

Lecture Notes in Artificial Intelligence 2062

Subseries of Lecture Notes in Computer Science

Edited by J. G. Carbonell and J. Siekmann

Lecture Notes in Computer Science
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Alexander Nareyek

Constraint-BasedAgents

An Architecture for Constraint-Based Modeling
and Local-Search-Based Reasoning for Planning
and Scheduling in Open and Dynamic Worlds

1 3

Series Editors

Jaime G. Carbonell,Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Author

Alexander Nareyek
GMD FIRST
Kekuléstr. 7, 12489 Berlin, Germany
E-mail: alex@ai-center.com

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Nareyek, Alexander:
Constraint based agents : an architecture for constraint based
modeling and local search based reasoning for planning and scheduling
in open and dynamics worlds / Alexander Nareyek. - Berlin ; Heidelberg ;
New York ; Barcelona ; Hong Kong ; London ; Milan ; Paris ;
Singapore ; Tokyo : Springer, 2001

(Lecture notes in computer science ; Vol. 2062 : Lecture notes in
artificial intelligence)
ISBN 3-540-42258-7

D. 83

CR Subject Classification (1998): I.2, F.2.2, C.2.4, E.5

ISBN 3-540-42258-7 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2001
Printed in Germany

Typesetting: Camera-ready by author, data conversion by PTP Berlin, Stefan Sossna
Printed on acid-free paper SPIN 10781616 06/3142 5 4 3 2 1 0

Foreword

Planning, constraints, agents, and interactive gaming in a dynamic environ-
ment – four areas that make for an exciting research challenge. These are the
areas chosen by Alexander Nareyek for his Ph.D. thesis work, his work on
the Excalibur agent’s planner, and the basis for the materials in this book.
Future intelligent systems will work with other intelligent systems (people
and machines) in open, dynamic, and unpredictable environments, and the
ability to interleave sensing, planning, and execution for an agent will become
an increasingly important topic.

Representing and reasoning about the constraints on activity or behavior
in a domain is a powerful paradigm, which is useful in so many ways. It
is especially useful when working in dynamic environments alongside other
human and computer agents all with their own tasks, capabilities, and skills,
which may be teamed and cooperatively deployed, or which may oppose one
another. Such environments can only be partially modeled and there is much
uncertainty to be coped with. Interactive gaming is a fertile area for finding
ways in which to develop, test, and even deploy some of these powerful ideas.

Powerful and extendible ways to perform local reasoning and constraint
management while retaining the global perspective to guide the search al-
lows for a whole range of techniques which can be adapted to and scaled up
to realistic applications. The methods can allow for the use of special pur-
pose reasoners or constraint solvers for some of the constraint types. Yet the
methodology allows for a coherent overview to be maintained.

I had the pleasure of working with Alex as part of his organizing team
for the Workshop on Constraints and Planning at the National Conference of
the American Association of Artificial Intelligence in 2000 (AAAI-2000). This
workshop brought together a number of researchers who are seeking to mate
planning technology developed in AI over some years, with the most powerful
new techniques emerging from constraint satisfaction approaches. Alex’s own
work, reported in this book, is a key contribution to this important symbiosis.
It could lead to much more realistic ways to employ planning and constraint
satisfaction methods together for a range of tasks.

The work in this thesis also offers a basis to support multiple agents
working in a dynamic mixed-initiative manner. This will require the repre-
sentation of shared knowledge about tasks, behaviors, and plans, and local

VI Foreword

reasoning with this knowledge to allow for agents to perform their roles.
Constraints on behavior offer a basis for such shared knowledge to support
inter-agent activity.

The themes described in this thesis are at the very heart of AI approaches
to planning, scheduling, and inter-agent communication and cooperation –
the very stuff of Intelligent Systems.

Prof. Austin Tate, University of Edinburgh

Preface

Autonomous agents have become a key research area in recent years. The ba-
sic agent concept incorporates proactive autonomous units with goal-directed
behavior and communication capabilities. These properties are becoming in-
creasingly important, given the ongoing automation of human work. Users
do not have to specify the way something is to be executed but rather the
goal that is to be achieved. A reasonable way to pursue these goals must be
found by the agents themselves. The agents do not have to act individually
but can cooperate and perform coordinated group actions. Applications in
electronic commerce, industrial process control, and the military sector are
only the precursors of numerous forthcoming applications.

This book focuses on autonomous agents that can act in a goal-directed
manner under real-time constraints and with incomplete knowledge,
being situated in a dynamic environment where resources may be re-
stricted. The real-time requirement means that an agent must be able to
react within a small upper bound of response time, like milli- or microse-
conds. This is very important in dynamic environments, in which the agent
must take external events into account. In addition, the agent’s knowledge
may be incomplete in many ways. Our main concern will not be with non-
determinism, i.e., different possible outcomes of actions; instead we will fo-
cus on the system’s ability to handle a partially observable environment, i.e.,
where the closed-world assumption does not hold and a potentially infinite
number of objects exist. Furthermore, the agent’s actions may be constrained
with respect to various resources, like food, energy, or money, and an agent
may have optimization goals related to these resources. To satisfy these high
requirements, this book enhances and combines paradigms like planning,
constraint programming, and local search.

The application domain of this work is computer games, which fit the
problem context very well since most of them are played in real time and
provide a highly interactive environment where environmental properties are
constantly changing. Low-level environment-recognition problems – like the
processing of visual information and the spectrographic analysis of a noise –
can be ignored, given the high-level environment information from the game
engine, and the domain is variable enough to model all kinds of problem ex-
amples. In addition, these techniques are in great demand by the computer-

VIII Preface

games industry. This book therefore represents a useful combination of scien-
tific contributions and application demands.

Chapter 1 elaborates the research subject, describes previous approaches,
compares them, and draws conclusions for the techniques applied. The main
contributions of this book are presented in Chapters 2 to 4.

To realize a declaratively formulated and efficiently executable search for
an agent’s behavior plan, the framework of constraint programming is applied
as the basic paradigm throughout the book. Since dynamics and real-time
computation must be supported, a combination of constraint programming
with local search is developed in Chapter 2. An inclusion of domain-dependent
knowledge to guide and accelerate search is achieved by so-called global con-
straints. These techniques form the basis for the real-time computation of
an agent’s behavior, while preserving the properties of declarativeness and
variable applicability.

The problem of reasoning about an arbitrary number of objects in an
agent’s world and about an arbitrary structure of an agent’s plan is tackled
in Chapter 3. The framework of constraint programming is not normally
designed for this purpose and is therefore enhanced by adding the ability to
handle problems in which the search for a valid structure is part of the search
process. The concept is combined with the local-search approach treated in
Chapter 2. The techniques described in Chapter 3 establish the basis for
ensuring that the search for an agent’s plan can be carried out free from
restrictions, like considering only a predefined number of objects in the world,
and make it possible to guide the search toward interesting features, such as
the optimization of resource-related properties.

The concepts and techniques treated in Chapters 2 and 3 were not speci-
fically designed for the planning domain only and are applicable to a whole
range of other domains such as configuration and design. Chapter 4 applies
them to an agent’s behavior planning, introducing the agent’s planning mo-
del. The model focuses on resources and also allows a limited handling of an
agent’s partial knowledge.

The interplay of all parts – the realization of an autonomous agent – is
demonstrated in Chapter 5. Some general solving heuristics are presented and
applied to the Orc Quest problem and variations of the Logistics Domain.
Real-time computation, a plan property’s optimization, and the handling of
dynamics are demonstrated.

The material presented here is part of the Excalibur project1 and is
largely based on the publications [127] to [136]. More information on the
Excalibur project is available at:

http://www.ai-center.com/projects/excalibur/

1 Please note that there is no relation to Brian Drabble’s Excalibur planner [43].

Acknowledgments

I should like, first of all, to thank Professor Stefan Jähnichen for his general
help and his support in context with the postgraduate course Communica-
tion-Based Systems. My thanks also go to the other professors involved in
the postgraduate course and to the German Research Foundation (DFG) for
providing the enhanced Ph.D. scholarship. The heated discussions in the post-
graduate course were most helpful, the course’s heterogeneous composition
often forcing me to look at my work from another perspective.

My work greatly benefited from the collaboration with the planning &
optimization department at the GMD-FIRST institute. The head of this de-
partment, Professor Ulrich Geske, supported me in every possible way, and I
had many fruitful discussions with members of the department, e.g., Ulrich
John and Dr. Armin Wolf – to mention but a few. The GMD-FIRST has a
very pleasant work atmosphere, and I enjoyed a great deal of freedom in my
research. I was also able to use the institute’s very fine infrastructure and was
provided with funding to attend conferences. These conference visits proved
a highly positive experience, and I would advise every Ph.D. student to take
advantage of such opportunities.

The detailed documentation of my work in the Internet drew an unexpec-
tedly large resonance, and I wish to thank everybody that offered comments
and suggestions on the Excalibur project’s presentation.

Many of the reviewers of the papers on which this thesis is based offered
valuable suggestions. In fact, in a sudden burst of opportunism, I decided to
confine the rather humorous style to Sect. 1.3.2 because a reviewer of a paper
that included an earlier version of this section “hated” the “writing style”,
and I don’t want to put off solemn characters.

I am indebted to a great many other people for helping me while I was
writing this thesis, too many to list them all. However, I wish to especially
thank Dr. Gabriele Taentzer for help on algebraic graph grammars; Professor
Eugene C. Freuder and Richard Wallace for providing me with the DIMACS
travel grant, and Excalibur’s commercial partners for their support of the
project, which was closely related to my Ph.D. studies. My special thanks go
to Andreas Graf of Cross Platform Research Germany, Nicolas A. L. Cosio of
NICOSIO, and Johann Lotter of Conitec Datensysteme GmbH. In addition,
many people helped me with practical and administrative matters such as

X Acknowledgments

organizing workshops related to the subject of my thesis. Many thanks to all
of these!

Finally, I wish to express my gratitude to Professor Steve Chien and
Professor Bernhard Nebel for acting as external reviewers, to Philip Bacon
for polishing up my English, and to our system administrator Roger Holst
for supporting my numerous test runs.

March 2001 Alexander Nareyek

Table of Contents

1. Introduction . 1
1.1 Artificial Intelligence for Computer Games 1
1.2 Agents . 2

1.2.1 Reactive Agents . 3
1.2.2 Triggering Agents . 4
1.2.3 Deliberative Agents . 4
1.2.4 Hybrid Agents . 5
1.2.5 Anytime Agents . 6

1.3 Planning . 6
1.3.1 Temporal Ontologies . 6
1.3.2 Resources . 8

1.4 Search Paradigms . 15
1.4.1 Refinement Search . 15
1.4.2 Local Search . 18
1.4.3 Search-Paradigm Discussion . 18

1.5 Search Frameworks . 20
1.5.1 Operations Research . 20
1.5.2 Propositional Satisfiability . 20
1.5.3 Constraint Programming . 21
1.5.4 Search Framework Discussion . 22

1.6 Conclusion . 23

2. Using Global Constraints for Local Search 25
2.1 Global Constraints . 26

2.1.1 Global Constraints from a Local Search Perspective . . . 26
2.1.2 Internal Structures . 27
2.1.3 Improvement Heuristics . 28

2.2 Granularity . 28
2.3 Global Search Control . 30
2.4 A Case Study: Dynamic Job-Shop Scheduling 31

2.4.1 Realization . 33
2.4.2 Results . 34
2.4.3 Constraint Weights . 36

XII Table of Contents

2.5 Susceptibility to Local Minima and Plateaus 39
2.5.1 Randomization . 39
2.5.2 Random Walks . 42
2.5.3 Tabu Lists . 42

2.6 Extending the Constraints . 44
2.6.1 More Knowledge . 44
2.6.2 Aggressive Heuristics . 45

2.7 Conclusion . 45

3. Structural Constraint Satisfaction . 47
3.1 Graph Grammars . 49
3.2 Graph Elements for SCSPs . 50
3.3 Structural Constraints . 51
3.4 Structural Constraint Satisfaction Problems 55
3.5 Generating the Search Space . 56

3.5.1 Productions for Variables . 57
3.5.2 Productions for Nonextensible Constraints 58
3.5.3 Productions for Extensible Constraints 59
3.5.4 Productions for Constraint Extensions 61

3.6 Avoiding Redundancy . 62
3.7 Combination with the Global Constraint Approach 63

3.7.1 Application of Structural Constraints 64
3.7.2 Types of Global Constraints . 64
3.7.3 Global Search Control . 65
3.7.4 Goal Optimization . 65

3.8 Conclusion . 66

4. The Planning Model . 69
4.1 The Model’s Basics . 69

4.1.1 Actions, Action Tasks, and Action Resources 69
4.1.2 State Resources, State Tasks, and Precondition Tasks . 70
4.1.3 Objects and References . 72
4.1.4 Sensors and Existence . 72

4.2 The Planning Model as SCSP . 73
4.2.1 The Current Time . 73
4.2.2 Actions . 74
4.2.3 Operations . 76
4.2.4 States . 78
4.2.5 Objects . 82
4.2.6 References . 84
4.2.7 Sensors . 85
4.2.8 Existence Projections . 86
4.2.9 Correctness . 87
4.2.10 Problem Formulation . 88

Table of Contents XIII

4.3 Incomplete Knowledge . 88
4.3.1 A Single-Plan Approach . 88
4.3.2 Missing Information . 90
4.3.3 Information Gathering . 91
4.3.4 Partial Knowledge . 92

4.4 Conclusion . 95

5. Application . 97
5.1 Revisiting the Orc Quest Example . 98

5.1.1 The Constraints . 98
5.1.2 The Constraints’ Heuristics . 99
5.1.3 The Global Search Control . 102
5.1.4 Evaluation . 103

5.2 Domain-Independent Planning . 104
5.2.1 Extending the ARC and TC . 105
5.2.2 A State Resource Constraint with a Symbolic State

Domain . 105
5.2.3 Evaluation . 112

5.3 Conclusion . 122

6. Conclusion . 127

7. Future Work . 131
7.1 Search Guidance . 131
7.2 Combination of Local and Refinement Search 132
7.3 Learning . 132
7.4 Self-Reflective Planning . 133
7.5 Social Aspects . 133

A. Internet Links . 135
A.1 General AI . 135
A.2 Artificial Intelligence for Computer Games 135
A.3 Agents . 136
A.4 Planning . 136
A.5 Search Frameworks . 137

A.5.1 Operations Research . 137
A.5.2 Propositional Satisfiability . 138
A.5.3 Constraint Programming . 138

B. The “Send More Money” Problem . 139

C. Choice Randomization . 141
C.1 Choice-Dependent Information . 142
C.2 Choosing an Alternative . 142
C.3 Utility Function vs. Random Choice . 143

XIV Table of Contents

C.4 Calculation Costs . 146
C.5 Allowing for Non-positive Utility Values 147
C.6 Conclusion . 148

D. Ensuring the Satisfaction of Structural Constraints 151
D.1 A Structurally Consistent Start Graph . 151

D.1.1 The Start Graph’s Variables and Equals:X
Constraints . 152

D.1.2 The Start Graph’s State Resources 152
D.1.3 The Start Graph’s Task Constraints 158
D.1.4 The Start Graph’s Action Resource Constraints . 158
D.1.5 Preparation for Closed Worlds . 160

D.2 Validating the Improvement Heuristics . 160
D.2.1 Adding an Action . 160
D.2.2 Removing an Action . 163

References . 165

Index . 177

1. Introduction

The following sections describe various approaches for dealing with important
aspects of the application domain, comparing them, and discussing which are
suitable for our specific requirements. A summary is given in Sect. 1.6, leading
on to a discussion on the techniques that must be developed or enhanced.
Internet resources for the sections’ topics are listed in Appendix A.

Section 1.1 begins by introducing the computer-games application do-
main. This leads on to the concept of agents, which is discussed in Sect. 1.2.
A key property of an agent is its planning capability. Techniques for planning
are examined in Sect. 1.3. The planning process requires the application of
sophisticated search mechanisms, which are reviewed in Sect. 1.4 and 1.5.

1.1 Artificial Intelligence for Computer Games

The use of game applications has a long tradition in artificial intelligence
(AI). Games provide high variability and scalability for problem definitions,
are processed in a restricted domain and the results are generally easy to
evaluate. But there is also a great deal of interest on the commercial side,
the “AI inside” feature being a high-priority task [29, 32, 171] in the fast-
growing, multi-billion-dollar electronic gaming market (the revenue from PC
games software alone is already as big as that of box office movies [84]).

Many “traditional” games, such as card/board/puzzle like Go-Moku [6]
and the Nine Men’s Morris [62], have recently been solved by AI techni-
ques. Deep Blue’s victory over Kasparov was another milestone event here.
However, the success of many game programs can mainly be attributed to
the vast increase in computing power – many researchers using exhaustive-
search rather than knowledge-based methods [140]. While these applications
bear impressive witness to advances in hardware, no noticeable scientific con-
tribution has been made and such advances are of little help in solving much
more complex real-world problems. Results like Go-Moku is a win for Black
or random instances of Rubik’s Cube can be solved optimally are not really
applicable to other areas. Of the techniques used in this field of research,
A* [82] (an improved version of Dijkstra’s shortest-path algorithm [40]) and
its variants/extensions are practically the only ones employed in “modern”

A. Nareyek: Constraint-Based Agents, LNAI 2062, pp. 1−24, 2001.

 Springer-Verlag Berlin Heidelberg 2001c©

2 1. Introduction

computer games – like action, adventure, role-playing, strategy, simulation
and sports games (see also [192]).

Such games pose problems for AI that are infinitely more complex than
those of traditional games. Modern computer games are usually played in real
time, allow very complex player interaction and provide a rich and dynamic
virtual environment. Techniques from the AI fields of autonomous agents,
planning, scheduling, robotics and learning would appear to be much more
important than those from traditional games.

AI techniques can be applied to a variety of tasks in modern computer
games. A game that uses probabilistic networks to predict the player’s next
move in order to speed up graphics may be on a high AI level. But although
AI must not always be personified, the notion of artificial intelligence in
computer games is primarily related to characters. These characters can be
seen as agents, their properties perfectly fitting the AI agent concept.

But how does the player of a computer game perceive the intelligence
of a game agent/character? This question is dealt with neatly in [90]. Im-
portant dimensions include physical characteristics, language cues, behaviors
and social skills. Physical characteristics like attractiveness are more a mat-
ter for psychologists and visual artists (e.g., see [61]). Language skills are not
normally needed by game agents and are ignored here too.

The most important question when judging an agent’s intelligence is the
goal-directed component. The standard procedure followed in today’s com-
puter games is to use predetermined behavior patterns (see Sect. 1.2.1). This
is normally done using simple if-then rules. In more sophisticated approaches
using neural networks, behavior becomes adaptive, but the purely reactive
property has still not been overcome.

Many computer games circumvent the problem of applying sophisticated
AI techniques by allowing computer-guided agents to cheat. But the credibi-
lity of an environment featuring cheating agents is very hard to ensure, given
the constant growth of the complexity and variability in computer-game en-
vironments. Consider a situation in which a player destroys a communication
vehicle in an enemy convoy in order to stop the enemy communicating with
its headquarters. If the game cheats in order to avoid a realistic simulation
of the characters’ behavior, directly accessing the game’s internal map infor-
mation, the enemy’s headquarters may nonetheless be aware of the player’s
subsequent attack on the convoy.

1.2 Agents

Wooldridge and Jennings [193] provide a useful starting point by defining
autonomy, social ability, reactivity and proactiveness as essential properties
of an agent. Agent research is a wide area covering a variety of topics. These
include:

1.2 Agents 3

– Distributed Problem Solving (DPS)
The agent concept can be used to simplify the solution of large problems by
distributing them to a number of collaborating problem-solving units. DPS
is not considered here because computer games’ agents should normally act
fully autonomously: Each agent has individual goals1.

– Multi-Agent Systems (MAS)
MAS research deals with appropriate ways of organizing agents. These
include general organizational concepts, the distribution of management
tasks, dynamic organizational changes like team formation and underlying
communication mechanisms (see also Sect. 7.5).

– Autonomous Agents
Research on autonomous agents is primarily concerned with the realization
of a single agent. This includes topics like sensing, models of emotion,
motivation, personality, and action selection and planning. This field is
our main focus in the present book.

An agent has goals (stay alive, catch player’s avatar, ...), can sense certain
properties of its environment (see objects, hear noises, ...), and can execute
specific actions (walk northward, eat apple, ...). There are some special senses
and actions dedicated to communicating with other agents.

AgentSensing Acting

Goals

Communication Communication

Fig. 1.1. Interaction with the Environment

The following sections classify different agent architectures according to
their trade-off between computation time and the realization of sophisticated
goal-directed behavior.

1.2.1 Reactive Agents

Reactive agents work in a hard-wired stimulus-response manner. Systems
like Joseph Weizenbaum’s Eliza [188] and Agre and Chapman’s Pengi [2] are
examples of this kind of approach. For certain sensor information, a specific
action is executed. This can be implemented by simple if-then rules.

1 Superior common goals, like catching the player’s avatar, can be realized by
setting them as individual goals for each agent (see [173] for more sophisticated
approaches).

4 1. Introduction

The agent’s goals are only implicitly represented by the rules, and it
is hard to ensure the desired behavior. Each and every situation must be
considered in advance. For example, a situation in which a helicopter is to
follow another helicopter can be realized by corresponding rules. One of the
rules might look like this:

IF (leading helicopter == left) THEN

turn left

ENDIF

But if the programmer fails to foresee all possible events, he may forget an
additional rule designed to stop the pursuit if the leading helicopter crashes.
Reactive systems in more complex environments often contain hundreds of
rules, which makes it very costly to encode these systems and keep track of
their behavior.

The nice thing about reactive agents is their ability to react very fast. But
their reactive nature deprives them of the possibility of longer-term reasoning.
The agent is doomed if a mere sequence of actions can cause a desired effect
and one of the actions is different from what would normally be executed in
the corresponding situation.

1.2.2 Triggering Agents

Triggering agents introduce internal states. Past information can thus be
utilized by the rules, and sequences of actions can be executed to attain
longer-term goals. A possible rule might look like this:

IF (distribution mode) AND (leading helicopter == left) THEN

turn right

trigger acceleration mode

ENDIF

Popular Alife agent systems like CyberLife’s Creatures [77], P.F. Magic’s
Virtual Petz [170] and Brooks’ subsumption architecture [25] are examples
of this category. Indeed, nearly all of today’s computer games apply this
approach, using finite state machines to implement it.

These agents can react as fast as reactive agents and also have the ability
to attain longer-term goals. But they are still based on hard-wired rules
and cannot react appropriately to situations that were not foreseen by the
programmers or have not been previously learned by the agents (e.g., by
neural networks).

1.2.3 Deliberative Agents

Deliberative agents constitute a fundamentally different approach. The go-
als and a world model containing information about the application requi-
rements and consequences of actions are represented explicitly. An internal

1.2 Agents 5

refinement-based planning system (see section on planning) uses the world
model’s information to build a plan that achieves the agent’s goals. Planning
systems are often identified with the agents themselves.

Deliberative agents have no problem attaining longer-term goals. Also, the
encoding of all the special rules can be dispensed with because the planning
system can establish goal-directed action plans on its own. When an agent is
called to execute its next action, it applies an internal planning system:

IF (current plan is not applicable anymore) THEN

recompute plan

ENDIF

execute plan’s next action

Even unforeseen situations can be handled in an appropriate manner, ge-
neral reasoning methods being applied. The problem with deliberative agents
is their lack of speed. Every time the situation is different from that anticipa-
ted by the agent’s planning process, the plan must be recomputed. Computing
plans can be very time-consuming, and considering real-time requirements in
a complex environment is mostly out of the question.

1.2.4 Hybrid Agents

Hybrid agents such as the 3T robot architecture [19], the New Millennium
Remote Agent [145] or the characters by Funge et al. [59] apply a traditio-
nal off-line deliberative planner for higher-level planning and leave decisions
about minor refinement alternatives of single plan steps to a reactive compo-
nent.

IF (current plan-step refinement is not applicable anymore) THEN

WHILE (no plan-step refinement is possible) DO

recompute high-level plan

ENDWHILE

use hard-wired rules for plan-step refinement

ENDIF

execute plan-step refinement’s next action

There is a clear boundary between higher-level planning and hard-wired
reaction, the latter being fast while the former is still computed off-line. For
complex and fast-changing environments like computer games, this approach
is not appropriate because the off-line planning is still too slow and would
– given enough computation time – come up with plans for situations that
have already changed.

6 1. Introduction

1.2.5 Anytime Agents

What we need is a continuous transition from reaction to planning. No matter
how much the agent has already computed, there must always be a plan
available. This can be achieved by improving the plan iteratively. When an
agent is called to execute its next action, it improves its current plan until
its computation time limit is reached and then executes the action:

WHILE (computation time available) DO

improve current plan

ENDWHILE

execute plan’s next action

For short-term computation horizons, only very primitive plans (reac-
tions) are available, longer computation times being used to improve and
optimize the agent’s plan. The more time is available for the agent’s com-
putations, the more intelligent the behavior will become. Furthermore, the
iterative improvement enables the planning process to easily adapt the plan
to changed or unexpected situations. This class of agents is very important
for computer-games applications and will constitute the basic technology for
our agents.

1.3 Planning

A crucial aspect of an agent is the way its behavior is determined, i.e., what
has to be done when. If there is to be no restriction on reactive actions with
predetermined behavior patterns, an underlying planning system is needed.
A great deal of research has been done on planning, and a wide range of
planning systems have been developed, e.g., STRIPS [55], UCPOP [146],
PRODIGY [177], TLplan [11] and SHOP [138]. Many recent approaches are
based on Graphplan [16] and SATPLAN [98, 99].

The basic planning problem is given by an initial world description, a
partial description of the goal world, and a set of actions/operators that map
a partial world description to another partial world description. A solution
is a sequence of actions leading from the initial world description to the
goal world description and is called a plan. The problem can be enriched by
including further aspects, like temporal or uncertainty issues, or by requiring
the optimization of certain properties2.

1.3.1 Temporal Ontologies

Numerous different plan representations exist. There are two main ontologies:
sequence-oriented and explicit timeline approaches. Figure 1.2 shows these
paradigms.
2 Note that the use of the term planning in AI is different from that expected by

people in the operations research (OR) community (e.g., scheduling).

1.3 Planning 7

Action a

State s

Time t3Time t1 Time t2 Time t4

Explicit Timeline Approaches

Action a1

Action a2

World w2

World w3

World w1

Sequence-oriented Approaches

Fig. 1.2. Temporal Ontologies

Sequence-oriented approaches work on a branching time-point structure,
in which world descriptions (sets of states) are linked by actions. In expli-
cit timeline approaches, actions and states are related to a timeline. The
sequence-oriented approaches’ branching structure allows reasoning about
multiple possible futures in a very direct way, whereas explicit timeline ap-
proaches focus on handling complex temporal relations.

Sequence-Oriented Representations. The most prominent representa-
tive of sequence-oriented representations is the STRIPS model by Fikes and
Nilsson [55], which is based on the Situation Calculus by McCarthy and Hayes
[118] and is applied in many planning systems.

In STRIPS, a single fact is represented by an atomic proposition, such as
IS OPEN(DOOR). A set of these facts establishes a world state.

A plan is a sequence of actions, an action being defined by a precondi-
tion, a delete list and an add list. The precondition is a formula, which
must be valid in the current world state. To obtain the subsequent world
state, the facts of the delete list must be deleted from the current world
state, and the facts of the add list must be added. Here is an example of
an action MOVE(A, B, C) that moves block A from the top of block B onto
block C:

Action: MOVE(A, B, C)

Precondition: CLEAR(A) & ON(A, B) & CLEAR(C)

Add List: { CLEAR(B), ON(A, C) }
Delete List: { ON(A, B), CLEAR(C) }

Sequence-oriented representations provide a rich framework for the treat-
ment of decision alternatives. But in our multi-agent domain with its dynamic
environment and temporally complex actions, this would result in unmana-
geable complexity. Sequence-oriented representations have a branching point
for each action decision of the agent. In a dynamic environment, the situa-
tion may change without the agent’s activity. To capture these changes, each

8 1. Introduction

branching point would have to include all possible changes of the environment
that might affect the agent’s behavior. As computer game agents are com-
monly required to be highly interactive with their environment, this entails a
vast combinatorial explosion3. The incorporation of a richer temporal annot-
ation (actions have a duration; simultaneity; synergies) is even more fatal.
There must be branching points for each possible timestep providing for all
possible changes in the environment that might affect the agent’s behavior –
a desperate approach.

The success of sequence-oriented representations like STRIPS is a result
of assumptions negating external events and a richer temporal annotation.
It must be said, though, that there are several extensions of STRIPS-like
representations designed to remove specific backdraws, e.g., an extension to
concurrent interacting actions by Boutilier and Brafman [21].

Explicit Timeline Representations. The most prominent representative
of explicit timeline representations is Allen’s work on temporal intervals [3, 4].
Time intervals are the basic units, which are correlated by qualitative rela-
tions like BEFORE and OVERLAPS. A more efficient and flexible revision
was presented by Freksa [57].

To represent quantitative information as well, metric information must
be incorporated. Many planners with an explicit notion of time, e.g., zeno
[147] and Descartes [92], use the approach of Malik and Binford [113], which
employs linear inequalities to represent temporal (and spatial) information,
and apply general constraint solvers. Other approaches use specific temporal
management mechanisms, like the temporal constraint networks of Dechter,
Meiri and Pearl [39] or the time map manager of Schrag, Boddy and Carciofini
[163]. These are used in planning systems like HSTS [124].

An explicit timeline representation is a very general framework; it does
not specify how to express relations between actions, events and states. This
extension is often made in combination with a logic language, e.g., Allen’s
interval temporal logic [5].

For the planning of our agents, the disjunctive feature of sequence-oriented
representations is of little interest because of its combinatorial explosion. The
temporal expressiveness of explicit timeline approaches, on the other hand,
is much more important.

1.3.2 Resources

Resources such as food, hit points or magical power are standard features of
today’s computer games. Computer-guided characters often have goals that
are related to these resources and must take this into account in planning their
behavior. Thus, besides temporal issues, it is vital that the expressiveness and
the solving abilities of an agent’s planning system are capable of handling
resources as well as goals related to these resources.

3 See Sect. 4.3.1 for a description of exhaustively branching planners.

1.3 Planning 9

Resource-based action planning systems have recently begun to mus-
hroom – an indication that AI planning systems have finally started to tackle
real-world problems. However, these systems still tend to neglect the resour-
ces. Conventional plan length is the primary optimization goal, resources
being of only secondary importance. The inadequacy of these approaches is
discussed in the following subsections. See Sect. 4.4 for a classification of
specific resource-based planning systems.

The Orc Quest Example. Imagine you are a computer-guided Orc in a
computer game4. Your interests are somewhat different from those of your
philistine Orc friends. To get them a little more acquainted with the fine arts,
you decided to surprise them with a ballet performance. As a highlight, five of
those delicate humans are to play supporting roles. However, the uncivilized
humans do not appreciate the charm of Orc-produced art and are extremely
reluctant to participate. This makes it rather painful to catch a human and
force him to take part in the performance, and much more painful to catch a
whole group of them. On the other hand, going for a group saves time. This
can be formalized as follows:

STATEVARS: Duration, Pain, Performers ∈ N0

INIT: Duration = 0, Pain = 0, Performers = 0

GOAL: Performers ≥ 5

ACTION catch only one:

Duration += 2, Pain += 1, Performers += 1

ACTION catch a group:

Duration += 5, Pain += 4, Performers += 3

The Application of Planning Systems. Being an Orc, you lack sufficient
brain power to solve the problem. You therefore apply a conventional AI
planning system and come up with the following plan: catch a group &

catch a group, which yields a plan duration of 10 hours, an 8 on the pain
scale and 6 performers. The plan attains your goal of catching at least 5
performers, but the other results look to you to be capable of improvement.

You realize that you have forgotten to apply an optimization criterion.
You thus repeat the planning process, applying a state-of-the-art resource-
based planning system that you request to minimize your pain, hoping dearly
that none of your Orc friends will realize what a coward you are.

GOAL: Performers ≥ 5, MIN(Pain)

Strangely enough, the resource-based planning system delivers the same
plan as the conventional planning system.
4 For those who have not heard of Orcs before: “Orcs ... are the most famous of

Tolkien’s creatures. ... Orcs tend to be short, squat and bow-legged, with long
arms, dark faces, squinty eyes, and long fangs. ... Orcs hate all things of beauty
and love to kill and destroy.” [115]

10 1. Introduction

The Real Optimum. Shortly afterward, the first group of humans is caught
and you decide to get them to verify the planning system’s results. The
three gawky simpletons believe your promise to release them if they help
you. After a while, they present you with a plan of five sequential catch on-

ly one actions, which yields a plan duration of 10 hours, a 5 on the pain
scale and 5 performers. This answer worries you as it involves much less
pain than the solution found by the planning system employed to minimize
your pain. Is human AI technology merely a way of undermining the Orcs’
preordained dominance in the fine arts?

A Question of Relevance. You call the humans to account for the behavior of
the planning system. They reply that most resource-based planning systems
consider only a limited number of actions, increasing this number only if
they are unable to produce a correct plan, the primary optimization goal
being plan length. If it is possible to produce a correct plan with a certain
number of actions, optimization of other goal properties can begin and plans
with a larger number of actions are no longer considered. For your planning
problem, the plan catch a group & catch a group is the only correct plan
with a minimal number of two actions, and thus also the optimum with
respect to any secondary optimization criterion.

Taking the number of actions or the plan length as the primary optimiza-
tion criterion seems a very academic approach to you and you wonder if it
has any relevance. You notice that the humans are becoming increasingly un-
comfortable when they start arguing that optimization of the plan’s duration
is what is needed in most cases. And the duration would be the same as the
number of actions. You no longer trust these humans and demand that they
draw a picture of the complete search space. The result does not improve the
humans’ situation because the plan with the shortest duration is different
from the one involving the minimal number of actions (see Fig. 1.3).

Luckily for the group of humans, your goal is a plan involving the minimal
amount of pain, and you reluctantly release the humans as promised because
the plan involving the minimal amount of pain does not entail catching a
whole group of humans. Somehow you feel dissatisfied at not having broken
your promises.

The Nearby Wizard. A little bit later, it occurs to you that there is a
wizard living nearby who can prepare a magic potion that lessens the pain
by one on the pain scale. The drawback here is that the wizard is also very
fond of humans because he is in continual need of test persons to improve his
miserable skills in casting teleportation spells. Usually, then, he wants some
humans in exchange for his magic potion, which he calls “ethanol”.

You visit the wizard and explain your problem to him. He scratches his
head, walks around for a while deep in thought and finally says: “All right,
this is what we’ll do: I’ll give you 11 phials of potion for every 10 humans
that you promise to bring to me.” You are not really sure how many phials
you should take and formalize this for your planning system as follows:

1.3 Planning 11

performers

duration

pain

0

36 3

12 9

69

13 8

10 5

shortest
duration

1 2 3 4 5

number of actions / plan length

least
pain

47 5

24 2

smallest number
of actions

10 8

48 4

11 7

35 4

12 1

00 0

catch a group

catch only one

5

7

7

5

6

6

Fig. 1.3. The Search Space of the Orc Quest Example

ACTION deliver humans:

Duration += 1, Pain -= 11, Performers -= 10

Plan-Length Bounds. The optimization problem without the deliver hu-

mans action could have been optimally solved by calculating an upper bound
for the plan length and starting the planning system with the requirement to
consider only plans with a length of this bound. A no action action could be
introduced to allow for plans that are shorter than the length allowed by the
bound. The bound is easy to calculate because a plan’s Performers and Pain

increase strictly monotonically with the plan length, and after an application
of 5 actions the goal condition for the Performers is met anyway, and the
Pain can only get worse for longer plans.

However, this simple way of calculating an upper bound is no longer
applicable with an action like deliver humans that destroys the monotony.
You think about the new problem for a bit, but it is far too complex for an
Orc. Lacking a method to calculate the upper bound, you decide to run the
planning system with some random bounds for the plan length. Starting with
a bound of 6, the plan that consists of 5 times catch only one is returned.
With a length of 7, you still get this solution. You decide to raise the bound
to 15, and ... wait. After a long period, the solution is confirmed again. It
seems to be the optimum, but you test a bound of 30 just to be sure, and
... wait. After a while, the planning system returns a different solution than

12 1. Introduction

before. Unfortunately, this solution is beyond your comprehension and you
are gradually overcome by the unpleasant feeling that the suggested plan
“out of memory” is just another feature of the system designed to mislead
helpless Orcs.

The wizard is quite astonished when you tell him that his offer would
not help you to improve your plan. You offer to demonstrate this with your
planning system, but he wants to try his own. Shortly afterward, he presents
you with a plan that entails no pain for you. The plan has a plan length of 60,
and you wonder how his system was able to return a solution that quickly.

A Question of Efficiency. “The wrong approach taken by your planning
system,” the wizard starts to explain, “is due to its focusing on qualitative
problems, like the ancient blocks-world domain. The only feature distinguis-
hing solutions was the plan length, and so everyone wanted to optimize this.
A systematic exploration of the search space along an increasing plan length
is an obvious way of tackling this problem, and such approaches are still at
the heart of today’s planning systems, even if the problems now involve op-
timization criteria that do not change strictly monotonically with the plan
length.”

In response to your questioningly look, he continues: “Your planning sy-
stem has a very strange way of exploring the search space.” He draws a small
figure on the ground (see Fig. 1.4).

Plan-Length Optimization

Goal-Property Optimization

Plan Length

Goal

Init

Fig. 1.4. Search-Space Exploration

“The plan-length optimization of your system,” the wizard explains, “tries
to verify that there is no valid solution for a certain plan length, and has to
perform a complete search for this length before being able to increase the
plan length. And even if you instruct it to begin with a certain length bound,
it constructs the structures for the whole search space for this length, which
is a pretty useless approach for non-toy problems.

1.3 Planning 13

As you have already realized, the plan-length criterion is a poor guide
for the search because it has absolutely no relevance, so the search is rather
like a random search. It is much more convenient to explore the search space
without being bound to the plan length, as my planning system does. This
allows us to perform a goal-property-driven search by integrating domain
knowledge. Searching in an infinite search space means relying on powerful
heuristics instead of being tied to a method of exploration that is determined
by an irrelevant criterion.”

Complexity. The wizard still sees a questioning look on the face in front
of him, and he heaves a sigh: “Are you wondering about the infinite search
space? Our planning problem is undecidable because it involves numbers with
unpredictable bounds – you can read up on this in [53].”

Suddenly, while casting a light-the-candle spell the wizard’s apprentice
vanishes in a big ball of fire. He had always been eager to try out this spell, but
was warned by the wizard about how dangerous it was. Now the apprentice
had been eavesdropping while you were talking with the wizard and had
concluded that the optimization of his life’s duration is also an undecidable
problem, and thus not worth considering.

