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Preface

Many complex problems, such as financial investment planning, involve many
different components or sub-tasks, each of which requires different types of
processing. To solve such complex problems, a great diversity of intelligent
techniques, including traditional hard computing techniques (e.g., expert sys-
tems) and soft computing techniques (e.g., fuzzy logic, neural networks, and
genetic algorithms), are required. These techniques are complementary rather
than competitive, and thus must be used in combination and not exclusively.
This results in systems called hybrid intelligent systems. In other words, hy-
brid solutions are crucial for complex problem solving and decision-making.
However, the design and development of hybrid intelligent systems is diffi-
cult because they have a large number of parts or components that have
many interactions. Existing software development techniques cannot man-
age these complex interactions efficiently as these interactions may occur at
unpredictable times, for unpredictable reasons, and between unpredictable
components.

An agent is an encapsulated computer system that is situated in a certain
environment and that is capable of flexible, autonomous action in that envi-
ronment in order to meet its design objectives. A multi-agent system (MAS)
can be defined as a loosely coupled network of entities that work together to
make decisions or solve problems that are beyond the individual capabilities or
knowledge of each entity. These entities, or agents, are autonomous and may
be heterogeneous in nature. Thus, from a multi-agent perspective, agents in
MASs are autonomous and can engage in flexible, high-level interactions. The
flexible nature of interactions means that agents can make decisions about
the nature and scope of interactions at run-time rather than design time.
Such agents are good at dealing with complex, dynamic interactions. They
offer a new and often more appropriate route to the development of complex
systems, especially in open and dynamic environments. It is now widely rec-
ognized that interaction is probably the single most important characteristic
of complex software. It is evident that hybrid intelligent systems are typical
complex systems, as they have a large number of parts or components with



VI Preface

many interactions. Thus agent perspectives are well suited to hybrid intelli-
gent system construction, especially where loosely coupled hybrid intelligent
systems are concerned.

This book presents an agent-based framework that can greatly facilitate
the building of hybrid intelligent systems, as well as two agent-based hybrid
intelligent systems based on that framework. These two systems, one for fi-
nancial investment planning and one for data mining, are based on real-life
applications and are used here to demonstrate how to analyze, design and
implement such systems from the viewpoints of agents.

This book strongly advocates the construction of hybrid intelligent systems
from an agent’s point of view. Each intelligent technique/model is treated as
one building block of a hybrid intelligent system in the form of an agent. Dif-
ferent intelligent techniques can easily be integrated into one loosely coupled
hybrid intelligent system under a unifying agent framework. Because of this,
many complex problems can be solved within a shorter timeframe. Also, due
to a variety of complementary problem-solving techniques/approaches being
combined together, higher-quality solutions can be produced with such sys-
tems.

The book consists of nine chapters, which are divided into four major
parts.

Part I comprises an introduction. Chapter 1 discusses the importance of
hybrid intelligent systems for complex problem solving and decision-making,
and explains why agent perspectives are suitable for modeling, designing and
constructing hybrid intelligent systems.

Chapter 2 briefly presents some basic concepts and existing knowledge
on hybrid intelligent systems. The advantages and disadvantages of different
intelligent techniques are summarized. The drawbacks in the current prac-
tice of hybrid intelligent system development are identified. In Chap. 3, the
fundamentals of agents and multi-agent systems are introduced. The distinc-
tions between agents and objects, as well as agents and expert systems, are
presented. A brief survey of typical agent-based hybrid intelligent systems
and some approaches to incorporating intelligent techniques into agents are
provided. Typical approaches to converting legacy intelligent-technique soft-
ware packages into agents are also given. State-of-the-art agent-based hybrid
intelligent systems are summarized.

Part II presents the methodologies and framework for hybrid intelligent
system construction from an agent perspective. Chapter 4 first discusses some
typical agent-oriented methodologies. A methodology suitable for analysis and
design of agent-based hybrid intelligent systems is then extracted and tai-
lored from the current practice of agent-oriented software engineering, which
is mainly based on the Gaia methodology.

In Chap. 5, a unifying agent-based framework for building hybrid intelli-
gent systems is proposed. The ontology issue, which is important for applica-
tion system development, is addressed. Chapter 6 discusses matchmaking in
middle agents, which is crucial for the success of agent-based hybrid intelli-
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gent systems. This chapter also addresses some improvements to matchmaking
algorithms which are currently used.

Part III presents two agent-based hybrid intelligent systems, one for finan-
cial investment planning, the other for data mining. Both are built based upon
the framework proposed in Chap. 5. Chapter 7 discusses the analysis, design
and implementation of an agent-based hybrid intelligent system for financial
investment planning. This system consists of 13 different agents. Many tech-
niques/packages, including fuzzy logic, neural networks, genetic algorithms,
expert systems, an operations research software package, a matrix operation
software package, portfolio selection models based on standard probability
theory, fuzzy probability theory, and possibility distribution theory, are inte-
grated under the unifying agent framework.

Chapter 8 presents another application system–agent-based hybrid intelli-
gent system for data mining. The Weka system is reimplemented from agent
perspectives. Different data mining techniques/algorithms can be easily inte-
grated into a data mining system in the form of agents for a specific mining
task.

Part IV contains concluding remarks, in which Chap. 9 summarizes this
book. The future work of the proposed agent-based framework is pointed out.

Many thanks go to the Faculty of Computer and Information Science at
Southwest China Normal University, the School of Information Technology at
Deakin University, and the Faculty of Information Technology at the Univer-
sity of Technology, Sydney, which provided support for us to complete this
book. Special thanks to Alfred Hofmann at Springer-Verlag.

Chongqing, Geelong and Sydney
November 2003

Zili Zhang

Chengqi Zhang
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1

Introduction

Solving complex problems, such as financial investment planning, foreign ex-
change trading, and knowledge discovery from large/multiple databases, in-
volves many different components or sub-tasks, each of which requires dif-
ferent types of processing. To solve such complex problems, a great diver-
sity of intelligent techniques, including traditional hard computing techniques
(e.g., expert systems) and soft computing techniques (e.g., fuzzy logic, neu-
ral networks, and genetic algorithms), are required. For example, in financial
investment planning, neural networks can be used as a pattern watcher for
the stock market; genetic algorithms can be used to predict interest rates;
and approximate reasoning based on fuzzy logic can be used to evaluate fi-
nancial risk tolerance ability of clients. These techniques (referred to here as
intelligent techniques) are complementary rather than competitive, and thus
must be used in combination and not exclusively [12]. This results in systems
called hybrid intelligent systems [65]. Hybrid solutions are crucial for complex
problem solving and decision making. However, the design and development
of hybrid intelligent systems is difficult, because they have a large number of
parts or components with many interactions. Existing software development
techniques cannot manage these complex interactions efficiently, as these in-
teractions may occur at unpredictable times, for unpredictable reasons, and
between unpredictable components [81].

Multi-agent systems are systems composed of multiple interacting com-
puting elements, known as agents. Agents are computer systems with two
important capabilities. First, they are at least to some extent capable of au-

tonomous action – of deciding for themselves what they need to do in order
to satisfy their design objectives. Second, they are capable of interacting with
other agents – not simply by exchanging data, but by engaging in analogue
of the kind of social activity that we all engage in every day of our lives:
cooperation, coordination, negotiation, and the like [4].

Some researchers in the agent research community have produced a quali-
tative analysis to provide the intellectual justification of precisely why agent-
based systems are well suited to engineering complex software systems [2, 71].
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On the other hand, hybrid intelligent systems are complex software systems
because they have a large number of parts or components that have many in-
teractions. Thus a multi-agent perspective is suitable for the modeling, design,
and construction of hybrid intelligent systems [126]. Furthermore, the flexible
nature of agent interactions means that agents can make decisions about the
nature and scope of interactions at run-time rather than design time. This
can overcome the shortcomings in the current practices of hybrid intelligent
system development [65].

In the rest of this chapter, it will be argued that hybrid intelligent systems
are required for dealing with complex problems, hybrid intelligent systems
are complicated systems, and that agent perspectives are suitable for these
complex systems.

1.1 Hybrid Intelligent Systems Are Essential
for Solving Complex Problems

In complex problem solving and decision making many different components
or sub-tasks are involved, each of which requires different types of processing.
Because of this, many techniques have been developed for complex problem
solving and decision making. These techniques can be divided into two cate-
gories:

traditional hard computing techniques, including operations research, sys-
tem science/engineering, expert systems, and
soft computing techniques, including fuzzy logic, neural networks, and ge-
netic algorithms.

The techniques in both categories are referred to here as intelligent techniques.

While there is now an array of different types of intelligent techniques,
each technique has particular strengths and limitations, and cannot be suc-
cessfully applied to every type of problem (refer to Sect. 2.2). For example,
in a decision making task that requires explicit explanations, neural networks
are less applicable than a rule induction approach. Similarly, for tasks that
require constant adaptation and learning from the operating environment,
a static expert system is far less useful than an adaptive technique such as
a neural network. As we have said, these techniques and methodologies are
complementary rather than competitive, and thus must be used in combina-
tion and not exclusively. This allows us to take advantage of their respective
component strengths and compensate for individual weaknesses.

Within soft computing, each of the constituent techniques has a set of
capabilities to offer. In the case of fuzzy logic, there is a body of concepts and
techniques for dealing with imprecision, information granularity, approximate
reasoning and, most importantly, computing with words. In the case of neural
networks, there is the capability of learning, adaptation and identification. In
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the case of genetic algorithms, the capability to employ systematized random
search and achieve optimal performance, and so on.

Hybrid intelligent systems (hybrids for short) are computational systems
that integrate different intelligent techniques in these two categories. These
systems are presently being used to support problem solving and decision
making in a wide variety of tasks [93, 122]. Hybrid intelligent systems allow
the representation and manipulation of different types and forms of data and
knowledge which may come from various sources. Refined system knowledge is
used during reasoning and decision making processes, producing more effective
results.

To solve a problem, or make a decision, the problem solvers or decision
makers (agents) must have great skills to utilize the knowledge related to a
particular problem, and process the relevant information. This includes the
capability to deal with imprecise, uncertain or vague information. Dealing
with real-world uncertainty is an important part of decision making. In order
to make good decisions, agents must have the ability to deal with imprecision
information, achieve optimal performance, and be adaptive. That is, they
should have a high MIQ (machine intelligence quotient [12]). In Zadeh’s
view [12], most high MIQ systems are hybrid intelligent systems that use for
example, soft computing techniques such as fuzzy logic, neural networks, and
genetic algorithms, in some combination.

From this discussion, it is concluded that hybrid intelligent systems are
required for complex problem solving and decision making.

However, the design and development of hybrid intelligent systems is dif-
ficult because they have a large number of parts, or components, that have
many interactions. This makes hybrids very complicated. Existing software
development techniques cannot manage these complex interactions efficiently,
because, as we have said, interactions may occur at unpredictable times, for
unpredictable reasons, and between unpredictable components.

1.2 Hybrids Are Complex

As different individual intelligent techniques have their own advantages and
disadvantages, they cannot be applied universally to every problem. Whereas,
many complex problems have many different component problems, each of
which require different types of processing. Thus it is necessary to combine
different intelligent techniques so as to overcome the limitations of individual
techniques in complex problem solving and decision making. Moreover, hybrid
intelligent systems represent, not only a combination of different intelligent
techniques, but also the integration of intelligent techniques with legacy com-
puting systems or programs. All this contributes to making hybrid intelligent
systems complicated. Decisions need to be made about:
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which techniques are suitable for certain kinds of problems;
which messages are to be exchanged among different processing compo-
nents (using different intelligent techniques) in the systems as they must
communicate with each other, as well as legacy programs, to achieve syn-
ergism;
how to allow the easy exchange or addition of new processing techniques;
how to know exactly where components reside on the network in complex
problem solving and decision making, and how to make them work together
across a heterogeneous network of computers.

Although complex, the complexity of hybrid intelligent systems exhibits a
number of important regularities [84]:

Complexity frequently takes the form of a hierarchy. That is, the system is
composed of inter-related subsystems, each of which is in turn hierarchical
in structure. The precise nature of these organizational relationships varies
between subsystems. However some generic forms (such as client-server,
peer, team, etc.) can be identified. These relationships are not static, how-
ever, they often vary over time.
The choice of which components in the system are primitive is relatively
arbitrary and is defined by the observer’s aims and objectives.
Hierarchical systems evolve more quickly than non-hierarchical ones of
comparable size. In other words, complex systems will evolve from simple
systems more rapidly if there are stable intermediate forms, than if there
are not.
It is possible to distinguish between the interactions among subsystems
and the interactions within subsystems. The latter are both more frequent
and more predictable than the former. This gives rise to the view that com-
plex systems are nearly decomposable: That is,subsystems can be treated
almost as if they are independent of one another, but not quite, since
there are some interactions between them. Moreover, although many of
these interactions can be predicted at design time, some cannot.

Drawing these insights together, it is possible to define a canonical view
of a complex system. (Refer to Fig. 1.1, which is adapted from [85].)

Given these observations, software engineers have devised a number of
powerful tools in order to tackle this complexity. The principal mechanisms,
as described in [85], include:

Decomposition: The most basic technique for tackling any large complex
problem is to divide it into smaller, more manageable chunks, each of
which can then be dealt with in relative isolation. Decomposition helps
tackle complexity because it limits the designer’s scope.
Abstraction: Abstraction is the process of defining a simplified model of a
system that emphasizes some of the details or properties, while suppressing
others. Again, this works, because it limits the designer’s scope of interest
at a given time.
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Organization: Organization is the process of identifying and managing in-
terrelationships between various problem solving components. The ability
to specify and enact organizational relationships helps designers tackle
complexity in two ways:

by enabling a number of basic components to be grouped together and
treated as a higher-level unit of analysis; and
by providing a means of describing high-level relationships between
various units.

Any approach to building hybrid intelligent systems should support these
three mechanisms – decomposition, abstraction, and organization.

1.3 Agent Perspectives Are Suitable for Hybrids

Agent techniques represent an exciting new means of analyzing, designing and
building complex software systems. They have the potential to significantly
improve current practice in software engineering and to extend the range of
applications that can feasibly be tackled [70].

Although a precise definition of an intelligent agent is still forthcoming,
an increasing number of researchers find the following characterization useful
[1, 2]:

An agent is an encapsulated computer system that is situated in some environ-
ment and that is capable of flexible, autonomous action in that environment in order
to meet its design objectives.

When adopting an agent-oriented view of the world, it soon becomes ap-
parent that most problems require, or involve, multiple agents; to represent
the decentralized nature of the problem, the multiple loci of control, the mul-
tiple perspectives, or the competing interests. Moreover, the agents will need
to interact with one another, either to achieve their individual objectives or
to manage the dependencies that ensue from being situated in a common en-
vironment. A multi-agent system can be defined as a loosely coupled network
of entities that work together to make decisions, or solve problems that are
beyond the individual capabilities or knowledge of each entity [16]. These
entities (agents) are autonomous and may be heterogeneous in nature. The
characteristics of multi-agent systems are as described in [8]:

each agent has incomplete information, or capabilities, for making a deci-
sion or solving a particular problem, thus each agent has a limited view-
point;
there is no global system control;
data is decentralized; and
computation is asynchronous.
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In this book, the terms ‘agents’ or ‘software agents’ are used to indicate
‘intelligent agents that can interact’. ‘Intelligent’ indicates that the agents
pursue their goals and execute their tasks such that they optimize some given
performance measures ( [10], pp. 2-3). To say that agents are intelligent does
not mean that they are omniscient or omnipotent, nor does it mean that they
never fail. Rather, it means that they operate flexibly and rationally in a
variety of environmental circumstances, given the information they have and
their perceptual and effectual capabilities.

From a multi-agent perspective, agents in multi-agent systems are au-
tonomous and can engage in flexible, high-level interactions. Here, autonomy
means that the agents have their own persistent thread of control (i.e., they
are active) and that they can decide for themselves which actions they should
perform at what time. The fact that agents are active means they know for
themselves when they should be acting and when they should update their
state. The flexible nature of interactions means that agents can make de-
cisions about the nature and scope of interactions at run-time rather than
design time.

Multi-agent systems are ideally suited to representing problems that have
multiple problem solving methods, multiple perspectives and/or multiple
problem solving entities. Such systems have the traditional advantage of dis-
tributed and concurrent problem solving, but have the additional advantage
of sophisticated patterns of interactions. Examples of common types of inter-
action include cooperation, coordination, and negotiation. It is the flexibility
and high-level nature of these interactions which distinguishes multi-agent sys-
tems from other forms of software, and which provides the underlying power
of the paradigm.

Furthermore, N. Jennings defined the canonical views of a complex system
and a multi-agent system [71]. In the canonical view of a complex system (see
Fig. 1.1), the system’s hierarchical nature is expressed through the ‘related to’
links, where components within a subsystem are connected through ‘frequent
interaction’ links, and interactions between components are expressed through
‘infrequent interaction’ links.

In the canonical view of a multi-agent system (see Fig. 1.2), it can be seen
that adopting an agent-oriented approach to software engineering means de-
composing the problem into multiple, autonomous components that can act
and interact in flexible ways to achieve their set objectives. The key abstrac-
tion models that define the agent-oriented mind-set are agents, interactions,
and organizations. Finally, explicit structures and mechanisms are often used
to describe and manage the complex and changing web of organizational re-
lationships that exist between the agents.

From the canonical view of a multi-agent system (Fig. 1.2), it can be seen
that adopting an agent-oriented approach to software engineering means de-
composing the problem into multiple, interacting, autonomous components
(agents) that have particular objectives to achieve. The key abstraction mod-
els that define the ‘agent-oriented mind-set’ are agents, interactions and or-
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Fig. 1.1. View of a Canonical Complex System

Fig. 1.2. Canonical View of a Multi-Agent System

ganizations. Finally, explicit structures and mechanisms are often available
for describing and managing the complex and changing web of organizational
relationships that exist between the agents.

Some researchers in this field have given a qualitative analysis to provide
the intellectual justification of precisely why agent-based systems are well
suited to engineering complex software systems [2, 70, 71, 73, 74]. They have
also provided a detailed analysis of the merits of agent-oriented decomposition,
the appropriateness of agent-oriented abstractions, and the need for flexible
management of changing organizational structures in the process of building
complex software systems. On the other hand, it is evident that hybrid in-
telligent systems are complex software systems and have all the features of
other industrial-strength software systems. Thus, agent-oriented approaches
can significantly enhance our ability to model, design and build hybrid intel-
ligent systems for the following reasons:
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Merits of agent-oriented decomposition. Hybrid intelligent systems consist
of a number of related subsystems organized in a hierarchical fashion. At
any given level, subsystems work together to achieve the functionality of
their parent system. Moreover, within a subsystem, the constituent com-
ponents work together to deliver overall functionality. Thus, the same basic
model of interacting components, working together to achieve particular
objectives, occurs throughout the system. The agent-oriented approach
advocates decomposing problems in terms of autonomous agents that can
engage in flexible, high-level interactions. The fact that agents are active
means they know for themselves when they should be acting and when
they should update their state (cf. passive objects that need to be in-
voked by some external entity to do either). Such self-awareness reduces
control complexity since the system’s control know-how is taken from a
centralized repository and localized inside each individual problem solv-
ing component. The fact that agents make decisions about the nature and
scope of interactions at run-time makes the engineering of hybrid intel-
ligent systems easier for two main reasons. Firstly, the system’s inherent
complexity means it is impossible to know a priori about all potential links.
Interactions will occur at unpredictable times, for unpredictable reasons,
and between unpredictable components. For this reason, it is futile to try
and predict, or analyze, all the possibilities at design-time. Rather, it is
more realistic to endow the components with the ability to make decisions
about the nature and scope of their interactions at run-time. Thus agents
are specifically designed to deal with unanticipated requests, and they can
spontaneously generate requests for assistance whenever appropriate. Sec-
ondly, the problem of managing control relationships between the software
components is significantly reduced.
Suitability of agent-oriented abstractions. A significant part of the design
process is finding the right models for viewing the problem. In general,
there will be multiple candidates, and the difficult task is to pick out the
most appropriate one. When designing software, the most powerful ab-
stractions are those that minimize the semantic gap between the units of
analysis that are intuitively used to conceptualize the problem and the
constructs present in the solution paradigm. In the case of complex hybrid
intelligent systems, the problem to be characterized consists of subsystems,
subsystem components, interactions and organizational relationships. Tak-
ing each in turn: subsystems naturally correspond to agent organizations;
the appropriateness of viewing subsystem components as agents has been
made above; the interplay between the subsystems and between their con-
stituent components is most naturally viewed in terms of high-level social
interactions; and complex hybrid intelligent systems involve changing webs
of relationships between their various components. They also require col-
lections of components to be treated as a single conceptual unit when
viewed from a different level of abstraction. Here again the agent-oriented
mind-set provides suitable abstractions.



1.4 Motivation and Targets 11

The need for flexible management of changing organizational structures.
Organizational constructs are first-class entities in agent systems. Thus,
explicit representations are made of organizational relationships and struc-
tures. Moreover, agent-based systems have the concomitant computational
mechanisms for flexibly forming, maintaining and disbanding organiza-
tions. This representational power enables agent-oriented systems to ex-
ploit two facets of complex hybrid intelligent systems. Firstly, the notion
of a primitive component can be varied according to the needs of the ob-
server. Thus at one level, entire subsystems can be viewed as a singleton, a
collection of agents can be viewed as primitive components, and so on, un-
til the system eventually bottoms out. Secondly, such structures provide a
variety of stable intermediate forms. These forms are essential for rapid de-
velopment of complex hybrid intelligent systems. Their availability means
that individual agents or organizational groupings can be developed in rel-
ative isolation, and then added into the system in an incremental manner.
This, in turn, ensures there is a smooth growth in functionality.

From this discussion, it is apparent that multi-agent perspectives are well
suited for modeling hybrid intelligent systems when solving complex problems.

In this book, the term agent-based systems is also used to refer to systems
that are both designed and implemented as several interacting agents, i.e.,
multi-agent systems. When discussing agent techniques from a software en-
gineering point of view and comparing them with object-oriented techniques,
agent-oriented is used. In Chap. 3, the distinctions between agents and ob-
jects, agents and expert systems will be detailed.

1.4 Motivation and Targets

As described in the previous sections, hybrid solutions are crucial for many
real-world applications, and they are difficult to build. Whereas agent technol-
ogy is suitable for constructing such systems. This motivated us to combine
these two and construct agent-based hybrid intelligent systems.

