of artificial neurone, so that the model to be presented is much more closely
related to artificial neural networks, and indeed to cellular automata and to Boolean
and multi-state networks, than may at first appear.

1.1 The Research Programme

Consider the following multi-stage investigation:

1. Select an abstract mathematical structure for use as a model of a space-time-matter
continuum.

2. Examine how to detect and describe regularities within the structure.

3. Give a precise definition of an agent, consistent with our intuitions of agenthood,
and examine how agents may be algorithmically detected within the structure.

4. Consider how particular agents within the structure may be examined
algorithmically to establish whether or not they are in a defined sense
“deliberative”.

Agents and MAS in STaMs 133

5. Consider multi-agent interaction and communication, including complexities that
flow from adopting a block-time perspective.
6. Seek a coherent definition of an atemporal agent.

In the remainder of this paper this research programme will be taken through each of
its six stages in a little detail. From the outset it seems important to recognise that
although the technical development of the model is in principle quite precise -- a
mathematical structure is specified and its properties investigated — its significance, if
any, as a model of the actual space-time we inhabit is clearly a matter for assessment
and even, in principle, empirical test. We shall return briefly to these issues in the final
discussion.

2 A Simple Model of Space, Time and Matter

We work in terms of a simple, discrete model of a space, time and matter manifold
that we call a “STaM” (for “Space, Time and Matter”).

Definition. A STaM is an N-dimensional finitely bounded integer vector space, S,
with a mapping from its elements to elements of a set M. For our purposes it is
sufficient to assume a suitable inner product defined over S so that it is (at least)
locally Euclidean. The elements of the set M correspond notionally to a finite
enumeration of different possible states of matter.!

Intuitively a STaM is a space-time region, with (discrete) locations identified by
integer N-tuples (Cartesian coordinates), and with a matter state associated with each
location. In computational terms, a STaM could be a regular multi-dimensional array
of fixed values over an arbitrary enumerated type (the matter states).

One dimension of the STaM is naturally taken to be temporal and directed, past to
future, and the remaining dimensions to be spatial (but see Section 7). This
straightforwardly gives a temporal sequence of spatial STaM states. Thus a physically
intuitive example of a STaM is a 4D rectangular cuboid or “block”, with one
dimension interpreted as time. In this case, the STaM states are 3D “spatial” cuboids.
However, it is sometimes simpler to think in terms merely of a two spatial dimensions,
with time as a third dimension — a 3D cuboid. And then, to avoid uninteresting
complications associated with boundaries, we may even “join up” the boundaries of
the 3D cuboids so that it becomes finite but unbounded — a ring of tori.

We shall refer to the locations? of the STaM and their (location-) states (of matter).
Note also that by a spatial location we shall mean not one specific location in the
STaM, but rather a sequence of successive locations with the same spatial coordinates

I A STaM can be seen as a special and very simple case of the space-time manifold, with a

distribution of matter-energy-momentum over it, which lies at the heart of general relativity
theory (see, for example, [7]). We are, in effect, assuming a “flat”, discrete, matter-containing
space-time. However, our reasons for wishing to consider space and time as a whole have
nothing to do with relativity theory.

2 We avoid the commonly used term “event” as liable to confuse in this context.

134 Jim Doran

and extended in the temporal dimension. For brevity we shall usually refer to a spatial
location as an S-location.

2.1 Regularities and Rules in STaMs

If we consider an arbitrary STaM, it may or may not have regularities within it, and
any regularities there are may be of many different kinds. There are two contrasting
views we may take of a STaM and of any regularities within it. We may (a) take the
STaM as the primary given, and inspect it to see what regularities we can discover
within it, or we may (b) regard the STaM as generated by some known or unknown
prior process, for example, a set of generative rules, so that regularities within the
STaM flow from the nature of the generating process. Alternative (a) invites the
discovery of regularities within the given STaM, and a natural question is: what rule
sets or other process could generate this STaM? Alternative (b), typically presumes
that generative rules are given, as is the case with cellular automata, binary networks,
and multi-state networks, and the natural question is: what are the properties of the
generator and what STaMs could it generate? Contrary to our subjective experience
suggesting that space-time is generated and, furthermore, generated “in” a temporal
direction as we experience it, we shall focus upon alternative (a).

We assume that regularities, however discovered, are to be expressed in the form of
condition = consequence rules that specify the matter state of a particular location by
reference to certain earlier (i.e. temporally preceding) location states, without use of
spatial variables. We allow conjunctions, but not disjunctions, on both the LHS and
the RHS. Thus a typical rule might be

<44t>p & <4,3,5:q & <4,2,t>1r D <44 t+1>y & <4,3,t+1>:z2

where the first two coordinates in a 3-tuple are spatial and the third is temporal and p,
g, 1, y and z are matter states. The set of locations referenced by the LHS of a rule we
call the rule’s neighbourhood.

It is apparent that these rules are analogous to the update tables of a Boolean or
multi-state network. Furthermore, an artificial neurone that computes its (discrete)
output by reference to (discrete) inputs (typically the prior outputs of neurones
possibly including itself), (fixed) weights, and some activation function, may also be
implemented as an update table or rule set.

We define a complete set of rules for a STaM as a set of rules sufficient to specify
the entire STaM given its temporally earliest STaM state. There is always at least one
complete rule set for a STaM, namely the set of all rules that conjoin all the STaM
states up to and including that at a time ¢ (LHS) and then specify the STaM state at
time ¢+ (RHS). It is clear that in general there may be many complete rules sets for a
STaM, some intuitively much simpler than others.

Rule sets may or may not have either or both of the following additional properties.
They may be

Agents and MAS in STaMs 135

e homogeneous in space i.e. the rules are the same for all S-locations
e Markovian in the sense that the LHS and RHS of the rules refer only to
successive STaM states. The example rule just given is Markovian.

Different rules sets for the same STaM may differ in these properties.

2.2 Influence

We shall say that one S-location X influences another Y, with respect to a rule set, if
there exists a rule R within the rule set that determines a state of Y wholly or partially
by reference to the state of X (that is, the LHS of the R references the state of X and
the RHS of R specifies the state of Y). As will appear, this definition is an important
building block for what follows.

2.3 Fitting a STaM Rule Set

The following outline algorithm indicates how a complete set of rules may be fitted to
any given StaM

Initialise the set of rules to empty
For every S-location of the STaM,

enumerate every distinct location-state, LS, that
occurs in that S-location, and

for each LS find a temporally prior
location-state combination (relative to LS)
that correctly predicts LS (i.e. all

occurrences of LS are preceded by the location-
state combination, and the combination never
occur without LS following), and

add the corresponding rule to the set of rules

In general there will be many different sets of rules that may be fitted to a given
STaM depending upon the detailed form this algorithm takes.* Notice that since the
rules are fitted to the entire STaM, they will not be inconsistent one with another.

2.4 The Interpretation of STaM Rules

A rule set associated with a STaM is somewhat analogous to physical laws in that they
determine the dynamics within the model of the space-time manifold (i.e. the STaM).
Although this analogy may seem remote, it does perhaps guide our intuition in a useful
direction. However, it is important to realise that, in the perspective of an outside

3 An optimal rule set may be defined in various ways e.g. by minimal rule complexity.

136 Jim Doran

observer, the rules merely predict their consequence state(s). They do not generate
them or otherwise bring them into being for, by assumption, the entire STaM already
exists as a prior structure.

Are STaM rules causal? That is, is it reasonable to say that a rule condition causes
its consequences? In what follows we shall take the view that an instance of a rule is
indeed causal, whilst recognising that not all will agree and that the concept of
causality is fraught with difficulty especially in the context of block time.

3 Agents in StaMs

Given the notion of a STaM and its associated rule sets, we now ask if there can be
sets of locations and/or states within a STaM that may reasonably be regarded as
agents.* Of course, and crucially, this requires us to decide just what “an agent” is. The
agent definitions found in the literature of agent technology often refer to such
complex and ambiguous notions as “autonomy”, “pro-activity”, “communication”, and
“sociability”, and thus offer rather little help in this context. However, the standard Al
textbook by Russell and Norvig [9, p. 31] describes an agent a little more usefully as
“anything that can be viewed as perceiving its environment through sensors, and
acting upon that environment through effectors, and Weiss [14, p. 584] gives as one
definition of an agent “an active object or a bounded process with the ability to
perceive, reason and act”. Very different, and still quite imprecise, is the notion that
when seeing an agent “an Augustinian god just sees a nexus for a complicated
structure of correlations” [8, p.169]. However, this last remark does give us the
important idea of an agent as some kind of locus of complexity in space-time.

Now we define two classes of agents that may occur within STaMs: those without
and those with something akin to “physical structure”. We shall suggest that both these
types of agent may display cognition. It will be apparent that these two definitions are
merely two of many that could reasonably be formulated.

3.1 Agents without Physical Structure (A-Agents)

Definition: An agent without physical structure (A-agent) is a fixed non-empty set of
S-locations, each S-location extended over the same non-empty time interval, the A-
agent’s temporal extension, that meets the following requirements:

Two disjoint non-empty subsets of the agent S-locations are input and output S-
locations respectively. The remaining S-locations of the agent are internal. Input,
output and internal S-locations have the following properties:

4 Notice that this question is never asked in space-time physics, although there is relatively
frequent reference to “observers” and their “time lines”.

Agents and MAS in STaMs 137

e An input S-location is influenced only by S-locations external to the agent
and influences only output S-locations and/or S-locations internal to the
agent.

e An output S-location is influenced only by input S-locations and/or internal
S-locations of the agent and influences only S-locations external to the agent.

e An internal S-location is influenced by, or influences, only other S-locations
of the agent i.e. internal, input or output S-locations.

All other S-locations in the STaM are said to be external to the agent.

Notice that this definition of an A-agent rests directly on the definition of what it
means for one S-location to influence another, and therefore rests in turn on a set of
rules associated with the STaM.

The S-locations that comprise an A-agent need not necessarily be spatially
contiguous (in term of the spatial structure of the STaM), although intuitively we tend
to assume that they are. Furthermore, the temporal extension of an A-agent need not
be large compared with its spatial extension, though again we tend to assume that it is.

Not any set of S-locations is an A-agent. In particular, a single S-location cannot
be an A-agent (the input and output sets must be non-empty and disjoint) and a pair of
locations (L1, L2) is an A-agent, with L1 as input and L2 as output, if and only if:

L1 influences at most L2
L2 does not influence L1
L2 is only influenced by L1

An entire STaM is an A-agent if and only if there exists (at least) one S-location
within it that no other S-location influences, and at least one other S-location within it
that influences no other S-location.

Our definition of an agent permits some though-provoking special cases. For
example, if a STaM is temporally circular, and therefore temporally finite but
unbounded, then clearly an A-agent within it may also be. Should this possibility lead
us to reject this definition of an agent? Our intuition is troubled by the notion of an
agent that can potentially remember its own future! But if the agent in question has
only limited memory, which seems natural enough, then the difficulty may be
avoided.

3.2 Agents with Physical Structure (P-Agents)

We now offer a definition of agents with a property analogous to persistent physical
structure. It is an attempt to meet our intuitive notions of agents as physically situated.

Definition: an agent with physical structure (P-agent) is a pattern of locations whose
relative spatial positions are fixed over time, and that:

138 Jim Doran

may be differently located in successive states of a sequence of spatial states of the
STaM, the P-agent’s temporal extension, and

has a non-null sub-pattern whose location states are fixed

In this definition the pattern of locations is analogous to physical structure and is
(necessarily) emergent from the STaM regularities. In two-dimensional space, it might
be, for example, a 10x10 square of locations. By contrast with A-agents, the rules of a
P-agent are not those of the STaM itself. Rather, they are derived from the regularities
detectable in the pattern locations of the agent whose location states are not fixed.
Note that A-agents are not a special case of P-agents.

Interesting though they are, we shall say nothing more of P-agents in this paper.
We conjecture that most interesting properties of A-agents hold also for P-agents.

3.3 The Capabilities of A-Agents

An A-agent meets some of the most often cited requirements of an agent: it
“senses” (via its input S-location(s)), “decides” (via its internal S-location(s)), and
“acts” (via its output S-location(s)), provided that we allow these words to be given a
simple interpretation in terms of information flow.

A-agents are, in effect, traces of (recurrent) multi-state networks. Equivalently they
receive input, have state (the combination of the location states of their internal S-
locations), and use “if-then” rules to select actions. Thus their internal processing and
complexity is akin to that of many of the agents discussed in the literature.

It may be objected, however, that an A-agent lacks a fundamental property: it
does not learn or adapt. After all, it might be argued, STaMs are fixed so how can
agents within them learn? There are two major flaws in this argument. Since a STaM
includes time, it includes change although it is itself fixed. Perhaps less obviously, a
network constituting an A-agent may learn not by changing its structure (its set of S-
locations and the rule set) but by changing its state, that is, by changing its set of
location-states and hence the dynamics of its interaction with its environment
(compare [17]). Thus A-agents can indeed learn and adapt.

4 Creating STaMs and Finding Agents

How may particular STaMs be created? It is clearly quite possible to generate a STaM
at random, but it seems most unlikely that a STaM obtained in this way will contain
structures (for example, agents) of any significant interest. We therefore now describe
computer experiments in which non-trivial A-agents have been created to meet
particular requirements, as a stepping-stone to the construction of interesting STaMs
for further study. It will turn out that we are also interested in just how the agents
generated perform the task set for them.

Agents and MAS in STaMs 139

4.1 SABN Problems

We first focus attention on a particular way of creating an A-agent as it might occur in
a STaM. Assume a two-dimensional, binary STaM. One dimension is temporal, and
each location is in one of just two states. Assume a partially specified A-agent
comprising N S-locations of the STaM including just one input S-location and one
output location. The successive states of the input and output S-locations (both
therefore binary sequences) are specified. We seek a rule set for the N S-locations of
the agent that satisfies the definition of agenthood, and that so determines the agent’s
“internal dynamics” that it meets the imposed boundary conditions, that is, the given
input and output sequences, possibly together with a given set of initial location states
at the commencement of the its temporal extension in the STaM.

We call an agent creation task of this type a sensory action Boolean network
(SABN) problem, and refer to the task of meeting the boundary conditions as that of
supporting the history. As is usual in work on Boolean networks [16], we assume
Markovian but spatially heterogeneous rules, whose neighbourhoods are constrained
to be of a specified size and the same for all the states of a particular S-location. These
assumptions are not essential. It is important to keep in mind that that, in accordance
with our definition of an A-agent, it is not the rule set that constitutes the agent, but
the Boolean “trace” that the rules generate.

4.2 The COUNT Problem

The COUNT problem is a quite challenging example of a SABN problem. It requires
an agent to “count” how many ‘1’s there are in each of a set of strings of ‘1’s and to
respond accordingly. The sensory input is (conceptually) structured as a series of
episodes. In each episode a ‘1’ string of a different length is presented to the agent.
During an episode the network agent must “count” the length of the string presented to
it and return as its corresponding “action” output string four bits in which the first bit
is always ‘1’ and the following 3 bits a binary encoding of the length of the string. For
example, the sensory input ‘11111° must lead to the action output ‘1101°. In our
specific version of the problem seven episodes in all are presented, covering the string
lengths 1 to 7 in a random order. The entire input and output sequences, each of length
93, are given in Table 1.

4.3 The Algorithm and Program

To solve a SABN problem, a consistent rule set must be found for each S-location
specifying the conditions in which each distinct location state of the S-location occurs.
Collectively these rules must support the specified history.

The conceptually simplest way to obtain a suitable set of update tables is by
systematic enumeration and test. Of course, this is impossibly slow. We have therefore
implemented (in the C language) a program that uses an ad hoc version of hill-

140 Jim Doran

climbing search with random restart that obtains solutions in a feasible amount of
time?.

Table 1. The sensory input (S) and action output (A) sequences for the COUNT Problem,
presented episode by episode. There are seven episodes plus an initial “null” episode. The total
length of each sequence is 93. The episodic structure is conceptual, and is not marked in the
input and output sequences as presented to the agent.

Episode 0 S 000000
A 000000

Episode 1 S 11111110000000000
A 00000000111100000

Episode 2 S 111000000
A 000010110

Episode 3 S 100000000
A 001001000

Episode 4 S 1100000000000
A 0001010000000

Episode 5 S 111110000000
A 000000110100

Episode 6 S 11111100000000000
A 00000001110000000

Episode 7 S 1111000000
A 0000011000

4.4 Experimental Results

Sample experimental results obtained for the COUNT problem appear in Table 2.
They demonstrate that the problem can indeed be solved, but that solution times
depend greatly upon the number N of S-locations employed. The smaller is N, the
longer it takes on average to find a solution. Actual times on a relatively fast PC (1.4
GHz) are from a few seconds up to several hours.

It is natural to ask whether these solutions are of any generality. Do they, for
example, handle a string of any length? Do they handle an arbitrary sequence of
strings, or just the given sequence? In fact, when tested the solutions have very little

5 There is no reason to believe that use of a genetic algorithm, say, would obtain solutions any
faster.

Agents and MAS in STaMs 141

generality. Typically they do exactly the job required of them and no more.® For
example, if the input and output sequences are repeated, without the network being re-
initialised, then the network fails to handle the second presentation. This does not
mean, of course, that more general solutions do not exist — merely that they are rare
and have not been encountered in these trials.

Table 2. Effort expended to find three solutions to the COUNT problem for each of six
specified sizes of Boolean network. Entries in the table are numbers of networks tested before
success. The three searches for each size of network differ only in pseudo-random number
stream. No solution network of size 8 could be found.

Network size 50 20 15 12 10 9
Neigh’d size 12 12 12 12 10 9
Solution 1 58 186 350 1894 21463 688363
Solution 2 79 44 238 10864 97990 4842134
Solution 3 43 60 1680 989 52245 3364584

Interestingly, and a little counter-intuitively, effective solutions to the COUNT
problem may also be obtained by “fine tuning” the update tables of a randomly
generated network provided that the network is relatively large. Since such a network
is close to chaotic, in effect it never repeats its state, so that the desired output at a
time in the history can often be obtained merely by making a single adjustment to the
update table. Thus very regular external behaviour may be obtained from an internal
structure that is close to chaotic.

4.5 Creating STaMS

A solution to the COUNT problem is an A-agent and furthermore may itself be
regarded as a STaM — a STaM that is, in its entirety, a single A-agent. A small
fragment of a COUNT solution STaM with 20 S-locations is shown in Table 3.

Thus we have now constructed a STaM that is of some interest because we know that
one interpretation of it is as a single agent that handles the COUNT problem. But are
there other interpretations of this STaM?

Table 3. A small fragment of a two-dimensional STaM derived from the COUNT problem. The
states shown are of the first few times (left to right) of the first few S-locations (top to bottom)
and of the last S-location. The first row is the “sensory input” and the last the “action output”.
In its entirety the STaM is a Boolean array of size 1880 (20 S-locations by 93 times).

¢ Compare [17, p. 243] “the networks evolve just enough plasticity to accomplish the particular
tasks we have set for them”.

142 Jim Doran

000000111111100000000001110000001000000..............
01100000001110010010001001011............
11001000111010100100111111010.........
10011110100010010000100001000....
11100010001101001110111....

0000000000000011110000000001011000100100............

4.6 Finding A-Agents in a STaM: Some Initial Results

In principle, it is not difficult to devise an algorithm to locate A-agents in a given
STaM. All that is required is a scan of all subsets of the S-locations of the STaM,
checking for those that meet the requirements of the definition. However, systematic
enumeration is an extremely computationally intensive process even though we know
that it will terminate since STaMs are by definition finite. Furthermore, application of
the definition of an A-agent requires a rule set to have been associated with the STaM
and influences determined, so that before seeking agents we first of all must apply a
rule-fitting algorithm. We have therefore implemented two C programs, the first to fit
rules to a given STaM (see Section 2.3), and the second to use the rules thus obtained
to identify agents within the STaM. Importantly, both programs are heuristic. The
rule-fitting program is heuristic in that it considers only certain relatively simple types
of rules, those with a conjunction of at most three location states on the left hand side.
No attempt is made to optimise sets of rules. The agent finding program ignores
isolated instances of influence (see Section 2.2) concentrating rather on recurring
influence instances, but then will find any A-agent that satisfies the definition.

In preliminary experiments these programs have been applied to the COUNT
STaM of Table 3. It turns out that the original solution A-agent is never found but
that, for each particular setting of the influence threshold, a set of other A-agents is.
The A-agents found in a set can be both large and small, and are often substantially
overlapping. One particular A-agent encountered comprises just the two input and
output S-locations of the original A-agent.

We conjecture that the original agent is not found primarily because the rule-fitting
program does not have the power to find rules of the complexity of those used to
generate it. These, it will be recalled, have neighbourhoods of size 12. The agent-
finding program is working with an effective but different set of rules and with
patterns of recurring influence. It is not surprising that it finds other agents than those
used to construct the STaM. But these “new” agents are just as real in the STaM. Our
results may be summarised by saying that the agents detected in a STaM are strongly
dependent upon the (essentially causal) interpretation placed upon it.

Are the agents that are discovered by the agent-finding program of any interest in
themselves? Intuitively, it depends how complex they are, and this is a matter of their
internal processing. To this issue we now turn.

Agents and MAS in STaMs 143
S5 Cognition in A-Agents

Finding A-agents by solving the COUNT problem, or by exploring a STaM, is one
thing. Discovering just how an A-agent actually supports its corresponding history is
quite another.” Is it purely “reactive”, so that each input pattern is independently
linked to its required output, or is there some definite process of counting within the
agent? Or is there some “noisy” mixture of the two? Or is there something else? In a
trivial sense what happens is clear. Rules “fire” successively and the required outcome
is achieved. But what conceptual repertoire might support a more insightful analyse of
the internal dynamics of an agent of this kind?

Dynamic systems theory is an established candidate [2,16,17], with analyses
typically couched in terms of different types of attractor and of trajectories to and
from them. Indeed, we can characterise many of the solutions we have obtained to the
COUNT problem as follows: without significant input the system rests in a limit cycle
attractor; in each episode the input moves the system away from the attractor in a
manner specific to that input; and as the system returns to the attractor it generates the
output corresponding to the input.

We suggest, however, that deliberative cognitive processes can occur in agents of
this type (which potentially have the power of Turing Machines), and that therefore
there is an effective cognitive language in which to discuss how these agents process
internally. We briefly discuss this topic in the next section and address there the
question of how to recognise deliberation.® We focus on predictive planning as an
example of deliberative cognition.

5.1 What Is Predictive Planning?

We all have an understanding of predictive planning. Making use of its beliefs about
the world and its current state, an agent, human or otherwise, uses internal
representations of the external world to anticipate certain alternative courses of action
and their consequences, and chooses between these alternatives in order to find the
best, in some subjective sense, course of action — the plan. The choice may or may not
be made “rationally”. The agent then attempts to carry out the chosen course of action,
which may or may not prove possible and which may or may not have the anticipated
consequences. Thus planning involves the generation, examination and manipulation
by the agent of representations of possible future states or properties of (its) world.
This notion of predictive planning has regularly been investigated in Al research,
with many variations and simplifications, and there has been considerable progress in
designing and implementing planning software and (to a lesser extent) hardware [9].

7 Many authors have commented upon this difficulty, e.g. * ... it is common to achieve a
perfectly competent network whose operation appears to be completely incomprehensible.”
[2, p. 470].

8 We also conjecture that deliberation necessarily or typically occur in A-agents that are
minimal in some important respect such as size, but more work is required before this can be
confirmed or disproved.

144 Jim Doran

In particular, most chess playing programs employ predictive planning. But there
remain uncertainties about its essential nature and function. It is typically
characterised, as above, using high level and ambiguous terms. As these terms are
computationally grounded (for example, as a piece of planning software is designed
and implemented) the ambiguity is removed, but with many essentially arbitrary
decisions. Furthermore, consider the particular difficulties presented by an agent that
has pervasively faulty planning processes and faulty beliefs about the nature and
structure of its world and its possible actions — so that any “predictions” made by the
agent are too thoroughly mistaken to reasonably merit the term “representations”. Yet
the agent does reach decisions about actions to perform. How could one determine
that such an agent was (confusedly) planning rather than merely selecting actions
“reactively” in a somewhat muddled way?

5.2 A-Agents That Plan

Predictive planning is not a matter of the external behaviour of an A-agent. Rather a
consistent interpretation must be established that identifies certain patterns of agent
“activity” as representations of certain sensory inputs, of possible action outputs, and
of processing decisions. This interpretation can be based on consistencies between
input and output and changes in the states of the A-agent’s internal S-locations. But it
is difficult to see exactly what the required consistencies should be. For example, what
do representations represent: actions or plans? Furthermore, there is no reason to
believe that the activity corresponding to a particular representation will be localised.
This might be so in some of canonical form, but not in general.

Planning programs in the artificial intelligence tradition construct and
repeatedly modify plans until they satisfy conditions of coherence and effectiveness.
We therefore conjecture that predictive planning is best viewed as a special case of the
fundamental artificial intelligence method, generate and test. This implies that the key
to the interpretation an agent’s processing as planning is algorithmically to select a
locus (possibly distributed) of repeated change in the compound state of the network
and to construct an interpretation of that change as the development and testing of
variant plans. Finding such an algorithm remains a challenge, which appears all the
more daunting since it seems that a specific agent’s processing may well be
interpretable in terms of predictive planning in more than one way.’

9 It is natural to ask whether this line of thought has anything to say about the symbol-grounding
problem. If symbols are regarded as the objects of necessarily conscious thought, then maybe
not. However, if we identify a symbol with the notion of a physical representation of a
phenomenon external to the agent, that participates in internal processes in a defined way,
then it may be that the “patterns of activity” mentioned above may be identified as symbols.

Agents and MAS in STaMs 145
6 Multi-agent Systems (MAS)

We have already seen (in section 4.6) that a single STaM may contain many A-
agents.'” We define a Multi-Agent System, a MAS!, in a STaM as a set of A-agents
that:
= have disjoint location sets (we say that the A-agents are disjoint), and
= are such that any pair of A-agents within the MAS can directly or indirectly
influence one another, that is, each A-agent of the pair has a location that
directly or indirectly influences a location of the other.
It follows that a set of agents comprising a MAS exists within a set of collectively
external locations that forms their common environment.
The first of these two requirements will be relaxed in section 6.3. The significance
of the latter is that it seems unreasonable to include within a MAS A-agents that can
never interact. The notion of “influencing” used here is that defined in section 2.2.

6.1 Interaction and Communication between A-Agents

Consider the following three ways in which one agent may causally impact another
(expressed in terms of human interaction):

X accidentally makes a sound that Y hears and reacts to by turning
towards X

X deliberately make a sound intending that Y should hear it and react by
turning towards X, and this is what happens

X deliberately makes a sound intending that Y should hear it and react by
interpreting it as a signal to, say, start an attack on their joint enemy Z,
and this is what happens

We may describe these three compound events as an accidental causal impact, an
intended causal impact, and a message. Of course, there are other possibilities notably
where an initiating agent’s intention is not realised. To discuss such interactions
between A-agents we return to the notion of causality introduced in section 2.4.

Definition. A causal connection exists in a STaM from a set P of location
states to a location state Q later than any of them if and only if there exists a set
of rule instances that together specify Q from P. We say that P grounds the
causal connection.

Definition. An A-agent X in a STaM has a causal impact upon another A-
agent Y if there is a state of one of the output S-locations of X (i.e. X performs

10 We are currently experimenting with STaMs constructed from more than one A-agent.
1" Given that we are considering A-agents, a better notation might be “A-MAS”.

146 Jim Doran

an action) that is a member of a set that grounds a causal connection to a state
of an input S-location of Y.

A special case of the last definition occurs when the states constituting the set P are
entirely within output S-locations of X, so that in some sense X is wholly responsible
for the causal impact upon Y. It is clear that a causal impact can occur between A-
agents only where one A-agent can influence another.

Intended causal impacts, including messages, require the initiating A-agent to
have planned the causal impact and its consequences. This is a much stronger
requirement (compare [10,15]), and cannot be addressed until the issue of planning
within A-agents is clarified.

Can an A-agent in a STaM act upon its past? As our definition of causal
connection is unidirectional in time, our answer is clearly “no”, but see section 7.

6.2 Overlapping and Nested A-Agents

It is possible for A-agents within a STaM to overlap, and even be nested one within
another. The overlapping may be in space or in time or in both. Of course, sections of
the STaM shared between two or more A-agents must meet the requirements for all of
them.

Can two overlapping or nested A-agents interact and/or communicate one with
another in the sense of the last section? It is clear that they can, provided the
underlying causal impact is into the future, as by definition it must be. Notice that this
allows an A-agent to send a message to itself in the future, where its actual
circumstances permit.

6.3 A-Agent Composition and Decomposition

Given our focus on multi-agent systems, it is appropriate to consider how two or more
A-agents may be composed into a single A-agent, and vice versa. One possible
definition is:

Definition. If it exists, the composition of a set of disjoint A-agents all with the
same temporal extension is the A-agent comprising the union of their S-locations
and with the same temporal extension. Input, output and internal S-locations must
retain their prior classification, except that input or output S-locations may be
internal in the composite A-agent.

Similarly
Definition. If one exists, a decomposition of an A-agent is a set of at least two

disjoint A-agents, all with the temporal extension of the given agent, the union of
whose S-locations (preserving the nature of input, output and internal S-locations

Agents and MAS in STaMs 147

except that input or output S-locations may become internal) is the set of S-
locations of the given A-agent.

These definitions may be applied repeatedly, so that, for example, an A-agent may in
principle be decomposed into a hierarchical set of sets of composing A-agents.
Clearly, this process cannot continue indefinitely, as an A—agent with only two S-
locations cannot be decomposed.

6.4 Understanding the Behaviour of MAS

We distinguish three approaches to the study of MAS. These are: by reference to
existing social theory (e.g. [3,5]); in terms of controlling parameters (e.g. [6]); and
from the theory of individual cognition. We comment briefly on the last of these
possibilities.

If a MAS may be ‘“read” as a single agent, then an understanding of the
functioning of MAS may be based upon an understanding of the functioning of that
single agent. Suppose, for example, that an A-agent that is a composition of a MAS is
engaged in planning. Then the original set of A-agents must, it seems, be engaged in
collective planning. Thus there is a direct linkage between the complex behaviour of
the collective and of the individual. Furthermore, the collective planning process will
be distributed over the A-agents of the MAS, but not in any particular way, nor in a
way that is necessarily simple.

7 Temporal Orientation in Agents

Throughout the foregoing development, a particular temporal orientation in the STaM
has been taken for granted. However, a moment’s reflection makes clear that any
well-defined dimension of a STaM may be taken to be temporal. Depending upon the
choice made, different properties (and in particular, different agent sets) will be
discovered in the STaM.!?

We say that an A-agent is individually temporally oriented with respect to
direction D if it meets the requirements of the usual A-agent definition with respect to
the STaM rules associated with D (recall that rules are derived from a STaM by
reference to a particular directed dimension of it).!? It follows, of course, that for each
discernable direction D in the STaM there will be zero, one or more A-agents that are
individually temporally oriented to that direction. A particular STaM may contain
many A-agents in a range of different temporal orientations. Indeed, rather than seeing
a STaM as temporally oriented in some arbitrarily chosen direction, we may view A-
agents as individually temporally oriented but not the STaM within which they reside.

12 This has been experimentally verified using the COUNT solution STaM discussed above.
13 Price [8] has discussed temporally oriented agents in some detail, but only with respect to a
single fixed time dimension.

148 Jim Doran

To explore the dependence of agenthood upon temporal orientation, we pose in the
following sections two specific questions. Can A-agents in a STaM of differing
temporal orientation interact and inter-communicate? Is there a coherent notion of an
atemporal agent, that is, of an agent that has no temporal orientation?

7.1 Interaction between A-Agents of Differing Temporal Orientation

It is natural to say that an A-agent can be aware of anything that can causally impact
upon it. Since anything!* in an agents past can causally impact upon it, it follows that
an A-agent, X, can be aware of another A-agent, Y, in its past, whatever Y’s temporal
orientation. For example, Y may be aligned in the reverse direction to X or may be
aligned along what is to X a spatial direction.

Furthermore, an A-agent, X, may initiate a causal connection which later (with
respect to X’s temporal orientation) impacts upon a sensory (input) location of another
A-agent, Y. As discussed previously, such an impact may or may not be intended.
Intention requires, amongst other things, that X predicts the existence of Y in the
future. In principle this seems possible. Notice that the temporal duration of Y, from
X’s perspective, is likely to be small.

7.2 Atemporal Agents in Atemporal STaMs

If the temporal orientation of a STaM, or of an agent within it, is essentially arbitrary,
then it is natural to ask what can be said if there is no temporal orientation, if the
STaM is atemporal (see Price [8, pp. 259-260] for a concept of “atemporal physics”).
In particular, is there then no longer any possible notion of an agent? Or can there be
an atemporal agent?

In an atemporal STaM the concept of condition-consequence rules based upon a
particular direction is meaningless. However, we can instead deploy the concept of
condition-consequence rules based upon pattern completion. Such a rule essentially
states that wherever in the STaM a particular pattern of location states occurs
(condition), then certain other location states will be found in a specified relationship
to them (consequence). A complete set of such rules may then be defined (somewhat
arbitrarily) as a minimal set such that every location state in the STaM occurs in the
consequence of at least one rule.

Can we now, by analogy with an A-agent, define a notion of an atemporal agent?
This is not straightforward, since we no longer have S-locations as building blocks for
the definition. However, given a specific complete rule set it is possible, by extending
our previous definition of causal'® impact in terms of it, to define what it means for
one location state to have a causal impact upon another. We may then define an
atemporal agent as a set of locations (not S-locations!) that is partitioned into two

14 We ignore the complications that arise from properties of the STaM rules analogous to the
limited speed of light.
15 But the use of the word “causality” is now no longer intuitive.

Agents and MAS in STaMs 149

disjoint subsets one comprising internal locations of the agent and the other boundary
locations in such a way that internal locations only causally impact one another and
boundary locations but boundary locations can impact any locations including those
external to the agent. It follows that, with these definitions, one atemporal agent may
have a causal impact upon another.

What it might mean, if anything, for an atemporal agent to be interpreted as
deliberative is difficult to say. It seems likely that a key step will be to set up an
interpretation of the STaM in which certain features external to the agent are matched
to internal features taken to be representations. But all the details of this remain to be
worked out.

8 Discussion

The ideas and research programme outlined in this paper immediately prompt a
number of questions. It is apparent that much more needs to be done to fill out the
formal development of STaMs and their possible contents in precise mathematical
detail. But what reason is there to believe that the ideas presented can be further
elaborated consistently and precisely (assuming that what has been presented so far is
indeed internally consistent)? Our reason to believe that they can is as simple as this.
In mathematical terms, all that we are doing is to look at a range of mappings (“data
structures”) and to investigate the properties, of certain defined kinds, that they may or
may not individually have. In itself this is not difficult. The real challenge lies not in
carrying out such an investigation, but in how best to select interesting and productive
definitions (e.g. a definition of an agent) to investigate.

Is the use of such terms as “agent” and “space-time” justified? We believe that,
with due caution, it is. The model presented here is very abstract, in the sense of
lacking specific structure, and is technically simple in that, for example, it is discrete,
but it does interface both with agent technology and with the physics of space-time
and a range of interesting questions may be posed in relation to it. The model unifies
aspects of neural networks, cellular automata and agent theory. Furthermore, the
notion that cognitive processes may be discernable within agents in STaMs is no more
outlandish than suggesting that cognitive processes may be run on Turing Machines.
So the model also enables more traditional and symbolic ideas of artificial intelligence
to be addressed.

There is even a sense in which this model, or a similar model, could in principle be
empirically tested. This is not because it makes explicit predictions that might or
might not check out, but because it suggests certain empirical investigations that might
or might not prove productive — for example, it suggests that there may be agents to be
found in the world on time scales and in configurations (and even temporal
orientations) different from those that we, in our anthropocentric way, tend to take for
granted. Thus such models have the potential to break us free of habitual
preconceptions.

150 Jim Doran

9 Conclusions

We have proposed a multi-stage investigation into agents and multi-agent systems
based on a model incorporating three unusual ideas: grounding agents and their
environments in “matter”, taking a block-time perspective, and focussing on the
recognition rather than design of agents. We have taken the investigation forward in a
little detail, shown that it is possible to study agents and multi-agent systems in this
way, and shown that STaM agents correspond to Boolean and multi-state networks
whose properties can be studied computationally. Our main conclusion is that the
investigation is feasible, worthwhile and should be taken further. It potentially brings
together a number of branches of artificial intelligence, has a not quite trivial linkage
with space-time physics and the philosophy of time, and enables some interesting
questions to be addressed from a new perspective.