The wizard shakes his head sadly: “Hardcore theorists! If a problem is un-
decidable, they hate to tackle it.” Just to be sure that you will not fall victim
to one of the wizard’s teleporation spells, you quickly put in: “I’m not one
of them!” “No,” the wizard smiles, “Orcs don’t tend to be theorists anyway.
But perhaps this neglect of undecidable problems is the reason why for so
long no one dared to tackle problems other than plan-length optimization.”

Decision-Theoretic Planning. The wizard invites you to dinner, and you
gladly accept. A little while later, you are sitting in a comfortable armchair
with a jar of the wizard’s ethanol potion in your hands. The time has come
to ask where he got his planning system from. The wizard’s potion seems to
have a paralyzing effect on your tongue, but finally you manage to put your
question in reasonably comprehensible terms.

The wizard takes a while to answer and gives you an earnest look. Then he
raises his eyebrows meaningfully: “Have you heard of Excalibur?” You are
seized with a shivering fit because Excalibur is a popular name for swords
used by computer players’ avatars that generally enjoy tyrannizing harmless
Orcs.

“No, no,” the wizard says appeasingly, “not the sword!” His voice takes
on a vibrant tone: “Did you ever consider the possibility that you are part of
a computer program and that your behavior is largely guided by a planning
system?” He pauses briefly to let you reflect on all this question’s implications.
“Well,” he continues, casting a thunderbolt to conjure up a more threatening
atmosphere, “what I mean is the Excalibur Agent’s Planning System!” He
lowers his voice: “We are the agents. You understand?”

This sounds like one of those popular conspiracy theories. You are, ho-
wever, not particularly well versed in philosophy and already have difficulty

14 1. Introduction

explaining why there are now two wizards and why all of the equipment in
the room is swaying curiously. “Please put off describing the system for now,”
you say, putting an end to this rather dubious discussion. “If resources are
such a vital component, why aren’t there other planning systems like the
Excalibur agent’s planning system?”

“Well,” the wizards say, “I must admit that there have, of course, also
been other approaches at trying to focus on optimizing things other than
plan length. These are mostly subsumed under the term decision-theoretic
planning. But most of the research in this area aims to optimize probabilistic
issues for reasoning under conditions of uncertainty5. Although goals like
maximizing probability to attain a goal can also be interpreted as resource-
related optimization (the probability being the resource to be maximized),
probability is usually considered to have only monotonical features, i.e., a
plan cannot have a higher probability of attaining the goal than a subplan
that also attains the goal. Your problem involving an action like using a magic
potion has no counterpart here.

But there are also resource-oriented planning systems that are able to
handle more complex problems, e.g., Williamson and Hanks’ Pyrrhus plan-
ning system [190] and Ephrati, Pollack and Milshtein’s A*-based approach
[52]. The difference between these and the Excalibur agent’s planning sy-
stem is the conceptual approach.”

“Sorry, did you say A* ? It’s funny that you should mention this term
because it sometimes comes mysteriously to mind – usually when I think
about how to get to a certain place. Do you know what it means?”

“Well, all it means is that the Excalibur agent’s planning system has
specialized heuristics for specific subtasks. Don’t worry about it! But – A*
brings me directly to the point. The resource-oriented planning systems men-
tioned above construct plans in a stepwise manner, e.g., action by action, and
if they fail, they go back to an earlier partial plan and try to elaborate this.
In order to choose a partial plan for an elaboration – called refinement – an
upper bound of the quality is computed for each partial plan. The plan that
yields the highest upper bound is chosen for elaboration. Sounds like a great
concept, doesn’t?”

“Probably not – since you ask!” you reply and grunt loudly, impressed by
your own cleverness. The wizards give you a rather disconcerted look, but
quickly collect themselves and continue: “Er, you’re right, the concept is great
for things like path finding, for which it is easy to determine bounds because
the actions can only add values. But for complex planning problems it is not
normally possible to calculate bounds on the quality value for a partial plan.
We spoke about the problems with bounds before. Does a single action like
building a trap for someone puts bounds on the total fun you will have?”

“Definitely not! Things can actually get worse!” you answer bad-tem-
peredly, “If I don’t take precautions, the person trapped may be a player’s

5 See Sect. 4.3.1 for a description of probabilistic planning approaches.

1.4 Search Paradigms 15

avatar, and then the world is usually reset to a former state only to build a
trap for the person who will build the trap.”

“Exactly,” the wizards continue, “The Excalibur agent’s planning sy-
stem takes a different approach. It iteratively repairs complete grounded plans
for which a concrete quality can be determined. The repair methods can ex-
ploit the quality information to improve the plan, e.g., by replacing a set of
actions that cause a loss in quality. This technique, based on local-search me-
thods, is not so – let’s say unfocused – with respect to the plan quality, and
there is practically no restriction on the kind of objective function to be opti-
mized (see also [89]). The ASPEN system [31] is very similar to Excalibur
in this respect. To sum up, decision-theoretic planning is a very broad term,
which, of course, also encompasses the Excalibur agent’s planning system.
But the system is not what one would normally expect of a decision-theoretic
planning system. So... well... you look a bit too drunk to go home now, don’t
you?”

This sounds like a good chance to have another jar of the ethanol potion
with the wizards, and you gleefully agree. However, your impressive clevern-
ess seems to have failed this time because you are not even quick enough
to reply to the wizards’ “Great, I’m always glad of opportunities to apply
teleportation spells!” After a short puff, you find yourself in a trap you re-
cently built yourself – together with a large number of angry and well-armed
humans that were trapped while looking for an Orc who had just pestered
some other humans.

1.4 Search Paradigms

In addition to the plan representation, a technique for building plans is nee-
ded. The task of plan construction can be formulated as a search problem,
where we search in a space containing all possible plans for a consistent plan
that satisfies our goal conditions6. There are two main paradigms for search:
refinement search and local search. Figure 1.5 contrasts these paradigms.

1.4.1 Refinement Search

Refinement search is a stepwise narrowing process (see Fig. 1.5 (a)) alterna-
ting between commitment and propagation. In each refinement, a subset
6 A common differentiation is made between a search in a state space and a search

in a plan space. A search in a state space is based on a graph with world-
state nodes that are connected by directed action arcs. The search tries to find
a connection between a start node and a goal node. The resulting plan is the
sequence of actions along the connection found. Within the usual framework of
search techniques it is more common to use a strategy in which the search space’s
states are potential solutions (or plans) themselves. This is the approach of plan
space search. Since a state space search can easily be expressed as plan space
search, only plan spaces are considered here.

16 1. Introduction

(a) Refinement Search (b) Local Search

Fig. 1.5. Exploration of the Search Space

of states (or plans) is chosen for further investigation until a solution is fo-
und. The choice of a subset is made by a commitment to a special plan
property. Many potentially chosen but unsatisfactory states can be excluded
from further investigation as a consequence of the commitment’s decisions.
This cutback is performed by propagation methods.

Traditionally, refinement techniques apply a complete search. Because of
the infinite number of possible states/plans, completeness can only be achie-
ved if the choice of an infinite subset presumes investigation parallel to the
rest of the set, provided the rest is not already under investigation or defini-
tely does not contain solutions. If an investigated finite set lacks a solution,
another set has to be chosen (usually by backtracking). Furthermore, the
union of all potentially investigated finite sets must include all solutions.

For refinement planning, logic programming with its unification and back-
tracking provides a very expressive framework. Many approaches, such as the
language A [63] or the language E [96], make use of it.

Typical instances of refinement planning are total-order, partial-order and
hierarchical planning. Other approaches use maximal plan structures to at-
tain an improved propagation behavior.

Total-Order Planning. Early planning systems constructed plans in a so-
called total order. Starting with an empty plan, in each refinement step there
is a commitment to a new action at a specific plan position. This position
must be in a total order with respect to the plan’s other actions. The propa-
gation method deduces resulting intermediate states and excludes the next
refinement step’s choice options for actions that do not contribute to satisfy-
ing unsatisfied preconditions of the plan’s actions or goals. For a new action,
choice options for plan positions are excluded if the position is after the ac-
tion/goal with the corresponding unsatisfied precondition or if there would
be another action between the new action and the action/goal with the cor-
responding unsatisfied precondition such that the required effect would be
nullified. The search terminates successfully if all preconditions of the plan’s

1.4 Search Paradigms 17

actions and goals are satisfied. Progressive planning with forward chaining is
also possible.

Examples of total-order planners are STRIPS [55], WARPLAN [186] and
Waldinger’s planner [182].

Partial-Order Planning. Partial-order planning focuses on relaxing the
temporal order of actions. In a refinement step, the position of a new action
must not be totally ordered with respect to the plan’s other actions. However,
the commitment may include a decision on additional ordering relations that
are necessary to ensure the consistency of the refinement. All unnecessary
choice options for potential orderings are ruled out by the propagation process
(sometimes called least commitment).

Partial-order planning is less committed than total-order planning, a
total-order planning refinement subset always being a subset of (or equal
to) a corresponding partial-order planning refinement subset. However, this
does not necessarily result in the superiority of partial-order planning (see
[120] for a detailed discussion).

Examples of partial-order planners are NOAH [161], TWEAK [28] and
UCPOP [146].

Hierarchical Planning. The approach of hierarchical planning is to first
introduce coarse-grained abstract actions which are then refined to the basic
actions in a stepwise manner. All possible refinements are stored in a static
transformation library.

Total- and partial-order planning apply a commitment to whole actions,
including all of their pre- and postconditions. In hierarchical planning, the
transformation library allows us to commit to only some pre- and postcon-
ditions (by way of abstract actions) and additional ordering information.
Instead of introducing a new action, a refinement step consists of applying
a transformation. The propagation allows only refinements according to the
transformation library. Additional ordering relations must ensure the consi-
stency of the refinement.

Hierarchical planning is highly dependent on an appropriate transfor-
mation library. The transformation library’s hierarchical structure explicitly
encodes inference information and guides search toward promising plans, but
because of the limited library it is often far from being complete. An inte-
resting aspect of hierarchical planning is its application of commitments other
than those to whole actions.

Examples of hierarchical planners are ABSTRIPS [160], NONLIN [172]
and SHOP [138].

Refinement Using Maximal Graphs. Total-order, partial-order and hier-
archical planners create and reason about the plan’s structures step by step.
In contrast, planners like Graphplan [16] create a large maximal structure
that includes all potential plans before starting the search process. Super-
fluous/inconsistent elements are then removed by the search process. The

18 1. Introduction

search can exploit these structures much better because propagation can in-
volve the reasoning on parts of the plan for which no decisions have been
made. However, maximal structures do not scale well. Other examples of this
approach are parcPLAN [50] and CPlan [175].

1.4.2 Local Search

Local-search approaches perform a search by iteratively changing an initial
state/plan (see Fig. 1.5 (b)). In each iteration, the successor choice crite-
rion determines a state which will become the new search state. The potential
successor states that can be chosen for a state are referred to as the state’s
neighborhood. The quality of the neighborhood states can be computed by
an objective/cost function.

Neighborhood states are mostly states that differ in value switches of
single variables or a simple extension/reduction of the plan. Of course, more
complex changes are possible as well. For an optimization task, the neigh-
borhood is usually constituted by feasible states only. For a satisfaction task,
the neighborhood consists of partially consistent states.

Most of the local-search methods are incomplete, and it is possible for
them to become trapped in local optima or on plateaus. Many local-search
methods apply additional techniques to escape from these local minima and
plateaus – such as tabu lists, random walks or restarts. With increasing dyna-
mics of the agent’s environment, the importance of these features decreases,
as the search space changes quickly and less improvement is possible.

Local-search techniques include evolutionary algorithms [69], simulated
annealing [102], tabu search [68], min-conflicts [121], GSAT [78, 165] and
Walksat [166]. Applications to planning problems were proposed by Kautz
and Selman [98, 99], Ambite and Knoblock [7], Muslea [125], Gerevini and
Serina [67], Brafman and Hoos [23], and Chien et al. [31], among others.

1.4.3 Search-Paradigm Discussion

A key property of refinement search is that completeness can easily be rea-
lized. This is much harder to accomplish for local search, and mostly one
cannot guarantee finding global optima or satisfying solutions. This also im-
plies that proofs of global optima or inconsistency are beyond the reach of
local search. Refinement search should therefore be the first choice for safety-
critical problems.

Local search has other advantages. The production of a solution by re-
finement takes a lot of time, as a lot of labeling/propagation (and maybe
backtracking) cycles have to be performed. In contrast, a local-search itera-
tion can usually be computed very fast. This results in a temporally tight
sequence of improvement steps, i.e., in an anytime behavior [195], and initial
approximate results are computed much faster (see Fig. 1.6). Later on, when

1.4 Search Paradigms 19

the search gets more constrained (less options lead to an increase in the objec-
tive/cost function’s value) and the probability that local search gets caught
in local minima increases, superiority is reversed. This is also confirmed by
a couple of empirical studies, which report that short time limits and large
problems usually mean that local-search methods are significantly superior
to complete refinement methods (e.g., [183, 64]).

Reversal of Superiority

Quality
Local Search Refinement

Problem Size

Time

Fig. 1.6. Refinement Search vs. Local Search

A dynamic environment promotes local search as well because the search
heuristics do not normally bother about modifications of the search space.
This is different from complete methods, which have to update their memory
of the already explored search space.

For a satisfaction task, local search’s intermediate states are inconsistent.
This means local search is inherently a partial constraint satisfaction [58]. An
extension of refinement search with partial constraint satisfaction is much less
efficient because the search space grows enormously.

To sum up, the application of local search should be considered if the
problem domain features

– short computation time limits
– only restricted claims on optimality/satisfaction
– dynamics
– large problems7

This is definitely the case in a computer game environment, where the li-
mited time available for AI computation (most of the CPU power is used for
the game engine and graphics) and a complex and highly dynamic environ-
ment make reasoning properties like completeness and optimality only rough
objectives to strive for. Furthermore, as argued in Sect. 1.3.2, local-search
techniques can better exploit plan-quality information for realistic problems
that have more complex objective functions.

7 Of course, this list provides only general advice. The characteristics may vary
depending on the specific search method and concrete problem.

20 1. Introduction

1.5 Search Frameworks

As discussed in the previous section, local-search techniques for search and
optimization are needed. There are numerous specific approaches for search,
like neural networks or evolutionary algorithms. This section discusses frame-
works for search, i.e., methods for specifying and formalizing search problems
in a general manner. Specific solution methods can then be applied to solve
these problems.

The advantage of using a general framework instead of specific approaches
is the availability of ready-to-use off-the-shelf solution methods. In addition,
future changes/extensions in the problem specification must be considered
only at the modeling level and not in the underlying search algorithms. The
main research areas that provide frameworks to formulate search problems are
operations research, propositional satisfiability and constraint programming.

1.5.1 Operations Research

Operations research (OR) is a collection of techniques developed to handle
industrial optimization problems. With our problem domain, we have mostly
finite decision variables (there is no continuous transition between doing so-
mething or not). Continuous variables are only used for specific states (see
also Chap. 4). The eligible operations-research methods for this domain are
integer programming (IP) and mixed-integer programming (MIP) [139]. Pro-
blems are usually formulated using the following mathematical framework:

min {cT x : Ax = b, x1, . . . , xn ∈ N},

where c is the cost vector, x the vector of the decision variables x1, . . . , xn,
and cT x the cost function that is to be minimized with respect to the equation
system Ax = b. The decision variables have to be natural numbers, but in
the case of MIP some of the variables can also be non-negative real numbers.

The solution methods are based on techniques like Simplex [34] and
interior-point methods [97]. These approaches solve a linear relaxation of
the problem (dropping the integrality constraints). Afterwards, the system is
strengthened in order to enforce the integrality constraints, e.g., by a branch-
and-bound with cutting planes.

There are only a few approaches for solving planning problems with OR
methods. These include a domain-dependent approach by Bockmayr and Di-
mopoulos [18], ILP-PLAN by Kautz and Walser [101] and the state-change
formulations by Vossen et al. [180].

1.5.2 Propositional Satisfiability

The problem of propositional satisfiability (SAT) is to decide whether a pro-
positional formula is satisfiable or not. A propositional formula consists of

1.5 Search Frameworks 21

two-valued variables (true and false) that are related via the operators
¬,∨ and ∧. Most solvers require that the problem be stated as a conjunctive
normal form (a conjunction of disjunctions).

SAT-solving techniques include refinement approaches like the Davis-
Putnam procedure [36] and Satz-Rand [75], as well as local-search methods
like GSAT [78, 165], Walksat [166], HSAT [65], Novelty [116] and SDF [164].
Most of the SAT-based planning applications are based on the problem en-
codings of Kautz and Selman [99].

1.5.3 Constraint Programming

Unlike OR and SAT, constraint programming uses a much more declarative
and general specification. Problems are formulated in a framework of varia-
bles, domains and constraints. The constraint satisfaction problem (CSP)
consists of

– a set of variables x = {x1, . . . , xn}
– where each variable is associated with a domain d1, ..., dn

– and a set of constraints c = {c1, ..., cm} over these variables.

The domains can be symbols as well as numbers, continuous or discrete
(e.g., “door”, “13”, “6.5”). Constraints are relations between variables (e.g.,
“xa is a friend of xb”, “xa < xb × xc”) that restrict the possible value as-
signments. Constraint satisfaction is the search for a variable assignment that
satisfies the given constraints. Constraint optimization requires an additional
function that assigns a quality value to a solution and tries to find a solution
that maximizes this value. A brief example of constraint programming is
given in Appendix B.

A satisfaction can be achieved by refinement as well as local-search ap-
proaches, already presented in Sect. 1.4 on search paradigms.

In the usual refinement approach, the variables are labeled (an assignment
of a domain value) one after the other. In the case of an inconsistency (a
constraint is violated), backtracking is triggered. Numerous variable- and
value-ordering heuristics have been proposed, such as smallest-domain-first
or smallest-value-first [162]. There are also generalized labeling techniques,
in which the value selection is replaced by a domain reduction [73], and
variable- and value-selection strategies with a stronger interleaving [94]. In
addition, there are many extensions and modifications of naive backtracking
[38, 150, 83], some of them being analyzed in [105].

The propagation of the refinement consequences is usually achieved by
so-called consistency techniques. For example, we have two variables A and
B with domains of {1 . . . 10} and a constraint B > A. In the case of a refine-
ment of A ∈ {5 . . . 10}, the propagation will entail a domain reduction of B
to {6 . . . 10}. The propagation can be made globally or locally. A global pro-
pagation analyzes all consequences within the constraint system and is very

22 1. Introduction

costly to compute. Local propagation is therefore usually applied, the con-
sequences here being propagated only partially. Numerous local-propagation
methods are available, such as arc-consistency algorithms like AC-4 [123] and
AC-7 [15] or path-consistency algorithms like PC-4 [81].

Satisfaction mechanisms based on local search are not very popular so
far. This may be due to the traditional logic-programming framework for
constraint programming. Nevertheless, many new methods have been pro-
posed, especially in the last years. This includes Hirayama and Toyoda’s
coalition forming [86] and the well-known min-conflicts heuristic for binary
CSPs by Minton et al. [121] with its extension and generalization in genet
by Davenport et al. [35].

Applications of constraint programming to planning include Descartes
[92], parcPLAN [50], CPlan [175], the approach of Rintanen and Jungholt
[157] and GP-CSP [41].

1.5.4 Search Framework Discussion

The mathematical framework of operations research and the propositional
formulas of SAT are highly restricted. The problems must be translated into a
very specific form, which can only be done by experts. On the other hand, con-
straint programming allows the use of higher-level constraints, which make
it easier to model a problem.

The OR and SAT approach is to break the problems down into their spe-
cific frameworks and to then scan the resulting specifications for structures
on which to apply specific solution strategies. Although many efficient me-
thods have been developed, the propositional clauses of SAT and the linear
inequations of OR are scarcely able to exploit higher-level domain knowledge
to support search (see also [119]). This is not the case for constraint program-
ming. The advantage of this higher-level approach may be the reason for the
superiority of constraint programming in domains like job-shop scheduling
where powerful constraints are available – such as the cumulative constraint
for resource-assignment problems that allows the application of specific tech-
nologies like edge finding [26, 27, 141, 12]. However, current constraint-based
approaches that use local search do not normally exploit domain knowledge
(see Chap. 2).

The SAT approach does not have numbers in its representation repertoire.
The propositional SAT variables can therefore represent only qualitative dif-
ferences – unlike CP and OR which can also represent quantitative infor-
mation. Of course, discrete numbers can also be modeled in SAT by using
a propositional variable for each value of the discrete domain. But this is a
highly unsuitable approach, not only because of its costs but also because
the values’ ordering relation is often exploited during search.

Another reason for not using OR is that there are lots of planning decisi-
ons with discrete alternatives, and the performance of OR methods declines

1.6 Conclusion 23

sharply as the number of integer variables increases. There are initial appro-
aches aiming to combine constraint programming and OR solution methods
(e.g., [17, 88]), but because the combination of these paradigms is not our
main concern, we confine our contention to constraint programming. Some
tentative work has also been done on combining SAT with linear inequalities
(see [191]).

1.6 Conclusion

This section recapitulates on the main design decisions of the previous sec-
tions and draws conclusions for further development needs.

The agents must be able to exhibit sophisticated behavior and find solu-
tions even for unforeseen situations. A planning system is therefore needed
to guide an agent’s behavior.

The system will be fully based on the constraint programming paradigm.
This allows the agent’s behavior problem to be represented by a declarative
high-level specification that can be easily maintained. The application of
high-level constraints allows domain-specific knowledge to be exploited for
the search process.

Many planning systems already incorporate some kind of constraint hand-
ling. They can be grouped into the following categories:

– Planning with Constraint Posting:
During a conventional planning process, constraints can be posted. Con-
straint satisfaction is used here as an add-on to check the satisfaction of
restrictions such as numerical relations. For example, MACBeth [72] and
the planning procedure of Jacopin and Penon [91] apply this scheme. Ano-
ther approach is implemented in the Descartes system [92], which uses
constraint postings not only for numerical values, but also for postponing
some of the decisions of action choice.

– Maximal Graphs:
A restricted planning problem is encoded as (so-called conditional) CSP.
The CSP is constructed such that it includes all possible plans up to a cer-
tain number of actions, which can be activated or deactivated. parcPLAN
[50], CPlan [175], the approach of Rintanen and Jungholt [157] and GP-
CSP [41] follow this line. The advantage of this procedure is that decisions
can easily be propagated throughout the CSP. However, the optimal size
(e.g., the number of actions) is not known in advance, so a stepwise ex-
pansion of the CSP structures must be performed if no solution can be
found. However, maximal structures scale very badly and are only feasible
for small and only slightly variable structures, which is not the case with
most planning problems.

None of these approaches makes it possible to represent the planning
completely within constraint programming. The problem here is the restric-

24 1. Introduction

tiveness of conventional formulations for constraint satisfaction problems be-
cause all the elements and their relations, i.e., the constraint graph, have to
be specified in advance. But plans are highly variable and it is not possible
to predict which actions will be used in which combination. The partially
observable computer-game environment of an agent poses a further problem
here because there are an unknown number of objects. An extension of CSP
formulations must therefore be developed that can handle variable constraint
graphs. This is done in Chap. 3.

The next problem faced, if constraint programming is to be applied to
computer games, is that only a very small portion of CPU power is left for
the necessary computations – and there is more than one agent to be guided.
Computation here is not a matter of hours, days or seconds but rather clock-
ticks. This is one reason for applying local-search techniques in an agent’s
planning system. The iterative optimization of local search enables the agent’s
anytime reaction and fast adaptation to changes in the environment. The
more computation time there is available, the more elaborate the agent’s
plan will get.

The current approaches that combine local search with constraint satis-
faction use only very basic constraint types, corresponding rather to SAT-
or OR-based local-search approaches. The drawback of these approaches is
that they fail to take a global view of the problem and are unable to provide
appropriate search guidance. The use of higher-level constraints for local se-
arch is needed, which is also more in line with the fundamental principles of
constraint programming. Chapter 2 addresses this problem.

Besides the extensions of the constraint programming framework men-
tioned above, the use of constraint programming for planning requires that
appropriate high-level constraints be available to model planning problems,
which must include the handling of temporal and other resources. Chapter
4 describes the basic constraint types for specifying planning problems and
their use. In addition, issues of probabilities and incomplete knowledge are
treated on the modeling level.

2. Using Global Constraints for Local Search

Our agents need to adapt their behavior in real time to new situations. Con-
ventional refinement-based constraint programming techniques are not suita-
ble for these requirements. Thus, as discussed in Sect. 1.4.3, our agents will
be based on local search. This chapter presents a technique to combine local
search with constraint programming.

The use of local search has become very popular in recent years as appli-
cations have begun to tackle complex real-world optimization problems for
which complete (refinement) search methods are still not powerful enough.

Conventional ways of using local search are difficult to generalize. Increa-
sed efficiency is the only goal, generality often being disregarded. It is quite
common to define highly sophisticated and problem-tailored representations
with specialized neighborhoods and successor selection methods (see [1] for
examples). From a software engineering point of view, this is not a good idea.
Integrating complex, heterogeneous problems in a monolithic system hinders
the system’s reuse, extension and modification.

Other approaches take the general constraint programming framework as
starting point and try to introduce local search methods for constraint satis-
faction. Through the use of CSP formulations, local search acquires a general
application-independent framework. CSP formulations used with local search
approaches typically involve only very basic constraint types, e.g., linear ine-
qualities or binary constraints. The problem with this kind of formulation is
that the inherent problem structure is mostly lost by the necessary transla-
tion of the problem to this low-level formulation. Domain-specific knowledge
about appropriate representations and search control is only available at a
higher level and cannot be used. Consequently, these methods frequently fail
because they have only a very limited view of the unknown search-space
structure.

This work attempts to overcome the drawbacks of these two local search
approaches – monolithic problem-tailored and general low-level – by using
global constraints. The use of global constraints for local search allows us to
revise a current state on a more global level with domain-specific knowledge,
while preserving features like reusability and maintenance. The proposed stra-
tegy is demonstrated on a dynamic job-shop scheduling problem, which is a
subproblem of an agent’s planning task.

A. Nareyek: Constraint-Based Agents, LNAI 2062, pp. 25−46, 2001.

 Springer-Verlag Berlin Heidelberg 2001c©

26 2. Using Global Constraints for Local Search

Local search techniques provide a solution at any time, the quality of
the solution being subject to constant improvement. This anytime feature
makes it worthwhile evaluating the whole solution process, not just the final
result. To have a measure for the utility of intermediate states as well, we
can extend the CSP formulation to weighted CSPs (WCSPs). In WCSPs,
constraints have associated costs, which are dependent on the constraint va-
riables’ assignments. The goal is to minimize the total sum of costs1, which
provides us with a useful cost function for local search. A value of zero for the
costs means total satisfaction. This graded consistency measure is essential
for our approach, as we cannot expect to achieve an agent’s total satisfaction
because of the limited reasoning time.

2.1 Global Constraints

Constraint satisfaction has traditionally been tackled by refinement search
(domain-reduction techniques), which faced similar problems of exploiting
high-level knowledge. The success of commercial tools like the ILOG Sche-
duler [111] can be ascribed mainly to their use of so-called global constraints.
Régin [155] defines a global constraint as a substitute for a set of lower-level
constraints, such that a more powerful domain-reduction algorithm can be
applied. Using global constraints, constraint solvers can attain an enormous
speedup and real-world application requirements can be satisfied.

For example, the alldifferent(V) constraint of the “send more money”
example in Appendix B is a global constraint that forces all included variables
of the set V to take different values. A formulation by lower-level constraints
would include inequality constraints for all possible variable pairs of the set
V. But the application of the global constraint with a specific data represen-
tation and satisfaction methods can yield much better performance (e.g., by
a demon-observed array representation [152]).

The notion of global constraints can support local search approaches as
well. It is transferred to a local search context in the following subsections.

2.1.1 Global Constraints from a Local Search Perspective

The central issue in local search is the transition from one state to the suc-
cessor state. As it is uncertain what kind of change improves a current state,
lots of neighbor states are usually analyzed. There are no general rules here,
the kind of neighborhood and successor selection being a heuristic matter.

The term heuristic already implies the existence of some domain know-
ledge for guidance. The heuristics of conventional local search mechanisms
for CSPs, like GSAT [78, 165], can only exploit knowledge about their repre-
sentation’s special low-level structure, thus having to cope with self-produced

1 The term inconsistency is used below as a synonym for costs.

2.1 Global Constraints 27

complications instead of being able to incorporate higher-level domain kno-
wledge. It is well known that there is a strong relation between a problem’s
representation and its computability, and it remains unclear to what kind of
problems these low-level standardized representation approaches are suited.
Consequently, there is often not enough information locally available to direct
the search [121]. Larger variable domains than the binary ones normally used
exacerbate the problem because information about qualitative differences is
not directly available.

The concept of global constraints can help remedy this situation. To this
end, we have to extend the notion of a global constraint:

A global constraint is a substitute for a set of lower-level con-
straints, additional domain knowledge allowing the application of
specialized data representations and algorithms to guide and accele-
rate search.

A global constraint must feature a start function to construct its initial
structures and inconsistency, an improvement procedure for determining a
promising successor state, and an update function for its internal structures
and the constraint’s cost contribution in case of variable changes.

Heuristics for building neighbors and for selecting a successor can be di-
rectly encapsulated in the global constraints, where the appropriate domain
knowledge is available. This is illustrated in the following sections using an
example of a global constraint Permutation. The global constraint Per-
mutation(A, X) has to ensure that the variables of set X are a permutation
of the values of bag A. The costs of the constraint are to be determined by
the minimal sum of the distances of the variables’ current values to a valid
assignment.

2.1.2 Internal Structures

Many successful applications of local search gain their power from efficient
updates of the inconsistency information rather than from recomputations
from scratch. For this purpose, additional structures often have to be main-
tained. In the case of the Permutation constraint, three lists can be used
as additional support structures: list la with the ordered values of bag A, list
lx with the variables of X ordered by their current assignments, and list lc
with the ith element being the distance between the ith value of la and the
value of the ith variable of lx. The costs of the Permutation constraint can
be computed by summing the values of lc.

For Permutation(<1, 7, 4, 3>, {a, b, c, d}) and a current assignment
of A=2, B=6, C=2 and D=7, the structures are constructed in the following
way:

la = [1, 3, 4, 7]

lx = [A(2), C(2), B(6), D(7)]

28 2. Using Global Constraints for Local Search

lc = [|1 − 2| = 1, |3 − 2| = 1, |4 − 6| = 2, |7 − 7| = 0]

Permutationcosts = 1 + 1 + 2 + 0 = 4

Note that by changing a variable all global constraints involving this varia-
ble must be called to update their internal structures. For the Permutation
constraint, there must be a reordering of the variable in lx with a correspon-
ding update of lc and the resulting cost sum. For example, if B changes from
6 to 9,

la = [1, 3, 4, 7]

lx = [A(2), C(2), D(7), B(9)]

lc = [1, 1, |4 − 7| = 3, |7 − 9| = 2]

Permutationcosts = 4 + (−2 + 3) + (−0 + 2) = 7

2.1.3 Improvement Heuristics

What is a good heuristic for building the successor state may depend on
the other constraints involved as well as on the current state of the search.
Thus, a global constraint should provide various heuristics, e.g., one with
a complete revision of the violated variables, one with a minimal change of
just one variable, one with a randomized successor selection, and one with
random walks.

For the Permutation constraint, the list lc gives us quantified infor-
mation about the variables’ violation of the constraint. A heuristic with a
cautious strategy can reset only one variable – according to the highest ele-
ment in lc – to the corresponding value of la. Following the last assignment
of A=2, B=9, C=2 and D=7, the variable D would be changed to 4:

lc = [1, 1, 3, 2]

la = [1, 3, 4, 7]

lx = [A(2), C(2), D(4), B(9)]

Permutationcosts = 7 + (−3 + 0) = 4

The range of heuristics to be applied to a specific problem should be
customizable by the user. During search, a constraint-internal function has
to decide on the concrete heuristic to be applied. This decision can be taken
at random, be dependent on the current search state, or be subject to learning
mechanisms.

2.2 Granularity

If the Permutation constraint is to be modeled by low-level constraints, li-
near inequalities can be used. A particular problem, e.g., Permutation(<1,
7, 4, 3>, {a, b, c, d}), can be expressed by the following CSP:

2.2 Granularity 29

A, B, C, D ∈ {1, 3, 4, 7}

∀n ∈ {1, 3, 4, 7} : An, Bn, Cn, Dn ∈ {0, 1}

A = A1 + 3 × A3 + 4 × A4 + 7 × A7

C = C1 + 3 × C3 + 4 × C4 + 7 × C7

B = B1 + 3 × B3 + 4 × B4 + 7 × B7

D = D1 + 3 × D3 + 4 × D4 + 7 × D7

A1 + A3 + A4 + A7 = 1

B1 + B3 + B4 + B7 = 1

C1 + C3 + C4 + C7 = 1

D1 + D3 + D4 + D7 = 1

A1 + B1 + C1 + D1 = 1

A3 + B3 + C3 + D3 = 1

A4 + B4 + C4 + D4 = 1

A7 + B7 + C7 + D7 = 1

The permutation problem is very hard to recognize now. And not even
the global constraint’s distance measure is included in the upper solution. In
contrast to the low-level formulation, the statement of a global Permutation
constraint is highly declarative and easy to understand.

A local search method that is based on a low-level problem representation
cannot make use of domain knowledge and is not able to recognize the low-
level constraints’ interactions, e.g., that it is inadvisable to compensate a
change from A7 = 1 to A7 = 0 with respect to the constraint A = ... by an
activation of A3 = 1 and A4 = 1 in order to keep the constraint satisfied.
The lack of a general overview and of heuristic knowledge makes the low-level
approach less efficient and susceptible to cycling and getting stuck in local
minima.

A low-level representation also has advantages, though. A wide variety
of problems can be modeled using the general low-level representation, whe-
reas modeling using global constraints presupposes the availability of suitable
global constraints. For example, if the problem is to find an assignment such
that the variables of set X are a permutation of a subset of the values of bag
A, the low-level representation can easily be adapted. But a solution based
on the global Permutation constraint would require a considerable effort
to adapt the constraint’s internal structures and heuristics, if not a redesign
from scratch2.

A comparison of global constraints and monolithic solutions is straightfor-
ward, regarding the global constraints as a low-level representation and the

2 However, all low-level constraints could be realized by global constraints as well,
enabling the user to model the problem by these constraints if no high-level
constraint is available

30 2. Using Global Constraints for Local Search

monolithic solutions as a single highly global constraint. Again, the higher-
level (monolithic) system is faster as it makes better improvement decisions
because of its superior overview, but it is difficult to reuse because of its
specialization.

Global constraints are a compromise between the generality of low-level
CSP-based local search and the efficiency of monolithic problem-tailored lo-
cal search encodings (see Fig. 2.1). Finding the right granularity for global
constraints is up to the designer. Only very general rules apply, which are
comparable to the problems of object-oriented design (see Gamma et al. [60]
for a discussion and general guidelines).

CSP Encoding
Global Constraints

Tailored Solution

Monolithic Problem-Low-Level

Generality

Efficiency

Fig. 2.1. Global Constraints as a Compromise

2.3 Global Search Control

As described above, global constraints have integrated heuristics to enable
them to choose a successor state on their own. On top of the constraints,
there must be a mechanism that combines the constraints’ cost contributions
to the overall cost function and a regulation determining which constraint is
allowed to select the successor state for a current iteration. This is the job of
the global search control. The components’ interplay is outlined in Fig. 2.2.

The global search control serves as a general manager, to which variables
and constraints can dock on and off in a plug-and-play manner. This provides
a simple mechanism for tackling problems with dynamic changes. To add a
new variable, the variable in question must already be instantiated. To add a
constraint, the constraint’s inclusion of a variable must be announced to the
variable to allow the constraint’s updating in the case of value changes.

For the overall cost function, which is handled by the global search con-
trol, problem-specific coefficients can be introduced to weight the constraints’
subjective costs, as a constraint’s importance may be different in different
contexts (see also Sect. 2.4.3).

Conventional local search methods make a successor decision on the basis
of a calculation of the neighborhood states’ costs. These calculations might

2.4 A Case Study: Dynamic Job-Shop Scheduling 31

...

Selection of Heuristic

Heuristic
Improvement

Heuristic
Improvement

Update Functions

Global Constraint

...

Update

Variable

Linking

...
Heuristic

Improvement
Heuristic

Improvement

Update Functions

Selection of Heuristic

Global Constraint

Selection of Constraint

Global Search Control

Fig. 2.2. Local Search with Global Constraints

be quite costly to compute within the global constraint framework, but the
current constraints’ costs can serve as an excellent compensation for this. As
the goal is to minimize the constraints’ costs and as the global constraints
should know how to resolve the conflicts by themselves, it is a straightforward
matter to select constraints according to their current inconsistency.

The selection of the global constraint that is to improve the current state
can be enhanced by various meta-heuristics to avoid local minima and pla-
teaus, ranging from a simple random choice of unsatisfied constraints to more
elaborate techniques including learning, tabu lists, etc. Some of these are de-
monstrated in the following section’s case study. The global search control
module should support a variety of methods that can be applied in a user-
specified way (as in the flexible blackbox system [100]). By integrating global
search-state parameters for the constraints’ improvement procedures, e.g.,
a simulated-annealing-like temperature, an anytime improvement depending
on the current search situation can be achieved. In addition, it is possible to
introduce higher-level coordination mechanisms between constraints to mi-
nimize violations of multi-constraint variables. If knowledge is available ab-
out these interface areas, it may be sufficient to introduce redundant global
constraints to cover these areas. Nevertheless, the overhead of coordination
mechanisms may pay off in some cases.

2.4 A Case Study: Dynamic Job-Shop Scheduling

As an example of the application of local search with global constraints, we
look at the dynamic job-shop scheduling problem.

The problem of solving standard job-shop scheduling by local search has
been addressed in numerous research papers (see [174] for a survey), but there

32 2. Using Global Constraints for Local Search

are few experiments dealing with a partial satisfaction/infeasible state neigh-
borhood. Experiments including dynamic aspects of job addition/removal are
also rare. This is a pity since dynamics and partial satisfaction are very reali-
stic problem features and local search approaches can bring their advantages
to bear in these domains particularly.

As in traditional n×m job-shop scheduling, there are n jobs in a schedule,
each of them having m tasks with fixed durations. All tasks of a job are
connected via m − 1 linear distance inequalities involving start or end time
points of two tasks. For compliance with the scheduling horizon h, there is in
addition a linear distance inequality taskend ≤ h for each task. Each task has
to be processed on a specific machine, and each of the o machines can process
only one task at a time. Every p microseconds of computation time, one job
is removed from the schedule and a new job must be added. The tasks of the
new job are randomly distributed within the scheduling horizon.

The goal is to find a concrete begin/end for all currently active tasks, such
that the inconsistency of the constraints is as low as possible. To compare
different algorithms, the inconsistency can be displayed over time (see Fig.
2.3; peaks occur on job removal/addition) and the average inconsistency can
be computed.