When building hybrid intelligent systems from agent perspectives, there
are many ways to follow. One can build such systems from scratch. Obviously
this is inconvenient and inefficient. What we plan to do here is propose a
unifying agent framework that can greatly facilitate the construction of hybrid
intelligent systems. Such a unifying agent framework is presented, and two
agent-based hybrid intelligent systems are provided, which are built on the
proposed framework. The ultimate goal is to deploy an industrial strength
toolkit for the construction of hybrid intelligent systems.

For the convenience of readers from the agent research community, some
basic concepts and knowledge of hybrid intelligent systems are provided in
Chap. 2. For the sake of readers from the hybrid intelligent system commu-
nity, Chapter 3 presents some fundamentals concerning agent and multi-agent
systems.
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2

Basics of Hybrid Intelligent Systems

In the past decade, the amount of research and development involving hybrid
intelligent systems has increased rapidly. Initial work addressed the integra-
tion of neural networks and expert systems, or the use of fuzzy logic with
expert systems. Research on hybrid symbolic and subsymbolic systems has
provided an excellent foundation for models and techniques that are now used
in applications and development tools. The existing systems demonstrate their
feasibility and advantages, and many are in use in practical situations. More
recently, genetic algorithms and case-based reasoning techniques have become
more accessible through convenient development tools and environments, and
they are appearing individually in growing numbers of applications. A nat-
ural step is to integrate all of these intelligent technologies to produce more
powerful and effective systems [66].

A fundamental stimulus to investigations into hybrid intelligent systems
is the awareness in the research and development communities that combined
approaches will be necessary if the remaining tough problems in artificial in-
telligence are to be solved. The successes in integrating expert systems and
neural networks, and the advances in theoretical research on hybrid systems,
point to similar opportunities for when other intelligent technologies are in-
cluded in the mix. From a knowledge of their strengths and weaknesses, we
can construct hybrid systems to mitigate the limitations and take advantage
of the opportunities to produce systems that are more powerful than those
that could be built with single technologies. The intelligent technologies and
their hybrid systems represent a range of building blocks that may eventually
allow us to simulate human-like intelligence.

In the hybrid intelligent system community, research work mainly falls
into areas like micro-level integration of fuzzy logic and expert systems, fuzzy
systems and neural networks, genetic algorithms and neural networks, genetic
algorithms and fuzzy systems, genetic algorithms and expert systems.

Our work here advocates integrating different intelligent techniques from
an agent’s point of view. An agent-based framework is proposed to construct
hybrid intelligent systems. Different intelligent techniques can easily be in-
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tegrated into one system under a unifying agent framework. From an agent
perspective, each intelligent technique is treated as one building block of hy-
brid intelligent systems in the form of an agent.

For the convenience of readers, and to make this book self-contained, some
basic concepts and information about hybrid intelligent systems are given in
this chapter.

2.1 Typical Intelligent Techniques

As pointed out in Chap. 1, to solve complex problems in real-world, a great
diversity of intelligent techniques including traditional hard computing tech-
niques (e.g., expert systems) and soft computing techniques (e.g., fuzzy logic,
neural networks, and genetic algorithms) are required. These intelligent tech-
niques are complementary rather than competitive and thus must be used in
combination and not exclusively [12]. These typical intelligent techniques are
briefly introduced in this section.

2.1.1 Expert Systems

One of the most successful applications of artificial intelligence reasoning tech-
niques using facts and rules has been in building expert systems that embody
knowledge about a specialized field of human endeavor, such as medicine,
engineering, or business [143]. The following definition is given in [142]:

Artificial Intelligence programs that achieve expert-level competence in solving
problems by bringing to bear a body of knowledge are called knowledge-based sys-
tems or expert systems. often, the term expert systems is reserved for programs
whose knowledge base contains the knowledge used by human experts, in contrast
to knowledge gathered from textbooks or non-experts. more often than not, the two
terms – expert system and knowledge-based system – are used synonymously.

The basic structure of an expert system is shown in Fig. 2.1 (adapted
from [142]). The major parts of the system are the knowledge base and the
inference engine. The knowledge base consists of facts and rules about the
subject at hand. The inference engine consists of all processes that manipulate
the knowledge base to deduce information requested by the user – resolution or
forward or backward chaining, for example. The user interface might consist
of some kind of natural language processing system that allows the user to
interact with the system in a limited form of natural language. Graphical user
interfaces with menus are also used. The explanation subsystem analyzes the
structure of the reasoning performed by the system and explains it to user.

These four parts of the system are the parts that constitute the system
as it is used in an application. In the construction of an expert system, a
‘knowledge engineer’ (usually a computer scientist with artificial intelligence
training) works with an expert (or experts) in the field of application in order
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Fig. 2.1. Basic Structure of an Expert System

to represent the relevant knowledge of the expert in a form that can be entered
into the knowledge base. This process is often aided by a knowledge acquisition

subsystem that, among other things, checks the growing knowledge base for
possible inconsistencies and incomplete information. These are then presented
to the expert for resolution.

The process of building the system usually iterates through many cycles.
At each step of the cycle, a prototype system is tested by the knowledge
engineer and the expert to see if it makes the same kinds of inferences that the
expert would make on typical problems that might be posed by a user. If the
system responds differently than the expert would, the explanation subsystem
is used to help the development team decide which information and inferences
are responsible for the discrepany. It may be that the expert needs to articulate
certain information in more detail or provide additional information to cover
the case at hand. This process continues until the development team is satisfied
that the system operates appropriately [143].

2.1.2 Fuzzy Sets and Fuzzy Logic

A set is normally thought of as a collection of objects. An ordinary (classi-
cal) set divides the universe into those items that are completely in the set
and those items that are completely outside of the set. We can describe this
phenomenon by assigning the value 1 to all those items which are members
of the set and the value 0 to all items which are not members of the set. For
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ordinary sets, only these two values are possible. The function which assigns
these values is called characteristic function of the set.

Consider a classical set A of the universe U. A fuzzy set is defined by a
set or ordered pairs, a binary relation,

where is a function called membership function; specifies the
grade or degree to which any element in A belongs to the fuzzy set
Definition 2.1.2 associates with each element in A a real number in
the interval [0,1] which is assigned to Larger values of indicate higher
degrees of membership.

In fuzzy sets, an element is said to belong to with probability
and simultaneously to be in with probability In actuality, this
is not a true probability, but rather the degree of truth associated with the
statement that is in the set. To show the difference, let us look at a fuzzy
set operation. Suppose the membership value for Mary being tall is 0.7 and
the value for her being thin is 0.4. The membership value for her being both
is 0.4, the minimum of the two values. if these were really probabilities, we
would look at the product of the two values.

There is not a unique system of knowledge called fuzzy logic but a variety of
methodologies proposing logical consideration of imperfect and vague knowl-
edge. It is an active area of research with some topics still under discussion
and debate. Fuzzy logic focuses on linguistic variables in natural language
and aims to provide foundations for approximate reasoning with imprecise
propositions. It reflects both the rightness and vagueness of natural language
in common-sense reasoning.

Fuzzy rules combine two or more input fuzzy sets, called the antecedent

sets, and associate with them an output, or consequent, set. The antecedent
sets are combined by means of operators that are analogous to the usual logical
conjunctives “and,” “or,” etc. One method of storing and representing fuzzy
rules is through the use of a fuzzy associative memory (FAM) matrix [49].
FAM is a very simple and useful way to process fuzzy rules. Figure 2.2 shows
an example of a FAM matrix that represents the nine rules described in Sect.
7.1.1. For example, the shadowed entry in Fig. 2.2 represents rule 8 (refer to
Sect. 7.1.1).

2.1.3 Neural Networks

Neural networks, often referred to as artificial neural networks to distinguish
them from biological neural networks, are modeled after the workings of the
human brain. The neural network is actually an information processing system
that consists of a graph representing the processing system as well as various
algorithms that access the graph. As with the human brain, the neural network
consists of many connected processing elements. The neural network, then, is
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Fig. 2.2. An Example of a Two-Dimensional FAM Matrix

structured as directed graph with many nodes (processing elements) and arcs
(interconnections) between them. The nodes in the graph are like individual
neurons, while the arcs are their interconnections. Each of these processing
elements functions independently from the others and uses only local data
(input and output to the node) to direct its processing. This features facilitates
the use of neural networks in a distributed and/or parallel environment.

The neural network can be viewed as a directed graph with source (input),
sink (output), and internal (hidden) nodes. The input nodes exist in an input

layer, while the output nodes exist in an output layer. The hidden nodes exist
over one or more hidden layers.

Neural networks can be classified based on the type of connectivity and
learning. The basic type of connectivity is feedforward, where connections
are only to layers later in the structure. Alternatively, a neural network may
be feedback where some links are back to earlier layers. Figure 2.3 (adapted
from [49]) shows the classic three-layer feedforward neural network architec-
ture.

Figure 2.3 actually represents a function acting on a vector, or list of
numbers. The notation is used to denote the space of all
vectors of the form where each is a real number and is
an integer. for example, is a line, and is a two-dimensional plane. The
neural network function sends the vector in to the vector

Thus, the feedforward network can be represented as:

where and The action of this function is
determined in a specific way. For a network with N input nodes, H hidden
nodes, and M output nodes, the values are given by:

Here, is the output ‘weight’ from hidden node to output node and
is a function mapping to The values of the hidden layer nodes

are given by:
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Fig. 2.3. Three-Layer Feedforward Neural Network Architecture

Here, is the output ‘weight’ from input node to hidden node is
a threshold ‘weight’ from an input node which has the constant value 1 to
hidden node is the value at input node and is so-called ‘sigmoid’
function given by

The function in (2.3) is called the activation function of the neural
network. The function in (2.2) may be the same as the activation function
or may be a different function.

The action of the feedforward network is determined by two things: the
architecture, that is, how many input, hidden, and output nodes it has; and the
values of the weights. The numbers of input and output nodes are determined
by the application and so are, in effect, fixed. The number of hidden nodes
is a variable that can be adjusted by the user. To date, this adjustment has
remained pretty much of an ‘art,’ although various methods for setting the
number of hidden nodes, or ‘pruning’ away unnecessary nodes, have been
proposed in the literature.

With the architecture set, it is then the weight values that determine how
the network performs. The process of adjusting these weight values in order to
obtain a desired network performance is known as ‘training’ the network. The
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network is said to ‘learn’ as the weight values are being modified to achieve
the training goal. The weights are nothing more than a set of parameters, like
the coefficients in a polynomial, which determine the behavior of a particular
function. While terms like ‘training’ and ‘learning’ recall the biological inspi-
ration for these networks, the neural network practitioners would do well to
keep in mind that, from a mathematical and computing point of view, these
terms refer to nothing more than the adaptation of a function parameter set.

2.1.4 Genetic Algorithms

Genetic algorithms are a biologically inspired class of algorithms that can
be applied to, among other things, the optimization of nonlinear multimodal
(many local maxima and minima) functions. This class of algorithms solves
problems in the same way that nature solves the problem of adapting living
organisms to the harsh realities of life in a hostile world: evolution. Genetic
algorithms are examples of evolutionary computing methods. Given a pop-
ulation of potential problem solutions (individuals), evolutionary computing
expands this population with new and potentially better solutions. The basic
for evolutionary computing algorithms is biological evolution, where over time
evolution produces the best or ‘fittest’ individuals. Chromosomes, which are
DNA strings, provide the abstract model for a living organism. Subsections
of the chromosomes, which are called genes, are used to define different traits
of the individual. During reproduction, genes from parents are combined to
produce the genes for child.

When using genetic algorithms to solve a problem, the first thing, and
perhaps the most difficult task, which must be determined is how to model
the problem as a set of individuals. Given an alphabet A, an individual or
chromosome is a string where Each character in the
string, is called a gene. The values that each character can have are called
the alleles. A population, P, is a set of individuals.

Although individuals are often represented as bit strings, any encoding is
possible. An array with nonbinary characters could be used, as could more
complicated data structures including trees and arrays. The only real restric-
tion is that the genetic operators (mutation, crossover) must be defined.

In genetic algorithms, reproduction is defined by precise algorithms that
indicate how to combine the given set of individuals to produce new ones.
These are called crossover algorithms. Given two individuals (parents) from
the population, the crossover technique generates new individuals (offspring or
children) by switching subsequences of the strings. There are many variations
of the crossover approach. A crossover probability is used to determine how
many new offspring are created via crossover. In addition, the actual crossover
point may vary within one algorithm.

As in nature, however, mutations sometimes appear, and these also may
be present in genetic algorithms. The mutation operation randomly changes
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characters in the offspring. A very small probability of mutation is set to
determine whether a character should change.

Since genetic algorithms attempt to model nature, only the strong sur-
vive. When new individuals are created, a choice must be made about which
individuals will survive. This may be the new individuals, the old ones, or
more likely a combination of the two. The third major component of genetic
algorithms, then, is the part that determines the best (or fittest) individuals
to survive.

One of the most important components of a genetic algorithm is determin-
ing how to select individuals. A fitness function, is used to determine the
best individuals in a population. This is then used in the selection process to
choose parents. Given an objective by which the population can be measured,
the fitness function indicates how well the goodness objective is being met by
an individual.

Now a more formal definition for genetic algorithms can be given as follows:
A genetic algorithm is a computational model consisting of five parts:

Starting set of individuals, P.

Crossover technique.
Mutation algorithm.
Fitness function.
Algorithm that applies the crossover and mutation techniques to P iter-
atively using the fitness function to determine the best individuals in P

to keep. The algorithm replaces a predefined number of individuals from
the population with each iteration and terminates when some threshold is
met.

The main steps of genetic algorithms are them described below, which are
heavily borrowed from [144]:

Initialize the algorithm. Randomly initialize each individual chromosome
in the population of size N (N must be even), and compute each individ-
ual’s fitness.
Select N/2 pairs of individuals for crossover. The probability that an in-
dividual will be selected for crossover is proportional to its fitness.
Perform crossover operation on N/2 pairs selected in the second step.
Randomly mutate bits with a small probability during this operation.
Compute fitness of all individuals in new population.
Optional: Select N fittest individuals from combined population of size
2N consisting of old and new populations pooled together.
Rescale fitness of population.
Determine maximum fitness of individuals in population. If max fitness –

optimum fitness < tolerance then STOP. Otherwise, go to the second
step.



2.2 Advantages and Disadvantages of Typical Intelligent Techniques 21

2.2 Advantages and Disadvantages
of Typical Intelligent Techniques

There is an array of intelligent techniques, which can be divided into two
main categories – traditional hard computing techniques and soft computing
techniques. One typical hard computing technique is expert systems, while
the principal members of soft computing techniques are fuzzy logic, neural
networks, and genetic algorithms. In this section, the four typical intelligent
techniques are compared and contrasted on three key information processing
capabilities – knowledge acquisition, brittleness and explanation. This section
is mainly based on the discussions in [65] (pp.3-5). Similar discussion can also
be found in [39, 66].

2.2.1 Knowledge Acquisition

Knowledge acquisition is a crucial stage in the development of intelligent sys-
tems. As a process, it involves eliciting, interpreting and representing the
knowledge from a given domain. Knowledge acquisition for expert systems
(from domain experts) is time consuming, expensive and potentially unre-
liable. Furthermore, expert systems do not have mechanisms to deal with
any changes in their decision making environment – they cannot adapt and
learn from changes in their operating environment. Thus, the maintenance of
knowledge in expert systems is also time consuming and expensive.

Due to these problems, intelligent techniques, such as neural networks and
genetic algorithms, which can learn from domain data, have certain advan-
tages. Also in expert systems, the decision boundaries – the bounds used to
make particular decisions – are specified by a domain expert, while in neu-
ral networks and genetic algorithms these decision boundaries are learned.
Changes in the operating environment cause the decision boundaries to be
shifted or changed. Systems that learn, can detect and adapt to these changes.

2.2.2 Brittleness

Although there are notable successes in the use of expert systems, many of
these systems operate in very narrow domains under limited operational con-
ditions. This phenomenon in expert systems is referred as brittleness. The
systems are brittle in the sense that they respond appropriately only in nar-
row domains and require substantial human intervention to compensate for
even slight shifts in domain.

An operational view of the brittleness problem can be seen as the inabil-
ity of an intelligent system to cope with inexact, incomplete or inconsistent
knowledge. Causes of this brittleness problem are twofold – inadequate repre-
sentation structures and inadequate reasoning mechanisms. In expert systems,
knowledge is represented as discrete symbols, and reasoning consists of logical
operations on these constructs.
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In contrast, reasoning in neural networks involves the numeric aggregation
of representation over the whole network. This distributed representation and
reasoning allows these systems to deal with incomplete and inconsistent data,
and also allows the systems to gracefully degrade. That is, even if some parts of
a neural network are made non-operational, the rest of the neural network will
function and attempt to give an answer. This type of inherent fault tolerance
contrasts strongly with expert systems, which usually fail to function even if
one single processing part is non-operational.

Fuzzy logic deals with the problem of brittleness by adopting novel knowl-
edge representation and reasoning methods. Fuzzy sets, the form in which
knowledge is represented, diffuse the boundaries between concepts. There are
no sharp divisions where one concept ends and the next begins. This fuzzy
data representation, in conjunction with fuzzy (approximate) reasoning mech-
anisms, allows the processing of data which are inexact or partially correct.

Genetic algorithms are able to cope with brittleness. It is the maintenance
of a population of solutions which makes genetic algorithms and classifier
systems non-brittle. Each rule in the classifier system population contains
a relationship describing the system being modeled. The system’s flexibility
arises from the rules representing a wide range of competing, conflicting hy-
potheses. The selection of the appropriate rule to fire is dependent on its past
performance – a statistical aggregation of its correct performance. Similar to
neural networks, it is this statistical reasoning property, based on the past
performance that gives genetic algorithms their ability to cope with brittle-
ness.

2.2.3 Explanation

The ability to provide users with explanations of the reasoning process is im-
portant for complex decision making. Explanation facilities are required, both
for user acceptance of the decisions made by a system, and for the purpose of
understanding whether the reasoning procedure is sound. Good examples of
this requirement can be found in medical diagnosis, loan granting, and legal
reasoning. There have been fairly successful solutions to the explanation prob-
lem in expert systems, symbolic machine learning, and case-based reasoning
systems. In expert systems, explanations are typically provided by tracing the
chain of inference during the reasoning process.

In a fuzzy logic system the final decision is generated by aggregating the
decisions of all the different rules contained in the fuzzy rule base. In these
systems a chain of inference cannot be easily obtained, but the rules are in a
simple-to-understand ‘IF-THEN’ format which users can easily inspect.

Genetic algorithms, especially in the form of classifier systems, can build
reasoning models in the form of rules. As in the case of expert systems, it is
possible to trace a chain of inference and provide some degree of explanation
of the reasoning process.
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In contrast, in neural networks it is difficult to provide adequate explana-
tion facilities. This is due to neural networks not having explicit, declarative
knowledge representation structures, but instead having knowledge encoded
as weights distributed over the whole network. It is therefore more difficult to
find a chain of inference which can be used for producing explanations.

Table 2.1 summarizes the above computational properties with respect to
the four typical intelligent techniques. It is clear that these intelligent tech-
niques are complementary and should be used in combinations for complex
problem solving and decision making.

2.3 Classification of Hybrid Intelligent Systems

Hybrid intelligent systems can be classified into different categories based on
different criteria. Here, two typical classification schemes are provided.

2.3.1 Medsker’s Classification Scheme

In [137], Medsker and Bailey discuss the integration of expert systems and
neural networks. Five different hybrid development strategies have been iden-
tified: stand-alone, transformations, loose coupling, tight coupling, and full
integration. (See Fig. 2.4.) The benefits and limitations of these strategies
are briefly outlined below. Refer to [66] and [137] for details. Although this
classification scheme is only for the integration of expert systems and neural
networks, and some of the descriptions do not hold now, it is helpful for us to
discuss the advantages that agent technology can bring in hybrid intelligent
system construction.

Stand-Alone Models

Stand-alone models of combined intelligent system applications consist of in-
dependent software components. These components do not interact in any
way.
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One of the benefits of a stand-alone model is the simplicity and ease of
development using commercially-available software packages. On the other
hand, the development efforts in expert systems or neural networks are not
transferable, neither can they support the weakness of each other, and the
maintenance requirements are doubled. Both must be updated simultaneously
to avoid confusion, and updates to one cannot help the other.

Fig. 2.4. Models for Integrating Intelligent Systems

Transformational Models

Transformational models are similar to stand-alone models in that the end
result of development is an independent model that does not interact with
others. What distinguishes the two types of models is that transformational
systems begin as one type of system and end up as the other.

Transformational models offer several benefits to developers. They are of-
ten quick to develop, and ultimately require maintenance on only one system.
Development occurs in the most appropriate environment. Similarly, the de-
livery technique offers operational benefits suitable to its environment.

Limitations to transformational models are significant. First, a fully auto-
mated means of transforming an expert system to a neural network, or vice
versa, is still needed. Also, significant modifications to the system may require
a new development effort, which leads to another transformation. In addition
to maintenance issues, the finished transformational system is limited opera-
tionally to the capabilities of the target technique.
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Loosely-Coupled Models

Loosely-coupled models comprise the first true form of integrated intelligent
systems. Compared to the more integrated intelligent system applications,
loosely-coupled models are easy to develop. They are amenable to the use of
commercially available intelligent systems software, which reduces the pro-
gramming burden on developers. Both the system design and implementation
processes are simplified with loosely-coupled models. Finally, maintenance
time is reduced because of the simplicity of the data file interface mechanism.

Some limitations are associated with loosely-coupled models. Because of
the file-transfer interface, communication costs are high and operating time
is longer. The development of separate intelligent system components leads
to redundancy of effort. Both must be capable of solving subproblems in
order to perform their unique computations. But, because they lack direct
access to each other’s internal processing, they must develop independent
capabilities. This may also lead to overlap in data input environments and
internal processing.

Tightly-Coupled Models

The categories of loose and tight coupling have significant overlap. Both utilize
independent expert system and neural network components. However, tightly-
coupled systems pass information via memory resident data structures rather
than external data files. This improves the interactive capabilities of tightly-
coupled models, in addition to enhancing their performance.

Tight coupling has the benefits of reduced communication overheads and
improved runtime performance, compared to loose coupling. Several commer-
cial packages are suitable for developing tightly-coupled models, and main-
taining the modularity of the expert system and neural network components.
Overall, tight coupling offers design flexibility and robust integration.

Tightly-coupled systems have three principal limitations. First, develop-
ment and maintenance complexity increases due to the internal data interface.
Second, tight coupling suffers from redundant data gathering and processing,
as does loose coupling. Once again, this is due to the independence of the
intelligent system components. Finally, the verification and validation process
is more difficult particularly for embedded applications.