References

1. Angeline, P. J., Saunders, G. M., Pollack, J. B.: An Evolutionary Algorithm that
Constructs Recurrent Neural Networks. IEEE Transactions on Neural Networks, Vol. 5,
No. 1 (1994) 54-65

2. Beer, R.: On the Dynamics of Small Continuous-Time Neural Networks. Adaptive
Behavior, Vol. 3, No. 4, (1995) 469-509

3. Doran, J.E.: Trajectories to Complexity in Artificial Societies: Rationality, Belief and
Emotions. In: Dynamics in Human and Primate Societies. Kohler, T.A., Gumerman, G.J.,
eds., Santa Fe Institute Studies in the Sciences of Complexity, Oxford University Press,
Oxford and New York, (2000) 89-106

4. Eliasmith, C.: The Third Contender: a Critical Examination of the Dynamicist Theory of
Cognition. Philosophical Psychology. Vol. 9(4), (1996) 441-463

5. Gilbert, N.: Modeling Sociality: The View from Europe. In: Dynamics in Human and
Primate Societies. Kohler, T.A., Gumerman, G.J., eds., Santa Fe Institute Studies in the
Sciences of Complexity, Oxford University Press, Oxford and New York, (2000) 355-371

6. Kluver, J., Schmidt, J.: Topology, Metric and Dynamics of Social Systems. Journal of
Artificial Societies and Social Simulation, Vol. 2(3), (1999)
<http://www.soc.surrey.ac.uk/JASSS/2/3/7 html>

7. Naber, G. L.: Spacetime and Singularities: An Introduction. Cambridge University Press,
Cambridge (1988)

8. Price, H.: Time’s Arrow & Archimedes’ Point. Oxford University Press, Oxford and New
York (1996)

9. Russell, S., and Norvig, P. (eds.): Artificial Intelligence: a Modern Approach. Prentice
Hall (1995)

10. Saunders, G. M., Pollack, J. B.: The Evolution of Communication Schemes over
Continuous Channels. In: From Animals to Animats 4. Proceedings of the Fourth
International Conference on Simulation of Adaptive Behaviour (eds. P. Maes, M. J.
Mataric, J-A. Meyer, J. Pollack and S. W. Wilson). September 9th-13th, 1996, Cape Cod,
Massachusetts, (1996) 580

11. Teuscher, C.: Study, Implementation and Evolution of the Artificial Neural Networks
Proposed by Alan M. Turing: A Revival of his "Schoolboy" Ideas. Swiss Federal Institute

12.

13.

14.

15.

16.

17.

Agents and MAS in STaMs 151

of Technology, Lausanne, Logic Systems Laboratory, EPFL-DI-LSL, CH-1015, Lausanne
(2000)

Turing, A. M.: Intelligent Machinery. Report Submitted to UK National Physical
Laboratory, 1948. Reprinted in: Machine Intelligence 5. Meltzer, B., Michie, D., eds.,
Edinburgh University Press, Edinburgh (1969) 3-23

Turing, A. M.: Computing Machinery and Intelligence. MIND: a Quarterly Review of
Psychology and Philosophy, Vol. LIX, No. 236, (1950) 433-460

Weiss, G. (ed.): Multiagent Systems. The MIT Press, Cambridge, Mass. and London,
England (1999)

Werner, E.: Cooperating Agents: A Unified Theory of Communication and Social
Structure. In: Distributed Artificial Intelligence, Volume II. Gasser, L., Huhns, M.N. eds.,
Pitman, London and Morgan Kaufmann, San Mateo, California (1989) 3-36

Wuensche, A.: Discrete Dynamical Networks and their Attractor Basins Complexity
International, Volume 6, (online), and SFI Working Paper, 98-11-101 (1998)

Yamauchi, B.M., Beer, R. D.: Sequential Behavior and Learning in Evolved Dynamical
Neural Networks. Adaptive Behavior, Vol. 2, No. 3 (1994) 219-246

Semantics of Agent Communication: An Introduction

Rogier M. van Eijk

Institute of Information and Computing Sciences, Utrecht University,
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands,
rogier@cs.uu.nl

Abstract. Communication has been one of the salient issues in the research on
concurrent and distributed systems. This holds no less for the research on multi-
agent systems. Over the last few years the study of agent communication, and in
particular the semantics of agent communication, has attracted increased interest.
The present paper provides an introduction to this area. Since agent communi-
cation builds upon concepts and techniques from concurrency theory, we start
by giving a short historical overview that covers shared-variable concurrency,
message-passing, rendezvous, concurrent constraint programming and agent com-
munication. Standard approaches of agent communication identify three different
layers: a content layer, message layer and communication layer. To this model
we add an extra level, namely the layer of the multi-agent system. Subsequently,
we discern three approaches in developing the semantics of programming lan-
guages: the axiomatic, operational and denotational approach. Additionally, we
discuss semantic aspects of agent communication, including communication his-
tories, compositionality, observable behaviour, failure sets and full abstractness.
We illustrate these issues by means of the framework ACPL (Agent Communica-
tion Programming Language). Finally, we briefly consider the specification and
verification of agent communication.

1 Introduction

The introduction of novel application areas has urged the development of new program-
ming concepts and techniques to assist both the programmer and end-user in managing
the inherent complexity of computer software. A concept that plays a prominent role in
the research of the late 1990s and the beginning of the third millennium is that of an
agent. This concept has found its shape in the field of artificial intelligence and builds
upon notions from other disciplines of research as philosophy, economics, sociology
and psychology. Although in artificial intelligence, there is no real consensus on what
exactly constitutes an agent, there are some generally accepted properties attributed to
it. In fact, this can also be said about a related notion from computer science, namely
that of an object, which over the years, despite a lack of consensus on its definition,
nonetheless has proven to be a successful concept for the design of a new generation of
programming languages.

In short, an agent is an autonomous entity that shows both a reactive and pro-active
behaviour by perceiving and acting in the environment it inhabits [47]. Moreover, it has
a social ability to interact with other agents in multi-agent systems, like the capability
to share knowledge through communication, to coordinate its activities with those of

M. d’ Inverno et al. (Eds.): UKMAS 1996-2000, LNAI 2403, pp. 152-168, 2002.
(© Springer-Verlag Berlin Heidelberg 2002

Semantics of Agent Communication: An Introduction 153

other agents, to cooperate with other agents or to compete with them. In the stronger
conception of agency, an agent is additionally assumed to have a mental state consisting
of informational attitudes, like knowledge and belief, as well as motivational attitudes,
like goals, desires and intentions. In other words, rather than being thought of as a
computational entity in the traditional sense, an agent is viewed upon as a more elaborate
software entity that embodies particular human-like characteristics. For instance, an
issue in the rapidly growing research area of electronic commerce, is the study whether
agents can assist humans in their tedious tasks of localising, negotiating and purchasing
goods [32]. In general, negotiation activities comprise the exchange of information of
a highly complex nature, requiring the involved parties to employ high-level modalities
as knowledge and belief about the knowledge and belief of the other parties. Moreover,
more elaborate negotiations also involve aspects of argumentation to explain the reasons
why particular offers are proposed.

We could say that emerging novel application areas require the development of new
programming paradigms, since the emphasis of programming involves a shift from the
traditional performance of computations towards the employment of the more involved
concepts of interaction and communication. In particular, in the new paradigms, the
central focus is on computer programs that interact and communicate at a higher level
of abstraction. That is, rather than a mere exchange of low-level data, communication
between agents can for instance involve propositions that are believed to be true or false,
actions that are requested to be performed and goals that are to be achieved.

Over the last few years the study of agent communication, and in particular the seman-
tics of agent communication, has attracted increased interest. The present paper provides
an introduction to the area. It is organised as follows. In Section 2, we give a short his-
toric overview of the research on communication in concurrent programming languages
that covers shared-variable concurrency, message-passing, rendezvous, concurrent con-
straint programming and agent communication. We discuss the standard model of agent
communication, which consists of a content layer, message layer and communication
layer. To this model we add one extra level, namely the layer of the multi-agent system.
Subsequently, in Section 3, we discern three approaches for developing the semantics
of agent communication: the axiomatic, operational and denotational approach. Finally,
in Section 4, we discuss compositionality, observability, specification and verification
of agent communication.

2 From Shared Variables to Agent Communication

In our conception, the study of agent communication can be thought of as a next step in a
long history of research on concurrent programming languages. Over the years the area
of concurrency theory has produced many concepts, mechanisms and techniques for
a clear understanding of the concurrency and communication aspects of programming
languages. We give an overview.

2.1 Shared Variable Concurrency

In the early days, research on programming languages was concerned with languages for
sequential programming. Characteristic of a sequential program is that its computation

154 Rogier M. van Eijk

starts with the execution of the first action after which control moves along the subsequent
actions of the program as dictated by the programming constructs. In other words, the
execution of a sequential program is given by a single thread of control.

Later on, in the mid 1960s, people began to develop and study programming lan-
guages for computer systems in which execution is not a sequential process but where
instead, different activities can occur concurrently. In particular, in a program of a con-
current programming language one cannot discern a single thread of control; there are
multiple active processes each of which is governed by its individual thread. In com-
parison with sequential languages, programs in a concurrent programming language are
far more complex. This is due to the fact that the concurrently operating processes of a
program should be coordinated in such a way that they can cooperate with each other,
but on the other hand their individual computations do not interfere.

Among the first programming languages for concurrent systems are the ones devel-
oped for shared variable concurrency [11]. According to this paradigm, a program is
composed of a set of concurrent processes that communicate by means of a collection
of shared variables. One of the key problems encountered for these languages is that
it should be prohibited for different processes to have simultaneous access to the same
variables. In other words, their activities need to be coordinated, for if they do have
simultaneous access to a particular variable then unexpected behaviour can occur. This
is illustrated in the following example.

Example 1. (Simultaneous access)

Suppose that the execution of an action x := e consists of an evaluation of the expression
e after which the computed value is assigned to the variable x. Consider a program that
consists of two concurrently executing processes A and B, which are defined as follows:

A
B

r:=x+1
T =x+ 2.

Process A increases the value of = by 1, while process B increases it with 2. If the
initial value of the variable x is equal to 0, we would expect that its resulting value is 3.
However, consider the following scenario. The process A computes the value of x 4 1
and finds it to be equal to 1. Before it assigns this value to the variable z, the other
process B executes the action z := x + 2. The evaluation of the expression z + 2 yields
the value 2, which is subsequently assigned to the variable x. Meanwhile, the agent A
finishes its execution by overwriting the current value 2 of = by the value 1. Thus, in this
scenario, the final value of x is equal to 1 instead of the expected value 3.

In general, for each of the processes in a program for shared-variable concurrency, one
can identify critical sections in which it is necessary that the process has exclusive access
to particular shared data. Correspondingly, it should be ensured that only a restricted
subset (typically, just one process) is executing its critical section at the same time.
Many techniques have been developed for the synchronisation of processes that have
shared data, among which the most prominent ones are semaphores [12] and monitors
[27]. In real life, a semaphore allows only a restricted number of trains on a particular
railroad track. In a computer, it allows only a restricted number of processes to be in
their critical section. A monitor not only defines the procedures that can be invoked

Semantics of Agent Communication: An Introduction 155

to operate on a particular set of shared variables, but also coordinates the execution of
these procedures. Thus, a monitor can be thought of as implementing a screen around
the shared procedures and data.

2.2 Distributed Programming

Next in the development of concurrent programming languages are the ones developed
for computer systems in which processes do not operate on a shared memory but, instead,
are distributed over multiple sites. Characteristic for a distributed program is that its
computation is split up into smaller computations, each of which is delegated to one of
the distributed processes. For these processes to be able to interact, they should have the
possibility to exchange their computed results among each other. In the research on such
distributed programming languages, which started in the 1970s, a prominent place is held
by the languages of the Communicating Sequential Programming paradigm (csp) [28],
like occam [29]. In csp, interaction between the distributed processes is accomplished via
an underlying communication network that connects the different sites, along which the
processes can exchange messages with each other. Since there are no shared variables,
the synchronisation issues for mutual exclusion, as sketched above, do not arise in a
distributed environment. However, other problems remain, like, for instance, the problem
that in a distributed program, processes can be waiting for particular data to arrive that
however will never be supplied. In other words, it should be ensured that a distributed
program is free from the possibility of deadlock. In a situation of deadlock, the execution
of a program is blocked because none of its processes can proceed. A typical cause of
deadlock is the fact that all processes are waiting for another process to make the next
move, such that consequently no process can make a next step. This issue is illustrated
in the following example.

Example 2. (Deadlock)

Let us consider a distributed programming language that comprises actions cle and ¢?x
for communication between processes. The execution of the former action consists of
evaluating the expression e after which the computed value is sent along a communication
channel c. The execution of the latter action consists of receiving a particular value along
the communication channel ¢, which is subsequently assigned to the variable z. Consider
a concurrent program that is comprised of the two processes A and B, which are defined
as follows:

A = clz-dlf(x)
B = d?y-cy(y),

where - denotes sequential composition. The process A first receives a value along
the communication channel c. After that, it applies the function f to this value, and
subsequently sends it along the channel d. Concurrently, the process B first receives a
value along the channel d that is assigned to the variable y. The function g is subsequently
applied to the variable y, which yields a result that is sent along the channel c. However,
the processes find themselves in a deadlock situation; that is, the first step of the execution
of A is to receive a value along the channel c. This value can be supplied by process B,
but not until this process has received a value along the communication channel d. The
latter value can be provided by the agent A in turn, but only after it has received a value

156 Rogier M. van Eijk

along c. Consequently, neither of the processes can proceed as each of them is waiting
for the other process to make the first move.

Writing concurrent programs that are free from deadlock is by no way an easy task, since
deadlock situations may not present themselves as obviously as in the above example.
Therefore, various techniques have been developed to enable a profound analysis of the
behaviour of concurrent programs.

There are two types of communication. The first one is called synchronous communi-
cation, like in csp, which corresponds to a form of communication in which a process that
wants to communicate a particular data item to another process, waits until the recipient
is ready to receive it. The second kind of communication is referred to as asynchronous
communication, which denotes a form of communication in which a process sends a
particular data item irrespective of the current status of the recipient. That is, if at the
moment of communication, the latter process is not ready to process the message, this
message is, for instance, temporarily stored in a buffer from which it can be extracted
as soon as the recipient is able to handle it.

2.3 Concurrent Object-Oriented Programming

In the practice of writing programs in the above distributed programming languages,
an important pattern of interaction appeared to be that between a client and a server
process: the client wants a particular task to be performed and the server is able to do
this. The interaction pattern between these two processes comprises the communication
of a message from the client to the server, followed by a suspension of the client and
the execution of the corresponding task by the server. After completion of the task, the
computed result is sent to the client that subsequently resumes its computation.

This two-way exchange of data between a client and a server can be implemented in
csp via two synchronous communication steps. In the first step, data is communicated
from the client to the server, while the second step comprises the communication of data
from the server to the client. In the meantime, the execution of the client is blocked.
Normally, one server handles requests from multiple clients, each of which has its own
communication channels that connect it to the server. Due to all these concurrent inter-
actions, it can become quite hard for a programmer to keep understanding what is going
on. This led to the introduction of the concept of a rendezvous [4], which collects the
above steps of the interaction between a client and a server into one compound program-
ming construct. This delivers the programmer from defining each individual step of the
interaction.

The concept of a remote procedure call [7] is almost similar to that of a rendezvous.
However, in a remote procedure call, an entirely new server process is created to handle
the call. The client process can thus be viewed upon as performing the corresponding
procedure itself; the execution only takes place at a remote site.

The rendezvous communication mechanism has been adopted in a new genera-
tion of distributed programming languages, which are the languages for concurrent
object-oriented programming [2]. In this paradigm, a program consists of a collection
of processes, which are called objects. These objects have their own set of variables
and additionally are assigned a set of methods that can be invoked to operate on these

Semantics of Agent Communication: An Introduction 157

variables. In fact, an object gives rise to a form of data encapsulation, since other objects
can inspect and change the state of the object only through the invocation of one of its
methods. Typical examples of this paradigm are the object-oriented languages of [1],
which are inspired by the actor model of computation [25], and the language pool [3].
The latter language has been designed to program populations of concurrently operating
objects that dynamically evolve over time. That is, in this language, objects have the
capability to create new objects, which causes the object population to increase. Com-
munication between the objects takes place via method invocations, which are based on
the rendezvous communication mechanism.

2.4 Concurrent Constraint Programming

In addition to the above paradigms for procedural programming, we consider the related
research area of declarative programming. In essence, a declarative program specifies a
particular problem that needs to be solved. The execution of the program then amounts
to finding a solution for it. One class of concurrent declarative languages are the concur-
rent versions of the logic programming language prolog [21, 42], like for instance the
language parlog [10].

At the end of the 1980s, the Concurrent Constraint Programming (ccp) [36] was
developed, which presents a new perspective on the underlying philosphy of logic pro-
gramming. In constraint programming, a problem is expressed declaratively by means
of a set of constraints on variables; Any solution to the problem must satisfy all these
constraints. The paradigm assumes as input a particular constraint system, which is an
abstract model of information. A constraint system consists of a a set of basic pieces of
information that are expressed in a constraint language (such as a decidable fragment of
first-order logic), which can be combined by means of a conjunction operator. Moreover,
the constraint system contains a particular ordering relation of the constraints. Examples
of constraints are: z —y =z, * +y > 4 and P(x,y) A R(y, z).

The revolutionary starting point of ccp is that it abandons the traditional memory-
as-valuation concept of von Neumann-computing, which underlies the traditional pro-
gramming languages. In the traditional view, the memory of a computer is an assignment
of values to variables. However, in ccp, computation is based upon a novel view, namely
the view of the comuter memory as a constraint on the range of values that variables can
take. The idea is that this constraint is refined over and over again, until it represents the
final result of the computation.

The computational model of ccp is based upon a set of concurrently operating pro-
cesses that communicate with each other by means of a global store. This store is repre-
sented by a conjunction of constraints that express partial information on the values of the
variables that are involved in their computations. The idea is that the multiple processes
refine the partial information by adding new constraints to the store, until ultimately,
the store contains the final solution to the problem. An example of an implemented
concurrent constraint programming language is the language Oz [41].

In ccp, the operation tell(yp) is used to add a constraint ¢ to the store. In order for
the processes to communicate and synchronise with each other, there is an additional
operation ask(() that is used to test if the store entails the constraint . If the test
succeeds then the corresponding process resumes its execution, otherwise its execution

158 Rogier M. van Eijk

is suspended until ¢ is indeed entailed by the store through updates by other processes.
So, a process that executes ask(x > 1) to ask for the information > 1, can can resume
its execution after for instance, two other processes have executed tell(z +y > 4) and
tell(y = 3), respectively.

The introduction of the ccp paradigm means an important step in the research on
concurrent programming, because it yields a novel view on programming. Instead of
the manipulation of variables, which is characteristic for the imperative languages, pro-
gramming in this paradigm amounts to the computation with information.

2.5 Agent Communication

In our opinion, the study of programming languages for multi-agent systems can be
thought of as a next step in the research on concurrent programming languages. An
essential aspect of multi-agent systems is that communication between agents proceeds
at a higher level of abstraction in comparison with for instance object-oriented systems.
That is, in object-oriented programming, an object is an encapsulated unit of data, with
which other objects can interact through an invocation of one of its methods. Communi-
cation between agents takes place at a higher level of abstraction, involving propositions
that are believed to be true or false, actions that are requested to be executed and goals
that are to be achieved. One of the first proposed agent-oriented programming languages
is the language agent-0 [39] in which agents are directly programmed in terms of mental
concepts as their beliefs, capabilities and commitments. Other programming languages
followed, like the languages placa [44], concurrent metatem [20], desire [9], agentspeak
[35] and 3apl [26].

With respect to their communication aspects, there is a close connection between
the paradigm of concurrent constraint programming and the field of multi-agent pro-
gramming. In both paradigms, the communication of information plays a central role.
However, whereas ccp is suited for processes that communicate with each other by means
of a global store, in multi-agent systems, agents are typically distributed over multiple
sites [8].

One of the topics of current research on agent communication is the development
of standard agent communication languages that enable agents from different platforms
to interact with each other on a high level of abstraction [31,40]. The most prominent
communication languages are the language kqml [18] and the language fipa-acl [19,
33]. In essence, an agent communication language provides a set of communication acts
that agents in a multi-agent system can perform. The purpose of these acts is to convey
information about an agents own mental state with the objective to effect the mental
state of the communication partner.

Communication actions of agent communication languages are comprised of a num-
ber of distinct layers. Figure 1 depicts the three-layer model of kqml. The first layer of
kgml consists of the informational content of the communication action. This content is
expressed in some agreed-upon language, like a propositional, first-order or some other
knowledge representation language. This correpsponds to the constraint language of ccp.
The second layer of the communication action expresses a particular attitude towards
the informational content in the form of a speech act. Examples of speech acts are tell
to express that the content is believed to hold, untell to express that ¢ is not believed to

Semantics of Agent Communication: An Introduction 159

Communication — T mechanics of communication
Message speech act type
Content expression in an agreed

upon language

Fig. 1. Layers of the agent communication language kqml

hold or ask to ask whether the content is believed to hold. Finally, the third layer deals
with the mechanics of communication, involving aspects like the channel along which
the communication takes place and the direction of the communication (that is, sent or
received).

An example of a communication action is: ¢ ! ask(p). The content layer of the
action consists of the proposition p, the message layer of the speech act ask and the
communication layer of the communication channel ¢ and the operator ‘!I’. As noted, the
operator ‘!” indicates that the message is sent along the communication channel, while
the anticipated receipt of messages is indicated by the operator ‘7’.

For a clear understanding of agent communication we find it important not to consider
communication actions in isolation, but to study them in the larger context of the multi-
agent system in which they are performed. In this larger context, we can study aspects of
conversations and dialogues, such as the specific order in which communication actions
are executed, the conditions under which they take place and the effects they have on
the (mental) states of the agents that are involved (see also [23]).

Therefore, we add one extra level to the three-layer model of kqml, namely the layer
of the multi-agent system. We consider multi-agent systems that are defined in terms of
a programming language. We assume the programming language to contain basic pro-
gramming concepts, such as actions to examine and manipulate an agent’s mental state,
the aforementioned communication actions for interaction between agents, operators
to make complex agent programs such as sequential composition ‘-’, non-deterministic
choice ‘+’, parallel composition ‘&’ and recursion and finally, operators to combine
individual agent programs to form multi-agent programs like parallel composition ‘||’

3 Semantic Approaches

One of the most prominent issues in the study of agent communications concerns their
semantics. The current situation is that agent communication languages like kqml and
fipa-acl are not fully understood from a semantical point of view [46].

In this paper, we consider some essential semantic aspects of agent communication.
‘We will do this on the basis of ACPL (Agent Communication Programming Language),
which is a formal framework that identifies basic aspects of agent communication [13—
17]. In contrast to the languages fipa-acl and kqml, ACPL is supported by a semantic

160 Rogier M. van Eijk

foundation. The computational model of ACPL consists of an integration of the two dif-
ferent paradigms of ccp (Concurrent Constraint Programming) and csp (Communicating
Sequential Processes). The constraint programming techniques are used to represent and
process information, whereas the communication mechanism of ACPL is described in
terms of the synchronous handshaking mechanism of csp.

We consider each of the four layers of agent communication. We start with the se-
mantics of the content layer. Following constraint programming, in ACPL, information
from the content layer is represented in terms of a constraint system. A constraint sys-
tem is an abstract model of information. For the current purposes one can think of it as
a set of basic pieces of information, which can be combined to form complexer con-
straints by means of a conjunction operator A. For instance, constraints can be formulas
from propositional logic, like p and p — ¢. Constraints are ordered by means of an
information-ordering. For instance, ¢ contains less information than p A (p — ¢). Usu-
ally, the reverse of the information-ordering is considered, which is called the entailment
relation, denoted as . For instance, we have p A (p — ¢) F ¢. The entailment relation
defines the semantics of the content layer.

The second layer of agent communication involves speech act types. We assume an
extension of the entailment relation of the constraint system that includes speech acts.
For instance, given the constraints ¢ and , we can stipulate:

untell(yp) F untell(y) < ¢k o,

which expresses the anti-monotonicity of the speech act untell. So, for instance, we
have untell(p) F untell(p A q), or in other words untell(p A g) contains less
information than untell(p). Other stipulations are for instance:

tell(—¢) + untell(y)
untell(p) I/ tell(—y),

which express some possible relations between the speech acts tell and untell. The
reason why untell(y) does not entail tell(—¢) is that an agent can believe neither ¢
nor — to hold.

The third layer involves the communication channel and the direction of communi-
cation. There are many sorts of communication channels like one-to-one, one-to-many,
many-to-one and many-to-many channels. Usually, we will consider one-to-one chan-
nels that have a unique sender and recipient associated with them. At this level, we
consider the interplay between sending and anticipating the receipt of communication
actions. In ACPL, the basic communication mechanism is synchronous. A synchronous
communication step consists of a handshake between an agent that performs a commu-
nication action of the form ¢ ! speech_act; (¢;) and an agent that performs a matching
communication act of the form ¢ ? speech_acty(p2) along the same channel c. For
them to match it is required that the sent message speech_act;(y1) contains at least
as much information as the message that is anticipated to be received, or in terms of the
entailment relation:

speech_act(¢1) b speech_acty(¢2).

For instance, employing the above-mentioned relations between the speech acts tell and
untell, we have that ¢ | tel1l(—p) matches with ¢ 7 untell(p), but ¢! untell(p) does

Semantics of Agent Communication: An Introduction 161

not match with ¢ ? te1l1(—p). By means of the synchronous communication mechanism
different forms of asynchronous communication can be modelled, such as for instance
sending a question without waiting for its answer (see [17] for more details).

Finally, we consider the semantics of the fourth layer. This layer consists of the con-
text in which the communication actions take place: the multi-agent system. We assume
multi-agent systems to be developed in terms of a particular programming language. The
semantics of programming languages provide a rigorous mathematical description of the
meaning of their symbols. An important motive to develop the semantics of a program-
ming languages is that it defines a precise standard for its implementations. Moreover,
the semantics allows us to study and understand the interplay between communication
acts and the programming constructs.

Before we continue let us consider some simple examples.

Example 3. (Semantic distinctions)
The semantics of an agent communication language among others should allow us to
identify in what ways (if at all) the following programs differ:

(1) c!tell(p) - ¢! tell(q)

(2) ¢! tell(q) - c!tell(p)

(3) c!ltell(pAq)

(4) c!'tell(pAgq) +c! tell(p)

In ACPL, (1) and (2) have a different meaning because of the different order in which
messages are exchanged. Programs (1) and (3) semantically differ because of the differ-
ent number of exchanged messages. However, and this may be to some readers’ surprise,
there are circumstances under which there is no semantic difference between (3) and
(4). We will come back to this issue later when we discuss full abstractness.

In the research on semantics of programming languages, there are several different
methods to provide a language with a semantics [24, 43]. The most important methods
are the axiomatic approach, operational approach and denotational approach.

Axiomatic Semantics. The first approach to the semantics of programming languages
is the axiomatic approach, which constitutes an implicit form of giving semantics. In
this approach, the meaning of the language is not explicitly defined but given in terms
of properties that the language concepts satisfy. Usually these properties are formally
derived by means of inference rules from a set of axioms.

The current approaches to the semantics of agent communication languages as kqml
and fipa-acl belong to this class. In these frameworks, the semantics of a program P is
defined by a triple

{pre} P {post},
where pre denotes a precondition that holds before the execution of P and post consti-
tutes a postcondition that hold afterwards. For instance, in [30], a semantics of kqml is
presented in which these conditions are based on speech act theory, which is a model
of human communication [5, 38]. Additionally, following the approach of [45], the ax-
iomatic semantics of the message tell(y) communicated from the agent i to the agent
J can be defined by:

{Bip} tell(p) {OB;p},

162 Rogier M. van Eijk

which expresses that if before the execution of the action tell(¢y) the sender ¢ believes
the information ¢ to hold, then afterwards this information is eventually (denoted by the
operator) believed to hold by the recipient j.

The axiomatic approach is not generally thought of as a satisfactory way of giving
formal semantics [37]. In general, the knowledge of only its properties is not sufficient
for a thorough understanding of the language. The approach is therefore typically used
to provide preliminary specifications of programming languages, which give the user
insight in the important aspects of the languages. The axiomatic semantics should how-
ever be underpinned by other forms of semantics, in particular an operational semantics
that gives insight in the implementations of the language, and a denotational semantics
that provides an exact meaning of the language concepts.

Operational Semantics. An intuitive view of the execution of a program is to describe it
in terms of the evolution of an abstract machine. The state of this machine is comprised
of a control part consisting of the instructions that are to be executed and secondly, a data
compartment that collects the data and information structures that are being manipulated.
The execution of the program is then a sequence of subsequent transitions of the abstract
machine, where the point of control moves along the program instructions. This form of
semantics is referred to as operational semantics [34]. A major advantage of having an
operational semantics is that an implementation of the language can be based upon an
implementation of the corresponding abstract machine. To illustrate the approach, we
consider the following (simplified version of a) transition from ACPL:

c!tell(yp)
(c!'tell(y) - P, state) — (P, state) if state b .

The operational reading of the program ¢ ! tell(¢y) - P is that provided that ¢ is true
of the agent’s current state, which is noted by the condition state - ¢, it amounts to
sending the information ¢ along the communication channel ¢, which is denoted by the
label ¢ ! tell(y), after which the program P denotes the part of the program that will
be executed next. The state of the agent remains invariant under the transition. In the
semantic framework of ACPL, this action of telling information is just one part of a
communication step, the other part is given by the transition of a corresponding agent
in the system that anticipates the receipt of a matching message along c.

Denotational Semantics. In this methodology, each syntactic entity of a programming
language is assigned a meaning, which is called its denotation. This form of semantics
has the advantage that the different parts of a programming language can be studied in
isolation; i.e., it gives a precise definition of what each individual language concept really
means. To illustrate this approach, we consider the (simplified form of the) denotational
semantics of ACPL.

This semantics makes use of communication histories. A communication history
is a sequence of communication actions that have taken place. There are two kinds of
communication histories: local and global. A local communication history consists of
the communication actions that an individual agent has performed. It contains actions of
the form c!speech_act(y) and c¢?speech_act(p). A global history is comprised of the
communication actions that have taken place in a multi-agent system. It contains tuples

Semantics of Agent Communication: An Introduction 163

of the form:
(c, speech_acty (1), speech_acty(p2)).

Here, ¢ denotes the channel along which has been communicated, speech_acty(y1)
and speech_acty(p2) denote the matching communication actions of the sending and
receiving agent, respectively. Matching means speech_act; (1) F speech_acty(p2).

The semantics [| of ACPL maps a program to the set of communication histories
that it generates. This is a set because programs can give rise to more than one execution
due to non-determinism. For instance, we have:

[e!tell(y) - P] = {c!tell(y) h|h € [P]},

which says that the meaning of the program ¢ ! tell(y) - P is given by the set of local
communication histories h as generated by the program P, which are prefixed with the
act of telling the information ¢ along the channel c.

4 Semantic Properties

In defining the denotational semantics of programming languages, the principle of com-
positionality plays a crucial role. This principle states that the meaning of a compound
program can be derived from the meaning of its components. For instance, the denota-
tional semantics of the parallel composition of two agent programs P; and P, can be
derived from the denotational semantics of its two programs. That is, the global com-
munication history of the multi-agent program P; || P, consisting of matching commu-
nication actions can be derived from the local communication actions of the individual
agent programs P; and P». Formally, this can be defined as follows:

[Pi]| P2l ={h|h|P €[P]and h|P; € [P]}

where h [P; denotes the projection of the global communication history h to the com-
munication actions of the agent P;, for ¢ = 1, 2. So, for instance, we have:

[P1] = {(c ! ask(p)) - (d ? untell(p)) U
(! ask(p)) - (d ? tell(p))}

[Ps] = {(c? ask(p)) - (d ! te1l(-p))}
[Py || P] = {(c,ask(p), ask(p)) - (d, tell(~p), untell(p))}

The reason why the global history (¢, ask(p), ask(p)) - (d, tell(—p), tell(p)) is not
part of [Py || P2] is that the communication acts d ! tel1(—p) and d ? tell(p) do not
match.

An equivalent formulation of the principle of compositionality is that if one of the
components of a program is replaced by a component that has exactly the same meaning,
the meaning of the program is preserved. Formally, this is phrased as follows:

If [P1] = [P2] then for all contexts C we have [C[Py] | = [C[Ps] |-

164 Rogier M. van Eijk

In the area of concurrency, the semantics of programming languages are usually
defined relative to a notion of observable behaviour, which exactly captures the aspects
of the behaviour of the systems that an external observer is interested in. In reasoning
about the behaviour of multi-agent systems, we are typically not interested in all details
of the execution of the system. Important aspects are the communication histories and the
agents’ mental states at some specific points during the execution, such as for instance
right before and after a performed communication action.

Furthermore, a semantics is called correct if the observable behaviour can be ex-
tracted from the semantics. As an example we take as our observable behaviour whether
a multi-agent system enters into a deadlock situation or successfully terminates. In order
for the above denotational semantics [] to be correct, it needs to be refined with dead-
locking behaviour. A solution to this is the introduction of failure sets [6]. In ACPL,
failure sets consist of all communication actions that do not match with the current
communication action that an agent wants to execute next. The corresponing form of
semantics is referred to as failure semantics.

Finally, the semantics of a programming language can make unnecessary distinc-
tions. This is the case if two programs have a different meaning but this difference
cannot be observed, that is, there is no context in which they exhibit different observable
behaviour. A semantics that does not make such unnecessary distinctions with respect
to the observable behaviour is called fully-abstract. The failure semantics of ACPL is
proven to be fully-abstract [16].

For instance, consider again the programs (3) and (4) of Example 3. It can be formally
proven that there does not exist a context in which the programs (3) and (4) exhibit
different observable behaviour. As the failure semantics of ACPL is fully-abstract, both
programs thus have the same failure semantics. The crucial observation here is that any
communication action that matches ¢! tell(p) also matches ¢! tell(pAgq). In general,
we could say that sending a message includes sending all messages that contain less
information. A similar property holds for the anticipated receipt of messages. There is
no observable difference between the following programs (5) and (6):

(5) ¢ ? tell(p)
(6) ¢ ?tell(p) +c?tell(pAq)

Any communication action that matches ¢ 7 tell(p A) also matches ¢ ? tell(p). In
other words, anticipating the receipt of a messages includes anticipating the receipt of
all messages that contain more information.

Once the semantics of a programming language has been established, it allows us to
consider the specification and verification of agent communication. Verification amounts
to the process of checking whether a program satisfies desired behaviour as expressed by
a specification. Specifications are usually defined in what is called an assertion language.
An example of an assertion in the assertion language of ACPL is the following assertion
v:

Vi(h(i) = (¢, ask(p), ask(p)) — Fj(G > i A

((h(j) = (d, tell(p), tell(p)) A Belgp(p))) V h(j) = (d,untell(p),untell(p)))).

If we suppose that c and d are one-to-one communication channels that connect the agents
A and B, the above assertion expresses that if at some point 4 in the communication

Semantics of Agent Communication: An Introduction 165

history h agent A asks agent B whether the proposition p holds then at some point j later
in history, either agent B tells A that it believes p to hold after which B also believes
that holds or agent B tells A that it does not believe p to hold.

In the above assertion we find an example of a conversation policy [22], namely the
policy that if an agent A is asked by an agent B whether a particular proposition holds
then A subsequently answers B whether it believes the proposition to hold or not.

Note that both the multi-agent programming language and the assertion language
have their own syntax and semantics. They are linked through the underlying compu-
tational model: A particular multi-agent program satisfies a particular assertion if the
assertion is true for all computations that the multi-agent program gives rise.

In [17], a compositional verification calculus for ACPL is defined. This calculus can
be used to verify that a particular multi-agent system satisfies the above assertion ¥. It
is comprised of rules of the form:

P sat @1 --- P, sat &,

P sat @
where P denotes a multi-agent program that is composed of the components P, . .., P,
and @ constitutes an assertion that is obtained from the assertions @1, ...,®,,. These

rules can be used to formally derive the specification of the behaviour of the program P
can from the specification of its components. On the basis of this calculus it is possible to
implement (semi-)automatic verification procedures. This is a subject of future research.