5000

10000

15000

20000

25000

30000

35000

9 9.25 9.5 9.75 10

In
c
o
n
s
is

te
n
c
y

Time (sec)

Fig. 2.3. A Test Run Example

The measurement of inconsistency is done in the following way:

– For each discrete point of time from 0 to h on each machine, the number of
assigned tasks −1 is added to the inconsistency if there is an assignment
of more than one task.

– For each linear distance inequality that is unsatisfied, the minimal shift
distance for one of the inequality variables required to satisfy the inequality
is added to the inconsistency.

2.4 A Case Study: Dynamic Job-Shop Scheduling 33

The initial state for the test runs is computed by the iterative addition
of n jobs, with p microseconds of computation time between each addition,
which is used for improvement iterations.

The following parameters were used for the test runs throughout our
experiments: The tasks’ duration is 100 plus a random value of between -99
and +100. 40 % of a job’s tasks require the same machine as another of the
job’s tasks. The jobs’ inequalities consist of 20 % equations and 80 % real
inequalities. The inequalities involve a shift constant, which is 100 plus a
random value of between -99 and +100.

2.4.1 Realization

The dynamic job-shop scheduling problem was encoded according to the glo-
bal constraint concept3. There are two types of global constraints:

– Action Resource Constraints (ARCs) for the nonoverlap of tasks that
require the same machine

– Task Constraints (TCs) for the temporal ordering relations between
tasks within a job

Decomposition into these types of constraints is done because of the strong
dependencies among the variables for each constraint and the manifold reuse
possibilities. Resource constraints that hinder a temporal overlap of activi-
ties/assignments are needed in many applications, e.g., to model the avai-
lability of a person, a room or a machine, and the TC’s temporal relations
of tasks/activities are needed in nearly every system that involves temporal
reasoning. The ARCs and TCs will also be used for the agent’s planning
system.

Global Action Resource Constraints. An ARC is connected to a set of
pairs P and two variables c and h. A pair of the set P , (si, ei), represents
a task i that uses the machine/resource. The starting time of a task i is
represented by the variable si and the end of the task by the variable ei. The
ARC’s role is to prevent overlapping tasks. For each discrete point of time
from c to h, the number of assigned tasks −1 is added to the constraint’s
inconsistency if there is an assignment of more than one task at this time
point. The constraint can change the tasks’ temporal distribution by changing
the variables si/ei.

An ARC’s basic internal structures are a set of task objects and a multiple-
linked list of temporal intervals. A task object contains references to the start
variable, the end variable and its intervals. The intervals split the time from c
to h into maximal parts such that each interval has the same task assignment
for its duration (see Fig. 2.4). Task overlaps are mapped to the intervals, and
the inconsistency of an interval is computed by the overlaps multiplied by
the interval’s length. Links to an interval’s task objects are also stored. The
ARC’s total inconsistency is the sum of the intervals’ inconsistencies.
3 The implementation was done in ObjectC.

34 2. Using Global Constraints for Local Search

Inconsistency 36

Overlaps

Task Links

ARC’s Intervals

and Intervals
Links to Start, End

ARC’s Task Objects

10

1 12

12 10

1

4

0000

0 0 0 0 0

0 0

0

C D
E F

HG

I JA B

0

0

hc

Fig. 2.4. An ARC’s Internal Structures

The ARC’s basic heuristic (ARC-H1) selects an inconsistent interval (i1;
see selection a) of Fig. 2.5) with a choice probability for an interval that is
proportional to the interval’s inconsistency. For example, if the intervals A
to E have inconsistencies of Acosts = 10, Bcosts = 12, Ccosts = 10, Dcosts = 0
and Ecosts = 4, the chance of being chosen is 27.8 % for A, 33.3 % for B,
27.8 % for C, 0 % for D and 11.1 % for E.

Then, one of the interval’s tasks (t1) is chosen at random. The task’s start
variable is shifted to the beginning of an interval i2, a choice probability for
the interval being proportional to its length times its task-number improve-
ment with respect to the interval i1. Only intervals with fewer tasks than the
i1 interval’s (without the task t1) are considered for this decision, and the
maximal length of intervals considered for the multiplication is that of the
task t1.

Global Task Constraints. A task constraint manages a set of temporal
relations between a job’s tasks (see Fig. 2.6). Each relation involves links to
two decision variables V1 and V2, a constant c and a comparator ⊲⊳ ∈ {<,=
, >}, such that V1 ⊲⊳ V2 + c. The inconsistency of a relation is given by the
minimal shift distance for one of the variables required to satisfy the relation.
The TC’s total inconsistency is the sum of the relations’ inconsistencies.

The basic improvement heuristic of the task constraint (TC-H1) selects
an inconsistent relation with a choice probability for a relation that is pro-
portional to its inconsistency (see Fig. 2.7). One of the involved variables is
selected randomly, and a minimal shift of this variable is performed such that
the relation is fulfilled.

2.4.2 Results

Figure 2.8 shows experiments with different horizons. The global search con-
trol selects a constraint with a probability proportional to the constraint’s
costs. The schedule always contains 50 jobs (→ 50 TCs), each of them with

2.4 A Case Study: Dynamic Job-Shop Scheduling 35

10 12 10 40 0 0 0 0 0

1 1 1

b) Task Selection

2nd Interval
c) Selection of a) Selection of

1st Interval

0 0

1 10 0 0

000 10

0 0

4

1

12

0

0

1

6

Execution of the move:

0 0 0 0 2 0 0

A B
E F

C D

G H

I JB
E F
A

C D

G H

I J

0

0

0

0

Overlaps

Task Links

ARC’s Intervals

and Intervals
Links to Start, End

ARC’s Task Objects

Overlaps

Task Links

ARC’s Intervals

and Intervals
Links to Start, End

ARC’s Task Objects

Inconsistency 36

32Inconsistency

c

c

h

h

Fig. 2.5. The ARC-H1 Heuristic

Inconsistency 20

Link to Variable 1

Comparator

Link to Variable 2

Constant

Link to Successor

=

+ 0

4

D-Begin

C-Begin B-Begin

<

+ 5

A-End

16

456

460 620

640

First Relation

Fig. 2.6. A TC’s Internal Structures

five tasks, and there are five machines (→ 5 ARCs). Every tenth of a second
there is a job removal/addition4.

4 Although there is an enormous variety of possible problem configurations, the
results are presented for just one problem instance (given as the average of 1,000
test runs if not otherwise stated). Comparable results were obtained with other
instances.

36 2. Using Global Constraints for Local Search

=

+ 0

0

D-Begin

B-Begin

<

+ 5

A-End

16

=

+ 0

4

D-Begin

C-Begin B-Begin

<

+ 5

A-End

16

a) Selection of Relation

b) Selection of
Variable

Execution of the move:

C-Begin

620

640

460

460

460

456 640

620

First Relation

First Relation

Link to Variable 1

Comparator

Link to Variable 2

Constant

Link to Successor

Link to Variable 1

Comparator

Link to Variable 2

Constant

Link to Successor

Inconsistency

Inconsistency 16

20

Fig. 2.7. The TC-H1 Heuristic

According to a computation using refinement/global search by the Con-
Plan system [74], the minimal horizon for a maximal consistent solution va-
ries around 6,000, depending on the currently active jobs5. With a horizon of
2,000, the topology of the search space is so flat that any improvement effect
is close to pure noise. A more complete picture is given in Fig. 2.9. One point
represents the inconsistency averaged over 10 seconds of runtime.

In order to study the search behavior until complete satisfaction was
achieved, no job removal/addition was done for the rest of the experiments.
There are 10 jobs (→ 10 TCs) with 10 tasks, 10 machines (→ 10 ARCs) and
a horizon of 2,300. The start inconsistency is about 50,000.

2.4.3 Constraint Weights

The weights of the constraints’ subjective costs for the overall cost function
have so far been set to one. Looking at the individual constraints’ cost deve-
lopment for a test run (Figure 2.10) may give the impression that this is not
the best choice. Better weightings could restructure the search space and en-
sure that the inconsistency of possibly more critical constraints plays a more
important role and that these constraints are chosen more often to execute
improvement changes.

5 A performance comparison with the ConPlan system involving the dynamics was
not possible as a tenth of a second was not even enough to set up the constraints.

2.4 A Case Study: Dynamic Job-Shop Scheduling 37

2

4

6

8

10

2000

4000

6000

8000

10000

0

10000

20000

30000

40000

50000

60000

Time (sec)

Horizon

Inconsistency

Fig. 2.8. Horizon Variation – Single Runs

0

10000

20000

30000

40000

50000

2000 6000 10000 14000 18000

In
c
o
n
s
is

te
n
c
y

Horizon

Fig. 2.9. Horizon Variation – Averages

Figure 2.11 shows that this is not the case. The weights for the ARC and
TC constraints’ costs are given after the colons6. A stronger weighting of

6 To be able to better compare the differently weighted inconsistencies, the results
are presented by displaying the inconsistencies with constraint weights of one. As

38 2. Using Global Constraints for Local Search

Action Resource Constraints

Task Constraints

2

4

6

0

1000

2000

3000

4000

5000

6000

7000

8000

Time (sec)

Inconsistency

Fig. 2.10. Cost Distribution for a Single Test Run

the ARCs has a negative effect, whereas higher weights for the TCs neither
worsen nor improve the search behavior.

The ratio of iterations with task constraint selections to all iterations is
shown in Fig. 2.12. NgRmRt, NgNmNt, RgNmNt and RgRmRt are test-run
variants in approximately decreasing order of quality (see Sect. 2.5.1). The
high initial rates are due to the great disorder of the randomly distributed
tasks. The large variation toward the end is due to the fact that there is
less data involved, most of the test runs having already finished. The higher
the quality of the test runs, the higher too the ratio of iterations with task
constraint selections. This underpins the assumption that a higher repair rate
of the ARCs does not improve the search behavior.

the line patterns are sometimes difficult to recognize, the legends list the curves
in the lines’ order from top to bottom.

2.5 Susceptibility to Local Minima and Plateaus 39

0

500

1000

1500

2000

0 5 10 15 20 25 30

In
c
o
n
s
is

te
n
c
y

Time (sec)

ARC: 200 TC: 1
ARC: 100 TC: 1

ARC: 50 TC: 1
ARC: 20 TC: 1
ARC: 10 TC: 1
ARC: 5 TC: 1
ARC: 2 TC: 1
ARC: 1 TC: 1

0

500

1000

1500

2000

0 5 10 15 20 25 30

In
c
o
n
s
is

te
n
c
y

Time (sec)

ARC: 1 TC: 200
ARC: 1 TC: 100

ARC: 1 TC: 50
ARC: 1 TC: 20
ARC: 1 TC: 10
ARC: 1 TC: 5
ARC: 1 TC: 2
ARC: 1 TC: 1

Fig. 2.11. Variation of Weights

2.5 Susceptibility to Local Minima and Plateaus

Unlike low-level CSP-based representations, global constraints enable the se-
arch to be conducted in a more informed way. A measure for this is the
susceptibility to getting caught in local minima and on plateaus. This is in-
vestigated in the following subsections.

2.5.1 Randomization

The previous test runs had randomization at all choice options. This is a
common technique to leave local minima and plateaus. However, randomiza-
tion need not always have a positive effect. Figure 2.13 shows choice variants,
where N means choosing the subject with the highest inconsistency, and R
means a choice with a probability of a subject’s being chosen that is pro-

40 2. Using Global Constraints for Local Search

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20

T
C

I
/
I

Time (sec)

NgRmRt
NgNmNt
RgRmRt
RgNmNt

Fig. 2.12. Ratio of Task Constraint Selections

portional to the subject’s inconsistency7. The letters g, m and t indicate the
choice points: g the global search control’s constraint selection, m the first
interval choice of the ARCs’ improvement heuristic (see Fig. 2.5), and t the
relation choice of the TCs’ improvement heuristic (see Fig. 2.7).

For the first phase (Figure 2.13, top graph) of the search, the quality
of the strategies can be more or less ordered according to their amount of
randomization, the nonrandomized NgNmNt version clearly being the best.
The superiority of nonrandomized strategies is not surprising, as local minima
and plateaus are less probable in the early phase. The Ng component has the
most important impact. Strategies with an Rg component are nearly always
worse, even in the later phases of the search (middle and bottom graphs).

As the search proceeds, the Rm component becomes more important,
indicating that the ARC’s heuristic no longer always makes the right decisi-
ons. Shortly after, the Rt component acquires some influence as well, making
NgRmRt the first to converge to a complete satisfaction, followed by the non-
randomized NgNmNt. RgNmNt is the third to achieve complete satisfaction,
only a little before NgRmNt.

In general, nonrandomization seems to be best for the g decision, whereas
randomization of m and t depends on the available computation time. The
randomization of m is much more important than that of t, which indicates
that the ARC’s heuristic is not very powerful.

7 See Appendix C for a discussion of techniques for randomized choices.

2.5 Susceptibility to Local Minima and Plateaus 41

2000

3000

4000

5000

6000

7000

0.1 0.15 0.2 0.25 0.3

In
c
o
n
s
is

te
n
c
y

Time (sec)

RgNmRt
RgRmRt
RgNmNt
RgRmNt
NgNmRt
NgRmRt
NgRmNt
NgNmNt

0

20

40

60

80

100

120

140

160

9.5 10 10.5 11 11.5 12 12.5

In
c
o
n
s
is

te
n
c
y

Time (sec)

RgNmRt
RgRmRt
RgNmNt
RgRmNt
NgNmRt
NgRmRt
NgRmNt
NgNmNt

0

5

10

15

20

25

30

35

40

45

14 16 18 20 22 24

In
c
o
n
s
is

te
n
c
y

Time (sec)

RgNmRt
RgRmRt
RgNmNt
RgRmNt
NgNmRt
NgRmRt
NgRmNt
NgNmNt

Fig. 2.13. Randomization Variants

42 2. Using Global Constraints for Local Search

One should be careful with anytime switching between variants for diffe-
rent search phases based on the graphs of the individual variants. The switch
to a variant with the steepest descent for an actual inconsistency does not
necessarily represent the optimal behavior, because each variant has a diffe-
rent search history and may require structurally very different areas of the
search space in order to advance. A prognosis of the behavior of switching
strategies is further complicated by the dynamics of the dynamic job-shop
scheduling problem.

2.5.2 Random Walks

Random walks are random moves in the search space that disregard the
change of the cost function value. The idea is that the search is retracted from
hopeless situations (like local minima) from time to time. Unlike restarts,
random walks remain within the area of the current state.

Random walks can be included by introducing a second improvement heu-
ristic for each constraint that makes a random variation of a random variable.
Figure 2.14 shows the results for different probabilities for the random varia-
tion heuristics to be chosen. It is obvious that the random walks generally
cause a deterioration in the results. At no point is there a cross-over: the
more random walks, the more inconsistency.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 5 10 15 20 25 30

In
c
o
n
s
is

te
n
c
y

Time (sec)

NgNmNt RW: 10%
NgNmNt RW: 5%
NgNmNt RW: 4%
NgNmNt RW: 3%
NgNmNt RW: 2%
NgNmNt RW: 1%
NgNmNt RW: 0%

Fig. 2.14. Random Walks

2.5.3 Tabu Lists

Figure 2.15 shows experiments using a tabu list for the global search control’s
constraint selection (based on tabu search [68]). Each selected constraint is

2.5 Susceptibility to Local Minima and Plateaus 43

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30

In
c
o
n
s
is

te
n
c
y

Time (sec)

NgNmNt TLL: 10
NgNmNt TLL: 5
NgNmNt TLL: 4
NgNmNt TLL: 3
NgNmNt TLL: 2
NgNmNt TLL: 1
NgNmNt TLL: 0

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30

In
c
o
n
s
is

te
n
c
y

Time (sec)

RgRmNt TLL: 10
RgRmNt TLL: 5
RgRmNt TLL: 4
RgRmNt TLL: 3
RgRmNt TLL: 2
RgRmNt TLL: 1
RgRmNt TLL: 0

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30

In
c
o
n
s
is

te
n
c
y

Time (sec)

RgRmRt TLL: 10
RgRmRt TLL: 5
RgRmRt TLL: 4
RgRmRt TLL: 3
RgRmRt TLL: 2
RgRmRt TLL: 1
RgRmRt TLL: 0

Fig. 2.15. Results for Tabu-List Lengths of 0, 1, 2, 3, 4, 5, and 10

44 2. Using Global Constraints for Local Search

stored in a first-in-first-out list and blocked for another selection as long as
it is a member of the list.

Applying tabu lists proves absolutely pointless. Even for the nonrando-
mized NgNmNt version, it makes no difference.

2.6 Extending the Constraints

The constraints’ improvement heuristics can be created in various ways. The
effect of heuristics with more domain knowledge and the inclusion of more
aggressive heuristics are studied in the following subsections.

2.6.1 More Knowledge

The experiments in Sect. 2.5.1 showed that the ARC’s heuristic is not very
powerful. It would therefore seem advisable to consider other heuristics. For
example, tasks should obviously be packed quite tightly on a machine. The
following ARC-H2 heuristic supports this feature. ARC-H2 is very similar to
ARC-H1, but it makes the selection of the second interval in a different way:
for the new position of the task, only two shifts are possible, the task either
beginning at the beginning of the task’s predecessor interval or ending at the
end of the task’s successor interval. The interval with less tasks is chosen.

The impact of the new heuristic is impressive. The best results are obtai-
ned using a probability of about 90 % for the ARC-H2 heuristic to be chosen,
and 10 % for the ARC-H1 heuristic (see Fig. 2.16). Choosing the ARC-H2
heuristic more often causes a deterioration in the results.

0

500

1000

1500

2000

0 2 4 6 8 10

In
c
o
n
s
is

te
n
c
y

Time (sec)

ARC-H2 never
ARC-H2 20 %
ARC-H2 40 %
ARC-H2 60 %
ARC-H2 80 %
ARC-H2 90 %

Fig. 2.16. Introduction of the New ARC’s Heuristic

Figure 2.17 shows the impact of randomization, indicating the first in-
terval’s selection of the ARC-H2 heuristic by the letter s (always with a

2.7 Conclusion 45

probability of 90 % for the ARC-H2 heuristic to be chosen). The addition of
domain knowledge by the new heuristic strongly reduced the effect of rando-
mization compared to that in Sect. 2.5.1.

0

500

1000

1500

2000

2500

3000

0 0.5 1 1.5 2 2.5

In
c
o
n
s
is

te
n
c
y

Time (sec)

NgNmNt
NgRmNt

NgNmNsNt
NgRmNsNt
NgNmRsNt
NgRmRsNt

Fig. 2.17. Randomization with the New ARC’s Heuristic

2.6.2 Aggressive Heuristics

The task constraint can also be extended. The current heuristic is very cau-
tious, changing just one variable. After a couple of changes of task positions
within a job, it may be useful to make a complete revision of the internal
distance relations instead of repairing only one relation. A more aggressive
heuristic can add to the former heuristic a recursive repair of all relations
of the constraint whose inconsistency has been changed by the improvement
(considering only variables that have not already been changed within the
improvement step).

The effect is disappointing (Figure 2.18; using only the old ARC-H1 heu-
ristic for the ARCs). Even a slight deterioration in the results is caused by
activating the task constraint’s new heuristic.

Cautious heuristics are often more appropriate than highly aggressive
ones, the synthesis with other problem aspects being promoted by only slight
changes of multi-constraint variables.

2.7 Conclusion

The presented combination of local search and constraint programming pro-
vides an important building block for our agents. Many other publications
focus on problem-specific local search solutions. Improved efficiency is the

46 2. Using Global Constraints for Local Search

0

500

1000

1500

2000

0 5 10 15

In
c
o
n
s
is

te
n
c
y

Time (sec)

new: after 10 changes
new: after 20 changes
new: after 50 changes

new: after 100 changes
new: never

Fig. 2.18. Introduction of the New TC’s Heuristic

main goal, generality often being disregarded. In contrast, our approach’s
modular structure of the constraints makes it easy to vary, reuse and extend
problem descriptions.

Other authors have tackled the problem of combining local search with
search frameworks on a more general level, too. This includes work on Boolean
satisfiability problems like GSAT [78, 165] and Walksat [166], the processing
of linear pseudo-Boolean constraint problems [185], and approaches for CSPs
like coalition forming [86] and the well-known min-conflicts heuristic [121]
with its extension and generalization by genet [35]. The most important
difference between our work and these approaches is the ability of the global
constraints to exploit domain-specific information by including constraint-
specific search control and representation knowledge. In contrast to low-level
constraint programming approaches, which correspond rather to SAT- or
OR-based approaches, the use of higher-level constraints is more in keeping
with the basic intentions of constraint programming. Fine-grained constraints
allow a wide application range, but the low-level problem decomposition also
deprives the search process of most of the domain-specific knowledge.

The results of the presented case study indicate that the global constraint
approach’s revision of a current state on a more global level with an inclu-
sion of domain-specific knowledge makes the search quite resistant to getting
caught in local optima or on plateaus. Techniques to escape from local op-
tima and plateaus, like randomization, random walks or tabu lists, had only a
limited effect, and this for some decision points only. The advantage of these
techniques further decreased with the inclusion of more domain knowledge.

The concept of global constraints was originally used for refinement search
(e.g., by le Pape [111] and Puget and Leconte [152]). Transferring it to a local
search context makes it possible to get an efficient and declarative handle on
local search, while preserving features like reusability and maintenance.

3. Structural Constraint Satisfaction

In an environment that is only partially observable for an agent, it is not
clear which objects exist, i.e., how many variables and resources of which
kind are available. The closed-world assumption cannot be applied and we
cannot restrict the planning process to a given set of state variables.

Furthermore, for a planning problem (and many other problem domains),
numerous alternative structures are potentially valid for realizing a solution to
a problem. Figure 3.1 gives an example of two alternatives/CSPs. The wizard
can either cast a teleportation spell to get to a Halloween party and drink a
magic potion to give himself an appropriate appearance for the party after
he is teleported, or consult a map and walk while drinking the potion. This
example shows that there are options not only with respect to the assignment
of variables, but also to the graph structure (number and connection of the
variables and constraints) itself.

Conventional constraint satisfaction is unable to handle structural alter-
natives, as constraint satisfaction problem formulations are static. There is
a given set of constraints and variables, and the specified structure does
not change. For the task of generating a plan, though, there are alternative
CSP structures and the search for the structure of the CSP must be part of
the satisfaction process – a structural constraint satisfaction problem
(SCSP).

The structural constraint satisfaction problem should not be confused
with the dynamic constraint satisfaction problem (see [179] for a brief survey).
Dynamic constraint satisfaction tries to revise a variable assignment with
given changes to the constraint graph, e.g., finding a revised solution if a
solution of {A = 1, B = 2, C = 3} has been computed for a CSP that includes
a constraint A + B = C, and this constraint is exchanged by A + B = 2 × C.
Dynamic constraint satisfaction does not include graph changes as part of
the search.

In contrast to constructive approaches for building a graph, an SCSP
adopts the constraint programming approach and defines solutions by spe-
cifying correctness tests. These test – so-called structural constraints –
are restrictions on admissible constraint graphs. The basic satisfaction idea
is to iteratively change a graph (starting with an empty graph) based on an

A. Nareyek: Constraint-Based Agents, LNAI 2062, pp. 47−68, 2001.

 Springer-Verlag Berlin Heidelberg 2001c©

48 3. Structural Constraint Satisfaction

Constraint

Variable

Begin

Begin = CSbegin

CSbegin

CSbegin + 10 = CSend

CSend

End

DPend

DPbegin >= CSend

DPbegin + 10 = DPend

End = DPend

DPbegin

End

CMend

DPbegin

DPbegin + 10 = DPend

DPend

End = max(DPend, Wend)

Wbegin

Begin

Begin = CMbegin

CMbegin

CMbegin + 2 = CMend

Wbegin >= CMend

Wend

DPbegin >= CMend

Wbegin + 16 = Wend

Alternative 1 Alternative 2

Drink Potion Walk

Teleportation
Spell

Cast
Consult Map

Drink Potion

Fig. 3.1. Plan Alternatives

algebraic graph grammar, which is generically produced using the problem
definition.

The presentation of the SCSP approach will be done by way of an example
of an extended job-shop scheduling scenario, where a task can be executed
with an arbitrary number of breaks in between. It is hardly possible to express
this with a conventional CSP because the formulation would require a variable
number of variables for the subtasks’ start times and durations as well as a
variable number of constraints.

Section 3.1 gives a brief introduction in graph grammars. This concept
is extended by structural constraints in Sect. 3.3. The extension is used in
Sect. 3.4 to formulate structural constraint satisfaction problems. Sections 3.5
and 3.6 show how to use the SCSP formulation to generically create a graph
grammar with additional structural constraints to prevent from redundan-
cies. The concept of structural constraint satisfaction is combined with the
previous chapter’s approach of global constraints for local search in Sect. 3.7.

3.1 Graph Grammars 49

3.1 Graph Grammars

This section provides a more or less informal introduction in algebraic graph
grammars (see [49, 79, 158] for a detailed overview).

Algebraic graph grammars are a generalization of Chomsky grammars.
A graph signature GSig consists of the sorts of vertices V , edges E, and a
label alphabet L. The operations of GSig provide source and target vertices
for every edge, s, t : E → V , and associate a label to every vertex and edge,
lv : V → L and le : E → L. Figure 3.2 shows an example graph.

A A

A

K

L

BKVertex

Edge K

Fig. 3.2. Graph Grammars: A Graph

A match m of graph g1 to graph g2 is a total graph morphism that maps
the vertices and edges of g1 to g2 such that the graphical structure and the
labels are preserved. We use injective matches only.

A production P is a partial morphism between a left-hand side Pl and
a right-hand side Pr, which provides information about which elements are
preserved, deleted and created in the case of an application of the production.
The identity of objects is marked by appended identifiers like :1 (see Fig.
3.3). A production is applicable to a graph g, if there is a match of Pl to g.
Figure 3.3 shows an example of a production. A general vertex that can match
any vertex is graphically depicted by a flat ellipse with a dotted outline. A
general edge that can match any edge is graphically depicted by a dotted
line.

:2

KA

:3

K

A

:1

Right-hand side of production

:1 :2

A A K K

:3

NAC

Left-hand side of production

P Example

Identifier

Fig. 3.3. Graph Grammars: A Production

50 3. Structural Constraint Satisfaction

A derivation g2 of g1 is the so-called push-out graph of an application
of an applicable production P . The new graph g2 is similar to g1, but the
elements of Pr that are not in Pl are added, and elements of Pl that are
not in Pr are deleted. We formulate a general requirement for the deletion of
vertices as it would be unclear how to proceed with dangling edges:

Requirement reqd: A production can specify the deletion of a vertex
only if the vertex has no edge to another vertex.

Figure 3.4 shows how the graph of Fig. 3.2 can be transformed using the
production of Fig. 3.3.

A A

A

P Example

Application of

A

BK

K

A

A

L
K

K

L

BK

K

Fig. 3.4. Graph Grammars: A Derivation

The application of a production may also require application conditions.
A negative application condition (NAC) is a total morphism C : Pl → n that
is satisfied for a match L : Pl → g such that there is no morphism G : n → g
such that G ◦ C = L. An NAC is represented by a convex dark area (e.g.,
in the production of Fig. 3.3). A positive application condition (PAC) is a
total morphism C : Pl → p that is satisfied for a match L : Pl → g if there
is a morphism G : p → g such that G ◦ C = L. A PAC is represented by a
convex light area (e.g., in left-hand side of Fig. 3.16). For multiple application
conditions, such as in production PMachinee

of Fig. 3.15, the conjunction of
the conditions must hold.

Graph grammars can be used as a mechanism for describing potential
neighbor states in the search space. This neighborhood is composed of all
possible direct derivations of the current graph. The whole search space, such
as the Cartesian product of all variables’ domains in conventional CSPs, can
be described by the corresponding graph language, with the empty graph as
start graph.

3.2 Graph Elements for SCSPs

A variable of the CSP is represented by a vertex with the label Variable. It
is graphically depicted by a circular vertex (see Fig. 3.5).

Constraints could be represented by edges, but there are constraint types
that allow a variable number of variables to be included. These constraint
types will be called extensible constraints (Ce) in contrast to nonextensible

3.3 Structural Constraints 51

constraints (Cn), such that Ce ∪ Cn = C. As the number of variables incorpo-
rated for extensible constraints may vary throughout the search, there must
be a simple mechanism to include/exclude variables for constraints. Hence, a
constraint is also represented by a vertex, new edges to variables being added
in order to incorporate them. A constraint vertex’s label corresponds to the
type of the constraint. A constraint is graphically depicted by a rectangular
vertex.

An SCSP allows the existence of so-called object constraints. These con-
straints do not restrict the variables’ values, but provide structural context
information. For example, for the job-shop scheduling example of the chap-
ter’s introduction, it must be known which two Start and Duration variables
together form a SubTask object. Otherwise, a Machine constraint designed
to check if the included SubTasks overlap might combine Start and Duration
variables of different SubTasks for the check. Object constraints act as a kind
of structural broker between variables and conventional constraints. They are
represented by a rectangular vertex with a dashed outline. Object constraints
can be nonextensible as well as extensible, Oe ∪ On = O, C ∩ O = ∅. Con-
straints of C can be connected to variables and object constraints, whereas
object constraints can be connected to constraints of C as well.

Edges are used to connect vertex elements. The role/position of a variable
(or constraint when speaking about objects) within a constraint is often very
important. Thus, an edge’s label and direction can be used to express its
role/position1. An edge’s direction is indicated by an arrow and the label is
displayed in the edge’s middle (NoLabel if omitted).

Figure 3.5 shows an example graph with an extensible conventional con-
straint Machine, an extensible object constraint Task, two nonextensible
object constraints SubTask, three extensible conventional constraints Sum
and a nonextensible conventional constraint Less. The Machine constraint
ensures that the Start and Duration variables of all connected SubTasks (via
Tasks) do not produce an overlap. The Sum constraint restricts the sum of
(◦→✷)-connected variables to equal a (✷→◦)-connected variable. The Less
constraint that restricts the (◦→✷)-connected variable to be less than the
(✷→◦)-connected variable.

3.3 Structural Constraints

Structural constraints could be freely defined automata to test graphs for
specific properties. However, to enhance computability, we use a stricter con-
vention here.

A conventional CSP’s constraint correlates domain values. In contrast,
a structural constraint correlates subgraphs. A conventional constraint’s ap-
plication point is defined by the problem formulation, whereas a structural

1 Labels could just as well be expressed by a special object constraint in between.

52 3. Structural Constraint Satisfaction

Less

SubTaskSubTask

Task

DurationStart

Sum

Duration

Duration

Sum Sum

Start

Machine

EndStart

Fig. 3.5. An Example Graph

constraint’s application point is not clear in advance. Thus, a structural con-
straint needs a matching part that is equal to the left-hand side of a produc-
tion rule (docking part Sd).

A conventional constraint is true as long as there is at least one tuple of
possible variable assignments. There may be a few possible structures to be
accepted by a structural constraint as well. Thus, structural constraints do
not have only one right-hand side, like a production, but a set of alternatives
(testing part St). These alternatives have a testing nature and are not used for
pushouts like the production’s right-hand side. Because of this, there may be
application conditions not only for the docking part, but also for the testing
part’s alternatives.

If the docking part Sd of a structural constraint S = (Sd, St) matches the
constraint graph, an alternative of the testing part St has to match too. A
graph g is structurally consistent iff there exists a morphism T : a → g, a ∈ St

for every structural constraint S and every possible match D : Sd → g such
that T ◦ (Sd → a) = D.

Figure 3.6 shows the restriction that a SubTask must be the only begin-
ning of a Task’s temporally ordered list of SubTasks (first alternative), at
the end (second alternative), somewhere in the middle (third alternative) or
the only SubTask (fourth alternative). Further structural constraints ensure
that a SubTask has at most one successor in the Task’s list (see Fig. 3.7),
that a Task has at least one SubTask and is processed on exactly one Ma-
chine (see Fig. 3.8) and that the Sum of the SubTasks’ Durations equals
the Task’s Duration (see Fig. 3.9).

Heckel and Wagner [85] introduce so-called consistency conditions that
are equal to structural constraints, with a testing part consisting of one al-
ternative only. These can be directly transformed into semantically equivalent
application conditions of productions.

3.3 Structural Constraints 53

Task Sum

Duration

StartSubTask Less

:1

SubTask

SubTask Start

Start

Start

SubTask

:1

SubTask

Less

Sum

Duration

Start

Sum

Duration

Start

Task

End

SubTask

:1

SubTask

Less

Sum

Duration

Start

Sum

Duration

Start

Less

StartSubTask

Task

Task Sum

Duration

End

SubTask

SubTask

:1

Start

Start

:1SubTask

SSubTaskNeighbor

Fig. 3.6. The Structural Constraint SubTaskNeighbor

54 3. Structural Constraint Satisfaction

SSubTaskOrder

Duration

StartSubTask

Start

SumSubTask

Task :1

:2

Less

Sum

:3

StartSubTask

SubTask

Task :1

Less

:3

Sum

:2

Fig. 3.7. The Structural Constraint SubTaskOrder

:1Task STaskEmbedding SubTask Task

Machine

Machine:1

Fig. 3.8. The Structural Constraint TaskEmbedding

:1 SSubTaskDurationSubTask

Task Duration

Sum

SubTask

Duration

:1

STaskDuration
DurationSubTaskTask

:1 :2

Task Duration

Sum

:1

:2

Fig. 3.9. The Structural Constraints SubTaskDuration and TaskDuration

3.4 Structural Constraint Satisfaction Problems 55

3.4 Structural Constraint Satisfaction Problems

A solution to an SCSP is a constraint graph with an arbitrary number of va-
riables, conventional (or object) constraints and connecting edges, such that
the graph satisfies all structural constraints. Thus, the basic ingredients to
formulate an SCSP are a set of types of conventional (or object) constraints
and a set of structural constraints. But in most cases there will be much
less allowed constellations of conventional (or object) constraints than in-
consistent ones. This means that – at least for the direct neighborhood of
a constraint – a constructive specification is more appropriate than a huge
number of structural constraints. Because of this, our SCSP specification
will include generic constellations alternatives for the direct embedding of a
conventional (or object) constraint and minima and maxima for the direct
embedding of extensible constraints. This is comparable with conventional
CSPs, where a variable’s domain is also mostly represented by enumeration
mechanisms with minima and maxima instead of constraints.

A structural constraint satisfaction problem SCSP = (CD,S) con-
sists of a tuple of sets of constraint descriptions CD = (Cn, Ce,On,Oe)
and a set of structural constraints S. The constraint descriptions of
Cn and On are pairs (c, pbase) with a nonextensible conventional (or
object) constraint c and its embedding graph pbase. The constraint
descriptions of Ce and Oe are 4-tupel (c, pbase, E, pmax) with an ex-
tensible conventional (or object) constraint c, its minimal embedding
graph pbase, a set of extension graphs E and the constraint’s maximal
embedding graph pmax.

An embedding graph shows the constraint with all its directly connected
neighbor vertices. If an extensible constraint has no maximal embedding,
pmax is the empty graph. An extension graph shows the constraint connected
to the vertices that can be added in one step. Figure 3.10 shows the residual
components of the example SCSP. To show the effects of maximal embedding
graphs, we introduce a maximum of two Tasks for a Machine.

There are some requirements that are induced by the construction of
the search space in the following section (fulfilled for the presented example
SCSP):

– Nonextensible constraints are not allowed to appear in graphs of other
constraints, as the addition and deletion productions of constraints partly
incorporate their graphs (to satisfy reqne).

– Constraint-usage cycles are not allowed for the pbase graphs of extensible
constraints, e.g., that pbaseA

includes a B constraint and pbaseB
includes

the A constraint (to satisfy reqe).
– If the pmax graph of an extensible constraint is non-empty, no sequence of

productions that is applied to the constraint’s pbase graph can produce a
graph that includes the pmax graph without previously producing the pmax

graph (to satisfy reqmax).

56 3. Structural Constraint Satisfaction

p base Machine

p extension Machine MachineTask

=p max Machine

p base SubTask

SubTask

Task

Start

Duration

=

(nonextensible object constraint)SubTask

p base Less
= Less

(nonextensible conventional constraint)Less

=

= Machine

MachineTask Task

(extensible conventional constraint)Machine

p extension Sum

p base Sum

=

p max Sum
=

=

Sum

Sum

DurationTask

End

Start

p max Task

p base Task

Sum (extensible conventional constraint)

=

=

Task (extensible object constraint)

Fig. 3.10. Components of the Example SCSP

These requirements can be relaxed by using more sophisticated ways to
generate the search space. However, this is not necessary for the work pre-
sented here.

3.5 Generating the Search Space

For conventional constraint satisfaction, values are assigned to variables. This
builds the search tree/space with potential solutions. In contrast, structural
constraint satisfaction uses productions to create constraint graphs. Figure
3.11 shows an example of a search space for an SCSP.

It must be guaranteed that all valid constraint graphs can be constructed
by the productions. For refinement search, an empty start graph can conti-
nuously be expand toward a possible constraint graph by addition produc-
tions for the single elements (see [130] for structural constraint satisfaction
approaches for refinement search). For local search techniques, these addi-
tion productions are not sufficient as any state must be reachable from any
other state and not only from the empty start graph. This requirement can
be satisfied by the introduction of further deletion productions:

3.5 Generating the Search Space 57

Pa1 Pd1

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

Pa2

Pd2

Pa1 Pd1

Pd1Pa1

Pa2

Pd2

Pd3Pa3

Pa1 Pd1

Start

Pd3Pa3

Pa2

Pd2

Fig. 3.11. An Example of a Structural Search Space

Requirement reqp: The effect of an addition production can be re-
tracted by a directly following application of a corresponding deletion
production.

Analogously to the constraint checking in conventional constraint satis-
faction, an SCSP’s structural constraints have to be checked during search.
The productions, together with the structural constraints, provide a tool to
allow search to generate and verify a solution. However, the search space
is potentially infinite and the support of preemptive alternative reductions
and domain-specific search knowledge about which production to apply and
where to apply it on is very important (like propagation/consistency me-
thods and variable- and value-ordering heuristics in conventional constraint
satisfaction). This is elaborated in Sect. 3.7.

The following subsections provide rules to create productions that can
add/delete all potential graph elements. In the same way as values that are
not in the domains of variables are not considered in conventional constraint
satisfaction, graphs that violate the SCSP’s embedding and extension graphs
are implicitly prevented by the productions.

3.5.1 Productions for Variables

Addition. One production ensures that it is always possible to add further
variables. The production is shown in Fig. 3.12 (production Pva

).

Deletion. The production for the deletion of a variable (production Pvd
in

Fig. 3.12) requires that the variable is not connected to any constraint (to

58 3. Structural Constraint Satisfaction

satisfy reqd). This is ensured by the NAC. The NAC cannot endanger reqp

as it is not possible that there are edges to the variable directly after the
application of Pva

.

Pv
a

Pv
d

Fig. 3.12. Productions for Variables

3.5.2 Productions for Nonextensible Constraints

Addition. To guarantee that an extensible constraint cannot exceed its ma-
ximal configuration pmax, it must be ensured that edges to an extensible
constraint with a nonempty pmax graph can only be added if the constraint’s
pmax graph is not exceeded. An addition production can include NACs with
the involved constraints’ pmax graphs to ensure that a maximal configuration
is not already existent. This requires that

Requirement reqmax: If the pmax graph of an extensible constraint
is nonempty, any derivation sequence of productions that is applied
to the constraint’s pbase graph cannot produce a graph that includes
the pmax graph without producing the pmax graph before.

