
Lecture Notes in Artificial Intelligence 1760
Subseries of Lecture Notes in Computer Science
Edited by J. G. Carbonell and J. Siekmann

Lecture Notes in Computer Science
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

John-Jules Ch. Meyer
Pierre-Yves Schobbens (Eds.)

Formal Models
of Agents

ESPRIT Project ModelAge Final Workshop
Selected Papers

1 3

Series Editors
Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbr¨ucken, Germany

Volume Editors

John-Jules Ch. Meyer
Utrecht University, Department of Computer Science
Padualaan 14, De Uithof, 3508 TB Utrecht, The Netherlands
E-mail: jj@cs.uu.nl

Pierre-Yves Schobbens
Institut d’Informatique
Rue Grandgagnage 21, 5000 Namur, Belgium
E-mail: pys@info.fundp.ac.be

Cataloging-in-Publication data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Formal models of agents : ESPRIT project ModelAge final workshop ; selected papers/
John-Jules Ch. Meyer ; Pierre-Yves Schobbens (ed.). - Berlin ; Heidelberg ;
New York ; Barcelona ; Hong Kong ; London ; Milan ; Paris ; Singapore ;
Tokyo : Springer, 2000

(Lecture notes in computer science ; Vol. 1760 : Lecture notes in
artificial intelligence)
ISBN 3-540-67027-0

CR Subject Classification (1998): I.2.11, C.2.4, D.2, F.3, I.2

ISBN 3-540-67027-0 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

c© Springer-Verlag Berlin Heidelberg 2000
Printed in Germany

Typesetting: Camera-ready by author
SPIN 10719643 06/3142 – 5 4 3 2 1 0 Printed on acid-free paper

Preface

This volume contains a number of revised papers that were selected from pa-
pers presented at the last ModelAge workshop held in Certosa di Pertignano
(Italy) in 1997, organised by the Institute of Psychology of the Italian CNR
(IP-CNR), Division of Artificial Intelligence, Cognitive Modeling and Interac-
tion. The organisation chair was held by Amedeo Cesta. The workshop, and
indeed the ModelAge project as a whole, aimed to bring together a number
of researchers stemming from different disciplines to discuss formal models of
agency from different perspectives. These disciplines included artificial intelli-
gence, software engineering, applied logic, databases, and organisation theory.
The field of intelligent agents has become an important research area within
these disciplines, and in the workshop as in the present volume the concept of
agency is thus considered from a multi-disciplinary perspective.

In the introductory chapter of this volume more can be found on the area
of intelligent agents as well as on the topic of formal models of these. We fur-
thermore provide some key references, so that the reader can better appreciate
the position of the present volume within the literature on agent technology.
Moreover, we briefly describe the ModelAge project which was an ESPRIT-
funded Basic Research Working Group dedicated to the study of formal models
of agents, and one may find the details of the organisation of the workshop
here. Finally in this chapter we give a detailed overview of the contents of this
book from which we hope you will get an impression of the deliberately multi-
disciplinary approach that is taken.

Finally, we would like to take this opportunity to thank all the persons in-
volved in the realisation of this book: authors, PC members, additional review-
ers, the organisers and audience of the ModelAge workshop, and the people from
Springer-Verlag.

November 1999 John-Jules Meyer
Pierre-Yves Schobbens

Table of Contents

Formal Models of Agents: An Introduction . 1
John-Jules Ch. Meyer and Pierre-Yves Schobbens

A Model of BDI-Agent in Game-Theoretic Framework . 8
Stanis law Ambroszkiewicz and Jan Komar

Dynamic Belief Hierarchies . 20
John Bell and Zhisheng Huang

Modelling Internal Dynamic Behaviour of BDI Agents . 36
Frances Brazier, Barbara Dunin-Kȩplicz, Jan Treur, and Rineke Verbrugge

Towards an Agent-Oriented Framework for Specification of Information
Systems . 57

Stefan Conrad, Gunter Saake, and Can Türker

The Impossibility of Modelling Cooperation in PD-Game 74
Rosaria Conte, Cristiano Castelfranchi, and Roberto Pedone

Designing Multi-agent Systems around an Extensible Communication
Abstraction . 90

Enrico Denti and Andrea Omicini

Social Interactions of Autonomous Agents: Private and Global Views on
Communication .103

Frank Dignum

Towards a Proof-Theoretic Foundation for Actor Specification and
Verification . 123

Carlos H.C. Duarte

Nondeterministic Actions with Typical Effects: Reasoning about Scenarios 143
Barbara Dunin-Kȩplicz and Anna Radzikowska

Agents’ Dynamic Mental Attitudes . 157
Bruno Errico

Diagnostic Agents for Distributed Systems . 173
Peter Fröhlich, Iara de Almeida Móra, Wolfgang Nejdl,
and Michael Schroeder

VIII Table of Contents

Preferential Action Semantics (Preliminary Report) . 187
John-Jules Ch. Meyer and Patrick Doherty

Dialectical Proof Theory for Defeasible Argumentation with Defeasible
Priorities (Preliminary Report) . 202

Henry Prakken

The Role of Diagnosis and Decision Theory in Normative Reasoning 216
Leendert W.N. van der Torre, Pedro Ramos, José Luiz Fiadeiro,
and Yao-Hua Tan

Contextual Deontic Logic . 240
Leendert W.N. van der Torre and Yao-Hua Tan

Author Index .253

Formal Models of Agents:

An Introduction

John-Jules Ch. Meyer1 and Pierre-Yves Schobbens2

1 Intelligent Systems Group, Dept. of Computer Science
Utrecht University, P.O. Box 80089, 3508 TB, Utrecht, The Netherlands

jj@cs.ruu.nl
2 Institut d’Informatique, Fac. Univ. Notre-Dame de la Paix

Rue Grandgagnage 21, B-5000 Namur, Belgium

1 Intelligent Agents

Although in philosophical literature the notion of an agent as a cognitive subject
has been around for a long time, in the last decade or so the area of ‘Intelligent
Agents’ has also become a major area of research within artificial intelligence
and computer science, an area with a big promise as there are a myriad of possi-
ble applications (see e.g. [4]). As might be expected, within the latter areas the
concept of an agent generally has a more technical meaning, although there is no
general consensus on its definition. But mostly by an agent is meant a (software
or hardware) entity that has some degree of autonomy, which typically comes
down to displaying reactive and/or proactive behaviour (that is to say that the
agent is capable of reacting to its environment and taking initiative, independent
of the user, respectively), might possess reasoning and learning capabilities, and
is able to communicate in some intelligent way with other agents. Sometimes
agents are ascribed ‘mental attributes’ such as a mental state comprising knowl-
edge, belief, Whether these mental attributes are merely metaphorical (i.e. a
convenient means of describing agents) or ‘real’ in the sense that these artificial
agents possess some ‘truly cognitive’ capabilities like human or, to a lesser ex-
tent, animal agents do, is of course a matter of philosophical debate but also a
question depending to a large extent on the application one has in mind.

One view of agents that is very ‘computational’ is that of viewing agents
as the next step in programming as a successor of the popular object-oriented
programming paradigm. Although objects already display some form of ‘auton-
omy’ in the sense that they have their own datatypes and methods which can
be called by other objects, agents are rather to be considered as ‘subjects’, pos-
sessing their own ontology (signature), their own knowledge / beliefs about their
environment (possibly including themselves if they have reflective capabilities)
and their own goals to achieve. Moreover, communicating is much less a matter
of just invoking a method of another agent, but rather asking questions to other
agents which these other agents may (or may not) handle in their own way.

Of course, these matters can also be viewed from a more cognitive perspec-
tive. (Some researchers like to include human agents into their conception of
an agent, and consider ‘mixed’ systems of human and artificial agents.) One can

J.-J. Ch. Meyer, P.-Y. Schobbens (Eds.): Formal Methods of Agents, LNAI 1760, pp. 1–7, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

2 John-Jules Ch. Meyer and Pierre-Yves Schobbens

then look at agents at the ‘micro’ level: their internal make-up, possibly described
in terms of mental states (comprising knowledge, beliefs, intentions, etc.), and
at the ‘macro’ level: external and ‘social’ behaviour (including communication,
co-ordination, co-operation).

It is important to stress that the area of intelligent agents is truly multi-
disciplinary. Clearly the area has a big overlap with contemporary AI. Some
feel that agent-based systems are the next generation of the information-based
and knowledge-based (expert) systems from the 80’s. In any case one can read-
ily agree that agent systems are a new generation of intelligent systems, and
as such part of the AI research programme. As we saw above agent-oriented
programming can also be viewed as a new programming paradigm in computer
science, more in general. And, as we have also briefly mentioned, traditionally
there are influences from (analytical) philosophy. Many writings by (mostly 20th
century) philosophers on the nature of ‘action’ are relevant for the field of ‘intel-
ligent agents’. Finally, also cognitive and social scientists show a great interest in
agents, in particular systems in which multiple agents are present, the so-called
multi-agent systems (MAS). Their interest includes how agent societies develop
and employ norms to govern / constrain their behaviour.

There has arisen a great deal of literature on the topic of intelligent agents.
Many papers deal with the practical issue of designing and building them for
particular applications such as agents for assisting users of the internet. See,
for example, the Proceedings of the Autonomous Agents and PAAM (Practi-
cal Application of Intelligent Agents and Multi-Agent Technology) Conferences,
where many researchers exchange their views on how to address these appli-
cations. More theoretical are the MAAMAW (e.g. [1]) and ICMAS conferences
on Multi-Agent Systems (e.g. [2]), and particularly the series of books entitled
“Intelligent Agents” in the Springer Lecture Notes in AI [8,10,9,7,5], based on
the proceedings of the ATAL workshops (“Agent Theories, Architectures, and
Languages”).

2 Formal Models

Formal models are a tool to arrive at unambiguous and precise meanings of con-
cepts. They may comprise a well-defined language with a precise, mathematical
semantics in terms of set theory, for example. Also one may think of some ax-
iomatic system (logic) that lays down the exact meanings of the terms of the
logic by postulates / axioms. Since the field of agents is ‘exploding’ in many
directions, it seems very reasonable to strive for a (common) formal model on
which there is some consensus among the various researchers (stemming from
different disciplines).

However, the need for formal models goes beyond the mere understanding of
the subject of intelligent agents (although of course this is very important, too)!
As with traditional software, in order to design and implement agent systems
it would be very advantageous to have some formal means of describing and
specifying the behaviour of these systems. For this reason, too, formal models of

Formal Models of Agents: An Introduction 3

agency are called for. One might, for instance, think of a logical calculus with a
well-defined semantics that describes the agent’s (mental and social) attitudes.
To do justice to the idea of multidisciplinarity of agents and agent research as
we have discussed above it is important to view agents from several perspectives
which will naturally lead to the use of formal models of different nature. To
treat the different aspects of agency adequately it appeared that many theories
have to be considered and combined: from the theory of reasoning about actions
and change (a well-known area in AI) to the theory of norms (dealing with the
social attitudes of agents), from database theory and the theory of concurrent
computation to principles of software engineering.

We must mention here the well-known BDI model proposed by Rao and
Georgeff [6] which has been very influential. The model is based on (branching
time) temporal logic (CTL*). Agent behaviour is modelled by tree-like struc-
tures, where each path through such a tree represents a possible ‘life’ of the agent.
The basic logic containing temporal modalities such as “along every path in the
future there is some point where” is augmented by means of ‘BDI’-modalities,
viz. a belief operator BEL, a desire operator GOAL and an intention operator
INTEND. Thus in this model one is able to express how the beliefs, desires
and intentions of an agent evolve over time (or rather over possible time lines).
Formally, Rao and Georgeff’s BDI-model is a formal (modal) logic witha Kripke-
style semantics and a logical calculus. Rao and Georgeff were especially interested
in the relationship between the BDI modalities. In their paper they discuss sev-
eral such possible relations such as Belief-Goal compatibility and Goal-Intention
compatibility. The former expresses that agents believe that their goals are ob-
tainable in some future, while the latter states that the agents’ intentions should
be goals. Rao and Georgeff and other researchers have used their model as an
inspiration for their work on the realisation of agents. The BDI model have thus
given rise to BDI architectures where the elements of belief bases, goal bases
and plan libraries are central. Although these have been applied quite success-
fully, an as yet ongoing frustration among agent researchers is the gap between
the formal (BDI) model and the (BDI-based) architectures in the sense that one
would like to use the former to specify the latter formally and prove formal prop-
erties about these. But as yet this is not shown to be possible, as the ‘distance’
between the two ‘worlds’ is too great. Within the ModelAge project some work
has been done to give an alternative for the ‘classical’ BDI logic where the basic
logic is a logic of action (viz. dynamic logic) rather than a temporal logic [3]. It
appears that in this way the gap can be made smaller, but a formal specification
of a concrete agent in this logic is still a much wanted desideratum.

3 The ModelAge Project

The ModelAge project was an ESPRIT-funded Basic Research Working Group
(ESPRIT III BRWG 8319) intended to study formal models of (co-operating)
intelligent agents by means of an multi-disciplinary approach. It ran from 1994
through 1997. The official title of the project was “A Common Formal Model

4 John-Jules Ch. Meyer and Pierre-Yves Schobbens

of Cooperating Intelligent Agents”. The project grew out of the realisation that
the field of ‘intelligent agents’ was expanding rapidly within several (almost)
disjoint communities with their own set of concepts, techniques and objectives,
and that some kind of ‘co-ordination’ was necessary. In the project researchers
participated from the areas of requirements engineering, organisational models,
software design, concurrency theory, distributed artificial intelligence and (fed-
erative) databases.

The consortium consisted of groups from Namur, London (Imperial College),
Keele, Lisbon, Oslo, Rotterdam, Utrecht / Amsterdam, Rome, Sophia-Antipolis
(INRIA), Aachen and Braunschweig. The project had special interest groups
on defeasibility and agent modalities, logics and models of action, interaction
in organizations, software development process, business and legal applications,
and on diagnostics, repair and reconfiguration. Apart from meetings of these
special interest groups there have been four workshops of the project as a whole,
of which the last one was advertised in a broader context with both PC members
and presenters (and audience) outside the ModelAge project.

Although originally the objective of the project was to obtain a common
formal model of agency using the expertise from the diverse fields above, this
soon proved to be somewhat too ambitious. However, it is clear that by bringing
experts together from the above fields in general meetings and workshops as well
as in special interest groups the project addressed the various ‘faces’ of agency
and succeeded to stimulate cross-fertilisation among these various fields, and in
this way has been very successful and stimulating!

4 About This Book

4.1 The Workshop

The present book is the result of the work done within the ModelAge project
(complemented with some related work done outside the project), and in par-
ticular that of the last ModelAge Workshop held in Certosa di Pontignano in
Italy in 1997, and organised by the Institute of Psychology of the Italian CNR
(IP-CNR). Amedeo Cesta acted as the Organisation chair. The papers have been
reviewed by an international programme committee in which also well-known re-
searchers outside the ModelAge project had been invited, assisted by a number
of additional reviewers. Although the book is not intended to be a complete sur-
vey of the work accomplished in the ModelAge project, it nevertheless reflects
the interdisciplinary nature of the project very well.

The PC consisted of C. Castelfranchi (CNR, Rome), A. Cesta (CNR, Rome),
R. Dieng (INRIA, Sophia-Antipolis), E. Dubois (Univ. Namur), J. Fiadeiro
(Univ. Lisbon), A. Jones (Univ. Oslo), H. Levesque (Univ. Toronto), J. My-
lopoulos (Univ. Toronto), J.-J. Ch. Meyer (Univ. Utrecht), W. Nejdl (Univ.
Hannover), M. Ryan (Univ. Birmingham), G. Saake (Univ. Magdeburg), P.-Y.
Schobbens (Univ. Namur, Programme Chair), K. Segerberg (Univ. Uppsala),
Y.-H. Tan (Univ. Rotterdam), R. Wieringa (Vrije Univ. Amsterdam). The pa-

Formal Models of Agents: An Introduction 5

pers are selected from the papers presented at the workshop, which in turn were
selected on the basis of three independent evaluations by PC members.

Furthermore, the following persons served as additional reviewers: D. d’Aloisi,
G. Brewka, J. Carmo, H. Coelho, S. Conrad, R. Conte, M. Deen, F.M. Dionisio,
Ph. Du Bois, V. Englebert, R. Falcone, A. Finkelstein, M. Gertz, S. Guerra,
W. van der Hoek, J.-M. Jacquet, U. Lipeck, G.-J. Lokhorst, A. Lomuscio, M.
Miceli, C. Paredes, M. Petit, H. Prakken, A.S. Rao, J.-F. Raskin, J. Scheerder,
A. Sernadas, A. Sloman, L. van der Torre, C. Türker, I. Wright, J.-M. Zeippen.

4.2 Description of the Papers

We now give a short description of the papers in this volume from which the
multi-disciplinarity of the subject of agent modelling and the ModelAge project
itself becomes apparent.

The paper by Stanislaw Ambroszkiewicz and Jan Komar considers rational
behaviour of agents from a game-theoretic perspective. The desire component
of a BDI-agent (as we have seen above) is represented as the agent’s goal to
maximize utility. The complete agent model comprises five parts dealing with
perception, knowledge / belief, rational behaviour, the reasoning process, and
intention.

Frances Brazier et al. present a generic model for the internal dynamic be-
haviour of a BDI agent. For this they employ the compositional multi-agent
modelling framework DESIRE. Since DESIRE is aimed at the actual implemen-
tation of agent systems, this paper provides a first step of bridging the above
mentioned gap between formal agent models (such as the BDI model) and im-
plementations.

The contribution of John Bell and Zhisheng Huang deals with an important
informational attitude of agents, viz. that of coping with their beliefs in situations
where new information becomes available all the time. They propose an approach
to belief revision using hierarchies of belief in order to cater for the difference in
reliance of beliefs. These belief hierarchies themselves are dynamic in the sense
that they (may) change over time.

In the paper of Stefan Conrad et al. the notion of an agent is viewed as
a further development of the notion of an object in object-oriented program-
ming. It is used to model the dynamics of information systems more adequately
than traditional approaches. First steps towards an agent-oriented specification
framework for this purpose are taken by employing an extended temporal logic.

Rosaria Conte et al. discuss in their paper some basic limitations of the use
of game theory for modelling autonomous agents and multi-agent systems. In
particular they show that Prisoners’ Dilemma games fall short for modelling
truly cooperative behaviour. In order to get an adequate theory for cooperation
it is therefore proposed to also include elements from AI, in particular a theory
of action and planning.

In their paper Enrico Denti and Andrea Omicini consider the communication
and coordination aspects of multi-agent systems (MAS) from a computer science
point of view. They provide a flexible coordination model based on an extensible

6 John-Jules Ch. Meyer and Pierre-Yves Schobbens

coordination medium for a MAS. It is shown how a MAS can be designed around
the communication abstraction behaviour.

Frank Dignum also addresses the issue of communication between agents, but
focuses on the distinctions between ‘global’ and ‘private’ views on communica-
tion. In the former the MAS is seen as one big system, whereas in the latter view
each action is ascribed to an individual agent having control over that action.
The consequences of the two views for agent communication and the agent’s de-
gree of autonomy are investigated, and a sketch of a formalisation of the model
in a multi-modal logic is provided.

Carlos Duarte looks in his paper at communication as well. He proposes a
logical and, more specifically, a proof-theoretical foundation of the well-known
actor model, which might be considered as an early computational model of a
MAS, where the focus is on (rather low-level) communication. His work aims at
the specification and verification of such actor systems.

The paper of Barbara Dunin-Keplicz and Anna Radzikowska use techniques
from theoretical computer science to consider a typical AI problem that is rele-
vant voor describing intelligent agents, viz. reasoning about (nondeterministic)
actions with typical effects. They employ the KARO logic developed in the Mod-
elAge project [3] for reasoning about actions / scenarios and add on top of this
preferential models which are known from the area of common-sense (nonmono-
tonic) reasoning.

Agents typically function in a dynamic environment where circumstances
change. Bruno Errico addresses the problem of describing the dynamics of an
agent’s mental attitudes, that is how these attitudes change as the environment
changes. The attitudes studied concern the agent’s beliefs and goals. His pro-
posal is based on a well-known (within the area of AI) first-order formalism for
reasoning about actions, viz. that of the situation calculus.

Fröhlich et al. treat an application of agent systems for the diagnosis of dis-
tributed technical systems such as computer networks. An agent is assigned to
each subsystem. The system is implemented by means of the concepts of vivid
agents (a software-controlled system whose state is represented by a knowledge
base, and whose behaviour is represented by action / reaction rules) and ex-
tended logic programming.

In John-Jules Meyer and Patrick Doherty’s contribution a new approach is
set out for reasoning about actions. This is an infamous area in AI where there
are problems like the frame, qualification and the ramification problem having
to deal with the effects and particularly the non-effects of actions performed
by some agent. While most proposed solutions regard the rather abstract level
of logical theories on possible scenarios, here a solution is sought on the more
concrete and computational level of the semantics (behaviour) of the actions
themselves.

Another view of agents is given by Henry Prakken: agents engaged in a
dispute using argumentations to come to an agreement. Argumentations might
be defeasible in the sense that when more information becomes available different
arguments may ‘win’. In this paper a dialectical proof theory is proposed for

Formal Models of Agents: An Introduction 7

defeasible argumentation in a setting in which also the priorities that determine
which arguments are defeated themselves are subject to debate (argumentation)
and thus are defeasible.

In the contribution of Leon van der Torre et al. we encounter yet another
aspect of agent systems. In societies of agents (whether they consist of human
or artificial agents) norms play an important role to regulate their behaviour.
Traditionally (some of) these aspects are described by deontic logic in which one
can reason about norms. In the present paper the authors argue that in order
to also reason with norms to draw conclusions of how norms affect the agents’
behaviour one needs to include elements from the theory of diagnostic reasoning
and qualitative decision theory.

More about normative reasoning can be found in the article by Leon van
der Torre and Yao-Hua Tan. Here a new kind of deontic logic (so-called con-
textual deontic logic) is proposed in which one can express that something is
obligatory under some conditions unless something else is the case. The logic
thus comprises an interesting amalgam of ideas from deontic logic and defeasible
(default) reasoning. Contextual deontic logic is shown to be useful for treating
so-called contrary-to-duty obligations, which occur widely in practical situations
involving norms.

References

1. M. Boman and W. Van de Velde, Multi-Agent Rationality, Proc. MAAMAW’97,
LNAI 1237, Springer, Berlin, 1997.

2. Y. Demazeau (ed.), Proc. of the Third Int. Conf. on Multi-Agent Systems, IEEE
Computer Society, Los Alamitos, CA, 1998

3. W. van der Hoek, B. van Linder and J.-J. Ch. Meyer, An Integrated Modal Ap-
proach to Rational Agents, in: M. Wooldridge and A. Rao (eds.), Foundations of
Rational Agency, Applied Logic Series 14, Kluwer, Dordrecht, 1998, pp. 133-168.

4. N.R. Jennings and M.J. Wooldridge, Agent technology: Foundations, Applications,
and Markets, Springer, Berlin, 1997.

5. J.P. Müller, M.P. Singh and A.S. Rao (eds.), Intelligent Agents V (Agent Theories,
Architectures, and Languages), LNAI 1555, Springer, Berlin, 1999.

6. A.S. Rao and M.P. Georgeff, Modeling rational agents within a BDI-architecture,
in Proceedings of the Second International Conference on Principles of Knowledge
Representation and Reasoning (KR’91) (J. Allen, R. Fikes and E. Sandewall, eds.),
Morgan Kaufmann, 1991, pp. 473–484.

7. M.P. Singh, A. Rao and M.J. Wooldridge (eds.), Intelligent Agents IV, LNAI 1365,
Springer, Berlin, 1998.

8. M.J. Wooldridge and N.R. Jennings (eds.), Intelligent Agents, Springer, Berlin,
1995.

9. M. Wooldridge, J.P. Müller and N.R. Jennings (eds.), Intelligent Agents III,
Springer, Berlin, 1997.

10. M. Wooldridge, J.P. Müller and M. Tambe (eds.), Intelligent Agents Volume II –
Agent Theories, Architectures, and Languages, LNAI 1037, Springer, Berlin, 1996.

A Model of BDI–Agent in Game–Theoretic

Framework�

Stanis�law Ambroszkiewicz and Jan Komar

Institute of Computer Science, Polish Academy of Sciences
PL-01-237 Warsaw, ul. Ordona 21, Poland

sambrosz@ipipan.waw.pl

http://www.ipipan.waw.pl/mas/

Abstract. A model of BDI–agent in game–theoretic framework is pre-
sented. The desire is represented as agent’s goal to achieve a maximum
level of utility. A reasoning process based on agent’s rational behavior
is proposed. This process determines agent’s intention. It is also shown
how to use the backward induction consistently with the assumption of
the common knowledge of rationality.

1 Introduction

We are going to discuss the following problem:
How does a rational agent use its knowledge in decision making ?
Since the problem is general, we put it in a game–theoretic framework. In

the theory of games, agent’s rationality is understood as a way of maximizing
the utility of the agent relatively to its knowledge. The knowledge may concern
the game that is to be played as well as the agents participating in a play.

The main task of the paper is to model BDI-agent that is supposed to live
in the world of dynamic games. Agent’s belief is identified with the knowledge
about the game and about other agents together with a probability distribution.

The desire is represented as agent’s goal to achieve a maximum level of its
utility.

The intentions are determined by some methods that realize this level of
utility. These methods are called rational behaviors. Bayesian behavior, that
consists in maximizing the expected utility, may serve as the classical example
of rational behavior considered in decision theory.

Let us suppose that agent j is characterized by the following belief Bj , desire
Dj , and rational behavior Rbj . Thus, according to the rational behavior, agent
j considers some of its actions as not optimum, relatively to Bj , Dj. The actions
that are not optimum are removed, so that the initial game is reduced; whereas
the optimum actions may be regarded as temporal, partial, and individual in-
tentions of agent j in the reasoning process.

� Our thanks are due to four anonymous referees for important remarks and sugges-
tions. The work was supported by KBN Grant 8T11C 03110

J.-J. Ch. Meyer, P.-Y. Schobbens (Eds.): Formal Methods of Agents, LNAI 1760, pp. 8–19, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

http://www.ipipan.waw.pl/mas/

A Model of BDI–Agent in Game–Theoretic Framework 9

Now, let us suppose that agent i knows the characteristics (Bj , Dj , Rbj) of
agent j. Knowing this, agent i can reconstruct the reasoning process of agent j,
and gets to know, in this way, the optimum actions of agent j, so that also the
fact that the initial game has been reduced. Knowing that, agent i will use this
reduced game as a basis to compute its own optimum actions. These optimum
actions may be considered as temporal, partial, and individual intention of agent
i in its reasoning process.

We may suppose that agent j knows the agent i’s characteristics and the fact
that agent i knows its own characteristics, i.e. (Bj , Dj , Rbj). Then, agent j could
compute its new knowledge about the game and on the basis of this knowledge
its new more complete intention.

Let us note that since no new event occurs, these changes of knowledge and
intention have nothing to do with revision and updating. It seems that these
changes should be called knowledge and intention evolution in the reasoning
process.

We can not model knowledge evolution in the formalism of Halpern et al.
[6], because there the agents are supposed to be omniscient (i.e. the perfect
reasoners), so that all changes are already incorporated in the knowledge.

As to the formalism introduced by Rao and Georgeff [10], the three notions
of belief, desire, and intention are defined independently there. So that it seems
that agent’s intention are considered there as a final result of reasoning process,
however without giving any reference to a construction of the process.

The main idea of our paper is that rational behavior may be used to construct
such reasoning process. For this purpose we divide agent’s knowledge into several
hierarchical types. We distinguish a special type of knowledge, called ground
type. This ground type knowledge is exactly the knowledge on which a rational
behavior depends, i.e. the agent’s action taking is directly dependent on this type
of knowledge. It is natural to assume that the ground type forms a small part of
all possible knowledge of the agent. Of course, the agent should be interested in
having this ground knowledge as precise as possible. So that the agent tries to
find transformations (logical rules) that transform all its knowledge into ground
knowledge making it in this way more exact.

The process of reasoning is defined as a transformation that conveys the
knowledge from higher types, in the hierarchy, into the lower types and finally
into the ground type.

The final ground knowledge is the basis for determining the final intention.
Similar ideas of knowledge transformations may be found in [7], [13], [14]

where a special kind of agent rationality is considered, namely Bayesian ratio-
nality. However, the idea of the ground type is not distinguished explicitly there.
Moreover, in all the above papers only, a so called, static case is considered,
that is, agents take actions only once. The dynamic case, where the agents take
actions many times, is much more complex and causes a number of serious prob-
lems. One of them is the paradox, see [3], concerning backward induction, (i.e. a
natural planning method), and common knowledge of the rationality of agents.
Since these two notions are necessary for planning and reasoning about future, it

10 Stanis�law Ambroszkiewicz and Jan Komar

is impossible to investigate seriously the dynamic multi–agent systems without
an explanation of the reasons that cause the paradox.

In order to present briefly the paradox, let us consider the following two
person game in extensive form. More details can be found in [11,3].

���1.1 2.1 1.2
(

2
4

)

(
3
1

)(
0
2

)(
1
0

)

The first move of the game belongs to agent 1. At node 1.1 the agent can
either continue the game (move right) or end the game (move down) with the
payoffs: 1 dollar for agent 1, and 0 for agent 2. If agent 1 decides to continue the
game, then agent 2 finds itself at decision node 2.1 and has to choose between
right and down. If agent 2 chooses down then the game ends with the payoffs: 0
for agent 1, and 2 dollars for agent 2. And so on.

The backward induction with the assumption of common knowledge of agent

rationality gives
(

1
0

)
as the solution of the game. The reason is as follows. At

node 1.2 the agent 1, acting rationally, takes move down. Knowing this, agent 2
at node 2.1 also chooses down as the only rational move. So that knowing these
both facts, agent 1 at node 1.1, chooses as optimum the move down.

However, let us consider again agent 2 at node 2.1. According to the back-
ward induction and the assumption of common knowledge of rationality, agent 2
should never find itself at the decision node 2.1. If agent 2, in spite of this, does
find itself at node 2.1, this means that the agent 1 has behaved irrationally at
node 1.1 choosing right instead of down. This contradicts the assumption of the
common knowledge of rationality.

It seems that the reason of the paradox is that agent, say i, can not have
knowledge about future knowledge of another agent’s (say j) knowledge at some
future state of the world. If the agent did have such knowledge and this knowledge
were true, then this would violate the causality principle. The explanation is
simple: knowing that agent i had such knowledge, agent j would take some
actions, that would make this future knowledge or this future state of the world
impossible.

In the paper we present:

– a construction of reasoning process that determines agent’s intention,
– how to convey the dynamic case into so called one–shot case where each

agent takes action at most once,
– an explanation of the paradox.

A Model of BDI–Agent in Game–Theoretic Framework 11

These items above will allow to use the backward induction consistently with
the assumption of the common knowledge of rationality.

2 Dynamic System

The dynamic system is supposed to be a world in which the agents live. It
consists of:

– the set of global states denoted by Ω, with the distinguished state, say ω0,
being the initial state,

– enumeration of agent’s sites denoted by the set N = {1, 2, 3, ... , n},
– for each site i ∈ N , there is the set of actions Ai from which an agent,

occupying the site i, may take one action at any (discrete) moment of time,
– transition function Φ : Ω×∏

i∈N Ai → Ω, determining the next global state
of the system given the current state of the system and the actions taken by
the agents,

– the duration of the system, say T , being a natural number.

We assume that the time is discrete and the system is synchronous, i.e. at
any moment of time t, the agents take actions simultaneously, so that if the
system state is ω and the agents take actions a1, a2, ... , an respectively, then at
time t + 1 the global state of the system is moved to
ω′ df

= Φ(ω, a1, a2, ... , an) according to the transition function.

Let us introduce some useful notations. Let A
df
=

∏
i∈N Ai. Let at ∈ A,

at = (at
1, a

t
2, ... , at

n), denote the actions taken by the agents at time t.
Let (ω0, a0, a1, a2, ... , at−1) be called t-run of the system, or a possible history
by the time t. It is clear that each t- run determines the global states of the
system at times: 1, 2, ... , t.

Let � be the the set of all T -runs.
Let r(t) df= ωt denote the global state of the system at time t determined by

run r.
Let r(i, t)

df
= at

i denotes the action taken by the agent i at time t in the run
r.

For r = (ω0, a0, a1, a2, ... , aT) ∈ � and t ≤ T , let

(r, t)
df
= (ω0, a0, a1, a2, ... , at−1). Let (r, t) be called a situation at time t. Let S

denote the set of all possible situations at times : 1,2, ... , T .
The dynamic system defined above is abstract and, in fact, describes only

relations between the system states and actions of the agents. Similar dynamic
systems are considered in the theory of distributed systems, see [8,9].

3 Agent Model

Let us stress that there are only agent sites in the dynamic system, so that it
is up to a designer of a MAS to put into these sites specific agent architectures.

12 Stanis�law Ambroszkiewicz and Jan Komar

We are going to outline some aspects of abstract model of an agent that may
occupy the site i in the dynamic system.

We distinguish the following five basic parts of this model: (1) Perception, (2)
Desire, (3) Knowledge and belief, (4) Rational behavior, (5) Reasoning process,
(6) Intention.

3.1 Perception

It is natural that an agent perceives more or less the world in which it lives.
Since the world is a dynamic system, the complete information about the world
is contained in the current global state of the system. Hence, agent perception
should consist in partial information about this global state. What agent per-
ceives constitutes its local world with its local states. Formally, let Qi denote the
set of local states of agent i. Then, agent i’s perception is defined as the function
Ji : Ω → Qi with the following interpretation. If the current global state is ω,
then agent i perceives qi

df
= Ji(ω) as its local state, i.e. qi is the current state of

the (local world of) agent i. Hence, agent i knows only that the true global state
of the system belongs to the set

J−1
i (qi)

df
= {ω ∈ Ω : Ji(ω) = qi}

Since each T –run r determines global states of the system at times
t = 0, 1, 2, ... , T , say ω0, ω1, ... , ωT , let

Ji(r)
df
= (Ji(ω0), Ji(ω1), ... , Ji(ωT))

denote the sequence of agent i’s local states for run r. Let us notice that Ji(r)
is the perception record of agent i in the run r.

3.2 Desire

The desire of agent i is expressed by aspiration level, denoted by a real number
αi, and utility function ui defined on its perception records, i.e. sequences of
local states from time t = 1 to t = T . Formally

ui : QT
i → R,

where R is the set of real numbers.
Agent’s desire is to find itself in the local states: q1

i , q2
i , ... , qT

i , (state qt
i at

time t), such that

ui(q1
i , q2

i , ... , qT
i) ≥ αi.

We assume that any agent remembers all his previous local states, so that the
agent can calculate its utility. This implies that the agents know the global time;
in game theory it is called perfect recall. We may drop this assumption, however
then the notations become cumbersome.

A Model of BDI–Agent in Game–Theoretic Framework 13

3.3 Rational Behavior

If agent wants to maximize its utility, then its behavior leading to this maximiza-
tion is called rational in game theory. Since there are several kinds of rational
behavior, like Bayesian, risk aversion, or gambler behavior (see [2]), we introduce
a general form of agent’s behavior that leads the agent to satisfy its desire. In
order to define agent behavior, we must define agent decision problems.

Primitive decision problem of agent i, (pdpi for short), is the following

pdpi
df
= (Ai, (µai)ai∈Ai),

where µai is a probability distribution on the set of the real numbers.
The interpretation is following: if agent i has to deal with primitive decision

problem pdpi and takes action ai then the probability that its utility will be x
is equal to µai(x). So that in this case the agent is not sure about the result of
its action.

Let PDPi be the set of all pdpi. Behavior of agent i is defined as Rbi :
PDPi → 2Ai , with the following interpretation. If agent i’s behavior is Rbi, and
the agent has to deal with pdpi, then the agent considers the actions from the set
Rbi(pdpi) ⊆ Ai as optimal, i.e. satisfying its desire. Usually the desire attributes
of the agent, αi and ui, are taken as the parameters of behavior Rbi.

As an example of rational agent behavior, we may consider so called Bayesian
behavior defined as follows: Rbi(Ai, (µai)ai∈Ai) is the set of all actions ai that
maximize the expected utility

∑
x∈R

x · µai(x)

Sometimes an agent knows only that its primitive decision problem belongs
to some set S, then it is natural to consider as optimum any action from the set:

A′
i =

⋃
pdpi∈S

Rbi(pdpi).

Agent’s behavior should reflect agent’s desire to achieve its goal, see [2]. Since
agent’s behavior depends directly on the primitive decision problems, it is clear
that all agent’s knowledge and reasoning resources should be used to determine
the pdpi.

3.4 Knowledge and Belief

It is supposed that agent’s perception function, agent’s desire, and rational be-
havior can not be changed over time. However, agent’s knowledge and belief is
a subject of change.

At any moment of time t, agent i has knowledge about what T –runs are
possible. Let the set of possible, according to agent i, T –runs be denoted by
�t

i. Agent may consider some T –runs as more or less probable, so that we must

14 Stanis�law Ambroszkiewicz and Jan Komar

introduce the notion of agent belief at time t, denoted by Belti. It is a probability
distribution on �t

i.
Let ∆�t

i denote the set of all probability distributions defined on �t
i.

Let (�t
i, Belti) constitute agent i’s ground knowledge at time t.

It should be clear that each (�t
i, Belti) determines unique

pdpi
df
= (Ai, (µai)ai∈Ai) in the following way:

Let Z(ai, x)
df
= {r ∈ �t

i : r(i, t) = ai & ui(Ji(r)) = x}, then

µai(x)
df
=

∑
r∈Z(ai,x)

Belti(r),

for the definition of r(i, t), see Section 2, and for Ji(r), see Section 3.1. So that
we will somewhat abuse the notations writing Rbi(�t

i, Belti) instead of Rbi(pdpi).
Let

chart
i

df
= (�t

i, Belti; Ji; ui, αi, Rbi)

denote a possible characteristics of agent i at time t. In fact, it consists of agent
ground knowledge, perception, desire, and rational behavior. Let CHARt

i denote
the set of all such possible characteristics.

Now we are going to define a representation of mutual knowledge, i.e. knowl-
edge about other agents and their knowledge. Let for any sequence i, j1, ... , jk

(of elements from the set N),

Kt
i,j1, ... ,jk

be a subset of CHARt
jk

The meaning of the introduced notation is the following:

– at time t agent i knows that agent j1 knows that ... that agent jk’s charac-
teristics belongs to the set Kt

i,j1, ... ,jk
.

Let us see that the following sequence

(Kt
i, (Kt

i,j1)j1∈N , (Kt
i,j1,j2)j1,j2∈N , ...)

represents a tree, that is, Kt
i is the root of the tree and it is a characteristics of

agent i, (Kt
i,j1)j1∈N is the collection of nodes at level 1, (Kt

i,j1,j2)j1,j2∈N is the
collection of nodes at level 2, and so on. Hence, the tree is a representation of
mutual knowledge of agent i. Of course we should put some restrictions on the
sets Kt

i ... j , like that agent i can not know more about agent j’s knowledge than
agent j itself, and so on.

Let us note that this knowledge representation may be constructed in the
way that is consistent with the standard notion of knowledge, see for example
Halpern et al. [6].

The notion of mutual knowledge is weaker than the notion of common knowl-
edge (for details see [6]), however it is enough for our purpose, because we will
consider the trees with finite branches.

A Model of BDI–Agent in Game–Theoretic Framework 15

chart
i

�

j1 j′1

��
��

∅

j′′1

chart
j1 chart

j′1

��
��

∅ ��
��

∅ ��
��

∅ ��
��

∅

Fig. 1

In the figure we put for simplicity that Kt
i = {chart

i} and Kt
i,j1 = {chart

j1},
and Kt

i,j′1
= {chart

j′1
}. The rest components of the mutual knowledge are empty

sets and denote that agent i has no knowledge about the agent j′′1 , and no knowl-
edge about what agents j1, j

′
1 know about other agents. Similar representation

of mutual knowledge is applied in Recursive Modeling Method, see [7].
There is also another representation of mutual knowledge that is much more

simple to grasp, however is hard to use in applications. It may be called generic
representation, and is constructed in the following way. Let Ki denote the type
of agent i’s knowledge, that will be defined below. Canonical form of an object
of type Ki is

(chari;Gij , j ∈ N)

where N is the set of all agents and Gij is subset (may be empty) of objects of
type Kj .

Let us note that this construction is recursive and for practical reasons should
not be nested ad infinitum.

3.5 Reasoning Process

Agent’s reasoning should focus on reducing as much as possible the set of runs
�t

i and determining belief Belti . These two constitute agent ground knowledge. A
schema of such reasoning process is presented below as Fig. 2. Transformations
are shown there as arrows.
From perception to �t

i. This transformation is natural. Agent i perceiving
qt
i , knows that the true global state belongs to the set J−1

i (qt
i). Hence the trans-

formation consists in removing from the set �t
i those runs that determine the

global states at time t not consistent with the local state qt
i , i.e. such runs r for

which Ji(r(t)) �= qt
i , for the definition of r(t) see Section 2.

From perception to mutual knowledge. Agent i, knowing perception func-
tion (mechanism), of other agent j, can deduce roughly what agent j does per-
ceive. For details see the next transformation. It is also the case of famous three

16 Stanis�law Ambroszkiewicz and Jan Komar

wise men puzzle, see [8,9]. If agent perceives at time t what action was taken
by agent j at time t − 1, then, knowing agent’s j characteristics, agent i may
deduce what should be agent j’s ground knowledge at time t − 1 for agent j to
take the action which the agent j has already taken.
From characteristics to revised characteristics. Agent, taking action at

i,
makes in this way some T –runs to be impossible. So that the agent must re-
move these impossible (inconsistent) runs from the set �t

i. That is, the run r is
consistent with action at

i if r(i, t) = at
i, (for the definition of r(i, t), see Section

2).

time t

time t+1

characteristics

characteristics

communication

action taking

action taking

set of runs belief

mutual
knowledge

perception

set of runs

belief

at time t-1

at time t

revised

behavior
utility and

Fig. 2. Dynamic structure of knowledge and transformations: time from t to t + 1.

Doted vectors denote the transformations that are not still constructed; they
concern mainly the revision of belief Belti .

From Mutual Knowledge to �t
i. This transformation deserves more atten-

tion. First let us consider so called one–shot case, where T = 1, i.e. the agents
take action only once. Later on we will show how the dynamic case can be
transformed into the one–shot case.

Let us note that for T = 1: � = Ω × A. So that T –runs are of the following
form (ω, a).

A Model of BDI–Agent in Game–Theoretic Framework 17

Let us consider agent j’s point of view. Since ω0 is the inital global state of
the system, according to its perception Jj , agent j knows that the true global
state belongs to the set J−1

j Jj(ω0). Hence, agent j reduces � to the set

�0
j

df
= {(ω, a) : Jj(ω) = Jj(ω0)&a ∈ A}

of the runs that are consistent with its perception.
Since agent j’s belief is a subject of change during its reasoning process,

initially agent j considers all beliefs from the set ∆�0
j . Hence, agent j, according

to its behavior Rbj, regards as optimal actions from the set

A0
j

df
=

⋃
Belj∈∆�0

j

Rbj(�0
j , Belj)

Now let us consider agent i’s point of view. Suppose that agent i knows the agent
j’s characteristics, however without Bel0j , what seems to be reasonable since the
belief is a subject of change. So that agent i’s mutual knowledge is

K0
i,j = {(�0

j , ∗; Jj ; uj, αj , Rbj)}
where the star ∗ denotes that Bel0j is unknown.

According to its perception, agent i knows that possible runs belong to the
set

�0
i

df
= {(ω, a) : Ji(ω) = Ji(ω0) & a ∈ A}

Since agent i knows agent j perception mechanism Jj , it knows only that

�0
j is a subset of the set

⋃
(ω,a)∈�0

i

{(ω′, a) : Jj(ω′) = Jj(ω)}

Let the set at the right side of the inclusion be denoted by �0
ij ; the meaning is

that agent i knows that agent j knows that the true state of the world belongs
to this set. This is the standard definition, for details see for example Aumann
[3,4]. Agent i considers all runs r = (ω, a) ∈ �0

i as possible, so that if agent
i assumes that ω was the true state, then according to agent i, agent j would
know that this state belongs to the set J−1

j Jj(ω).
Agent i is able to reconstruct the reasoning of agent j, so that agent i knows

that
A0

j is a subset of the set
⋃

Belj∈∆�0
ij

Rbj(�0
ij , Belj)

Let the set on the right side of the inclusion be denoted as A0
ij . This denotes

that agent i knows that agent j’s optimum actions belong to A0
ij .

On the basis of this reasoning agent i reduces the set of possible runs to the
set of all (ω, a1, ... , aj , ... an) ∈ �0

i such that aj ∈ A0
ij .

In this way we have described transformation of knowledge K0
i,j into K0

i , i.e.
ground knowledge of agent i. In similar way we can define the transformations
from K0

i,j1,j2 into K0
i,j1 and generally from K0

i,j1, ... jk
into K0

i,j1, ... jk−1
. Hence,

18 Stanis�law Ambroszkiewicz and Jan Komar

starting with the highest nodes of the mutual knowledge tree (see Fig 2.) we can
reduce this agent i’s mutual knowledge to the root of the tree, i.e. to agent i’s
ground knowledge.

The idea how to convey the dynamic case where T > 1 is simple and uses so
called agent normal form of extensive game introduced by Selten [12]. In order
to make the presentation clear, let us assume that the agents perception is such
that they know exactly the current global state of the system.

First we split agent i’s site into the sites (s, i) where s is a situation from the
set S of all situations, defined in Section 2. In each site (s, i) we put a copy of
agent i denoted as agent si. New agent si has the same set of possible actions
as the agent i, namely Ai, and is responsible to take at most one action say asi

from the set Ai in situation s. The perception, desire, and rational behavior of
agent si are the same as the ones of agent i, and this fact is common knowledge
between all the agents si, for fixed i and all s ∈ S.

This leads to the case where, at each agent site (s, i), action is taken at most
once, i.e. when situation s takes place. Of course, some situations never occur.

Let us suppose that each agent si takes action asi ∈ Ai. Then this determines
some T –run (say r) of the system. This run, in turn, determines the sequence of
global states of the system, and finally it gives the common utility ui(Ji(r)) for
each agent si for fixed i and all s ∈ S.

In this way the dynamic case may be transformed into one–shot case.

3.6 Intentions

Let us note that the transformation into agent normal form can be applied
in any situation at any time of the dynamic system. So that any agent i can
compute its own final ground knowledge at time t.

Once the final ground knowledge of agent i is computed, let it be (�t
i, Belti),

agent i’s final intention, concerning its decision of taking action at time t, is
given by the set Rbi(�t

i, Belti), meaning that agent i regards any action from
this set as an optimum one.

4 Explanation of the Paradox

The transformation of a dynamic system into a game in normal form presented
above allows to overcome the paradox concerning mutual knowledge and back-
ward induction.

Coming back to the example, see Fig. 1, let us see that any agent performs
its reasoning before the play starts, so that the agent can not consider itself nor
other agents in some situations in a possible future.

After the transformation, there is no temporal, causal relations between
nodes: 1.1, 2.1, and 1.2. So that we have three agents: agent 1.1, agent 2.1,
and agent 1.2. Agents 1.1, and agent 1.2 share the same outcome, and the same
utility. The agents exist at the same time in the same world, so that they can
reason consistently about knowledge and rationality of the other agents. So that

A Model of BDI–Agent in Game–Theoretic Framework 19

the backward induction (now rather iterated elimination of dominated actions)
may be performed now equivalently on the game in normal form, where there are
no reasons for a contradiction with the assumption of the common knowledge of
agents’ rationality.

5 Conclusion

In the reasoning process presented above, the transformations, that concern the
revision of belief Belti , are missed. Also the communication, coordination between
agents is not included there. So that the agent’s intentions are individual and
concern only individual actions of the agent. Hence, it is still a lot to be done in
the modeling BDI–agents in the game–theoretic framework.

References

1. S. Ambroszkiewicz, “Knowledge and best responses in games,” Annals of Operations
Research, Vol. 51, 63–71 (1994).

2. S. Ambroszkiewicz, “Knowledge and Behavior in Multiagent Systems: one–shot
case,” extended abstract in Proc. First International Conference on Multiagent Sys-
tems, June 12–14, 1995, San Francisco, California, full version as ICS PAS Reports
No.770. 1995

3. R. J. Aumann, “Backward induction and common knowledge of rationality,” Annals
of Statistics, 4, 6, pp. 1236–1239, 1976.

4. R. J. Aumann, “Agreeing to disagree,” Games and Economic Behavior, 8, pp. 6–19,
1995.

5. R. Fagin, J. Halpern and M.Y. Vardi, “A model-theoretic analysis of knowledge” J.
ACM Vol. 38, No. 2, pp. 382–428 (1991).

6. R. Fagin, J.Y. Halpern, Y.O. Moses, and M.Y. Vardi, Reasoning about Knowledge,
The MIT Press, Cambridge Massachusetts, 1995.

7. P. J. Gmytrasiewicz, and E. H. Durfee, “A rigorous, operational formalization of
recursive modeling,” in Proc. First International Conference on Multiagent Systems,
June 12–14, 1995, San Francisco, California, pp. 125–132.

8. J.Y. Halpern, and R. Fagin, Modeling knowledge and action in distributed systems.
Distributed Computing 3, 159–177, 1989.

9. J.Y. Halpern and Y.O. Moses, “Knowledge and common knowledge in a distributed
environment,” J. ACM 37(3), 549–587, 1990.

10. A.S. Rao and M.P. Georgeff, “Modeling rational agents within a BDI–
architecture,” In J. Allen, R. Fikes, and B. Nebel, editors, Proc. KR& R-1991.

11. P.J. Reny, “Common Belief and the Theory of Games with Perfect Information.
Journal of Economic Theory,” Journal of Economic Theory 59, 257–274 (1993).

12. R. Selten, “Reexamination of the perfectness concept for equilibrium points in
extensive games,” International Journal of Game Theory 4, 25–55 (1975).

13. J. S. Sichman and Y. Demazeau, “Exploiting social reasoning to deal with agency
level inconsistency,” In Proc. First International Conference on Multiagent Systems,
June 12–14, 1995, San Francisco, California.

14. W. Stirling, “Multi Agent Coordinated Decision–Making Using Epistemic Utility
Theory,” In C. Castelfranchi and E. Werner (Eds.) Artificial Social Systems, Springer
LNAI 830, 164–183, 1994.

15. M. Wooldridge and N.R. Jennings, “Agent Theories, Architectures, and Languages:
A Survey,” in Springer LNAI Vol. 890, 1–32, 1995.

Dynamic Belief Hierarchies

John Bell and Zhisheng Huang

Applied Logic Group, Computer Science Department
Queen Mary and Westfield College

University of London, London E1 4NS, UK
{jb, huang}@dcs.qmw.ac.uk

Abstract. Typically some of an agent’s beliefs are more reliable than
others. Consequently we give a hierarchical definition of belief, according
to which an agent’s beliefs form a coherent hierarchy and new beliefs are
defined with reference to it. We then show how preferential entailment
can be used to formalize the persistence and revision of belief hierarchies,
and discuss the the relationship between our theory and the AGM theory
of belief revision.

1 Introduction

Consider the following episode:

On January 14, 1997, Zhisheng was travelling by train from Rome to
Siena in order to participate in a workshop on agent modelling. He had to
change trains at Chiusi, so on arrival at the station he hurried to discover
the platform number of the next train departing for Siena. According to
the published timetable the next train would depart from platform one
at 19:34, so he believed that this would be the case. Consequently he was
very surprised when the electronic departures board in the station hall
showed that the next train for Siena would depart from platform two.
He considered that the information on the board was more reliable than
that on the timetable, as it was more recent and more easily updated.
So he dropped the belief that the train would depart from platform one
in favour of the belief that it would depart from platform two. In order
to be sure, he asked the man at the information desk and was assured
that the next train for Siena would indeed depart from platform two.
Zhisheng considered this to be the most reliable information so far. So
he continued to believe that the train would depart from platform two
despite the fact that at about 19:15 a train labelled “Chiusi - Siena”
arrived at platform one. By 19:28 there was still no sign of a train on
platform two, so he started to have doubts. Fortunately there was a
signalman on platform three, so Zhisheng hurried over and asked him.
The signalman told him that the next train for Siena was the one now
on platform one. Zhisheng considered that the signalman was in a better
position to know than the man at the information desk. So he revised his

J.-J. Ch. Meyer, P.-Y. Schobbens (Eds.): Formal Methods of Agents, LNAI 1760, pp. 20–35, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Dynamic Belief Hierarchies 21

beliefs again and hurriedly boarded the train on platform one. At 19:34
the train pulled out and, happily, it arrived at Siena in due course.

In this paper we aim to model reasoning of this kind. In order to do so we
introduce the notion of a belief hierarchy. At any point in time an agent has a
set of beliefs, a belief set, and considers some of these beliefs to be more reliable
than, or preferable to, others. For example, Zhisheng considered the platform
number given on the departures board to be more reliable than the one given in
the published timetable. The agent’s preferences define a preference ordering on
the agent’s belief set. Typically the preference ordering is partial. For example,
Zhisheng believed that the timetable showed that the next train for Siena would
depart from platform one, and he believed that the departures board showed
that the next train for Siena would depart from platform two. Since both beliefs
were based on his own observations, he considered them to be equally reliable;
that is, he regarded them indifferently. At any point in time the agent’s beliefs
and preferences among them form the agent’s belief hierarchy at that point in
time.

Typically the agent’s belief hierarchy is dynamic; as time progresses the
agent’s beliefs and the preferences among them change. For example, Zhisheng
initially believed that the next train for Siena would depart from platform one,
however, after looking at the departures board, he believed instead that the
train would depart from platform two. However, the belief hierarchies of ratio-
nal agents tend to exhibit a certain stability. For example, Zhisheng did not
reconsider his beliefs about what he had observed. The agent’s beliefs and the
preferences among them thus persist by default. Indeed, the belief hierarchies of
rational agents tend to be upwardly stable; that is, the higher the belief in the
hierarchy, the more it tends to remain in and maintain its relative position in it.
For example, Zhisheng’s beliefs about what he had observed were more stable
than his beliefs about which platform the next train for Siena would depart from.
This reflects the principle that rational agents should keep higher-level beliefs in
preference to lower-level beliefs whenever possible. The beliefs in the hierarchy
of a rational agent should also be coherent; that is, they should, in some sense,
be jointly consistent. Roughly, an agent’s belief hierarchy is coherent if every
belief in the hierarchy is consistent with every belief which is at least as reliable
as it; a precise definition is given in the sequel. If a rational agent realises that its
beliefs are incoherent, the agent should revise them in order to restore coherence.
In doing so the agent should retain more preferred beliefs in favour of less pre-
ferred ones wherever coherence permits. Moreover, the agent should only make
those changes which are necessary in order to restore coherence. For example,
Zhisheng’s belief that the departures board was correct was inconsistent with
his belief that the published timetable was correct, so he restored consistency
by dropping the latter, less preferred, belief.

Belief hierarchies can perhaps be seen as providing a formalization of Quine’s
“Web of Belief” metaphor [11,12,13], especially as explicated by Dummett [5].
There are also interesting similarities and differences between our theory and
the theory of belief revision developed by Alchourrón, Gärdenfors and Makinson

22 John Bell and Zhisheng Huang

[6,7], the “AGM theory”, and a comparison is given in the sequel. Our theory is
intended as part of a larger theory of practical reasoning and rationality [2]; in
particular, it has been used in the development of a common sense theory of the
adoption of perception-based beliefs [4].

Our theory is expressed in the language CA [1] which has been extended
to include the preference operator of ALX [8,9]. In the following section we
discuss the representation of time ad preferences. In Section 3 we give the formal
definition of beliefs and belief hierarchies, and study their static properties. In
the final section we show how preferential entailment can be used to formalize
the rational revision of belief hierarchies, show how the opening example can
be formalized, and discuss the relationship between our theory and the AGM
theory.

2 Time, Preference, and Indifference

CA is a many-sorted, modal temporal language. The atomic sentences of CA all
have a temporal index. For example, the sentence OnTable(B)(3) states that
block B is on the table at time point 3. Thus time is taken to be composed of
points and, for simplicity, we will assume that it is discrete and linear.1

The models of CA are fairly complex possible-worlds structures. Each model
comes equipped with an interpretation function V which assigns an n-ary relation
to each n-ary relation symbol at each time point at each possible world. Thus,
for model M , world w in M and variable assignment g:2

M,w, g |= r(u1, . . . un)(t) iff (u1, . . . , un) ∈ V(r, t, w)

A sentence of the form Pref (a, φ, ψ)(t) states that agent a prefers φ to ψ
at time t. The semantics of the preference operator begin with von Wright’s
conjunction expansion principle [16]. According to this principle, to say that
you prefer an apple to an orange is to say that you prefer situations in which
you have an apple and no orange to those in which you have an orange and
no apple. In possible-worlds terms this principle might be stated as follows:
agent a prefers φ to ψ if a prefers φ ∧ ¬ψ-worlds to ψ ∧ ¬φ-worlds. However,
this semantics is too simple, as it leads to paradoxes involving conjunction and
disjunction. If φ is preferred to ψ then φ∨χ is preferred to ψ, and φ is preferred
to ψ ∧ χ. For example, if a prefers coffee to tea, then a prefers coffee or poison
to tea, and a prefers coffee to tea and a million dollars. Clearly we need to
capture the ceteris paribus nature of preferences: we should compare φ ∧ ¬ψ-
worlds and ψ ∧ ¬φ-worlds which otherwise differ as little as possible from the
actual world. In order to do so we introduce the selection function from the
Stalnaker-Lewis analysis of conditionals [10,15]. Thus the function cw is of type
W × P(W) → P(W), and, intuitively, cw(w, [[φ]]Mg) is the set of closest worlds

1 The extension to intervals is straightforward; see e.g. [3].
2 For the sake of simplicity of presentation we will let the distinction between terms

and their denotations in M given g take care of itself.

Dynamic Belief Hierarchies 23

to w in which φ is true.3 Formally, cw is required to satisfy the conditions
imposed by Lewis in [10]. The agent’s preferences over time are represented
by the function �: A × T → P(P(W) × P(W)), which assigns a comparison
relation over sets of worlds to each agent at each time point. Intuitively, for
sets of worlds X and Y , X �(a,t) Y means that agent a prefers the worlds
in X to the worlds in Y at time t. Preferences are required to be irreflexive
and transitive, and should satisfy left and right disjunction. Accordingly, let
X �(a,t,w) Y abbreviate cw(w,X ∩ Y) �(a,t) cw(w, Y ∩X). Then each �(a,t,w)

is required satisfy the following properties:

(irp) X ��(a,t,w) X.
(trp) If X �(a,t,w) Y and Y �(a,t,w) Z then X �(a,t,w) Z.
(orl) If X �(a,t,w) Z and Y �(a,t,w) Z then X ∪ Y �(a,t,w) Z.
(orr) If X �(a,t,w) Y and X �(a,t,w) Z then X �(a,t,w) Y ∪ Z.

The truth condition for preferences is then as follows:

M,w, g |= Pref (a, φ, ψ)(t) iff [[φ]]Mg �(a,t,w) [[ψ]]Mg .

Given these semantics, we have the following axioms:

(IRP) ¬Pref (a, φ, φ)(t)
(TRP) Pref (a, φ, ψ)(t) ∧ Pref (a, ψ, χ)(t) → Pref (a, φ, χ)(t)
(ORL) Pref (a, φ, χ)(t) ∧ Pref (a, ψ, χ)(t) → Pref (a, φ ∨ ψ, χ)(t)
(ORR) Pref (a, φ, ψ)(t) ∧ Pref (a, φ, χ)(t) → Pref (a, φ, ψ ∨ χ)(t)
(CEP) Pref (a, φ, ψ)(t) ↔ Pref (a, (φ ∧ ¬ψ), (¬φ ∧ ψ))(t)

(IRP) and (TRP) state the irreflexivity and transitivity of preferences respec-
tively, while (ORL) and (ORR) respectively state left and right disjunction of
preferences.4 Finally, (CEP) states the conjunction expansion principle. The
following are theorems:

(AS) Pref (φ, ψ)(t) → ¬Pref (ψ, φ)(t)
(CP) Pref (a, φ, ψ)(t) → Pref (a,¬ψ,¬φ)(t)

Thus preferences are asymmetric (AS) and contraposable (CP). Note that
Pref (a, φ, ψ)(t) implies neither Pref (a, φ ∨ χ, ψ)(t) nor Pref (a, φ, ψ ∧ χ)(t), so
the paradoxes of conjunction and disjunction of preferences are avoided.

We also require indifference and weak preference operators. Informally, Ind(a,
φ, ψ)(t) states that agent a is indifferent between φ and ψ at time t, while
PrefInd(a, φ, ψ)(t) states that a weakly prefers φ to ψ at time t; that is, either a
strongly prefers φ to ψ at t, or a is indifferent between φ and ψ at t. In order to
do so, we require a stronger notion of (strong) preference. Each �(a,t,w) should
now also be almost connected:
3 As usual, [[φ]]Mg denotes the set of worlds in M in which φ is satisfied by g; i.e.,

[[φ]]Mg = {w ∈ W : M,w, g |= φ}.
4 The disjunctive properties of preferences were suggested by Pierre-Yves Schobbens.

24 John Bell and Zhisheng Huang

(acp) If X �(a,t,w) Y then for any Z ∈ P(W) either X �(a,t,w) Z or
Z �(a,t,w) Y.

Then the indifference relation, ∼(a,t,w), can be defined as follows:

X ∼(a,t) Y iff X ��(a,t,w) Y and Y ��(a,t,w) X.

We thus have the following additional axioms for preference and indifference:

(ACP) Pref (a, φ, ψ)(t) ∧ ¬Pref (a, φ, χ)(t) → Pref (a, χ, ψ)(t)
(IND) Ind(a, φ, ψ)(t) ↔ ¬Pref (a, φ, ψ)(t) ∧ ¬Pref (a, ψ, φ)(t)
(TRI) Ind(a, φ, ψ)(t) ∧ Ind(a, ψ, χ)(t) → Ind(a, φ, χ)(t)

(ACP) states that preferences are almost connected and (TRI) states that in-
difference is transitive. Obviously it follows from (IND) that indifference is also
reflexive (REI), and symmetric (SY I):

(REI) Ind(a, φ, φ)(t)
(SY I) Ind(a, φ, ψ)(t) → Ind(a, ψ, φ)(t)

Finally, the weak preference operator is introduced by definition:

(WP) PrefInd(a, φ, ψ)(t) ↔ Pref (a, φ, ψ)(t) ∨ Ind(a, φ, ψ)(t)

Proposition 1. Properties of (strong) preference, weak preference and indiffer-
ence.

1. Consistency of preference and indifference:

Pref (a, φ, ψ)(t) ∧ Ind(a, φ, χ)(t) → Pref (a, χ, ψ)(t)
Pref (a, φ, ψ)(t) ∧ Ind(a, ψ, χ)(t) → Pref (a, φ, χ)(t)

2. Weak preference is reflexive, transitive, and comparable:

PrefInd(a, φ, φ)(t)
PrefInd(a, φ, ψ)(t) ∧ PrefInd(a, ψ, χ)(t) → PrefInd(a, φ, χ)(t)
PrefInd(a, φ, ψ)(t) ∨ PrefInd(a, ψ, φ)(t)

3. Consistency of indifference and weak preference:

Ind(a, φ, ψ)(t) ↔ PrefInd(a, φ, ψ)(t) ∧ PrefInd(a, ψ, φ)(t)

4. Consistency of (strong) preference and weak preference:

Pref (a, φ, ψ)(t) ↔ ¬PrefInd(a, ψ, φ)(t)

5. Exactly one of the following holds:

Pref (a, φ, ψ)(t), Ind(a, φ, ψ)(t),Pref (a, ψ, φ)(t)

Dynamic Belief Hierarchies 25

Proof. (1) For the first part, suppose that Pref (a, φ, ψ)(t) and Ind(a, φ, χ)(t)
but that ¬Pref (a, χ, ψ)(t). If Pref (a, ψ, χ)(t) then, by transitivity of preference,
we have Pref (a, φ, χ)(t), contradicting the supposition that Ind(a, φ, χ)(t). So
it must be the case that ¬Pref (a, ψ, χ)(t). Hence, by definition, Ind(a, χ, ψ)(t).
But then, as indifference is transitive, we have Ind(a, φ, ψ)(t), contradicting the
supposition that Pref (a, φ, ψ)(t). So it must be the case that Pref (a, χ, ψ)(t).

For the second part, suppose that Pref (a, φ, ψ)(t) and Ind(a, ψ, χ)(t) but
that ¬Pref (a, φ, χ)(t). If Pref (a, χ, φ)(t) then, by transitivity of preference,
Pref (a, χ, ψ)(t), contradicting the supposition that Ind(a, ψ, χ)(t). So it must be
the case that ¬Pref (a, χ, φ)(t). Hence, by definition, Ind(a, φ, χ)(t). But then, as
indifference is transitive, we have Ind(a, φ, ψ)(t), contradicting the supposition
that Pref (a, φ, ψ)(t). So it must be the case that Pref (a, φ, χ)(t).

(2) Reflexivity. Since Pref is irreflexive, we have ¬Pref (a, φ, φ)(t). By the def-
inition of indifference, this means that Ind(a, φ, φ)(t). Thus PrefInd(a, φ, φ)(t).

Transitivity. Suppose that PrefInd(a, φ, ψ)(t)∧PrefInd (a, ψ, χ)(t), then there
are four cases to consider.

Case 1. Pref (a, φ, ψ)(t) ∧ Pref (a, ψ, χ)(t). Since preference is transitive, we
have Pref (a, φ, χ)(t). So, by definition, PrefInd(a, φ, χ)(t).

Case 2. Pref (a, φ, ψ)(t) ∧ Ind(a, ψ, χ)(t). By part (1), Pref (a, φ, χ)(t) holds.
So, by definition, PrefInd(a, φ, χ)(t).

Case 3. Ind(a, φ, ψ)(t) ∧ Pref (a, ψ, χ)(t). Similarly, by part (1), we have
PrefInd(a, φ, χ)(t).

Case 4. Ind(a, φ, ψ)(t)∧Ind(a, ψ, χ)(t). By the transitivity of indifference we
have Ind(a, φ, χ)(t), so, by definition, PrefInd(a, φ, χ)(t).

Comparability. Suppose that ¬PrefInd(a, φ, ψ)(t). Then, by definition,
¬Pref(a, φ, ψ)(t) and ¬Ind(a, φ, ψ). So it follows from the definition of indiffer-
ence that Pref (a, ψ, φ)(t). So it follows from the definition of weak preference
that PrefInd(a, ψ, φ)(t).

For (3), suppose that Ind(a, φ, ψ)(t). By the definition of weak preference
we have PrefInd(a, φ, ψ)(t). And, by the symmetry of indifference and the defi-
nition of weak preference, we have PrefInd(a, ψ, φ)(t). Conversely, suppose that
PrefInd(a, φ, ψ)(t) ∧ PrefInd(a, ψ, φ)(t). If ¬Ind(a, φ, ψ)(t) holds, then by the
symmetry of indifference, we also have ¬Ind(a, ψ, φ)(t). Furthermore, from the
definition of weak preference, we have Pref (a, φ, ψ)(t) ∧ Pref (a, ψ, φ)(t). So, by
the transitivity of (strong) preference, we have Pref (a, φ, φ)(t). But this contra-
dicts the irreflexivity of preference. Thus, we conclude that Ind(a, φ, ψ)(t).

For (4), suppose that Pref (a, φ, ψ)(t). If PrefInd(a, ψ, φ)(t), it follows by
definition that either Pref (a, ψ, φ)(t) or Ind(a, ψ, φ)(t). But, the former con-
tradicts the asymmetry of preference, and the latter contradicts the irreflex-
ivity of preference by part (1). Conversely, suppose that ¬PrefInd(a, ψ, φ)(t).
Then, by definition of weak preference, ¬Pref (a, ψ, φ)(t) and ¬Ind(a, ψ, φ)(t).
As ¬Ind(a, ψ, φ)(t), it follows that either Pref (a, ψ, φ)(t) or Pref (a, φ, ψ)(t). The
former contradicts ¬Pref (a, ψ, φ)(t). So we conclude the latter.

(5) is straightforward from (4). �

26 John Bell and Zhisheng Huang

3 Belief Hierarchies

We now proceed to the definition of beliefs and belief hierarchies, beginning with
candidate beliefs. Intuitively a sentence φ is a candidate belief of agent a at time
t, written CBel(a, φ)(t), if a has reason to believe that φ is true at t. The formal
semantics for the new operator are, for simplicity, the standard possible-worlds
semantics, but indexed by agent and time point. Thus, for each agent a, time
point t and world w, R(Bel,a,t,w) is a binary accessibility relation on worlds which
represents a’s candidate beliefs in w at t. As usual, R(Bel,a,t,w) is required to be
transitive and Euclidean, corresponding to positive and negative introspection.
However R(Bel,a,t,w) is not required to be serial, so a’s candidate beliefs at t need
not be jointly consistent. The truth condition for the candidate belief operator
is thus as follows:

M,w, g |= CBel(a, φ)(t) iff M,w′ , g |= φ for all (w,w′) ∈ R(Bel,a,t,w).

We will use the preference and indifference operators to represent the com-
parative importance of the agent’s candidate beliefs and, in due course of the
agent’s beliefs. Thus Pref (a, CBel(a, φ)(t), CBel(a, ψ)(t))(t) states that, at t, a
considers candidate belief φ to be more reliable than candidate belief ψ. In order
to abbreviate complex sentences such as this we will adopt the convention that
a missing agent term is the same as the closest agent term to its left and that a
missing temporal term is the same as the closest temporal term to its right; thus
the last sentence is abbreviated to Pref (a, CBel(φ), CBel(ψ))(t). Preferences
between (candidate) beliefs are required to satisfy the following conditions:

(RPCB) Pref (a, CBel(φ), CBel(ψ))(t) → CBel(a, φ)(t) ∧ CBel(a, ψ)(t)
(RPB) Pref (a,Bel(φ), Bel(ψ))(t) → Bel(a, φ)(t) ∧Bel(a, ψ)(t)

(RPCB) is a realism condition on preferences between candidate beliefs. To say
that at t, a prefers candidate belief φ to candidate belief ψ should imply that φ
and ψ are candidate beliefs for a at t. Similarly (RPB) is a realism condition on
preferences between beliefs.

By introducing preferences on an agent’s candidate beliefs at time t we obtain
the agent’s candidate belief hierarchy at t, and this will be used to define the
agent’s belief hierarchy at t. As our ultimate concern is with finite, resource-
bounded, agents we will assume that at any time point the agent has a finite
number of logically distinct candidate beliefs.

The agent’s belief hierarchy at t should be a subhierarchy of the agent’s
candidate belief hierarchy at t. In order to ensure that this is the case, we require
the additional conditions:

(PBCB) Pref (a,Bel(φ), Bel(ψ))(t) → Pref (a, CBel(φ), CBel(ψ))(t)
(PCBB) Pref (a, CBel(φ), CBel(ψ))(t) ∧Bel(a, φ)(t) ∧Bel(a, ψ)(t) →

Pref (a,Bel(φ), Bel(ψ))(t)

(PBCB) and (PCBB) together ensure the agent’s preferences on candidate
beliefs are consistent with its preferences on beliefs. The last three conditions

Dynamic Belief Hierarchies 27

are, of course, equivalent to the following one:

Pref (a,Bel(φ), Bel(ψ))(t) ↔
Pref (a, CBel(φ), CBel(ψ))(t) ∧Bel(a, φ)(t) ∧Bel(a, ψ)(t)

The axioms for the irreflexivity and transitivity of preferences, (IR) and
(TR), ensure that the preference orderings on beliefs and candidate beliefs are
strict partial orderings. The corresponding weak preference orderings on (can-
didate) beliefs are, of course, pre-orderings. Finally, preference between a belief
and a candidate belief can be defined as follows:

Pref (a,Bel(φ), CBel(ψ))(t) ↔ Pref (a, CBel(φ), CBel(ψ))(t)∧
Bel(a, φ)(t).

We are now in a position to give the formal definition of coherence and thus
of beliefs.

Definition 2. A candidate belief is P-coherent if the agent believes that it is
jointly consistent with every belief that the agent prefers to it:5

PCoherent(a, φ)(t) ↔
¬CBel(a, φ ∧ ∧{[ψ] : Pref(a,Bel(ψ), CBel(φ))(t)} → ⊥)(t)).

Definition 3. A candidate belief is PI-coherent if it is P-coherent, and it coheres
with all peer candidate beliefs which are P-coherent:

PICoherent(a, φ)(t) ↔
PCoherent(a, φ)(t)∧
PCoherent(a, φ ∧ ∧{[ψ] : Ind(a, CBel(φ), CBel(ψ)) ∧ PCoherent(ψ)})(t).

Definition 4. A belief is a PI-coherent candidate belief:

Bel(a, φ)(t) ↔ CBel(a, φ)(t) ∧ PICoherent(a, φ)(t).

Proposition 5. Static properties of candidate beliefs and beliefs.

1. Any maximal candidate belief is a belief:

CBel(a, φ)(t) ∧ ¬∃ψ �= φ(PrefInd(a, CBel(ψ), CBel(φ))(t)) → Bel(a, φ)(t).

2. All beliefs are candidate beliefs:

Bel(a, φ)(t) → CBel(a, φ)(t).

5 Recall that we are assuming that at any time point an agent has a finite number
of logically distinct candidate beliefs. In this and the following definition [ψ] is the
representative member of the class of all formulas which are logically equivalent to
ψ. As usual, for finite formula set S,

∧
S is the conjunction of the formulas in S and∧ ∅ ↔ �.

28 John Bell and Zhisheng Huang

3. Beliefs are consistent.

Bel(a, φ)(t) → ¬Bel(a,¬φ)(t).

4. Beliefs are decomposable under conjunction.

Bel(a, φ ∧ ψ)(t) → Bel(a, φ)(t) ∧Bel(a, ψ)(t).

5. Beliefs are closed under conjunction.

Bel(a, φ)(t) ∧Bel(a, ψ)(t) → Bel(a, φ ∧ ψ)(t).

6. Beliefs are closed under implication.

Bel(a, φ)(t) ∧Bel(a, φ→ ψ)(t) → Bel(a, ψ)(t)

7. Consistency principle for peer beliefs:

PrefInd(a, CBel(φ), CBel(ψ))(t) ∧ ¬PICoherent(a, φ ∧ ψ)(t) →
¬(Bel(φ)(t) ∧Bel(χ)(t))

8. Maximality principle for peer beliefs:

Ind(a, CB(φ), CB(ψ))(t) ∧ PCoherent(a, φ)(t) ∧ PCoherent(a, ψ)(t) →
Bel(a, φ ∨ ψ)(t).

Proof. For (1), if φ is a candidate belief, for an agent a at time t,6 and there is
no more reliable candidate belief than φ, then φ is a maximal CBel. As φ is a
maximal CBel, it is coherent, and hence it is also a Belief.

(2) and (3) follow from the definition of beliefs.
For (4), suppose that φ∧ψ is a belief for a at t. If ¬Bel(a, φ)(t) holds, then by

the definition of belief, either ¬PCoherent(a, φ)(t) holds, or PCoherent(a, φ)(t)
∧∃χ(ICBel(a, φ, χ)(t) ∧ PCoherent(a, χ)(t) ∧ ¬PCoherent(a, φ ∧ χ)(t) holds.7

The former contradicts Bel(a, φ ∧ ψ)(t). While from the latter it follows,
by PCoherent(a, χ)(t) and Bel(a, φ ∧ ψ)(t), that PCoherent(a, χ ∧ φ ∧ ψ)(t).
We thus have PCoherent(a, χ ∧ φ)(t), contradicting ¬PCoherent(a, φ ∧ χ)(t).
Thus, we conclude that Bel(a, φ)(t) holds. The proof for Bel(a, ψ)(t) is similar.

For (5), suppose that Bel(a, φ)(t) ∧Bel(a, ψ)(t) holds. We know that either
Pref (a, CBel(φ), CBel(ψ))(t) or Pref (a, CBel(ψ), CBel(φ))(t) or Ind(a, CBel
(φ), CBel(ψ))(t) holds. Suppose that Pref (a, CBel(φ), CBel(ψ))(t) holds. Then,
fromBel(a, ψ)(t), we know that PCoherent(a, φ∧ψ)(t) holds. If ¬Bel(a, φ∧ψ)(t)
holds, then this means that there exists a χ such that ICBel(a, φ ∧ ψ, χ)(t) ∧
PCoherent(a, χ)(t)∧¬PCoherent(a, φ∧ψ∧χ)(t) holds. However, from PCoher
ent(a, χ)(t) and Pref (a, CBel(φ), CBel(ψ))(t) and Pref (a, CBel(ψ), CBel(χ)),
6 In the sequel, we will often omit the agent name a and the time point t in proofs

when it does not cause any ambiguity.
7 Where ICBel(a, φ, χ)(t) denotes that χ is a conjunction of candidate beliefs

which are peers of ψ. Thus Ind(a,CBel(φ), CBel(ψ))(t) → ICBel(a, φ, ψ)(t), and
Ind(a,CBel(φ), CBel(ψ1))(t) ∧ ICBel(a,φ, ψ2)(t) → ICBel(a, φ, ψ1 ∧ ψ2)(t).

Dynamic Belief Hierarchies 29

we have PCoherent(a, φ∧ψ ∧χ)(t), contradicting ¬PCoherent(a, φ∧ψ ∧χ)(t).
The proof for the case where Pref (a, CBel(ψ), CBel(φ))(t) holds is similar.
For the case where Ind(a, CBel(φ), CBel(ψ))(t) holds we know by the definition
of beliefs that PCoherent(a, φ∧ψ)(t) and there exists no other peer χ such that
¬PCoherent(a, φ ∧ ψ ∧ χ)(t). Therefore, we conclude that Bel(a, φ ∧ ψ)(t). (6)
follows from (4) and (5). (7) is straightforward from the definition of belief and
the consistency of belief hierarchies.