5 Concluding Remarks

In this paper, we have considered the semantics of agent communication. We have
sketched the research on communication in concurrent programming paradigms, start-
ing with communication via shared variables and resulting in communication in multi-
agent systems. We have considered the four different layers that play a role in giving
semantics to agent communication and the main approaches for developing semantics of
programming languages. On the basis of the ACPL framework (Agent Communication
Programming Language) we have discussed semantic issues involved in programming
agent communication, including communication histories, compositionality, observa-
tional behaviour, failure semantics and full abstractness. Finally, we have considered the
specification and verification of agent communication. In our view, these issues play an
important part in defining a semantic foundation for agent communication languages as
kqml and fipa-acl, which is a subject of further research.

Acknowledgements

The author would like to thank Mehdi Dastani for his valuable comments on an earlier
draft of this paper. The author would also like to express his gratitude to Frank de Boer,
Wiebe van der Hoek and John-Jules Meyer for their valuable cooperation on the subject
of agent communication over the years.

166

Rogier M. van Eijk

References

1.

2.

10.

11.

12.

13.

16.

17.

18.

19.

20.

G. Agha. Concurrent object-oriented programming. Communications of the ACM, 33(9):125—
141, 1990.

G. Agha, P. Wegner, and Yonezawa. Research Directions in Concurrent Object-Oriented
Programming. The MIT Press, Cambridge, Massachusetts, 1993.

. PH.M. America. Issues in the design of a parallel object-oriented language. Formal Aspects

of Computing, 1:366-411, 1989.

. G.R. Andrews. Concurrent Programming, Principles and Practice. The Benjamin Cummings

Publishing Company, Inc., Redwood City, California, 1991.

. J.L. Austin. How to do Things with Words. Oxford University Press, Oxford, 1962.
. J.A. Bergstra, J.W. Klop, and E.-R. Olderog. Readies and failures in the algebra of commu-

nicating processes. SIAM Journal on Computing, 17:1134-1177, 1988.

. A.D. Birrell and B. J. Nelson. Implementing remote procedure calls. ACM Transactions on

Computer Systems, 2:39-59, 1984.

. A.H Bond and L. Gasser. Readings in Distributed Artificial Intelligence. Morgan Kaufmann

Publishers, San Mateo, CA, 1988.

. F. Brazier, B. Dunin-Keplicz, N. Jennings, and J. Treur. Formal specification of multi-agent

systems: a real-world case. In Proceedings of International Conference on Multi-Agent Sys-
tems (ICMAS’95), pages 25-32. MIT Press, 1995.

K. Clark and S. Gregory. Parlog: parallel programming in logic. ACM Transactions on Pro-
gramming Languages and Systems, 8(1):1-49, 1986.

E.W. Dijkstra. Solution of a problem in concurrent programming control. Communications
of the ACM, 8(9):569, 1965.

E.W. Dijkstra. Cooperating sequential processes. In F. Genuys, editor, Programming Lan-
guages, pages 43—-112. Academic Press, New York, 1968.

R.M. van Eijk. Programming Languages for Agent Communication. PhD thesis, Utrecht
University, Mathematics and Computer Science, 2000.

. R.M. van Eijjk, ES. de Boer, W. van der Hoek, and J.-J.Ch. Meyer. Information-passing and

belief revision in multi-agent systems. In J. P. M. Miiller, M. P. Singh, and A. S. Rao, editors,
Intelligent Agents V, Proceedings of 5th International Workshop on Agent Theories, Archi-
tectures, and Languages (ATAL’98), volume 1555 of Lecture Notes in Artificial Intelligence,
pages 29-45. Springer-Verlag, Heidelberg, 1999.

. R.M. van Eijk, E.S. de Boer, W. van der Hoek, and J.-J.Ch. Meyer. On dynamically generated

ontology translators in agent communication. International Journal of Intelligent Systems,
16(5):587-607, 2001.

R.M. van Ejjk, E.S. de Boer, W. van der Hoek, and J.-J.Ch. Meyer. Fully-abstract model for the
exchange of information in multi-agent systems. Theoretical Computer Science. To appear,
2002.

R.M. van Eijk, E.S. de Boer, W. van der Hoek, and J.-J.Ch. Meyer. A verification framework
for agent communication. Autonomous Agents and Multi-Agent Systems. To appear, 2002.
T. Finin, D. McKay, R. Fritzson, and R. McEntire. KQML: An Information and Knowledge
Exchange Protocol. In Kazuhiro Fuchi and Toshio Yokoi, editors, Knowledge Building and
Knowledge Sharing. Ohmsha and IOS Press, 1994.

Foundation For Intelligent Physical Agents FIPA. Specification part 2 — agent communication
language. Version dated 10th October 1997, 1997.

M. Fisher. A survey of concurrent MetateM— the language and its applications. In Proceedings
of First International Conference on Temporal Logic (ICTL’94), volume 827 of Lecture Notes
in Computer Science, pages 480-505. Springer-Verlag, 1994.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

32.

33.

34.

35.

36.

37.

38.

39.
40.

41.

42.

43.
44.

Semantics of Agent Communication: An Introduction 167

P. Gibbens. Logic with Prolog. Oxford Applied Mathematics and Computing Science Series.
Oxford University Press, New York, 1988.

M. Greaves, H. Holmback, and J. Bradshaw. What is a conversation policy? In F. Dignum
and M. Greaves, editors, Issues in Agent Communication, volume 1916 of Lecture Notes in
Artificial Intelligence, pages 118—131. Springer-Verlag, Heidelberg, 2000.

F. Guerin and J. Pitt. A semantic framework for specifying agent communication languages.
In Proceedings of fourth International Conference on Multi-Agent Systems (ICMAS-2000),
pages 395-396, Los Alamitos, California, 2000. IEEE Computer Society.

C.A. Gunter. Semantics of Programming Languages: Structures and Techniques. Foundations
of Computing Series. The MIT Press, Cambridge, Massachusetts, 1992.

C. Hewitt. Viewing control as patterns of passing messages. Artificial Intelligence, 8(3):323—
364, 1977.

K.V. Hindriks, E.S. de Boer, W. van der Hoek, and J.-J.Ch Meyer. Agent programming in
3APL. Autonomous Agents and Multi-Agent Systems, 2:357-401, 1999.

C.A.R. Hoare. Monitors: an operating system structuring concept. Communications of the
ACM, 17(10):549-557, 1974.

C.AR. Hoare. Communicating sequential processes. Communications of the ACM,
21(8):666-677, 1978.

G. Jones. Programming in Occam. Prentice-Hall International, New York, NY, 1987.

Y. Labrou and T. Finin. Semantics for an agent communication language. In M.P. Singh,
A. Rao, and M.J. Wooldridge, editors, Proceedings of Fourth International Workshop on
Agent Theories, Architectures and Languages (ATAL’97), volume 1365 of Lecture Notes in
Artificial Intelligence, pages 209-214. Springer-Verlag, 1998.

Y. Labrou, T. Finin, and Y. Peng. Agent communication languages: The current landscape.
IEEE Intelligent Systems, 14(2):45-52, 1999.

P. Noriega and C. Sierra, editors. Agent Mediated Electronic Commerce, volume 1571 of
Lecture Notes in Computer Science. Springer Verlag, 1999.

J. Pitt and A. Mamdani. Some remarks on the semantics of FIPA’s agent communication
language. Autonomous Agents and Multi-Agent Systems, 2(4):333-356, 1999.

G. Plotkin. A structured approach to operational semantics. Technical Report DAIMI FN-19,
Computer Science Department, Aarhus University, 1981.

A.S. Rao. Agentspeak(L): BDI agents speak out in a logical computable language. In
W. van der Velde and J.W. Perram, editors, Agents Breaking Away, volume 1038 of Lec-
ture Notes in Artificial Intelligence, pages 42-55. Springer-Verlag, 1996.

V.A. Saraswat. Concurrent Constraint Programming. The MIT Press, Cambridge, Mas-
sachusetts, 1993.

D.A. Schmidt. Denotational Semantics: A Methodology for Language Development. Allyn
and Bacon, Inc. Newton, Massachusetts, 1986.

J.R. Searle. Speech acts: An essay in the philosophy of language. Cambridge University Press,
Cambridge, England, 1969.

Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60:51-92, 1993.

M.P. Singh. Agent communication languages: Rethinking the principles. IEEE Computer,
31(12):40-47, 1998.

G. Smolka. The Oz programming model. In J. van Leeuwen, editor, Computer Science Today,
volume 1000 of Lecture Notes in Computer Science, pages 324-343, Berlin, 1995. Springer-
Verlag.

L. Sterling and E. Shapiro. The Art of Prolog. The MIT Press, Cambridge, Massachusetts,
1986.

R.D. Tennent. Semantics of Programming Languages. Prentice Hall, Hertfordshire, 1991.
S.R. Thomas. PLACA, an Agent Oriented Programming Language. PhD thesis, Computer
Science Department, Stanford University, Stanford, CA, 1993.

168 Rogier M. van Eijk

45. M. Wooldridge. Verifying that agents implement a communication language. In Proceedings
of the Sixteenth National Conference on Artificial Intelligence (AAAI-99), pages 52-57, 1999.

46. M. Wooldridge. Semantic issues in the verification of agent communication. Autonomous
Agents and Multi-Agent Systems, 3(1):9-31, 2000.

47. M. Wooldridge and N. Jennings. Intelligent agents: theory and practice. The Knowledge
Engineering Review, 10(2):115-152, 1995.

Agents with Bounded Temporal Resources

Michael Fisher and Chiara Ghidini

Logic and Computation Group, Department of Computer Science,
University of Liverpool, Liverpool L69 7ZF, United Kingdom,
{M.Fisher,C.Ghidini}@csc.liv.ac.uk

Abstract. In this chapter we introduce a common framework for both
the logical specification and execution of agents. This logical framework
provides the basis for the specification and execution of agents com-
prising dynamic (temporal) activity, deliberation concerning goals, and
reasoning about belief.

We here focus in particular on the ability of this approach to capture an
important aspect of practical agents, notably their resource-bounded na-
ture. We present a logic in which resource-boundedness can be specified
both in terms of temporal reasoning, and reasoning about belief. Then
we consider how specifications within this logic can be directly executed.
The mechanism we use to capture finite resources in reasoning about be-
liefs is to employ a multi-context representation of belief, thus providing
tight control over the agent’s reasoning capabilities where necessary. The
mechanism we use to capture finite resources in temporal reasoning is to
use a linear time temporal logic with both finite past and finite future.

1 Introduction

The METATEM [1] and Concurrent METATEM [8] languages were developed in
order to provide high-level mechanisms for specifying and executing individual
agents and multi-agent systems, respectively. Both are based upon the principle
of specifying an agent using temporal logic, and then directly executing this
specification in order to provide the agent’s behaviour. This approach provides
a high-level programming notation, while maintaining a close link between the
program and its specification.

This approach has provided a useful basis for experimentation with both the
logical representation and animation of agents and most of the research work
in this area is now devoted to develop more refined versions of the specification
language in order to be able to use this framework for ‘real world’ agents.

First, the basic METATEM system was extended in [9] with mechanisms for
representing deliberation within an agent. Deliberation is the process that an
agent carries out in order to decide which goal/action/plan to attempt. Inspired
by the success of the BDI framework [17] in representing deliberation, METATEM
was extended with explicit mechanisms for ordering goals. Goals, corresponding
to both desires and intentions in the BDI model were, in turn, represented by
temporal eventualities. This then allowed deliberation to be represented using

M. d’ Inverno et al. (Eds.): UKMAS 1996-2000, LNAT 2403, pp. 169-184, 2002.
© Springer-Verlag Berlin Heidelberg 2002

170 Michael Fisher and Chiara Ghidini

user defined functions providing an ordering on the satisfaction of eventualities.
More recently, we have extended the METATEM system in order to capture
the key concepts of goals, abilities, beliefs and a more sophisticated notion of
deliberation between both individual agents and multi-agent systems, using only
combination of temporal aspects, agent beliefs and agent abilities [12].

Another stream of work concerns providing METATEM with a simple and
concise mechanism for dealing with a further important aspect of ‘real’ agents,
namely their resource-bounded nature [3]. Thus, in [10] we modify the logic used
in [9] by replacing the standard KD45 modal logic with a multi-context represen-
tation of belief [14,2,13]. This logic is a modification of KD45 which permits a
simple execution mechanism to be employed over belief contexts. Consequently,
it allows us to tightly control the use of belief contexts within deliberative agents
and so to represent resource-bounded reasoning about belief. In [11], we took a
step further examining how the dynamic agents that have resource bounds vary-
ing over time can be represented.

In this chapter we continue this stream of work investigating the resource-
bounded aspects of temporal reasoning. Thus, rather than allowing the agent to
reason about an infinite possible future, we will examine how the agent can be
restricted so that it has resource bounds on its temporal reasoning process.

The paper is structured as follows. In Section 2, we introduce a running ex-
ample that will be used throughout the paper. In Section 3, we review the syntax
and semantics of the Temporal Logic of Bounded Belief (TLBB). In Section 3.3
we extend TLBB in order to incorporate resource-bounded aspects of temporal
reasoning. In Section 4, we outline how implementation can be achieved through
direct execution. In Section 5, we provide the logical specification and the ex-
ecution of the example introduced in Section 2. Finally, we discuss conclusions
and future work.

2 An Example

We recall here the “Three Wise Man” (TWM) puzzle, and use it to illustrate how
our framework can be used to formalize reasoning about belief within a group of
agents. The TWM, first introduced by McCarthy in his well known paper on the
formalization of puzzles involving knowledge [15], provides a classical example
of the scenario we are addressing:

A certain King wishes to test his three wise men. He arranges them in a
circle so that they can see and hear each other and tells them that he will
put a white or black spot on each of their forehead but that at least one
spot will be white. In fact all three spots are white. He then repeatedly
asks them “do you know the color of your spot?”. What do they answer?

A group of agents (the three wise men) seek cooperation in order to achieve a
particular goal, that is, to answer correctly the question “do you know the color
of your spot?”. Since agents are not alone, agents may have beliefs about other
agent’s belief in addition to their knowledge about the world. Moreover, the

Agents with Bounded Temporal Resources 171

puzzle involves some temporal aspects given by the fact that the king repeatedly
asks them the crucial question and they update their beliefs over time as a
consequence of the responses from the other agents.

We assume that the wise men answer simultaneously. Under this assumption,
did you figure out the answers of the wise men? The first and second time the
King asks the question, wise men will answer “I don’t know” , while the third time
the wise men will answer “My spot is white”!. Nevertheless, depending on the
reasoning capabilities of the men, the puzzle might have different outcomes [5].
In particular, it may be the case that a wise man, say man 3, is not so wise and
is not able to reason about more than 2 temporal steps in the time line. In this
paper we consider two simple cases. In the first scenario, the wise men have full
reasoning capabilities and are able to solve the puzzle. In the second scenario
wise man 3 is able to reason about a very short future in time. Therefore, the
third time the king repeat the question he won’t be able to give the correct
answer.

3 Temporal Logic of Bounded Belief

We recall here the syntax and semantics of our base logic, called a Temporal
Logic of Bounded Belief, or TLBB for short. TLBB combines propositional lin-
ear temporal logic [7], with a multi-context belief logic [14]. While temporal
reasoning is essentially infinite, reasoning about beliefs can be bounded at a cer-
tain depth. In order to review this approach, we first introduce a simple temporal
logic based on a linear, discrete model of time (section 3.1), then we combine it
with a multi-context belief logic (Section 3.2).

3.1 Representing Temporal Reasoning

The language of the temporal logic used here is formally defined as the smallest
set of formulae containing: a set, P, of propositional constants, the symbols true,
false, and start, and being closed under propositional connectives —, V, A, =
and temporal operators O, &, [], U, and W.

As usual, the semantics of this logic is defined via the satisfiability relation
on a discrete linear temporal model of time, m, with finite past and infinite fu-
ture [7]. Thus, m is a sequence of states sg, $1, S2, 3, ... which can be thought
of as ‘moments’ in time. Associated with each of these moments in time, repre-
sented by a temporal index v € N, is a valuation 7 for the propositional part of
the language.

Intuitively, the temporal formula ‘O A’ is satisfied at a given moment in time
if A is satisfied at the next moment in time, ‘{>A’ is satisfied if A is satisfied
at some future moment in time, ‘[JA’ is satisfied if A is satisfied at all future
moments in time. ‘AU B’ is satisfied if B is satisfied at some future moment in

! Generalising to a set of k wise men, there is a “proof” that the first k — 1 times
the King asks the question, the wise men will answer “I don’t know”, while the k-th
time they will answer “My spot is white”.

172 Michael Fisher and Chiara Ghidini

start OA A

— ¢ o o ————

A A A A
.—:1—.—.—._____

AUB A B
o—:‘—o—o—o—————

Fig. 1. Pictorial semantics of temporal operators.

time, and A is satisfied in all moments in time until B occurs, ‘AW B’ is satisfied
if A is always satisfied unless B occurs. Notice that B might never occur. In this
case A would be always satisfied. The graphical representation of the semantics
of QA QA [JA’, and ‘AU B’ is given in the four different sequences of time
in Figure 1. We can graphically represent ‘AW B’ as the combination of ‘AU B’
and ‘[JA’. In fact either B is satisfied some time in the future, or B is never
satisfied. In the first case the representation is similar to the one of ‘AU B’, in
the second to ‘[JA’. Notice also that we use a special propositional constant
start, which is only true at the initial moment in time.

Formally, the semantics of the temporal language used here is defined in
Figure 2. Satisfiability and validity are defined in the usual way.

(m, 0) = start

(m,u) = true
(m,u) = p iff w(u,p) =T (where p € P)
(m,u) = A iff (m,u)£ A

(muy=AvB iff (m,u)=A or (m,u)l=B

(m,u)= OA iff (mu+1l)EA

YE A if Vo' € N. if (u < ') then (m,u')E A
Ve QA if ' eN (u<u) and (m,u')E A
)

EAUB iff Ju €N.such that (v’ > u) and (m,u') | B,
and Vu"” € N, if (u < v’ <u') then (m,u”)|E A

(m,u)E AWB iff (m,u)E= AUB or (m,u)l= [JA

Fig. 2. Formal semantics of the temporal language.

Agents with Bounded Temporal Resources 173

3.2 Representing Belief-Bounded Reasoning

An extension of the logic presented above is introduced in [10], where the propo-
sitional linear temporal logic introduced above is combined with a multi-context
belief logic [14,13]. While temporal reasoning is essentially infinite, this logic,
called TLBB, permits a simple execution mechanism to be employed over a finite
structure of belief contexts and so to represent resource-bounded reasoning.
The main idea in defining TLBB, is to add to the language a set I of belief
predicates, {Bi, ..., By}, where formulae of the form ‘B;¢’ mean “agent i be-
lieves that ¢”, and to structure the belief of an agent e about a set {1,...,n} of
agents, into a structure of belief contexts such as that presented in Figure 3. In-
tuitively, the belief context e represents the knowledge and beliefs of the external
agent ¢, the belief context 3B; represents the beliefs of agent 1 at the third mo-
ment in time (from the point of view of €), 3B12B, represents the beliefs of agent
1 at the third moment in time about the beliefs agent 4 at the second moment in
time (from the point of view of €), and so on. The set of belief contexts that e is
able to build is represented by the set, I*¥ C (N x I)*, of (possibly empty) strings
of the form wy By, ... uxBp, with u; € N, By, € I, and |u1 By, ... uxBp, | < 2k.
We use a to denote a generic belief context in I*. Intuitively, each o represents
a possible nesting of the belief operators at certain moments in time. The fact
that |a| < 2k, intuitively means that € is able to reason about formulae with a
specific bound in the nesting of the belief operators, that is, a bound equal to k.

Fig. 3. The structure of belief contexts

The semantics of the TLBB language is based on the semantics for contextual
reasoning proposed in [13], and extends the one presented in [10]. Following this
approach, a model for the TLBB language is defined over a structure obtained
as follows. First we associate to each belief context «v a set M, of discrete linear
temporal models of time m. Then, we define a relation R satisfying:

1. RC My X Maus,)

aEI"',uEN,BiEI(

2. For each mqaup; € Moy, there must exist a my € M, such that mqRmauB, -

174 Michael Fisher and Chiara Ghidini

3. For each m, € M, there must exist a mqyup, € Maup, such that mqRma.B,; .

A model for the TLBB language is a pair M = ({My}ocrr, R). Each mqy € M,
provides a valuation 7, for the propositional part of the language and for the
formulae of the form B;i, which are considered atomic formulae. The proposi-
tional and temporal part of the language is interpreted in the usual way via the
satisfiability relation |= in the appropriate m,. We say that a model M satisfies
a formula ¢ in the belief context « if, and only if, all the m, € M, satisfy ¢.
For the sake of simplicity we use the symbol M, = ¢ to denote that all the
meq € M, satisfy ¢.

The intended semantics of the belief predicates B; is defined by introducing
appropriate constraints among pairs of belief contexts o and auB;. Roughly
speaking the intended relation between the formula, e.g., B;1 at the u-th moment
in time in the belief context € and v in the (initial moment in time of the) belief
context uB; is that they both mean that € believes that ¢ believes that ¢ in the
u-th moment in time. In order to ensure that B;v is satisfied in the u-th moment
in time in the models for the belief context € if, and only if, ¢ is satisfied in the
models for belief context uB; we impose the additional constraints (1) and (2)
on the definition of model:

if (Mg, u) E Bip and mqRmaqyp, then mayup, = ¢ (1)
if maup, E ¢ for all maq,p, with ma,p, Rme then (mq, u) = Bip (2)

These constraints force the class of models we consider here to be contained in
the class of models for a multi-context logic equivalent to modal K [13,2]. In
addition, constraints (3) and (4)

if (mq,u) E Bip and moRmayp, then maup, = Big (3)
if (Mg, u) = —-Bip and mqRmayp, then mayp, E B (4)

force M to satisfy a multi-context version of modal axioms 4 and 5 respec-
tively [4], while condition 3. in the definition of R forces M to satisfy a multi-
context version of modal axioms D.

3.3 Representing Temporal-Bounded Reasoning

Given that we can bound the agent’s ability to reason about belief, then can
we do the same with temporal reasoning? In this section we describe a variation
of the TLBB given above, and we associate to each belief context a a discrete
linear finite temporal model of time m,,.

In order to do that we modify the definition of the temporal language adding
the temporal operator ® to the set O, <), [, U, and W. The temporal
operators (® (strong next) and O (weak or standard next) have similar meaning.
Both ®A and O A are satisfied if A is satisfied at the next moment in time. The
difference between them is that O A is satisfied also if there is no next moment
in time, while (A is satisfied only if a next moment exists, and satisfies A.

Agents with Bounded Temporal Resources 175

Since the model we are considering is finite, we can easily see that the truth
values of O A and (A coincide in all the moments in time except the last one.
At the last moment in time O A will always be satisfied, regardless of A. On the
contrary (9 A cannot be satisfied for any formula A. Formally,

mauyE QA iff Yu+1l(mu+1)EA
(myuyl= ©A iff Ju+ 1 such that (m,u+ 1) A

As an example of how we can use the weak next (O operator in order to
bound the temporal reasoning let us consider formulae of the form

start = (O"false,

00...0.

where O™ is a shorthand for ~—~
))) _ n times
This formula is only satisfied in temporal models composed of a sequence of (at

most) n states. Therefore we can use formulae of this form for bounding the
agent’s ability to perform temporal reasoning. For instance in the second ver-
sion of the TWM example, the wise men only can consider two moments in time
in their reasoning. This will be done by imposing the formula start = O?false
to hold in the specification of the example.

4 Implementation

We choose to retain a close link between theory and implementation by directly
executing each agent specification. The mechanism used to carry out this ex-
ecution is based upon the work in [9] which is, in turn, a modification or the
METATEM approach [1]. Rather than going into detail concerning this approach,
we simply outline the key elements below. A detailed description of the execu-
tion process, extended to handle formulae in TLBB, can be found in [10]. The
only difference here is that the argument recording the depth of nesting of the
belief operators (contexts) is not fixed but depends on the value of the predicate
bound.

— Specifications of agent behaviour in TLBB are first translated to a specific
normal form, SNF gpg, of the form depicted in Figure 4

— The execution essentially forward chains through a set of such rules, gradu-
ally constructing a model for the specification.

— If a contradiction is generated, backtracking occurs.

— Eventualities, such as ‘{>move’ are satisfied as soon as possible; in the case
of conflicting eventualities, the oldest outstanding ones are attempted first.
The choice mechanism takes into account a combination of the outstanding
eventualities, and the deliberation ordering functions [9].

— As each B; operator is expanded, a record of the depth of nesting of such
operators is kept. Once the current bound is reached, exploration of the
current belief context ceases.

176 Michael Fisher and Chiara Ghidini

— Asin [10], the idea is that, if the original specification is satisfiable, then the
execution algorithm will eventually build a model for the specification. Note
that, as execution is not the focus of this paper, we will not consider such
correctness here.

— If we consider the finite future case, we need to modify the step rule so that
it deals both with O and © formulae. Also, during execution the step rule
is are applied and a next temporal state is created if and only if the current
temporal state does not satisfy the formula Ofalse.

start = \/ ly (an snitial rule)
b=1
g r
/\ ke = O |: \/ lb] (a step rule)
a=1 b=1
g
/\ ko = Ol (a sometime rule)

2
Il
-

=
&

\/ zb] (a belief rule)
b=1

e
Il
—

= =B,

g
&

o
Il
-

\/ lb:| (a belief rule)
b=1

Fig. 4. The normal form SNFgp

5 Executing the Example

In the following we present the logical specification of the three wise men de-
scribed in Section 2, and the executions of the specification. We focus here on
wise man 3 trying to answer the third utterance of the crucial question.

The Specification. Let us start with the specific knowledge and beliefs of the
system, that is the knowledge and beliefs that must be satisfied in the belief
context labelled by €. We use the propositional constants Wy, W5, and W3 to
express statements about the spots, W; meaning that the spot of wise man i is
white. We provide a specification similar to the one given in [6] for the similar
muddy children problem.

1) We take the case where all wise men have white spots
start = W, (A)

start = Wy (B)
start = W3 (C)

Agents with Bounded Temporal Resources 177

2) We use the variables z, y, and z to denote times 0, 1, and 2.

start = « (D)
r= Qy (E)
y= Oz (F)

Let us now turn to the facts that all the wise men know, that they know that
they know, and so on. In other words, the information that must be satisfied in
every belief context.

1) The colors of the spots never change. That is, if wise man ¢ has a white spot,
then the spot remains white, if it is not white then it remains not white:

-W; = O-W; (H)

2) each wise man can see the spot of his colleagues:

Wj = Bin) #] (I)
—\Wj = BiﬂWj) 75] (J)

3) the king announces that at least one of the spots is white:
WiV Wy V Wa (K)

4) At time 1 wise men do not know the color of their spot, and at time 2 wise
men do not know the color of their spot:

y = ~B;W; (L)
z = _\BiWi (M)

5) At moment in time x wise men know it is time z. The same for y and z:

r = Bz (N)
y= By (0)
z = B;z (P)

The SNFpp rules used in the execution process are shown in Figure 5. They
are obtained by translating Equations (A)—(P) into the specific normal form
outlined in Section 4.

First Scenario. The execution process begins by examining the initial rules at
the initial state and ensuring that all the formulae entailed by start are true
in the initial temporal state in the context € representing the knowledge of the
system about the situation. This process leads to the construction of the initial
state of a temporal model in context e, with the formulae x, W7, W5, and W3
all being true. Then execution uses rule K to make Wy vV Wy V W3 true, rule I to
make BoWy, BsWy, BiW3, BoW3, BiWs, B3Ws true, and rule N to make Bz,
Bsox, Bsx true.

178 Michael Fisher and Chiara Ghidini

A. start = W, I. Wj = Bin

B. start = W» J. jI/Vj = BiﬁWj

C. start = W3 K. true = Wy v Wy VvV Ws
D. start =z L. y=-B;W;

E. = Oy M. z = -B;W;

F.y= Oz N. x = B;x

G. W; = OWZ 0. Yy = Biy

H -W; = O-W; P. 2= Bz

Fig. 5. The SNFBB rules.

x ‘/Vl VVZ VVg

Wi v Wy Vv Wy

BoW, BsW; BiWs
ByWs BiWy BsWs,
Bix Byx Bsx

€

Then the execution process explores the belief contexts By, Bo and B3 making
the appropriate formulae true. As we said previously, we focus on Bj as we are
interested in the reasoning process of wise man 3. Since there are no constraints
on the truth value of B3W3 the execution continues creating two models in the
€0B3 belief context. One where W3 is true, and one where —=Wj is true.

z W, Wy Wy

Wi Vv Wy Vv Wy

BoWy BsW, BiWs
ByWs BiWy BsWs,
Bix Byx Bax

Bs
¥
z Wp Wy
WiV Wa V Vs

BsWy BsW, BiWs
BsWs BiWs BsWs,
Byxz Bsx Bsx

Ws

x VVl W/z

Wy v Wy v Wy

BoWy BsW; Bi—=Ws
By=W35 BiWs B3W,
Bix Bsx Bsx

—Ws

e0B3

Execution explores all the belief contexts “below” €0Bj3 until the depth bound
is reached. Then execution uses rule E to create a next step for one of the two
temporal models in the belief context €0B3. This new temporal state satisfies y.

Agents with Bounded Temporal Resources

179

T VVl VVQ VV3
Wy v Wyv Wy
ByWyr BsWi BiWs
BoWs BiWy BsW,
Bix Bsx Bsx
€
Bs
]
z Wi Wy
WiV Wy Vv Ws
BWy BsWi BiWs
BsWs BiWs BsWa,
BliL‘ Bz:L‘ Bg:L‘
Ws
B. xT VVI WQ
3 WiV WaV W
BoWy BsW; Bi—=Ws
7l Bo-Wa BiW. BsW
Bix Bsx Bsx
W3

e0Bs3

Then execution uses rule L to make =By W7, ~ByWs, ~B3W3 true, rules G and H
to make Wy, Wy, =Wj3 true, rule O to make B1y, Boy and Bsy true, and rules
I, J and K as in the previous steps. This process leads to:

Bs

z Wy Wy
Wy Vv Wy Vv Wy
BoWy BsWy BiW3
BoWs BiWy BsW,
Bix Byx Bsx

W3

yat

¥

T W1 VVQ

Wy v Wy v Wy

ByWi BsW; BiWs
BoWs BiWa, B3Ws
Biyx Byr Bsw

Wi

z W, Wy

Wi v Wy Vv Wy
BoWy BsW;
By=Ws BiWs
Byx Box Bsx
-Ws

B1—=Ws

y ~BiW

—B3W3
Byy

Wi v Wy Vv Wy

ByWy
By=W3

—BoWy
Wsy
Bsy

Wy
Bay

-Ws

BsWy
BiW,

B—~Ws3
BsWs,

e0B3

Then execution expands creates the belief contexts By, By and Bj related to
the current moment in time and makes the appropriate formulae true. Let us

180 Michael Fisher and Chiara Ghidini

explore belief contexts B; (for the sake of simplicity we ignore formulae which
are irrelevant to the reasoning process of wise man 3 we are interested in).

z Wy Wy Wi
Wiv Wyv Wy

BsWy BsW, BiWs
ByWs BiWy BsWs,
Byx Byxr Bsz

Bs
¥
x W, Wy
Wy Vv Wy Vv Ws
BoWy, BsWy, ByWjs
BWs BiWa B3Wa
Bix Bsx Bsx
W3
B. x VVl VVZ y -B 1 I/Vl -B 2 W2
3 Wi Vv WyvVv Ws -BsWs W; Wy —Wj
|| BWi BsWi Bi-Ws Biy By Bsy
By=W5 BiWs B3W, WiV Wy Vv Ws
Bix Bsx Bsx BsWy B3W; By—-Wjs
-Ws By-W3 BiW, B3Ws 0B
\B1
N
y W Wa W3
Wiv Wy Vv Ws
Bo-Wy Bz3=Wi Bi=Wjs
By-Ws B1Ws BsWs,
Biy By Bsy
e¢0B31B;

Execution explores all the belief contexts “below” e0Bs until the depth bound
is reached. Then execution uses rule F to create a next step for the temporal
models in the belief context e0B31B;. This new temporal state satisfies z. Also,
using rule M is satisfies =B W7, = BsWs, =B3Wj3, and using rules G and H is
satisfies Wy, ~W7,-W3. Using rules I and J the execution process makes the
formulae Bg_‘Wl, Bg_\Wl, Bl_\Wg, BQ_\WQ,, Bl WQ, B3W2 true.

Agents with Bounded Temporal Resources 181
W W, W
€
/33
(2
W W,
W3
B B
W W, y ~BWi -BW,
- Wy By-Ws B\W, ByWWy
e0B3
By
N
?/I vﬁ&‘//}vlﬁ/ : 2 ABiWy —BaW,
LSRR “BsWy W, Wi W
By ByoWi BioWs Bo-Wy, By-Wy Bi-Wy
By-Ws BiW, BsW, By B;I/VQ BaWs h
By Byy Bsy ‘)
0B31B,

Then execution continues. This time we concentrate on wise man 3 continues in
its reasoning process trying to examine the beliefs of wise man 2 in the moment
in time labelled by z. That is, we focus on the creation of the belief contexts
Bs. Tt is easy to see that this belief context satisfies =W;, =W, and =W3. This
contradict with the formula W; v Wy V W3 obtained with the application of

rule K:
W W W
€
/B3
[2
W W,
Ws
B; ;
L W W y ~BiW, —ByW,
"
€0B3
By
A
W /- —W-
y oW Wy I z —BW, —BaWa
WiV Wa Vv Ws
“BsWs Wy Wi Wi
Bo-Wy Bs=W, Bi-W; ; ’
’ ; Bo-Wy By=W, Bi-W;
BonWs BilVe BylVe Bo-W, BiW, ByW.
Bly 32y de 2 3 12 3VV2
0B31B,
By
N
Wy W W
WiV Wa v Ws
0B31B,2B,

182 Michael Fisher and Chiara Ghidini

Now, execution backtracks and ensures that W3, and not W3 is true in the
initial temporal state in e0Bjs. Since all the temporal models in €0B3 related
to the initial temporal state in e satisfy W3 the execution process terminates
making B3Wj3 true in €, and the puzzle is solved.

r Wi We Wy
WiV Ws V Wy

BoW, BsW, BiW;
BoWs BiW, BsW,
Byx Bz Bsx
BsW;

B3

¥
x Wi W
WiV Wav Ws
BoWy BsWy, BiWs
ByWs B1W, B3W,
Bix Bsx Bsx
W3

B x Wi W

WiV Wav Ws

ByWy, BsWy, BiWj3
ByWs B1W> B3W,
Bix Bsx Bsz

W3

e0B3

The Ezxecution — Second Scenario. Suppose now that wise man 3 is not so wise
and is not able to reason about time in a very sophisticated way. In particular
he is not able to reason about the future at all but only about the first one (i.e.,
z) In this scenario we add a formula

Bs(z = Ofalse) (Q)
to the specification. This translated to the following rules SNF g5 rules:

Q1. true = Bsa
Q2. a ANz = Ofalse

In this case the execution starts as before with the only exception of making
Bsa true in the initial temporal state of belief context e.

€T VVl VVZ VVg

Wy v Wy Vv Ws

BoWi BsW, ByWs
ByWs BiWy BsWs,
Bix Byx Bszr Bsa

€

Then, it proceeds creating the two temporal models in belief context e0B3. a
and x are satisfied in these new states. Therefore rule Q1 can be used to make
Ofalse true.

Agents with Bounded Temporal Resources 183

z W, Wy Ws
Wiv WV Ws

BoWy BsW, BiWs
BoWs BiWy BsW,
Bix Byx Bsx

Bs

¥

r a Wy W,

WiV Wy Vv Ws

BoWi BsWi BiWjs
BoWy B1W, B3sWy
Bix Bsx Bsx
Ofalse W3

x a W Wy

Wi Vv Wy v Ws

ByWy BsW, B;—Wjs
By-W3 BiW, BsW,
Bix Bsx Bsx
Ofalse —-W3

Bs

€0Bs3

Differently from the first scenario, execution cannot create the moment in time
labelled by y in the belief context e0B3. Therefore the execution process is not
able to make B3W3 true as the contradiction is not reached.

5.1 Summary

As the example above shows, constraints on the amount of temporal reasoning
that an agent can carry out can significantly alter the outcome of the execution
process. Similar modifications on the execution process may be due to constraints
on the amount of reasoning about belief allowed (see [11] for an example). These
examples show how our formalism is able to capture an important aspect of
complex, rational, practical agents, notably their resource-bounded nature.