The pbase specification states the only consistent way to connect a nonex-
tensible constraint with variables. Therefore, a whole pbase structure can be
established by an addition production at once. Multiple similar nonextensible
constraints between the same elements can be prohibited by an NAC for the
addition production. This is not a vital structural constraint but saves from
redundancy.

In conclusion, there must be one addition production per nonextensible
constraint, which is constructed in the following way:

Construction Pnonextensiblea
: The right-hand side of the addition

production is equal to the constraint’s embedding graph pbase. The
left-hand side of the production contains the vertices of the right-
hand side without the constraint itself, and an NAC that contains
the right-hand side without the vertices that are connected to the
constraint. In addition, the left-hand side includes an NAC for each
included extensible constraint to prevent from exceeding this con-
straint’s pmax graph. These NACs consist of a constraint’s maximal

3.5 Generating the Search Space 59

embedding graph pmax such that the constraint is unified with the
constraint of the left-hand side (NAC without the constraint itself).

Production PLessa
in Fig. 3.13 shows the addition production for the Less

constraint.
The left-hand side of the addition production requires that the other ver-

tices of pbase are already existent. To prevent from deadlocks, it must be
possible to create the other vertices of pbase independently of the nonexten-
sible constraint. This is enforced by

Requirement reqne: The occurrence of a nonextensible constraint
is only allowed in its addition and deletion production.

This requirement also ensures that the pbase specification is always satisfied,
as no production can connect or disconnect vertices from the constraint.

Deletion. To guarantee that an extensional constraint in the graph cannot
be changed by productions below its minimal configuration pbase, it must be
ensured that

Requirement reqmin: Edges to an extensible constraint can only
be deleted (without deleting the constraint itself), if at least the
constraint’s pbase graph is preserved.

There must be one deletion production per nonextensible constraint. It
withdraws the addition of the corresponding Pnonextensiblea

production:

Construction Pnonextensibled
: The left-hand side of a deletion pro-

duction is equal to the embedding graph pbase. The right-hand side
of the production contains the vertices of the left-hand side without
the constraint itself. In addition, the left-hand side includes a PAC
for each included extensible constraint to prevent from falling below
this constraint’s pbase graph. These PACs consist of a constraint’s
embedding graph pbase such that the constraint is unified with the
constraint of the left-hand side (PAC without the constraint itself).

Production PLessd
in Fig. 3.13 shows the deletion production for the Less

constraint.
reqd can be neglected for the deletion productions of nonextensible con-

straints, as no additional vertex can be connected to the constraint because
of reqne. reqp is satisfied, as Pnonextensibled

is the reversal of Pnonextensiblea

without its NAC and as the PACs of Pnonextensibled
cannot endanger the

applicability as the existence of the pbase graphs is ensure by reqmin.

3.5.3 Productions for Extensible Constraints

Addition. Extensible constraints cannot be added in one step like the no-
nextensible constraints. Only the extensible constraint’s pbase graph can be
added at once, as this is the minimal structure. Thus, the addition production

60 3. Structural Constraint Satisfaction

PLess
d

Less
:1 :2 :1 :2

PLess
a

Less
:1 :2

Less
:1 :2

Fig. 3.13. Productions for Nonextensible Constraints (Examples)

for an extensible constraint is similar to the one of nonextensible constraints,
but without the NAC to avoid redundancy (for an avoidance from redundancy
see Sect. 3.6):

Construction Pextensiblea
: The right-hand side of the addition pro-

duction is equal to the constraint’s embedding graph pbase. The left-
hand side of the production contains the vertices of the right-hand
side without the constraint itself. In addition, the left-hand side in-
cludes an NAC for each included constraint. An NAC consists of a
constraint’s maximal embedding graph pmax such that the constraint
is unified with the constraint of the left-hand side (NAC without the
constraint itself).

Production PSuma
in Fig. 3.14 shows an example for the Sum constraint.

The left-hand side of the addition production requires that the other
vertices of pbase are already existent. To prevent from deadlocks, it must be
possible to create the other vertices of pbase independently of the extensible
constraint. This is enforced by

Requirement reqe: Constraint-usage cycles are not allowed for the
base embedding graphs of extensible constraints.

Deletion. There must also be one deletion production per extensible con-
straint. It withdraws the addition of the corresponding Pextensiblea

produc-
tion. The production is generated according to the one of a nonextensible
constraint, but must contain an NAC to forbid edges to further vertices (to
satisfy reqd):

Construction Pextensibled
: The left-hand side of the deletion pro-

duction is equal to the embedding graph pbase. The right-hand side
of the production contains the vertices of the left-hand side without
the constraint itself. The left-hand side contains an NAC that has a
general vertex with a general edge to the constraint.

Production PSumd
in Fig. 3.14 shows an example for the Sum constraint.

reqp is satisfied, as Pextensibled
is the reversal of Pextensiblea

and the NAC
cannot endanger the applicability as it is not possible that there are edges to
the constraint directly after the application of Pextensiblea

. Pextensibled
cannot

3.5 Generating the Search Space 61

endanger the reqmin requirement for the other constraints of pbase because
of reqe.

PSum
a

Sum
:1 :2

PSum
d

:1 :2

Sum
:1 :2:1 :2

Fig. 3.14. Productions for Extensible Constraints (Examples)

3.5.4 Productions for Constraint Extensions

Extension. Every possible extension of an extensible constraint can be ad-
ded in one step. Multiple similar extensions between the same elements can be
prohibited by further NACs for the production. These are not vital structural
constraints but save from redundancy.

There must be one production for every possible extension of an extensible
constraint:

Construction Pextensiblee
: The right-hand side of the production is

an extension graph of E. The left-hand side is created by the vertices
of the right-hand side, an NAC for each edge of the right-hand side,
and, if pmax is not empty, an NAC consisting of the constraint’s ma-
ximal embedding graph pmax such that the constraint is unified with
the constraint of the right-hand side (NAC without the constraint
itself). In the same way as the last NAC, further NACs have to be
introduced for all other constraint vertices of the extension graph to
prevent from exceeding the constraints’ pmax graphs.

Production PMachinee
in Fig. 3.15 shows an example for an extension of the

Machine constraint.

Reduction. For every extension of a constraint, there must be a production
to remove the extension. The requirement reqmin can be satisfied by providing
an additional PAC with the pbase graph for each constraint:

Construction Pextensibler
: The production’s left-hand side is similar

to the extension graph of E, including a PAC that contains the pbase

graph, such that the constraint is unified with the constraint of the
extension graph (PAC without the constraint itself). In the same
way as the PAC, further PACs have to be introduced for all other

62 3. Structural Constraint Satisfaction

constraint vertices of the extension graph to prevent from falling
below the constraints’ pbase graphs. The right-hand side is the left-
hand side without the PACs and the edges.

Production PMachiner
in Fig. 3.15 shows an example for the reduction of the

Machine constraint.
reqp is satisfied, as Pextensibler

is the reversal of Pextensiblee
without its

NACs, and as the PACs cannot endanger the applicability as the existence
of the pbase graphs is ensure by reqmin.

MachineTask

:1 :2

MachineTask

:1 :2Task

Task

P Machine
e

P Machine MachineTask

:1 :2

MachineTask

:1 :2

r

Fig. 3.15. Productions for Constraint Extensions (Examples)

3.6 Avoiding Redundancy

The addition of nonextensible constraints prevents redundant constraints by
means of a corresponding NAC in Pnonextensiblea

-productions. This avoidance
of redundancy is not ensured for extensible constraints. Generic structural
constraints can overcome this problem.

A production for extending an extensible constraint Pextensiblee
adds furt-

her edges to the graph. Extensible constraints of the same type must differ by
involving at least one other (or additional) element. There must be a structu-
ral constraint Sextensible for each extensible constraint type, docking at each
pair of potentially redundant constraints, and having all possible distinctive
features as test alternatives.

Potentially redundant constraints are two constraints of the same type
that are connected to the same elements according to the base graph pbase:

Construction Sextensible – docking part: The docking part of the
structural constraint is created by two pbase graphs, where the cor-
responding vertices (without the constraints themselves) are unified.
To avoid multiple redundant structural constraint instances per po-
tentially redundant constraint pair, all but the constraints themselves
are a PAC.

3.7 Combination with the Global Constraint Approach 63

Possible distinctive features are vertices that are connected to one con-
straint but not (in the same way) to the other:

Construction Sextensible – testing part: There are two alternati-
ves per unique edge (label; direction with respect to the constraint
– toward it or away from it) that is included in the constraint’s ex-
tension graphs. Each of the two alternatives consists of a graph with
the two constraints of the docking part and an additional general
vertex. Between each constraint and the general vertex is an edge
corresponding to the unique edge. In the one alternative, the edge to
the first constraint is an NAC; in the other alternative, the edge to
the second constraint is an NAC.

Figure 3.16 shows an example of a Subset constraint that forces the set
of (◦→✷)-connected variables to be a subset of the set of (✷→◦)-connected
variables. The pbase graph of a Subset constraint includes two variables
(◦→✷→◦), and there are two possible extensions corresponding to the two
possible variable connections.

S
Subset

Subset

:1

Subset

:1

Subset

:1

Subset

:2

Subset

:2

Subset

:2

Subset

:2

Subset

:1

Subset

:1

Subset

:2

Fig. 3.16. Avoidance of Redundant Subset Constraints

3.7 Combination with the Global Constraint Approach

Given an SCSP, valid constraint graphs must somehow be constructed. This
section adopts the local-search approach with global constraints to handle
structural constraint satisfaction. In this context, the local-search approach
is extended to handle optimization tasks.

64 3. Structural Constraint Satisfaction

3.7.1 Application of Structural Constraints

If the graph is changed by a production, the graph’s consistency must be
verified again. It would be very costly to test each time for all matches of
possible structural constraints. Instead, instances of structural-constraint ty-
pes are memorized. These instances stay matched to a certain part of the
constraint graph. Then, the graph must only be reverified with respect to the
changes.

Whenever new elements are added by a production, there must be new
structural-constraint instances for all possible constraints’ docking-part mat-
ches that include the new elements. Since there may be negative application
conditions in the docking parts of existing structural constraints, those with
an unsatisfied negative application condition due to the new elements must
be excluded.

Whenever elements are deleted by a production, all structural-constraint
instances that matched these elements with their docking part must be de-
leted. If the deleted elements were part of a PAC in the docking part, the
constraint instances must only be deleted if no other elements are availa-
ble to satisfy the PAC. The deletion of elements may also mean that NACs
of potentially applicable constraints’ docking parts are no longer applicable.
Structural-constraint instances must be added in these cases.

3.7.2 Types of Global Constraints

The approach of using global constraints for local search covers only the
satisfaction of conventional global constraints. Besides conventional global
constraints, there are now global object and structural constraints as well.
Conventional and object constraints are added/deleted by productions, a
check being necessary after each application of a production to decide whether
to add/delete global structural constraints (see Sect. 3.7.1). After applying
a production, the inconsistency of affected structural constraints must be
updated.

Extensible global (conventional or object) constraints must feature addi-
tional update functions to integrate/disintegrate variables and object con-
straints.

Global Conventional Constraints. The heuristics of global conventional
constraints can now additionally change the graph structure by applying a
production or a sequence of productions. For example, the graph contains a
structure like the second test alternative of the structural constraint SubTas-
kNeighbor (see Fig. 3.6), and the Less constraint’s heuristic would decide
on a structural change because it is not able to enforce the variables’ order.
In consequence, the Less constraint might apply the production PLessd

to
delete itself.

3.7 Combination with the Global Constraint Approach 65

Global Structural Constraints. The global structural constraints are
very similar to global conventional constraints. One difference is that their
costs are not associated with variable assignments, but with the existence or
nonexistence of graph elements. Thus, their heuristics can only apply pro-
ductions. A change of variable values is not allowed (apart from an initial
value assignment that they have to provide for created variables).

For example, after deletion of the Less constraint, the global structural
constraint that corresponds to the structural constraint SubTaskNeighbor
(see Fig. 3.6) may become inconsistent. The structural constraint’s heuristic
might decide to satisfy its fourth alternative because the second alternative
has become inconsistent. This can be accomplished by using the Task’s Start
variable as the SubTask’s Start variable, and by deleting all other SubTasks
of the Task.

Global Object Constraints. Global object constraints are only a reference
structure and do not have cost or improvement functions. Their role is to
maintain a correct linking of conventional constraints and variables such that
the variable updates can be passed correctly and the conventional constraints
are aware of the variables’ structural connection.

A conventional constraint must inform connected object constraints about
the variables it is interested in, as not all connected variables may be impor-
tant. For example, a Machine needs information about the involved Start
and Duration variables of a Task’s SubTasks, but not about the Task’s
own variables.

3.7.3 Global Search Control

If a structural constraint becomes unsatisfied by a graph change, the glo-
bal search control must ensure a correct graph structure before proceeding,
as conventional constraints cannot handle inconsistent structures. Thus, the
global search control always selects a structural constraint to improve the
current state if there is an inconsistent structural constraint (see Fig. 3.17).

3.7.4 Goal Optimization

So far, there has only been a search for a consistent plan. But we wish to go
beyond satisfaction and optimize the agent’s plan according to given goals.
These goals may have a conventional as well as a structural nature. Thus,
conventional and structural constraints can have a second cost contribution
for a second cost function (goal function).

For conventional constraints, it is fairly obvious how the goal function
can be influenced, e.g., by the completion time of a task, the workload of
a resource or monetary resource costs. The contribution of structural con-
straints to the goal function focuses mostly on graph minimization, e.g., a

66 3. Structural Constraint Satisfaction

Successor Choice by Structural Constraint

Successor Choice by Conventional Constraint

Consistency
Structural

Costs = 0

Costs = Max

Structural
Inconsistency

Fig. 3.17. Exploration of the Search Space

structural constraint that forbids redundant structures or one that checks for
unconnected object constraints.

The global search control handles this second cost function as well. The
functions may compete such that an improvement of one function value may
lead to a deterioration in the other function value. Thus, various options for
the selection of a function for improvement should be customizable, e.g., al-
ternating phases of a predefined length or with special abort criteria, or a
general cost measure consisting of the addition of the single function values
multiplied by static (or even variable) coefficients. A constraint that is selec-
ted for improvement is told whether to improve its goal or its cost function.

Figure 3.18 shows the revised components’ interplay (cf. Fig. 2.2).

3.8 Conclusion

This chapter has provided the basic mechanism to handle arbitrary structu-
res for an agent’s behavior plan, enabling us to treat open-world problems
with a potentially infinite number of objects. Being embedded in the general
constraint programming paradigm, the framework is not restricted to a cer-
tain way of exploring the search space, e.g., according to an increasing plan
length.

Combining conventional constraint satisfaction with structural require-
ments enables us to formulate and solve combinatorial search problems with-
out explicitly giving the solution’s structure. The SCSP approach follows the
declarative constraint programming paradigm by stating only requirements
for the solution and without including information on solution generation.

3.8 Conclusion 67

Heuristic
Improvement

Heuristic
Improvement

Reference
Manager

Selection of Heuristic

...

Selection of Heuristic

Heuristic
Improvement

Heuristic

Update Functions

...Improvement

Update Functions

Update
Linking

Goal Manager Cost Manager

Conventional Constraint
Selection of

Structural Constraint
Selection of

Graph Modification

Updates
Structural Constraint

Balance Manager

Graph Productions

Structural Constraint

Conventional Constraint

Global Search Control

Object Constraint Variable

Fig. 3.18. Local Search for SCSPs

Productions can be deduced from the SCSP’s embedding and extension gra-
phs, which allow search to generate all potentially valid solutions. During se-
arch, the SCSP’s structural constraints must be checked to ensure the graph’s
consistency.

SCSPs allow us to tackle a new class of problems by constraint program-
ming techniques. An example for the need of structural alternatives is action
planning, where it is not clear in advance how many and what kind of actions
are needed and how they must be arranged. The same holds for configuration

68 3. Structural Constraint Satisfaction

and design problems, where type and number of parts and the parts’ relations
must be determined as part of the search process.

The concept of structural constraint satisfaction contrasts with previous
approaches that try to overcome the problem by considering maximal struc-
tures with deactivatable elements (e.g., [122, 137]). The use of maximal struc-
tures is useful in the case of only slightly variable structures and a known
maximum. A formulation by an SCSP does not have these restrictions.

Composite CSPs [159] aim at a similar extension of the conventional con-
straint satisfaction paradigm as SCSPs. A composite CSP expresses subgraph
alternatives in a hierarchical way. This allows optimized search guidance, but
requires manual preprocessing to build the hierarchy. The creation of the
hierarchy it is often problematic, as completeness and appropriate structure
are not always obvious. This pre-structuring of the search space is similar to
using a pre-defined static variable/value ordering within refinement search.

The combination of structural constraint satisfaction with the approach
of global constraints for local search forms the basis for formulating and
efficiently solving planning problems within the constraint programming fra-
mework.

4. The Planning Model

The previous chapters have provided basic specification and solving techni-
ques that can be used to handle the agents’ planning. This chapter introduces
a planning model that makes use of these techniques.

The model focuses on resources. A resource (also called state variable or
fluent)1 is a temporal projection of a specific property’s state, which may
be subject to constraints such as preconditions and changes. Numerical as
well as symbolic properties are uniformly treated as resources. For example,
a battery’s Power and the state of a Door are resources:

Power is [0: t ∈ [0..5] , 10 − 0.75 × t: t ∈ [6..13] , 0: t ∈ [14..∞[],

Door is [Open: t ∈ [0..45] , Closed: t ∈ [46..60] , Unknown: t ∈ [61..∞[].

4.1 The Model’s Basics

This section introduces the model’s basics. A formal specification will be
given in the following section. The model’s basic concepts can be grouped
with respect to actions, states and higher-level objects.

4.1.1 Actions, Action Tasks, and Action Resources

The execution of an action (like Eat Peanut) includes action task sub-
components. These action tasks represent operations that are necessary to
carry out the actions. Each of the action tasks utilizes an action resource
for its execution. For instance, the action Eat Peanut requires action tasks
on a Mouth and a Left Hand or Right Hand action resource. Figure 4.1
visualizes the assignment of action tasks to action resources.

It is forbidden for action tasks on the same action resource to overlap, as
simultaneous executions of tasks would interfere with each other. For exam-
ple, the agent is not allowed to talk and eat with his Mouth at the same
time.
1 Resource is the term commonly used in the CP/OR community and is used

here because of the planning system’s close relation to applications for resource
allocation/optimization.

A. Nareyek: Constraint-Based Agents, LNAI 2062, pp. 69−96, 2001.

 Springer-Verlag Berlin Heidelberg 2001c©

70 4. The Planning Model

Feet Walk

Open Door

Right Hand

Left Hand

Mouth

Time

28 sec.
30 sec. 35 sec.

Current Time

Eat Peanut

Eat Peanut

Say "Hi"

Action Resource

Action Task

Fig. 4.1. The Assignment of Action Tasks to Action Resources

The tasks of an action are subject to action-specific conditions. For ex-
ample, the action tasks of the action Eat Peanut must begin and end at
the same time, and the begin and end values must be four seconds apart.

4.1.2 State Resources, State Tasks, and Precondition Tasks

A state resource is similar to an action resource. It does not manage actively
planned actions, but rather the development of a specific property of the
environment or the agent itself. For example, an Own Peanut state resource
with a Boolean assignment for any one time can provide information about
the possession of a peanut (see Fig. 4.2).

Current Time

Time

28 sec.
30 sec. 35 sec.

FalseTrue

Say "Hi"Eat Peanut

Own Peanut

Mouth

True

State ResourcePrecondition Task

Fig. 4.2. A State Resource

4.1 The Model’s Basics 71

The status of the state resources can restrict the applicability of actions.
To execute the action Eat Peanut, it is first necessary to have a peanut.
These relations are checked by precondition tasks of actions. A precondi-
tion task includes a state value (or value ranges) that must correspond with
the state of a related state resource at a specific time.

The effects of actions are more complicated to realize, as multiple actions
and events may have synergistic effects. For example, a state resource Hun-
ger with assignments of natural numbers can be influenced by a beneficial
action Eat Peanut and a detrimental Walk at the same time.

It is the job of state tasks to describe an action’s effects. For instance, a
state task of the action Eat Peanut is responsible for a decreasing contri-
bution of -3 to the state resource Hunger during the action’s execution (see
Fig. 4.3). Each state resource has a specific state mapping that maps the
contributions of the state tasks to values of the state resource’s domain. In
the case of the Hunger resource, the synergistic effect is a simple addition
of the state tasks’ single gradients.

Time

28 sec.
30 sec. 35 sec.

Walk

Say "Hi"Eat Peanut

Current Time

+ 3

- 3

Feet

Mouth

Hunger

State Task

Fig. 4.3. The Mapping Mechanism of State Resources

There can be further effects, which may be caused by synergistic effects
within a state resource. Adding water to a bathtub may result in its over-
flowing and wetting the bathroom. The actions cannot provide state tasks
to realize these further effects because an action has only the limited view
of its state task contributions. Thus, dependency effects of specific state
resource states must be expressed in addition. The dependencies are special
actions that are beyond the agent’s control. Expected external events can
also be integrated by these dependencies.

72 4. The Planning Model

4.1.3 Objects and References

In a finite and known world, there is a fixed set of resources to be considered.
Static relations to specific state resources can be used to realize the effects
of actions, e.g., that the state tasks of the action Eat Peanut-17 affect the
state resource Peanut-17 Location. But such static relations are no longer
possible in an open world, where it is unclear which and how many resources
exist2. Thus, as a consequence of the open world assumption, an action’s tasks
must be specified with variable references for the state resources involved
(e.g., Eat Peanut X instead of Eat Peanut-17).

The next problem that arises by dropping the closed-world assumption
is that the relations between the state resources themselves are no longer
fixed. For example, there could be two peanuts, a big and a small one, and
thus multiple state resources Peanut Location and Peanut Nutritive
Value. The resources of the same type are indistinguishable, and it is not
clear which two belong to a specific peanut. If the Eat Peanut action were
applied, it is not clear which resources would be affected, and the big peanut
might vanish, while the small one would be used to decrease hunger. Thus, in
addition to an action’s tasks, the state resources’ states may involve references
to indicate their relation.

The most common relation between state resources is an aggregation –
they form objects. As this is a very important relation, it is not handled by
references, but explicitly represented in the model. For example, the state re-
sources Peanut Location and Peanut Nutritive Value form an object
Peanut. Figure 4.4 illustrates the application of the Eat Peanut action to
a Peanut object.

4.1.4 Sensors and Existence

The agent must be capable of acquiring new information about the envi-
ronment, which must somehow be integrated into the planning process. The
real-world data is collected by so-called sensors. The sensors report actual
data, like the current level of hunger or the properties of a sighted peanut. We
assume high-level sensoring that provides ready-structured objects. Sensors
are related to the virtual objects of the plan. Figure 4.5 shows an example of
a plan to put one block on top of another where only one of the blocks has
already be sensed.

Having introduced the concept of sensors, we are faced with the question
of whether a planning object will ever be connected to a sensor, i.e., if a
counterpart in the real world actually exists or will exist. For example, it is
pointless optimistically creating/revising a plan so that a matching Key is
always found next to a locked Door. However, the existence of objects is not

2 We assume that all possible types of resources are known, but not the number
of instances.

4.2 The Planning Model as SCSP 73

Reference

Time

28 sec.
30 sec. 35 sec.

Hunger

Peanut

Location Inventory Nowhere

- 3

ObjectVanish

Inventory

Current Time

Mouth Eat Peanut

Nutritive

Value
3

Fig. 4.4. References and Objects

a yes/no matter. It is temporally dependent (a Key may become available
after a Lock is installed) and a probabilistic matter (the Key may become
available). Thus, we need a temporally projected probabilistic measure for
every object, which expresses the confidence that this object really exists –
an existence projection.

4.2 The Planning Model as SCSP

This section defines the planning model in terms of structural constraint
satisfaction. The representation of the planning model as an SCSP allows us
to apply the previous chapter’s techniques to generate the structural search
space. Figure 4.6 gives an overview of possible relations between the planning
SCSP’s elements.

4.2.1 The Current Time

The very first thing we need is a variable for the current time because the
constraints’ heuristics and cost/goal functions use this as input. For example,

74 4. The Planning Model

Sensor

Time

28 sec.
30 sec. 35 sec.

Block

On Top of Table

Current Time

Hand

Block

Table

Put on

On

B
lo

c
k

 S
e

n
s

o
r

#
1

On Top of

Fig. 4.5. Sensors

actions that are still to be executed should not be placed in the past. The
variable is marked by a Current Time object constraint (see Fig. 4.7). As
there can only be one current time, we need a structural constraint to prevent
there being multiple variables representing the current time (see Fig. 4.8).

4.2.2 Actions

An action consists of a set of different preconditions, operations and resul-
ting state changes. These elements are represented by tasks, i.e., there are
Precondition Tasks for precondition tests, Action Tasks for operati-
ons and State Tasks for state changes. All tasks are represented by object
constraints and must be connected to a Task Constraint.

A Task Constraint enforces a certain task configuration (i.e., it speci-
fies which tasks are to be connected to the Task Constraint and what kind
of restrictions apply to the tasks’ variables) for a specific action, including the
temporal order of the tasks. The specific action to be expressed is determi-
ned by the value of a connected ActionType variable (see Fig. 4.9). The cost
function of the Task Constraint describes the distance from the current
task configuration to the configuration that is demanded by the ActionType
variable. In addition, the Begin of nonexecuted Action Tasks before the
Current Time is penalized.

4.2 The Planning Model as SCSP 75

CurrentState

StateProjection

CurrentTime

ExistenceConstraint

Object SensorConstraint

ExistenceProjection

ActionResourceConstraint

Begin

AllDifferent

AllDifferent

Temporal

Reference

StateResourceConstraint

State

ActionTask

TaskConstraint

StateResource

ActionType

ObjectReference

ObjectType

SensorID

Operation ExecutionState End ResourceType ResourceType

StateTask

Temporal

Reference

Contribution

Next

ResourceType

AllDifferent PreconditionTask

Fig. 4.6. Possible Type Relations

p base CurrentTime
= CurrentTime

Fig. 4.7. The Extensible Object Constraint Current Time

S CurrentTime:1CurrentTime

:1

CurrentTime

CurrentTime

Fig. 4.8. The Structural Constraint Current Time

76 4. The Planning Model

=p base TaskConstraint

TaskConstraint CurrentTime

ActionType

Fig. 4.9. The Extensible Conventional Task Constraint

An action’s task may not also be part of another action. This is ensured
by the structural constraint in Fig. 4.10.

S TaskConstraint:2TaskConstraint

CurrentTime :1

:3

CurrentTime :1

TaskConstraint :2

:3

TaskConstraint

Fig. 4.10. The Structural Task Constraint

4.2.3 Operations

An Action Task specifies a concrete operation that must be executed within
an action (see Fig. 4.11).

p base =
ActionTask

ResourceType ExecutionState Begin EndOperation

ActionTask

TaskConstraint

Fig. 4.11. The Extensible Object Constraint Action Task

4.2 The Planning Model as SCSP 77

An Action Task’s operation uses a specific action resource. For an Ac-
tion Task’s duration, other tasks are required to leave enough of the action
resource’s capacity to carry out the task’s operation. An Action Resource
Constraint (ARC) internally projects an action resource’s capacity and
reflects an overload of the resource by its cost function (see Fig. 4.12).

p base

p extension ActionResourceConstraint

ActionResourceConstraint =

ActionResourceConstraint

CurrentTime

ResourceType

= ActionTaskActionResourceConstraint

Fig. 4.12. The Extensible Conventional Action Resource Constraint

Each Action Task must be linked to a specific ARC of the required
ResourceType (see Fig. 4.13). The Action Task that is to be executed at
the Current Time on an action resource is determined by the ARC by
demanding a special value for the task’s ExecutionState variable.

ActionTaskS

ActionTaskActionResourceConstraint :1

ResourceTypeResourceTypeActionTask :1

Fig. 4.13. The Structural Constraint Action Task

In addition, all ARCs must have a different ResourceType. To realize this,
we can use an All Different constraint (see Fig. 4.14). This constraint
ensures that all connected variables have different values. An ARC must
have its ResourceType variable connected to an All Different constraint
(see Fig. 4.15). The requirement that there be no other All Different
constraint for different ARCs is enforced by the structural constraint of Fig.
4.30 (upper alternative of the testing part).

The uniqueness of an ARC’s ResourceType also ensures that an Action
Task cannot be connected to two ARCs at the same time.

78 4. The Planning Model

p extension

p base AllDifferent

= AllDifferent
AllDifferent

= AllDifferent

Fig. 4.14. The Extensible Conventional Constraint All Different

AllDifferent

ResourceType

ActionResourceConstraint :1

ResourceType ActionResourceConstraint

SActionResourceConstraint

ActionResourceConstraint :1

Fig. 4.15. The Structural Action Resource Constraint

4.2.4 States

Besides Action Tasks, an action consists of Precondition Tasks (see Fig.
4.16) and State Tasks (see Fig. 4.17). The reason why State Tasks do
not have to be linked to a Task Constraint will be explained later.

p base PreconditionTask
=

PreconditionTask

TaskConstraint

State

Reference

Temporal

Fig. 4.16. The Extensible Object Constraint Precondition Task

Unlike an action resource’s structures, which are only internally represen-
ted in an ARC, a state resource’s structures are explicitly stored in the model.
This is because other constraints must access the state information as well
(e.g., the Existence Constraint; see Sect. 4.2.8). Thus, Precondition

4.2 The Planning Model as SCSP 79

p base StateTask
=

p extension

Contribution

Reference

Temporal

StateTask

= StateTask TaskConstraintStateTask

Fig. 4.17. The Extensible Object Constraint State Task

Tasks and State Tasks are linked to a State Resource object constraint
which specifies the property that is to be tested/changed. A State Re-
source object constraint relates Precondition Tasks and State Tasks
to a ResourceType variable, a State Projection and a Current State
(see Fig. 4.18).

p base StateResource =

p extension1

CurrentState

ResourceType

StateProjection

=StateResource

=StateResource

p extension2

StateResource

StateResource

PreconditionTask

StateTask

StateResource

Fig. 4.18. The Extensible Object Constraint State Resource

All Precondition Tasks and State Tasks are required to be connected
to exactly one State Resource (see Fig. 4.19 and 4.20).

S PreconditionTask:1PreconditionTask PreconditionTask :1

StateResource

StateResource

Fig. 4.19. The Structural Constraint Precondition Task

The Current State references a variable (see Fig. 4.21) that contains
the State Resource’s state at the Current Time. The State Projec-

80 4. The Planning Model

S StateTask:1StateTask :1StateTask

StateResource

StateResource

Fig. 4.20. The Structural Constraint State Task

tion references a variable (see Fig. 4.22) that stores the temporal projection
of the resource’s state for the whole timeline.

p base =
CurrentState

CurrentState

Fig. 4.21. The Extensible Object Constraint Current State

p base =
StateProjection

StateProjection

Fig. 4.22. The Extensible Object Constraint State Projection

Both, the Current State and the State Projection, must be connec-
ted to exactly one State Resource (see Fig. 4.23 and 4.24).

S CurrentState:1

StateResource

StateResource

CurrentState CurrentState :1

Fig. 4.23. The Structural Constraint Current State

S StateProjection:1

StateResource

StateResource

:1StateProjection StateProjection

Fig. 4.24. The Structural Constraint State Projection

A State Resource Constraint (SRC) is linked to the State Re-
source to ensure a correct State Projection (see Fig. 4.25). The SRC
uses the State Resource’s Current State and the Contributions of

4.2 The Planning Model as SCSP 81

the State Resource’s State Tasks to project the property’s state deve-
lopment according to the State Tasks’ TemporalReferences on a timeline,
which is stored in the State Projection’s variable. The constraint’s costs
are computed according to satisfaction of the assigned precondition tests.

p base =StateResourceConstraint

StateResourceConstraint StateTaskp extension =StateResourceConstraint

CurrentTime

StateResourceConstraint

StateResource

Fig. 4.25. The Extensible Conventional State Resource Constraint

The structural constraint of Fig. 4.26 ensures that each State Resource
is connected to exactly one Object and that an SRC is connected. Although
it is not necessary that all ResourceType variables of the State Resources
have different values, this facilitates searching, e.g., for all Nutritive Value
State Resources of the current plan. For this purpose, all ResourceType
variables must be connected to an All Different constraint.

S StateResource

ResourceTypeAllDifferent StateResource :1

Object ObjectStateResourceConstraint

:1StateResource

Fig. 4.26. The Structural Constraint State Resource

The SRC is also responsible for maintaining the dependency effects of
the resource’s state development. To accomplish this, State Tasks can be
connected to an SRC. Thus, a State Task must either be connected to
exactly one State Resource Constraint or one Task Constraint. This
is ensured by the structural constraint of Fig. 4.27 (together with that of Fig.
4.10). A configuration of an SRC’s State Tasks that does not represent the
correct dependency effects has an impact on the value of the SRC’s cost
function.

82 4. The Planning Model

StateResourceConstraint

TaskConstraint StateTask :1

StateResourceConstraint

TaskConstraint StateTask :1

StateResourceConstraint

S DependencyEffect:1StateTask

Fig. 4.27. The Structural Constraint Dependency Effect

4.2.5 Objects

The Object aggregation is shown in Fig. 4.28. The role of the Existence-
Projection variable and the Existence Constraint are explained in Sect.
4.2.8.

p base Object =

p extension1

Object

ExistenceProjection

ExistenceConstraint

=Object

=Object
p extension2

Object ObjectType

Object StateResource

Fig. 4.28. The Extensible Object Constraint Object

The ObjectType variable specifies the type of the Object – for example,
a Door. The ObjectType variable is not directly included in the pbase graph,
as this allows the search (using the production generation of Chap. 3) to
exchange an Object’s ObjectType for a similar one without deleting the
whole Object, e.g., if the search decides to consider an Apple instead of a
Pear. However, this necessitates the structural constraint of Fig. 4.29, which
ensures that an Object has exactly one ObjectType variable. In addition – as
with the SRC – all ObjectType variables are connected to an All Different
constraint.

Instead of a general unique identifier, the ResourceType of a State Re-
source has the task of specifying the State Resource’s role within the

4.2 The Planning Model as SCSP 83

:1ObjectObjectType

AllDifferent ObjectType

ResourceTypeResourceType

StateResource StateResource

S Object:1Object

Fig. 4.29. The Structural Constraint Object

Object, e.g., a Door’s Location, Lock or Color. To prevent ambigui-
ties, all ResourceType variables of an Object’s State Resource must be
different (see Fig. 4.29).

For an All Different constraint, an additional structural constraint
is needed that enforces that the All Different constraint must either be
connected to an ARC’s or State Resource’s ResourceType variable or
an Object’s ObjectType variable, and that there must be no other All
Different constraint for the same kind of type variables (see Fig. 4.30).

ResourceType

AllDifferent

ActionResourceConstraint

ObjectType

AllDifferent :1

ObjectType

AllDifferent

ResourceType

AllDifferent :1

ResourceType

AllDifferent

ResourceType

AllDifferent :1

ActionResourceConstraint

StateResource StateResource

Object Object

S AllDifferent

AllDifferent :1

Fig. 4.30. The Structural Constraint All Different

84 4. The Planning Model

Any State Resource must be linked to an Object (see Fig. 4.26).
Agent-internal State Resources, e.g., the agent’s Hunger, can be linked
to a unique Ego Object.

A Task Constraint (or SRC in the case of dependency effects) must
also ensure that the connection of ResourceTypes and ObjectTypes with the
Task Constraint’s (SRC’s) State Tasks and Precondition Tasks is
correct with respect to the Task Constraint’s ActionType (ResourceType
of the SRC’s State Resource). For example, an action Eat Peanut X
should link its State Task with a Vanish contribution to the same Object
that its Precondition Task with the location test is linked to.

4.2.6 References

All tasks can use Object References to Objects, e.g., a general State
Task that causes one Object X to be on top of another Object Y can
make use of Object References to assign its variables X and Y. Like-
wise, the Current State and the State Projection can have Object
References (see Fig. 4.31). An Object Reference can also be linked to
another Object Reference to realize a list. For example, the State Task
of the previous example would have to use a list (instead of a set) with two
Object References to distinguish the two Objects (which Object has
to be placed onto which). The Task Constraint (or SRC in the case of
dependency effects) must ensure that the reference structures are valid.

=

ObjectReference

ObjectObjectReference

ObjectReferenceObjectReference
p base

=ObjectReference
p extension1

=ObjectReference
p extension2

=ObjectReference
p extension3

ObjectReference

ObjectReference=ObjectReference
p extension6

=ObjectReference
p extension7

ObjectReference

ObjectReference=ObjectReference
p extension4

=ObjectReference
p extension5

ActionTask

StateTask

CurrentState

StateProjection

PreconditionTask

ObjectReference Next ObjectReference

Fig. 4.31. The Extensible Object Constraint Object Reference

4.2 The Planning Model as SCSP 85

All Object References are required to be connected to exactly one
Object that is to be referenced (see Fig. 4.32).

ObjectReferenceSObjectReference :1

Object

Object

ObjectReference :1

Fig. 4.32. The Structural Constraint Object Reference

4.2.7 Sensors

The sensors provide data that is structured according to the planning mo-
del’s Objects. The linking of a sensor with an appropriate Object is done
by a Sensor Constraint that links a SensorID variable, which specifies
the real-world’s sensor, with an Object (see Fig. 4.33). The Sensor Con-
straint ensures that the Object’s ObjectType variable corresponds to the
sensor data and that the Object has all necessary State Resources. The
productions for an addition/deletion of a Sensor Constraint are not allo-
wed to be applied by any improvement heuristic. If the Sensor Constraint
is satisfied, the sensor data can provide values for the CurrentState variables
of the connected Objects’ SRCs.

p max =SensorConstraint

p extension

p base

SensorID

SensorConstraint

Object

=SensorConstraint SensorConstraint Object

=SensorConstraint SensorConstraint SensorID

Fig. 4.33. The Extensible Conventional Sensor Constraint

Again – as with an Object’s ObjectType – a Sensor Constraint’s
Object is not directly included in the pbase graph, as this allows the search
to exchange a Sensor Constraint’s Object for a similar one without
deleting the whole Sensor Constraint, e.g., if the search decides that a
sensed Peanut is a new one instead of the Peanut that has been eaten.
However, this necessitates the structural constraint of Fig. 4.34, which ensures
that a sensor is linked to an Object.

86 4. The Planning Model

S SensorConstraintSensorConstraint :1

SensorConstraint :1

Object

Fig. 4.34. The Structural Sensor Constraint

4.2.8 Existence Projections

The confidence projection that an Object really exists is realized by using an
ExistenceProjection variable, which is similar to the temporal StateProjection
variables of SRCs, taking values between 0 and 1 at each time point (see Fig.
4.28).