Fully-Integrated Models

Fully-integrated systems share data structures and knowledge representations.
Communication between the different components is accomplished via the
dual nature (for example, symbolic and neural) of the structures. Reasoning
is accomplished either cooperatively or through a component designated as
the controller.
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The benefits of full integration include robustness, improved performance,
and increased problem solving capabilities. Robustness and performance im-
provements stem from the dual nature of the knowledge representations and
data structures. In addition, little or no redundancy occurs in the development
process. Finally, fully integrated models can provide a full range of capabilities
– such as adaptation, generalization, noise tolerance, justification, and logical
deduction – not found in non-integrated models.

Full integration has limitations caused by the increased complexity of the
inter-module interactions. Specifying, designing, and building fully-integrated
models is complex, tools that facilitate full integration are distinctly lack-
ing on the market, and verifying, validating, and maintaining fully-integrated
systems are issues for further research and development.

2.3.2 Goonatilake’s Classification Scheme

Goonatilake and Khebbal [65] point out that there are three main reasons for
creating hybrid systems: technique enhancement, the multiplicity of applica-

tion tasks and realizing multi-functionality. Based on the three factors, they
have divided hybrid systems into three classes: function-replacing, intercom-

municating and polymorphic.

Function-Replacing Hybrids

Function-replacing hybrids address the functional composition of a single in-
telligent technique. In this hybrid class, a principal function of the given tech-
nique is replaced by another intelligent processing technique. The motivation
for these hybrid systems is the technique enhancement factor discussed above.

Intercommunicating Hybrids

Inter-communicating hybrids are independent, self-contained, intelligent pro-
cessing modules that exchange information and perform separate functions
to generate solutions. If a problem can be subdivided into distinct process-
ing tasks, then different independent intelligent modules can be used to solve
the parts of the problem at which they are best suited. These independent
modules, which collectively solve the given task, are coordinated by a control
mechanism.

Polymorphic Hybrids

Polymorphic hybrids are systems that use a single processing architecture to
achieve the functionality of different intelligent processing techniques. The
broad motivation for these hybrid systems is realizing multi-functionality
within particular computational architectures. These systems can function-
ally mimic, or emulate, different processing techniques.
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2.4 Current Practice
in Typical Hybrid Intelligent System Development

As pointed out previously, hybrid intelligent systems are very important for
complex problem solving and decision making. At the same time, they are
difficult to build.

Many hybrid intelligent systems used in different application fields ap-
peared in the past ten years [39, 65, 66, 67, 68, 69]. All these systems fall into
the three classes in Goonatilake’s scheme. A typical development cycle in the
implementation of these hybrid intelligent systems is shown in Fig. 2.5. This is
based on object-oriented techniques. There are six stages in the construction
of hybrid intelligent systems: problem analysis, property matching, hybrid
category selection, implementation, validation, and maintenance [65]. Most
current hybrid intelligent systems are built either from scratch or following
this development process.

Fig. 2.5. Hybrid Intelligent System Development Cycle
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There are some shortcomings of the hybrid intelligent systems involved
in following this development process. The most obvious one is that the or-
ganization of such a hybrid system is not adaptive. Once the techniques are
selected in the property matching stage, it is difficult to change or replace
them even though a better one might be found later on.

Another difficulty lies in the hybrid category selection phase. At this stage,
developers must choose the type of hybrid system required (function-replacing,
inter-communicating, or polymorphic) for solving the specific problem. This
is not easy. The inherent complexity of the hybrid intelligent systems means it
is impossible to know a priori about all potential links or relationships among
components that comprise a system. Interactions will occur at unpredictable
times, for unpredictable reasons, and between unpredictable components. For
this reason, it is futile to try and predict, or analyze, all the possibilities at
design-time. On the other hand, the flexible nature of agent interactions means
that agents can make decisions about the nature and scope of interactions at
run-time rather than design-time.

We also note that there are some limitations in different models based on
Medsker’s classification scheme. By employing agent technology and build-
ing hybrid systems from agent perspectives, most of the limitations can be
eliminated, and the shortcomings can be overcome. In this book, all hybrid
intelligent systems are classified into two categories – loosely-coupled and
tightly-coupled.
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Basics of Agents and Multi-agent Systems

Agents (adaptive or intelligent agents and multi-agent systems) constitute one
of the most prominent and attractive technologies in Computer Science at the
beginning of this new century. Agent and multi-agent system technologies,
methods, and theories are currently contributing to many diverse domains.
These include information retrieval, user interface design, robotics, electronic
commerce, computer mediated collaboration, computer games, education and
training, smart environments, ubiquitous computers, and social simulation.

This is not only a very promising technology, it is emerging as a new way
of thinking, a conceptual paradigm for analyzing problems and for design-
ing systems, for dealing with complexity, distribution and interactivity, and
perhaps a new perspective on computing and intelligence.

As was discussed in Chap. 1, agent technology is also suitable for the
analysis, design, and construction of hybrid intelligent systems. For the con-
venience of readers in the hybrid intelligent system area, a brief introduction
to agents and multi-agent systems is provided in this chapter. Wooldridge [4]
is a good introductory text for agent and multi-agent systems. For a more
comprehensive discussion on these topics, refer to [10]. For a road map of
agent and multi-agent system research, refer to [8] and [9].

3.1 Concepts of Agents and Multi-agent Systems

There is no universally accepted definition of the term ‘agent’. One definition,
which is adapted from [7], is attracting more and more attention. This states
that: an agent is a computer system that is situated in some environment, and
that is capable of autonomous action in this environment in order to meet
its design objectives. Multi-agent systems are systems composed of multiple
interacting agents.

The following paragraph from the “executive Summary” of [9] gives a clear
picture of the role agent technologies can play.
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Agent technologies are a natural extension of current component-based ap-
proaches, and have the potential to greatly impact the lives and work of all of
us and, accordingly, this area is one of the most dynamic and exciting in computer
science today. Some application domains where agent technologies will play a crucial
role include: Ambient Intelligence, the seamless delivery of ubiquitous computing,
continuous communications and intelligent user interfaces to consumer and indus-
trial devices; Grid Computing, where multi-agent system approaches will enable
efficient use of the resources of high-performance computing infrastructure in sci-
ence, engineering, medical and commercial applications; Electronic Business, where
agent-based approaches are already supporting the automation and semi-automation
of information-gathering activities and purchase transactions over the Internet; the
Semantic Web, where agents are needed both to provide services, and to make best
use of the resources available, often in cooperation with others; Bioinformatics and
Computational Biology, where intelligent agents may support the coherent explo-
ration of data revolution occurring in biology; and other including monitoring and
control, resource management, and space, military and manufacturing applications,
for example.

3.2 Agents as a Paradigm for Software Engineering

When building hybrid intelligent systems from agent perspectives, each intel-
ligent technique is a construction module in the form of an agent. That is,
agents are building blocks in agent-based hybrid intelligent systems. This is
one of the views of agents – agents as a paradigm for software engineering [4].

Software engineers have derived a progressively better understanding of
the characteristics of complexity in software. It is now widely recognized that
interaction is probably the most important single characteristic of complex
software. Software architecture that contains many dynamically interacting
components, each with their own thread of control, and engaging in complex,
coordinated protocols, typically have orders of magnitude more complex to
engineer correctly and efficiently than those that simply compute a function of
some input through a single thread of control. Unfortunately, it turns out that
many (if not most) real-world applications have precisely these characteristics.
As a consequence, a major research topic in computer science over at least the
past two decades has been the development of tools and techniques to model,
understand and implement systems in which interaction is the norm. Indeed,
many researchers now believe that in the future, computation itself will be
understood chiefly as a process of interaction. Just as we can understand
many systems as being composed of essentially passive objects, which have
a state, and upon which we can perform operations, so we can understand
many others as being made up of interacting, semi-autonomous agents. This
recognition has led to the growth of interest in agents as a new paradigm for
software engineering.
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3.3 Agents and Objects

Programmers familiar with object-oriented languages such as Java, C++, or
Smalltalk sometimes fail to see anything novel in the idea of agents. When
one stops to consider the relative properties of agents and objects, this is
perhaps not surprising. Objects are defined as computational entities that
encapsulate some state, are able to perform actions, or methods on this state,
and communicate by message passing. Here, the difference between agents
and objects are summarized. More details can be found in [4, 8, 10].

While there are obvious similarities, there are also significant differences
between agents and objects. The first is in the degree to which agents and ob-
jects are autonomous. Recall that the defining characteristic of object-oriented
programming is the principle of encapsulation–the idea that objects can have
control over their own internal state. In programming languages like Java,
we can declare instance variables (and methods) to be private, meaning they
are only accessible from within the object. We can of course also declare them
public, meaning that they can be accessed from anywhere, and indeed we must
do this for methods so that they can be used by other objects. But the use
of public instance variable is generally considered poor programming style. In
this way, an object can be thought of as exhibiting autonomy over its state: it
has control over it. But an object does not exhibit control over its behaviour.

That is, if a method is made available for other objects to invoke, then they
can do so whenever they wish; the object has no control over whether or not
that method is executed. Of course, an object must make methods available
to other objects, or else we would be unable to build a system out of them.
This is not normally an issue, because if we build a system, then we design
the objects that go in it, and they can thus be assumed to share a “common
goal”. But, in many types of multi-agent systems, (in particular, those that
contain agents built by different organizations or individuals), no such com-
mon goal can be assumed. It cannot be taken for granted that an agent will
execute an action (method) just because another agent wants it to – may
not be in the best interest of We thus do not think of agents as invoking
methods upon one-another, but rather as requesting actions to be performed.
If requests to perform then may perform the action or it may not.
The locus of control with respect to the decision about whether to execute
an action is thus different in agent and object systems. In the object-oriented
case, the decision lies with the object that invokes the method. In the agent
case, the decision lies with the agent that receives the request.

Note that there is nothing to stop us implementing agents using object-
oriented techniques. For example, we can build some kind of decision making
about whether to execute a method into the method itself, and in this way
achieve a stronger kind of autonomy for our objects. However, the point is
that autonomy of this kind is not a component of the basic object-oriented
model.
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The second important distinction between object and agent systems is
with respect to the notion of flexible (reactive, pro-active, social) autonomous
behaviour. The standard object model has nothing whatsoever to say about
how to build systems that integrate these types of behaviour. Again, one could
argue that we can build object-oriented programs that do integrate these types
of behaviour. But this argument misses the point, which is that the standard
object-oriented programming model has nothing to do with these types of
behaviour.

The third important distinction between the standard object model and
the view of agent systems is that agents are each considered to have their
own thread of control – in the standard object model, there is a single thread
of control in the system. Of course, a lot of work has recently been devoted
to concurrency in object-oriented programming. For example, the Java lan-
guage provides built-in constructs for multi-thread programming. There are
also many programming languages available (most of them admittedly pro-
totypes) that were specifically designed to allow concurrent object-oriented
programming. But such languages do not capture the idea we have of agents
as autonomous entities. Note, however, that active objects come quite close
to the concept of autonomous agents – though they are not agents capable of
flexible autonomous behaviour.

In addition to the above mentioned distinctions, there are two points that
qualitatively differentiate agent interactions from those that occur in other
software engineering paradigms such as the object-oriented paradigm. Firstly,
agent-oriented interactions generally occur through a high-level agent com-
munication language. Consequently, interactions are usually conducted at the
knowledge level; in terms of which goals should be followed, at what time,
and by whom. Secondly, as agents are flexible problem solvers, operating in
an environment over which they have only partial control and observability,
interactions need to be handled in a similarly flexible manner. Thus, agents
need the computational apparatus to make context-dependent decisions about
the nature and scope of their interactions and to initiate (and respond to) in-
teractions that were not necessarily foreseen at design time.

To summarize, the traditional view of an object and our view of an agent
have at least three distinctions:

Agents embody a stronger notion of autonomy than objects, and in par-
ticular, they decide for themselves whether or not to perform an action on
request from other agents;
Agents are capable of flexible (reactive, pro-active, social) behavior, and
the standard object model has nothing to say about such types of behavior;
and
A multi-agent system is inherently multi-threaded, in that each agent is
assumed to have at least one thread of control.
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3.4 Agents and Expert Systems

There are also some differences between agents and expert systems [4, 10].
Expert systems were the most important artificial intelligence technology

of the 1980s. An expert system is one that is capable of solving problems
or giving advice in some knowledge-rich domain. (Refer to Sect. 2.1.1.) A
classic example of an expert system is MYCIN, which was intended to assist
physicians in the treatment of blood infections in humans. MYCIN worked
by a process of interacting with a user in order to present the system with
a number of (symbolically represented) facts, which the system then used to
derive some conclusion. MYCIN acted very much as a consultant: it did not
operate directly on humans, or indeed any other environment. Thus perhaps
the most important distinction between agents and expert systems is that
expert systems like MYCIN are inherently disembodied. By this, we mean that
they do not interact directly with any environment: they get their information
not via sensors, but through a user acting as middle man. In the same way,
they do not act on any environment, but rather give feedback, or advice,
to a third party. In addition, expert systems are not generally capable of
cooperating with other agents.

In summary, the main differences between agents and expert systems are
as follows:

classic expert systems are disembodied – they are not coupled to any
environment in which they act, but rather act through a user as a “mid-
dleman” ;
expert systems are not generally capable of reactive, proactive behaviour;
and
expert systems are not generally equipped with social ability, in the sense
of cooperation, coordination, and negotiation.

Despite these differences, some expert systems (particularly those that
perform real-time control tasks) look very much like agents. A good example
is the ARCHON system [127].

3.5 Approaches to Agentification

There are many legacy software packages of intelligent techniques available for
different applications. When constructing hybrid intelligent systems, it is of
paramount importance to utilize these software packages. On the other hand,
for hybrid intelligent systems to be fully accepted in real-world applications,
they must be able to integrate and communicate with legacy computing sys-
tems. When constructing hybrid intelligent systems from an agent-oriented
viewpoint, this implies that some techniques should be available for convert-
ing such legacy programs into agents. In work thus far, a number of different
approaches have been taken – implementing a transducer, implementing a
wrapper, and rewriting the original program [42].
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3.5.1 Implementing a Transducer

One approach is to implement a transducer that mediates between an existing
program and other agents. The transducer accepts messages from other agents,
translates them into the program’s native communication protocol, and passes
those messages to the program. It accepts the program’s responses, translates
into agent communication language (ACL) such as Knowledge Query and
Manipulation Language (KQML) [44, 46], and sends the resulting messages on
to other agents. This approach has the advantage of requiring no knowledge of
the program other than its communication behavior. It is, therefore, especially
useful for situations in which the code for the program is unavailable or too
delicate to modify. This approach also works for other types of resources, such
as files and people. It is a simple matter to write a program to read or modify
an existing file with a specialized format, thereby providing access to that
file via ACL. Similarly, it is possible to provide a graphical user interface for
a person, allowing one to interact with the system in a specialized graphical
language, which is then converted into ACL, and vice versa.

3.5.2 Implementing a Wrapper

A second approach to dealing with legacy software is to implement a wrapper,

i.e., inject code into a program to allow it to communicate in ACL. The
wrapper can directly examine the data structures of the program and can
modify those data structures. Furthermore, it may be possible to inject calls
out of the program so it can take advantage of externally available information
and services. This approach has the advantage of greater efficiency than the
transduction approach, since there is less serial communication. It also works
for cases having no interprocess communication ability in the original program.
However, this requires the code for the program to be available.

3.5.3 Rewriting

Of course, the third and most drastic approach to dealing with legacy software
is to rewrite the original program. The advantage of this approach is that it
may be possible to enhance its efficiency or capability beyond what would be
possible in either the transduction or wrapping approaches.

3.5.4 Steps for Implementing a Wrapper

In the implementation of agent-based hybrid intelligent systems that will be
described in Chaps. 7 and 8, the second approach – implementing a wrapper –
was adopted to wrap the legacy programs by using Java Native Interface [50].

In order to access a native method (typically written in C/C++) from
a Java program, a class was created for the native method, and the native
method invoked using normal Java method invocation syntax. Native methods
are created using the following steps:
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Create a Java class for the native method and include code to load the
native method’s shared library (under Unix) or dynamically linked library
(under Microsoft Windows);
Use javah to create C language header files for the native method;
Implement the native method as a C function;
Compile and link the C code to create the shared library or dynamically
linked library.

These are the steps we use when implementing the two systems.

3.6 Approaches to Incorporating Intelligent Techniques
into Agents

There are many ways one can incorporate different intelligent techniques such
as fuzzy logic, neural networks, and genetic algorithms into agents. The ap-
plicability of any method depends heavily on one’s selection of the agent de-
velopment language and delivery platforms, as well as on one’s overall agent
architecture and, to a lesser extent, the infrastructure over or within which the
agent system exists. All these approaches can be divided into two categories:
loosely coupled and tightly coupled, which correspond to the two categories
of hybrid intelligent systems.

There are three principal methods for incorporating intelligent techniques
into individual agents from the implementation point of view [29]:

Via .DLL (Dynamically Linked Libraries) or other callable APIs (Appli-
cation Programming Interface);
Through specific interface agents and stand-alone intelligent systems;
Intelligent technique components as Object-Oriented classes [35].

The first two methods are usually used in loose-coupling models, whereas
the third one is usually used in tight-coupling models.

3.7 Agent-Based Hybrid Systems: State of the Art

Each intelligent technique has particular strengths and weaknesses, and they
cannot be applied universally to every problem. Furthermore, a collection of
agents are needed for complex decision making. Hence integrating two or more
intelligent techniques with multiple agents is very important. There has been
some research work involving in this topic.

3.7.1 The MIX Multi-agent Platform

One of such attempts is the MIX multi-agent platform [37, 83]. The focus of
MIX is to develop strategies and tools for integrating neural and symbolic
technologies. This test-bed consists of a distributed system of multiple co-
operating heterogeneous agents. The system includes a multi-agent toolkit
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with generic agent structures, services, and communication protocols. Spe-
cific agents have been developed for different types of neural networks and for
other functions such as fuzzy inference and case-based reasoning.

3.7.2 The PREDICTOR System

Another such attempt is the PREDICTOR system. In [38] Scherer and
Schlageter detail the use of distributed artificial intelligence approaches for
combining neural networks and expert systems. The approach is based on a
blackboard architecture and is demonstrated in the domain of economic fore-
casting. The authors have implemented a system called PREDICTOR using
this approach to solve prediction tasks in economics. The architecture of the
PREDICTOR system is shown in Fig. 3.1.

Fig. 3.1. Architecture of PREDICTOR

In this architecture, each problem solver has specific knowledge about
the domain and has the ability to react to messages that are distributed
via the communication facility. To handle the communication aspects of this
system, each problem solver has a front end processor which is responsible
for managing its co-operative aspects. The communication facility distributes
messages all over the system (scheduler, problem solvers). The blackboard
manager provides other nodes with blackboard operations like search, read,
write, and update. The scheduler is responsible for the task analysis, task
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allocation and task synthesis. Domain dependent knowledge, specific analysis
and allocation strategies are stored at a meta level within a knowledge base.
This meta knowledge controls the problem solving abilities of the scheduler.

3.7.3 Intelligent Multi-agent Hybrid Distributed Architecture

In [39], Khosla and Dillon introduce a computational architecture called
IMAHDA (Intelligent Multi-Agent Hybrid Distributed Architecture). The role
and knowledge content of IMAHDA consists of four layers. They are: object,
software agent, intelligent agent, and problem solving agent respectively. The
IMAHDA can be seen as being constructed from generic software agents (dis-
tributed processing, distributed communication, belief base, and relational
software agents), generic intelligent agents (expert/knowledge based system,
supervised neural network, unsupervised neural network, fuzzy logic, genetic
algorithm intelligent agents), and problem solving agents (global preprocess-
ing, decomposition, control, decision, and post processing agents) as shown in
Fig. 3.2.

Fig. 3.2. Agent Building Blocks of IMAHDA
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3.7.4 Multi-agent Architecture for Fuzzy Modeling

A more recent attempt is the multi-agent architecture for fuzzy modeling [40].
Delgado et al. have proposed a hybrid learning system that combines different
fuzzy modeling techniques by means of a multi-agent architecture. The pro-
posed multi-agent architecture, involving agents which embody the different
problem solving methods, is a flexible tool to be used in the fuzzy modeling
process. The system consists of four kinds of agents: a service agent or facilita-
tor acting as a Yellow Page to other agents, task agents (including clustering,
rule generation, tuning, and evaluator agents), resource agents, and control
agents (containing planner, decisor, and error control agents).

3.7.5 Generic Architecture for Hybrid Intelligent Systems

In [121], Jacobsen has proposed a generic architecture for hybrid intelligent
systems, which is based on the conceptual learning agent architecture accord-
ing to Russell and Norvig [3]. They presented two instantiations of the archi-
tecture – reinforcement-driven fuzzy-relation-adaptation architecture and an
expert-guided hybrid neuro-fuzzy system, and have experimentally validated
their designs.

3.7.6 Summary

Among the above five agent-based hybrid systems, the MIX, PREDICTOR,
and architecture for fuzzy modeling only integrated very limited soft com-
puting techniques. Both the MIX and PREDICTOR systems are focused on
the integration of neural networks and symbolic technologies such as expert
systems. The multi-agent architecture of Delgado et al. concentrated on the in-
tegration of different fuzzy modeling techniques such as fuzzy clustering, fuzzy
rule generation, and fuzzy rule tuning techniques. In MIX and PREDICTOR
systems, the way for integrating intelligent techniques into multi-agent sys-
tems is to embed the intelligent techniques in each individual agent. The MIX
and IMAHDA architectures are inflexible as no middle agent [41] was used.
The work in [121] is focused on the micro (intra-agent) level of agents, i.e.,
the integration and inter action of different components within one agent. The
macro (inter-agent) level integration and interaction are ignored.

In summarizing, the approaches used in the above systems have the fol-
lowing limitations.

It is impossible to embed many intelligent techniques within a single agent.
Otherwise, the agents will be overloaded. In many applications, the agents
in multi-agent systems should be kept simple for ease of maintenance,
initialization, and customization.
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It is not flexible to add more intelligent techniques to, or delete some un-
wanted one from, the multi-agent systems. For example, one software agent
may be equipped with fuzzy logic, the other with a neural network etc. In
such a case, one agent can only have one soft computing capability. If we
want the agent to possess two or more soft computing or hard computing
capabilities, the implementations must be modified.
The agents in these systems are difficult to inter-operate as they do not
use a common type of or standard agent communication language.

In addition to the above limitations, all these systems do not follow
any agent-oriented analysis and design methodology. (In IMAHDA, object-
oriented analysis and design approaches were adopted.) Therefore it is es-
sential to find a new way to integrate intelligent techniques with multi-agent
systems that can overcome the drawbacks of currently used approaches. More-
over, it is vital to tailor an agent-oriented methodology for agent based hybrid
intelligent system construction which is based on currently available agent-
oriented approaches.
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4

Agent-Oriented Methodologies

Developing applications in terms of autonomous software agents that exhibit
proactive and intelligent behavior, and that interact with one another in terms
of high-level protocols and languages, leads to a new programming paradigm.
By dint of being a new programming paradigm, the development of agent-
based applications implies new programming abstractions and techniques, as
well as new methodologies.