6 Conclusions and Future Work

In this chapter we have considered the logical characteriation of agents that
have resource bounds on the amount of reasoning that they can carry out. In
particular we have considered the extension of basic executable temporal logic
(of the METATEM style) with bounded reasoning about belief and time.

The logic proposed in this chapter can provide a practical basis for the high-
level logic-based programming of resource-bounded agents. Our future work in
this area centres around the full implementation of this approach, in particular
the direct execution of TLBB specifications, and the evaluation of this formal-
ism in larger, more practical, examples of resource-bounded rational agents, for
example [16].

184 Michael Fisher and Chiara Ghidini
References
1. H. Barringer, M. Fisher, D. Gabbay, G. Gough, and R. Owens. METATEM: An

2.

10.

11.

12.

13.

14.

15.

16.

17.

Introduction. Formal Aspects of Computing, 7(5):533-549, 1995.

M. Benerecetti, F. Giunchiglia, and L. Serafini. Model Checking Multiagent Sys-
tems. Journal of Logic and Computation, Special Issue on Computational & Logical
Aspects of Multi-Agent Systems, 8(3):401-423, 1998.

M. E. Bratman, D. J. Israel, and M. E. Pollack. Plans and resource-bounded prac-
tical reasoning. Computational Intelligence, 4:349-355, 1988.

B. F. Chellas. Modal Logic — an Introduction. Cambridge University Press, 1980.

A. Cimatti and L. Serafini. Multi-Agent Reasoning with Belief Contexts II: Elab-
oration Tolerance. In Proc. 1st Int. Conference on Multi-Agent Systems (ICMAS-
95), pages 57-64, 1996.

C. Dixon, M. Fisher, and M. Wooldridge. Resolution for Temporal Logics of Knowl-
edge. Journal of Logic and Computation, 8(3):345-372, 1998.

E. A. Emerson. Temporal and Modal Logic. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, pages 996-1072. Elsevier, 1990.

M. Fisher. Representing and Executing Agent-Based Systems. In M. Wooldridge
and N. R. Jennings, editors, Intelligent Agents. Springer-Verlag, 1995.

M. Fisher. Implementing BDI-like Systems by Direct Execution. In Proceedings
of International Joint Conference on Artificial Intelligence (IJCAI). Morgan-
Kaufmann, 1997.

M. Fisher and C. Ghidini. Programming Resource-Bounded Deliberative Agents.
In Proceedings of the Sixteenth International Joint Conference on Artificial Intel-
ligence (IJCAI’99), pages 200-206. Morgan Kaufmann Publ., Inc, 1999.

M. Fisher and C. Ghidini. Specifying and implementing agents with dynamic re-
source bounds. In working notes of the 2nd International Cognitive Robotics Work-
shop, 2000.

M. Fisher and C. Ghidini. The abc of rational agent modelling. In Proceedings
of the first international joint conference on autonomous agents and multiagent
systems (AAMAS’02), Bologna, Italy, July 2002.

C. Ghidini and F. Giunchiglia. Local models semantics, or contextual reasoning =
locality + compatibility. Artificial Intelligence, 127(2):221-259, April 2001.

F. Giunchiglia and L. Serafini. Multilanguage hierarchical logics, or: how we can
do without modal logics. Artificial Intelligence, 65(1):29-70, 1994.

J. McCarthy. Formalization of Two Puzzles Involving Knowledge. In V. Lifschitz,
editor, Formalizing Common Sense - Papers by John McCarthy, pages 158-166.
Ablex Publishing Corporation, 1990.

N. Muscettola, P. Pandurang Nayak, Barney Pell, and Brian Williams. Remote
agent: To boldly go where no ai system has gone before. Artificial Intelligence,
103(1-2):5-48, 1998.

A. S. Rao and M. P. Georgeff. Modeling Agents within a BDI-Architecture. In
R. Fikes and E. Sandewall, editors, International Conference on Principles of
Knowledge Representation and Reasoning (KR), Cambridge, Massachusetts, April
1991. Morgan Kaufmann.

A Model of Delegation for Multi-agent Systems

Timothy J. Norman! and Chris Reed?

! Department of Computing Science, University of Aberdeen,
Aberdeen, AB24 3UE, Scotland, U.K.,
tnorman@csd.abdn.ac.uk
2 Department of Applied Computing, University of Dundee,
Dundee, DD1 4HN, Scotland, U.K.,
chris@computing.dundee.ac.uk

Abstract. An agent may decide to delegate tasks to others. The act of delegating a
task by one autonomous agent to another can be carried out by the performance of
one or more imperative communication acts. In this paper, the semantics of imper-
atives are specified using a language of actions and states. It is further shown how
the model can be used to distinguish between whole-hearted and mere extensional
satisfaction of an imperative, and how this may be used to specify the semantics
of imperatives in agent communication languages. The act of delegating a task
from one agent to another can be carried out through the performance of one or
more imperative communication acts. In this paper, the semantics of such imper-
atives are specified using a language of actions and states. The logical system that
is developed then supports a notion of responsibility. An agent may not only be
issued an imperative to directly carry out an event, or achieve some state, but also
to be responsible for an event being carried out or state achieved - and these latter
commitments might then be serviced through a subsequent act of delegation. The
model thus clearly distinguishes between different classes of responsibility and
different forms of delegation, and it is shown how this sound theoretical foun-
dation can then be applied in specifying the semantics of imperatives in agent
communication languages.

1 Introduction

To delegate is to entrust a representative to act on your behalf. This is an important issue
for agents that may be forced to rely on others. Although autonomous agents have a high
degree of self-determination, they may be required to achieve a goal that is made easier,
satisfied more completely or only possible with the aid of other, similarly autonomous,
agents. For delegation to be successful, there must be a relationship between the agent
delegating the goal or task and the agent to whom it is delegated. Furthermore, after
successful delegation, responsibility for the task concerned is now shared. For example,
the manager of a business unit, in delegating a task, will no longer be solely responsible
for that task. The manager must, however, ensure that the employee to whom the task
has been delegated acts appropriately (e.g. by completing the task, asking for help or
further delegating the task).

This is, according to Castelfranchi and Falcone [5], strong delegation;i.e. where there
is mutual awareness and social commitment. In particular, Castelfranchi and Falcone [5,

M. d’ Inverno et al. (Eds.): UKMAS 1996-2000, LNAI 2403, pp. 185-204, 2002.
(© Springer-Verlag Berlin Heidelberg 2002

186 Timothy J. Norman and Chris Reed

4], amongst others [24], address the question: What is the nature of the relationship on
which the ability to delegate is predicated? Here, however, we focus on the specifica-
tion of communicative acts that can be used to delegate tasks, and on a number of the
dimensions that characterise what is being delegated and what are the conditions under
which it can be said that delegation was successful. We focus on two key dimensions:

1. the distinction between the delegation of actions to be performed and states of affairs
to be achieved; and

2. the restrictions on the further delegation of the activity concerned (i.e. whether
further delegation is permitted, forbidden or required.

There are, of course, many more issues that must be considered in the development of
a complete theory of delegation; for example, the discussion is restricted to individuals
rather than groups of agents [19, 23]. However, considering these two issues alone does
mean that a number of distinct situations must be considered:

(a) “TI don’t care who achieves (state of affairs) A, but it must be achieved.”
(b) “Idon’t care who does (action) «, but it must be done.”

(¢) “You must, through your own, direct, intervention achieve A.”

(d) “You must, through your own, direct, intervention do «.”

(e) “You must ensure that A is achieved by someone other than yourself.”
(f) “You must ensure that « is done by someone other than yourself.”

Possibly the most common mechanism employed in the delegation of activity (espe-
cially in multi-agent systems) is through direct communication. Knowledge level [22]
communication between agents through speech act based [2, 28] agent communication
languages (ACLs) is both an active area of research [31, 26] and of standardisation [11,
10]. These languages typically include indicatives (or assertions) such as ‘tell’ (KQML)
and ‘inform’ (FIPA); for example, “It’s raining”. Queries or questions are also common
(i.e. interrogatives) such as ‘ask-if’ (KQML) and ‘query-if’ (FIPA); for example, “Is
it raining?”. In addition to these, imperatives are used to issue commands, give advice
or request action; for example, “bring the umbrella”. Examples of imperative message
types in ACLs are ‘achieve’ (KQML) and ‘request’ (FIPA). An intuitive explanation of
these message types is that the sender is attempting to influence the recipient to act in
some way. In fact, an attempt to influence the mental state of the hearer (or recipient of a
message) is common to all knowledge level communication. For example, an agent ut-
ters an indicative such as “It’s raining” with the intention of inducing a belief by means
of the recognition of this intention [12]. In other words, the speaker is attempting to
influence the hearer to adopt a belief about the weather.

Similarly, the imperative “bring the umbrella” is an attempt to influence the hearer’s
future actions by means of the hearer recognising that this is the intention of the speaker.
Following Searle’s [28] description of the types of illocutionary (or communicative) act,
Cohen and Levesque [8] provide a model in which such acts are construed as attempts
by the speaker to change the mental state of the hearer. For example, a request for the
hearer to do some action, «, is an attempt to change the hearer’s mental state in such a
way that it becomes an intention of the hearer to do «.. The hearer, being an autonomous
agent, may refuse. This is, of course, different from misunderstanding the speaker.

A Model of Delegation for Multi-agent Systems 187

With this in mind, Cohen and Levesque [8] distinguish between a speaker’s goal of
performing an act, and the speaker’s intention behind the act. The goal, in the case of
an imperative, is that the hearer believes that the speaker intends the hearer to act and
the hearer acts accordingly. The intention, by contrast, is only that the hearer believes
that the speaker had that communicative goal. If the intention of the speaker is not
understood by the hearer, then the communicative act is unsuccessful. A communicative
act is then an attempt to achieve the goal, but at least to satisfy the intention that the
hearer believes that this is what the speaker wants. Through this definition of ‘attempts’,
Cohen et al. [8,31] provide a concrete characterisation of the communicative acts that
are common in ACLs, and go on to specify conversations. For example, one agent offers
a service to another, which may be responded to with acceptance, rejection or silence (cf.
Barbuceanu and Fox [3]). This extension of an agent communication language to capture
typical conversations between agents is the approach taken by the FIPA specification
[11], and it is the specification of imperatives within FIPA that is returned to in section 6,
where we return to the dimensions introduced above to discuss to what extent existing
standards of agent communication are able to express them.

The grounding of agent communication languages in such formal models is essential
to ensure that the meaning of communicative acts are clear to those designing agents
for practical applications. Without such a grounding, agent communication languages
can suffer from inherent ambiguity which, when implemented, can lead to unexpected,
undesirable and counter-intuitive results. Although we do require that specifications are
unambiguous, it is essential that ACLs support rich dialogues between agents, and so
analyses of the possible dimensions of the semantics of communication are important
[27]. The work presented in this paper focuses on imperatives, aims to present an account
of delegation, and show how this may be better understood by considering both existing
models of imperatives [13,33] and normative positions [20,29]. Before presenting a
formal model of agentative action (sections 3 and 4) upon which the model of delegation
proposed in this paper is built, it is important to discuss imperatives in more detail.

2 Imperatives

Numerous proposals have been laid out in both philosophical and computational liter-
ature for classification of utterance types, or, more specifically, of illocutionary acts.
Austin [2, p. 150] and Searle [28, pp. 66—67] are perhaps the two most prominent.
Though there are a range of similarities and dissimilarities, these schemes have
at least one thing in common: not all utterances are indicative. This is not in itself
remarkable, until it is considered that the logics employed to handle and manipulate
utterances are almost always exclusively based upon the predominant formal tradition
of treating only the indicative. The interrogative and imperative utterances (which figure
amongst Austin’s Exercitives and Expostives, and include Searle’s Request, Question,
Advise and Warn) rarely benefit from the luxury of a logic designed to handle them.
Interrogative logics for handling questions have been proposed by Aqvist [1] and
Hintikka et al. [15] among others, and these form an interesting avenue for future ex-
ploration. The focus of the current work, however, is on imperative logic. Hamblin’s
[13] book Imperatives represents the first thorough treatment of the subject, providing

188 Timothy J. Norman and Chris Reed

a systematic analysis not only of linguistic examples, but also of grammatical structure,
semantics and the role imperatives play in dialogue.

His classification goes into some detail, but one key distinction is drawn between
imperatives which are wilful, and those which are not. The former class are characterised
by advantage to the utterer, the latter by advantage to the hearer. Thus commands,
requests, and demands are all classed as wilful; advice, instructions, suggestions, recipes
and warnings are all classed as non-wilful.

The distinction is useful because it highlights the importance of the contextual en-
vironment of the utterance: commands would fail to have an effect if the utterer was
not in a position of authority over the hearer; advice would fail if the hearer did not
trust the utterer, and so on. Any logic of imperatives must both be able to cope with this
wide range of locutionary acts, but also be insensitive to any of the extralinguistic (and
thereby extralogical) factors affecting the subsequent effect of issuing imperatives.

Hamblin states [13, p. 137] that to handle imperatives there are several features,
“usually regarded as specialised”, which are indispensable for a formal model: (1) a time-
scale; (2) a distinction between actions and states; (3) physical and mental causation;
(4) agency and action-reduction; and (5) intensionality. Following the second feature
listed above, both events and states of affairs are explicitly representated in the Action
State Semantics: a world is a series of states connected by events. The states can be
seen as collections of propositions. Events are of two types: deeds, which are performed
by specific agents, and happenings, which are world effects. This distinction gives the
model an unusual richness: most other formal systems have explicit representation of
one or the other, defining either states in terms of the sequences of events (true of most
action and temporal logics), or else events in terms of a succession of states such as in
classical Al planning.

The situation calculus [21] allows both states and events to be represented, but the
commonly adopted “axioms of arboreality” [30] restrict the flexibility so that a given
sequence of events is associated with a single, unique situation. Even if all the fluents in
two situations have identical values, under the axioms of arboreality, those two situations
are only the same if the events leading to them have also been the same. In Hamblin’s
work, however, there can be several different histories up to a given state and the histories
are not themselves a part of those states.

This rich underlying model is important in several respects. First, it allows, at a
syntactic level, the expression of demands both that agents bring about states of affairs,
and that they perform actions. Secondly, it avoids both ontological and practical problems
of having to interrelate states and events — practical problems often become manifest
in having to keep track of ‘Done events’ in every state [9]. Finally, this construction of
a world as a chain of states connected by deeds and happenings makes it possible to
distinguish those worlds in which a given imperative ¢ is satisfied (in some set of states).
Thus the imperative “Shut the door” is satisfied in those worlds in which the door is
shut (given appropriate deixis). This ‘extensional’ satisfaction, however, is contrasted
with a stronger notion, of ‘whole-hearted’ satisfaction, which characterises an agent’s
involvement and responsibility in fulfilling an imperative. Whole-hearted satisfaction is
based upon the notion of a strategy. A strategy for a particular agent is the assignment
of a deed to each time point. A partial ¢-strategy is then a set of incompletely specified

A Model of Delegation for Multi-agent Systems 189

strategies, all of which involve worlds in which 7 is extensionally satisfied. The whole-
hearted satisfaction of an imperative ¢ by an agent x is then defined as being x’s adoption
of a partial strategy and the execution of a deed from that strategy at every time point
after the imperative is issued.

A Hamlinian world w € W is defined such that for every time point in 7' there is:

1. a state from the set of states S,

2. a member of the set H of ‘big happenings’ (each of which collect together all
happenings from one state to the next), and

3. adeed (in D) for every agent (in X), i.e. an element from DX,

The set W of worlds is, therefore, defined as (S x H X DX)T. The states, happenings
and deed-agent assignments of a given world w are given by S(w), H(w) and D(w).

Let j; be a history of a world up to time ¢, including all states, deeds and happenings
of the world up to £. Thus j; is equivalent to a set of worlds which have a common history
up to (at least) time ¢. J; is then the set of all possible histories up to ¢; i.e. all the ways
by which the world could have got to where it is. A strategy g; is then an allocation of a
deed to each j;» € J; forevery t' > t.!

Let the possible worlds in which the deeds of agent x are those specified by strategy
gt be Wtrat(, g1), and the worlds in which an imperative, 4, is extensionally satisfied be
W;. A strategy for the satisfaction of an imperative 7 (i.e. an ¢-strategy) can, therefore, be
defined as follows: A strategy q; € Q) is an i-strategy for agent z if and only if the worlds
in which x does the deeds specified by ¢; are also worlds in which ¢ is extensionally
satisfied: Wypar(x,qr) C Wi,

In practice, however, it is not feasible for an agent to select a particular strategy in 0y
at time ¢ that specifies every deed for every time ¢’ after ¢. For this reason, an agent will
adopt a partial i-strategy. A partial i-strategy is a disjunction of i-strategies, Q; C Qy,
and the world set for = adopting this partial i-strategy is Wit (x, Q}).

With this grounding, the whole-hearted satisfaction of an imperative, 7, can now be
defined. An agent x may be said to whole-heartedly satisfy an imperative ¢ issued at ¢ if
and only if for every ¢’ > t:

1. z has a partial i-strategy, Q) ; and
2. z does a deed from the set of deeds specified by that Q..

In addition to Hamblin’s monograph [13], more detail on the role of such a model
in the wider context of dialogue and a more complete set-theoretic précis is given by
Walton and Krabbe [33]. Here, motivated by the work outlined in this section, we present
a theory of agentative activity that is appropriate for modelling imperatives. First, an
axiomatisation of the two action modalities S and T is presented. Secondly, we develop
a possible worlds semantics for these operators as an approximation to the Action State
Semantics. Finally, we go on to show how this theory can be used to model imperatives
in agent communication.

! This notion of a strategy has an intensional component, since it prescribes over a set of possible
w, rather than picking out, at this stage, the actual world.

190 Timothy J. Norman and Chris Reed

3 Axiomatisationof Sand T

With the intuitive grounding in Hamblin’s Action State Semantics provided by the previ-
ous section, we present a syntax that may be used to explicitly refer to agents performing
actions and achieving goals. We refer to actions (or deeds) by the symbols o, 3, ... € D,
states by A, B,... € S and agents by z,y,... € X. World effects, or happenings, are
not considered explicitly here; we assume that there is a special agent that models world
effects.

In the following discussion, a number of rules of inference and axiom schemas are
considered. Those that are included in the logic of the modality S are summarised in
figure 1 (these axioms are analogous for T, but do not represent a minimal set — they
are listed exhaustively in the interests of clarity). A few others are given in figure 2 for
the purposes of discussion, but are rejected for modality S (similarly, they are rejected
for T).

The logic of the operators S and T is a regular modal logic [6]. As with other classical
modal logics, both are closed under equivalence by the rules RE (see figure 1 for RES).
Furthermore, following Jones and Sergot’s exposition of their modality E,, both S,
and T, use the axiom schema T. The adoption of schema T can be justified on intuitive
grounds by reading it as follows for modality S: if an agent sees to it that a state of affairs
holds, then that state of affairs does, in fact, hold. Following Jones and Sergot, then, the

A< B
S: A+ S.B
TS S;A— A

CS (S.AAS.B)— S.(AAB)
MS S.(AAB)— (S.ANS,B)
RS S,(AAB)« S,AAS,B
KS S.(A— B) = (S,A — S,B)
DS S;A— —=S,-A

RES

Fig. 1. Rules of inference & axiom schemas of S.

A
R-NS 5.4
A
RNS 5.4
A— B
RMS S:A— S.B

58 -S;A — S;=S; A
4S S:A — S;S:A

Fig. 2. Further candidate rules of inference and axiom schemas discussed.

A Model of Delegation for Multi-agent Systems 191

current work develops a logic of successful action.” A similar gloss can be constructed
for T, — if an agent sees to it that an action is performed then that action is performed
— but this implicitly requires stretching a possible-worlds interpretation as far as, and
perhaps further, than is reasonable, as explained below.

One of the most fundamental disagreements between theories of agency concerns
the rule of necessitation (RN for modality S is given in figure 2). This arises from a
deep intuitive dilemma. The argument for adopting the reverse R—N proposed by Jones
and Sergot is simply stated: “Whatever else we may have in mind ...on no account
could we accept that an agent brings about what is logically true” [17, p. 435]. Thus
Jones and Sergot, like Belnap and Perloff (whose negative condition entails R—N) are
trying to capture some notion of responsibility, such that no agent can be said to be
‘responsible’ for a tautology. Chellas’ intuitions, by contrast run rather differently. He
is happy to accept RN, a much more conventional rule of a normal modal logic, and his
argument too is tabled very briefly: “Can it ever be the case that someone sees to it that
something logically true is so? I believe the answer is yes. When one sees to something,
one sees to anything that logically follows, including the easiest such things, such as
those represented by T. One should think of seeing to it that, for example, 0 = 0 as a sort
of trivial pursuit, attendant upon seeing to anything at all.” [7, p. 508]. Chellas’ decision,
in particular, is motivated by the logical consequences of the rule, and in particular on
the availability of schemata C and M.

The outward distributivity of an action modality is adopted in the axiom schema C.
Schema C is adopted by Chellas, Jones and Sergot, Belnap and Perloff, and, similarly,
in the work presented here (see figure 1 for CS); it is difficult to argue from an intuitive
basis how C might fail.

The inward distributivity axiom schema, M, however, is more troublesome. M, like
C, seems intuitively appealing, but, for Jones and Sergot (and other systems adopting
R-N), itis pathological, since, with RE, it yields the rule RM (RMS is shown in figure 2).
Taking the tautology A — T,RM gives S, A — S, T. Since R—N gives =S, T,any S, A
is thus a contradiction. Jones and Sergot, therefore, reject M because they are committed
to the notion of responsibility captured by R—N; Chellas on the other hand, accepts RN
and, thereby, the loss of agentative responsibility, but does, as a result, maintain M.

The solution proposed for the modalities S and T represents a half-way house, es-
chewing both the restrictive nature of a (smallest) classical modal logic, and the coun-
terintuitive results of a normal modal logic, in favour of a (smallest) regular modal logic.
We also defer the issue of necessitation (versus “anti-necessitation’) to the semantics.
Both modalities thus include the rule RE and the axiom schema R (and, consequently,
M, C and K), but they require neither the rule of necessitation (RN), nor the rule of
anti-necessitation (R—N).

The preceding discussion has already mentioned the intuitive appeal of M and C; it
is also worth digressing to offer an intuitive gloss on the schema K to demonstrate its
role, particularly as Jones and Sergot implicitly reject K. An imperative with the form

2 This notion of “successful action” may be better viewed as “successful interaction with the
world” considering our distinction between S and T. This alternative reading more clearly
indicates that the formula to which the modality is applied is not in any way equivalent or
logically related to the actions that an agent may carry out.

192 Timothy J. Norman and Chris Reed

of an implication is, linguistically, quite straightforward: “Make sure that if you go out
then you lock the door”. If an agent brings it about that the implication holds then K
states that if the agent brings about the antecedent then it is logically responsible also for
bringing about the consequent. This does not impinge upon the autonomy of an agent to
decide not to fulfil some imperative; rather, it states only that if the agent brought about
the antecedent, then it can only also be said to have brought about the implication if it
is responsible for the consequent.

The axioms 4 and 5 are commonly employed in mentalistic modalities, and, less fre-
quently, in agentative modalities. First, consider schema 5S (figure 2). This is explicitly
rejected for several reasons, not least of which is that with T, it would yield RN, which
we wish to avoid. We return to the problems that 5 would throw up in the context of
forbearance, section 5.1. Schema 5 is also rejected across the board by Jones and Sergot,
Belnap and Perloff, and Chellas. Axiom schema 4, however, is accepted by Belnap and
Perloff. Consider schema 4S (figure 2). With TS, this yields the following equivalence,
which we reject: S, A + S, S, A. The importance of avoiding this equivalence and the
problems that 5 would present with respect to forbearance are discussed in section 5.1.

Finally, the adoption of T in the models of Jones and Sergot, of Belnap and Perloff,
and of Chellas entails the inclusion of axiom schema D (see figure 1 for DS).

To summarise then, the logics of S, and T, are relativised classical regular modal
logics of type RT [6, p. 237].

4 Semantic Model

As the axiomatisation indicates, the proposed logic is considerably smaller than a normal
modal logic, and as a result, a standard model is inappropriate. To provide a possible
worlds semantics, we therefore use a minimal model [6].

The simplest approach is to define S, (and T, analogously) in the same style as a
conventional modal logic. Thus with a model M = (W, N, P) with worlds W, “neces-
sitation function” N/, and interpretation functions abbreviated by P, we can define the
truth conditions of the unrelativised modality S. To characterise the relativised modal-
ity S;, we introduce multiple necessitation functions, one for each agent x € X, thus
M = (W, N* P). N* maps from a given world w, to a collection of sets of worlds
(i.e. N C p(W)), picking out those propositions which are brought about (by) at
w. The standard truth conditions for propositional logic are captured in 1-8, and for
the modality S, in 9. (Note that, P abbreviates an infinite sequence, Py, P1, P2, .. .,
of subsets of VW, where, for each n, P,, represents those possible worlds in which the
corresponding atomic sentence P, holds — this is condition 1.)

EM P, iff weP,forn=1,23,... (1)
ol ®
B L 3)
EM oA iff EMA 4)
EMAAB iff EM Aand EM B (5)

EMAvB iff EM Aor M Borboth (6)

A Model of Delegation for Multi-agent Systems 193

EM A B iff if M Athen M B (7)
EM A« B iff EM Aifandonlyif M B (8)
EX s, A it AIMe N ©)

Unfortunately, quite apart from practical difficulties in using such a model as the
basis for implementation of a multi-agent system [34] the approach fails to provide a
good foundation upon which to develop an account of not just static states of affairs
but of dynamic states, and of not just individual actions but of series of actions. These
extensions are vital to any account of real agentative action, which has motivated works
such as those of Chellas [7], Horty and Belnap [16] and others to adopt a much richer
“metaphysical backdrop”, substantially extending the Leibnizian model.

The development of a full semantics based on Action State Semantics is the subject
of current research and is beyond the scope of this paper. A compromise between fa-
miliarity and accuracy can be achieved though enriching the possible-worlds approach
by building in structure to each world that approximates the Action State Semantics
(an analogous approach is adopted by many works founded on branching time logics
[34]). Such a compromise serves as a sufficient foundation upon which to explore a rich
characterisation of delegation. Thus, we can say that j/;v can be read as a history, j, of
the Hamblinian world v up to ¢; 7 is an initial segment of v and v is a completion of j
(following Walton and Krabbe [33, p. 191]). This is defined recursively as follows:

jZOU = <0350 € S(U)vég € D(U)>
Jliv = (jli_qv,s € S(v),dy € D(v))

where the functions .S and D map from a Hamblinian world, v, to a set of propositions
corresponding to the state of the world, S(v), and to a set of deed assignments (agent-
action pairs), D(v).

In simplifying the semantics, it is possible to provide an interpretation of the S,
and T, modalities that is irrespective of time (this simplification constitutes one of
the major restrictions by comparison to the full Action State Semantics model under
development). This timelessness is achieved through building an entire Kripke structure
for a single time point, ¢. Thus each possible world in the Kripke structure can be seen as
containing one particular j ;v for each Hamblinian world v. So a model M, is defined
as W, X, Z,8%, T%) for a set of possible worlds W, a set of agents X, an interpretation
function Z, and sets of functions S* and 7* for each x € X". Following Chellas [6], S*
is the relativised necessitation function S* at world w, that gives a subset of the power
set of worlds (i.e. S¥ : W — p(p(W))).

Given that a Kripkean possible world encapsulates a Hamblinian history of the form
(j/v,s,0%), we need two components to the interpretation function to return either the
current state of Hamblinian history (namely, the set s), or the deeds which are about to
be (or are being, instantaneously) carried out by agent x (namely, the set §%). Let us use
the functions Zg to map from a possible world w and a specified state of affairs A to an
element of the set { T, L} according to whether or not A is in the set s of w. Similarly,
Tp maps from a possible world w and a deed-assignment a” to an element of the set
{T, L} according to whether or not o” is in the set 6” of w. The interpretation function

194 Timothy J. Norman and Chris Reed

QS S.SyA — S, A
QT SaTya — Tra

Fig. 3. Axioms of delegation.

is thus constituted from Zg and Zp, to refer to the appropriate parts of the Hamblinian
history.

We are now in a position to be able to describe the semantics of S; and T, in a
straightforward manner:

EMAff Zg(w,A)=T
EMa® iff Ip(w,a®)=T
=M iff 3z suchthat =M o
=M s, A it AIMe S2

) Tea iff o) Me T

Bearing in mind that the truth set is simply ||¢||M= {w € M
s.t. |:£/‘ ¢}, this cleanly propagates the action/state distinction from the Hamblinian
core to the desired modalities. This semantics thus offers a simple, if restrictive, inter-
pretation of the two modalities, sufficient to explicate interesting interactions in a range
of delegation scenarios.

5 Delegation

Here we propose further axioms and theorems of our logic of agentative action that are
relevant to delegation, discuss the issue of forbearance in some detail and then focus on
the application of the theory to delegation in multi-agent systems.

5.1 Further Axioms and Theorems

Like the approaches of Chellas and Belnap et al., (but contrary to von Wright’s char-
acterisation), the theory offers scope for nesting the two modalities in building a rich
notion of responsibility. In contrast to the clean, minimalist account developed by Jones
and Sergot, the current work is employed in characterising realistic exchanges in agent
systems, and as such the precise nature of the action modality needs to be pinned down.
Thus following Chellas inter alia, we accept the axiom schemas QS and QT (figure 3).

Schema QT is worthy of particular note: if agent = sees to it that agent y sees to it
that action « is done, then z can be said to be responsible for seeing to it that « is done.
The adoption of this schema is intuitively appealing: agent x, through seeing to it that y
is responsible for a is itself, by delegating, responsible for its performance.

We further accept the specialisations of the TS schema, TSS and TST (figure 4).
These schemata lay the foundation for characterising acts of delegation, but before
looking at that in more detail, a second type of nested modality must be addressed that
relates to the non-adoption of the axiom schema 5 for S and T (see section 3).

A Model of Delegation for Multi-agent Systems 195

TSS S:SyA — Sy A
TST S:Tya — Tya

Fig. 4. Further theorems of delegation.

5.2 Forbearance

Porn [25] claims that, “The proposition i forbears to bring it about that p is not syn-
onymous with it is not the case that i brings it about that p”, basing his notion of
forbearance upon an agent’s ability to, but restraint from, bringing about the state of
affairs. The same idea is presented by von Wright [32], but in Porn’s [25] account, the
ability to nest operators supports rendering forbearance simply as: S,—S, A.

As Porn discusses, forbearance and its associated causal responsibility is intuitively
a stronger notion than simply not-bringing-it-about, and the former entails the latter. It
is appropriate therefore that by T, S,—S, A does indeed entail =S, A. This account of
forbearance is the same as that of refraining discussed by Horty and Belnap [16], where
it is also demonstrated to be equivalent to von Wright’s original formulation.

Forbearing from action (as opposed to forbearing from responsibility for a state of
affairs) is constructed in an analogous way, so that not being responsible for action
is captured by —T,a, but forbearing from action is the stronger notion expressed by
S, T.a.

There are several points of note in this stronger notion of forbearance. The first is
to recall that the modal statements themselves are — just as in standard ontic logics
— part of the state of the world, and can thus form the parameter to the S, modality
(but not the T, modality, which is not referring to the contents of the state of a world
at all). The second is to emphasise that S, —~T,« is not equivalent to the statement “x
forbears from performing action «”. The T, modality expresses responsibility for the
execution of an action, not the agent of the action, so this notion of forbearance should
more accurately be read as “x forbears from having action « carried out”. With the S,
modality, it is easy to separate the notion of responsibility from a given agent’s action;
with the T, modality it is easy to forget that it is responsibility for, rather than direct
participation in, action that is being expressed. The symmetry between S, and T, and
the focus upon responsibility rather than direct participation in both cases is crucial for
the development of notions of delegation.

5.3 Imperatives in Multi-agent Systems

The use of this theory of agentative action as a model for imperatives in agent commu-
nication is predicated on the idea that imperatives can be constructed using a deontic
action logic. Note that this is not the same as claiming that a deontic logic can be re-
duced to imperatives or vice versa (cf. Hamblin [13, 113-127]). It is however, claimed
that normative positions where both normative (obligation, permission, etc.) and action
components are involved can be seen as imperatives.

In this way, the statement S, (T« can be read as “x sees to it that the state of
affairs holds in which it is obligatory for y to see to it that « is performed”. Further,

196 Timothy J. Norman and Chris Reed

the statement might be issued as an imperative by some third party to z. A linguistic
example of such an imperative might be: “Make sure your sister cleans her teeth!” There
may be a range of means by which x might bring about this state of affairs (as with any
other) but one obvious alternative is for = to issue an imperative to y of the form T,
(e.g. “Clean your teeth, sis!”).

Thus, in general, the act of uttering an imperative can, in the right situation, bring
about a normative state of affairs. Clearly, both the form and type of locutionary act
employed, and the imperative’s overall success, will be partly dependent upon a variety
of contextual factors, including in particular the relationship between the utterer and
hearer, and existing normative positions both personal and societal. The general form
of the interaction, though, is that the utterer attempts to introduce a new norm (and it is
this act which counts as the utterer working towards whole-hearted satisfaction at this
point); this attempt, if combined successfully with contextual parameters will generate
a new normative position (or a modification of an existing position).

utter(s, h,i) A {context) — Oi

Here, ‘utter’ is an appropriate communicative primitive, such as ‘request’. s is the
speaker, h the hearer and i an imperative formed using the S and T action modalities.
The consequent is the normative positionin which the addressee is obliged with respect
to the content of the imperative i.

As mentioned above, the imperatives S, A and T« implicitly admit the possibility
that x further delegates the activity. This implicit assumption is based on the simple de-
ontic inter-definition between obligation and permission: P p <> =(O)—p. This, combined
with some notion of negation as failure, licenses any agent to bring about normative states
of affairs (in the right context), unless expressly prohibited from so doing. Suppose that
an agent x is obliged to see to it that the state of affairs A is achieved as a result of y
issuing the imperative S, A to z. As long as it is not the case that x is forbidden from
seeing to it that some other agent, say z, sees to it that A, = is permitted to do so by
further delegating the activity. This represents something of a simplification of Lindahl’s
[20] theory of normative position (see also Sergot [29]). In fact, there are seven distinct
normative positions of an individual with respect to a state of affairs: an agent may have
the freedom (or not) to bring about p, the freedom (or not) to bring about —p and the
freedom (or not) to remain passive towards p. The work presented in this paper does
not address the range of freedoms described by Lindahl, but is consistent with it. The
focus is on the distinction between an agent being free to act and being free to delegate a
task. See Reed et al. [27] for an analysis of the semantics of various communicative acts
where the full range of individual agent normative positions (among other dimensions
of the semantics of agent communication languages) is considered.

It can further be seen that, from axioms QS and QT (figure 3) and theorems TSS
and TST (figure 4), that the further delegation of the activity will mean that the agent,
z in this case, will be successful in fulfilling its responsibility for the completion of the
activity. For example, from axiom QS and theorem TSS, if agent z sees to it that some
other agent y brings about the state of affairs A, then y brings about A (TSS) and x
brings about A (QS).

It may be necessary to restrict the freedom of an agent to delegate, and to ensure that
it carries out some action or brings about a state by his own, direct, intervention. Equally,

A Model of Delegation for Multi-agent Systems 197

there are, rarer, cases in which delegation is demanded. Taking this second and simpler
case first, the imperatives S, T, o and S;S, A capture this enforced delegation. S, Ty«
states that x brings it about that the state of affairs holds in which y is responsible for
ensuring that the action o is performed. Similarly, S,S, A states that brings it about
that the state of affairs holds in which y is responsible for ensuring that the state of affairs
A is achieved.

The first case is slightly more complex. The implicit freedom of T, (and identically
for S,) must be restricted by ensuring that « does not delegate. There are three important
problems with an interpretation of this restriction:

1. Delegation is not a specified action. There are many ways of delegating, and most
logics of action are not built around such template actions, in which placeholders
such as ‘delegate’ can then subsequently be instantiated by some real action which
constitutes delegation. It is certainly not a feature of the logic of S and T, and is not
supported in the underlying semantics either, for good philosophical reasons [13]. It
has been argued that delegation might be captured as a single, distinct communicative
action [18]. The problem with this approach is that within any single given theory,
definitions of other communicative acts already cover all the ground that constitutes
delegation. In other words, delegation might be achieved through the application of
any number of other primitives. To build on the approach by then predicating such
action, and, in particular, abrogating the use of such delegation action, is doomed to
failure, since on purely rational grounds, agents would simply employ these other
means to their ends. It is thus indefensible to specify the prohibition of a delegation
action.