The ExistenceProjection is not only dependent on Object-local features
but on the whole world state. For example, it is improbable that there is
a Door if the agent’s Location is Park. Given these global conditions,
an Existence Constraint must be linked to all Objects to be capable of
accessing all relevant State Resources. To keep the linking costs reasonably
low, only one Existence Constraint is responsible for maintaining all
Objects’ ExistenceProjections.

p base ExistenceConstraint
= ExistenceConstraint CurrentTime

Fig. 4.35. The Extensible Conventional Existence Constraint

S ExistenceConstraint:1

ExistenceConstraint

ExistenceConstraint :1

ExistenceConstraint

Fig. 4.36. The Structural Existence Constraint

The Existence Constraint must also ensure correct Object confi-
gurations. For example, an Object with an ObjectType of Door and a
Nutritive Value State Resource gets a very poor ExistenceProjection.
However, Objects do not have to be specified completely. For example, the
Door’s Color State Resource may not be important for a plan to open
it.

The ExistenceProjection of an Object has an impact on the satisfaction
of Task Constraints that have tasks connected to the Object. Using this
mechanism, an appropriate temporally projected anchoring, i.e., a convenient

4.2 The Planning Model as SCSP 87

correspondence between the plan’s and the real world’s objects (see [33] for
a more detailed treatment of this topic), can be realized.

4.2.9 Correctness

To apply the SCSP handling methods described in Sect. 3.4, some restrictions
must be fulfilled.

– Nonextensible constraints are not allowed to appear in graphs of other
constraints, as the addition and deletion productions of constraints partly
incorporate their graphs.

The specification of the planning SCSP does not include any nonextensible
constraints.

– Constraint-usage cycles are not allowed for the pbase graphs of extensible
constraints, e.g., that pbaseA

includes a B constraint and pbaseB
includes

the A constraint.

Figure 4.37 confirms that there are no cycles for the planning problem’s
specification.

CurrentState StateResource StateProjection

Object

ActionResourceConstraint CurrentTime ExistenceConstraint

TaskConstraint

ActionTask

PreconditionTask

uses uses

uses

usesuses

uses

uses

uses

uses

uses

StateResourceConstraint

SensorConstraint ObjectReference

StateTask

AllDifferent

Fig. 4.37. Integrations of Extensible Constraints’ Base Graphs

– If the pmax graph of an extensible constraint is non-empty, no sequence of
productions that is applied to the constraint’s pbase graph can produce a
graph that includes the pmax graph without previously producing the pmax

graph.

88 4. The Planning Model

The only constraint with a pmax graph is the Sensor Constraint. The only
way to extend the pbaseSensorConstraint

graph is by using the
pextensionSensorConstraint

graph, which immediately produces the
pmaxSensorConstraint

graph.

4.2.10 Problem Formulation

The SCSP of the previous sections specified a general planning problem.
However, for a specific problem, additional domain information must be pro-
vided. The constraints must be able to handle the specific domain values and
must have appropriate cost/goal functions and improvement heuristics, e.g.,
the Task Constraint must know about the permitted action configurati-
ons and the Existence Constraint must be able to project the existence
confidence for the domain’s Objects.

A specific planning problem can include satisfaction goals (e.g., the door
is to be open at time point 2507) and optimization goals (e.g., the minimal
hunger level over time is to be as high as possible). Satisfaction goals can be
represented by Task Constraints that have only Precondition Tasks,
and optimization goals can be realized by initialization of the resource con-
straints’ goal functions3.

The satisfaction goals and optimization goals must be embedded in the
search process. Thus, we can define additional constraints that restrict varia-
bles to a specific value (a constant) and require that these constraints exist
in a solution where they, for example, restrict a Task Constraint’s Ac-
tionType variable and the State Resources’ ResourceType variables (e.g.,
see Fig. 4.38).

4.3 Incomplete Knowledge

An agent’s incomplete knowledge of his environment complicates the planning
process enormously. The model of the previous sections has already addressed
incomplete knowledge with respect to the existence of entities. This section
deals with incomplete knowledge regarding the values of certain properties.
In contrast to the existence matter, uncertain property values are handled
by special value assignments for the state resources.

4.3.1 A Single-Plan Approach

If a decision relies on an unknown property, every possible property value
may yield another plan. Planners that construct branching plans for un-
known properties are called contingency planners. Examples are Warren’s
3 Of course, the whole expressiveness of the SCSP approach can be used to for-

mulate much more complicated goals, but in most cases a representation using
specific Task Constraints / resources’ goal functions is adequate to model the
goals.

4.3 Incomplete Knowledge 89

p base

p base Equals:door_open_goal
= Equals:door_open_goal

= Equals:hunger_resource
Equals:hunger_resource

ResourceType

Equals:hunger_resource

TaskConstraint

ActionType

Equals:door_open_goal

S Goals

StateResource

Fig. 4.38. Specification of the Goals’ Existence

WARPLAN-C [187], CNLP by Peot and Smith [148], Plinth by Goldman
and Boddy [71] and Cassandra by Pryor and Collins [151].

An extension of this approach is probabilistic planning, where special pro-
bability distributions are considered as well. Work in this area includes Drum-
mond and Bresina’s synthetic projection [48] and the buridan probabilistic
planning by Kushmerick, Hanks and Weld [108] with its contingent extension
by Draper, Hanks and Weld [47]. Recently, much research in this area has
focused on planning based on Markov decision processes (MDPs) (see [22]
for an overview). Possible world states are represented explicitly, an optimal
policy being computed for them. This policy yields the optimal action for
every possible state. Examples of MDP-based planning are approaches by
Barto, Bradtke and Singh [14], Dean et al. [37] and Koenig and Liu [104].

The consideration of/branching on every possible value of an unknown
property can be useful in terms of reliability. But this works only for small-
scale problems. Although planners (especially the probabilistic ones) do not
always search the whole search space, their application to more complex pro-
blem domains, temporal planning and dynamic environments would greatly
overtax memory and computation capacity. Strong real-time requirements
such as those for our agents are out of the question.

One solution is to consider only one plan with expected values instead of
branching on several possible worlds. The expectations can be based on pessi-
mistic or optimistic estimates, as well as on estimated probabilities. Learning

90 4. The Planning Model

mechanisms can be applied, too. In the case of a failed prediction, the plan
has to be changed. Provided no critical errors have been made, the itera-
tive plan repair can automatically adapt the plan. The consideration of a
single plan possibility instead of branching on multiple possibilities is similar
to the operator-parameterization approach of the Cypress system [189]. A
non-branching plan can also represent incomplete knowledge regarding the
states by using special values that represent the incomplete knowledge (see
following sections).

4.3.2 Missing Information

The state resources can represent the lack of information by the addition of an
Unknown value to their domain (which gets the default state). For example,
in the agent’s absence, other agents might open or close a door without the
agent’s noticing. Whether the door is closed or not can only be known if the
door is within the agent’s field of vision. Thus, the state resource Door with
a domain of Open and Closed gets an additional Unknown value, which is
triggered by actions that cause the agent’s absence.

An action of passing the door requires that the Door is open. In a pes-
simistic approach, the precondition task of the passing action entails a bad
satisfaction of the state resource if the Door is in an Unknown state because
failure could endanger later commitments. The inclusion of a prophylactic
Open Door action would avert this threat (see Fig. 4.39).

Time

28 sec.
30 sec. 35 sec.

Current Time

Go To Door

Open Door

Pass Door Go Upstairs

Open

Open

Feet

Hand

Door UnknownUnknown

Absent

Open

Fig. 4.39. The Use of Unknown Values

On the other hand, the satisfaction could be driven by experience. If the
agent has learned that the Door is usually open, the state resource Door

4.3 Incomplete Knowledge 91

might settle for the Unknown state with respect to a precondition check if
the door is open.

4.3.3 Information Gathering

Classical planners normally try to satisfy all goal states. But in an incomplete
environment they cannot decide whether an unknown state is already satisfied
or not. An unknown state like color(door, blue) could only be satisfied
by painting the door blue. If the door is already blue, this action would be
unnecessary, and a lack of blue paint would even entail an inconsistency.
The ability to plan sensory actions too was realized in various STRIPS-based
approaches, such as ipem by Ambros-Ingerson and Steel [9], uwl and xii
by Etzioni et al. [54] [70], Sage by Knoblock [107] and Occam by Kwok and
Weld [109].

Run-Time Variables. The concepts are mostly based on run-time varia-
bles, which are initialized by sensing actions. In our model, the fact of knowing
a state can easily be expressed by the inclusion of Known values for state
resources. These values are triggered by actions, which include the sensing
of the state resource’s property. The state resources’ mapping mechanisms
must protect already specified states from the more general Known reassig-
nment, and allow a switch to the Known state only from Unknown states.
This process does not differ from the normal state processing and does not
require a special sensory treatment. In the example of Fig. 4.40, the crossing
of a bridge in an Unknown state is considered to be unsatisfiable enough to
include an additional Test Bridge action.

Time

30 sec.
40 sec. 65 sec.

Known Unknown
Condition

of Bridge
Unknown

Known

Current Time

Feet Go To Bridge Test Bridge Leave BridgeCross Bridge

Absent

Good or Known

Fig. 4.40. The Use of Known Values

The problem of redundant sensing, which is addressed in [70] is not present
here, as there is only a single plan and the state resources’ information is
accessible over the whole time period.

92 4. The Planning Model

Hands-Off Goals. Hands-off goals [54, 70] that forbid the change of states
are not necessary either. The formulation of goals like passing the blue door
is a problem only for planners, who cannot express that the door has to be
blue at the moment of the goal formulation. These planners have to introduce
such hands-off goals to prevent the planner from passing another door after
painting it. Temporal planners can express these goals much more adequa-
tely because they can quantify the preconditions temporally (see Fig. 4.41).
Moreover, in dynamic multi-agent domains, such hands-off goals do not help,
as external actions might change the states.

Time

65 sec.

Feet

Color of

Door #1

Color of

Door #2
Red

50 sec.
35 sec.

Current Time

Blue

Blue Green

Pass Door #1

Fig. 4.41. Temporal Quantification

4.3.4 Partial Knowledge

So far, only state resources with two-valued domains and clear transitions
between knowledge and no knowledge have been considered. The following
sections refine this approach.

Unordered Domains. State resource domains in our agent model may not
only be two-valued, like the Door with Open and Closed values. For exam-
ple, there may be an additional Locked value. In a situation of incomplete
knowledge, each value must have an associated knowledge level of

– Unknown: The information as to whether the value corresponds to the state
is not available.

– Known: The information as to whether the value corresponds to the state
will be available in the future.

– Not: The domain value definitely does not correspond to the state.

Figure 4.42 shows an example of an agent going away and leaving a door
open for which the agent has the only key.

4.3 Incomplete Knowledge 93

Door

Feet

Open: Unknown

Closed: Unknown

Locked: Not

Time

28 sec.
30 sec. 35 sec.

Current Time

Absent

Leave Door

Open

Fig. 4.42. Incomplete Knowledge of State Values

Because of the XOR-relation of the domain values, some propagations can
be made within a state resource. If only one domain value has a knowledge
level of Unknown, then this value gets the knowledge level Known. If only one
domain value is not Not, then this value must be the state resource’s state.

Ordered Domains. In contrast to the value sets of the previous section,
the elements of a state resource’s domain can also be in a specific ordering
relation. For example, the agent wants to fill a bucket with water, but he
does not know how much water is in the bucket to start with. The amount
of water in the bucket can be modeled by an integer state resource.

Of course, it is possible to apply the Unknown-Known-Not representation
from the previous section to each domain value. But this would be a rather
costly approach. It is more efficient to subsume consecutive values of the same
knowledge level by intervals4. Figure 4.43 shows an example.

It is even more efficient to consider only the convex (vertical) hull of in-
tervals (trapezoids) of the same knowledge level. Actually, this method is not
precise, because already excluded intermediate values may not be accessible
any more. Consequently, the intervals (trapezoids) of different knowledge
levels might overlap. For example, in the 65th second of Fig. 4.43, the convex
hull of the Not knowledge level includes the Known values.

Probabilities. Probabilities for prospective states of the state resources are
not a basic part of the model, because this is not generally needed and would
waste a lot of system resources. In some cases, however, the use of probabi-
lities can dramatically affect the plan result, especially if a state probability
can be changed by special actions. For example, if the agent is searching for
a key, it is not easy to express progress within the search process without

4 An appropriate representation for taking into account the dimension of time are
trapezoids (provided that changes are only linear).

94 4. The Planning Model

���������������������
���������������������
���������������������

���������������������
���������������������
���������������������

������
������
������
������

Time

30 sec.
40 sec. 65 sec.

Hands

Filling of

Bucket
Unknown

Feet

Current Time

100

0

Tip Bucket

Go To Well

See Bucket

Fill Bucket

+ 1 - 2

NotKnown

Fig. 4.43. Value Subsumption

probabilities. Whether the agent searches one drawer or two drawers must
make a difference.

The probabilities can be realized by continuous domain state resources.
Figure 4.44 shows a possible modeling of the search for the key.

100

0

Search Drawer #2

+ 1

Current Time

Hands

30 sec.
40 sec. 65 sec.

Own Key

Take Key

Key Taken

TrueFalse

Time

of Key Being

Probability

Found > 50

Search Drawer #1

+ 1

Fig. 4.44. State Probabilities

4.4 Conclusion 95

4.4 Conclusion

For planning problems that involve resource constraints, some planning sy-
stems keep planning and resource allocation separate, e.g., the approach of
Srivastava and Kambhampati [169] and the parcPLAN system [50]. The sepa-
ration of planning and resource allocation prevents the systems from conside-
ring interactions between the decisions with respect to planning and resource
assignment, which is a great disadvantage if resource-related properties are
to be optimized. Consequently, the resources serve only as constraints for
the planning problem and are not used as primary optimization goals. The
same applies to resource-based planning systems that integrate planning and
resource allocation, like O-Plan2 [44], IxTeT [110], the LPSAT engine’s appli-
cation to planning [191] and IPP’s extension [103]. All of these focus primarily
on optimization of the plan length, which is a rather curious approach as this
property is usually irrelevant5.

Resource-based planning systems that are based entirely on general se-
arch frameworks like CP or OR require bounds for the plan length or the
number of actions. If a correct plan cannot be found, these bounds can be
expanded. Some examples here are the OR-based approach of Bockmayr and
Dimopoulos [18], ILP-PLAN [101], CPlan [175] and the approach of Rintanen
and Jungholt [157]. Again, these systems primarily optimize the plan-length
property. An optimum with respect to resource-related optimization goals can
only be found if the initial bound can be set such that the optimal solution
is guaranteed to lie within this bound. This is a very hard task for specific
problems and impossible at a general level. Besides, creating the maximal
structures for the search space is much too costly for complex real-world
problems.

The presented constraint-based planning model does not require any bo-
unds for the plan length and allows us to integrate the planning and schedu-
ling process and focus on resource-related optimization. The model is based
on the SCSP approach and avoids the use of maximal structures by including
the search for the structure as part of the satisfaction process.

The SCSP approach also allows us to tackle open-world problems in which
an arbitrary number of objects can be involved. The past decade has seen the
development of a few planning systems with this capability, e.g., xii [70] and
PSIPLAN [10]. Satisfaction-based planners are very rare in this domain. The
lack of satisfaction-based approaches to open-world planning can be explained
by the massive explosion of the search space under consideration. Systems
based on maximal structures cannot handle this.

The presented model involves a representation of incomplete knowledge.
In contrast to contingent/MDP planning approaches, the representation here
does not include alternative timelines with branching points. Only one time-
line is considered, which has to be adapted in case of a failed prediction (see

5 See Sect. 1.3.2 for a discussion of decision-theoretic planning approaches.

96 4. The Planning Model

Sect. 4.3.1). Probabilities and incomplete knowledge about states are expres-
sed by special values, annotations and continuous domain state resources. A
limited handling of an agent’s partial view of the world state can thus be
realized, avoiding the combinatorial explosion of branching approaches.

The presented planning model borrows from typical constraint-based ap-
plications for resource allocation/optimization. The power of global con-
straints for constraint-specific representation and reasoning mechanisms for
specific resource types was recognized here very early on and led to signifi-
cant speedups in the solution process. General frameworks for planning and
scheduling like Muscettola’s HSTS [124] lack such specialized representation
and reasoning capabilities6.

Furthermore, the model uses a domain-independent representation. By
contrast, constraint-based planning systems like parcPLAN and CPlan – be-
sides their inability to search in a way that is not focused on the criterion of
plan length – do not have a model for general planning, relying instead on
domain-dependent encodings.

6 Work to overcome these deficiencies has, however, recently started [184].

5. Application

This chapter shows how the techniques developed in the previous chapters
are combined to realize the planning of an agent’s behavior. Section 5.1 pre-
sents a domain-dependent solution for the Orc Quest example described in
Sect. 1.3.2. For a domain-independent system, more general constraint im-
plementations must be available, which is detailed in Sect. 5.2.

The planning process follows the procedure shown in Fig. 5.1.

External

Events

Action Resources

Adjust

Plan

SensorsWorld

State

Plan (i.e.,

Constraint

Graph)

Real World

Plan Repair

Execute

Actions

Choose

Virtual Plan World

Fig. 5.1. Interleaving Sensing, Planning and Execution

In each iteration, the sensor data is used to update the current plan (i.e.,
the constraint graph). This means that for all sensed Objects the Current
State variables of the Objects’ State Resources are updated. If a sensed
real-world object has no counterpart in the constraint graph, a corresponding
Object is added to the graph. In addition, the Current Time variable is
updated.

A. Nareyek: Constraint-Based Agents, LNAI 2062, pp. 97−125, 2001.

 Springer-Verlag Berlin Heidelberg 2001c©

98 5. Application

Once the plan has been updated, a plan repair is initiated1. A plan repair
means that a constraint is selected by the global search control to improve
the constraint’s current goal-/cost-function value. The constraint’s heuristics
determine how the constraint will change some of its variables’ values or/and
use graph productions to change the constraint graph.

The planning iteration is ended by marking the action resources’ Action
Tasks that begin at the Current Time as being under execution (using
their ExecutionState variable), by marking the Action Tasks that end at the
Current Time as being executed, and by starting/continuing the execution
of the Action Tasks that are marked for execution.

Usually, the structural constraints have to be enforced in the same way as
the other constraints. However, to implement this is costly and not feasible
within the context of this book. Instead, the enforcement of the structural
constraints is done in a pre-emptive way: only heuristics may be used which
can be shown not to threaten any structural constraints.

5.1 Revisiting the Orc Quest Example

Section 1.3.2 introduced the Orc Quest example, a solution of which is pre-
sented in this section. The problem was defined as:

STATEVARS: Duration, Pain, Performers ∈ N0

INIT: Duration = 0, Pain = 0, Performers = 0

ACTION catch only one:

Duration += 2, Pain += 1, Performers += 1

ACTION catch a group:

Duration += 5, Pain += 4, Performers += 3

ACTION deliver humans:

Duration += 1, Pain -= 11, Performers -= 10

The planning goal is a multi-objective one. The goal criteria are:

GOAL:

Satisfaction criterion: Performers ≥ 5

Primary optimization criterion: min(Pain)

Secondary optimization criterion: min(Duration)

5.1.1 The Constraints

Besides a general Orc Action Resource Constraint, no other action
resource constraints are needed as there is no further refinement regarding
1 In most applications, there is some kind of time limit for a planning iteration

(e.g., see [194]). In this case, multiple plan repairs can be executed in one planning
iteration as long as the time limit is not exceeded.

5.1 Revisiting the Orc Quest Example 99

the Orc’s hands, feet, mouth or whatever. The Orc Action Resource
Constraint can be linked to action tasks with a duration of 2 hours (if the
task’s Operation variable has the value catch only one), 5 hours (for a value
of catch a group) and 1 hour (for a value of deliver humans).

In addition, two state resource constraints are needed, the Pain State
Resource Constraint and the Performers State Resource Con-
straint, which support discrete numerical domains and integrate state tasks
by adding their pain/performers values. For example, the Pain State Re-
source Constraint’s projection of the Orc’s pain will be increased by 4 if
a state task that has a Contribution variable with a value of 4 is connected.

Four different configurations satisfy a task constraint. These express the
three actions catch only one, catch a group and deliver humans, each of
them having an action task for the Orc Action Resource Constraint,
a state task for the Pain State Resource Constraint and a state task
for the Performers State Resource Constraint. A fourth configura-
tion consists of a precondition task for the Performers State Resource
Constraint to establish the satisfaction goal Performers ≥ 5. In addi-
tion, the task constraint requires that its tasks’ variables have the appro-
priate values (e.g., if the task constraint’s ActionType variable has a value
of catch a group, a value of 4 is required for the Contribution variable of
the state task that is to be connected to the Pain State Resource Con-
straint).

The Performers constraint’s cost function is initialized to return the
current plan’s number of missing performers (to satisfy the precondition task
of a task constraint with an ActionType variable that represents the task con-
straint’s fourth configuration), the Pain constraint’s goal function to return
the plan’s resulting pain, and the Orc constraint’s goal function to return
the plan’s total duration. The specification of the problem’s SGoals constraint
is shown in Fig. 5.2.

The problem does not inlude issues of sensing or uncertainty, i.e., existence
constraints and sensor constraints must not be considered.

5.1.2 The Constraints’ Heuristics

The problem does not require an application of sophisticated heuristics. The
improvement heuristics can be the same for the Performers, Pain and
Orc constraint. To change the plan (i.e., the CSP), there are six modification
alternatives2:

– add a catch only one task constraint
– delete a catch only one task constraint
– add a catch a group task constraint

2 The pre-emptive maintenence of the structural constraints in explained in Ap-
pendix D.

100 5. Application

p base Equals:enough_performers

Equals:pain
p base

p base Equals:orc

=

=

= Equals:enough_performers

Equals:orc

Equals:pain

S Goals

ResourceType

Equals:orc

ActionResourceConstraint

TaskConstraint

ActionType

Equals:enough_performers

ResourceType

StateResource

Equals:pain

Fig. 5.2. Specification of SGoals for the Orc Quest Example

– delete a catch a group task constraint
– add a deliver humans task constraint
– delete a deliver humans task constraint

For all six decision alternatives, there is a constraint-internal value that
represents the preference for this alternative. All preference values are initi-
ally set to 1. If a constraint is called to effect an improvement of the plan,
it increases an alternative’s value by one if this alternative was chosen by
the constraint’s last improvement decision and the constraint’s goal-/cost-
function value is now better than the last time the constraint was called. If
the goal-/cost-function value has deteriorated or is the same as last time, the
preference value is decreased by two. Each time there is a consecutive deteri-
oration, the decrease is doubled. However, no preference value can fall below
one. Then, an alternative is chosen with a probability that is proportional to
the alternative’s preference value3.

In the following, the heuristic is illustrated using the Pain State Re-
source Constraint. Consider a situation in which the current plan consists

3 See Appendix C for an improved utility measure.

5.1 Revisiting the Orc Quest Example 101

of 5 catch only one actions (C1A), 10 catch a group actions (CGA) and 3
deliver humans actions (DHA) and the Pain constraint is chosen to perform
a plan improvement (see Situation 1 in Fig. 5.3).

#CGA #DHA#C1A

Current Plan

3

4105

4145

5145

168

5158

51511

5

5 10
Situation 1

Situation 2

Situation 3

Situation 4

...

...

...

Preference Values

+C1A -C1A +CGA -CGA +DHA -DHA

Pain State Resource Constraint

Function

Goal

Value Penalty

1 2 1 3 3 1

1 2 1 3 4 1

select +DHA

1 2 1 3 4 1

1 2 1 3 2 1

select +DHA

1 2 1 3 2 1

1 2 1 3 1 1

select -CGA

1 2 1 3 1 1

1 2 1 1 14

12

17

17

16

2

2

2

4

4

8

8

2

Fig. 5.3. The Heuristic of the Pain State Resource Constraint

The Pain constraint’s goal function calculates the sum of the Contribu-
tion variables of the linked state tasks. There are currently 5 linked state
tasks with a Contribution of 1, 10 with a Contribution of 4, and 3 with
a Contribution of -11. Thus, the constraint’s goal function has a value of
5 × 1 + 10 × 4 + 3 × (−11) = 12. The current preference values of the con-
straint are given in Fig. 5.3 (“+” means addition and “-” means deletion).

102 5. Application

Let’s assume that the constraint’s goal function value is now better than
the last time the constraint was called and that the constraint’s last im-
provement decision was to add a deliver humans action. Accordingly, this
decision’s preference value is rewarded by increasing it by one (next line in
Fig. 5.3). Next, an alternative to improve the current situation is selected.
The choice probability for the +DHA option is the highest (preference value
divided by the sum of all preference values; 4/12 = 33%), and we assume
that this alternative is chosen. The plan/CSP is changed according to this
option.

After some iterations, the Pain constraint can be called again (see Situa-
tion 2 in Fig. 5.3). In the meantime, the plan has been changed and some
more catch a group actions are added. The Pain constraint’s goal function
value has deteriorated since the last time the constraint was called and its
last decision’s preference value is therefore decreased by the penalty value of
2. In addition, the penalty value is doubled. The choice probability for the
+DHA option is now only 2/10 = 20%, but we assume that this alternative
is chosen again. The plan is changed according to this option.

After some time, the Pain constraint is called once more (Situation 3).
The constraint’s goal function value is the same as at the last call. Stagnation
is considered to be as bad as deterioration, and the +DHA option’s preference
value is therefore decreased by the penalty value of 4, and the penalty value
is doubled again. However, the +DHA preference value is increased to its
minimum of 1 to ensure that the option retains a chance of being chosen.
We assume that the -CGA alternative is chosen this time (probability of
3/9 = 33%). The plan is changed according to this option.

At the next call of the Pain constraint (Situation 4), the constraint’s goal
function value has improved, and so, the -CGA preference value is increased
and the penalty value is set back to 2.

5.1.3 The Global Search Control

Within the global search control, the Performers constraint will always
be chosen to perform an improvement if the plan does not yield at least 5
performers. Otherwise, if the plan yields any pain, the Pain constraint will
be chosen. If we have a plan with enough performers and no pain, the Orc
constraint will be chosen to help shorten the plan. This enables a search to
be realized that has the performers criterion as its satisfaction goal, the pain
criterion as the primary optimization goal and the duration criterion as the
secondary optimization goal.

The search process is initialized with a CSP that includes the Perfor-
mers, Pain and Orc constraint and a Task Constraint with an Ac-
tionType variable that represents the task constraint’s fourth configuration
(to establish the satisfaction goal Performers ≥ 5). The state resource con-
straints Performers and Pain are initialized with CurrentState values of
0.

5.1 Revisiting the Orc Quest Example 103

5.1.4 Evaluation

If the planning system is started, the shortest possible plan that results in
no pain for the Orc can quickly be obtained (55 times catch only one and
5 times deliver humans, which yields a plan duration of 115 hours, a 0
on the pain scale and 5 performers). Figure 5.4 shows the temporal
distribution for 100,000 test runs with different random seeds (e.g., after
1,000 improvement iterations, 100 % of the test runs found a plan that yields
enough performers, 94 % of the test runs found a plan that yields enough
performers and no pain, and 41 % of the test runs found the shortest plan
that yields enough performers and no pain).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 10 100 1000 10000 100000

P
e
rc

e
n
ta

g
e
 o

f
te

s
t
ru

n
s

Improvement iterations (1 ms per 1,000 iterations)

Found plan that satisfies satisfaction criterion
and is optimal wrt primary optimization criterion

and is optimal wrt secondary optimization criterion

Fig. 5.4. Test-Run Results for the Orc Quest Example

A comparison to other systems is not very useful, as these would
either come up with the plan that primarily minimizes the plan length
(catch a group & catch a group) or require a bound for the plan length. If
we cheat in favor of the other planning systems and provide the information
that the optimal length bound is 60 actions, an encoding according to CPlan
[175] of this simple problem would require 129,600 variables4 – not to speak
of constraints! Even the time required to create a list of these domain varia-
bles (tested with CHIP, which is a state-of-the-art constraint programming
system) is longer than any of the test runs in Fig. 5.4 needed to compute the
optimal plan. However, we actually cheated in favor of CPlan by providing
the optimal length bound. In general, the comparison is not a quantitative
question of speed but a qualitative question of capability to find the optimum.
4 60 steps × (duration domain 60 × 6 + pain domain 60 × 16 + performers

domain 60 × 14) = 129,600.

104 5. Application

However, if one insist on quantitative results, it is a matter of improving
the heuristics. The conceptual approach of the planning system allows us
to easily integrate domain-dependent knowledge. For example, the Pain con-
straint can be improved by paying more attention keeping the same number of
performers if an option to reduce the pain is chosen. For this purpose, three
additional catch only one actions can be added if the option to delete a
catch a group action is chosen. In the same way, the number of performers
can be replenished by adding catch only one and catch a group actions
(partitioning them according to the preference values) if the option of adding
a deliver humans action is chosen. These simple modifications already make
it possible to considerably reduce the execution times (see Fig. 5.5).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 10 100 1000 10000 100000

P
e
rc

e
n
ta

g
e
 o

f
te

s
t
ru

n
s

Improvement iterations (1 ms per 1,000 iterations)

Found plan that satisfies satisfaction criterion
and is optimal wrt primary optimization criterion

and is optimal wrt secondary optimization criterion

Fig. 5.5. Test-Run Results for the Orc Quest Example (II)

Because of the logarithmic scales of Fig. 5.4 and 5.5, the improvement
is not very evident, but the average number of iterations needed until the
optimal plan is found is reduced by 20 %.

5.2 Domain-Independent Planning

The constraints used in the previous section work well for the Orc Quest
example, but are not generally applicable. A preference value for each possible
modification is not feasible for more complicated resources. Also, precondition
requirements and temporal aspects were neglected. This section presents more
general constraints, which can be used for a wider range of problems. Of

5.2 Domain-Independent Planning 105

course, the conceptual approach still makes it possible to easily integrate
domain-specific knowledge for specific domains.

Sections 2.4.1 and 2.4.1 already presented solutions for an Action Re-
source Constraint and a Task Constraint. They were developed for
the job-shop scheduling domain but can be applied here as well. A small
extension is made to the constraints, which is described in Sect. 5.2.1.

The most important constraint missing for the planning domain is the
State Resource Constraint. In Sect. 5.2.2, a State Resource Con-
straint is presented that features a symbolic state domain (like the Loca-
tion SRC of Fig. 4.4). This enables most of the common benchmark domains
to be handled, e.g., problems specified in the STRIPS formalism.

The resulting system5 is evaluated in Sect. 5.2.3.

5.2.1 Extending the ARC and TC

The Action Resource Constraint was introduced in a framework with-
out any possibility of modifying the graph structure. Thus, the potential being
extended by the structural constraint satisfaction, the constraint’s heuristics
can use additional techniques to reduce their inconsistency. A simple exten-
sion made here is to include an ARC-H3 heuristic that deletes an action if
an Action Task of the action causes an overlap on the resource.

The heuristic selects an Action Task, the choice probability for an Ac-
tion Task being proportional to the length of all ARC intervals that in-
clude the task and are inconsistent. The Task Constraint of the selected
Action Task is deleted (together with its tasks – in the same way as in
Appendix D.2).

The planning system will be used in the context of an ongoing time.
To force the planning system to schedule Action Tasks that have not yet
been started to begin after the Current Time, the Task Constraint is
extended to assign inconsistencies to these Action Tasks. The inconsistency
is computed as the temporal distance from the Action Task’s Begin variable
to the Current Time’s variable.

No heuristic allows a deletion or a move of an Action Task that is
currently under execution.

5.2.2 A State Resource Constraint with a Symbolic State Domain

This section describes a simple version of a State Resource Constraint
with a symbolic state domain. More specifically, the constraint has the follo-
wing features:

5 The system has been implemented in the language ObjectC and consists of more
than 10,000 lines of code. However, the implementation is very prototypical and
many routines are implemented in a manner that they can be easily changed
instead of maximizing efficiency.

106 5. Application

– The SRC has a finite number of possible states S.
– The TemporalReference variables of connected Precondition Tasks have

a domain of integers from 0 to a planning horizon h, and the Precondi-
tion Tasks’ State variables have a domain of S.

– The TemporalReference variables of connected State Tasks have a do-
main of integers from 1 to h.

– The SRC has a finite number of possible events that can cause a state
change.

– The SRC’s synergy mapping is a partial function which maps a set of
State Tasks’ Contributions to an event.

– The SRC’s state transition is a partial function which maps a state and
an event to a successor state.

– The state is projected on a timeline of discrete time points from 0 to
h according to the connected State Tasks and the initial value of the
Current State. If a Sensor Constraint is connected to the SRC’s
Object, the state at the Current Time c is set to the Current State,
regardless of whether there is a valid state transition or not.

– For the state projection, the present state is preserved if it is not possible
to derive an event from the set of all State Task Contributions at that
time point by the synergy mapping, or if no state transition is possible
from the SRC’s present state for the derived event.

– If the state required by a connected Precondition Task is not equal to
the SRC’s actual state at this time point, the SRC’s costs are increased by
the minimal number of state transitions required to transform the actual
state to the required state.

The constraint’s internal structures and heuristics are detailed in the fol-
lowing sections.

Internal Structures. The structures used in the current implementation
are extremely complex in order to provide fast access to heuristic guidance
information and to minimize effort in the case of changes. For this reason,
only the main structures are described here.

As for the Action Resource Constraint, a list of multiple-linked
temporal intervals forms the constraint’s basic structure (see Fig. 5.6). The
timespan from 0 to h (the planning horizon) is covered by the intervals. For
every distinctive TemporalReference of a linked State Task, a new interval
is started. If a Sensor Constraint is connected to the SRC’s Object,
a new interval starts at c as well (and the value of the Current State’s
variable becomes the interval’s state).

Every interval stores links to the State Tasks that are located at the
interval’s begin (and are thus responsible for the interval’s existence). In ad-
dition, an interval stores a link to every Precondition Task that is within
the range of the interval, together with a value that expresses the inconsi-
stency of the Precondition Task. The inconsistency of a Precondition
Task is given by a state-distance table, which provides a distance value for

5.2 Domain-Independent Planning 107

1

Pass-Door TC

Open

Unlocked

Unlock-Door TC

h

State

Precondition-Task Links

State-Task Links

Inconsistency 1

0

Open

c

Locked

Door SRC

Current State:

Locked
Closed

Fig. 5.6. An SRC’s Interval Structures

every possible transition from one state to another. The distance value that is
considered for the inconsistency of a Precondition Task is the value for the
transition from the interval’s state to the state requested by Precondition
Tasks. The SRC’s costs are computed by the sum of the Precondition
Tasks’ inconsistencies.

The state-distance table is computed by calculating the minimal number
of state transitions needed to get from one state to another (see Fig. 5.7). If
it is not possible to get from one state to another, a special dead-end value
is entered, which is higher than the maximal distance value.

Possible Transitions

State-Distance Table

Open

0

1

2

100

Closed

1

0

1

100

Locked

1

2

0

100

Smashed

1

2

1

0

Open

Closed

Locked

Smashed

Open &

Closed &

Closed &

Locked &

Locked &

&Closed

Closed

Opened

Locked

Smashed

Unlocked

Smashed

Closed

Open

Locked

Smashed

Closed

Smashed

Fig. 5.7. An SRC’s State-Distance Table

Selecting an Improvement Heuristic. To select one of the constraint’s
improvement heuristics, the general applicability of the heuristics is first
checked (see following sections for applicability conditions). Only applicable
heuristics are considered for the following choice process.

108 5. Application

The choice of a heuristic is made in exactly the same way as the choice
of a modification alternative in the Orc Quest example (with the improved
utility measure described in Appendix C). The chosen heuristic is applied.

An applied heuristic can return a negative success value, which means that
the heuristic was unsuccessful and no change has been made. In this case,
the choice process is restarted. This restart means that the usual update
of the preference values is skipped. Instead, the failed heuristic’s preference
value is temporarily divided by two (though no value may fall below one)
because the probability that the heuristic will return a negative success value
again is higher than before. If one of the improvement heuristics has been
successfully applied, all adaptations of the preference values that were done
for the restarts are undone.

SRC-H1: Adding an Event. This heuristic is always applicable. The idea
is to introduce an event that changes the SRC’s state in such a way that a
Precondition Task becomes less inconsistent.

Selecting an Inconsistent Precondition Task

One of the SRC’s inconsistent Precondition Tasks that is after the current
time c is selected with a choice probability for a Precondition Task that
is proportional to the inconsistency caused by the Precondition Task.

Selecting an Interval for the Event Insertion

An interval i is to be chosen, in which an event will be added to reduce the
inconsistency of the chosen Precondition Task p. Initially, i is set to the
interval of p. If p is at the very start of i, the heuristic is stopped and a
negative success value is returned, because this means that there is no room
to include an event without its overlapping with the interval’s event.

Each time the state-distance table provides the information that it is not
possible to transform the state of i into the state requested by p, i is set to
its predecessor interval. If i is the first interval and a state transition is still
not possible, the heuristic is stopped and a negative success value is returned.
This is also done if a state transition from i’s state to p’s requested state is
possible but i is not long enough for an event to be inserted without causing
an overlap with the event of i.

Selecting a Time Point for the Event Insertion

The event is to be placed at a time point t, which is to be between two pre-
viously computed time points t1 and t2. The idea of this balanced placement
is to ensure a maximal space with respect to other tasks that interact with
the event and with further events that would need to be inserted to achieve
full satisfaction of p.

If i is still the interval of p, t1 is computed by setting it to the same time
point as the interval’s last Precondition Task before or at the same time

5.2 Domain-Independent Planning 109

point of p. If i has no Precondition Tasks or all other Precondition
Tasks of i come after p, t1 is set to the interval’s begin. If t1 is before c, t1
is set to c.

If i is before the interval of p, t1 is computed by setting it to the same time
point as i’s last Precondition Task. If i has no Precondition Tasks, t1
is set to the i’s begin.

t2 is set to the same time point as p. If i is before the interval of p, t2 is
set to the last time point of i. To place t at a time point such that there is
enough room for further events that would have to be inserted to achieve full
satisfaction of p, t is computed as:

t = round

(

t1 +
(t2 − t1)

1 + statedistance(state(i) → state(p))

)

There is a possibility of t1’s being set to an interval’s begin. This place-
ment would be unfavorable because a new State Task at this time point
may interact with the interval’s State Tasks. Thus, if t is equal to t1, t is
set to t + 1. If t is now higher than t2, t is set back to t2. If t is before c, the
heuristic is stopped and a negative success value is returned.

Selecting an Event to Be Added

One state is chosen from among all the states that can be derived by a state
transition from i’s state, a choice probability for a state being proportional
to 1

d3 , where d is the state’s state-distance to the state required by p. The
event that causes the selected state is the event to be added.

Adding the Event

If multiple different sets of Contributions can cause the event, one of the sets is
chosen at random. The addition of a new action (i.e., of a Task Constraint)
described below is done for every Contribution of the selected set.