Agent-based systems for complex problem solving and decision making,
like hybrid intelligent systems, usually have a large number of parts or com-
ponents that have many interactions. These interactions may occur at unpre-
dictable times, for unpredictable reasons, between unpredictable components.
Existing software development techniques (typically, object-oriented) are in-
adequate for modeling agent-based systems, as they cannot manage these
complex interactions efficiently. Existing approaches fail to adequately cap-
ture an agent’s flexible, autonomous problem-solving behavior, the richness
of an agent’s interactions, and the complexity of an agent system’s organi-
zational structures [81]. For these reasons, agent-oriented methodologies are
required to build agent-based systems for different applications.

This chapter first provides a brief overview of the present state of the art
in the area of software engineering methodologies for agent-based systems.
An agent-oriented methodology for the analysis and design of agent-based
hybrid intelligent systems is then extracted, which is mainly based on the
Gaia methodology [81].

4.1 Traditional Methodologies

A number of different methodologies have been proposed in recent years for
modeling and engineering agents and multi-agent systems [75, 76, 86, 88].
However, traditional methodologies for analysis and design are poorly suited
to multi-agent systems because of the fundamental mismatch between the re-
spective levels of abstraction. Despite this mismatch, several proposals do take
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object-oriented modeling techniques or methodologies as their basis. On the
one hand, some proposals directly extend the applicability of object-oriented
methodologies and techniques to the design of agent systems. However, these
proposals fail to capture the autonomous and proactive behavior of agents,
as well as the richness of their interactions. On the other hand, some pro-
posals seek to extend and adapt object-oriented models and techniques to
define a methodology for use in multi-agent systems. This can lead, for ex-
ample, to extended models suitable for representing agent behavior and their
interactions [77, 90], as well as to agent-tuned extensions of UML (Unified
Modeling Language) [77]. However, although these proposals can sometimes
achieve a good modeling of the autonomous behavior of agents and of their
interactions, they lack the conceptual mechanisms for adequately dealing with
organizations and agent societies.

A different set of proposals build upon, and extend, methodologies and
modeling techniques from knowledge engineering [78]. These techniques pro-
vide formal and compositional modeling languages for the verification of sys-
tem structure and function. These approaches are well-suited to modeling
knowledge- and information- oriented agents. However, since these approaches
usually assume a centralized view of knowledge-based systems, they fail to
provide adequate models and support for the societal view of multi-agent
systems.

Other models and approaches attempt to model and implement multi-
agent systems from an “organization-oriented” point of view [79]. These help
pave the way for agent-oriented methodologies by explicitly conceiving multi-
agent systems as organizations or as societies. However, these proposals define
an organization merely as a collection of interacting roles, thus failing, again,
to deal with the key issue of social tasks.

4.2 Gaia Methodology

The Gaia methodology [80, 81] represents one of the few attempts specifically
tailored to the analysis and design of multi-agent systems, and which deals
with both the micro (intra-agent) level and the macro (inter-agent) level of
analysis and design. Gaia makes explicit use of an organizational point of
view. In this methodology, analysis and design are well-separated phases. The
analysis aims to develop an understanding of the system and its structure, in
terms of the roles that have to be played in agent organization and interaction,
without any reference to implementation details. The design phase aims to
define the actual structure of the agent system of the services to be provided by
each agent, and of the acquaintances’ structure. However, Gaia, as it presently
stands, is not a general methodology for all kinds of multi-agent systems.
Rather, it is intended to support the development of distributed problem
solvers in which the system’s constituent components are known at design time
(i.e., it is a closed system) and in which all agents are expected to cooperate
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toward the achievement of a global goal. For these reasons, Gaia is not suitable
for modeling open systems, and for controlling the behavior of self-interested
agents.

Similar shortcomings also affect most of the recently proposed organization-
oriented methodologies. For example, the MASE (Multi-Agent Systems En-
gineering) methodology [89, 86, 88] provides clean guidelines for developing
multi-agent systems, based on a well-defined seven-step process (capturing
goals, applying use cases, refining roles, creating agent classes, construct-
ing conversations, assembling agent classes, and system design). This process
drives developers from analysis to implementation. However, once again, the
design process fails to identify any organizational abstraction other than the
role model.

4.3 Coordination-Oriented Methodology

In [75], the authors broaden the scope of Gaia, and indicate that insights from
the area of coordination models can be incorporated in order to make it more
suitable for developing Internet-based applications. The adoption of a coor-
dination model as the conceptual abstraction to be exploited in the analysis
and design of multi-agent systems for the Internet enables open systems, self-
interested agents, and social laws, to find suitable accommodation. On this
basis, the methodological concepts introduced by Gaia can be effectively com-
plemented by the concepts of social laws and coordination media, leading to
the definition of a coordination-oriented methodology suitable for multi-agent
Internet systems. Yet, to date, the coordination-oriented methodology is far
from being well-defined.

To date, the organizational concepts of agent roles and role models have
become an important research area in the field of agent-based systems. In [87],
Zambonelli, Jennings, and Wooldridge introduced three further organizational
abstractions: organizational rules, organizational structures, and organiza-
tional patterns. They sketched some general guidelines for a new methodology
for the analysis and design of multi-agent systems that is centered around or-
ganizational abstractions.

4.4 Prometheus Methodology

Another agent-oriented methodology that has proven effective in assisting
developers to design, document, and build agent systems is the Prometheus

methodology [139]. This methodology supports, in particular, the development
of BDI-like agents.

The Prometheus methodology consists of three phases. The system spec-

ification phase focuses on identifying the basic functionalities of the system,
along with inputs (percepts), outputs (actions) and any important shared data
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sources. The architectural design phase uses outputs from the previous phase
to determine which agents the system will contain and how they will interact.
The detailed design phase looks at the internals of each agent and how it will
accomplish its tasks within the overall system.

4.5 Methodology for Analysis and Design
of Agent-Based Hybrids

From the discussions so far, it is clear that hybrid intelligent systems are
crucial for complex problem solving and decision making. It is also apparent
that agent abstraction can be used by software developers to more naturally
and easily understand, model, and develop hybrid intelligent systems. Agent-
based hybrid intelligent systems have the following main characteristics:

agents are heterogeneous, in that different agents may be implemented
using different programming languages, architectures, and techniques;
the organizational structure of the system is dynamic, and agents can
dynamically leave and enter the system;
agents exhibit social behavior, in that they interact with one another to
cooperate to achieve a common objective;
there are no self-interested agents in the systems; and
integration and interaction of different techniques is crucial.

An agent-oriented methodology that has been specifically tailored to the
analysis and design of agent-based hybrid intelligent systems is required.
Dozens of agent-oriented methodologies have been proposed [76]. Although
there is no one methodology that can fully meet the requirements of the analy-
sis and design of agent-based hybrid intelligent systems, the Gaia methodology
is the most suitable, after comparing many of the methodologies. The method-
ology used in the development of the systems in Chaps. 7 and 8 is outlined
below. It is mainly based on the Gaia methodology [81], the coordination-

oriented methodology [75], and the organization abstraction [87], but is ex-
tended with the knowledge and skills models as rich knowledge and adequate

information as well as proficient skills to use the knowledge and information
are key factors in complex problem solving and decision making.

4.5.1 Outline of the Methodology

In any agent-based hybrid intelligent system for real-world applications, the
dynamic arrival of unknown agents needs to be taken into account, but with
no self-interested behavior in the course of the interactions. The Gaia method-
ology is ill suited to handling the dynamic arrival of new agents into the sys-
tem, whereas coordination-oriented methodology is focused on the processing
of self-interested agents. Thus both methodologies cannot be applied to the
analysis and design of hybrid intelligent systems directly.
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In Gaia methodology, analysis and design are well-separated phases. The
analysis phase aims to identify what the actual organization of the multiple
agents should look like. It does this by decomposing the system into abstract
“loci of control”, i.e., the roles to be played in the organization, and the way
in which they interact accordingly to specific protocols. This defines the role

model and interaction model. The design phase starts from the models defined
during the analysis phase and aims to define the actual agent system in such
a way that it can easily be implemented. To this end, the design phase has to
decide which classes of agents, and how many, have to play the roles identified
during the analysis phase (agent model); which services agents must provide
to fulfill their role (service model); and what is the actual topology of the
interactions that flows from interaction and the agent models (acquaintance

model).
The concept of coordination models can be exploited in the context of

designing multi-agent systems for use on the Internet, where openness and self-
interest are key factors. A coordination model can be thought of as consisting
of three elements [75]. They are:

the coordinables: the entities whose mutual interaction is ruled by the
model, e.g., the agents in a multi-agent system;
the coordination media: the abstractions enabling agent interactions, as
well as the core around which the components of a coordinated system are
organized. Examples are semaphores, monitors, channels, or more complex
media like tuple spaces, blackboards;
the coordination laws: define the behavior of the coordination media in
response to interaction events. The laws can be defined in terms of a com-
munication language (a syntax used to express and exchange data struc-
tures) and a coordination language (a set of interaction primitives and
their semantics).

The architecture of a multi-agent system can naturally be viewed as a
computational organization. For the complete specification of computational
organizations, three additional organizational concepts – organizational rules,
organizational structures, and organizational patterns are introduced [87].
Zambonelli, Jennings, and Wooldridge [87] argue that these concepts are of
fundamental importance in multi-agent systems, and they should play a cen-
tral role in any methodology.

Furthermore, in complex problem solving and decision making, the rapport
of information, knowledge, and skills to use the information and knowledge is
of paramount importance. When working on a methodology for such agent-
based systems, one should pay attention to the knowledge and skills of agents.

Taking all these factors into account, a methodology for the analysis and
design of agent-based hybrid intelligent systems based on the Gaia method-
ology, coordination model, and organization abstraction is created.

We propose that such a methodology should consist of the construction of
six main models: agent models, role models, skill models, knowledge models,
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an organizational model, and an interaction model. Each of the steps in the
methodology below results in the construction of one (or more) of the corre-
sponding models. The methodology for their elaboration and refinement can
be expressed in five steps.

1.

2.

3.

4.

5.

The first step consists of the identification of the roles in the application
domain in terms of the corresponding goals or tasks. Consequently, a role
is identified by the main tasks or responsibilities required by the system
and forms the basis for a specification of agent types.

Secondly, the main skills associated with agent roles should be identi-
fied. Skills consist of the basic services required to be able to perform a
role and ways to manipulate knowledge (reasoning techniques). The is-
sue of agent-wrapping should be addressed in this step, which involves
the integration of non-agent software components, and the design of an
appropriate interface.
The third step consists of the modeling of the knowledge about the appli-
cation domain associated with identified roles or skills and should result
in the design of an adequate ontology. Techniques from knowledge engi-
neering can be used here.
Fourthly, an organizational structure of the multi-agent system should
be designed. The coordination among agents to perform a task and the
required communication schemes need to be analyzed in this step.
Finally, the dynamics of the multi-agent system should be analyzed in
terms of the flow of information, resulting in, for example, synchronization
requirements derived from the roles associated with individual agents.

Fig. 4.1. Relationships between Models

With this methodology, analysis and design can be thought of as a process
of developing increasingly detailed models of the system to be constructed.
The main models used in this methodology are summarized in Fig. 4.1. More
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details are given in the following subsections. The descriptions of role mod-
els, interaction models, and agent models axe based on [81]. The description
of organizational model (organizational rules, organizational structure, and
organizational patterns) is based on [87].

4.5.2 Role Model

The role model identifies the key roles in the system. Here a role can be viewed
as an abstract description of an entity’s expected function. A role is defined
by four attributes: responsibilities, permissions, activities and protocols.

Responsibilities determine functionality and, as such, are perhaps the key
attribute associated with a role. Responsibilities are divided into two types:
liveness properties and safety properties. Liveness properties intuitively state
that “something good happens”. They describe those states of affairs that
an agent must bring about, given certain environmental conditions. In con-
trast, safety properties are invariants. Intuitively, a safety property states that
“nothing bad happens” (i.e., that an acceptable state of affairs is maintained
across all states of execution).

In order to realize responsibilities, a role has a set of permissions. Permis-
sions are the “rights” associated with a role. The permissions of a role thus
identify the resources that are available to that role in order to realize its
responsibilities. Permissions tend to be information resources. For example, a
role might have associated with it the ability to read a particular item of in-
formation, or to modify another piece of information. A role can also have the
ability to generate information. The activities of a role are computations asso-
ciated with the role that may be carried out by the agent without interacting
with other agents.

Finally, a role is also identified with a number of protocols, which define
the way that it can interact with other roles. A role model is comprised of a set
of role schemata, one for each role in the system. A role schema draws together
the various attributes discussed above into a single place (see Fig. 4.2).

The formal notation for expressing protocols, activities, permissions, and
responsibilities adopted by Gaia will be used. To introduce these concepts,
the example of a PRICEWATCHER role will be used. The purpose of this role
is to monitor whether the trading price of a specific security has exceeded the
expected value of the share holder. The protocols and activities involved in
the PRICEWATCHER role include: InformShareholder, Getlnitializelnformation,
GetPrice and Compare. The activity names (like Compare) are underlined to
distinguish them from protocols.

The following is an illustration of the permissions associated with the role
PRICEWATCHER:

reads supplied Security Code // Security code used in Share Exchanger
supplied ExpectedValue // The value the shareholder expected
supplied TradingPrice // The current trading price of the security
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Fig. 4.2. Template for Role Schemata

This specification defines three permissions for PRICEWATCHER. It says
that the agent carrying out the role has permissions to access the value of
SecurityCode, ExpectedValue and TradingPrice. The supplied keyword
here is used to indicate that some roles are parameterized by certain val-
ues. Another two types of permission are changes (read and modify) and
generates (produce a resource). Note that these permissions relate to the
knowledge that the agent has.

The liveness responsibilities for the PRICEWATCHER role might be:

whenever the share exchange is not closed, get the trading price of the
specific security (indicated by the SecurityCode);
whenever the trading price has exceeded the expected value, inform the
share holder.

Following the Gaia notation, liveness properties are specified via a liveness

expression, which defines the “life-cycle” of the role and is a regular expression.
The general form of a liveness expression is:

where ROLENAME is the name of the role whose liveness properties are being
defined, and expression is the liveness expression defining the liveness prop-
erties of ROLENAME. The atomic components of a liveness expression are
either activities or protocols. The operators for liveness expressions are shown
in Table 4.1.

Thus the liveness responsibilities of the PRICEWATCHER role can be ex-
pressed as:

This expression says that PRICEWATCHER consists of executing the proto-
col Getlnitializelnformation, followed by the protocol GetPrice, followed by the
activity Compare and the protocol InformShareholder.
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Safety requirements are specified by means of a list of predicates. These
predicates are typically expressed over the variables listed in a role’s permis-
sion attribute. By convention, safety expressions are listed as a bulleted list,
each item in the list expressing an individual safety responsibility.

When all these are put together, the schema for the PRICEWATCHER role
results (Fig. 4.3).

Fig. 4.3. Schema for Role PRICEWATCHER

4.5.3 Interaction Model

There are inevitably dependencies and relationships between the various roles
in a multi-agent organization. Indeed, such interplay is central to the way in
which the system functions. Given this fact, interactions obviously need to be
captured and represented in the analysis phase. Such links between roles are
represented in the interaction model. This model consists of a set of protocol
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definitions, one for each type of inter-role interaction. Here a protocol can be
viewed as an institutionalized pattern of interactions.

A protocol definition consists of the following attributes:

purpose: brief textual description of the nature of the interaction (e.g.,
‘information request’, ‘schedule activity’, and ‘assign task’);
initiator: the role(s) responsible for starting the interaction;
responder: the role(s) with which the initiator interacts;
inputs: information used by the role initiator while enacting the protocol;
outputs: information supplied by/to the protocol responder during the
course of the interaction;
processing: brief textual description of any processing the protocol initiator
performs during the course of the interaction.

As an illustration, the GetPrice protocol is considered, which forms part
of the PRICEWATCHER role (Fig. 4.4). This states that the protocol Get-
Price is initiated by the role PRICEWATCHER and involves the role SHA-
REEXCHANGER. This protocol involves PRICEWATCHER providing SHARE-
EXCHANGER with the SecurityCode, and results in SHAREEXCHANGER re-
turning the value of the Trading Price for security designated by the
SecurityCode.

Fig. 4.4. The GetPrice Protocol Definition

4.5.4 Organizational Rules

Role models precisely describe all the roles that constitute the computational
organization, in terms of their functionalities, activities, and responsibilities,
as well as in terms of their interaction protocols and patterns, which establish
the position of each role in the organization. However, such role models cannot
be considered as the sole organizational abstraction upon which to base the
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entire development process. Rather, before the design process actually defines
the role model and, consequently, the whole organization, the analysis phase
should define how the organization is expected to work, i.e., the organiza-
tional rules. These describe the constraints that the actual organization, once
defined, will have to respect.

The explicit identification of organizational rules is of particular impor-
tance in the context of open agent systems. With the arrival of new, and pre-
viously unknown, agents, the overall organization must somehow enforce its
internal coherency despite the dynamic and untrustworthy environment. The
identification of global organizational rules allows the hybrid system designer
to explicitly define whether and when to allow newly arrived agents to enter
the organization, and once accepted, what their position in the organization
should be.

In summary, the analysis phase is tasked with collecting all the specifi-
cations from which the design of the computational organization can start.
(Refer to Fig. 4.1.) The output of the analysis phase should be a triple,

where PR are the preliminary roles of the system, PP are
the preliminary protocols (which have already been discovered to be neces-
sary for the preliminary roles), and OL are the organizational rules.

4.5.5 Agent Model

The purpose of the agent model is to document the various agent types that
will be used in the system under development, and the agent instances that
will realize these agent types at run-time.

An agent type is best thought of as a set of agent roles. There may, in
fact, be a one-to-one correspondence between roles (as identified in the role
model) and agent types. However, this need not be the case. A designer can
choose to package a number of closely related roles in the same agent type
for the purpose of convenience. Efficiency will also be a major concern at this
stage – a designer will almost certainly want to optimize the design, and one
way of doing this is to aggregate a number of agent roles into a single type.

The agent model is defined using a simple agent type tree, in which leaf
nodes correspond to roles, and other nodes correspond to agent types. If an
agent type has children and then this means that is composed of
the roles that make up and

4.5.6 Skill Model

The aim of the skill model is to identify the main skills with each agent role.
Skills mainly consist of the basic services required to be able to perform a
role.

A service is defined as a function of the agent. For each service that may be
performed by an agent, it is necessary to document its properties. Specifically,
one must identify the inputs, outputs, pre-conditions, and post-conditions of
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each service. Inputs and outputs to services will be derived in an obvious way
from the interaction model. Pre- and post-conditions represent constraints on
services. These are derived from the safety properties of a role. Note that by
definition, each role will be associated with at least one service.

The services that an agent will perform are derived from the list of pro-
tocols, activities, responsibilities and the liveness properties of a role. The
inference mechanisms used by roles also need to be identified in this model.

4.5.7 Knowledge Model

The knowledge model identifies the different knowledge levels needed by each
identified agent in the agent model. The first level of knowledge is for agent
interaction and communication. This involves domain-specific and domain-
independent terminologies and their relationships, an so on. The identified
domain-specific terms and their relationships will result in the construction of
a domain-dependent ontology for a specific application. The identified domain-
independent terms and their relationships will result in customizing a domain-
independent ontology from some available general-purpose ontologies.

The second level of knowledge is some domain knowledge related to specific
problem solving techniques. This part of knowledge can be represented by
typical if – then rules. These rules are also domain-specific.

The third level of knowledge is meta knowledge that directs the activities
of an agent. This part of knowledge can also be represented by if – then rules.
These rules are more abstract than those in the second level.

4.5.8 Organizational Structures and Patterns

In the design of a multi-agent system, as well as in the design of any or-
ganization, the role model should derive from the organizational structure
that is explicitly chosen. Thus organizational structures should be viewed as
first-class abstractions in the design of multi-agent systems.

The definition of the system’s overall organizational structure can derive
from the specifications collected during the analysis phase, as well as from
other factors, related to efficiency, simplicity of application design, and orga-
nizational theory. In any case, a methodology cannot start the analysis phase
by attempting to define a complete role model that implicitly sets the orga-
nizational structure. Rather, the definition of the organizational structure is
a design choice that should not be anticipated during the analysis phase.

The obvious means by which to specify an organization is through the
inter-agent relationships that exist within it. There is no universally accepted
terminology set of organizational relationships: different types of organizations
make use of entirely different organizational concepts.

The aim of organizational patterns is to encourage re-use of pre-defined
components and architectures in order to ease and speed-up the work of both
designers and developers. With the availability of catalogs of organizational
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patterns, designers can recognize in their multi-agent systems the presence of
known patterns, and re-use definitions from the catalog. In addition, designers
can also be guided by the catalog in the choice of the most appropriate or-
ganizational patterns for their multi-agent system. Of course, for patterns to
be properly exploited, the organizational structure must have been explicitly
identified in the design phase.

The design phase builds on the output of the analysis phase and produces
a complete specification of the multi-agent system. The design stage can now
be summarized.

Create an agent model: (1) aggregate roles into agent types, and refine to
form an agent type hierarchy; (2) document the instances of each agent
type using instance annotations.
Develop a skill model, by examining activities, protocols, and safety and
liveness properties of roles.
Develop an knowledge model from the interaction model and agent model.
Identify organizational structures and organizational patterns that respect
the organizational rules.

4.6 Summary

Agent-oriented methodologies are required to build agent-based systems, as
there is a fundamental mismatch between the concepts used by other main-
stream software engineering paradigms and the agent-oriented perspective.

Taking into account the characteristics of hybrid intelligent systems, a
methodology for the analysis and design of agent-based hybrid intelligent sys-
tems was outlined, which is based on the Gaia methodology and organiza-
tional abstractions. These guidelines allow us to start the analysis and design
an agent-based hybrid intelligent system. However, further work is needed to
detail the proposed methodology, by:

fully formalizing the concepts of organizational rules and organizational
structures;
fully formalizing the concepts of a knowledge model;
providing suitable notations for expressing the expected outputs of the
analysis and design phases.
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5

Agent-Based Framework

for Hybrid Intelligent Systems

Agents are good at dynamic interactions, a trait that is crucial for the success
of hybrid intelligent systems. Meanwhile, to greatly facilitate the construction
of hybrid intelligent systems from agent perspectives, a unifying agent-based
framework is required. Under the support of such a framework, it is expected
that any new capabilities (in the form of additional agents) can easily be
added to a hybrid intelligent system, and any techniques no longer used can
be dynamically deleted from a system. Such an agent-based framework is
proposed in this chapter.