2. As explained above, the distinction between states and events is a key component
of action state semantics and to tie states to event postconditions would conflate
this distinction, loosing much of the power of the semantics. Therefore, it is also
undesirable to prohibit a state of affairs which can be uniquely identified with the
postcondition of delegation.

3. An agent, say y, may be subject to a number of imperatives including, for exam-
ple, the obligation to bring about that « is done, the status of which should not
be impinged upon by restrictions on x’s power to delegate responsibility for the
performance of a.. All that we wish to do is to restrict z’s licence to delegate.

The solution lies in the notion of forbearance discussed in section 5.2. Intuitively,
we wish to ensure that agent x forbears from seeing to it that some other agent becomes
reponsible for the activity. Suppose that the imperative concerned is T,a. We wish to
ensure that « forbears from bringing it about that another agent, say y, sees to it that «
is done: S; =S, Ty«. Thus, the following imperative can be used to ensure that agent
carries out action « by its own, direct, intervention:

T,aNS;=8, Ty

A simple linguistic gloss on this imperative runs, “x, do o and forbear from delegating
responsibility for doing «!” — our adapted version of Porn’s [25] forbearance is thus
being reconstructed in the imperative. Similarly, the following imperative may be used
to ensure that agent x forbears from bringing it about that another agent, say y, sees to

198 Timothy J. Norman and Chris Reed

it that A is achieved:
Sz ANS;S, S, A

These are simply special cases of forbearance from bringing about some state of
affairs — S, S, A, section 5.2 — where the state of affairs concerned is that some other
agent becomes responsible for some activity.

So far in this discussion, the operator () representing the concept of deontic necessity
is introduced with little discussion regarding its logic. Though the properties of deontic
logic in general are not a focus of this paper, it is worth bearing in mind the following
axiom schemas:

MO O(@Ad) = O AOY
CO OonO¥ = O(ony)

If both are accepted, as they are in a standard deontic logic (the smallest normal
system containing the axiom D() [6]), uttering the imperative T, A S; =S, Tya, if
successful, will produce the normative state of affairs: O (T A S3—S,Tya). The in-
ward distributivity of MO then yields: OT,a A (OS; S, Ty The second conjunct is
precisely what is required to restrict z’s licence to further delegate the activity: must
refrain from establishing the state of affairs in which y is responsible for the performance
of action «. This not only avoids problems (1) and (2) by referring to the imperative
T, v, but also circumvents (3) by leaving open the possibility that P T, o, or even OTya,
is (or will) in fact be the case — but not as a result of anything « has done (this, after
all, is the definition of extensional satisfaction).

5.4 Examples

A couple of examples will serve to demonstrate not only the syntax of imperatives,
the normative positions they engender, and the means by which whole-hearted satisfac-
tion can be determined, but also to show clearly that the formalisation is intuitive and
uncluttered.

Example 1. A lecturer is told by her head of department to prepare copies of her lecture
notes for her class. She may, for example, copy the notes herself or request that the
departmental secretary copy the notes.

The initial instruction refers to the action of copying the lecture notes; the Head of
Department’s locution is captured in L1, figure 5. This, because of the nature of the
relationship between the Head of Department and the Lecturer, results in the normative
state of affairs: ()T ecturerCOPY_notes.

This imperative may be whole-heartedly satisfied if the lecturer copies the notes
herself; i.e. a world in which the deed-agent assignment copy _notes™¢*""" is present.
This is, however, only one possibility for the Lecturer. The Lecturer could issue the
imperative represented by locution L2, figure 5. This should, in the given context, lead
to a normative state of affairs: (O)Tgecretary COPY -notes; i.e. the state of affairs in which the
secretary is obliged to see to it that the copy_notes action is carried out. The action of the
secretary carrying out copy_notes would fulfil the definition of extensional satisfaction

A Model of Delegation for Multi-agent Systems 199

L1 Head of Department to Lecturer
TLecturerCOpy,noteS

L2 Lectuer to Secretary
Tsecretary COpy -notes

L3 Course Director to Lecturer
Trecturerwrite_exam A Vy € {X \ {Lecturer}} Stecturer "SLecturer I yWrite_exam

L4 Course Director to Lecturer
SLecturerTSenior Secretaryprint—exam

L5 Lecturer to Student
Sstudent has_paper

L6 Student to Librarian
SLibrarianhas_paper

L7 Student to Librarian
TLibrariancomplete_ILL

Fig. 5. Locutions in the University examples.

not only of L2, but also of L1 in figure 5 (of course, the worlds of extensional satisfaction
of L2 are identical to those of L1 in this case). Notice also that the secretary could further
delegate the task to the tea-boy, etc.

Example 2. A lecturer is told by the Course Director that she must, herself, write an
exam paper.

The initial request again concerns action, so the positive part of the imperative is
captured by the first conjunct of locution L3 in figure 5. There is, however, the non
delegation component, captured by the second conjunct. This states that the Lecturer is
obligued to forbear from bringing about the state of affairs in which any agent (in the
set of agents X') with the exclusion of itself brings it about that the exam is written.

Thus the Lecturer may not be responsible for bringing about that any other agent
is permitted to write her exam for her. Of course, it is conceivable that if, for example,
she were to fall ill, her head of department might grant exam-writing permission to
someone else in her place. Or, at a stretch of the imagination, there might be a role in
a higher echelon of exam administration in which someone has the authority to write
any exam paper they choose. Thus the normative position P T, write_exam may either
exist or come into existence for some agent y — this is extensional satisfaction. It may
not, however, come about as the result of whole hearted satisfaction on the part of the
lecturer.

Example 3. The Lecturer is told by the Course Director to ensure that the senior secretary
prints the exam.

This is an example in which further delegation is demanded — the Senior Secretary
is the only person in the department who should print exam papers, so the Lecturer must
delegate this action to the Senior Secretary. The locution L4 captures this imperative,
and will, if successful, produce the following normative state of affairs:

OSLecturerTSenior Secretaryprint—exam

200 Timothy J. Norman and Chris Reed

The Lecturer will then, with a view to whole-heartedly satisfying this imperative,
issue the imperative that is captured by the locution Tsenior Secretary Print_exam to the
Senior Secretary.

Example 4. The Lecturer asks her PhD student to get hold of a paper for her. The student
may be able to download the paper right away, or, if it is not available online, to delegate
the task of getting hold of the paper via an Inter-Library Loan request to the Librarian.

The imperative issued to the lecturer concerns a state of affairs, having a copy of the
paper, and can be captured by locution L5 in figure 5. If the paper is on-line, the deed-
agent assignment download_paper®*°™ is sufficient to introduce has_paper into the
state of the world, thereby extensionally (and whole-heartedly) satisfying the imperative.

The alternative is to delegate the task to the Librarian (if possible), perhaps by
issuing the imperative captured by locution L6 in figure 5. The Librarian would then
be responsible (through the new normative position ()Syiprarianhas_paper) for getting
hold of the paper by whatever means she might see fit — by filling in an inter-library
loan form, by ringing the British Library or whatever. It is of no concern to the PhD
Student how the Librarian finds the paper; the Student’s task is (in this case) done on
creating the obligation on the Librarian.

Alternatively, the Student may decide to specify not the state of affairs that is desired,
but rather the means by which they might be achieved. There are two key reasons
why she might do this: (i) to avoid informing the Librarian of her goal (not relevant
in this example); or (ii) to provide the Librarian with more detailed instructions (as
might be appropriate if the PhD Student has already established that the library doesn’t
have a subscription to the journal in which the paper appears). Delegating the action
is formulated, as can be seen from the locution L7 in figure 5, in as natural a way as
delegating states of affairs.

6 Discussion

It now remains to discuss the consequences of using the model described in this paper
in the practical task of specifying the primitives of an agent communication language.
Following the distinction between actions and states, which has proven so useful in this
discussion of imperatives, it is proposed that the primitives of an agent communication
language should reflect this distinction. The FIPA ACL [11] provides three primitives
that can be clearly understood as imperatives: ‘request’, ‘request-when’ and ‘request-
whenever’. A further primitive was included in earlier versions of this specification, but
does not appear in the latest version: ‘request-whomever’. Each of these primitives refer
to actions to be performed. The rationale for this choice being that they may refer to other
communication primitives. For example, the primitive ‘query-if” is defined in terms of
the imperative ‘request’ and the indicative ‘inform” — ‘query-if” is a request that the
recipient either inform the sender that some proposition is true (according to the beliefs
of the recipient of the request) or that it is false.

The communicative act ‘request-whomever’ was given an informal description in
earlier versions of the FIPA specification; it does not appear within the 2000 FIPA
specification [11], but it is worth discussing here because of its clear relation to the theory

A Model of Delegation for Multi-agent Systems 201

of delegation presented in this paper. The primitive ‘request-whomever’ was described
as “The sender wants an action performed by some agent other than itself. The receiving
agent should either perform the action or pass it on to some other agent.” This may
be interpretated as an attempt (following Cohen and Levesque’s [8] terminology) to
delegate an action where the freedom to further delegate the action is unrestricted. This
means that the recipient can: (1) not understand the message; (2) refuse the request;3 3)
accept the request and perform the action itself; (4) accept the request and ‘request’ some
other agent to perform it; or (5) accept the request and ‘request-whomever’ some other
agent to perform it. This is, essentially, the same as case (b) mentioned in section 1 — “I
don’t care who does (action) «, but it must be done” — and is, therefore, the imperative
T,a, where z is the recipient and « is the action that is the message content.

A formal specification of the communicative act ‘request’ is provided. This is, in
fact, a primitive communicative act in the FIPA specification, and the other imperatives
(mentioned above) are specialisations. In common with the majority of action languages,
the formal specification of the primitive ‘request’, and all other communicative acts
within the FIPA specification, provides a set of ‘feasibility preconditions’ (FP) and a set
of ‘rational effects’ (RE). The definition of request is reproduced in figure 6.*

(i, Request(j, a))
FP : B; Agent(j,a) A =B; I; Done(a)
RE : Done(a)

Fig. 6. The FIPA request communicative act.

There are two issues in this definition that are important to this discussion. First,
the model relies on ‘pseudo-states’: the state of some action a having been done. As
discussed, the model presented in this paper avoids this problem: it provides a means
through which the primitives of an agent communication language can refer to the
delegation of both actions and goals.

Second, and more importantly, to capture the notion of responsibility for satisfying
the request, the preconditions include the belief of the message sender that the recipient
is the agent of the action a. This is stated in the FIPA specification as follows [11, p.
32]: “Agent(i, a) means that ¢ denotes the only agent that ever performs (in the past,
present or future) the actions which appear in action expression a”. This means that
the semantics of this communicative act imposes a significant restriction on the action
language that may be used as content to a FIPA message — all actions must be exclusive
to the agent that performs the act. This is not a problem if the content is another FIPA
message because the specification would include reference to the sender of the message,
but the action used to illustrate the use of request in the FIPA specification [11, p. 25]
is "open \"db.txt\" for input"! Leaving aside this difficulty, the request
communicative act is close to case (d) mentioned in section 1: “You must, through your

3 (1) and (2) are appropriate responses for all FIPA messages.

* There is a further feasibility condition defined in the FIPA specification [11], but this refers to
the feasibility conditions of the action a. Although this is itself problematic, it is not relevant
to this discussion, and is therefore omitted.

202 Timothy J. Norman and Chris Reed

own, direct, intervention do «””. An example of this case has been discussed in section 5.4:
locution L5 in figure 5, where the Lecturer is instructed by the Course Director to write
an exam paper and forbear from delegating responsibility for writing the paper.

Although this discussion has been restricted to the FIPA agent communication lan-
guage, similar limitations can be identified in other ACLs such as KQML; see Reed et
al. [27] for a more detailed analysis. This does, however, illustrate the fact that delega-
tion cannot be captured as a single, distinct communicative act. There is a real need to
develop flexible agent communication languages to support the complex dialogues that
are required by agents interacting at the knowledge level.

In the discussion on delegation, it is assumed that getting someone else to act on
your behalf is a valid means to the satisfaction of a commitment. This avoids the need
to restrict the action component, and hence tie ends to sets of means. The restriction that
delegation is forbidden (it is forbidden because the agent is obliged not to delegate) must
then be explicitly stated within an agreement. This has some parallel with the notion
of the protective perimeter of rights [14,20]. The protective perimeter contains those
actions that can be used to fulfil an obligation. This requires that the action component
is extended to indicate that set of acceptable methods of achieving the goal. However,
in parallel with Jones and Sergot [17], it is essential that an account of delegation is not
dependent upon the detailed choices for the logic of the underlying action component.

7 Conclusion

There are several key advantages that can be gained through adopting the model presented
in this paper. First, it becomes possible, in a single formalism, to distinguish an agent
doing something, being responsible for getting something done, and being responsible
for bringing about a state of affairs. This model provides a clear semantic interpretation
for each. Second, it becomes possible to consider an agent’s actions with regard to
its commitment to a future obligation, and to determine whether or not it is behaving
reasonably with respect to that commitment. Suppose that x accepts the task of doing
a; i.e. it receives the imperative T, under the right context. Under this agreement, x
is at all times obliged to perform deeds which ensure that it can carry out «, or at least
it is forbidden from performing deeds which will remove the extensional satisfaction of
T, from the bounds of possibility.

Thirdly, the language used for describing states of affairs in which agents have
responsibilities and commitments can be used by those agents in ascribing such re-
sponsibilities through imperative- (rather than indicative-) based communicative acts of
delegation. Finally, the intuitive simplicity of the approach has been demonstrated to be
easily applied to real world examples, and to capture cleanly our intuitive understanding
of reponsibility and delegation.

References

1. L. Aqvist. A new approach to the logical theory of interrogatives. Tubingen, TBL Verlag
Gunter Barr, 1975.
2. J.L. Austin. How to do things with words. Oxford University Press, 1962.

10.

11.
12.
13.
14.
15.
16.

17.

20.

21.

22.

23.

24.

25.
26.

A Model of Delegation for Multi-agent Systems 203

M. Barbuceanu and M. S. Fox. Integrating communicative action, conversations and decision
theory to coordinate agents. In Proceedings of the Second International Conference on
Autonomous Agents, pages 47-58, 1997.

. C. Castelfranchi. Modelling social action for Al agents. Artificial Intelligence, 103:157-182,

1998.

. C. Castelfranchi and R. Falcone. Principles of trust for MAS: Cognitive anatomy, social

importance, and quantification. In Proceedings of the Third International Conference on
Multi-Agent Systems, pages 72—79, 1998.

. B. F. Chellas. Modal logic: An introduction. Cambridge University Press, 1980.
. B. F. Chellas. Time and modality in the logic of agency. Studia Logica, 51(3/4):485-517,

1992.

. P.R. Cohen and H. J. Levesque. Communicative actions for artificial agents. In Proceedings

of the First International Conference on Multi-Agent Systems, pages 65-72, 1995.

. F. Dignum. Using transactions in integrity constraints: Looking forward or backwards, what

is the difference? In Proceedings of the Workshop on Applied Logics, 1992.

T. Finin, D. McKay, R. Fritzson, and R. McEntire. KQML: An information and knowledge
exchange protocol. In K. Funchi and T. Yokoi, editors, Knowledge Building and Knowledge
Sharing. Ohmsha and IOS Press, 1994.

Foundation for Intelligent Physical Agents. FIPA communicative act library specification:
XC00037H, 2000. http://www.fipa.org/.

H. P. Grice. Meaning. Philosophical review, 66:377-388, 1957.

C. L. Hamblin. Imperatives. Basil Blackwell, 1987.

H. L. A. Hart. Bentham on legal rights. In A. W. B. Simpson, editor, Oxford Essays in
Jurisprudence, 2, pages 171-201. Oxford University Press, 1973.

J. Hintikka, I. Halonen, and A. Mutanen. Interrogative logic as a general theory of reasoning.
unpublished manuscript, 1996.

J. F. Horty and N. Belnap. The deliberative stit: A study of action, omission, ability, and
obligation. Journal of Philosophical Logic, 24:583-644, 1995.

A. 1 J. Jones and M. J. Sergot. A formal characterisation of institutionalised power. Journal
of the IGPL, 4(3):429-445, 1996.

. L.Kagal, T. Finin, and Y. Peng. A delegation based model for distributed trust. In Proceedings

of the 1JCAI 2001 Workshop on Autonomy, Delegation and Control: Interacting with Agents,
2001.

. S. Kumar, M. J. Huber, D. R. McGee, P. R. Cohen, and H. J. Levesque. Semantics of agent

communication languages for group interaction. In Proceedings of the Seventeenth National
Conference on Artificial Intelligence, pages 42—47, 2000.

L. Lindahl. Position and change: A study in law and logic. D. Reidel Publishing Company,
Dordrecht, 1977.

J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of artificial
intelligence. In D. Michie and B. Meltzer, editors, Machine Intelligence, volume 4, pages
463-502. Edinburgh University Press, 1969.

A. Newell. The knowledge level. Artificial Intelligence, 18:87-127, 1982.

T. J. Norman and C. A. Reed. Group delegation and responsibility. In Proceedings of the
First International Joint Conference on Autonomous Agents and Multi-Agent Systems, 2002.
P. Panzarasa, N. R. Jennings, and T. J. Norman. Formalising collaborative decision making and
practical reasoning in multi-agent systems. Journal of Logic and Computation, 12(1):55-117,
2002.

I. Porn. The logic of power. Basil Blackwell, 1970.

C. A. Reed. Dialogue frames in agent communication. In Proceedings of the Third Interna-
tional Conference on Multi-Agent Systems, pages 246-253, 1998.

204

27.

28.

29.

30.

31.

32.

33.

34.

Timothy J. Norman and Chris Reed

C. A. Reed, T. J. Norman, and N. R. Jennings. Negotiating the semantics of agent commu-
nication languages. Computational Intelligence, to appear.

J. R. Searle. Speech acts: An essay in the philosophy of language. Cambridge University
Press, 1969.

M. J. Sergot. Normative positions. In P. McNamara and H. Prakken, editors, Norms, Logics
and Information Systems. ISO Press, 1998.

M. Shanahan. Solving the Frame Problem: A Mathematical Investigation of the Common
Sense Law of Inertia. MIT Press, Cambridge, MA, 1997.

I. A. Smith, P. R. Cohen, J. M. Bradshaw, M. Greaves, and H. Holmback. Designing con-
versation policies using joint intention theory. In Proceedings of the Third International
Conference on Multi-Agent Systems, pages 269-276, 1998.

G. H. von Wright. An essay in deontic logic and the general theory of action, volume 21 of
Acta philosophica Fennica. North-Holland, Amsterdam, 1968.

D. N. Walton and E. C. W. Krabbe. Commitment in dialogue: Basic concepts of interpersonal
reasoning. SUNY, New York, 1995.

M. J. Wooldridge. Reasoning about rational agents. MIT Press, 2000.

Agent Specification Using Multi-context Systems

Simon Parsons', Nicholas R. Jennings?, Jordi Sabater?, and Carles Sierra®

1 Center for Coordination Science, Sloan School of Management,
Massachusetts Institute of Technology, 3 Cambridge Center, Cambridge, MA 02142, USA,
sparsons@mit.edu
2 Department of Electronics and Computer Science,

University of Southampton, Highfield, Southampton SO17 1BJ, UK,
nrj@ecs.soton.ac.uk
3 TIIA — Artificial Intelligence Research Institute,

CSIC - Spanish Council for Scientific Research,

Campus UAB, 08193 Bellaterra, Catalonia, Spain,

{jsabater, sierra}, @iiia.csic.es

Abstract. In the area of agent-based computing there are many proposals for
specific system architectures, and a number of proposals for general approaches
to building agents. As yet, however, there are comparatively few attempts to relate
these together, and even fewer attempts to provide methodologies which relate
designs to architectures and then to executable agents. This paper discusses an
attempt we have made to address this shortcoming, describing a general method
of defining architectures for logic-based agents which can be directly executed.
Our approach is based upon the use of multi-context systems and we illustrate its
use through examples of the specification of some simple agents.

1 Introduction

Agent-based computing is fast emerging as a new paradigm for engineering complex,
distributed systems [18, 36]. An important aspect of this trend is the use of agent archi-
tectures as a means of delivering agent-based functionality (as opposed to work on agent
programming languages [19, 31, 34]). In this context, an architecture can be viewed as
a separation of concerns — it identifies the main functions that ultimately give rise to the
agent’s behaviour and defines the interdependencies that exist between them. As agent
architectures become more widely used, there is an increasing demand for unambiguous
specifications of them and there is a greater need to verify implementations of them. To
this end, a range of techniques have been used to formally specify agent architectures
(including Concurrent MetateM [12, 35], DESIRE [3, 32] and Z [8]). However, these
techniques typically fall short in at least one of the following ways: (i) they enforce a
particular view of architecture upon the specification; (ii) they offer no explicit structures
for modelling the components of an architecture or the relationships between them; (iii)
they leave a gap between the specification of an architecture and its implementation.
To rectify these shortcomings, we have proposed the use of multi-context systems [15]
as a means of specifying and implementing agent architectures. Multi-context systems
provide an overarching framework that allows distinct theoretical components to be
defined and interrelated. Such systems consist of a set of contexts — each of which can

M. d’ Inverno et al. (Eds.): UKMAS 1996-2000, LNAI 2403, pp. 205-226, 2002.
(© Springer-Verlag Berlin Heidelberg 2002

206 Simon Parsons et al.

informally be considered to be a logic and a set of formulae written in that logic —and a set
of bridge rules for transferring information between contexts. Thus, different contexts can
be used to represent different components of the architecture and the interactions between
these components can be specified by means of the bridge rules between the contexts.
We believe multi-context systems are well suited to specifying and modelling agent
architectures for two main types of reason: (i) from a software engineering perspective
they support modular decomposition and encapsulation; and (ii) from a logical modelling
perspective they provide an efficient means of specifying and executing complex logics.

From a software engineering perspective, multi-context systems support the devel-
opment of modular architectures. Each architectural component — be it a functional
component (responsible for assessing the agent’s current situation, say) or a data struc-
ture component (the agent’s beliefs, say) — can be represented as a separate context.
The links between the components can then be made explicit by writing bridge rules
to link the contexts. This ability to directly support component decomposition offers a
clean route from the high level specification of the architecture through to its detailed
design. Moreover, this basic philosophy can be applied no matter how the architectural
components are decomposed or how many architectural components exist.

Moving onto the logical modelling perspective, there are four main advantages of
adopting a multi-context approach. The first is an extension of the software engineering
advantages which specifically applies to logical systems. By breaking the logical de-
scription of an agent into a set of contexts, each of which holds a set of related formulae,
we effectively get a form of many-sorted logic (all the formulae in one context are a
single sort) with the concomitant advantages of scalability and efficiency. The second
advantage follows on from this. Using multi-context systems makes it possible to build
agents which use several different logics in a way that keeps the logics neatly separated
(all the formulae in one logic are gathered together in one context). This either makes it
possible to increase the representational power of logical agents (compared with those
which use a single logic) or simplify agents conceptually (compared with those which
use several logics in one global context). This latter advantage is illustrated below where
we use multi-context systems to simplify the construction of a BDI agent.

Both of the above advantages apply to any logical agent built using multi-context
systems. The remaining two advantages apply to specific types of logical agent — those
which reason about their beliefs and those of other agents. The first is that multi-context
systems make it possible [15] to build agents which reason in a way which conforms
to the use of modal logics like KD45 (the standard modal logic for handling belief) but
which obviates the difficulties usually inherent in theorem proving in such logics. Again
this is illustrated in [23]. Thus the use of multi-context systems makes it easy to directly
execute agent specifications where those specifications deal with modal notions. The
final advantage is related to this. Agents which reason about beliefs are often confronted
with the problem of modelling the beliefs of other agents, and this can be hard, especially
when those other agents reason about beliefs in a different way (because, for instance,
they use a different logic). Multi-context systems provide a neat solution to this problem
[1,6].

When the software engineering and the logical modelling perspectives are combined,
it can be seen that the multi-context approach offers a clear path from specification

Agent Specification Using Multi-context Systems 207

through to implementation. By providing a clear set of mappings from concept to design,
and from design to implementation, the multi-context approach offers a way of tackling
the gap that currently exists between the theory and the practice of agent-based systems.

2 Multi-context Agents

As discussed above, we believe that the use of multi-context systems offers a number of
advantages when engineering agent architectures. However, multi-context systems are
not a panacea. We believe that they are most appropriate when building agents which
are logic-based and are therefore largely deliberative'.

2.1 The Basic Model

Using a multi-context approach, an agent architecture consists of four basic types of
component. These components were first identified in the context of building theorem
provers for modal logic [15], before being identified as a methodology for constructing

agent architectures [20]. The components are” :

Units: Structural entities representing the main components of the architecture.
Logics: Declarative languages, each with a set of axioms and a number of rules of
inference. Each unit has a single logic associated with it.

Theories: Sets of formulae written in the logic associated with a unit.

Bridge rules: Rules of inference which relate formulae in different units.

Units represent the various components of the architecture. They contain the bulk of an
agent’s problem solving knowledge, and this knowledge is encoded in the specific theory
that the unit encapsulates. In general, the nature of the units will vary between archi-
tectures. For example, a BDI agent may have units which represent theories of beliefs,
desires and intentions (see Section 3), whereas an architecture based on a functional
separation of concerns may have units which encode theories of cooperation, situation
assessment and plan execution (see Section 4). In either case, each unit has a suitable
logic associated with it. Thus the belief unit of a BDI agent has a logic of belief asso-
ciated with it, and the intention unit has a logic of intention. The logic associated with
each unit provides the language in which the information in that unit is encoded, and the
bridge rules provide the mechanism by which information is transferred between units.

Bridge rules can be understood as rules of inference with premises and conclusions
in different units. For instance:

up - l/f, Uz @
us - 0

means that formula § may be deduced in unit ug if formulae 1) and ¢ are deduced in
units u; and ug respectively.

! See [38] for a discussion of the relative merits of logic-based and non logic-based approaches
to specifying and building agent architectures.
2 For more detail see [20].

208 Simon Parsons et al.

When used as ameans of specifying agent architectures, all the elements of the model,
both units and bridge rules, are taken to work concurrently. In practice this means that
the execution of each unit is a non-terminating, deductive process. The bridge rules
continuously examine the theories of the units that appear in their premises for new sets
of formulae that match them. This means that all the components of the architecture are
always ready to react to any change (external or internal) and that there are no central
control elements.

2.2 The Extended Model

The model as outlined above is that introduced in [20] and used in [23]. However, this
model has proved deficient in a couple of ways, both connected to the dynamics of
reasoning. In particular we found it useful [29] to extend the basic idea of multi-context
systems by associating two control elements with the bridge rules: consumption and
time-outs. A consuming condition means the bridge rule removes the formula from the
theory which contains the premise (remember that a theory is considered to be a set of
formulae). Thus in bridge rules with consuming conditions, formulae “move” between
units. To distinguish between a consuming condition and a non-consuming condition, we
will use the notation u; > 1 for consuming and u; : 1 for non-consuming conditions.
Thus:
up > P, ug @
uz : 0

means that when the bridge rule is executed, 1 is removed from u; but ¢ is not removed
from us.

Consuming conditions increase expressiveness in the communication between units.
With this facility, we can model the movement of a formula from one theory to another
(from one unit to another), changes in the theory of one unit that cause the removal
of a formula from another one, and so on. This mechanism also makes it possible to
model the concept of state since having a concrete formula in one unit or another might
represent a different agent state. For example, later in the paper we use the presence of
a formula in a particular unit to indicate the availability of a resource.

A time-out in a bridge rule means there is a delay between the instant in time at
which the conditions of the bridge rule are satisfied and the effective activation of the
rule. A time-out is denoted by a label on the right of the rule; for instance:

means that ¢ units of time after the theory in unit u; gets formula v, the theory in unit us
will be extended by formula . If during this time period formula v is removed from the
theory in unit w1, this rule will not be applied. In a similar way to consuming conditions,
time-outs increase expressiveness in the communication between units. This is important
when actions performed by bridge rules need to be retracted if a specific event does not
happen after a given period of time. In particular, it enables us to represent situations

3 For more detail on exactly how this is achieved, see [29].

Agent Specification Using Multi-context Systems 209

where silence during a period of time may mean failure (in this case the bridge rules can
then be used to re-establish a previous state)*.

2.3 Modular Agents

Using units and bridge rules as the only structural elements can be cumbersome when
building complex agents (as can be seen from the model we develop below in Section 3).
As the complexity of the agent increases, it rapidly becomes very difficult to deal with the
necessary number of units and their interconnections using bridge rules alone. Adding
new capabilities to the agent becomes a complex task in itself. To solve this problem we
suggest adding another level of abstraction to the model — the module.

A module is a set of units and bridge rules that together model a particular capability
or facet of an agent. For example, planning agents must be capable of managing resources,
and such an agent might have a module modeling this ability. Similarly, such an agent
might have a module for generating plans, a module for handling communication, and
so on. Thus modules capture exactly the same idea as the “capabilities” discussed by
Busetta et al. [4]. Unlike Busetta et al., we do not currently allow modules to be nested
inside one another, largely because we have not yet found it necessary to do so. However,
it seems likely that we will need to develop a means of handling nested hierachies of
modules in order to build more complex agents than we are currently constructing.

Each module must have a communication unit. This unit is the module’s unique
point of contact with the other modules and it knows what kind of messages its module
can deal with. All of an agent’s communication units are inter-connected with the others
using multicast bridge rules (MBRs) as in Figure 1. This figure shows three MBRs (the
rectangles in the middle of the diagram) each of which has a single premise in module
a and a single conclusion in each of the modules n;.

Since the MBRs send messages to more than one module, a single message can
provoke more than one answer and, hence, contradictory information may appear. There
are many possible ways of dealing with this problem, however here we consider just one
of them as an example. We associate a weight with each message. This value is assigned to
the message by the communication unit of the module that sends it out. Weights belong to
[0, 1] (maximum importance is 1 and minimum is 0), and their meaning is the strength of
the opinion given in the message, and this can be used to resolve contradictory messages.
For instance, the message with highest weight might be preferred, or the different weights
of incoming messages could be combined by a communication unit receiving them to
take a final decision (for instance using the belief revision mechanism described in [21]).
Note that weights are used only in inter-module messages.

* Both of these extensions to the standard multi-context system incur a cost. This is that including
them in the model means that the model departs somewhat from first order predicate calculus,
and so does not have a fully-defined semantics. We are currently looking at using linear logic,
in which individual propositions can only be used once in any given proof, as a means of
giving a semantics to consuming conditions, and various temporal logics as a means of giving
a semantics to time-outs.

210 Simon Parsons et al.

MODULE - a

nue,n2:¢ ni:g,n2: ney,nay

MODULE - n MODULE - n2

Fig. 1. The inter-connection of modules (from a’s perspective only)

2.4 Messages between Modules

Given a set AN of agent names and a set M N of module names, an inter-module

message has the form:
I(S7 R7 SO; G>1/J)

where

1 is an illocutionary particle that specifies the kind of message.

S and R both have the form A[/m]*> where A € AN or A = Self (Self refers
to the agent that owns the module) and m € M N, or m = all (all denotes all the
modules within that agent). S reflects who is sending the message and R indicates
to whom it is directed.

 is the content of the message.

G 1is a record of the derivation of ¢. It has the form: {{I1 - v1}...{I, - vn}}
where I is a set of formulae and ¢; is a formula with ¢,, = .

- 1 € [0, 1] is the weight associated with the message.

To see how this works in practice, consider the following. Suppose that an agent (named
B) has four modules (a, b, ¢, d). Module a sends the message:

Ask(Self /a, Self /all, Give(B, A, Nail),11,0.5)

3 Aselsewhere we use BNF syntax, so that A[/m]* means A followed by one or more occurrences
of /m.

% In other words, G is exactly the set of grounds of the argument for ¢ [23]. Where the agent does
not need to be able to justify its statements, this component of the message can be discarded.
Note that, as argued by Gabbay [13] this approach is a generalisation of classical logic — there
is nothing to stop the same approach being used when messages are just formulae in classical
logic.

Agent Specification Using Multi-context Systems 211

This means that module a of agent B is asking all its modules whether B should give
A a nail. The reason for doing this is ¢); and the weight a puts on this request is 0.5.
Assume modules ¢ and d send the answer

Answer(Self /¢, Self /a, not(Give(B, A, Nail)), 12,0.6)

and
Answer(Self /d, Self /a,not(Give(B, A, Nail)),s3,0.7)

while module b sends
Answer(Self /b, Self /a, Give(B, A, Nail), 14,0.3)

Currently we treat the weights of the messages as possibility measures [9], and so com-
bine the disjunctive support for not(Give(B, A, Nail)) using max. As this combined
weight is higher than the weight of the positive literal, the communication unit of module
a will accept the opinion not(Give(B, A, Nail)).

The messages we have discussed so far are those which are passed around the agent
itself in order to exchange information between the modules which compose it. Our
approach also admits the more common idea of messages between agents. Such inter-
agent messages have the same basic form, but they have two minor differences:

— Sand R are agent names (i.e. S, R € AN), no modules are specified.

— there is no degree of importance (because it is internal to a particular agent —however
inter-agent messages could be augmented with a degree of belief [21] which could
be based upon the weight of the relevant intra-agent messages.)

With this machinery in place, we are in a position to specify realistic agent architectures.

2.5 Examples of Multi-context Agents

This remainder of this paper contains two examples of agent specification using multi-
context systems, each illustrating one of the uses of units introduced in Section 2.1 —
the first of these (based on the model in [23]) is that for a BDI agent, the second (based
on the model in [29]), is that for an agent in which the architectural units are based on a
functional separation of concerns. The first illustrates how the multi-context approach can
be used to handle the kind of “mental attitudes” agent architectures which have become
common. The second shows how modules can help to simplify the multi-context model.
Both of these examples are based around the example of home improvement agents
introduced in [22], and sketched below’. In order to save space (and also to save the
sanity of the authors and readers familiar with the example), neither treatment does any
more than specify the agents — fuller versions can be found in the papers cited above.
For those unfamiliar with the example, it is as follows. Two agents, A and B have,
respectively, the tasks of hanging a picture and hanging a mirror. A knows one way of
hanging a picture and one of hanging a mirror. B just knows how to hang a mirror (using

7 Initially unnamed, this example seems to have become known as “The Nail Problem” (tnp);
despite being simple to express it turns out to be rather hard to handle.

212 Simon Parsons et al.

a different technique from A). A has the means to hang a mirror using its technique, B
has the means to hang either its mirror, using its own technique, or A’s picture. The full
solution to the problem involves A convincing B to use A’s approach and resources to
hang the mirror so that A can use B’s resources to hang the picture.

3 Agents with Mental Attitudes

Our first example examines how a particular class of agent architecture — BDI agents
— can be modelled and then describes how particular individuals of that class can be
specified in order to solve the example. This seems an appropriate choice because BDI
agents are currently of wide interest within the multi-agent system community [37].

3.1 A High-Level Description

The first step in specifying the agent is to choose the units and the logics that they contain.
In this example, the choice is driven by the fact that we are modelling BDI agents. The
particular theory of BDI on which the architecture is based is that of Rao and Georgeff.
This model has evolved over time (as can be seen by comparing [25] and [26]) and in
this section we account for the most recent approach [26] where three modalities are
distinguished: B for beliefs —used to represent the state of the environment, D for desires
— used to represent the motivations of the agent, and / for intentions — used to represent
the ends (or goals) of the agent. In order to fit this kind of model into our multi-context
framework, we associate a separate unit for each of the modalities®

As dicussed in [23], we could then equip each of these units with exactly the same
logic as is used in Rao and Georgeff’s model, taking the logic of the belief unit to be
modal logic KD45 and the logics of the desire and intention units to both be modal
logic KD, and to take all these modal logics to be combined with the temporal logic
CTL [10]. However, it is more in the spirit of multi-context systems [15] to take B,
D and I as predicates. Such systems again have separate B, D and I units along with
a communication unit, and use first order logic. The necessary interaction between the
predicates is established using bridge rules (as discussed below) and the axioms of the
relevant modal logics are modelled by adding formulae to the theories in each unit (again
this is discussed below).