There may be numerous different ActionTypes for Task Constraints
that imply a State Task with the required Contribution. To choose from
among them, the insertion of each relevant type of Task Constraint (to-
gether with its tasks – in the same way as in Appendix D.2) is simulated,
the change in overall inconsistency being recorded. The tasks of an action are
inserted at time points such that the required Contribution occurs at time
point t, and the temporal relations of the Task Constraint are ensured by
a process similar to that described in Sect. 2.6.2.

The choice between the ActionTypes is made according to Appendix C.5
in such a way that the choice probability is dependent on the inconsistency
change. The chosen action is inserted as in the simulation.

SRC-H2: Moving an Event. This heuristic is applicable if at least one
State Task is connected to the SRC. The idea is to temporally move an
event to a time point before a Precondition Task such that the Precon-
dition Task becomes less inconsistent.

110 5. Application

Selecting an Inconsistent Precondition Task

One of the SRC’s inconsistent Precondition Tasks that is after the cur-
rent time c is selected with a choice probability for a Precondition Task
proportional to the inconsistency caused by the Precondition Task.

Selecting an Event to Be Moved

For the inconsistency improvement of the chosen Precondition Task p,
the events of the predecessor interval ip and the successor interval is of p’s
interval i are considered. The predecessor option is dropped if i or ip are the
first interval or if they begin before c. The successor option is dropped if i is
the last interval.

For the predecessor option, a state sp is computed, which is the state that
results from a state transition from the state of the predecessor interval of
ip using the event of i, and a subsequent state transition from the resulting
state using the event of ip. If one of the state transitions is not possible, the
predecessor option is dropped.

For the successor option, a state ss is set to the state of is.
For each option, an improvement value ∆p/∆s is computed as the state

distance from the option’s state sp/ss to the state of p, minus the state
distance from i’s state to that of p. If one of the computed improvement
value is less or equal to zero, the corresponding option is dropped.

From all the options, an interval is chosen with a choice probability for an
interval that is proportional to 1

d3 , where d is the improvement value ∆p/∆s.
If there are no options for the choice, the heuristic is stopped and a negative
success value is returned.

Moving the Event

The selection of a time point for the event placement is done in exactly the
same way as SRC-H1’s selection of a time point for the event insertion. All
of the chosen interval’s State Tasks are moved to the selected time point.

SRC-H3: Moving a Precondition. This heuristic is applicable if there is
at least one inconsistent Precondition Task that is not connected to the
Task Constraint of SGoals. The idea is to temporally shift a Precondi-
tion Task such that its inconsistency is decreased.

Selecting an Inconsistent Precondition Task

One of the SRC’s inconsistent Precondition Tasks that are not connected
to the Task Constraint of SGoals is selected with a choice probability for a
Precondition Task that is proportional to the inconsistency caused by the
Precondition Task. If one of the Action Tasks that belong to the chosen
Precondition Task’s Task Constraint has already been executed or is
currently under execution, the heuristic is stopped and a negative success
value is returned.

5.2 Domain-Independent Planning 111

Selecting an Interval

The new places considered for the chosen Precondition Task p are in the
predecessor interval ip or successor interval is of p’s interval i. The predecessor
option is dropped if i is the first interval. The successor option is dropped if
i is the last interval.

Each time the state-distance table provides the information that it is not
possible to transform the state of ip into the state requested by p, ip is set to
its predecessor interval. If ip is the first interval and a state transition is still
not possible, then the predecessor option is dropped.

Each time the state-distance table provides the information that it is not
possible to transform the state of is into the state requested by p, is is set
to its successor interval. If is is the last interval and a state transition is still
not possible, then the successor option is dropped.

If p’s inconsistency is not equal to the dead-end value, p’s current interval
i is also an option, i.e., no change will be made if i is chosen.

From all interval options, an interval is chosen with a choice probability
for an interval that is proportional to 1

d3 , where d is the state distance from
the interval’s state to the state required by p. If there are no interval options
for the choice, or if i is the chosen interval, the heuristic is stopped and a
negative success value is returned.

Moving the Precondition Task

If the chosen interval is the last interval, the Precondition Task p is moved
to the interval’s beginning. Otherwise, the Precondition Task p is moved
to the middle of the chosen interval.

SRC-H4: Deleting an Event. This heuristic is applicable if at least one
State Task is connected to the SRC. The idea is to improve the inconsi-
stency of a Precondition Task by deleting a State Task preceding it.

Selecting an Inconsistent Precondition Task

One of the SRC’s inconsistent Precondition Tasks is selected with a choice
probability for a Precondition Task that is proportional to the inconsi-
stency caused by the Precondition Task. If the chosen Precondition
Task belongs to a Task Constraint one of whose Action Tasks has al-
ready been executed or is currently under execution, the heuristic is stopped
and a negative success value is returned. This is also done if the interval of
the Precondition Task is the first interval.

Deleting a State Task

One of the interval’s State Tasks is chosen at random. The Task Con-
straint of the selected State Task is deleted (together with its tasks – in
the same way as in Appendix D.2).

112 5. Application

SRC-H5: Deleting a Precondition. This heuristic is applicable if there
is at least one inconsistent Precondition Task that is not connected to
the Task Constraint of SGoals. The idea is to delete an action if it is very
hard or impossible to fulfill its precondition.

Selecting an Inconsistent Precondition Task

One of the SRC’s inconsistent Precondition Tasks that are not connected
to the Task Constraint of SGoals is selected with a choice probability for a
Precondition Task that is proportional to the inconsistency caused by the
Precondition Task. If one of the Action Tasks that belong to the chosen
Precondition Task’s Task Constraint is currently under execution or
has already been executed, and one of the Task Constraint’s State Tasks
still comes after c, the heuristic is stopped and a negative success value is
returned.

Deleting the Corresponding Task Constraint

The Task Constraint of the selected Precondition Task is deleted (to-
gether with its tasks – in the same way as in Appendix D.2).

5.2.3 Evaluation

This section sets out to demonstrate that the resulting planning system is
able to handle general domain-independent tasks and produces good results
even with the simple SRC described above.

The Logistics Domain. There are lots of example domains in the planning
area. For our evaluation, variations of the “Logistics Domain” are chosen
because these are highly relevant to computer games. In many strategy and
simulation games, resources such as gold, wood, stones or troops must be
transported by different types of vehicles.

The Logistics Domain specifies the problem of transporting packages bet-
ween locations (see Fig. 5.8). Transportation within a city can be done by a
truck. But a truck cannot leave its city. Transportation between locations in
different cities must thus be done by airplane. An airplane can only serve one
specific location of a city (the airport). A truck and an airplane have actions
to load a package, drive/fly to a specific location and unload a package. A
problem specification includes a set of locations with information about a
location’s city and whether the location is an airport, the initial positions of
all existing trucks, airports and packages, and the target positions for (not
necessarily all) packages.

Realization. The problem does not correspond to a typical instance of an
agent’s configuration (hands, feet, ...), but it is nevertheless easy to model.
Every package, truck and airplane has an action resource, which prevents
multiple operations from being executed by an object at the same time (like

5.2 Domain-Independent Planning 113

City B

Location L3

Truck T1

Package P1

City A

Location L1 (Airport)

Location L2

Airplane A1 Truck T2

(Airport)

Location L4

Destination of

Package P1

Fig. 5.8. A Simple Example of the Logistics Domain

a truck being driven and simultaneously being loaded with a package). Every
package, truck and airplane also has a state resource, which defines its loca-
tion. The initial locations are stored in the corresponding Current States’
variables, the Current Time’s variable is set to 0 and the packages’ desti-
nations are specified by the SGoals’s Task Constraint with corresponding
Precondition Tasks. The Task Constraint is given all possible action
configurations.

The ARC’s choice between its improvement heuristics is made with a
probabilistic distribution of 90 % for ARC-H2, 9 % for ARC-H1 and 1 % for
ARC-H3. This distribution is based on the experiments described in Sect.
2.6.1 and was empirically proved, in this context too, to be superior to other
ratios. The SRC’s choice of heuristic is self-adapting and does not need to
be given any parameter.

The Task Constraint’s choice of a heuristic is modified so as to always
apply only the more aggressive TC-H2 heuristic. This would appear to be
more suitable for the planning context because the temporal order here is
much more important than for scheduling.

Results. The benchmark problems of the AIPS-2000 planning competition
(track 2; see Appendix A.4) are used in the following. Because of the stocha-
stic nature of the planning system, 1,000 test runs were executed per problem
setting. This means that it was only possible to analyze small problems (pro-
blems 4 to 10 with variations 0 and 1) because of limited computing power.
Instead of computation time, the number of iterations was measured, because
the test runs were executed on different types of computers (the average being
about 400 iterations per second). A test run was stopped if it failed to find a
solution after 100,000 iterations.

Figures 5.9 and 5.10 show the number of iterations necessary to find a
solution (to facilitate comparison, problem 9-1 is included in both figures).
The heavy-tail phenomenon (which roughly means that a small fraction of
test runs take very long – see [76] for details) is clearly evident, and a restart
technique could be applied to greatly improve average-case behavior.

114 5. Application

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10 100 1000

P
e
rc

e
n
ta

g
e
 o

f
te

s
t
ru

n
s

Iterations

Problem 6-1
Problem 4-1
Problem 5-1
Problem 4-0
Problem 6-0
Problem 5-0
Problem 9-1

Fig. 5.9. Runtime Results for the Logistics Domain (Easy Problems)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

100 1000 10000 100000

P
e
rc

e
n
ta

g
e
 o

f
te

s
t
ru

n
s

Iterations

Problem 9-1
Problem 8-0
Problem 9-0
Problem 7-0
Problem 8-1

Problem 10-1
Problem 10-0

Problem 7-1

Fig. 5.10. Runtime Results for the Logistics Domain (Harder Problems)

5.2 Domain-Independent Planning 115

The time taken to solve a problem is closely related to the number of
actions necessary to solve the problem (see Fig. 5.11 and 5.12). The “steps”
in the graphs can be explained by the fact that it does not normally harm
a plan to add an action and then add another action to undo the preceding
one, e.g., to load a package and then unload it, whereas the addition of a
single action can result in a different outcome. Thus, more test runs will
yield results with two additional steps instead of one.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10 15 20 30 40 60 80

P
e
rc

e
n
ta

g
e
 o

f
te

s
t
ru

n
s

Number of actions

Problem 6-1
Problem 5-1
Problem 4-1
Problem 4-0
Problem 6-0
Problem 5-0
Problem 9-1

Fig. 5.11. Plan-Step Results for the Logistics Domain (Easy Problems)

Tabu Lists. Even without applying domain knowledge, there are an endless
number of ways of improving the results. At least one simple way is tried
below – tabu lists.

One possible way of applying a tabu list is for the global search control’s
constraint selection. This failed, however, in the job-shop-scheduling experi-
ments (see Sect. 2.5.3) and will not be tried here again.

Another possibility is to use a tabu list that stores the objects affected by
changes (e.g., an Action Task moved by ARC-H2 or a Task Constraint
inserted by SRC-H1). If no new object is stored in the list within an iteration
(or in the case of unsuccessful application of an SRC’s heuristic), an empty
element is stored in the list to guarantee an ongoing replacement of the
elements. A heuristic that tries to modify one of the list’s objects fails to do
so. Figure 5.13 shows the results for Problem 6-1.

Applying long tabu lists results in a great initial improvement. With an in-
creasing runtime, shorter/no tabu lists prove to be better (which is irrelevant
for an approach of rapid restarts). However, the use of tabu lists yields plans

116 5. Application

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

30 40 60 80 100

P
e
rc

e
n
ta

g
e
 o

f
te

s
t
ru

n
s

Number of actions

Problem 9-1
Problem 8-0
Problem 9-0
Problem 7-0
Problem 8-1

Problem 10-1
Problem 10-0

Problem 7-1

Fig. 5.12. Plan-Step Results for the Logistics Domain (Harder Problems)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10 100 1000 10000

P
e
rc

e
n
ta

g
e
 o

f
te

s
t
ru

n
s

Iterations

No tabu list
List length: 1
List length: 2
List length: 3
List length: 4

List length: 10
List length: 15
List length: 20
List length: 40

Fig. 5.13. Tabu-List Application on Problem 6-1

5.2 Domain-Independent Planning 117

with a large number of actions (Figure 5.14 shows the results for Problem
6-1).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10 15 20 30 40

P
e
rc

e
n
ta

g
e
 o

f
te

s
t
ru

n
s

Actions

No tabu list
List length: 1
List length: 2
List length: 3
List length: 4

List length: 10
List length: 15
List length: 20
List length: 40

Fig. 5.14. Plan-Step Results for the Tabu-List Application

Many other “standard” methods for achieving an improvement could be
tried, but this is not our main concern here.

Enhancing the Problem Domain. For a computer-games application,
numerous other issues must be considered. For example, it takes a certain time
to get to another location, and the time it takes to deliver the resources/goods
should be minimized. These problems are addresses in the following sections.

Durations. The planning system inherently provides a temporal projection.
Thus, enhancing the actions by adding a duration is no problem at all. Indeed,
the previous problems were already treated as temporal planning problems –
each action having a length of one time unit. Of course, this can be changed,
Figure 5.15 showing the results for three different modifications6 of Problem
6-1, in which every type of Action Task has a duration of 100 plus a ran-
dom value of between -99 and +100. It is obvious that taking durations into
account has no effect on runtime.

Optimization. So far, only satisfaction goals have been considered. However,
the construction of a plan – using domain knowledge – could actually be
accomplished in linear time by adding the necessary actions for one package
after the other. Even using a very unsophisticated approach, 12 actions at

6 The detailed specification of the modified problems is available at the Excalibur
project’s webpage.

118 5. Application

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10 100 1000

P
e
rc

e
n
ta

g
e
 o

f
te

s
t
ru

n
s

Iterations

Problem 6-1
Problem 6-1a
Problem 6-1b
Problem 6-1c

Fig. 5.15. Duration Enhancements for Problem 6-1

the most would be necessary per package: a truck is driven to the package’s
location, the package is loaded on the truck, the truck is driven to the airport,
the package is unloaded, an airplane is flown to the airport, the package
is loaded on the airplane, the airplane is flown to the destination city, the
package is unloaded, a truck is driven to the airport, the package is loaded on
the truck, the truck is driven to the package’s destination, and the package
is unloaded.

If a minimization of the total delivery time (i.e., minimizing the maximal
completion time of the single deliveries) is desired, a goal function can be in-
corporated into the SRC that returns the duration from 0 to the Begin of the
Precondition Tasks of the SGoals’s Task Constraint. An improvement
heuristic for this goal function can be implemented very simply: it shifts the
Precondition Tasks in the direction of the current time until the first time
point is reached at which the SRC’s inconsistency increases.

The question now is the balance between satisfaction and optimization
(see also Sect. 3.7.4). Here, the same hierarchical approach as in the Orc
Quest example is taken, i.e., optimization of the goal function is only started
if the cost function reaches 0.

The initial time point for the Begin variables of the Precondition Tasks
of the SGoals’s Task Constraint is not really important as long as it al-
lows enough time for a consistent solution. For the following experiments, it is
set to NumberOfPackages × MaximallyNecessaryActionsPerPackage ×
MaximalActionLength, i.e., for the 6-1 modifications, 6×12×200 = 14400.
Figure 5.16 presents three sample test runs for Problem 6-1a, in which the
development of the duration of consistent solutions can be seen. The runtime

5.2 Domain-Independent Planning 119

was set to 10,000 iterations for these test runs. The dips indicate an appli-
cation of the SRC’s goal heuristic, while the plateaus indicate a search for a
new consistent solution.

0

2000

4000

6000

8000

10000

12000

14000

16000

0 1000 2000 3000 4000 5000 6000 7000 8000

D
u
ra

ti
o
n

Iterations

Test Run 1
Test Run 2
Test Run 3

Fig. 5.16. Three Sample Test Runs for Problem 6-1a

For Problems 6-1a, 6-1b and 6-1c, Figure 5.17 shows how many test runs
found a certain duration for a runtime of 100,000 iterations. The shortest
durations found are 1,150 for 6-1a, 1,004 for 6-1b and 1,177 6-1c.

Again, the use of tabu lists can yield a significant improvement (Figure
5.18 shows the results for Problem 6-1a). However, in contrast to the previous
application of tabu lists, the number of possible actions is restricted here
because of the optimization performed. This causes that tabu lists of a longer
length do not improve the results anymore – there is even a deterioration in
the results in contrast to shorter lists.

Dynamics. The feature of being able to handle dynamic changes of the
problem specification is also very important for the computer-games domain
because goods, their destinations and transportation facilities vary over time.

To test the approach’s ability to handle dynamics, a random package
is canceled every 1,000 iterations (no matter if it is already on the way or
has been delivered) and a new package is inserted (its initial location and
destination being decided at random). The time point for the Begin variables
of the Precondition Tasks of the SGoals’s Task Constraint is increased
by MaximallyNecessaryActionsPerPackage×MaximalActionLength+1,
i.e., for the 6-1 modifications, by 12×200+1 = 2401, to ensure the existence
of a satisfiable plan. Figure 5.19 shows the results for Problem 6-1a. The

120 5. Application

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

900 10001100120013001400150016001700180019002000

P
e
rc

e
n
ta

g
e
 o

f
te

s
t
ru

n
s

Duration

Problem 6-1a
Problem 6-1b
Problem 6-1c

Fig. 5.17. Durations Found for Problems 6-1a, 6-1b and 6-1c

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1100 1200 1300 1400 1500 1600 1700

P
e
rc

e
n
ta

g
e
 o

f
te

s
t
ru

n
s

Duration

List length: 10
List length: 2

List length: 20
No tabu list

Fig. 5.18. Durations Found for Problem 6-1a Using Tabu Lists

5.2 Domain-Independent Planning 121

optimization can quickly recover after a change takes place (Figure 5.20 shows
the view from above).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Iterations

0

2000

4000

6000

8000

10000

12000

14000

16000

Duration

0%

20%

40%

60%

80%

100%

Percentage
of test runs

Fig. 5.19. Introducing Dynamics for Problem 6-1a

Figures 5.21 and 5.22 contrast cuttings of the dynamic solution with test
runs in which the computation was restarted from scratch for a change. It
is clear that the dynamic adaptation converges much more quickly. Larger
problems and higher dynamics can mean that a problem cannot even be
tackled by a recomputation from scratch because there is not enough time
for a regeneration of the problem’s representation7.

Other Extensions. Many other extensions are useful and necessary for the
computer-games domain. They include the possibility of introducing new
resources (e.g., by building new units to carry goods) and taking into account
uncertainty with respect to the delivery’s execution (e.g., certain routes are
dangerous). Example applications of this are not included. It should, however,
have become clear in previous chapters that solutions to these problems can
potentially be realized by the techniques presented.

7 The time for generating the problem representation is not measured in the test
runs here; only the number of improvement iterations is considered.

122 5. Application

0

2000

4000

6000

8000

10000

12000

14000

16000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

D
u

ra
ti
o

n

Iterations

0

2000

4000

6000

8000

10000

12000

14000

16000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

D
u

ra
ti
o

n

Iterations

Fig. 5.20. Top View

5.3 Conclusion

This chapter has shown that a system based on the techniques described
in the previous chapters can also be applied to handle domain-independent
planning tasks, even though the underlying techniques are specifically desi-
gned to promote a search guided by domain-dependent knowledge. The very
fast specialized solution for the Orc Quest example, as well as the promising
results for domain-independent planning tasks, indicate the strength of the
underlying technology.

A simple version of a State Resource Constraint featuring a symbo-
lic state domain was presented. Much more complex SRCs will be necessary
to tackle more sophisticated problems, e.g., SRCs with state domains of in-
teger numbers, real numbers or even sets (as shown in Fig. 4.42), SRCs
with enhanced temporal projections like continuous change (see Fig. 4.3),
and SRCs with enhanced support of precondition checks like state-related
or temporal ranges. These extensions are beyond the scope of this book and
will be the subject of future research.

The system’s approach of looking at the problem from a simplified per-
spective (of one constraint) to choose a heuristic to improve the overall pro-
blem is similar to the way in which some other powerful planning approaches
proceed, e.g., the approach of Ephrati, Pollack and Milshtein [52], HSP [20]
and Fast-Forward [87]. It has actually proved to be a good approach for
solving numerous other problems (see also [106]).

5.3 Conclusion 123

1000 1200 1400 1600 1800 2000

Iterations

0

2000

4000

6000

8000

10000

12000

14000

16000

Duration

0

20

40

60

80

100

Percentage of test runs

0 100 200 300 400 500 600 700 800 9001000

Iterations

0

2000

4000

6000

8000

10000

12000

14000

16000

Duration

0

20

40

60

80

100

Percentage of test runs

Fig. 5.21. Dynamic Adaptation (Upper) Vs. Recomputation (Lower) – After First
Change

124 5. Application

8000 8200 8400 8600 8800 9000

Iterations

2000

4000

6000

8000

10000

12000

14000

16000

Duration

0

10

20

30

40

50

60

70

80

90

100

Percentage of test runs

0 100 200 300 400 500 600 700 800 9001000

Iterations

2000

4000

6000

8000

10000

12000

14000

16000

Duration

0

10

20

30

40

50

60

70

80

90

100

Percentage of test runs

Fig. 5.22. Dynamic Adaptation (Upper) Vs. Recomputation (Lower) – After
Eighth Change

5.3 Conclusion 125

The improvement heuristics developed for the constraints have a lot in
common with those of the DCAPS/ASPEN/CASPER planning systems [153,
154, 30] and scheduling systems like gerry [196] and OPIS [167]. The OPIS
scheduler is probably the most advanced system with respect to its repair
heuristics, as a more sophisticated conflict analysis of the schedules is applied.
An integration and extension of these methods for planning tasks seems to
be a promising direction for future improvements.

Our system’s iterative improvement by local search makes it possible to
easily interleave the planning process with sensing and execution. Only a few
agent/planning system are able to do this (see also Sect. 1.2). The approach
most similar to ours is the CASPER system, which also uses local search stra-
tegies to repair a plan. Slightly similar is also the repair strategy of O-Plan
[45], tackling broken plans by a set of domain-dependent repair heuristics. A
very different approach is applied in CPEF [126], which is based on hierar-
chical refinement planning and applies a dependency analysis to restart the
planning process from the lowest possible hierarchy level.

The chapter included only a limited number of application examples; there
are a lot of further empirical studies to be done. Especially regarding pro-
blems with an unlimited number of potential resources/objects and with al-
ternatives for sensor anchoring, it will be very interesting to see how much
domain-dependent knowledge is necessary to produce reasonable results.

6. Conclusion

The agent architecture presented here focuses on the goal-directed behavior
computation of the agent. By contrast, most of the existing architectures for
autonomous agents focus on communication protocols and interaction, but
do not specify how to compute the behavior of the individual agents (e.g.,
Reticular Systems’ AgentBuilder [156] and SRI International’s Open Agent
Architecture [114]).

The agent’s reasoning about its behavior is based on the paradigm of local
search. The iterative repair procedure of local search techniques provides the
agent with an efficient anytime reasoning that enables an agent to produce
fast reactions as well as sophisticated action plans. Generic agent systems
like the Australian Artificial Intelligence Institute’s dMARS [46, 66], Bits &
Pixels’ IaFactory, MASA’s DirectIA SDK or the Soar/Games AI engine [176]
provide only very simple predefined reasoning schemes. Today’s planning
systems, on the other hand, focus on deliberative refinement reasoning and
are hardly ever able to perform reactive actions. Unlike hybrid systems that
involve a reactive and a deliberative module, our agents feature a continuous
transition between reaction and deliberation. The priority of a plan’s feature
to be repaired is given by a cost/goal function. Similar approaches are realized
in the gerry system [196] and ASPEN [31, 154].

Local search’s independence of the search history and the quick single
repair steps also facilitate an uncomplicated handling of the environment’s
dynamics with interleaved sensing, planning and execution. This capability
is very important for an agent, given the quickly changing environment in
computer games.

The whole architecture was embedded in a constraint programming fra-
mework, which makes the approach highly declarative and modular and the
developed methods applicable to other search problems. However, several ex-
tensions of the CP framework were necessary to achieve sufficient efficiency
and expressiveness. The first extension realizes an adequate integration of
local search. The concept is based on the use of global constraints and pre-
serves the constraint programming framework’s properties of declarativeness
and variable applicability. Domain-dependent knowledge to guide and accele-
rate search can be integrated using the global constraints in a plug-and-play
manner.

A. Nareyek: Constraint-Based Agents, LNAI 2062, pp. 127−129, 2001.

 Springer-Verlag Berlin Heidelberg 2001c©

128 6. Conclusion

The second extension of constraint programming was necessary to realize
a search free from predefined bounds, e.g., plans of a certain length. This
feature is important to favor optimization criteria like resource-related pro-
perties, and even more important for handling open worlds, in which the
agent must reason about an arbitrary number of objects in the world. This
was enabled by the concept of structural constraint satisfaction, which en-
hances conventional constraint satisfaction by providing the opportunity to
formulate problems in which the constraint graph is not given in advance. Un-
like other planning systems that use productions/rules to change the graph
as part of the search (e.g., [7]), modeling planning as an SCSP allows us to
specify the problem in a declarative manner and enables the corresponding
productions to be deduced automatically. The automatic method guarantees
that local-search methods can potentially find all valid plans, which is not
normally the case with hand-tailored solutions.

Existing planning systems do not use resource-based criteria as primary
optimization goals; instead, most still focus on minimization of the plan
length. This approach is quite curious because a plan-length property is irre-
levant for real-world problems. Nevertheless, the current planning approaches
within search frameworks like OR and SAT also follow this plan-length fo-
cus by restricting themselves to the search for plans of a predefined length,
expanding this limit if they cannot find a valid plan. This is also true for
constraint-based planning approaches like CPlan [175]. Some systems apply
separate planning and scheduling phases (e.g., the RETSINA agent [144]),
but this prevents them from considering interactions between the decisions
regarding planning and resource assignment.

The resource focus is also reflected in the planning model and allows
us to use and optimize temporal, spatial and all other kinds of resources.
Furthermore, the model is expressive enough to handle incomplete knowledge
and information gathering.

To conclude, the presented agent architecture features:

– Real-Time Reasoning: The local-search approach enables the system to
provide very primitive plans (reactions) for short-term computation hori-
zons, while longer computation times are used to improve and optimize the
agent’s behavior.

– Dynamics: The iterative repair/improvement steps make it possible to
easily interleave sensing, planning and execution.

– Resource Focus: The search can be conducted in a way that focuses on
the satisfaction and optimization of resource-related properties.

– Incomplete Knowledge: The model is not restricted to the closed-world
assumption and enables an agent’s incomplete knowledge to be dealt with.

– Domain Knowledge: Even though the model supports full domain-
independent planning, domain-specific heuristic knowledge can be easily
integrated by way of the global constraints.

6. Conclusion 129

– Software Engineering: The system is based on the general search fra-
mework of constraint programming and can be easily changed, extended,
maintained and reused.

The architecture represents a significant step toward realization of intelligent
agents for computer games. Not only genres like computer role-playing games
and strategy games can benefit from this. For games like first-person shooters,
too, increasing efforts are being made to include sophisticated behavior for
their bots. Of course, the technology is not restricted to computer games.
Other application areas include internet agents, factory robots, autonomous
spacecraft and many more.

7. Future Work

This book has presented a number of concepts and techniques enabling intel-
ligent agents to be created for a dynamic real-time environment. Apart from
research on specialized planning constraints and further empirical applica-
tion studies, there are, of course, a vast number of issues that still need to be
explored and addressed in detail. This chapter identifies some of the issues
and offers some ideas on how to tackle them.

7.1 Search Guidance

In many cases, local search methods have problems searching structured se-
arch spaces. They repair in an unfocused manner without distinguishing bet-
ween different problem features. Using global constraints improves the si-
tuation, but techniques for coordinating the constraints need to be further
explored. An unfocused selection of a repair – e.g., with the steepest descent
for an actual inconsistency – need not represent the optimal behavior because
a specific region of the search space may require very different improvement
heuristics in order to move quickly toward an optimum. Getting trapped in
cycles or randomly moving about the search space may be the consequence.
For example, the following specification results in a search behavior in which
the constraints’ actions continually undo one another:

Constraint 1:
Relation: y > x + 10

Knowledge/Heuristic: decr x

Constraint 2:
Relation: y > 10 - x

Knowledge/Heuristic: incr x

Init: x = 0, y = 0

There is, then, a need for techniques that perform meta-management,
e.g., that enable local search to temporally focus on specific problem
aspects. This can be supported by the global constraints’ domain-specific
knowledge.

A. Nareyek: Constraint-Based Agents, LNAI 2062, pp. 131−134, 2001.

 Springer-Verlag Berlin Heidelberg 2001c©

132 7. Future Work

Some work has already been done on the introduction of focus methods
for local search, e.g., modifying the cost function [181, 56, 164], using a spe-
cial prioritizer [93], making dynamic changes to the neighborhood [13] and
employing co-evolution techniques for genetic algorithms [143]. The develop-
ment of techniques adapted to the use of global constraints would appear a
promising line of research, in which domain-knowledge can be used to set and
maintain the focus.

7.2 Combination of Local and Refinement Search

The methods used in this book also have their drawbacks. One of these has
to do with the use of local search. Local-search techniques are very good
at quickly finding high-quality solutions. However, for problems with a very
low density of solutions in the search space, systematic approaches employ-
ing complete refinement search usually outperform local search. It therefore
seems like a good idea to develop hybrid solutions. Work in this area has
recently begun, e.g., on enhancing local search with propagation techniques
[149, 95] and using refinement search for subproblems within local search
[117]. An application to planning is described in [67].

7.3 Learning

The self-adapting preference values used for the Orc Quest example and for
the SRC’s selection of a heuristic already represent a simple kind of learning.
A related approach is presented in [51], local-search methods being applied
here to find a subset of heuristics that perform well for a given problem. Ho-
wever, this approach only provides information on which heuristics to apply
generally, and we are more interested in approaches that can adapt the dis-
tributions during search because the utility of a heuristic probably depends
strongly on the current search state.

Another highly interesting topic in this context is the use of case-based
reasoning. The cases can either lead to suggestions on which heuristic to
apply, or they can directly include concrete improvement transformations,
for which the adaptation is automatically performed by local search’s repair
mechanisms. An overview of case-based reasoning techniques for CSPs is
given in [168]. Case-based planning approaches were developed by Hammond
[80], Veloso, Muñoz-Avila and Bergmann [178], and Lieber and Napoli [112],
among others.

A further important issue is the synthesis of new operators/neighborhoods
for planning based on local search. Research on this topic has only just begun,
e.g., the work of by Ambite, Knoblock and Minton [8], and will probably
intensify as local-search approaches become more widely used for planning.

7.4 Self-Reflective Planning 133

7.4 Self-Reflective Planning

In general, the planning process itself should also be taken into account by
an agent, i.e., the agents being able to plan their own planning. This would
enable higher-level matters to be planned, e.g., the organization of optimiza-
tion and satisfaction phases for the global search control. To solve this task, a
special Reasoning ARC can be introduced by means of which the reasoning
processes are scheduled.

Using the Reasoning ARC makes hierarchical planning easy to accom-
plish as well. Higher-level Task Constraints can involve an additional Ac-
tion Task for the Reasoning ARC, which is temporally located well ahead
of the “real” tasks of the Task Constraint and causes them to be replaced
by more detailed tasks when the Action Task is executed.

7.5 Social Aspects

Little has been said about communication with other agents. A great deal of
research on this topic focuses on specific protocols and the like. Our interest
in this topic is not only of a syntactical nature, however.

Recently, game-theoretical research topics like auctions and market-
oriented programming have received a lot of attention from the AI com-
munity. However, these approaches are rarely applicable for a more general
multi-agent system. Some aspects that are usually neglected are:

– Temporal issues:
– The price of a service is dependent on the time at which the service is

implemented and at which the payment is transacted.
– Prices are dependent on the time spent calculating the prices (e.g., with

more time to think about it, easier implementation methods could be
found by the service provider).

– Marketplace:
– There is no central marketplace, and negotiations can involve single

agents as well as groups of agents.
– The search for trade partners and the negotiations themselves involve

costs.

Research on these questions has so far been limited, but fields like bargaining
and search (e.g., see [197]) are starting to attract more attention.

In the context of this book, the only incentive for agents is the prospect of
improving their plan quality. That agents will try to obtain help from other
agents is nothing special, because it serves their purposes. It is not clear,
however, how they can be motivated to help others.

To remedy this situation, two additional State Resources for each familiar
agent or group of agents can be introduced: an Own Cooperativeness
SRC resource to express an agent’s willingness to help other agents, and an

134 7. Future Work

Other’s Cooperativeness SRC resource for another agent’s willingness to
help one. The level of both resources has an impact on the goal function. The
quality of this impact enables the social attitude of an agent to be described.

When an agent receives help from another agent, its Own Coopera-
tiveness SRC is increased, while its Other’s Cooperativeness SRC is
decreased. For the other agent, the reverse is the case. The level of change
is calculated according to the improvement of the first agent’s goal function
and the worsening of the second agent’s goal function.

An agent that plans to be helped by another agent suggests a number
of actions to the other agent and specifies the level of potentially gained
improvement. If the other agent’s increase in Other’s Cooperativeness
and decrease in Own Cooperativeness results in an improvement in his
goal function, he will agree to the cooperation. Once cooperation is confirmed,
a failed transaction of the stipulated service would entail a sharp decrease
in the Other’s Cooperativeness. The communication process could be
planned using the Reasoning ARC.

To realize more sophisticated communication, the underlying framework
of constraints may turn out to be a major help, because constraints represent
a powerful tool for communicating an agent’s restrictions and needs.

A. Internet Links

A.1 General AI

– About.com: Artificial Intelligence:
http://ai.miningco.com/compute/software/ai

– American Association for Artificial Intelligence:
http://www.aaai.org/

– CMU Artificial Intelligence Repository:
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/ →

→ ai-repository/ai/html/intro.html

– Russell and Norvig’s AI on the Web:
http://www.cs.berkeley.edu/˜russell/ai.html

– Artificial Intelligence Resources of the National Research Council of Canada:
http://ai.iit.nrc.ca/ai point.html

– Hubat: Artificial Intelligence:
http://www.hubat.com/servlets/search?cmd=b&db=hubat& →

→ concept=3.1&next=1

– comp.ai Newsgroup FAQs:
http://www.faqs.org/faqs/by-newsgroup/comp/comp.ai.html

– ACM Special Interest Group on Artificial Intelligence:
http://sigart.acm.org/

– The European Coordinating Committee for Artificial Intelligence:
http://www.eccai.org/

– The International Joint Conferences on Artificial Intelligence:
http://www.ijcai.org/

– Principles of Knowledge Representation and Reasoning:
http://www.kr.org/

– The Society for the Study of Artificial Intelligence and the Simulation of
Behavior:
http://www.cogs.susx.ac.uk/aisb/

A.2 Artificial Intelligence for Computer Games

– International Game Developers Association’s Artificial Intelligence SIG:
http://www.igda.org/SIGs/game ai.htm

A. Nareyek: Constraint-Based Agents, LNAI 2062, pp. 135−138, 2001.

 Springer-Verlag Berlin Heidelberg 2001c©

136 A. Internet Links

– Steven Woodcock’s Game AI Page:
http://www.gameai.com/ai.html

– Craig W. Reynolds’s Collection about Improvisational Characters:
http://www.red3d.com/cwr/characters.html

– Gamedev.net – AI Resources:
http://www.gamedev.net/reference/list.asp?categoryid=18

– comp.ai.games Newsgroup
– Gamasutra (subscribe to access the Artificial Intelligence in Computer Ga-

mes discussion group):
http://www.gamasutra.com/

A.3 Agents

– MultiAgent systems:
http://www.multiagent.com/

– UMBC AgentWeb:
http://agents.umbc.edu/

– AgentLink:
http://www.agentlink.org/

– The Agent Society:
http://www.agent.org/

– Patrick Doyle’s Notes on Agent Architectures:
http://www-cs-students.stanford.edu/˜pdoyle/quail/ →

→ notes/pdoyle/architectures.html

– Agent Construction Tools:
http://www.agentbuilder.com/AgentTools/

– Jack Krupansky’s Software Agent Links:
http://www.basetechnology.com/aglinks.htm

– University of Zürich – AI Lab’s Robotics Links:
http://www.ifi.unizh.ch/groups/ailab/links/robotic.html

– Foundation for Intelligent Physical Agents:
http://www.fipa.org/

A.4 Planning

– U.K. Planning and Scheduling Special Interest Group:
http://www.research.salford.ac.uk/plansig/

– Electronic Colloquium on Planning and Scheduling:
http://www.informatik.uni-ulm.de/ki/Etai/ec/ec.html

– Electronic Colloquium on Reasoning about Actions and Change:
http://www.ida.liu.se/ext/etai/rac/

– European Network of Excellence in AI Planning:
http://planet.dfki.de/

A.5 Search Frameworks 137

– AIAI Planning Resources:
http://www.aiai.ed.ac.uk/links/planning.html

– Rao’s Planning Class:
http://rakaposhi.eas.asu.edu/planning-class.html

– Patrick Doyle’s Notes on Planning:
http://www-cs-students.stanford.edu/˜pdoyle/quail/ →

→ notes/pdoyle/planning.html

– Rob Miller’s Reasoning about Action List:
http://www.ucl.ac.uk/˜uczcrsm/ReasoningAboutActions.html

– Rob St. Amant’s AI Planning Resources:
http://www.csc.ncsu.edu/faculty/stamant/planning-resources.html

– AIPS-00 Planning Competition:
http://www.cs.toronto.edu/aips2000/

– AI Planning Systems: Domain Repository:
http://www.cs.umd.edu/projects/planning/index.html

A.5 Search Frameworks

– Stas Busygin’s NP-Completeness Page:
http://www.busygin.dp.ua/npc.html

A.5.1 Operations Research

– Michael Trick’s Operations Research Page:
http://mat.gsia.cmu.edu/index.html

– J E Beasley’s OR-Notes:
http://mscmga.ms.ic.ac.uk/jeb/or/contents.html

– sci.op-research Newsgroup FAQs:
http://www.faqs.org/faqs/by-newsgroup/sci/sci.op-research.html

– tutOR:
http://www.tutor.ms.unimelb.edu.au/

– Mathematical Programming Glossary:
http://www.cudenver.edu/˜hgreenbe/glossary/glossary.html

– NEOS Guide:
http://www-fp.mcs.anl.gov/otc/Guide/

– Interior-Point Methods Online:
http://www-unix.mcs.anl.gov/otc/InteriorPoint/

– The Operational Research Society:
http://www.orsoc.org.uk/

– Decision Tree for Optimization Software:
http://plato.la.asu.edu/guide.html

– INFORMS Online:
http://www.informs.org/

138 A. Internet Links

– International Federation of Operational Research Societies:
http://www.ifors.org/

– OpsResearch.com:
http://OpsResearch.com/index.html

– OR-Library:
http://graph.ms.ic.ac.uk/info.html

– Operations Management Resources:
http://www.opsmanagement.com/

A.5.2 Propositional Satisfiability

– SATLIB:
http://www.satlib.org/

– Ian P. Gent and Toby Walsh’s References on Satisfiability:
http://dream.dai.ed.ac.uk/group/tw/sat/

– Online MAX-SAT Solver:
http://rtm.science.unitn.it/intertools/sat/

A.5.3 Constraint Programming

– Constraints Archive:
http://www.cs.unh.edu/ccc/archive/

– Roman Barták’s On-line Guide to Constraint Programming:
http://kti.ms.mff.cuni.cz/˜bartak/constraints/

– Finite Domain Constraint Programming in Oz. A Tutorial:
http://www.mozart-oz.org/documentation/fdt/index.html

– Doug Edmunds’ Page on Learning Constraint Logic Programming:
http://brownbuffalo.sourceforge.net/

– The APES Group’s Kappa Pages:
http://www.dcs.st-and.ac.uk/˜apes/kappa.html

– CSPLib: a Problem Library for Constraints:
http://csplib.cs.strath.ac.uk/

– comp.constraints Newsgroup FAQ:
http://www.faqs.org/faqs/by-newsgroup/comp/comp.constraints.html

– ERCIM Working Group on Constraints:
http://www.cwi.nl/ERCIM/WG/Constraints/

B. The “Send More Money” Problem

This example describes the classic crypt-arithmetic puzzle “send more mo-
ney”. A different digit for each letter of the following equation has to be
found:

S E N D

+ M O R E

M O N E Y

To specify the problem for a constraint solver, we have to declare the varia-
bles and their domains:

{S, E, N, D, M, O, R, Y} :: 0..9

In addition, the problem involves the following two constraints:

1000*S + 100*E + 10*N + D

1) + 1000*M + 100*O + 10*R + E

= 10000*M + 1000*O + 100*N + 10*E + Y

2) alldifferent({S, E, N, D, M, O, R, Y})

When this information is given to a constraint solver, a solution is produced
immediately:

{S = 2, E = 8, N = 1, D = 7, M = 0, O = 3, R = 6, Y = 5}

Note that no solving method was given. The solver produced only one solu-
tion, but all other possible solutions can be listed as well. If special solutions
are preferred, an optimization can be applied.