5.1 A Unifying Agent Framework
for Hybrid Intelligent Systems

As discussed in Chap. 2, using current approaches to constructing hybrid
intelligent systems results in non-adaptive organization. This shortcoming can
be overcome with agent technology. With this technology, a special kind of
agent (called a middle agent [41]) can be introduced into the system. Any
other agents can add to the system by simply registering with the middle
agent, or leave the system by unregistering with the middle agent.

One of the basic problems facing designers of open, multi-agent systems for
the Internet is the connection problem, that is finding other agents who might
have suitable information or other capabilities that one agent needs. To an-
swer this question, different types of middle agents are usually employed [41].
Like middlemen in physical commerce, middle agents support the flow of in-
formation in electronic commerce, assisting in locating and connecting the
ultimate information, or service provider, with the ultimate information, or
service requester.

The performance of middle agents relies heavily on the matchmaking algo-
rithms used. Matchmaking is the process of finding an appropriate provider for
a requester through a middle agent. There has been substantial work carried
out on “matchmaking” involving in different kinds of middle agents [114]. As
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this is also crucial for the success of the proposed framework, we will discuss
this topic in detail in Chap. 6.

To help agent-based hybrid intelligent systems to make decisions about
the nature and scope of interactions at run-time, each agent should be au-
tonomous. This is one of four main characteristics of agents [1]. Of course, it
is important too that it is well designed. A planning agent with the capabil-
ity to generate work plans based on the tasks received is also required. The
hybrid intelligent systems can be reconfigured dynamically according to the
work plans generated.

In order to add new problem solving techniques/capabilities to a system,
they should be converted into agents. Generally, there are three main ap-
proaches to be taken: implementing a transducer, implementing a wrapper,
and rewriting the original program as described in Sect. 3.5. Once they are
converted into agents, they can be easily integrated into the system. In that
way new capabilities are added to a system in the form of agents.

As any problem solving agent may only have limited capabilities, it needs
the help of other agents when solving a complex problem. The problem solving
agents can ask for help by sending requests to the middle agents in a system.

Of course, an interface is needed to communicate with users. All agents
in a system should explain the meaning of received messages in the same
way. This is accomplished by sharing a common ontology. Putting all these
together results in the agent-based framework for hybrid intelligent systems
which is shown in Fig. 5.1.

Fig. 5.1. General Framework of Agent-Based Hybrid Intelligent Systems

This framework is general, and can be applied to build agent-based hy-
brid intelligent systems for different applications. Some successful case studies
based on the framework will be presented in Chaps. 7 and 8 to verify the ap-
plicability of this framework, and further justify that agent perspectives are
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well suited to building hybrid intelligent systems. These examples will be also
used to demonstrate how to construct agent-based hybrid intelligent systems.

Compared with those agent-based hybrid systems described in Sect. 3.7,
the framework has some crucial characteristics that differentiate this work
from other hybrid intelligent systems.

It has the ability to exchange comprehensible communications (interac-
tions at knowledge level).
Each service requester agent (decision making agent) can easily access all
the intelligent techniques provided by service provider agents (e.g., soft
computing agents) in the system.
The presence of the middle agent in the framework allows adaptive system
organization. For example, if we are sure that one hybrid soft computing
agent can do a better job than a single technology soft computing agent,
we can delete the single soft computing technology agent and add the
hybrid agent to the society simply by adding or deleting a record in the
database of the serving agent.
Overall system robustness is facilitated through the use of the middle
agent. For example, if a particular service provider (e.g., a soft computing
agent) disappears, a requester agent (decision making agent) can find an-
other one with the same or similar capabilities by interrogating the middle
agent.
Agent-based hybrid intelligent systems based on the framework can make
decisions about the nature and scope of interactions at run time.

With the support of the agent-based intelligent technique society, the
agent-based hybrid intelligent system developers need only to build the
domain-specific parts and construct the ontologies used in the specific ap-
plication field – rather than re-inventing the wheel as often happens at the
moment. For demonstration purpose, an example ontology for finance that
we have built is presented in the next section. It will be used in the system
described in Chap. 7.

5.2 Issues on Ontologies

The American Heritage Dictionary defines “ontology” as “the branch of meta-
physics that deals with the nature of being”. The term has recently been
adopted by the artificial intelligence community to refer to a set of concepts
or terms that can be used to describe some area of knowledge, or build a
representation of it [55]. An ontology can be very high-level, consisting of
concepts that organize the upper parts of a knowledge base such as the Word-
Net [56, 59], or it can be domain-specific, such as an ontology for finance.



60 5 Agent-Based Framework for Hybrid Intelligent Systems

5.2.1 Why Ontologies?

To answer this question, consider the following scenario.
In a hybrid intelligent system for financial investment planning, one soft

computing agent advertises its capability to a middle agent as “pattern
watcher in the stock market”, whereas another decision making agent requests
a soft computing agent that is a “pattern watcher in the share market”. In
such a situation, problems arise when the middle agent tries to match them.
How could the middle agent know the “stock market” and the “share mar-
ket” are the same thing? Moreover, in complex problem solving and decision
making, the agents in a multi-agent system need to coordinate, cooperate
or communicate with each other. Communications among agents should be
based on some common knowledge, as with human beings. When one talks
about something, the other person must have the same background so that
they can understand each other.

To this end, ontologies are employed. Ontologies are a key component
in how different agents in a multi-agent system can communicate effectively,
and how the knowledge of agents can develop [54]. Most methods to resolve
semantic heterogeneities rely on using partial or global ontological knowledge
which may be shared among agents [116].

When applying multi-agent systems to different application domains, dif-
ferent domain-specific ontologies are needed to support agent communications.
This is one part of the knowledge model. This is also why we include a domain-
specific ontology in the proposed agent-based framework for hybrid intelligent
systems. (See Fig. 5.1.)

For different applications, specific ontologies in the corresponding appli-
cation domains are needed. For financial investment planning problems, it is
necessary to build an ontology used in the agent-based financial investment
system [30].

Before discussing the construction of the financial ontology, the distinction
between an ontology and a knowledge base should be clarified. An ontology
provides the basic structure or armature around which a knowledge base can
be built. An ontology provides a set of concepts and terms for describing
some domain, while a knowledge base uses those terms to represent what
is true about some real or hypothetical world. Thus, a financial ontology
might contain working definitions of concepts like money, banks, and stocks,
but it would not contain assertions that a particular investor bought certain
securities, although a knowledge base might.

5.2.2 Ontologies in Finance

Interest in ontologies has grown as researchers and system developers have be-
come more interested in reusing or sharing knowledge across systems. There
are some general-purpose upper ontologies such as CYC [58] and Word-
net [59], and some domain-specific ontologies that focus on the domains
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of discourse such as chemicals ontology and air campaign planning ontol-
ogy. (Refer to [54] for an overview of the recent development of the field
of ontologies in artificial intelligence.) Until now, very few financial ontolo-
gies have been reported. In the Larflast project, a financial domain ontol-
ogy is under construction and will be used for learning finance terminol-
ogy (http://www.linglink.lu/hlt/projects/larflast-inco/ar-99/ar99. html. (See
also [57].) In the I3 (Intelligent Integration of Information, http://dc.isx.com/

I3) project, there is a financial ontology and databases group. They are cre-
ating ontologies of financial knowledge in Loom that describe the contents of
existing financial databases. Loom is a kind of knowledge-representation lan-
guage (http://www.isi.edu/isd/ LOOM/documentation/LOOM-DOCS.html.)
We failed to find an existing financial ontology that can be (re)used in multi-
agent environments. This lack directly motivated us to build such an ontology.

5.2.3 Construction of Financial Ontology

To facilitate the construction of multi-agent application systems in finance, to
support communication among agents in the prototype multi-agent system,
and to ease the implementation of the Nearest Neighbor matchmaking algo-
rithm in the middle agent, a finance ontology was constructed. This ontology
provides working definitions of concepts like money, banks, and stocks. This
knowledge is expressed in computer-usable formalisms.

Ontolingua was used to construct the financial ontology. Ontolingua is
an ontology development environment that provides a suite of ontology au-
thoring and translation tools, and a library of modular reusable ontologies.
(For details on Ontolingua, visit http://ontolingua.stanford.edu.) Ontolingua

is based on a top ontology that defines terms such as frames, slots, slot val-

ues and facets. When building the ontology using Ontolingua, the terms such
as portfolio, security, share, stock, bond, etc. must be defined by determin-
ing the slots and giving the slot values. Before this can be done, a difficult
knowledge-acquisition problem is faced. Like knowledge-based-system devel-
opment, ontology development faces a knowledge-acquisition bottleneck.

In addition to the knowledge acquisition problem, two more problems in-
volved in the construction of financial ontology are coding and accessing the
ontology.

Knowledge Acquisition

Because we are not experts in the financial domain, we first read literature
on finance to acquire some basic concepts of financial investment. Then pre-
liminary meetings were held with financial experts to look for general, not
detailed, knowledge. After this, we studied the documentation very carefully
and tried to learn as much as possible about the world of finance. Having
obtained some basic and general knowledge, we gradually moved into more
specific details in order to configure the full ontology. Sets of terms and their
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relationships were extracted, and then attributes and their values defined. At
the later stage of knowledge acquisition, these were submitted to financial
experts for inspection. During this knowledge acquisition, the following set of
knowledge acquisition techniques were used in an integrated manner [11]:

Non-structured interviews were held with experts to draw up a preliminary
draft of the terms, definitions, classifications, and so on.
We undertook informal text analysis to study the main concepts in books
and handbooks;
We then undertook formal text analysis. This was performed manually
without using specialized environments. We analyzed the text to extract
attributes, natural-language definitions, assignation of values to attributes,
and so on.
We held structured interviews with experts to get specific and detailed
knowledge about concepts, their properties, and their relationships with
other concepts.
We studied detailed reviews by experts. At this later stage of knowledge-
acquisition, we submitted the knowledge acquired to experts for detailed
inspection. In this way, we could get some suggestions and corrections from
financial experts before coding the knowledge.

We then constructed the financial ontology conceptual structures based
on the acquired knowledge. The conceptual structure of portfolio is shown
in Fig. 5.2. Unfortunately, this is a time consuming and potentially error
containing process. Obviously, more efficient construction tools are needed.

Fig. 5.2. Financial Ontology Conceptual Structure (Example)

Coding the Ontology

As mentioned previously, Ontolingua was used to construct the financial ontol-
ogy. We manually coded the knowledge with Ontolingua based on conceptual
structures. Currently, one can log on to Ontolingua and check the financial
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investment ontology in the unloaded category. Some terms of the financial
ontology written in Ontolingua are as follows:

;;; Securities (Define-Class Securities (?X) "A term that covers
the paper certificates that are evidence of ownership of bonds,
debentures, notes and shares." :Def (And (Relation ?X)))

;;; Share (Define-Class Share (?X) "A unit of equity capital in a
company." :Def (And (Securities ?X)))

Accessing the Ontology

To use this ontology, we adopted the Open Knowledge Base Connectivity

(OKBC) protocol [60] as a bridge between the agents in the multi-agent system
for financial investment planning and the financial ontology. The ontology
constructed using Ontolingua was in Lisp format. Before one could access
the ontology through OKBC, one had to translate the ontology into OKBC
format. This can be accomplished automatically by using the ontology server.
One piece of the ontology in OKBC format is shown below:

5.3 Summary

A flexible and unifying agent-based framework has been proposed in this chap-
ter to facilitate the construction of hybrid intelligent systems. This framework
has a few crucial characteristics that differentiate it from others.

When agents communicate with each other in a multi-agent system, and
the middle agent performs matchmaking tasks, they all need to access the
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corresponding domain specific ontologies (part of the knowledge model). As
an example, constructing an ontology for financial investment was discussed.

A question frequently asked in multi-agent systems is how to search effi-
ciently for suitable agents to solve a specific problem. To answer this question,
different types of middle agents that can assist in locating and connecting the
ultimate service provider with the ultimate service requester are usually em-
ployed. For this purpose, we employed a middle agent in our agent-based
framework for hybrid intelligent systems. To our knowledge, almost all cur-
rently used matchmaking algorithms are only based on the advertised capa-
bilities of providers. They do not consider the providers’ practical outcomes
in accomplishing delegated tasks at all. In fact, the practical performance of
service provider agents has a significant impact on the matchmaking outcomes
of middle agents. To this end, in Chap. 6 some algorithms are developed to
consider the practical performance of service provider agents.



6

Matchmaking in Middle Agents

Middle agents play a very important role in the framework we propose. The
main function of middle agents in an agent-based system is keeping track of
the capabilities of other agents and retrieving them when required.

Generally, as far as the matchmaker, or broker is concerned, there are two
relatively independent sub-problems to capability matchmaking:

Capability Storage (corresponding to the CAPABILITYRECORDER role
in both systems. Refer to Chaps. 7 and 8.): the matchmaker has to store
the capability descriptions received. The most important question here is
how capabilities can be described or represented in a way that is useful to
the matchmaker.
Capability Retrieval (corresponding to the CAPABILITYMATCHER role
in both systems): the matchmaker has to find service provider agents that
have the capabilities required to solve the given problem. The most impor-
tant question here is how capability descriptions can be reasoned about,
that is, capability matchmaking.

There has been some work related to capability descriptions as well as
capability retrieval (matchmaking). The performance of middle agents relies
heavily on the matchmaking algorithms used. To our knowledge, almost all the
currently used algorithms have missed one point when carrying out matchmak-
ing – the matchmaking is only based on the advertised capabilities of provider
agents. The actual performance of provider agents in accomplishing delegated
tasks is not considered at all. This results in inaccuracy of the matchmaking
outcomes, as well as with the random selection of provider agents with the
same advertised capabilities.

To this end, it is argued that the practical performance of service provider
agents has a significant impact on the matchmaking outcomes of middle
agents. Our idea is to consider the past track records of agents in accom-
plishing delegated tasks. This includes the acquisition of track records and
the use of track records. As the track records of agents are accumulated grad-
ually with the running of the agent system, there is no record available when
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the system is just launched. For this reason, algorithms to provide “initial
values” for track records are proposed. The improvements to matchmaking
algorithms have been tested under the two agent-based hybrid intelligent sys-
tems which will be discussed in Chaps. 7 and 8, but there is no limitation to
applying the improved algorithms in other applications.

This chapter starts by describing the matchmaking problem. Then some
related work concerning matchmaking in middle agents is recounted, followed
by the capability retrieval (matchmaking) algorithm on which the improve-
ment is based. Based on these descriptions, the algorithms for the acquisition
of track records and the use of track records are discussed.

6.1 Description of the Problem

One of the basic problems facing designers of the multi-agent systems used in
open environments, such as the Internet, is the connection problem – finding
suitable agents (service providers) that might have the information or other
capabilities required by service requesters [41]. Because an agent may not
have the necessary knowledge, or the necessary resources, the situation can
arise (for both the problem division and the solution of sub-problems) that
an agent would like to delegate a task to another agent. Generally, there are
three possible ways of doing this:

The meta-knowledge based approach. Provided the requester knows a suit-
able partner, no external assistance is required. The appropriate provider
can be contacted and then the transfer of the task can be negotiated.
However, it is difficult, or even impossible, for requesters to have compre-
hensive knowledge of providers in many application domains, especially in
open, dynamic environments.
The contract net based approach ( [107] (pp. 96-100) and [108]). Within
the contract net framework, the requester (manager) can make a public
offer (broadcast) for bids in the form of a so-called contract for every
pending sub-problem that is to be solved. The offer for bids is open to all
agents (providers). Any agent in a contract net system can be a service
requester as well as a service provider.
The middle agent based approach [41]. Like middle-men in the physical
world, middle agents can be employed to assist in locating and connect-
ing the ultimate service provider with the ultimate service requester. This
approach is very flexible. Agents (providers and/or requesters) can dynam-
ically enter and exit open multi-agent systems.

In open multi-agent systems, the middle agent based approach is the most
commonly used to efficiently search for suitable agents to solve a specific
problem [41, 109]. Thus the discussion here concentrates on middle agents.
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Different systems define their middle agents differently. For example, fa-
cilitators in Genesereth’s federated systems [42] and SRI’s Open Agent Ar-
chitecture [19, 20], and matchmakers and brokers in Retsina [14] all differ in
their interactions with providers and requesters. In [41], the authors identi-
fied different types of middle agents on the Internet, such as matchmakers
(yellow page services), brokers, blackboard, etc., and experimentally evalu-
ated different protocols for inter-operation between providers, requesters, and
various types of middle agents. The results show that different types of mid-
dle agents exhibit different characteristics in terms of, for example, privacy,
robustness, and adaptiveness. Regardless of which kinds of middle agents
are used, their performance relies heavily on the matchmaking algorithms
adopted. Matchmaking is the process of finding an appropriate provider for a
requester through a middle agent, and has the following general form [110].

Provider agents advertise their capabilities to middle agents.
Middle agents store these advertisements.
A requester asks some middle agent whether it knows of providers with
desired capabilities.
The middle agent matches the request against the stored advertisements
and returns the result, a subset of the stored advertisements.

Matchmaking in middle agents is a crucial issue in multi-agent systems,
especially those used in open environments such as the Internet. To improve
the matchmaking performance of middle agents so that they can pick up the
“right” service provider agents is of paramount importance.

6.2 Related Work of Matchmaking in Middle Agents

Agent matchmaking has been actively studied since the inception of soft-
ware agent research. The earliest matchmaker we are aware of is the ABSI
(Agent-Based Software Interoperability) facilitator [112], which is based on
the KQML specification and uses the KIF (Knowledge Interchange Format)
as the content language. The KIF expression is basically treated like Horn
clauses. The matching between the advertisement and request expressed in
KIF is simple unification with the equality predicate.

Kuokka and Harada presented the SHADE and COINS systems for match-
making [111]. The content language of COINS allows for free text, and its
matching algorithm utilizes the TF-IDF (Term Frequency-Inverse Document
Frequency). The context language of the SHADE matchmaker consists of two
parts: one is a subset of KIF, the other is a structured logic representation
called MAX. MAX uses logic frames to store knowledge declaratively. The
matchmaking algorithm used in SHADE is a Prolog-like unification process.

A more recent service broker-based information system is InfoSleuth [22].
The content language supported by InfoSleuth is KIF. The constraints for
both user request and resource data are specified in terms of some given
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central ontology. It is the use of this common vocabulary that enables the
dynamic matching of requests to the available resources. The advertisements
specify agents’ capabilities in terms of one or more ontologies. Constraint
matching is an intersection function between the user query and the data
resource constraints. If the conjunction of all the user constraints with all
the resource constraints is satisfiable, then the resource contains data that is
relevant to the user request.

In [41] Decker, Sycara, and Williamson presented matchmakers that store
the capability advertisements of different agents. They concentrated their ef-
forts on architectures that support load balancing and protection of privacy of
different agents. In [113] a matchmaking system called A-Match is described.
A-Match is a Web based interface to the Matchmaker that allows human users
to find agents that can provide required services. Agents in the Matchmaker
are represented on the bases of the inputs that they take and the outputs that
they return. The Matchmaker matches the requirements of the user against the
advertisements stored, and it reports the list of agents whose advertisements
match the request of the user. The match performed by the Matchmaker is
based on a taxonomy of terms. A-Match can store different types of adver-
tisements coming from different applications. In [110, 114], Sycara et al. have
proposed an agent capability description language, called LARKS (Language
for Advertisement and Request for Knowledge Sharing), that allows for ad-
vertising, requesting and matching agent capabilities. There are three types of
matching in LARKS: exact match (the most accurate type of match), plug-in
match (a less accurate but most useful type of match), and relaxed match (the
least accurate type of match). The matching engine of the matchmaker agent
in LARKS contains five different filters: context matching, profile compari-
son, similarity matching, signature matching, and constraint matching. The
computational costs of these filters are in increasing order. Users may select
any combination of these filters on demand. The matchmaking process using
LARKS has a good trade-off between performance and quality of matching.

Subrahmanian, Bonatti, Dix, et al. introduced an HTML-like Service De-
scription Language (SDL), which is used by the agents to describe their ser-
vices [21]. By restricting their language, they are able to very clearly articulate
what they mean by similar matches in terms of nearest neighbor and range
queries, as well as provide very efficient algorithms to implement these oper-
ations. However, they do not address issues such as load balancing which is
addressed by Decker, Sycara, and Williamson.

A capability description language called CDL has been developed at the
University of Edinburgh [115]. The syntax of CDL is KQML-like. Capabil-
ities of, and requests for, services are described in CDL, either in terms of
achievable objectives or as performable actions. Logic-based reasoning over
descriptions in CDL is based on the notion of capability subsumption or
through instantiation. Capability subsumption in CDL refers to the ques-
tion of whether a capability description can be used to solve a problem
described by a given task description in CDL. Both the CDL and the pro-
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posed matching of CDL descriptions have been implemented in Java un-
der the support of JAT (Java Agent Template, the old version of JATLite)
(http://www. aiai. edu. ac. uk/~ oplan/cdl).

For a more comprehensive survey of matchmaking and brokering, see [116].
The above work has dealt with many important issues in agent capabil-

ity description and capability matchmaking. However, almost all the work
missed one point – matchmaking is only based on the advertised capabilities
of provider agents. The actual performance of provider agents in accomplish-
ing delegated tasks is not considered at all. This problem also exists in current
contract net systems.

Usually, more than one service provider agent claims that they have the
same, or very similar capabilities, to accomplish a task in an application. For
example, in financial investment applications one usually needs to predict the
interest rates. There are different techniques for interest rate prediction, such
as neural network (NN) and fuzzy logic with genetic algorithm (FLGA) [49].
But their prediction performances are different. If there are two interest rate
prediction agents, one based on NN, the other based on FLGA, which one
should be chosen to predict the interest rate? In such cases, current matchmak-
ing algorithms can only choose one provider agent randomly. As the quality
of service of different service provider agents varies from one agent to another,
even though they claim they have the same capabilities, it is obvious that the
requirements of requester agents cannot be met by randomly choosing one.

We propose algorithms that can pick up the appropriate provider agents,
based on past information about similar tasks that have been accomplished
rather than choosing randomly. The focus of this discussion is on how to
consider agents’ actual performance based on the available capability descrip-
tion languages and capability matchmaking algorithms. The improvements to
matchmaking algorithms are based on the find_nn and range algorithms in
IMPACT [21, 53]. For convenience in future discussion, a brief introduction
to these two algorithms is given below.