For (8), suppose that PrefInd(a, CBel(φ), CBel(ψ))(t)∧PCoherent(a, φ)(t)∧
PCoherent(a, ψ)(t). If ¬Bel(a, φ ∨ ψ)(t) holds, then by the definition of be-
lief, we have either ¬PCoherent(a, φ ∨ ψ)(t) or there exists a χ such that
ICBel(a, χ, φ∨ψ)(t)∧PCoherent(a, χ)(t)∧¬PCoherent(a, χ∧(φ∨ψ))(t). In the
former case it follows that either ¬PCoherent(a, φ)(t) or ¬PCoherent(a, ψ)(t),
giving a contradiction in each case. While from the latter it follows that χ is
inconsistent with φ∨ψ, which contradicts the supposition that χ is P-Coherent.
�

4 Belief Revision

Thus far our analysis has been concerned with the static properties of beliefs
and belief hierarchies, with the properties of agents’ beliefs and belief hierarchies
at particular points in time. In this section we consider the dynamic properties
of beliefs and belief hierarchies; that is, how they should be revised over time.
Clearly a rational agent should only revise its beliefs if they become incoherent.
Moreover when revising the agent should keep higher-level beliefs in preference
to lower-level beliefs wherever coherence permits, and should only make those
changes which are necessary in order to restore coherence.

In order to represent the persistence of beliefs and preferences, we use the
affected operator, Aff , of CA. This modal operator is analogous to the Ab pred-
icate of the Situation Calculus. Let Φ be a meta-variable which ranges over the
non-temporal component of atomic modal formulas.8 Then a formula Φ(t) is
affected at t if its truth value at t differs from its truth value at t+ 1:

M,w, g |= Aff (Φ)(t) iff M,w, g |= ¬(Φ(t) ↔ Φ(t+ 1)).

We thus have the following persistence rule:

Φ(t) ∧ ¬Aff (Φ)(t) → Φ(t+ 1).

Intuitively we are interested in models in which this schema is used from
left-to-right only in order to reason “forwards in time” from instances of its
antecedent to instances of its consequent. Typically also we want to be able
to infer the second conjunct of each instance nonmonotonically whenever it is
consistent to do so. For example, if we have Bel(a, φ)(t) then we want to be able

8 Atomic modal formulas are formulas of the form op(a, φ1, . . . , φn)(t), where n ≥ 1
and op is a modal operator other than Aff .

30 John Bell and Zhisheng Huang

to use the rule to infer Bel(a, φ)(t+1) if Aff (Bel(a, φ))(t) cannot be inferred. In
order to enforce this interpretation, we define a prioritized form of preferential
entailment [14].

Definition 6. Let A1, . . . , An be a partition of the atomic modal sentences of n
different types according to their type.9 For each Ai, model M and time point t,
let MAi/t = {αi(t′) ∈ Ai | t′ ≤ t,M |= αi(t′)}. Then a model M is chronolog-
ically less defined than a model M ′ on the basis of the priorities 〈A1, . . . , An〉,
written M ≺〈A1,...,An〉 M ′ iff M and M ′ differ at most on the interpretation of
A1, . . . , An and there is a time point t such that:

– for some i such that 1 ≤ i ≤ n,MAi/t ⊂M ′
Ai
/t, and

– for all j such that 1 ≤ j ≤ i,MAj/t ⊆M ′
Aj
/t.

Definition 7. A model M is an 〈A1, . . . , An〉-preferred model of a sentence φ
if M |= φ and there is no model M ′ such that M ′ |= φ and M ′ ≺〈A1,...,An〉 M .
Similarly, M is an 〈A1, . . . , An〉-preferred model of a set of sentences Θ if M |=
Θ and there is no model M ′ such that M ′ |= Θ and M ′ ≺〈A1,...,An〉 M .

Definition 8. A set of sentences Θ preferentially entails a sentence φ given
the priorities 〈A1, . . . , An〉 (written Θ |≈〈A1,...,An〉 φ) if, for any 〈A1, . . . , An〉-
preferred model M of Θ, M |= φ.

In the sequel we will say that a set of sentences Θ is a belief theory if it
contains the axioms of our theory of belief. We are therefore interested in the
〈CBel,Pref ,Aff 〉-preferred models models of belief theories. In models of belief
theories candidate beliefs, preferences and affected atoms should be minimized
chronologically while, at any time point, candidate beliefs should be minimized
before preferences, and preferences should be minimized before affected atoms.
In the sequel we will abbreviate Θ |≈〈CBel,Pref,Aff〉 φ to Θ |≈ φ.

As a result of the definitions we have:

Proposition 9. Dynamic properties of beliefs and belief hierarchies.

1. Beliefs persist by default.
2. Preferences on beliefs persist by default.
3. Belief hierarchies persist by default.
4. Belief hierarchies are upwardly stable.

Proof. For (1), let Θ be a belief theory such that Θ |≈ Bel(a, φ)(t) and Θ |≈
¬Aff (Bel(a, φ))(t). Then it follows from the persistence rule that Θ |≈ Bel(a, φ)
(t + 1). The proof for (2) is similar. Part (3) follows from (1) and (2). Part (4)
follows from the maximality and default persistence of belief hierarchies. �

9 For example, A1 might be the set Bel of all belief atoms Bel(a, φ)(t), A2 might be
the set Pref of all preference atoms Pref (a, φ, ψ)(t), etc.

Dynamic Belief Hierarchies 31

By way of illustration, we show how the opening example can be formalized.
Example 1. Let 1, 2, .., denote time points, and one and two denote the two
platforms, and let Θ be a belief theory which contains the following sentences
representing agent a’s beliefs, preferences and candidate beliefs:

(A) Pref (a,CBel(T imetable(one)),CBel(∀x(T imetable(x) → P latform(x))))(1),
(B) Pref (a,CBel(Board(two)),CBel(∀x(Board(x) → P latform(x))))(2),
(C) Pref (a,CBel(∀x(Board(x) → P latform(x)),

CBel(∀x(T imetable(x) → P latform(x)))(2),
(D) Pref (a,CBel(Infoman(two)), CBel(∀x(Infoman(x) → P latform(x))))(3),
(E) Pref (a,CBel(∀x(Infoman(x) → P latform(x)),

CBel(∀x(Board(x) → P latform(x)))(3),
(F) Pref (a,CBel(Train(one)), CBel(∀x(Train(x) → P latform(x))))(4),
(G) Pref (a,CBel(∀x(Board(x) → P latform(x)),

CBel(∀x(Train(x) → P latform(x)))(4),
(H) Pref (a,CBel(Signman(one)), CBel(∀x(Signman(x) → P latform(x))))(5),
(I) Pref (a,CBel(∀x(Signman(x) → P latform(x)),

CBel(∀x(Infoman(x) → P latform(x)))(5),
(J) ∀ψPref (a,CBel((P latform(one) ∨ P latform(two))∧

¬(P latform(one) ∧ P latform(two)), CBel(a,ψ))(1).

For natural numbers n1 and n2 such that 1 ≤ n1 ≤ n2 ≤ 7, we will use
Φ([n1 . . . n2]) to denote the conjunction Φ(n1)∧Φ(n1 +1)∧ ...∧Φ(n2). Then the
following sentences are true in all 〈CBel,Pref ,Aff 〉-preferred models of Θ:

(a) Pref (a,CBel(T imetable(one)),CBel(∀x(T imetable(x)
→ P latform(x))))([1 . . . 5]),

(b) Pref (a,CBel(Board(two)),CBel(∀x(Board(x) → P latform(x))))([2 . . . 5]),
(c) Pref (a,CBel(∀x(Board(x) → P latform(x)),

CBel(∀x(T imetable(x) → P latform(x)))([2 . . . 5]),
(d) Pref (a,CBel(Infoman(two)), CBel(∀x(Infoman(x)

→ P latform(x))))([3 . . . 5]),
(e) Pref (a,CBel(∀x(Infoman(x) → P latform(x)),

CBel(∀x(Board(x) → P latform(x)))([3 . . . 5]),
(f) Pref (a,CBel(Train(one)), CBel(∀x(Train(x) → P latform(x))))([4 . . . 5]),
(g) Pref (a,CBel(∀x(Board(x) → P latform(x)),

CBel(∀x(Train(x) → P latform(x)))([4 . . . 5]),
(h) Pref (a,CBel(Signman(one)), CBel(∀x(Signman(x) → P latform(x))))(5),
(i) Pref (a,CBel(∀x(Signman(x) → P latform(x)),

CBel(∀x(Infoman(x) → P latform(x)))(5),
(j) ∀ψPref (a,CBel((P latform(one) ∨ P latform(two))∧

¬(P latform(one) ∧ P latform(two)), CBel(a,ψ))([1 . . . 5]).

So in all 〈CBel,Pref ,Aff 〉-preferred models of Θ a’s beliefs change as follows
during the period:

32 John Bell and Zhisheng Huang

(0) Bel(a, (P latform(one) ∨ P latform(two))∧
¬(P latform(one) ∧ P latform(two))([1 . . . 5]) (j),

(1) Bel(a, T imetable(one))(1) (a)
(2) Bel(a,∀x(T imetable(x) → P latform(x))(1) (1), (a)
(3) Bel(a, P latform(one))(1) (1), (2)
(4) ¬Bel(a, P latform(two))(1) (0), (3)
(5) Bel(a,Board(two))(2) (b)
(6) Bel(a,∀x(Board(x) → P latform(x))(2) (b), (c)
(7) ¬Bel(a,∀x(T imetable(x) → P latform(x))(2) (c)
(8) Bel(a, P latform(two))(2) (5), (6))
(9) ¬Bel(a, P latform(one))(2) (0), (8)

(10) Bel(a, Infoman(two))(3) (d)
(11) Bel(a,∀x(Infoman(x) → P latform(x)))(3) (10)
(12) Bel(a, P latform(two)(3) (10), (11)
(13) ¬Bel(a, P latfrom(one))(3) (0), (12)
(14) Bel(a, T rain(one))(4) (f)
(15) ¬Bel(a,∀x(Train(x) → P latform(x))(4) (g)
(16) Bel(a, P latform(two))(4) (Persistence)
(17) ¬Bel(a, P latform(one))(4) (0), (16)
(18) Bel(a, Signman(one))(5) (h)
(19) Bel(a,∀x(Signman(x) → P latform(x))(5) (h)
(20) ¬Bel(a,∀x(Infoman(x) → P latform(x))(5) (i)
(21) Bel(a, P latform(one))(5) (18), (19)
(22) ¬Bel(a, P latform(two))(5) (0), (21)

�

It is interesting to compare our work with the AGM theory of belief revision
developed by Alchourrón, Gärdenfors and Makinson, e.g. [6,7]. In the AGM
theory an agent’s beliefs are represented by a knowledge set; a deductively closed
set of sentences which, at any stage, can be modified in one of three ways:

Expansion : A proposition φ, which is consistent with a knowledge set K, is
added to K. The result is denoted K + φ.

Revision : A proposition φ, which may be inconsistent with a knowledge set
K, is added to it. In order to maintain consistency some of the propositions
which were in K may have to be removed. A revision of K by φ is denoted
by K ∗ φ.

Contraction : A proposition φ is removed from a knowledge set K. A contrac-
tion of K by φ is denoted by K−̇φ.

Alchourrón, Gärdenfors and Makinson propose a number of plausible postu-
lates which any definition of these operations should satisfy. The postulates for
expansion are straightforward. Those for revision are as follows:10

(a) [Closure] K ∗ φ is a closed theory.

10 Where, Cn(S) is the deductive closure of S.

Dynamic Belief Hierarchies 33

(b) [Inclusion] K ∗ φ ⊆ K + φ.

(c) [Vacuity] If ¬φ �∈ K, then K + φ ⊆ K ∗ φ.

(d) [Success] φ ∈ K ∗ φ.

(e) [Consistency] If ⊥ ∈ K ∗ φ, then ¬φ ∈ Cn(∅).

(f) [Extensionality] If Cn(K) = Cn(K ′), then K ∗ φ = K ′ ∗ φ.

The postulates for contraction need not concern us as the Harper identity
shows that the contraction operation can be defined in terms of the revision
operation:

K−̇φ = (K ∗ ¬φ) ∩K.
Our theory differs from the AGM theory in at least three important respects.

In our theory beliefs are represented as hierarchies of propositions, rather than
sets of sentences, and the preferences among beliefs must be considered when
revision takes place. Moreover, revision of a hierarchy from one time point to
the next may correspond to several AGM operations; several beliefs may have
to be removed in order to incorporate new ones, while several others may simply
be added or deleted. Finally, the revision of a hierarchy will always be unique;
unlike the result of an AGM revision.

In order to make a comparison we consider the special case in which each
revision of a belief hierarchy corresponds to a single AGM operation. For belief
theory Θ and resulting belief hierarchy at time t, we can define an agent a’s
belief set at t as follows:

Bel(a, t) = {ψ : Θ |≈ Bel(a, ψ)(t)}.

Given an operation on a’s belief set at t and the proposition φ, we are thus
interested in a’s belief set at t+ 1.

An AGM-type expansion operator can be partially defined as follows:

Bel(a, t) + φ = {ψ : Θ |≈ Bel(a, ψ)(t)} ∪ {ψ : Θ |≈ Bel(a, φ→ ψ)(t+ 1)}
when Θ |≈ Bel(a, φ)(t+ 1).

The assumption that the expansion Bel(a, t) + φ is the only operation which
occurs at t is captured by the following condition:

(Uni+) If Bel(a, t) + φ is defined, then Bel(a, t) + φ = Bel(a, t+ 1).

An AGM-type revision operator can be partially defined in a similar way:

Bel(a, t) ∗ φ = {ψ : Θ |≈ Bel(a, ψ)(t) ∧ ¬Aff (Bel(a, ψ)(t))}∪
{ψ : Θ |≈ Bel(a, φ→ ψ)(t+ 1)}
when Θ |≈ Bel(a, φ)(t+ 1).

34 John Bell and Zhisheng Huang

The assumption that the revision Bel(a, t)∗φ is the only operation which occurs
at t is captured by the following condition:

(Uni*) If Bel(a, t) ∗ φ is defined, then Bel(a, t) ∗ φ = Bel(a, t+ 1).

Proposition 10. The belief revision operator defined above satisfies AGM Pos-
tulates (a)-(f).

Proof. (a) follows from part (6) of Proposition 5. (b) is straightforward from the
definitions. For (c), if ¬φ �∈ Bel(a, t), by definition, Bel(a,¬φ)(t) does not hold.
Thus, the expansion and revision operations are defined, and (c) follows from
(Uni+). For (d), we know that if Bel(a, t)∗φ is defined, then Θ |≈ Bel(a, φ)(t+1).
Thus, φ ∈ Bel(a, t)∗φ. For (e), it follows from Proposition 5 that ⊥ ∈ Bel(a, t)∗
φ is undefined when φ is inconsistent, hence (e) holds vacuously. For (f), if
Cn(Bel(a, t)) = Cn(Bel(a′, t′)), then Bel(a, t) = Bel(a′, t′). Thus, for any ψ,
Bel(a, ψ)(t) ↔ Bel(a′, ψ)(t′). By the definition of the revision operator, we thus
have Bel(a, t) ∗ φ = Bel(a′, t′) ∗ φ. �

When the appropriate uniqueness assumptions hold our theory can be viewed
as a realisation of the AGM theory, and when they do not hold our theory can
be viewed as an extension of it.

Our theory is also of interest as part of a larger theory of practical reason-
ing and rationality [2]; in particular, it has been used in the development of a
common sense theory of the adoption of perception-based beliefs [4].

Acknowledgements

This research forms part of the Ratio Project and is supported by the United
Kingdom Engineering and Physical Sciences Research Council under grant num-
ber GR/L34914.

References

1. J. Bell. Changing Attitudes. In: M.J. Wooldridge and N.R. Jennings (Eds.). In-
telligent Agents. Post-Proceedings of the ECAI’94 Workshop on Agent Theories,
Architectures, and Languages. Springer Lecture Notes in Artificial Intelligence, No.
890. Springer, Berlin, 1995. pp. 40-55. 22

2. J. Bell. A Planning Theory of Practical Rationality. Proceedings of the AAAI-95
Fall Symposium on Rational Agency: Concepts, Theories, Models and Applications,
M.I.T, November 1995, pp. 1-4. 22, 34

3. J. Bell and Z.Huang. Dynamic Obligation Hierarchies. In P.McNamara and
H.Prakken (Eds.) Norms, Logics and Information Systems: New Studies in De-
ontic Logic and Computer Science, Ios Press, Amsterdam, 1999, pp. 231-246. 22

4. J. Bell and Z.Huang. Seeing is believing: A common sense theory of the adoption
of perception-based beliefs. Artificial Intelligence for Engineering Design, Analysis
and Manufacturing 13, 1999, pp. 133-140. 22, 34

Dynamic Belief Hierarchies 35

5. M.Dummett. The Significance of Quine’s Indeterminacy Thesis. Synthese 27 1974,
pp. 351-97. 21

6. P.Gärdenfors. Knowledge in Flux; Modeling the Dynamics of Epistemic States.
MIT Press, Cambridge, Massachusetts, 1988. 22, 32

7. P.Gärdenfors and D.Makinson. Revisions of knowledge systems using epistemic
entrenchment, in: M.Vardi (ed.), Proceedings of TARK’88, Morgan Kaufmann,
San Francisco, 1988. pp. 83-95. 22, 32

8. Z.Huang. Logics for Agents with Bounded Rationality, ILLC Dissertation series
1994-10, University of Amsterdam, 1994. 22

9. Z.Huang, M.Masuch and L.Pólos. ALX: an action logic for agents with bounded
rationality, Artificial Intelligence 82 (1996), pp. 101-153. 22

10. D.Lewis. Counterfactuals, Basil Blackwell, Oxford, 1973. 22, 23
11. W.V.O.Quine. Two Dogmas of Empiricism. In: From a Logical Point of View.

Harvard University Press, Cambridge, Massachusetts, 1953. 21
12. W.V.O.Quine. Word and Object. MIT Press, Cambridge, Massachusetts, 1960. 21
13. W.V.O.Quine and J.S.Ullian. The Web of belief, Random house, New York, 1970.

21
14. Y. Shoham. Reasoning About Change. MIT Press, Cambridge, Massachusetts, 1988.

30
15. R.A. Stalnaker. A theory of conditionals, Studies in Logical Theory, American

Philosophical Quarterly 2 (1968), pp. 9 8-122. 22
16. G. von Wright. The Logic of Preference, Edinburgh University Press, Edinburgh,

1963. 22

J.-J. Ch. Meyer, P.-Y. Schobbens (Eds.): Formal Methods of Agents, LNAI 1760, pp. 36-56, 1999.
 Springer-Verlag Berlin Heidelberg 1999

Modelling Internal Dynamic Behaviour of BDI Agents

Frances Brazier1, Barbara Dunin-Keplicz2, Jan Treur1, and Rineke Verbrugge1

1 Vrije Universiteit Amsterdam
Department of Mathematics and Computer Science, Artificial Intelligence Group

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
{frances,treur,rineke}@cs.vu.nl

http://www.cs.vu.nl

2 Warsaw University
Institute of Informatics, ul. Banacha 2, 02-097 Warsaw, Poland

keplicz@mimuw.edu.pl

Abstract. A generic model for the internal dynamic behaviour of BDI agents is
proposed. This model, a refinement of a generic agent model, explicitly specifies
beliefs and motivational attitudes such as desires, goals, intentions, commitments,
and plans, and their relations. A formal meta-language is used to represent beliefs,
motivational attitudes and strategies. Dynamic aspects of reasoning about and
revision of beliefs and motivational attitudes are modelled in a compositional
manner within the modelling framework DESIRE.

1 Introduction

In the last five years multi-agent systems have been a major focus of research in AI.
The concept of agents, in particular the role of agents as participants in multi-agent
systems, has been subject to discussion. In (Wooldridge and Jennings, 1995) different
notions of strong and weak agency are presented. In other contexts big and small
agents have been distinguished (Velde and Perram, 1996). In this paper, a model for a
rational agent is proposed: a rational agent described using cognitive notions such as
beliefs, desires and intentions.
 Beliefs, intentions, and commitments play a crucial role in determining how
rational agents will act. Shoham defines an agent to be "an entity whose state is
viewed as consisting of mental components such as beliefs, capabilities, choices, and
commitments. (...) What makes any hardware or software component an agent is
precisely the fact that one has chosen to analyze and control it in these mental terms"
(Shoham, 1993). This definition provides a basis to study, model and specify mental
attitudes; see (Rao and Georgeff, 1991; Cohen and Levesque, 1990; Shoham, 1991;
Dunin-Keplicz and Verbrugge, 1996).
 The goal of this paper is to define a generic BDI agent model in the
compositional multi-agent modelling framework DESIRE. To this purpose, a generic
agent model is presented and refined to incorporate beliefs, desires and intentions (in
which intentions with respect to goals are distinguished from intentions with respect
to plans). The result is a more specific BDI agent in which dependencies between
beliefs, desires and intentions are made explicit. The BDI model includes knowledge
of different intention/commitment strategies in which these dependencies are used to

Modelling Internal Dynamic Behaviour of BDI Agents

37

reason about beliefs, desires, and intentions, but also to explicitly revise specific
beliefs, desires and intentions.
 The main emphasis in this paper is on static and dynamic relations between
mental attitudes. DESIRE (framework for DEsign and Specification of Interacting
REasoning components) is a framework for modelling, specifying and implementing
multi-agent systems, see (Brazier, Dunin-Keplicz, Jennings, and Treur, 1995, 1996;
Dunin-Keplicz and Treur, 1995). Within the framework, complex processes are
designed as compositional models consisting of interacting task-based hierarchically
structured components. Agents are modelled as composed components. The
interaction between components, and between components and the external world, is
explicitly specified. Components may be primitive reasoning components using a
knowledge base, but may also be subsystems capable of performing tasks using
methods as diverse as decision theory, neural networks, and genetic algorithms.
 In this paper a small, simplified part of an application, namely meeting
scheduling, is used to illustrate the way in which dependencies and strategies are used
to model revision.
 The paper is structured in the following manner. In Section 2, a generic
classification of mental attitudes is presented and a more precise characterization of a
few selected motivational attitudes is given. Next, in Section 3, the specification
framework DESIRE for multi-agent systems is characterized. In Section 4 a general
agent model is described. The framework of modelling motivational attitudes in
DESIRE is discussed in Section 5. In Section 6 the use of the explicit knowledge of
dependencies and strategies for belief, intention and commitment revision is
explained. Finally, Section 7 presents some conclusions and possible directions for
further research.

2 Intention and Commitment Strategies

A number of motivational attitudes, and the static and dynamic relations between
motivational attitudes and agents' activities, are modelled in this paper. Individual
agents are assumed to have intentions and commitments both with respect to goals
and with respect to plans. Joint motivational attitudes and joint actions are not
discussed in this paper. The following classification of an agent's attitudes is used:

1. Informational attitudes
 1.1 Knowledge
 1.2 Beliefs

2. Motivational attitudes
 2.1 Desires
 2.2 Intentions
 2.2.a Intended goals
 2.2.b Intended plans
 2.3 Commitments
 2.3.a Committed goals
 2.3.b Committed plans

In this classification the weakest motivational attitude is desire. Desires may be
ordered according to preferences and they are the only motivational attitudes subject
to inconsistency. A limited number of intended goals are chosen by an agent, on the
basis of its (beliefs and) desires. In this paper only achievement goals (and not, for

Frances Brazier et al. 38

example, maintenance goals) are considered. Moreover, agents are assumed to assure
consistency of intentions. With respect to intentions, the conditions elaborated in
(Bratman, 1987; Cohen and Levesque, 1990) are adopted.
 On the basis of intentions, an agent commits to itself to achieve both goals and to
execute plans. In addition an agent may also make commitments to other agents. Such
social commitments (Castelfranchi, 1995; Dunin-Keplicz and Verbrugge, 1996) are
also explicitly modelled. As proposed in (Castelfranchi, 1995), contrary to some other
approaches, social commitments are stronger than intentions, because the aspects of
obligation and of interest in the commitment by the other agent are involved.
 After committing to a goal and an associated plan, an agent starts plan
realization. Knowledge of strategies and dependencies is required to determine in
which situations an agent drops an intention or commitment, and how. The kind of
behavior that agents manifest depends on immanent behavioral characteristics and
environment, including their intention and commitment strategies. As a result
individual agents may behave differently in analogical situations. In (Rao and
Georgeff 1991) intention strategies were introduced, which inspired the definition of
social commitment strategies in (Dunin-Keplicz and Verbrugge, 1996). These
commitment strategies include the additional aspects of communication and
coordination.
 In this paper, three commitment strategies are distinguished. The strongest
commitment strategy is followed by the blindly committed agent, that maintains its
commitments until it believes they have been achieved, irrespective of changes in its
own goals and desires, and irrespective of other beliefs with respect to the feasibility
of the commitment. A single-minded agent may drop commitments when it believes
they can no longer be attained, irrespective of changes in its goals and desires.
However, as soon as a single-minded agent abandons a commitment, communication
and coordination are necessary with agents to whom the single-minded agent is
committed. An open-minded agent may drop commitments when it believes they can
no longer be attained or when the relevant goals are no longer desired.
Communication and coordination with agents to whom the single-minded agent is
committed, are also performed when commitments are abandoned.
 For simplicity, in this paper each agent is assumed to follow a single commitment
strategy during the whole process of plan realization. Moreover, it should be stressed
that commitment strategies are used for both committed goals and committed plans.

3 A Modelling Framework for Multi-agent Systems

The compositional BDI model introduced in this paper is based on an analysis of the
tasks performed by a BDI agent. Such a task analysis results, among others, in a
(hierarchical) task composition, which is the basis for a compositional model:
components in a compositional model are directly related to tasks in a task
composition. Interaction between tasks is modelled and specified at each level within
a task composition, making it possible to explicitly model tasks which entail
interaction between agents. The hierarchical structures of tasks, interaction and
knowledge are fully preserved within compositional models. Task coordination is of
importance both within and between agents. Below the formal compositional
framework for modelling multi-agent tasks DESIRE is briefly introduced, in which
the following aspects are modelled and specified (for more details, see (Brazier,
Dunin-Keplicz, Jennings, Treur, 1997)):

Modelling Internal Dynamic Behaviour of BDI Agents

39

(1) a task composition,
(2) information exchange,
(3) sequencing of tasks,
(4) task delegation,
(5) knowledge structures.

3.1 Task Composition

To model and specify composition of tasks, knowledge of the following types is
required:

 • a task hierarchy,
 • information a task requires as input,
 • information a task produces as a result of task performance
 • meta-object relations between tasks

Within a task hierarchy composed and primitive tasks are distinguished: in contrast to
primitive tasks, composed tasks consist of a number of other tasks, which, in turn,
may be either composed or primitive. Tasks are directly related to components:
composed tasks are specified as composed components and primitive tasks as
primitive components.
 Information required/produced by a task is defined by input and output
signatures of a component. The signatures used to name the information are defined
in a predicate logic with a hierarchically ordered sort structure (order-sorted predicate
logic). Units of information are represented by the ground atoms defined in the
signature.
 The role information plays within reasoning is indicated by the level of an atom
within a signature: different (meta)levels may be distinguished. In a two-level
situation the lowest level is termed object-level information, and the second level
meta-level information. Meta-level information contains information about object-
level information and reasoning processes; for example, for which atoms the values
are still unknown (epistemic information). Similarly, tasks which include reasoning
about other tasks are modelled as meta-level tasks with respect to object-level tasks.
Often more than two levels of information and reasoning occur, resulting in meta-
meta-... information and reasoning.

3.2 Information Exchange between Tasks

Information links between components are used to specify information exchange
between tasks. Two types of information links are distinguished: private information
links and mediating information links. For a given parent component, a private
information link relates output of one of its components to input of another, by
specifying which truth value of a specific output atom is linked with which truth
value of a specific input atom. Atoms can be renamed: each component can be
specified in its own language, independent of other components. In a similar manner
mediating links transfer information from the input interface of the parent component
to the input interface of one of its components, or from the output interface of one of
its components to the output interface of the parent component iteself. Mediating
links specify the relation between the information at two adjacent levels in the

Frances Brazier et al. 40

component hierarchy. The conditions for activation of information links are explicitly
specified as task control knowledge.

3.3 Sequencing of Tasks

Task sequencing is explicitly modelled within components as task control knowledge.
Task control knowledge includes not only knowledge of which tasks should be
activated, when and how, but also knowledge of the goals associated with task
activation and the extent to which goals should be derived. These aspects are
specified as component and link activation together with task control foci and extent
to define the component's goals. Components are, in principle, black boxes to the task
control of an encompassing component: task control is based purely on information
about the success and/or failure of component reasoning. Reasoning of a component
is considered to have been successful with respect to an evaluation criterion if it has
reached the goals specified by this evaluation criterion to the extent specified (e.g.,
any or every).

3.4 Delegation of Tasks

During knowledge acquisition a task as a whole is modelled. In the course of the
modelling process decisions are made as to which tasks are (to be) performed by
which agent. This process, which may also be performed at run-time, results in the
delegation of tasks to the parties involved in task execution. In addition to these
specific tasks, often generic agent tasks, such as interaction with the world
(observation) and other agents (communication and cooperation) are assigned.

3.5 Knowledge Structures

During knowledge acquisition an appropriate structure for domain knowledge must
be devised. The meaning of the concepts used to describe a domain and the relations
between concepts and groups of concepts, are determined. Concepts are required to
identify objects distinguished in a domain (domain-oriented ontology) , but also to
express the methods and strategies employed to perform a task (task-oriented
ontology). Concepts and relations between concepts are defined in hierarchies and
rules based on order-sorted predicate logic. In a specification document references to
appropriate knowledge structures (specified elsewhere) suffice; compositional
knowledge structures are composed by reference to other knowledge structures.

Modelling Internal Dynamic Behaviour of BDI Agents

41

4 Global Structure of a Generic Agent

To model an agent capable of reasoning about its own tasks, processes and plans, its
knowledge of other agents, its communication with other agents, its knowledge of the
world and its interaction with the world, a generic agent architecture has been devised
in which such types of reasoning are transparently allocated to specific components of
an agent (see (Brazier, Jonker and Treur, 1997)).
 This generic architecture can be applied to different types of agents. In this paper
this architecture is refined to model a rational agent with motivational attitudes: other
architectures are more applicable for other types of agents. The generic architecture is
described in this section, while the refined BDI architecture is the subject of Section
5.
 Four of the five types of knowledge distinguished above in Section 3 are used to
describe this generic architecture: task composition, information exchange,
sequencing of tasks and knowledge structures. Within an individual agent, task
delegation is trivial.

4.1 Task Composition

As stated above an agent needs to be capable of reasoning about its own processes, its
own tasks, other agents and the world. In other words, an agent needs to be capable of
six tasks:

(1) controlling its own processes,
(2) performing its own specific tasks,
(3) managing its interaction with the world (observation, execution of actions),
(4) managing its communication with other agents,
(5) maintaining information on the world, and
(6) maintaining information on other agents.

4.2 Information Exchange

Information links are defined for the purpose of information exchange between
components. The component agent_interaction_management receives information from,
and sends information to, other agents. The component world_interaction_management
on the other hand exchanges information with the external world. Both components
also exchange information with the component own_process_control. Which
information is required by an agent specific task depends on the task itself and
therefore cannot be predefined. To fully specify the exchange of information, a more
specific analysis of the types of information exchange is required. In Figure 1, a
number of information links defined for information exchange at the top level of the
agent, are shown together with the names of the components they connect.

Frances Brazier et al. 42

Link name From component To component

import_world_info agent (input interface) world_interaction_management
export_world_info world_interaction_management agent (output interface)
transfer_comm_world_info agent_interaction_management maintenance_of_world_information
provide_world_state_info world_interaction_management own_process_control
import_agent_info agent (input interface) agent_interaction_management
export_planned_comm agent_interaction_management agent (output interface)
provide_agent_info agent_interaction_management own_process_control
transfer_committed_acts&obs own_process_control world_interaction_management
transfer_agent_commitments own_process_control agent_interaction_management
transfer_planned_comm own_process_control agent_interaction_management

 Fig. 1. Links for information exchange at the top level of an agent

In Figure 2 a graphical representation of the generic architecture for an agent is
shown; in this figure a number of the information links and the components they
connect, are depicted.

…

…

…

…

world
interaction

management

agent
interaction

management

��
��
��

agent task control

agent
specific
tasks

own
process
control

maintenance
of

world
informat ion

maintenance
of

agent
information

Fig. 2. Top level composition and information links of a generic agent

Modelling Internal Dynamic Behaviour of BDI Agents

43

4.3 Task Sequencing

Minimal task control has been modelled and specified for the top level of the generic
agent. Task control knowledge specifies that all generic components and links are
initially awakened. The awake status specifies that as soon as new information
arrives, it is processed. This allows for parallel processing of information by different
components. The links which connect an agent to other agents are activated by the
agents from which they originate. Global task control includes specifications such as
the following rule:

if start
then next_component_state(own_process_control, awake)
and next_component_state(world_interaction_management, awake)
and next_component_state(agent_interaction_management, awake)
and next_link_state(import_agent_info, awake)
and next_link_state(export_agent_info, awake)
and next_link_state(import_world_info, awake)
and next_link_state(export_world_info, awake)
and next_link_state(transfer_comm_world_info, awake)
.......

4.4 Knowledge Structures

Generic knowledge structures are used within the specification of a generic agent, a
number of which have been shown above. In the following section more detailed
examples of specifications of knowledge structures will be shown for a rational agent
with motivational attitudes.

4.5 Building a Real Agent

Each of the six components of the generic agent model presented above can be
refined in many ways, resulting in models of agents with different characteristics.
(Brazier, Jonker and Treur, 1996) describe a model of a generic cooperative agent,
based on the generic agent model and Jenning's model of cooperation, see (Jennings,
1995). In (Brazier and Treur, 1996) another refinement of the generic agent model is
proposed for reflective agents capable of reasoning about their own reasoning
processes and other agents' reasoning processes. In the following section a
refinement of the component own_process_control is presented in which motivational
attitudes (including beliefs, desires and intentions) play an important role.

5 A Model for Rational Agents with Motivational
 Attitudes

The generic model and specifications of an agent described above, can be refined to a
generic model of a rational BDI agent capable of explicit reasoning about its beliefs,
desires, intentions and commitments. First, some of the assumptions behind the model
are discussed (Section 5.1). Next the specification of the model is presented for the
highest level of abstraction (in Section 5.2 and 5.3), and for the more specific levels
of abstraction (Section 5.4).

Frances Brazier et al. 44

5.1 Rational Agents with Motivational Attitudes

Before presenting the model, some of the assumptions upon which this model is
based, are described. Agents are assumed to be rational: they must be able to
generate goals and act rationally to achieve them, namely planning, replanning, and
plan execution. Moreover, to fully adhere to the strong notion of agency, an agent's
activities are described using mentalistic notions usually applied to humans. This does
not imply that computer systems are believed to actually "have" beliefs and
intentions, but that these notions are believed to be useful in modelling and specifying
the behaviour required to build effective multi-agent systems (see, for example,
(Dennett, 1987) for a description of the "intentional stance").
 A first assumption is that motivational attitudes, such as beliefs, desires,
intentions and commitments are defined as reflective statements about the agent itself
and about the agent in relation to other agents and the external world. These reflective
statements are modelled in DESIRE in a meta-language, which is order sorted
predicate logic. Functional or logical relations between motivational attitudes and
between motivational attitudes and informational attitudes are expressed as meta-
knowledge, which may be used to perform meta-reasoning resulting in further
conclusions about motivational attitudes. For example, in a simple instantiation of the
model, beliefs can be inferred from meta-knowledge that any observed fact is a
believed fact and that any fact communicated by a trustworthy agent is a believed
fact.
 A second assumption is that information is classified according to its source:
internal information, observation, communication, deduction, assumption making.
Information is explicitly labeled with these sources. Both informational attitudes
(such as beliefs) and motivational attitudes (such as desires) depend on these sources
of information. Explicit representations of the dependencies between attitudes and
their sources are used when update or revision is required.
 A third assumption is that the dynamics of the processes involved are explicitly
modelled. For example, a component may be made awake from the start, which
means that it always processes incoming information immediately. If more
components are awake, their processes will run in parallel. But, if tasks depend on
each other, sequential activation may be preferred. Both parallel and sequential
activation may be specified explicitly. If required, update or revision takes place and
is propagated through different components by active information links.
 A fourth assumption is that the model presented below is generic, in the sense
that the explicit meta-knowledge required to reason about motivational and
informational attitudes has been left unspecified. To tune the model to a given
application this knowledge has to be added. In this paper, examples of the types of
knowledge are given for the purpose of illustration.
 A fifth assumption is that intentions and commitments are defined with respect to
both goals and plans. An agent accepts commitments towards itself as well as
towards others (social commitments). In this paper, an agent determines which goals
it intends to fulfill, and commits to a selected subset of these goals. Similarly, an
agent determines which plans it intends to perform, and commits to a selected subset
of these plans.
 Most reasoning about beliefs, desires, and intentions can be modelled as an
essential part of the reasoning an agent needs to perform to control its own processes.
A refinement of the generic component own_process_control described in Section 4 is
presented below.

Modelling Internal Dynamic Behaviour of BDI Agents

45

5.2 A Refined Model of Own Process Control

Finally, to design a BDI agent, the component own_process_control is refined. The
component own_process_control is composed of three components, which reason about:

(1) the agent's beliefs
(2) its desires
(3) its intentions and commitments with respect to both goals and plans.

The extended task hierarchy for a BDI agent is shown in Figure 3. The component
belief_determination performs reasoning about relevant beliefs in a given situation. In
the component desire_determination an agent determines which desires it has, related to
its beliefs. Intended and committed goals and plans are derived by the component
intention_and_commitment_determination. This component first determines the goals
and/or plans it intends to pursue before committing to the specific selected goals
and/or plans. All three components are further refined in Section 5.4.

belief determination desire determination intention and commitment
determination

goal determination plan determination

intended plan
determination

committed plan
determination

intended goal
determination

committed goal
determination

own process control

Fig. 3. Task hierarchy of own process control within a BDI agent

 In the model, beliefs and desires influence each other reciprocally. Furthermore,
beliefs and desires both influence intentions and commitments. This is explicitly
modelled by information links between the components and meta-knowledge within
each of the components.
 In Figures 4.1 and 4.2, the composition of own_process_control is shown, together
with the exchange of information. This is specified in DESIRE graphically as in
Figure 4.1.

Frances Brazier et al. 46
��
��

own process control task control

desire
determinat ion

belief
determination

intention and
commitment

determination

transfer_desire_info_for_bd

transfer_desire_info_for_id

transfer_belief_info_for_id

transfer_ic_info_for_bd

transfer_committed_goal_
and_plan_info

transfer_belief_info

transfer_belief_
info_for_dd

transfer_world_and_
agent_info

 ��

��intention and commitment determination task control

goal
determinat ion

plan
determination

transfer_
committed_goals

transfer_inachievable_goals

import_belief_and_
desire_info_to_pd

import_bel;ief_and_desire_info_to_pd
export_comm_goals

export_comm_plans

Fig. 4.1. Refinement of own process control within the BDI agent

Modelling Internal Dynamic Behaviour of BDI Agents

47
��
��
��

goal determination task control

committed
goal

determination

intended
goal

determination

��
��plan determination task control

committed
plan

determination

intended
plan

determination

Fig. 4.2. Further refinement of goal determination and plan determination

Task control knowledge of the component own_process_control determines that:

(1) initially all links within the component own_process_control are awakened, and the
component belief_determination is activated,

(2) once the component belief_determination has succeeded in reaching all possible
conclusions (specified in the evaluation criterion goals) desire_determination is activated
and belief_determination is made continually active (awake),

(3) once the component desire_determination has succeeded in reaching all possible
conclusions (specified in the evaluation criterion desires), the component intention_and
commitment_determination is activated and desire_determination is made continually
active (awake). In addition, the desires in which the agent may want to believe
(wishful thinking) are transferred to the component belief_determination.

Task control of the component intention_and_commitment_determination, in turn, is
described in Section 5.4.3.

Frances Brazier et al. 48

5.3 The Global Reasoning Strategy

The global reasoning strategy specified by task control knowledge in the model is that
some chosen desires (depending on knowledge in the component
intended_goal_determination, existing beliefs and specific agent characteristics) become
intentions, and some selected intentions (depending on knowledge in the component
committed_goal_determination and specific agent characteristics) are translated into
committed_goals to the agent itself and to other agents. The agent then reasons about
ways to achieve the committed_goals on the basis of knowledge about planning in the
component committed_plan_determination, resulting in the construction of a
committed_plan. This plan is transferred to one or more of the other high-level
components of the agent (depending on the plan in question), namely
world_management, agent_management, and agent_specific_tasks, to be executed.

5.4 Further Refinement of Components

In the previous two sections the model for reasoning about motivational attitudes was
described in terms of the three tasks within the component own_process_control and
their mutual interaction. In this section each of the tasks themselves is described in
more detail.

5.4.1 Belief Determination
The task of belief determination requires explicit meta-reasoning to generate beliefs.
The specific knowledge used for this purpose obviously depends on the domain of
application. The adopted model specifies meta-knowledge about beliefs based on six
different sources:

(1) internal beliefs of an agent
Internal beliefs are beliefs which an agent inherently has, with no further indication of
their source. They can be expressed as meta-facts of the form
internal_belief(X:Statement), meaning that X:Statement is an internal belief. These meta-
facts can be specified as initial facts or be inferred from other internal meta-
information. By meta-knowledge of the form

 if internal_belief(X:Statement) then belief(X:Statement)

beliefs can be derived from the internal beliefs.

(2) beliefs based on observations
Beliefs based on observations are acquired on the basis of observations of the world,
either at a particular moment or over time. Simple generic meta-knowledge can be
used to derive such beliefs:

 if observed_world_fact(X:Statement) then belief(X:Statement).

(3) beliefs based on communication with other agents
Communication with other agents may, if agents are considered trustworthy, result in
beliefs about the world or about other agents. Generic meta-knowledge that can be
used to derive such beliefs is:

Modelling Internal Dynamic Behaviour of BDI Agents

49

 if communicated_fact_by(X:Statement, A:Agent) and trustworthy(A:Agent)

 then belief(X:Statement)

(4) beliefs deduced from other beliefs
Deduction from other beliefs can be performed by means of an agent's own (domain-
dependent) knowledge of the world, of other agents and of itself.

(5) beliefs based on assumptions
Beliefs based on assumptions may be derived from other beliefs (and/or from
epistemic information on the lack of information) on the basis of default knowledge,
knowledge about likelihood, et cetera. For example, a default rule (a : b) / c can be
specified as meta-knowledge (e.g. according to the approach described by (Tan and
Treur, 1992)).

(6) beliefs based on desires
In the case of wishful thinking beliefs may be implied by generated desires. For
example, as an extreme case, a strongly wishful-thinking agent may have the
following knowledge in belief_determination:

 if not belief(not(X:Statement)) and desired(X:Statement) then belief(X:Statement)

A more sophisticated model to generate beliefs can also keep track of the source of a
belief. This can be specified in the meta-language by adding labels to beliefs
reflecting their source, for example by belief(X:Statement, L:Label). Here the label L:Label
can denote a single source, such as observed, or communicated_by(A:Agent), but if beliefs
have been combined to generate other beliefs, also combined labels can be generated
as more complex term structures, expressing that a belief depends on a number of
sources.
 Another aspect of importance is the omniscience problem (Fagin et al., 1995),
which requires the control of the belief generation process. In practical reasoning
processes, only those beliefs are generated that are of specific interest. Specific
solutions to the omniscience problem may be modelled explicitly within this
component.

5.4.2 Desire Determination
Desires can refer to a (desired) state of affairs in the world (and the other agents), but
also to (desired) actions to be performed. Often, desires are influenced by beliefs.
Because beliefs can be based on their source, as discussed in Section 5.4.1, desires
can inherit these sources. In addition, desires can have their own internal source, for
example desires can be inherent to an agent. Knowledge on how desires are generated
is left unspecified in the generic model.

5.4.3 Intention and Commitment Determination
Intended and committed goals and plans are determined by the component
intention_and_commitment_determination; this component is composed of the component
goal_determination and plan_determination. Each of these two components first
determines the intended goals and/or plans it wishes to pursue before committing to a
specific goal and/or plan.
 In the component goal_determination commitments to goals are generated in two
stages. In the component intended_goal_determination, based on beliefs and desires, but

Frances Brazier et al. 50

also on preferences between goals, specific goals become intended goals. Different
agents have different strategies to choose which desires will become intentions. For
example:

• some (eager) agents may choose a desire as an intention as soon as it is consistent
with their previously established intended goals;
• others (socially complying agents) may select an intention when it is one of their
desires which is an intention of other agents with which they automatically comply;
• and still others (apathetic agents) may select no intentions at all.

These differences in agent characteristics can be expressed in the (meta-)knowledge
specified for intended_goal_determination. For each intended goal a condition (in the
form of not inadequate_intended_goal(X:Statement)) is specified that expresses the
adequacy of the goal, i.e., that the goal is not subject to revision. As soon as it has
been established that the intention has to be dropped, the intended goal becomes
inadequate, so this condition no longer holds, which in turn leads to the retraction of
the intended goal on the basis of the revision facilities built-in in the semantics and
execution environment of DESIRE.
 In the component committed_goal_determination a number of intended goals are
selected to become goals to which the agent commits; again, different agents have
different strategies to select committed goals, and these different strategies can be
expressed in the (meta-)knowledge specified for the component
committed_goal_determination. The committed goals are transferred to the component
plan_determination. In a manner similar to intended goal determination, the knowledge
specified for the component committed_goals includes a condition
inadequate_committed_goal(X:Statement) that plays a role in revision.
 In the component plan_determination commitments to goals are analysed and
commitments to plans are generated in two stages. In the component
intended_plan_determination plans are generated dynamically, combining primitive
actions and predefined plans known to the agent (stored in an implementation, for
example, in a library). On the basis of knowledge of the quality of plans, committed
goals, beliefs and desires, a number of plans become intended plans. The component
committed_plan_determination determines which of these plans should actually be
executed. In other words, to which plans an agent commits. If no plan can be devised
to reach one or more goals to which an agent has committed, this is made known to
the component goal_determination. If a plan has been devised, execution of a plan
includes determining, at each point in time, which actions are to be executed. During
plan execution, monitoring information can be acquired by the agent through
observation and/or communication. Plans can be adapted on the basis of observations
and communication, but also on the basis of new information on goals to which an
agent has committed. If, for example, the goals for which a certain plan has been
devised, are no longer relevant, and thus withdrawn from an agent's list of committed
goals, it may no longer make sense to execute this plan.

Modelling Internal Dynamic Behaviour of BDI Agents

51

6 Modelling Commitment Strategies

Specifications in DESIRE define in a declarative manner the behaviour of a multi-
agent system with respect to their integrated reasoning processes and acting processes
(observing, communicating, executing actions in the world). Characteristic to this
approach to modelling multi-agent systems is that strategies, revision, and the
integration of communication, observation and action in the reasoning process, are
explicitly modelled and specified.

6.1 Specification of Commitment Strategies

After plan construction, the phase of plan realization starts. During this phase, all
components of own_process_control are continually awake, so that any revision of an
agent's informational and motivational attitudes is propagated immediately by transfer
of the new information through links to other components. The fact that both
information links and components are always awake ensures that this happens without
further explicit specification of activation. Thus, new information is not necessarily
expected at specific points in the process.
 In our model, the crucial difference between the three kinds of agents, defined
according to their commitment strategies as discussed in Section 2, manifests itself in
their reaction to different kinds of information received through different links. For
all types of agents final revision of commitments takes place in the component
intention_and_commitment_determination, namely in the components
committed_goal_determination and committed_plan_determination. These are the
components in which the knowledge about different commitment strategies resides.
 To be more specific, the blindly committed agent only drops a committed_goal as a
reaction to the receipt of information that the relevant goal has been realized. This
information is transferred from the component belief_determination through the link
transfer_belief_info_for_id, which in turn receives it through the link
import_ws_info_for_bd, from the higher level components world_management and
possibly from the component agent_specific_tasks. Some of the relevant generic
knowledge present in the component committed_goal_determination is the following:

 if own_commitment_strategy(blind) and goal_reached(X:Statement)

 then to_be_dropped_committed_goal(X:Statement)

If this rule succeeds, an information link from committed_goal_determination to itself
transfers the conclusion to_be_dropped_committed_goal(X:Statement) to update the atom
inadequate_committed_goal(X:Statement) to true, which, in turn leads to the retraction of
the committed goal, as described in Section 5.4.3. For simplicity these update links
have not been depicted in Figure 4.
 The single-minded agent, in addition, drops a committed_goal as a reaction to the
information that the relevant goal can no longer be realized. This information is
transferred from the component belief_determination. The knowledge present in the
component committed_goal_determination includes the following:

 if own_commitment_strategy(single_minded) and goal_reached(X:Statement)

 then to_be_dropped_committed_goal(X:Statement)

Frances Brazier et al. 52

 if own_commitment_strategy(single_minded) and goal_not_achievable(X:Statement)

 then to_be_dropped_committed_goal(X:Statement)

The information goal_not_achievable(X:Statement), in turn, may depend on beliefs. In the
first case the information may be transferred through the link import_ws_info_for_bd,
from the higher level component world_management. In the second case plan revision
is involved. In either case the relevant committed_plan is dropped using knowledge in
the component committed_plan_determination:

 if own_commitment_strategy(single_minded) and plan_not_achievable(X: plan)

 then to_be_dropped_committed_plan(X: plan)

Next, in the second case, in order to check whether the relevant goal is achievable, the
component plan_determination tries to design a plan. If this component succeeds in
designing a new plan, this plan is adopted, and the original goal is maintained. If not,
the component comes to the conclusion (based on exhaustive search) that no new plan
can be designed. The component committed_goal_determination derives that the original
goal must be retracted. Information specifying the success or failure of the design of a
new plan is transferred from the component plan_determination to the component
committed_goal_determination.
 The open-minded agent, finally, in addition to the reasons adopted by the blindly
committed agent and the single-minded agent, also drops a committed_goal in reaction
to information that the goal is no longer desired, received from the component
desire_determination through the link transfer_desire_info_for_id. The knowledge included
in the component committed_goal_determination includes the following:

 if own_commitment_strategy(open_minded) and goal_reached(X:Statement)

 then to_be_dropped_committed_goal(X:Statement)

 if own_commitment_strategy(open_minded) and goal_not_achievable(X:Statement)

 then to_be_dropped_committed_goal(X:Statement)

 if own_commitment_strategy(open_minded) and goal_not_desired(X:Statement)

 then to_be_dropped_committed_goal(X:Statement)

In the last case the desire may have been dropped for many different reasons, not to
be elaborated in this paper.
 For all three agents, the stage of dropping a committed goal and/or a committed
plan is followed by communication to the relevant agents. After this, a new
committed goal should be established in the component
intention_and_commitment_determination.

6.2 An Example: Meeting Scheduling

To illustrate the use of explicit knowledge of dependencies and strategies for belief,
intention and commitment revision, within the BDI model (specified within the
DESIRE framework), a small, simplified example of an application, namely meeting
scheduling, is described.

Modelling Internal Dynamic Behaviour of BDI Agents

53

 Three agents A1, A2 and A3 all believe that a meeting is required, and that their
presence at this meeting is desired. They also believe that all three agents' presence is
required. As agreement has been reached on a specific time slot, they all have an
additional desire, namely to be at a meeting at the specific time slot.
 The goal to be at a meeting in general, and at the specific meeting in particular,
has been adopted by all three agents as an intended and committed goal. To
accomplish this goal they all intend, and have committed to a plan to be at the specific
meeting. In this example all three agents are single-minded. Below, the revision of
attitudes is described from the point of view of A3. Agent A1 discovers that agent A2
is no longer available at the given time slot for the meeting.

Communication is required:
Agent A1 informs agent A3 of this fact.
As agent A3 believes that information A1 conveys is true, agent A3 also believes that
agent A2 is no longer available.

Belief revision:
Given this new belief, agent A3 realizes that a prerequisite for the meeting (namely
that all three participants' presence is required) no longer holds, and that the meeting
can not be held as planned.

Dropping of committed goal:
As A3 is a single-minded agent, it is now allowed to drop its committed goal and the
associated committed plan of meeting at the specific meeting.

Desire revision:
The desire to hold a meeting remains. The desire to hold the specific meeting is
retracted.

Intention and commitment revision:
Agent A3's intention and commitment to the general goal of holding a meeting with
the three other agents, still holds. Its intention and commitment to the goal of holding
the specific meeting are retracted.
The intention and commitment to the plan for the specific meeting are also retracted.

The stage Dropping of committed goal follows the specification for single-minded
agents elaborated in Section 6.1; the other stages can be described similarly (see
(Brazier, Dunin-Keplicz, Treur and Verbrugge, 1997) for an extended specification).
In the example above, both committed and intended goals are dropped during
intention and commitment revision. However, there are examples in which a
committed goal is retracted while the corresponding intended goal remains; for
example, a single-minded agent may become ill and retract its commitment to be
present at the meeting, while still keeping its intention to be there (hoping to have
recovered before the meeting).

Frances Brazier et al. 54

7 Discussion and Conclusions

In this paper a generic model for a rational BDI agent with explicit knowledge of
dependencies between motivational attitudes has been modelled in DESIRE. The
BDI model also includes knowledge of different commitment strategies in which
these dependencies are used to reason about beliefs, desires and intentions, but also to
explicitly revise specific beliefs, desires and/or intentions. Communication, action
and observation may influence an agent's beliefs, desires, goals and plans
dynamically.
 The formal specification in DESIRE provides a bridge between logical theory,
e.g. (Rao and Georgeff, 1991) and practice of BDI agents. Another bridge is
described in (Rao, 1996), in which the operational semantics of a language
corresponding to the implemented system dMARS, are formalized. Our model, in
contrast, emphasizes the analysis and design methods of BDI systems, as do the
architectures of (Jennings, 1995; Kinny, Georgeff and Rao, 1996). However, there are
differences as well: our specification is more formal than Jennings' specification in
(Jennings, 1995). DESIRE has a logical basis for which a temporal semantics has
been defined (Brazier, Treur, Wijngaards and Willems, 1995). In contrast to the BDI
architecture described in (Kinny, Georgeff and Rao, 1996), in our approach dynamic
reasoning about beliefs, desires and goals, during plan execution, may lead to the
construction of a (partially) new plan. This is partly caused by the parallel nature of
specific reasoning processes in this model, but is also a consequence of the nature of
explicit strategic knowledge of commitment strategies in the model. Strategic
knowledge is used to revise, for example, beliefs, but also to revise intentions and
commitments to goals and plans, during a dynamic process. Revisions are propagated
by transfer of updated information on beliefs, desires and intentions to the
components that need the information: components that reason about beliefs, desires,
intentions, goals and plans.
 The nature of continual activation of components and links makes it possible to
transfer updated or new beliefs "automatically" to the relevant components. (The
compositional revision approach incorporated in DESIRE is discussed in more depth
in (Pannekeet, Philipsen and Treur, 1992)). In the paper the example of new
information received from another agent, which may influence beliefs on which a
goal has been chosen, is used to illustrate the effect this may have on the execution of
a plan. Retraction of beliefs may lead to retraction of a number of goals that were
based on these beliefs, which in turn may lead to retraction of a commitment to these
goals. If the belief is the basis for a commitment to a plan, retraction of the belief may
result in the retraction of the commitment to the plan and thus to its execution.
 The DESIRE framework provides support in distinguishing the types of
knowledge required to model rational agents based on mental attitudes. An existing
agent architecture provided the basis for the model and the specification language
provided a means to express the knowledge involved. By declaratively specifying
task control knowledge and information exchange for each task, the dynamic process
of revision has been explicitly specified.
 The model as such provides a basis for further research: within this model more
specific patterns of reasoning and interaction can be modelled and specified.
Maintenance goals can be considered, joint commitments and joint actions can be
modelled, more extensive communication patterns between agents can be analysed
and represented, relative importance of intentions can be expressed, et cetera.

Modelling Internal Dynamic Behaviour of BDI Agents

55

 In contrast to general purpose formal specification languages such as Z and
VDM, DESIRE is committed to well-structured compositional models. Such models
can be specified in DESIRE at a higher level of conceptualisation than in Z or VDM
and can be implemented automatically through use of automated implementation
generators.

Acknowledgments
This work was partially supported by the Polish KBN Grants 3 P406 019 06 and
8T11C 03110.

References

Bratman, M.A. (1987). Intentions, Plans, and Practical Reason, Harvard University Press,
Cambridge, MA.

Brazier, F.M.T. , Dunin-Keplicz, B., Jennings, N.R. and Treur, J. (1995). Formal specification
of Multi-Agent Systems: a real-world case. In: V. Lesser (Ed.), Proc. of the First
International Conference on Multi-Agent Systems, ICMAS-95, MIT Press, Cambridge, MA,
pp. 25-32.

Brazier, F.M.T. , Dunin-Keplicz, B., Jennings, N.R. and Treur, J. (1997). DESIRE: modelling
multi-agent systems in a compositional formal framework, International Journal of
Cooperative Information Systems, M. Huhns, M. Singh, (Eds.), special issue on Formal
Methods in Cooperative Information Systems: Multi-Agent Systems, vol. 6, to appear.

Brazier, F.M.T., Dunin-Keplicz, B., Treur, J., Verbrugge, R. (1997) A generic BDI
architecture. Technical Report, Department of Mathematics and Computer Science Vrije
Universiteit Amsterdam.

Brazier, F.M.T., Treur, J. (1996). Compositional modelling of reflective agents. In: B.R.
Gaines, M.A. Musen (Eds.), Proc. of the 10th Banff Knowledge Acquisition for Knowledge-
based Systems workshop, KAW'96, Calgary: SRDG Publications, Department of Computer
Science, University of Calgary, pp. 23/1-13/12.

Brazier, F.M.T., Jonker, C.M., Treur, J., (1997). Formalisation of a cooperation model based on
joint intentions. In: Proc. of the ECAI'96 Workshop on Agent Theories, Architures and
Languages, ATAL'96. In: J.P. Muller, M.J. Wooldridge, N.R. Jennings, Intelligent Agents
III, Lecture Notes in AI, vol. 1193, Springer Verlag, 1997, pp. 141-156.

Brazier, F.M.T., Treur, J., Wijngaards, N.J.E. and Willems, M. (1996). Temporal semantics of
complex reasoning tasks. In: B.R. Gaines, M.A. Musen (Eds.), Proc. of the 10th Banff
Knowledge Acquisition for Knowledge-based Systems workshop, KAW'95, Calgary: SRDG
Publications, Department of Computer Science, University of Calgary, pp. 15/1-15/17

Castelfranchi, C. (1995). Commitments: From individual intentions to groups and
organizations. In: V. Lesser (Ed.), Proc. of the First International Conference on Multi-Agent
Systems, ICMAS-95, MIT Press, Cambridge, MA, pp. 41-48.

Cohen, P.R. and Levesque, H.J. (1990). Intention is choice with commitment, Artificial
Intelligence 42, pp. 213-261.

Dennett, D. (1987). The Intentional Stance, MIT Press, Cambridge, MA.

Dunin-Keplicz, B. and Treur, J. (1995). Compositional formal specification of multi-agent
systems. In: M. Wooldridge and N.R. Jennings, Intelligent Agents, Lecture Notes in
Artificial Intelligence, Vol. 890, Springer Verlag, Berlin, pp. 102-117.

Frances Brazier et al. 56

Dunin-Keplicz, B. and Verbrugge, R. (1996). Collective commitments. To appear in:
Proceedings of the Second International Conference on Multiagent Systems, ICMAS-96.

Fagin, R., Halpern, J., Moses, Y. and Vardi, M. (1995). Reasoning about Knowledge.
Cambridge, MA, MIT Press.

Jennings, N.R. (1995). Controlling cooperative problem solving in industrial multi-agent
systems using joint intentions, Artificial Intelligence 74 (2).

Kinny, D., Georgeff, M.P., Rao, A.S. (1996). A Methodology and Technique for Systems of
BDI Agents. In: W. van der Velde, J.W. Perram (Eds.), Agents Breaking Away, Proc. 7th
European Workshop on Modelling Autonomous Agents in a Multi-Agent World,
MAAMAW'96, Lecture Notes in AI, vol. 1038, Springer Verlag, pp. 56-71

Pannekeet, J.H.M., Philipsen, A.W. and Treur, J. (1992). Designing compositional assumption
revision, Report IR-279, Department of Mathematics and Computer Science, Vrije
Universiteit Amsterdam, 1991. Shorter version in: H. de Swaan Arons et al., Proc. Dutch AI-
Conference, NAIC-92, 1992, pp. 285-296.

Rao, A.S. (1996). AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Language.
In: W. van der Velde, J.W. Perram (eds.), Agents Breaking Away, Proc. 7th European
Workshop on Modelling Autonomous Agents in a Multi-Agent World, MAAMAW'96,
Lecture Notes in AI, vol. 1038, Springer Verlag, pp. 42-55.

Rao, A.S. and Georgeff, M.P. (1991). Modeling rational agents within a BDI architecture. In:
R. Fikes and E. Sandewall (eds.), Proceedings of the Second Conference on Knowledge
Representation and Reasoning, Morgan Kaufman, pp. 473-484.

Shoham, Y. (1993). Agent-oriented programming, Artificial Intelligence 60 (1993) 51- 92.

Shoham, Y. (1991). Implementing the intentional stance. In: R. Cummins and J. Pollock (eds.),
Philosophy and AI, MIT Press, Cambridge, MA, 1991, pp. 261-277.

Shoham, Y. and Cousins, S.B. (1994). Logics of mental attitudes in AI: a very preliminary
survey. In: G. Lakemeyer and B. Nebel (eds.) Foundations of Knowledge Representation and
Reasoning, Springer Verlag, pp. 296-309.

Tan, Y.H. and Treur, J. (1992). Constructive default logic and the control of defeasible
reasoning, Report IR-280, Vrije Universiteit Amsterdam, Department of Mathematics and
Computer Science, 1991. Shorter version in: B. Neumann (ed.), Proc. 10th European
Conference on Artificial Intelligence, ECAI'92, Wiley and Sons, 1992, pp. 299-303.

Velde, W. van der and J.W. Perram J.W. (Eds.) (1996). Agents Breaking Away, Proc. 7th
European Workshop on Modelling Autonomous Agents in a Multi-Agent World,
MAAMAW'96, Lecture Notes in AI, vol. 1038, Springer Verlag.

Wooldridge, M. and Jennings, N.R. (1995). Agent theories, architectures, and languages: a
survey. In: M. Wooldridge and N.R. Jennings, Intelligent Agents, Lecture Notes in Artificial
Intelligence, Vol. 890, Springer Verlag, Berlin, pp. 1-39.

Towards an Agent-Oriented Framework for

Specification of Information Systems?

Stefan Conrad, Gunter Saake, and Can Türker

Otto-von-Guericke-Universität Magdeburg
Institut für Technische und Betriebliche Informationssysteme

Postfach 4120, D–39016 Magdeburg, Germany
{conrad,saake,tuerker}@iti.cs.uni-magdeburg.de

Abstract. Objects in information systems usually have a very long life-
span. Therefore, it often happens that during the life of an object ex-
ternal requirements are changing, e.g. changes of laws. Such changes
often require the object to adopt another behavior. In consequence, it is
necessary to get a grasp of dynamically changing object behavior. Un-
fortunately, not all possible changes can in general be taken into account
in advance at specification time. Hence, current object specification ap-
proaches cannot deal with this problem. Flexible extensions of object
specification are needed to capture such situations.
The approach we present and discuss in this paper is an important step
towards a specification framework based on the concept of agents by in-
troducing a certain form of knowledge as part of the internal state of ob-
jects. Especially, we concentrate on the specification of evolving temporal
behavior. For that, we propose an extension (called Evolving Temporal
Logic) of classical temporal logic approaches to object specification.
Keywords: Modeling information systems, agent-oriented specification,
dynamically changing behavior, evolving temporal logic.

1 Introduction

Currently, nearly every enterprise or organization has to face the situation that
in order be competitive the use of modern information systems is indispensable.
Considering the frequent and dramatic changes in the international economy
and politics, there is clear demand for advanced information systems which are
able to deal with highly dynamic environments, e.g. rapidly changing markets,
increasing (world-wide) competition, and new trade agreements as well as (in-
ter)national laws. In the recent years, there are obvious efforts in several com-
puter science communities to build cooperative intelligent information systems
which can deal with such aspects (see for example [HPS93]).

Today, object-oriented techniques are in general used for modeling such ad-
vanced information systems [Buc91,Bro92]. Most of the existing object-oriented
? This research was partially supported by the CEC ESPRIT Basic Research Working

Groups No. 8319 ModelAge and No. 22704 ASPIRE as well as by the Deutsche
Forschungsgemeinschaft under Sa 465/19 (SAW).

J.-J. Ch. Meyer, P.-Y. Schobbens (Eds.): Formal Methods of Agents, LNAI 1760, pp. 57–73, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

58 Stefan Conrad, Gunter Saake, and Can Türker

approaches are successful in capturing the properties and behavior of the real-
world entities. However, it seems that the concept of “object” (at least in its
current understanding) cannot cover all aspects of modern information systems.
Whereas structural aspects of such systems can easily be dealt with by cur-
rent object-oriented approaches, these approaches succeed to cope with dynamic
behavior only up to a certain degree.

Typically, information system objects have a longer life-span than application
programs, environmental restrictions, etc. Therefore, we need a semantic model
where the behavior specification of an object or object system may be modified
during its existence, which is not expressible in current formalisms underlying
traditional (object-oriented) specification languages until now.

The concept of agent [WJ95,GK94] which can be seen as a further develop-
ment of the concept of object seems to provide a more adequate basis for mod-
eling such information system dynamics. In comparison to traditional objects,
agents are flexible in that sense they may change their behavior dynamically
during system run-time, i.e. the behavior of an agent is not (or can not be) com-
pletely determined at compile or specification time. In order to get a grasp of
such properties, we need an agent-oriented specification framework which goes
beyond the existing object-oriented ones.

Therefore, we propose and discuss several extensions for object specification
languages. These extensions are intended to be first steps towards an own agent-
oriented specification framework. For that, we present a first formalization based
on an extended temporal logic.

The remainder of this paper is organized as follows. Section 2 starts with a
brief presentation of current object specification technology for modeling infor-
mation systems. Further, we introduce the concept of agent as a further evolution
of the concept of object. In Section 3, we propose first extensions of existing ob-
ject specification languages for capturing dynamically changing behavior. An
extended temporal logic, called Evolving Temporal Logic, as formal basis is
sketched in Section 4. Finally, we conclude by summarizing and pointing out
future work.

2 From Object Specification to Agent Design

In the recent years, object-oriented conceptual modeling of information systems
has become a widely accepted approach. Meanwhile, there exists a lot of object-
oriented models and specification languages (e.g. Oblog [SSE87,SSG+91], LCM
[FW93] or Troll [HSJ+94,JSHS96,SJH93]) proposed for those purposes. In this
section, we briefly recall the basic ideas of the concept of object, whereby we
base our presentation on the object model as introduced in [SSE87].

Basically, objects are characterized as coherent units of structure and behav-
ior. An object has an internal state of which certain properties can be observed.
The internal state can be manipulated explicitly through a properly defined
event interface. Objects can be considered as observable processes. Attributes

Towards an Agent-Oriented Framework 59

are the observable properties of objects which may only be changed by event
occurrences.

The behavior of objects are described by life cycles (or traces), which are built
from sequences of (sets of simultaneously occurring) events. Thus, each object
state is completely characterized by a life cycle prefix (or event snapshot), which
determines the current attribute values. The possible evolution of objects can be
restricted by a set of state constraints which can be used to define the admissible
state transitions for an object.

For textual presentation of object specifications, we use a notation close to
the syntactical conventions of the object-oriented specification language Troll.
In Figure 1 we introduce an example of a Troll specification. For the purposes
of this paper, we have chosen a small universe of discourse (UoD) consisting of
one or more account objects. Here, we assume an account to have an (unique)
account number, a bank by which it is managed, a holder, a balance, and a limit
for overdrawing. Moreover, we specify some basic events like opening an account,
withdrawing money from or depositing money to an account.

object class Account

identification ByAccountID: (Bank, No);

attributes No: nat constant;
Bank: |Bank|;

Holder: |Customer|;

Balance: money initialized 0.00;

Limit: money initialized 0.00 restricted >= -5000.00;

Counter: nat initialized 0;

events Open(BID:|Bank|, AccNo:nat, AccHolder:|Customer|) birth
changing Bank := BID,

No := AccNo,

Holder := AccHolder;

Withdraw(W:money) enabled Balance - Limit >= W;

changing Balance := Balance - W;

calling IncreaseCounter;

Deposit(D:money) changing Balance := Balance + D;

calling IncreaseCounter;

IncreaseCounter changing Counter := Counter + 1;

Close death;
end object class Account;

Fig. 1. Troll specification of an Account class.

In Troll-like languages, an object template specification mainly consists out of
two parts: a signature section which lists object events and attributes together
with parameter and co-domain types, and a behavior section containing the
axioms. As axioms we do not have general temporal logic formulas but special
syntactic notations for typical specification patterns.

60 Stefan Conrad, Gunter Saake, and Can Türker

In the declaration section for events, we mark some events as birth events or
as death events corresponding to creation and destruction of objects, e.g. Open
and Close. The occurrence of events can be restricted by enabling conditions,
which are formulae built over attributes and event parameters. In connection
with temporal quantifiers these conditions may refer to object histories. Changes
of attribute values are caused by event occurrences, i.e. the event Withdraw
decreases the balance of an account.

The allowed values for object attributes may also be restricted, e.g. we may
constrain the credit limit to maximal 5000.00. Interactions inside (composite)
objects are expressed by the event calling mechanism, e.g. a withdrawal event en-
forces the event IncreaseCounter to occur simultaneously. Similar to attribute
valuations, conditional event calling is supported, too.

The object specification concepts presented so far have a major drawback:
they succeed in capturing dynamic behavior (of information systems) only up to
a certain degree. Indeed, languages like Troll or Oblog are expressive enough
to model even changing object behavior depending on state changes, but these
modifications have to be fixed during specification time, e.g. before object creation.
But, this is too restrictive for handling object evolution in information systems.
Typically, information system objects are characterized by long life-spans.

Usually, during that long time-span an object and the environment of object
may change in a way that cannot be foreseen in advance. Consequently, dynamic
specification changes are needed to overcome the problem that generally not
all possible future behaviors of an object can be anticipated in the original
system specification. In order to support the aspect of object and object system
evolution, respectively, in an adequate way, we need an extended, logic-based
framework where object class descriptions may be modified during system run-
time.

Recently, the concept of agent, which can be seen as a further evolution
of the concept of object (cf. [Sho93,GK94,WJ95]), is proposed as an adequate
means for modeling information systems. Basically, an agent may be seen as
an intelligent and evolutionary object which is equipped with knowledge and
reasoning capabilities and is able to deal with dynamic aspects, e.g. to change
its state as well as its behavior dynamically.

Like objects, agents have an internal state which is based on their history and
influence their behavior. Whereas the internal state of objects is determined by
the values of their attributes, agents have a more general notion of internal state:
beside (conventional) attribute values it may contain disjunctive information,
partial knowledge, default assumptions, etc.

Essentially, the internal state of an agent reflects the knowledge (belief, in-
tention, obligations, goals, etc.) of that agent at a given time. In contrast to
traditional object concepts, this knowledge is not fixed at specification time, but
it is changeable during the lifetime of an agent. In conclusion, we can state that
the internal state of an agent contains strict knowledge (which is fixed at creation
time and may not be revised) as well as some changeable knowledge (which may
be revised or replaced under given constraints during the agent evolution).

Towards an Agent-Oriented Framework 61

Agents have goals which they try to achieve (by cooperation) under given
constraints. Each agent is obliged to satisfy its goals. Since goals are part of
the internal state of agents, they may be changed during an agent’s lifetime,
too. They can be extended, revised or replaced through other (more important)
goals. In contrast, goals to be satisfied by traditional objects are fixed at speci-
fication time, and may serve as formal requirements for implementing behavior.
Therefore they have to be logically consistent.

On the other hand, the agent’s goals may also be conflicting. Hence, agents
must be able to resolve conflict situations in which not all goals may be achieved.
In such cases, agents must be able either to revise some of their goals or to decide
to satisfy only a few of their goals which are not conflicting.

Agents are able to (re)act and communicate by executing sequences of ac-
tions. Thus, agents show an external behavior that obeys the given constraints.
In contrast to traditional objects, agents exhibit reactive behavior as well as goal-
driven (or pro-active) behavior. Because agents are assumed to be autonomous,
they are able to act without direct (user) intervention.

In most cases agents have to cooperate to achieve their goals. Because of
the fact that agents may change their behavior and/or may even change their
signature, there must exist varying communication structures. For cooperation
reasons agents require knowledge about other agents, i.e. their capabilities and
goals, respectively. However, agents have in general not the same and complete
knowledge about other agents. In such cases, agents have to deal with partial or
incomplete knowledge.

Considering all these properties agents can have, it becomes clear that the
current object specification technology as sketched in the beginning of this sec-
tion cannot fulfill all these requirements. This is due to the fact that several
concepts are not given in current object-oriented approaches. Nevertheless, the
existing object specification approaches can be used as a stable basis for exten-
sions which try to get a grasp of those agent-specific properties.

By carefully extending the underlying semantic models and logics it should
be possible to come closer and closer to the idea of “agents” as sketched before.
A detailed discussion on the differences between traditional object concepts and
the presented concept of agent can be found in [SCT95,TCS96].

In the following section, we propose a first agent specification language in
which some of the agent-specific concepts are respected. This language is an ex-
tension of an existing object-oriented specification language. Instead of inventing
a completely new specification language the extension of an existing and well-
understood specification language offers us the possibility to experiment on a
stable and well-understood basis.

3 Towards an Agent-Oriented Specification Language

In this section, we sketch the basic frame of an agent-oriented specification lan-
guage by giving example specifications. We point out that in this first approach

62 Stefan Conrad, Gunter Saake, and Can Türker

only a few, but very important agent-specific concepts like dynamic behavior are
respected.

Our starting point is the idea of “considering states as theories” (a similar ap-
proach was taken in [Rei84]). In comparison to usual object-oriented approaches
where the state of an object is described by a simple value map assigning each
attribute a corresponding value, the “states as theories” approach is much more
powerful by assuming that a state is described by a set of formulas. Depending
on the underlying logic that we apply for formulating such formulas, we can
then express different kinds of knowledge, for example knowledge about the fu-
ture behavior of an agent as part of its own state as well as knowledge about
the states of other agents.

In this way, simple state changes can become changes of theories by which
we can even express the change of knowledge or goals of an agent. Thereby,
knowledge revision as well as dynamic knowledge acquisition can be specified.
Furthermore, partial knowledge is possible and default knowledge could be in-
tegrated.

We propose a two-level specification framework for modeling of information
systems in terms of agents. The first level contains usual attributes and events,
which describe the fixed behavior of an agent. In the second level, the possible
evolution of the agent specification is specified.

In Figure 2 the structure of a possible specification of an agent class Account
is sketched. The specification language used here can be considered as an ex-
tension of the object-oriented language Troll sketched in Section 2. Similar
to objects, agents have attributes (e.g. Balance) and events (e.g. Withdraw).
The part of the behavior specification which must not be changed is specified in
the rigid axioms section. In our example the effect of the events Withdraw and
Deposit on the attribute Balance is fixed.

In addition to the concepts used for objects, an agent have
axiom attributes which contain sets of axioms which are valid under certain
circumstances. In our example we have the axiom attribute Axioms which is ini-
tialized by the empty set of axioms. In case we specify several axiom attributes
we have to explicitly mark one of them as the current axiom set. Each formula
which is included in the value of this special axiom attribute at a certain state
must be fulfilled in that state.

Similar to basic attributes, axiom attributes are changed by mutators which
can be seen as special events. The effect of mutators is described in the
dynamic specification section. Here, we allow the manipulation of the axiom
attribute Axioms. We may add further axioms to Axioms, remove existing ax-
ioms from Axioms and reset Axioms to the initial state.