A. Nareyek: Constraint-Based Agents, LNAI 2062, p. 139, 2001.

 Springer-Verlag Berlin Heidelberg 2001

C. Choice Randomization

A lot of decisions that are made during an agent’s behavior computation
include randomized choices (e.g., see Chap. 2 and 5). This chapter argues
in favor of a “fair” random choice and points out that the computation of
an alternative’s utility should be focused instead of empirically tuning choice
parameters of less informed selection methods.

Many researchers do not really care how a randomized choice between
several alternatives is made. Of course, in the case of a choice for which no
quantitative utility information is available to distinguish the alternatives,
the simple random choice of one alternative may be appropriate. However,
especially in optimization domains – in which values related to the objec-
tive function are often accessible – more sophisticated methods are rarely
used. For example, in GSAT [165] or Walksat [166], the choice only depends
on which alternative’s objective function value is the best. The quantitative
utility information is not used.

Bresina introduced a method called heuristic-biased stochastic sampling
(HBSS) [24]. The first step of this method is to map the utility values to a
ranking of directly consecutive natural numbers, starting with a rank of 1
for the best utility value. But, again, the quantitative utility information is
destroyed by this step.

Arguing that the relative differences between the utility values are impor-
tant, Oddi and Smith developed an approach that uses a dynamic “accep-
tance band” [142]. A simple random choice is made, considering only alter-
natives within a certain percentage range from the maximal (if higher values
are considered to be better than lower ones) utility value of the alternatives.
However, even this approach uses the relative distances only for preselection
for a simple random choice.

It is argued below that a fair random choice, in which an alternative is
selected with a choice probability proportional to the alternative’s utility
value, is more appropriate and can be computed faster. It is assumed that
the utility function provides values in such a way that a utility value grows
proportionally to the preference, e.g., that a utility value of 10 is twice as
preferable as a utility value of 5.

A. Nareyek: Constraint-Based Agents, LNAI 2062, pp. 141−149, 2001.

 Springer-Verlag Berlin Heidelberg 2001

142 C. Choice Randomization

C.1 Choice-Dependent Information

The general problem when taking into account the quantitative utility in-
formation is that the relative distances between the values decrease if the
values increase. For example, let there be two alternatives A and B with uti-
lity values of vA = 3 and vB = 5. The superiority of vB with respect to vA’s
value is 66 %. However, if the utility values are vA = 1, 003 and vB = 1, 005,
the superiority of vB is only about 0.2 %. Is this appropriate or not? This
difficulty is perhaps the reason why Bresina chose to make a ranking of the
alternatives.

The question here is which reference values should be taken to calculate
the percentage. For example, to determine what is 100 % in the above exam-
ple, the value of 0 was taken as the lower reference value and the value of vA

as the upper reference value.
The key to answering the question of which lower reference value rl should

be taken is to determine which parts of the values are independent of the
choice. These independent parts should not affect the choice; they thus re-
present the lower reference value. For example, if vA = 1, 003 and vB = 1, 005
and the component that is responsible for a partial value of 1,000 is not de-
pendent on any of the alternatives, rl should be set to 1,000. On the other
hand, if the total values of vA and vB are dependent on the choice, rl should
be set to 0.

Consequently, instead of taking the total inconsistency that results from
choosing an alternative, only the inconsistency improvement/contribution of
an alternative is taken for most decisions treated in this book. Usually, the
utility function that computes the alternatives’ utility values should already
provide values that include the choice-dependent information only. This is
assumed in the following sections (implying that rl = 0).

Choice-dependent utility information also means that the utility of an
alternative may be dependent on the other alternatives, e.g., if the sum of the
utility values of one category of alternatives is to be equal to the sum of the
utility values of another category. Thus, it is often useful to add/incorporate
a transformation to the utility function that computes the relative utility
values.

C.2 Choosing an Alternative

Unlike other approaches, the complete relative differences between the alter-
natives are preserved here – an approach that is “fairer” and often easier
to calculate. An example of the application of such a choice is ant colony
optimization [42] in which the probability distribution for an ant’s decision
(on which way to take) is often made in this way.

When making the choice, every single relevant part of all alternatives
has to be considered – without any information-destroying operations like

C.3 Utility Function vs. Random Choice 143

ranking or precluding alternatives. The upper reference value ru is thus set
to the total sum of the alternatives’ utility values:

ru =
∑

a∈A

va

This results in the following choice probability for an alternative i:

pi =
vi

∑

a∈A

va

The implementation of the choice itself is very simple (see Fig. C.1).

IF (r u > 0) BEGIN

r ← random value([1..r u])
a ← first alternative()
r ← r - utility value(a)

WHILE (r > 0) BEGIN

a ← next alternative()
r ← r - utility value(a)

END

END

Fig. C.1. Fair Random Choice

C.3 Utility Function vs. Random Choice

Determining the utility values is usually a matter of heuristics. The estimate,
then, may be sometimes better and sometimes worse. But this is no reason to
apply operations like a quadratic function to the utility values (as is done in
Bresina’s HBSS – after the ranking). The rating done by the utility function
is destroyed by this mapping and the relative differences between the alter-
natives are not preserved. The improvement of the quality of the decisions
by applying operations like a quadratic function indicates that the heuristic
to determine the utility values should be changed accordingly. Changing the
random choice instead of the utility function is like fighting a disease by
alleviating its symptoms instead of eliminating its cause.

A good example here is the choice of a modification alternative in the so-
lution to the Orc Quest problem (see Sect. 5.1.2). The solution process is done
in a local search way such that in each iteration, there are six alternatives
for modifying a solution. These alternatives correspond to adding/removing
one action of each type. The utility function is dynamic and assigns a utility

144 C. Choice Randomization

according to the improvements that are gained by the application of an al-
ternative. The fair random choice is compared to Bresina’s heuristic-biased
stochastic sampling and Oddi and Smith’s acceptance-band method. The
acceptance-band method requires some tuning for the percentage range. The
results are given in Fig. C.2 which shows only the graphs for reaching all of
the goal criteria.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10 100 1000 10000 100000

P
e
rc

e
n
ta

g
e
 o

f
te

s
t
ru

n
s

Improvement iterations

Band-5%
Band-50%
Band-60%
Band-70%
Band-80%
Band-90%
Band-95%

Fig. C.2. Test Runs with Acceptance Bands

It is evident that the quality of the solutions improves for smaller ac-
ceptance bands, the best results being actually obtained when there is no
acceptance band (a simple random choice between all alternatives with the
best utility values). Figure C.3 shows a comparison of all choice techniques,
“Best” being a simple random choice between all alternatives with the best
utility values, “Rank-Poly-2” an HBSS choice with a bias function of 1

r2 (see
[24] for details) and “Rank-Poly-3” an HBSS choice with a bias function of
1
r3 .

The fair random choice is quite competitive, with only “Best” dominating.
Higher exponents for the bias function of HBSS have a positive effect, also
showing the advantage of choosing the alternative that was rated best. Does
this mean that a fair choice is not the best way to proceed?

No! The results do not demonstrate the superiority of one randomiza-
tion approach over the others, but indicate that the utility function is not
set appropriately. The utility function should have been set in such a way
that the most successful alternative gets a utility of one and all other alter-
natives utility values of zero. If the utility function is modified this way, all
randomization approaches produce the same results as “Best”.

C.3 Utility Function vs. Random Choice 145

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10 100 1000 10000 100000

P
e
rc

e
n
ta

g
e
 o

f
te

s
t
ru

n
s

Improvement iterations

Best
Fair

Rank-Poly-3
Rank-Poly-2

Fig. C.3. Comparison of the Choice Techniques

However, this does not mean that all randomization approaches are the
same. By adjusting the utility function, an application of the fair random
choice can always simulate all other types of random choice because it can
adequately handle quantitative information as well. For example, to realize
the “Best” choice, all utilities can be modified as described above; to realize
acceptance bands,the utility function must be changed such that all relevant
alternatives get a utility value of one; and to realize a ranking, the ranking
procedure must be incorporated into the utility function. This ability to rea-
lize other randomization approaches cannot be fully exploited in the other
approaches because they are not capable of properly considering the quantita-
tive difference information provided by the utility function, e.g., if a selection
is to be done with a choice probability proportional to the alternative’s utility
value.

The fair random choice should therefore be used, and the developer should
concentrate on improving the utility function. Using the other techniques
focuses the developer on empirically tuning things like a bias function or a
percentage for the acceptance bands (the tuning possibilities actually being
highly restrictive because the utility information cannot be fully exploited)
instead of thinking about better ways to calculate utility. If it turns out, at
the end of the algorithm design phase, that the best selection method is only
a reduced scheme of the fair random choice – as in the Orc Quest example
above – it is, of course, very reasonable to optimize and integrate the choice
method with the utility calculation.

146 C. Choice Randomization

C.4 Calculation Costs

For local search techniques, one of the main aspects of a good neighborhood
and utility function is that the utility values of the neighbors can be quickly
computed. If similar choices are repeatedly made, like choosing one of the six
alternatives in the Orc Quest example or choosing a variable to flip its value
for SAT problems, usually only a small number of the utility values must
be recomputed. Here, the fair random choice is not only more appropriate
but also faster to compute. The fair random choice requires only a sum
value (ru) instead of the maximal value required by Oddi and Smith’s
acceptance bands or Bresina’s ranking. Figure C.4 shows that the results of
the fair random choice, compared in terms of time instead of iterations, are
much better compared with Fig. C.3.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.01 0.1 1 10 100 1000

P
e
rc

e
n
ta

g
e
 o

f
te

s
t
ru

n
s

Time (ms)

Best
Fair

Rank-Poly-3
Rank-Poly-2

Fig. C.4. Temporal Comparison

In most cases, it is easy to continuously update the fair random choice’s
sum value instead of recalculating it for each choice. For example, the al-
ternatives that are used for the Orc Quest problem can always update an
internal sum value if a utility is changed. This is more efficient than a re-
calculation because only one utility value is changed between two choices,
i.e., one calculation instead of the six that would be necessary to sum up the
six utility values. Whether a continuous update or a recalculation is more
efficient depends, of course, on the number of changes between two choices,
but local search methods are normally constructed in a way such that there
is not much change in one search step.

C.5 Allowing for Non-Positive Utility Values 147

A continuous update of a required maximal utility value is computatio-
nally more expensive because in a case in which the maximal utility value
must be lowered an update depends on all other values. However, an ordered
list can be maintained in which each list element includes a link to one alter-
native with its utility value. For every value change, the list order is updated
according to the utility values. With this list, it is possible to dispense with a
recalculation of the maximal value for each choice. But the fair random choice
can also be accelerated by this list because consideration of the alternatives
in the list’s order increases the probability that the choice loop (see Fig. C.1)
will be successful sooner. Again, the advantage of the continuously updated
list is dependent on the number of changes between two choices. Examples
of the use of such lists in this book are the global search control’s constraint
selection and the selection of an inconsistent interval by an ARC.

C.5 Allowing for Non-Positive Utility Values

Sometimes, a potential alternative actually has a negative utility. But it would
seem like a good idea to consider even these alternatives for the choice. The
question is, though: in which relation should a choice probability for an alter-
native with a negative utility value be with respect to the other alternatives?
The example considered below includes alternatives A, B and C with utility
values vA = 2, vB = 5 and vC = −12, respectively.

Setting all negative values to a value of 1, such that vA = 2, vB = 5 and
vC = 1 in our example, is not fair because the relative distances between
the values would be lost. A simple shift making the lowest value 1, such that
vA = 15, vB = 18 and vC = 1 in our example, is not convincing either because
the relative distances between the positive values would decrease with lower
negative values (see also Sect. C.1). For example, the resulting probabilities
would be 44 % for alternative A, 53 % for alternative B and 3 % for alternative
C if vC is −12, and 49 % for alternative A, 50 % for alternative B and about
0 % for alternative C if vC were −100.

Additions and subtractions destroy the relative distances between the
values and multiplications or divisions cannot produce positive signs for all
values. Indeed, the problem here is the lack of an interpretation possibility
for negative values.

It is therefore assumed that the interpretation is given by way of a risk va-
lue r, which provides a probability with which an alternative with a negative
utility must be chosen. Another value must be given to provide a probability
with which an alternative with a utility value of 0 must be chosen – the ex-
ploration value e. If there are no utility values to which e or r can be applied,
their percentage is added to the one for positive alternatives. This results in
the following choice probability for an alternative i:

148 C. Choice Randomization

ns =
∑

a∈A,va>0

va

es =
∑

a∈A,va=0

1

rs =
∑

a∈A,va<0

1

va

n′ =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪



1 : ns > 0 ∧ es = 0 ∧ rs = 0
1 − e : ns > 0 ∧ es > 0 ∧ rs = 0
1 − r : ns > 0 ∧ es = 0 ∧ rs < 0

1 − e − r : ns > 0 ∧ es > 0 ∧ rs < 0
0 : ns = 0

e′ =

⎧

⎪

⎪

⎨

⎪

⎪



1 : ns = 0 ∧ es > 0 ∧ rs = 0
e : ns > 0 ∧ es > 0

e
e+r

: ns = 0 ∧ es > 0 ∧ rs < 0

0 : es = 0

r′ =

⎧

⎪

⎪

⎨

⎪

⎪



1 : ns = 0 ∧ es = 0 ∧ rs < 0
r : ns > 0 ∧ rs < 0

r
e+r

: ns = 0 ∧ es > 0 ∧ rs < 0

0 : es = 0

pi =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪



n′×vi

ns
: vi > 0

e′

es
: vi = 0

r′

vi×rs
: vi < 0

For the test runs included in this book, static values of e = 0.05 and r = 0.05
were used.

C.6 Conclusion

It was argued that it is a bad idea to start the development of a search
algorithm with random selection schemes like acceptance bands or rankings.
These methods do not appropriately implement the utility function’s rating
and force the developer to focus on empirically tuning involved parameters
instead of thinking about better ways to calculate utility. The fair random
choice does not have these drawbacks and can often even be calculated faster.
Many examples of using the fair random choice can be found throughout this
book.

We do not want to claim, however, that the fair random choice is always
superior to other selection schemes. Indeed, it has been shown that this is

C.6 Conclusion 149

often not the case. But the fair random choice should be the starting point for
developers of a search algorithm, giving them all possible options and focusing
them on the development of appropriate neighborhoods and heuristics to
determine the utility. Abandoning the fair random choice early on may cause
potential solving strategies to be blocked.

D. Ensuring the Satisfaction of Structural

Constraints

For smaller applications, it is not necessary to implement a system that sup-
ports full structural satisfaction, and – as described in Chap. 5 – this has
not been implemented for the test runs described in this book. However, in
such cases, it must be proved that the system cannot reach a structurally
inconsistent state. This has the drawback that the system is highly inflexible
because these proofs have to be redone/rechecked each time the problem
specification or the solving mechanisms are changed. Thus, from a software
engineering point of view, the better choice is a full implementation of the
structural satisfaction (see Sect. 3.7).

The approach of proving the structural consistency for a system a priori
does have an advantage, though. It enables the overhead for checking the
structural constraints to be dropped during runtime, which results in a spee-
dup for the actual solving process. This chapter describes how to handle the
proofs for a system that adopts this approach. It must be guaranteed that
the system starts with a structurally consistent constraint graph and that
the system’s improvement heuristics cannot produce structurally inconsistent
graphs. Using the example of the planning model, the following sections show
how this can be accomplished.

D.1 A Structurally Consistent Start Graph

In contrast to an approach that features full structural satisfaction, the sy-
stem cannot use the empty graph as the start graph because the goal specifi-
cation’s structural constraint SGoals (see Sect. 4.2.10) would be inconsistent.

S Goals

Unsatisfied Structural Constraints:

Fig. D.1. Creating the Start Graph: Initial Phase

A. Nareyek: Constraint-Based Agents, LNAI 2062, pp. 151−163, 2001.

 Springer-Verlag Berlin Heidelberg 2001

152 D. Ensuring the Satisfaction of Structural Constraints

The constraint SGoals is the only structural constraint prevents the empty
graph from being used. Thus, in the following, the empty graph will be exten-
ded in a such way that the constraint SGoals is satisfied. For this extension,
the productions that are derived from the search-space generation process
of Sect. 3.5 must be used because these implicitly ensure that the SCSP’s
embedding and extension graphs are not violated, which is not guaranteed
by the planning SCSP’s structural constraints S.

The following generation process for the start graph does not create any
redundant structures. The structural constraints that are introduced by the
methods described in Sect. 3.6 to prevent redundancies do therefore not have
to be tested.

D.1.1 The Start Graph’s Variables and Equals:X Constraints

To begin with, the variables of SGoals’s testing part can be created by app-
lying the production Pva

(see Fig. D.2 for an example using SGoals of Fig.
5.2). This cannot entail further inconsistent structural constraints as there is
no structural constraint that docks at variables only.

S Goals

Pv
a

Pv
a

Pv
a

Unsatisfied Structural Constraints:

Fig. D.2. Creating the Start Graph: Phase 1

The start graph’s constraints that restrict the variables to specific values
(a constant) are created by applying one distinctive production PEquals:Xa

per
variable of the graph (see Fig. D.3). The NACs of the productions (see Sect.
3.5.2) are satisfied because no constraints were connected to the variables yet
and every application of a production uses a different variable. The addition
of the Equals:X constraints cannot entail another inconsistent structural
constraint as there is no structural constraint that docks at these constraints.

D.1.2 The Start Graph’s State Resources

The State Resources of the constraint SGoals can be included by the pro-
duction PStateResourcea

. However, the left-hand side of the production requi-
res the existence of a Current State and a State Projection. These
must be created beforehand.

D.1 A Structurally Consistent Start Graph 153

Equals:pain

a
Equals:orcP

S Goals

a
Equals:enough_performersP

a
Equals:painP

Equals:enough_performers

Equals:pain

Equals:enough_performers

Equals:orcEquals:pain

Unsatisfied Structural Constraints:

Fig. D.3. Creating the Start Graph: Phase 2

For every State Resource of the constraint SGoals, a Current State
is added by the production PCurrentStatea

. For every application of the pro-
duction PCurrentStatea

, the variable that is used within this production is
created by the production Pva

beforehand (see Fig. D.4). The structural con-
straint SCurrentState (see Fig. 4.23) docks at the Current Time and requires
the connection with a State Resource. The same procedure/constraints
apply for the addition of State Projections.

For every State Resource, a Current State and a State Pro-
jection are now available, and the State Resources are created by the
production PStateResourcea

. The variable that is linked to the corresponding
Equals:X constraint is used as ResourceType variable (see Fig. D.5). This
means that the structural constraints SCurrentState and SStateProjection be-
come satisfied. The NACs of the structural constraints’ testing parts cannot
match the graph because every Current State / State Projection was
connected to a different State Resource.

The structural constraint SStateResource can dock at the State Re-
source (see Fig. 4.26) and requires the linking of an Object to a State
Resource Constraint as well as that of the ResourceType variable to an
All Different constraint.

An All Different constraint is created by the production PAllDifferenta
,

the constraint being connected to one of the ResourceType variables (see
Fig. D.6). All other ResourceType variables are connected to the All Dif-
ferent constraint by production PAllDifferente

. The existence of the All
Different constraint entails the applicability of the structural constraint
SAllDifferent (see Fig. 4.30). This structural constraint is satisfied because

154 D. Ensuring the Satisfaction of Structural Constraints

CurrentStateS

S Goals

S StateProjection

a
CurrentStatePPv

a

CurrentState

Equals:enough_performers

Equals:orcEquals:pain

CurrentState

Equals:enough_performers

Equals:orcEquals:pain

a
StateProjectionPPv

a

StateProjection

Unsatisfied Structural Constraints:

Fig. D.4. Creating the Start Graph: Phase 3

a
StateResourceP

StateResourceS

S Goals

CurrentState

ResourceType

StateProjection

StateResource

Equals:painEquals:orc

Equals:enough_performers

Unsatisfied Structural Constraints:

Fig. D.5. Creating the Start Graph: Phase 4

D.1 A Structurally Consistent Start Graph 155

its second test alternative can match the graph. The NAC of the second test
alternative does not cause any problems because there is no other All Dif-
ferent constraint that is connected to a State Resource’s ResourceType
variable.

For every State Resource, one State Resource Constraint must
be created. However, the production PStateResourceConstrainta

needed to do
this requires the existence of a Current Time constraint. This is added by
the production PCurrentT imea

, for which a new variable is created beforehand.
The structural constraint SCurrentT ime (see Fig. 4.8) is not violated as only
one Current Time constraint was created.

StateResourceS

S Goals

StateResourceConstraintP
aa

CurrentTimeP
a

AllDifferentP P
a

v

CurrentState

ResourceType

StateProjection

StateResource

StateResourceConstraint

CurrentTime

AllDifferent

Equals:enough_performers

Equals:pain

Equals:orc

Unsatisfied Structural Constraints:

Fig. D.6. Creating the Start Graph: Phase 5

The last thing missing to satisfy the structural constraint SStateResource

is the linkage of Objects to the State Resources. In preparation for this,
Object constraints must be created1 by the production PObjecta

, which re-
quires the existence of an Existence Constraint. Thus, the production

1 The safest way to do this is to create one Object per State Resource. But the
developer can use his background knowledge to determine the required number
of Objects and to assign the State Resources to them. In the case of wrong
or suboptimal assignments, multiple re-assignments and additions/deletions of
Objects may be necessary during the search process. To assign multiple State

156 D. Ensuring the Satisfaction of Structural Constraints

PExistenceConstrainta
must be applied beforehand. The structural constraint

SExistenceConstraint docks at the Existence Constraint (see Fig. 4.36) but
is satisfied because only one Existence Constraint was produced.

A new variable is created for every Object to be used for the following
applications of the production PObjecta

(see Fig. D.7). The structural con-
straint SObject (see Fig. 4.29) can dock at the newly created Object and
becomes unsatisfied because of the nonexistent ObjectType variable.

S Goals

StateResourceS

ObjectS

CurrentState

ResourceType

StateProjection

StateResource

StateResourceConstraint

CurrentTime

AllDifferent

ExistenceConstraint Object ExistenceProjection

Equals:orcEquals:pain

Equals:enough_performers

ExistenceConstraintP ObjectPP
a

v
a a

Unsatisfied Structural Constraints:

Fig. D.7. Creating the Start Graph: Phase 6

This is fixed by producing a variable for every Object, connecting the
variable by the production PObjecte1

to the Object, and connecting the va-
riables (the first one by the production PAllDifferenta

, the others by the
production PAllDifferente

) to an All Different constraint (see Fig. D.8).
The existence of the All Different constraint entails the applicability of
the structural constraint SAllDifferent (see Fig. 4.30). This structural con-
straint is satisfied because its third test alternative can match the graph. The
NAC of the third test alternative cannot match the graph as there is only

Resources to one Object, the structural constraint SObject must be taken into
account.

D.1 A Structurally Consistent Start Graph 157

one All Different constraint that is connected to an Object’s ObjectType
variable.

The structural constraint SObject is now satisfied, and its two NACs can-
not endanger the matching of the testing part. The first (upper) NAC is
satisfied because there was exactly one ObjectType variable produced for and
connected to each Object. The second NAC is satisfied as there is currently
no State Resource connected to the Object.

Finally, every State Resource is connected to an Object by the pro-
duction PObjecte2

. To make it impossible for the second NAC of the structural
constraint SObject to match, two State Resources that are linked to the
same ResourceType variable are not allowed to be connected to the same
Object.

As every State Resource is connected to an Object, the testing part of
the structural constraint SStateResource can match the structures and becomes
satisfied. The NAC of the structural constraint cannot match because every
State Resource is connected to only one Object.

P Object
e1

P
a

v AllDifferentP
a

P Object
e2

S Goals

CurrentState

ResourceType

StateProjection

StateResource

StateResourceConstraint

CurrentTime

ExistenceConstraint Object

AllDifferent

ExistenceProjection

ObjectType

Equals:enough_performers

Equals:pain AllDifferent

Equals:orc

Unsatisfied Structural Constraints:

Fig. D.8. Creating the Start Graph: Phase 7

158 D. Ensuring the Satisfaction of Structural Constraints

D.1.3 The Start Graph’s Task Constraints

For every Task Constraint of the structural constraint SGoals, the pro-
duction PTaskConstrainta

is applied, using the variable that is linked to the
corresponding Equals:X constraint as ActionType variable (see Fig. D.9).

S Goals

TaskConstraintP
a

CurrentState StateProjection

StateResource

StateResourceConstraint

ExistenceConstraint Object ExistenceProjection

CurrentTime

TaskConstraint ActionType

ResourceType

ObjectType AllDifferent

Equals:enough_performers

Equals:orc

Equals:pain

AllDifferent

Unsatisfied Structural Constraints:

Fig. D.9. Creating the Start Graph: Phase 8

D.1.4 The Start Graph’s Action Resource Constraints

The Action Resource Constraints of SGoals are created by the produc-
tion PActionResourceConstrainta

, using the variable that is linked to the cor-
responding Equals:X constraint as ResourceType variable (see Fig. D.10).
The structural constraint SActionResourceConstraint is unsatisfied by the resul-
ting graph because the ResourceType variables are not connected to an All
Different constraint (see Fig. 4.15).

An All Different constraint is created by the production PAllDifferenta
,

the constraint being connected to one of the ARCs’ ResourceType varia-
bles. All other ARCs’ ResourceType variables are connected to the All Dif-
ferent constraint by production PAllDifferente

. The existence of the All

D.1 A Structurally Consistent Start Graph 159

Different constraint entails the applicability of the structural constraint
SAllDifferent (see Fig. 4.30). This structural constraint is satisfied because
its first test alternative can match the graph. The NAC of the first test alter-
native does not cause any problems because there is no other All Different
constraint that is connected to an ARC’s ResourceType variable. The struc-
tural constraint SActionResourceConstraint becomes satisfied by the inclusion
of the All Different constraint. The NAC of the structural constraint
cannot match because it is not allowed to have multiple ARCs connected
to the same ResourceType variable. Otherwise, the SGoals constraint would
have been specified in an inconsistent way.

a
ActionResourceConstraintP

a
P AllDifferent

CurrentState StateProjection

StateResource

StateResourceConstraint

AllDifferent

CurrentTime

ResourceTypeActionResourceConstraint

Equals:orc

AllDifferent

ExistenceConstraint Object ExistenceProjection

TaskConstraint ActionType Equals:enough_performers

ObjectType

AllDifferentEquals:pain

ResourceType

No Unsatisfied Structural Constraints

Fig. D.10. Creating the Start Graph: Phase 9

The structural constraint SGoals is now satisfied, and the whole start
graph becomes structurally consistent.

160 D. Ensuring the Satisfaction of Structural Constraints

D.1.5 Preparation for Closed Worlds

However, for planning problems that make use of the closed world assump-
tion, it is useful to create additionally all involved State Resources and
Action Resource Constraints in advance, so that the improvement heu-
ristics can directly include actions without having to worry about the exi-
stence of the required State Resources and Action Resource Con-
straints. Of course, this part of the start-graph generation is not manda-
tory.

To realize this extension, all State Resources and Action Resource
Constraints of the problem that are not included in the structural con-
straint SGoals are generated in the same way as the other resources before-
hand. Phase 2 (see Fig. D.3) is skipped for these additions.

D.2 Validating the Improvement Heuristics

Besides the need to create a structurally consistent start graph, it must be
ensured that the improvement heuristics cannot produce a structurally incon-
sistent graph. A proof for this is highly domain-dependent. It is demonstrated
below using the Orc Quest example’s heuristics (see Sect. 5.1.2). These heu-
ristics add and remove actions. The Orc Quest example being a closed-world
domain, the start graph is created with all possible State Resources and
Action Resource Constraints (i.e., including the process described in
Sect. D.1.5).

D.2.1 Adding an Action

If an action is to be added, the first step depends on whether an action of the
same ActionType already exists. If an ActionType variable with the required
value does not exist, a new ActionType variable is created, to be used by the
production PTaskConstrainta

to add the Task Constraint (see Fig. D.11;
for clarity’s sake, only the Current Time, a State Resource and an
Action Resource Constraint with its ResourceType variable are shown
from the current graph). Otherwise, the corresponding ActionType variable
that already exists is used by the production.

For all Action Tasks required by the Task Constraint (only one in
the Orc Quest example), four variables are created, followed by the applica-
tion of production PActionTaska

, which uses the ARC’s ResourceType varia-
ble as its ResourceType variable (see Fig. D.12). The structural constraint
SActionTask (see Fig. 4.13) docks at the new Action Tasks and is unsatis-
fied because of the missing links to ARCs. This inconsistency is resolved by
applications of the production PActionResourceConstrainte

, the Action Tasks
being linked to the corresponding ARCs (to the Orc ARC).

D.2 Validating the Improvement Heuristics 161

P
a

v P TaskConstraint
a

ResourceTypeActionResourceConstraint

CurrentTime

TaskConstraint ActionType

StateResource

No Unsatisfied Structural Constraints

Fig. D.11. Validating the Action Insertion: Phase 1

Furthermore, the produced structure entails the applicability of the struc-
tural constraint STaskConstraint (see Fig. 4.10). Since, however, every Action
Task was connected to only one Task Constraint, the NAC of the testing
part cannot match and the structural constraint is satisfied.

P
a

v P
a

v P
a

v P
a

v P ActionTask
a

P ActionResourceConstraint
e

TaskConstraintCurrentTime

ActionTask

Operation

ActionResourceConstraint

ActionType

End ExecutionStateBeginResourceType ResourceType

StateResource

No Unsatisfied Structural Constraints

Fig. D.12. Validating the Action Insertion: Phase 2

For all State Tasks required by the Task Constraint (two in the
Orc Quest example), two variables are created, followed by the applica-
tion of production PStateTaska

(see Fig. D.13). The structural constraint

162 D. Ensuring the Satisfaction of Structural Constraints

SDependencyEffect (see Fig. 4.27) docks at the new State Tasks and is
unsatisfied because of the missing links to Task Constraints or State
Resource Constraints. The production PStateTaske

is applied to all new
State Tasks to link them to the new Task Constraint, which causes
the first test alternative of the structural constraint to become satisfied. The
NAC does not apply because the State Tasks were not connected to State
Resource Constraints

The produced structure entails the applicability of the structural con-
straint STaskConstraint (see Fig. 4.10). Since, however, every State Task
was connected to only one Task Constraint, the NAC of the testing part
cannot match and the structural constraint is satisfied.

The structural constraint SStateTask (see Fig. 4.20) docks at the new
State Tasks as well. It is unsatisfied because of the missing links to
State Resources. This inconsistency is resolved by applying the produc-
tion PStateResourcee2

for every new State Task, the State Tasks being
linked to the corresponding State Resources (one to the Pain State Re-
source, the other to the Performers State Resource). The NAC of
SStateTask cannot match as every State Task was connected to only one
State Resource.

e2
StateResourcePP StateTask

e
P

a
vP

a
v P StateTask

a

TaskConstraintCurrentTime

ActionTask

Operation

ActionResourceConstraint

ActionType

End ExecutionStateBeginResourceType ResourceType

StateResource

Contribution

Reference

Temporal

StateTask

No Unsatisfied Structural Constraints

Fig. D.13. Validating the Action Insertion: Phase 3

D.2 Validating the Improvement Heuristics 163

The actions used by the improvement heuristics in the Orc Quest example
do not include any Precondition Tasks – unlike the Task Constraint’s
fourth configuration that is requested by SGoals. Since this extension is nee-
ded only once at the beginning, the start graph is directly extended by this
Precondition Task.

For the Precondition Task, two variables are created, followed by the
application of production PPreconditionTaska

(see Fig. D.14; for clarity’s sake,
only the Performers State Resource and the Task Constraint with
its ActionType variable and the connected Equals:enough performers
constraint are shown from the start graph). The constraint SPreconditionTask

(see Fig. 4.19) docks at the new Precondition Task. It is unsatisfied be-
cause of the missing link to a State Resource. This inconsistency is resol-
ved by applying the production PStateResourcee1

for the new Precondition
Task, the Precondition Task being linked to the Performers State
Resource. The NAC of SPreconditionTask cannot match because the Pre-
condition Task was connected to only one State Resource.

The produced structure entails the applicability of the structural con-
straint STaskConstraint (see Fig. 4.10). Since, however, the Precondition
Task was connected to only one Task Constraint, the NAC of the testing
part cannot match and the structural constraint is satisfied.

e1
StateResourcePP

a
vP

a
v P PreconditionTask

a

PreconditionTask

Reference

Temporal

State

StateResource

TaskConstraintActionType

Equals:enough_performers

No Unsatisfied Structural Constraints

Fig. D.14. Creating the Start Graph: Extension for the Orc Quest Example

D.2.2 Removing an Action

The removal of an action does not need to be considered here as it is simply
the reversal of the previous section’s productions. Requirement reqp (see Sect.
3.5) guarantees that this is possible.

References

1. Aarts, E. H. L., and Lenstra, J. K. eds. 1997. Local search in Combinatorial
Optimization. Reading, Wiley-Interscience.

2. Agre, P., and Chapman, D. 1987. PENGI: An Implementation of a Theory
of Activity. In Proceedings of the Sixth National Conference on Artificial
Intelligence (AAAI-87), 268–272.

3. Allen, J. F. 1983. Maintaining Knowledge about Temporal Intervals. Commu-
nications of the ACM 26(11): 832–843.

4. Allen, J. F. 1984. Towards a General Theory of Action and Time. Artificial
Intelligence 23: 123–154.

5. Allen, J. F., and Ferguson, G. 1994. Actions and Events in Interval Temporal
Logic. Journal of Logic and Computation 4(5): 531–579.

6. Allis, L. V.; Van den Herik, H. J.; and Huntjens, M. P. H. 1993. Go-Moku
Solved by New Search Techniques. In Proceedings of the 1993 AAAI Fall
Symposium on Games: Planning and Learning.

7. Ambite, J. L., and Knoblock, C. A. 1997. Planning by Rewriting: Efficiently
Generating High-Quality Plans. In Proceedings of the Fourteenth National
Conference on Artificial Intelligence (AAAI-97), 706–713.

8. Ambite, J. L.; Knoblock, C. A.; and Minton, S. 2000. Learning Plan Rewrit-
ing Rules. In Proceedings of the Fifth International Conference on Artificial
Intelligence Planning and Scheduling (AIPS-2000).

9. Ambros-Ingerson, J. A., and Steel, S. 1988. Integrating Planning, Execution
and Monitoring. In Proceedings of the Seventh National Conference on Arti-
ficial Intelligence (AAAI-88), 83–88.

10. Babaian, T., and Schmolze, J. G. 1999. PSIPLAN: Planning with ψ-forms over
Partially Closed Worlds. In Proceedings of the Fifth European Conference on
Planning (ECP’99).

11. Bacchus, F., and Kabanza, F. 2000. Using Temporal Logics to Express Search
Control Knowledge for Planning. Artificial Intelligence 116: 123–191.

12. Baptiste, P., and Le Pape, C. 1995. A Theoretical and Experimental Com-
parison of Constraint Propagation Techniques for Disjunctive Scheduling. In
Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence (IJCAI-95), 600–606.

13. Barbulescu, L.; Watson, J.-P.; and Whitley, L. D. 2000. In Proceedings of
the Seventeenth National Conference on Artificial Intelligence (AAAI-2000),
879–884.

14. Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1995. Learning to Act using
Real-Time Dynamic Programming. Artificial Intelligence 72(1): 81–138.

15. Bessière, C.; Freuder, E. C.; and Régin, J.-Ch. 1995. Using Inference to Reduce
Arc Consistency Computation. In Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence (IJCAI-95), 592–598.

166 References

16. Blum, A. L., and Furst, M. L. 1997. Fast Planning Through Planning Graph
Analysis. Artificial Intelligence 90: 281–300.

17. Bockmayr, A., and Kasper, T. 1998. Branch-and-Infer: A Unifying Framework
for Integer and Finite Domain Constraint Programming. INFORMS Journal
on Computing 10(3): 287–300.

18. Bockmayr, A., and Dimopoulos, Y. 1998. Mixed Integer Programming Models
for Planning Problems. In Working Notes of the CP98 Workshop on Constraint
Problem Reformulation.

19. Bonasso, R. P.; Firby, R. J.; Gat, E.; Kortenkamp, D.; Miller, D. P.; and Slack,
M. G. 1997. Experiences with an Architecture for Intelligent, Reactive Agents.
Journal of Experimental and Theoretical Artificial Intelligence 9(1).

20. Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A Robust and Fast Action
Selection Mechanism for Planning. In Proceedings of the Fourteenth National
Conference on Artificial Intelligence (AAAI-97), 714–719.

21. Boutilier, C., and Brafman, R. I. 1997. Planning with Concurrent Interacting
Actions. In Proceedings of the Fourteenth National Conference on Artificial
Intelligence (AAAI-97), 720–726.

22. Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-Theoretic Planning:
Structural Assumptions and Computational Leverage. Journal of Artificial
Intelligence Research 11: 1–94.