When an agent wants to find another agent providing a service, the serving
agent must match the requested service with other service descriptions stored
in its database, in order to find appropriate services. A service specification
in IMPACT consists of: (1) a service name in terms of a verb-noun(noun) ex-
pression such as calculate:rate(interest), (2) typed input and output variables,
and (3) attributes of services (e.g., the cost for using the service). Agents may
request services in one of the following forms:

Neighbor Request: find the service names (pairs of verb
and noun term) such that there exists an agent that provides that service,
and identify this agent;

Search: find all service names within a specified distance

Searching for appropriate services essentially relies on the exploitation of
given weighted verb hierarchy and noun hierarchy, which are special cases of
the general concept of a term hierarchy. Similarity between verbs and nouns
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in the verb and noun hierarchy, is computed via a given distance function on
paths of weighted edges in the hierarchies. A composite distance function then
combines both distance functions to calculate the combined similarity value
for two word pairs (verb, noun) of service names. If a word cannot be found in
the respective hierarchy a synonym will be searched in the ontology instead.

Suppose is a set of verbs, and is a set of noun terms. A noun term

is either a noun or an expression of the form where and are
both nouns. If and then is called a service name.

Given a pair specifying a desired service, the find_nn algorithm
will return a set of agents that provide the most closely matching services.
Closeness between and another pair is determined by using
the distance functions associated with the verb and noun-term hierarchies,
together with a composite distance function cd specified by the agent invok-
ing the find_nn algorithm. The algorithm uses the following internal data
structures and/or subroutines.

Todo: This is a list of verb/noun-term pairs, which are extended by their
distances from the verb/noun-term pair, that is requested in the initial or
recursive call, to the find_nn function. The list is maintained in increasing
order of distance, and is not necessarily complete.
ANSTABLE: This is a table consisting of, at most, entries being the
number of agents requested). At any given point in time during execution
of the find_nn algorithm, ANSTABLE will contain the best answers found
thus far, together with their distances from the requested service
ANSTABLE will be maintained in increasing order with respect to this
distance.
search_service_table: This function, given a verb/noun-term pair (V,

NT) and an integer returns the set of all agents which provide the
service (V : NT); if their number exceeds it returns of them, which
are deliberately chosen.
num_ans: This function merely keeps track of the number of answers in
ANSTABLE.

next_nbr: This function takes as input the list Todo mentioned above and
a pair (V, NT). It returns as output the first member of the Todo list. If
the Todo list is empty, it returns a special pair.
relax_ontology: This function is called when either V or NT of the spec-
ified service name do not appear in the corresponding hierarchy. It returns
a pair that is “similar” to (V, NT) whose components do appear in the
hierarchies. This function accesses the financial ontology (see Sect. 5.2)
and the verb/noun-term hierarchies.
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The algorithm is shown below:

Algorithm find_nn(V:verb;NT:noun-term;k:integer)

Suppose and Also, let
denote the set of all verbs (noun-terms) in our hierarchies whose distance
from V (NT) is finite. Then, in the worst case, find_nn(V , NT, will need

time. Note, however, that if there are services whose
composite distance from is finite, then one can obtain a tighter bound.
Specifically, let be the maximum distance from a verb (noun-
term) of one of these services to V (NT). Furthermore, let

denote the set of all verbs (noun-terms) in the hierarchies
whose distance from V (NT) is less than, or equal to, Then, in this
case, find_nn(V, NT, will only need time.
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The range search algorithm below allows the middle agent to answer
queries of the form “Find all agents that provide a service
which is within a distance D of a requested service

In the range algorithm below, Todo is a list of nodes to be processed, each
of which is a service extended by its distance from the service vnt. The
algorithm has two steps:

The first step is the while loop. It finds all pairs that
are within the specified distance from vnt. This step uses a procedure
expand that behaves as follows: first computes the
set

Here, RelaxList contains the services which have already been considered.
Then, expand inserts the elements of this set into Todo. is the
candidate-relaxation of (Refer to [21] (p. 61) for the definition of
cr.)
The second step executes a “select” operation on the Service Table, finding
all agents that offer any of the service names identified in the first step.
As in the find_nn algorithm, if V or NT are not in the relevant verb
or noun-term hierarchies, the algorithm range calls the relax_ontology

procedure specified in the find_nn algorithm to find a similar pair which
belongs to them.

Algorithm range(V:verb; NT:noun-term; D:real)
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Suppose and Also, let
and let S be the set of all (agent name,

pairs where Then range(V, NT, D) will need time.

6.3 Improvements to Matchmaking Algorithms
in Middle Agents

The algorithms discussed above can only find the agents that they claimed
to offer the services closest to the services requested. The “best” agent in the
find_nn or range algorithm only means that the service name advertised by
this agent is closest to the service name requested, but has nothing to do with
the actual performance of the agent in accomplishing a task. Here, we believe
that the service providers make a binding commitment to perform the corre-
sponding tasks (or provide the corresponding services) when they report the
availabilities of their services to the matchmaker. That is, if an agent says it
has a capability, then it can perform the tasks corresponding to the capability,
and will do so when asked. If one really delegates the same task to different
agents with the same or similar capabilities, the quality of service may
vary from agent to agent. Some agents provide very good service, demonstrat-
ing an expert standard; some only reach a novice level. How can one choose
the agents (service providers) that not only claim to offer the services but also
do well in practice? We propose one solution to this problem – taking into
account agents’ track records in matchmaking. When the agents’ “credit his-
tories” are considered during the selection process, the selected agent is more
appropriate for the task than the agent chosen by directly using find_nn or
range algorithms. Before presenting the matchmaking algorithm that consid-
ers agents’ track records, representation of track records is discussed.

6.3.1 Representation of Track Records

In the previous section it was mentioned that the specification of a single ser-
vice consists of four components: service name, inputs, outputs and attributes.
Here, one more component (track records) is added to the specification.

What should be put in the track records? The requester’s evaluation for
the service provided by the selected agent will be put in the track record field
of the agent service specification. The requester’s evaluation is actually the
degree of satisfaction for the service received, just as when a person goes to a
restaurant, and tips the waiter based on the service received. Here we assume
that the requester agent can give an overall evaluation for the service it has
received based on a set of criteria. The following linguistic values are allo-
cated for the requester to describe overall evaluation (degree of satisfaction):
strong satisfaction, satisfaction, weak satisfaction, neutral, weak unsatisfac-

tion, unsatisfaction, and strong unsatisfaction. The track records consist of
2 – tuples with a form time service, evaluation]. The first parameter in



74 6 Matchmaking in Middle Agents

the 2 – tuple is the ordinal of the service provided, the second is the degree
of satisfaction returned by the agent that received the service. For example, if
an agent is delegated a task, and this is the third time the agent delegated the
task deems the service is excellent, then a 2 – tuple, [3, strong satisfaction],
will be added to the track record of the agent providing the service, the track
record is kept in the database of the middle agent.

Such a representation has an extra advantage – it can keep track of agent
aging. For example, if an agent’s track record indicates that this agent received
very good evaluations from the requesters with a small service ordinal number,
and received bad evaluations with larger service ordinal numbers, this means
the agent is aged. Its knowledge is out of date. When trying to choose a
suitable agent to accomplish a task, the matchmaker should be very cautious
with aged agents.

6.3.2 Accumulation of Track Records

To accumulate track records, we provide a special module for requester agents
to allow them to give evaluation results for the services they received in the
prototype. This module can also assemble the evaluation results in the KQML
messages, which will be sent to middle agents by requester agents. When mid-
dle agents receive the messages, they interpret them and extract the evaluation
result from the KQML message. The value (evaluation result) is assigned to
the track record field of the corresponding agent, and then stored into the
database of the middle agents.

6.3.3 Generation of Initial Values

Basic Idea for Initial Value Generation

Suppose we want to delegate a task to a person, but we have ten people
all claiming they have the capability to accomplish the task. In such a case
whom should we choose to delegate the task? If we have track records for
the ten people in accomplishing similar tasks in the past, we can make the
decision based on their performance/accomplishment history. If there is no
any information about the ten people accomplishing similar tasks, one simple
and efficient method in real life is to design a set of problems and ask all the
candidates to solve these problems, just as we would in an examination. We
assess the solutions provided by the candidates and delegate the task to the
candidate with the best solutions. Here, we call such a set of problems “bench-
mark problems.” The “specimen” solutions are called “benchmark results” or
“benchmark values”.

According to the above scenario, we can summarize the basic idea of initial
value generation approach as follows. Before putting a multi-agent system into
practical operation, the system is “trained” with a set of benchmark problems.
That is, the middle agent is run with a matchmaking algorithm first. (For
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example, the find_nn algorithm in [53].) The middle agent then asks the
agents with the same or similar capabilities (based on the results returned from
a matchmaking algorithm, such as find_nn) to solve the benchmark problems.
By comparing the results provided by these agents against the benchmarks,
one obtains an evaluation of the performance for these agents. This evaluation
is then used as the initial value of each of their track records.

Description of Benchmark Problems and Benchmark Values

In order to extract an appropriate description of benchmark problems and
benchmark values, we take the software risk analysis as an example.

Assume we want to analyze the risk of a software project. From a soft-
ware engineering risk management point of view, there are certain principal
software risk factors that influence the risk of a software project [63]. These
software risk factors include organization, estimation, monitoring, develop-
ment methodology, tools, risk culture, usability, correctness, reliability and
personnel. The software risk factor,

organization, addresses risks associated with the maturity of the organi-
zation structure, communications, functions, and leadership.
estimation, focuses on risks associated with inaccurate estimations of the
resources, schedules and costs needed to develop software.
monitoring, refers to risks associated with identifying problems.
development methodology, identifies the methods by which software is

developed.
tools, focus on risks associated with the software tools used when software
is developed, and so on.

We analyze the risk of a software project by determining the values (e.g.,
low, medium, high, etc.) of the risk factors, which can be viewed as attributes
describing the software risk problem. More generally, we can say that to solve
a problem is to find the attribute values related to that problem.

Formally, let be the agent set with the same,
or similar capabilities. We use to denote the prob-
lem set. Each problem has a related attribute set

We say agent has solved problem if it returned the
values of the attributes related to the problem. The values can be numeric
or non-numeric (linguistic). The benchmark values of these attributes are de-
noted by and the values returned
by agent are denoted by

The description of the benchmark problems is then summarized
in Table 6.1.

The next step in the initial value generation process is to calculate the
“distances” between the values returned by agent and the benchmark
values. There are many definitions of “distance”. Here distance is defined in
terms of standard Euclidean distance. The distance between and is
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defined to be where Then these distances are
added to the database of the middle agent as the initial values of the track
records.

Considering that the initial values and the track records need to be com-
bined when accumulated, the distances were mapped to the degrees of satis-
faction. Suppose there are 7 levels of degrees of satisfaction – strong satisfac-

tion, satisfaction, weak satisfaction, neutral, weak unsatisfaction, unsatisfac-

tion and strong unsatisfaction, and each level accounts for 1/7 of the distance
range. Therefore, if the distance is between 0 and 0.143, strong satisfaction

will be the initial value of the agent’s track record. If the distance is between
0.143 and 0.286, satis f action will be the initial value, and so on. The mapping
results are shown in Table 6.2.

In the process of initial value generation, there are two situations that need
to be considered. One is that the benchmark values in Table 6.1 are known in
advance, the other is that the benchmark values are unknown. We will discuss
the two cases in the subsequent sections, together with examples.

Initial Value Generation with Known Benchmark Results

For different applications, benchmark problems are different. That is, the
benchmark problems are application-dependent. In this section, we take a
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financial application as an example as we discuss the initial value generation
problem with known benchmark values.

In financial applications, different models (e.g., the fuzzy logic and genetic
algorithm model [49]) can be used for interest rate prediction. Here, two soft
computing (SC) agents for interest rate prediction (one based on neural net-
works, SC_Agent_NN, the other based on fuzzy logic and genetic algorithm,
SC_Agent_FLGA) are taken as examples to show how to determine the ini-
tial values for the two agents. The initial values are based on the predictive
capabilities of these two SC agents.

Construction of Benchmark Problems

When predicting the interest rate (as represented by 91-day Treasury bill
rates), both of the agents take the changes of previous Treasury-bill (T-bill)
rates, real gross national product (GNP), consumer price index (CPI), M2
money supply, and personal wealth (W) as inputs. Personal wealth is the ac-
cumulation of the difference between personal income and personal consump-
tion. The M2 money supply consists of all cash in circulation, and deposits
in savings and check accounts, and represents readily available liquid assets.
The consumer price index is a measure of the inflation trend. The outputs are
the changes of the next T-bill rates (predicted interest rates). Quarterly data
are used.

We use past financial data from the five factors (from 1966 to 1987) pro-
vided in Appendix B of [49] to construct the required benchmark problems,
which listed here from Table 6.3 to Table 6.7.

There is some evidence to suggest that fundamental financial market char-
acteristics change over a period of four to five years [117]. That is, the market
“forgets” the influence of data that is more than five years old. For this rea-
son, five-year data windows are used. Fifteen data windows are examined,
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each starting in the first quarter of the years 1967 through to 1981. The end-
ing quarter for each data window will be the fourth quarter of the years 1971
through to 1985. This means there are 15 benchmark problems. The inputs
of benchmark problem for example, are the data from 1967 to 1971. The
benchmark value for these inputs is the T-bill rate of the first quarter of 1972,
– 0.81.

Experimental Results

The 15 data windows are used to train these two agents (neural network and
genetic algorithm). We then let the agents predict the interest rate of the first
quarter following the training data windows. For example, for training data of
1967-1971, the outputs of the agents are the (predicted) T-bill rate of the first
quarter of 1972. The prediction results of the two agents on the 15 benchmark
problems are summarized in Table 6.8.

Figure 6.1 shows the predicted values of SC_Agent_NN and SC_Agent.
FLGA, and the benchmark values from 1972 to 1986. The plot of the distances
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Fig. 6.1. Curves of Benchmark Values, SC_Agent_NN, and SC_Agent_FLGA

Fig. 6.2. Distances with Benchmark Values

from the prediction values to the benchmark values for each data windows is
depicted in Fig. 6.2.

The average distance for the prediction values of SC_Agent _NN is 0.287.
The value for SC_Agent_FLGA is 0.123. Based on Figs. 6.1 and 6.2 and the
average distances, one can see that the prediction performance of SC_Agent_
FLGA is better than that of SC_Agent_NN for the benchmark problems.
Mapping the distances to the degrees of satisfaction (refer to Table 6.2),
weak satisfaction is added to the track record of SC_Agent_NN as its ini-
tial value, and strong satisfaction to the track record of SC_Agent_FLGA as
its initial value. Hence at this stage, if the middle agent needs to pick one agent
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for interest rate prediction, SC_Agent_FLGA would be chosen. Of course, the
situation may change with the growth of the track records of these agents.

Initial Value Generation with Unknown Benchmark Results

In the case discussed in the previous section, one must know a priori of the
attribute values of the benchmark problems. But this is not always the case.
In some situations, it is impossible to obtain the attribute values in advance.
The agents must then be asked to solve these problems first. One can then
try to cluster the attribute values returned by agents using cluster analysis
methods. In this way, “heuristic” attribute values can be obtained. One can
then use these values as benchmark values and we return to the situation
discussed in the previous section.

There are seven steps involved when using cluster analysis algorithms to
determine benchmark results. Before presenting these steps in details, a brief
introduction to the fuzzy cluster analysis algorithms [118] [119], which are
used in our experiments, is given.

Introduction to Fuzzy Cluster Analysis

The aim of a cluster analysis is to partition a given set of data or objects into
clusters (prototypes). This partition should have the following properties:

homogeneity within the cluster, i.e., data that belong to the same cluster
should be as similar as possible; and
heterogeneity between clusters, i.e., data that belong to different clusters
should be as different as possible.

The concept of “similarity” has to be specified according to the data. Since
the data are in most cases real-valued vectors, the Euclidean distance between
data can be used as a measure of the dissimilarity.

The fuzzy clustering algorithms that we will use classify the elements of the
data set into classes

by means of a membership matrix A membership
grade denotes the degree of belongingness of datum to class The
algorithms minimize the following objective function by means of alternating

optimization (AO):

where measures the distance between data vectors and pro-
totypes, and is the weight for the data vector The term alternat-
ing optimization comes from the fact that J is minimized by updating pro-
totypes and membership alternatively. If and

are finite, an analysis result can be
represented as a matrix U, where The algorithm used
is shown below.
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Fuzzy Clustering Algorithm

There are many ways to determine Different ways result in different
fuzzy clustering algorithms. (Refer to [118] for more details.)

In the next subsection, we will discuss the steps for determining benchmark
values by using this fuzzy clustering algorithm.

Determining Benchmark Values by Fuzzy Clustering

As discussed previously, finding a solution to any problem can be viewed as
determining the attribute values related to the problem. With this observa-
tion in mind, a set of benchmark problems can be designed, but the solutions
to all these problems are unknown. (For example, we do not know what the
risk exactly is for a software project.) Some agents that claim to have the
capabilities, are asked to solve these problems and return the solutions, on
the attribute values. These attribute values are then used as inputs to the
fuzzy clustering algorithm. The algorithm partitions the solutions into differ-
ent clusters (called prototypes). We then choose the center of the cluster with
the highest weight as the benchmark values for the problems. This implies
that we should accept most agents’ opinions if their solutions are similar. It
is reasonable to do so. Specifically, this process involves the following steps.

Preparation: Given similar problems (benchmark problems), choose
agents having the capability to solve the problems. The solution of each
problem consists of attributes.
Use the fuzzy clustering algorithm to determine the clusters (prototypes)
of the solutions for each of the problems returned by the agents. That
is, the input of the algorithm is an data matrix. There are such
matrices. The outputs of the algorithm have the following format:

(cluster
(prototype (weight value) (center (values for all the attributes) ...

(prototype (weight value) (center (values for all the attributes))

Let a data set be given. Let each cluster be
uniquely characterizable by an element of a set P.

Choose the number of clusters,
Choose an
Choose a precision for termination
Initialize
REPEAT

Increase by 1
Determine such that J is minimized by for fixed
Determine according to certain conditions

UNTIL



6.3 Improvements to Matchmaking Algorithms in Middle Agents 83

Choose the prototype with the highest weight as the benchmark values for
this problem. Repeat this step for problems.
Calculate the distances (using Euclidean distance) of the solutions given
by the agents and the found benchmark values.
Find the average distances of all the solutions provided by the agents
with the found benchmark values of the problems.
Normalize the distances to [0,1]. Sort the agents according to the aver-
age distances. Map the average distances to the seven satisfaction degrees
(refer to Table 6.2), and use the degrees of satisfaction as the initial values
of these agents.

Average distances are used as the measurement of agents’ performance in
accomplishing benchmark problems. Such a measurement meets the “majority
principle”. That is, if one agent can solve most of the benchmark problems
very well, and another agent can only accomplish a few of the benchmark
problems with high quality, the average distance of the first agent is shorter
than that of the second. Therefore, the results obtained according to the
above process are convincing. The key in this process is step 2. In this step a
fuzzy clustering algorithm is used to cluster the solutions provided by different
agents. Based on the clustering results, the “heuristic” attribute values, which
are reasonable benchmark values, are determined.

Experimental Results

We recall the software project risk example in this subsection. Suppose some
experts in this field are invited to assess the risks of certain software projects.
The experts are asked to give their assessment results by providing a number

for each of the ten software risk factors. The bigger the number, the
higher the risk concerning that risk factor. According to the process described
in the previous subsection, some experiments were conducted with

and That is, 20 agents with similar capabilities were delegated
to assess 30 software projects (benchmark problems). The answer for each
problem consists of 10 attributes. The data for the risk factors used in the
experiments is randomly generated. For demonstration purposes, Table 6.9
shows the solutions of the 20 agents for one of the 30 benchmark problems.

Taking this as input, the clustering algorithm produces the following out-
put for this problem:

(cluster
(prototype(weight 2.67437) (center (7.052511.84176 3.82815 5.14071 3.05296 1.94812
8.18994 6.23528 4.76634 4.21243)))
(prototype(weight 2.01146) (center (6.92752 2.09169 4.33178 5.17589 2.66185 2.1582
8.16927 5.69102 5.11877 3.92546)))
(prototype(weight 5.45996) (center (6.99357 1.95553 3.98165 5.02628 3.01206 2.00627
7.99989 6.01413 5.01984 3.9859))))
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There are three different clusters (prototypes). Choosing the prototype
with the highest weight (5.45996), we obtain the benchmark values for this
problem. The attribute values are

and respectively. Table 6.10 lists the benchmark
values for the first 10 benchmark problems determined by the fuzzy clustering
approach.
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We then calculate the Euclidean distances between the solutions provided
by the agents and the found benchmark values. The results are shown in
Table 6.11. As space is limited, only the distances between 10 agents’ solutions
and the benchmark results of 10 benchmark problems are listed.

To measure the performance in solving benchmark problems, the average
distances between agents’ solutions and the benchmark values of all bench-
mark problems are used. The shorter the average distance, the better the
performance. The average distance between agent and the benchmark val-
ues is denoted by Based on the experimental data, these distances are

From the average distances, it is obvious that agent 3 demonstrates
the best performance, agent 2 the second best performance, and so on.
Mapping these average distances to the degrees of satisfaction according to
Table 6.2, the initial values of agents 2, 3, 4, 14, and 16 are strong satisfaction

as their average distances are within [0,0.143]; the initial values of agents 1,
5, 7, 9, 10, 11, 12, 15, 18, and 19 are satisfaction as their average distances
are between 0.143 and 0.286; the initial values of agents 6, 8, 13, and 17 are
weak satisfaction; and the initial value of agent 20 is neutral.

6.3.4 Use of Track Records

Based on the representation of track records and the accumulated track
records (including the initial values of track records), the matchmaking algo-
rithm that can consider agents’ track records are now ready to be presented.

This algorithm is based on the returned results, AN STABLE, of find_nn
or range algorithm, and processes as follows.
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For each agent let solve the benchmark problems
in S.
Calculate the distances between the returned values and the bench-
mark values and add the corresponding 2-tuple [0, satisfactory degree]
to track records.
Sum up the numbers of different satisfactory degree (strong satisfac-

tion, satisfaction, etc.) for each agent in ANSTABLE. The result for
each agent is a vector,
([strong satisfaction,

[satisfaction, [weak satisfaction, [neutral,

[weak unsatisfaction, [unsatisfaction,

[strong unsatis faction,

Construct evaluation matrix of agents The matrix looks like:

where are agent names in the returned results of find_nn
or range algorithm, i.e., they have the same or closely similar capabilities.
Select the most promising agent to provide the requested service based on
the evaluation matrix M.