Specification of Dynamic Behavior

As already mentioned, one main difference between agents and traditional ob-
jects is that agents may change their behavior dynamically during their lifetime.
There are several different ways how dynamic behavior can be specified:

Towards an Agent-Oriented Framework 63

agent class Account

identification ByAccountID: (Bank, No);

attributes No: nat constant;
Bank: |Bank|;

Holder: |Customer|;

Balance: money initialized 0.00;

Limit: money initialized 0.00;

Counter: nat initialized 0;

events Open(BID:|Bank|, AccNo:nat, AccHolder:|Customer|) birth;
Withdrawal(W:money);

Deposit(D:money);

IncreaseCounter;

Close death;
Warning(S:string);

rigid axioms Open(BID:|Bank|, AccNo:nat, AccHolder:|Customer|)

changing Bank := BID,

No := AccNo,

Holder := AccHolder;

calling ResetAxioms;

Withdraw(W) enabled Balance - Limit >= W;

changing Balance := Balance - W;

calling IncreaseCounter;

Deposit(D) changing Balance := Balance + D;

calling IncreaseCounter;

IncreaseCounter changing Counter := Counter + 1;

axiom attributes Axioms initialized {};
mutators ResetAxioms;

AddAxioms(P:Formula);

RemoveAxioms(P:Formula);

dynamic specification ResetAxioms changing Axioms := {};
AddAxioms(P) changing Axioms := Axioms ∪ P;

RemoveAxioms(P) changing Axioms := Axioms - P;

end agent class Account;

Fig. 2. Specification of an agent class Account

1. Using only one dynamically changeable axiom attribute:
This case is presented in the example in Figure 2. Here, the axiom attribute
must be modifiable during the lifetime of an agent in order to be able to
represent changing dynamic behavior of that agent. In our example the
axiom attribute Axioms can be manipulated by the mutators AddAxioms,
RemoveAxioms and ResetAxioms. Whereas AddAxioms and RemoveAxioms
adds further axioms to and removes existing axioms from Axioms, respec-
tively, ResetAxioms resets Axioms to the initial state. Possible values for the
parameter P of the mutator AddAxioms could be the following ones:

{ Withdraw(W)

calling { W > 400.00 } Warning("Withdrawal limit exceeded!"); }

64 Stefan Conrad, Gunter Saake, and Can Türker

{ Withdraw(W)

enabled (W >= 0.00) and (Balance - W >= Limit); }

{ Withdraw(W)

calling { not(occurs(Clock.NextDay))
since last occurs(Withdraw(W)) }
Warning("Two withdrawals within one day!"); }

{ Close

enabled Balance = 0.00; }

The values above are sets of axioms written in the syntax of our specifica-
tion language. The first value contains an axiom which requires to trigger a
warning if the amount of a withdrawal is larger than 400. In the next value
there is an additional restriction saying that a Withdraw event may only oc-
cur with an amount smaller than the current value of the attribute Balance
minus the current value of the attribute Limit. Thereby, overdrawing of an
account is ruled out.
The third value ensures that a warning is triggered if two withdrawals occur
within one day (in this formula we refer to a Clock assuming that it is spec-
ified elsewhere as a part of the same system). The last listed value contains
a formula which specifies that an account may only be closed if there is no
money on this account.

2. Using a set of predefined, unchangeable axiom attributes:
Here, a set of axiom attributes, which contain predefined sets of axioms and
which cannot be modified during the lifetime of an agent, can be defined
to model dynamically changing behavior of an agent. One of these axiom
attributes must be declared as the current valid set of axioms which deter-
mines the current behavior of the agent. By switching between the axiom
attributes the behavior of the agent can be changed dynamically.

axiom attributes
Axioms(N:nat) initialized

N=0: {} default,
N=1: { Withdraw(W)

calling { W > Balance }
Warning("Account has been overdrawn")) },

N=2: { Withdraw(W)

calling { not(occurs(Clock.NextDay))
since last occurs(Withdraw(W)) }
Warning("Two withdrawals within one day!"); }

...

mutators
ResetAxioms;

SwitchAxioms(N:nat);

dynamic specification
ResetAxioms changing Axioms(0) := {};
SwitchAxioms(N) changing Axioms(0) := Axioms(N);

Towards an Agent-Oriented Framework 65

In the example above we define a parameterized attribute Axioms (for de-
tails see [HSJ+94]) which contains different sets of axioms. Here, we declare
implicitly the attribute term Axioms(0) to be the set with the current valid
axioms. By using the mutator SwitchAxioms we are able to change the
agent’s behavior dynamically.
Please notice that this approach restricts the behavior evolution of an agent
to various predefined behavior pattern. This is due to the fact that the axioms
sets can not be modified during the lifetime of an agent. Furthermore, note
that in the rigid axioms part the common behavior of all possible behaviors
are specified.

3. Using several dynamically changeable axiom attributes:
Here, the ideas of the other cases are combined. We allow to specify several
axiom attributes which may be modified during the lifetime of an agent.
As in the second case, these attributes may be predefined and one of these
attributes is marked as the currently valid one. In the following example we
have specified two mutators AddAxioms and RemoveAxioms (in addition to
the mutator of the example above) for adding a set of axioms to and for
removing a set of axioms from a given axiom attribute, respectively.

mutators
...

AddAxioms(N:nat, P:setOfAxioms);

RemoveAxioms(N:nat, P:setOfAxioms);

dynamic specification
...

AddAxioms(N, P) changing Axioms(N) := Axioms(N) ∪ P;

RemoveAxioms(N, P) changing Axioms(N) := Axioms(N) - P;

We emphasize that it might be useful to combine changing as well as prede-
fined, unchangeable axiom attributes. In such cases we have to specify for each
changeable axiom attribute own mutators. Further, please note that mutator
events may be equipped with enabling conditions as usual events in order to
prevent arbitrary manipulations. Moreover, mutator events may also cause the
occurrence of other basic as well as mutator events. This fact can be expressed
by using the well-known event calling mechanism.

However, for the agent specification approach presented so far we need a
logical framework, a logic of agents, in which several non-standard logics (e.g.
logic of knowledge, default logic, deontic logic [Mey92,Rya93,Rya94,JS93]), can
be integrated. First results already show that the composition of different logics
can really work [FM91]. In [SSS95,CRSS98] first steps towards the specification
of dynamically changeable behavior in an object-oriented setting are presented
and discussed. The following section gives a first formalization of dynamically
changing behavior based on an extended temporal logic [CS97].

66 Stefan Conrad, Gunter Saake, and Can Türker

4 Evolving Temporal Logic

In this section we present the basic ideas for formalizing an extension of temporal
logic we need for capturing the properties sketched in the previous section. We
will call this extension Evolving Temporal Logic (ETL). Afterwards, we show
how the example given in the previous section is formulated in ETL.

4.1 Basic Ideas for Formalization

Temporal Logic. The starting point is a first-order, discrete, future-directed lin-
ear temporal logic for objects which can be considered as a slightly modified
version of the Object Specification Logic (OSL) which is presented in full detail
in [SSC95]. In [Jun93] a comprehensive translation of Troll object specifica-
tions into OSL is given. The following basic types of elementary propositions are
used in the logic:

1. o.Attr = v expresses that the attribute Attr of an object o has the value
v (we have adopted this form from the specification language used for our
example; instead we could also take a predicate expression like Attr(o, v)).

2. o.∇e stands for the occurrence of event e in object o.

With these elementary propositions we may build formulas in the usual way: for
this we may use for instance the boolean operators ¬ (negation) and ∧ (conjunc-
tion) as well as all operators which can be defined by these ones. Furthermore,
we have the future-directed temporal operators f(next), (always in the fu-
ture), and 3 (sometime in the future; defined as 3f ≡ ¬ ¬f). By introducing
variables and quantifiers we obtain a first-order variant of linear temporal logic:
provided x is a variable and f a formula, then ∀x : f and ∃x : f are formulas.

The semantics of temporal logic formulas is defined w.r.t. life cycles which
are infinite sequences of states: λ = 〈s0 , s1, s2, . . .〉. We define λi as the life cycle
which is obtained by removing the first i states from λ, i.e. λi =〈si, si+1, si+2, . . .〉.
Each state in a life cycle is assumed to be equipped with a mapping assigning
a truth value to each elementary proposition. Based on that we can define the
semantics of composed formulas in the usual way. For instance, the semantics of
temporal operators is defined as follows (λ |= φ means that φ is satisfied in λ):

λ |= f if for all i ≥ 0: λi |= f .
λ |= ff if λ1 |= f .

For brevity we omit the treatment of variables. This can be done in the usual
straightforward way. All variables which are not explicitly bound by a quantifier
are assumed to be universally quantified. Fully-fledged definitions of syntax and
semantics of first-order order-sorted temporal logics for object specification can
be found for instance in [SSC95] or [Con96].

Example. Here, we only present some temporal logic formulas representing
properties of the objects described in Fig. 1. We start with the effect an event

Towards an Agent-Oriented Framework 67

occurrence has on attributes. For instance the effect of Open events for account
objects is represented by the following temporal logic formula:

(a.∇Open(B, N, H) → f(a.Bank = B ∧ a.No = N ∧ a.Holder = H))

Due to the fact that Open is a birth event it may only occur once in the life of
an object. This property being inherent to the object model of the specification
language Troll can be expressed by:

(a.∇Open(B, N, H) → f ¬(∃B′, N ′, H ′ : a.∇Open(B′, N ′, H ′)))

Event calling as it may be specified for Transfer events in bank objects could
be expressed by temporal logic formulas as follows (where b refers to a bank
object):

(b.∇Transfer(A1, A2, M) → (Account(A1).∇Withdrawal(M)∧
Account(A2).∇Deposit(M)))

Evolving temporal Logic (ETL). Based on the linear temporal logic described
before we have to find an extension for the treatment of the special attribute
having sets of first-order formulas as values. In order to represent this special
property we introduce a corresponding predicate V into our logic. This predicate
is used to express the current validity of the dynamic behavior axioms. For
simplicity, we restrict our consideration to one special predicate over first-order
temporal formulas.1

This predicate is used to express the state-dependent validity of first-order
formulas: V(ϕ̃) holds in a state (at an instant of time) means that the specifica-
tion ϕ is valid w.r.t. that state.

In a more formal way we can express this as follows: if V(ϕ̃) holds for a
(linear) life cycle λ (i.e., λ |= V(ϕ̃)) then ϕ holds for λ as well:

λ |= V(ϕ̃) implies λ |= ϕ

In order to avoid severe problems especially caused by substitution we assume V
to work only on syntactic representations of first-order temporal formulas instead
of the formulas themselves. Here, we use the notation ϕ̃ to distinguish such a
syntactic representation from the formula ϕ. For a correct formal treatment we
have to define an abstract data type Formula for first-order temporal formulas
as possible parameter values for V. In addition a function translating values of
this abstract data type into corresponding formulas is needed.

W.r.t. the reflection of V(ϕ̃) on the first-order level, we may establish the
following axiom for ETL:

V(ϕ̃) → ϕ

1 For dealing with several objects having different sets of currently valid behavior
axioms, we could extend this view to several predicates or to introduce an additional
parameter to the predicate for referring to different objects. In the same way, we can
deal with the case that one object has several of these attributes.

68 Stefan Conrad, Gunter Saake, and Can Türker

By means of the predicate V we simulate the finite set of behavior axioms which
are currently valid. Thus V(ϕ̃) can be read as “ϕ̃ is in the set of currently valid
behavior axioms”. Due to V(ϕ̃) → ϕ, it is sufficient that V holds only for a
finite set of specification axioms because the theory induced by these axioms is
generated on the first-order level in the usual way.

Please note that V(ϕ̃) can be considered as an elementary proposition in
ETL. Therefore, we may assume that for each state si in a life cycle λ there
is a truth assigning function denoting the validity of V(ϕ̃) for each first-order
formula ϕ.

¿From the definition given before and from the usual properties of the tem-
poral operators we can now immediately conclude:

λ |= V(ϕ̃) implies ∀i ≥ 0 : λi |= ϕ

λ |= V(3̃ϕ) implies ∃i ≥ 0 : λi |= ϕ

This is due to λ |= V(ϕ̃) implies λ |= ϕ and λ |= ϕ is defined by ∀i ≥ 0 :
λi |= ϕ (and analogously for 3ϕ). This special property is depicted in Fig. 3:
Assume V(ϕ̃) holds in state si in a life cycle λ. Then ϕ holds in all the states
si, si+1, si+2, . . . — independent of whether V(ϕ̃) is true in si+1, si+2, . . . There-
fore, it should be clearly noted that there is a big difference between V(ϕ̃) and
V(ϕ̃). Once V(ϕ̃) has become true, ϕ remains true forever. In contrast, if V(ϕ̃)
becomes true, ϕ needs only to remain true as long as V(ϕ) does.

��
��

��
��

��
��

��
��

- - - - -λ : · · · si−1 si si+1 si+2 · · ·

..........................
.
..

.
..

.............
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.. .

· · · V i−1 V i V i+1 V i+2 · · ·

Fig. 3. Interpreting Evolving Temporal Logic.

For the events manipulating the special attribute Axioms (in the specification
called mutators) we need counterparts in the logic. For a general manipulation of
the predicate V we introduce two special events axiom+(ϕ̃) and axiom−(ϕ̃) for
adding an axiom to V and for removing an axiom from V, respectively. From the
logical point of view these two events are sufficient for representing all possible
ways of manipulating the attribute Axioms. As introduced before we use the
notation ∇axiom+(ϕ̃) for denoting the occurrence event axiom+ (analogously
for axiom−). For occurrences of these events the following axioms are given:

∇axiom+(ϕ̃) → fV(ϕ̃)

∇axiom−(ϕ̃) → f¬V(ϕ̃)

Towards an Agent-Oriented Framework 69

∇axiom+(ϕ̃) (or ∇axiom−(ϕ̃)) leads to V(ϕ̃) (¬V(ϕ̃), resp.) in the subsequent
state. Frame rules are assumed restricting the evolution of V to changes which
are caused by occurrences of the events axiom+ and axiom−:

¬V(ϕ̃) ∧ fV(ϕ̃) → ∇axiom+(ϕ̃)

V(ϕ̃) ∧ f¬V(ϕ̃) → ∇axiom−(ϕ̃)

Before we show how to formulate some properties specified in Fig. 2 we want to
briefly discuss the understanding of negation w.r.t. the predicate V. The question
to answer is whether V(¬̃ϕ) is different from ¬V(ϕ̃). The answer is quite simple:
From λ |= V(¬̃ϕ) it follows that λ |= ¬ϕ. In contrast we cannot derive the same
from ¬V(ϕ̃). Therefore, V(¬̃ϕ) and ¬V(ϕ̃) have to be distinguished. This is of
course not surprising because it corresponds to our intuition about the predicate
V.

Another important issue we do not discuss in full detail is a proof system for
ETL. In fact, we think of taking a proof system for first-order linear temporal
logic (like OSL [SSC95]) and extending it a little bit in order to get a grasp of
the predicate V.

4.2 Expressing the Example Using ETL

In the example given in Fig. 2 several properties are specified for the special
attribute Axioms. Here, we formulate some of them as ETL formulas where the
attribute Axioms is represented by the special predicate V. Due to the fact that
we have to distinguish between different agents we prefix each occurrence of V in
a formula by a variable (or an agent name) referring to the agent concerned. This
corresponds to the way we have prefixed predicates denoting an event occurrence
for an agent before.

In all formulas given below there is an implicit universal quantification over
all variables (including ϕ̃). Please recall that we assume ϕ̃ to be a variable over
an abstract data type Formula.

The way we express the initial value property for Axioms, i.e., that directly
after the occurrence of the birth event Open there is no formula ϕ̃ for which V(ϕ̃)
holds is a little bit tricky:

(fa.V(ϕ̃) → ¬a.∇Open(B, N, H))

The effect the so-called mutator event AddAxioms has on the value of Axioms
can be described by simply reducing the occurrence of AddAxioms to occurrences
of the special pre-defined event axiom+:

(a.∇addAxioms(Φ̃) ∧ ϕ̃ ∈ Φ̃ → a.∇axiom+(ϕ̃))

For the mutator event ResetAxioms we choose a similar way of expressing its
effect:

(a.∇ResetAxioms ∧ a.V(ϕ̃) → a.∇axiom−(ϕ̃))

70 Stefan Conrad, Gunter Saake, and Can Türker

Considering the property of axiom+ described before we can immediately con-
clude:

(a.∇ResetAxioms∧ a.V(ϕ̃) → f¬a.V(ϕ̃))

Finally, the effect of the mutator event RemoveAxioms can be described by:

(a.∇RemoveAxioms(Φ̃) ∧ ϕ̃ ∈ Φ̃ → a.∇axiom−(ϕ̃))

Obviously, it is possible to express a nearly arbitrary manipulation of the behav-
ior specification. From a pragmatic point of view this is not a desirable property.
Therefore, we think of restricting the possibilities by means of the specification
language. The specification language should only allow those ways of manipulat-
ing the dynamic behavior specification which can be captured by the logic in a
reasonable way. Furthermore, we have to make sure that only certain users (rep-
resented by special objects or agents) are allowed to change the dynamic part of
the specification. For that, additional mechanisms are needed in the specification
framework.

5 Conclusions

In this paper we have motivated the necessity of evolving specifications in the
area of information systems. As a rather straightforward step to modeling in-
formation systems dynamics, we presented a first approach of an agent-oriented
specification framework. For that, we sketched the concept of an agent as a fur-
ther evolution of the traditional concept of object. Here, we showed that the
concept of agent overcomes the limitations of current object models to describe
object behavior evolution. This is due to the fact that the agent paradigm allows
agents to have changing goals, behavior, constraints, etc.

Our presented approach bases on the idea of “states as theories” as described,
for instance, in [SSS95]. We proposed a two-level specification framework. The
first level contains basic axioms describing usual events and their fixed effects on
the specified attributes. In the second level we allow to specify (meta) axioms
which describe the possible evolution of the agent specification. Thereby, we are
able to consider dynamically changing behavior of agents and agent systems.
Furthermore, we sketched an extension of linear temporal logic (called ETL,
Evolving Temporal Logic) which allows us to express dynamically changing be-
havior within the logic. Thereby, it becomes possible to reason about changes of
behavior. In [CRSS98] the same idea of separating two levels of specification is
applied as extension to OSL [SSC95].

We do not want to conceal that there are several properties of agents of
which we do not exactly know at the moment how to integrate them into the
framework we proposed, for example planning and conflict resolving facilities of
agents, and autonomy issues (e.g. which request must be fulfilled by an agent).

A nice application area for agent-oriented specification is the area of federated
database or information systems. In a federation the component systems are
allowed to operate in an autonomous way (at least, up to a certain degree). Most

Towards an Agent-Oriented Framework 71

of the concepts which distinguish agent-oriented specification from traditional
object-oriented specification can be applied in a natural way in such a scenario.
In [TSC97b,TSC97a] we present first examples and discuss basic principles for
applying an agent-oriented approach to specifying federated systems.

Besides, we have to investigate how far we can allow dynamic signature mod-
ification. In order to model evolutionary behavior adequately, it seems to be
necessary to allow the dynamic specification of additional events. If we allow
arbitrary formulas as parameters for the mutators, it is easy to add new events
into the specification during the lifetime of an agent. When defining such events
we also may need the specification of additional mutators which describe the
evolution of these events.

On the other hand, if we do not allow arbitrary formulas as parameters, only
the behavior of existing events may be changed and thus we have a restricted
evolution of agents. Furthermore, we have to check if we need additionally at-
tributes which may be integrated into the specification during the lifetime of an
agent.

In conclusion, we can state that although there are many open questions,
it is obvious that the concept of agent can be useful especially for modeling
information systems consisting of components which are partially autonomous.

References

Bro92. M. L. Brodie. The Promise of Distributed Computing and the Challenges of
Legacy Systems. In P. M. Gray and R. J. Lucas, editors, Advanced Database
Systems, Proc. of the 10th British National Conf. on Databases, BNCOD 10,
Aberdeen, Scotland, July 1992, Lecture Notes in Computer Science, Vol. 618,
pages 1–28. Springer-Verlag, Berlin, 1992.

Buc91. A. P. Buchmann. Modeling Heterogeneous Systems as an Active Object
Space. In Implementing Persistent Object Bases, Principles and Practice,
Proc. of the 4th Int. Workshop on Persistent Object Systems, Martha’s Vine-
yard, MA, USA, September 23–27, 1990, pages 279–290. Morgan Kaufmann
Publishers, San Mateo, CA, 1991.

Con96. S. Conrad. A Basic Calculus for Verifying Properties of Interacting Objects.
Data & Knowledge Engineering, 18(2):119–146, March 1996.

CRSS98. S. Conrad, J. Ramos, G. Saake, and C. Sernadas. Evolving Logical Specifi-
cation in Information Systems. In J. Chomicki and G. Saake, editors, Logics
for Databases and Information Systems, chapter 7, pages 199–228, Kluwer
Academic Publishers, Boston, 1998.

CS97. S. Conrad and G. Saake. Extending Temporal Logic for Capturing Evolving
Behaviour. In Z.W. Raś and A. Skowron, editors, Foundations of Intelligent
Systems (Proceedings, 10th International Symposium, ISMIS’97, Charlotte,
North Carolina, USA, October 1997), Lecture Notes in Artificial Intelligence,
Vol. 1325, pages 60–71. Springer-Verlag, Berlin, 1997.

FM91. J. Fiadeiro and T. Maibaum. Towards Object Calculi. In G. Saake and
A. Sernadas, editors, Information Systems – Correctness and Reusability,
Informatik-Bericht No. 91–3, pages 129–178, Technische Universität Braun-
schweig, 1991.

72 Stefan Conrad, Gunter Saake, and Can Türker

FW93. R. B. Feenstra and R. J. Wieringa. LCM 3.0: A Language for Describing Con-
ceptual Models. Technical Report, Faculty of Mathematics and Computer
Science, Vrije Universiteit Amsterdam, 1993.

GK94. M. R. Genesereth and S. P. Ketchpel. Software Agents. Communications of
the ACM, 37(7):48–53, July 1994.

HPS93. M. Huhns, M. P. Papazoglou, and G. Schlageter, editors. Proc. of the
Int. Conf. Intelligent and Cooperating Information Systems, Rotterdam, The
Netherlands. IEEE Computer Society Press, May 1993.

HSJ+94. T. Hartmann, G. Saake, R. Jungclaus, P. Hartel, and J. Kusch. Revised
Version of the Modelling Language Troll (Version 2.0). Informatik-Bericht
94–03, Technische Universität Braunschweig, 1994.

JS93. A. Jones and M. Sergot. On the Characterisation of Law and Computer
Systems: The Normative System Perspective. In J.-J. Ch. Meyer and R. J.
Wieringa, editors, Deontic Logic in Computer Science: Normative System
Specification, chapter 12, John Wiley & Sons, Inc., 1993.

JSHS96. R. Jungclaus, G. Saake, T. Hartmann, and C. Sernadas. Troll – A Language
for Object-Oriented Specification of Information Systems. ACM Transac-
tions on Information Systems, 14(2):175–211, April 1996.

Jun93. R. Jungclaus. Modeling of Dynamic Object Systems — A Logic-Based Ap-
proach. Advanced Studies in Computer Science. Vieweg-Verlag, Wiesbaden,
1993.

Mey92. J.-J. Ch. Meyer. Modal Logics for Knowledge Representation. In R. P. van de
Riet and R. A. Meersman, editors, Linguistic Instruments in Knowledge En-
gineering, pages 251–275. North-Holland, Amsterdam, 1992.

Rei84. R. Reiter. Towards a Logical Reconstruction of Relational Database Theory.
In M. L. Brodie, J. Mylopoulos, and J. W. Schmidt, editors, On Conceptual
Modeling, pages 191–239, Springer-Verlag, New York, NJ, 1984.

Rya93. M. Ryan. Defaults in Specifications. In A. Finkelstein, editor, Proc. of the
IEEE Int. Symposium on Requirements Engineering (RE’93), San Diego,
CA, pages 142–149, IEEE Computer Society Press, 1993.

Rya94. M. Ryan. Belief Revision and Ordered Theory Presentation. In A. Fuhrmann
and H. Rott, editors, Logic, Action and Information, De Gruyter Publishers,
1994.

SCT95. G. Saake, S. Conrad, and C. Türker. From Object Specification towards
Agent Design. In M. Papazoglou, editor, OOER’95: Object-Oriented and
Entity-Relationship Modeling, Proc. of the 14th Int. Conf., Gold Coast, Aus-
tralia, December 1995, Lecture Notes in Computer Science, Vol. 1021, pages
329–340. Springer-Verlag, Berlin, 1995.

Sho93. Y. Shoham. Agent-Oriented Programming. Artificial Intelligence, 60(1):51–
92, March 1993.

SJH93. G. Saake, R. Jungclaus, and T. Hartmann. Application Modelling in Hetero-
geneous Environments Using an Object Specification Language. Int. Journal
of Intelligent and Cooperative Information Systems, 2(4):425–449, 1993.

SSC95. A. Sernadas, C. Sernadas, and J. Costa. Object Specification Logic. Journal
of Logic and Computation, 5(5):603–630, 1995.

SSE87. A. Sernadas, C. Sernadas, and H.-D. Ehrich. Object-Oriented Specification
of Databases: An Algebraic Approach. In P. M. Stocker and W. Kent, ed-
itors, Proc. of the 13th Int. Conf. on Very Large Data Bases (VLDB’87),
Brighton, England, pages 107–116. Morgan Kaufmann Publishers, Los Al-
tos, CA, September 1987.

Towards an Agent-Oriented Framework 73

SSG+91. A. Sernadas, C. Sernadas, P. Gouveia, P. Resende, and J. Gouveia. OBLOG
— Object-Oriented Logic: An Informal Introduction. Technical Report, IN-
ESC, Lisbon, 1991.

SSS95. G. Saake, A. Sernadas, and C. Sernadas. Evolving Object Specifications. In
R. Wieringa and R. Feenstra, editors, Information Systems — Correctness
and Reusability. Selected Papers from the IS-CORE Workshop, pages 84–99,
World Scientific Publishing, Singapore, 1995.

TCS96. C. Türker, S. Conrad, and G. Saake. Dynamically Changing Behavior: An
Agent-Oriented View to Modeling Intelligent Information Systems. In Z. W.
Raś and M. Michalewicz, editors, Foundations of Intelligent Systems, Proc. of
the 9th Int. Symposium on Methodologies for Intelligent Systems, ISMIS’96,
Zakopane, Poland, Lecture Notes in Artificial Intelligence, Vol. 1079, pages
572–581. Springer-Verlag, Berlin, June 1996.

TSC97a. C. Türker, G. Saake, and S. Conrad. Modeling Database Federations in
Terms of Evolving Agents. In F. Pin, Z. W. Ras, and A. Skowron, editors,
ISMIS 1997 — Poster Proceedings of the 10th Int. Symposium on Method-
ologies for Intelligent Systems, Charlotte, North Carolina, October 15–18,
1997, pages 197–208, Oak Ridge National Laboratory, 1997.

TSC97b. C. Türker, G. Saake, and S. Conrad. Requirements for Agent-based Modeling
of Federated Database Systems (Extended Abstract). In A. Cesta and P.-Y.
Schobbens, editors, ModelAge 97, Proc. of the 4th ModelAge Workshop on
Formal Models of Agents, Certosa di Pontignano, Italy, January 15–17, 1997,
pages 335–343, National Research Council of Italy, Institute of Psychology,
1997.

WJ95. M. J. Wooldridge and N. R. Jennings. Agents Theories, Architectures, and
Languages: A Survey. In M. J. Wooldridge and N. R. Jennings, editors, Intel-
ligent Agents, Proc. of the ECAI’94 Workshop on Agent Theories, Architec-
tures, and Languages, Amsterdam, The Netherlands, August 1994, Lecture
Notes in Artificial Intelligence, Vol. 890, pages 1–39. Springer-Verlag, Berlin,
1995.

The Impossibility of Modelling Cooperation

in PD-Game

Rosaria Conte, Cristiano Castelfranchi, and Roberto Pedone

IP-CNR - Division of AI, Cognitive and Interaction Modelling
Social Behaviour Simulation Project

{rosaria,cris}@pscs2.irmkant.rm.cnr.it

Abstract. The possibility of Cooperation is still a matter of debate in the field of
GT. Generally speaking, the emergence of cooperation is seen in the prospect of
re-encounter as a forward-looking, calculated, and self-interested decision to
cooperate. In this paper, it is argued that neither one-shot nor repeated versions of
PD-game can account for a theory of cooperation as distinct from other forms of
social action, and particularly bargaining it. It is also argued that in order to
provide a theory of cooperation it is necessary to ground social interdependence
on a general theory of action and planning. More precisely, two theses are
presented and discussed: (i) When the PD-game structure is applied to ideal-type
situations, one or other of its formal property does not hold. (ii) A plan-based
model of social dependence is necessary for disentangling cooperation from other
types of social action, especially bargaining: while PD-game applies to the latter,
it does not apply to the former! Even in its repeated version, PD-game cannot
account for cooperation as distinct from honest bargaining.

1 Introduction

The impossibility of cooperation in the one-shot Prisoners' Dilemma (PD) game is
largely acknowledged. Indeed, some authors (Howard, 1971; Gauthier, 1986; 1993)
have attempted to enable PD-game to account for one-shot cooperation; but others
(Binmore, 1994) claim such an attempt to be irrational.

In short, the possibility of cooperation is still a matter of debate in the field of GT.
Generally speaking, the emergence of cooperation is seen in the prospect of re-
encounter. To use the words of Axelrod (1997: 12), game-theoretical models explain
cooperation in the shadow of the future, as a forward-looking, calculated, and self-
interested (although an "enlightened" self-interest, as is precised by Binmore, 1994)
decision to cooperate (see also Macy, 1998). If one-shot PD-game leaves no room for
cooperation, repeated versions of the same game do (see Axelrod 1984).

In this paper we will endeavour to show that neither one-shot nor repeated
versions of the PD-game can account for a theory of cooperation as distinct from
other forms of social action, and particularly bargaining. We will argue that in order
to provide a theory of cooperation it is necessary to ground social interdependence on
a general theory of action and planning as provided within the cognitive science and
AI framework (for the most classical version of a theory of planned action, see Miller

J.-J. Ch. Meyer, P.-Y. Schobbens (Eds.): Formal Methods of Agents, LNAI 1760, pp. 74-89, 1999.
 Springer-Verlag Berlin Heidelberg 1999

 The Impossibility of Modelling Cooperation in PD-Game 75

et al., 1960). More precisely, this paper will present a discussion of the following
theses:

(a) although PD-game has been said to be applicable to several social phenomena
and in different domains (Axelrod, 1990), the limits of application are yet unclear: to
which ideal-type social conditions does the PD-game applies? In this paper we will
show that a plan-based model of social dependence (Castelfranchi et al., 1992) allows
to deduce applicability of the PD-game; in other words, instead of testing game-
theoretical models against empirical evidence, we suggest a lower-level theoretical
approach for checking the applicability of the Prisoner's Dilemma, and predicting the
emergence of either defection or cooperation;

(b) a plan-based model of dependence is also necessary for disentangling
cooperation from other types of social action, especially bargaining: while PD-game
applies to the latter, it does never apply to the former! Even in its repeated version,
PD-game cannot account for cooperation as distinct from honest bargaining.

The paper is organised as follows:
- in the following section, after a brief summary of the PD-game properties, a plan-

based model of interdependence, defined in terms of goals and actions, will be shortly
presented. Some ideal-type social situations will be thereby distinguished, in
particular cooperation and bargaining. One-shot cooperation will be shown to be
feasible, although unaccountable in terms of a PD-game. A repeated version of the
game is therefore proved to be unnecessary to account for cooperation.

- In the third section, the repeated version of the PD-game will shown to be also
insufficient. In order to model cooperation, it is no use to extend the temporal
perspective of the PD-game. This solution is inadequate because again it fails to
distinguish cooperation from reciprocity.

- Finally, in the fourth section, we will summarise the advantages of a notion of
cooperation as distinct from bargaining.

2 A Plan-Based View of Social Dependence and the Applicability

of PD-Game

In AI, cognitive science, and even in the common intuition, actions are (tentative)
solutions to existing problems, or, means for achieving goals, applicable under given
conditions. The structure of action cannot be essentially incorporated into the PD-
game structure, because such a structure does not allow for goals, conditions, and
problems, but only for payoffs (which are explicitly considered as primitive in game-
theoretical models, see Binmore 1994), to be represented. While building its
theoretical foundations on a game-theoretic grounds, social scientists actually
dispense with at least one the major contributions that AI and cognitive science have
given to the scientific community: a theory of action and planning. We will resort to
such a contribution to give grounds and reasons to the interdependent payoffs
displayed in a game-theoretical matrix.

Rosaria Conte, Cristiano Castelfranchi, and Roberto Pedone 76

2.1 PD-Game Properties

The PD-game is a fundamental game applied in several fields for several purposes
(Axelrod 1990). One of its major applications is the study of human cooperation (see,
for example, G. Hardin, 1968; R. Hardin, 1982; Margolis, 1982; Olson, 1965; Taylor,
1987; Axelrod, 1984). The idea underneath was that if we are not able to get people to
cooperate in a simple situation like that depicted by the PD game, we can forget about
deriving rational cooperation at all.

Here, we will clarify what is usally meant by a game, and in particular by a PD-
game.

A game is a situation of interdependence between the payoffs of two or more
agents' (usually called, players) moves. Given a set of moves and a set of players
(e.g., mi and mj, and two players), and their possible combinations (in our case, (mj,
mj), (mi,mi), (mj, mi), (mi, mj)), a game is a situation in which, (a) the players' actual
moves instantiate one combination, (b) the payoffs that each player obtains are
interdependent: the player performing mi will obtain a different payoff according to
whether the opposer plays mi or mj. A PD-game is a game in which agents choose
among two possible moves (C and D, which stand for cooperate and defect; however,
it should be noted that the "cooperative" or "non-cooperative" character of the moves
is illusory1, and lies only in the specific structural properties of the game, which will
be expressedbelow.

The PD-game moves give rise to four possible combinations (DC, CC, DD, CD),
with the relative payoffs. Let us present the payoff matrix of the PD using, for
purpose of clarity, the Maynard-Smith's (1982) moves of dove and hawk, where dove
stands for the cooperative move (keep silent) and hawk stands for the non-cooperative
move (confess):

 dove hawk dove hawk dove hawk

dove
y

y
x

0
 2

2
3

0
 3

3
6

0

hawk
0

x
z

z
 0

3
1

1
 0

6
1

1

Fig. 1: Prisoners' Dilemmas (drawn from Binmore, 1994: 103)

where x > y > z > 0. For brevity, we use Axelrod's symbols:

(a) 1, 2 = players
(b) dove, hawk = possible actions

1
The structure of PD-game more is usually applied to a fictitious and rather cumbersome

example, of which many variants circulate. The originary draft (as reported by Binmore,
1994, is as follows: the questor of Chicago is on the tracks of two well-known delinquents,
but he has no sufficient elements to arrest them. Consequently, he constructs a plan: he tells
them that if they both will deliver information on each other (non-cooperative move), they
will obtain a discount on the sentence (D,D). If, alternatively, they both keep silent, they will
be sentenced to a mild penalty (in absence of elements for a serious virdict). But if one
delivers information on the other while the latter keeps silent (D,C), ther latter will be
emprisoned, while the former will be set free.

 The Impossibility of Modelling Cooperation in PD-Game 77

(c) R (reward) = (dove,dove) payoff
(d) T (temptation) = (hawk,dove) payoff
(d) S (sucker) = (dove,hawk) payoff

to which we add

(e) B (boomerang) = (hawk, hawk) payoff

A number of properties apply to this structure. These explicit properties of the
structure of the Prisoner's Dilemma, which allow to set the payoffs to given values,
are as follows:

(a) Preference order: payoffs are such that T > R > B > S; this in substance means
that a PD-game structure is such that temptation to cheat is always possible and that
hawk is a dominant strategy (Eichberger, 1993), since it is one's best move whatever
the opponent decides to do (in fact, T > R, and B > S); it is actually a strongly
dominating strategy (Binmore, 1994), because hawk is always the best choice, not
only one that which provides the highest payoff in a subset of the extended form of
the game (this latter would be a weakly dominating strategy). In short, a PD-game is
one in which cheat is always convenient.

(b) Pareto-inefficiency assumption: payoffs are such that R >
T+S

2
. The outcome

of the PD-game is Pareto-inefficient, since the average outcome of cooperation (R) is

higher than the average result of non cooperating
T+S

2
.

(c) The actions remain the same, but their payoffs vary interdependently. Actions
must produce benefits with different payoffs, but variability depends exclusively on
the players' interdependence.

But there are also some implicit assumptions, namely:

(d) actions are executed to achieve goals, to obtain benefits, which have payoffs
(e) actions imply costs,
(f) payoffs should be greater than costs.

2.2 Main Theses

As game-theorists are well-aware of (see, for example Binmore 1994: 102), the
assignment of payoffs is arbitrary: payoffs are not derived from a theory of action.
They are inputs to decision, rather than results of a model of action. As a
consequence, the matrix does not derive from a model of cooperative action. Indeed,
it itself is, or claims to be, one such model, that is to say, a mathematical
representation of social interdependence.

We claim that just because of this, PD game is inapplicable to cooperation. If one
tries to apply it to real-life situations, one of the following consequences occurs,

Rosaria Conte, Cristiano Castelfranchi, and Roberto Pedone 78

- the preference order is modified in such a way that hawk is no more a dominating
strategy (it is not always preferable), and/or

- R =
T+S

2
, meaning that the Pareto-inefficiency assumption does not hold. This

in substance means that there is no incentive to cooperate, and/or
- agents do not achieve a common goal, but individually different goals.

To see this, we will try to apply the PD-game to a number of paradigmatic social

situations. But beforehand, we will present a plan-based model of social dependence
(Castelfranchi et al., 1992) which will help us identify ideal-type cases cooperation
situations.

2.3 Interdependence in Action

Let us distinguish two types of dependence.

Mutual dependence. This occurs when two or more agents <x1, x2, ..., xn> have a
shared goal and depend on each other to achieve it. Two or more agents are said
(Conte et al., 1991) to have a shared goal when they have the same world state p as a
goal <(GOAL x1 p) & (GOAL x2 p) & ... & (GOAL xn p)>, and p does not mention
the goal holder as a beneficiary of one's own goal (e.g., "Have the left coalition party
win the elections", or "Have the cake cooked", etc.). More formally (for a complete
formal definition of this notion in terms of a first-order language, see Castelfranchi et
al., 1992), two agents x and y depend upon each other tow achieve a shared goal gi,
when for any plan pi <a1, a2,..., an> belonging to the set of plans Pi which is
believed to achieve gi, there are at least,

- one action ai not belonging to the set of actions Ax that x is competent upon;
- and one action aj -with ai always ��aj- not belonging to the set of actions Ay

that y is competent upon.

Reciprocal dependence. This occurs when two agents x and y depend upon each
other to achieve two (or more) different goals. More formally (see again Castelfranchi
et al., 1992), x and y are in reciprocal dependence iff, for any two goals gx and gy -
with gx always ��gy - such that gx is an instance of x's goal set Gx and gy is an
instance of y's goal set Gy, it is the case that

- for any plan pi belonging to the set of plans Px which is believed to achieve gx
there is at least one action ai not belonging the set of actions Ax that x is competent
upon;

- and for any plan pj belonging to Py which is believed to achieve py , there is at
least one action aj -with ai always ��aj- not belonging to the set of actions Ay that y
is competent upon.

Two rather different types of social action follows from the above definition:

 The Impossibility of Modelling Cooperation in PD-Game 79

- cooperation occurring when mutually dependent agents execute the plan pi to
achieve their common goal gi;

- exchange2, occurring when reciprocally dependent agents execute each a share of
the other's plan to achieve their different goals.

In what follows, it will be argued that PD-game applies to reciprocal dependence,
and therefore depicts exchange; but it does not apply to mutual dependence and
therefore does not represent cooperation.

2.4 PD-Game and Mutual Dependence

The agents goals vary along the following dimensions.

(a) Cost-dependent Vs independent: either the benefit3 is a continuous variable
depending on the cost of contribution (e.g., the control of pollution), or it is a none-
or-all phenomenon (for example, a surgery); if the benefit is cost-dependent, the
amount of benefit achieved if all contributors cooperate to it will be higher than
would be the case if some contributors cheat. Viceversa, if the benefit is cost-
independent, the amount of benefit produced is the same, whether someone is
cheating or not.

(b) Global Vs distributed: the common benefit may be enjoyed either jointly (to
dethrone a tyrant) or distributedly (to split a booty) by contributors.

To the goal dimensions, we will add an action dimension of variability:

(c) iterated Vs complementary actions: the cooperative plan is either iterated

(including several instances of one action, as in the case of jointly lifting a sofa) by,
or distributed among, contributors (including several distinct types of action, like in a
football team). Complementary actions imply that the benefit cannot be achieved if
complementary actions are not carried out.

These dimensions are not exhaustive but they allowed us to distinguish several

prototypical situations. They seem particularly relevant in the context of the present
argument because they specify the conditions for cheating: cheat can take place at at
least two levels:

2We speak here about exchange, rather than bargaining, since in the present context we are not

distinguishing the exchange of actions from the exchange of resources. However, the notion
of reciprocal dependence defined above includes dependence from each others' resources. In
the latter case, we speak of bargaining. Throughout the rest of the paper, bargaining will be
preferred over exchange because the notion of bargaining seems to fit better the PD-game
context.

3
From now on, we will speak about benefit, rather than goals, in order to emphasize the

quantitative aspect of goal-achievement, which is essential within a game-theoretical model.
Quantity, by the way, is neither a primary nor a necessary specification of goals, which are
symbolic representations.

Rosaria Conte, Cristiano Castelfranchi, and Roberto Pedone 80

(a) at the level of the goal: in which case the hawk move is "don"t share"; this
obvioulsy implies that, when the benefit is global, cheat cannot occur at the level of
the benefit;

(b) at the level of the action: in which case, the hawk move is "don't contribute";
this implies that cheat cannot occur with complementary actions.

In particular, the strongest mutual dependence holds with global benefit and
complementary action, and the weakest in the opposite situations. While mutual
dependence never leaves room to PD-game, it may allow for defection (although not
as a dominant strategy). In particular,

- mutual dependence does never allow for PD-game, and
- strong dependence does not even allow for defection; but
- weak mutual dependence allows for defection as a non-dominant strategy.

Let us examine the situations which are drawn from the interplay between these
dimensions.

Cost-dependent global benefit with iterated actions. The benefit achievement is a
continuous variable, but cannot be split and therefore enjoyed separately by
contributors; furthermore the plan to achieve it is iterated by them.

Let us consider as an example the control of pollution, (this is a typical example of
a public good in the Olson's sense). This can be formulated in terms of a PD-game
structure by instantiating action dove to 'reduce production of poison gas', and in turn
action hawk to 'not reduce' such production. Obviously, the degree of pollution can
vary on a continuous scale depending on the entity of reduction. Therefore, the joint
benefit (b) is a continuous variable based upon cost of reduction (c).

Thesis 1.

Either the preference order (R > T > B > S) does not hold (and as a consequence,
hawk is not always preferable), or the assumption of rational action does not hold.

Proof 1.

Premises
(p1) On the grounds of the implicit assumption (iii) mentioned above, the joint

benefit is supposed to be greater than the cost sustained to achieve it: b > c.
(p2) A fortiori, the cooperative global reward is higher than costs, which are

distributable; since for simplicity we are assuming that the game is played by two
agents only: R = (b - c/2) >0 �

(p3) The benefit of temptation must be lower than the benefit of global
cooperation (bDC

4
 < bCC) since the benefit is proportioned to costs.

(p4) B= 0 �����	
���-one is contributing to the benefit.
(p5) D = "don't contribute", since benefit is global.

Consequences

4
This stands for the total benefit of the (D,C) combination.

 The Impossibility of Modelling Cooperation in PD-Game 81

(c1) By (p3), bCC > bDC.
(c2) For (p5), T = (bDC - 0).
(c3) Two alternatives,
 If bDC ���CC - c/2),
 then R �������
�
�
�	
����
��������������������>B>S)
 If bDC > (bCC - c/2),
 if (bDC - c/2) > O
 then S > B; preference order: (T>R>S ���������������
 if (bDC - c/2) < 0
 then c > b; thereby infringing the assumption of rational action.
Therefore, either the preference order is different from that which is assumed by

the PD-game structure or the assumption of rational action does not hold.

Cost-independent global benefit with iterated actions. The benefit is none-or-all,
independent on the entity of the costs sustained from contributors, and cannot be split
among them, and is achieved by several instances of the same action.

Typical examples are the parliamentary obstructionism, where deputies belonging
to the same party or coalition take successively the word to prevent that a given law
is voted. (Political) elections also belong to this category: people vote for a given
candidate, who will be elected only if the votes received will exceed a certain
threshold. If their candidate will be elected, supporters will enjoy a joint benefit.

Suppose the common benefit is to have the labour party winning the elections. The
cooperative action C is therefore 'vote' while the non-cooperative action D, by those
expected supporters who went instead to the beach, is 'not vote'.

We have two alternatives here: the agents will obtain their global benefit (the
candidate will be elected) or they will not. For the purpose of our reasoning, the
former alternative is all we need to consider.

Thesis 2.

The outcome of S is no-lower than the outcome of B, thereby infringing the
preference order (R > T > B > S). As a consequence, hawk is not a dominating
strategy (is not always preferable).

Proof 2.

Premises
(p1) Since benefit is not distributable, the payoff of the (dove, dove) combination

is equal to the benefit minus the cost of each contributor: R = b - c/2.
(p2) b > c/2 for the assumption of rational action.
(p3) Since benefit is independent of cost, there is no difference between the

(dove,dove) benefit and the (hawk, dove) benefit bCC = bDC.
(p4) D = don't contribute (don't vote).
(p5) Since no benefit will be obtained if no-one votes, B is always ����

Consequences
We have two possible consequences, depending on whether (') or not (") the

quorum is reached and the candidate is elected:

Rosaria Conte, Cristiano Castelfranchi, and Roberto Pedone 82

(c1') T > R, for the premises (p1) and
(p3),

(c1") T > R, for the premise (p1);

(c2') R > 0, for premise (p2); (c2") R < 0, by definition (the candidate
 has not been elected but the cost of
contribution has been sustained);

(c3') S = R, for the premises (p1) and (p3),
and therefore > 0;

(c3") S = R, by premise (p3), and
therefore < 0;

(c4') therefore S > B, for the premise (p4); (c4") B �� ��� ��� ��	
��	� ����� ����
therefore �������������	���������������

If candidate is elected, the preference order
will be (T>R=S>B) ����������������

If candidate is not elected, the preference
order will be (T>R=S=B) �������������
S).

In any case, the preference order infringes that which is assumed by the PD-game
assumption.

Cost-independent distributed benefit with complementary actions. The quantity of
benefit does not depend on the contribution: it is a yes/no effect of (cooperative)
action. However, it must be enjoyed distributedly, as opposed to jointly, by its
contributors. A typical example is to split a booty5: suppose two thieves decide to rob
a jewellery. One executes the actual robbery while the other does the car driving. We
have a multi-agent plan (MAP) -rob the jewellery and drive the car- and an
alternative between C and D: C is 'share' the booty; D equals to 'not share' the booty.

Suppose the value of the booty is b and the cost of the whole MAP equals to c,
where (b - c) > 0 ��		ording to the assumption of rational action -e.(iii)-, the outcomes
payoffs are as follows:

5
This may be considered by the reader to be equivalent to the Stag Hunt Game (inspired by

Rousseau (1755/1913)), where the cooperative enterprise is to hunt a deer (cf. Binmore
1994:121; several examples of this game are applied to the international relations literature
(see, for example, Jervis, 1978). Unless the players play their part in the eneterprise, this is
bound to fail. However, once the players have separated to execute each one's share of the
plan, one or the other may be tempted to trap a hare, since this is an activity which requires
no help by anyone. However, if both end up by trapping hares, they will hinder each other.
The similarity between this situation and the one we are describing is only apparent because,
unlike our example, in the Stag Hunt game, R > T, and it is not clear why a player should be
induced to defeat:

 dove hawk

dove

5

5

4

0

hawk

0

4

2

2

Fig. 2: Stag Hunt Game

 The Impossibility of Modelling Cooperation in PD-Game 83

Thesis 3

The outcome of S is no-lower than the outcome of B, thereby infringing the

preference order (R > T > B > S). As a consequence, hawk is not a dominating
strategy (is not always preferable).

Proof 3

Premises
(p1) Benefit is distributed and cost-independent: R = b/2 - c/2
(p2) (b/2 - c/2) > 0 (rational action)
(p3) b is not obtained if anyone agent does not contribute (heterogenous actions):

D = "don't share".

Consequences
(c1) by premise (p1 and p3), T = b - c/2; cheat consists of not sharing the booty;
(c2) by p3 and the definition of the game: if the hawk move is "don't share", the

(hawk, hawk) combination equals to contribute (do action needed) and then snatch
the booty from each other's hands: B = 0 - c/2;

(c3) by p1 and p3, S = 0 - c/2, and therefore S = B. The preference order is
(T>R>S = B) ������������

Cost-independent distributed benefit with iterated actions. The benefit is a yes-or-
no effect to be enjoyed separately, but the MAP includes several (in our example,
two) instances of the same action, as when two predators run at each side of the prey.
If any stops, the prey will run away, and no-one will achieve any share of the booty.
This is equal to the previous case6.

Cost-independent global benefit with complementary actions. The benefit of
cooperation is a yes-or-no effect, to be enjoyed jointly but it is achieved by
complementary actions. A typical example is teamwork, for example a car convoy:
one does the driving of a car that both want to get to destination, while the other does
the leading (the example is drawn from Cohen and Levesque 1991). Here,
interestingly, the PD-game properties do not apply. In fact to cheat at the level of
actions, which are both necessary to obtain the benefit, is impossible. But to cheat at
the level of the goal is useless, since the benefit is not distributable!

Thesis 4

Preference order is different from that which defines the PD-game structure (the
hawk move is not a dominating strategy).

Proof 4

Premises
(p1) By definition, b is not distributable: R = (b - c/2).

6
As in the previous case, the actions are both necessary to catch the prey. The argument follows

therefore the same line as before.

Rosaria Conte, Cristiano Castelfranchi, and Roberto Pedone 84

(p2) By definition, actions are complementary.
(p3) b > c.

Consequences
(c1) by p1, the hawk move (D) must be different from "don't share"; therefore, the

hawk move is "don't contribute";
(c2) by p1, R = b - c/2
(c3) by p2, B = 0 and T = 0
(c4) the previous consequences and (p3), R > T = B;
(c4) by p1, S = 0 - c/2; B > S
The preference order is (R>T=B>S) �����������

Cost-dependent global benefit with complementary actions. Here, the benefit

cannot be enjoyed separately, but it depends on the costs sustained by contributors.
Actions are complementary. The example is an orchestra giving a concert: the
elements of the orchestra are complementary, and the final result depends on the
costs sustained by each of them. The more each contributes, the better the final result
they will jointly enjoy.

Thesis 5

Either the preference order is different from that which defines the PD-game
structure (hawk is not a dominating strategy), or the assumption of rational action
does not hold.

Proof 5

Premises
(p1) By definition, b is not distributable: R = b - c/2
(p2) By definition, benefit is cost-dependent: the (hawk, dove) combination (DC)

produces a global benefit lower than the (dove, dove) dombination (CC): bCC > bDC
(p3) By definition, actions are complementary: D = "don't contribute" and B = 0
(p4) b > c.

Consequences
(c1) By (p3): T = bDC - O, and B = 0
(c2) by (p2), bDC < bCC;
(c3) Either bDC �� �CC - c/2), in which case, by previous consequence, the

preference order is R > T > B > S, or, if it is higher, it must also be the case that
(bDC - c/2) > 0, otherwise b < c, which is ruled out py (p4; see Proof 1). But if (bDC
- c/2) > 0, S = bDC - c/2 > 0, and, S > B.

Either the preference order is different from (T>R>B>S), or the assumption of
rational action does not hold (b < c).

Cost-dependent distributed benefit with iterated actions. Here, the benefit can be
shared and its amount depends on contributors: agents can both cheat at the level of
goal and at the level of contribution. The ideal-type example are the (seasonal)
restrictions in resource exploitation: people refrain from harvesting or fishing for each

 The Impossibility of Modelling Cooperation in PD-Game 85

to obtain a better fish or harvest after some time. The more they respect the
constraints, the more likely each will find resurces in the future.

Thesis 6

Either the Pareto-inefficiency assumption does not hold, or the preference order is

different from the one assumed by the PD-game structure.

Proof 6

Premises
(p1) By definition, b is distributable: R = b/2 - c/2.
(p2) By definition, benefit is cost-dependent: bDC < bCC
(p3) D = either "don't share", in which case T = bDC - c/2, while B = (0 - c/2)
or
(p4) D = "don't contribute", in which case T = bDC/2 - 0, and B = 0
(p5) b/2 > c/2.

Consequences
Two alternatives may occur:
(c'1) D = don't share: T = (bDC - c/2), and S = (0 - c/2) = B;
(c"1) D = don't contribute: T = (bDC/2 - 0), and B = 0,
If bDC/2 ���CC/2 - c/2),
then (by p2) R > T; preference order is (T>R>S=B)
if bDC/2 > (bCC/2 - c/2),
if (bDC/2 - c/2) > 0,
then S > 0; preference order is (R>T>S>B)
if (bDC/2 - c/2) ���
then b/2 < C/2, which is ruled out by (p5).
Either the preference order is diferent from that which defines the PD-game

structure, or the assumption of rational action does not hold.

Cost-dependent distributed benefit with complementary actions. This is close to
split a booty except that the amount of benefit is a function of whether
complementary actions are performed. Cheat can occur at the level of action, ("don't
contribute"), and at the level of the benefit, ("don't share"). The typical example is
farming, in which agents perform complementary actions, and the amount (harvest) is
determined by how much each contributes. However, since actions are
complementary, all agents must contribute. Participants will equally share the benefit,
although some (cheaters) will have contributed less than others.

Thesis 7

Preference order is different from that which defines the PD-game structure (hawk

is not a dominating strategy).

Rosaria Conte, Cristiano Castelfranchi, and Roberto Pedone 86

Proof 7

Premises
(p1) By definition, benefit is distributable: R = b/2 - c/2
(p2) By definition, benefit is cost-dependent: bCC/2 > bDC/2
(p3) By definition, actions are complementary: D = "don't share"
(p4) b > c.

Consequences
(c1) By (p3) T = (bDC - c/2) and B = (0 - c/2)
(c2) By previous consequence, S = (0 - C/2) = B
Preference order (T>R>S=B) �����������

To sum up, in all the situations examined agents are coooperating to achieve a

common goal. There is mutual dependence, but the degree of dependence varies with
the benefit and action dimension considered. PD-game applies to none of those
situations since one or other of its properties are infringed. In weaker dependence
situations (distributable benefit and iterated actions) defection is possible although
not dominant (see Figure 3).

cost-dependent

cost-
independent

distributable

iterated

iterated

global

Cooperation

compl.

compl.

Strong dep. Cheat at
benefit level.
Low incent. to cheat.

Weak dep. Cheat
 at benefit level.
Low incent. to cheat.

Weak dep. Cheat possible
at action level.
Hi. incentive to cheat

Mild dep.Cheat possible
at act.& benefit levels.
Mild incentive to cheat

Weakest dep. Cheat
at act. & benefit.
Highest inc.to cheat

benefit benefit

benefit

benefit

Mild dep. Cheat the level
of action.
Mild incentive to cheat.

Strongest dep.
Cheat impossible

 Strong dep. Cheat at
action level.
Low incent. to cheat.

Fig. 3: Strong and weak dependence. Room for defection

 The Impossibility of Modelling Cooperation in PD-Game 87

2.5 Reciprocal Dependence and Bargaining

Two agents enter a relation of exchange when each contributes to the partial
achievement of the other's goal. In particular, a special case of exchange, namely
barter, fits comfortably the framework of a PD-game. In bargaining, x gives y rx to
obtain ry, and y gives x ry to obtain rx; the value of rx for its recipient = value of ry
for its recipient, but value of rx for the giver is higher than the value of rx for the
recipient (and the same is true for ry).

dove = give one's resource to obtain the other's;
hawk = give nothing.
Recipient value = b;
giver's cost = c;
b > c
R = (b - c) >0;
T = b;
S = (Ø- c) <0;
B=0.

In such a situation, all the properties of PD-game and the assumptions hold.

Indeed, in one-shot bargaining, defection is a strongly dominating strategy [...].

3 Cooperation Is More than Honest Bargaining

Obviously, things change if we add a temporal perspective: in repeated games, the
more convenient solution at the individual level will also be closer to a Pareto-
efficient solution: as mathematical analysis, and many experimental findings, and
simulation results converge to show, the dove strategy becomes rational in repeated
versions of the game.

However, the dove strategy in the repeated version of the PD-game does not
emerge from mutual dependence and cooperation: in the prospect of re-encounter,
agents realise that they depend reciprocally on each other. In other words, they realise
that each needs the other to reciprocate herself. But still there is no actual
cooperation; there is no joint achievement of a common goal. There is not even a
weak form of mutual dependence. Social intelligence leads agents to understand that
they must come to an agreement, committing one before the other to reciprocate.
Indeed, commitment is needed precisely when dependence does not provide a
sufficient instrumental bind, which is another way to say that dependence is not
mutual! A self-interested agent does not care about the achievement of a goal he does
not share. Reciprocally depending agents do not share goals. Therefore, each will
care about the other's goal only as long as she is able to ensure the achievement of her
own goal. This is true alse in the repeated version of the PD-game. To sees this
suffice to recall that in finite repeated games, rational agents will reciprocate only up
to what they believe to be the last but one move. If they were cooperating in the full
sense of the word, they would do so until completion of the plan (unless they drop
their goal earlier).

Rosaria Conte, Cristiano Castelfranchi, and Roberto Pedone 88

PD is inapt to model cooperation as distinct from bargaining. Indeed, it actually
obscures an important social matter of fact, namely, that one-shot cooperation is
feasible. Actually in order to model cooperation, it is no use to extend the temporal
perspective of the PD-game! This solution is still inadequate because it fails to
distinguish cooperation from honest bargaining. GT indeed, deals with the problem of
social contract, reciprocity, etc.. We believe such a problem exists and is important.
But it does not cover all important pro-social phenomena. Cooperation is more than
simply avoiding the Hobbesian state of nature. It includes executing multi-agent
plans, that is, plans which must be executed by more than one agent in order to
achieve a common goal. In order to grasp this notion of cooperation, it seems
necessary to ground social interdependence on a lower-level theoretical ground,
namely on a theory of action and planning.

4 Concluding Remarks: Why Bother with Feasible Cooperation?

 In this paper, we endeavoured to show the role of a plan-based model of

dependence as a baseline for checking the applicability of PD-game to ideal-type
social situations. Thanks to such a model, we have distinguished cooperation, as
occurring among mutually depending agents achieving a shared goal, from
bargaining, which holds between reciprocally depending agents which achieve
different goals. Furthermore, we have distinguished levels of mutual dependence, and
shown that while PD-game never applies to a situation of mutual dependence, weaker
forms of mutual dependence allow for defection as a non-dominant strategy, while
stronger forms of mutual dependence do not allow for defection at all.

However, a game-theorist would probably ask now, where is the problem with
feasible emergent cooperation? If cooperation is feasible, and does not pose any
social dilemma, paradox, etc., why bother with it? The problem for a social scientists
becomes interesting when a dilemma is at stake.

There are several answers to this question. First, we need a theory which provides
grounds for payoffs interdependence. Why? Because we must be able to explain and
predict temptation to cheat. The reasons for cheating reside in the structure of
cooperative and non-cooperative actions and plans. Only on such grounds, we are
able to predict when one-shot cooperation is possible and when, instead, cheating is
likely to occur: in the case of Olson's public good, a theory of cooperation in terms of
goals enables us to predict that agents will not cheat when they think: (a) they are
necessary to obtain the benefit and (b) this is global! Only a theory of action which
give grounds for payoffs enables us to make such a prediction.

To disentangle cooperation from bargaining seems useful not only to develop a
more exhaustive view of the variety and complexity of social life, or to predict the
likelihood of free-riding, cheat, etc.; but also to relinquish the legend of a steadily
ominous state of nature, calling for a "mutually agreed upon mutual coercion".

 The Impossibility of Modelling Cooperation in PD-Game 89

References

Axelrod, R. The evolution of cooperation. Basic Books, New York, 1984

Axelrod, R. The emergence of cooperation among egoists. In P.K. Moser, editor, Rationality in
action. Contemporary approaches. Cambridge University Press, Cambridge, 1990.

Axelrod, R. The complexity of cooperation. Princeton University Press, Princeton, 1997.

Binmore, K. Game Theory and the social contract. Playing fair. The MIT Press, Cambridge,
MA., 1994.

Castelfranchi,C.,Miceli, M.,Cesta,A. Dependence Relations among Autonomous Agents. In Y.
Demazeau, E. Werner (eds),Decentralized AI - 3, 215-31. Elsevier, Amsterdam, 1992.

Cohen,P. R. , Levesque,H. J. Teamwork.. Tech. Rep. 504, :SRI-International, Menlo Park, CA.,
1991.

Conte, R., Miceli, M., Castelfranchi, C., Limits and Levels of Cooperation. Disentangling
Various Types of Prosocial Interaction. In Demazeau,J.P. Mueller (eds), Decentralized AI-2, Y.
, 147-157, Elsevier, Armsterdam, 1991.

Eichberger, J. Game Theory for economists, Academic Press, San Diego, 1993.

Gauthier, D. Morals by agreement, Clarendon press, Oxford, 1986.

Gauthier, D. Unite separate persons. In D. Gauthier and R. Sugden, editors, Rationality, justice,
and social contract, Harvester heatsheaf, Hemel Hempstead, UK., 1993.

Hardin, G., The Tragedy of the Commons, Science,162, 1243-1248, 1968.

Hardin, R. Collective action, Johns Hopkins Press, Baltimore, 1982.

Howard, N. Paradoxes of rationality: Theory of metagames and political behavior. The MIT
Press, Cambridge, MA., 1971.

Jervis, R. Cooperation under the security dilemma. World Politics, 30, 167-214, 1978.

Macy, M. Social order in artificial worlds, Journal of Artificial Societies and Social Simulation,
1, 1998.

Margolis, H. Selfishness, altruism and rationality, Cmbridge University Press, Cambridge,
1982.

Olson, M. The logic of collective action. Harvard University Press, Cambridge, MA., 1965.

Miller, G., Galanter, E., Pribram, K.H.Plans and the structure of behavior, Holt, Rinehart &
Winston, New York, 1960. .

Rousseau, J.J. The inequality of man. In G. Cole, editor, Rousseau's social contract and
discourses,J. M. Dent, London, 1913 (1755).

Taylor, M. The possibility of cooperation. Cambridge University Press, Cambridge, 1987.

Ullman-Margalit, E. The emergence of norms. Oxford University Press, New York, 1977.

Designing Multi-agent Systems around an

Extensible Communication Abstraction

Enrico Denti and Andrea Omicini

LIA - DEIS - Università di Bologna
Viale Risorgimento, 2 – 40136, Bologna (Italy)
Ph.: +39 51 6443087 - Fax: +39 51 6443073

{edenti,aomicini}@deis.unibo.it
http://www-lia.deis.unibo.it/Staff/

Abstract. What is relevant for the effectiveness of a multi-agent sys-
tem is the interaction between agents, rather than their peculiar internal
model. The design of a single agent architecture should then concen-
trate on agent observable behaviour and on its interface towards the
outside. Moreover, a multi-agent architecture should be designed around
the choice of a suitable coordination model, accounting for all the aspects
of agent interaction. Accordingly, the effective design of a multi-agent
architecture should focus on the role and properties of the coordination
media (the communication abstractions) within the coordination model,
instead of the coordination entities (the agents).
The main aim of this paper is to show how a multi-agent system may ben-
efit by a coordination model whose flexibility and expressive power lies
in the extensibility of the coordination medium. Extensibility can result
from the embodiment of computational properties typically in charge of
the agents into the communication abstraction.
As an example, we show how a shared communication device à la Linda
works as the core of a flexible coordination architecture in the Linda-
based ACLT coordination model. ACLT tuple spaces are enhanced so
as to be reactive to communication events, rather than to communication
state changes only. So, ACLT tuple spaces are programmable. Reactions
to communication events can be defined through a logic-based speci-
fication language, and have the semantics of asynchronous, mutually-
independent atomic transactions. By defining different observable be-
haviours for ACLT tuple spaces through reaction programming, a multi-
agent architecture can exploit a number of different agent coordination
policies without affecting the single agent behaviour.
Keywords: Multi-Agent Systems, Coordination Model, Transactions,
Extensible Communication Abstraction

1 Introduction

According to [14], interaction adds a fundamental dimension to computing, in
that complexity of interactive systems makes them unsuitable for a complete
characterisation in terms of a formal system such as, for instance, an operational

J.-J. Ch. Meyer, P.-Y. Schobbens (Eds.): Formal Methods of Agents, LNAI 1760, pp. 90–102, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

http://www-lia.deis.unibo.it/Staff/

Designing Multi-Aagent Systems 91

semantics based on state transitions. Being intrinsically interactive, multi-agent
systems are naturally better characterised by the model of component interac-
tion, as well as by the observational behaviour of their components, rather than
by the rules of agent inner computation. As a result, agent architectures can
be designed independently of agent internal models, by focussing on agent ob-
servational behaviour, thus intrinsically providing for agent heterogeneity. As a
further consequence, the design of a multi-agent system crucially depends on the
choice of an adequate coordination model, suitably accounting for communica-
tion, synchronisation, cooperation, and competition among agents.

Due to this shifting focus from agents to agent interaction, the communica-
tion abstraction is asked to play a major role within the coordination model.
In particular, this paper aims to show the benefits of a flexible coordination
model based on an extensible coordination medium for a multi-agent system.
Extensibility can be achieved by suitably embodying computational properties
into the communication abstraction, so that its behaviour can be properly mod-
ified according to the system needs. One important expected consequence of
this approach is that, once the coordination model for the multi-agent system is
given, the choice of a particular interaction policy should not affect agent design.
Agents could be designed according to a quite abstract model of observational
behaviour that the communication abstraction should be able to interpret and
handle according to the required interaction model. Indeed, this seems to be
quite a desirable property, from both a conceptual and a practical viewpoint.
In fact, this makes interaction policy be in charge of the coordination media [5],
where interaction actually takes place, instead of the single coordination entities,
which should not be conceived as having a view of the system as a whole. In
practice, agents of a multi-agent system may often be difficult or even impossible
to modify, so their observable behaviour could not be (easily) accommodated to
accomplish a range of different interaction strategies.

To show the effectiveness of this approach, we discuss the Linda-based ACLT
coordination model [12]. By introducing the notion of generative communication
and promoting the separation between the computation model and the coordi-
nation model [11], based on a shared memory communication abstraction (called
tuple space), Linda [9] provides an effective approach to the design of multi-agent
architectures. ACLT adopts and extends the basic Linda communication kernel.
What is relevant to the main topic of this paper is the ACLT notion of reactive
tuple space, based on the idea of providing the communication abstraction with
the capability to react to communication events rather than just to the global
communication state as in standard Linda, thus lifting the system observabil-
ity from tuples to operations on tuples. Communication operations can then be
associated to reactions by means of a simple specification language (which is
also based on logic tuples and basic operations over tuple spaces, thus reusing
the same communication pattern) making it possible to program the behaviour
of the communication abstractions in terms of event reactions. Different agent
interaction policies can be accomplished given the same agent behaviour, since
agents can delegate part of the synchronisation, cooperation, and competition
load to the (extensible) communication abstraction.

92 Enrico Denti and Andrea Omicini

This work is structured as follows. section 2 describes briefly ACLT reactions,
and discusses the enhanced role of the coordination medium in the ACLT coordi-
nation model. section 3 shows two examples of how a simple multi-agent system
can be designed around the communication abstraction behaviour, by properly
programming tuple space reactions to communication events. A third example
shows how the interaction policy of a multi-agent system can be changed by suit-
ably programming the behaviour of the coordination medium, without affecting
the agent interaction protocol. Conclusions and final remarks are reported in
section 4.

2 Enhancing the Communication Abstraction

The ACLT coordination model (first presented in [12], and originating from re-
search activities in the robotics field [15]) extends the basic Linda coordination
model with the notions of logic tuple space (see also [3,4]), of multiple tuple spaces
[10], and of reactive tuple space [6]. In the ACLT model, communication takes
place through a multiplicity of named logic tuple spaces, which are collections of
first-order unitary clauses, uniquely identified by a ground term. In particular,
a logic tuple space may be given a twofold interpretation, either as a simple
communication device, or or as a knowledge repository. According to the latter
reading, a logic tuple space can be used as a logic theory, where deductive activ-
ities over the communication state can be performed. For this purpose, ACLT
provides for a family of demo primitives, along with a coherent notion of logic
consequence in a time-dependent environment [12].

The ACLT model is based on the notion of reactive tuple space, making tuple
spaces reactive to communication events rather than to communication state
changes only [6]. In addition, the response of the tuple space to communication
events is not fixed once and for all by the communication protocol. Instead, it can
be specified by programming the tuple space behaviour, by defining reactions to
relevant communication events. A specification language, founded on the same
model adopted for agent interaction, based on logic tuples and tuple spaces, is
then defined for reaction programming.

2.1 The Reaction Model

The ACLT reaction model is based on the idea of defining a set of logical events,
each denoted by a unique name, which are associated with physical (communica-
tion) events. Multiple physical events may correspond to the same logical event,
and, conversely, multiple logical events may be connected to the same physical
event. The association between communication events and logical events is rep-
resented by a special tuple of the form map(Operation, Event), which captures
the idea that each time Operation is performed on the tuple space, a logical
Event occurs.

Logical events can be associated with reactions triggered in response to the
event occurrence. The behaviour of each reaction is specified through a tuple of

Designing Multi-Aagent Systems 93

the form react(Event,Goal), where the reaction body Goal is the collection of
the primitive operations to be executed in response to the occurrence of the log-
ical Event . Syntactically, a reaction body is defined as a conjunction of reaction
goals. A reaction goal is an atomic formula of one of the following kinds:

– non-blocking communication primitives (out, in noblock, rd noblock, . . .)
– state primitives (current agent/1, current tuple/1, current op/1, . . .)
– term predicates (term equality/inequality, term unifiability/non-unifiability,

. . .)

Since reaction goals are actually executed sequentially at the system level, their
relative order may influence the result of the reaction. For instance, supposing
the tuple space initially empty, the reaction

〈in noblock(x value(X)), out(x value(X+1)), out(x value(1))〉

fails, while the reaction

〈out(x value(1)), in noblock(x value(X)), out(x value(X+1))〉

succeeds, emitting a tuple of the form x value(1+1).
Since a multiplicity of react/2 tuples can be specified for the same logical

event, multiple reactions may correspond to one logical event. Such reactions are
executed as mutually-independent actions in a non-deterministic order.

2.2 Reactions as Transactions

ACLT reactions are executed with an all-or-nothing transaction semantics: a
reaction is brought to an end if and only if all its reaction goals succeed, in
which case all side-effect operations possibly associated with the reaction itself
are realised simultaneously. Instead, if even one subgoal fails, the reaction is
virtually cancelled, yielding no effect at all.1 Consider, for instance, the following
reaction, which is supposed to have been associated with the out operation:2

〈current tuple(p()), in noblock(p(a)), in noblock(p(X)), out(pp(a,X))〉

Each time a new tuple is inserted in the tuple space, this reaction checks for the
presence of two p/1 tuples (whose one should be p(a)) and then replaces them
with one single pp/2 tuple. If some part of the reaction fails (possibly because
there is only one p/1 tuple instead of the two required), the reaction has no effect

1 As a further consequence, reactions executed in response to communication events
triggered by another reaction are handled only after such reaction has been success-
fully completed (or, of course, are cancelled if the same reaction fails). Accordingly,
the ACLT reaction scheme does not allow reaction nesting.

2 Although ACLT exploits multiple tuple spaces, we will henceforth leave this feature
aside, since it is not relevant in the context of this work. Thus, we will always refer
any communication primitive to a sort of “default tuple space”, without specifying
any tuple space name.

94 Enrico Denti and Andrea Omicini

at all, and appears as never having happened at the agent perception level. So, no
tuples are actually removed from the tuple space, nor are any other side-effects
ever performed.3 As a result, the communication abstraction behaves so that
the simultaneous presence of the two p/1 tuples is perceived by the multi-agent
system as the single pp/2 tuple.

As shown in subsection 2.1, multiple reactions to the same logical event, as
well as multiple logical events mapping the same communication event, trigger
the execution of a multiplicity of reactions. In addition, a reaction may trigger
other reactions as a consequence of its successful completion, since it may contain
communication primitives. So, it is possible for many reactions to be executed
in response to one communication event. The key point is that all such reactions
(both those directly triggered by the event, and those triggered by other reactions
produced by the event) are actually executed before serving any other agent-
triggered communication event. As a result, agents can only perceive but the
final result of the execution of both the communication event and the set of all
the reactions triggered by it both directly and indirectly.

Generally speaking, reactions enhance the expressive power of the coordi-
nation model. Thanks to the execution model of ACLT reactions, agents still
perceive the response of a tuple space to a communication event as a single
computational step, a single transition of the tuple space state. However, such
a transition is no longer bounded to be simple (adding/deleting one tuple) and
fixed by the model, but can instead be defined to be as complex as desired by
programming reactions. For instance, in the example above, when viewed from
an agent perspective, the simultaneous presence of the two p/1 tuples is never
perceived, and one single out operation results both in the removal of a tuple
and in the insertion of another. Moreover, the inserted tuple is not exactly the
one specified by the out operation, but is related both to that one, and to the
state of the tuple space.

As a result, the observational behaviour of the communication abstraction in
response to a communication event can be modelled through reaction program-
ming. This can be used to carry out different agent interaction policies without
affecting agent models. By freeing agents from the charge of explicitly handling
a (possibly complex) interaction protocol, ACLT allows coordination entities
to be designed according to a straightforward communication protocol, while
charging the coordination media of most of the coordination tasks.

The following section shows some meaningful examples of small multi-agent
systems.

3 Examples

3.1 Transmission of an Encrypted Message

Suppose that a long message has to be transmitted in an encrypted form by
agent A to agent B. Due to the message length, the computational load required
3 In particular, no implicit knowledge classification is performed in response to the
in noblock operation: see [12,7] for further details.

Designing Multi-Aagent Systems 95

to encode and decode it with a safe (yet computationally heavy) two-key (private
and public) algorithm would likely be unacceptable. A typical approach consists
then of encrypting the message using a (much simpler) single-key algorithm,
which calls for a safe way to let the receiver know the encoding key. Since this
key is always relatively short, it can be safely transmitted using the two-key
algorithm without a high computational cost.

More precisely, to safely send message M to B, the sender A should:

– choose the key KM to encrypt M, producing the encrypted message CM ;
– read from the key directory the public key of B, KpubB, and use it to encrypt

the key KM, thus producing CKM ;
– emit both CM and CKM in the proper tuple space, by means of two out

operations.

On its side, the receiver B should:

– wait for the tuple representing the encrypted key, CKM ;
– using its private key, KprivB, decrypt CKM so as to restore the message

encryption key, KM ;
– wait for the encrypted message CM ;
– use the key KM to decode the message, thus rebuilding the original message

M.

While the sender’s activity is just a sequential process, requiring no synchroni-
sation, the receiver’s activity requires that two distinct message components are
available in order to rebuild the message. So, B should either remain waiting for
such components or poll regularly the tuple space checking for their availability.
In either case, it would be in explicit charge of handling an irrelevant activity, yet
without knowing which of the two message components will appear first. This
may result in a deadlock situation in the case that one of them, for whatever
reason, is not produced properly.

Suppose, for instance, that B ’s activity is expressed in a code like

in_noblock(msg_key(To,MsgID,CKM)),
in(encoded_msg(MsgID,CM)), ...

If, after getting a tuple like msg key(To,MsgID,CKM), the subsequent message
tuple encoded msg(MsgID,CM) is never received (for instance, because it gets
lost), B would remain suspended forever. If, in order to avoid this behaviour,
in(encoded msg(MsgID,M)) is transformed into a non-blocking in operation
in noblock(encoded msg(MsgID,M)), B should then handle the message queue
on its own, while it would be preferable to not be concerned with such synchro-
nisation activities at all.

In ACLT , instead, the deadlock risk could be avoided by programming the
tuple space behaviour so as to make the simultaneous presence of the two re-
quired information chunks perceivable at the agent level as a single event. This
could be done by simply associating the following reaction to all out events,
succeeding only if both message components are available:

96 Enrico Denti and Andrea Omicini

〈in noblock(msg key(To,MsgID,CKM)), in noblock(encoded msg(MsgID,CM)),

out(decode(To,CKM,CM))〉

The result of such a (successful) reaction would then be the production of a
tuple of the form decode(To,CKM,CM), which can be decoded by the receiver
by means of its private key, thus obtaining the encryption key K, to be used
to decode the message from A. Thus, B has simply to either regularly poll the
tuple space with a in noblock(decode(BID,CKM,CM)), or to suspend itself on
an in(decode(BID,CKM,CM)), waiting for such a tuple to become available.

3.2 The Dining Philosophers

As an example of the flexibility provided by the extensibility of the commu-
nication abstraction to the ACLT model, we discuss an implementation of the
classical dining philosopher problem [8], based on reactions. The main character-
istic of this problem is that, in order to avoid deadlock situations, a philosopher
should either get the two forks he needs to eat, or get none. This means that the
two forks should be obtained through a transaction. Moreover, in order to ensure
fairness, both fork acquisition and fork release should be performed atomically.

When trying to express the solution to this problem in Linda, the main prob-
lem is that the natural choice of modelling the fork acquisition as a sequence of
two in operations is not transactional, thus yielding a potential risk of deadlock.
In that framework, a safe solution requires that the user explicitly handles a
locking mechanism, thus affecting the agent behaviour. Instead, using ACLT re-
actions, transactionality is guaranteed by suitably programming the tuple space
behaviour, with no need for a more complex agent protocol.

Philosopher agents are designed according to a very straightforward interac-
tion protocol, which can be described as follows. When a philosopher wants to
eat, he tries to acquire the two forks through an in(forks(F1,F2)) operation.
When he is satiated, and wants to start thinking, he gives the forks back by
means of an out(release(F1,F2)) operation. Given such a simple protocol,
it should be obvious that all the charge of the interaction policy is up to the
communication abstraction.

The request for forks is recorded in the tuple space with a tuple of the form
required(F1,F2)), signalling the philosopher is waiting to eat, and is retracted
when the philosopher has been served and can start eating. This is achieved by
the following reaction, which transforms a communication event (a performed in)
into an explicit tuple, recording such an event into the tuple space state. In fact,
the required(F1,F2) tuple indicates that a hungry philosopher has performed a
fork request through an in operation, and that it is currently suspended waiting
for fork availability.

map(in, hungry).
react(hungry, (current_tuple(forks(F1,F2)), pre,

out(required(F1,F2))
)).

Designing Multi-Aagent Systems 97

react(hungry, (current_tuple(forks(F1,F2)), post,
in_noblock(required(F1,F2))
)).