23. Brafman, R. I., and Hoos, H. H. 1999. To Encode or not to Encode – I: Linear
Planning. In Proceedings of the Sixteenth International Joint Conference on
Artificial Intelligence (IJCAI-99), 988–993.

24. Bresina, J. L. 1996. Heuristic-Biased Stochastic Sampling. In Proceedings of
the Thirteenth National Conference on Artificial Intelligence (AAAI-96), 271–
278.

25. Brooks, R. A. 1986. A Robust Layered Control System for a Mobile Robot.
IEEE Journal of Robotics and Automation RA-2 (1): 14–23.

26. Carlier, J., and Pinson, E. 1990. A Practical Use of Jackson’s Preemptive
Schedule for Solving the Job-Shop Problem. Annals of Operations Research
26: 269–287.

27. Caseau, Y., and Laburthe, F. 1994. Improved CLP Scheduling with Task In-
tervals. In Proceedings of the Eleventh International Conference on Logic
Programming (ICLP’94), 369–383.

28. Chapman, D. 1987. Planning for Conjunctive Goals. Artificial Intelligence
32(3): 333–377.

29. Charla, C. 1995. Mind Games: the Rise and Rise of Artificial Intelligence. Next
Generation 11/95.

30. Chien, S.; Knight, R.; Stechert, A.; Sherwood, R.; and Rabideau, G. 2000.
Using Iterative Repair to Improve the Responsiveness of Planning and Sche-
duling. In Proceedings of the Fifth International Conference on Artificial In-
telligence Planning and Scheduling (AIPS-2000).

31. Chien, S.; Rabideau, G.; Knight, R.; Sherwood, R.; Engelhardt, B.; Mutz,
D.; Estlin, T.; Smith, B.; Fisher, F.; Barrett, T.; Stebbins, G.; and Tran,
D. 2000. ASPEN – Automating Space Mission Operations using Automated
Planning and Scheduling. In Proceedings of the Sixth International Sympo-
sium on Technical Interchange for Space Mission Operations and Ground Data
Systems (SpaceOps 2000).

32. Coco, D. 1997. Creating Intelligent Creatures. Computer Graphics World, July
1997.

33. Coradeschi, S., and Saffiotti, A. 2000. Anchoring Symbols to Sensor Data:
preliminary report. In Proceedings of the Seventeenth National Conference
on Artificial Intelligence (AAAI-2000), 129–135.

References 167

34. Danzig, G. B. 1963. Linear Programming and Extensions. Princeton University
Press.

35. Davenport, A.; Tsang, E.; Wang, C. W.; and Zhu, K. 1994. GENET: A
Connectionist Architecture for Solving Constraint Satisfaction Problems by
Iterative Improvement. In Proceedings of the Twelfth National Conference on
Artificial Intelligence (AAAI-94), 325–330.

36. Davis, M., and Putnam, H. 1960. A Computation Procedure for Quantification
Theory. Journal of the ACM 7(3): 201–215.

37. Dean, T.; Kaelbling, L. P.; Kirman, J.; and Nicholson, A. 1995. Planning under
Time Constraints in Stochastic Domains. Artificial Intelligence 76: 35–74.

38. Dechter, R. 1990. Enhancement Schemes for Constraint Processing: Backjum-
ping, Learning, and Cutset Decomposition. Artificial Intelligence 41: 273–312.

39. Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal Constraint Networks.
Artificial Intelligence 49: 61–95.

40. Dijkstra, E. W. 1959. A note on two problems in connexion with graphs.
Numerische Mathematik, 1: 269–271.

41. Do, B., and Kambhampati, S. 2000. Solving Planning Graph by Compiling it
into a CSP. In Proceedings of the Fifth International Conference on Artificial
Intelligence Planning and Scheduling (AIPS-2000).

42. Dorigo, M.; Di Caro, G.; and Gambardella, L. M. 1999. Ant Algorithms for
Discrete Optimization. Artificial Life 5(3), 137–172.

43. Drabble, B. 1993. Excalibur: A Program for Planning and Reasoning with
Processes. Artificial Intelligence 62(1): 1–40.

44. Drabble, B. and Tate, A. 1994. The Use of Optimistic and Pessimistic Resource
Profiles to Inform Search in an Activity Based Planner. In Proceedings of the
Second International Conference on AI Planning Systems (AIPS-94), 243–248.

45. Drabble, B.; Dalton, J.; and Tate, A. 1997. Repairing Plans on the Fly. In
Proceedings of the 1997 NASA Workshop on Planning and Scheduling for
Space.

46. d’Inverno, M.; Kinny, D.; Luck, M.; and Wooldridge, M. 1997. A formal spe-
cification of dMARS. Technical Report 72, Australian Artificial Intelligence
Institute, Melbourne, Australia.

47. Draper, D.; Hanks, S.; and Weld, D. 1994. Probabilistic Planning with Infor-
mation Gathering and Contingent Execution. In Proceedings of the Second
International Conference on AI Planning Systems (AIPS-94), 31–36.

48. Drummond, M. E., and Bresina, J. L. 1990. Anytime Synthetic Projection:
Maximizing the Probability of Goal Satisfaction. In Proceedings of the Eighth
National Conference on Artificial Intelligence (AAAI-90), 138–144.

49. Ehrig, H.; Pfender, M.; and Schneider, H. J. 1973. Graph Grammars: An
Algebraic Approach. In Proceedings of the Fourteenth Annual Symposium on
Switching and Automata Theory (SWAT), 167–180.

50. El-Kholy, A., and Richards, B. 1996. Temporal and Resource Reasoning in
Planning: the parcPLAN approach. In Proceedings of the Twelfth European
Conference on Artificial Intelligence (ECAI-96), 614–618.

51. Engelhardt, B., and Chien, S. 2000. An Empirical Analysis of Local Search in
Stochastic Optimization for Planner Strategy Selection. In Workshop Notes of
the ECAI-2000 Workshop on Local Search for Planning & Scheduling, 10–16.

52. Ephrati, E.; Pollack, M. E.; and Milshtein, M. 1996. A Cost-Directed Planner:
Preliminary Report. In Proceedings of the Thirteenth National Conference on
Artificial Intelligence (AAAI-96), 1223–1228.

168 References

53. Erol, K.; Nau, D. S.; and Subrahmanian, V. S. 1991. Complexity, Decidability
and Undecidability Results for Domain-Independent Planning. Technical Re-
port CS-TR-2797, University of Maryland, Institute for Advanced Computer
Studies, Maryland, USA.

54. Etzioni, O.; Hanks, S.; Weld, D.; Draper, D.; Lesh, N.; and Williamson, M.
1992. An Approach to Planning with Incomplete Information. In Proceedings
of the Third International Conference on Principles of Knowledge Represen-
tation and Reasoning (KR’92).

55. Fikes, R. E., and Nilsson, N. 1971. STRIPS: A New Approach to the Appli-
cation of Theorem Proving to Problem Solving. Artificial Intelligence 5(2):
189–208.

56. Frank, J. 1997. Learning Short-Term Weights for GSAT. In Proceedings of the
Fifteenth International Joint Conference on Artificial Intelligence (IJCAI-97),
384–391.

57. Freksa, C. 1992. Temporal Reasoning Based on Semi-Intervals. Artificial In-
telligence 54: 199–227.

58. Freuder, E. C., and Wallace, R. J. 1992. Partial Constraint Satisfaction. Ar-
tificial Intelligence 58: 21–70.

59. Funge, J.; Tu, X; and Terzopoulos, D. 1999. Cognitive Modeling: Knowledge,
Reasoning and Planning for Intelligent Characters. In Proceedings of the Inter-
national Conference on Computer Graphics and Interactive Techniques (SIG-
GRAPH’99), 29–38.

60. Gamma, E.; Helm, R.; Johnson, R.; and Vlissides, J. 1995. Design Patterns:
Elements of Reusable Object-Oriented Software. Reading, Addison-Wesley
Professional Computing Series.

61. Gard, T. 2000. Building Character. Gamasutra, June 2000.
http://www.gamasutra.com/features/20000720/gard 01.htm

62. Gasser, R. 1996. Solving Nine Men’s Morris. Computational Intelligence 12(1):
24–41.

63. Gelfond, M., and Lifschitz, V. 1992. Representing Actions in Extended Lo-
gic Programming. In Proceedings of the Joint International Conference and
Symposium on Logic Programming (JICSLP’92), 559–573.

64. Gent, I. P.; MacIntyre, E.; Prosser, P.; and Walsh, T. 1997. The Scaling of Se-
arch Cost. In Proceedings of the Fourteenth National Conference on Artificial
Intelligence (AAAI-97), 315–320.

65. Gent, I. P., and Walsh, T. 1993. Towards an Understanding of Hill-climbing
Procedures for SAT. In Proceedings of Eleventh National Conference on Ar-
tificial Intelligence (AAAI-93), 28–33.

66. Georgeff, M. P., and Lansky, A. L. 1987. Reactive Reasoning and Planning. In
Proceedings of the Sixth National Conference on Artificial Intelligence (AAAI-
87), 677–682.

67. Gerevini, A., and Serina, I. 1999. Fast Planning through Greedy Action Gra-
phs. In Proceedings of the Sixteenth National Conference on Artificial Intelli-
gence (AAAI-99), 503–510.

68. Glover, F. 1989. Tabu Search – Part I. ORSA Journal on Computing 1(3):
190–206.

69. Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Addison-Wesley.

70. Golden, K., Etzioni, O., and Weld, D. 1994. Omnipotence Without Om-
niscience: Efficient Sensor Management for Planning. In Proceedings of the
Twelfth National Conference on Artificial Intelligence (AAAI-94), 1048–1054.

References 169

71. Goldman, R. P., and Boddy, M. S. 1994. Conditional Linear Planning. In
Proceedings of the Second International Conference on AI Planning Systems
(AIPS-94), 80–85.

72. Goldman, R. P., Haigh, K. Z.; Musliner, D. J.; and Pelican, M. 2000. MAC-
Beth: A Multi-Agent Constraint-Based Planner. In Papers from the AAAI-
2000 Workshop on Constraints and AI Planning, Technical Report, WS-00-02,
11–17. AAAI Press, Menlo Park, California.

73. Goltz, H.-J. 1995. Reducing Domains for Search in CLP(FD) and Its Ap-
plication to Job-Shop Scheduling. In Proceedings of the First International
Conference on Principles and Practice of Constraint Programming (CP95),
549–562.

74. Goltz, H.-J. 1997. Redundante Constraints und Heuristiken zum effizienten
Lösen von Problemen der Ablaufplanung mit CHIP. In Proceedings of the
12. Workshop on Logic Programming (WLP’97), Forschungsbericht PMS-FB-
1997-10, LMU München, Germany.

75. Gomes, C.; Selman, B.; and Kautz, H. 1998. Boosting Combinatorial Search
Through Randomization. In Proceedings of the Fifteenth National Conference
on Artificial Intelligence (AAAI-98), 431–437.

76. Gomes, C. P.; Selman, B.; Crato, N.; Kautz, H. A. 2000. Heavy-Tailed Pheno-
mena in Satisfiability and Constraint Satisfaction Problems. Journal of Auto-
mated Reasoning 24(1/2): 67–100.

77. Grand, S.; Cliff, D.; and Malhotra, A. 1997. Creatures: Artificial Life Autono-
mous Software Agents for Home Entertainment. In Proceedings of the First
International Conference on Autonomous Agents (Agents’97), 22–29.

78. Gu, J. 1992. Efficient Local Search for Very Large-Scale Satisfiability Pro-
blems. SIGART Bulletin 3(1): 8–12.

79. Habel, A.; Heckel, R.; and Taentzer, G. 1996. Graph Grammars with Negative
Application Conditions. Fundamenta Informaticae, Vol. 26, No. 3 & 4.

80. Hammond, K. J. 1990. Case-Based Planning: A Framework for Planning from
Experience. The Journal of Cognitive Science, 14(3): 385–443.

81. Han, C., and Lee, C. 1988. Comments on Mohr and Henderson’s Path Consi-
stency Algorithm. Artificial Intelligence 36, 125–130.

82. Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A formal basis for the heu-
ristic determination of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics 4(2): 100–107.

83. Harvey, W. D., and Ginsberg, M. L. 1995. Limited Discrepancy Search. In
Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence (IJCAI-95), 607–615.

84. Hause, K. 1999. What to Play Next: Gaming Forecast, 1999-2003. Report
#W21056, International Data Corporation, Framingham, Massachusetts.

85. Heckel, R., and Wagner, A. 1995. Ensuring Consistency of Conditional Graph
Rewriting – a Constructive Approach. In Proceedings of the Joint COMPU-
GRAPH/SEMAGRAPH Workshop on Graph Rewriting and Computation
(SEGRAGRA’95).

86. Hirayama, K., and Toyoda, J. 1995. Forming Coalitions for Breaking De-
adlocks. In Proceedings of the First International Conference on Multi-Agent
Systems (ICMAS-95), 155–162.

87. Hoffmann, J. 2000. A Heuristic for Domain Independent Planning and its
Use in an Enforced Hill-climbing Algorithm. In Proceedings of the Twelfth
International Symposium on Methodologies for Intelligent Systems.

88. Hooker, J.; Ottosson, G.; Thorsteinsson, E. S.; and Kim, H.-J. 1999. A Scheme
for Unifying Optimization and Constraint Satisfaction Methods. Knowledge
Engineering Review, to appear.

170 References

89. ILOG, Inc. 2000. Optimization Technology White Paper – A comparative
study of optimization technologies. White Paper, ILOG, Inc., Mountain View,
CA.

90. Isbister, K. 1995. Perceived Intelligence and the Design of Computer Charac-
ters. Lifelike Computer Characters (LCC’95), Snowbird, Utah.

91. Jacopin, É., and Penon, J. 2000. On the Path from Classical Planning to
Arithmetic Constraint Satisfaction. In Papers from the AAAI-2000 Workshop
on Constraints and AI Planning, Technical Report, WS-00-02, 18–24. AAAI
Press, Menlo Park, California.

92. Joslin, D. 1996. Passive and Active Decision Postponement in Plan Genera-
tion. PhD thesis, University of Pittsburgh, Pittsburgh, PA.

93. Joslin, D. E., and Clements, D. P. 1999. Squeaky Wheel Optimization. Journal
of Artificial Intelligence Research 10, 353–373.

94. Junker, U. 2000. Preference-based Search for Scheduling. In Proceedings of
the Seventeenth National Conference on Artificial Intelligence (AAAI-2000),
904–909.

95. Jussien, N., and Lhomme, O. 2000. Local search with constraint propaga-
tion and conflict-based heuristics. In Proceedings of the Seventeenth National
Conference on Artificial Intelligence (AAAI-2000), 169–174.

96. Kakas, A., and Miller, R. 1997. A Simple Declarative Language for Describing
Narratives with Actions. The Journal of Logic Programming 31: 157–200.

97. Karmarkar, N. 1984. A New Polynomial-Time Algorithm for Linear Program-
ming. Combinatorica 4: 373–395.

98. Kautz, H., and Selman, B. 1992. Planning as Satisfiability. In Proceedings of
the Tenth European Conference on Artificial Intelligence (ECAI-92), 359–363.

99. Kautz, H., and Selman, B. 1996. Pushing the Envelope: Planning, Propositio-
nal Logic, and Stochastic Search. In Proceedings of the Thirteenth National
Conference on Artificial Intelligence (AAAI-96), 1194–1201.

100. Kautz, H., and Selman, B. 1998. BLACKBOX: A New Approach to the Ap-
plication of Theorem Proving to Problem Solving. In Working Notes of the
AIPS-98 Workshop on Planning as Combinatorial Search, 58–60.

101. Kautz, H., and Walser, J. P. 1999. State-space Planning by Integer Opti-
mization. In Proceedings of the Sixteenth National Conference on Artificial
Intelligence (AAAI-99), 526–533.

102. Kirkpatrick, S.; Gelatt, C. D.; and Vecchi, M. P. 1983. Optimization by Simu-
lated Annealing. Science 220(4598): 671–680.

103. Koehler, J. 1998. Planning under Resource Constraints. In Proceedings of the
Thirteenth European Conference on Artificial Intelligence (ECAI-98), 489–
493.

104. Koenig, S., and Liu, Y. 2000. Representations of Decision-Theoretic Planning
Tasks. In Proceedings of the Fifth International Conference on Artificial In-
telligence Planning and Scheduling (AIPS-2000), 187–195.

105. Kondrak, G., and van Beek, P. 1997. A Theoretical Evaluation of Selected
Backtracking Algorithms. Artificial Intelligence 89: 365–387.

106. Korf, R. E. 2000. Recent Progress in the Design and Analysis of Admissible
Heuristic Functions. In Proceedings of the Seventeenth National Conference
on Artificial Intelligence (AAAI-2000), 1165–1170.

107. Knoblock, C. A. 1995. Planning, Executing, Sensing, and Replanning for In-
formation Gathering. In Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence (IJCAI-95), 1686–1693.

108. Kushmerick, N.; Hanks, S.; and Weld, D. 1995. An Algorithm for Probabilistic
Planning. Artificial Intelligence 76: 239–286.

References 171

109. Kwok, C. T., and Weld, D. S. 1996. Planning to Gather Information. In
Proceedings of the Thirteenth National Conference on Artificial Intelligence
(AAAI-96), 32–39.

110. Laborie, P., and Ghallab, M. 1995. Planning with Sharable Resource Con-
straints. In Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence (IJCAI-95), 1643–1649.

111. Le Pape, C. 1994. Implementation of Resource Constraints in ILOG Schedule:
A Library for the Development of Constraint-Based Scheduling Systems. In-
telligent Systems Engineering 3(2): 55–66.

112. Lieber, J., and Napoli, A. 1996. Using Classification in Case-Based Planning.
In Proceedings of the Twelfth European Conference on Artificial Intelligence
(ECAI-96), 132–137.

113. Malik, J., and Binford, T. O. 1983. Reasoning in Time and Space. In Procee-
dings of the Eighth International Joint Conference on Artificial Intelligence
(IJCAI-83), 343–345.

114. Martin, D. L.; Cheyer, A. J.; and Moran, D. B. 1999. The open agent architec-
ture: A framework for building distributed software systems. Applied Artificial
Intelligence 13: 91–128.

115. Mattsson, C. 2000. The Tolkien Monster Encyclopedia.
http://home7.swipnet.se/˜w-70531/Tolkien/

116. McAllester, D; Selman, B.; and Kautz, H. 1997. Evidence for Invariants in Lo-
cal Search. In Proceedings of the Fourteenth National Conference on Artificial
Intelligence (AAAI-97), 321–326.

117. Meyer auf’m Hofe, H. 1998. Finding Regions for Local Repair in Partial Con-
straint Satisfaction. In Proceedings of the Twentysecond Annual German Con-
ference on Artificial Intelligence (KI-98).

118. McCarthy, J., and Hayes, P. J. 1969. Some Philosophical Problems from the
Standpoint of Artificial Intelligence. In Meltzer, B., and Mitchie, D. (eds.),
Machine Intelligence 4, Edinburgh University Press.

119. Milano, M.; Ottosson, G.; Refalo, P.; and Thorsteinsson, E. S. 2000. The
Benefits of Global Constraints for the Integration of Constraint Programming
and Integer Programming. In Working Notes of the AAAI-2000 Workshop on
Integration of AI and OR Techniques for Combinatorial Optimization.

120. Minton, S.; Bresina, J; and Drummond, M. 1994. Total-Order and Partial-
Order Planning: A Comparative Analysis. Journal of Artificial Intelligence
Research 2: 227–262.

121. Minton, S.; Johnston, M. D.; Philips, A. B.; and Laird, P. 1992 . Minimizing
Conflicts: a Heuristic Repair Method for Constraint Satisfaction and Schedu-
ling Problems. Artificial Intelligence 58: 161–205.

122. Mittal, S., and Falkenhainer, B. 1990. Dynamic Constraint Satisfaction Pro-
blems. In Proceedings of the Eighth National Conference on Artificial Intelli-
gence (AAAI-90), 25–32.

123. Mohr, R., and Henderson, T. C. 1986. Arc and Path Consistency Revisited.
Artificial Intelligence 28(2): 225–233.

124. Muscettola, N. 1994. HSTS: Integrating Planning and Scheduling. In Zweben,
M., and Fox, M. S. (eds.), Intelligent Scheduling, Morgan Kaufmann, 169–212.

125. Muslea, I. 1998. A General-Purpose AI Planning System Based on the Genetic
Programming Paradigm. In Proceedings of the World Automation Congress
(WAC’98).

126. Myers, K. L. 1999. CPEF – A Continuous Planning and Execution Framework.
AI Magazine 20(4): 63–69.

172 References

127. Nareyek, A. 1997. Constraint-based Agents. In Papers from the 1997 AAAI
Workshop on Constraints & Agents, Technical Report, WS-97-05, 45–50.
AAAI Press, Menlo Park, California.

128. Nareyek, A. 1998. A Planning Model for Agents in Dynamic and Uncer-
tain Real-Time Environments. In Proceedings of the Workshop on Integrating
Planning, Scheduling and Execution in Dynamic and Uncertain Environments
at the Fourth International Conference on Artificial Intelligence Planning Sy-
stems (AIPS’98), Technical Report, WS-98-02, 7–14. AAAI Press, Menlo Park,
California.

129. Nareyek, A. 1998. Constraint-basierte Planung für Agenten in Computerspie-
len. In Proceedings of the Workshop on Deklarative KI-Methoden zur Imple-
mentierung und Nutzung von Systemen in Netzen at the 22. Jahrestagung
Künstliche Intelligenz (KI-98), 21–30.

130. Nareyek, A. 1999. Structural Constraint Satisfaction. In Papers from the 1999
AAAI Workshop on Configuration, Technical Report, WS-99-05, 76–82. AAAI
Press, Menlo Park, California.

131. Nareyek, A. 1999. Applying Local Search to Structural Constraint Satisfac-
tion. In Proceedings of the IJCAI-99 Workshop on Intelligent Workflow and
Process Management: The New Frontier for AI in Business.

132. Nareyek, A. 2000. AI Planning in a Constraint Programming Framework. In
Hommel, G. (ed.), Communication-Based Systems, Kluwer Academic Publis-
hers, 163–178.

133. Nareyek, A. 2000. Open World Planning as SCSP. In Papers from the AAAI-
2000 Workshop on Constraints and AI Planning, Technical Report, WS-00-02,
35–46. AAAI Press, Menlo Park, California.

134. Nareyek, A. 2000. Intelligent Agents for Computer Games. In Proceedings of
the Second International Conference on Computers and Games (CG 2000), to
appear.

135. Nareyek, A. 2000. Constraint Programming for Computer Games: Mastering
“Real”-World Requirements. In Proceedings of the Thirteenth International
Conference on Applications of Prolog (INAP 2000).

136. Nareyek, A. 2001. Using Global Constraints for Local Search. In Freuder, E.
C., and Wallace, R. J. (eds.), Constraint Programming and Large Scale Di-
screte Optimization, American Mathematical Society Publications, DIMACS
Volume 57.

137. Nareyek, A., and Geske, U. 1996. Efficient Representation of Relations over
Linear Constraints. In Proceedings of the Workshop on Constraint Program-
ming Applications at the Second International Conference on Principles and
Practice of Constraint Programming (CP96), 55–63.

138. Nau, D.; Cao, Y.; Lotem, A.; and Muñoz-Avila, H. 1999. SHOP: Simple Hier-
archical Ordered Planner. In Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence (IJCAI-99), 968–973.

139. Nemhauser, G. L. and Wolsey, L. A. 1988. Integer and Combinatorial Opti-
mization. Reading, John Wiley & Sons, Inc.

140. Nievergelt, J.; Gasser, R.; Maser, F.; and Wirth, C. 1995. All the Needles in
a Haystack: Can Exhaustive Search Overcome Combinatorial Chaos? In van
Leeuwen, J. (ed.), Computer Science Today, Springer LNCS, 254–274.

141. Nuijten, W. P. M. 1994. Time and Resource Constrained Scheduling: A Con-
straint Satisfaction Approach. PhD Thesis, Eindhoven University of Techno-
logy, Eindhoven, The Netherlands.

142. Oddi, A., and Smith, S. 1997. Stochastic Procedures for Generating Feasible
Schedules. In Proceedings of the Fourteenth National Conference on Artificial
Intelligence (AAAI-97), 308–314.

References 173

143. Paredis, J. 1999. Coevolutionary Algorithms. In Bäck, T.; Fogel, D.; and
Michalewicz, Z. (eds.), The Handbook of Evolutionary Computation, 1st sup-
plement, Oxford University Press.

144. Paolucci, M.; Kalp, D.; Pannu, A.; Shehory, O.; and Sycara, K. 1999. A Plan-
ning Component for RETSINA Agents. In Wooldridge, M., and Lesperance,
Y. (eds.), Intelligent Agents VI, Springer LNAI.

145. Pell, B.; Bernard, D. E.; Chien, S. A.; Gat, E.; Muscettola, N.; Nayak, P.
P.; Wagner, M. D.; and Williams, B. C. 1996. A Remote Agent Prototype
for Spacecraft Autonomy. In Proceedings of the SPIE Conference on Optical
Science, Engineering, and Instrumentation.

146. Penberthy, J. S., and Weld, D. S. 1992. UCPOP: A Sound, Complete, Partial
Order Planner for ADL. In Proceedings of the Third International Conference
on Principles of Knowledge Representation and Reasoning (KR’92), 102–114.

147. Penberthy, J. S., and Weld, D. S. 1994. Temporal Planning with Continuous
Change. In Proceedings of the Twelfth National Conference on Artificial In-
telligence (AAAI-94), 1010–1015.

148. Peot, M., and Smith, D. 1992. Conditional Nonlinear Planning. In Proceedings
of the First International Conference on AI Planning Systems, 189–197.

149. Pesant, G., and Gendreau, M. 1999. A Constraint Programming Framework
for Local Search Methods. Journal of Heuristics 5(3): 255–279.

150. Prosser, P. 1993. Hybrid Algorithms for the Constraint Satisfaction Problem.
Computational Intelligence 9(3): 268–299.

151. Pryor, L., and Collins, G. 1996. Planning for Contingencies: A Decision-based
Approach. Journal of Artificial Intelligence Research 4: 287–339.

152. Puget, J.-F., and Leconte, M. 1995. Beyond the Glass Box: Constraints as
Objects. In Proceedings of the 1995 International Logic Programming Sym-
posium (ILPS’95), 513–527.

153. Rabideau, G.; Chien, S.; Willis, J.; and Mann, T. 1999. Using Iterative Re-
pair to Automate Planning and Scheduling of Shuttle Payload Operations. In
Proceedings of the Eleventh Annual Conference on Innovative Applications of
Artificial Intelligence (IAAI-99), 813–820.

154. Rabideau, G.; Knight, R.; Chien, S.; Fukunaga, A.; and Govindjee, A. 1999.
Iterative Repair Planning for Spacecraft Operations in the ASPEN System.
International Symposium on Artificial Intelligence Robotics and Automation
in Space (iSAIRAS 99).

155. Régin, J.-C. 1998. Minimization of the Number of Breaks in Sports Schedu-
ling Problems using Constraint Programming. In Proceedings of the DIMACS
Workshop on Constraint Programming and Large Scale Discrete Optimiza-
tion, P7: 1–23.

156. Reticular Systems, Inc. 1999. AgentBuilder – An Integrated Toolkit for Con-
structing Intelligent Software Agents. White Paper, Revision 1.3. Reticular
Systems, Inc., Dan Diego, CA.

157. Rintanen, J., and Jungholt, H. 1999. Numeric State Variables in Constraint-
based Planning. In Proceedings of the Fifth European Conference on Planning
(ECP-99).

158. Rozenberg, G. ed. 1997. The Handbook of Graph Grammars. Volume I: Foun-
dations. Reading, World Scientific.

159. Sabin, D., and Freuder, E. C. 1996. Configuration as Composite Constraint
Satisfaction. In Proceedings of the Artificial Intelligence and Manufacturing
Research Planning Workshop, 153–161.

160. Sacerdoti, E. D. 1974. Planning in a Hierarchy of Abstraction Spaces. Artificial
Intelligence 5(2): 115–135.

174 References

161. Sacerdoti, E. D. 1975. The Nonlinear Nature of Plans. In Proceedings of the
Fourth International Joint Conference on Artificial Intelligence (IJCAI-75),
206–214.

162. Sadeh, N., and Fox, M. 1996. Variable and Value Ordering Heuristics for the
Job Shop Scheduling Constraint Satisfaction Problem. Artificial Intelligence
86: 1–41.

163. Schrag, R; Boddy, M; and Carciofini, J. 1992. Managing Disjunction for Prac-
tical Temporal Reasoning. In Proceedings of the Third International Con-
ference on Principles of Knowledge Representation and Reasoning (KR’92),
36–46.

164. Schuurmans, D., and Southey, F. 2000. Local search characteristics of incom-
plete SAT procedures. In Proceedings of the Seventeenth National Conference
on Artificial Intelligence (AAAI-2000), 297–302.

165. Selman, B.; Levesque, H.; and Mitchell, D. 1992. A New Method for Solving
Hard Satisfiability Problems. In Proceedings of the Tenth National Conference
on Artificial Intelligence (AAAI-92), 440–446.

166. Selman, B.; Kautz, H.; and Cohen, B. 1996. Local Search Strategies for Satis-
fiability Testing. In Johnson, D. S., and Trick, M. A. (eds.), Cliques, Coloring,
and Satisfiability, DIMACS Volume 26: 521–532.

167. Smith, S. F. 1994. OPIS: A Methodology and Architecture for Reactive Sche-
duling. In Zweben, M., and Fox, M. S. (eds.), Intelligent Scheduling, Morgan
Kaufmann, 29–66.

168. Sqalli, M. H.; Purvis, L.; and Freuder, E. C. 1999. Survey of Applications In-
tegrating Constraint Satisfaction and Case-Based Reasoning. In Proceedings
of the First International Conference and Exhibition on the Practical Appli-
cation of Constraint Technologies and Logic Programming (PACLP99).

169. Srivastava, B., and Kambhampati, S. 1999. Scaling up Planning by teasing
out Resource Scheduling. In Proceedings of the Fifth European Conference
on Planning (ECP-99).

170. Stern, A.; Frank, A.; and Resner, B. 1998. Virtual Petz: A Hybrid Approach
to Creating Autonomous Lifelike Dogz and Catz. In Proceedings of the Second
International Conference on Autonomous Agents (AGENTS98), 334–335.

171. Stern, A. 1999. AI Beyond Computer Games. 1999 AAAI Symposium on Com-
puter Games and Artificial Intelligence.

172. Tate, A. 1977. Generating Project Networks. In Proceedings of the Fifth In-
ternational Joint Conference on Artificial Intelligence (IJCAI-77), 888–893.

173. Tumer, K., and Wolpert, D. 2000. Collective Intelligence and Braess’ Paradox.
In Proceedings of the Seventeenth National Conference on Artificial Intelli-
gence (AAAI-2000), 104–109.

174. Vaessens, R. J. M.; Aarts, E. H. L.; and Lenstra, J. K. 1994. Job Shop Schedu-
ling by Local Search. Technical Report, COSOR Memorandum 94-05, Eind-
hoven University of Technology, Department of Mathematics and Computing
Science.

175. Van Beek, P., and Chen, X. 1999. CPlan: A Constraint Programming Ap-
proach to Planning. In Proceedings of the Sixteenth National Conference on
Artificial Intelligence (AAAI-99), 585–590.

176. Van Lent, M., and Laird, J. 1999. Developing an Artificial Intelligence Engine.
In Proceedings of the 1999 Game Developers Conference (GDC 1999), 577–
588.

177. Veloso, M.; Carbonell, J.; Pérez, A.; Borrajo, D.; Fink, E.; and Blythe, J. 1995.
Integrating Planning and Learning: The PRODIGY Architecture. Journal of
Experimental and Theoretical Artificial Intelligence 7(1).

References 175

178. Veloso, M.; Muñoz-Avila, H.; and Bergmann, R. 1996. Case-based Planning:
Selected Methods and Systems. AI Communications 9(3): 128–137.

179. Verfaillie, G., and Schiex, T. 1994. Solution Reuse in Dynamic Constraint
Satisfaction Problems. In Proceedings of the Twelfth National Conference on
Artificial Intelligence (AAAI-94), 307–312.

180. Vossen, T.; Ball, M.; Lotem, A.; and Nau, D. 1999. On the Use of Integer
Programming Models in AI Planning. In Proceedings of the Sixteenth Inter-
national Joint Conference on Artificial Intelligence (IJCAI-99), 304–309.

181. Voudouris, C., and Tsang, E. 1995. Guided Local Search. Technical Report
CSM-247, University of Essex, Department of Computer Science, Colchester,
United Kingdom.

182. Waldinger, R. 1977. Achieving Several Goals Simultaneously. In Elcock, E.,
and Michie, D. (eds.), Machine Intelligence 8, Ellis Horwood Limited, 94–136.

183. Wallace, R. J., and Freuder, E. C. 1996. Anytime Algorithms for Constraint
Satisfaction and SAT problems. SIGART Bulletin 7(2).

184. Wallace, R. J., and Freuder, E. C. 2000. Dispatchable execution of schedu-
les involving consumable resources. In Proceedings of the Fifth International
Conference on Artificial Intelligence Planning and Scheduling (AIPS-2000),
283–290.

185. Walser, J. P. 1997. Solving Linear Pseudo-Boolean Constraint Problems with
Local Search. In Proceedings of the Fourteenth National Conference on Arti-
ficial Intelligence (AAAI-97), 269–274.

186. Warren, D. H. D. 1974. WARPLAN: A System for Generating Plans. Depart-
ment of Computational Logic Memo 76, University of Edinburgh, Scotland.

187. Warren, D. H. D. 1976. Generating Conditional Plans and Programs. In Pro-
ceedings of the Summer Conference on Artificial Intelligence and Simulation
on Behavior, 344–354.

188. Weizenbaum, J. 1966. ELIZA – A Computer Program for the Study of Natural
Language Communication between Man and Machine. Communications of the
ACM 9(1): 36–45.

189. Wilkins, D. E.; Myers, K. L.; Lowrance, J. D.; and Wesley, L. P. 1995. Plan-
ning and Reacting in Uncertain and Dynamic Environments. Journal of Ex-
perimental and Theoretical AI 7(1): 197–227.

190. Williamson, M., and Hanks, S. 1994. Optimal Planning with a Goal-Directed
Utility Model. In Proceedings of the Second International Conference on AI
Planning Systems (AIPS-94), 176–181.

191. Wolfman, S. A., and Weld, D. S. 1999. The LPSAT Engine & its Application
to Resource Planning. In Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence (IJCAI-99), 310–316.

192. Woodcock, S. 2000. Game AI: The State of the Industry. Game Developer,
August 2000.

193. Wooldridge, M., and Jennings, N. R. 1995. Intelligent Agents: Theory and
Practice. The Knowledge Engineering Review 10(2): 115–152.

194. Wright, I., and Marshall, J. 2000. More AI in Less Processor Time: ’Egocentric’
AI. Gamasutra, June 2000.
http://www.gamasutra.com/features/20000619/wright 01.htm

195. Zilberstein, S. 1996. Using Anytime Algorithms in Intelligent Systems. AI
Magazine 17(3): 73–83.

196. Zweben, M.; Daun, B.; Davis, E.; and Deale, M. 1994. Scheduling and Resche-
duling with Iterative Repair. In Zweben, M., and Fox, M. S. (eds.), Intelligent
Scheduling, Morgan Kaufmann, 241–255.

197. Zwick, R., and Lee, C. C. 1999. Bargaining and search: An experimental study.
Group Decision and Negotiation 8(6), 463–487.

Index

A* 1, 14
Action Resource Constraint 33
– embedding/extension graph 77
– heuristics 33–34, 44–45, 105
– structures 33
Alife 4
Anchoring 86, 125
Anytime behavior 6, 18, 24, 26, 127
– switching 42
Autonomous agents 3

Bounds see Plan length

Closed-world assumption see Open
world

Completeness 16–19, 56–57, 68
Complexity 13
Composite constraint satisfaction 68
Computer games
– card/board/puzzle 1–2
– cheating 2
– modern 1–2, 4–6, 8, 19, 24, 112, 117,

119, 121, 129
Contingency planning 88, 95
Continual planning 97–98, 125, 127
Cost function see Goals

Dependency effects 71, 81
Distributed problem solving 3
Domain knowledge 13, 22–23, 25–27,

29, 44–46, 57, 97, 104, 117, 122, 127,
128

Dynamic constraint satisfaction 47
Dynamics 2, 7–8, 18–19, 30, 42, 47,

88–90, 92, 119–121, 127, 128
– comparison 36

Edges 49

Finite state machines 4

Global constraints see Domain
knowledge

Global search control 30–31, 65–66,
98, 133

Goals 2–6, 15, 16, 18, 27, 30–31, 36–39,
42, 65, 73, 88, 91, 92, 98–102, 113, 127,
132, 133

– optimization 8–15, 18–21, 24, 26,
65–66, 88, 95, 98, 102, 117–119, 121,
127, 128, 133–134

High-level constraints see Domain
knowledge

Implementation 105
Incomplete knowledge
– existence 72–73, 86–88
– open world see Open world
– state projection 88–96, 128

Labels 49, 51
Learning search control 28, 99–102,

107–108, 132

Maintenance see Software engineering
Markov decision processes 89, 95
Maximal structures 17–18, 23, 68, 95
Multi-agent systems 3, 7, 92, 133–134

Negative application conditions 50

Objective function see Goals
Open world 47, 66, 72–73, 95, 128, 160
Optimization see Goals
Orc Quest example 9–12, 98–104, 122,

132, 143–144, 146, 160–163

Partial constraint satisfaction 19, 26,
32

Partial observability see Incomplete
knowledge

178 Index

Permutation constraint
– comparison 28–30
– heuristics 28
– structures 27–28
Plan length 9–15, 47, 66, 95–96,

103–104, 128
Positive application conditions 50
Probabilistic planning 89
Productions 49

Random walks 18, 28, 42
Real time 2–6, 18–19, 24, 27, 89, 98,

125, 127, 128
– comparison 36, 103
Requirements
– reqd 50
– reqe 60
– reqmax 58
– reqmin 59
– reqne 59
– reqp 57
– planning model 87–88
– SCSP 55–56
Resources 8–15, 24, 33, 47, 65, 69, 72,

95–96, 112, 117, 121, 125, 128
Restarts 18, 42, 113, 115
Reusability see Software engineering

Sensing 3, 72–73, 85, 91, 97, 125, 127,
128

Software engineering 25, 28–30, 33, 46,
129

State Resource Constraint 105–106,
122

– embedding/extension graph 80–81
– heuristics 107–112, 118
– structures 106–107
STRIPS 7–8
Synergistic effects 8, 71, 106

Tabu lists 18, 31, 42–44, 115–117, 119
Task Constraint 33
– embedding graph 74
– heuristics 34, 45, 105
– structures 34, 105
Timelines 6, 8, 33, 69, 79–80, 92,

95–96, 106

Vertices 49
– constraints 50–51
– variables 50

Weighted constraint satisfaction see
Partial constraint satisfaction