In the last item above, different criteria may be used to describe most

promising. Two reasonable approaches we tested are given below.
The first one is based on a collection of heuristic rules. These rules are

derived from examples in typical international conference paper choosing pro-
cedures in practice. Some example rules are listed below.

Rule 1: If (the number of strong satisfaction for agent is the
largest among and then choose

Rule 2: If all are equal and (the number of
satisfaction for agent is the largest among and

then choose
Rule 3: If all except then randomly choose one agent,
and so on.

The alternative is to map each satisfaction degree (strong satisfaction,

satisfaction, etc.) to a weighting value. Then the total score of each agent is
calculated, and the agent with the highest score is chosen. If there is more
than one agent with the same highest score, then one is randomly chosen
to accomplish the delegated task. For example, one can map an element in
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the evaluation vector to a value in [–1,1]. The weight for strong satisfaction

is 1, for satisfaction is 2/3, for weak satisfaction is 1/3, for neutral is 0,
for weak unsatisfaction is –1/3, for unsatisfaction is –2/3, and for strong

unsatisfaction is –1. The second approach is easier to implement than the
first.

The algorithm uses the following variables and subroutines:
initial_value_generation: This subroutine takes ANSTABLE and
benchmark problem set S as inputs, and generates the initial values of
track records for all agents in ANSTABLE as outputs. The initial values
are stored in the database of middle agents;

The track record of agent This consists of 2 –
tuples like [5, satis faction];
aging_check: This subroutine checks the aging status of agent based
on its track record, It will mark an agent “aged” if it satisfies the
pre-set aged conditions;
take_one_tuple: This function takes one tuple from and assigns it
to the variable tr;
evaluation_part: This function returns the satisfactory degree part of
2 – tuple, tr, and assigns the corresponding value (strong satisfaction,
satisfaction, etc.) to the variable sd;
sum_up: This function counts the numbers of different satisfactory de-
grees, and adds [strong satisfaction,

[satisfaction, and so on to It is actually a case
statement;
construct_evaluation_matrix: This function constructs the evaluation
matrix based on the evaluation vectors,
most_promise: This function chooses the best agent, FINAL_ANS, us-
ing one of the approaches mentioned above. Here, FINAL_ANS is the
best agent based on its advertised capabilities and its actual ability to
accomplish delegated tasks.
As a summary, the algorithm that considers agents’ track records is given

as follows:

Algorithm find_most_promise(V,NT,k,D)
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Suppose the maximum number of elements (2 – tuples) in is
then the time complexity from line 7 to line 15 is O(mk). Both lines 16
and 17 will need time. In the worst case, find_nn(V, NT, will need

time [21]. Thus, in the worst case, find_most_promise

will need time (when calling find_nn). As
is a small constant, the time complexity of find_most_promise only increases
a little compared with that of find_nn.

With the find_most_promise algorithm, if one service provider agent
keeps performing well, the algorithm always returns that agent as its match-
making result. This is natural. Just as in human society, if someone always
does their work well, there is no reason to terminate their employment.

6.3.5 Impact of Track Records on Matchmaking

To evaluate the impact of different track records on the final matchmaking
results, we conducted some simulations. All the data here were generated by
a special designed C program calling the rand( ) function.

Suppose the returned results of find_nn have 10 agents,

That is, these 10 agents have the same or closely similar capabilities. Assume
there are (similar) tasks. For each task, we randomly delegate to an agent,

from AN STABLE, and randomly attach an evaluation result (satisfac-
tory degree) to The track records of these 10 agents with are shown
in Table 6.12.

The corresponding evaluation matrix is as follows:
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Using the second approach (mapping each satisfactory degree to a weight-
ing value in [–1,1]), we can calculate the total score of each agent in
AN STABLE. For example, agent has 4 items in its track records when

The evaluation (satisfactory degree) for its first delegated task is
weak unsatisfaction (the mapped weight is –1/3), the second delegated task
is unsatisfaction (corresponding weight is –2/3), the third is satisfaction (cor-
responding weight is 2/3), and the fourth is strong satisfaction (corresponding
weight is 1). Thus the total score for with is

The higher the total score, the better the actual performance. Table 6.13
summarizes the results when task number is 20, 40, 60, 80, 100, 200, and
300.

Following “choosing the agent with highest score” principle, the selected
agents are

and If we do not consider agents’ track
records, the selected agent is always The simulation results indicate that
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the selected agent is different, based on different track records. This shows that
agents’ track records have a strong impact on the outcome of matchmaking.
Therefore, it is best to consider agent’s track records whenever possible.

6.4 Discussion

There is an underlying assumption for the proposed matchmaking algorithm.
That is, all requesters (agents receiving services) should be able to present
evaluations and be willing to do so after they receive services. This represents
a small commitment, but it is not too onerous a task. What a requester agent
needs to do is send a short message reporting a degree of satisfaction to the
middle agent. The middle agent then stores the information in a database. No
action is required of provider agents. Thus the cost for collecting the evaluation
data is very low and need not be seriously taken into account.

In this algorithm, both the representation of track records and the satisfac-
tory degree values can be changed to suit the needs of different applications.
The criteria for “most promising” can also be defined according to specific
applications. What is emphasized here is that agents’ track records in match-
making should be considered, as well as ways to provide initial values for track
records. The issue of trustworthiness of agents in the matchmaking process is
subject to further research.
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7

Agent-Based Hybrid Intelligent System

for Financial Investment Planning

Based on the framework proposed in Chap. 5, two agent-based hybrid intelli-
gent systems have been successfully developed. One is for financial investment
planning, and will be described in this chapter. The other is for data mining,
and will be discussed in the next chapter.

In financial investment planning, a large number of components that inter-
act in varying and complex ways are involved. This leads to complex behavior
that is difficult to understand, predict and manage. Take one sub-task of fi-
nancial planning – financial portfolio management – as an example. The task
environment has many interesting features [5], including:

the enormous amount of continually changing, and generally unorganized,
information available;
the variety of kinds of information that can, and should, be brought to
bear on the task (market data, financial report data, technical models,
analysts’ reports, breaking news, etc.); and
the many sources of uncertainty and dynamic change in the environment.
It is obvious that financial planning is typically a complex problem for
which hybrid solutions are crucial.

In the agent-based financial investment planning system we have imple-
mented, the following models (techniques) have been integrated:

a client financial risk tolerance model and a client asset allocation model
– both are based on fuzzy logic [47];
two interest rate prediction models – one based on neural networks, the
other based on fuzzy logic and genetic algorithms [49];
three portfolio selection models: Markowitz’s model [104], the fuzzy prob-
ability model, and the possibility distribution model [105];
ordered weighted averaging(OWA) operators for result aggregation [99];
and
expert systems with explanation mechanisms.
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In addition to these models, an operations research software package called
LINDO, used for solving quadratic programming (http://www.lindo.com/)
and a matrix software package called MatrixLib for solving eigenvalues of
matrices (http://www. mathtools.com/), were also integrated.

Before discussing how to analyze, design, and implement this system, the
main integrated techniques are briefly described first.

7.1 Introduction to Some Models Integrated

in the System

Diverse models were integrated in the agent-based hybrid intelligent system
for financial investment planning.

7.1.1 Financial Risk Tolerance Model

When giving investment advice to a client, the first thing a financial invest-
ment planning system needs to do is to determine the client’s investment
policy. Based on this (aggressive or conservative etc.), the system can then
decide in which categories (stock market, real estate, etc.) the client should
invest.

To make a decision about a client’s investment policy (IP), decision mak-
ing agents need the information about the client’s financial risk tolerance (RT)
ability, the falling or rising of interest rates the state of the stock market

and the unemployment rate and so on. Decision making agents use
rules in their domain knowledge bases such as

If RT is H and is and ... then IP is C

to make decisions. Here, C is a fuzzy subset indicating the aggressive or con-
servative nature of the investment policy. H and are fuzzy subsets.

The agents use the client’s annual income and total net-worth to evaluate
the client’s financial risk tolerance ability. In our example, assume the agents
agree to describe the input variables annual income and total net-worth and
the output variable risk tolerance by the sets:

annual income = {L, M, H}, total networth = {L, M, H}, risk tolerance

= {L, MO, H}.

The terms have the following meaning: L = low, M = medium, H = high,
and MO = moderate. They are fuzzy numbers whose supporting intervals
belong to the universal sets

The real numbers, and represent dollars
in thousands and hundreds of thousands, correspondingly, while takes values
on a psychometric scale from 0 to 100, measuring risk tolerance. The numbers
on that scale have specified meaning for the financial experts (agents).
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For a simplified client financial risk tolerance model, the following nine
approximate reasoning rules are used to determine a client’s risk tolerance [47]:

Rule 1: If the client’s annual income (AI) is low (L), and the client’s total
networth (TN) is low (L), then the client’s risk tolerance (RT) is low (L);

Rule 2: If AI is L and TN is M, then RT is L;
Rule 3: If AI is L and TN is H, then RT is MO;
Rule 4: If AI is M and TN is L, then RT is L;
Rule 5: If AI is M and TN is M, then RT is MO;
Rule 6: If AI is M and TN is H, then RT is H;
Rule 7: If AI is H and TN is L, then RT is MO;
Rule 8: If AI  is H and TN is M, then RT is H;
Rule 9: If AI is H and TN is H, then RT is H.

In this application, approximate reasoning (part of the skill model) is used
for determining the client’s investment policy and risk tolerance ability.

7.1.2 Asset Allocation Model

The inputs (linguistic variables) in the fuzzy logic client asset allocation model
are age and risk tolerance (risk). It is assumed that the risk is already es-
timated. There are three outputs (linguistic variables), savings, income and
growth. The control objective for any given pair (age,risk) which reflects the
state of a client is to find how to allocate the asset to savings, income, and
growth. For a detailed description of this model, see [47].

Assume that the financial experts (agents) describe the two input and
three output variables in terms of triangular and trapezoidal shape as follows:

Similar to the risk tolerance model, there are nine if – then rules. Each
inference rule produces not one but three conclusions, one for savings, one for
income, and one for growth. Consequently, the financial experts (agents) have
to design three decision tables. Figures 7.1, 7.2 and 7.3 are decision tables for
savings, income and growth.

Based on these tables, the first two if – then rules read:
If a client’s age is young and risk tolerance is low, then asset allocation

is: medium in savings, medium in income, medium in growth.

If a client’s age is young and risk tolerance is moderate, then asset alloca-
tion is: low in savings, medium in income, high in growth.
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Fig. 7.1. Decision Table for Output savings

Fig. 7.2. Decision Table for Output income

Fig. 7.3. Decision Table for Output growth

7.1.3 Portfolio Selection Models

Portfolio selection involves determining the most suitable portfolio for either
private or institutional investors. It is a key step in financial investment. There
are many portfolio selection models available. It is too difficult to choose
the “best” model to use in real-world financial investment applications. Each
model has its own strengths and weaknesses. One model may put emphasis
on some factors or attributes during portfolio selection but may ignore others.
No single model can take all factors into consideration.
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In this system, to select portfolios independently based on the data, three
typical models are employed – Markowitz’s model [104], the fuzzy probability
model, and the possibility portfolio selection model [105, 106]. The ordered
weighted averaging (OWA) operator is then used to aggregate these three
different portfolios into a final one.

After Markowitz proposed the first portfolio selection model in the 1950s
[104], many portfolio selection models appeared based on different techniques.
Here, a brief introduction of three typical models is given – Markowitz’s model,
the fuzzy probability model, and the possibility portfolio selection model.
Markowitz’s model is based on a probability distribution. The fuzzy prob-
ability model can be regarded as a natural extension of Markowitz’s model
because it extends probability into fuzzy probability. The possibility portfolio
selection model is based on a possibility distribution that is used to character-
ize experts’ knowledge. A possibility distribution is identified using the returns
of securities associated with possibility grades offered by portfolio experts.

Markowitz’s Portfolio Selection Model

Assume that there are securities, denoted by The return of
the security is denoted as and the proportion of total investment funds
devoted to this security is denoted as Thus, the equation
holds.

Since the returns from securities vary from time to time,
those are assumed to be random variables which can be represented by a pair
of the average vector and the covariance matrix. For instance, it is assumed
that the observation data on returns is denoted as Thus,
the total data over periods are denoted as the following matrix:

where denoting the return of the jth security at the time is defined
as (Closing price of the jth security at the time minus (Its closing price
at time plus (Its dividends at the time all divided by (Its closing
price at time The average vector of returns over periods denoted as

is defined as

Also, the corresponding covariance matrix is defined as
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Therefore, random variables can be represented by the average vector
and the covariance matrix Q, denoted as Now, the return associated
with a portfolio is given by The average and variance
of are given as:

Since the variance of a portfolio return is regarded as a risk of investment,
the best investment is one with the minimum variance subject to a given
average return This is the famous Markowitz’s model as described in [1].
It can be formalized as the following quadratic programming (QP) problem:

The Fuzzy Probability Portfolio Selection Model

In this model, the data are given as where is a
possibility grade to reflect a similarity degree between the future state of
stock markets and the state of the ith sample offered by experts. These grades,

are graded as weights to determine the fuzzy average vector
and covariance matrix in fuzzy probabilities.

Given the data the fuzzy weighted average vector
can be defined as follows:

Similarly, the fuzzy weight covariance matrix can be defined by

Thus, the given data can be summarized as the para-
metric representation which is used to construct the fuzzy portfolio
selection model.

Given the weighted average vector and covariance matrix, the av-
erage and covariance of the return are given as follows:

Thus, the fuzzy probability portfolio selection problem can be obtained as:

It should be noted that the average vector and covariance matrix in
Markowitz’s model are replaced by the weight-average vector and covariance,
respectively, in which the expert judgment is contained. It is still a QP
problem.
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The Possibility Portfolio Selection Model

Assume that the returns are governed by a possibility dis-
tribution. The possibility distribution, denoted as where

is a center vector, and is a symmetric positive-definite matrix. The
possibility return of a portfolio can be written as

The possibility distribution of Z, denoted as can be defined by the
extension principle as follows:

Solving this simple optimization problem produces the following:

where  is the center value and is the spread of the possibility return
Z. Following Markowitz’s model, the following possibility portfolio selection
model is given:

s.t. which is also a QP problem minimizing
the spread of possibility return, subject to a given center return

7.1.4 Interest Prediction Models

Two interest prediction models are integrated into the system, one is based
on the feedforward network and the other based on the combination of fuzzy
logic and genetic algorithms [49]. Here we will not discuss the basic concepts
of neural networks, fuzzy logic, and genetic algorithms, but the major factors
that affect interest rates.

Interest rates are usually represented by the rates for 91-day Treasury bills,
or so-called T-bills. In [141], Larrain employs statistical analysis to establish
that five factors account for roughly 90 percent of the variation in interest
rates (as represented by 91-day Treasury bill rates). These five factors are:

previous T-bill rates;
real gross national product (GNP);
consumer price index (CPI);
M2 nominal money supply; and
personal wealth

Personal wealth is the accumulation of the difference between personal
income and personal consumption. The M2 money supply consists of all cash
in circulation and deposits in savings and checking accounts, and represents
readily available liquid assets. The consumer price index is a measure of the
inflation trend.
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The interest rate prediction models based on neural networks or fuzzy
logic and genetic algorithms take the changes of these five factors as inputs,
and output the changes of T-bill rates as the predicted interest rates. This is
shown in Fig. 7.4.

Fig. 7.4. Block Diagram for the Interest Rate Model

7.1.5 Ordered Weighted Averaging Operation

In multi-agent systems, each of the agents may have its own expertise. When
they are asked to make a decision on the same task, the results may be dif-
ferent. In such situations, different decisions need to be aggregated to obtain
a final result. To better understand the problem, here is an example based on
financial investment planning.

Suppose a user (investor) wants to know whether his investment policy
(IP) should be aggressive or conservative. First, the user gives his annual

income (AI) and total net-worth (TN) to the decision making agents through
the interface agent. The decision making agents use their own knowledge (with
the help of intelligent technique agents) to evaluate the user’s risk tolerance

(RT) ability using rules such as: If user’s AI is low (L) and TN is L, then
user’s RT is L. Note that different decision making agents may have different
rules similar to this.

The decision making agents then delegate the information gathering agents
to collect data concerning the rise or fall of interest rates, the state of the
stock market, the trade balance, the unemployment rate, the level of inven-
tory stock, etc. These data are called parameters, and are represented as

The parameters collected by different information gather-
ing agents may differ.

Assume there are parameters to be collected: and
information gathering agents are asked to collect the parameters indepen-

dently. The gathered results are The first
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aggregation problem involves combining
in some reasonable way to obtain

Now, suppose there are decision making agents. Each agent has rules in
its knowledge base such as

where is a fuzzy subset indicating the aggressive or conser-
vative degree of the investment policy.

Because the knowledge of the decision making agents and their decision
attitudes may be different, the answers to the same question may also be
different, and differ in various degrees. They have to be combined or reconciled
in order to produce a final decision.

There are many aggregation algorithms. Different aggregation algorithms
are needed for different applications. In this financial application, there exists
much fuzzy or uncertain information, so approaches are needed that can deal
with such information to do the aggregation. There are three main classes
of aggregation operation that can deal with fuzzy or uncertain information –
the and generalized means, and ordered weighted averaging

(OWA). After comparing the three class aggregation operations, OWA is used
in this system.

Yager has introduced the OWA operator to provide a family of aggregators
having the properties of mean operators [99, 100, 101].

A mapping is called an OWA operator of dimension if it
has an associated weighting vector W of dimension such that its components
satisfy

A fundamental feature of this operator is the reordering process which
associates the arguments with the weights. This aggregation can be expressed
in a vector notation as In this expression, W is the
OWA weighting vector associated with the aggregation, and B is the ordered
argument vector; where the jth component in B, is the jth largest of the

Expressing the OWA operator in its vector notation
form, makes very clear the distinct components involved in the perfor-
mance of this operation. First, there is a weighting vector W; this is required
to have components which lie in the unit interval and sum to one. The
second part of the OWA aggregation is the vector B, known as the ordered
argument vector. This vector is composed of the arguments of the aggrega-
tion. To solve a specific problem using the OWA operator, we need to find out
the appropriate weighting vector W and the ordered argument vector B.

(1)
(2)
(3)

and
where is the jth largest of the
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There are two characterizing measures associated with the weighting vec-
tor W. (See [99] and [100].)

The first of these, the  value of an OWA operator, is defined as

This measure, which takes its values in the unit interval, is determined by the
weighting used in the aggregation. The actual semantics associated with  are
dependent upon the application in which it is being used. In our case, the
can be the degree that the aggregation prefers decisions with high confidence,
or the attitude of the decision making agent.

The second measure is called the dispersion (or entropy) of W and is
defined as

Equation (7.3) helps measure the degree to which W takes into account all of
the information in the aggregation.

One method of determining these weights, requires the solution
of the following mathematical programming problem:

Assume that the agents’ decisions are still represented by trapezoidal num-
bers. If are trapezoidal numbers, then

where is an OWA operator. We now discuss how to decide the weighting
vector W and the ordered argument vector B in different situations when
aggregating use (7.4).

Suppose that the three agents present their decisions on the investment
policy by the fuzzy numbers

and the weighting vector can be obtained:
The arguments are ordered by their values.

Corresponding to the weighted case, if the arguments are ordered using
the values of i.e., let be the value which has the jth largest of and
let Formula (7.4) is then used

(1)
(2)
(3)

subject to
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to aggregate. In both cases, the same results are obtained as those using fuzzy
averaging.

The problem here is that the degrees of importance in aggregation were not
used directly. Actually in this case, the arguments which need to be aggregated
are pairs such as

Here, the formula is used to transform the tuple into a
single value [101] (pp. 41-49), where is defined by (7.2). The following are
the steps of the procedure:

1. Calculate the value of the OWA operator:

2. Transform each of the argument tuples using
hence

3. Calculate

The defuzzification value is 18.87. This still indicates a very cautious invest-
ment policy – much more cautious than one not using the degrees of impor-
tance.

The concept of agents’ decision making attitudes is also important. Be-
cause the agents usually have different knowledge, this results in different at-
titudes when making decisions. Some are aggressive, some conservative. Here,

is used to indicate the agents’ attitudes. The bigger the value
of the more aggressive the attitude of the decision making agent

Suppose there are still three agents, and their attitudes are
and The decisions they make, and their degrees of importance,

remain unchanged, as described above.
To aggregate, the first step is to decide the attitude of all the agents

(in this case three). The OWA operator is still used. Degrees of importance
are mapped to unit interval as the weighting vector for combining called

and
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Then

By solving the mathematical programming problem with the weight-
ing vector W is obtained for the final aggregation as follows:

The arguments are ordered according to the values of The final aggregation
using (7.4) gives The defuzzification value ac-
cording to the mean of maximum method in fuzzy averaging is 28.7 [47]. This
suggests a policy on the aggressive side of the scale, but a cautious one – more
cautious than that using fuzzy averaging. This is because the decision attitude
of is slightly conservative, but its decision is very conservative. Taking
all the information into account, the investment policy should be cautiously
aggressive.

If the degrees of importance are used directly in the aggregation in this
case, is obtained. The defuzzification value
is 15.66.

7.2 Analysis of the System

In order to identify which components should be contained in a typical fi-
nancial investment planning system, without loss of generality, consider a
financial establishment house providing investment advice for clients. In such
a place, there are: an up-front administrator, one or more personnel officer(s),
and many financial investment experts (decision makers). The advice giving
(decision making) process is initiated by a user contacting the up-front ad-
ministrator with a set of requirements. The administrator asks the personnel
officer to provide the experts’ profiles, and then delegates the task to one or
more experts based on the experts’ profiles. The experts then work on the
task and try to give their recommendations with or without external help.
After the experts finish preparing a recommendation (if the task was assigned
to more than one expert, the recommendations from different experts must be
combined to form a final one), they pass it to the front desk clerk. Finally, the
administrator sends the advice to the user. Such a typical process can help
us analyze and design an agent-based hybrid system for financial investment
planning.

Based on the above description and the methodology proposed in Sec. 4.5,
it is comparatively straightforward to identify the roles in the hybrid intelli-
gent system for financial investment planning.