Each available fork is represented by a tuple of the form fork(Fork). Fork
release by a philosopher is handled by the following reaction.

map(out, thoughtful).
react(thoughtful, (current_tuple(release(F1,F2)),

out(fork(F1)),
out(fork(F2)),
in_noblock(release(F1,F2))
)).

Reaction atomicity ensures that the two forks are released at the same time,
thus avoiding the unfairness which could be produced by any sequentialisation
of the two out operations.

Finally, the tuple space is programmed so as to try to serve a request, if
possible, whenever a fork is released, or a new fork request is performed.

map(out, reserve).
react(reserve, (current_tuple(required(F1,F2)),

in_noblock(fork(F1)),
in_noblock(fork(F2)),
out(forks(F1,F2))
)).

react(reserve, (current_tuple(fork(F)),
rd_noblock(required(F1,F)),
in_noblock(fork(F1)),
in_noblock(fork(F)),
out(forks(F1,F))
)).

react(reserve, (current_tuple(fork(F)),
rd_noblock(required(F,F2)),
in_noblock(fork(F)),
in_noblock(fork(F2)),
out(forks(F,F2))
)).

The transaction semantics ensures that the forks are reserved only when they are
both available and needed by someone, and reserved for the proper philosopher.
Should one of these conditions not hold, reaction would fail and would not have
any effect on the tuple space at all.

The agent model does not need to be specialised in order to accomplish the
competition protocol: a philosopher simply asks for forks when hungry, and sets
them free when satiated. Agent design can then concentrate on modelling its in-
ternal architecture, while its interaction model results in being quite simple and
intuitive. A good deal of the intelligence of the system is then in charge of the

98 Enrico Denti and Andrea Omicini

interaction protocol, which is only of little concern for the single agent. Thus, the
communication abstraction is extended through suitable reaction programming
until it makes the system behave correctly, independently from the agent internal
model: the only thing needed is that philosopher agent emerging behaviour (its
interaction model) accomplishes the very straightforward acquire/release proto-
col.

3.3 Philosophers Dining with Labelled Forks

In order to show how an interaction policy can be modified and made more com-
plex by changing the behaviour of the coordination medium, without affecting
the interaction protocol of the coordination entities, we discuss a slight variation
of the Dining Philosopher example, discussed in subsection 3.2. The basic prob-
lem is changed in that now there are three forks for each position on the table,
each one labelled differently according to the kind of meal for which it has to
be used: breakfast, lunch, or dinner. At any moment in the multi-agent system,
it is either breakfast, lunch, or dinner time. When it is lunch time, for instance,
only lunch forks can be given for eating. However, a slowly-eating philosopher
is allowed to keep on having his meal as long as he needs. So, if he starts eating
at dinner time, he will be given dinner forks, and will be allowed to keep them
for eating even when breakfast time comes around.

With respect to subsection 3.2, the tuple space representation of the forks
is changed from fork(Fork) to labelledfork(Meal,Fork), representing the
fork Fork which can be used at Meal time. Moreover, a timefor(Meal) tuple
is assumed to be always in the tuple space, so that at any time it is possible to
determine which forks to allocate to hungry philosophers. This task obviously
may be charged to a simple agent, signalling the system when it is time to
switch (from breakfast to lunch, from lunch to dinner, and from dinner back to
breakfast). Such an agent could simply perform an out(switch) operation on the
tuple space, which could be simply programmed to properly react consistently,
for instance as follows:

map(out, next).
react(next, (current_tuple(switch), in_noblock(switch),

in_noblock(timefor(breakfast)),
out(timefor(lunch))).

react(next, (current_tuple(switch), in_noblock(switch),
in_noblock(timefor(lunch)),
out(timefor(dinner))).

react(next, (current_tuple(switch), in_noblock(switch),
in_noblock(timefor(dinner)),
out(timefor(breakfast))).

The main thing here is that philosophers are supposed to be totally unaware of
this (as of most of the things of life). In fact, whenever a philosopher gets hungry,
he simply asks for forks, unconcerned with time, whose handling is instead in

Designing Multi-Aagent Systems 99

charge of the tuple space reactions. As a result, the philosopher protocol is
exactly the same of the Dining Philosopher example in subsection 3.2. Unlike
that example, however, it may happen that two contiguous philosopher sharing
a fork position can eat at the same time, thus exploiting the availability of
more resources - three forks instead of one. Take for instance the case of a two-
philosopher system, in which both get hungry at breakfast time. Only one of
them (the lucky philosopher) will be assigned of the breakfast forks, while the
other (the unlucky philosopher) will be forced to wait. When lunch time comes,
and the lucky philosopher insists on eating, the unlucky one may still be allowed
to eat on his own, since the lucky philosopher is using breakfast forks, and lunch
forks are free. Thus, the two philosophers can eat together, one having lunch,
the other continuing his breakfast.

In order to achieve this behaviour, we have simply to modify slightly the
reactions of subsection 3.2:

map(out, reserve).
react(reserve, (current_tuple(required(F1,F2)),

rd_noblock(timefor(M)),
in_noblock(labelledfork(M,F1)),
in_noblock(labelledfork(M,F2)),
out(used(M,F1,F2)),
out(forks(F1,F2))
)).

react(reserve, (current_tuple(labelledfork(M,F)),
rd_noblock(required(F1,F)),
rd_noblock(timefor(M)),
in_noblock(labelledfork(M,F1)),
in_noblock(labelledfork(M,F)),
out(used(M,F1,F)),
out(forks(F1,F))
)).

react(reserve, (current_tuple(labelledfork(M,F)),
rd_noblock(required(F,F2)),
rd_noblock(timefor(M)),
in_noblock(labelledfork(M,F)),
in_noblock(labelledfork(M,F2)),
out(used(M,F,F2)),
out(forks(F,F2))
)).

react(reserve, (current_tuple(timefor(M)),
rd_noblock(required(F1,F2)),
in_noblock(labelledfork(M,F1)),
in_noblock(labelledfork(M,F2)),
out(used(M,F1,F2)),
out(forks(F1,F2))
)).

100 Enrico Denti and Andrea Omicini

map(out, thoughtful).
react(thoughtful, (current_tuple(release(F1,F2)),

in_noblock(used(M,F1,F2)),
out(labelledfork(M,F1)),
out(labelledfork(M,F2)),
in_noblock(release(F1,F2))
)).

The interaction policy discussed in this example can be adapted to any case of
renewable cyclic shared resources with limited lifespan, like in the case of clerks
in a postoffice: some of them working (i.e., being available) from 6am to 12pm,
some others from 12pm to 6pm, (supposedly) every day. However, what this
example really aims to show is how reaction programming can be exploited to
modify the behaviour of a multi-agent system with no change to the behaviour
of the agents. New notions (like meal time, and labelled forks) are introduced
in the system, new resources are made available (more forks), a new policy for
resource assignment is adopted, but the philosopher agents are allowed to keep
on using the same straightforward acquire/release forks protocol of the example
in subsection 3.2.

4 Conclusions

This work is inspired by the observation that multi-agent systems are intrinsi-
cally interactive systems [14] whose effectiveness crucially depends on the model
adopted for agent coordination. Thus, as far as a single agent architecture is
concerned, only agent observational behaviour needs be accounted for in the
multi-agent system design. Instead, a major role has to be played by the commu-
nication abstraction, which has to be expressive and flexible enough to support
the definition of a wide range of communication and synchronisation policies.

As an example, we discussed the ACLT coordination model. We showed
how the behaviour of ACLT logic tuple spaces can be programmed by specify-
ing reactions to communication events. Reactions are defined through a con-
veniently expressive specification language, and have the semantics of asyn-
chronous, mutually-independent atomic transactions. By exploiting reactions,
multi-agent systems can delegate synchronisation, cooperation, and competition
charges to the communication abstraction.

Other different coordination models deeply rely on a notion of reaction. The
chemical metaphor of Gamma [1] allows very general coordination laws to be
specified in terms of reaction conditions and of consequent actions. However, no
communication abstraction is provided, nor is any agent interaction protocol. As
it can be argued from the Dining Philosopher example shown in [2], reactions are
the only means for the evolution of a multi-agent system based on Gamma, since
the model does not account for agent deliberative activity. Moreover, Gamma
reactions are to be seen as high-level specifications ruling the evolution of a multi-
agent system, independent of any computation model, while the specification of

Designing Multi-Aagent Systems 101

an ACLT reaction actually corresponds to a precise operational behaviour of
the system.

Like ACLT , the ESP coordination language [4] is based on the notion of
multiple logic tuple space, and exploits reactiveness of the tuple space. However,
the computational shift from the agents to the communication abstraction is
even stronger than the ACLT one. ESP tuple spaces are at the core of all the
computational activity, and the ESP notion of agent is reduced to a purely
reactive execution thread.

Even though the examples discussed in this paper are quite simple, we are
confident that the benefits of such an approach emerge more clearly when more
complex applications are considered. Thus, further work will be devoted to test
the effectiveness of the model in more complex domains, by exploiting the ACLT
implementation based on SICStus Prolog 3 [13], which is currently working on
a network of workstations.

References

1. J.-P. Banâtre and D. le Métayer. The Gamma model and its discipline of program-
ming. Science of Computer Programming, 15(1):55–77, November 1990. 100

2. J.-P. Banâtre and D. le Métayer. Programming by multiset transformation. Com-
munications of the ACM, 36(1):98–111, January 1993. 100

3. A. Brogi and P. Ciancarini. The concurrent language, Shared Prolog. ACM Trans-
actions on Programming Languages and Systems, 13(1), January 1991. 92

4. P. Ciancarini. Distributed programming with logic tuple spaces. New Generation
Computing, 12, 1994. 92, 101

5. P. Ciancarini. Coordination models and languages as software integrators. ACM
Computing Surveys, 28(2), June 1996. 91

6. E. Denti, A. Natali, A. Omicini, and M. Venuti. An extensible framework for the
development of coordinated applications, 1996. First International Conference,
COORDINATION’96, Cesena, Italy, April 15–17, 1996. 92, 92

7. E. Denti, A. Natali, A. Omicini, and M. Venuti. Logic tuple spaces for the coordi-
nation of heterogeneous agents. In F. Baader and K.U. Schulz, editors, Frontiers
of Combining Systems, pages 147–160. Kluwer Academic Publishers, 1996. First
International Workshop “Frontiers of Combining Systems”, FroCoS’96, Munich,
Germany, March 26-29, 1996. 94

8. E.W. Dijkstra. Co-operating sequential processes. Academic Press, London, 1965.
96

9. D. Gelernter. Generative communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems, 7(1), January 1985. 91

10. D. Gelernter. Multiple tuple spaces in Linda. In Proceedings of PARLE, volume
365 of LNCS, 1989. 92

11. D. Gelernter and N. Carriero. Coordination languages and their significance. Com-
munications of the ACM, 35(2):97–107, February 1992. 91

12. A. Omicini, E. Denti, and A. Natali. Agent coordination and control through
logic theories. In Topics in Artificial Intelligence - 4th Congress of the Italian
Association for Artificial Intelligence, AI*IA’95, volume 992 of LNAI, pages 439–
450, Firenze, Italy, October 11–13 1995. Springer-Verlag. 91, 92, 92, 94

102 Enrico Denti and Andrea Omicini

13. Swedish Institute of Computer Science, Kista, Sweden. SICStus Prolog User’s
Manual, 1994. 101

14. P. Wegner. Interactive foundations of computing. Technical report, Brown Uni-
versity, Providence (RI), August 1996. 90, 100

15. F. Zanichelli, S. Caselli, A. Natali, and A. Omicini. A multi-agent framework
and programming environment for autonomous robotics. In Proceedings of the
International Conference on Robotics and Automation (ICRA’94), pages 3501–
3506, S. Diego, CA, USA, May 1994. 92

Social Interactions of Autonomous Agents:

Private and Global Views on Communication

F. Dignum

Fac. of Maths. & Comp. Sc., Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

e-mail: dignum@win.tue.nl
phone: +31-402473705, fax: +31-402463992

Abstract. In describing the interactions between agents we can take
either a global view, where the set of all agents is seen as one big system,
or a private view, where the system is identified with a single agent and
the other agents form a part of the environment. Often a global view is
taken to fix some protocols (like contract net) for all the possible social
interactions between agents within the system. Privately the agents then
have fixed reaction rules to respond to changes in the environment. In a
sense the agents are no longer autonomous in that they always respond in
a fixed way and their behaviour can be completely determined by other
agents. In this paper we investigate the case where there might not be
a (or one) fixed protocol for the social interaction and where the agents
do not necessarily react in the same way to each message from other
agents. We distinguish between the agents perception of the world and
the ”real” state of the world and show how these views can be related.

Keywords: Multi-Agent Systems, Multi-Modal logic, Communication,
Speech acts.

1 Introduction

In the area of Multi-Agent Systems much research is devoted to the coordination
of the agents. Many papers have been written about protocols (like contract net)
that allow agents to negotiate and cooperate (e.g. [19,4]). Most of the cooperation
between agents is based on the assumption that they have some joint goal or
intention. Such a joint goal enforces some type of cooperative behaviour on
all agents (see e.g. [3,13,23]). The conventions according to which the agents
coordinate their behaviour is hard-wired into the protocols that the agents use
to react to the behaviour (cq. messages) of other agents.

This raises several issues. The first issue is that, although agents are said to
be autonomous, they always react in a predictable way to each message. Namely
their response will follow the protocol that was built-in. The question then arises
how autonomous these agents actually are. It seems that they react always in
standard ways to some stimulus from other agents, that can therefore determine
their behaviour.

J.-J. Ch. Meyer, P.-Y. Schobbens (Eds.): Formal Methods of Agents, LNAI 1760, pp. 103–122, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

104 F. Dignum

Besides autonomy, an important characteristic of agents is that they can
react to a changing environment. However, if the protocols that they use to
react to (at least some part of) the environment are fixed, they have no ways
to respond to changes. For instance, if an agent notices that another agent is
cheating it cannot switch to another protocol to protect itself. (At least this is
not very common). In general it is difficult (if not impossible) for agents to react
to violations of the conventions by other agents.

As was also argued in [21], autonomous agents need a richer communica-
tion protocol than contract net (or similar protocols) to be able to retain their
autonomy. A greater autonomy of the agent places a higher burden on the com-
munication. An autonomous agent might negotiate over every request it gets. In
this paper we will describe a mechanism to avoid excessive communication. It
is similar to the one employed in [21], but defined more formally and still more
generally applicable.

Negotiation between autonomous agents is only necessary if the agents do
not have complete knowledge of the state of the world. If they did have complete
knowledge (including knowledge about the state of minds of the other agents)
they could calculate the optimum deal for both agents and agree in one step.
This fact makes it important to distinguish between private and global views of
the state of the world. And even more important the private and global view
of actions and communication. We argue that agents do not only have limited
knowledge of the world, but that they also can only acquire limited knowledge
about the world. This holds especially for knowledge about the state of mind of
other agents. In general it is not efficient for each agent to be able to ”test” the
truth of any statement about the world. This would require that all agents use
the same language and have access to all facts about the world. However, one
reason to introduce agents is to split up the work in manageable packets that
can be handled by different agents. Each agents only reasons about its own part
of the data. I.e. one agent for managing the weather reports and another agent
to handle stock prices.

The same principle holds for the reasoning about actions. An agent cannot
take into account all possible actions of other agents and possible events occur-
ring in the environment. If an agent could do this, no unforeseen circumstances
could arise and the goals would always be reached. Therefore, we assume that
agents can only reason about a limited set of influences on their actions.

However, in order to describe the ”actual” effect of actions (and especially
communication) we need to use a global (agent independent) view. In this case
the set of all agents is seen as one system. Using a global view on communi-
cation we can describe properties of communication protocols and proof their
termination, fairness, etc.

In this paper we show how to describe the formal effects of communication
both in the private view as well as in the global view. This gives rise to an
integrated formal framework for communicating agents. An important aspect in
the description of the effects of the communication is the use of deontic concepts.

Social Interactions of Autonomous Agents 105

This enables us to describe commitments resulting from communication without
destroying the autonomy of the agents.

The second important point in this paper is the distinction between the pri-
vate and the global view of the world in a formal framework and more specifically
what are the consequences for the communication between agents. We describe
a formal framework for communication that can be used to model all types of
protocols. Instead of fixing some protocol the framework indicates possible mean-
ingful sequences of messages for certain situations and goals of the agents. For
instance, after a proposal is received a counterproposal can be given. However, it
does not make sense to follow up a proposal with an identical counterproposal.
The ultimate goal is to formally describe communication rules for autonomous
agents. With these rules the effects of communication protocols (like contract
net) can be calculated and more flexible ways of dealing with communication
protocols can be devised.

In the next section we describe the four components that we use to describe
autonomous communicating agents. In section 3 we show how communication
can be formally described using our formalism, using the communication primi-
tives for negotiating agents in the ADEPT system ([21]) as example. In section 4
we describe the differences between the local and global view on communication.
In section 5 we give a sketch of a formalisation of the framework given in the
previous sections. We give some conclusions in section 6.

2 Communicating Agents

The definition of the agents is based on the framework developed in [8,9]. How-
ever, we added a private view on the actions. The concepts that we formalise can
roughly be divided over four different components: the informational component,
the action component, the motivational component and the social component.
For readability we will mention all the concepts (including the ones described in
previous publications) of each of these components in the following subsections.
However, we will only go into the details of those concepts that are new for this
paper.

2.1 The Informational Component

At the informational level we consider both knowledge and belief. Many formal-
isations have been given of these concepts and we will follow the more common
approach in epistemic and doxastic logic: the formula Kiφ denotes the fact that
agent i knows φ and Biφ that agent i believes φ. We demand knowledge to obey
an S5 axiomatisation, belief to validate a KD45 axiomatisation, and agents to
believe all the things that they know.

2.2 The Action Component

In the action component we consider both dynamic and temporal notions. The
main dynamic notion that we consider is that of actions, which we interpret as

106 F. Dignum

functions that map some some state of affairs into another one. Following [12,26]
we use parameterised actions to describe the event consisting of a particular
agent’s execution of an action. We let α(i) indicate that agent i performs the
action α.

We can reason about the results of actions on both a private level and a global
level. The global level reasoning is the ”standard” one using dynamic logic as
described by Harel in [11]. We use [α(i)]φ to indicate that if agent i performs
the action indicated by α the result will be φ. I.e. no matter what happens, if
agent i performs α the system will change to a state where φ holds. Note that
this is a very strong statement! No unforeseen action can disturb the execution
of α by i.

We also introduce a private level of reasoning about actions in this paper.
We use [α(i)]jφ to indicate that agent j concludes that φ will hold if agent i
performs the action indicated by α. Each agent j will only consider a subset
of all possible actions that might intervene with α. For instance, it might be
that [read − record]jKj(correct number of computers sold this year).
But if j did not consider that agent i could just update the sales database at
the same time we also have (globally) ¬[read − record]Kj(correct number
of computers sold this year).

Besides these formulas that indicate the results of actions we also would like
to express that an agent has the reliable opportunity to perform an action. This
is done through the predicate OPP : OPP (α(i)) indicates that agent i has the
opportunity to do α, i.e. the event α(i) will possibly take place.

Besides the OPP operator, which already has a temporal flavour to it, we
introduce two genuinely temporal operators: PREV , denoting the events that
actually just took place, and the ”standard” temporal operator NEXT , which
indicates, in our case, which event will actually take place next. We also define a
more traditional NEXT operator on formulas in terms of the NEXT operator
on events.

NEXT (φ) iff NEXT (α(i)) ∧ [α(i)]φ

This means that the formula φ is true in all next states iff an action α(i) is
performed next and the formula φ is true after the performance of α(i).

In this paper we introduce two special action types. These are the test ac-
tion and the Reveal action. Both actions have an epistemic character. Although
the test action is already introduced in standard dynamic logic, we give it an
epistemic flavour conform [17]. I.e. after i tests the truth of a formula i knows
whether the formula is true or not. The test action on formula φ is written as
φ?. So, more formally we have:

φ→ [φ?(i)]Ki(φ)
¬φ→ [φ?(i)]Ki(¬φ)

As we argued before, an agent cannot test every possible formula. Every agent
has a restricted domain on which it can perform tests. However, an agent i can
reveal certain information to an agent j by using the reveal action. The result of

Social Interactions of Autonomous Agents 107

this action is that agent j can test the truth of that formula himself. Formally:

[Reveal(i, j, φ)]OPP (φ?(j))

The reveal action is especially useful to function as grounding mechanism for
discussions about the validity of some formula. It is equivalent to the physical
action of showing some evidence as support to your claim.

2.3 The Motivational Component

In the motivational component we consider a variety of concepts, ranging from
preferences, goals and decisions to intentions and commitments. The most fun-
damental of these notions is that of conditional preferences.(See also [1,16]).
Formally, (conditional) preferences are defined as the combination of implicit
and explicit preferences. A formula φ is preferred by an agent i in situation ψ,
denoted by Prefi(φ|ψ), iff φ is true in all the states that the agent considers
desirable when ψ is true, and φ is an element of a predefined set of (explicitly pre-
ferred) formulas. We assume a (total) ordering between the explicit preferences
of each agent in each world. (The ordering may vary between worlds because
the preferences are conditional upon some statement to hold true.) The use of
conditional preferences, instead of the traditional ”desires”, makes it possible
to use the qualitative decision theory developed in [1,16] and also to make a
connection with game theoretic work used for negotiations between agents (see
e.g. [22]).

Goals are not primitive in our framework, but instead defined in terms of
preferences. Informally, a preference of agent i constitutes one of i’s goals iff i
knows that the preference does not hold yet, but is achievable. Formally:

Achieviφ ≡ ∃β : [β(i)]iφ ∧OPP (β(i))

Note that we use [β(i)]iφ to indicate that agent i privately concludes that φ
holds after performing β. In most cases it will hold that (globally) ¬[β(i)]φ or
even [β(i)]¬φ.
A goal is now formally defined as a preference that does not hold but is achiev-
able:

Goali(φ|ψ) ≡ Prefi(φ|ψ) ∧ ¬φ ∧Achieviφ

Note that our definition implies that there are three ways for an agent to drop
one of its goals: since it no longer considers achieving the goal to be desirable,
since the preference now holds, or since it is no longer certain that it can achieve
the goal. This shows that our framework complies to the standard notions of
goals given in e.g. [2].

Goals can either be known or unconscious goals of an agent. Most goals will
be known, but we will later on see that goals can also arise from commitments
and these goals might not be known explicitly.

Intentions are divided in two categories, viz. the intention to perform an
action and the intention to bring about a proposition. The latter category of

108 F. Dignum

intentions is seen as goals in our framework. We define the intention of an agent
i to perform a certain action α as primitive, denoted by INTiα. An intention to
perform an action is based on the decision to try to reach a goal. The agent can
only make a decision to try to achieve the goal that has the highest preference
(the utility principle). Because the order of the preferences may differ in each
world, this does not mean that once a goal has been fixed the agent will always
keep on trying to reach that goal (at least not straight away). The above is
described formally by

γ → OPP (DEC(i, α)) iff ∃φ : Goali(φ|γ)∧
γ → [α;β(i)]φ ∧ ¬∃ψ(Prefi(ψ|γ) ∧ φ <i ψ)

OPP (DEC(i, α)) → [DEC(i, α)]INTiα

There is no direct relation between the intention to perform an action and
the action that is actually performed next. We do, however, establish an indirect
relation between the two through a binary implementation predicate, ranging
over pairs of actions. The idea is that the formula IMPi(α1, α2) expresses that
for agent i executing α2 is a reasonable attempt at executing α1.

Having defined the binary IMP predicate, we may now relate intended ac-
tions to the actions that are actually performed. We demand the action that is
actually performed by an agent to be an attempt to perform one of its intentions.
Formally, this amounts to the formula

(INTi(α1(i)) ∧NEXT (α2(i))) → IMPi(α1, α2)

The last concept that we consider at the motivational level is that of com-
mitment. Many interpretations have been given to the concept of commitment
(see e.g. [2,13,15]). We chose a deontic interpretation of commitment. That is,
a commitment of an agent to reach a goal is expressed as an obligation of the
agent towards itself to reach the goal. Although the obligation does not ensure
the actual performance of the action by the agent, it does have two practical
consequences. If an agent commits itself to an action and afterwards does not
perform the action a violation condition is registered, i.e. the state is not ideal
(anymore).

The second consequence of registering a commitment as an obligation is, as
we argued in [6], that obligations lead to (conditional) preferences which are
ordered. From this it follows that an agent will be very committed to a goal
if the preference following from a commitment has a very high ranking. In the
other hand the commitment of an agent towards a goal is low if the generated
preferences get a low ranking.
The relation between obligations and preferences is formally described as follows:

∀i, j, φPrefi(φ|Oij(φ))

and for actions:
∀i, j, αPrefi(PREV (α(i))|Oij(α(i)))

Social Interactions of Autonomous Agents 109

Note that the latter is sufficient to create a goal if i has the opportunity to
perform α, because PREV (α(i)) does not hold presently (the action is not per-
formed yet when the obligation arises) and it is achievable (by performing the
action α(i).

The above connection between commitments and preferences (and thus goals)
makes our agents sincere. Whenever an agent commits itself there automatically
arises a preference to fulfil the commitment. Whether the commitment is kept
depends on the priority of the resulting preference and the achievability of it.
This is especially important if the commitment is made towards other agents.
In that case the commitment forms a part of the social component. We will say
more about the social component in the next section.

2.4 The Social Component

The COMMIT described in the previous section is one of the four types of
speech acts [24] that play a role in the social component. Speech acts are used
to communicate between agents. The result of a speech act is a change in the
doxastic or deontic state of an agent, or in some cases a change in the state of the
world. The speech acts are the main actions for which synchronization between
agents is essential. A speech act always involves at least two agents; a speaker
and a hearer. If an agent sends a message to another agent but that agent does
not ”listen” (does not receive the message) the speech act is not successful. We
will describe the speech acts first on the global level to indicate the interaction
between the agents. Then we will show the private views of the agents on the
speech acts.
The most important feature in which our framework for speech acts differs from
other frameworks for speech acts (based on the work of Searle) is that a speech
act in our framework is not just the sending of message by an agent but is the
composition of sending and receiving of a message by two (or more) agents!

We distinguish the following speech act types: commitments, directions, dec-
larations and assertions. The idea underlying a direction is that of giving orders,
i.e. an utterance like ‘Pay the bill before next week’. A typical example of a
declaration is the utterance ‘Herewith you are granted permission to access the
database’, and a typical assertion is ‘I tell you that the earth is flat’. Each type
of speech act should be interpreted within the background of the relationship
between the speaker and the hearer of the speech act. In particular for directions
and declarations the agent uttering the statement should have some kind of basis
of authority for the speech act to have any effect.

We distinguish three types of relations between agents: peer relation, power
relation and authorization relation. The first two relations are similar to the ones
used in the ADEPT system [21,14]. The power relation is used to model hierar-
chical relations between agents. We assume that these relations are fixed during
the lifecycle of the agents. Within such a relation less negotiation is possible
about requests and demands. This reduces the amount of communication and
therefore increases the efficiency of the agents.

110 F. Dignum

The peer relation exists between all agents that have no prior contract or obli-
gations towards each other (with respect to the present communication). This
relation permits extensive negotiations to allow a maximum of autonomy for the
agents.
The last relation between agents is the authorization relation which is a type of
temporary power relation that can be build up by the agents themselves.

The power relation is formalized as a partial ordering between the agents,
which is expressed as follows: i� j means that j has a higher rank than i.
The authority relation is formalized through a binary predicate auth; auth(i, α)
means that agent i is authorised to perform α. It seems that this specifies a
property of one agent, however, the other agent is usually part of the specification
of α. Therefore the authorization to perform an action implicitly determines an
authorization relation between the agents involved in that action as well.

One way to create the authorisation relations is by agent j giving an im-
plicit authorisation to i to give him some directives. For example, when agent
i orders a product from agent j it implicitly gives the authorisation to agent
j for demanding payment from i for the product (after delivery). We will see
later that most communicative actions have also implicit components and effects
that are usually determined by the context and conventions within which the
communication takes place.

Besides the implicit way to create authorizations, they can also be created
explicitly by a separate speech act which is formally a declaration that the
authorization is true.

The speech acts themselves are formalised as meta-actions (based on earlier
work [5]):

– DIR(x, i, j, α) formalises that agent i directs agent j to perform α on the
basis of x, where x can be either peer, power or authority.

– DECL(i, f) models the declaration of i that f holds.
– ASS(x, i, j, f) formalises the assertion of i to agent j that f holds.
– COMMIT (i, j, α) describes that i commits itself towards j to perform α.

Note that the commit and the declarative do not take a relation parameter. This
is basically because the effect of a commit is the same irrespective of the relation
between the agents, while the declarative does only involve one agent.

A directive from agent i to agent j to perform α results in an obligation of j
towards i to perform that action if agent i was either in a power relation towards
j or was authorized to give the order. In a similar way the assertion of proposition
f by i to j results in the fact that j will believe f if I had authority over j.
Creating the authorizations is an important part of the negotiation between
agents when they are establishing some type of contract. On the basis of the
authorizations that are created during the negotiation some protocol for the
transactions between the agents can be followed quick and efficiently. (See [25]
for more details on contracts between agents).

Formally, the following formulas hold for the effects of commitments, orders
and declaratives:

Social Interactions of Autonomous Agents 111

– [COMMIT (i, j, α)][DECL(j, Pij(α(i)))]Oijα
– auth(i,DIR(authority, i, j, α)) → [DIR(authority, i, j, α)]Ojiα
– j � i→ [DIR(authority, i, j, α)]Ojiα
– [DIR(peer, i, j, α)]KjINTiα(j)
– auth(i,DECL(i, f)) → [DECL(i, f)]f
– [DECL(i, f)]Prefi(f |true)
– [ASS(peer, i, j, f)]KjBif
– auth(i, ASS(authority, i, j, f)) → [ASS(authority, i, j, f)]Bjf
– j � i→ [ASS(power, i, j, f)]Bjf

A commitment always results in a kind of conditional obligation. The obliga-
tion is conditional on the permission of the agent towards which the commit-
ment is made. (This is very close to the ACCEPT action in other frameworks).
The giving of permission is formally described by [DECL(j, Pij(α(i)))], where
Pij(α(i)) ≡ ¬Oij(α(i)). I.e. the permission to perform α is equivalent to the fact
that there is no obligation to perform the negation of α.
The permission of j is necessary because j might play a (passive) role in the
action α initiated by i. Of course j must be willing to play its part. It signi-
fies this by giving the permission to i. In contrast to the other speech acts no
precondition has to hold for a commitment to obtain its desired result.

A directive from agent i results in an obligation of agent j (towards i) if
agent i was authorised to give the order or i has a power relation towards j.
If i has no authority or power over j then the directive is actually a request. It
results in the fact j knows that i wants him to perform α. If j does not mind to
perform it can commit himself to perform α and create an obligation.

Assertions can be used to transfer beliefs from one agent to another. Note
that agent j does not automatically believe what agent i tells him. We do assume
that agents are sincere and thus we have the following axiom:

OPP (ASS(x, i, j, f)) → Bif

That is, an agent can only assert facts that it believes itself.
The only way to directly transfer a belief is when agent i is authorised to make
a statement. Usually this situation arises when agent j first requested some
information from i. Such a request for information (modelled by a directive
without authorisation) gives an implicit authorisation on the assertions that
form the answer to the request.

A declaration can change the state of the world if the agent making the
declaration is authorised to do so. (This is the only speech act that has a direct
effect on the states other than a change of the mental attitudes of the agents!).
If agent i has no authority to declare the fact, then the only result of the speech
act is that i establishes a preference for itself. It prefers the fact to be true.

Although we do not attempt to give a (complete) axiomatization, we want
to mention the following axioms for the declaratives, because they are very fun-
damental for creating relationships between agents.

[DECL(i, auth(j,DIR(authority, j, i, α(i))))]auth(j,DIR(authority, j, i, α(i)))

112 F. Dignum

which states that an agent i can create authorisations for an agent j concerning
actions that i has to perform.
The following axiom is important for the acceptance of offers:

[DECL(i, Pji(α(i)))]Pji(α(i))

which states that an agent can always give permission to another agent to per-
form some action.
Note that it may very well be that another agent forbids j to perform α! The
permission is only with respect to i!

3 Formal Communication

In the previous section we gave a brief overview of the basic messages that
agents can use in our framework. To show the power of our framework and to
show the relation with other work on communication between agents we show
how the basic illocutions that are used for the negotiating agents in the ADEPT
system (and that also form the heart of many other negotiation systems) can be
modelled within our framework. We only show this for the negotiation because
it forms an important part of the communication between agents. In a later
paper we will show how the communication in the stages after the negotiation
(the performance and satisfaction stages) can also be formally modelled in our
framework.

The negotiating agents in the ADEPT system use the four illocutions: PRO-
POSE, COUNTERPROPOSE, ACCEPT and REJECT. These four illocutions
also form the basic elements of many other negotiation systems.

The PROPOSE is directly translated into a COMMIT. The obligation that
follows from a proposal depends on the acceptance of the receiving party. How-
ever, the ACCEPT that is used as primitive in ADEPT and most other systems
involves more than the giving of permission that we already indicated above.

The ACCEPT message has three components. That is, we consider the AC-
CEPT to be the simultaneous expression of three illocutions.

1. Giving permission to perform the action
2. Commitment to perform those actions that are necessary to make the pro-

posal succeed
3. Giving (implicit) authority for subsequent actions (linked to the proposal by

convention)

For example if agent i sends the following message to j:

PROPOSE,i,j,
I will deliver 20 computers (pentium, 32M, etc.) to you for $1000,- per
computer

then the ACCEPT message of j to i:

Social Interactions of Autonomous Agents 113

ACCEPT,j,i,
You will deliver 20 computers (pentium, 32M, etc.) to me for $1000,- per
computer

means:

1. You are permitted to deliver the computers: DECL(j, Pij(deliver))
2. I will receive the computers (sign a receipt): COMMIT (j, i, receive)
3. I give you authority to ask for payment after delivery:
DECL(j, [deliver]auth(i,DIR(authority, i, j, pay)))

It is important to notice that only the first component of the meaning of the
ACCEPT message is fixed. The other two components depend on the action
involved and the conventions (contracts) under which the transaction is negoti-
ated.

The REJECT message is the denegation of the ACCEPT message. It means
that the agent is either not giving permission for the action, not committing
itself to its part of the action or not willing to give authority to subsequent
actions. Formally this is expressed as the disjunction of the negation of these
three parts. Due to space limitations we will not work this out any further.

The COUNTERPROPOSE is a composition of a REJECT and PROPOSE
message. Formally it can thus be expressed as the parallel execution of these two
primitives.

Besides the formal representation of the illocution of the message we can
also give some preconditions on the basic message types. Only the PROPOSE
message type does not have preconditions. This is as expected because the PRO-
POSE is used to start the negotiation. The other types of messages are all used
as answer to a PROPOSE (or COUNTERPROPOSE) message. We can for-
mally describe the precondition that these message types can only be used after
a PROPOSE or COUNTERPROPOSE as follows:

– OPP (ACCEPT (j, i, α)) ↔
(PREV (PROPOSE(i, j, α)) ∨ PREV (COUNTERPROPOSE(i, j, α)))

– OPP (REJECT (j, i, α)) ↔
(PREV (PROPOSE(i, j, α)) ∨ PREV (COUNTERPROPOSE(i, j, α)))

– OPP (COUNTERPROPOSE(j, i, β)) ↔
β 	= α ∧ (PREV (PROPOSE(i, j, α)) ∨

PREV (COUNTERPROPOSE(i, j, α)))

In the precondition of the COUNTERPROPOSE we included the fact that a
counterproposal should differ from the proposal that it counters. (Although not
mentioned in this paper, the semantics of actions does give an equivalence rela-
tion between actions). More elaborate conversation rules are needed to describe
long term dependencies within protocols. E.g. one cannot repeat the same pro-
posal later on if it already has been rejected. These rules should be incorporated
within the protocols that the agents are using.

We do not want to give the formalisation of complete protocols at this place
due to space limitations. However, we can indicate quite easily the results of the

114 F. Dignum

most common pairs of messages where agent i first proposes something to agent
j after which agent j can accept it, reject it or counterpropose it. These moves
are formally described as follows:

– [PROPOSE(i, j, α)(i)][ACCEPT (j, i, α)(j)]Oij (α(i)) ∧ Pji(α(i)) (accept)
Furthermore, if the success of α(i) depends on the performance of β(j) by j:
[PROPOSE(i, j, α)(i)][ACCEPT (j, i, α)(j)]Oji(β(j))
And if conventions determine that i can perform β(i) after acceptance of the
proposal then:
[PROPOSE(i, j, α)(i)][ACCEPT (j, i, α)(j)][α(i)]auth(i, β(i))

– [PROPOSE(i, j, α)(i)][REJECT (j, i, α)(j)]¬Oij (α(i)) (reject)
– [PROPOSE(i, j, α)(i)][COUNTERPROPOSE(j, i, β)(j)]¬Oij (α(i))

(counter)

Note that the counterproposal has no effect of itself yet. Only the reject com-
ponent of the counterproposal has immediate effect. The proposal component of
the counterproposal only takes effect after an appropriate answer of i.
For the reject we only indicated that the obligation does not arise. The rest of
the effect depends on the context and is usually not of prime interest.

The formalisation of the basic messages in the ADEPT system shows two
things.
First, that our framework is powerful enough to formally describe the negotiation
in the ADEPT system including the effects of the communication.
Secondly, that seemingly simple message types, like ACCEPT, have complicated
meanings that partly depend on the context in which they are used.

4 Private and Global Views on Communication

In the previous sections we gave a formal description of communication between
agents. This description was given from a global viewpoint. That is, the commu-
nication was seen as actions that change the complete system of agents from one
state to another state. This is quite natural when considering material actions
like database updates. If an agent changes a database, the system will be in a dif-
ferent state where some values in the database are changed. No other agents are
necessarily (directly) involved in this action. However, communicative actions
(except for the declaratives) always require the participation of two agents: the
speaker and the hearer.

In this section we will give a private view on communication based on the
global view defined in the previous sections. In a private view of the system we
try to ascribe each action, that takes place in the system, to an agent that has
control over that action. Also we try to make clear which part of the system
can be ”seen” by each of the agents. I.e. which formulas can be checked by the
agents.

To explain the private description of the communication between agents we
will use only one type of message. All remarks hold mutatis mutandis for the
other types of messages.

Social Interactions of Autonomous Agents 115

In a global view we have the following axiom for directives:

auth(i,DIR(authority, i, j, α)) → [DIR(authority, i, j, α)]Ojiα

I.e. after an authorized directive an obligation arises.
In the private view the following features of communication can be better

described:

1. Communication consists of speaking and listening.
2. Speaker and hearer might not share the same language.
3. Not all pre-conditions and effects of communications can be (directly)

checked by both speaker and hearer.

Ad.1. The first and most important step that should be taken to privatize the
view on this communication is to split up this action into a speaker and
hearer part. Agent i can never perform the complete directive by itself. It
can only send the message and hope that agent j receives the message. So,
although agent i initiates the action it does not have complete control over
it. It cannot assure that the action completes successfully. Because there is
not a single entity that has control over the communicative actions we will
split up the communicative actions into a send and receive action to get a
private view on them. DIR(authority, i, j, α) ≡

send(DIR(authority, i, j, α))(i)&receive(DIR(authority, i, j, α))(j)
The parallel decomposition of the directive should be read as a synchroniza-
tion between the agents. In an actual implementation the actions might be
serialized.
Although in the global view we cannot assume that an obligation holds after
the sending of (an authorized) directive by agent i, agent i can privately
conclude this if we assume the following axiom:

auth(i,DIR(authority, i, j, α)) → [send(DIR(authority, i, j, α))]iOjiα

This means that agent i assumes that agent j will always receive the messages
that agent i sends.
In the same way we have of course (and with more right probably):

auth(i,DIR(authority, i, j, α)) → [receive(DIR(authority, i, j, α))]jOjiα

That is, if agent j receives an authorized directive it will conclude that it
now has an obligation towards i.

Ad.2. Because the communication is now split up into a send and receive part
it is also possible to indicate whether the receiver can ”understand” the mes-
sage that was send. I.e. whether the receiving agent talks the same language
in terms of formulas that it incorporates in its private language. It is possi-
ble to incorporate some general translation rules in the system that indicate
how terms can be translated from one agent’s language to another’s. In this
paper we will assume that all agents use the same language in order not to
complicate the formalisation to much. See [20] for an example how an agent
system can be described in which agents can use different languages.

116 F. Dignum

Ad.3. The last part that plays a role in the privatization of communication is
the checking of the pre-conditions and effects of communication. If agent
j does not know that agent i is authorized to give him an order it might
not accept the consequent obligation. Often agent j can also not check the
authority directly. Therefore, we think that in each protocol it should be
possible for j to question the authority of i if j cannot check this authority
himself. This is conform the theory from Habermas about communication
protocols [10] where this is classified as an attack on the validity claims.
Agent j can attack the validity of the authority of i by directing agent i to
make the authority available for inspection of agent j. We get the following
possibilities:
1. (auth(i,DIR(authority, i, j, α))∧
OPP (auth(i,DIR(authority, i, j, α))?(j))) →

[DIR(authority, i, j, α)]Ojiα
I.e. if agent j has the opportunity to check the authority of agent i then
the authoritative direction of i to j to perform α results in an obligation.

2. (auth(i,DIR(authority, i, j, α))∧
¬OPP (auth(i,DIR(authority, i, j, α))?(j))) →
[DIR(authority, i, j, α)]

auth(j,DIR(auth., j, i, Reveal(i, j, (auth(i,DIR(auth., i, j, α)))))
If agent j does not have the opportunity to check the authority of i then
the direction of i only results in the authority of j to direct i to reveal
the status of his authority to j. We admit that this formula is not very
readable, but it is of course very easy to find some suitable abbreviations
for these standard formulas.

The establishment of the truth of the authority of i does not have to be the
end of the discussion, because, according to Habermas, agent j might now
question the reason for this authority. For instance, it is based on law, on a
previous agreement, on a contract, etc. We will not go further into this at
this place.

The above points indicate that the private view on communication between
agents reveals new aspects of the communication that are not visible in the
global view. Especially the difference in awareness about actions and facts by
different agents leads to new communicative acts that did not seem necessary in
the global view.

5 A Sketch of a Formalisation

In this section we precisely define the language that we use to formally represent
the concepts described in the previous sections, and the models that are used to
interpret this language. We will not go into too much detail with regard to the
actual semantics, but try to provide the reader with an intuitive grasp for the
formal details without actually mentioning them.

The language that we use is a multi-modal, propositional language, based
on three denumerable, pairwise disjoint sets: Π , representing the propositional

Social Interactions of Autonomous Agents 117

symbols, Ag representing agents, and At containing atomic action expressions.
The language FORM is defined in four stages. Starting with a set of proposi-
tional formulas (PFORM), we define the action- and meta-action expressions,
after which FORM can be defined.

The set Act of regular action expressions is built up from the set At of
atomic (parameterised) action expressions (denoted by a...) using the operators
; (sequential composition), + (nondeterministic composition), & (parallel com-
position), and ¯ (action negation). The constant actions any and fail denote
‘don’t care what happens’ and ‘failure’ respectively.

Definition 1. Let a ∈ At then the set Act of action expressions is given by the
following BNF:

α :: −a|any|fail|α1 + α2|α1&α2|α
The set MAct of general action expressions contains the regular actions and

all of the special meta-actions informally described in section 2. For simplicity,
we restrict ourselves in this paper to closing the set MAct under sequential
composition.

Definition 2. Let α ∈ Act, i, j ∈ Ag and x ∈ {peer, authority, power} then the
set MAct of general action expressions is given by the following BNF:

γα :: −α|DEC(i, α)|COMMIT (i, j, α)|DIR(x, i, j, α)|γα1; γα2

Not all actions can be defined at this level, because some actions like DECL
contain formulas from FORM as parameters. These actions will be defined in
the next stage.

The complete language FORM is now defined to contain all the constructs
informally described in the previous section. That is, there are operators repre-
senting informational attitudes, motivational attitudes, aspects of actions, and
the social traffic between agents.

Definition 3. Let ψ ∈ PFORM , γα ∈Mact, α, α1, α2 ∈ Act, i, j, k ∈ Ag and
x ∈ {peer, authority, power} then the language FORM of formulas is given by
the following BNF:

φ :: − ψ|¬φ|φ1 ∧ φ2|Kiφ|Biφ|[γα]φ|[γα]i
[DECL(i, ψ)]φ|[ASS(x, i, j, ψ)]φ|[Reveal(i, j, ψ)]φ|[ψ?(i)]φ
[DECL(i, ψ)]kφ|[ASS(x, i, j, ψ)]kφ|[Reveal(i, j, ψ)]kφ|[ψ?(i)]kφ
[γα; γβ]θ|[γα; γβ]iθ|PREV (α)|OPP (α)|NEXT (φ)
Prefi(φ|ψ)|ψ <i φ|i� j|INTiα|IMPi(α1|α2)|Oij(α)|auth(i, α)

Note that the ASS,DECL, Reveal and test action are introduced in FORM
at this stage. The postcondition φ does not have any meaning except as a place-
holder in these formulas.

The models used to interpret FORM are based on Kripke-style possible
worlds models. That is, the backbone of these models is given by a set Σ of
states, and a valuation π on propositional symbols relative to a state. Various

118 F. Dignum

relations and functions on these states are used to interpret the various (modal)
operators. These relations and functions can roughly be classified in four parts,
dealing with the informational component, the action component, the motiva-
tional component and the social component, respectively. We assume tt and ff
to denote the truth values ‘true’ and ‘false’, respectively.

Definition 4. A model Mo for FORM from the set CMo is a structure
(Σ, π, I, A,M, S) where

1. Σ is a non-empty set of states and π : Σ ×Π → {tt, ff}.
2. I = (Rk,Rb) with Rk : Ag → ℘(Σ ×Σ) denoting the epistemic alternatives

of agents and Rb : Ag ×Σ → ℘(Σ) denoting the doxastic alternatives.
3. A = (Sf,Mf, Sfa,Mfa,Ropp,Rprev,Rnext) with Sf : Ag × Act × Σ →

℘(Σ) yielding the global interpretation of regular actions, Mf : Ag×MAct×
(CMo×Σ) → (CMo×Σ) yielding the global interpretation of meta-actions,
Sfa : Ag × Ag × Act × Σ → wp(Σ) yielding the private interpretation of
of regular actions, Mfa : Ag × Ag ×MAct × (CMo × Σ) → (CMo × Σ)
yielding the private interpretation of meta-actions, Ropp : Ag×Σ → ℘(Act)
denoting opportunities, Rprev : Ag × Σ → Act yielding the action that has
been performed last and Rnext : Ag ×Σ → Act yielding the action that will
be performed next.

4. M = (Rp,Rep,<,Ri,Ria,Ro) with Rp : Ag ×Σ → ℘(Σ) denoting implicit
preferences, Rep : Ag × Σ → ℘(FORM) yielding explicit preferences, <⊆
Ag ×Σ → FORM × FORM which is a preference relation on preferences,
Ri : Ag×Σ → ℘(Act) denoting intended actions, Ria : Ag×Σ → ℘(Act)×
℘(Act) denoting implementation relations between actions and Ro : Ag ×
Ag → ℘(Σ ×Σ) denoting obligations.

5. S = (Auth,≺) with Auth : Ag×℘(MAct) → {tt, ff} yielding authorisations
and ≺: Ag ×Ag → {tt, ff} yielding hierarchical relations between agents.

such that the following constraints are validated:

1. Rk(i) is an equivalence relation for all i, and Rb(i, s) 	= ∅, Rb(i, s) ⊆
{s′ | (s, s′) ∈ Rk(i)} and (s, s′) ∈ Rk(i) =⇒ Rb(i, s) = Rb(i, s′), which
ensures that knowledge validates an S5 axiomatisation and belief obeys a
KD45 axiomatisation, while agents indeed believe all things they know.

2. Sf yields the global state-transition interpretation for regular actions. This
function satisfies the usual constraints ensuring an adequate interpretation
of composite actions in terms of their constituents. Sfa satisfies the same
constraints as Sf but also should satisfy that Sfa(i, j, α, s) ⊆ Sf(j, α, s).
I.e. the private interpretation of an action is more limited than the global
one. The function Mf models the global model-transforming interpretation
of meta-action. Because we do not allow the composition of meta-actions
with other actions yet, we require for the moment that Mf ≡ Mfa. Below
we elaborate on the definition of Mf for the meta-actions introduced in the
previous section.

Social Interactions of Autonomous Agents 119

3. Rnext(i, s) ∈ Ropp(i, s) ⊆ {α | Sf(i, α, s) 	= ∅}, which ensures that oppor-
tunities are a subset of the actions that are possible by virtue of the circum-
stances and that the next action performed is an opportunity. Furthermore,
Rprev(i, s) = α iff α ∈ Ropp(i, s′) for some s′ with s ∈ Sf(i, α, s′), which
relates previously executed actions to past opportunities.

4. Ri(i, s) ⊆ {α | Sf(i, α, s) 	= ∅} and for all s ∈ Σ some s′ ∈ Σ exists with
(s, s′) ∈ Ro.

The complete semantics contains an algebraic semantics of action expresses,
based on the action semantics of Meyer [18]. In this paper we will abstract from
the algebraic interpretation of actions and instead interpret actions as functions
on states of affairs. For the meta-actions the state-transition interpretation is not
adequate, because meta-actions do not change states but they change relations
between states. For instance, in the case of an assertion, the effect is to change
the doxastic state of the receiving agent, and nothing else. To formalise this
behaviour, we interpret meta-actions as model-transforming functions. In the
case of an assertion, the resulting model will differ from the starting model in
the doxastic accessibility relation of the receiving agent.

Definition 5. The binary relation |= between an element of FORM and a pair
consisting of a model Mo in CMo and a state s in Mo is for propositional
symbols, conjunctions and negations defined as usual. Epistemic formulas Kiφ
and doxastic formulas Biφ are interpreted as necessity operators over Rk and
Rb respectively. For the other formulas |= is defined as follows:

Mo, s |= [α(i)]φ ⇐⇒ Mo, s′ |= φ for all s′ ∈ Sf(i, α, s)
Mo, s |= [α(i)]jφ ⇐⇒ Mo, s′ |= φ for all s′ ∈ Sfa(j, i, α, s)
Mo, s |= [γα(i)]φ ⇐⇒ Mo′ , s′ |= φ for all Mo′, s′ ∈Mf(i, α,Mo, s)
Mo, s |= [γα(i)]jφ ⇐⇒ Mo′ , s′ |= φ for all Mo′, s′ ∈Mfa(j, i, α,Mo, s)
Mo, s |= PREV (α(i)) ⇐⇒ α ∈ Rprev(i, s)
Mo, s |= OPP (α(i)) ⇐⇒ α ∈ Ropp(i, s)
Mo, s |= NEXT (α(i)) ⇐⇒ α(i) ∈ Rnext(i, s)
Mo, s |= Prefi(φ|ψ) ⇐⇒ If Mo, s |= ψ then

Mo, s′ |= φ for all s′ ∈ Rp(i, s) and φ ∈ Rep(i, s)
Mo, s |= ψ <i φ ⇐⇒ (ψ, φ) ∈< (i, s)
Mo, s |= i� j ⇐⇒ i ≺ j
Mo, s |= INTiα ⇐⇒ α ∈ Ri(i, s)
Mo, s |= IMPi(α1, α2)⇐⇒ (α1, α2) ∈ Ria(i, s)
Mo, s |= Oij(φ) ⇐⇒ Mo, s′ |= φ for all s′ with (s, s′) ∈ Ro(i, j)
Mo, s |= Oij(α) ⇐⇒ Mo, s |= [any(i)]Oij(PREV (α(i)))
Mos, |= auth(i, α) ⇐⇒ Auth(i, α, s) = tt

The functions interpreting the special meta-actions (?, Reveal, DEC, COM-
MIT, DIR, DECL and ASS) can be described in terms of the preconditions and
the postconditions for execution of the actions. Due to space limitations we leave
them out here. See [9] for more details.

120 F. Dignum

6 Conclusions

In this paper we have shown that it is possible to formally describe commu-
nicating agents. The emphasis in this paper was on the formal description of
the communication between agents. A very important aspect of this formalism
is that it is possible to (formally) describe the effects of the communication.
Therefore it is possible to check what is the resulting situation after a commu-
nication protocol has been followed. We can analyze a protocol and find out
what are reasonable moves at any point in the protocol. We have shown how
the message types of the ADEPT system can be described in our primitives.
This revealed that a seemingly simple primitive like ACCEPT contains a lot of
hidden meanings.

We have also shown in this paper that there exists an important difference
between a private and global view on actions and in particular communications.
The private view opens up new communication moves in the negotiation because
the agents involved have different information!
The difference becomes of prime importance when we want to implement agents
that have to follow the rules of our logical formalism. By using a private view
of actions it becomes clear which agent has control over each action. This is
important because in the implemented system each action has to be initiated by
some agent.
The private view on actions also makes it possible to introduce unforeseen ac-
tions, which seems more realistic in a multi-agent system which usually has an
open character. I.e. not all the actions of all agents can be checked all the time.

Two remarks should be made about the logical formalism. First, it is not our
aim to build an automated theorem prover that can prove theorems in this very
rich logic. The use of a logical formalism gives the opportunity to automatically
generate the logical effects of a sequence of steps in a protocol. These could be
subsequently implemented in a more efficient formalism. The logical description,
however, can be used as a very general and precise specification of that imple-
mentation.
Secondly, the use of logic forces a very precise formal description of the com-
munication. The use of logic led to the discovery that the primitive ACCEPT
message has actually several components, some of which depend on the context
within which the ACCEPT is used. It is very important that this is realized when
the communication protocols are automatized. (As is the aim in communication
between agents.)
We admit that the logical formulas get very complicated and are not very read-
able. However, it is easy to define suitable abbreviations for standard formulas.
At least, working this way, it is clear what these abbreviations mean exactly!

References

1. C. Boutilier. Toward a Logic for Qualitative Decision Theory. In Jon Doyle, Erik
Sandewall and Pietro Torasso (eds.), Principles of Knowledge Representation and

Social Interactions of Autonomous Agents 121

Reasoning, proceedings of the fourth international conference, pages 75-86, 1994,
Morgan Kaufmann Publishers, San Francisco, California. 107, 107

2. P. Cohen and H. Levesque. Intention is choice with commitment. Artificial Intel-
ligence, vol.42, pages 213-261, 1990. 107, 108

3. P. Cohen and H. Levesque. Teamwork Nous, vol.35, pages 487-512, 1991. 103
4. R. Davis and R. Smith. Negotiation as a metaphor for distributed problem solving.

Artificial Intelligence, vol.20, pages 63-109, 1983. 103
5. F. Dignum and H. Weigand. Communication and deontic logic. In R. Wieringa

and R. Feenstra, editors, Information Systems, Correctness and Reusability, pages
242–260. World Scientific, Singapore, 1995. 110

6. F. Dignum. Autonomous Agents and Social Norms. Submitted to ICMAS work-
shop on Norms, Obligations and Conventions. 108

7. F. Dignum, J.-J.Ch. Meyer, R. Wieringa and R. Kuiper. A modal approach to
intentions, commitments and obligations: intention plus commitment yields obli-
gation. In M.A. Brown and J. Carmo (eds.) DEON’96 Workshop on deontic logic
in computer science, pages 174-193, Lisbon, Jan. 1996.

8. F. Dignum and B. van Linder. Modelling Rational Agents in a Dynamic Envi-
ronment: Putting Humpty Dumpty Together Again. In J.L. Fiadeiro and P.-Y.
Schobbens (eds.) ModelAge-96, pages 81-92,Sesimbra, Portugal, 1996. 105

9. F. Dignum and B. van Linder. Modeling Social Agents: Communication as Action
In J. Mueller, M. Wooldridge and N. Jennings (eds.) Intelligent Agents III - Pro-
ceedings of the Third International Workshop on Agent Theories, Architectures,
and Languages (ATAL-96), pages 83-93, Budapest, Hungary, 1996. 105, 119

10. J. Habermas. The Theory of Communicative Action: Reason and Rationalization
of Society. Polity Press, Cambridge, 1984. 116

11. D. Harel. First Order Dynamic Logic. LNCS 68 Springer, 1979. 106
12. W. van der Hoek, B. van Linder and J.-J.Ch. Meyer. A logic of capabilities. In

Nerode and Matiyasevich, eds, Proceedings of LFCS’94, LNCS 813, pages 366-378,
1994. 106

13. N. Jennings. Commitments and Conventions: The foundation of coordination in
Multi-Agent systems. Knowledge Engineering Review, vol. 8(3), pages 223-250,
1993. 103, 108

14. N. Jennings, P. Faratin, M. Johnson, P. O’Brien and M. Wiegand. Using Intelligent
Agents to Manage Business Processes. In Proceedings The Practical Application of
Intelligent Agents and Multi-Agent Technology, pages 345-360, London, 1996. 109

15. D. Kinny and M. Georgeff. Commitment and Effectiveness of Situated Agents.
In Proceedings Int. Joint Conf. on Artificial Intelligence, pages 82-88, Sydney,
Australia, 1991. 108

16. J. Lang. Conditional Desires and Utilities - an alternative logical approach to
qualitative decision theory. In W. Wahlster, editor, Proceedings of ECAI-96, pages
318-327, Budapest, Hungary, 1996, John Wiley & Sons Ltd. 107, 107

17. B. van Linder, W. van der Hoek and J.-J.Ch. Meyer. Tests as Epistemic Updates.
Pursuit of Knowledge. Technical Report, UU-CS-1994-08, Utrecht University, 1994.
106

18. J.-J.Ch. Meyer. A different approach to deontic logic. In Notre Dame Journal of
Formal Logic, vol.29, pages 109–136, 1988. 119

19. J. Muller. A cooperation model for autonomous agents. In J. Muller, M.
Wooldridge and N. Jennings, eds, Intelligent Agents III - Proceedings of the Third
International Workshop on Agent Theories, Architectures, and Languages (ATAL-
96), pages 135-147, Budapest, Hungary, 1996. 103

122 F. Dignum

20. P. Noriega and C. Sierra. Towards layered Dialogical Agents In J. Muller, M.
Wooldridge and N. Jennings, eds, Intelligent Agents III - Proceedings of the Third
International Workshop on Agent Theories, Architectures, and Languages (ATAL-
96), pages 69-82, Budapest, Hungary, 1996. 115

21. T. Norman, N. Jennings, P. Faratin and E. Mamdani Designing and Implementing
a Multi-Agent Architecture for business process management. In J. Mueller, M.
Wooldridge and N. Jennings (eds.) Intelligent Agents III - Proceedings of the Third
International Workshop on Agent Theories, Architectures, and Languages (ATAL-
96), pages 149-162, Budapest, Hungary, 1996. 104, 104, 105, 109

22. J. Rosenschein and G. Zlotkin Rules of Encounter MIT Press, Cambridge Mas-
sachusetts, 1994. 107

23. G. Sandu. Reasoning about collective goals. In J. Muller, M. Wooldridge and
N. Jennings, eds, Intelligent Agents III - Proceedings of the Third International
Workshop on Agent Theories, Architectures, and Languages (ATAL-96), pages
35-47, Budapest, Hungary, 1996. 103

24. J.R. Searle. Speech Acts. Cambridge University Press. 1969. 109
25. H. Weigand, E. Verharen and F. Dignum. Interoperable Transactions in Business

Models: A Structured Approach. In P. Constantopoulos, J. Mylopoulos and Y.
Vassiliou, eds, Advanced Information Systems Engineering (LNCS 1080), pages
193-209, Springer, 1996. 110

26. R. Wieringa, J.-J.Ch. Meyer and H. Weigand. Specifying dynamic and deontic
integrity constraints. Data & knowledge engineering, vol.4, pages 157-189, 1989.
106

Towards a Proof�Theoretic Foundation for Actor

Speci�cation and Veri�cation

Carlos H� C� Duarte

Department of Computing� Imperial College
��� Queen�s Gate� London� SW� �BZ� United Kingdom

e�mail	 cd��doc�ic�ac�uk� tel	 ��� ��� ��� 	
��� fax	 ��� ��� �	� 	���

Abstract� Actors has been regarded as a promising model for open distributed sys�
tems
 Although the operational semantics of actor programs has already been studied
in some recent work� means of reasoning about the behaviour of communities of inter�
connected actors at a high abstraction level are still lacking
 In this paper we argue
that a proof�theoretic semantics would be better suited to this purpose
 We present an
abstract data type like axiomatisation of the kernel primitives of Actors� showing how
to reason from speci�cations of actor communities and how to compose them within
the framework of temporal logics of objects

Keywords� Actors� Speci�cation� Veri�cation� Proof�Theory� Distributed Systems

� Introduction

Actors has been regarded as a promising model for open distributed systems� An
actor is a computational agent with mutable encapsulated state that changes by
processing messages in a side�e�ect free manner� Message passing between actors
is bu�ered� point�to�point� asynchronous and relies on a local naming scheme�
As a result of processing messages� new concurrent actors can be created and
actor names can be communicated�With all these characteristics� actors support
desirable run�time capabilities such as con�gurability and extensibility� In addi�
tion� the Actors model integrates the functional and object�oriented approaches
to software development� enforcing design principles as modularity and incre�
mentability�

Due to these peculiarities� it seems natural to search for a semantic founda�
tion that could permit the rigorous step�by�step development of actor systems�
Since the work described in ���� we know how to execute actor programs correctly�
In �	� and ��
�� the operational semantics of individual actors and of communities
of interacting actors is further studied formally� Yet the authors recognise that it
would be necessary to characterise properties of interest to speci�ers and users
of systems organised as actor communities and also that it would be nice to have
logical means of reasoning about such objects� This is the motivating factor for
the present paper�

We believe that a su�ciently abstract semantic foundation for the speci��
cation� composition and veri�cation of actors should encode in the axioms and
inference rules of a deductive system the meaning of the Actor primitives� Ul�
timately� designers and programmers need to deal in a rigorous and systematic

J.-J. Ch. Meyer, P.-Y. Schobbens (Eds.): Formal Methods of Agents, LNAI 1760, pp. 123-142, 1999.
 Springer-Verlag Berlin Heidelberg 1999

manner with the syntactic representation of such primitives as parts of speci�ca�
tions and programs� Our view can be captured in a development process where
such software artifacts are represented as theory presentations of some logic and
are interconnected by means of translations between their languages ����� Tech�
niques for constructing similar formalisms have been popularised by Institutions
���� in studying the theory of abstract data types ADTs� using some sort of
equational logic� However� we have to point out that� when concurrency comes to
place� and particularly because in the Actors model there are some fairness as�
sumptions� the use of a temporal logic for speci�cation and veri�cation is almost
unavoidable�

This leaves us very close to the view put forward in ����� Hence� we organ�
ise actor speci�cations using signatures and presentations of temporal theories�
We axiomatise the primitives for sending and receiving asynchronous messages
and for creating new objects� deriving inference rules to support modular rea�
soning about concurrent behaviour in terms of safety and liveness properties�
Having developed such a formalism� we see our main contribution as a logic that
establishes a �rm proof�theoretic basis for actor speci�cation� composition and
veri�cation� which follows to some extent previous work of the ADT school�

We proceed by discussing some of the issues in designing a proof�theory
for Actors� Subsequently� we introduce our approach to the speci�cation and
veri�cation of actor systems� illustrating the involved technicalities by means of
an example� Our conclusions� a comparison with related work and a description
of our future research are presented in the �nal section�

� Issues in the Design of a Proof�Theory for Actors

One question naturally arises in working out a proof�theory for Actors� Can we
apply directly some existing logic to provide the desired semantics� To the best
of our knowledge� the answer is negative� because no such a logic captures all the
required ingredients and provides the proper level of abstraction� Other logics
for concurrent object�based systems development are described in ��� ��� ��� 	���
In the concluding section� we shall compare them with our work�

Because the constituent entities of the Actors model are formal and our
approach to speci�cation is logical� we need to determine the characteristics
of a logic to make possible the rigorous representation of all these entities� To
begin with� an actor deals with distinct sets of values in message exchange and
computation� Values may be considered actors with unserialised behaviour ����
which are not history sensitive and have a �xed meaning in every computation�
Here� however� in order to keep a clear distinction between values and actors�
we represent the �rst family as objects of a sort in a many�sorted language�
instead of using an unsorted language� In a way� sorts de�ne types for values�
which is indeed the usual representation of properties of �xed meaning objects
in programming languages� Actors� in turn� have observable behaviour� state�
independent identity and can be considered modules� Hence� they are speci�ed
using theory presentations as suggested in �����

124 Carlos H.C. Duarte

Actors interact via bu�ered message passing� Since ����� temporal logic has
been the preferred framework for studying bu�ered communication� Even among
such logics� there are many possibilities to choose� Due to the in�nite character
of some data domains of messages� propositional logic cannot be used ���� Be�
cause the Actors model requires message delivery to be guaranteed and message
consumption to be eventually performed� fairness requirements which demand
specifying when these actions may occur as it is impossible to determine a priori

how the environment will evolve� branching time logic has to be used �����
To complete the picture� we need to address the naming and creation schemes

adopted by the Actors model� In producing a speci�cation� we are in fact de�ning
a template for the behaviour of a population of similar actors so that each receives
a mail address at creation time to serve as its name in communications� The usual
way of representing this is to regard the speci�cation as implicitly parameterised
by a sort of names� extending the original speci�cation ���� In addition� to avoid
con�icts between the creation of new actors and the satis�ability of Barcan
formulae� which state that the quanti�cation domain of variables do not vary�
every actor needs to carry an existential attribute �
�� According to this approach�
objects that have not been created do not play any role� paraphrasing ����

Considering this rationale� actor speci�cations should look like Figure ��
There is represented a bu�er cell� which dynamically allocates other cells for
the integers stored� Attribute symbols represent the actor state� while messages
and local computations are represented by action symbols� The symbols E� X�
� and �� are temporal connectives to state that a property holds in some be�
haviour� in the next local instant� only if preceded by the occurence of another
property and that occurrences of two properties are causally connected� Axiom
��	� e�g�� states that in any behaviour� if item happens� in the next instant the
cell will hold a value equal to the v provided� Then� the cell will not be empty
empty � F� and will be the last element in the queue of integers lst � T�� We
shall continue to explain this example in Section ��

� Axiomatising the Actors Model

��� Representing Actors

A theory signature provides the language to be used in a speci�cation� Signatures
bring both the notion of scope and interface to the logic� by forcing every used
symbol to be declared locally and by enabling the de�nition of translations
between symbols in order to connect distinct speci�cations� Theory signatures
for actor speci�cation are de�ned as follows�

De�nition� �Actor Signature�� An actor signature � is a triple of disjoint
and �nite families �� A� � � where�

� � � S� �� is an universe signature in the usual algebraic sense ���� i�e��
S is a set of sort symbols and � is an S� � S�indexed family of operation
symbols� We also require that addr � S�

125Towards a Proof-Theoretic Foundation for Actor Specification and Verification

Actor BufferCell

data types addr�bool� int

attributes cont 	 int� nxt 	 addr� empty� lst 	 bool
actions nil� item�int 	 local� extrn birth�

void� link�addr 	 local comput�
put�int� get�addr 	 local� extrn message�
reply�int 	 extrn message

axioms n�m 	 addr� u� v 	 int� b 	 bool
nil � empty � T � lst � T ��
�
item�v� cont� v � empty � F � lst � T ��
�
void � nxt � n � lst � b� X�nxt � n � empty � T � lst � b ��
�
link�n � cont � v � empty � b� X�cont � v � nxt � n � empty � b � lst � F ��
�
put�v � lst � T� X��n � new�item� n� v � link�n ��
�
�n � new�item� n� v � link �n� put�v � lst � T ��
�
put�v � lst � F � nxt �m��send�put�m� v ��
�
get�n � empty � F � cont � u��send�reply � n� u ��
�
get�n � empty � F��void ��
�
get�n � empty � T � lst � F � nxt � m��send�get� m�n ��
��
nil � item�u� G�E�deliv�put� v �E�deliv�get� n ��
��
nil � item�u� XG���void � link�n� E�put�v �E�get�m ��
��
End

Fig� �� Speci�cation of bu�er cells

� A is an S� � S�indexed family of attribute symbols�
� � � �e� �l� �c� is a triple of S��indexed families of action symbols such that
�e��l���c is empty� �c is a set of local computation symbols� The elements
of �e and �l represent respectively events to be requested from the environ�
ment and provided locally�� Each of these two sets contains distinguished
sub�sets of message and birth computation symbols� e�g� �l � �lb and �lb �

For � denoting the empty sequence� we write an �� s�indexed family of symbols
as if s were its index� Also� given a set or a sequence X� we denote the sub�set of
X symbols of sort hs�� � � � � sni� s as Xhs������sni�s� In making reference to speci�c
sets of signature symbols� we shall operate with subscripts �eb�lb � to denote
operations on sub�sets of � �eb � �lb��

In our previous example� addr� bool and int are the sorts that constitute� together
with their implicitly de�ned constants and operations� the universe signature ��
Clearly� the sort of mail addresses addr must be part of every signature� Other�
wise� some speci�ed actors would be useless without the ability of exchanging
messages or creating new actors� Still in the example� we can see that cont� nxt�

� Since the mail addresses of actors requesting and providing the occurrence of an
event can be determined at run time only and may denote the same object� �e and
�l should not be disjoint in general

126 Carlos H.C. Duarte

empty and lst are the attributes in A� In the Actors model peculiar terminology�
such attributes are called acquaintances� which may be instantiated at creation
time or in processing subsequently received messages�

The structure of the set of action symbols di�ers from other similar logics
���� ���� Each actor may provide some externally visible functionality and may
request provision of functionality from other actors� An actor may also perform
purely local computations� Because of these distinctions� the set of action sym�
bols is divided into three sub�sets� �e� �l and �c� The �rst two are dismembered
in sub�sets of actions to represent synchronous and asynchronous interactions�
�eb and �e�eb for instance� In general� actors interact using asynchronous mes�
sages� members of �e�eb like put in sendput� nxt� v�� In some particular cases�
however� synchrony is also required� This is the mode of interaction when a newly
created actor receives its name because the occurrence of birth action of �eb has
just been requested� � For our example� all these families can be inferred from
the statements in Figure ��

As it is usual in a proof�theoretic approach to speci�cation cf� ���
� 	���� we
need to extend signatures with some logical symbols� The situation here resem�
bles the use of hidden symbols in algebraic speci�cations ���� There� the speci�er
wants to use the language of previously de�ned data types to specify a more
complex one� Here� we want a simpler language to specify complex patterns of
behaviour presented by every actor� de�ned in terms of a more complex lan�
guage� This extended language will be used in providing a semantics for the
actor primitives and that is why it should not be required from the speci�er of
each signature�

De�nition� �Extended Actor Signature�� Given an actor signature � �
�� A� � �� the triple �� � ��� �A� �� � is said to be the extended signature
of �� where�

� �� � S � fboolg� � � fTbool� Fbool�NOTbool�boolg��
� �A � Al� Ai� As� Ad�� such that Al � A� for each c � �lb of sort hs�� � � � � sni
there is an initc � Aihs� �����sni�bool

� for each c � ��e�eb���l�lb� of sort hs�� � � � � sni
there is a sentc � Ashs������sni�bool

and for each c � �l�lb of sort hs�� � � � � sni
there is a delivdc � Adhs������sni�bool

�
� �� � �e� �out� �l� �in� �c� �rcv�� where for each c � �e of sort hs�� � � � � sni
there is an outc � �outhaddr�addr�s������sni � for each c � �l of sort hs�� � � � � sni there
is an inc � �inhaddr�addr�s������sni and for each c � �l�lb of sort hs�� � � � � sni there
is a rcvc � �rcvhs������sni such that ��in�out��rcv � f g and that inc � outc
whenever c � �e�l�

That is to say� the original universal signature is extended with the sort of
booleans� new attributes are provided to deal with the existence of actors and
bu�ering of messages� and new actions are introduced to handle creation and
interaction� Hereafter� we will not make any distinction between extended sig�
natures and actor signatures�

� For simplicity� we assume that there are only two modes of interaction between
objects� synchronous and asynchronous� and that creation follows the �rst one

127Towards a Proof-Theoretic Foundation for Actor Specification and Verification

A central feature of actors is interaction� Here� it is simulated using the syn�
chronous case by the actions outc and ind happening simultaneously for c � �e
and d � � �

l � which belong to the actor communities populations of actors with
same speci�cation� requesting and providing the event respectively� The occur�
rence of these logical actions plays the role of the interaction steps in ��
�� For an
interaction between actors of the same community represented by action c� hence
required and provided internally and member of �e�l� the occurrence of the new
actions above has already been synchronised since their symbols are equalised
by the constraint inc � outc in De�nition 	� Otherwise� this synchronisation
must be supported by the existence of a morphism identifying shared actions
in the distinct signatures� as discussed in Section ���� Asynchrony is guaranteed
by obliging rcvd to happen after outcjind and before d itself� Finally� double�
bu�ering is captured by the attribute delivdd sentc� becoming true for some
values when they are delivered sent� in a message� Of course� all these new sym�
bols do not explicitly appear in speci�cations but their behavioural constraints
will have to be captured by our axiomatisation� Also according to the proposed
extended signatures� ill formed messages are not allowed as actions� messages
always have a locally correct representation at the sender� and messages sent to
actors which cannot provide the required functionality are never delivered�

According to ���� in a given state of the system� it should only be possible
to mention the objects which exist in that state� In our case� objects will have
some initc attribute set to T for some sequence of values 	vc if the occurrence of
an action inc	vc�� c � �lb � created it� The structure of communities of similar
actors is de�ned below and provides a syntactic although static� representation
for the con�gurations of �	� and the fragments of ��
��

De�nition� �Actor Community Signature�� Given a signature � � ��
A� � �� a community signature �P is obtained by parameterising � with sort P�
That is� �P � S � fPg� ��� AP is obtained from A by adding the parameter
sort P to each of its attribute symbols� and �P is obtained from � by adding
the parameter sort P to each action symbol of �e� �l� �c and �rcv� The other
symbols of � remain the same in �P�

It seems obvious that the parameter sort P of every community should be addr�
Indeed� according to ��
�� actor semantics should be parameterised by sets of
actor addresses� Due to our de�nition� a new parameter is added to each relevant
signature symbol and its instances will represent an actor name� In this way�
the basic operations on object references� equality test and dereferencing ���� are
supported� However� signatures alone do not support a modular design discipline�
obliging the entire structure of complex systems to be represented by single
entities� The required means of composition shall be provided in Section ����

��� Specifying and Interpreting Actor Behaviours

Actor speci�cations stand for the behaviour de�nitions of ���� To de�ne them�
we assume that an in�nite family of variables and its classi�cation
 according
to a set of sorts are given�

128 Carlos H.C. Duarte

Terms stand for meaningful values� In their de�nition� a signature � and a
classi�cation
 indexed by the set of sorts are used� These are assumed to be
given in the sequel�

De�nition	 �Terms�� The S�indexed set of terms T�
� is de�ned as follows�
assuming q �
s ��s �As� p � �hs� �����sni�s� f � Ahs������sni�s and ti � T�
�si �

t �� q j pt�� � � � � tn� j ft�� � � � � tn�

That is� terms consist in variables� nulary function and attribute symbols� or
function and attribute symbols applied to terms� We usually write a sequence of
similar terms t�� � � � � tn as 	t�

As explained previously� to give an account of actor behaviour in terms of
formulae� �rst�order branching time temporal logic is required� In what follows�
we take formulae as de�ned in CTL� ��� and introduce the necessary extensions�

De�nition
 �Formulae�� The set F�
� of formulae is de�ned by the mutual
recursion below� assuming c � �hs������sni� ti � T�
�si � y �
s and gi � F�
��

g �� beg j ct�� � � �tn� j t� �s t� j Eg
� j g� � g� j 	g� j
y � g�

g� �� g j Xg�� j g
�
�Ug

�
� j g

�
� � g�� j 	g

�
� j
y � g

�
�

Formulae stand for the initial instant� action occurrences� term equality� a for�
mula holding in some possible behaviour� in the next instant or until another
formula holds� or formulae aggregation using �rst�order logic connectives�

A formal de�nition of actor speci�cations� exempli�ed here by BufferCell�
is as follows�

De�nition� �Actor Speci�cation�� An actor speci�cation is a pair � � ��
� � where � is an actor signature and � is a �nite set of formulae over � the
speci�cation axioms��

Formulae containing other �rst�order logic connectives and inequalities stand for
their usual translations� Free variables in axioms are considered to be universally
quanti�ed� Moreover� we write a parameterised formula gn� 	vg� as n�g	vg�� The
connectives de�ned below are also admissible in speci�cations�

For in formula reads represents

� � init initialisation
W
c��lb

��vc � c��vc

ni� �vc T��� n��new�c� n�� �vc actor creation
outc�n�� n�� �vc� c � �eb
inc�n�� n�� �vc� c � �lb

ni� �vc T��� n��send�c� n�� �vc message dispatch
outc�n�� n�� �vc� c � �e�eb
inc�n�� n�� �vc� c � �l�lb

n� �vc T��� n�deliv�c� �vc message delivery n�rcvc��vc� c � �l�lb
g F��� Ag in any behaviour �E�g

g F��� Fg eventually �g � gUg
g F��� Gg henceforth �F�g

g�� g� F��� g�Wg� unless G�g� � �g� � g�Ug�

g�� g�� p F��� g�
i
�pg� initially precedes p� ��g�W�g� � �g�

g�� g�� p F��� g� �p g� precedes g�
i
�pg� � g� � X�g�

i
��p�p�g�

g�� g�� p F��� g���pg� cause�consequence g� � Xg� � g� �p g�

129Towards a Proof-Theoretic Foundation for Actor Specification and Verification

The unary temporal connectives above are de�ned to be non�strict they include
the present�� Conversely� the precedence connectives are strict and forbid the
simultaneous occurrence of some properties� In speci�cations� where usually p �
init� their subscripts are omitted� In particular��� is used to establish causality
relations� for instance that an occurrence of a get causes the subsequent dispatch
of a reply which cannot happen otherwise� The primitives are the usual in the
Actors model �����

There is just another Actor primitive not treated by our syntax� become�
which de�nes that an actor will behave according to a distinct speci�cation in
its subsequent computation� In fact� local computations in �c like void of our
example together with a selective use of attributes simulate this in an awkward
manner� It would be easy to present become as another de�nition� by intro�
ducing death actions in signatures cf� �
�� and by considering the primitive as
the death of an actor and its subsequent resurrection with a distinct behaviour�
keeping the same mail address in this process� However� we have reasons to
avoid treating this here� in the �rst place� in order to simplify our presentation�
and secondly because it would bring methodological complications for reasoning�
These complications shall be addressed in the last section�

Concerning the formal meaning of signature symbols� we assume that sorts
are interpreted as constant sets� while variables and operations on sorts denote
constant functions� Attributes di�er from operations in that they may have a
distinct meaning at each instant i�e� they are non�rigid�� Actions� in turn� may
happen concurrently if this is allowed by speci�cation axioms� Indeed� action
symbols are a syntactic representation of the events of ��	�� which may proceed
concurrently if unrelated� Speci�cations are only satis�ed by branching in�nite
sequences of states representing an actor community behaviour� As a result of all
these assumptions� it is easy to see that we are adopting a model of parallelism
where actions have a �xed granularity� Since our approach here is proof�theoretic�
the reader is referred to ��� ��� for some semantic considerations�

��� Axiomatising Actor Behaviours

In this section� we develop a deductive system ACT for Actors consisting of a
set of axiom schemes and inference rules� We assume the existence of a deductive
system BTLO for the many�sorted� �rst�order� branching time temporal logic
of objects used here see �
� ��� for axiomatisations of particular linear time
versions� and concentrate on the peculiarities of our work�

We shall develop axiom schemes for a consequence relation �� wherein a
speci�cation is used as an index to remind us that it depends of the structure of
a signature to support localised reasoning� We will assume that a speci�cation
� � �� A� � �� � � is given� Also� we will drop from the schemes sorts in
quanti�cations to simplify our presentation� using the variable n for actor names
decorated with indexes when necessary� The following notation shall be used to
express the invariance of an attribute or a modi�cation in its value� the fact that

� Notice that� since j�lb j � ���	�� we allow actors to have �multiple constructors�

130 Carlos H.C. Duarte

an actor name has become known and that a property continuously holds unless
that happens� and the fairness requirement over the occurrence of an action�

For s as formula represents

t Inv�s
k � �X�t � k� t � kV
fi� �vfi � vi Mod�s

V
X�fi� �vfi � vi

n Acq�s

W
d��l�lb

� �vd � �deliv�d� �vd � n � �vd �

W
d��lb

� �vd � �d� �vd � n � �vd �
W
d��eb�lb

� �vd � new�d�n� �vd

�n� g Wait�s �gW�init � �gW�Acq�n

c��vc Fair�s F

�
c��vc �G

� V
d�� c

 �vd � �E�d� �vd
��

In logics of objects� the so�called locality property is regarded as a crucial
assumption to support modular reasoning ���� ���� It is also a key feature of the
Actors model ��	�� Generally speaking� locality requires that either an action of
the object occurs or its attribute values remain invariant� This means that each
actor has encapsulated state � changes must be witnessed by the occurrence of
its own actions� Locality is captured by the following schemes�

L
�

��
W
c��c

��vc � n�c��vc �
V
f�Al

 �vf � n�Inv�f� �vf

L���
V
c��lb

�vc � �n� � n��new�c� n�� �vc � n��Inv�initc��vc

L���
V
c��l�lb

�vc �
W
d��lb

�n�� �vd � n��new�d�n�� �vd � n��send�c� n�� �vc � n��deliv�c� �vc �

n��Inv�sentc��vc
L���

V
c��l�lb

�vc�
W
d��lb

�n�� �vd�n��new�d� n�� �vd�n��deliv�c� �vc�n��c��vc�n��Inv�delivdc��vc

The �rst scheme says that� either a local computation happens� or all the non�
logical attributes remain invariant� In the BufferCell example� this captures
the fact that either void or link occurs or else cont� nxt� empty and lst do not
change� According to the second scheme� or an actor is created with some name�
or the possible existence of an object with such name is not disturbed� The other
two schemes are to guarantee that bu�ering attributes vary only when the actor
is created or message passing takes place�

Permission schemes constrain the occurrence of actions�

P
�

��
V
c���e�eb���l�lb�

�vc � beg � G��n��init �
V
n� �vcaddr�fn�g

n��Wait�n��send�c� n�� �vc

P
�

��
V
c��l�lb

�vc � beg � ��n�deliv�c� �vcW�n�init

P
�

��
V
c���l�lb��c

�vc � beg � ��n�c��vcW�n�init

P
�

��
V
c��eb�lb

�vc � beg � G��n��init �
V
n� �vcaddr�fn�g

n��Wait�n��new�c�n�� �vc

P�
��
V
c�d��lb

�n�� �vc � n��new�c� n�� �vc�
 �vd � n��initd� �vd � F

P
�

��
V
c��lb

beg� G��n�� n�� �vc � E�n��new�c� n�� �vc

P
�

��
V
c��lb

�vc � �n� � n��new�c� n�� �vc��begn��c��vc

131Towards a Proof-Theoretic Foundation for Actor Specification and Verification

P
�

��
V
c�d��lb
d��c

�vc �n��new�c�n�� �vc� ��n�� �vc
�
� �vd ���n� �� n�� �vc

� �� �vc�n��new�c�n�� �vc
��

n��new�d� n�� �vd
P	
��
V
c��l�lb

�vc � n�deliv�c� �vc� n�sentc��vc � T

P
�

� �
V
c�d��l�lb
d��c

�vc � n�deliv�c� �vc� ���vc
�� �vd � ��vc

� �� �vc � n�deliv�c� �vc
� � n�deliv�d� �vd

P��
� �

V
c��l�lb

�vc � n�c��vc� n�delivdc��vc � T

P
��

� �
V
c�d���l�lb��c

c��d

�vc � n�c��vc� ���vc
�
� �vd � ��vc

� �� �vc � n�c��vc
� � n�d� �vd

The �rst four schemes say that dispatch� delivery and consumption of messages
plus local computations and requests for creation do not happen before the birth
of each actor� Notice that the �rst and forth schemes are more liberal if the actor
is never created within a certain community but are more restrictive otherwise
by requiring actor names to become known due to the delivery of a message�
the birth of the source or the creation of the target before they could be used
in the task� This is to prevent using arbitrary names and modes of interaction
distinct from point�to�point message passing such as broadcasting ��	� �
�� The
other schemes say� a new actor can only be created if this has not happened
before ��� it is always possible to create some new actors ��� the occurrence of
birth actions is causally connected to requests for creation ��� two actors with
the same name cannot be concurrently created ��� messages can be delivered
only if they were previously sent
�� only one message can be delivered to
each actor at any instant ���� messages can be consumed only if they were
previously delivered ���� consumption of messages and local computations are
totally ordered �	�� meaning that two such actions cannot occur in parallel�

Many logical attributes are introduced in the extension of actor signatures�
The variation of their values as the actor community evolves is de�ned as follows�

V�
��
V
c��lb

�vc � �n� � n��new�c� n�� �vc� n��Mod�initc��vc � T

V�
��
V
c��lb
d��l�lb

�vc� �vd � �n� � n��new�c� n�� �vc� n��Mod�sentd� �vd � F � delivdd� �vd � F

V�
��
V
c��l�lb

�vc � �n� � n��send�c�n�� �vc� n��Mod�sentc��vc � T

V�
��
V
c��l�lb

�vc � n�deliv�c� �vc� n�Mod�sentc��vc � F � delivdc��vc � T

V�
��
V
c��l�lb

�vc � n�c��vc� n�Mod�delivdc��vc � F

That is� if the creation of an actor has been requested� there will exist a new
actor in the next instant with empty message bu�ers ��	�� if a message is sent�
it will be bu�ered for output ��� if a delivery happens� the message will be
removed from the output bu�er and transfered to the input bu�er ��� and if a
message is processed� it will be removed from the input bu�er ��� Notice that
the delay in bu�ering messages� in the next instant only� rules out the existence
of Zeno actors� which could reply in�nitely fast�

132 Carlos H.C. Duarte

It is important to mention that� even though the two sets of axiom schemes
above severely constrain the behaviour of actor communities� such constraints
are almost always necessary� For instance� we require the continuous ability to

create new actors using P
�

� in order to prevent that the address space used by
some community could become completely used� However� we do not constrain
the initial value of n�initc	vc� for every n and this permits the existence of actors
in the initial instant� What would happen otherwise is that no actor could exist

according to P
�

� since any birth could not be requested �rst� On the other hand�

the permission scheme P
��

� above is not necessary and is provided here just to
facilitate speci�cation and reasoning� We can allow actors to have full internal
concurrency instead� as soon as we guarantee that attribute consistency in the
sense of ����� is preserved using additional axioms ���� Notice that actors can
always present some internal concurrency anyway� they can create many other
actors and send several messages at the same time�

Finally� fairness schemes are required to guarantee a correct collective actor
behaviour� Without fairness� it could be the case that messages fail to be deliv�
ered� because the receiver always postpones the delivery or due to transmission
failures� and that received messages are never consumed�

F�
��
V
c��l�lb

�vc � n�delivdc��vc � T �E�n�c��vc� n�Fair�c��vc

F�
��
V
c��l�lb

�vc � n�sentc��vc � T �E�n�deliv�c� �vc� n�Fair�deliv�c� �vc

The �rst scheme says that� if the processing of a message is obliged� because
the message was delivered and has been locally bu�ered� and it is also permitted
enabled�� the message will be processed or the actor will become always disabled
for processing � unable to consume any pending message� Mutatis mutandis�
this is what the second scheme says for message delivery� These schemes capture
the assumptions of bounded bu�ering and reliable message passing respectively�

A crucial simpli�cation was made in our axiomatisation concerning message
passing� We should have treated the fact that messages may be exchanged both
concurrently or in sequence and thus some of them could be missed or duplicated
���� In Actors� the usual treatment of this problem is to attach tags to messages so
that they become distinct from each other ���� To avoid obliging the speci�er to
deal with such details� logical means could have been provided� much in the way
that bu�ering is treated through auxiliary attributes� Although omitted here�
this additional treatment is indeed necessary� say� to determine the e�ects of
messages simultaneously sent to the same actor� which would have been equalised
otherwise since this situation is not covered by axiom V�

��
All the properties above have already been stated in the literature � many

appear in ��	�� for instance � although they remained without an axiomatisa�
tion� Hereafter� we call the set of logical axioms of � containing fL����� �P�����

� �

V����
� �F���

�
g as Ax�� while the set Ax� contains only the axioms with barred

labels� wherein logical attributes do not appear�
The axiom schemes above allow us to derive more or less standard rules for

reasoning about concurrent actor communities� In what follows� we use Hoare

133Towards a Proof-Theoretic Foundation for Actor Specification and Verification

triples fpg a fqg to represent a p� Xq� Moreover� sequents like P �� q stand
for the fact that formula q is derivable from the set of formulae P together with
the logical and non�logical� axioms of � using the inference rules of the proof
system� We drop the index from the sequent when it is clear from the context�

Proposition� �Derived Rules of Inference�� Given an actor speci�cation
� � �� A� � �� � �� the following are inference rules for deriving properties of
existing ��actors� where each p� p� and q is an arbitrary formula over a single
actor and n� n� and m are terms of sort addr�

�EXIST � �� p� � n��new�d�m� �vd
�� p� q �

W
c��lb

��vc � n�new�c�m� �vc

d � �lb
p� � XG�p� q

�SAFE� ��
V
c��lb

�vc � n�c��vc� q

��
V
c��c

�vc � fqg n�c��vc fqg

Gq

�INV � ��
V
c��c

�vc � fqg n�c��vc fqg

q � Gq

�RESP � ��
V
c��c

�vc � fpg n�c��vc fp � n�d� �vdg

�� n�d� �vd� Fq

�� p� FE�n�d� �vd
d � �l�lb

n�deliv�d� �vd� X�Fp� Fq

�COM � ��
V
c��c

�vc � fpg n�c��vc fp � n�deliv�d� �vdg

�� n�deliv�d� �vd� Fq

�� p� FE�n�deliv�d� �vd
d � �l�lb

n��send�d� n� �vd� X�Fp� Fq

Using our axiom schemes Ax� and the axiomatisation of the temporal logic
BTLO� it is not di�cult to derive the inference rules above� which are more
convenient to use together with the axioms of Ax� because the logical attributes
have been eliminated�RuleEXIST is a direct consequence of fL���P

�

��V
�

�g� The
SAFE and INV rules� which enable the deduction of properties that actors will
always have and correspond to forms of actor induction as described in ��	��
are consequences of axioms L�� and P����

� � The other rules are a consequence of

fL���P
�����
� �V���

� �F��g and fL���P
���	
� �V���

� �F��g respectively� Although these
last two rules are both for the derivation of properties in the general liveness
family� which an actor will eventually present� they are distinguished to keep
apart properties arising as a result of local and cooperative behaviour�

The COM rule is to be used in proving properties that arise from the inter�
action between two potentially distinct� actors� The situation here di�ers from

134 Carlos H.C. Duarte

that described in ���� where interaction is captured through action sharing in a
more explicit and unconstrained manner� Therein� a very strong form of fairness
is proposed� since in general a shared action may loose its permission to happen
in some of the components while it has been obliged to take place� For designing
actor systems� however� such a fairness strengthening is not required� a shared
action must be locally provided by one actor only and cannot have its permission
to occur externally constrained in this way�

Let us illustrate the use of our proof system� From the BufferCell speci��
cation� we can see that each cell is created and may be subsequently consumed
or linked to another cell of the bu�er� If a cell is empty and it is not the last ele�
ment of the list� the cell will never perform any local computation again� Hence�
the cell will forward every incoming message to the next bu�er element if any��
Assuming familiarity with temporal logic� this is stated and veri�ed as�

�BufferCell Gempty � T lst � F �G	void 	linkn��� ��

�
 void � empty � T� X�empty � T from ���
�
 link�n � empty � T� X�empty � T from ���
�
 empty � T� G�empty � T �� � INV

�
 void � X���voidW�get�n � empty � F � �void from ����DEF �
�
 ��voidW�empty � F� �G�empty � T� G��void DEF W�bool Ax

�
 void � XG�empty � T �� ��K X

�
 void � XG�empty � T� �void �� �� ��WEAK G

�
 beg � ��voidW�init from P�

�
 init� ��voidW�get�n � empty � F � �void from ���� DEF �
��
beg � ��voidW�get�n � empty � F � �void �� � TRANS W

��
 get�n � empty � F� �void �X�empty � F � void from ����L��P��

��
 get�n � empty � F � �void � G�empty � T� �void �� ���WEAK X�FIX G

��
beg � G�empty � T� �void ��� ���DEF G�TRANS W

��
 empty � T� �void �� beg E
��
G�empty � T� G��void �� G I�K G

��
 empty � T � lst � F� G��void �� ���WEAK �

using Modus Ponens and generalisation as the inference rules of the underlying
logic� In a similar way� it is easy to prove empty � T � lst � F � G��link�n�
Therefore� conjoining these partial results and using the fact that Gp �Gq �

G�p � q and a G introduction� we conclude that the property above holds�

��	 Composing Actor Communities

In Section ��� we discovered that� to give an account of what is usually consid�
ered to be a component in Actors� we need at least to be able to put distinct
signatures together to represent the structure of yet another component or an
entire system� The view that complex components should be de�ned in terms of
smaller components connected together has been developed within the theory of
Institutions ����� which requires the de�nition of basic entities to be regarded as
connectable units� In our case� these will be actor community speci�cations�

135Towards a Proof-Theoretic Foundation for Actor Specification and Verification

Next� it is necessary to provide means of connecting these entities to each
other� Traditionally� in a logical approach to design� this is achieved by providing
translations between the languages of the related theories ����� If a symbol�to�
symbol mapping morphism� between two actor signatures is given� the existence
of a translation between the respective languages can be guaranteed along with
an interpretation between their theories�

De�nition �Signature Morphisms�� Given two actor signatures�� � ���
A�� ��� and �� � ��� A�� ���� a signature morphism � �� � �� consists of�

� a limit preserving morphism of algebraic structures � � �� � �� such
that �addr�� � addr� and �bool�� � bool�� and also that �T�� � T��
�F�� � F� and �NOT�� � NOT��

� for each f � A�hs������sni�s
� an attribute symbol �f� � �s��� � � ���sn��

�s� in A� such that �Al� � � Al� � �Ai�� � Ai� � �As�� � As� and
�Ad� � � Ad� � where for each fc � A�i�s�d�� � �fc� � f�� �c��

� for each c � ��hs������sni � an action symbol �c� � �s�� � � � � � �sn� in
�� such that ��e�� � �e� � ��l� � � �l� � ��c�� � �c� � ��rcv�� �
�rcv� � ��out�� � �out� and ��in�� � �in�� where � �eb� � � �eb��lb� and
��e��eb� � � ��e��eb� ���l��lb� �� ��lb� � � �lb� and ��l��lb� � � �l��lb� so
that � �e��l� � � �e��l� and also � �out��in�� � �out��in� � In addition� for
each dc � ��in�out�rcv��� � dc� � d���c��

It is straightforward to de�ne inductively the translation of symbols� classi�ca�
tions� terms� formulae and sets thereof under �

Since renaming is one of the features of translations� morphisms capture the re�
labelling operation described in ���� used to equalise identi�ers in distinct compo�
nents� In addition� the translation of symbols belonging to extended signatures
only is determined by the translation of the original symbols provided� This
means that the speci�er� in de�ning a morphism to connect distinct signatures�
does not need to be concerned with the new symbols introduced in their exten�
sion� Furthermore� signature morphisms allow some external symbols members
of �e� to become local as well� This stems from the fact that� in a complex con�g�
uration� there may be events required from the environment of a sub�component
which are not required by the whole component� because they are provided by
another sub�component of the same con�guration�

Of course� we want to be always able to combine distinct signatures in such
a way that the structure to support actor interaction is provided� This can be
accomplished if we can show that� for every three generic signatures connected
through morphisms so that one contains symbols to be shared by the others�
there is a unique way of collapsing such objects into a new larger signature
wherein the shared�to�be symbols are equalised� As a consequence� any such
aggregations through morphisms will be possible� Using Category Theory� this
is equivalent to show that the category of signatures has an initial object the
empty signature shared by disjoint components� and pushouts� A category with
these characteristics is called co�complete�

136 Carlos H.C. Duarte

Theorem� �Category of Actor Signatures�� Actor signatures and
morphisms constitute a �nitely co�complete category where �� � ��faddr�boolg�

fT�F�NOTg� �f g� f g� f g� f g� �f g� f g� f g� f g� f g� f g is the initial object�

Interpretations between theories induced by the signature morphisms above
do not capture the expected combination of behavior as usual in Institutions
����� This happens because such morphisms do not translate the logical axioms
of source theories� which are needed to guarantee a correct collective behaviour�
To support this� non�standard speci�cation morphisms are used�

De�nition�� �Speci�cation Morphisms�� Given two actor speci�cations ��
� ��� ��� and �� � ��� ���� a speci�cation morphism � �� � �� is a sig�
nature morphism such that ��� g� for every g � �� �Ax�� �

The inclusion of the translated logical axioms Ax��� into �� is necessary as
they represent properties which are not always a consequence of Ax�� � since they
rely on the existence of only the original signature symbols� Once the signature
is augmented with new symbols using a morphism� these properties may fail to
hold� The locality of non�logical symbols� say� is not preserved by the translation
����� It is not di�cult to see that some other schemes also fail to hold�

Another category is determined by speci�cation morphisms�

Theorem�� �Category of Actor Speci�cations�� Actor speci�cations and
morphisms constitute a �nitely co�complete category�

A comparison between our notion of composability and that of �	� �
� is in or�
der here� Given a set of speci�cations with their pairwise shared sub�components
�xed� pushouts of speci�cation morphisms are commutative and have�� as their
identity� In addition� all their possible compositions in any order are isomorphic
among themselves� which yields associativity up to isomorphism in the Category
Theory sense�� Apart from that� the composability notion therein is dynamic
and fails to compose con�gurations having in common identical names of exist�
ing actors� This is syntactically immaterial� though� since there is a canonical
way of relating actor syntax and semantics� as hinted in ��� and followed here�
by obliging the composed speci�cations to entail con�gurations with disjoint
sets of existing actor addresses� Consequently� we have presented an alternative
syntactic formalisation of the composability notion for Actors�

��
 Example Revisited and Extended

Using the technique described in the previous section� we can now study commu�
nities of heterogeneous actors� A good example is obtained by composing a bu�er
as described in Section 	 with a processor and a set of terminals� to represent a
uniprocessor time�sharing architecture� The intended behaviour of this complex
component� whose speci�cation shall be called UTSA� is to allow commands
typed by terminal users to be always eventually executed� The speci�cation of
terminal and processor actors for this purpose appears in Figure 	�

137Towards a Proof-Theoretic Foundation for Actor Specification and Verification

Actor Terminal

data types addr� int

attributes buf 	 addr
actions

rst�addr 	 local� extrn birth�
rd�int 	 local comput�
trx�addr 	 extrn message

axioms n 	 addr� v 	 int
rst�n� buf � n ��
�
rd�v � buf � n��send�trx� n� v ��
�
End

Actor Processor

data types addr� int

attributes inp�me 	 addr� done 	 int
actions

ini�addr� addr 	 local� extrn birth�
exc�int�nop 	 local comput�
rcv�int 	 local� extrn message�
req�addr 	 extrn message

axioms n� p 	 addr� u� v 	 int
ini�n� p� me � n � inp � p ��
�
�nop � exc�v �me � n� X�me � n ��
�
�nop � exc�v � inp � p� X�inp � p ��
�
nop � done � v � X�done � v ��
�
nop � send�req� inp�me ��
�
exc�v� X�done � v ��
�
ini�n� p� G�rcv�v � exc�v� �nop ��
�
rcv�v��exc�v ��
�
ini�n� p� GE�deliv�rcv � v ��
�
ini�n� p� XG��exc�v� E�rcv�u ��
��
End

Fig� �� Simpli�ed speci�cation of terminals and processors

Terminals become aware of the mail address of a cell to serve as their bu�er
at creation time 	���� Afterwards� they always transmit typed commands to
the bu�er to wait for processing 	�	�� Processors� in turn� have a more complex
behaviour� since they have to request the next command from the bu�er at each
free processing cycle ����� Commands may always be delivered to the processor
��
�� Once received� they are subsequently executed ����� The computation
cycle of the processor alternates among the occurrence of nop� rcv and exc

����� which starts only when its behaviour is initialised using ini �����

Clearly� these actors cannot work as a single component unless the proper
connections between them are provided� Morphisms must establish �physical�
shared channels to enable message exchange� like in Figure ��i�� As expected�
Component�� Component� and UTSA� which result from the composition of
the three speci�ed components� are de�ned up to isomorphism� by the pushout
of the respective sub�components� This means that any name for each of their
symbols su�ces as long as the symbols to be shared and only them are equalised�
They are de�ned according to the two connectors and the morphisms in Figure
��ii�� The signature of Connector� contains one external message symbol only�
called x� which is mapped to the trx action of terminals and to the put action
of bu�ers� Connector� has two actions� which are mapped to get and reply

at the bu�er side and to req and rcv at the processor side respectively� These
morphisms clearly satisfy the requirements of De�nition ��

138 Carlos H.C. Duarte

�i UTSA

�
�
�
���
� �Z

Z
Z
Z

��

Component� Component�

�
�
�
�����
� �Z

Z
Z
Z

����

�
�
�
�����
� �Z

Z
Z
Z

����

Terminal BufferCell Processor

�Z
Z
Z
Z	��� �

�
�
�

	���

� �Z
Z
Z
Z	��� �

�
�
�

	���

�

Connector� Connector�

�ii Terminal �BufferCell

trx �
	���

x
	��� � put

BufferCell� Processor

get �
	���

y
	��� � req

reply �
	���

z
	��� � rcv

�iii

rst
�� � ����� terminal

nil
�� � ����� bu�er

ini
�� � ����

�� � ����
� processor

Fig� �� Static con�guration of the system

So far� we have described components consisting of individual actors� To
describe communities of similar actors� though� morphisms can also be used�
Each diamond in Figure ��i� should actually have a cube structure� to allow
several similar actors to exist concurrently� Considering that the sort symbols of
each speci�cation de�ne a category whose morphisms are determined by their use
as symbol parameters� as proposed in �
�� each diamond vertex becomes source
of a signature morphism which adds a new sort morphism to each parameter
sort�� For instance� the sort p� which is the parameter of item with projection
�a � p � int� should be mapped accordingly to p� and to ��a� such that p� has
another projection ��b � p

� � addr to cater for the new parameter sort� Using this
kind of structure� it is possible to state properties like

�n � �k�new�bu�er � n � ��m � k�new�processor�m�m�n �
�t� � k�new�terminal � t�� n � � � � � �tl � k�new�terminal� tl� n

��

provided that the translations for the birth actions in Figure ��iii� are given�
This kind of property should be guaranteed the environment some other com�
ponent connected to UTSA� to ensure the creation of a set of actors con�gured

� That is why we consider that morphisms of algebraic structures are limit preserving
in De�nition �
 Otherwise� the translation of signature symbols would not yield
theory interpretations

139Towards a Proof-Theoretic Foundation for Actor Specification and Verification

in the intended way� Therefore� the speci�er is not only required to provide mor�
phisms� allowing actors in di�erent communities to interact� but also to assume
that the environment provides some �logical� shared channels names to bind
the actors to each other� to be able to verify properties of actor components�

The characteristic property of UTSA� that the processing of typed com�
mands is always eventually completed� can be stated as follows�

�UTSA Gti�rdv�� Fm�done � v�� ��

This is an instance of the so�called Fair Merge Problem� In other words� the
processing of sequences of commands from each user must be fair� which means
that each of them must not have the completion of its execution inde�nitely
delayed� This kind of inacceptable behaviour would occur� for example� if the
processor could ignore commands from speci�c users�

To verify ��� we use the fact that bu�ers are organised as �nite queues
of logically linked cells so that each cell either processes incoming messages or
forwards them to be dealt with by its successors� because the cell has already
been consumed or is not the last element of the queue� or else it ignores each
message� because the entire bu�er is empty� We also rely on assumption 	�
which insures that user commands can only be consumed by the processor with
mail address m� Some auxiliary de�nitions are required to state these properties�

Rn�x�y � y�nxt � x � y�lst � F

P �v � �y � y�cont � v � y�empty � F

Q�m�v � �y � y�cont� v � y�send�reply �m� v

Notice that Rn determines a well�founded relation� whose bottom element is n
and which can be formalised as follows� considering always that x and y range
over all the address of bu�er cells existing in the con�guration�

� �Rn�x� x
� G��y�Mod�nxt� x �X�Rn�x� y � y�Inv�nxt� FG�y�Inv�nxt

��

The anti�re�exivity of Rn can be veri�ed by �rst using rule EXIST together
with 	� and axioms ����� to prove as an invariant that a cell cannot be linked
to itself n�lst � T � n�nxt �� n�� This implies that the anti�re�exivity of Rn

is preserved by the occurrence of link� The same can be easily proved for the
other actions of BufferCell� By using rule SAFE� the anti�re�exivity proof
is completed� The second half of �� is a consequence of the proof in Section ����

The veri�cation of �� is then decomposed by �� � and as follows� i�
prove Comp� ti�rd�v � FP �v using Rn in the proof rule WELL ��� p� ������
followed by COM and RESP letting p as in De�nition � be the invariant above�
ii� prove Proc m�send�req� n�m � �m�nop as a consequence of ���� iii� prove
Comp� P �v � �m�send�req� n�m � �nop � FQ�m�v as in i�� and iv� prove
Comp� Q�m�v� F�m�done � v likewise� The formal proof appears elsewhere�

140 Carlos H.C. Duarte

� Concluding Remarks

In this paper� we have presented an axiomatisation of the kernel primitives of
Actors ��� using the framework of temporal logics of objects �
�� We showed not
only how actor systems can be speci�ed and veri�ed but also how to compose
speci�cations and decompose proofs using Category Theory� Our main contribu�
tion is therefore a logic in the Institutions sense ����� for the Actors model� This
logic provides a syntactic and more elegant formalisation of interfacing and mod�
ularisation structures previously proposed in ��� 	� �
�� In addition� as it is easy
to capture in Actors control structures usually found in computing applications
such as recursion� they become tractable using our logic�

What makes our logic interesting is the integrated treatment of object cre�
ation� asynchronous message passing� fairness and dynamic recon�gurability as
they appear in Actors� Other logics for concurrent object�based systems devel�
opment also exist� We could have extended as a basis for our work the linear
time logic proposed in ���� for specifying objects based on action sharing inter�
action� A proof system for object creation in POOL is described in ��� based
on the CSP synchronous primitives� A logic resembling UNITY is proposed in
���� considering asynchrony and fairness� None of these logics provide built�in
support to all the characteristics of the Actors model mentioned above�

Having treated all these characteristics� we still have to address the axioma�
tisation of become� which allows an actor to behave according to a distinct
speci�cation in its subsequent computation� As we have already pointed out�
we could have treated this primitive herein� However� any simplistic treatment
would make reasoning a lot more di�cult in general� To verify a safety property�
for example� we would have to show that it does not depend on the mutations
su�ered by the actor� Since to maintain the balance between ease to specify and
ease to verify is not straightforward� a methodological study of this primitive
within our logic � perhaps following �	�� � is required�
Acknowledgements� This work has been supported by CNPq� the Brazilian
National Research Council� Partial �nancial support from the ESPRITWG ���

Modelage is also acknowledged� The diagrams herein were produced using the
LATEX style by Paul Taylor� Thanks are due to the anonymous referees for their
helpful comments and to the workshop participants for the lively discussions�

References

�
 Gul Agha
 Actors� A Model of Concurrent Computation in Distributed Systems

MIT Press� ����

�
 Gul Agha� Ian A
 Mason� Scott Smith� and Carolyn Talcott
 A foundation for
actor computation
 Journal of Functional Programming� ���� ����

�
 Pierre America and Frank de Boer
 A proof system for process creation
 In Man�
fred Broy and Cli� B
 Jones� editors� Programming Concepts and Methods� pages
�������
 North Holland� ����

�
 Nuno Barreiro� Jos�e Fiadeiro� and Tom Maibaum
 Politeness in object societies

In Roel Wieringa and Remco Feenstra� editors� Proc� Information Systems� Cor�
rectness and Reusability� pages �������
 World Scienti�c� ����

141Towards a Proof-Theoretic Foundation for Actor Specification and Verification

�
 Carlos H
 C
 Duarte
 Acidity yields another notion for modularity in formal object�
oriented speci�cations �Extended Abstract
 In Max M�uhlh�auser� editor� Special
Issues in Object�Oriented Programming
 Dpunkt Verlag� ����
 Workshop Reader
of the ��th European Conference on Object�Oriented Programming �ECOOP����
Linz� Austria

�
 Hans�Dieter Ehrich� Amilcar Sernadas� and Cristina Sernadas
 Objects� object
types and object identity
 In Hartmut Ehrig� editor� Categorical Methods in Com�
puter Science with Aspects from Topology� volume ��� of Lecture Notes in Computer
Science
 Springer Verlag� ����

�
 Hartmut Ehrig and Bernd Mahr
 Fudamentals of Algebraic Speci�cation �� Equa�
tions and Initial Semantics
 Springer Verlag� ����

�
 E
 Allen Emerson
 Temporal and modal logic
 In J
 Van Leeuwen� editor� Hand�
book of Theoretical Computer Science� pages ��������
 North Holland� ����

�
 Jos�e Fiadeiro and Tom Maibaum
 Towards object calculi
 Technical report� De�
partment of Computing� Imperial College� London� ����

��
 Jos�e Fiadeiro and Tom Maibaum
 Temporal theories as modularisation units for
concurrent systems speci�cation
 Formal Aspects of Computing� ���	��������
����

��
 Joseph A
 Goguen and Rod M
 Burstall
 Institutions	 Abstract model theory for
speci�cation and programming
 Journal of the ACM� ����	������� January ����

��
 Carl Hewitt and Henry Baker
 Laws for communicating parallel processes
 In IFIP
Congress� pages �������� August ����

��
 Bengt Jonsson
 Compositional speci�cation and veri�cation of distributed systems

ACM Transactions on Programming Languages and Systems� ����	�������� March
����

��
 Leslie Lamport
 What good is temporal logic In R
 E
 A
 Mason� editor� Proc� In�
formation Processing ��� IFIP �th World Congress� pages �������
 North Holland�
September ����

��
 Tom Maibaum and Wladyslaw Tursky
 On what exactly is going on when software
is developed step�by�step
 In Proc� 	th International Conference on Software En�
gineering
ICSE���� pages �������
 IEEE Computer Society Press� March ����

��
 Michel Raynal and Masaaki Mizzymo
 How to �nd his way in this jungle of consis�
tency criteria for distributed shared memories
 In Proc� �th Workshop on Future
Trends of Distributed Computing Systems� pages �������
 IEEE Computer Society
Press� September ����

��
 Am�!lcar Sernadas� Cristina Sernadas� and Jos�e F�elix Costa
 Object speci�cation
logic
 Journal of Logic and Computation� ���	�������� ����

��
 A
 Prashad Sistla� Emerson M
 Clarke� Nissim Francez� and Albert R
 Meyer
 Can
message bu�ers be axiomatized in linear temporal logic Information and Com�
putation� ��	������� ����

��
 Carolyn Talcott
 Interaction semantics for components of distributed systems
 In
Elie Najm and Jean�Bernard Stefani� editors� Proc� �st IFIP Workshop on Formal
Methods for Open Object�BasedDistributed Systems
FMOODS���
 Chapman and
Hall� ����

��
 Roel Wieringa� Wiebren de Jonge� and Paul Spruit
 Roles and dynamic subclasses	
a modal logic approach
 In Mario Tokoro and Remo Pareschi� editors� Proc� Ob�
ject Oriented Programming� �th European Conference
ECOOP���� volume ��� of
Lecture Notes in Computer Science� pages ������ ����

142 Carlos H.C. Duarte

Nondeterministic Actions with Typical E�ects�

Reasoning about Scenarios

Barbara Dunin�K
�

eplicz� and Anna Radzikowska�

� Institute of Informatics� Warsaw University
Banacha �� ������ Warsaw� Poland

Email� keplicz�mimuw	edu	pl

� Institute of Mathematics� Warsaw University of Technology
Plac Politechniki
� �����
 Warsaw� Poland

Email� annrad�im	pw	edu	pl

Abstract� We continue to study the problem of actions with typical�
but not certain e�ects	 In ��� �� we showed how to incorporate this kind
of actions into a dynamic�epistemic multi�agent system in which the
knowledge� abilities and opportunities of agents are formalized together
with the results of actions they perform	 The novelty of the present ap�
proach is that it allows a nondeterminism in action performance	 More�
over� compound actions are built both from traditionally viewed actions
with certain e�ects and actions with typical e�ects	 Adopting a model�
theoretic approach we formalize a preferential strategy in order to reason
about the results of the realizations of scenarios built over these actions	

� Introduction

The formalization of multi�agent autonomous systems requires a rich repertoire
of actions to capture a variety of agents� behaviour� The agents may be viewed
as systems which continously sense a dynamic environment they are embedded
in� and which e�ect changes by performing actions or plans of actions �see ��	
�
These plans result in the planning process directed towards achieving some goals�
However� independently of the method of planning� an agent�s goal is usually
achievable in di�erent ways re�ected in a set of plans� Plans are usually de�ned
in terms of actions with certain e�ects� that is as sequences of these actions�

But there may be also another option� One may consider actions leading to
some e�ects� being aware that these e�ects may be achieved in di�erent ways�
e�g� by distinguishing di�erent types of action execution� Next� from the set of
possible action performances some may be characterized as typical ones� leading
to some extra � typical � e�ects� In other � atypical � cases there is no information
about additional e�ects� Thus� a distinction between typical and atypical action
performance results in di�erent changes in the external world �see� for instance�
��	� ��	� ��	
� a typical action execution leads not only to a certain e�ect �which
always hold
� but also leads to typical or default e�ects�

J.-J. Ch. Meyer, P.-Y. Schobbens (Eds.): Formal Methods of Agents, LNAI 1760, pp. 143-156, 1999.
 Springer-Verlag Berlin Heidelberg 1999

The application of actions with typical e�ects is justi�ed in situations when
either the way of achieving a goal is inessential from the agent�s point of view� or
is hard to predict during planning� but possible to dynamically determine dur�
ing a plan execution� Let us stress that this approach essentially simpli�es the
planning process� particular actions with typical e�ects assure the achievement
of partial goals in the plan without coming into details� Thus� the use of these
actions maintains a rather high level of abstraction � the way of action perfor�
mance has been determined by an agent 	on line	� i�e� during plan execution�
instead of the agent deciding about it in advance� So this kind of planning is
very
exible� a single plan containing actions with typical e�ects re
ects a set of
plans built from analogical actions with certain e�ects�

The important characteristics of these actions is their usefullness in reacting
to unpredictable changes in the dynamic environment � they increase an agent�s
reactivity� For example� a particular change in the external world may de�nitely
block a performance of an action with certain e�ects� However� when treating
this action as the one with default e�ects� its atypical performance may save the
realization of the plan�

In ��� �� we model this new kind of actions by means of extending the
epistemic�dynamic framework presented in ��� ��� ��� This formal system is
designed to deal with both the knowledge and the abilities of agents� and with
the e�ects of actions they perform� Our extension provides the formalization of
a deterministic version of actions with typical e�ects� However� the opposition
of typical � atypical action performance turns out not to be subtle enough to
fully characterize the variety of situations an agent may deal with� The novelty
of the present approach is that it allows nondeterminism in the performance of
an action�

Analogously to ��� when considering actions in isolation we assume that an
agent�s generic intention is to prefer a typical action performance� However� to
adequately model plans of actions� the speci�c preferential strategy should be
related to the characteristics �i�e� the type� of this plan� In this paper we focus
on scenarios re
ecting a �typical	 pattern of agents� behaviour� thus we model
a nonmonotonic preferential strategy that can be viewed as a minimization of
atypical performances of actions� Within our epistemic�dynamic framework we
apply this strategy to reason about scenarios� i�e� to determine a set of desirable
conclusions which can be derived from a given scenario�

Our formal framework is designed from the perspective of a single agent�
with special attention paid to di�erent types of actions it can perform� Other
aspects of multi�agent systems� including collective and social characteristics of
agents� behaviour� will be the subject of a future extension of our approach�

The paper is structured in the following manner� In Section � and � we discuss
notions of nondeterministic actions with typical e�ects and scenarios built over
the traditionally viewed actions as well as those of the new type� In Section � we
present a language de�ned to represent scenarios under consideration� whereas
in Section � we provide its semantics� In Section � a notion of scenario realization
is formalized� The paper is completed with concluding remarks and options for
further research�

144 Barbara Dunin-Keplicz and Anna Radzikowska

� Nondeterministic Actions with Typical E�ects

When de�ning the result of an action we follow the idea of ���� to identify the
state of a�airs resulting from the action execution with its e�ect� We consider an
event doi��	 referring to the performance of an action � by an agent i� Therefore
the results of an event may be represented by a formula

�doi��		��

stating that an agent i has the opportunity to perform an action � and that
doing � leads to ��

An opportunity of an agent to perform a certain action re
ects almost wholly
external� objective circumstances� Apart from agent�s opportunities� we adopt a
generic concept of agent�s abilities �cf� ���	� covering physical� mental and moral
capacities� Viewing abilities as a separate concept enables us to remove them as
a prerequisite of an action performance� In order to formalize agents abilities an
operator A is introduced� An expression Ai� re
ects the fact that an agent i
is capable to perform an action �� A combination of both �doi��		� and Ai�

expresses the idea that � is a correct ��doi��		�	 and feasible �Ai�	 plan for
agent i to achieve ��

Now we are in a position to characterize a new kind of actions actions
with typical �default	 e�ects which will be referred to as ��actions� The generic
characteristics of ��actions is that they have di�erent e�ects in typical and atyp�
ical performances� di�erent changes in an external world can be distinguished
depending on the way the action is executed�

The result of performing a ��action is represented by

�doi��		�� �

denoting� analogously� that an agent i has the opportunity to perform a ��action
� and as a result of this event � �always	 holds and typically � holds� In other
words� � may be viewed as a certain and � as a typical e�ect of a ��action ��

Consider an example of the action Get To Airport� I can go there by taxi�
by bus� or someone may drive me� Hiring a taxi is viewed as a typical execution
of this action� but depending on circumstances I can decide di�erently� If I want
to make up my mind at the last moment� according to my current abilities and
possibilities �e�g� my friend with a car just visiting me	� the use of actions with
typical e�ects enables me to do so� The results of the example execution of this
action may be represented by

�do
I
�Get To Airport		 �I am in airport�� �I spend money on taxi��

Another example is the formalization of the action Appointment with Cris�
usually resulting in attending a concert together�

�do
I
�Meet Chris		 �I spend time with Chris�� �I attend concert��

In our approach we decided to specify only typical e�ects of action execution�
abstracting from the actions� atypical results� This modelling decision re
ects the
idea that atypical e�ects of the performance a ��action � may be unpredictable�

145Nondeterministic Actions with Typical Effects

When having a full description of the external world and of possible e�ects of all
actions� one can also try to specify what may happen as the result of atypical
action performance�

However� this characterization of the results of deterministic ��actions seems
not to be subtle enough to describe the variety of situations an agent may face�
The opposition typical � atypical action performance is not su�ciently context�
sensitive when an agent has only one possibility of typical or atypical action ex�
ecution �c�f� ��	� �
	�� So� we admit nondeterministic actions with typical e�ects�
The nondeterminism is considered in the context of an agent�s opportunities� re�
ecting mainly circumstantial conditions �its abilities do not depend on external
circumstances� and may be considered in two respects�

First� the external �objective� nondeterminism on the level of the choice be�
tween typical and atypical action performance� Second� the internal �subjective�
nondeterminism on the level of the choice between various possibilities of typical
or atypical action performance� While the objective nondeterminism depends
on the external circumstances� the internal one reects an agent�s �subjective�
rather than objective choices�

While performing some ��action an agent i may proceed in a typical or
atypical way but when considering an action in isolation� it usually prefers �one
of� a typical execution of the action� Additionally� for ��actions� analogously to
actions with certain e�ects� the characterization of correctness is applied�

� A Scenario Realization

In this paper we focus on a rational agent �see ���	� and its activity directed to
achieve some goals as a result of a plan execution� The plan� reecting a sequence
of actions� is either prepared by an agent itself or is given to it� In order to
formalize an agent�s plan we introduce the notion of a scenario� A scenario for
an agent reects a sequence of actions to be performed by this agent together
with initial and �nal observations� An initial observation characterizes an initial
state of a�airs� including a generic precondition for execution of the scenario� A
�nal observation must reect the goals an agent wants to achieve� It may also
characterize a �nal state of a�airs�

We introduce the following notation� Let �pre� �post be any formulas from the
object language L� The sequence Sc����� � � � � �n� of actions to be performed
by an agent i� �k �Ac �the set of actions�� k� �� � � � � n� with the precondition
�pre and the postcondition �post� is said to be a scenario for an agent i and
denoted by SCD�i� f�pregScf�postg� or simply SCD�

In AI literature various types of scenarios have been studied �see ���	� ��	��
When considering a typical character of action performance� the situation be�
comes more complicated� Moreover� allowing nondeterministic action in the sce�
nario increases the number of possiblilities to achieve the goal� A notion of a
scenario realization �for an agent i� reects both the execution of each action
occurring in the scenario and the agent achieving its �nal goals� While modelling
the behaviour of a rational agent we want to reect its preferred choices� When

146 Barbara Dunin-Keplicz and Anna Radzikowska

an agent considers an action performance in isolation� it prefers �one of� typ�
ical action execution� whereas from the perspective of a scenario realization it
may admit �one of� atypical courses of action performance� However� an agent�s
choice should always re�ect a generic preferential strategy�

In the paper we focus on a typical plans� where a sequence of actions is
planned in advance� in order to achieve that agent�s goals become a part of
the �nal observations after plan execution� We assume that e	ectiveness of an
agent�s behaviour usually depends on how typical execution of each element of
the plan is� Possible disturbances
 atypical executions of some actions
 may
either preclude achieving the �nal goals �in the worst case� or may change the
way to achieve them� For this reason the applied preferential strategy amounts
to a minimization of atypical performances of actions�

The realization of a given scenario based on an adequate preferential strategy�
leads to certain conclusion states� As a �nal point of scenario realization we are
in a position to determine the set of all statements that hold in all these states�
We will refer to this set as the set of desirable conclusions�

� The object language

In this section we show how to extend the framework de�ned to formalize the
behaviour of rational agents in a multi�agent system� This approach� de�ned in
��� �� and ��� considers epistemic aspects like agents� knowledge as well as the
results of actions they perform� together with agents� opportunities and abilities
to perform particular actions�

De�nition ��� �Language L�
The language L is based on the following three sets�

� a denumerable set P of propositional symbols ��uents in AI terminology��

� a �nite set A of agents� denoted by numerals �� �� � � � � n�

� a �nite set At of atomic actions� denoted by a or b� this set includes a non�
empty subset At� of atomic ��actions�

The set of formulas �the language L� is the smallest set satisfying the follow�
ing conditions�

� p�L� for each p�P �

� if �� ��L� then ���L and ����L�

� if i�A and ��L� then Ki��L�

� if i�A and ��Ac� then Ai��L�

� if i�A� ��Ac and �� ��L� then �doi������L� �doi������ ��L

The class Ac of actions is the smallest set such that

� At�Ac�

� if ��� ���Ac� then ������Ac� �sequential composition�

147Nondeterministic Actions with Typical Effects

� if ��L and ��� ���Ac� then if � then �� else �� ��Ac�
�conditional composition�

� if ��L and ��Ac� then while � do � od�Ac �repetitive composition�

The constructs True� False� �� � and � are de�ned in the usual way� More�
over� the following abbreviations are introduced�
skip 	 empty action � �� 	 skip� �k�� 	 �k ���

Remark ��� Intuitively the formula Ki� states that an agent i knows about
the fact represented by �� whereas Ai� states that the agent i is able to perform
an action �� Moreover� the formulae �do

i
����� and �doi������ � are explained

in section
� ut

Remark ��� The set of actions under consideration contains atomic actions
with certain e�ects� atomic ��actions and compound actions built from any
kind of actions� Sets of actions are related to agents� ut

� Semantics for the language

In this section we de�ne the semantics for the language L� This semantics is
based on the notion of Kripke model�

De�nition ��� �Kripke model	
A Kripke model is a tuple M 	 �S� val� R� r� t� c� such that

�� S is a set of possible worlds� or states�

� val � P�S�f� �g is a function that assigns truth values to �uents in states�

�� R � A� ��S�S� is the function that yields the accessibility relation for a
given agent i� i�e� �s�� s�� �R�i� states that s� is an epistemic alternative
for an agent i in a state s� Since we assume the modal system KT� R�i� is
re�exive for all i�A�

�� r � A�At�S���S� is such that r�i� a��s� yields the result of performing
an action a by an agent i in a state s�

�� t � A�At� S� ��S� is such that t�i� a��s� yields the result of �typical�
performing of an action a by an agent i in a state s� this function is such
that

� �i�A �a�At� �s�S t�i� a��s��r�i� a��s�

� �i�A �s�S �a�At n At� t�i� a��s�	r�i� a��s��

�� c � A�At�S�f� �g is the capability function such that c�i� a��s� indicates
that an agent i is able to perform the action a in a state s� ut

Remark ��� It is worth noting that no demands on the interconnections be�
tween functions r and c are imposed� This leads to the formalization of agent�s
abilities and opportunities as separate concepts�

The function t is introduced to formalize a typical performance of a ��action
by an agent i� Since certain e�ects of an action may be viewed as typical ones
�clearly� not vice versa�� we assume a performance of an action with certain
e�ects to be typical� ut

148 Barbara Dunin-Keplicz and Anna Radzikowska

The functions r� t and c can be extended for the class Ac of all actions �not
only atomic�� That is� the extension of r� written r�� is de�ned by��

r� � A�Ac���S����S�

r��i� a��s� � r�i� a��s� for a�At

r��i� �������s� � r��i� ����r
��i� ����s��

r��i� if � then �� else ����s� �

�
r��i� ��� i	 M� s j��

r��i� ��� otherwise

r��i�while �do �od��s� � fs��S � �K� IN �k�K �s�� � � � � sk� s��s

sk�s�
 ��j�k� sj���r��i� ���sj�
 M� sj j���

 M� s� j���g

For A���S� � r��i� ���A� �
S
s�A r��i� ���s�

thus r��i� ����� � �

For atomic actions� sequential and repetitive compositions� r� is de�ned in
the usual way�

Obviously� for some states s an agent i has no opportunity to perform an
action �� so it certainly does not have any opportunity to execute any compound
action starting from �� Since for such states r��i� ���s���� we put r��i� ��������

De�ning r� for a repetitive composition �while � do � od� we consider all
possible sequences of states �s�� � � � � sk� �of any length k� such that an agent
i� starting in s�� performs � as long as � holds� A performance of a repetitive
composition leads to any �nal state of such sequences�

t� � A�Ac� ��S�� ��S� is de�ned analogously� While de�ning t� we consider
typical action performances only� Let us recall that certain e	ects are viewed as
typical ones� Therefore� for any i�A� ��Ac and s�S we have

t��i� ���s��r��i� ���s��

The extension c� is de�ned as follows

c� � A�Ac�S�f� �g

c��i� a��s� � c�i� a��s� for a�At

c��i� �������s� �

���
��
� i	 c��i� ����s���

�s� � r��i� ����s�� c
��i� ����s

����

 otherwise

� Here the state s�S is identi�ed with the singleton set fsg�

149Nondeterministic Actions with Typical Effects

c��i� if � then �� else �� ���s� �

���
��

� i� c��i� ����s��� � M� s j��

or c��i� ����s��� � M� s j���

� otherwise

c��i�while�do �od��s� �

�������
������

� i� �K� IN �k�K�s�� � � � � sk� s��s �
� sk�s� � ��j�k� c��i� ���sj��� �
� M� sj j�� � sj���r

��i� ���sj� 	 �
� c��i� ���s���� � M� s� j���

� otherwise

and c��i� ����� � �� ut

Recall that an agent
s capabilities are not related to its opportunities� viewed
as circumstantial possibilities� However� from the standpoint of commonsense
reasoning� it makes little sense to consider what an agent
s capabilities are in
unreachable states �i�e� states that it has no opportunity to reach from a given
state s�� It seems intuitively justied to assume that in such states an agent has
no capability to perform any action at all� Thus we put c��i� ��������

ByM we denote the class of all Kripke models�

De�nition ��� �De�ning j��
Let M��S� val� R� r� t� c� be a Kripke model fromM � For any propositional
formula �� M� s j�� is dened in the usual way�
For other formulas it is dened as follows�

M� s j� �doi����� i� ��s��r��i� ���s�M� s� j�� 	 �
� �s��r��i� ���s�M� s� j�� 	

M� s j� �doi������ � i� ��s��r��i� ���s�M� s� j�� 	 �
��s���t��i� ���s�M� s�� j�� 	 �
� �s���t��i� ���s�M� s��j�� 	

M� s j� Ai� i� c��i� ���s���

M� s j�Ki� i� �s� � �s� s���R�i��M� s� j� � 	 ut

A formula � is said to be satis�able in M in a state s i� M� s j� ��

Remark ��� A formula �doi����� is satisable in M in a state s�S if in all
states accessible from s �by performing an action � by an agent i� � holds� and
if at least one of such states exists� On the other hand� a formula �doi������ � is
satisable inM in a state s�S if in all states s� accessible from s �by performing
the action � by an agent i� � holds� and in all states s�� accessible from s by
a typical performance of � �i�e� from the set t��i� ���s�� � is satised� and if at
least one of such states exists� ut

150 Barbara Dunin-Keplicz and Anna Radzikowska

� Modelling scenario realization

In this section we provide a formalization of reasoning about scenarios for a
given agent� We aim to determine the set of desirable conclusions resulting from
the scenario realization�

Let us recall the postulates imposed on scenarios�

S�� The scenario contains a sequence of actions of various types built from atomic
actions with certain or typical e�ects�

S�� Each ��action performed by an agent introduces di�erent changes in the
external world depending on whether the agent performs it typically or atyp�
ically�

S�� The applied preferential strategy is based on the minimization of atypical
performances of actions�

S�� The �nal goal after performing a given scenario� including an adequate pref�
erential strategy� is to determine the set of statements characterizing the
preferred concluding states�

Let us recall that a scenario for an agent i denoted by SCD�i� f�pregScf�postg�
re	ects the sequence Sc
���� � � � � �n� of actions to be performed by an agent
i� �k�Ac� k
�� � � � � n� with a precondition �pre and a postcondition �post�
Intuitively the precondition �pre and the postcondition �post indicate initial
and �nal observations �including the agent�s goals�� respectively� i�e� statements
which represent knowledge� abilities andor opportunities of both the agent i
and some other agents�

De�nition ��� �Model for a scenario realization	
LetM be a Kripke model and SCD�i� f�pregScf�postg�be a scenario for an agent
i� We say that M is a model for a scenario SCD realization �a model of SCD�
for short� i� there exist two states s�� s��S such that

 M� s� j
�pre and M� s� j
�post�

 s��r
��i� Sc��s�� and c��i� Sc��s��
�� ut

By MOD�SCD� we denote the class of all models of a given scenario SCD�

��� Preferred models of a scenario realization

Having determined the set of Kripke models of the scenario� we are in a posi�
tion to choose those models which re	ect a preferential strategy adequate for a
considered type of scenario� As we focus on the generic scenario in this paper �
the preferential strategy amounts to the minimization of atypical performances
of actions from this scenario�

Note that in a given model M of a scenario SCD� the sequence Sc of actions
may be decomposed into atomic actions �number of atomic actions di�ers in var�
ious scenario realizations due to nondeterminism of actions�� The idea is to count

151Nondeterministic Actions with Typical Effects

atypical atomic action executions during a particular realization of a scenario�
Our preferential strategy amounts to selecting models of a scenario realization
with minimal numbers of atypical state transitions �i�e� those corresponding to
atypical performance of a ��action��

To formalize these ideas we introduce some auxiliary notions�

Given a Kripke model M��S� val� R� r� t� c� we de�ne a transition penalty func�

tion p � A�At�S�S�IN given by

p�i� �� s�� s�� �

���
��
� i	 s��t�i� ���s�� and c�i� ���s���

 i	 s��r�i� ���s��� s� ��t�i� ���s�� and c�i� ���s���

�� otherwise

The underlying intuition is as follows� For an agent i� an atomic action � and
two states s� and s�� we impose zero penalty points� whenever the agent i

is capable to perform � in a state s� and a typical performance of � leads to
the state s�� However� if it performs � atypically resulting in a state s�� then
we impose one penalty point� In other cases in�nitely many penalty points are
imposed �e�g� the agent i is not capable to perform � in a state s� or a state s�
is unreachable for it by execution of ���

This function can be extended for compound actions in the following manner�
The function p� � A�Ac�S�S � IN is de�ned as follows

p��i� ������ s�� s�� � min
s�S

fp��i� ��� s�� s��p��i� ��� s� s��g

p��i� if � then �� else �� �� s�� s�� �

�
p��i� ��� s�� s�� i	 Mj��

p��i� ��� s�� s�� otherwise

p��i�while � do � od� s�� s��� min
�s�k��

�
S

k��X
j��

p��i� �� s�j � s
�

j���� where
�S�

��
k��

�Sk

and �Sk is a set of all sequences �s�k� �� s��� � � � � s
�

k � of states such that

s���s�� s
�

k�s��M� s� j���� and for each j��� � � � � k�
� M� s�j j��

De�ning the function p� for a sequential composition� all states in a given
Kripke structure are considered as intermediate states resulting from the per�
formance of �� in a state s� by an agent i� Then penalty points imposed on
the corresponding two transitions are added� A minimal number of these points
determines a global number of penalty points for a sequential composition�

For a repetitive composition a minimal number of atypical state transitions is
de�ned in the following way� We consider every sequence of states �s�o� � � � � s

�

k�

�of any length k� that ends in a state s�� where s
�

i�� results from a performance
of � in s�i and the condition � holds in each state of this sequence except the
last one� Adding penalty points corresponding to each intermediate transition
we count a penalty� for this sequence� A minimal penalty obtained for these
sequences determines the number of penalty points for a repetitive composition�

152 Barbara Dunin-Keplicz and Anna Radzikowska

For a model M of a scenario� the transition penalty function p��i� �� s�� s��
determines for an agent i the minimal number of atypical atomic��actions which
occur during performance of the action � leading from s� to s��

Given a Kripke model M and a scenario SCD�i� f�pregScf�postg� we de�ne
a penalty function PM

SCD
� S�S � IN as follows

PMSCD�s�� s�� �

�
	� i
 M� s� �j��pre or M� s� �j��post

p��i� Sc� s�� s�� otherwise

This function determines for the agent i a minimal number of atypical state
transitions which occur during realization of the scenario SCD�
Given a Kripke model M and a scenario SCD�i� f�pregScf�postg� for an agent
i� the value

PV �M� SCD�� min
s��s��S

PM
SCD

�s�� s��

is said to be the penalty value for a scenario SCD in a model M�

Example ��� Consider the following scenario for an agent i�
SCD�i� f�pregA�B�C f�postg�� where A� B and C are atomic actions�

Let M be the Kripke model depicted in Fig��� where typical �and certain�
transitions are denoted by thickened vectors�

Suppose that the precondition �pre holds in the state s�� but it is not satis�ed
in s� Furthermore� assume that the postcondition �post holds in the state s��
but does not in states s�� and s���

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

s�

s�

s�

s�

s�

s�

s�

s	

s

s��

s��

s��

�

HHHHHj

HHHHHj

��
��

��

J
J
J
J
J
J
J
J�

��
��

��
�
�
�
�
���

�
�
�
�
��R

��
��
��

��
��
��

��
��
��

HHHHHj

HHHHHj

HHHHHj

HHHHHj

��
��
��

�pre

��pre

�post

��post

��post

A

A

A

A

B

B

B

B

B

B

C

C

C

C

C

C

Fig��

153Nondeterministic Actions with Typical Effects

In order to realize the scenario and to reach the state s��� the agent i has the
�ve possibilities corresponding to the following sequences of states�

p� ��s�� s�� s�� s���

p� ��s�� s�� s�� s���

p� ��s�� s�� s�� s���

p� ��s�� s�� s�� s���

p� ��s�� s�� s�� s���

It is easily noted that only one atypical transition occurs on the �rst three
paths� whereas there are three such transitions on the path p� and two on the
path p�� Thus the penalty value for this scenario in M is PV �M� SCD���� ut

Having determined the penalty value for a scenario SCD in M we are in a
position to prefer models of SCD�

De�nition ��� �Preferred model�
Let SCD be a scenario and M��M��M be Kripke models� We say that M�

is preferred over M� with respect to the scenario SCD� written M��SCDM��
i	 M��M��MOD�SCD� and PV �M�� SCD��PV �M�� SCD�� ut

Given a scenario SCD for an agent i we write PMOD�SCD� to denote the
class of all preferred models for SCD� Obviously� what we are actually interested
in is the set of conclusions entailed by the given scenario SCD� As expected� this
set is to be de�ned in terms of preferred models�

��� Scenario completion

By scenario completion we understand the operation of taking the scenario de

scription� performing this scenario using the adequate nonmonotonic preferential
strategy and concluding as much as possible from the resulting conclusion states�

De�nition ��� �Conclusion states�
Let SCD be a scenario for an agent i andM�PMOD�SCD� be a Kripke model�
Conclusion states for SCD in M� written Conc�SCD�M�� is the set fs � S �
PM
SCD

�s�� s��PV �M� SCD� for some s��Sg� ut

De�nition ��� �Preferential Entailment j��
Let SCD be a scenario for an agent i and let � �L be a formula� We say that
SCD preferentially entails �� written SCD j��� i	 for each M� PMOD�SCD�
and for each state s�Conc�SCD�M�� M� s j��� ut

The following de�nition speci�es the set of desirable conclusions resulting
from realization of a given scenario�

De�nition ��	 �Scenario completion�
Let SCD be a scenario for an agent i� A set � �SCD�� f� � SCD j��g is called
a scenario completion for SCD� ut

154 Barbara Dunin-Keplicz and Anna Radzikowska

� Conclusions and Directions for Future Work

In this paper we semantically investigated a nondeterminstic actions with typical�
but not necessarily certain� e�ects� We show how to incorporate this new kind
of actions into epistemic�dynamic multi�agent system�

In the AI literature actions are usually studied in the context of scenarios�
We focus on scenarios re�ecting a typical pattern of behaviour of a rational
agent in a multi�agent system� To capture nonmonotonic aspects of scenarios�
their realizations are modelled by de�ning a preferential strategy which can be
viewed as a minimization of atypical performances of actions� As a �nal step of
reasoning about a scenario we determine the set of desirable conclusions to be
derived from it�

In our formalization of actions and in reasoning about scenarios� the epistemic
part represented by theK operator remain inactive� In future� the agent�s knowl�
edge may be used in the planning process� during inference about the agent�s
abilities and opportunities� and also when considering actions which may change
the agent�s mind�

There are still several topics that need to be studied� To adequately capture
the variety of problems appearing during reasoning about action and change�
our most important goal is to resolve the frame problem and the rami�cation
problem in the framework presented in this paper� Next� formal properties of our
formalism� as well as should be investigated� Finally� di�erent kinds of scenarios
built over ��actions with corresponding preferential strategies may be studied�

Another line of reserch is strictly related to multiagent systems paradigm�
namely to Beliefs� Desires and Intentions � architectures� In cooperative problem
solving� collective and social aspects of informational and motivational attitudes
received a lot of attention lately 	see
���
��� When considering teamwork� next
step is to design actions to be performed by groups of agents� Also social and
collective action with typical e�ects should be viewed as �rst class citizens in
near future�

� Acknowledgements

The authors would like to thank Rineke Verbrugge� Cristiano Castelfranchi and
Pierre�Yves Schobbens for their helpful comments about this paper�

This work is supported by KBN Grant � P��� �� �� and KBN Grant
�TT���

References

� F� Brazier� B� Dunin�K
�

eplicz� J� Treur and R� Verbrugge� Modelling Internal
Dynamic Behaviour of BDI Agents� In� Proc� of MODELAGE���� Siena�
���� in this volume�

155Nondeterministic Actions with Typical Effects

�� B� Dunin�K
�

eplicz� A� Radzikowska� Actions with typical e�ects� epistemic
characterization of scenarios� in Proc� First International Conference on

Multi�Agent Systems� San Francisco� ���	�

� B� Dunin�K
�

eplicz� A� Radzikowska� Epistemic approach to actions with typ�
ical e�ects� in Proc� ECSQARU���� Fribourg� ���	� pp� �������

�� B� Dunin�K
�

eplicz� J� Treur� Compositional formal speci�cation of multi�
agent systems� in M� Wooldridge� N� Jennings �eds��� Intelligent Agents �

Proc� of the ���� Workshop on Agent Theories	 Architectures and Languages�
Springer�Verlag� ���	�

	� B� Dunin�K
�

eplicz� R� Verbrugge� Collective Commitments� In� Proc� Second
International Conference on MULTIAGENT SYSTEMS� Kyoto� ����� pp�
	���
�

�� D� W� Etherington� J� M� Crawford� Formalizing reasoning about change� A
qualitative reasoning approach� in Proc� �
th AAAI� San Jose� CA� �����

�� W� van der Hoek� B� van Linder� J� �J� Ch� Meyer� A logic of capabilities�
Technical Report IR�

�� Vrije Universiteit Amsterdam� ���
�

�� W� van der Hoek� B� van Linder� J� �J� Ch� Meyer� Tests as epistemic updates�
in Proc� ��th ECAI� Amsterdam� �����

�� W� van der Hoek� B� van Linder� J� �J� Ch� Meyer� Communicating rational
agents� in Proc� ��th German Annual Conference on Arti�cial Intelligence�
Saarbr�ucken� ����� pp� �����
�

��� W� van der Hoek� B� van Linder� J� �J� Ch� Meyer� The dynamics of default
reasoning� in Proc� of ECSQARU���� Fribourg� ���	� pp� ������

��� R� Moore� A formal theory of knowledge and action� Technical Report
���
SRI International� �����

��� A� Radzikowska� Circumscribing features and �uents� Reasoning about ac�
tions with default e�ects� in Proc� ECSQARU���� Fribourg� Switzerland�
���	� pp�
��
	��

�
� A� Radzikowska� Reasoning about action with typical and atypical e�ects� in
Proc�of ��th German Annual Conference on Arti�cial Intelligence� Bielefeld�
���	� pp� �������

��� A� Radzikowska� Formalization of Reasoning about Default Action� in Proc�

Formal and Applied Practical Reasoning FAPR��� Bonn� ����� pp�	��		��

�	� E� Sandewall� Features and Fluents� A Systematic Approach to the Repre�

sentation of Knowledge about Dynamical Systems� Oxford University Press�
�����

��� B� Thomas� A logic for representing actions� beliefs� capabilities and plans� in
Working Notes of the AAAI Spring Symposium on Reasoning about Mental

States� Formal Theories and Applications� ���
�

��� G� H� von Wright� Norm and Action� Routledge � Kegan Paul� London�
���
�

��� M� Wooldridge� N� Jennings �eds��� Intelligent Agents � Proc� of the ����

Workshop on Agent Theories	 Architectures and Languages� Springer�Verlag�
���	�

156 Barbara Dunin-Keplicz and Anna Radzikowska

Agents� Dynamic Mental Attitudes

Bruno Errico

Dipartimento di Informatica e Sistemistica� Universit�a di Roma �La Sapienza�
via Salaria ���� ����	 Roma� Italy
 e�mail�errico�dis�uniroma��it

Abstract� We present a rst�order formalism for dealing with agents�
cognitive attitudes in a dynamic setting
 We rst extend our ontology
in order to represent agents� beliefs and goals
 These mental attitudes
are expressed in the situation calculus by means of accessibility �uents
that represent accessibility relations among alternative situations
 Then�
we consider changes of mental attitudes in a dynamic and incompletely
specied world
 Changes may be caused either by the evolution of the
external world or by the acquisition of new information
 In particular�
acquisition of information that modify agents� cognitive attitudes is ex�
pressed by cognitive actions
 The e�ects of cognitive actions are char�
acterized by suitable axioms� thus providing a model for the evolution
of the alternative situations and the accessibility �uents
 We discuss our
proposal and compare our model of change with the characterization of
Belief Revision postulated by G�ardenfors
 We nally introduce the prob�
lem of describing agents in a dynamic environment� and brie�y sketch a
possible extension of the theory that copes with this problem

� Introduction

Most of AI problems need to cope with real domains� where the environment
can dynamically change� and where the state of a�airs cannot always be com�
pletely speci�ed� For instance� theories of actions often deal with a world that
evolves in a dynamic way� and that in general may be not completely known� Re�
cently� some AI problems have been e�ectively analyzed within the paradigm of
Intelligent Agents �see ��	
 for a review�� viewed as autonomous entities charac�
terized in terms of their cognitive attitudes� Thus� from one side much e�ort has
been devoted to develop theories of actions for representing dynamic settings�
and� from the other� to theories of agents accounting for cognitive attitudes� In
general� much work on theories of agents can be built on top of an underlying
theory of actions� where agents are seen as interacting entities within a dynamic
environment�

In last years� a renewed consideration has been given to the situation calculus
as a logical formalism for the de�nition of both a theory of actions and a theory
of agents� Reiter ���
� elaborating on previous accounts� provides a new solution
to the frame problem� This allows the representation of a dynamic environment
by axiomatizing the initial state of a�airs� along with the preconditions and
e�ects of the execution of actions� Moreover� this theory can be straightforwardly

J.-J. Ch. Meyer, P.-Y. Schobbens (Eds.): Formal Methods of Agents, LNAI 1760, pp. 157-172, 1999.
 Springer-Verlag Berlin Heidelberg 1999

translated into a logic programming language� GOLOG �
� where it is possible
to specify also complex actions and programs� Finally� Scherl and Levesque ���

give an account of a knowledge attitude and of knowledge�producing actions in
the situation calculus�

The aim of this paper is to further develop this research by dealing with other
aspects of agents� cognitive state� We start by extending the theory of actions
in order to deal with a generalized concept of situations� representing agents�
alternative views of the world� and by explicitly modelling the e�ects of actions
on the alternative situations� Next� we focus on the representation of beliefs and
goals in this framework� We �rst consider the updates of agents� cognitive state
resulting from changes� due to physical actions a�ecting the external environ�
ment� Then� we deal with the evolution of agents� mental attitudes� We provide
a set of cognitive actions explicitly a�ecting agent mental attitudes and we for�
malize a model of belief revision that complies with principles widely accepted
in the literature� Finally� we discuss the problem of describing the behaviour of
agents in our framework� This is an interesting problem disregarded� in general�
by most existing theories of agents that focus rather on the speci�cation or pre�
scription of the behaviour of agents� We start by brie�y reviewing in Section �
the situation calculus and the solution proposed by Reiter to the frame problem�
Then� in Section � we introduce a set of mental attitudes for agents� extend�
ing our ontology in order to provide them with a semantics� In Section �� we
formalize the change of these mental attitudes� and in Section � we show how
this model for change relates to other literature� Finally� in Section � we brie�y
tackle the problem of describing agents� and extend the ontology in order to deal
with this task� In the last section we conclude this presentation with a general
discussion� and a comparison with some related work�

� The Situation Calculus

The language we consider is a rei�ed many sorted �rst�order language with equal�
ity� built on the following ingredients� Five sorts� agent� sit� action� fluent� and
object� respectively� for agents� situations� actions� �uents� and anything else�
A �nite number of functions and predicates including the three following ones�
A ternary function do�ag� a� s� from agent � action � sit to sit� denoting the
situation resulting from agent ag performing action a in situation s� A ternary
predicate Poss�ag� a� s�� de�ned on agent� action� sit� stating whether or not
action a is possible for agent ag in situation s� A binary predicate Holds�f� s��
de�ned on fluent � sit� stating that a �uent f is true in a situation s� Intu�
itively� �uents are used to de�ne properties changing from one situation to the
future ones� A description of the state of the world in a given situation s is
simply obtained by considering �uents f that hold in situation s� i�e�� that make
predicate Holds�f� s� true� The evolution of the world state is thus described by
new �uents holding in the new situation resulting from the action that has been
performed� We start from an initial situation S�� whose properties may be stated
through �uents holding in S�� When an action a is performed in S� by an agent

158 Bruno Errico

ag� a new situation do�ag� a� S�� is obtained� where �uents hold possibly di�erent
from those holding in S�� As discussed by Pinto in ��
� this rei�ed version of the
situation calculus� where �uents are introduced as terms of the language rather
then as predicates� can be shown to be substantially equivalent to the non�rei�ed
version� Furthermore� in ��
 we show an extension of the language that allows
for a full �rst�order rei�cation �with quantifying�in��

In Reiter�s proposal� where a solution to the frame problem is provided� the
evolution of the state of the world may be speci�ed by de�ning a logical theory
with two kinds of axioms� Action precondition axioms � specifying for each action
all and only the conditions under which it can be performed� Successor state
axioms � stating for each �uent necessary and su�cient conditions under which
actions a�ect its truth value� For instance� the action precondition axiom for
action switchOn�c� that allows an agent to switch computer c on� may be of the
form��

Poss�ag� switchOn�c�� s� � Computer�c� �Holds�functioning�c�� s��

This axiom says that in a certain situation only computers that are functioning
can be switched on� Thus� this approach requires that all the conditions or
quali�cations that de�ne the possibility to perform an action be speci�ed in the
axiom� Hence� it ignores minor quali�cations and leaves room to the well known
quali�cation problem� as �rst pointed out by McCarthy in ��
�

Likewise the e�ects of actions� under certain conditions� can be lumped to�
gether yielding a successor state axiom� For instance� the �uent functioning can
have the following successor state axiom�

Poss�ag� a� s��

Holds�functioning�c�� do�ag� a� s�� � Computer�c� � a � repair�c� �

Holds�functioning�c�� s�� a �� hammer�c��

That is a computer will be functioning after an action if it gets repaired by
that action� or it was functioning before� and the action did not consist of ham�
mering it� This approach relies on what Reiter calls the Causal Completeness
Assumption� which amounts to demanding that all the causal laws a�ecting the
truth values of a �uent be speci�ed� In this case he shows a systematic proce�
dure to generate the parsimonious representation provided by the successor state
axioms�
� We adopt the following conventions
 We always assume all variables fall in the scope
of a quantier� and sometimes omit the universal quantication� with the stipula�
tion that formulas with free variables are always implicitly universally quantied

Iterated quantication over variables vt� � � � vtn � e
g
� �vt� � � � �vtn can be simplied
to �vt� � � � vtn or also �v
 Likewise� a formula ��vt� � � � � � vtn� can also be denoted as
��v�
 As for the other connectives� we sometimes drop parentheses assuming that �
and � bind more strongly than� and � �e
g
� ��� � � stands for ������ � and
� � ��� stands for � � ������� and � is stronger than any other connective
 Finally�
for the sake of readability� we generally use capitalized names to denote predicate
and constant symbols� and lower case names for function symbols and variables

159Agents’ Dynamic Mental Attitudes

In addition� it is required that unique name assumptions be postulated for
�uents and actions� Furthermore� in order to have the correct semantic charac�
terization of situations� some extra axioms are needed� In particular� a set of
foundational axioms ensures a tree�like structure for situations� As shown by
Reiter in ��
� a second�order axiom that expresses induction on situations is
needed to provide the intended characterization� ruling out non�standard mod�
els� Anyway� Lin and Reiter show ��
 that reasoning tasks� like querying or
projecting a knowledge base� can be performed in many cases by relying only on
a subset of the axioms expressed at �rst�order�

� Mental Attitudes in the Situation Calculus

In this work we focus on agents� beliefs and goals as basic mental notions� In a
related paper ��
 we show how to express a more general set of attitudes rel�
evant to an agent�based approach that we propose for the problem of User
Modelling� Mental attitudes are represented by cognitive �uents de�ned on
agent� situation� The �rst �uent� believes is used to represent those facts that
agents consider as true in a given state� Beliefs may be defeasible� i�e�� may be
withdrawn in future states� if simply more information is provided� The second
�uent� wants� deals with agents� objectives� these represent properties of the
world that agents consider as desirable ones� We do not make any assumption
here on the relation between agents� objectives and the action they perform� i�e��
on agents� rationality �

Then� we consider a possible�worlds setting for providing these cognitive �u�
ents with a de�nition� The intuitive idea behind the introduction of possible
worlds in the situation calculus� due originally to Moore ��
 and Scherl and
Levesque ���
� is the following one� In order to express cognitive attitudes� in�
stead of considering single situations� we consider sets of alternative situations
representing alternative states of a�airs according to agents� mental model of
the world� Thus� di�erent situations are used to represent both static and dy�
namic features� On the one hand they capture� in a static mode� properties of
di�erent contemporary states of a�airs conceived by agents� On the other hand�
in a dynamic view� properties of states evolving under the e�ect of actions are
represented through di�erent situations� In the sequel� in order to stress this
di�erent use of a situation� we sometimes refer to it as an alternative when it
is used to provide alternative static properties� or as a state when it is used to
provide dynamic properties resulting after some action gets executed�

In ��
 we provide a new set of foundational axioms that extend to our al�
ternative situations setting those proposed by Reiter ��
 to provide a suitable
semantic characterization of situations�

��� Accessibility Fluents

In our development of the possible situations setting� at a given state each agent
is associated with a set of contemporary alternatives� i�e�� a cluster � Alternatives

160 Bruno Errico

represent agents� di�erent views of the world that are relevant to express their
mental attitudes� Clusters are expressed by an accessibility �uent � among situa�
tions� A� de�ned on agent�sit� We say that Holds�A�ag� s��� s� is true i� s� is in
the same cluster of s for agent ag� or� equivalently� s� is a conceivable situation
from s for agent ag� We allow an agent to be related to the same cluster in situ�
ations corresponding to di�erent dynamic evolutions� For instance� agents keep
their cluster unchanged when an action is performed� but they are not aware of
it� A given state of a�airs is thus represented by a situation s� describing the
actual world� and a set of clusters of alternative situations� describing agents�
mental state� Intuitively� after an agent ag performs an action a in s� the state of
the world changes and function do determines the new description represented
by the situation resulting from ag performing a in the old starting situation�
Besides� we have a new set of clusters� some of which �those relative to agents
that are not aware of the action performed� are the same ones relative to the
old actual situation� and some others �those relative to agents that are aware of
the action occurred� are composed of situations determined by ag performing a
in each of the situations belonging to the old cluster� In the next section we will
give a characterization of �uent A that expresses these ideas�

Next� we introduce two more accessibility �uents� B and G� de�ned on sorts
agent � sit� which are accessibility relations among situations� They are used
to select subsets of clusters� i�e�� situations accessible via relation A �or A�
accessible�� for characterizing the cognitive �uents� Accessibility �uent� B� hold�
ing in a situation s�� expresses that� owing to suppositions or bias of agent ag�
s could be a plausible situation when the actual situation is s�� Analogously�
accessibility �uent� G� holding in a situation s�� expresses that situation s is a
desirable alternative� or a desirable situation� for agent ag in situation s��

Relevant features of the world in a given state of a�airs are expressed by
�uents holding in the actual situation� relations among alternative situations
relative to the same state of a�airs are expressed through the accessibility �uents�
Di�erent �uents may hold when passing from a state to a successive one� and
thus di�erent relations among alternatives may hold in the new actual state�
The evolution of the accessibility �uents determines an evolution of the cognitive
attitudes of an agent�

Beliefs and wants about a fact can be represented by considering the truth
values of that fact in the alternative situations� Thus� we state that an agent
believes or wants a fact in an actual situation s if this holds in all situations that
are accessible via relation B or G� respectively� from s� as stated by the following
formal de�nitions�

Holds�believes�ag� p�� s�
�
� �s�Holds�B�ag� s��� s�� Holds�p� s��

Holds�wants�ag� p�� s�
�
� �s�Holds�G�ag� s��� s�� Holds�p� s���

We stress the fact that� as Scherl and Levesque in ���
� cognitive �uents are not
considered as new �uents of our ontology� Instead� they are de�ned as abbrevia�

161Agents’ Dynamic Mental Attitudes

tions� or macros� of formulas involving the accessibility �uents�� These are in fact
the only �uents that need to be introduced to characterize cognitive attitudes�
Anyway� in the sequel� we allow cognitive �uents to appear within formulas of
the situation calculus�

� Characterization of Mental Attitudes

In another work ��
 we have discussed constraints on the accessibility �uents
that determine a reasonable behaviour for the cognitive concepts built on top of
them� In particular� we give the following�

De�nition �� We postulate the following properties characterizing accessibility
�uents�

� Holds�A�ag� s��� s�� �Holds�A�ag� s��� s��� Holds�A�ag� s��� s���
�� Holds�A�ag� s��� s�� �Holds�A�ag� s��� s��� Holds�A�ag� s��� s���
�� Holds�B�ag� s��� s�� �Holds�B�ag� s��� s��� Holds�B�ag� s��� s���
�� Holds�B�ag� s��� s�� �Holds�B�ag� s��� s��� Holds�B�ag� s��� s���
�� Holds�B�ag� s��� s��� Holds�A�ag� s��� s���
�� Holds�G�ag� s��� s��� Holds�A�ag� s��� s���
	� Holds�A�ag� s��� s�� �Holds�B�ag� s��� s��� Holds�B�ag� s��� s���
�� Holds�B�ag� s��� s�� �Holds�G�ag� s��� s��� Holds�G�ag� s��� s���

Properties characterizing conceivability relation� represented by �uent A� are
transitivity and Euclidicity� expressed by formulas and �� Likewise� properties
characterizing plausibility relation represented by �uent B are again transitivity
and Euclidicity� they are expressed by formulas � and �� and are the same prop�
erties that characterize frames of modal system K��� Sentences � and � state
that two situations are accessible via �uents B or G only if they belong to a
same cluster� Sentence 	 states that agents have the same plausible�accessible
situations from conceivable�accessible ones� or� equivalently� that B is transitive
over A and B� Likewise� sentence � states that agents have the same desirable�
accessible situations from plausible�accessible ones� or� equivalently� that G is
transitive over B and G� In ��
 we show that it is actually su�cient to ensure
that these constraints on accessibility �uents be met only for the initial clusters�
In this case the evolution of accessibility �uents� as described in next section�
does satisfy the constraints also for those clusters reached after the transition
with successive actions�

As for the relationship between wants and beliefs� in general� we do not
require that� in a given state� alternatives accessible by function G be a subset
of those accessible by B� i�e�� we drop what Cohen and Levesque call the realism
hypothesis �
� This simply avoids the following two problems �see� e�g�� Rao
and George� ��
� arising in formalisms for goals and beliefs where desirable

� Anyway� in ��� we show how it is possible to introduce cognitive �uents formally
within the full reied language

162 Bruno Errico

worlds are contained in plausible ones� the belief�goal transference problem� i�e��
the fact that any belief must be also a goal� and� the side�e�ect problem� i�e��
the closure of goals under belief implication� Anyway� the choice of dropping
such hypothesis does not appear here so counterintuitive as it may be when
plausible or conceivable alternatives contain also the future evolutions of the
current state�� In fact� we consider that alternatives are always contemporary�
Thus� the fact that an agent desires an alternative that it does not consider
plausible does not imply that it considers that situation� or better a di�erent
one where the same �uents hold� is never to be reached in the future�

As we show in the sequel� in order to express change of mental attitudes�
A�accessible situations may contain� in general� alternatives that are neither
plausible nor desirable� When actions are performed� the world evolves in a new
state where� in general� di�erent �uents hold� In this new state� we consider
the change for two di�erent kinds of properties� physical �uents describing the
state of the real world� which are a�ected by physical actions on the real world�
and accessibility �uents which are a�ected by informative actions� or cognitive
actions � which determine changes on agents� mind�

��� Evolution of Physical Fluents

Physical actions� do not a�ect directly accessibility �uents� but determine changes
in the real world� Now� suppose that F is a physical �uent� whose successor state
axiom� according to the solution to the frame problem proposed by Reiter for
the single agent case in ���
� is of the form�

Poss�a� s�� fHolds�f�x�� do�a� s�� � ��f �x� a� s���Holds�f�x� s�����f �x� a� s��g�

Where ��f �x� a� s� is a formula that states the conditions that make Holds�f�

true� and ��f �x� a� s� states the conditions that make Holds�f� false� after action
a is performed� This axiom can be easily generalized to the multi�agent case by
suitably providing the extra argument of sort agent� Besides� in the alternative
situations setting� it su�ces to let it apply to all of the di�erent alternatives� as
stated by the implicit universal quanti�cation over situations� In this case� as
shown in next section� accessibility �uents allow the selection of those alterna�
tives that are relevant to describe an agent�s attitudes� Note that the evolution
of physical �uents may a�ect the cognitive �uents relatively to agents that have
some alternative that is accessible through accessibility �uents where some �uent
has changed� Other changes of cognitive attitudes are described in next section�

��� Evolution of Accessibility Fluents

We �rst distinguish the case where an agent is aware of the e�ects of an action
performed from that where it is not� In fact� in the former case we also have to

� On the contrary� a similar choice is less intuitive for frameworks where possible worlds
contain all the future evolutions of the current state
 For instance� the choice of weak
realism of Rao and George� ���� implies that agents desire or intend also worlds that
they consider never to be reached

163Agents’ Dynamic Mental Attitudes

account for a change in agent mental state� We introduce a predicate� Aware�
de�ned on agent�agent�action�sit� stating that an agent is aware of the action
performed by another agent in a given situation and that it is also aware of the
e�ects that that action brings about� Thus� it becomes possible to characterize
the evolution of clusters by de�ning a suitable successor state axiom for �uent
A�

Poss�ag� a� s�� ��

fHolds� A�ag�� s��� do�ag� a� s�� �

��Aware�ag�� ag� a� s�� Holds�A�ag�� s��� s�� �

�Aware�ag�� ag� a� s�� 	s�� �s� � do�ag� a� s�� � Poss�ag� a� s�� �

Holds�A�ag�� s��� s��g�

What this axiom states is that when an action is performed the new cluster
associated with an agent in the resulting state is equal to the same one it was
associated with in the starting situation� if it is not aware of the action performed�
Otherwise� if it is aware of the action� the cluster is made of alternatives resulting
from applying function do to those alternatives of the starting cluster where
the action is possible� In ��
 we prove that this successor state axiom actually
captures the intuition about clusters discussed above�

Then� we provide a model of the change of the accessibility �uents� and hence
of the cognitive �uents� when some cognitive action modi�es mental attitudes
of an agent� We extend our ontology by introducing some cognitive actions that
determine the evolution of agents� attitudes� We consider actions involving only
one agent and expressing atomic changes like adding� removing or revising a
belief or a want� We restrict changes to simple terms � i�e�� facts that do not
contain cognitive �uents� and do not have arguments of sort sit�� This avoids
complications and problems arising when revising beliefs of beliefs� as exempli�ed
in ���
� Thus� given a simple term p� we consider the following kinds of cognitive
actions� expandB�p� and expandG�p�� to express that a new fact p is added
to agent ag�s beliefs and wants� respectively� contractB�p� and contractG�p��
expressing that a fact p is to be removed from �those facts that could be inferred
from� the beliefs and goals of agent ag� respectively� reviseB�p� and reviseG�p��
to express that a new fact should be consistently added to agents ag�s beliefs
and goals� respectively� This means that possibly fact �p should be removed
from �those facts that could be inferred from� the beliefs and goals of agent
ag� respectively� before adding fact p� In the sequel we shall characterize the
e�ects of the expansion and contraction action only� For the revise action it is
possible to rely on these solutions� In fact terms containing revise actions can be
expanded by applying Levi�s identity �see� for instance� ��
� expressing revision
by a contraction and an expansion performed in sequence�

do�ag� revise�p�� s�
�
� do�ag� expand�p�� do�ag� contract��p�� s���

� Elsewhere ��� we tackle the problem of dealing with cognitive actions concerning
expressions that contain also cognitive attitudes

164 Bruno Errico

Selection Fluents In order to characterize how cognitive actions a�ect agents�
cognitive attitudes� two selection relations among alternative situations are in�
troduced� Intuitively� in order to contract a belief �or goal� p� a new set of alter�
native situations where p does not hold should be added to those B�accessible
or G�accessible� This expansion of the accessible situations corresponds to a
contraction of the facts that are believed �or wanted�� In fact� as discussed�
for instance� by G�ardenfors in ��
� it seems reasonable that this contraction be
performed in di�erent ways for di�erent agents� relying on some explicit no�
tion related to agents� characterization� Thus� recasting in the situation calculus
ideas developed by van Linder et al� ���
 in propositional dynamic logic �PDL��
we represent this new set of alternatives through selection �uents SB �or SG��
de�ned on agent� fluent� situation� expressing which situations an agent is
more inclined to include as new alternatives to the plausible �or desirable� ones
when a given belief �or goal� must be removed� Then� we consider constraints
that can be stated for selection �uents� so that beliefs �or goals� holding after
contraction meet some criteria of rationality� as will be shown in the sequel� In
particular we allow only selection �uents SX � X
 fB�Gg that meet the following
restrictions��

� Holds�SX�ag� p� s
��� s�� Holds�A�ag� s��� s� �Holds��p� s���

�� �	s�� Holds�X�ag� s��� s� �Holds��p� s���� �Holds�SX �ag� p� s
���� s��

Holds�X�ag� s���� s���
�� Holds��SX�ag� p� s

��� s� � �Holds�A�ag� s���� s�� Holds�p� s�����
�� �Holds�A�ag� s���� s�� �Holds�p� s�� � Holds�q� s�����

�Holds�SX�ag� p� s
���� s� � Holds�SX�ag� q� s

���� s���
�� Holds�SX�ag� p�q� s

��� s�� �Holds�SX �ag� p� s
��� s��Holds�SX �ag� q� s

��� s���
�� �	s�Holds�SX�ag� p � q� s��� s� �Holds��p��� �Holds�SX�ag� p� s

���� s��
Holds�SX�ag� p � q� s���� s���

The �rst axiom states that a selected situation must be one of the same cluster
where �p holds� Axiom � says that if there already exists some plausible situation
where �p holds� then the set of selected situations must be contained in that of
plausible �resp� desirable� ones� Axiom � asserts that if p holds in all selected
situations then it must hold in all those ones in the same cluster� Axiom �
states that the same situations are selected for predicates that are equivalent
in all situations that belong to the same cluster� Axiom � ensures that the
situations selected when contracting a conjunction must be contained in the
union of the situations selected when contracting each conjunct� Finally� Axiom
� states that� according to a minimal change principle� if the set of situations
selected when contracting a conjunction is not empty� then it must contain the
situations selected when contracting one of the conjuncts�

Successor State Axioms for Accessibility Fluents The evolution of acces�
sibility �uents through states is expressed� as usual� by de�ning suitable successor

� Abusing notation� we allow the logical connectives to range over terms of sort fluent

In ��� the corresponding term�forming operators� e
g
� and or not� are formally
introduced

165Agents’ Dynamic Mental Attitudes

state axioms� We assume that only agents who perform a change of cognitive
attitudes are aware of it� As for B� the axiom can be stated formally as follows�

Poss�ag� a� s�� ���

fHolds�B�ag�� s��� do�ag� a� s�� �

�� Aware�ag�� ag� a� s�� Holds�B�ag�� s��� s�� �

� Aware�ag�� ag� a� s�� 	s� �s� � do�ag� a� s�� � Poss�ag� a� s�� �

�ag� �� ag � �a �� expandB�p� � a �� contractB�p��� Holds�B�ag� s��� s�
 �

�a � expandB�p� � ag� � ag � Holds�p� s�� �Holds�B�ag� s��� s��
 �

�a � contractB�p� � ag� � ag � Holds�SB�ag� p� s��� s��
g�

Thus� it states that a situation s� is B�accessible to agent ag� from the situation
resulting from agent ag performing an action a in situation s i� either we have
that the agent is not aware of the action performed and s� is already plausible
from s� or� otherwise� the agent is aware� and s� is the result of ag performing a
possible action in a situation s�� Moreover� one of these three conditions holds�
The action is neither a contraction nor an expansion performed by ag� and s�
is plausible from s� The action is an expansion of a �uent p performed by ag�
itself and both s� is plausible from s and p holds in s�� Finally� the action is
a contraction of a �uent p performed by ag� itself and s� belongs to the set
of situations selected by the selection function for the �uent p� Likewise� G is
characterized by a similar axiom obtained by replacing B with G�

� Analysis of the Model of Dynamic Attitudes

In this section we compare our framework dealing with dynamics of agents�
cognitive attitudes with the postulates proposed by G�ardenfors in ��
� The fact
that our model complies with the postulates de�ned for belief revision provides
a rationality justi�cation and a cognitive commitment for the model we propose�

Given an agent ag� a situation s and an accessibility �uent X
 fB�Gg�
we de�ne a belief �goal� cognitive set EB�ag� s� �EG�ag� s�� as the set of simple
terms p that are believed �wanted� in situation s� From the fact that distribution
holds for all accessibility �uents� it becomes evident that cognitive sets are closed
under implication� and thus comply to the de�nition of �possibly absurd� belief
sets given in ��
�

In the sequel� we list a set of properties holding for cognitive sets that are the
analogs of the postulates proposed by G�ardenfors for belief revision� adapted to
our framework� We start with properties of cognitive sets EX�ag� s� concerning
actions expandX�p� X
 fB�Gg� and holding for any agent ag� situation s and
simple term p�

Proposition �� The following relations hold�

�	 EX �ag� do�ag� expandX�p�� s�� is a cognitive set

�	 p
 EX �ag� do�ag� expandX�p�� s��

166 Bruno Errico

�	 EX �ag� s� � EX �ag� do�ag� expandX�p�� s��

	 if p
 EX�ag� s� then EX�ag� s� � EX�ag� do�ag� expandX�p�� s��

�	 if EX�ag� s� � EX�ag� s

�� then EX�ag� do�ag� expandX�p�� s�� �
EX �ag� do�ag� expandX�p�� s

���

�	 EX �ag� do�ag� expandX�p�� s�� is the smallest set satisfying the above prop�

erties	

Similarly� provided that axioms of Section ���� hold� we can prove properties
corresponding to those de�ned in ��
 for cognitive sets EX�ag� s� concerning
actions contractX �p� X
 fB�Gg� and holding for any agent ag� situation s and
simple term p�

Proposition �� The following relations hold�

�	 EX �ag� do�ag� contractX�p�� s�� is a cognitive set

�	 EX �ag� do�ag� contractX�p�� s�� � EX �ag� s�

�	 if p �
 EX�ag� s� then EX�ag� s� � EX�ag� do�ag� contractX�p�� s��

	 if �Holds�A�ag� s��� s�� Holds�p� s�� then p �
 EX�ag� do�ag� contractX�p�� s��

�	 if p
 EX�ag� s� then EX �ag� s� � EX�ag� do�ag� expandX�p�� do�ag� contractX �p�� s���

�	 if Holds�A�ag� s��� s�� �Holds�p� s� � Holds�q� s�� then

EX �ag� do�ag� contractX�p�� s�� � EX �ag� do�ag� contractX�q�� s��

�	 EX �ag� do�ag� contractX�p�� s�� � EX�ag� do�ag� contractX �q�� s�� �

EX �ag� do�ag� contractX�p � q�� s��

�	 if p �
 EX�ag� do�ag� contractX �p � q�� s�� then

EX �ag� do�ag� contractX�p � q�� s�� � EX�ag� do�ag� contractX�p�� s��	

� Describing Agents

In general� theories of agents can be exploited for quite two di�erent tasks� On
the one hand� designing an agent is the task addressed by most of the exist�
ing formalisms proposed in the literature� It implies the view of an agent under
an internal perspective� namely the standpoint of the agent itself� The main
aim is to take into account agent cognitive state in order to determine how an
agent ought to e�ect changes in the environment� Thus� designing agents can
be roughly described as the problem of de�ning how communication a�ect the
mental state of the agent� and how the cognitive state determine the actions per�
formed by the agent� In this sense� the character of these theories is prescriptive�
for they de�ne what an agent should do� or at least should try to do�

On the other hand� the task ofmodelling an agent has been rather disregarded
in the literature� In this case the perspective is external� namely of someone that
observes agents� The aim is to describe what the content of agents� cognitive state
could be� based on the observed behaviour� Thus� modelling assumes now a more
descriptive character� This task implies as before the de�nition of relationships
between communication and the mental state of the agent� But� the other type of
relationship� i�e�� between cognitive state and the actions performed� becomes less
interesting� This happens because now the aim is to �nd out a description of the

167Agents’ Dynamic Mental Attitudes

cognitive state of the agent� based on the actions observed� Thus� as also noted
by Haddadi �	
� unlike external theories� internal theories are not concerned� in
general� with providing a basis for the rational formation and achievement of
intentions� For instance� problems like planning may be thought of as having
the aim of designing agents� Here what is needed is roughly to determine a
behaviour� or program� that brings to a certain goal� given a speci�cation of the
current state� and a model of the hypothetical futures of a state� A di�erent
problem instead is tracking� or executing � agents� i�e�� determining the state that
has been actually reached after performing certain actions in some initial state�
This problem is crucial to many important applications based on modelling or
verifying systems where mental attitudes play some role �see� for instance ��
��

In ��
 we further develop our theory of agents and present a framework for
modelling agents related to the problem of User Modelling� In order to provide
the ability to describe agents� we introduce there two new predicates Actual

and Performs� In this limited exposition we only brie�y sketch the intuition
underlying the former predicate� Actual takes a sit argument and has a twofold
meaning� First� a situation is actual if it represents the real world� independent
of agents� biases and desires� Thus if we want to examine which features de�
scribe a given state� we have to take into account properties ��uents� holding in
the corresponding actual situation� Furthermore� this predicate is also intended
to single out a path of situations that have already occurred� Thus� an actual
situation is meant to be the result of a sequence of actions that have been ac�
tually performed �by a set of agents�� A similar notion� outside the context of
alternative situations� has been used by Pinto in ��
� where he notes that this
allows the selection of a path of situation among the many branches describing
the possible courses of events� Axioms for this predicate state that an actual
situation can only have a predecessor that is actual as well� and that each actual
situation has at most an actual successor�

Actual�do�ag� a� s��� Poss�ag� a� s� � Actual�s��

Actual�do�ag� a� s�� � Actual�do�ag�� a�� s��� ag � ag� � a � a��

An actual situation of the form do�ag� a� s� expresses that ag has actually per�
formed a in s� Besides� also the �predecessor� s must be actual and if this is
still of the form do�ag�� a�� s�� we determine a sequence of actions�agents up to
an initial situation� Thus it is possible to reason on the past of a given state and
not only on its future� For instance it is now possible to specify formally the
condition expressing that only agents who change their cognitive attitudes are
aware of it� as we demanded before introducing Axiom �� i�e��

Actual�do�ag� a� s�� ��a � contractX �p� � a � expandX�p����

�Aware�ag� ag�� a� s� � ag � ag��

for X
 fB�Gg� Moreover� by means of this predicate it is possible to single out
one situation� among the many alternatives� thus describing the real state of the
environment� and hence of agents� cognitive state�

168 Bruno Errico

� Conclusions and Discussion

We have developed a �rst�order formalism for dealing with agents� beliefs and
goals� In particular� we have taken into consideration the dynamics of mental
attitudes� as a consequence of both changes in the external world and cognitive
inputs� One of our ongoing objectives is to use the changes of the cognitive
notions presented here for representing communicative acts among agents� such
as those discussed by May�eld et al� in ��
� Interesting applications could be in
the area of User Modelling and Student Modelling� as we show in ����
� Work
is in progress to provide signi�cant applications of the framework presented for
modelling the interactions between an interactive systems and users ��
�

A limit of our notion of goals is that we do not consider the possibility to
express temporal relations among goals� For instance� it is not possible to state
that an agent has a certain goal only after another goal has been achieved�
Anyway� in this case� a possible extension dealing with this aspect could be
conceived by replacing alternative desirable situations with alternative paths�
i�e�� alternative sequences actions�situations describing possible future courses of
events� Besides� as we are mainly concerned with modelling agents� where actions
are already given as input to the problem� as opposed to designing agents� where
actions need to be determined� no relation between goals and action has been
explicitly modelled� A possible way to represent such a relation could be given by
forcing some constraints between plausible and desirable situations� analogously
to what is done� e�g�� by Rao and George� in ��
�

Our work follows for many aspect the logical approach to agent program�
ming carried on by Lesp�erance et al� in ��
� Anyway� that work is concerned
with programming agents as opposed to our aim of modelling them� Besides�
in that work only agents� knowledge is considered� and other mental attitudes
are not dealt with� Lesp�erance et al� focus on the possibility to handle percep�
tual actions among agents� and discuss an application for a meeting schedule
problem� On the contrary� we have considered and characterized more basic cog�
nitive actions� In ���
� Shapiro et al� introduce� under the same logical approach�
a cognitive attitude accounting for one agent�s goals� and express a concept of
rationality that binds goals to actions� Though goals� de�ned as a second�order
abbreviation in terms of future paths� seem to allow also for the representation
of future objectives� they consider only a single agent case� and do not account
for cognitive actions� Konolige and Pollack ��
 refer to a de�nition of intentions
based on minimal modal models� along with a normal modal operator for rep�
resenting beliefs� Suitable relations between these operators prevent from the
side e�ect problem� However� their framework �ts only static situations where
no dynamic acquisition is dealt with� Rao and Foo �	
 de�ne modal operators
to represent cognitive actions in temporal modal logic and apply them in or�
der to reason about actions� A semantical characterization of cognitive actions
is given in terms of selection functions for expansions and contractions� The
characterization of change due to action they give is based on revision� and
does not account for the di�erence between revision and update pointed out by
Katsuno and Mendelzon in ��
� Many ideas about how to perform revision in

169Agents’ Dynamic Mental Attitudes

a possible�worlds setting have been drawn from van Linder et al� in ���
� Any�
way� in their work no account is given to goals �but see van Linden et al� ���

for an account of motivational attitudes� and their aim is to de�ne a theorist
logic for specifying and reasoning about agents rather than modelling them� Due
to the di�erent underlying formalism� i�e�� situation calculus versus PDL� other
di�erences can be pointed out between the two approaches� First� we note that
our characterization of agents� attitudes is �rst�order and not modal� Thus� the
various methods for automated deduction developed for �rst�order theories can
be directly exploited for reasoning in our framework� Moreover� as we highlight
in ��
� a main di�erence between situation calculus and modal approaches� is
that in the former case situations are de�ned at the syntactic level� whereas in
the latter case worlds are de�ned semantically� Thus in the situation calculus it
is possible to state explicit ��rst�order� properties of situations� e�g�� structural
relations� even in cases where� according to the Correspondence Theory �see�
e�g�� van Benthem ���
�� the same properties are not de�nable for modal accessi�
bility relations �that belong to the semantic structures� among worlds� Another
interesting aspect is that by de�ning situations as terms� it is possible to keep
track of the history of the actions performed within the term itself� This feature�
which is not straightforwardly representable for transitions among states in dy�
namic logic� is very appealing� especially for modelling purposes where it may
be important to represent also the past history of interaction�

� Acknowledgments

I would like to thank Luigia Carlucci Aiello who encouraged me in writing this
paper� Hector Levesque� Ray Reiter and Yves Lesp�erance for many fruitful dis�
cussions about situation calculus� The research reported here has been partly
supported by ENEA� MURST� and ASI�

References

�
 P
 R
 Cohen and H
 J
 Levesque
 Intention is choice with commitment
 Arti�cial
Intelligence Journal� ����������� ����

�
 B
 Errico
 Intelligent Agents and User Modelling
 PhD thesis� Dipartimento Infor�
matica e Sistemistica� Universit�a degli Studi di Roma �La Sapienza�� November
����
 Draft

�
 B
 Errico
 Student modelling in the situation calculus
 In Proc� of the European
Conf� of AI in Education� pages �������� ����

�
 B
 Errico and L
 C
 Aiello
 Agents in the situation calculus� an application to
user modelling
 In D
 M
 Gabbay and H
 J
 Ohlbach� editors� Practical Reasoning�
volume ��	� of Lecture Notes in Computer Science �subseries LNAI�� pages ����
���
 Springer�Verlag� ����

�
 M
 Fisher
 Representing and executing agent�based systems
 In Intelligent Agents
ECAI��� Workshop on Agent Theories� Architectures� and Languages
 Springer�
Verlag� ����

�
 P
 G�ardenfors
 Knowledge in Flux
 MIT Press� ��		

170 Bruno Errico

�
 A
 Haddadi
 Communication and Cooperation in Agent Systems� volume ���� of
Lecture Notes in Computer Science �subseries LNAI�
 Springer�Verlag� Berlin�
Germany� ����

	
 H
 Katsuno and A
 O
 Mendelzon
 On the di�erence between updating a knowledge
base and revising it
 In Proceedings of the Second International Conference on the
Principles of Knowledge Representation and Reasoning �KR��	�� pages �	�����

Morgan Kaufmann� ����

�
 K
 Konolige and M
 E
 Pollack
 A representationalist theory of intention
 In Pro�
ceedings of the Thirteenth International Joint Conference on Arti�cial Intelligence
�IJCAI��
�� pages �������
 Morgan Kaufmann� ����

��
 Y
 Lesp�erance� H
 J
 Levesque� Lin F
� D
 Marcu� R
 Reiter� and R
 B
 Scherl

Foundations of a logical approach to agent programming
 In IJCAI��� Workshop
on Agent Theories� Architectures� and Languages� ����

��
 H
 J
 Levesque� R
 Reiter� Lin F
� and R
 B
 Scherl
 GOLOG� A logic programming
language for dynamic domains
 Arti�cial Intelligence� ����
 submitted

��
 F
 Lin and R
 Reiter
 How to Progress a Database �and Why� I
 Logical Founda�
tions
 In Proceedings of the Fourth International Conference on the Principles of
Knowledge Representation and Reasoning �KR����� pages �������
 Morgan Kauf�
mann� ����

��
 J
 Mayeld� Y Labrou� and T
 Finin
 Evaluation of KQML as an agent commu�
nication language
 In IJCAI��� Workshop on Agent Theories� Architectures� and
Languages� pages �	������ ����

��
 J
 and McCarthy
 First order theories of individual concepts and propositions
 In
J
 E
 Hayes� D
 Michie� and L
 J
 Mikulick� editors� Machine Intelligence� volume ��
pages ������	
 Ellis Horwood� Chichester� England� ����

��
 R
 C
 Moore
 A formal theory of knowledge and action
 In J
 R
 Hobbs and
R
 C
 Moore� editors� Formal Theories of the Commonsense World� pages ����
��	
 Norwood� ��	�

��
 J
 Pinto
 Temporal reasoning in the situation calculus
 Technical Report KRR�
TR������ Dept
 of Computer Science� Univ
 of Toronto� ����

��
 A
 S
 Rao and N
 Y
 Foo
 Minimal change and maximal coherence� A basis for belief
revision and reasoning about actions
 In Proceedings of the Eleventh International
Joint Conference on Arti�cial Intelligence �IJCAI����� pages �������
 Morgan
Kaufmann� ��	�

�	
 A
 S
 Rao and M
 P
 George�
 Modelling rational agents within a BDI architecture

In Proceedings of the Second International Conference on the Principles of Knowl�
edge Representation and Reasoning �KR��	�� pages �����	�
 Morgan Kaufmann�
����

��
 A
 S
 Rao and M
 P
 George�
 Asymmetry thesis and side�e�ect problems in
linear�time and branching�time intention logics
 In Proceedings of the Thirteenth
International Joint Conference on Arti�cial Intelligence �IJCAI��
�� pages ��	�
���
 Morgan Kaufmann� ����

��
 R
 Reiter
 The frame problem in the situation calculus� A simple solution �some�
times� and a completeness result for goal regression
 In V
 Lifshitz� editor� Arti�cial
Intelligence and Mathematical Theory of Computation Papers in Honor of John
McCarthy� pages �����	�
 Academic Press� ����

��
 R
 Reiter
 Proving properties of states in the situation calculus
 Arti�cial Intelli�
gence Journal� ������������� ����

��
 R
 Scherl and H
 J
 Levesque
 The frame Problem and Knowledge Producing
Actions
 Arti�cial Intelligence� ����
 submitted

171Agents’ Dynamic Mental Attitudes

��
 S
 Shapiro� Y
 Lesp�erance� and H
 Levesque
 Goals and Ractional Actions in
the Situation Calculus�A Preliminary Report
 In Working Notes of AAAI Fall
Symposium on Rational Agency Concepts� Theories� Models� and Applications

Cambridge� MA� ����

��
 J
 van Benthem
 Correspondence theory
 In D
 M
 Gabbay and F
 Guenthner�
editors� Handbook of Philosophical Logic II� pages �������
 D
 Reidel Publishing
Company� ��	�

��
 B
 van Linder� W
 van der Hoek� and J
 J
 Meyer
 Formalising motivational atti�
tudes of agents
 In M
 Wooldridge� J
 P
 M�uller� and M
 Tombe� editors� Intelligent
Agents Volume II � Agent Theories� Architectures and Languages� pages �����

Springer�Verlag� ����

��
 B
 van Linder� W
 van der Hoek� and J
 J
 Ch
 Meyer
 Actions that make you
change your mind
 Technical Report UU�CS��������� Utrecht University� ����

��
 M
 Wooldridge and N
 R
 Jennings
 Agents theories� architectures and languages� A
survey
 In Intelligent Agents ECAI��� Workshop on Agent Theories� Architectures�
and Languages
 Springer�Verlag� ����

172 Bruno Errico

Diagnostic Agents for Distributed Systems

P. Fröhlich�, I. Móra�, W. Nejdl�, M. Schroeder�

� Institut für Rechnergest¨utzte Wissensverarbeitung, Lange Laube 3, D-30159 Hannover,
ffroehlich,nejdl,schroederg@kbs.uni-hannover.de
� Departamento de Inform´atica, F.C.T. Universidade Nova de Lisboa,

idm@di.fct.unl.pt

Abstract. In this paper we introduce an agent–based framework for the diag-
nosis of spatially distributed technical systems, based on a suitable distributed
diagnosis architecture. We implement the framework using the concepts of vivid
agents and extended logic programming. To demonstrate the power of our ap-
proach, we solve a diagnosis example from the domain of unreliable datagram
protocols.

1 Introduction

The advent of large distributed technical systems like computer and telecommunication
networks has been one of the most striking developments of our time. Research in
model–based diagnosis has up to now not tackled the question how to support such
systems by a suitable diagnosis architecture.

We introduce an agent–based framework for the diagnosis of spatially distributed
systems. The motivation for such a framework is the unnecessary complexity and com-
munication overhead of centralized solutions. Consider a distributed system withn
nodes, e.g. a computer network consisting ofn machines. When using a centralized
diagnosis system the size of the system description (i.e. number of ground formulas)
is linear inn. Diagnosis time will usually be worse than linear inn [MH93]. Also all
observations have to be transmitted to the central diagnosis machine, causing a large
communication overhead.

Our agent–based approach decomposes a system into a set of subsystems. Each
subsystem is diagnosed by an agent which has detailed knowledge over its subsystem
and an abstract view of the neighboring subsystems. Most failures can be diagnosed
locally within one subsystem. This decreases diagnosis time dramatically in large sys-
tems. In the case of the computer network most machines in a subnet can usually fail
without affecting machines in other subnets. Only those computers in other subnets can
be affected which have sent messages to thefaulty machine. Moreover, the local com-
putation of diagnoses avoids the communication overhead which would be needed to
forward all observations to the central diagnosis engine.

Failures which affect more than one subsystem are diagnosed by the agents cooper-
ating with each other. The cooperation process is triggered locally by an agent, when it
realizes that it can not explain the observations by a failure in its own subsystem. The
cooperation process is guided by a small amount of topological information.

J.-J. Ch. Meyer, P.-Y. Schobbens (Eds.): Formal Methods of Agents, LNAI 1760, pp. 173-186, 1999.
 Springer-Verlag Berlin Heidelberg 1999

We have implemented spatially distributed diagnosis using extended logic program-
ming [SdAMP96,SW96] and the vivid agents concept [Wag96a,Wag96b]. Vivid agents
support both the declarative description of the domain by a flexible knowledge base
component and the specification of the reactive behavior of agents by a set of rules,
which are activated by communication events.

To demonstrate the power of our approach we formalize the domain of an unreliable
protocol (like UDP) in a computer network and diagnose an example scenario.

2 Spatially Distributed Diagnosis

In [FN96] semantical and spatial distribution are identified as the relevant distribution
concepts for diagnosis. Semantical distribution refers to a situation where the knowl-
edge is distributed among the agents. Each agent is an expert for a certain problem
domain. Diagnostic concepts for semantical distribution must rely on external criteria
rather than cooperation among the agents because the knowledge bases of the diagnos-
tic agents are not compatible. In this paper we describe spatially distributed diagnosis.
Distributed technical systems often consist of subsystems which have the same struc-
ture. So we can describe the subsystems by a common set of axioms. The particular
properties of the concrete subsystem are defined by logical facts. As we will see, the
description of the subsystems by a common vocabulary allows us to resolve conflicts
using cooperation among the agents. After giving a short overview of the necessary
concepts of model–based diagnosis, we will describe our view of spatially distributed
diagnosis in more detail. Then we will define the diagnostic conflicts between the sub-
systems as well as the distributed diagnosis concept formally.

2.1 Model–based Diagnosis

In model–based diagnosis [Rei87] a simulation model of the device under considera-
tion is used to predict its normal behavior, given the observed input parameters. Diag-
noses are computed by comparison of predicted vs. actual behavior. This approach uses
an extendible logical model of the device, called the system description (SD), usually
formalized as a set of formulas expressed in first–order logic. The system description
consists of a set of axioms characterizing the behavior of system components of certain
types. The topology is modeled separately by a set of facts.

We will now define the diagnostic concept mathematically. The diagnostic prob-
lem is described by system descriptionSD, a setCOMPof components and a setOBS
of observations (logical facts). With each component we associate a behavioral mode:
Mode�c�Ok� means that componentc is behaving correctly, whileMode�c�Ab� (abbre-
viated byAb�c�) denotes thatc is faulty. InConsistency–Based Diagnosis, the concept
we are using throughout this paper, aDiagnosisD is a set of faulty components, such
that the observed behavior is consistent with the assumption, that exactly the compo-
nents inD are behaving abnormally. If a diagnosis contains no proper subset which is
itself a diagnosis, we call it aMinimal Diagnosis.

Definition 1 (Reiter 87). A Diagnosisof �SD�COMP�OBS� is a set� � COMP, such
that SD� OBS� fMode(c,Ab)jc � COMPg � f�Mode(c,Ab)jc � COMP� �g is

174 Peter Fröhlich et al.

consistent.� is called aMinimal Diagnosis, iff it is the minimal set (wrt.�) with this
property.

Minimal Diagnoses are a natural concept, because we do not want to assume that a
component is faulty, unless this is necessary to explain the observed behavior. Since the
set of minimal diagnoses can be still quite large and the ultimate goal is to identify a
single diagnosis, stronger minimality criteria are used which allow stronger discrimina-
tion among the diagnoses. The most frequently used concepts areMinimal Cardinality
DiagnosisandMost Probable Diagnosis. In addition to these stronger definitions of di-
agnosis the agents can use measurements to discriminate among competing diagnoses.
For our distributed diagnosis framework we assume that every agent has identified a
single diagnosis for its subsystem.

2.2 Properties of Spatial Distribution

Spatial distribution is a natural organization scheme for the distributed diagnosis of
large technical systems like communication networks. With each agent we associate a
certain area of the system, for which it is responsible. Consider a large distributed sys-
tem, e.g. a communication network, which is divided into a set of spatially distributed
subsystems (subnets), as shown in figure 1. Each square in the grid is a subsystem and
has a diagnostic agent associated with it.

C1

C2

C3

C4

C5

C6 C7

C8 C9
C10

N1 N2 N3

N4
N5N6

A1 A2 A3

A4A5A6

Fig. 1. A communication network

What could be the system view of agentA�? Of course, it has detailed knowledge
about its own subsystem (provided by the control component). For components in its
own subsystem the agent himself is responsible and its diagnoses are reliable. Since it
does not share its local observations and measurements with other agents (except for
specialized information used during cooperation) it is the only agent, which can com-
pute detailed diagnosis of its subsystem. In the decentralized structure of this network,
the machineC� must have at least some routing information. It has to know that there
are two adjacent subnetsN� andN�, to which it can send information. More generally

175Diagnostic Agents for Distributed Systems

we assume that each agent has some information on the neighboring subsystems, i.e.
the subsystems directly connected to its own in the system structure.

Now we will describe this view by means of abstractions and simplifications: An
agentAi knows only the name of each neighboring subnetNj (and perhaps a name
of a server withinNj) but notNj 's internal structure. WhenAi diagnoses an error in-
volving subnetNj (e.g. a lost message routed viaNj), then the diagnosis will contain
Mode�Nj �Ab�. The abstract literalMode�Nj �Ab� implicitly implies that some partic-
ular component withinNj is faulty. In general, an agentAi has an abstract model of
the neighboring subsystems. Furthermore,Ai only knows thatNj is the first subnet
on the route to the destination of the lost message. It is a simplifying assumption, that
Nj is the only subnet involved in the transmission. Stated more generally, an agentAi
initially uses the simplifying assumption that all errors it cannot explain are caused by
its immediate neighbors. We will see, how he can get more detailed information during
the cooperation process.

2.3 Formalization

The subsystems and also the components within each subsystem have standard names.
A predicateArea Componentdenotes that componentc is situated within areaa of
the system. We call the extension of this predicate for a given system theComponent
Hierarchy.

Definition 2 (Component Hierarchy.). The Component Hierarchy CHfor a distrib-
uted system is a set of facts for the predicateArea Component.

Example 3. For our communication network we have

CH � fArea Component�N�� C���Area Component�N�� C��� � � �g

Using the predicateArea Component, we can formulate a consistency condition
between the abstract subsystem–level and the detailed component level. We define the
consistency of abstractions axiom:

Definition 4 (Consistency of Abstractions.).The axiom

CA � �c� ��Mode�c�Ab� � �d�Area Component�c� d��
	 �e��Area Component�c� e� �Mode�e�Ab���

requires, that each abnormality of an abstract component is caused by an abnormality
of one of its subcomponents.

The axiomDisjointness of Modesstates that a component can only be in one behav-
ioral mode and is expressed by the following axiom:

Definition 5 (Disjointness of Modes.).

DM � �c��m���m���Mode�c�m�� �Mode�c�m��� 	 m� � m�

176 Peter Fröhlich et al.

2.4 Diagnosis by Cooperation

Each diagnostic agent knows only a small part of the entire system. It can compute
diagnoses independently, because it maintains a set of assumptions concerning the other
parts of the system. In this paper, we will assume that all locally computed diagnoses are
considered as reliable. The bargain from distributed diagnosis is that a lot of problems
can be solved locally so that the simplifying assumptions hold. The cooperation process
is necessary when an agent cannot detecta faulty component within its subsystem. In
this case, it starts a cooperation process:

Definition 6 (Need for Cooperation). Given observationsOBS, a component hierar-
chyCH, the axiom of consistency of abstractionsCA, and a system descriptionSDsuch
thatCH,CA� SD. If Ai believes that it is not abnormal, but a neighbour is , i.e.

SDNi
�OBSj� �Mode�Ni� Ab� andSDNi

�OBS� fMode�Nj � Ab�g
j� �

then there is aneed for cooperationto determine a global diagnosis andNj is a
possible partner for cooperation.

Example 7.In the example of the communication network the observation of a lost
message (let us assume an unreliable protocol such as UDP) means that it was
lost somewhere on the way from sender to recipient. But of course the agents
know only their own subnet in detail and have an abstract view of the neighbor-
ing subnets. The predicateMessageLost represents a reported loss of a datagram.
MessageLost�N�� C�� means that a lost message has been reported which was sent
from networkN� to a nodeC�. When agentAi transmits a message via a neighbor-
ing subnetNj and the message is lost,Ai will assume that it was lost inNj since this
is the only point on the route it knows. We can formalize this simplifying assumption
explicitly by introducing a predicateOn Route.

CLM � MessageLost�Sender�Recipient�
	 �n��On Route�Sender�Recipient� n� �Mode�n�Ab��

is calledExistence of a Cause for a Lost Message.
Initially, each agentAi knows the following facts aboutOn Route, if Nrk is the

routing table entry ofRecipientk:

RT � On Route�Ni�Recipient�� Ni� On Route�Ni�Recipient�� Nr��
On Route�Ni�Recipient�� Ni� On Route�Ni�Recipient�� Nr��. . .

Now assume a message gets lost fromN� to C�, i.e. MessageLost�N�� C�� and
the agentA� determines that it is not its fault, i.e.�Mode�N�� Ab� holds. ThenA�

computes a local diagnosisMode�N�� Ab� and thus there is a need for cooperation in
order to obtain a global solution.

A cooperation process is started by sending/receiving an observation. With the new
observation the agent computes diagnoses which can lead to three different situations.
First, it might turn out that it is abnormal itself. Then other solutions can be neglected

177Diagnostic Agents for Distributed Systems

since we assume that the agents have certain knowledge about their own state. Second,
there are no diagnoses at all which means that the initial fault is intermittent. Third,
there is a need for cooperation. Then the agent refines the received observation and
sends it to the neighbor waiting for its reply. In any of the cases the requesting agent is
informed of the final result.

Definition 8 (Diagnosis by Cooperation).Given an agentA� which receives a mes-
sage from agentA� with an observationOBSsuch thatSDA�

� OBS j� � then there
are three cases:

1. SDA�
�OBS� fMode�N�� Ab�g
j� �, i.e. the agent's own subsystem is faulty

2. there are noD such thatSDA�
� OBS� D
j� �, then there must have been an

intermittent failure
3. there is a need for cooperation (see definition 6) and the observation is refined and

sent to another agent which is then in charge of providing a diagnosis result

The diagnosis result is sent toA�.

Example 9.AssumeA� receives by a subcomponent the message that a message is lost
from N� to C� andN� not being abnormal. A diagnosis ofA� is thatA� is abnormal
and thus there is a need for cooperation. The initial observationMessageLost�N�� C��
is refined as follows:

RO � MessageLost�Sender�Recipient� � �Mode�Sender�Ab��
On Route�Sender�Recipient�NextSender� 	
NewMessageLost�NextSender�Recipient�

The new observation is sent toA�. Sincea� is not abnormal this agent asksA� for
help.A� is faulty and replies that it is responsible.A� passes this result toA�. The
union of all system descriptions involved is consistent with the final diagnosis ofA�.

Now we can define distributed diagnosis. A diagnosis for the union of all system
descriptions is called distributed diagnosis:

Definition 10 (Distributed Diagnosis). A Distributed Diagnosis of
�fSDA�

� � � �SDAn
g�COMP�OBS� is a set� � COMP, such thatSDA�

� � � � �
SDAn

� OBS� fMode(c,Ab)jc � COMPg � f�Mode(c,Ab)jc � COMP� �g is
consistent.

Example 11.fMode�N�� Ab��Mode�C�� Ab�g is a distributed diagnosis for the system
description and observations in the above example.

In order to implement the scenario above we need separate diagnostic agents for
each area. The agents need a knowledge base containing the description of their area
and they have to be capable of reactive behavior in order to solve a problem in co-
operation with other agents. The theoretical basis of the implementation is the con-
cept of vivid agents [Wag96b] and a prototype developed for fault-tolerant diagnosis
[SdAMP96,SW96]. Below we briefly review the vivid agents and extended logic pro-
gramming. We proceed by showing how the axioms can be expressed as extended logic
program and how the agents' reactive behavior is coded in terms of reaction rules. We
round out the picture with a trace of the agents' communication after a message is lost.

178 Peter Fröhlich et al.

3 Vivid Agents

A vivid agentis a software-controlled system whose state is represented by a knowl-
edge base, and whose behavior is represented by means ofactionandreaction rules.
Following [Sho93], the state of an agent is described in terms of mental qualities, such
as beliefs and intentions. The basic functionality of a vivid agent comprises a knowl-
edge system (including an update and an inference operation), and the capability to
represent and perform actions in order to be able to generate and execute plans. Since a
vivid agent is `situated' in an environment with which it has to be able to communicate,
it also needs the ability to react in response to perception events, and in response to
communication events created by the communication acts of other agents. Notice that
the concept of vivid agents is based on the important distinction between action and re-
action: actions are first planned and then executed in order to solve a task or to achieve
a goal, while reactions are triggered by perception and communication events. Reac-
tions may be immediate and independent from the current knowledge state of the agent
but they may also depend on the result of deliberation. In any case, they are triggered
by events which are not controlled by theagent. A vivid agent without the capability
to accept explicit tasks and to solve them by means of planning and plan execution is
calledreagent. The tasks of reagents cannot be assigned in the form of explicit ('see to
it that') goals at run time, but have to be encoded in the specification of their reactive
behavior at design time.

We do not assume a fixed formal language and a fixed logical system for the
knowledge-base of an agent. Rather, we believe that it is more appropriate to choose
a suitable knowledge system for each agent individually according to its domain and its
tasks. In the case of diagnosis agents, extended logic programs proved to be an appro-
priate form of the knowledge base of an agent because it is essential for model-based
diagnosis to be able to represent negative facts, default rules and constraints.

3.1 Specification and Execution of Reagents

Simple vivid agents whose mental state comprises only beliefs, and whose behavior is
purely reactive, i.e. not based on any form ofplanning and plan execution, are called
reagents. A reagentA � hX�EQ�RRi, on the basis of a knowledge systemK consists
of

1. a knowledge baseX � LKB,
2. an event queueEQ being a list of instantiated event expressions, and
3. a setRR of reaction rules, consisting of epistemic and physical reaction and inter-

action rules which code the reactive andcommunicative behavior of the agent.

A multi-reagent system is a tuple of reagentsS � hA�� � � � �Ani

Operational Semantics of Reaction RulesReaction rules encode the behavior of vivid
agents in response to perception events created by the agent's perception subsystems,
and to communication events created by communication acts of other agents. We distin-
guish between epistemic, physical and communicative reaction rules, and call the latter

179Diagnostic Agents for Distributed Systems

interaction rules. We useLPEvt andLCEvt to denote the perception and communica-
tion event languages, andLEvt � LPEvt � LCEvt. The following table describes the
different formats of epistemic, physical and communicative reaction rules:

Eff� recvMsg���U�� S�� Cond
do���V ��� E� � recvMsg���U�� S�� Cond

sendMsg���V �� R�� E� � recvMsg���U�� S�� Cond

The event conditionrecvMsg���U�� S� is a test whether the event queue of the agent
contains a message of the form��U� sent by some perception subsystem of the agent
or by another agent identified byS, where� � LEvt represents a perception or a com-
munication event type, andU is a suitable list of parameters. The epistemic condi-
tion Cond � LQuery refers to the current knowledge state, and the epistemic effect
E� � LInput specifies an update of the current knowledge state.

Physical Reaction: do���V �� calls a procedure realizing the action� with parameters
V .

Communicative Reaction: sendMsg���V �� R� sends the message� � LCEvt with pa-
rametersV to the receiverR.

Both perception and communication events are represented by incoming messages. In
general, reactions are based both on perception and on knowledge. Immediate reactions
do not allow for deliberation. They are represented by rules with an empty epistemic
premise, i.e.Cond � true. Timely reactions can be achieved by guaranteeing fast
response times for checking the precondition of a reaction rule. This will be the case,
for instance, if the precondition can be checked by simple table look-up (such as in
relational databases or fact bases).

Reaction rules are triggered by events. The agent interpreter continually checks the
event queue of the agent. If there is a new event message, it is matched with the event
condition of all reaction rules, and the epistemic conditions of those rules matching
the event are evaluated. If they are satisfiable in the current knowledge base, all free
variables in the rules are instantiated accordingly resulting in a set of triggered actions
with associated epistemic effects. All theseactions are then executed, leading to phys-
ical actions and to sending messages to otheragents, and their epistemic effects are
assimilated into the current knowledge base.

4 Extended Logic Programming and Diagnosis

Since Prolog became a standard in logic programming much research has been devoted
to the semantics of logic programs. In particular, Prolog's unsatisfactory treatment of
negation as finite failure led to many innovations. Well-founded semantics turned out to
be a promising approach to cope with negation by default. Subsequent work extended
well-founded semantics with a form of explicit negation and constraints [AP96] and
showed that the richer language, called WFSX, is appropriate for a spate of knowl-
edge representation and reasoning forms. In particular, the technique of contradiction
removal of extended logic programs opensup many avenues in model-based diagnosis.

180 Peter Fröhlich et al.

Definition 12 (Extended Logic Program). An extended logic program is a (possibly
infinite) set of rules of the form

L� � L�� � � � � Lm� notLm��� � � � � notLn �� m n�

where eachLi is an objective literal (� i n). An objective literal is either an atom
A or its explicit negation�A.1 Literals of the formnotL are called default literals.
Literals are either objective or default ones.

To capture that it is contradictory for the predicted behavior to differ from the actual
observations, we introduce integrity constraints:

Definition 13 (Constraint). An integrity constraint has the form

� � L�� � � � � Lm� notLm��� � � � � notLn �� m n�

where eachLi is an objective literal (� i n), and� stands for false.

In order to avoid a contradiction we change the beliefs that support the contradic-
tion. The only beliefs that are subject to change concern the closed world assumption
ones. From these we can define a set of revisable default literals, whose truth values
may be changed to remove contradictions.

Definition 14 (Revisable).The revisablesR of a programP are a subset of the default
negated literals which do not have rules inP .

In general, we might remove a contradiction by partially dropping the closed world
assumption about some revisable. To declaratively define the contradiction removal, we
consider all subsetsR� of the revisables, change the truth value of the literals inR� from
false to true and check whether the revised program is still contradictory. Among those
revisions that remove the contradiction we are interested in the minimal ones:

Definition 15 (Revision). Let R be the revisables of the programP . The setR� � R
is called a revision if it is a minimal set such thatP � R� is free of contradiction.

The revision of contradictory extended logic programs is a suitable technique to
compute diagnoses for model-based diagnosis.

4.1 The Agents Knowledge Base

Using the extended logic programming formalism, the agents knowledge base contains
the following logic sentences:

1 Note that explicit and implicit negation are related:�L impliesnot L.

181Diagnostic Agents for Distributed Systems

Routing tablesThe routing information comprises facts stating to which neighbor node
a message addressed to a component has to be sent. The knowledge is local since each
agent only knows its neighbors. In order to keep the facts in a single knowledge base
which is the same for all agents the facts hold only for the respective agent (i am). For
example, forn� andn� we get the following routing tables:

RT � on route�n�� c�� n��� i am�n��� on route�n�� c�� n��� i am�n���
on route�n�� c�� n��� i am�n��� on route�n�� c�� n��� i am�n���
on route�n�� c�� n��� i am�n��� on route�n�� c�� n��� i am�n���
on route�n�� c�� n��� i am�n��� on route�n�� c�� n��� i am�n���
on route�n�� c�� n��� i am�n��� on route�n�� c�� n��� i am�n���
on route�n�� c�� n��� i am�n��� on route�n�� c�� n��� i am�n���
on route�n�� c	� n��� i am�n��� on route�n�� c	� n��� i am�n���
on route�n�� c�
� n��� i am�n��� on route�n�� c�
� n��� i am�n��� � � �

Component HierarchyAdditionally, each agent knows its components. Since this
knowledge is local it is only derivable for the respective agent (i am):

CH � area component�n�� c��� i am�n��� area component�n�� c��� i am�n���
area component�n�� c��� i am�n��� area component�n�� c��� i am�n���
area component�n�� c��� i am�n��� area component�n�� c��� i am�n���
area component�n�� c��� i am�n��� area component�n�� c	�� i am�n���
area component�n�� c��� i am�n��� area component�n�� c�
�� i am�n���

Disjointness of ModesIn the implementation we model only two modes, abnormality
(ab) and being ok (not ab). Therefore disjointness of modes is satisfied. The predicate
ab is revisable. The default truth value of the predicateab is false, which means that
by default we assume components to be working fine. Possible contradictions to these
assumption are caused by violation of consistency of abstraction and existence of a
cause for a lost message.

Consistency of AbstractionAn abnormal area contains at least one abnormal compo-
nent. A contradiction arises if the area is detected to be abnormal but no faulty compo-
nent is abduced. This constraint has only local character (i am), since an agent cannot
detect abnormal components of other areas.

CA � �� i am�N�� ab�N�� not has ab component�N��
has ab component�N� � area component�N�C�� ab�C��

Existence of a cause for a lost messageThe basic integrity constraint to start the di-
agnostic process states that it is contradictory to observe a lost message from nodeN
to componentC and not to have lost it on the route fromN to C. The message is lost
somewhere on this route route if at least one the involved nodes is abnormal:

CLM � � � message lost�N�C�� not lost on route�N�C��
lost on route�N�C� � ab�N��
lost on route�N�C� � on route�N�C�M�� ab�M��

182 Peter Fröhlich et al.

The following constraint allows us to abduce new observations. If a message is lost
fromN to C andM is a neighbor ofN which is assumed to be abnormal byN , then
N abduces the new observation that the message was lost on the way fromM toC:

RO � � � message lost�N�C�� on route�N�C�M��
ab�M�� not new message lost�M�C��

4.2 The Agents' Reaction Rules

The reaction rules specify how the agents behave. Since the behavior depends on their
diagnostic findings they need meta predicates to revise their knowledge base in the light
of new observations. Based on the revisions three results are interesting

1. There is no diagnosis to explain the observation (no diags).
2. There is a diagnosis that the agent itself is abnormal. In this case, since an agent

knows its own state, other diagnoses are not of interest.
3. There are diagnoses which do not involve the agent itself (next). In this case the

agent abduces a new, refined observation.

With the two meta predicatesno diags�� andnext�	 we encode the agents' reac-
tion rules:

If an agent receives an observation and has no explanation for it, the fault must be
intermittent, since neither the agent itself is faulty nor are any neighbors to accuse. This
is reported to the requesting agent:

sendMsg�intermittent failure�B�� A� �� recvMsg�message lost�N�C�� A��
no diags�message lost�N�C���

Def.
�	 i am�B��

If an agent receives an observation and is himself the cause of the problems it reports
this fact back to the requesting agent:

sendMsg�responsible�B�� A� �� recvMsg�message lost�N�C�� A��
Def.
�� i am�B�� obs�down�B��

If the agents area is not abnormal and there are diagnoses suspecting the agents
neighbors, the newly abduced observation is sent to the suspected neighbor:

sendMsg�message lost�M�C��M� �� recvMsg�message lost�N�C�� A��
i am�B�� not obs�down�B��

Def.
�� next�M�message lost�N�C���

In this case the agent has to remember to forward the final diagnosis result to the
requesting agent:

remember to reply to�A� �� recvMsg�message lost�N�C�� A��
N
� A� i am�B�� not obs�down�B��
not no diags�message lost�N�C���

183Diagnostic Agents for Distributed Systems

If an agent receives a diagnosis result from one of its neighbors and has to report
the result to another neighbor, it forwards it:

sendMsg�intermittent failure�A�� C� �� recvMsg�intermittent failure�A�� B��
remember to reply to�C��

sendMsg�responsible�A�� C� �� recvMsg�responsible�A�� B��
remember to reply to�C��

After forwarding a diagnosis result, the “bookmark” to reply is removed from the
agent's knowledge base:

neg�remember to reply to�C�� �� recvMsg�intermittent failure�A�� B��
remember to reply to�C��

neg�remember to reply to�C�� �� recvMsg�responsible�A�� B��
remember to reply to�C��

4.3 Traces

To make the diagnosis process using the described knowledge base clearer, we consider
the following scenario. Noden� sends a message toc�, but the messages gets lost.
Sincen� does not receive an acknowledgment, a timeout mechanism informsn� that
the message is lost and the diagnosis process starts. In the first scenarion� looses the
message, whereas in the second one an intermittent failure occured.

Initially the creator process sends a start message to all nodes (see figure 2 lines
1,2,3,4,9,14). The timeout mechanism informsn� of the lost message (5,6). Noden�
knows that it is working fine and suspects the neighbor in charge of sending messages
to c�, namelyn�. Subsequentlyn� sends the refined observation that the message is
lost from n� to c� to n� (8,10). Similarlyn� informsn� (11,12,15). Additionally it
remembers that it has to report the final result ton� (13). Finally,n� turns out to be the
cause of the fault and the result is sent fromn� ton� (16,17) and fromn� ton� (18,19).
n� removes the fact that it has to respond ton� (20).

In the second trace (see figure 3) all nodes are ok at diagnosis time so the fault is
intermittent. The initial phase is similar to the first trace. Only whenn� comes up with
no diagnoses (16), message of an intermittent failure is sent back.

5 Conclusion

We have defined an agent–based framework for the diagnosis of large spatially dis-
tributed technical systems. In this framework we assign an agent to every subsystem.
This agent has detailed knowledge over its own subsystem and abstract knowledge over
its neighbors. Using its declarative system description it can usually diagnose its own
subsystem independently. Whenever it cannot detect a cause for an observed fault, it ac-
cuses a suitable neighboring subnet and starts cooperation with the responsible agent.
This distributed framework leads to attractive algorithm complexity compared to a cen-
tralized solution, both concerning communication overhead and computational com-
plexity.

184 Peter Fröhlich et al.

� n� �� creator start

� n� �� creator start

� n� �� creator start

� n� �� creator start

� n� �� n� message lost�n�� c��
	 n� �� n� message lost�n�� c��

 n� diag�ab�n��� new message lost�n�� c���
 n� �� n� message lost�n�� c��
� n� �� creator start

�� n� �� n� message lost�n�� c��
�� n� diag�ab�n��� new message lost�n�� c���
�� n� �� n� message lost�n�� c��
�� n� assimilates remember to reply to�n��
�� n� �� creator start

�� n� �� n� message lost�n�� c��
�	 n� �� n� responsible�n��
�
 n� �� n� responsible�n��
� n� �� n� responsible�n��
�� n� �� n� responsible�n��
�� n� assimilatesneg remember to reply to�n��

Fig. 2.Trace for a lost message

� n� �� creator start

� n� �� creator start

� n� �� creator start

� n� �� n� message lost�n�� c��
� n� �� n� message lost�n�� c��
	 n� diag�ab�n��� new message lost�n�� c���

 n� �� n� message lost�n�� c��
 n� �� n� message lost�n�� c��
� n� �� creator start

�� n� diag�ab�n��� new message lost�n�� c���
�� n� �� n� message lost�n�� c��
�� n� assimilates remember to reply to�n��
�� n� �� creator start

�� n� �� creator start

�� n� �� n� message lost�n�� c��
�	 n� nodiagnoses

�
 n� �� n� intermittent failure�n��
� n� �� n� intermittent failure�n��
�� n� �� n� intermittent failure�n��
�� n� �� n� intermittent failure�n��
�� n� assimilatesneg remember to reply to�n��

Fig. 3. Trace for an intermittend failure

185Diagnostic Agents for Distributed Systems

Our implementation is based on the concepts of vivid agents and extended logic
programming. The system description as well as the axioms needed for distributed di-
agnosis are formulated as extended logic programs. Reaction rules allow the flexible
implementation of the communication among the agents, so that the cooperation can be
tailored to all kinds of applications.

AcknowledgementsWe would like to thank Gerd Wagner, who worked on the imple-
mentation framework during a joint project and contributed most of the work presented
in section 3. Furthermore we would like to thank Lu´s Moniz Pereira for his support.
Financially, the work was partially supported by ESPRIT 8319 ModelAge and the Ger-
man BMBF as well as the Portuguese JNICT.

References

[AP96] J. J. Alferes and L. M. Pereira.Reasoning with Logic Programming. (LNAI 1111),
Springer-Verlag, 1996.

[FN96] Peter Fr¨ohlich and Wolfgang Nejdl. Resolving conflicts in distributed diagnosis. In
ECAI Workshop on Modelling Conflicts in AI, 1996. To appear.

[MH93] Igor Mozetic and Christian Holzbauer. Controlling the complexity in model–based
diagnosis.Annals of Mathematics andArtificial Intelligence, 1993.

[Rei87] Raymond Reiter. A theory of diagnosis from first principles.Artificial Intelligence,
32(1):57–96, 1987.

[SdAMP97] Michael Schroeder, Iara de Almeida M´ora, and Lu´s Moniz Pereira. A deliberative
and reactive diagnosis agent based on logic programming. InIntelligent Agents III,
LNAI 1193. Springer–Verlag, 1997. As poster in Proc. of International Conference
on Tools in Artificial Intelligence ICTAI96, Toulouse, 1996.

[Sho93] Yoav Shoham. Agent-oriented programming.Artificial Intelligence, 60(1):51–92,
1993.

[SW97] Michael Schroeder and Gerd Wagner. Distributed diagnosis by vivid agents. In
Proceedings of First Internationl Conference on Auonomous Agents, AA97, pages
268–275. ACM Press, 1997.

[Wag96a] Gerd Wagner. A logical and operational model of scalable knowledge-and
perception-based agents. Proceedings of ModelAge96, Sesimbra, Portugal, 1996.

[Wag96b] Gerd Wagner. A logical and operational model of scalable knowledge-and
perception-based agents. InProceedings of MAAMAW96, LNAI 1038. Springer-
Verlag, 1996.

186 Peter Fröhlich et al.

Preferential Action Semantics

(Preliminary Report)

John-Jules Ch. Meyer1? and Patrick Doherty2??

1 Intelligent Systems Group, Dept. of Computer Science
Utrecht University, P.O. Box 80089, 3508 TB, Utrecht, The Netherlands

jj@cs.ruu.nl
2 Dept. of Computer and Information Science

University of Linköping, S-581 83 Linköping, Sweden, patdo@ida.liu.se

Abstract. In this paper, we propose a new way of considering reasoning
about action and change. Rather than placing a preferential structure
onto the models of logical theories, we place such a structure directly on
the semantics of the actions involved. In this way, we obtain a preferential
semantics of actions by means of which we can not only deal with several
of the traditional problems in this area such as the frame and ramification
problems, but can generalize these solutions to a context which includes
both nondeterministic and concurrent actions. In fact, the net result
is an integration of semantical and verificational techniques from the
paradigm of imperative and concurrent programs in particular, as known
from traditional programming, with the AI perspective. In this paper,
the main focus is on semantical (i.e. model theoretical) issues rather
than providing a logical calculus, which would be the next step in the
endeavor.

1 Introduction

Reasoning about action and change has long been of special interest to AI and
issues of knowledge representation (see [15]). In particular, the issue of repre-
senting changes caused by actions in an efficient and economic way without the
burden of explicitly specifying what is not affected by the actions involved and is
left unchanged has been a major issue in this area, since typically this specifica-
tion is huge and in some cases a priori not completely known. In a similar vein,
one would also like to avoid explicitly stating all qualifications to actions and all
secondary effects of actions. Most of the proposed solutions impose a so-called
law of inertia on changes caused by actions which states that properties in the
world tend to remain the same when actions occur unless this is known to be
? This author is partially supported by ESPRIT BRWG project No. 8319 (MODE-

LAGE). This research was initiated during the author’s leave to Linköping Univer-
sity (IDA), the hospitality of which is gratefully acknowledged. Moreover, this author
wishes to dedicate this paper to the memory of his father B. John Meyer(1917-1996).

?? This author is supported by the Swedish Research Council for Engineering Sciences
(TFR) and the Knut and Alice Wallenberg Foundation.

J.-J. Ch. Meyer, P.-Y. Schobbens (Eds.): Formal Methods of Agents, LNAI 1760, pp. 187–201, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

188 John-Jules Ch. Meyer and Patrick Doherty

otherwise. Formally, the inertia assumption in AI has been treated as some kind
of default reasoning which in turn has triggered a host of theories about this
specific application and defeasible and nonmonotonic theories in general.

The problem that tends to arise with many of the proposed solutions is that
application of the inertia assumption is generally too global, or coarse, resulting
in unwanted or unintended side effects. One would like to invoke a more local or
fine-grained application of inertia to the scenarios at hand and recent proposals
tend to support this claim. One explanation for this coarseness is that typically
one represents an action theory as a set of axioms and then considers a subclass of
the models, the preferred models, as the theories intended meaning. This means
that the effects of actions are represented or obtained in a slightly roundabout
way: the action theory contains axioms from which the behavior of the actions
can be deduced using the preferred models of these axioms which somehow
have to capture or respect the law of inertia concerning these actions. In simple
situations, this approach works fine, but it is well known that in more complex
situations finding the right kinds of preferences on one’s models is not only very
difficult, but even claimed not to be possible.

Our claim is that this is due to the fact that the instrument of considering
preferred models of theories that describe complete action scenarios is too coarse
because of the fact that these models employ preference relations that stem
from ‘global’ and not action-specific frame assumptions. The specification of
preferred outcomes of actions is a delicate matter depending on the actions (and
the environment) at hand, and should be handled at the action semantics level
rather than the global logical theory describing the whole system. So, what we
will do in this paper is to put preferences at the place they should be put, viz.
the semantics of actions. On this level we can more succinctly fine-tune these
preferences incorporating the mode of inertia that is needed for a particular
action given a particular context (environment). For each action occurring in
a scenario one can thus state the way the variables are known/expected to be
affected: are they distinctly ‘set’ by the action to certain values, are they expected
to be not affected, or do we know nothing about this at all, so that anything could
happen with them? ¿From this information one can deduce both the possible and
the expected behaviour of actions in a scenario, which can be reasoned about in
an action logic like dynamic logic ([7]). 1

We call this way of assigning meaning to actions preferential action seman-
tics, which may be contrasted with traditional preferential semantics, which in
contrast can be referred to as preferential theory (or assertion) semantics. Our
claim is that preferential action semantics provides us with a flexible framework
in which the subtleties of the (expected) behaviour of actions can be expressed
and handled in a straightforward and adequate manner. In this paper we will
support this claim with some interesting examples which require such subtlety
in representation. Interestingly, but very naturally, this view will lead us very

1 To be fair, of course, it might be the case that this action-specific treatment can
be encoded into one global preference relation in traditional preferential (theory)
semantics, but this will inevitably lead to cumbersome and very intricate models.

Preferential Action Semantics 189

close to what is studied in the area of so-called concurrency semantics, i.e. that
area of computer science where models of concurrent or parallel computations
are investigated. We see for instance that in this framework proposals from the
AI literature dealing with action and change which use constructs such as occlu-
sion/release ([3],[13], [8]) get a natural interpretation with respect to the aspect
of concurrency.

Finally, in this introduction, we want to discuss the following possible objec-
tion to our approach of coping with the frame problem. One might think that
our solution is not a solution to the frame problem at all, since the above might
give the impression that one has to specify exactly what happens for each action.
However, this is not exactly true. The only thing that has to be specified for each
action is to which class the variables involved belong: definitely set, framed (i.e.
expected to remain the same) or completely free. The semantics decides then
the rest. In fact, this also holds for preferential assertion semantics, where vari-
ables must also be classified with respect to their “mode of affectedness”. It is
well-known by now, that this is really needed; one cannot expect to devise some
kind of ‘magical’ preference relation to work in all cases without this kind of
information about the variables involved. Hard things cannot be expected to be
obtained for free! The only difference is that in preferential action semantics this
needs to(or rather, put more positively, may) be done on the level of an individ-
ual action. Our point is that specifying these things at a global level might be
too much to ask from a (global, assertion-based) preferential entailment relation,
which is then supposed to supply the ‘right’ outcomes in complicated situations,
in one blow, so to speak.

2 Preferential Semantics of Actions

In this section, we define a very simple language of actions2 with which we illus-
trate our ideas on preferential semantics of actions. Of course, for representing
real systems this simple language should be extended, but the current simplifi-
cation will give the general idea.

We start with the set FVAR of feature variables and FVAL of feature values.
Elements of FVAL are typically denoted by the letter d, possibly marked or
subscripted.3 Next, we define a system state σ as a function of feature variables
to features values: σ : FVAR → FVAL. So, for x ∈ FVAR, σ(x) yields it value.
The set of states is denoted by Σ. To denote changes of states we require the
concept of a variant of a state. The state σ{d/x} is defined as the state such
that σ{d/x}(x) = d and σ{d/x}(y) = σ(y) for y 6= x.

Let a set A of atomic actions be fixed. An atomic action a ∈ A comes
with a signature indicating what variables are framed, which of these may nev-
ertheless vary (are released from inertia) and which are definitely set: a =
2 Actually, these are action expressions/descriptions rather than actions, but we will

use the term rather loosely here.
3 For convenience, we will assume that all feature variables range over the same set of

feature values, mostly the booleans, but of course this restriction can be lifted.

190 John-Jules Ch. Meyer and Patrick Doherty

a(seta, framea, releasea), where seta, framea, releasea ⊆ FVAR, such that
releasea ⊆ framea and seta∩framea = ∅. We also define inerta = framea\releasea

and vara = FVAR \ (seta ∪ framea).4 The inert variables are those subject to
inertia, so that it is preferred that they retain the same value; the var variables
are those not subjected to inertia and are really variables in the true sense of the
word. The distinction between var and released variables is a subtle one: typ-
ically when describing an action scenario some of the framed variables (which
are normally subject to inertia) are temporarily released, while some variables
are considered truly variable over the whole scenario. Sandewall [14] describes
the three classes of frame-released, frame-unreleased (inert), and var variables as
occluded, remanent, and dependent. Kartha and Lifschitz [8] were probably the
first to recognize this three-tiered distinction, while Sandewall [12] was the first
to use the frame/occluded distinction to deal properly with nondeterministic
actions and actions with duration.

Given the set of atomic actions, complex actions can be formed as follows:

α = a | if b then α1 else α2 fi | α1 ⊕ α2 | α1 + α2 | α1 ‖ α2 | fail.

Here, a ∈ A; if b then α1 else α2 fi , where b is a boolean test on feature variables,
represents a conditional action with the obvious meaning; α1 ⊕ α2 stands for
restricted choice between actions α1 and α2, where the release mechanism is
applied to the actions α1 and α2 separately; α1 +α2 stands for an open or liberal
choice between α1 and α2, where the release mechanism induced by the two
actions α1 and α2 is employed for α1 and α2 in a joint fashion (to be explained
later on); α1‖α2 stands for the parallel (simultaneous) performance of both α1

and α2; fail denotes the failing action, possessing no successor states. The class
of all actions is denoted by Act. We now introduce the class of preferred actions
(or rather the class of preferred behaviors of actions) denoted by PrefAct =
{α] | α ∈ Act}, where α] expresses the preferred behavior of α.5

The formal semantics of actions is given by functions which essentially de-
scribe the way actions change states. We define a semantical function [[·]] : Act →
Σ → (2Σ × 2Σ) for α ∈ Act, σ ∈ Σ. [[α]](σ) denotes the set of states that com-
putation of action α may result in, together with information about which of
these states are preferred (or expected). So, [[α]](σ) = (S, S′), where S′ ⊆ S ⊆ Σ,
and S′ are the preferred (expected) outcome states of α. If [[α]](σ) = (S, S′), we
refer to S and S′ by means of ([[α]](σ))[(or [[α]][(σ)) and ([[α]](σ))] (or [[α]]](σ)),
respectively. If S′ = S, this means that there is no preferred strict subset. In
this case, we will just write [[α]](σ) = S.

We allow placing constraints Φ on the set of states, so that effectively, the
function [[·]] is constrained: [[·]] : Act → ΣΦ → (2ΣΦ × 2ΣΦ), where ΣΦ = {σ ∈ Σ |
σ |= Φ}.6
4 When it is convenient, we may also specify the inert and var variables in an action,

such as e.g. a = a(seta, inerta, vara).
5 Note that it is senseless to talk about (α])]. This is not allowed by the syntax. We

leave the question to future research whether nestings of preference regarding action
behavior can be useful in some way.

6 Constraints will be used to treat the ramification problem in a later section.

Preferential Action Semantics 191

We are now ready to define the semantics for atomic and complex actions in
terms of the functions described above.

Atomic Actions

For atomic action a = a(seta, framea, releasea), we define its semantics as fol-
lows. First, we determine the effect of a on the variables in seta. We assume
that this is deterministic; let us denote the (unique) state yielded by this effect
by σa. We may e.g. write seta = {+x,−y} when we want to express that x is
set to true and y is set to false. For instance, if σ is a state containing boolean
information about the feature l (“the gun is loaded or not”), and a is the action
load(setload = {+l}), then σload = σ{T/l}, representing that the load action sets
the variable l to true.

[[a(seta, framea, releasea)]](σ) = (S, S′)

where (supposing framea = {x1, x2, . . . , xm}, releasea = {x1, x2, . . . , xn} ⊆
framea, so n ≤ m, and vara = {y1, y2, . . . , yk}):

S = {σa{d1/x1, d2/x2, . . . , dm/xm, d
′
1/y1, d

′
2/y2, . . . , d

′
k/yk} ∈

ΣΦ | d1, d2, . . . , dm, d
′
1, d

′
2, . . . , d

′
k ∈ FVAL}

(= {σ′ ∈ ΣΦ | σ′(z) = σa(z) for all z ∈ seta})
and

S′ = {σa{d1/x1, d2/x2, . . . , dn/xn, d
′
1/y1, d

′
2/y2, . . . , d

′
k/yk} ∈

ΣΦ | d1, d2, . . . , dn, d
′
1, d

′
2, . . . , d

′
k ∈ FVAL}

(= {σ′ ∈ ΣΦ | σ′(z) = σa(z) for all z ∈ seta ∪ inerta}).
Note that indeed S′ ⊆ S (⊆ ΣΦ).

Although the definition looks fairly complicated, it simply states formally
that the usual semantics of an action a(seta, framea, releasea) consists of those
states that apart from the definite effect of the action on the variables in seta,
both var and frame variables may be set to any possible value, whereas the pre-
ferred semantics (capturing inertia) keeps the inert variables the same, although
the var and release variables are still allowed to vary.

Let’s, by way of an example, consider the action load again, now also in
a context where the variable a, denoting being alive, plays a role. (You see,
we are heading towards the inevitable Yale Shooting.) Suppose that load =
load(setload = {+l}, frameload = {a}, releaseload = ∅). Let’s consider a state σ
in which a is true (I’m alive) and l is false (unloaded gun). Now the formal
semantics of the load action in this state gives us: [[load]](σ) = (S, S′) with S =
{σ{T/l, T/a}, σ{T/l, F/a}} and S′ = {σ{T/l}} = {σ{T/l, T/a}}, which means
that apart from setting l to true (the gun becomes loaded), it is possible that both
one stays alive and one dies, but that the former is preferred (expected). If one
now, for some reason, would release the variable a from the frame (assumption),
the expectation that a remains true is dropped.

192 John-Jules Ch. Meyer and Patrick Doherty

Complex Actions

In the sequel, it will sometimes be convenient to use the notation α(setα

= X, frameα = Y, releaseα = Z), or simply α(set = X, frame = Y, release = Z),
or even α(setX, frameY, releaseZ), for the action α(setα, frameα, releaseα),
with setα = X, frameα = Y , and releaseα = Z. In addition, the set-theoretical
operators are, when needed, extended to pairs in the obvious way: (S1 , S

′
1) •

(S2, S
′
2) = (S1 • S2, S

′
1 • S′

2).
The conditional and fail actions are given the following meanings:

[[if b then α1 else α2 fi]](σ) = [[α1]](σ) if b(σ) = T ; and [[α2]](σ) otherwise.

[[fail]](σ) = (∅, ∅).
Let’s now consider the choice operators. The difference between restricted

and liberal choice is illustrated by the following example. Suppose we have the
constraint that shower on (o) is equivalent to either a hot shower (h) or a cold
shower (c), i.e. o↔ h ∨ c. Let ho stand for the action of putting the hot shower
on (h := T), and co for the action of putting the cold shower on (c := T). In the
case where the restricted choice action ho⊕ co is performed in a state where ¬o
(= ¬h ∧ ¬c) holds, we either choose to do ho in this state resulting in a state
where h ∧ o ∧ ¬c holds (so inertia is applied to ¬c), or co is chosen resulting in
a state where c ∧ o ∧ ¬h holds (so inertia is applied to ¬h). In contrast, if the
liberal choice action ho + co is performed in a state where ¬o, we just look at
the possibilities of doing ho, co, and possibly both, resulting in one of the states
{h∧ o ∧ ¬c,¬h∧ o ∧ c, h∧ o ∧ c}. So one may view this as if every atom o, h, or
c is allowed to change value and is not subject to any inertia.

The semantics of the restricted choice operator can be stated as follows. Let
the function ConstrainΦ be such that it removes all states that do not satisfy
the constraints Φ: ConstrainΦ(S) = {σ ∈ S | σ |= Φ}. When no confusion arises,
we may omit the subscript Φ.

[[α(setα, frameα, releaseα) ⊕ β(setβ , frameβ, releaseβ)]](σ) =
ConstrainΦ([[α(setα, frameα, releaseα)]](σ) ∪

[[β(setβ , frameβ, releaseβ)]](σ)).

The definition states that the restricted choice between α and β regards the
actions α and β more or less separately. In particular, the release mechanism
works separately for both actions α and β.

The semantics of the liberal choice operator can be stated as follows.