3.2 Specification of Bridge Rules

Having decided on the units and the logics that they contain, the next step in the spec-
ification is to write down the bridge rules which connect the units. Here we have two
distinct sets of such rules. The first model the relationships between beliefs, desires and
intentions. These are domain independent and would hold for any BDI agent specified
in this way. The second model some domain specific knowledge.

8 In fact the general approach allows more than one unit for beliefs (as in [5]), desires or intentions
if deemed appropriate. In the examples presented, however, this is not necessary.

Agent Specification Using Multi-context Systems 213

BDI Bridge Rules. As stated above, the set of bridge rules determine the relationship
between the modalities and hence the behaviour of the agent. Three well established sets
of relationships for BDI agents have been identified [26]:

— Strong realism. The set of intentions is a subset of the set of desires which in turn is
a subset of the beliefs. That is, if an agent does not believe something, it will neither
desire nor intend it [25].

— Realism. The set of beliefs is a subset of the set of desires which in turn is a subset
of the set of intentions. That is, if an agent believes something, it both desires and
intends it [7].

— Weak realism. A case in between strong realism and realism. Agents do not desire
propositions the negation of which are believed, do not intend propositions the
negations of which are desired, and do not intend propositions the negations of
which are believed [24].

Figure 2 gives a suitable set of bridge rules for each of these interpretations. In [23], we
only considered strong realist agents. In addition to this set of rules, we found that we
needed a couple of additional rules which relate intentions to beliefs:

I: IZ(CV)
B : Bi(Ii(Oé

)
AWARENESS_OF _INTENTION(2) = m
N (L («a

AWARENESS_OF_INTENTION(1) =

Agents are aware of their intentions, so if an agent has an intention it also believes that
it has that intention. We also have:
B : Bi(I;(a))

IMPLUSIVENESS = T L)

When an agent believes it has an intention, it adopts that intention.

Fig. 2. Different types of BDI agent. From left to right, the relations between modalities correspond
to strong realism, realism and weak realism.

214 Simon Parsons et al.

These last two are similar in some ways to the basic rules of modal logic®, except
that in standard modal logic they don’t apply across modalities in the way that they do
here.

Domain Dependent Bridge Rules. The bridge rules for the appropriate form of realism
will be required for the specification of any such agent whatever domain it is operating
in. Without them, the agent will not conform to Rao and Georgeft’s idea of what a BDI
agent is. In addition we believe that the awareness of intentions and implusiveness rules
(or something like them) will be required in practice by any BDI agent.

In addition to these domain independent rules, any agent will require a set of bridge
rules which define how it interacts with other agents. In the domain of this example,
these relate the mental state to what an agent says (and what it hears to its mental state).
These are as follows':

I:I;(Give(X,i,2))

REQUEST = — Ask(i, X, Give(X, i, Z))

When an agent (¢) needs something (Z) from another agent (X), it asks for it

I: I(Give(i, X, Z))

FFER =
° C:Tell(i, X, Give(i, X, Z))

When an agent (¢) has the intention of offering something (Z) to another agent (X), it
informs the recipient of this fact.
C : Tell(X,i, Bx(¥))

B : Bi(y)

TRUST =

When an agent () is told of a belief of another agent (X), it accepts that belief.

C:a«

AWARENESS_OF_ILL TIONS = ———
SS.0 OCUTIONS B Bia)

In addition, Figure 2 includes some bridge rules which allow the transfer of information
between the communication unit and the belief and intention units. These capture the
fact that an agent with an intention to carry out an action will communicate that fact,
and when an agent receives notification that another agent has carried out an action, the
first agent believes this.

This completes the set of bridge rules that we require for our example, and we can
pass on to consider the logical theories with which each unit is instantiated. However,
before doing so, consider that we have now specified 13 bridge rules'! to connect 4 units.
It is this tight network of interconnection that led us to conside the modular approach
described in Section 2.3.

° In particular the positive and negative introspection axioms 4 and 5 and the T axiom.

10 Note that in the rest of the paper we adopt a Prolog-like notation in which the upper case letters
X,Y, Z, P are taken to be variables.

! That is we require 13 in order to specify a strong realist agent. A weak realist agent would
require 15.

Agent Specification Using Multi-context Systems 215

3.3 Instantiating the Contexts

Having specified the contexts, logics and bridge rules we have to consider what formulae
will appear in each unit. Some of these will be specific to an individual agent (the desires
with which it is programmed for example), but others will be more generic and be
common between a number of agents. It is these more generic formulae that we consider
here. In the case of the home improvement agents, both agents need a simple theory of
action that integrates a model of the available resources with their planning mechanism.
This theory needs to model the following ideas (where ¢ is an index identifying the
agent):

Ownership. When an agent (X) is the owner of an artifact (Z) and it gives Z to another
agent (Y), Y becomes its new owner:
B : B,(Have(X,Z) N Give(X,Y,Z) — Have(Y, 7))
Unicity. When an agent (X) gives an artifact (Z) away, it no longer owns it'?:
B: B;(Have(X,Z) A Give(X,Y,Z) — —~Have(X, Z))

Benevolence. When an agent ¢ has something (Z) that it does not intend to use and is
asked to give it to another agent (X), ¢ adopts the intention of giving Z to X. Naturally
more complex cooperative strategies can be defined if desired:

B : B;(Have(i, Z) N —I;(Have(i, Z)) N Ask(X, i, Give(i, X, Z)) —
I;(Give(i, X, Z)))

The following axioms represent a similarly simplistic theory of planning (but again one
which suffices for our example). In crude terms, when an agent believes that it has the
intention of doing something and has a rule for achieving that intention then the pre-
conditions of the rule become new intentions. Recall that the — between the P; and)
is not material implication.

Parsimony. If an agent believes that it does not intend something, it does not believe
that it will intend the means to achieve it.

BBZ(_\IL(Q))/\BZ(Pl/\/\Pj/\/\Pn—)Q)%_'Bl(IL(PJ))

Reduction. If there is only one way of achieving an intention, an agent adopts the
intention of achieving its preconditions.

BBz(Iz(Q))/\Bl(Pl/\/\PJ/\/\Pn—>Q)
/_‘B1<R1/\ARm%Q)—)Bz(IZ(PJ))

where R; A ... A R, is not a permutation of P} A ... A P,.

12 As it stands this formula appears contradictory. This is because we have, for simplicity, ignored
the treatment of time. Of course, the complete specification of this example (which is not
our main focus) would need time to be handled. We could do this by including time as an
additional argument to each predicate, in which case the unicity formula would read B :
Bi(Have(X, Z,t) A Give(X,Y, Z,t) — —Have(X, Z,t + 1)). Doing this would involve
making the base logic for each unit “time capable”, for instance by using the system introduced
by Vila [33].

216 Simon Parsons et al.

Unique Choice. If there are two or more ways of achieving an intention, only one is
intended. Note that we use 1/ to denote exclusive or.

ABi(RiAN...ANRy — Q) —

where Ry A ... A R,, is not a permutation of P; A ... A P,. As mentioned above, we
acknowledge that both the theory of action and the theory of planning are rather naive.
The interested reader is encouraged to substitute their own such theories if desired.

So far, we have identified the contexts and the logics they will contain, decided on
the bridge rules between them, and identified the bits of the theories expressed in each
logic that are common to both agents in our example. It remains to add to the model
those bits of the theories that are unique to each agent.

3.4 Instantiating the Individual Agents

Agent a has the intention of hanging a picture, it has various beliefs about resources and
how they can be used to hang mirrors and pictures:

I,(Can(a, hang_picture))
: Bo(Have(a, picture))

Have(a, screw))

Hawve(a, screwdriver))

Have(b, nail))

Have(X, hammer) A Have(X, nail) AN Have(X, picture) —
Can(X, hang_picture))
: By(Have(X, screw) A Have(X, screwdriver) A Have(X, mirror) —
Can(X, hang_-mirror))

Do W o~

((

Ba((

«(Have(a, hammer))
a (

a (

a

Sy

Now, agent b wants to hang a mirror (and has this as an intention) and has various beliefs
about its resources and the action of hanging mirrors:

: Iy(Can(b, hang_mirror))

: By(Have(b, mirror))

: By(Have(b, nail))

: By(Have(X, hammer) A Have(X, nail) A Have(X, mirror) —
Can(X, hang-mirror))

DWW~

We have now demonstrated how the multi-context approach can be used to specify
BDI agents. As mentioned above, [23] shows how this specification can be used to solve
the example.

Agent Specification Using Multi-context Systems 217

4 A Functional Agent

This section gives a specification of an agent which is capable of solving a simplified
version of the home-improvement example. The simplification is to reduce the problem
to one in which a single agent has all the resources necessary to hang a picture. As
a result, compared with the more complex versions of the home improvement agents
described above, the agent is not quite solipsistic (since it has some awareness of its
environment) but it is certainly autistic (since it has no mechanisms for interacting with
other agents). For an example of the specification of further agents in the context of this
example, see [27-29]13.

4.1 A High-Level Description

The basic structure of the agent is that of Figure 3. There are three modules connected
by multicast bridge rules. These are the plan library (PL), the resource manager (RM),
and the goal manager (GM). Broadly speaking, the plan library stores plans for the tasks
that the agent knows how to complete, the resource manager keeps track of the resources
available to the agent, and the goal manager relates the goals of the agent to the selection
of appropriate plans.

There are two types of message which get passed along the multicast bridge rules.
These are the following:

— Ask: arequest to another module.
— Answer: an answer to an inter-module request.

Thus all the modules can do is to make requests on one another and answer those requests.
We also need to define the predicates which form the content of such messages. Given
a set of agent names AN, and with AN" = AN U {Self}.

goal plan
manager library

resource

manager

Fig. 3. The modules in the agent

13 Note that [27] is distinct from [28]. The former is the version in the workshop preproceedings,
whereas the latter is the version available in the published proceedings and the examples they
contain are substantially different.

218 Simon Parsons et al.

— Goal(X): X is a string describing an action. This denotes the fact that the agent
has the goal X.

— Have(X,Z): X € AN'isthe name of an agent (here always instantiated to Self, the
agent’s name for itself, but a variable since the agent is aware that other agents may
own things), and Z is the name of an object. This denotes Agent X has possession
of Z.

As can be seen from the above, the content of the messages is relatively simple, referring
to goals that the agent has, and resources it possesses. Thus a typical message would be
a request from the goal manager as to whether the agent possesses a hammer:

ask(Self /GM, Self /all, goal(have(Self , hammer)), {})

Note that in this message, as in all messages in the remainder of this paper, we ignore
the weight in the interests of clarity. Such a request might be generated when the goal
manager is trying to ascertain if the agent can fulfill a possible plan which involves using
a hammer.

4.2 Specifications of the Modules

Having identified the structure of the agent in terms of modules, the next stage in the
specification is to detail the internal structure of the modules in terms of the units they
contain, and the bridge rules connecting those units. The structure of the plan library
module is given in Figure 4. In this diagram, units are represented as circles, and bridge
rules as rectangles. Arrows into bridge rules indicate units which hold the antecedents
of the bridge rules, and arrows out indicate the units which hold the consequents. The
two units in the plan library module are:

— The communication unit (CU): the unit which handles communication with other
units.

GET_PLAN

Fig. 4. The plan library module

Agent Specification Using Multi-context Systems 219

ALLOCATE

Fig. 5. The resource manager module

— The plan repository (S): a unit which holds a set of plans.
The bridge rule connecting these units is:
CU > ask(Self /Sender, Self /all, goal(Z),{}),

S : plan(Z, P)

GET-PLAN = CU : answer(Self /PL, (Self / Sender, goal(Z), { P})

where the predicate plan(Z, P) denotes the fact that P, taken to be a conjunction of
terms, is a plan to achieve the goal Z'4.

When the communication unit sees a message on the inter-module bus asking about
the feasibility of the agent achieving a goal, then, if there is a plan to achieve that goal
in the plan repository, that plan is sent to the module which asked the original question.
Note that the bridge rule has a consuming condition — this is to ensure that the question
is only answered once.

The structure of the resource manager module is given in Figure 5. The two units in
this module are:

— The communication unit (CU).
— The resource respository (R): a unit which holds the set of resources available to
the agent.

The bridge rule connecting the two units is the following:

CU > ask(Self /Sender, Self / Receiver, goal(have(X, Z)),{}),
R > resource(Z, free)

CU : answer(Self /RM, Self / Sender, have(X, Z),{}),
R : resource(Z, allocated)

ALLOCATE =

4 Though here we take a rather relaxed view of what constitutes a plan — our “plans” are little
more than a set of pre-conditions for achieving the goal.

220 Simon Parsons et al.

where the resource(Z, allocated) denotes the fact that the resource Z is in use, and
resource(Z, free) denotes the fact that the resource Z is not in use.

When the communication unit sees a message on the inter-module bus asking if the
agent has a resource, then, if that resource is in the resource repository and is currently
free, the formula recording the free resource is deleted by the consuming condition, a
new formula recording the fact that the resource is allocated is written to the repository,
and a response is posted on the inter-module bus. Note that designating a resource as
“allocated” is not the same as consuming a resource (which would be denoted by the
deletion of the resource), and that once again the bridge rule deletes the original message
from the communication unit.

The goal manager is rather more complex than either of the previous modules we have
discussed, as is immediately clear from Figure 6 which shows the modules it contains,
and the bridge rules which connect them. These modules are:

— The communication unit (CU).

— The plan list unit (P): this contains a list of plans the execution of which is currently
being monitored.

— The goal manager unit (G): this is the heart of the module, and ensures that the
necessary sub-goaling is carried out.

g °

MONITOR

1 |‘||||I||||'

PLAN
RESOURCE

Fig. 6. The goal manager module

Agent Specification Using Multi-context Systems 221

— The resource list module (R): this contains a list of the resources being used as part
of plans which are currently being executed.

The bridge rules relating these units are as follows. The first two bridge rules handle
incoming information from the communication unit:

CU > answer(Self /RM, Self /|GM, have(Self, Z),{})

RESOURCE = I
PLAN — CU > answer(Self /PL, Self /|GM, goal(Z),{P})
B P :plan(Z, P)

The first of these, RESOURCE, looks for messages from the resource manager reporting
that the agent has possession of some resource. When such a message arrives, the goal
manager adds a formula representing the resource to its resource list module. The second
bridge rule PLAN does much the same for messages from the plan library reporting the
existence of a plan — such plans are written to the plan library. There is also a bridge rule
ASK which generates messages for other modules:

G : goal(X),
G : not(done(X)),
R : not(X),
P : not(plan(X, Z))
G : not(done(ask(X))),
CU : ask(Self /G, Self [all, goal(X),{}),
G : done(ask(X))

ASK =

If the agent has the goal to achieve X, and X has not been achieved, nor is X an available
resource (and therefore in the R unit), nor is there a plan to achieve X, and X has not
already been requested from other modules, then X is requested from other modules
and this request is recorded. The remaining bridge rules are:

G : goal(X),
R : not(X),

P : plan(X, P)
G : monitor(X, P)
G : goal(X),

R:X
G : done(X)

The MONITOR bridge rule takes a goal X and, if there is no resource to achieve X but
there is a plan to obtain the resource, adds the formula monitor(X, P) to the G unit,
which has the effect of beginnning the search for the resources to carry out the plan. The
DONE bridge rule identifies that a goal X has been achieved when a suitable resource
has been allocated.

MONITOR =

DONE =

4.3 Specifications of the Units

Having identified the individual units within each module, and the bridge rules which
connect the units, the next stage of the specification is to identify the logics present within

222 Simon Parsons et al.

the various units, and the theories which are written in those logics. For this agent most
of the units are simple containers for atomic formulae. In contrast, the G unit contains
a theory which controls the execution of plans. The relevant formulae are:

monitor(X, P) — assert_subgoals(P)
monitor(X, P) — prove(P)
monitor(X, P) A proved(P) — done(X)

assert,subgoals(/\ Y;) — /\goal(Yi)

prove(X A /\YJ A done(X) — prove(/\ Y:)

[7

/\ done(Y;) — proved(/\ Y;)

The monitor predicate forces all the conjuncts which make up its first argument to be
goals (which will be monitored in turn), and kicks off the “proof™ of the plan which is
its second argument'>. This plan will be a conjunction of actions, and as each is “done”
(a state of affairs achieved through the allocation of resources by other bridge rules), the
proof of the next conjunct is sought. When all have been “proved”, the relevant goal is
marked as completed.

The specification as presented so far is generic — it is akin to a class description for a
class of autistic home improvement agents. To get a specific agent we have to “program”
it by giving it information about its initial state. For our particular example there is little
such information, and we only need to add formulae to three units. The plan repository
holds a plan for hanging pictures using hammers and nails:

S : plan(hangPicture(X),
have(X, picture) A have(X, nail) A have(X, hammer))

The resource repository holds the information that the agent has a picture, nail and a
hammer:

R : Resource(picture, free)

R : Resource(nail, free)

R : Resource(hammer, free)

Finally, the goal manager contains the fact that the agent has the goal of hanging a
picture:

G : goal(hangPicture(Self))

With this information, the specification is complete. A full description of the execution
of this specification is contained in [28].

15 Given our relaxed view of planning, this “proof” consists of showing the pre-conditions of the
plan can be met.

Agent Specification Using Multi-context Systems 223

5 Related Work

There are two main strands of work to which ours is related — work on executable agent
architectures and work on multi-context systems. As mentioned above, most previous
work which has produced formal models of agent architectures, for example dMARS
[16], AgentO [30] and GRATE* [17], has failed to carry forward the clarity of the
specification into the implementation — there is a leap of faith required between the
two. Our work, on the other hand, maintains a clear link between specification and
implementation through the direct execution of the specification as exemplified in our
examples. This relation to direct execution also distinguishes our work from that on
modelling agents in Z [8], since it is not yet possible to directly execute a Z specification.
Itis possible to animate specifications, which makes it possible to see what would happen
if the specification were executed, but animating agent specifications is some way from
providing operational agents. Our work also differs from that which aims to describe the
operational semantics of agent architectures using the w-calculus [11], since our models
have a declarative rather than an operational semantics.

More directly related to our work is that on DESIRE and Concurrent MetateM.
DESIRE [3, 32] is a modelling framework originally conceived as a means of specifying
complex knowledge-based systems. DESIRE views both the individual agents and the
overall system as a compositional architecture. All functionality is designed as a series of
interacting, task-based, hierarchically structured components. Though there are several
differences, from the point of view of the proposal advocated in this paper, we can see
DESIRE’s rasks as modules and information links as bridge rules. In our approach there
is no explicit task control knowledge of the kind found in DESIRE. There are no entities
that control which units, bridge rules or modules should be activated nor when and
how they are activated. Also, in DESIRE the communication between tasks is carried
out by the information links that are wired-in by the design engineer. Our inter-module
communication is organized as a bus and the independence between modules means new
ones can be added without modifying the existing structures. Finally the communication
model in DESIRE is based on a one-to-one connection between fasks, in a similar way to
that in which we connect units inside a module. In contrast, our communication between
modules is based on a multicast model.

Concurrent MetateM defines concurrent semantics at the level of single rules [12,
35]. Thus an agent is basically a set of temporal rules which fire when their antecedents
are satisfied. Our approach does not assume concurrency within the components of
units, rather the units themselves are the concurrent components of our architectures.
This means that our model has an inherent concurrent semantics at the level of the units
and has no central control mechanism. Though our exemplar uses what is essentially
first order logic (albeit a first order logic labelled with arguments), we could use any
logic we choose — we are not restricted to a temporal logic as in MetateM.

There are also differences between our work and previous work on using multi-
context systems to model agents’ beliefs. In the latter [14], different units, all containing
a belief predicate, are used to represent the beliefs of the agent and the beliefs of all the
acquaintances of the agent. The nested beliefs of agents may lead to tree-like structures of
such units (called belief contexts). Such structures have then been used to solve problems
like the three wise men [6]. In our case, however, any nested beliefs would typically

224 Simon Parsons et al.

be included in a single unit or module. Moreover we provide a more comprehensive
formalisation of an autonomous agent in that we additionally show how capabilities
other than that of reasoning about beliefs can be incorporated into the architecture. In
this latter respect this paper extends the work of [23] with the idea of modules which
links the approach more strongly with the software engineering tradition.

6 Conclusions

This paper has proposed a general approach to defining agent architectures. It provides a
means of structuring logical specifications of agents in a way which makes them directly
executable. This approach has a number of advantages. Firstly it bridges the gap between
the specification of agents and the programs which implement those specifications.
Secondly, the modularity of the approach makes it easier to build agents which are capable
of carrying out complex tasks such as distributed planning. From a software engineering
point of view, the approach leads to architectures which are easily expandable, and have
re-useable components.

From this latter point of view, our approach suggests a methodology for building
agents which has similarities with object-oriented design [2]. The notion of inheritance
can be applied to groups of units and bridge rules, modules and even complete agents.
These elements could have a general design which is specialized to different and more
concrete instances by adding units and modules, or by refining the theories inside the
units of a generic agent template. However, before we can develop this methodology,
there are some issues to resolve. Firstly there is the matter of the semantics of the
comsuming conditions and time-outs in bridge rules. Secondly, there is the question of
how to handle nested hierachies of modules — something which is essential if we are to
develop really complex agents.

Acknowledgments

This work has been supported by the UK EPSRC project Practical Negotiation for
Electronic Commerce GR/M(07076 and the EU IST project Sustainable Lifecycles for
Information Ecosystems IST-1999-10208.

References

1. M. Benerecetti, A. Cimatti, E. Giunchiglia, F. Giunchiglia, and L. Serafini. Formal specifica-
tion of beliefs in multi-agent systems. In J. P. Miiller, M. J. Wooldridge, and N. R. Jennings,
editors, Intelligent Agents I11, pages 117-130. Springer Verlag, Berlin, 1997.

2. G. Booch. Object-oriented analysis and design with application. Addison Wesley, Woking-
ham, UK, 1994.

3. F. M. T. Brazier, B. M. Dunin-Keplicz, N. R. Jennings, and J. Treur. Formal specification
of multi-agent systems. In Proceedings of the 1st International Conference on Multi-Agent
Systems, pages 25-32, 1995.

4. P. Busetta, N. Howden, R. Ronnquist, and A. Hodgson. Structuring BDI agents in functional
clusters. In N. R. Jennings and Y Lespérance, editors, Intelligent Agents VI. Springer Verlag,
Berlin, 1999.

10.

11.

13.
14.

15.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Agent Specification Using Multi-context Systems 225

A. Cimatti and L. Serafini. Multi-agent reasoning with belief contexts: The approach and a
case study. In Proceedings of the 3rd International Workshop on Agent Theories, Architectures
and Languages, 1994.

. A. Cimatti and L. Serafini. Multi-agent reasoning with belief contexts: The approach and a

case study. In M. J. Wooldridge and N. R. Jennings, editors, Intelligent Agents, pages 62—73.
Springer Verlag, Berlin, 1995.

. P.R. Cohen and H. J. Levesque. Intention is choice with commitment. Artificial Intelligence,

42:213-261, 1990.

M. d’Inverno, D. Kinny, M. Luck, and M. Wooldridge. A formal specification of dMARS.
In M. P. Singh, A. S. Rao, and M. Wooldridge, editors, Intelligent Agents IV, pages 155-176.
Springer Verlag, Berlin, 1998.

D. Dubois and H. Prade. Possibility Theory: An Approach to Computerized Processing of
Uncertainty. Plenum Press, New York, NY, 1988.

E. A. Emerson. Temporal and Modal Logic. InJ van Leeuwen, editor, Handbook of Theoretical
Computer Science, pages 996—1071. Elsevier, 1990.

J. Ferber and O. Gutknecht. Operational semantics of a role-based agent architecture. In N. R.
Jennings and Y Lespérance, editors, Intelligent Agents VI. Springer Verlag, Berlin, 1999.

. M. Fisher. Representing abstract agent architectures. In J. P. Miiller, M. P. Singh, and A. S.

Rao, editors, Intelligent Agents V, pages 227-242. Springer Verlag, Berlin, 1998.

D. Gabbay. Labelled Deductive Systems. Oxford University Press, Oxford, UK, 1996.

F. Giunchiglia. Contextual reasoning. In Proceedings of the 1JCAI Workshop on Using
Knowledge in Context, 1993.

F. Giunchiglia and L. Serafini. Multilanguage hierarchical logics (or: How we can do without
modal logics). Artificial Intelligence, 65:29-70, 1994.

. F F Ingrand, M. P. Georgeff, and A. S. Rao. An architecture for real-time reasoning and

system control. /[EEE Expert, 7(6):34—44, 1992.

N. R. Jennings. Controlling cooperative problem solving in industrial multi-agent systems
using joint intentions. Artificial Intelligence, 75:195-240, 1995.

N. R. Jennings. Agent-based computing: Promise and perils. In Proceedings of the 16th
International Joint Conference on Artificial Intelligence, pages 1429-1436, 1999.

J. J. Meyer. Agent languages and their relationship to other programming paradigms. In J. P.
Miiller, M. P. Singh, and A. S. Rao, editors, Intelligent Agents V, pages 309-316. Springer
Verlag, Berlin, 1998.

P. Noriega and C. Sierra. Towards layered dialogical agents. In J. P. Miiller, M. J. Wooldridge,
and N. R. Jennings, editors, Intelligent Agents IlI, pages 173—188, Berlin, 1996. Springer
Verlag.

S. Parsons and P. Giorgini. An approach to using degrees of belief in BDI agents. In
B. Bouchon-Meunier, R. R. Yager, and L. A. Zadeh, editors, Information, Uncertainty, Fusion.
Kluwer, Dordrecht, 1999.

S. Parsons and N. R. Jennings. Negotiation through argumentation—a preliminary report. In
Proceedings of the International Conference on Multi Agent Systems, pages 267-274, 1996.
S. Parsons, C. Sierra, and N. R. Jennings. Agents that reason and negotiate by arguing. Journal
of Logic and Computation, 8(3):261—292, 1998.

A. Rao and M. Georgeff. Asymmetry thesis and side-effect problems in linear time and
branching time intention logics. In Proceedings of the 12th International Joint Conference
on Artificial Intelligence, 1991.

A. S. Rao and M. P. Georgeff. Modeling Rational Agents within a BDI-Architecture. In
Proceedings of the 2nd International Conference on Principles of Knowledge Representation
and Reasoning, pages 473-484, 1991.

A. S. Rao and M. P. Georgeff. Formal Models and Decision Procedures for Multi-Agent
Systems. Technical Note 61, Australian Artificial Intelligence Institute, 1995.

226

27.

28.

29.

30.
31.

32.

33.

34.

35.

36.

37.
38.

Simon Parsons et al.

J. Sabater, C. Sierra, S. Parsons, and N. R. Jennings. Using multi-context agents to engineer
executable agents. In Proceedings of the 6th International Workshop on Agent Theoreies,
Archiectures and Languages, 1999.

J. Sabater, C. Sierra, S. Parsons, and N. R. Jennings. Using multi-context agents to engineer
executable agents. In N. R. Jennings and Y. Lesperance, editors, Intelligent Agents IV, pages
277-294. Springer-Verlag, 2000.

J. Sabater, C. Sierra, S. Parsons, and N. R. Jennings. Engineering executable agents using
multi-context systems. Journal of Logic and Computation, 2002. (to appear).

Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60:51-92, 1993.

S. R. Thomas. The PLACA agent programming language. In M. J. Wooldridge and N. R.
Jennings, editors, Intelligent Agents, pages 355-370. Springer Verlag, Berlin, 1995.

J. Treur. On the use of reflection principles in modelling complex reasoning. International
Journal of Intelligent Systems, 6:277-294, 1991.

L. Vila. On temporal representation and reasoning in knowledge-based systems. 1I1A Mono-
graphies, Barcelona, Spain, 1994.

D. Weerasooriya, A. Rao, and K. Rammamohanarao. Design of a concurrent agent-oriented
language. In M. J. Wooldridge and N. R. Jennings, editors, Intelligent Agents, pages 386—402.
Springer Verlag, Berlin, 1995.

M. Wooldridge. A knowledge-theoretic semantics for Concurrent MetateM. In J. P. Miiller,
M. J. Wooldridge, and N. R. Jennings, editors, Intelligent Agents 111, pages 357-374. Springer
Verlag, Berlin, 1996.

M. Wooldridge. Agent-based software engineering. IEE Proceedings on Software Engineer-
ing, 144:26-37, 1997.

M. Wooldridge. Reasoning about rational agents. MIT Press, Cambridge, MA, 2000.

M. J. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice. The Knowledge
Engineering Review, 10:115-152, 1995.

An Adaptive Choice of Messaging Protocol
in Multi Agent Systems

Chris Preist and Siani Pearson

Agent Technology Group,
Hewlett-Packard Laboratories Bristol,
Filton Road, Stoke Gifford,
Bristol BS12 6QZ, UK,
cwp@hplb.hpl.hp.com,
siani@hplb.hpl.hp.com

Abstract. There are a variety of choices which need to be made when setting up
a multi-agent community. In particular, which agents communicate with which,
what protocols they use, and what information flows from one to another. Such
design choices will affect the efficiency of the community with respect to
several parameters - accuracy, speed of solution, and message load.

In this paper, we consider one class of problem which multi-agent systems
engage in - service provision. Using a simple, abstract, form of this problem,
we use a mathematical analysis to show that three different messaging protocols
result in varying message loads, depending on certain parameters such as
number of agents and frequency of request.

If the parameters are fixed, we can conclude that one of these three protocols
is better than the others. However, these parameters will usually vary over time,
and hence the best of the three protocols will vary. We show that the
community can adopt the best protocol if each individual agent makes a local
decision based on which protocol will minimise its own message load. Hence,
local decisions lead to globally good behaviour. We demonstrate this both
mathematically and experimentally.

1 Introduction

The designer of a multi-agent system needs to make various choices as to how the
agent community is organised; in particular, how the agents communicate and co-
ordinate with each other. A variety of different approaches have been proposed in the
literature, such as the contract net [13], the facilitator approach [5], distributed
blackboard architectures [7,9] and market-based control [2].

Increasingly, flexible multi-agent toolkits and languages are being developed
which do not constrain the developers to any one of these approaches [1,3,8,12].
They must make a choice between the alternatives proposed. Such a choice involves
making decisions about:

e How to partition the tasks performed by the system between different agents and
what reasoning each agent can perform.

M. d’Inverno et al. (Eds.): UKMAS 1996-2000, LNAI 2403, pp. 227-242, 2002.
© Springer-Verlag Berlin Heidelberg 2002

228 Chris Preist and Siani Pearson

e How to partition the information used by the system between different agents, and
whether to allow information to be duplicated.
e What messages one agent can send to another, and in what circumstances.

The literature provides examples of such choices (e.g.[4]) and case studies of
successful applications (e.g. [10]). However, there is very little comparative analysis
of the effect of different design decisions on the capability and efficiency of a multi-
agent system to perform its task. If multi-agent systems are to become pervasive in
the world of software engineering, it is important that we provide designers with
information that will help them make these decisions, based on the characteristics of
the application they are working on.

When comparing alternative approaches, it is unlikely that any one will be the
‘best’. Instead, the system designer needs to make trade-offs between various criteria
for assessing the performance of the system, depending on the characteristics of their
application.

These criteria include, amongst others;

e Quality of solution - how well the system task is done, according to some measure.

e Communications efficiency - how much communication takes place to produce a
solution.

e Time - how long it takes to produce a solution.

A more extensive list of such criteria is given in [11].

If a designer knows that, for problems similar to their application, one set of design
choices leads to a fast system, while another set leads to a system which is
communications efficient, they can choose which to adopt, based on what is important
in their circumstances. In a time-critical application, the system designer would be
prepared to use more communication if it produces a solution more quickly. They
may even be prepared to accept a poorer quality solution in less time. In other
circumstances, time may not be a major issue.

For this reason, we believe that systematic comparative analysis of how different
design choices affect different performance criteria is necessary. In this paper, we
present work of this nature.

We present a simple form of the service provision problem in section 2, and three
different messaging protocols in section 3. In section 4, we assess the
communications efficiency of these protocols with respect to this problem.

As we argue above, other factors must be taken into account when deciding which
protocol to use. However, for the purpose of this paper, we will assume that,
(providing the protocol produces a quality solution), communications efficiency is the
priority. For brevity, we will refer to the most communications efficient protocol in a
given circumstance as “optimal”.

Given certain parameters of the problem, such as rate of service requests and
number of service providers, we determine the number of messages agents would
send under each protocol. Hence, for given parameter values we can determine which
protocol is optimal.

However, the parameters of the problem are rarely static. New agents may join,
increasing the amount of activity in the system. Agents may become increasingly
loaded, and so less available to perform tasks. For this reason, the optimal protocol at
one time may not be optimal at another. It will change as the environment the system
is in changes. It may therefore be better to allow the system to make such choices

An Adaptive Choice of Messaging Protocol in Multi Agent Systems 229

dynamically, rather than fixing them at design time. As circumstances change, the
system can adapt, choosing a new protocol as its current one ceases to be optimal.

In section 5, we demonstrate mathematically that a decentralised adaptive approach
can be used by a system carrying out our simple form of service provision. Local
decisions, taken by each individual agent, can lead to the agent community adopting a
protocol that is optimal. Section 6 presents an overview of experimental results to
support this mathematical analysis.

2 The Service Provision Problem

We have chosen to use the service provision problem as the initial focus of our work.

In the abstract, service provision consists of matching client agents with certain needs

with service provider agents able to meet those needs. The service provider agents

may themselves act as clients, and subcontract parts of the service they provide to
other agents.

Service provision is similar to task distribution, though the latter term tends to be
used to refer to a closed community of agents which are all working towards a
collective goal. Service provision is considered to take place in a large scale open
system, such as the Internet, where agents can join or leave freely, and have
potentially conflicting aims.

Examples of service provision problems could be:

1. Connecting an agent requiring the fax number of a customer with any database
able to provide that information.

2. Connecting an agent wishing to purchase a CD with an Internet supplier able to
provide it at the best price.

3. Connecting an agent gathering information with a pay-per-use information service
that provides a good quality service at a reasonable price.

4. A person has a problem with their computer. Their agent makes an appointment
with the agent of a computer technician who is available soon, has the appropriate
skills, and is reasonably priced.

5. A nurse’s patient has a cardiac arrest. The nurse’s agent contacts the first cardiac
specialist available in the area, asking for their assistance.

The different characteristics of these examples will have an affect on the choice of
protocol (and other design decisions). An efficient protocol for example 3 is not
likely to be the most efficient for example 1; it will be too complex for such a simple
problem. Hence, we cannot analyse the effect of choosing different protocols with
respect to service provision in general. Instead, we must analyse it with respect to
various service provision problems with different characteristics.

In this paper, we focus on a relatively simple service provision problem. We use
this to demonstrate our approach, as even this case is quite rich. There is no single
‘best’ protocol choice in it, so we can consider how the agent community can swap
protocols in response to changes in the environment.

The characteristics of the problem are;

e All service providers give the same service, with the same quality.

e Service providers get no benefit from providing the service.

230 Chris Preist and Siani Pearson

e Service providers can be unavailable; they all have a probability p of being
unavailable at any given time.

We consider an abstract service provision problem with these characteristics, and
analyse the communications efficiency of three different messaging protocols. By
performing the analysis in the abstract, it can be applied to any service provision
problem with these characteristics. One example would be the routing of a client
request to one of a team of people on an information helpline.

3 The Protocols to be Compared

For the purposes of this analysis, we assume that certain design decisions have been
made about the system. In particular, we assume that there is a single facilitator with
which all service providers must register. It operates in recommend mode [4], giving
clients lists of service providers when they request it to.

We consider three alternative protocols, to explore the effect of two design
decisions. Firstly, whether to broadcast requests, or to send requests to individual
agents one at a time. Secondly, whether to provide the facilitator with updated
information on the availability of service providers. We call the three protocols
embodying these design decisions naive broadcast, naive one-to-one, and informed
one-to-one.

3.1 Naive Broadcast

The recommender contains a list of all service providers offering this service, and no
other information. It provides a list of providers to a requesting client. The client
contacts all providers on the list by broadcasting a message, which does not require a
response. Providers reply if they are currently available, and the client selects one.
This can be viewed as a simple variant of the contract net operating in general
broadcast mode [13].

3.2 Naive One-to-One

Again, the recommender simply provides a list of service providers to a client on

request. This time, the client contacts one of these! with a request for service, using a
message which requires a reply. The service provider either replies that it is
available, or that it is busy. In the latter case, the client contacts another, repeating the
process. This is a variant of the contract net operating in point-to-point mode [13,].