[[α(setα, frameα, releaseα) + β(setβ, frameβ, releaseβ)]](σ) =
ConstrainΦ([[α(setα, frame = (frameα ∪ frameβ ∪ setβ) \ setα,

release = (releaseα ∪ releaseβ ∪ setβ) \ setα)]](σ)∪
[[β(setβ , frame = (frameα ∪ frameβ ∪ setα) \ setβ,

release = (releaseα ∪ releaseβ ∪ setα) \ setβ)]](σ)).

Preferential Action Semantics 193

In this case, the situation for the liberal choice operator is considered much
more uniformly in the sense that not only the set of frame variables is taken
together, but also the release mechanism works in a much more uniform manner.
For both actions the sets of release and set variables is added, so that inertia
is less potent and more possibility of variability (also with respect to preferred
outcomes) is introduced by considering joint effects of the two actions α and β.

The semantics of the parallel operator can be stated as follows.

[[α(setα, frameα, releaseα) ‖ β(setβ, frameβ , releaseβ)]](σ) =
ConstrainΦ([[α(setα, frame = (frameα ∪ frameβ ∪ setβ) \ setα,

release = (releaseα ∪ releaseβ ∪ setβ) \ setα)]](σ)∩
[[β(setβ , frame = (frameα ∪ frameβ ∪ setα) \ setβ,

release = (releaseα ∪ releaseβ ∪ setα) \ setβ)]](σ)).

Note the similarity with the liberal choice operator. In fact, the only thing
that has changed with respect to the latter is that now only the joint effects of
both actions are taken into consideration, where the release mechanism for both
actions is again taken as liberal as possible allowing for as much interaction as
possible.

Finally, we consider the preferred behavior operator]:

[[α]]](σ) = ([[α]](σ))].

Example. Let us consider the shower example again. The actions ho and
co can be described more precisely as ho(set{+h}, frame{o, c}, release{o}) and
co(set{+c}, frame{o, h}, release{o}). Recall that we have o↔ h∨ c as a domain
constraint (Φ). Let σ be such that σ = {F/h, F/c, F/o}. Now, [[(ho ⊕ co)]]](σ)
becomes

(ConstrainΦ([[ho(set{+h}, frame{o, c}, release{o})]](σ) ∪
[[co(set{+c}, frame{o, h}, release{o})]](σ)))] =

{σ{T/h, F/c, T/o}, σ{F/h, T/c, T/o}},while [[(ho + co)]]] =
(ConstrainΦ([[ho(set{+h}, frame = release = {o, c})]](σ) ∪

[[co(set{+c}, frame = release = {o, h})]](σ)))] =
{σ{T/h, F/c, T/o}, σ{F/h, T/c, T/o}, σ{T/h, T/c, T/o}},

as expected.
In addition, consider the action h ‖ c in the same setting. Intuitively, one

would expect that this action should have the effect of putting the shower on
with both cold and hot water. [[(ho ‖ co)]]] = (ConstrainΦ([[ho(set{+h}, frame =
release = {o, c})]](σ)∩ [[co(set{+c}, frame = release = {o, h})]](σ)))] which is
equivalent to {σ{T/h, T/c, T/o}}, as desired.

194 John-Jules Ch. Meyer and Patrick Doherty

Remark on Semantical Entities

The observing reader may have noticed that in the above definitions we have
abused our language slightly by mixing syntax and semantics. This is due to
the fact that, although the signature of an action consisting of a specification of
the set, framed and released variables has a very syntactic ring to it, it never-
theless conveys semantical information. When one is more rigorous, one should
consider semantical entities of the following type: sets of tuples of the form
(S, S′, (set, frame, release)), where the S and S′ with S′ ⊆ S are sets of states
(denoting the possible resulting states and the preferred subset of these, respec-
tively), and set, frame and release are sets of variables expressing the status
of the variables with respect to the sets S and S′. Of course, this information is
implicit in the sets S and S′, but for the sake of defining the interpretation of
the operators it is very convenient to have this information explicitly available in
the denotations of results. Now we may define our operators on these enhanced
semantical elements: on tuples they read as follows:

(S1 , S
′
1, (set1, frame1, release1)) ⊕ (S2, S

′
2, (set2, frame2, release2)) =

{(S1, S
′
1, (set1, frame1, release1)), (S2, S

′
2, (set2, frame2 , release2))}

(S1 , S
′
1, (set1, frame1, release1)) + (S2, S

′
2, (set2, frame2, release2)) =

{(S1, S
′
1, (set1, (frame1 ∪ frame2 ∪ set2)

\set1, release1 ∪ release2 ∪ set2) \ set1),
(S2, S

′
2, (set2, (frame1 ∪ frame2 ∪ set1) \

set2 , release1 ∪ release2 ∪ set1) \ set2)}

(S1, S
′
1, (set1, frame1 , release1)) ‖ (S2, S

′
2, (set2, frame2 , release2)) =

{(S1 ∩ S2, S
′
1 ∩ S′

2, (set1 ∪ set2, (frame1 ∪ frame2) \ (set1 ∪ set2),
(release1 ∪ release2) \ (set1 ∪ set2))}

Finally, we extend the definition to sets of tuples T1 and T2 in the obvious
way: T14T2 =

⋃
t1∈T1,t2∈T2

t14t2 for 4 = ⊕,+, ‖. This shows how one can do
the previous definitions more formally. However, we have chosen not to do this
in the remainder of the paper in order to keep things more intelligible, and to
focus on the main ideas.

3 Preferential Action Dynamic Logic (PADL)

In order to define a logic for reasoning about actions which includes their pre-
ferred interpretations, we simply take the (ordinary) dynamic logic formalism

Preferential Action Semantics 195

which is well known from the theory of imperative programming ([7]). Formulas
in the class Form are of the form [α]φ, where α ∈ Act ∪ PrefAct, φ ∈ Form,
closed under the usual classical connectives.

The semantics of formulas is given by the usual Kripke-style semantics. A
Kripke model is a structure M = (Σ, {Rα | α ∈ Act ∪ PrefAct}), where the
accessibility relations Rα are given by Rα(σ, σ′) ⇔def σ

′ ∈ [[α]][(σ).
Formulas of the form [α]φ are now interpreted as usual: M, σ |= [α]φ ⇔

for all σ′ : Rα(σ, σ′) ⇒ M, σ′ |= φ. The other connectives are dealt with as
usual. Note the special case involving formulas with preferred actions where
[α]]φ is interpreted as: M, σ |= [α]]φ ⇔ (for all σ′ : Rα](σ, σ′) ⇒ M, σ′ |= φ)
⇔ (for all σ′ : σ′ ∈ [[α]]](σ) ⇒ M, σ′ |= φ) ⇔ (for all σ′ : σ′ ∈ ([[α]](σ))] ⇒
M, σ′ |= φ). Validity in a model, M |= φ, is defined as M, σ |= φ for all σ.
Validity of a formula, |= φ, is defined as M |= φ for all models M .

Some useful validities (here we assume the set Φ of constraints to be finite and
abuse our language slightly and let Φ stand for the conjunction of its elements
as well):
|= [α](φ→ ψ) → ([α]φ→ [α]ψ)
|= [if b then α1 else α2 fi]φ↔ ((b ∧ [α1]φ) ∨ (¬b ∧ [α2]φ))
|= [α]φ→ [α]]φ
|= [α]φ→ [α ‖ β]φ
|= ([α]]Φ ∧ [β]]Φ) → ([(α⊕ β)]]φ↔ [α]]φ ∧ [β]]φ)
|= [(α+ β)]]φ→ [(α⊕ β)]]φ

Note, by the way, that regarding non-preferred behaviour we have that |=
[α+ β]φ ↔ [α⊕β]φ (↔ [α]φ∧ [β]φ). Furthermore, as usual in dynamic logic we
have that: |= φ⇒|= [α]φ.

However, some notable non-validities are:
6|= [α]]φ→ [(α ‖ β)]]φ
6|= [(α⊕ β)]]φ→ [(α+ β)]]φ

4 SKIP vs. WAIT: Concurrency

Let us now briefly examine the difference between a wait action in the AI con-
text and a skip action in imperative programming. A strong monotonic iner-
tia assumption is implicitly built into the state transitions of imperative pro-
gramming where the meaning of the skip action for example is just the identity
function; [[skip]] = λσ.σ. For the wait action, it also holds that [[wait]]] = λσ.σ,
but in this case, the inertia assumption is weaker in the sense that the ac-
tion may itself show any behavior, due to additional effects in the environment.
Our approach offers the possibility of specifying this weaker notion which will
even work properly in the context of unspecified concurrent actions. For ex-
ample, if wait = wait(set = frame = release = ∅), load = load(set{+l}), and
we consider the action wait ‖ load, we obtain [[wait ‖ load]](σ) = [[wait(set =
frame = release = ∅) ‖ load(set{+l})]](σ) = [[wait(frame{l}, release{l})]](σ) ∩
[[load(set{+l})]](σ) D{σ{T/l}, σ{F/l}} ∩ {σ{T/l}} = {σ{T/l}} = [[load]](σ).

196 John-Jules Ch. Meyer and Patrick Doherty

More interestingly, if we also consider the propositional fluent a, we see how
the release and the law of inertia work together. Suppose wait = wait(frame{a, l}),
load = load(set{+l}). [[wait ‖ load]](σ) = [[wait(frame{a, l}) ‖ load(set{+l})]](σ) =
[[wait(frame{a, l}, release{l})]](σ) ∩ load(set{+l}frame{a})]](σ). It follows that |=
(¬l ∧ a) → [wait ‖ load]l, while |= (¬l ∧ a) → [(wait ‖ load)]]l ∧ a, as would be
expected.

The upshot of all this is that although preferably the wait action has the
same effect as the skip action, nevertheless due to the (non-specified) concurrent
actions that are done in parallel with the wait, and of which we do not have any
control, additional effects might occur.

5 Other Examples

We will start with a number of standard examples and move towards larger and
more complex examples which combine the frame and ramification problems
with concurrent actions.

Yale Shooting Scenario: Initially Fred is alive, then the gun is loaded, we
wait for a moment and then shoot. Of course (under reasonable conditions),
it is expected that Fred is dead after shooting. In our approach, this example
is represented as follows: we have the features loaded (l), alive (a), and the
actions load = load(set{+l}, frame{a}), wait = wait(frame{a, l}), and shoot =
if l then kill(set{−l,−a}) else wait(frame{a, l}) fi. Now we have that (¬l ∧ a) →
[load]](l ∧ a); (l ∧ a) → [wait]](l ∧ a); and finally (l ∧ a) → [kill]]¬a, and hence
also (l ∧ a) → [shoot]]¬a, so that |= (¬l ∧ a) → [load]][wait]][shoot]]¬a.

Russian Turkey Shoot: The scenario is more or less as before, but now the
wait action is replaced by a spin action: spin = spin(frame{a}), leaving the
variable l out of the frame, which may then vary arbitrarily. Clearly, 6|= (¬l∧a) →
[load]][spin]][shoot]]¬a, since 6|= (l ∧ a) → [spin]]l, although it is the case that
|= (l ∧ a) → [spin]]a,

The Walking Turkey Shoot (Ramification): Similar to the Yale Shooting
Scenario, but now we also consider the feature walking (w) and the constraint
that walking implies alive: Φ = {w → a}. So now we consider the action
shoot = if l then kill(set{−l,−a}, release{w}) else wait(frame{a, l}) fi, and ob-
tain |= (l ∧ a) → [shoot]](¬a ∧ ¬w). In this case, inertia on w is not applied.

We now proceed to some more complicated scenarios.

Jumping into the Lake Example ([1], [5]): Consider the situation in which
one jumps into a lake, wearing a hat. Being in the lake (l) implies being wet
(w). So we have as a constraint Φ = {l → w}. If one is initially not in the lake,
not wet and wearing a hat, the preferred result using inertia would be that after

Preferential Action Semantics 197

jumping into the lake, one is in the lake and wet, but no conclusions concerning
wearing a hat after the jump can be derived. We do not want to apply inertia
to the feature of wearing a hat , since it is conceivable that while jumping, one
could lose one’s hat. So technically, this means that the feature variable hat-on
(h) is left out of the frame. (Another way of representing this, which one might
prefer and which will give the same result, is viewing the frame constant over
the whole scenario, including h, and then releasing h in the present situation.)

If one is in the lake and wet, we would expect that after getting out of the
lake, one is not in the lake, but still wet in the resulting state. So, inertia would
be applied to the feature wet. Furthermore, we may assume that getting out of
the lake is much less violent than jumping into it, so that we may also put h in
the frame. Finally, if one is out of the lake and wet, then putting on a hat would
typically result in a state where one has a hat on, while remaining out of the
lake and wet.

Formally, we can treat this relatively complicated scenario by means of our
semantics as follows. Consider the feature variables l (being in the lake), w (being
wet), h (wearing a hat), and the constraint Φ = {l → w}. In addition, we would
need three actions.

– jump-into-lake = jil(set{+l}, frame{w}, release{w}), where w must be re-
leased in view of the constraint l→ w.

– get-outof-lake = gol(set{−l}, frame{w, h}); although l is set, w is not re-
leased, since l is set to false and this does not enforce anything in view of
the constraint l → w.

– put-on-hat = poh(set{+h}, frame{l, w},).
Now, applying the logic gives the desired results: (¬l∧¬w∧h) → [jil]](l∧w),

and (¬l ∧ ¬w ∧ h) → [jil](l ∧ w); (l ∧ w) → [gol]](¬l ∧ w), (even (l ∧ w ∧ h) →
[gol]](¬l ∧ w ∧ h)), and (l ∧ w) → [gol]¬l; (¬l ∧ w) → [poh]](¬l ∧ w ∧ h), and
(¬l ∧ w) → [poh]h.

What this example shows is that one still has to choose the signature of ac-
tions: what is put in the frame and what is not. This is not done automatically
by the framework. We claim this to be an advantage because it provides enor-
mous flexibility in its use, while at the same time it calls for exactness, so that
the specifying of agents forces one to specify per action how things should be
handled. The law of inertia (applied on non-released frame variables) takes care
of the rest, so to speak.

It is important to emphasize that some of the newer approaches for dealing
with directed ramification which introduce explicit causal axioms ([9],[16]) essen-
tially encode the same types of behavior, but at the same time rule out similar
flexibility in specification of actions. Thielscher [16] for example, claims that the
frame/released approaches are limited and provides the extended circuit exam-
ple as a counterexample. One should rather view frame/released approaches as
the result of a compilation process which compiles causal dependencies of one
form or another [6]. The distinction to keep in mind is whether one’s formalism
is capable of specifying frame/released constraints differently from state to state.
This deserves further analysis in the context of this approach.

198 John-Jules Ch. Meyer and Patrick Doherty

Lifting a Bucket of Water. One can also use preferential action semantics in
cases where one has certain default behavior of actions on other grounds than
the law of inertia. Consider the lifting of a bucket filled with water with a left
and right handle by means of a robot with two arms. Let lift-left (ll) be the
action of the robot’s lifting the left handle of the bucket with its left arm and
lift-right (lr) be the analogous action of the robot’s right arm. Obviously, when
only one of the two actions are performed separately, water will be spilled. On
the other hand, when the two actions are done concurrently, things go alright
and no water is spilled. We place a constraint on the scenario that ¬s↔ (l ↔ r).

Now, we can say that normally when lift-right is performed, water gets spilled.
However, in the extraordinary case when lift-right is performed in a context
where (coincidentally) lift-left is also performed, water is not spilled. This ex-
ample can be represented clearly and succinctly with our semantics. We assume
that initially, in state σ, neither arm is lifted, and no water is spilled (yet), i.e. the
variables l, r and s are all false. One can associate with lift-right the semantics:

[[lr(set{r}, frame{l})]](σ) = ({σ{T/r}{T/s}, σ{T/r}{F/s}}, {σ{T/r}{T/s}}),
expressing that performance of lift-right leads to a state where the right arm is
raised (r) and either water gets spilled or not, but that the former is preferred
(on other grounds than inertia: note that s is not framed). Analogously, we can
define this for lift-left, where instead of the variable r, a variable l is set to
indicate the left arm is raised. So, in our dynamic logic, the result is |= [lr]r
and |= [ll]l, but 6|= [lr]s and 6|= [ll]s. On the other hand, we do have |= [lr]]s and
|= [ll]]s. Furthermore, since [[ll ‖ lr]](σ) =

[[ll(set{+l}, frame=release={r})]](σ)∩[[lr(set{+r}, frame=release={l})]](σ) =
{σ{T/l}{T/r}{F/s}, σ{T/l}{F/r}{T/s}}∩

{σ{T/r}{T/l}{F/s}, σ{T/r}{F/l}{T/s}} = {σ{T/r}{T/l}{F/s}),
we also obtain that |= [ll ‖ lr](r ∧ l ∧ ¬s), as desired.

6 Directions for Future Work

We would like to investigate the possibility of introducing sequences of actions
by considering the class ActSeq given by β = α | β1; β2. This would allow one
to write down the outcome of a scenario such as the Yale Shooting problem as:
(¬l∧a) → [load]; wait]; shoot]]¬a, instead of having to resort to the (equivalent)
slightly roundabout representation (¬l ∧ a) → [load]][wait]][shoot]]¬a, as we
did earlier. Note that by this way of defining action sequences, we (purposely)
prohibit considering preferred sequences. Thus, something like (β1; β2)] would
now be ill-formed in our syntax, while α1];α2] is allowed. It remains subject
to further research whether something like (β1; β2)] could be given a clear-cut
semantics and whether it would be a useful construct to have.

Surprises ([12], [13]) can also be expressed in preferential action semantics.
A surprise is some outcome of an action which was not expected, so formally

Preferential Action Semantics 199

we can express this as follows: φ is a surprise with respect to action α (denoted
surprise(α, φ)) iff it holds that [α]]¬φ ∧ 〈α〉φ. This states that although it is
expected that ¬φ will hold after performing α, φ is nevertheless (an implausible
but possible) outcome of α. For instance, in a state where Fred is alive (a),
it would come as a surprise that after a wait action, he would be not alive:
a → ([wait(frame{a})]]a ∧ 〈wait(frame{a})〉¬a) is indeed true with respect to
our semantics.

An interesting question, raised by one of the anonymous referees, is whether
for some applications it would be useful or even required to extend the ‘two-level’
semantics (viz. possible and expected behaviour) into a more fine-grained one
with multiple levels. We do not see the need for this at the moment. It might
be possible that our approach is already sufficiently fine-grained due to the fact
that we consider these two levels for any action in the scenario, which in total
yields an enormous flexibility.

Other interesting issues to be studied are delayed effects of actions and pre-
diction. It will be interesting to see whether modeling delay by using a wait action
with a specific duration in parallel with other actions would give adequate re-
sults, while prediction seems to be very much related to considering expected
results of (longer) chains of actions as compared to chains of preferred actions
(as briefly indicated above). Perhaps a notion of graded typicality of behavior
might be useful in this context. We surmise that by the very nature of the [α]
modality (related to weakest preconditions) the framework so far seems to fit
for prediction but is not very suitable for postdiction or explanation of scenarios
([13]). Perhaps extending it with the notion of strongest postconditions ([2], [11],
[10]) would be helpful here.

Finally, although we made a plea for using preferential action semantics
rather than preferential assertion semantics to describe action scenarios, it would,
of course, be interesting to investigate the relation between the two, hopefully
substantiating our claim that the former is more flexible or easier to use than the
latter. We expect that systematic studies of relations between underlying (onto-
logical and epistemological) assumptions of action/agent systems and (assertion)
preferential models such as ([13]) will be useful guidelines in this investigation.

7 Related Work

We were much inspired by work by ([11], [10]). In this work the authors also
attempted to employ proven verification and correctness methods and logics
from imperative programming for reasoning about action and change in AI. In
particular Dijkstra’s wp-formalism is used. This formalism is based on the notion
of weakest preconditions (and strongest postconditions) of actions and is in fact
very close to the dynamic logic framework: formulas of the form [α]φ are actually
the same as the wlp (weakest liberal precondition) of action α with respect to
postcondition φ. In ([11], [10]) a central role is played by the following theorem
from Dijkstra and Scholten ([2]) which says that a state σ |= α∧¬wlp(S,¬β) iff

200 John-Jules Ch. Meyer and Patrick Doherty

there is a computation c under control of S starting in a state satisfying α and
terminating in a state satisfying β such that σ is the initial state of c.

What all this amounts to is that when in [11], weakest (liberal) preconditions
and the above theorem are used, something is stated of the form that after
execution of an action α φ may possibly be true, which in dynamic logic is
expressed as 〈α〉φ(= ¬[α]¬φ). Typically, this leads to too weak statements: one
does not want to say that there is some execution of α that leads to φ, but that
the set of all expected (but of course not all) output states satisfy some property.
This is exactly what we intend to capture by means of our preferential action
semantics. Another aspect that we disagree with, as the reader might suspect
from the above, is that [11] uses the skip statement to express the wait action.
In our view this is equating a priori the action of waiting with its preferred
behavior (in view of the law of inertia).

Finally, we mention that the work reported in [4] is similar in spirit to ours.
Here also, a distinction between typical (preferred) and possible behavior of
actions is made within a dynamic logic setting. Our approach is more concrete
in the sense that we directly incorporate aspects of inertia into the semantics,
and, moreover, have an explicit preference operator (applied to actions) in the
language. This implies that we can also speak about preferred versus possible
behavior in the object language. On the other hand, we have not (yet) considered
preferred paths of executions of actions as in [4]

Acknowledgement. The authors are grateful for the very useful suggestions of
the anonymous referees to improve the paper. Also the comments of the atten-
dants of Modelage’97 on the presentation of this paper are greatly appreciated.

References

1. J. Crawford. Three issues in action. Unpublished note for the 5th Int. Workshop
on Nonmonotonic Reasoning, 1994.

2. E. W. Dijkstra and C. S. Scholten. Predicate Calculus and Program Semantics.
Springer-Verlag, 1990.

3. P. Doherty. Reasoning about action and change using occlusion. In Proc. of the
11th European Conference on Artificial Intelligence, Amsterdam, pages 401–405,
1994.

4. B. Dunin-Keplicz and A. Radzikowska. Epistemic approach to actions with typical
effects. In Chr. Froideveaux and J. Kohlas, editors, Symbolic and Quantitative
Approaches to Reasoning and Uncertainty, Proc. ECSQARU’95, Lecture Notes in
Artificial Intelligence, pages 180–188. Springer-Verlag, 1995.

5. E. Giunchiglia and V. Lifschitz. Dependent fluents. In Proc. IJCAI-95, Montreal,
pages 1964–1969, 1995.

6. J. Gustafsson and P. Doherty. Embracing occlusion in specifying the indirect effects
of actions. In Proc. of the 5th Int’l Conf. on Principles of Knowledge Representation
and Reasoning, (KR-96), 1996.

7. D. Harel. Dynamic logic. In D. M. Gabbay and F. Guenthner, editors, Handbook
of Philosophical Logic, volume 2, pages 496–604. Reidel, Dordrecht, 1984.

Preferential Action Semantics 201

8. G. N. Kartha and V. Lifschitz. Actions with indirect effects (preliminary report).
In Proc. of the 4th Int’l Conf. on Principles of Knowledge Representation and
Reasoning, (KR-94), pages 341–350, 1994.

9. F. Lin. Embracing causality in specifying the indirect effects of actions. In Proc.
IJCAI-95, Montreal, 1995.

10. W. Lukaszewicz and E. Madaliǹska-Bugaj. Reasoning about action and change :
Actions with abnormal effects. In I. Wachsmuth, C.-R Rollinger, and W. Brauer,
editors, Proc. KI-95: Advances in Artificial Intelligence, volume 981 of Lecture
Notes in Artificial Intelligence, pages 209–220. Springer-Verlag, Berlin, 1995.

11. W. Lukaszewicz and E. Madaliǹska-Bugaj. Reasoning about action and change
using Dijkstra’s semantics for programming languages: Preliminary report. In
Proc. IJCAI-95, Montreal, pages 1950–1955, 1995.

12. E. Sandewall. Features and fluents. Technical Report LITH-IDA-R-91-29, Depart-
ment of Computer and Information Science, Linköping University, 1991.

13. E. Sandewall. Features and Fluents: A Systematic Approach to the Representation
of Knowledge about Dynamical Systems. Oxford University Press, 1994.

14. E. Sandewall. Systematic comparison of approaches to ramification using restricted
minimization of change. Technical Report LiTH-IDA-R-95-15, Dept. of Computer
and Information Science, Linköping University, May 1995.

15. E. Sandewall and Y. Shoham. Nonmonotonic temporal reasoning. In D. M. Gabbay,
C. J. Hogger, and J. A. Robinson, editors, Epistemic and Temporal Reasoning,
volume 4 of Handbook of Artificial Intelligence and Logic Programming. Oxford
University Press, 1994.

16. M. Thielscher. Computing ramifications by postprocessing. In Proc. IJCAI-95,
Montreal, pages 1994–2000, 1995.

Dialectical proof theory for defeasible
argumentation with defeasible priorities

�preliminary report�

Henry Prakken�

Hoptille ��� ���� PN Amsterdam
email� henry�rechten	vu	nl

Abstract� In this paper a dialectical proof theory is proposed for logi

cal systems for defeasible argumentation that �t a certain format	 This
format is the abstract theory developed by Dung� Kowalski and others	
A main feature of the proof theory is that it also applies to systems in
which reasoning about the standards for comparing arguments is pos

sible	 The proof theory could serve as the �logical core of protocols for
dispute in multi
agent decision making processes	

� Introduction

Recent nonmonotonic logics often have the form of a system for defeasible ar�
gumentation �e�g� �Pollock ��� Simari � Loui 	
� Vreeswijk 	�a� Dung 	� and
�Prakken � Sartor 	�a�� In such systems nonmonotonic reasoning is analyzed
in terms of the interactions between arguments for alternative conclusions� Non�
monotonicity arises since arguments can be defeated by stronger counterar�
guments� In this paper a dialectical proof theory is proposed for systems of
this kind that �t a certain abstract format� viz� the one de�ned by �Dung 	��
The use of dialectical proof theories for defeasible reasoning was earlier stud�
ied by �Dung	� and� inspired by �Rescher �	��� by �Loui 	�� Vreeswijk 	�b�
Brewka 	�b� while also �Royakkers � Dignum �		� contains ideas that can
be regarded as a dialectical proof theory� The general idea is based on game�
theoretic notions of logical consequence developed in dialogue logic �for an
overview see �Barth � Krabbe �
�� Here a proof of a formula takes the form
of a dialogue game between a proponent and an opponent of the formula� Both
players have certain ways available of attacking and defending a statement� A
formula is provable i� it can be successfully defended against every possible
attack�

In this paper �rst the general framework of �Dung 	� will be described �Sec�
tion
�� after which in section � the dialectical proof theory is presented� Then
in Section � Dung�s framework and the proof theory will be adapted in such a

� The research reported in this paper was made possible by a research fellowship
of the Royal Netherlands Academy of Arts and Sciences� and by Esprit WG ����
�Modelage	

J.-J. Ch. Meyer, P.-Y. Schobbens (Eds.): Formal Methods of Agents, LNAI 1760, pp. 202-215, 1999.
 Springer-Verlag Berlin Heidelberg 1999

way that the standards used for comparing con�icting arguments are themselves
�defeasible� consequences of the premises�

The ideas of this paper were originally developed in �Prakken � Sartor 	�b�
for a logic�programming system presented in �Prakken � Sartor 	�a� which in
turn extended and revised �Dung 	�b�s application of his semantics to extended
logic programming� In �Prakken � Sartor 	�b the system is applied to legal
reasoning� The main purpose of the present paper is to show that the proof�
theoretical ideas apply to any system of the format de�ned by �Dung 	�� For
this reason the present paper does not express arguments in a formal language�
it just assumes that this can be done�

� An abstract framework for defeasible argumentation

Inspired by earlier work of Bondarenko� Kakas� Kowalski and Toni� �Dung 	� has
proposed a very abstract and general argument�based framework� An up�to�date
technical survey of this approach is �Bondarenko et al� 	�� The two basic notions
of the framework are a set of arguments� and a binary relation of defeat among
arguments� In terms of these notions� various notions of argument extensions are
de�ned� which aim to capture various types of defeasible consequence� Then it is
shown that many existing nonmonotonic logics can be reformulated as instances
of the abstract framework�

The following version of this framework is kept in the abstract style of
�Dung 	�� with some adjustments proposed in �Prakken � Sartor 	�a� Impor�
tant di�erences will be indicated when relevant�

De�nition�� An argument�based theory �AT� is a pair �ArgsAT � defeatAT ���

where ArgsAT is a set of arguments� and defeatAT a binary relation on ArgsAT �

� An AT is �nitary i� each argument in ArgsAT is defeated by at most a �nite
number of arguments in ArgsAT �

� An argument A strictly defeats an argument B i� A defeats B and B does
not defeat A�

� A set of arguments is con�ict�free i� no argument in the set is defeated by
another argument in the set�

This de�nition abstracts from both the internal structure of an argument and
the origin of the set of arguments� The idea is that an AT is de�ned by some
nonmonotonic logic or system for defeasible argumentation� Usually the set Args
will be all arguments that can be constructed in these logics from a given set
of premises� but this set might also just contain all arguments that a reasoner
has actually constructed� In this paper I will �almost� completely abstract from
the source of an AT� Moreover� unless stated otherwise� I will below implicitly
assume an arbitrary but �xed AT�

The relation of defeat is intended to be a weak notion� intuitively �A defeats
B� means that A and B are in con�ict and that A is not worse than B� This

� Below the subscripts will usually be left implicit	

203Dialectic Proof Theory for Defeasible Argumentation

means that two arguments can defeat each other� A typical example is the Nixon
Diamond� with two arguments �Nixon is a paci�st because he is a Quaker� and
�Nixon is not a paci�st because he is a Republican�� If there are no grounds for
preferring one argument over the other� they defeat each other�

A stronger notion is captured by strict defeat �not used in Dung�s work��
which by de�nition is asymmetric� A standard example is the Tweety Triangle�
where �if arguments are compared with speci�city� the argument that Tweety
�ies because it is a bird is strictly defeated by the argument that Tweety doesn�t
�y since it is a penguin�

A central notion of Dung�s framework is acceptability� Intuitively� it de�nes
how an argument that cannot defend itself� can be protected from attacks by a
set of arguments� Since �Prakken � Sartor 	�a� Prakken � Sartor 	�� on which
this paper�s proof theory is based� use a slightly di�erent notion of acceptability�
I will tag Dung�s version with a d�

De�nition�� An argument A is d�acceptable with respect to a set S of argu�
ments i� each argument defeating A is defeated by some argument in S�

The variant of Prakken � Sartor will just be called �acceptability��

De�nition�� An argument A is acceptable with respect to a set S of arguments
i� each argument defeating A is strictly defeated by some argument in S�

So the only di�erence is that Dung uses �defeat� where Prakken � Sartor use
�strict defeat�� In Section ��� I will comment on the signi�cance of this di�erence�

To illustrate acceptability� consider the Tweety Triangle with A � �Tweety
is a bird� so Tweety �ies�� B � �Tweety is a penguin� so Tweety does not �y�
and C � �Tweety is not a penguin�� and assume that B strictly defeats A and
C strictly defeats B� Then A is acceptable with respect to fCg� fA�Cg� fB�Cg
and fA�B�Cg� but not with respect to � and fBg�

Another central notion of Dung�s framework is that of an admissible set�

De�nition�� A con�ict�free set of arguments S is admissible i� each argument
in S is d�acceptable with respect to S�

In the Tweety Triangle the sets �� fCg and fA�Cg are admissible but all other
subsets of fA�B�Cg are not admissible�

On the basis of these de�nitions several notions of �argument extensions� can
be de�ned� These notions are purely declarative� in that they just declare a set
of arguments to be �OK�� without de�ning how such a set can be constructed�
For instance� Dung de�nes the following credulous notions�

De�nition�� A con�ict�free set S is a stable extension i� every argument that
is not in S� is defeated by some argument in S�

Consider an AT called TT �the Tweety Triangle� where ArgsTT � fA�B�Cg and
defeatsTT � f�B�A�� �C�B�g� TT has only one stable extension� viz� fA�Cg�
Consider next an AT called ND �the Nixon Diamond�� with ArgsND � fA�Bg�
where A � �Nixon is a quaker� so he is a paci�st�� B � �Nixon is a republican�

204 Henry Prakken

so he is not a paci�st�� and defeatsND � f�A�B�� �B�A�g� ND has two stable
extensions� fAg and fBg�

Since a stable extension is con�ict�free� it re�ects in some sense a coherent
point of view� Moreover� it is a maximal point of view� in the sense that every
possible argument is either accepted or rejected� The maximality requirement
makes that not all AT�s have stable extensions� Consider� for example� an AT
with three arguments A� B and C� and such that A defeats B� B defeats C

and C defeats A �such circular defeat relations can occur� for instance� in logic
programming because of negation as failure� and in default logic because of the
justi�cation part of defaults�� To give also such AT�s a credulous semantics�
Dung de�nes the notion of a preferred extension�

De�nition	� A con�ict�free set is a preferred extension i� it is a maximal �with
respect to set inclusion� admissible set�

Clearly all stable extensions are preferred extensions� so in the Nixon Diamond
and the Tweety Triangle the two semantics coincide� However� not all preferred
extensions are stable� in the above example with circular defeat relations the
empty set is a �unique� preferred extension� which is not stable�

Preferred and stable semantics clearly capture a credulous notion of defea�
sible consequence� in cases of an irresolvable con�ict as in the Nixon diamond�
two� mutually con�icting extensions are obtained� Dung also de�nes a notion
of sceptical consequence� and this is for which I will de�ne the dialectical proof
theory� Application of the proof theory to the credulous semantics will be brie�y
discussed in Section �� Dung de�nes the sceptical semantics with a monotonic
operator� which for each set S of arguments returns the set of all arguments d�
acceptable to S� Its least �xpoint captures the smallest set which contains every
argument that is acceptable to it� I will use the variant with plain acceptability�

De�nition
� Let AT � �Args� defeat� be an argument�based theory and S

any subset of Args� The characteristic function of AT is�

� FAT � Pow�Args� �� Pow�Args�
� FAT �S� � fA � ArgsjA is acceptable with respect to Sg

I now give the� perhaps more intuitive� de�nition of �Prakken � Sartor 	�a�
which by a result of �Dung 	� for �nitary AT�s is equivalent to the �xpoint
version �which is also used in �Prakken � Sartor 	��� The formal results on the
proof theory hold for both formulations� although for the �xpoint formulation
completeness holds under the condition that the AT is �nitary� cf� �Dung 	��
Prakken � Sartor 	��

De�nition�� For any AT � �Args� defeat� we de�ne the following sequence of
subsets of Args�

� F �
AT � �

� F i��
AT � fA � Args j A is acceptable with respect to F i

ATg�

205Dialectic Proof Theory for Defeasible Argumentation

Then the set JustArgsAT of arguments that are justi�ed on the basis of AT is
��i���F

i
AT ��

In this de�nition the notion of acceptability captures reinstatement of arguments�
if all arguments that defeat A are themselves defeated by an argument in F i�
then A is in F i��� To illustrate this with the Tweety Triangle� F �

TT � fCg�
F �
TT � fA�Cg� F �

TT � F �
TT � so A is reinstated at F � by C�

That this semantics is sceptical is illustrated by the Nixon Diamond� F �
ND �

F �
ND � ��

� A dialectical proof theory

��� General idea and illustrations

In this section a dialectical proof theory will be de�ned for the just�presented
sceptical semantics� Essentially it is a notational variant of �Dung	��s dialogue
game version of his sceptical semantics of extended logic programs� A proof of
a formula takes the form of a dialogue tree� where each branch is a dialogue�
and the root of the tree is an argument for the formula� The idea is that ev�
ery move in a dialogue consists of an argument based on an implicitly assumed
AT� and that each move attacks the last move of the opponent in a way that
meets the player�s burden of proof� That a move consists of a complete argument
means that the search for an individual argument is conducted in a �monological�
fashion� determined by the nature of the underlying logic� only the process of
considering counterarguments is modelled dialectically� The required force of a
move depends on who states it� and is motivated by the de�nition of acceptabil�
ity� Since the proponent wants a conclusion to be justi�ed� a proponent�s move
has to be strictly defeating� while since the opponent only wants to prevent the
conclusion from being justi�ed� an opponent�s move may be just defeating�

Let us illustrate this with an informal example of a dialogue �recall that
it implicitly assumes a given AT�� Let us denote the arguments stated by the
proponent by Pi and those of the opponent by Oi� The proponent starts the
dispute by asserting that P� is a justi�ed argument�

P�� Assuming the evidence concerning the glove was not forged�
it proves guilt of OJ�

�Many nonmonotonic logics allow the formalization of assumptions� e�g� logic
programming with negation as failure and default logic with the justi�cation
part of a default��

The opponent must defeat this argument� Suppose O can do so in only one
way�

O�� I know that the evidence concerning the glove was forged�
so your assumption is not warranted�

206 Henry Prakken

The proponent now has to counterattack with an argument that strictly defeats
O�� Consider the following argument

P�� The evidence concerning the glove was not forged� since it was found
by a police o�cer� and police o�cers don�t forge evidence�

and suppose �for the sake of illustration� that defeat is determined by speci�city
considerations� Then P� strictly defeats O�� so P� is a possible move� If the op�
ponent has no new moves available from ArgsAT � s�he loses� and the conclusion
that OJ is guilty has been proved�

In dialectical proof systems a �loop checker� can be implemented in a very
natural way� no two moves of the proponent in the same branch of the dialogue
may have the same content� It is easy to see that this rule will not harm P � if
O had a move the �rst time P stated the argument� it will also have a move the
second time� so no repetition by P can make P win a dialogue�

Assume for illustration that the arguments in Args are those that can be
made by chaining one or more of the following premises�

��� Mr� F forged the glove�evidence
�
� Someone who forges evidence is not honest
��� Mr� F is a police o�cer
��� Police o�cers are honest
��� Someone who is honest� does not forge evidence�

Assume again that defeat is determined by speci�city� in the obvious way� Now
the proponent argues that Mr� F did not forge the glove�evidence�

P�� Mr� F is a police o�cer� so he is honest and
therefore does not forge evidence�

O attacks this argument on its �subconclusion� that Mr� F is honest� and since
the counterargument is more speci�c� this is a defeating argument�

P�� I know that F forged evidence� and this shows that he is not honest�

P now wants to attack O�s argument in the same way as O attacked P �s argu�
ment� by launching a more speci�c attack on O�s �subconclusion� that F forged
the glove�evidence� However� P has already stated that argument at the begin�
ning of the dispute� so the move is not allowed� And no other strictly defeating
argument is available� so it is not provable that Mr� F did not forge the glove�
evidence� not even that he is honest� However� by a completely symmetric line
of reasoning we obtain that also the contrary conclusions are not provable� So
no conclusion about whether Mr� F is honest or not� and forged evidence or not�
is provably justi�ed�

207Dialectic Proof Theory for Defeasible Argumentation

��� The proof theory

Now the dialectical proof theory will be formally de�ned� Again the de�nitions
assume an arbitrary but �xed AT�

De�nition�� A dialogue is a �nite nonempty sequence of moves movei �
�P layeri� Argi� �i � ��� such that

�� P layeri � P i� i is odd� and P layeri � O i� i is even�

� If P layeri � P layerj � P and i �� j� then Argi �� Argj�
�� If P layeri � P � then Argi strictly defeats Argi���
�� If P layeri � O� then Argi defeats Argi���

The �rst condition says that the proponent begins and then the players take
turns� while the second condition prevents the proponent from repeating its
attacks� The last two conditions form the heart of the de�nition� they state the
burdens of proof for P and O�

De�nition�� A dialogue tree is a tree of dialogues such that if P layeri � P

then move��s children of are all defeaters of Argi�

It is this de�nition that makes dialogue trees candidates for being proofs� it
says that the tree should consider all possible ways in which O can attack an
argument of P �

De�nition��� A player wins a dialogue i� the other player cannot move� And
a player wins a dialogue tree i� it wins all branches of the tree�

The idea of this de�nition is that if P �s last argument is undefeated� it reinstates
all previous arguments of P that occur in the same branch of a tree� in particular
the root of the tree�

De�nition��� An argument A is provably justi�ed i� there is a dialogue tree
with A as its root� and won by the proponent�

In �Prakken � Sartor 	� it is shown that this proof theory is sound and for
�nitary AT�s also complete with respect to the sceptical �xpoint semantics� This
is not surprising� since what the proof theory does is� basically� traversing the
sequence de�ned by De�nition � in the reverse direction� Note that it implies
that an argument A is justi�ed i� there is a sequence F �� � � � � Fn such that A
occurs for the �rst time in Fn �in the explicit �xpoint de�nition of �Dung 	��
Prakken � Sartor 	� this only holds for �nitary AT�s� in the general case only
the �if� part holds�� We start with A� and then for any argument B defeating
A we �nd an argument C in Fn�� that strictly defeats B and so indirectly
supports A� Then any argument defeating C is met with a strict defeater from
Fn��� and so on� Since the sequence is �nite� we end with an argument indirectly
supporting A that cannot be defeated�

It should be noted that completeness here does not imply semi� decidability�
if the logic for constructing individual arguments is not decidable� then the search
for counterarguments is� as is well�known� not even semi�decidable�

208 Henry Prakken

� Defeasible priorities

In several argumentation frameworks� as in many other nonmonotonic logics�
the defeat relation is partly de�ned with the help of priority relations� usually
de�ned on the premises� but sometimes directly on arguments� In most systems
these priorities are undisputable and assumed consistent� However� as discussed
in e�g� �Gordon 	�� Prakken � Sartor 	�b� Hage 	�� these features are often un�
realistic� In several domains of practical reasoning� such as legal reasoning� the
priorities are themselves subject to debate� and therefore a full theory of defea�
sible argumentation should also be able to formalise arguments about priorities�
and to adjudicate between such arguments�

This section presents a formalisation of this feature� which forms the main
technical addition to �Dung 	�b� Dung	�� As the previous section� also this
section is based on �Prakken � Sartor 	�a� in which the semantics of �Dung 	�b
is revised� and on �Prakken � Sartor 	�� in which the same is done with the
proof theory of �Dung	�� The present section generalises these revisions to any
system �tting the format of �Dung 	��

However the generalisation is only well�de�ned if the logic generating an AT
satis�es some additional assumptions� Firstly� I assume that for each AT a set
O is de�ned of objects to be ordered� For most AT�s the set O will contain the
premises from which the arguments of the AT can be constructed� however� since
some AT�s instead de�ne the priorities between sets of premises or even directly
between arguments �as �Vreeswijk 	�a�� I will leave the content of O unde�ned�

Next I assume that the defeat relation of an AT is determined by a strict
partial ordering of O� In fact� this assumption transforms the defeat relation
of an AT into a set of defeat relations ��defeat� where � is any strict partial
ordering of O�

On the basis of these assumptions I now de�ne the notion of a prioritised
argument�based theory�

De�nition��� A prioritised argument�based theory �PAT for short� is a triple
�ArgsPAT � OPAT � defeatPAT ��� where ArgsPAT is a set of arguments� and where
defeatPAT is a set of binary relations ��defeat on ArgsPAT � � being any strict
partial order on OPAT �

� A PAT is �nitary i� for all � each argument in ArgsPAT is ��defeated by
at most a �nite number of arguments in ArgsPAT �

� An argument A strictly ��defeats an argument B i� A ��defeats B and B

does not ��defeat A�
� A set of arguments is ��con�ict�free i� no argument in the set is ��defeated
by another argument in the set�

Finally� I assume that the argument language of a PAT is su�ciently expressive
to express partial orderings on O� i�e� I assume that this language contains a
distinguished twoplace predicate symbol �� intended to denote the relation ��

� Below the subscripts will usually be left implicit	

209Dialectic Proof Theory for Defeasible Argumentation

and that there is a naming function N � O �� Names� where Names is a set of
terms� N is not assumed to be a bijection� since it might be handy to assign the
same name to more than one object�

��� Changing the semantics

Now how can we make the priorities that are needed to determine defeat� de�
feasible consequences of the AT� according to De�nition �� The idea is that in
determining whether an argument is acceptable with respect to F i

PAT � we look
at those priority statements that are conclusions of arguments in F i

PAT � To this
end I �rst de�ne the notion of an ordering expressed by a set of arguments�

De�nition��� For any set S of arguments

�S � fo � o� j N �o� � N �o�� is a conclusion of some A � Sg

Below I will abbreviate ��S�defeat� as �S�defeat�� and for singleton sets fCg I
will write �fCg�defeat� as �C�defeat��

For arbitrary sets S it is not guaranteed that�S is a strict partial order� However�
it is su�cient that the properties hold for each �F i

AT

� In virtually any nonmono�
tonic logic this can be assured by including the axioms of a strict partial order
for � in the undebatable part of the premises �see �Prakken � Sartor 	� for an
illustration in argument�based extended logic programming��

I now rede�ne the notion of acceptability as follows �d�acceptability can be
changed in the same way��

De�nition��� An argumentA is acceptable with respect to a set S of arguments
i� all arguments S�defeating A are strictly S�defeated by some argument in S�

Note that with this de�nition Dung�s original de�nition is not only changed �by
using strict defeat�� but also re�ned� this is since Dung does not consider defea�
sible priorities and therefore does not make defeat relative to sets of arguments�

De�nition � can now be applied with De�nition ��� However� to make this
application well�behaved� the notion of S�defeat should have the following two
properties� which are crucial in proving that each F i is contained in F i���
this in turn guarantees that each set of justi�ed arguments is con�ict�free�
The properties are also crucial in proving that the explicit��xpoint de�nition
of �Prakken � Sartor 	� is monotonic� Note that they does not follow from the
above de�nitions but must instead be enforced by a proper de�nition of the
notion of defeat�

Property ��� For any two con�ict�free sets of arguments S and S� such that
S � S�� and any two arguments A and B we have that

�� If A S��defeats B� then A S�defeats B�
�� If A strictly S�defeats B� then A strictly S��defeats B�

210 Henry Prakken

Given our weak interpretation of the defeat notion� this property can easily
be enforced� the idea is to de�ne �A S�defeats B� in terms of the absence of
priorities in �S that would make A worse than B� then adding more priorities
cannot create new defeat relations� while the only defeat relations that go away
are one side of a mutual defeat relation�

Property ��� For any con�ict�free set of arguments S and arguments A � S

and B� if A strictly S�defeats B� then some C � S strictly C�defeats B�

Also this property seems very natural� The intuition behind it is that C is the
combination of A with the priority arguments in S that make A strictly S�defeat
B� and C can then be used in a dialectical proof as a reply to B�

I can now comment on the use of strict defeat in De�nitions � and ��� Prop�
erty ����
� will usually not hold for defeat� while yet it is essential to make
De�nition � well�behaved when combined with De�nition ���

��� Changing the proof theory

I now discuss how the proof theory must be changed� The main problem here is
on the basis of which priorities the defeating force of the moves should be deter�
mined� What is to be avoided is that we have to generate all priority arguments
before we can determine the defeating force of a move� The pleasant surprise is
that� to achieve this� a few very simple conditions su�ce� For O it is su�cient
that its move ��defeats P �s previous move� This is so since Property ��� implies
that if A is for some S an S�defeater of P �s previous move� it is also an ��defeater
of that move� So O does not have to take priorities into account� Let us illustrate
this by modifying our informal glove dialogue as follows �we again leave it to
the readers to formalise the arguments in their favourite formalism�� Again the
proponent starts with

P�� Assuming the evidence concerning the glove was not forged�
it proves guilt of OJ�

Suppose the opponent now replies with

O�� I know that the evidence concerning the glove was forged�
since I was told so� so your assumption is not warranted�

In agreement with most nonmonotonic logics� I assume that an attack on an
assumption succeeds if no priority relations hold� i�e� O� ��defeats P��

P � on the other hand� should take some priorities into account� since strict
defeat usually requires �better than� relations between rules� However� it su�ces
to apply only those priorities that are stated by P �s move� more priorities are
not needed� since Property ��� also implies that if P �s argument Argi strictly
Argsi�defeats O�s previous move� it will also do so whatever more priorities will
be derived� So P can reply to O� with

211Dialectic Proof Theory for Defeasible Argumentation

P�� The evidence concerning the glove was not forged� since it was found
by a police o�cer� and as a general rule police o�cers
don�t forge evidence� This rule is more reliable than your
rule that what you are told is true�

Because of the priority statement at the end� P� strictly P��defeats O��
However� this is not the only type of move that the proponent should be

allowed to make� To see this� note that O can respond with repeating O� as
O�� at least assuming that O� ��defeats P�� which in many systems it will do
�e�g� in �Prakken � Sartor 	�a�� And because of the nonrepetition rule P cannot
respond to O� with P� � P�� Therefore P must be allowed to state a priority
argument that neutralises the defeating force of O�� i�e� to state an argument P�
such that O� does not P��defeat P�� If P is allowed to make such a move� it can
in our example repeat the priority part of P��

P�� The rule that police o�cers don�t forge evidence is more reliable
than your rule that what you are told is true�

Of course� O might challenge P �s priority argument� for instance� by saying that
instead the �what I am told is true� rule is more reliable since O only listens
to very reliable people� However� I will end the discussion of our example and
describe the changes of the proof theory� All we have to change is the burdens
of proof in De�nition 	�

	
� If P layeri � P then

� Argi strictly Argi�defeats Argi��� or
� Argi�� does not Argi�defeat Ai���

	� If P layeri � O then Argi ��defeats Argi���

The other de�nitions stay the same�
In �Prakken � Sartor 	� it is shown that the proof theory is� with respect

to the �xpoint semantics� sound in the general case and complete for �nitary
AT�s� The corresponding results for the system with �xed priorities are proven
as a special case� Although these results are proven for a particular system� the
proofs are based on only the de�nitions and properties presented in this paper�

��� A clash of intuitions

In some cases the semantics of this section gives results that seem debatable�
Consider an AT with ArgsAT � fA�B�C�Dg where A � �John is an adult� so
John is employed��B � �John is a student� so John is unemployed��C � �John is
imprisoned� so John is unemployed� andD is a priority argument with conclusion
A � B 	A � C� Assume that this induces an ordering �JustArgsAT� �� so that
none of the arguments is justi�ed� Assume now that if this ordering were instead
fA � Bg or fA � Cg� then B and C would be justi�ed and A overruled� It

212 Henry Prakken

might be argued that then this should also be the outcome in the original case�
However� intuitions seem to di�er here� from a constructive point of view the
outcome of the present de�nitions seems acceptable�

Yet it is worthwhile investigating how the alternative� non�constructive intu�
ition can be formalized� Probably techniques from �Brewka 	�a and �Prakken 	�
can be used� which formalize the non�constructive intuition for extension�based
systems� but this has to be left for future research� as well as the corresponding
proof theory� Alternatively� syntactic restrictions will do� practically this seems
a feasible option� since in practical applications disjunctive priority information
seems very rare�

� Proof theory for credulous semantics

In this section I sketch how a dialectical proof theory can be developed for the
credulous semantics discussed in Section
� I will �rst focus on the case with �xed
priorities� De�ning a proof theory for stable semantics will not be easy� since we
always have to prove that a stable extension exists� Therefore I concentrate on
preferred semantics� This is also relevant for stable semantics� since �Dung 	�
identi�es conditions under which preferred and stable semantics coincide�

Note �rst that the existence of a proof means that the argument is in some
preferred extension� Now the idea is to reverse the burden of proof of P and O�
P now only has to defeat O�s arguments� while O now must strictly defeat P �s
moves� Moreover� the non�repetition rule now holds for O instead of for P � while
the children of P �s moves are now all its strict defeaters� Finally� since preferred
extensions are con�ict�free� we must require that in each dialogue the set of all
moves of the proponent is con�ict�free�

With respect to soundness and completeness� it is relevant that by de�nition
every admissible set is contained in some preferred extension� Then soundness
follows since it is easy to see that the union of all P �s arguments in a dialogue tree
is an admissible set� Completeness can be proven for the �nite case� by showing
that each �nite admissible set corresponds to a proof for each of its members� For
the in�nite case there are obvious counterexamples� Consider e�g� an in�nite set
of arguments fA�� � � � � An� � � �g� where each Ai�i � �� strictly defeats Ai��� both
the set of all �odd�� and that of all �even� arguments are preferred extensions� but
any �proof� has to be in�nite�

Extending these ideas to the case with defeasible priorities is still to be in�
vestigated�

� Formal models of agents and protocols for dispute

With respect to formal models of agents this paper is relevant as follows� As
noted earlier by �Vreeswijk 	�� the dialectical proof theory can serve as the
�logical core� of protocols for disputes in multi�agent decision and negotiation
processes �where the agents can be humans� computers or a combination of

213Dialectic Proof Theory for Defeasible Argumentation

both�� Such protocols de�ne possible� allowed or obligatory dialogue moves of
the agents involved in the dispute� and they de�ne criteria for termination and
evaluation of a dispute� Such protocols can be studied as to their degree of
rationality �cf� e�g� �Loui 	�� Gordon 	�� Vreeswijk 	��� The leading idea here is
that rationality has a procedural side� an argument is acceptable if it has been
successfully defended in a properly conducted dispute� The main aim of this line
of research is to �nd out what makes a dispute proper� i�e� what makes it fair
and e�ective�

A key feature of realistic disputes is that the body of information from which
arguments can be constructed is not given in advance� but is constructed dy�
namically in the course of a debate� Although our dialectical proof theory is
relative to a given set of arguments� it can still be embedded in such protocols
for dispute �cf� also �Loui � Norman 	�� Vreeswijk 	��� The set ArgsAT is then
de�ned as the arguments that are constructible on the basis of the premises that
are introduced and not withdrawn at a give stage� Thus our de�nitions also ap�
ply to disputes where the set of premises is dynamically constructed� Moreover�
the soundness and completeness results are thus part of the criteria for fair and
e�ective disputation� This is at least how �Vreeswijk 	� de�nes fairness and ef�
fectiveness� a protocol is fair if every argument that can be successfully defended
against every attack is justi�ed� and it is e�ective if every justi�ed argument can
be successfully defended against every attack�

� Concluding remarks

In this paper I have discussed three contributions to the formalisation of defeasi�
ble argumentation� Firstly� I have� by generalising work of �Prakken � Sartor 	�a�
discussed how the abstract framework of �Dung 	�� Bondarenko et al� 	� can
be extended with defeasible priorities� Secondly� I have� by generalising work
of �Dung	� and �Prakken � Sartor 	�� discussed how dialectical proof theories
can be de�ned for this framework and its extension� Finally� I have given an
impression of the research questions that arise in the dialectical approach to the
proof theory of defeasible argumentation� and I have indicated how this approach
is relevant to formal protocols for disputation in multi�agent environments�

As for future research� �rst of all the preliminary contributions of this paper
should� of course� be further developed� Moreover� it would be interesting to
investigate in more detail the relation between dialectical proof theories and
dialectical protocols for disputation�

References

�Barth � Krabbe ��� E	M	 Barth and E	C	W	 Krabbe	 From Axiom to Dialogue� a
Philosophical Study of Logic and Argumentation�Walter de Gruyter� New York� ����	

�Bondarenko et al	 ��� A	 Bondarenko� P	M	 Dung� R	A	 Kowalski and F	 Toni	 An
abstract argumentation
theoretic approach to default reasoning	 Technical Report
Department of Computing� Imperial College London� ����	 Also to appear in Arti��
cial Intelligence	

214 Henry Prakken

The Role of Diagnosis and Decision Theory in
Normative Reasoning

Leendert W.N. van der Torre�, Pedro Ramos�, José Luiz Fiadeiro�, and Yao-Hua Tan�

� Max-Planck-Institute for Computer Science
Im StadWald, D-66123 Saarbr¨ucken, Germany

torre@mpi-sb.mpg.de
� Department of Informatics, ISCTE

Av. das Forcas Armadas Edific´ıo ISCTE, 1600 Lisboa
Pedro.Ramos@iscte.pt

� Department of Informatics, Faculty of Sciences - University of Lisbon
Campo Grande 1700 Lisboa

llf@di.fc.ul.pt
� EURIDIS, Erasmus University Rotterdam

P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
tel (+31)10-4082601 fax (+31)10-4526134

ytan@euridis.fbk.eur.nl

Abstract. A theory of diagnosis and qualitative decision theory are able to for-
malize reasoningwith norms. They are thus different from deontic logic, that for-
malizes reasoningabout norms. In this paper, we compare two theories of diag-
nosis for normative systems: Ramos and Fiadeiro’s theory of diagnosis developed
for organizational process design and Tan and Van der Torre’s theory of diagnosis
extended with notions of qualitative decision theory. We observe several similar-
ities.

1 Introduction

In this paper we argue that normative reasoning is more than deontic logic. Deontic logic
tells you which obligations can be derived from a set of other obligations. In particular,
it characterizes the logical relations between obligations. For example, in most deontic
logics the conjunctionp � q is obliged, if bothp andq are obliged. However, it does
not explain how norms effect the behavior of rational agents. FromOp you cannot infer
whether somebody will actually performp. This is no critique on deontic logic, it is just
an observation. Deontic logic was never intended to explain this effect of norms on be-
havior. However, If we want to explain all the different aspects of normative reasoning,
then we need more formalisms than just deontic logic. In this paper we discuss two for-
malisms that can be used to analyze two different types of aspects of how norms effect
behavior, namely the theory of diagnosis and qualitative decision theory.

Two theories that are able to formalize reasoning with norms are represented in Fig-
ure 1. Atheory of diagnosis reasons about violations. In particular, it reasons about the
past with incomplete knowledge (if everything is known than a diagnosis is completely
known). Diagnostic theories have a modest purpose, because they do not support the

J.-J. Ch. Meyer, P.-Y. Schobbens (Eds.): LNAI 1760, pp. 216-239, 1999.
 Springer-Verlag Berlin Heidelberg 1999

decision-making process of the user. They do not derive decisions, they only check sys-
tems against given principles. A more expressive framework is qualitative decision the-
ory. Qualitative decision theory describes how norms influence behavior. It is based on
the concept of agent rationality. For example, in a normative system usually sanctions
and rewards correspond with norms, and a rational agent tries to evade penalties and
achieve rewards. In contrast to diagnostic theories, a (qualitative) decision theory rea-
sons about the future. The main characteristic of qualitative decision theory is that it is
goal oriented reasoning, usually for planning problems. Moreover, it combines reason-
ing about goals with uncertainty. This reasoning is based on the application of strategies,
which can be considered as qualitative versions of the ‘maximum utility’ criterion.

judge

theory of diagnosis

(qualitative)

rational agent

decision theory

time
Fig. 1.Reasoning with norms

Logical relations between obligations are an essential component of any formalism
that explains the effect of norms on behavior. Hence, in this paper we also argue that de-
ontic logic can be used as a component in the theory of diagnosis as well as qualitative
decision theory. Actually, we even argue for the stronger claim that the theory of diagno-
sis as well as qualitative decision theory can be viewed as extensions of deontic logic.
In both cases the formalism contains extra principles that are added to a deontic logic
basis. For example, in the case of the theory of diagnosis one of the principles that can
be added to deontic logic is the parsimony principle, i.e. the assumption that as few as
possible obligations are violated. There is nothing contradictory in the claim that on the
one hand these formalisms explain aspects of normative behavior that deontic logic does
not, whereas deontic logic is still an essential component of these theories. In the same
sense physics can explain phenomena that mathematics cannot, whereas mathematics is
still an essential component of physics. There are several structural similarities between
preference-based deontic logic and the logics developed for diagnosis and qualitative
decision theory, see e.g. [Bou94,Lan96]. The distinction between the different perspec-
tives and deontic logic raises several important questions.

Norms and dedicated theories.The diagnosis of a normative system can use a formal-
ism to represent norms and additional assumptions or principles to do the diagno-
sis. For example, Reiter’s diagnosis is basically a minimization principle (called the
principle of parsimony). Similarly, qualitative decision theory has a formalism for
representing norms (or goals) and additional assumptions or principles to reason

217The Role of Diagnosis and Decision Theory in Normative Reasoning

with them. Is such a special purpose formalism a deontic logic? How do they stand
the test against the Chisholm paradox, the paradox of the gentle murderer, the prob-
lem of how to represent permissions, the problem of conflicting obligations? What
are the structural similarities and distinctions between the different formalisms?

Norms and preferences [Lan96].Qualitative decision theory is based upon the con-
cept of preference. This preference is a kind of desire, i.e. it is an endogenously
motivating mechanism (coming from the agent itself). Therefore, it is not a natural
candidate for dealing with normative decision-making, since a norm is by defini-
tion exogenous, in the sense that it is something the agent would not spontaneously
want. How do agents work out norms in terms of gains and losses? What are the
gains of observing norms? How do they learn the effects of norms and how do they
reason about these effects? Which rulesare implied,which ingredientsenable agents
to make normative decisions? In which way does a normative decider differ from
an ordinary decider, if any?

Norms and obligations. A deontic logic does not derive actual but ideal behaviors. Do
we have to distinguish the obligations derivable from a set of norms and a set of
facts, from the norms itself? What is the role of so-called factual detachment in de-
ontic logic?

In this paper we analyze structural properties of formalisms used in two dedicated
theories of diagnosis, and we relate the formalisms to deontic logic. Reiter formalized
in [Rei87] the model-based reasoning approach to diagnosis, and that theory is adapted
to deontic systems in [TvdT94a,TvdT94b,RF96b,RF96a] by using obligations to repre-
sent the ideal behavior of a system. In Reiter’s theory of diagnosis, a violation is rep-
resented by a predicate expressionAb�c�, wherec is a component of a system to be di-
agnosed andAb an abnormality predicate. For example, this violation can be derived
from the system description thatp is the correct behavior of a component�Ab�c� � p

and the observation�p. In a modal deontic logic, a violation can be represented by the
sentence�p�Op, where the modal sentenceOp is read as ‘it is obligatory thatp.’ The
typical diagnostic reasoning with normative systems is performed by a judge, who has
to determine whether a suspect is guilty or not. Diagnostic reasoning has to deal with
incomplete knowledge, not formalized in a deontic logic. For example, a popular addi-
tional assumption of theories of diagnosis is the so-called principle of parsimony: ‘you
are innocent until proven guilty.’ Such a principle about incomplete knowledge is not
made in deontic logic; it is an extra-logical assumption about the legal domain.

TheDIagnostic framework forDEontic reasoningDIODE [TvdT94b,TvdT94a] is Re-
iter’s theory of diagnosis [Rei87] applied to normative systems. In this paper we com-
pare two extensions ofDIODE. The first extension isDDD, Ramos and Fiadeiro’sDeontic
framework forDiagnosis of processDesign [RF96b,RF96a]. They make a distinction
between benevolent and exigent diagnoses, respectively minimal and maximal violated-
norm sets (comparable to sets of broken components in Reiter’s theory). Moreover, they
make a distinctionbetween structural concepts and design actions. Their deontics-based
diagnosis is based on a minimal deontic logic LDD. The second extension ofDIODE

is Tan and Van der Torre’sDIagnostic andDEcision-theoretic framework forDEontic
reasoningDIO(DE)�. The most important element of (qualitative) decision theory in-
corporated inDIO(DE)� is – besides the violation-oriented reasoning ofDIODE – also

218 Leendert W.N. van der Torre et al.

goal-oriented reasoning. Deontic-based diagnosis is based on the two-phase preference-
based deontic logic 2DL. Two-phase reasoning illustrates the distinction between rea-
soning about violated-norm sets and reasoning about diagnoses, i.e.minimal violated-
norm sets.

We identify several similarities between the two approachesDDD and DIO(DE)�.
DIODE defines minimal violated-norm sets, based on the basic distinction between vio-
lated and non-violated norms.DDD defines also maximal violated-norm sets, based on
the distinction between fulfilled and non-fulfilled norms. The exigent diagnosis corre-
sponds to qualitativedecision theory in the sense that exigent diagnosis not only reasons
about the past (about incomplete knowledge) but also reasons about the future (design
actions). For example, the distinction between structural concepts and design actions in
DDD corresponds to the distinctionbetween parameters and decision variables in qualita-
tive decision theory. The theoryDDD is not only used for diagnosis, but for more general
decision support. Moreover, we also observe several similarities in the logics LDD and
2DL like a contingency clause (the use of consistency checks) and lack of weakening of
the consequent.

The layout of this paper is as follows. In Section 2 we discuss Reiter’s theory of diag-
nosis, the adaptation of that theory to deontic systems by using obligations to represent
the ideal behavior of a system, and qualitative decision theory. In Section 3 we discuss
the framework of Ramos and Fiadeiro, in Section 4 the framework of Tan and Van der
Torre and in Section 5 we compare them.

2 The role of deontic logic in diagnosis and qualitative decision
theory

Deontic logic formalizes reasoningabout norms. Two important extensions of deontic
logic that reasonwith norms are theory of diagnosis and qualitativedecision theory. They
are extensions in the sense that reasoning with norms uses a formalization of norms (al-
though several aspects of norms may not be represented in a particular formalization
of the norms). In this section we discuss the two theories that formalize reasoning with
norms, and we observe a distinction in deontic logicanalogous to the distinctionbetween
diagnosis and decisions.

2.1 Reiter’s theory of diagnosis andDIODE

The model based reasoning approach has been studied for several years (for a survey of
the topic see [DW88]). Numerous applications have been built, most of all for diagnosis
of physical devices. The basic paradigm is the interaction of prediction and observation.
Predictions are expected outputs given the assumption that all the components are work-
ing properly (i.e. are working according to the model of the structure and behavior of the
system). If a discrepancy between the output of the system (given a particular input) and
theprediction is found, the diagnosis procedure will search for defects in the components
of the system (the correctness of the model is assumed).

The contribution of Reiter to the theory of diagnosis is widelyaccepted. Hisconsis-
tency based approach [Rei87] is the first one to model the model based reasoning ap-
proach to diagnosis. The main goal is to eliminate system inconsistency, identifying the

219The Role of Diagnosis and Decision Theory in Normative Reasoning

minimal set of abnormal components that is responsible for the inconsistency. That is,
reasoning about diagnosis is based on the followingassumption of diagnostic reasoning.

Principle of parsimony Diagnostic reasoning is based on the conjecture that
the set of faulty components is minimal (with respect to set inclusion).

Related to a diagnosis is a set of measurements. Finally, a conflict set is a minimal set
of components of which at least one is broken (such sets are used in efficient diagnostic
algorithms).

Definition 1. (Diagnosis)A system is a pair (COMP, SD) whereCOMP, thesystem com-
ponents, is a finite set of constants denoting the components of the system, andSD, the
system description, is a set of first-order sentences. Anobservation of a system is a fi-
nite set of first-order sentences. A system to be diagnosed, written as (COMP, SD, OBS),
is a system (COMP, SD) with observationOBS. A diagnosis for (COMP, SD, OBS) is a
minimal (with respect to set inclusion) set� � COMP such that

CONTEXT� � SD� OBS� fAb�c� j c � �g � f�Ab�c� j c � COMP��g

is consistent. A diagnosis� for (COMP, SD, OBS) predicts a measurement � iff

CONTEXT� j� �

A conflict set for a system to be diagnosed (COMP, SD, OBS) is a minimal (with respect
to set inclusion) set� � COMP such thatCONTEXT� is inconsistent.

TheDIagnostic framework forDEontic reasoningDIODE formalizes deontic reason-
ing as a kind of diagnosticreasoning. Notice thatDIODE is not a deontic logic (it does not
describe which obligations follow from a set of obligations) and it should not be consid-
ered as such. On the other hand, since diagnosis is about violations and deontic logic is
exactly for situations where violations are important [JS92], it makes sense to have a de-
ontic framework for diagnosis likeDIODE. The framework treats norms as components
of a system to be diagnosed; hence the system description becomes a norms descrip-
tion ND. We refer to the base logic ofDIODE asLV , and the fragment ofLV without
violation constants asL. We writej� for entailment inLV . The definition of minimal
violated-norm set is analogous to the definition of diagnosis. Just as we can have multi-
ple diagnoses with respect to the same (COMP, SD, OBS), we can have multiple minimal
violated-norm sets� with respect to (NORMS, ND, FACTS). The fact that we can have
more than one minimal violation state reflects that we can have different situations that
are optimal, i.e. as ideal as possible. In Section 3 we present an example that illustrates
deontic diagnosis in organization scenarios.

Definition 2. (DIODE) A normative system is a tupleNS = (NORMS, ND) with:

1. NORMS, a finite set of constants denotingnorms fn�� � � � � nkg,
2. ND, thenorms description, a set of first-orderLV sentences denotingobligations
�V �ni� � �� � ��.

A normative system to be diagnosed is a tupleNSD = (NORMS, ND, FACTS) with:

220 Leendert W.N. van der Torre et al.

1. NS = (NORMS, ND), a normative system, and
2. FACTS, a set of first-orderL sentences that describe the facts.

Let NSD = (NORMS, ND, FACTS) be a normative system to be diagnosed. Aminimal
violated-norm set� of NSD is a minimal (with respect to set inclusion) subset ofNORMS

such that

CONTEXT� � ND � FACTS� fV �ni� j ni � �g � f�V �ni� j ni � NORMS��g

is consistent. The set ofcontextual obligations of a minimal violated-norm set� of a
normative system to be diagnosedNSD is CO� � f� j � � L� CONTEXT� j� �g.

Obligations are represented inDIODE analogously to the way they are represented
in Anderson’s reduction of so-called Standard Deontic Logic (SDL) to alethic modal
logic. SDL is a normal modal system of type KD according to the Chellas classifica-
tion [Che80]. It satisfies, besides the propositional tautologies modus ponens and ne-
cessitation, axiomK : O�� � �� � �O� � O��, which states that modus ponens
holds within the scope of the modal operator, and axiomD: ��O��O���, which states
that dilemmas are inconsistent. Anderson [And58] showed that SDL can be expressed
in alethic modal logic by the translationO� �def ���V � ��, in which V is the
so-called violation constant (not a propositional variable!), together with the axiomD:
��V (as usual,�� �def ����). In SDL, a conditional obligation can be represented
by � � O� or byO�� � ��. The latter is according to the Anderson schema similar
to O�� � �� �def ���V � �� � ���. In spite of the analogy in the way obliga-
tions are represented, there are also two important distinctions between the representa-
tion of obligations inDIODE and Anderson’s reduction. First, in Anderson’s reduction
every deontic formula is preceded by a box�. Semantically, in the theory of diagnosis
distinctmodels represent distinct situations, whereas in a modal system distinctworlds
within a model represent distinct situations. Second, in Anderson’s reduction there is
only one violation constant. For a further discussion see [TvdT94a]. In spite of the anal-
ogy in the representation of obligations inDIODE and Anderson’s reduction,DIODE is
quitedifferent from a deontic logic. On the one handDIODE is more than a deontic logic,
because the parsimony principle adds the assumption that the set of violations of obliga-
tions is minimal. This assumption is based on the idea that people tend to comply with
norms, which is an empirical assumption about the behavior of people, and which has
clearly nothing to do with the logic of norms itself. On the other hand one could argue
thatDIODE is less than a deontic logic, because, ifND would be a deductively closed set
of sentences, then theDIODE counterpart of the formulap � Op would be contained
in everyND. Clearly,p� Op is not an intuitivedeontic theorem, and the counterpart of
this formula is also not valid in Anderson’s reduction due to his box operator. Although
these counter-intuitive theorems do not occur inDIODE, becauseND is not deductively
closed, we give another formulation at the end of this paper ofDIODE in the logic 2DL,
which gives a better representation of the deontic logic component inDIODE.

2.2 Qualitative decision theory

Boutilier [Bou94] develops a logic of qualitative decision theory in which the basic con-
cept of interest is the notion ofconditional preference. Boutilier writesI�� j ��, read

221The Role of Diagnosis and Decision Theory in Normative Reasoning

“ideally � given�,” to indicate that the truth of� is preferred, given�. This holds ex-
actly when� is true at each of the most preferred of those worlds satisfying�. Boutilier
remarks that from a practical point of view,I��j�� means that if the agent (only) knows
�, and the truth of� is fixed (beyond his control), then the agent ought to ensure�. Oth-
erwise, should�� come to pass, the agent will end up in a less than desirable�-world.
Boutilier mentions that the statement can beroughly interpreted as “if�, do�.” More-
over, Boutilier observes that the conditional logic of preferences he proposed is similar
to the (purely semantic) proposal put forth by Hansson [Han71]. He concludes that ‘one
may simply think ofI�� j �� as expressing a conditional obligation to see to it that�

holds if� does.’ Thomason and Horty [TH96] and Lang [Lan96] also observe the link
with deontic logic when they develop the foundations for qualitative decision theory.

Boutilier [Bou94] introduces a simple model of action and ability.The atomic propo-
sitions are partitioned intocontrollable propositions,atoms over which the agent has di-
rect influence, anduncontrollable propositions. He ignores the complexities required to
deal with effects, preconditions and such, in order to focus attention on the structure and
interaction of ability and goal determination. The consequence of this lack of an action
model is that ‘we should think of a rule as anevidential rule rather than acausal rule.’
Moreover, Boutilier observes ‘the implicit temporal aspect here; propositions should be
thought of asfluents. We can avoid an explicit temporal representation by assuming that
preference is solely a function of the truth values of fluents.’ Lang [Lan96] calls con-
trollable and uncontrollable propositions respectively decision variables and parame-
ters. Moreover, he argues that it is necessary to distinguish not only between desires
(goals) and knowledge as in [Bou94] but also between background factual knowledge
(which tells which worlds are physically impossible) and contingent knowledge (which
tells which of the physically possible worlds can be the actual states of affairs). This last
distinction was introduced in [vdT94].

The simplest definition of goals is inaccordance with the general maxim ‘do the best
thing possible consistent with your knowledge.’ Boutilier [Bou94] dubbed such goals
CK goals because they seem correct when an agent hasComplete Knowledge of the
world (or at least of uncontrollable atoms). But Boutilier also shows that CK-goals do
not always determine the best course of action if an agent’s knowledge isincomplete.
For example, Wald’s criterion is a pessimistic strategy: maximize the minimum return
(see e.g. [DP95,Lan96]).

2.3 Context of justification versus context of deliberation

The distinction between the perspective of a rational agent (qualitative decision theory)
and a judge (theory of diagnosis) corresponds to Thomason’s distinction between the
context of deliberation and the context of justification [Tho81]. Thomason distinguishes
between two ways in which the truth values of deontic sentences are time-dependent.
First, these values are time-dependent in the same, familiar way that the truth values of
all tensed sentences are time-dependent. Second, their truth values are dependent of a set
of choices or future options that varies as a function of time. If you think of deontic op-
erators as analogous to quantifiers ranging over options, this dependency on context is a
familiar phenomenon. Thus, the context of deliberation is the set of choices when you are
looking for practical advice, whereas the context of justification is the set of choices for

222 Leendert W.N. van der Torre et al.

someone who is judging you.1 The following example discussed in [Han71] illustrates
that it is important to discriminate between these two contexts, because a sentence can
sometimes be interpreted differently in each of them.

Example 3. Consider the obligation ‘you should not smoke if you smoke.’ In the context
of justification the obligation is interpreted as the identification of the fact that you are
violating a rule, whereas in the context of deliberation, it is interpreted as the obligation
to stop smoking. When the context is not known, it is also not known which of these
two interpretations (or probably both) is meant. The two perspectives are represented in
Figure 2. At the present moment in time, smoking (s) is true. The context of justification
considers the moment before the truth value ofs was settled, and considers whether at
that moment in the past,�s was preferred overs. The context of deliberation considers
the moment the truth value ofs can be changed, and considers whether at that moment
in the future,�s will be preferred overs.

time

Context
of

justification

Smoking is a violation.

Stop smoking!

of
Context

deliberation

Fig. 2.Contexts of normative reasoning

The distinction between the two interpretations of the obligation ‘you should not
smoke if you smoke’ is as important as the distinction between Alchourr´on-Gärdenfors-
Makinson belief revision (or theory revision) [AGM85] and Katsuno-Mendelzon belief
update [KM92] in the area of logics of belief. There is a strong analogy, because belief
revision is reasoning about a non-changing world and update is reasoning about a chang-
ing world. It follows directly from Figure 2 that a similar distinction is made between
respectively the context of justification and the context of deliberation, because the past
is fixed, whereas the future is wide open.

1 Thomason defines the context of justification in terms of the context of deliberation: at a certain
point in timep is justification-obligatory iff at some earlier point in timep was deliberation-
obligatory (in both casesp has the same time index). This is in our opinion too simple. We
should make a distinction analogousto the distinction between revision and update to formalize
it.

223The Role of Diagnosis and Decision Theory in Normative Reasoning

3 Diagnostic framework for process design

The work of Ramos and Fiadeiro should be understood as a contribution to the more
general purpose to build a formal framework to support organizational process design
diagnosisaccording to predefined process design principles. By principles they mean
general rules that characterize the ideal behavior of an organization. They are interested
in forms of diagnoses that report violations of such principles. The architecture of their
intended framework is represented in Figure 3 (taken from [RF96b]).

knowledge

organisational structure

principles

process description

general organisational

process model
userdiagram.

language
formal

declarative
language

diagnosis

Fig. 3. Architecture of Ramos and Fiadeiro’s framework

The user in Figure 3 represents both the designer and the person responsible for
defining general principles. As represented in Figure 3, the user (supported by a dia-
grammatic language) can describe the structure of the organization and design the pro-
cess (process description). The diagnosis procedure uses that information, together with
general organizational knowledge, to detect violations of the principles indicated by the
organization (user). The translation from a diagrammatic language to a declarative for-
mal language is necessary, because Ramos and Fiadeiro want to use logical deduction in
the diagnosis procedure. The components of the process model are the following ones:

Organizational structure. The set of structural concepts that characterize an organi-
zation, e.g.agents, tasks, hierarchies. These concepts are independent of the pro-
cesses. They describe the fixed components over which the processes should ‘flow’.
The structural concepts represent what is fixed in the organization in the sense that
it cannot be changed as a consequence of a process (re)design.

Process description.The description of the process design, made with typical prim-
itives used in organizational process likeassign-task, output-to-task etc. Variable
concepts are concepts that can be manipulated by the person that designs the pro-
cess. They can be understood as ‘design actions’.

224 Leendert W.N. van der Torre et al.

General organizational knowledge.Definitions (e.g.available, informed) and rules
common to all organizations (e.g.if a task is assigned to a collective agent, all the
members of the collective agent are assigned to that task).

Principles. General rules that characterize the ideal behavior of an organization. Each
organization decides which rules should be used. Usually the rules that guide the
design are general rules. For example, ‘no employee can be assigned to a control
task if the decision to control is assigned to an agent up in the hierarchy.’

The following example of [RF96b] illustrates the design of an order delivering pro-
cess, and is adapted from [CL92]. In Chen and Lee’s framework for the evaluation of
internal accounting control procedures, the idea of having general principles guiding or-
ganizational diagnosis is already present. However, this framework is not supported by
a theory of diagnosis. For instance, it does not deal with either alternative or minimal
diagnoses.

Example 4. (Delivering order) To avoid frauds in organizational accounting procedures,
some control rules are often used. In Figure 4, the process is designed in order to (par-
tially) fulfill those rules (principles). The process is as follows. The stock manager re-
ceives an order (from a salesman, for example), fills up an internal delivery order (IDO)
and sends the IDO to agent 1, assigned to the task of verifying the IDO. After receiving
the same order the accounting department fills up the invoice and also sends it to agent 1.
Agent 1 checks if the values of the IDO and the invoice are the same, stores the invoice
in the invoice file and sends the IDO to agent 2, assigned to the task of filling up the
outgoing delivery order (ODO). After filling up the ODO agent 2 sends it to the client
together with the goods.

invoice

order

agent 2

agent 1

client

invoice file

fill up invoice

delivery order

fill up internal

delivering order

verify internal

fill up outgoing

delivering order

invoice

delivering

delivering

internal
delivering

order
(IDO)

outgoing

order
(ODO)

internal

order
(IDO)

stock manager

accounting dep

Fig. 4. Ideal order delivering process

Agent 1 is involved in the process in order to avoid a potential fraud between the
stock manager and the client, because agent 1 checks if thegoods in the IDO matches

225The Role of Diagnosis and Decision Theory in Normative Reasoning

the values in the invoice. In the process design in Figure 4 one general rule, to ensure
that the document is not manipulated by other agents, is fulfilled:‘all documents must
go straight to the control agent after they are created.’ Two other rules that apply to the
process are‘an agent should not control a superior in the hierarchy’ and‘socially-close
agents should not control each other.’ For example, the stock manager should not be a
superior of agent 1 and agent 2 should not be socially-close to the stock manager.

We give a simple formalization of this example in a propositional language, which
suffices for our purposeof illustratingDDD. Instead of formalizing the three generic rules
as first-order obligations,we formalize several consequences (instances) of these generic
rules as propositional obligations. Let us assume the following organization structure:
John, Ann and Phil are agents of the organization, Phil is socially-close to John and the
stock manager is hierarchical superior than John. The obligationsare (a) the output of the
task verify-IDO must go to the task fill-up-ODO, (b) we must not assign Phil to the task
fill-up-ODO, because socially close agents should not be involved in this process, (c)
we must not assign John to the task verify-IDO, because one agent should not control a
superior in the hierarchy, and (d) the output of the task fill-up-invoicemust go to the task
verify-IDO. Using the violation constants ofDIODE, we represent the four obligations
by �V� � a, �V� � b, �V� � c and�V� � d, respectively. An instance of the
general organisational knowledge is that if the output of task verify-IDO goes to fill-
up-ODO and Phil is not assigned to fill-up-ODO, then Phil doesnot receive the ODO,
which is represented bya� b� e. Finally, facts (design) are that Ann is agent 1, Phil is
agent 2, John is not assigned to the task verify-IDO and that Phil receives theODO, i.e.,
c � �e. Notice that one of the first or second obligation is violated, the third obligation
is fulfilled, and nothing is know about the fourth obligation.

In the following section we show how we can reason about this delivering order ex-
ample in the deontic framework for diagnosis of process design, based on Reiter’s theory
of diagnosis.

3.1 DDD Deontic framework for diagnosis of (organizational) process design

Minimal diagnoses have proven to be adequate for detecting violations of obligations.
However, for the purpose of process design diagnosis, it is not sufficient to capture cases
of unfulfilled obligations. This particularity of process design lead Ramos and Fiadeiro
in [RF96b] to propose a more general diagnosis, one that distinguishes between poten-
tial, benevolent and exigent diagnosis. The following example criticizes the principle of
parsimony for organizational process design.

Example 5. (Delivering order, continued)If it is important that the invoice goes straight
to the task verify-IDO, then a design that does not commit itself with the output of the
invoice must be avoided. Indeed, if the principle is not enforced, it is possible that, dur-
ing the implementation of the process in the organization, the invoice goes straight to
the invoice file. To avoid this undesired situation, the diagnosis should alert to the ‘in-
completeness’ of the design. When it is important to ensure that all obligations are ful-
filled, and not only detect violations of obligations, the principle of parsimony is much
toobenevolent (it is like the assumption of the fulfillment of obligations in the absence of

226 Leendert W.N. van der Torre et al.

information). In that case an approach based only on minimal diagnosis is not adequate
and anexigent diagnosis (where unfulfilled obligations are detected) is more suitable.

In order to deal with diagnoses that are not minimal, Ramos and Fiadeiro extend the
representation of obligations by assuming that norms are completely described. With
this new approach, more useful information can be obtained for process design, keep-
ing at the same time all the results of model based reasoning. When a set of norms is
translated toDDD, the following two assumptions are made to incorporate fault knowl-
edge. The underlying assumption of ‘innocent until proven guilty’ is not always the right
one; sometimes ‘guilty until proven innocent’ is preferred. So-called fault knowledge
(see e.g. [dKMR90]) describes the consequences of broken components, in general rep-
resented by� � Ab�c� � �. Hence, with fault knowledge from the abnormality of a
component new information can be derived. If the rules from the system descriptionSD

are represented by� � �Ab�c� � �, then there is no fault knowledge. In that case, the
maximal diagnosis is simply the set of all components. Obviously, for any reasonable
definition of a maximal diagnosis, fault knowledge has to be added.

– Assumption 1As a rule, each (conditional) obligation of a premise set corresponds
to a separate norm. A set of obligations is translated to a set of norms.

– Assumption 2Every norm description completely describes an obligation. Thus, a
conditional obligation ‘� should be the case if� is the case’ is represented inDDD

by the norm description�V �ni� � �� � ��. The conditional obligation can be
read inDDD as ‘if the normni is not violated, then and only then if� is the case
then� is the case.’ The sentence is logically equivalent withV �ni� � ��� � ��,
which explains whyV �ni� is called aviolation constant.

Ramos and Fiadeiro propose the following deontic framework for diagnosis of (or-
ganizational) process designDDD. They discriminate between minimal and maximal
violated-norm sets.

Definition 6. (DDD) A normative system is a DIODE tuple NS = (NORMS, ND) where
ND, thenorms description, is a set of obligations�V �ni� � �� � ��. Let NSD =
(NORMS, ND, FACTS) be a normative system to be diagnosed andCONTEXT� the con-
text of a set of norms� � NORMS. A potential diagnosis � of NSD is a subset of
NORMSsuch thatCONTEXT� is consistent.Abenevolent (exigent) diagnosis� is a min-
imal (maximal) subset (with respect to set inclusion) ofNORMSsuch thatCONTEXT� is
consistent. Theimplicit violation set � of NSD is a minimal subset (with respect to set
inclusion) ofNORMS such thatCONTEXT� is inconsistent.

The set of potential diagnosis can be ordered by set inclusion, of which the benevo-
lent and exigent diagnosis are respectively the lower and upper bounds. Diagnostic rea-
soning is not restricted to the minimal elements of the graph, but to all elements. More-
over, for the benevolent diagnosis we have the additional information supplied by the
implicit obligation sets and the contextual obligations. This is illustrated by the exam-
ple of the delivering order inDDD, see [RF96b] for a full discussion of this example in
DDD.2

2 As remarked in [dKMR90], with the representation of fault knowledge it is no longer possible
to compute all consistent sets of normal and abnormal components based on minimal diagno-

227The Role of Diagnosis and Decision Theory in Normative Reasoning

Example 7. (Delivering order, continued) Consider the following normative system:

1. NORMS = fn�� n�� n�� n�g, and
2. ND = f�V �n�� � a��V �n��� b��V �n��� c��V �n�� � dg.

The set of potential diagnoses ofFACTS= fa�b� e� c��eg is represented in Figure 5.
We haveFACTS j� �a 	 �b andFACTS� ND j� V �n�� 	 V �n��. Moreover, we have
FACTS� ND j� �V �n��. There is one exigent diagnosis,fV �n��� V �n��� V �n��g, and
two benevolent diagnoses,fV �n��g andfV �n��g. The implicit violation set is the set
fV �n��� V �n��g, which means that either the first or the second norm has to be violated.

{V1,V4}

{V{V2}

{V1,V2,V3,V4}

{V1,V3,V4} {V2,V3,V4}{V1,V2,V3}{V1,V2,V4}

{V1,V3}{V1,V4} {V1,V2} {V2,V3} {V2,V4}

{V1}

a. without fault knowledge b. with f

Fig. 5.Consistent sets of violations

3.2 DDD� Deontic framework for Diagnosis for process Design based on Deontic
logic

In [RF96a] Ramos and Fiadeiro show how a theory of diagnosis can use deontic logic.
Ramos and Fiadeiro use dyadic deontic logic to represent conditional obligations.3 With
the dyadic operator, Chisholm’s paradox for conditional obligations does not occur. The
obligationsO��j�� are read as ‘� is obligatory in the context�.’ They have the follow-
ing desiderata for the dyadic logic.

1. Conditional obligation, thus notO�� j�� � O�� � ��. For example, if there is
a rule‘if an order form is send to a supplier, then a copy of the order form should
be send to the department store’ O�cjo� and neitherc ando nor their negations can
be derived, then an exigent diagnosis should not contain the violation of the obli-
gation. The situation is avoided if we only consider violations ofactual obligations

sis: not all supersets of minimal sets are consistent. In Reiter’s minimal diagnosis that property
holds. Indeed, in Figure 5.a, only the sets in italics are consistent if we adopt the complete de-
scription of norms.

3 A deontic logic describes besides obligations also permissions. However, the ‘organization’
does not say : you are permitted to do� � � ! That makes no sense in design. The diagnosis is
not going to check if the permissions are ‘fulfilled’, because it is a designer problem. The de-
signer is permitted to do anything except violating the rules.

228 Leendert W.N. van der Torre et al.

in a diagnosis, because with actual obligations, ifo cannot be derived, then the vio-
lation will never appear in a diagnosis. Thus a normal modal system like SDL and
Anderson’s reduction to alethic modal logic is insufficient.

2. ContrapositionO�� j�� � O��� j���. For example, if there is the ruleO�c jo�
and�c can be derived and�o cannot be derived, then an exigent diagnosis should
contain the violation of the obligation.

3. No weakening of the consequent. Consider the rule of inferenceRM � if
 � � �

thenO� � O�. Assume the following rule:if one agent sends a document to other,
then the second receives the document.’ Notice thatA sending a document toB is
more specific thanB receiving it because it can be send by anyone. Furthermore, as-
sume the obligation‘Ann is obliged to send a budget to John’ and the fact‘Ann does
not send the budget’ (thus John does not receive it). Given ruleRM , the diagnosis
will report two violations. However only one violation really occurs. Thus a nor-
mal modal system like SDL and a non-normal modal system like Chellas minimal
deontic logic are insufficient.

4. Design action and context. Dyadic obligationsO��j�� have two components. First,
thedesign action (�) that indicates what the designer should do. Second,the context
(�) that describes the situation in which the design action should be done.

5. No structural variables in the scope of the modal operator. It is assumed that it makes
no sense to have obligations that oblige a process designer to act in the structure of
the organisation. This is formalized by the contingency clause�struct���, as ex-
plained below. It follows from that assumption that, whatever the context, any obli-
gation where the action is represented by a structural concept is not valid. For ex-
ample, the following rule‘if the task approve-budget is assigned to John, then John
must be the Head of Department (HD)’ O�hja� is not valid because John being or
not being the HD is not an design action (it is a part of the structure of the organisa-
tion). The rule should be: ‘if John is not the HD, then he cannot be assigned to the
task approve-budget’ O��a j �h�.

Ramos and Fiadeiro make a distinction between structural and action variables (4).
The basic idea is the following, inspired by Casta˜neda’s distinction between assertions
and actions [Cas81]. The modal language of deontic logic gives us the opportunity –
not present in Reiter’s first order theory of diagnosis – to distinguish between structural
variables which are fixedwithin a model, and variables which are allowed to vary within
the model. For a structural variablep, we have�p 	��p. Hence, we havep� �p: if
the structural variable is true in the actual world, it is true in all worlds. Notice that�p

should be read asp is a structural concept, not asp is necessarily true (as in Anderson’s
proposal). Moreover, they restrict the scope of the deontic operator to action variables
(5). Hence, we add the clause�struct��� to an obligation for�. This is a formalization
of von Wright’s contingency principle, because we haveOp � ��p andOp � �p.
The contingency clause�struct��� is a kind of consistency check. Von Wright remarks
that ‘the last may be regarded as a version of the principle, commonly associated with
the name of Kant, that ‘Ought implies (entails) Can’ [vW71, p.163].

In [RF96a] the following logic LDD is proposed. It is defined in terms of a monadic
minimal modal logic, and thereby we have trivially soundness and completeness of the

229The Role of Diagnosis and Decision Theory in Normative Reasoning

logic.The modal operatorI is a technical trick to avoid the problems of Chellas’ standard
modal operators. The interested reader is referred to [RF96a] for further details.4

Definition 8. (LDD) Consider a bimodal logic with� andI. The logic is the smallest
set of formula that contains the propositional tautologies and the following axioms and
is closed under the following rules of inference.

MP: �����

�

Nes: ��
���

RE: �����

I���I��

K : ��� � ��� ��� � ���
T: ��� �

�I�
�I�
��� I�

The logic LDD is extension of the bimodal logic with the following definitions.

struct��� �def �� 	���
O��j�� �def I�� � �� ��I��� � �� � �struct���

Definition 9. (SemanticsLDD) Kripke modelsM � hW�R�� R�� V i for LDD consist
of W a set of worlds,R��w�w�� a binary reflexive accessibility relation,R��w�W �� an
accessibility relation that gives a nonempty set of sets of worlds (� W) for each world
(we write eitherR��w�w�� andR��w�W ��, orw� � R��w� andW � � R��w�), such
that for allW � � R��w� we haveW � � R��w�, andV a valuation function for the
propositions in the worlds. We have:

M�w j� �p iff for all w� such thatR��w�w�� we haveM�w� j� p

M�w j� Ip iff �W � such thatR��w�W �� andW � � fw� � R��w� jM�w� j� pg.

The logic is not closed under conjunction, weakening of the consequent, etc. The
following proposition shows that LDD has the desired properties.

Proposition 10. The logic LDD validates the following theorems.

�O��j��
�O��j��
�� � struct��� �O��j���� O��j��
�struct���� �O��� � ��j���� O���j��
��struct��� �O��j���� O���j���

The logic LDD does not validate the following theorem (the first desideratum of the
list at the beginning of this section).

4 In this paper, we have simplified the formalization. In [RF96a], the dyadic operator is defined
directly in the semantics:O�� j �� is true iff in all ideal designs�� � and in ideal designs it
is not the case that� � ��.

230 Leendert W.N. van der Torre et al.

��struct�� � �� �O��j���� O�� � �j��

Proof The two theorems �O�� j �� and �O�� j �� follow directly from �struct���.
�� � struct��� �O��j���� O��j�� and �struct���� �O��� ���j��� � O���j��
follow from �� struct���� ��. The theorem ��struct����O��j��� � O���j���
follows from �I�� � �� � �I��� � ��� � �I��� � ��� � �I���� � ����. For
a countermodel of ��struct�� � �� � O�� j��� � O�� � � j��, consider the set
W � fw�� w�� w�� w�� w�g with w� � f�a��bg�w� � fa� bg�w� � f�a� bg�w� �
fa��bg, R��w�� w���R��w�� w���R��w�� w���R��w�� w���R��w�� fw�� w�g�. Given
the set W we have M�w� j� I�a � b� because W � � fw�� w�g, we have M�w� j�
I��a� b� because we do not haveR��w�� fw�g�, and we have M�w� j� I��b� a� �
�� because we do not have R��w�� fw�� w�� w�g�.

The logic LDD is used for deontics-based diagnosis.5

Definition 11. (Deontics-based diagnosis)An obligationsystem is given by a tupleOS

= (OBL, STRUCT) with:

1. OBL, a finite set of modal sentences denoting conditional obligationsO��j��,
2. STRUCT, a set of expressions denoting which variables are structural�p 	��p.

An obligation system to be diagnosed is a tupleOSD = (OBL, STRUCT, FACTS) with:

1. OS = (OBL, STRUCT), an obligation system, and
2. FACTS, a finite set of propositional sentences.

Theactual obligation set AO is the set of obligations (without logical equivalents):

AO � fOa� j OBL � FACTS� STRUCT j� O��j�� � �g

A potential diagnosis� is a subset of the actual obligation setAO such that

CONTEXT� � OBL � FACTS� STRUCT� f�� j Oa� � �g � f� j Oa� � AO ��g

is consistent.

Deontics-based diagnosis is illustrated by the following example.

Example 12. (Delivering order, continued) Consider the following additional rule to
the initial example in Example 4: ’if an ODO is sent to a client, a copy of the ODO
should be sent to the department store’ (O�g j f�). Since the condition of the obliga-
tion does not hold (it is not ‘designed’ yet), there is no actual obligation ofg (send a
copy of ODO to the department store). Consider the following obligation system to be
diagnosedOSD=(OBL, STRUCT, FACTS) with

1. OBL = fO�aj��� O�bj��� O�cj��� O�dj���O�gjf�g,
2. STRUCT = �,
3. FACTS = fa � b� e� c ��eg.

The actual obligation set isAO = fOaa�Oab�Oac�Oadg and the set of potential diag-
noses is similar to the previous representation inDDD in Example 7.
5 We have simplified the deontics-based diagnosis a bit. The obligation system that consists of

the single obligationO�ajb� and factsb � �a will report thata is a violation. But in [RF96a]
the user is informed that if he changesb to�b, then the violation will disappear.

231The Role of Diagnosis and Decision Theory in Normative Reasoning

4 Diagnostic and decision-theoretic framework

The work of Tan and Van der Torre should be understood as a contributionto a more gen-
eral purpose to build a formal framework to support drafting of bureaucratic procedures,
in particular international trade procedures [BLWW95]. For example, in [RTvdT96] it
is shown how to extend the Petri net formalism to represent different types of behavior,
in particular normative behavior. This extension is motivated by the use of Petri nets
to model bureaucratic procedures, which contain normative aspects like obligations and
permissions. It is important that violations of obligations, i.e. sub-ideal states, are rep-
resented explicitly in the modeling of procedures, because in most procedures it is de-
scribed explicitly what is considered as ill-behavior, and how this will be punished (the
corresponding sanction). However, the representation of violations and sub-ideal behav-
ior in Petri nets is not very satisfactory, see [RTvdT96]. The modeling of violations of
bureaucratic procedures explains Tan and Van der Torre’s interest in theories of diagno-
sis.

4.1 DIODE with applicable norms

In DIODE, there is no distinctionbetween fulfillinga dyadic obligation,and inapplicabil-
ity of a dyadic obligation.For example, forO��j�� we have�V �n� � �� � ��, which
is logically equivalent with�V �n� � ���	 ������. A solution is to add applicability
information. For example, forO��j�� we have�V �n�� �� � ���A�n�� �. Thus,
the underlying logic is extended with an applicability predicate similar to the violation
predicate. Now, first we determine the applicable obligations by minimizing theA�n�.
Secondly, for applicable obligations we can have minimal or maximal sets.

Definition 13. (DIODE with applicable norms) A normative system is aDIODE tuple
NS = (NORMS, ND) whereND, thenorms description, is a set ofconditional obligations

�V �ni�� �� � �� �A�n� � �

Let NSD = (NORMS, ND, FACTS) be a normative system to be diagnosed. Theactive
norms �a of NSD is a minimal subset ofNORMS such that

ND � FACTS� fA�ni� j ni � �ag � f�A�ni� j ni � NORMS��ag

is consistent. Apotential diagnosis� of NSD is a subset of some�a of NSD such that

CONTEXT� � ND � FACTS� fV �ni� j ni � �ag � f�V �ni� j ni � �a ��g

is consistent.

The following example illustrates the adaptation ofDIODE.

Example 14. Consider the normative system of the obligationO�cjo�.

1. NORMS = fn�g,
2. ND = f��V �n�� � �o� c�� � �A�n�� � o�g.

232 Leendert W.N. van der Torre et al.

The set of active norms�a is empty forFACTS = �, thus there is no potential diagnosis
which contains the normn�. In particular, the only exigent diagnosis is the empty set.
Moreover, consider the following normative system of the two obligationsO�p�jq� and
O�p�j�q�.

1. NORMS = fn�� n�g,

2. ND = f
��V �n��� �q� p��� � �A�n�� � q��
��V �n��� ��q� p��� � �A�n��� �q�g

.

Given the tautologyq	�q, we have forFACTS= � two minimal active sets�a � fn�g
and�a � fn�g. Finally, consider the followingnormativesystem of the two obligations
O�pjq� andO�qj��.

1. NORMS = fn�� n�g,
2. ND = f ��V �n��� �q� p�� � �A�n��� q�� ��V �n��� q� � �A�n�����g .

The minimal active set forFACTS = f�pg is�a � fn�g.

4.2 DIO(DE)�

A theory of diagnosis likeDIODE is based on the distinction between violated and non-
violated, and a (qualitative) decision theory is based on the distinction between fulfilled
and non-fulfilled.DIO(DE)� is short for theDIagnostic andDEcision-theoretic frame-
work for DEontic reasoning. It combines reasoning about violated and fulfilled norms.
Hence, it combines reasoning about the past (violated versus non-violated) with rea-
soning about the future (already fulfilled versus not yet fulfilled). As illustrated in Fig-
ure 1,DIO(DE)� combines the reasoning of a judge with reasoning of a rational agent.
DIO(DE)� is the extension ofDIODE with (1) goal oriented reasoning, (2) distinctionbe-
tween parameters and decision variables and (3) addition of uncertainty and strategies.
Here, we restrict ourselves to the first item. Technically, it has fulfilled-norm constants
(F). In the following definition ofDIO(DE)�, for an obligationO��j�� we have besides
�V �n� � �� � �� alsoF �n� � �� � ��. We minimize the applicable norms by
minimizing the relation��f ��v� � ���f ��

�
v�.

Definition 15. (DIO(DE)�) A normative system is a DIODE tupleNS = (NORMS, ND)
whereND, thenorms description, is a set ofconditional obligations represented by the
formula�V �ni� � �� � �� � F �n�� �� ���. Let NSD = (NORMS, ND, FACTS) be
a normative system to be diagnosed. Afulfilled-violated set ��f ��v� of NSD is a pair
of subsets ofnorms such that

CONTEXT� � ND � FACTS�fV �ni� j ni � �vg � f�V �ni� j ni � NORMS��vg
�fF �ni� j ni � �fg � f�F �ni� j ni � NORMS��fg

is consistent. Let� be the ordering on fulfilled-violated sets��f ��v� � ���f ��
�
v� iff

�f � ��f and�v � ��v. A potential diagnosis ��f ��v� of NSD is a pair of subsets of
NORMSthat is minimal in the ordering�.

The following example illustrates the adaptation ofDIO(DE)� and compares it with
DIODE with applicable norms.

233The Role of Diagnosis and Decision Theory in Normative Reasoning

Example 16. Consider the following normative system of the obligationO�cjo�.

1. NORMS = fn�g,
2. ND = f��V �n�� � �o� c�� � �F �n�� � �c � o��g

The unique potential diagnosis forFACTS = � is ��f ��v� � ��� ��. In DIODE with
applicable norms, the set of active norms�a is empty forFACTS = �. Hence, the two
systems behave similarly. Moreover, consider the followingnormative system of the two
obligationsO�p�jq� andO�p�j�q�.

1. NORMS = fn�� n�g,

2. ND = f
��V �n��� �q� p��� � �F �n�� � �p� � q���
��V �n��� ��q� p��� � �F �n�� � �p� � �q��g

.

The potential diagnoses��f ��v� for FACTS= � are�fn�g� ��, �fn�g� ��, ��� fn�g� and
��� fn�g�. In DIODE with applicable norms, we have forFACTS = � two minimal ac-
tive sets�a � fn�g and�a � fn�g. Hence, the two systems behave again similarly.
Finally, consider the following normative system of the two obligationsO�p j q� and
O�qj��.

1. NORMS = fn�� n�g,
2. ND =f ��V �n�� � �q� p�� � �F �n�� � �p � q��� ��V �n��� q� � �F �n��� q�g .

The potential diagnoses forFACTS = f�pg are��f ��v� � ��� fn�g� and��f ��v� �
�fn�g� fn�g�. In DIODE withapplicable norms, the minimal active set forFACTS=f�pg
is�a � fn�g. The two systems do not behave similarly, because inDIO(DE)� it is pos-
sible that the first obligation is violated.

There is an interesting connection between the latter set of obligationsof Example 16
and deontic detachment (or transitivity)O�� j �� � O�� j �� � O�� j ��. With deon-
tic detachment we can derive the obligationO�p j �� from the two premisesO�p j q�
andO�q j ��. Thus, if deontic detachment is valid, then the fact�p is a violation. In
DIODE, there is only one active set, that contains the second obligation. It is possible
that this obligation is fulfilled, and there are therefore no violations. On the other hand,
in DIO(DE)� every potential diagnosis contains violations.

4.3 The two-phase deontic logic2DL

The two-phase preference-based deontic logic 2DL [TvdT96,vdTT97b] can be used to
make the comparison betweenDIO(DE)� and classical deontic logics. In the modal pref-
erence semantics of 2DL, the accessibility relation is interpreted as a preference relation.
For example,w� � w� has to be read as ‘worldw� is at least as preferable as worldw�.’
It is a well-known problem from preference logics that we cannot define an obligation
Op as a strict preference ofp over�p, because two obligationsOp� andOp� would
conflict forp� � �p� and�p� � p�. This motivates the following weaker definition: an
obligationp is the absence of a preference of�p overp, see [TvdT96,vdTT97b].

Definition 17. (2DL) A KripkemodelM � hW��� V i consists ofW , a set of worlds,�
a binary transitiveand reflexiveaccessibility relation interpreted as a preference relation,
andV , a valuation of the propositions at the worlds. We haveM j� O��j�� iff

234 Leendert W.N. van der Torre et al.

1. for allw andw� such thatM�w j� � � � andM�w� j� �� � �, we havew� � w,
and

2. there are such worldsw andw�.

DIO(DE)� corresponds to deontics-based diagnosis based on the modal logic 2DL.
That is,DIO(DE)� corresponds to deontics-based diagnosis in Definition 11 in the pre-
vious section, where the logic LDD is replaced by 2DL. The correspondence follows di-
rectly from the preference-based semantics. An obligationO�� j �� in DIO(DE)� is a
preference of� � � (fulfilled norm) over�� � � (violated norm). This preference is
defined in two steps: in the base language the fulfilled and violated norm constants are
defined, and in the definition of potential diagnosis the set of applicable norms is mini-
mized. In 2DL, the preference is not represented by fulfilled and violated norm constants,
but defined directly in the preferential semantics. With other words,DIO(DE)� is the de-
ontic logic 2DL in which certain aspects (fulfillments and violations) are made explicit
with the use of a naming convention, i.e. to use namesni to denote norms.

5 Comparison

The similarity between the two approachesDDD andDIO(DE)� presented in this paper
is that exigent diagnosis is like reasoning about goals. Moreover, there are several tech-
nical similarities between the logics LDD and 2DL like the use of a contingency clause
(consistency checks) and lack of weakening of the consequent.

5.1 Exigent diagnosis and goal oriented reasoning

The main similarity betweenDDD andDIO(DE)� is that both are extensions ofDIODE

with concepts of qualitative decision theory. The extended diagnostic frameworkDDD

can be considered as a kind of qualitative decision framework for the following reason.
The exigent diagnosis ofDDD reports norms not yet fulfilled.Hence, it reports norms that
should be fulfilled in the future. These norms are the goals in decision theory, which are
represented byF predicates inDIO(DE)�.

We can discriminate two phases inDDD andDIO(DE)�. The first phase reasons about
all potential diagnosis and the second phase only about benevolent or exigent diagnoses.
This is in accordance with the argumentation in [TvdT96] about the two-phase treatment
of violated obligations. Moreover, Lang [Lan96] observes that his methodology in an
alternative approach to qualitative decision theory contains two phases. First generate
the preference relation from a set of desires, and then find the optimal feasible worlds,
and thus the optimal decision.

5.2 Properties of the logicsLDD and 2DL

There are two importantsimilarities between the logics LDD and 2DL, contingency clause
(consistency checks in the definition of obligation) and most importantly the lack of
weakening of the consequent. In this paper, we argued that these properties are essen-
tial for diagnosis. In [TvdT96] it is shown that these properties are essential to solve the
notorious contrary-to-duty paradoxes of deontic logic.

235The Role of Diagnosis and Decision Theory in Normative Reasoning

Contingency clauseVon Wright introduced the contingency clause, because he wanted
to formalize a deontic logic based on a theory of conditions: ‘to say that something ought
to be, or ought to be done, is to state that the being or doing of this thing is a necessary
condition (requirement) of something else’ [vW71]. InDDD the contingency clause is in-
troduced, because the consequent is restricted to design actions. In 2DL we have the the-
oremsO��j��� ������ andO��j��� �������. These consistency checks were
introduced,because they are necessary to solve the notoriouscontrary-to-dutyparadoxes
like the Forrester and Chisholm paradoxes.

A distinction is that in 2DL we haveO��j��� ���� �� whereas in LDD we only
haveO��j��� ��. Notice that in LDD obligations of typeO�pj�� can be valid. Even
if an obligation can never be violated in a model (the condition never holds), there are
situations where the obligation should hold. Consider the following example:all sales-
man responsible for at least one region must participate in the preparation of the annual
budget. It could be the case that, in a particular moment (i.e., in a model, if we consider
that been responsible for a region is a structural concept), there are no salesmen respon-
sible for regions (due, for example, to a ungoing reorganisation), i.e., the obligation is
always fulfilled. However, since this is a temporary situation, the organization could be
interested in keeping the rule (in order to avoid the necessity to change the normative
systems when the structure changes).

Lack of weakening of the consequentLack of weakening of LDD is a desirable prop-
erty in DDD�, because it avoids too many violations as discussed in Section 3.2. Lack
of weakening is used in 2DL because of the ctd paradoxes. Lack of weakening of the
consequent is a well-known theme in deontic logic. Ross, who gave the following coun-
terintuitive example of weakening of the consequent, called the Ross paradox: ‘if you
should mail the letter, then you should mail or burn the letter’ [Ros41]. A similar SDL
theorem has been questioned by Von Wright. He observed that ‘in a deontic logic which
rejects the implication from left to right in the equivalenceO�p�q�� �Op�Oq�while
retaining the implication from right to left, the paradoxes would not appear’ [vW81, p.7].
Beatty [Bea73] suggests that ‘descriptive sentences’ do not have closure under logical
implication. Jennings [Jen85] observes that ‘It has been suggested that a unary operator
O capable of bearing a deontic interpretation might be defined in a logic of preference
byO� �def �P��’, and that ‘if the preference logic has the natural distributive proper-
ties as von Wright advocates, the defined deontic necessity will be nonmonotonic’ (i.e.
does not have weakening).

Fulfilled goals and violations inLDD Reconsider the definition of obligation in LDD

O��j�� �def I�� � ����I���� ����struct���. The following definition discrim-
inates between violations and fulfillments of this definition of obligations in the deontic
logic LDD.

Definition 18. (LDD) The logic LDD is a minimal deontic logic as defined in Defini-
tion 9, extended with the following definitions.

236 Leendert W.N. van der Torre et al.

struct��� �def �� 	���
F ��j�� �def I��� ��
V ��j�� �def �I��� � ��
O��j�� �def F ��j��� V ��j�� � �struct���

Observe that��� �� � ������	��������. In DIO(DE)� only��� corresponds
to a fulfilled goal, in LDD also�� � ��. The intuition of the bi-implication in LDD is
as follows. In conditional obligations, ideally, if the condition is true, the action must be
performed (and the condition cannot be true if the action is not performed). A situation
where the condition is true and the action is not performed, is not an ideal one. Situations
where the condition is false, and the action is performed, are not in the scope of truth in
conditional obligations. We can analyze properties of the logic LDD by analyzing the
properties of the definitionsF andV . For example:

F ��j��� F ���j��� V ��j��� V ���j���
F ��j��� F ��j�� V ��j��� V �� � �j��
F ��j��� F ���j��
F ��j��� F �� � �j��

6 Conclusions

Classical approaches to a theory of diagnosis are based only on minimal diagnoses, and
as a consequence they are not suitable to support decision-making processes. That limi-
tation of classical approaches becomes more relevant when diagnosis is used in the con-
text of a design support framework. In this paper two distinct non-classical diagnosis
approaches have been presented,DDD andDIO(DE)�, both supporting the design of pro-
cedures/ process in organizations. Both are extensions ofDIODE, a deontic version of
classical diagnoses.

LDD and 2DL are two deontic logics that have been introduced in a theory of diagno-
sis. Both languages presented are based on propositional logic.We are aware that this is a
simplification of the real process/ procedures diagnosis. Usually the rules that guide de-
signs are generic ones, which have to be expressed in first-order logic. It is necessary to
extend the languages in order to capture those generic rules (see also [CL92]). Conflict-
ing obligationsis also a subject that it is important to consider in a framework that aims to
help a designer. Not only because conflicting sometimes occur in organizations, but also
due to alternative diagnoses. It is important to find a useful way to help the designer to
deal with alternative choices. Conflict resolution strategies from defeasible deontic logic
could be a possible answer, see [vdTT95,vdTT97a]. Casta˜neda’s proposal [Cas81] for
handling conflicting obligations is another possible approach.

References

[AGM85] C.E. Alchourrón, P. Gärdenfors, and D. Makinson. On the logic of theory change:
partial meet contraction and revision functions.Journal of Symbolic Logic, pages
510–530, 1985.

237The Role of Diagnosis and Decision Theory in Normative Reasoning

[And58] A.R. Anderson. A reduction of deontic logic to alethic modal logic.Mind, 67:100–
103, 1958.

[Bea73] H. Beatty. On evaluating deontic logics. InExact philosophy, pages 173–178. Reidel,
1973.

[BLWW95] R.W.H. Bons, R.M. Lee, R.W. Wagenaar, and C.D. Wrigley. Modeling inter-
organizational trade procedures using documentary Petri nets. InProceedings of the
27th Hawaii InternationalConferenceon System Sciences (HICSS’95), Hawaii, 1995.

[Bou94] C. Boutilier. Toward a logic for qualitative decision theory. InProceedings of
the Fourth International Conference on Principles of Knowledge Representation and
Reasoning (KR’94), pages 75–86, 1994.

[Cas81] H. Casta˜neda. The paradoxes of deontic logic: the simplest solution to all of them in
one fell swoop. InNew Studies in Deontic Logic. D. Reidel, 1981.

[Che80] B.F. Chellas.Modal Logic: An Introduction. Cambridge University Press, 1980.
[CL92] K.-T. Chen and R.M. Lee. Schematic evaluation of internal accounting control sys-

tems. TechnicalReport ResearchMonograph RM-1992-08-01,Euridis, Erasmus Uni-
versity Rotterdam, 1992.

[dKMR90] J. de Kleer, A.K. Mackwort, and R. Reiter. Characterizing diagnosis. InProceedings
AAAI’90, pages 324–330, Boston, MA, 1990.

[DP95] D. Dubois and H. Prade. Qualitative decision theory. InProceedings IJCAI’95, pages
1924–1930. Morgan Kaufmann, 1995.

[DW88] R Davis and H. Walter. Model based reasoning: troubleshouting. InExploring Ar-
tificial Intelligence: Survey talks from the National Conferences on Artificial Intelli-
gence, pages 297–346, San Mateo, California, 1988. Morgan Kaufmann.

[Han71] B. Hansson. An analysis of some deontic logics. InDeontic Logic: Introductionary
and Systematic Readings,pages 121–147.D. Reidel Publishing Company,Dordrecht,
Holland, 1971.

[Hor93] J.F. Horty. Deontic logic as founded in nonmonotonic logic.Annals of Mathematics
and Artificial Intelligence, 9:69–91, 1993.

[Jen85] R.E. Jennings. Can there be a natural logic?Synthese, 65:257–274, 1985.
[JS92] A.J.I. Jones and M. Sergot. Deontic logic in the representation of law: Towards a

methodology.Artificial Intelligence and Law, 1:45–64, 1992.
[KM92] H. Katsuno and A.O. Mendelzon. On the difference between updating a belief base

and revising it. In P. G¨ardenfors, editor,Belief Revision, pages 183–203. Cambridge
University Press, 1992.

[Lan96] J. Lang. Conditional desires and utilities - an alternative approach to qualitative de-
cision theory. InProceedings of the ECAI’96, pages 318–322, 1996.

[Rei87] R. Reiter. A theory of diagnosis from first principles.Artificial Intelligence, 32:57–
95, 1987.

[RF96a] P. Ramos and J.L. Fiadeiro. A deontic logic for diagnosis of organisational process
design. Technical report, Department of Informatics, Faculty of Sciences– University
of Lisbon, 1996.

[RF96b] P. Ramos and J.L. Fiadeiro. Diagnosis in organisational process design. Technical
report, Department of Informatics, Faculty of Sciences – University of Lisbon, 1996.

[Ros41] A. Ross. Imperatives and logic.Theoria, 7:53–71, 1941.
[RTvdT96] J.-F. Raskin, Y.-H. Tan, and L.W.N. van der Torre. How to model normative behavior

in Petri nets. InProceedings of the Modelage’96, Sesimbra, 1996.
[TH96] R. Thomason and R. Horty. Nondeterministic action and dominance: foundations for

planning and qualitative decision. InProceedings of the Sixth Conference on The-
oretical Aspects of Rationality and Knowledge (TARK’96), pages 229–250. Morgan
Kaufmann, 1996.

238 Leendert W.N. van der Torre et al.

[Tho81] R. Thomason. Deontic logic as founded on tense logic. In R. Hilpinen, editor,New
Studies in Deontic Logic, pages 165–176. D. Reidel, 1981.

[TvdT94a] Y.-H. Tan and L.W.N. van der Torre. DIODE: Deontic logic based on diagnosis from
first principles. InProceedings of the Workshop ‘Artificial normative reasoning’ of
the Eleventh European Conference on Artificial Intelligence (ECAI’94), Amsterdam,
1994.

[TvdT94b] Y.-H. Tan and L.W.N. van der Torre. Representing deontic reasoning in a diagnostic
framework. InProceedingsof the Workshopon Legal Applications of Logic Program-
ming of the Eleventh International Conference on Logic Programming (ICLP’94),
Genoa, Italy, 1994.

[TvdT96] Y.-H. Tan and L.W.N. van der Torre. How to combine ordering and minimizing in a
deontic logic based on preferences. InDeontic Logic, Agency and Normative Systems.
Proceedingsof the�eon’96. Workshopsin Computing, pages216–232.Springer Ver-
lag, 1996.

[vdT94] L.W.N. van der Torre. Violated obligations in a defeasible deontic logic. InProceed-
ings of the Eleventh European Conferenceon Artificial Intelligence (ECAI’94), pages
371–375. John Wiley� Sons, 1994.

[vdTT95] L.W.N. van der Torre and Y.H. Tan. Cancelling and overshadowing: two types of de-
feasibility in defeasible deontic logic. InProceedingsof the Fourteenth International
Joint Conference on Artificial Intelligence (IJCAI’95). Morgan Kaufman, 1995.

[vdTT97a] L.W.N. van der Torre and Y.H. Tan. The many faces of defeasibility in defeasible
deontic logic. In D. Nute, editor,Defeasible Deontic Logic. Kluwer, 1997. To appear.

[vdTT97b] L.W.N. van der Torre and Y.H. Tan. Prohairetic deontic logic (PDL). InProceedings
of AAAI spring symposium on qualitative preferences in deliberation and practical
reasoning, 1997. To appear.

[vF73] B.C. van Fraassen. Values and the heart command.Journal of Philosophy, 70:5–19,
1973.

[vW71] G.H. von Wright. Deontic logic and the theory of conditions. InDeontic Logic: In-
troductory and Systematic Readings, pages 159–177. D.Reidel, Dordrecht, 1971.

[vW81] G.H. von Wright. On the logic of norms and actions. InNew Studies of Deontic Logic.
D.Reidel, Dordrecht, 1981.

239The Role of Diagnosis and Decision Theory in Normative Reasoning

Contextual Deontic Logic

Leendert W.N. van der Torre1 and Yao-Hua Tan2

1 Max-Planck-Institute for Computer Science
Im StadWald, D-66123 Saarbrücken, Germany

torre@mpi-sb.mpg.de
2 Euridis, Erasmus University Rotterdam

P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
ytan@euridis.fbk.eur.nl

Abstract. In this article we propose contextual deontic logic. Contex-
tual obligations are written as O(α | β \γ), and are to be read as ‘α
should be the case if β is the case, unless γ is the case’. The unless clause
is analogous to the justification in Reiter’s default rules. We show how
contextual obligations can be used to solve certain aspects of contrary-
to-duty paradoxes of dyadic deontic logic.

1 Contrary-to-Duty Reasoning

In recent years several researchers have argued that deontic logic is a useful tool
to model reasoning in (legal) knowledge-based systems
[JS92,RL92,Smi94,Roy96]. The problem, however, is that deontic logic is ham-
pered by the so-called deontic paradoxes. The contrary-to-duty paradoxes like
the notorious Chisholm paradox are the classic benchmark problems of deontic
logics, which have initiated developments of monadic deontic logics [Chi63,For84],
dyadic deontic logics [Tom81] and temporal deontic logics [vE82]. In this article
we analyze certain aspects of the paradoxes in dyadic deontic logics, in which an
obligation O(α|β) is read as ‘α should be the case if β is the case.’ An obligation
O(α |β) is a contrary-to-duty obligation of the primary obligation O(α1 |β1) if
and only if β ∧ α1 is inconsistent, as represented in Figure 1.

O(α1|β1)

inconsistent

O(α|β)
A

AKA
AU

Fig. 1. O(α|β) is a contrary-to-duty obligation of O(α1|β1)

The following example illustrates that the derivation of the dyadic obligation
O(α1|¬α2) from the obligation O(α1 ∧ α2|>) is a fundamental problem under-
lying several contrary-to-duty paradoxes. Hence, the underlying problem of the
contrary-to-duty paradoxes is that a contrary-to-duty obligation can be derived
from its primary obligation.

J.-J. Ch. Meyer, P.-Y. Schobbens (Eds.): Formal Methods of Agents, LNAI 1760, pp. 240–251, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Contextual Deontic Logic 241

Example 1. (Contrary-to-Duty Paradoxes) Assume a dyadic deontic logic
that validates at least substitution of logical equivalents and the following (in-
tuitively1 valid) inference patterns Restricted Strengthening of the Antecedent
(rsa), Weakening of the Consequent (wc), Conjunction (and) and a version of
Deontic Detachment (dd′), in which

↔
3is a modal operator (that will be explained

later) and
↔
3φ is true for all consistent propositional formulas φ.

rsa :
O(α|β1),

↔
3(α ∧ β1 ∧ β2)

O(α|β1 ∧ β2)
wc :

O(α1|β)
O(α1 ∨ α2|β)

and :
O(α1|β), O(α2|β)

O(α1 ∧ α2|β)
dd′ :

O(α|β), O(β|γ)
O(α ∧ β|γ)

Furthermore, consider the sets

S = {O(¬k|>), O(g ∧ k|k)}
S′ = {O(a|>), O(t|a), O(¬t|¬a)}

S′′ = {O(¬a|>), O(a∨ p|>), O(¬p|a)}
where > stands for any tautology. S formalizes the Forrester paradox [For84]
when k is read as ‘killing someone’ and g ∧ k as ‘killing someone gently,’ S′

formalizes the Chisholm paradox [Chi63] when a is read as ‘a certain man going
to the assistance of his neighbors’ and t as ‘the man telling his neighbors that he
will come,’2 and finally, S′′ formalizes the apples-and-pears example [TvdT96]
when a is read as ‘buying apples’ and p as ‘buying pears.’ The last obligation of
each premise set is a contrary-to-duty obligation of the first obligation of the set,
because its antecedent is contradictory with the consequent of the latter. The
paradoxical consequences of the sets of obligations are represented in Figure 2.
The underlying problem of the counterintuitive derivations is the derivation of
the obligation O(α1 |¬α2) from O(α1 ∧ α2 |>) by wc and rsa: respectively the
derivation of O(¬(g∧ k)|k) from O(¬k|>), O(t|¬a) from O(a∧ t|>), and O(p|a)
from O(¬a∧ p|>).

1 For example, we would like to use strengthening of the antecedent to derive ‘you
should not kill in the morning’ from ‘you should not kill,’ and weakening of the
consequent to derive ‘you should not kill’ from ‘you should not kill and drive on the
right side of the street.’ However, besides problems created by contrary-to-duty rea-
soning there are also problems related to dilemma reasoning. For example, one may
argue that the derivation of O(p|¬(p ∧ q)) from the set {O(p|>), O(q|>)} is coun-
terintuitive. This could be an argument saying that strengthening of the antecedent
is counterintuitive. We argued in [TvdT96,vdTT97b] that these dilemma problems
should be analyzed separately from contrary-to-duty problems. In this paper, we
only analyze so-called minimal deontic logics in which dilemmas are consistent. For
the formalization of the no-dilemma assumption, see [TvdT96,vdTT97b].

2 The original Chisholm set also contains the fact that the man does not go to the assis-
tance. However, the addition of this fact does not have any consequences, because we
do not derive monadic obligations from dyadic ones (so-called factual detachment).
We do not accept factual detachment, because it results in so-called pragmatic odd-
ities, see [PS94].

242 Leendert W.N. van der Torre and Yao-Hua Tan

O(¬k|>)

O(¬(g ∧ k)|>)
wc

O(¬(g ∧ k)|k)
rsa

O(g ∧ k|k)

O(¬(g ∧ k) ∧ (g ∧ k)|k)
and

O(t|a) O(a|>)

O(a ∧ t|>)
dd′

O(t|>)
wc

O(t|¬a)
rsa

O(¬t|¬a)

O(t ∧ ¬t|¬a)
and

O(¬a|>) O(a ∨ p|>)

O(¬a ∧ p|>)
and

O(p|>)
wc

O(p|a)
rsa

O(¬p|a)

O(p ∧ ¬p|a)
and

Fig. 2. Three contrary-to-duty paradoxes

There are two types of dyadic deontic logics, dependent on how the an-
tecedent is interpreted. The first type, as advocated by Chellas [Che74,Alc93], de-
fines a dyadic obligation in terms of a monadic obligation by O(α|β) =def β > Oα,
where ‘>’ is a strict implication. These dyadic deontic logics have strengthen-
ing of the antecedent, but they cannot represent the contrary-to-duty paradoxes
in a consistent way. Dyadic deontic logics of the second type, as introduced
by Hansson [Han71] and further investigated by Lewis [Lew74], do not have
strengthening of the antecedent and therefore they can represent the paradoxes.
Intuitively, the solution of these logics is that the antecedent of the dyadic obliga-
tions is interpreted as a kind of ‘context’. For example, in the Forrester paradox
the derivation of the obligation O(¬(g ∧ k) |k) from O(¬k |>) is counterintu-
itive, because in the context where you kill, it is not obligatory not to kill gently
(whereas this is obligatory in the most general context). Because there are many
different problems related to the Forrester and Chisholm paradoxes, we restrict
our analysis to the apples-and-pears example. In the contextual interpretation
of the apples-and-pears example, the derivation of the obligation O(p |a) from
O(¬a|>) and O(a∨p|>) is counterintuitive, because in the context where apples
are bought, it is not obligatory to buy pears (whereas this is obligatory in the
most general context).

In this paper, we propose a solution for the paradoxes based on contextual
obligations. A contextual obligation, written as O(α |β \γ), is an extension of
a dyadic obligation O(α |β) with an unless clause γ. The unless clause can be
compared to the justification in a Reiter default ‘α is normally the case if β is
the case unless γ is the case,’ written as β : ¬γ/α [Rei80]. For example, ‘birds fly
unless they are penguins’ can be represented by b : ¬p/f , and ‘penguins do not
fly’ by (b ∧ p) : >/¬f . Hence, the unless clause is analogous to the justification
of a Reiter default, which means that it formalizes a kind of consistency check.

This paper is organized as follows. In Section 2 we give the solution of the
apples-and-pears problem in labeled deontic logic Ldl. In Section 3 we introduce
contextual obligations O(α|β\γ), and we show how they solve the apples-and-

Contextual Deontic Logic 243

pears problem. Finally, in Section 4 we mention some interesting connections
with logics of defeasible reasoning and qualitative decision theory.

2 Labeled Obligations

In [vdTT95] we introduced labeled deontic logic Ldl, a logic inspired by contex-
tual logic [BT96]. Labeled obligations O(α|β)L can roughly be read as ‘α ought
to be the case, if β is the case, because of L.’

2.1 Implicit and Explicit Obligations

To illustrate the distinction between implicit and explicit obligations, we recall
the well-known distinction between implicit and explicit knowledge. The latter
distinction originates in the logical omniscience problem: in principle, an agent
cannot know all logical consequences of his knowledge. The benchmark example
is that knowledge of the laws of mathematics does not imply knowledge of the
theorem of Fermat. That is, an agent does not explicitly know the theorem of
Fermat, she only implicitly knows it. Analogously, explicit obligations are not
deductively closed, in contrast to implicit obligations.

Several researchers make a distinction between imperatives and obligations,
although many researchers hold them as essentially the same. Explicit obligation
can be used to formalize imperatives, and implicit obligations can be used to
formalize the ‘usual’ type of obligations. The idea behind labeled obligations is
to represent the explicit obligation, of which the implicit obligation is derived,
in the label. The label is the reason for the obligation. If we make the distinction
between imperatives and obligations, then the label L of the obligation O(α|β)L

represents the imperatives from which the obligation is derived. This explains
our reading of the label obligation O(α|β)L: ‘α ought to be the case if β is the
case, because of the imperatives L.’

We can use labeled deontic logic to solve the contrary-to-duty paradoxes,
because we use the label to check that a derived obligation is not a contrary-
to-duty obligation of its premises. Remember that we can test for CTD with
a consistency check, see Figure 1. The label of an obligation represents the
consequents of the premises from which the obligation is derived. In labeled
deontic logic we use a consistency check of the label of the obligation with
its antecedent. If the label and the antecedent are consistent, then the derived
obligation is not a contrary-to-duty of its premises.

2.2 Labeled Obligations

In this section we introduce a deontic version of a labeled deductive system as
it was introduced by Gabbay in [Gab91]. The language of dyadic deontic logic
is enriched by allowing labels in the dyadic obligations. Roughly speaking, the
label L is a record of the consequents of all the premises that are used in the
derivation of O(α|β).

244 Leendert W.N. van der Torre and Yao-Hua Tan

Definition 2. (Language of Ldl) The language of labeled deontic logic is a
propositional base logic L and labeled dyadic conditional obligations O(α |β)L,
with α and β sentences of L, and L a set of sentences of L.

Each labeled obligation occurring as a premise has its own consequent in its
label. This represents that the premises are explicit obligations, because it is
derived ‘from itself.’

Definition 3. (Premises of Ldl) A labeled obligation which has its own con-
sequent as its label is called a premise.

We assume that the antecedent and the label of an obligation are always
consistent. The label of an obligation derived by an inference rule is the union
of the labels of the premises used in this inference rule. Below are some labeled
versions of inference schemes. We write

↔
3 L for a consistency check of a set of

formulas.

rsaV :
O(α | β1)L,

↔
3 (L ∪ {β1 ∧ β2})

O(α | β1 ∧ β2)L

wcV :
O(α1 | β)L

O(α1 ∨ α2 | β)L

rdd′V :
O(α|β)L1, O(β|γ)L2 ,

↔
3 (L1 ∪ L2 ∪ {γ})

O(α ∧ β | γ)L1∪L2

randV :
O(α1 | β)L1 , O(α2 | β)L2 ,

↔
3 (L1 ∪ L2 ∪ {β})

O(α1 ∧ α2 | β)L1∪L2

Informally, the premises used in the derivation tree are not violated by the
antecedent of the derived obligation, or, alternatively, the derived obligation
is not a contrary-to-duty obligation of these premises. We say that the labels
formalize the assumptions on which an obligation is derived, and the consistency
check

↔
3 checks whether the assumptions are violated. The following example

illustrates that the labeled deductive system gives the intuitive reading of the
Apples-and-Pears example.

Example 4. (Apples-and-Pears, continued) Assume a labeled deductive sys-
tem that validates at least the inference patterns rsaV , randV and wcV . Con-
sider the premise set of labeled obligations S = {O(a ∨ p |>)a∨p, O(¬a |>)¬a}
as premise, where a can be read as ‘buying apples’ and p as ‘buying pears’. In
Figure 3 below it is shown how the derivation in Figure 2 is blocked.

The apples-and-pears example in labeled deontic logic showed an important
property of dyadic deontic logics with a contextual interpretation of the an-
tecedent, namely that the context is restricted to non-violations of premises. If
the antecedent is a violation, i.e. if the derived obligation would be a contrary-to-
duty obligation, then the derivation is blocked. Obviously, as a logic the labeled
deductive system is quite limited, if only because it lacks a semantics. In the
following section, we consider contextual deontic logic, which has an intuitive
preference-based semantics.

Contextual Deontic Logic 245

O(a ∨ p|>){a∨p} O(¬a|>){¬a}
O(¬a ∧ p|>){a∨p,¬a}

and

−− −− −−− −− (sa/rsa)
O(¬a ∧ p|a){a∨p,¬a}

O(p|a){a∨p,¬a}
wc

O(a ∨ p|>){a∨p} O(¬a|>){¬a}
O(¬a∧ p|>){a∨p,¬a}

and

O(p|>){a∨p,¬a}
wc

−− −−− −− (sa/rsa)
O(p|a){a∨p,¬a}

Fig. 3. The apples-and-pears example

3 Contextual Obligations

Contextual obligations are formalized in Boutilier’s modal preference3 logic
CT4O, a bimodal propositional logic of inaccessible worlds. For the details and
completeness proof of this logic see [Bou94a]. In the logic we abstract from ac-
tions, time and individuals.

Definition 5. (CT4O) The logic CT4O is a propositional bimodal system with
the two normal modal connectives 2 and

←
2 . Dual ‘possibility’ connectives 3 and

←
3are defined as usual and two additional modal connectives

↔
2 and

↔
3are defined

as follows.

3α =def ¬2¬α
↔
2α =def 2α∧←2α

←
3α =def ¬ ←2¬α

↔
3α =def 3α∨←3α

CT4O is axiomatized by the following axioms and inference rules.

K 2(α → β) → (2α → 2β) Nes From α infer
↔
2α

K′
←
2 (α → β) → (

←
2α →←2β) MP From α → β and α infer β

T 2α → α
4 2α → 22α

H
↔
3 (2α∧ ←2β) →↔2 (α ∨ β)

Kripke models M = 〈W,≤, V 〉 for CT4O consist of W , a set of worlds, ≤, a
binary transitive and reflexive accessibility relation, and V , a valuation of the
propositional atoms in the worlds. The partial pre-ordering ≤ expresses prefer-
ences: w1 ≤ w2 iff w1 is as preferable as w2. The modal connective 2 refers to
accessible worlds and the modal connective

←
2 to inaccessible worlds.

M, w |= 2α iff ∀w′ ∈ W if w′ ≤ w, then M, w′ |= α

3 The use of preferences follows from the fact that an obligation Oα is interpreted
as some kind of choice between α and ¬α. This idea of deontic choice results in
utilitarian (preference-based) semantics [Jen74]. It should be noted that preference-
based semantics are closely related to semantics based on choice functions and other
classical semantics [Lew74].

246 Leendert W.N. van der Torre and Yao-Hua Tan

M, w |=←2α iff ∀w′ ∈ W if w′ 6≤ w, then M, w′ |= α

Contextual obligations are defined in CT4O as follows. In this paper, we do
not discuss the properties of >s but we focus on the properties of the contextual
obligations.4

Definition 6. (Cdl) The logic Cdl is the logic CT4O extended with the fol-
lowing definitions of contextual obligations. The contextual obligation ‘α should
be the case if β is the case unless γ is the case’, written as O(α|β\γ), is defined
as a strong preference of α ∧ β ∧ ¬γ over ¬α ∧ β.

α1 >s α2 =def

↔
2 (α1 → 2¬α2)

O(α|β\γ) =def (α ∧ β ∧ ¬γ) >s (¬α ∧ β)
=

↔
2 ((α ∧ β ∧ ¬γ) → 2(β → α))

Oc(α|β\γ) =def (α ∧ β ∧ ¬γ) >s (¬α ∧ β)∧ ↔3 (α ∧ β ∧ ¬γ)
Occ(α|β\γ) =def (α ∧ β ∧ ¬γ) >s (¬α ∧ β)∧ ↔3 (α ∧ β ∧ ¬γ)∧ ↔3 (¬α ∧ β)

From the definitions follows immediately the following satisfiability condi-
tions for the modal connectives

↔
2: M, w |=↔2 α iff ∀w′ ∈ W M, w′ |= α and

↔
3:

M, w |=↔3 α iff ∃w′ ∈ W M, w′ |= α. As a consequence, the truth value of a
contextual obligation does not depend on the world in which the obligation is
evaluated. For a model M = 〈W,≤, V 〉 we have M |= O(α |β \γ) (i.e. for all
worlds w ∈ W we have M, w |= O(α|β\γ)) iff there is a world w ∈ W such that
M, w |= O(α|β\γ).

The following proposition shows the truth conditions of contextual obliga-
tions.

Proposition 7. (Contextual Obligation) LetM = 〈W,≤, V 〉 be a CT4O
model and let | α | be the set of worlds that satisfy α. For a world w ∈ W ,
we have M, w |= O(α|β\γ) iff for all w1 ∈|α ∧ β ∧ ¬γ| and all w2 ∈|¬α ∧ β| we
have w2 6≤ w1.

Proof Follows directly from the definition of >s.

The following proposition shows several properties of contextual obligations.

Proposition 8. (Theorems of Cdl) The logic CT4O validates the following
theorems.

4 The preference relation >s is quite weak. For example, it is not anti-symmetric (we
cannot derive ¬(α2 >s α1) from α1 >s α2 and it is not transitive (we cannot derive
α1 >s α3 from α1 >s α2 and α2 >s α3). The lack of these properties is the result of
the fact that we do not have connected orderings. Moreover, this a-connectedness is
crucial for our preference-based deontic logics, see [TvdT96,vdTT97b].

Contextual Deontic Logic 247

SA: O(α|β1\γ) → O(α|β1 ∧ β2\γ)
WC: O(α1 ∧ α2|β\γ) → O(α1|β\γ ∨ ¬α2)
WT: O(α|β\γ1) → O(α|β\γ1 ∨ γ2)
AND: (O(α1|β\γ) ∧ O(α2|β\γ)) → O(α1 ∧ α2|β\γ)
RSA: (Oc(α|β1\γ)∧ ↔3(α ∧ β1 ∧ β2 ∧ ¬γ)) → Oc(α|β1 ∧ β2\γ)
RAND: (Oc(α1|β\γ) ∧ Oc(α2|β\γ)∧ ↔

3 (α1 ∧ α2 ∧ β ∧ ¬γ)) → Oc(α1 ∧ α2|β\γ)

Proof The theorems are proven in the preferential semantics. Consider WC.
Assume M |= O(α1∧α2|β\γ). Let W1 =|α1∧α2∧β∧¬γ| and W2 =|¬(α1∧α2)∧β|,
and w2 6≤ w1 for w1 ∈ W1 and w2 ∈ W2. Moreover, let W ′

1 =|α1∧β∧¬(γ∨¬α2)|
and W ′

2 =| ¬α1 ∧ β |. We have w2 6≤ w1 for w1 ∈ W ′
1 and w2 ∈ W ′

2, because
W1 = W ′

1 and W ′
2 ⊆ W2. Thus, M |= O(α1|β\γ ∨¬α2). Verification of the other

theorems is left to the reader.5

To illustrate the properties of Cdl, we compare it with Bengt Hansson’s mini-
mizing dyadic deontic logic. First we recall some well-known definitions and prop-
erties of this logic. In Bengt Hansson’s classical preference semantics [Han71], as
studied by Lewis [Lew74], a dyadic obligation, which we denote by OHL(α|β),
is true in a model iff ‘the minimal (or preferred) β worlds satisfy α’. A weaker
version of this definition, which allows for moral dilemmas, is that Ow

HL(α |β)
is true in a model iff there is an equivalence class of minimal (or preferred) β
worlds that satisfy α.

Definition 9. (Minimizing Obligation) Let M = 〈W,≤, V 〉 be a Kripke
model and |α| be the set of all worlds of W that satisfy α. The weak Hansson-
Lewis obligation ‘α should be the case if β is the case’, written as Ow

HL(α|β), is
defined as follows.

Ow
HL(α|β) =def

↔
3 (β ∧ 2(β → α))

The model M satisfies the weak Hansson-Lewis obligation ‘α should be the
case if β is the case’, written as M |= Ow

HL(α|β), iff there is a world w1 ∈|α∧ β|
such that for all w2 ∈|¬α∧β| we have w2 6≤ w1. The following proposition shows
that the expression Ow

HL(α|β) corresponds to a weak Hansson-Lewis minimizing
obligation. For simplicity, we assume that there are no infinite descending chains.

Proposition 10. Let M = 〈W,≤, V 〉 be a CT4O model, such that there are no
infinite descending chains. As usual, we write w1 < w2 for w1 ≤ w2 and not
w2 ≤ w1, and w1 ∼ w2 for w1 ≤ w2 and w2 ≤ w1. A world w is a minimal β-
world, written as M, w |=≤ β, iff M, w |= β and for all w′ < w holds M, w′ 6|= β.
A set of worlds is an equivalence class of minimal β-worlds, written as Eβ, iff
there is a w such that M, w |=≤ β and Eβ = {w′ | M, w′ |= β and w ∼ w′}. We
have M |= Ow

HL(α|β) iff there is an Eβ such that Eβ ⊆|α|.
5 This proposition also shows an important advantage of the axiomatisation of the

deontic logic in a underlying preference logic: the properties of our dyadic obligations
can simply be proven by proving (un)derivability in CT4O.

248 Leendert W.N. van der Torre and Yao-Hua Tan

Proof ⇐ Follows directly from the definitions. Assume there is a w such that
M, w |=≤ β and Eβ = {w′ | M, w′ |= β and w ∼ w′} and Eβ ⊆|α |. For all
w2 ∈|¬α ∧ β| we have w2 6≤ w.

⇒ Assume that there is a world w1 ∈|α ∧ β| such that for all w2 ∈|¬α ∧ β|
we have w2 6≤ w1. Let w be a minimal β-world such that M, w |=≤ β and
w ≤ w1 (that exists because there are no infinite descending chains), and let
Eβ = {w′ | M, w′ |= β and w ∼ w′}.

Now we are ready to compare contextual deontic logic with Bengt Hansson’s
dyadic deontic logic. The following proposition shows that under a certain con-
dition, the contextual obligation O(α|β\γ) is true in a model if and only if a
set of the weak Hansson-Lewis minimizing obligations Ow

HL(α|β′) is true in the
model.

Proposition 11. Let M = 〈W,≤, V 〉 be a CT4O model, that has no worlds that
satisfy the same propositional sentences. Hence, we identify the set of worlds with
a set of propositional interpretations, such that there are no duplicate worlds. We
have M |= Occ(α|β\γ) iff there are α ∧ β ∧ ¬γ and ¬α ∧ β worlds, and for all
propositional β′ such that M |=↔2 (β′ → β) and M 6|=↔2 (β′ → γ), we have
M |= Ow

HL(α|β′).

Proof ⇒ Follows directly from the semantic definitions. ⇐ Every world is char-
acterized by a unique propositional sentence. Let w denote the sentence that
uniquely characterizes world w. Proof by contraposition. If M 6|= Occ(α |β\γ),
then there are w1, w2 such that M, w1 |= α ∧ β ∧ ¬γ and M, w2 |= ¬α ∧ β and
w2 ≤ w1. Choose β′ = w1 ∨ w2. The world w2 is an element of the preferred β′

worlds, because there are no duplicate worlds. (If duplicate worlds are allowed,
then there could be a β′ world w3 which is a duplicate of w1, and which is strictly
preferred to w1 and w2.) We have M, w2 6|= α and therefore M 6|= Ow

HL(α|β′),
The following example illustrates that contextual deontic logic solves the

contrary-to-duty paradoxes.

ideal situation

sub-ideal situations

&%
'$ ������ &%

'$

HHHHHY

&%
'$¬a, p

¬a,¬p

a

Fig. 4. Semantic solution in contextual deontic logic

Contextual Deontic Logic 249

Example 12. (Apples-and-Pears, continued) Consider the premise set of
contextual obligations S = {Oc(a ∨ p|>\⊥), Oc(¬a|>\⊥)}. The crucial obser-
vation is that we do not have Occ(p|a\γ) for any γ, and a typical countermodel
is the model in Figure 4. This figure should be read as follows. Each circle rep-
resents an equivalence class of worlds, that satisfy the propositions written in
the circle. The arrows represent strict preferences for all worlds in the circle. We
have S |= Oc(p|>\a), as is shown in Figure 5, which expresses that pears should
be bought, unless apples are bought. From the contextual obligation Oc(p|>\a)
we cannot derive O(p|a\a) due to the unless clause.

Oc(a∨ p|>\⊥) Oc(¬a|>\⊥)

Oc(¬a ∧ p|>\⊥)
and

Oc(p|>\a)
wc

−− −− −− no (rsa)
Oc(p|a\a)

Fig. 5. Proof-theoretic solution in contextual deontic logic

It is easily verified that the contextual obligations also solve the other
contrary-to-duty paradoxes in Example 1.

4 Conclusions

Recently, several researchers have noticed a remarkable resemblance between
logics of qualitative decision theory, logics of desires and deontic logic, see for
example [Bou94b,Lan96]. In future research, we will investigate whether contex-
tual deontic logic proposed here can be applied to model qualitative decision
theory, and which extensions are needed (see [TvdT96] for possible extensions).

In the introduction, we already observed that we can also define contextual
defaults ‘α is usually the case if β is the case unless γ is the case,’ written as
β : ¬γ/α. The main distinction between Cdl and Reiter’s default logic is that
contextual obligations are not used as inference rules. In Cdl, we derive con-
textual obligations from contextual obligations, which can be compared to the
derivation of defaults from defaults. A set of defaults ∆ derives a default δ iff
the set of extensions of 〈∆, F 〉 is the same as the set of extensions of 〈∆∪{δ}, F 〉
for every set of facts F . In Reiter’s default logic, defaults are used to generate
extensions. A similarity between Cdl and default logic is that contextual obliga-
tions as well as defaults express preferences. Reiter’s defaults express preferences
on assumptions. We can view the default β:¬γ

α as expressing the preference that
models which make α∧β true are more preferred than models that make ¬α∧β
true, and this preference is cancelled for models that make γ true.

250 Leendert W.N. van der Torre and Yao-Hua Tan

Contextual obligations give rise to a kind of defeasibility, in the sense that the
obligations lack unrestricted strengthening of the antecedent (the typical prop-
erty of defeasible conditionals [Alc93]). A non-monotonic (defeasible) aspect is
necessary for a satisfactory analysis of the contrary-to-duty paradoxes. However,
it is important to notice that this defeasibility related to contextual reasoning is
in fundamentally different from the defeasibility related to specificity or prima
facie obligations, see [vdTT95,vdTT97a]. An important inference pattern in our
analysis of the contrary-to-duty paradoxes is weakening of the consequent. Weak-
ening of the consequent plays an important role in default logic too, as shown
by the normally-presumably logic of Veltman [Vel96]. The normally defaults do
not have weakening of the consequent, whereas the presumably defaults do.

References

Alc93. C. E. Alchourrón. Philosophical foundations of deontic logic and the logic of
defeasible conditionals. In Deontic Logic in Computer Science: Normative
System Specification, pages 43–84. John Wiley & Sons, 1993.

Bou94a. C. Boutilier. Conditional logics of normality: a modal approach. Artificial
Intelligence, 68:87–154, 1994.

Bou94b. C. Boutilier. Toward a logic for qualitative decision theory. In Proceedings
of the Fourth International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR’94), pages 75–86, 1994.

BT96. Philippe Besnard and Yao-Hua Tan. A modal logic with context-dependent
inference for non-monotonic reasoning. In Proceedings of ECAI96, 1996.

Che74. B.F. Chellas. Conditional obligation. In Logical Theory and Semantical
Analysis, pages 23–33. D. Reidel Publishing Company, Dordrecht, Holland,
1974.

Chi63. R.M. Chisholm. Contrary-to-duty imperatives and deontic logic. Analysis,
24:33–36, 1963.

For84. J.W. Forrester. Gentle murder, or the adverbial Samaritan. Journal of
Philosophy, 81:193–197, 1984.

Gab91. D. Gabbay. Labelled deductive systems. Technical report, Centrum fur
Informations und Sprachverarbeitung, Universitat Munchen, 1991.

Han71. B. Hansson. An analysis of some deontic logics. In Deontic Logic: Intro-
ductionary and Systematic Readings, pages 121–147. D. Reidel Publishing
Company, Dordrecht, Holland, 1971.

Jen74. R.E. Jennings. A utilitarian semantics for deontic logic. Journal of PHhili-
sophical Logic, 3:445–465, 1974.

JS92. A.J.I. Jones and M. Sergot. Deontic logic in the representation of law:
Towards a methodology. Artificial Intelligence and Law, 1:45–64, 1992.

Lan96. J. Lang. Conditional desires and utilities - an alternative approach to qual-
itative decision theory. In Proceedings of the ECAI’96, 1996.

Lew74. D. Lewis. Semantic analysis for dyadic deontic logic. In Logical Theory and
Semantical Analysis, pages 1–14. D. Reidel Publishing Company, Dordrecht,
Holland, 1974.

PS94. H. Prakken and M.J. Sergot. Contrary-to-duty imperatives, defeasibility
and violability. In Proceedings of the Second Workshop on Deontic Logic in
Computer Science (Deon’94), Oslo, 1994. To appear in: Studia Logica.

Contextual Deontic Logic 251

Rei80. R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132,
1980.

RL92. Y.U. Ryu and R.M. Lee. Defeasible deontic reasoning and its applications
to normative systems. Technical report, Euridis, 1992.

Roy96. L. Royakkers. Representing Legal Rules in Deontic Logic. PhD thesis,
University of Brabant, 1996.

Smi94. T. Smith. Legal Expert Systems: Discussion of Theoretical Assumptions.
PhD thesis, University of Utrecht, 1994.

Tom81. J.E. Tomberlin. Contrary-to-duty imperatives and conditional obligation.
Noûs, 16:357–375, 1981.

TvdT96. Y.-H. Tan and L.W.N. van der Torre. How to combine ordering and mini-
mizing in a deontic logic based on preferences. In Deontic Logic, Agency and
Normative Systems, Proceedings of the third workshop on deontic logic in
computer science (∆EON’96), pages 216–232. Springer Verlag, Workshops
in Computer Science, 1996.

vdTT95. L.W.N. van der Torre and Y.H. Tan. Cancelling and overshadowing: two
types of defeasibility in defeasible deontic logic. In Proceedings of the Four-
teenth International Joint Conference on Artificial Intelligence (IJCAI’95),
pages 1525–1532. Morgan Kaufman, 1995.

vdTT97a. L.W.N. van der Torre and Y.H. Tan. The different faces of defeasibility
in defeasible deontic logic. In D. Nute, editor, Defeasible Deontic Logic.
Kluwer, 1997. To appear.

vdTT97b. L.W.N. van der Torre and Y.H. Tan. Prohairetic deontic logic and qualita-
tive decision theory. In Proceedings of AAAI spring symposium, 1997. To
appear.

vE82. J. van Eck. A system of temporally relative modal and deontic predicate
logic and its philosophical applications. Logique et Analyse, 99,100, 1982.

Vel96. F. Veltman. Defaults in update semantics. Journal of Philosophical Logic,
25:221–261, 1996.

Author Index

Almeida Móra de, Iara, 173
Ambroszkiewicz, Stanislaw, 8

Bell, John, 20
Brazier, Frances, 36

Castelfranchi, Cristiano, 74
Conrad, Stefan, 57
Conte, Rosaria, 74

Denti, Enrico, 90
Dignum, Frank, 103
Doherty, Patrick, 187
Duarte, Carlos, 123
Dunin-Kȩplicz, Barbara, 36, 143

Errico, Bruno, 157

Fiadeiro, José Luiz, 216
Fröhlich, Peter, 173

Huang, Zhisheng, 20

Komar, Jan, 8

Meyer, John-Jules Ch. 1, 187

Nejdl, Wolfgang, 173

Omicini, Andrea, 90

Pedone, Roberto, 74
Prakken, Henry, 202

Radzikowska, Anna, 143
Ramos, Pedro, 216

Saake, Gunter, 57
Schobbens, Pierre-Yves, 1
Schroeder, Michael, 173

Tan, Yao-Hua, 216, 241
Torre, van der, L.W.N., 216, 241
Treur, Jan, 36
Türker, Can, 57

Verbrugge, Rineke, 36

	Lecture Notes in Artificial Intelligence
	Formal Modelsof Agents
	Preface
	Table of Contents

	Intelligent Agents
	Formal Models
	The ModelAge Project
	About This Book
	The Workshop
	Description of the Papers

	Introduction
	Dynamic System
	Agent Model
	Perception
	 Desire
	Rational Behavior
	Knowledge and Belief
	Reasoning Process
	Intentions

	Explanation of the Paradox
	Conclusion
	Introduction
	Intention and Commitment Strategies
	A Modelling Framework for Multi-agent Systems
	Task Composition
	Information Exchange between Tasks
	Sequencing of Tasks
	Delegation of Tasks
	Knowledge Structures

	Global Structure of a Generic Agent
	Task Composition
	Information Exchange
	Task Sequencing
	Knowledge Structures
	Building a Real Agent

	A Model for Rational Agents with Motivational Attitudes
	Rational Agents with Motivational Attitudes
	A Refined Model of Own Process Control
	The Global Reasoning Strategy
	Further Refinement of Components

	Modelling Commitment Strategies
	Specification of Commitment Strategies
	An Example: Meeting Scheduling

	Discussion and Conclusions
	Acknowledgments
	References
	Introduction
	A Plan-Based View of Social Dependence and the Applicability of PD-Game
	PD-Game Properties
	Main Theses
	Interdependence in Action
	PD-Game and Mutual Dependence
	Reciprocal Dependence and Bargaining

	Cooperation Is More than Honest Bargaining
	Concluding Remarks: Why Bother with Feasible Cooperation?
	References
	Introduction
	Enhancing the Communication Abstraction
	The Reaction Model
	Reactions as Transactions

	Examples
	Transmission of an Encrypted Message
	The Dining Philosophers
	Philosophers Dining with Labelled Forks

	Conclusions
	Introduction
	Issues in the Design of a Proof Theory for Actors
	Axiomatising the Actors Model
	Representing Actors
	Specifying and Interpreting Actor Behaviours
	Axiomatising Actor Behaviours
	Composing Actor Communities
	Example Revisited and Extended

	Concluding Remarks
	References
	Introduction
	Nondeterministic Actions with Typical E ects
	A Scenario Realization
	The object language
	Semantics for the language
	Modelling scenario realization
	Preferred models of a scenario realization
	Scenario completion

	Conclusions and Directions for Future Work
	Acknowledgements
	References
	Introduction
	The Situation Calculus
	Mental Attitudes in the Situation Calculus
	Accessibility Fluents

	Characterization of Mental Attitudes
	Evolution of Physical Fluents
	Evolution of Accessibility Fluents

	Analysis of the Model of Dynamic Attitudes
	Describing Agents
	Conclusions and Discussion
	Acknowledgments
	References
	Introduction
	Spatially Distributed Diagnosis
	Model?based Diagnosis
	Properties of Spatial Distribution
	Formalization
	Diagnosis by Cooperation

	Vivid Agents
	Specification and Execution of Reagents

	Extended Logic Programming and Diagnosis
	The Agents Knowledge Base
	The Agents' Reaction Rules
	Traces

	Conclusion
	References
	Introduction
	An abstract framework for defeasible argumentation
	A dialectical proof theory
	General idea and illustrations
	The proof theory

	Defeasible priorities
	Changing the semantics
	Changing the proof theory
	A clash of intuitions

	Proof theory for credulous semantics
	Formal models of agents and protocols for dispute
	Concluding remarks
	References
	Introduction
	The role of deontic logic in diagnosis and qualitative decision theory
	Reiter’s theory of diagnosis and DIODE
	Qualitative decision theory
	Context of justification versus context of deliberation

	Diagnostic framework for process design
	DDD Deontic framework for diagnosis of organizational process design
	DDD Deontic framework for Diagnosis for process Design based on Deontic logic

	Diagnostic and decision-theoretic framework
	DIODE with applicable norms
	DIODE
	The two-phase deontic logic 2DL

	Comparison
	Exigent diagnosis and goal oriented reasoning
	Properties of the logics LDD and 2DL

	Conclusions
	References
	Author Index