! Here, and in the informed one-to-one subsequently, we assume that if a client makes a selection of
one of a set of alternative providers which appear equivalent, then it makes this choice randomly.

An Adaptive Choice of Messaging Protocol in Multi Agent Systems 231

3.3 Informed One-to-One

This time, the recommender contains information about whether each service provider
is currently available or busy. The service providers must keep this up to date by
sending a message to it whenever their state changes. On request from a client, the
recommender gives a list of all service providers currently available. The client
contacts one of them.

There is a small chance that this provider has become unavailable in the time taken
for the message to travel from recommender to client, and client to provider. In such
a case, the client contacts another on its list, and so on. For the purposes of this
analysis, we assume that this small chance is negligible.

4 Analysis of the Protocols

Each of these protocols is designed in such a way that, if there is a service provider
available, it will be found. However, the number of messages required will vary. To
consider in what circumstances each is optimal, we must see what the average
message load in each system is, and how it varies as the parameters of the problem
vary.
The parameters we consider are:

N - The number of providers of this service.

p - The probability of a service provider being available.

t, - The average time a service provider is unavailable.

M - The average number of service requests made by clients per second.

We now derive formulae which give the average number of messages used to
satisfy one client request, for each of the three protocols.

4.1 Naive Broadcast

The client sends a message to the recommender and receives a reply. It then
broadcasts a message to all N service providers. Each service provider has a
probability p of being available and replies only if it is. Hence, the average number of
replies is Np.

Therefore, the average number of messages generated by the naive broadcast
protocol for the client to get an offer of service, c(nb), is given by;

c(nb) =2+ N+ Np

Note that, as p can range between 0 and 1, c(nb) can range between N+2 and 2N+2.

232 Chris Preist and Siani Pearson

4.2 Naive One-to-One

Again, the client sends a message to the recommender and receives a reply. It then
contacts any one of the providers which the recommender proposed. The provider
replies that it is able to perform the service, with probability p, or that it is not, with
probability (1 - p). In the latter case the client contacts another provider, and so on.

Hence the average number of messages generated by the naive one-to-one
protocol, c(no), is a probablistic summation;

N
c(no) =2+ 2ip(1- p)™ +2N(1 - p)"

The last term represents the messages generated in the case that no provider is
available.
For simplicity of notation, we let

N
E(N.p)=Y2ip(1-p)~ +2N(1-p)"
i=1
Hence the equation becomes:

c(no)=2+E(N,p)

Solving the summation, we can show that, for p # 0,

2(1-(1-p)")

E(N,p)=

As p ranges from O to 1, E(N,p) is a monotonically decreasing function which
ranges between 2N and 2. Hence, c(no) can range between 4 and 2N+2.

4.3 Informed One-to-One

In the case of informed one-to-one, there are two kinds of message exchange to be
considered; messages sent to connect a client with a service provider, and messages
sent by the service provider to keep the status information in the recommender up-to-
date.

When a client wishes to connect with a service provider, it firstly contacts the
recommender and receives a reply listing the service providers currently available. It
then contacts one of these and receives a reply. Therefore, 4 messages are generated.

We now consider the number of status updates a provider sends. A provider has a
probability 1-p of being unavailable at any given time, and is unavailable for z,
seconds on average. Hence it will become available once every ¢/(1-p) seconds, and
similarly, will become unavailable once every ¢/(1-p) seconds. Therefore, each

An Adaptive Choice of Messaging Protocol in Multi Agent Systems 233

service provider sends, on average, 2(1-p)/t, update messages per second to the
recommender.

To compare this protocol with the others, we need to calculate the number of
update messages sent per client request. There are N service providers sending update
messages, and there are M client requests per second. Hence, there are 2N(1-p)/Mt,
update messages per client request.

Hence, the average number of messages generated by the informed one-to-one
protocol per client request, c(io), is given by;

2N(1-p)

c(io)=4+
Mzt,

We now have equations which give the average number of messages to connect a
client with a service provider for each protocol. Hence, given specific parameter
values, we can determine which protocol is most communications efficient.

Based on these equations, we can make some general observations;

As p tends towards 1, c(nb) will increase, tending towards 2N + 2. However, c(no)
will decrease, tending towards 4. As 4 < 2N+2 for all N>1, we can conclude that, for
high values of p, the naive one-to-one protocol will be more communications efficient
than the naive broadcast strategy in any system with more than one service provider.

As p decreases towards 0, c(nb) will decrease tending towards N + 2, c(no) will
increase tending towards 2N + 2. Hence, for low values of p, the naive broadcast
strategy will be more communications efficient than the naive one-to-one strategy.

c(io) increases as N increases and p decreases, but the most significant factor in
c(io) is the size of Mt,. As Mt, tends to zero, then 2N(I-p)/ Mt, tends to infinity
(provided p#1), and therefore c(io) does too. Hence, one of the other strategies will
be more communications efficient.

However, if Mt >N then c(io) < 4 + 2(1-p). Furthermore, as Mt, increases, c(io)
rapidly decreases towards 4. Hence, in almost all circumstances where Mt >N,
informed one-to-one will be the most communications efficient strategy.

Mt, can be viewed as a measure of the busyness of the system; Busyness increases
as the number of requests per second increases, and also as the downtime of service
providers increases. Hence, informed one-to-one is most communications efficient
when a system is reasonably busy. If a system is not very busy, then another protocol
is better.

Note that this protocol is particularly effective, partly because of our initial
decision to focus on a set-up which has only one facilitator agent. Hence, the cost of
keeping the information up to date is low. However, if we assume there are F
facilitator agents which a service provider must keep up-to-date, the equation
becomes;

2FN(1- p)
Mt

u

c(io) =4+

Clearly, this increases linearly as F' increases. For informed one-to-one to be the
most communications efficient protocol irrespective of p, it is now necessary that Mz,
> FN.

234 Chris Preist and Siani Pearson

Hence, even with the simplifying assumptions we have chosen, no one protocol is
the most efficient in all circumstances. Any one of the three may be most efficient,
depending on how many providers there are, how many requests are made, and how
often and for how long providers can be unavailable.

For given parameter values, the equations derived above can be used to determine
which of the three protocols would be most efficient. However, the parameters that
determine this decision may vary with time. New service providers may arrive, or
existing ones may leave, resulting in a change of N. The probability, p, of a provider
being unavailable is likely to fluctuate dramatically, as client demand varies. Hence,
it is not possible to decide which protocol is most efficient at design time. Rather, it
is necessary to allow the decision to be made dynamically by the agent community, in
response to changing circumstances. We will now consider a possible mechanism for
doing this.

S Dynamic Choice of Messaging Protocol

5.1 Local Choices Lead to an Optimal Global Choice

The decision to change from one protocol to another could be either centralised or
decentralised. In a centralised approach, a monitoring agent would make the decision
to change protocol on behalf of the entire community, and then inform all the agents.
This has the advantage that the monitoring agent could make decisions based on what
is best for the community as a whole, but has the disadvantage that it would need to
gather vast amounts of data, and would need to handle agents joining and leaving the
system. In a decentralised approach, agents alter their protocol in response to what is
happening locally to them, and to what task they are performing. This has the
advantage that no single agent needs to gather vast amounts of data, and hence the
decision process should be simpler. However, it has the disadvantage that no agent
takes a global view, and hence their decisions may not be best for the community as a
whole. We will consider the latter approach, and show that, in this case, local
decisions do lead to an optimal choice globally.

Firstly, we consider the choices available to each agent. A client agent has a choice
between adopting a naive broadcast protocol, or a naive one-to-one protocol. Once it
has sent messages of the given type, the service providers are constrained in how they
react. However, the service providers have the choice of whether to provide
availability information or not; they control the decision of when to move to an
informed one-to-one protocol. (The client, of course, still has the option of using one
of the other protocols).

Now we will look at what information is available locally to each agent. We focus
on the number of messages an agent sends and receives, and compare this with the
total number of messages sent and received in the community. We will show that if
each agent chooses the protocol which will result in it minimising the number of
messages it sends and receives, then the community overall will adopt the protocol
which is most efficient. In section 5.2, we will look at how an agent can determine
this.

For the naive broadcast and naive one-to-one protocols, a client agent either sends
or receives every message involved in the provision of its service. Hence, if the client

An Adaptive Choice of Messaging Protocol in Multi Agent Systems 235

chooses the protocol which minimises the number of messages it sends and receives,
this choice will be the better for the community as a whole.

The situation is more complex when the third protocol, informed one-to-one, is
also considered. We would like the service providers to offer availability information
only if the informed one-to-one protocol would be the most efficient for the agent
community. Furthermore, we would like the client agents to adopt the informed one-
to-one protocol as soon as the providers offer availability information. If the
providers are offering the information and it is not being used, then the messages
which update this information are wasted. Assume that service providers offer
availability information only if the informed one-to-one protocol would result in them
sending and receiving less messages, on average, than either of the other two
protocols. We now show that, at such a time, the informed one-to-one protocol would
be the most efficient for the community to adopt.

We do this by considering the average number of messages a provider sends and
receives per client request. We consider this for each protocol;

e Under the naive broadcast protocol, each service provider agent sends and
receives, on average,l + p messages per client request.

e Under the naive one-to-one protocol, each service provider agent sends and
receives, on average, E(N,p)/N messages per client request. As 2 < E < 2N, this

varies from between 2/N to a maximum of 2.

® Under the informed one-to-one protocol, each service provider agent sends and
receives, on average, 2/N + 2(1-p)/Mt, messages. The first term represents the
average number of messages it sends and receives to/from the client, while the
second represents the number of update messages it sends to the facilitator.
Firstly, we consider the choice between the informed one-to-one protocol, and the
naive one-to-one protocol.
A single service provider agent will choose the informed one-to-one protocol if;

E(N,p) 2 2(1 2(1-p)
N N Mt

As E(N,p) =22, and N > 1, this is equivalent to;

E(N,p)-2 >% (Equation 5.1)
tu

We now consider the total number of messages. The informed one-to-one protocol
is more communications efficient if c¢(no) > c(io).

Hence, this gives the inequality;

2N(1-p)

2+ E(N,p)>4+
(N, p) v

Subtracting 4 from each side gives:

236 Chris Preist and Siani Pearson

2N(1-p)
Mt

u

E(N,p)—-2>

This is identical to equation 5.1. Therefore, a service provider will select the
informed one-to-one protocol in preference to the naive one-to-one protocol only if it
is more efficient for the community as a whole.

We now consider the naive broadcast, and compare it to the informed one-to-one
protocol. A service provider will select the informed one-to-one protocol in
preference to the naive broadcast protocol if;

2d-p)
Mt

u

1+ >£+
P N

Multiplying this by N, (N = 1) , and adding 2 to each side gives:

2+N+Np>4+M
Mt

u

Recalling the equations from section 4, this is equivalent to

c(nb) > c(io)

Hence, a service provider will select the informed one-to-one protocol in
preference to the naive broadcast protocol only if it is more efficient for the
community as a whole.

Combining this with the previous result, we have shown that a service provider
will only provide the information necessary for the informed one-to-one protocol if
and only if the informed one-to-one protocol is more communications efficient than
the other two protocols.

We must now show that if the service provider agents make the effort to provide
the information necessary for the informed one-to-one protocol, then the client agents
will use it. We assume that they will do so if and only if it will result in them sending
and receiving less messages than either of the two other protocols they could adopt.
Recall that, in the other two protocols, all messages are either sent or received by the
client.

Hence, the client sends and receives c(no) messages in the naive one-to-one
protocol, and c(nb) messages in the naive broadcast protocol. In the informed one-to-
one protocol, the client sends and receives 4 messages. So we must show that, if the
service providers offer the information for informed one-to-one, then 4 < c(no) and 4
< c(nb).

We have already shown that the service provider agents will offer the information
for informed one-to-one if and only if c(io) < c(no) and c(io) < c(nb).

As c(io) = 4 + 2N(1-p)/Mt, , where N, M and ¢, are all greater than zero, and 1 = p
> 0, it follows that 4 < c(io). Hence 4 < c(no) and 4 < c(nb), as required.

So we have shown that, if service providers offer availability information when the
informed one-to-one protocol is most efficient from their local perspective, then the
protocol will also be most efficient from the perspective of the client.

To summarise, we have shown that;

e If a client agent makes a choice between the naive broadcast and naive one-to-one
strategy based on which minimises the number of messages the agent sends and

An Adaptive Choice of Messaging Protocol in Multi Agent Systems 237

receives, this choice will also globally be the more communications efficient of the

two alternatives.

e If a service provider agent offers the information needed for the informed one-to-
one protocol only if this protocol would result in it sending and receiving, on
average, fewer messages than either of the other two protocols, then it will do so
only when the adoption of this protocol would globally be the most communication
efficient.

e If a service provider agent offers the information needed for the informed one-to-
one protocol in the circumstances described above, then a client agent will always
make use of it.

From these results, we can draw an important conclusion. If each agent decides
which protocol to adopt based simply on which will minimise the average number of
messages it sends and receives, then the agent community as a whole will adopt the
protocol which is most communications efficient.

5.2 How Agents Choose the Protocol

We have shown that in a simple form of the service provision problem, a local choice
of protocol by each agent can lead to a choice which is the best for the community as
a whole. Each agent simply needs to choose the protocol that minimises the total
number of messages it sends and receives. We now consider how an agent is able to
make this decision.

Client agents need to make two decisions; whether to use the informed one-to-one
protocol if some service providers are offering the necessary information, and
whether to use naive broadcast or naive one-to-one otherwise. The first decision is
trivial; we showed in section 4.1 that it is always better for a client to use informed
one-to-one if it is offered.

Secondly, the client must decide what to do if informed one-to-one cannot be used.
This can occur either because no service provider is offering availability information,
or because all service providers offering availability information are currently busy.

In this case, the client can use the two equations which give the number of
messages it will send and receive under the naive broadcast and naive one-to-one
protocols;

c(nb) =2+ N+ Np
c(no)=2+E(N,p)

Given the estimate of N and p, it can use these equations to give an informed guess
as to which protocol should be adopted.

N can be known for certain - it is the number of service provider agents on the list
given by the recommender agent. If a hybrid protocol is being used, and all service
providers providing information are busy, then we remove these agents from the list.
(This can be done either by the client, or by the recommender sending the list).

The probability p can be estimated by the agent keeping track of how often a
service provider agent is free when it tries to make contact with it. If, as is likely, p is
expected to vary with time, more recent experience could be weighted more strongly
when calculating the estimate.

238 Chris Preist and Siani Pearson

Alternatively, a client can adopt a more empirical approach. It can try using the
protocol it isn’t currently using every now and then, and swap when it finds that the
other protocol usually results in less message traffic.

A service provider needs to decide whether to offer availability information or not.
It can do this by comparing the number of update messages it would send with the
number of messages it would receive and send when busy if it didn’t keep this
information updated.

For an agent which is not offering availability information, it simply counts how
many times it switches from available to unavailable, or vice-versa, in a given time
period, and counts how many messages it receives and sends while unavailable.
When the number of messages it receives and sends while unavailable is usually
above the number of switches it makes, it is worthwhile providing availability

information.2 Hence, the agent will switch protocol at this point.

If an agent is offering availability information, then it needs to determine when it is
no longer worth it doing so. i.e. at what time the number of messages it sends to keep
the availability information updated is greater than the number of messages it avoids
having to send and receive while unavailable.

From the agents perspective, assuming all service provider agents are also using
the informed one-to-one protocol, it receives M/N service requests, on average, per
second. It can get a value for N from the recommender agent. (Possibly, it would
keep a note of N, and whenever N changes, the recommender would inform it).
Hence, it can calculate M. It can estimate p by observing what proportion of the time
it is unavailable. It can then compare the actual number of messages it currently
receives per second, with an estimate of what it would expect to receive under the
other protocols.

It would expect to send and receive M(1+p) messages per second under the naive
broadcast. Under the naive one-to-one, it would expect to send and receive
ME(N,p)/IN. 1If either of these is consistently lower than the actual number of
messages sent and received, then the agent should stop giving availability
information.

Hence, in this way, a service provider agent can monitor it’s behaviour, and decide
when it wishes to swap from providing availability information to not providing it. In
an idealised homogenous agent community, all providers will make this decision at
the same time, as they will all be receiving and handling the same number of service
requests. However, in practice, this will not occur. Some providers may wish to
change, while others do not. For the purposes of this paper, we will assume that we

wish to ensure that the community as a whole adopts the same protocol.3

To ensure this, we add a co-ordination agent, which acts as a vote collector from
the service providers. If a provider wants to change strategy, it registers a vote.
When enough votes are registered, the co-ordination agent sends a message to all
service providers, and they swap protocol. Hence, we can maintain a homogenous
protocol among service providers, using a loose form of centralised control.

2 Exactly how to define ‘usually above’ in this context will require experimentation.

3 If we do not place this restriction, a hybrid protocol can develop, with some agents providing availability
information and others not. This can be more communications efficient than any of the three protocols
discussed, but needs careful management to prevent oscillation of behaviour.

An Adaptive Choice of Messaging Protocol in Multi Agent Systems 239

6 Experimental Comparison of Protocol Efficiency

We have carried out experiments to provide empirical support for the mathematical
analysis provided above. Our methodology is similar to that used in [6]. We have
developed a system that can generate a community of agents for given values of the
parameters N, p, ¢, and M, with a given protocol. The community consists of a single
client, a single facilitator, and N service providers, each which are available with a
probability of p and have a down time of ¢, time units. The client issues 100 task

requests, at a rate of M requests per time unit?. The system then counts the total
number of messages that are generated in the community by these requests.

We present here the results of three series of experiments. In each case, we fix
three of the four parameters, and consider a sequence of values of the fourth. For each
value, we run the experimental system 100 times, and plot the mean number of
messages as a point on a graph. We repeat this for the different protocols, to get
graphs of how the efficiency of the different protocols varies as the fourth parameter
changes.

In experiment 1, we use the parameter values N =5, t, =2 and M = 1. We allow p
to range from 0.05 to 1 in increments of 0.05. Chart 1 gives the resulting graphs for
each of the three protocols. These graphs corroborate the mathematical equations of
section 4 The average difference between the theoretical predictions and the mean
values found by experimentation is 0.22% for naive broadcast, 1.22% for naive one-
to-one and 1.11% for informed one-to-one.

Chart 1

1400
1200
1000
800
600 7
400
200

Total messages

Probability

In experiment 2, we use the same parameter values, but introduce a fourth
protocol; the vote collector. Service providers vote if they wish the community to
swap from informed to naive or vice-versa, using the techniques described in section
5.2 to make their decision. This vote takes place every 10 time units. The facilitator
acts as the vote collector. The initial protocol is informed one-to-one. If a majority of

4 As the rate of requests by all clients is the factor which determines how many messages are generated,
rather than the number of clients, we can safely use only one client agent without loss of generality.

240 Chris Preist and Siani Pearson

Chart 2

1500

1000 b

500 - no
- VC

0 0.5 1
Probability

service providers vote for a protocol swap, it sends a message out to indicate that the
swap should take place. Chart 2 plots the resulting graphs. Both vote and swap
messages are included in the message count.

We can see from chart 2 that the vote collector protocol tends to choose more
efficient protocols at different probability values. The community chooses to use the
naive broadcast for values of p between 0.05 and 0.2. It wavers between all three
protocols in the range 0.2 to 0.4, though tends to choose informed one-to-one in
general. Finally, it choose informed one-to-one consistently for the range 0.4 to 1. In
this last range, the most efficient protocol is naive one-to-one; however, because the
difference between this and informed one-to-one is small, the system remains on
informed one-to-one.

In experiment 3, we plot all four protocols for parameter values N = 10, p = 0.25
and M = 1. We allow ¢, to vary from 1 to 10 time units. We see in chart 3 that, as the
equations predict, the number of messages used by naive one-to-one and naive
broadcast remains constant, while the message count for informed one-to-one is very
high for low values of #, but reduces rapidly as ¢, increases. The vote collector
successfully chooses naive one-to-one if ¢, < 2, and informed one-to-one otherwise.

On the graph, the vote collector message count is higher for ¢, < 2 than the naive
one-to-one. This is because of the large number of messages sent in the first 20 time
periods before it gets a chance to swap away from informed one-to-one, and the
messages used in the vote collection process. If the experiment were run for more
tasks (say 1000), we would expect this discrepancy to become less significant.

An Adaptive Choice of Messaging Protocol in Multi Agent Systems 241

Chart3

N

& 2000

@ 1500 | =

2 1000 | S io

5 508 T ----no

: 0 5 10 T
VC

Average time service providers
unavailable (units)

7 Conclusions and Future Work

In this paper, we have demonstrated that mathematical and experimental analysis of
multi-agent system protocols can provide useful information to guide design choices
when developing such systems. We have shown that some of these choices may best
be made at runtime by the system in response to changes in the demands placed on it.
Furthermore, we have shown that this decision can be made in a decentralised way,
by allowing client agents to swap their protocol freely, and service provider agents to
vote on the protocol to be used by their community.

We hope to be able to allow such decision making to be taken in an even more
decentralised way, without the use of a vote collector. Such a protocol, the hybrid
protocol, allows some service providers to provide availability information, while
others do not. We believe that such a system will be more efficient than any of the
other protocols, though care needs to be taken to ensure it settles in a stable state.

We believe that the approach of allowing an agent community to make architecture
decisions dynamically, in a decentralised fashion, can lead to systems which are
robust and efficient in the face of change. We hope to extend this approach to other
architecture decisions, such as the number of facilitators and the mode in which they
operate, and to more complex forms of the service provision problem.

Acknowledgements

Thanks to Martin Merry, Janet Bruten, Miranda Mowbray and Lin Jones for their
assistance.

242 Chris Preist and Siani Pearson

References

1. J. L. Alty, D. Griffiths, N.R. Jennings, E. H. Mamdani, A. Struthers, and M. E. Wiegand.
ADEPT - Advanced Decision Environment for Process Tasks: Overview & Architecture. In
Proc. BCS Expert Systems 94 Conference (Applications Track), Cambridge, UK, 359-371,
1994.

2. Market-Based Control: A Paradigm for distributed resource allocation. ed S.H.Clearwater.
World Scientific, 1996.

3. dMARS product brief. http://www.aaii.oz.au/proj/dMARS-prod-brief.html

4. T. Finin and R. Fritzson. KQML as an Agent Communication Language. In Proceedings of
the Third International Conference on Information and Knowledge Management
(CIKM’94), ACM Press, November 1994.

5. M.R. Genesereth and S.P. Ketchpel. Software Agents. Communications of the ACM, 37:7,
48-53, 1994.

6. C.Gu and T.Ishida. Analyzing the social behavior of the contract net protocol. Agents
Breaking Away, Proc. MAAMAW 96. pp 116-127, 1996.

7. B.Hayes-Roth. A Blackboard Architecture for Control. Artificial Intelligence Journal 26,

pp 21-321. 1985

H. Jean. JATlite overview. http://java.stanford.edu/java_agent/html/

L.V.Leao and S.N.Talukdar. An Environment for rule-based blackboards and distributed

problem solving. International Journal for Artificial Intelligence in Engineering, 1(2): 70-

79, 1986.

10. H.V.D. Parunak. Applications of Distributed Artificial Intelligence to Industry. In
Foundations of Distributed Artificial Intelligence. Ed G.M.P. O’Hare and N.R.Jennings.
Wiley Interscience, 1996.

11. T.Sandholm. Agents in Electronic Markets. Tutorial notes, Autonomous Agents 97
conference.

12. A.Sloman. The SIM_AGENT toolkit.
http://www.cs.bham.ac.uk/~axs/cog_affect/sim_agent.html

13. R.G. Smith. The contract net protocol: high-level communication and control in a
distributed problem solver. I[EEE Trans. Comput., 29, 1104-1113, 1980.

O ®

On Partially Observable MDPs and BDI Models

Martijn Schut!, Michael Wooldridge?, and Simon Parsons?3

! Department of Artificial Intelligence, Vrije Universiteit Amsterdam,
1081 HV Amsterdam, The Netherlands,
schut@cs.vu.nl
2 Department of Computer Science, University of Liverpool,
Liverpool L69 7ZF, United Kingdom,
m.j.wooldridge@csc.liv.ac.uk
3 Center for Coordination Science, Sloan School of Management, MIT,
Cambridge, MA 02142, USA,
sparsons@csc.liv.ac.uk

Abstract. Decision theoretic planning in ai by means of solving Partially Observ-
able Markov decision processes (pomdps) has been shown to be both powerful and
versatile. However, such approaches are computationally hard and, from a design
stance, are not necessarily intuitive for conceptualising many problems. We pro-
pose a novel method for solving pomdps, which provides a designer with a more
intuitive means of specifying pomdp planning problems. In particular, we investi-
gate the relationship between pomdp planning theory and belief-desire-intention
(bdi) agent theory. The idea is to view a bdi agent as a specification of an pomdp
problem. This view is to be supported by a correspondence between an pomdp
problem and a bdi agent. In this paper, we outline such a correspondence between
pomdp and bdi by explaining how to specify one in terms of the other. Addition-
ally, we illustrate the significance of a correspondence by showing empirically
that it yields satisfying results in complex domains.

1 Introduction

Designing autonomous agents that are to operate in uncertain environments has been
the focus of substantial research in various sub-areas of ai. These agents have to deal
with executing actions that may not have the intended results, with environments that
change while the agent is operating, and with making observations that might not be
completely accurate. Much research effort has gone into specifying such agents by
means of Markovian planning. In this respect, agents are implemented as solutions
to Markov Decision Problems: they are, as such solutions, mappings from states to
optimal actions. Although theoretically very appealing, the Markov planning framework
poses some important problems when put into practice. For example, computing optimal
solutions of mdps is computationally very hard. Fast close-optimal solution algorithms
and various abstraction techniques have been proposed to solve this problem. We propose
an alternative technique. If we are able to map mdp components to bdi components, we
can use the bdi architecture to design a bounded optimal mdp agent. Then we utilise the
theoretical rigorousness of the mdp framework, combined with the practical utility of
the bdi framework.

M. d’ Inverno et al. (Eds.): UKMAS 1996-2000, LNAI 2403, pp. 243-259, 2002.
(© Springer-Verlag Berlin Heidelberg 2002

244 Martijn Schut, Michael Wooldridge, and Simon Parsons

In this paper, we investigate the correspondence between the theory of Markov deci-
sion processes for planning in partially observable stochastic domains (pomdp) and the
belief-desire-intention (bdi) architecture for programming situated agents. The motiva-
tions for obtaining this correspondence are diverse. Firstly, we show that it is possible to
utilise an important characteristic of intentions — the constraint of reasoning — in practice
by using it to solve pomdps. Secondly, because solving pomdps is inherently intractable,
our approach contributes to dealing with this intractability by utilising tractable corre-
sponding bdi models. Thirdly, whereas pomdp models take away part of the burden
of explicitly programming agents, the identification of relevant problem structure often
proves to be very hard and unintuitive from a design point of view. bdi models seem
to be easier to specify, and if we can establish this corespondance and so build pomdp
models from bdi models, we may be able to simplify the construction of pomdp models.

This paper does not address all these issues. Here we just point out the correspondence
between the bdi and pomdp models and demonstrate empirically that the performance
of a bdi model approximates the performance of a discrete mdp model. Although we
present a general formulation of the correspondence, the experiments are still for the
specific case of mdp problems and we are currently working on pomdp experiments. This
paper summarises the prerequisites for the construction of initial formal and empirical
correspondences between the two models. Thus the payoff of the work presented here
is in the future, but for now we have provided the first detailed comparison between the
models.

The paper is structured as follows. In the following Section, we provide some back-
ground information on the bdi agent architecture and we show how to specify bdi agent
programs. Section 3 presents the Markov decision framework upon which our approach
builds. Section 4 explains the correspondence between the bdi architecture and partially
observable mdps. In Section 5 we empirically evaluate our approach with respect to ef-
fectiveness and computational leverage. Finally, in Section 7 we present our conclusions
and describe related and future work.

2 Belief-Desire-Intention Agents

The idea of applying the concepts of beliefs, desires and intentions to agents originates
in the work of [4] and [9]. In this paper, we use the conceptual model of bdi agency
as developed by Wooldridge and Parsons [14]. This model is shown in Figure 1. The
model distinguishes three main data structures in an agent: a belief set, a desire set and
an intention set. An agent’s beliefs represent information that the agent has about its
environment, and may be partial or incorrect. Desires can be seen as states of affairs
that an agent ideally would want to accomplish. Intentions are those desires that an
agent has committed to bringing about. The behaviour of the agent is generated by four
main components: a next-state function, which updates the agent’s beliefs on the basis
of an observation made of the environment; a deliberation function, which constructs a
set of appropriate intentions on the basis of the agent’s desires, and its current beliefs
and intentions; an action function, which selects and executes an action that ultimately
satisfies one or more of the agent’s intentions; and a meta-level control function, the
sole purpose of which is to decide whether to pass control to either the deliberation or

On Partially Observable MDPs and BDI Models 245

perceptual
input

—’ next state

: —— control flow
fffffff e

A

desires | | | meta—level
: control
1 : T
'R
‘ deliberation action ‘
T ;
S '
intentions action
output

Fig. 1. An abstract bdi agent architecture.

action subsystems. On any given control cycle, an agent begins by updating its beliefs
through its next-state function, and then, on the basis of its current beliefs, the meta-
level control function passes control to either the deliberation function (in which case
the agent expends computational resources by deliberating over its intentions), or to the
action subsystem (in which case the agent acts). As a general rule of thumb, an agent’s
meta-level control system should pass control to the deliberation function when the agent
will change intentions as a result; otherwise, the time spent deliberating is wasted.

We present a simple formal model of bdi agents. First, we have to consider that agents
are situated in environments; an environment denotes everything that is external to the
agent. Let P be a set of propositions denoting environment variables. In accordance with
similar proposition based vector descriptions of states, we let environment states be built
up of such propositions. Then E is a set of environment states with members {e,¢’, ...},
and e = {p1,...,pn}, Where p; € P. Let A denote the set of actions that an agent
can execute. A state transition function 7 : E x A — II(E) manages the probabilistic
transition of environment states, based on doing some action a € A in state e € F.

The internal state of an agent consists of beliefs, desires and intentions. Let Bel :
E —[0,1], where), Bel(e) = 1, denote the agent’s beliefs: we represent what the
agent believes to be true of its environment by defining a probability distribution over
the possible environment states. The agent’s set of desires, Des, is a subset of the set
of environment variables: Des C P. Finally, we denote the set of intentions by Int.
An intention denotes a number of different means to achieve a certain desire. This is
represented here by letting an intention be a stack of partially instantiated plans, i.e.,
plans in which some variables have been instantiated (as in [9]). We assume that a plan
consists of some trigger event, a context and a series of actions. The context is a series
of propositions that are evaluated true (for achievement plans) or false (for maintenance
plans) after executing the specified series of actions. Let the head of a plan be a trigger
event and context. Then a plan that is intended typically contains a head that includes

246 Martijn Schut, Michael Wooldridge, and Simon Parsons

some true or false belief that the agent wants to bring about. This belief literal is an
environment proposition.

Note that an intention is a sequence of actions in a partially instantiated plan. This is
also the key to the way that bdi approximates pomdp: a bdi agent chooses a pre-compiled
plan (which is why the online computation is quick) which is nearest to being optimal
(which is why we only ever approximate the optimal solution).

An internal state s is then s = (Bel, Des, Int), where Bel : E — [0,1] is a
probability distribution over the agent’s beliefs, Des C P a set of desires and Int a
set of intentions. Let S be the set of all internal states. For a state s € .S, we refer to
the beliefs in that state as Bel,, the desires as Des, and to the intentions as Int,. We
use subscript S to refer to beliefs, desires and intentions for all states; for example,
Belg refers to the beliefs for all states s € S. We refer to an ¢ € Intg as a background
intention of state s € S. We assume that it is possible to denote values and costs of
the outcomes of intentions': an intention value V : Int — IR represents the value of
the outcome of an intention; and intention cost C' : Int — IR represents the cost of
achieving the outcome of an intention. The net value V,,.; : Int — IR represents the net
value of the outcome of an intention; V,,.+(7), where i € Int, is typically V(i) — C(%).
We denote the quality of a state by a function () : S — IR, which we assume to be based
on the net values of the outcomes of the intentions in a state. Moreover, we assume
that if Vs, s’ € S,Vp € Ints,Vp' € Intgy, Viet(p) = Viper(p'), then Q(s) > Q(s'). In
the empirical investigation discussed in this paper, we illustrate that a conversion from
intention values to state qualities is feasible, though we do not explore the issue here?.
Finally, A denotes the set of actions the agent is able to perform; with every oo € A we
identify a set of propositions P, C P, which includes the propositions that change value
when « is executed. (In the remainder of this paper, we label the various bdi components
with label bdi.)

3 Partially Observable Markov Decision Processes

A partially observable Markov Decision Process (pomdp) can be understood as a system
that at any point in time can be in any one of a number of distinct states, in which
the system’s state changes over time resulting from the performance of actions and in
which the current state of the system cannot be determined with complete certainty [2].
pomdps satisfy the Markov assumption in that knowledge of the current state renders
information about the past irrelevant to making predictions about the future [2]. In a
pomdp, we represent the fact that the knowledge of the agent is not complete by defining
a probability distribution over all possible states. An agent then updates this distribution
when it observes its environment.

!'We clearly distinguish intentions from their outcome states and we do not give values to inten-
tions themselves, but rather to their outcomes. For example, when an agent intends to deliver
coffee, an outcome of that intention is the state in which coffee has been delivered.

2 Notice that this problem is the inverse of the utilitarian lifting problem: the problem of how
to lift utilities over states to desires over sets of states. Discussing the lifting problem, and its
inverse, is beyond the scope of this paper, and therefore we direct the interested reader to the
work of Lang et al. [7].

On Partially Observable MDPs and BDI Models 247

perceptual
input — control flow

o = data flow
L

state
estimator

L

action
s
output

policy

L

Fig. 2. Components of a pomdp agent.

Let a set of states be denoted by S and a set of actions be denoted by A. An agent
might not have complete knowledge of its environment, and must thus observe its sur-
roundings in order to acquire knowledge: let {2 be a finite set of observations that the
agent can make of the environment. Then an observation function O : S x A — II(12)
defines a probability distribution over the set of observations; this function represents
the observations an agent can make resulting from performing an action ¢ € A in a
state s € S. The agent receives rewards for performing actions in certain states: this is
represented by a reward function R : S x A — IR. Finally, a state transition function
7 : S5 x A — II(S) defines a probability distribution over states resulting from per-
forming an action in a state — this enables us to model non-deterministic actions. (In the
remainder of this paper, we label the pomdp components with subscript mkv3.)

Figure 2 shows the components of a pomdp. Unlike a discrete mdp, a pomdp model
includes a state estimator S E, which controls the belief state transitions, based on the
last action, the current observation and the previous belief state. This component is not
necessary in a discrete mdp, since there the agent’s policy is based on external states
that always accurately reflect the current state of the environment. The state estimator
computes a new belief state from basic probability theory, as explained in [5]. The
output of the state estimator is used in the agent’s state transition function by assigning
a probability of 1 to belief state b’ resulting from executing action a in belief state b and
making observation o if SE(b, a,0) = b’ and a probability of 0 otherwise.

Having defined the sets contained in a pomdp, we solve a pomdp by computing an
optimal policy: an assignment of an action to each possible state such that the expected
sum of rewards gained along the possible trajectories in the pomdp is a maximum.
An mdp has either an infinite horizon, which renders the policy to be a mapping from
states to actions, or a finite horizon, which makes the policy a mapping from states and
time to actions. In finite horizon pomdps it thus matters when an action is executed.
In this paper, our concern is mainly with infinite horizon mdps. Optimal policies can
be computed by applying dynamic programming methods to the pomdp, breaking the

3 Note that both the discrete mdp and continuous pomdp are Markov processes, hence the acronym
mkv.

248 Martijn Schut, Michael Wooldridge, and Simon Parsons

problem up into one-step decision problems using Bellman’s equations [1]. The standard
dynamic programming algorithms are based on backwards induction; value iteration and
policy iteration are the most well known algorithms to solve pomdps. A major drawback
of applying pomdps is that these kinds of algorithms tend to be highly intractable.

Traditional approaches that attempt to tackle the computational complexity of solving
mdps are either aimed at reducing the state space by exploiting the space structure, e.g.,
by means of abstraction and aggregation; or the focus is on designing algorithms that are
faster than value and policy iteration. Research on computing optimal policies for pomdps
have focused on problems with finite horizons. For some finite horizon problems, for
example, the Tiger problem in [5], the optimal policy turns out to be an infinite horizon
policy, i.e., a policy that does not depend on time. Computing infinite horizon policies
for pomdps turns out to be extremely hard*.

4 Correspondence between bdi and pomdp

The belief-desire-intention model can be used to specify partially observable Markov
decision processes. In this Section we show how bdi models correspond to pomdp models
and what this means in terms of offline and online computation time and effectiveness.

The objective of our approach is to demonstrate that it is possible to identify a
correspondence between the structure of pomdps and structure of an existing agent
model, in this case the bdi model. The main motivation behind our approach is the
fact that, viewed at its most abstract, both the pomdp and bdi models ultimately model
decision making by mapping perceptual inputs to actions; all other components in the
pomdp model and the bdi model are there in the service of this abstract decision making
function. This can be easily observed by comparing Figures 1 and 2.

In this Section, we first explain what the problem of finding correspondence en-
compasses, in particular in relation to the bdi agent model. We do this by letting both
the pomdp model and bdi model be instantiations of an abstract generic agent function.
Secondly, we explain the correspondence in computing agent runs in both models and
actually running the models.

Agent Functions

Both the pomdp and bdi model can be represented on some level of abstraction, so that
they both correspond to some abstract agent function ag : S — A that maps agent
states to agent actions. This agent function can then be implemented by either a pomdp
or bdi model. As shown above, we define a pomdp as a tuple (S,., Au, 2, R, Toio) -
A bdi model is defined as (S, Au, Bel, Des, Int) with the bdi control functions as
described earlier. Let the implementation of ag by a pomdp be denoted by ag,,, and the
bdi implementation of ag by ag,,;. We show here how the components of ag,,, and ag,q
map into each other.

* Algorithms for solving finite horizon pomdps utilise the fact that in this case the value function
is piecewise-linear and convex. However, in an infinite pomdp, the value function is convex,
but not necessarily piecewise-linear.

On Partially Observable MDPs and BDI Models 249

Firstly, we identify the following obvious mappings between the bdi and pomdp
models:

— Actions — The sets of external actions that an agent has at its disposal in the bdi
and pomdp model are identical: A,,, = A,;. In the bdi model these actions can
be collected and represented more expressively through the concept of plans (or
intentions).

— States — Because it is assumed that the environment is only partially observable in
both the bdi and pomdp model, agent states are belief states rather than environment
states. The sets of belief states are identical: S,,, = Belg, where Belg refers to the
bdi set of beliefs. Thus the set of pomdp states is identical to the set of bdi states
when we exclude the desires and intentions in every bdi state. But because desires
and intentions are internal data structures, this issue is not a major obstacle to form
state correspondence and thus we let S, = Sy

— Transition — The external transition functions, as defined over the environment states
and external actions, are identical, because such functions are external to the agent:
Tae = Toai- The internal transition functions are identical as well: in the bdi model
this is the next state function and in the pomdp model the state estimator controls
internal transitions: nextState = SE. As such, the bdi next state function can be
implemented as a pomdp state estimator.

This leaves us with some mappings between components that are somewhat more con-
voluted: rewards on the pomdp side and desires and intentions on the bdi side. We relate
desires to rewards and intentions to a combination of rewards and actions. As mentioned
above, rewards are received for executing some action in a particular state and are thus
defined over action and state combinations. Desires are states of affairs that the agent
wants to bring about, and thus define some kind of ordering over the set of states. Cur-
rently, we are not concerned with how this ordering is exactly realised; in this paper, we
define desires simply as a subset of the environment propositions. But, for example in
[7], this ordering is based on the individual utilities of the environment propositions. Let
D : S — IR be a function that represents the ordering of desires over the state space.
On the pomdp side, we can distill the rewards in such a way that they are defined only
over states’. Again, we do not prescribe how this should be done, but merely utilise the
fact that it can be done. An example conversion, that works for our experimental testbed
as described below, would be to define the worth of a state, denoted by W : S — IR, as
the maximum reward of all actions that can be executed in a state s € S:

W (s) = max R(s, a),
where A € A denotes the set of all actions that can be executed in s. Then this concept
of state worth corresponds to the ordering on desires: W = D. From this we conclude
that rewards correspond with desires.
Finally, we identify the concept of intentions with a combination of rewards and
actions. An intention is a stack of partially instantiated plans: it specifies a sequence

> We claim that this conversion can be done in general without any loss of information, but cannot
currently support this claim with conclusive proof. Research is ongoing on this issue.

250 Martijn Schut, Michael Wooldridge, and Simon Parsons

of actions which, when executed, fulfills some desire of the agent. There is thus an
action as well as a desire aspect to intentions. First, we explore the desires part of
this plan definition of intentions. The set of desires is a subset of the set of environment
propositions. As mentioned above, the head of an intended plan contains an environment
proposition that the agent wants to be either true or false: this is thus a desire. In terms
of a pomdp, this first part of intentions relates to rewards, because desires correspond to
pomdp rewards, as described previously.

The second part of intentions concerns the sequence of actions. In terms of a pomdp,
this clustering of actions into intentions is some form of action abstraction. It is this
abstraction which gives bdi approach its computational edge, but also means it may only
approximate optimal actions. Because pomdps generate complicated plans progressively
by mere execution of single actions rather than to build and — partially or completely —
execute complex plans, we cannot simply utilise this similarity as a proper correspon-
dence. However, these plans are not ordinary plans, but organised in intentions. Intentions
have particular characteristics, under which most importantly representing a number of
different means to fulfill the same desire. Based on the differences between traditional
plans and the characteristics of intentions, we claim a valid correspondence between this
part of intentions and actions. We further have to distinguish between deterministic and
stochastic actions. An optimal agent decides the stability of its intentions based on the
degree of determinism of its actions, the degree of observability of the environment, the
rate of change of the environment [12] and the agent’s own changing preferences. As for
deterministic actions, this leaves intention stability to depend on the other three factors.
However, we are concerned with stochastic domains and this renders the agent’s actions
stochastic. In that case, we have to take this non-determinism into account by expressing
it on the level of intentions rather than the level of actions.

To summarise, we have discussed the following correspondences between the bdi
and pomdp models. Firstly, the action spaces and transition functions (both internal and
external) of the models are identical. Secondly, the pomdp state space and the belief parts
of internal bdi states are the same. Thirdly, the bdi desires correspond to the rewards.
And finally, bdi intentions correspond to a combination of pomdp rewards and actions.

Agent Runs

Assuming that the above correspondences are valid, we can identify the correspondence
between running ag,,, and ag.,. In both models, a run is a sequence of states connected
by the actions executed by the agent. The method of choosing such a run in the pomdp
model is based on the policy, as computed when solving the pomdp. In the bdi model,
such a run defines the optimality of the agent; an optimal agent generates an optimal run.
Computing runs for particular implementations of both models involves an offline and
online component. Offline computation takes place outside of the environment in which
the agent is to be situated and thus before executing actions. This computation results in
an optimal policy for the pomdp case, or in an agent program in the bdi case. The online
computation involves executing the policy or program. In case of a policy, this boils down
to looking up the most believed state given the observations in the policy and executing
the optimal action for that state. In case of a program, the online computation concerns
the whole process that happens between receiving perceptual input and executing action

On Partially Observable MDPs and BDI Models 251

output. Thus ag,,, and ag,; correspond to each other, though we have to be aware of
potential differences in online and offline computation times.

An important issue to keep in mind is the Markov property: it is not necessary to
maintain an action history. Obviously, ag,, obeys this property. However, in the bdi
model it often happens that selection of an optimal action is based on the history leading
up to the current state. Similar to approaches that turn non-Markovian processes into
Markovian ones, we assume for now that the bdi history is contained in the current state.
Since we have shown above that the belief states correspond and a belief state in ag,,, is
updated using the previous belief state, we can safely state that we can make ag,, obey
the Markov property.

Finally, we mention the role of observability in the correspondence specification.
In ag,.., observations are not only used to contain physical types of observations, but
informational as well. In this way, it is possible to capture notions of resource-bounded
information gathering or obtaining the value of information. We can use this correspon-
dencein ag,;. An important issue when designing situated agents concerns the dynamism
of the agent’s environment, i.e., the world changes while the agent executes its policy.
We can use the concept of observability to represent dynamism. In this way, we move to
another type of pomdp in which there is no uncertainty about the current environment
state, but there is uncertainty over state transitions and non-determinism of actions. We
return to this issue in Section 7.

5 Empirical Validation

In this Section we apply our model in the Tileworld testbed [8]. The results of our exper-
iments support the suggested benefit of our model in two ways. Firstly, we demonstrate
that the increase in effectiveness of a mdp agent over a bdi agent is small. Secondly, we
show that when the problem size grows, one cannot compute an mdp solution any more.
This is mainly due to the intractability of solving complex mdps. This issue is discussed
and illustrated below by indications of some offline computation times for solving an
mdp representing the Tileworld.

The Tileworld [8] is a grid environment on which there are agents and holes. An agent
can move up, down, left, right and diagonally. Holes have to be visited by the agent in
order for it to gain rewards. The Tileworld starts in some randomly generated world
state and changes over time with the appearance and disappearance of holes according
to some fixed probability distributions. An agent moves about the grid one step at a time.

The Tileworld testbed is easily represented as an mdp. Let L denote the set of
locations, i.e., L = {i : 1 < ¢ < n} represents the mutually disjoint locations, where
n denotes the size of the grid. A proposition p; then denotes the presence (p; = 1) or
absence (p; = 0) of ahole at location . An environment state is a pair ({p;, . .., pn }, m),
where {p;,...,pn} are the propositions representing the holes in the grid, and m € L
is the current location of the agent.

We computed the optimal infinite horizon mdp policy, using value iteration, for an
agent situated in a Tileworld. An environment state in this mdp is a combination of the
current location of the agent and the locations of present holes; the possible actions are
up, right, down, left and stay; an action succeeds with probability 0.9 — failure means

252 Martijn Schut, Michael Wooldridge, and Simon Parsons

Table 1. Offline computation times of running a value iteration algorithm for an mdp specification
of the Tileworld with discount rate = 0.9 (measured performance of Java2 on PentiumIII-500Mhz,
128MB RAM).

Tileworld size | S| | # Iterations Iteration
(length x width) before optimal | duration (msec)
3x3 81 5 84

4 x4 256 |7 840

5%x5 625 |9 5,200

6Xx6 1296 |11 23,750

7x7 2401 |13 92,700

8 x 8 4096 |15 250,000

that another action is chosen with equiprobability. Because the Tileworld is dynamic, we
have to take into account that every cell is either occupied by a hole or not. Combining
this fact with the current location of the agent, makes the state space of size 2" X n. In
order to render the necessary computations in some degree feasible, we abstracted the
Tileworld state space. In the Tileworld domain, we abstract the state space by letting an
environment state e be a pair (p1, p2), where p; refers to the location of the hole which is
currently closest to the agent, and p, refers to the current location of the agent. We deem
this knowledge sufficient for the agent to choose an appropriate action. This abstraction
means that the size of the state space is now reduced to n*.

We plotted some statistics of these mdp solution computations for a number of
Tileworlds of different size in Table 1 by means of value iteration. The results merely
illustrate that even for a simplistic application such as the Tileworld, the offline computa-
tion times are exorbitant®. Although this approach renders the online computation times
negligible, it is clearly not a realistic method for the design of agents in more complex
settings. Moreover, as we keep increasing the size of the Tileworld, at some point it
becomes impossible to compute mdp solutions (simply because of the intractability of
solving mdps). From this point onwards, it pays off for certain to use a bdi approach —
even if it only gives marginal results. (Currently, research is ongoing on exactly where
this point is for the Tileworld testbed and how well the bdi approach performs from that
point onwards.)

Whereas obtaining an optimal mdp policy in the Tileworld is computationally hard,
we observe that this optimal policy is a simple fixed control strategy: the agent executes
the action with highest success probability that brings it closer to the nearest hole. This
strategy is easily implemented and we have done so. The effectiveness of this strategy
is shown in Figure 3.

® We mention explicitly that these results have only been inserted for illustrative purposes. We are
aware that performance can be increased dramatically by choosing a more efficient algorithm
or even a faster programming language or machine. However, this does not refute our claim
that computation times are unacceptable for such a simple domain as the Tileworld and will
become impossibly long for sufficiently large Tileworld scenarios.

On Partially Observable MDPs and BDI Models 253

08

Effectiveness

04

02

Dynamism

Fig. 3. Overall effectiveness of an mdp and bdi agent. Effectiveness is measured as the result of
a varying degree of dynamism of the world. The four curves show the effectiveness for the bdi
agent at planning costs (denoted by p) from 0 to 4.

In the experiments, the Tileworld has dimensions 20 x 20, thus there are 400 unique
locations (n = 400). Environments were varied by changing the degree of dynamism ().
Dynamism is denoted by an integer in the range 1 to 80, representing the ratio between
the world clock rate and the agent clock rate. If v = 1, then the world executes one cycle
for every cycle executed by the agent and the agent’s information is guaranteed to be
up to date; if v > 1 then the information the agent has about its environment may not
necessarily be up to date when it carries out an action. (In the experiments in this paper
we assume the environment is fully observable, i.e., the agent can update its information
atevery cycle of its own clock.) The planning cost p represents the time cost of planning,
i.e., the number of time-steps required to form a plan. The effectiveness € of an agent
is the ratio of the actual score achieved by the agent to the score that could in principle
have been achieved.

We conducted a similar series of experiments with the bdi agent, based on the con-
ceptual bdi architecture as explained in Section 2. The implemented bdi architecture is
described in [12]. This bdi agent adopts single intentions to visit a particular hole, con-
structs a plan, consisting of move actions, to achieve that intention — a path to the hole
— and sequentially executes actions of the adopted plan. An intention value corresponds
to the reward received by the agent for reaching a hole, and an intention cost is the
distance between the current location of the agent and the location that the agent intends
to reach. The meta-level control function determines the stability of an adopted plan.
The stability is computed based on a discrete deliberation scheduling method [10]. This
method determines the efficient trade off between continuing to execute the current plan

254 Martijn Schut, Michael Wooldridge, and Simon Parsons

or to spend computational resources on adopting a new plan’. Deciding this trade off is
based on knowledge of the probability distributions controlling when holes appear and
disappear. The results of the series of experiments with a bdi agent are shown in Figure
3 (for planning cost p = 0, 1, 2, 4) in comparison with an mdp agent.

In Figure 4 the results of the bdi experiments are shown in comparison with a cautious
and bold agent. A cautious agent reconsiders its intentions at every possible opportunity
whereas a bold agent does not reconsider until it has fully executed its current plan. We
have investigated the relationship between the reconsideration rate and various properties
of an agent’s environment in [11]. The results of this investigation led us to undertake
further research on the problem of adaptive reconsideration, hence the bdi agent based
on discrete deliberation scheduling.

We conclude this Section with a short analysis of the demonstrated results. A more
in depth analysis of the bdi experiments are described in [12]. Firstly, we observe that
the effectiveness of both agents decreases as the dynamism of the world increases and
the bdi agent’s effectiveness decreases as the cost of planning cost increases (the cost of
the online part of the computation). The planning cost is a time cost, since it denotes the
number of time-steps required to construct a plan.

Secondly, the most important observation we make from comparing the graphs in
Figure 3 to each other is that the bdi effectiveness curve clearly approximates the mdp
effectiveness curve, assuming that the planning cost is small enough. We base this con-
clusion on matching the mdp agent’s effectiveness curve to the bdi agent’s effectiveness
curve for p = 0. This suggests that the bdi approach might be viewed as an approxi-
mation to the mdp approach, and one which is tractable, but shifts the computational
burden from offline to online. As this burden increases (p gets larger), the quality of the
approximation decreases.

Thirdly, the bdi approach can handle Tileworld examples which are beyond the scope
of the mdp approach, e.g., a 40 x 40 Tileworld. As the size of the Tileworld increases,
Table 1 shows that mdp computation times increase rapidly. One may safely assume that
from some point onwards, computing an optimal mdp policy becomes unfeasible and
even impossible. As mentioned above, it is necessary to investigate where this point is
and how the bdi approach performs from that point onwards. For this, we need to know
how well bdi methods scale and this issue is currently under investigation.

Finally, we comment on the performance of the mdp agent in this real-time domain.
We observe that although every action is chosen optimally by the mdp agent, the overall
effectiveness of the agent is not a maximum. For example, in the Tileworld domain, we
observe that for environments with a dynamism that is more than 6 (v > 6), the effec-
tiveness of the mdp agent is less than 1 (e < 1). The reason for this is that the frequency
with which holes appear and disappear is too high for the agent to get to one of those
that appear even when choosing the decision-theoretically optimal actions. Addition-
ally, the fact that an agent cannot precisely anticipate future events — the appearance
and disappearance of holes — lowers the effectiveness of the agent. One example of this
is the appearance of an hole exactly at the same time that the agent moves away from
that location. With the benefit of hindsight, the agent would have done better to have

7 In bdi terminology this decision making function is better known as an intention reconsideration
function.

On Partially Observable MDPs and BDI Models 255

p=0
1 Sy T T
N Cautious
kY Bold -------
\ Adaptive --------
0.8 | i
o 06| g
[\. o
Q N
c
o
=
°©
(3 A
= N
W04t RN) e
o2 b T e TT— i
0 Il Il Il Il Il Il Il
0 10 20 30 40 50 60 70 80
Dynamism (a)
p=4
1 = T T
T Cautious
Bold -------
Adaptive --------
0.8
» 06|
1%}
[}
c
o
=
°
2
W04t
02
0
0 10 20 30 40 50 60 70 80

Dynamism (b)

Fig. 4. Performance of a cautious, bold and adaptive agent. Effectiveness is measured as a result
of a varying degree of dynamism of the world at planning costs (denoted by p) p=01in (a) and p =
4 in (b). The adaptive agent is a bdi agent based on discrete deliberation scheduling. (From [12])

stayed there instead of moving away. However, from the viewpoint of the agent, these are
merely unlucky situations from which it is hard to escape in realistic domains. These two
issues illustrate that choosing optimal actions individually does not guarantee overall
optimal performance.

256 Martijn Schut, Michael Wooldridge, and Simon Parsons

6 Related Work

The research described in this paper relates to a number of different research areas that
we briefly describe in this Section. Firstly, we describe research by Kinny and Georgeff
on which the experimental methodology in this paper is based. Secondly, we briefly
discuss the issue of computational intractability in solving pomdps. Finally, we discuss
work by Boutilier, which focuses on the relationship between agents and Markovian
planning.

The experimental methodology as used in our investigation is based on the work
of Kinny and Georgeff [6]. Their work includes an experimental program, based on
Pollack’s Tileworld, that aims to investigate how commitment to goals contributes to the
effective behaviour of situated agents. This research is part of amore general investigation
into the reactive meta-level control of deliberation for resource-bounded agents situated
in dynamic domains. Kinny and Georgeff show that in dynamic environments different
meta-level control strategies achieve a different effectiveness. The empirical results as
obtained by Kinny and Georgeff emphasise the importance of meta-level control, but
closely relate to the Tileworld domain.

We have extended the investigation of Kinny and Georgeff in two ways® as described
in [11, 12]. Firstly, we considered partially observable and non-deterministic domains
for the investigation of effectiveness of situated agents. This enabled us to clearly iden-
tify a relationship between the environment (in terms of dynamism, observability and
determinism) and the deliberation control strategy as used by the agent. Secondly, we
aimed to develop domain independent deliberation control strategies to be applied in
a more general context then only the Tileworld testbed. As to the latter, we developed
the adaptive bdi agent as described above, based on the decision-theoretic concept of
deliberation scheduling. In this type of agent, the control strategy (or: reconsideration
policy) determines an efficient trade off between acting and deliberating. We developed
an additional decision-theoretic agent, in which the control strategy is an mdp policy that
lets the agent either act or deliberate at any moment in time® [13]. This work illustrates
the close relationship between the bdi agent architecture and the pomdp framework,
which we have further worked out in this paper.

The problem of computational intractability of solution algorithms for pomdps has
received much research attention (summarised in [2]). The main focus of many of these
investigations has been on factorisation, abstraction and aggregation techniques to reduce
the state space or action space. Probabilistic strips operators and influence diagrams are
such techniques that can be used to factor the state space of Markov problems. Although
these methods have been developed without the pomdp framework directly in mind,
they have proven successful in factoring pomdp state spaces and consequently rendering
computation times feasible. As such, our proposal for using the bdi agent architecture to
solve pomdps can be considered a similar effort. However, more than solely reducing the
state space or action space, the bdi architecture includes techniques to direct reasoning
while solving a pomdp. This is a potential important benefit over other methods.

8 This work has been presented at the UKMAS workshops 2000 and 2001, respectively.
? Since this agent suffers from the same intractability of solving pomdps, as mentioned above,
we decided to compare this paper’s mdp agent with the deliberation scheduling agent.

On Partially Observable MDPs and BDI Models 257

The pomdp planning framework has for long been brought into relation with agent
based architectures. As mentioned in the paragraph above, several techniques from plan-
ning under uncertainty have been successfully applied in a pomdp setting as well as in
the agent based research. Recently, the pomdp planning framework is being applied in
multi-agent settings'?, in which either a pomdp problem is distributed among several
agents or every agent is represented as a pomdp. This new development brings, as any,
novel problems with it, but the multi-agent research area can contribute much to better
solve existing pomdp problems. Work in this area is relevant to the research described in
this paper, since it illustrates the importance and suggested benefit of combining pomdp
planning and agent-based systems.

Finally, we point out research by Boutilier et al. [3] which integrates Markov decision
processes with Golog, a high level programming language with a situation calculus
semantics. Our model distinguishes from this work in the way that our method views the
programming and planning approaches as distinctive alternatives for each other, whereas
the work in [3] views them as complementary processes. Golog can be understood as an
agent specification language and as such can replace the bdi part of our approach. This
replacement is an interesting further extension in order to investigate the behaviour of
our model with respect to other correspondence specifications.

7 Discussion

In this paper we presented a preliminary analysis of the correspondence between the
theory of Markov decision processes for planning in partially observable domains and
the belief-desire-intention agent architecture. The main contributions of integrating these
two models are as follows: it would explain the existence of a correspondence between
the pomdp and bdi models, it would demonstrate how intentions contribute to efficiently
solving pomdps, and it would provide an intuitive method to specify pomdps by using
bdi models. We have not addressed all these issues in this paper, and, as described below,
leave further elaboration of non-addressed issues to future work.

Our research is centered around the hypothesis that bdi can still be used when mdp
is intractable. The results in this paper give reasonable support to suppose that this
hypothesis is true. Further support must be gathered through more rigorous theoretical
and empirical investigation as initiated above. Supposing the hypothesis is correct, one
concrete issue to address is to find the point at which it becomes impossible to compute
mdp solutions, but where bdi models still give reasonable performance.

The main contributions of this paper are to point out the correspondence between
the bdi and pomdp model and to demonstrate empirically that the performance of a
bdi model approximates the effectiveness of a pomdp model. Exactly how good this
approximation is depends on the time cost of planning in the bdi model, as we have
shown in this paper. Although the analysis and formalisation of our approach in this
paper are preliminary, the results of our experimental validation are promising as such
that further research is necessary to explore our findings in more detail.

10 The application of the pomdp framework in multi-agent systems was addressed by Boutilier in
the keynote talk of UKMAS 2000.

258 Martijn Schut, Michael Wooldridge, and Simon Parsons

The conclusions we derived from the Tileworld experiments are as follows. Firstly,
our findings confirm results as obtained earlier in similar experiments. Secondly, the
bdi model approximates the mdp model in terms of effectiveness. Thirdly, we claim
that on the basis of our results, bdi can deal with problems that are beyond the mdp
approach. Finally, we remark that the optimality of mdp solutions is only relevant with
respect to individual actions, not necessarily regarding overall optimal performance.
To this extent, the bdi approach might approximate the pomdp approach, where the
computational burden has been shifted from offline to online. In the testbed used in this
paper, the bdi approach can handle problems which are beyond the scope of an mdp
approach. We propose future research to investigate the behaviour of performance with
respect to balancing offline and online computation.

Our method is to be used for the design of autonomous agents that will operate in
uncertain environments. We express this uncertainty by measurements of: dynamism, the
rate of change of the environment, independent of the activities of the agent; observabil-
ity, the extent to which the agent has access to the current state of the environment; and
determinism, the degree of predictability of the system behaviour for identical system
have inputs.

Exploration of future research paths from here is interesting from a number of differ-
ent viewpoints. Firstly, as mentioned above, we intend to conduct further investigation of
the formal analysis of our approach. Such research will give more insight into the com-
putational efficiency of our method compared to traditional pomdp solution algorithms.
The issue of balancing offline and online computation is a serious consideration for de-
sign. Through research on how these two different types of computation contribute to the
computational cost of our model and under which circumstances, we hope to eventually
automate balancing offline and online computation.

Secondly, we have undertaken preliminary research into the potential benefit of
using the notion of intentions in solving pomdps. Previously, pomdp researchers have
combined single actions into plans (called options or macro-actions) as a type of action
abstraction. We have used intentions to cover this notion of plans. The added benefit
of intentions over options is that, by definition, intentions direct and constrain future
reasoning. As such, intentions are a very natural way for abstracting the action space.

Finally, our experimental validation can be extended in different ways. We are cur-
rently working on the implementation of our model in a more realistic type of testbed,
robot navigation, to demonstrate wider model applicability. Besides this, we are inves-
tigating the implementation of observability as means of resource-bounded information
gathering, i.e., acquiring value of information, in the Tileworld. For this, it is necessary to
have solution algorithms for infinite horizon pomdps, and these algorithms are currently,
to our best knowledge, not available.

References

1. R. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, 1957.

2. C.Boutilier, T. Dean, and S. Hanks. Decision-theoretic planning: Structural assumptions and
computational leverage. Journal of AI Research, pages 1-94, 1999.

10.

13.

14.

On Partially Observable MDPs and BDI Models 259

C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun. Decision-theoretic, high-level agent
programming in the situation calculus. In Proceedings of the 7th Conference on Artificial
Intelligence (AAAI-00), pages 355-362, Menlo Park, CA, 2000.

. M. E. Bratman, D. J. Israel, and M. E. Pollack. Plans and resource-bounded practical reason-

ing. Computational Intelligence, 4:349-355, 1988.

. L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observ-

able stochastic domains. Artificial Intelligence, 101:99-134, 1998.

. D. Kinny and M. Georgeff. Commitment and effectiveness of situated agents. In Proceedings

of the Twelfth International Joint Conference on Artificial Intelligence (IJCAI-91), pages
82-88, Sydney, Australia, 1991.

. J. Lang, L. v. d. Torre, and E. Weydert. Utilitarian desires. Journal of Autonomous Agents

and Multi-Agent Systems, 2002. To appear.

. M. E. Pollack and M. Ringuette. Introducing the Tileworld: Experimentally evaluating agent

architectures. In Proceedings of the Eighth National Conference on Artificial Intelligence
(AAAI-90), pages 183—189, Boston, MA, 1990.

. A. S. Rao and M. P. Georgeff. An abstract architecture for rational agents. In C. Rich,

W. Swartout, and B. Nebel, editors, Proceedings of Knowledge Representation and Reasoning
(KR&R-92), pages 439-449, 1992.

S. Russell and E. Wefald. Principles of metareasoning. Artificial Intelligence, 49(1-3):361—
395, 1991.

. M. C. Schut and M. Wooldridge. Intention reconsideration in complex environments. In

M. Gini and J. Rosenschein, editors, Proceedings of the Fourth International Conference on
Autonomous Agents (Agents 2000), pages 209-216, Barcelona, Spain, 2000.

. M. C. Schut and M. Wooldridge. Principles of intention reconsideration. In E. Andre and

S. Sen, editors, Proceedings of the Fifth International Conference on Autonomous Agents
(Agents 2001), Montreal, Canada, 2001.

M. C. Schut, M. Wooldridge, and S. Parsons. Reasoning about intentions in uncertain domains.
In D. Dubois and H. Prade, editors, Proceedings of European Conference on Symbolic and
Quantitative Approaches to Reasoning with Uncertainty, Toulouse, France, 2001.

M. Wooldridge and S. D. Parsons. Intention reconsideration reconsidered. In J. P. Miiller,
M. P. Singh, and A. S. Rao, editors, Intelligent Agents V (LNAI Volume 1555), pages 63-80.
Springer-Verlag: Berlin, Germany, 1999.

Alonso, Eduardo 59
Ashri, Ronald 73

Bordini, Rafael H. 89
Buckle, Phil 110

Campbell, John A. 89

Decker, Keith 1
d’Inverno, Mark 73
Doran, Jim 131
Durfee, Edmund H. 19

Eijk, Rogier M. van 152
Fisher, Michael 169
Ghidini, Chiara 169
Jennings, Nicholas R. 205
Luck, Michael 73

Moore, Tom 110

Author Index

Noriega, Pablo 27
Norman, Timothy J. 185

Parsons, Simon 205, 243
Pearson, Siani 227
Poslad, Stefan 110
Preist, Chris 227

Reed, Chris 185
Robertshaw, Steve 110

Sabater, Jordi 205
Schut, Martijn 243
Sierra, Carles 27, 205
Tarkoma, Sasu 110
Tennenholtz, Moshe 49
Treadway, Alan 110
Vieira, Renata 89

Wooldridge, Michael 243

	front-matter
	Foundations and Applications of Multi-Agent Systems
	Preface
	Organization
	Table of Contents

	fulltext
	1 Introduction
	2 Representing Coordination Problems: TAEMS
	2.1 Using TAEMS

	3 An Abstract Approach to Coordination: GPGP
	3.1 Task-Structure-Based Coordination
	3.2 Using GPGP

	4 Building Real Software Agents: DECAF
	4.1 Agent Initialization
	4.2 Dispatcher
	4.3 Planner
	4.4 Scheduler
	4.5 Executor
	4.6 Using DECAF

	5 Conclusions
	References

	fulltext2
	1 Introduction
	2 Unintended Conflicts
	3 Dealing with Centralization
	4 Congregating over Mutual Concerns
	5 Summary and Future Directions
	References
	Acknowledgements

	fulltext3
	1 Introduction
	2 Interaction Mechanisms. The Myopic View
	2.1 Auctions
	2.2 Negotiation
	2.3 Argumentation

	3 Electronic Institutions
	3.1 Intuitive Notions
	3.2 Electronic Institutions Basic Concepts

	4 Revisiting the Mechanisms. The Big Picture
	4.1 Auctions
	4.2 Negotiation
	4.3 Argumentation

	5 Conclusions
	References

	fulltext4
	1 Introduction
	2 Representation, Reasoning, and Learning
	3 Reasoning
	4 Learning
	5 Representation
	6 Discussion
	References

	fulltext5
	1 Introduction
	2 Rights
	2.1 Three Facts about Rights
	3 A Language for Describing Rights
	3.1 Syntax
	3.2 Semantics
	3.3 Axiomatics

	4 What Do We Gain by Using Rights?
	5 Rights in the Coordination Process
	6 Conclusions and Further Work
	References

	fulltext6
	1 Introduction
	2 Heterogeneous Environments
	3 Decoupling Agent Behaviour and Description
	3.1 Decoupling for Flexibility and Evaluation
	3.2 Decoupling for Mobility
	3.3 Conceptual Infrastructure
	3.4 Technical Infrastructure

	4 Discussion
	4.1 Related Work
	4.2 Conclusions and Further Work

	References

	fulltext7
	1 Introduction
	2 Background
	2.1 Subjective Intensionality
	2.2 The Process of Ascription of Intensional Ontologies of Terms
	2.3 Discovering Taxonomies in Social Anthropology

	3 A Flavour of the Formal Specifications
	3.1 The Basic Setting
	3.2 Formalisation of the Ascription of Intensional Ontologies

	4 A Promising Application: Corpora as Societies
	5 Conclusion
	Acknowledgements
	References

	fulltext8
	1 Introduction
	2 Agents
	2.1 Agent Definition
	2.1.1 The FIPA Agent Model
	2.1.2 The FIPA-OS Implementation

	2.2 Issues
	2.2.1 Definitions Employed
	2.2.2 Scope of Discussion

	3 Communication Propagation
	3.1 Agent Message Handling
	3.2 FIPA-OS Platform Agents
	3.3 Proposed Solutions

	4 Service Discovery
	4.1 Broadcast Search Method
	4.2 The Highest Degree Alternative
	4.3 A Comparison of the Two Search Algorithms
	4.4 Local Broadcast Search
	4.5 Belief Based Selection of Partner DF

	5 Resource Management Scalability
	5.1 Behavioural Enhancement Costs
	5.2 Size of Platform

	6 The Agent Cities Project
	7 muFIPA-OS Scalability
	7.1 Scalability Issues
	7.2 Design and Implementation

	8 Conclusions
	References

	fulltext9
	1 Introduction
	1.1 The Research Programme

	2 A Simple Model of Space, Time and Matter
	2.1 Regularities and Rules in STaMs
	2.2 Influence
	2.3 Fitting a STaM Rule Set

	3 Agents in StaMs
	3.1 Agents without Physical Structure (A-Agents)
	3.2 Agents with Physical Structure (P-Agents)
	3.3 The Capabilities of A-Agents

	4 Creating STaMs and Finding Agents
	4.1 SABN Problems
	4.2 The COUNT Problem
	4.3 The Algorithm and Program
	4.4 Experimental Results
	4.5 Creating STaMS
	4.6 Finding A-Agents in a STaM: Some Initial Results

	5 Cognition in A-Agents
	5.1 What Is Predictive Planning?
	5.2 A-Agents That Plan

	6 Multi-agent Systems (MAS)
	6.1 Interaction and Communication between A-Agents
	6.2 Overlapping and Nested A-Agents
	6.3 A-Agent Composition and Decomposition
	6.4 Understanding the Behaviour of MAS

	7 Temporal Orientation in Agents
	7.1 Interaction between A-Agents of Differing Temporal Orientation
	7.2 Atemporal Agents in Atemporal STaMs

	8 Discussion
	9 Conclusions
	References

	fulltext10
	1 Introduction
	2 From Shared Variables to Agent Communication
	2.1 Shared Variable Concurrency
	2.2 Distributed Programming
	2.3 Concurrent Object-Oriented Programming
	2.4 Concurrent Constraint Programming
	2.5 Agent Communication

	3 Semantic Approaches
	4 Semantic Properties
	5 Concluding Remarks
	Acknowledgements
	References

	fulltext11
	1 Introduction
	2 An Example
	3 Temporal Logic of Bounded Belief
	3.1 Representing Temporal Reasoning
	3.2 Representing Belief-Bounded Reasoning
	3.3 Representing Temporal-Bounded Reasoning

	4 Implementation
	5 Executing the Example
	5.1 Summary

	6 Conclusions and Future Work
	References

	fulltext12
	1 Introduction
	2 Imperatives
	3 Axiomatisation of S and T
	4 Semantic Model
	5 Delegation
	5.1 Further Axioms and Theorems
	5.2 Forbearance
	5.3 Imperatives in Multi-agent Systems
	5.4 Examples

	6 Discussion
	7 Conclusion
	References

	fulltext13
	1 Introduction
	2 Multi-context Agents
	2.1 The Basic Model
	2.2 The Extended Model
	2.3 Modular Agents
	2.4 Messages between Modules
	2.5 Examples of Multi-context Agents

	3 Agents with Mental Attitudes
	3.1 A High-Level Description
	3.2 Speci.cation of Bridge Rules
	3.3 Instantiating the Contexts
	3.4 Instantiating the Individual Agents

	4 A Functional Agent
	4.1 A High-Level Description
	4.2 Specifications of the Modules
	4.3 Specifications of the Units

	5 Related Work
	6 Conclusions
	Acknowledgments
	References

	fulltext14
	1 Introduction
	2 The Service Provision Problem
	3 The Protocols to be Compared
	3.1 Naïve Broadcast
	3.2 Naïve One-to-One
	3.3 Informed One-to-One

	4 Analysis of the Protocols
	4.1 Naïve Broadcast
	4.2 Naïve One-to-One
	4.3 Informed One-to-One

	5 Dynamic Choice of Messaging Protocol
	5.1 Local Choices Lead to an Optimal Global Choice
	5.2 How Agents Choose the Protocol

	6 Experimental Comparison of Protocol Efficiency
	7 Conclusions and Future Work
	References

	fulltext15
	1 Introduction
	2 Belief-Desire-Intention Agents
	3 Partially Observable Markov Decision Processes
	4 Correspondence between bdi and pomdp
	5 Empirical Validation
	6 Related Work
	7 Discussion
	References

	back-matter
	Author Index