The up-front administrator’s behavior falls into two distinct roles: one act-
ing as an interface to the user (USERHANDLER, Fig. 7.5) and one overseeing



7.2 Analysis of the System 105

Fig. 7.5. Schema for Role USERHANDLER

Fig. 7.6. Schema for Role WORKPLANNER

the process inside the organization (WORKPLANNER, Fig. 7.6). The personnel
officer’s behavior falls into another two roles: one keeping track of the profiles
(CAPABILITYRECORDER, Fig. 7.7) and one checking the profiles (CAPABIL-
ITYMATCHER, Fig. 7.8). The experts’ behaviors are covered by DECISION-
MAKER (Fig. 7.9), HELPPROVIDER (Fig. 7.10), and DECISIONAGGREGATOR

(Fig. 7.11) roles. The final role is that of the USER (Fig. 7.12) who requires
the decision.
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Fig. 7.7. Schema for Role CAPABILITYRECORDER

Fig. 7.8. Schema for Role CAPABILITYMATCHER

With the respective role definitions in place, the next stage is to define the
associated interaction models for these roles. Here we focus on the interactions
associated with the DECISIONMAKER role.

This role interacts with the WORKPLANNER role to obtain the task this
role will accomplish (ReceiveTask protocol, Fig. 7.13a). It interacts with the
INFOGATHER role to gather some relevant information (known facts) for the
task (Getlnformation protocol, Fig. 7.13b). It also interacts with the CAPABIL-
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Fig. 7.9. Schema for Role DECISIONMAKER

Fig. 7.10. Schema for Role HELPPROVIDER

ITYMATCHER role to provide some roles for data pre- and/or post-processing
and so on when accomplishing the task (AskforHelp protocol, Fig. 7.13c).
When the DECISIONMAKER role finishes making decision for the task, it in-
forms the DECISIONAGGREGATOR role of its alternative decision for the task
(InformDecisionAggregator protocol, Fig. 7.13d).

In this system, the most important organizational rule in the organiza-
tional model is that if a role says it has a capability then it can perform the

tasks corresponding to the capability and will do so when asked.
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Fig. 7.11. Schema for Role DECISIONAGGREGATOR

Fig. 7.12. Schema for Role USER

7.3 Design of the System

Having completed the analysis of the system, the design phase follows. The
first model to be generated is the agent model (Fig. 7.14). This shows, for
most cases, a one-to-one correspondence between roles and agent types. The
exception is for the CAPABILITYRECORDER and CAPABILITYMATCHER roles
which, because of their high degree of interdependence, are grouped into a
single agent type.

The second model is the skill model. Again, to avoid redundance, the focus
is on the DECISIONMAKER role and the Decision Making Agent. Based on the
DECISIONMAKER role, six distinct services can be identified (Table 7.1).
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Fig. 7.13. Definition of Protocols Associated with the DECISIONMAKER Role: (a)
ReceiveTask, (b) Getlnformation, (c) AskforHelp, and (d) InformDecisionAggregator

From the ReceiveTask protocol, the service ‘obtain task’ is derived. This
service returns the TaskRequirements as output. It has a pre-condition that
the agent or role has the corresponding capability to perform the task, but
has no post-condition.

The service associated with the Getlnformation protocol is ‘get informa-
tion’. Its inputs, derived from the protocol definition (Fig. 7.13b), are the
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Fig. 7.14. Agent Model of the Financial Planning System

requirements for information gathering, and its outputs are known facts (gath-
ered information). The pre-condition for this service is that some information
sources are available, and the post-condition is that relevant information is
returned.

The third service, ‘accomplish reasoning’, is related to the Reasoning ac-
tivity. The inputs for this service are known facts, and outputs are some con-
clusions. This service has a pre-condition that the known facts are sufficient
to reach conclusions (post-condition).

The next two services, ‘call for help’ and ‘provide initial data’, are de-
rived from the AskforHelp protocol. The ‘call for help’ service takes a specific
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capability description as input, and returns the agent name with matched ca-
pability, or nil (if not matched) as outputs. The ‘provide initial data’ service
takes the agent name and initial data as inputs, and returns the processed
data as outputs.

The final service involves informing the decision aggregator of the alterna-
tive decisions. Then the inference mechanisms in the skill model are checked.
To make decisions, the agents must accomplish some reasoning based on their
knowledge, and on other available information. The final model is the knowl-
edge model, which indicates the different levels of knowledge that agents
should have. In this system, the agents should have three levels of knowledge.
The first level of knowledge is for agent interaction and communication. This
involves, for example, domain-specific and domain-independent terminologies
and their relationships. The identified domain-specific terms and their rela-
tionships will result in the construction of a domain-dependent ontology for a
specific application. The second level of knowledge is some domain knowledge
related to specific problem solving techniques. The third level of knowledge is
meta knowledge that directs the activities of an agent.

7.4 Architecture of the System

From the above analysis and design phases it is clear that there are seven
types of agents in the financial investment planning system – user agent, in-
terface agent, planning agent, middle agent (called serving agent here), service
provider agent, decision making agent, and decision aggregation agent.

Based on the proposed framework (refer to Fig. 5.1), the architecture of
the financial planning system is determined. This is shown in Fig. 7.15. The
behaviors of each kind of agent in the system (except the user agent) are now
briefly described.

Fig. 7.15. Architecture of Agent-Based Financial Investment Planning System
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Interface Agent This agent interacts with the user (or user agent). It
asks the user to provide their personal information and requirements, and
provides the user with a final decision (or advice) that best meets the
user’s requirements.
Planning Agent The planning agent is in charge of the activation and
synchronization of the different agents. It elaborates a work plan and is in
charge of ensuring that such a work plan is fulfilled. It receives assignments
from the interface agent.
Decision Making Agent It is application-specific, i.e., it has its own
knowledge base; it must have some meta-knowledge about when it needs
the help of intelligent technique agents (e.g., pre- or post-processing some
data); and it can ask intelligent technique agents to accomplish some sub-
tasks.
Serving Agent The serving agent is a matchmaker – a kind of middle
agent [41]. It keeps track of the names, ontologies, and capabilities of all
registered intelligent technique agents in the system. It can reply to the
query of a decision making agent with appropriate intelligent technique
agent’s name and ontology.
Service Provider Agent Most of the service provider agents in the sys-
tem are intelligent technique agents. Each intelligent technique agent can
provide services for decision making agents with one or some kind of com-
bined intelligent techniques. It can send back the processed results to deci-
sion making agents; it must advertise its capabilities to the serving agent.
Decision Aggregation Agent When decision making agents finish the
assigned tasks they return the results to the decision aggregation agent.
The aggregation agent chooses one of the alternative decisions, or performs
an aggregation of the different results to produce a final result.

The ontology is the foundation for agent communication. All agents in the
system interpret the content of received messages based on the ontology (refer
to Sec. 5.2).

7.5 Implementation of the System

The most important implementation criterion for such a system is platform
independent. With this observation in mind, the JATLite (Java Agent Tem-
plate, Lite, http://java. stanford.edu/) was chosen to support the implemen-
tation. JATLite provides a set of Java templates and a ubiquitous Java agent
infrastructure that makes it easy to build systems in a common way. JATLite
facilitates, in particular, construction of agents that send and receive messages
using the emerging standard agent communication language KQML (Knowl-
edge Query and Manipulation Language) [46]. JATLite does not impose any
particular theory on agents. All agents implemented have the ability to ex-
change KQML messages. This greatly increases the interoperability of the
system.
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7.5.1 Internal Structures of Agents

Under the framework, all decision making agents or intelligent technique
agents must register and connect to the serving agent.

Each decision making agent has its own domain-specific knowledge base
as well as meta-knowledge about when to use intelligent technique agents.
The serving agent records the capabilities, ontologies, and names, etc. of all
the intelligent technique agents in a multi-agent system. The scenario goes as
follows.

At a certain stage of the decision making process, the decision making
agent sends a KQML message using the recommend-one performative to the
serving agent, according to its meta-knowledge. The serving agent then re-
trieves its service provider agent database and replies with an appropriate
service provider agent’s name and ontology, which has the capability asked
for using the reply performative. After that, the decision making agent com-
municates directly with the service provider agent to solve a specific problem.
In most cases, service provider agents in the society are intelligent technique
agents. The decision making agent provides the intelligent technique agent
with some parameters according to the ontology, and the intelligent technique
agent sends the results to the decision making agent.

Based on the above description, the internal structures of agents in the
system can be identified. Figures 7.16 to 7.21 show the internal structures of
these agents.

As one can see from Figures 7.16 to 7.21, all the agents have a common
part – a KQML Message Interpreter (KMI). That is because KQML is used

Fig. 7.16. Decision Making Agent Structure

Fig. 7.17. Serving Agent Structure
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Fig. 7.18. Intelligent Technique Agent Structure

Fig. 7.19. Aggregation Agent Structure

Fig. 7.20. Planning Agent Structure

Fig. 7.21. Interface Agent Structure
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for inter-agent communication. The KMI represents the interface between the
KQML router and the agents. Once an incoming KQML message is detected,
it will be passed to the KMI. The KMI transfers incoming KQML messages
into a form that agents can understand. The implementation of KMI is based
on JATLite KQMLLayer Templates.

All the agents, except the serving agent, have an ontology interpreter.
They need to decrypt and process the :content part of the KQML message
when they solve a problem. There is no ontology interpreter in the serving
agent because it is not concerned with the :content.

The domain knowledge in decision making agents is not usually adequate
to make a decision. Relevant information and skills to use the knowledge and
information are also needed. The help of intelligent technique agents and other
service provider agents for data pre- and/or post-processing is often required.
The meta-knowledge of decision making agents advises them when help is
required from intelligent technique agents.

The intelligent technique agent maintenance module in the serving agent
has three functions: to add an entry that contains the intelligent technique
agent’s name, capability and ontology to the database; to delete an entry from
the database; and to retrieve the database to find intelligent technique agents
with a specific capability. The last function is usually called matchmaking.

Algorithms based on intelligent techniques in intelligent technique agents,
if the agent is under control, will be built using KQML as a communication
language. If not, the Java Native Interface is used to connect the legacy system
to the agent system [50] .

The kernel part of the system is the serving agent, which is one kind of
middle agent [41]. The introduction of a middle agent in the system facilitates
flexibility and robustness. With the middle agents, other agents can appear or
disappear dynamically by simply registering or unregistering themselves with
the middle agents. Therefore they can improve the flexibility and robustness
of an agent-based system.

7.5.2 Practical Architecture of the System

Under the support of JATLite, the practical architecture of the system is
depicted in Fig. 7.22. Figure 7.23 shows the user interface of the system,
which can start from any Internet Browser or appletviewer.

Following the analysis and design phases of the proposed methodology, we
worked out that the prototype consists of the following agents:

one interface agent;
one middle (serving) agent;
one planning agent;
one aggregation agent;
four decision making agents – investment policy agent, portfolio selection
agent based on the Markowitz model, portfolio selection agent based on
the fuzzy model, and portfolio selection agent based on the possibility
model; and
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Fig. 7.22. Practical Architecture of Financial Investment Planning System

Fig. 7.23. User Interface of Financial Investment Planning System

four service provider agents – financial risk tolerance ability evaluation
agent, interest rate prediction agent based on neural network, interest
rate prediction agent based on fuzzy logic and genetic algorithm, and an
approximate reasoning agent.

To register for the first time, a user needs to type the user name and
password in the corresponding fields and click ‘register new user’. Thereafter
they simply input the user name and password and click ‘connect’. They can
then input information about their annual income, networth etc. and click
the ‘sendmessage’ button. The system provides asset allocation information,
explanations of how to get the results, and evaluation of different portfolios
in the ‘result display’ window. (See the next subsection.) If the user wants to
leave the system, then click ‘disconnect’ and ‘unregister’.

7.6 Case Study

To demonstrate how the system works, we first examine a typical scenario
for investment. We then present an example to show how the agent-based
financial investment planning system gives advice to the investor.
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7.6.1 A Typical Scenario for Investment

When a person wants to invest some money, they usually go to a financial
investment adviser for advice. The first thing the adviser needs to do is to
understand the client’s individual circumstances. The adviser may ask the
client to provide the following information about himself: his financial position
(for example, annual income and total net-worth), age, tax effectiveness, etc.
Based on the information, the adviser will evaluate the financial risk tolerance
ability as well as the client’s investment goals.

If the client’s primary goal is income, then investments that provide in-
terest or dividend payments regularly and dependably are required. If the
primary goal is growth, then investments that are likely to increase in value
are appropriate so that they may be resold for more than their initial cost.
If, however, the primary goal is to avoid risk, then investments that offer the
greatest safety of principal, and protection from inflation, are required. Un-
fortunately, there is no single investment that simultaneously offers maximum
income, maximum growth and minimum risk.

Suppose the adviser, after evaluating the client’s financial risk tolerance
ability, suggests they invest in the stock market. How can they select a port-
folio for the client taking into account the individual constraints of that par-
ticular client? (For example, risk tolerance level and return rate.) The adviser
must first gather some information about the stock market. The information
would include such information as market data, financial report data, techni-
cal models, analysts’ reports, breaking news. After gathering the information,
the adviser then makes a portfolio selection decision based on certain models
(for example, the Markowitz model or the fuzzy probability model.)

In short, the overall task of investment advice has several component tasks:
eliciting (or learning) user profile information, collecting information on the
user’s initial portfolio position, and suggesting and monitoring a reallocation
to meet the user’s current profile and investment goals.

7.6.2 Example

Suppose the investor provides the interface agent with the following personal
information:

Amount of money to invest: $ 150,000
Annual income: $ 70,000
Total net-worth: $ 200,000
Age: 40
Investment goal: growth (for example, income, growth and avoid risk.

This reflects the investor’s attitude towards risk.)
The interface agent passes the investor’s information to the planning agent.

(See Fig. 7.15.) The planning agent will delegate subtasks to different decision
making agents. During the decision making process, decision making agents
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may ask different service provider agents for help. (Most would be soft com-
puting agents.) Finally, the prototype gives its advice to the investor through
the interface agent. The whole process (from receiving input to giving advice)
consists of the following five steps.

Step 1: Determining the investor’s investment policy (aggressive or conser-
vative).

The investment policy agent will use the fuzzy rules in its knowledge base
to determine the investor’s investment policy. One example of a fuzzy rule is
as follows:

If the investor’s risk tolerance is high, and the interest rate is falling,

and the investor’s investment goal is growth, then the investor can take an
aggressive investment policy.

The investment policy agent will then ask for help based on its meta-
knowledge. Thus, the investment policy agent sends KQML messages using
the recommend-one performative to the serving agent:

The serving agent then retrieves its database and replies with an appropri-
ate service provider agent’s name and ontology which has the capability asked
for, using the reply performative. In the prototype, there is a risk tolerance
ability evaluation agent based on fuzzy logic, and two interest rate prediction
agents based on feedforward neural network and fuzzy-genetic algorithm. The
serving agent will choose the interest rate prediction agent based on the fuzzy
genetic model according to the initial values of the agents’ track records [94].
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The investment policy agent then communicates with SC_agent_FL (for
risk tolerance evaluation) and SC_agent_FLGA (for interest rate prediction)
directly.

The risk tolerance evaluation agent (based on fuzzy logic) uses rules such
as:

If the investor’s annual income is high and total net-worth is high and
the investor is young then the investor’s risk tolerance ability is high;

If annual income > $50,000 then annual income is high;
If age 35 then the investor is young etc.

Based on the investor’s information and the financial risk tolerance model
[47], the risk tolerance evaluation agent obtains the result that the investor’s
risk tolerance ability is high. During this process, the risk tolerance evaluation
agent needs the help of an approximate reasoning agent.

The fuzzy-genetic based interest rate prediction agent will ask for the
following parameters as input: change of real gross national product
change of consumer price index change of nominal money supply

change of personal wealth and change of previous T-bill rates
All the data needs to be gathered by information gathering agents.

Suppose the gathered data is as follows:
and The predicted result is –0.76.

Thus the interest rate prediction agent reaches the conclusion that the interest
rate will fall.

Combining the results of the two soft computing (SC) agents and the
investor’s investment goal, the investment policy agent reaches the conclusion
that the investor’s investment policy can be aggressive.

Step 2: Determining the investment category. Investment categories can be
the stock market, real estate, fixed term deposit, etc. A decision making agent
based on a fuzzy model is used to accomplish this task. Example rules used
are:
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If the investor’s risk tolerance ability is high and the investment policy is
aggressive then the suggested investment category is the stock market;

If the investor’s risk tolerance ability is high and the investment policy is
conservative then the suggested investment category is, say, real estate.

Based on the model, the agent gives the suggestion that the investor can
invest in the stock market.

Step 3: Delegating information gathering agents to obtain stock market infor-
mation. (This step has not been implemented in the system.) Here we assume
information gathering agents gathered the returns of nine securities in the
past 18 years. (See Table 7.2.)

Step 4: Selecting portfolios from these nine securities that satisfies the in-
vestor’s risk tolerance level and maximizes the return. The selected portfolios
(with the expected average return of based on the three portfolio
selection models: the Markowitz model, the fuzzy probability model, and the
possibility distribution model, are shown in Fig. 7.26 (denoted by
and respectively).

Step 5: Aggregating the portfolios based on different models and giving a
final portfolio to the investor.

How can we aggregate the portfolios from different models and finally
produce one that is the best? This is a very tough question to answer. Cur-
rently, we have aggregated such portfolios using the ordered weighted averag-
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ing (OWA) aggregation algorithm based on fuzzy logic [99, 33]. Based on the
OWA aggregation the final portfolio is obtained in Fig. 7.26).

7.6.3 Running the System

The system can provide reasonable financial investment planning information
based on data provided by the user, and some relevant models. Figure 7.24
shows asset allocation results when the annual income is $50,000, networth
$800,000, age 35, investments $30,000, and investment attitude is aggressive
(level 4).

Fig. 7.24. Example Asset Allocation Results

By clicking the ‘explanation’ button, the corresponding explanation of how
to get the results is displayed in the ‘result display’ window. (See Fig. 7.25.)

If the growth section is invested in the stock market, the system can pro-
vide a portfolio for the user (Fig. 7.24). The portfolio is the aggregated re-
sult of three portfolios based on the Markowitz portfolio selection model, the
fuzzy probability portfolio selection model, and the possibility distribution
portfolio selection model. The four portfolios are recorded as Powa, Pmar,
Pfuz, and Ppos, respectively. The aggregation algorithm used is the ordered
weighted averaging (OWA) aggregation algorithm [33]. By clicking the ‘evalu-
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Fig. 7.25. Example Explanations of Financial Planning System

ation’ button, the system will provide the comparisons of the four portfolios.
(See Fig. 7.26.)

The lower part of Fig. 7.26 represents the realized average returns of the
four portfolios. From this, one can see that in some years the average returns
of Ppos is better than those of Pfuz or Pmar, or vice versa. Considering
the overall results, the average returns of the aggregated portfolio, Powa,
are better. To verify this, more experiments were conducted. The results are
presented below.

7.6.4 Empirical Evaluation of the Aggregated Results

At this stage, one important problem is how to verify the aggregated portfolio.
There is no systematic way available to answer this question. Instead, some
experiments were conducted.

The first experiment was to use the first 12 years (1982 to 1993) return
data as in Table 7.2, to produce three portfolios based on the three models.
Based on the analysis in [105, 106], it is known that the fuzzy model is a direct
extension of Markowitz’s model, while the possibility model is more reasonable
than the fuzzy model. Thus the three portfolios are ordered as
and and (the degree that the aggregation prefers decisions
with high confidence) is chosen when using an OWA operator to aggregate the
three portfolios. The weight vector with is W = [0.554, 0.292, 0.154].
The selected portfolios and the corresponding risks of investment are shown
in Table 7.3. The portfolios in Table 7.3 are also selected with an expected
average return
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Fig. 7.26. Comparison of the Portfolios

The last 6 years (1994 to 1999) return data in Table 7.2 is used to verify
the realized average returns of the four portfolios. The realized average returns
of the four portfolios from one to six years are listed in Table 7.4.

From Table 7.4, one can see that the average returns of are better
than those of and and slightly less than those of The
variance (risk or uncertainty degree of the investment) of is greatly
reduced (from 0.30 to 0.18) compared with that of

To further verify the aggregated portfolio, 12 securities listed in the Aus-
tralian Stock Exchange Limited (ASX) were selected, and 12 years average
returns (from 1986 to 1997) were collected. (See Table 7.5.) The ASX security
codes of to are AKC, AFI, AGL, BPC, CSR, EML, GUD, SMI, HAH,
OPS, PDP, and WYL, respectively. The data has been taken from [124, 125].

Similar to the first experiment, the first 8 years (1986 to 1993) return data
was used to generate the portfolios, while the last 4 years (1994 to 1997) data
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was used for verification. With the expected average return the
selected portfolios based on the three models, and the aggregated portfolio
based on OWA with are listed in Table 7.6.

Based on the four portfolios, the realized average returns from one to four
years are shown in Table 7.7.

The results in Table 7.7 are consistent with those in Table 7.4. Thus the
same conclusion can be reached. The average returns of are greater
than those of and and slightly less than those of The
variance (risk) of is greatly reduced (from 0.26 to 0.15) compared with
that of
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Finally, different expected average return values (from 10% to 20%) were
used to test the four portfolios, based on the two sets of return data. The
same conclusion was reached.
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Agent-Based Hybrid Intelligent System

for Data Mining

Data mining, the central activity in the process of knowledge discovery in
databases, is concerned with finding patterns in data. Many data mining tech-
niques/algorithms that are used to look for such patterns have been developed,
one at a time, in domains that range from space exploration to financial anal-
ysis. However, no single data mining technique has been proved appropriate
for every domain and data set. Instead, several techniques may need to be
integrated into hybrid systems, and used cooperatively during a particular
data mining operation. That is, hybrid solutions are crucial for the success of
data mining.

Recently, agent techniques have been applied to distributed data min-
ing. In [130] and [131], Kargupta, Stafford, and Hamzaoglu describe a paral-
lel/distributed data mining system PADMA (PArallel Data Mining Agents)
that uses software agents for local data accessing and analysis, and a Web
based interface for interactive data visualization. PADMA has been used in
medical applications. In [132], an agent-based meta-learning system for large-
scale data mining applications, which is called JAM (Java Agents for Meta-
learning), is described. JAM was empirically evaluated against real credit card
transaction data, where the target data mining application was to compute
predictive models that detect fraudulent transactions. However, these works
focus on only one of the many steps in data mining.

Kerber, Livezey, and Simoudis have reported a hybrid system (Recon)
for data mining [136], where inductive, clustering, case-based reasoning, and
statistical packages are integrated and used collaboratively. Recon adopted a
typical client/server architecture, however, its the adaptability and robustness
do not meet the requirements arising in real-world applications.

The emphasis of this chapter will be to try to combine the two cutting
edge technologies, agent and data mining, applying the proposed agent-based
hybrid framework to construct hybrid intelligent systems for data mining.
The work presented in this chapter further verifies the proposed agent frame-
work, and provides an easy way to construct hybrid systems for data mining.
This will drive applications of data mining in real-world problems. The hybrid
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systems for data mining based on this framework have two essential charac-
teristics that differentiate our work from that done in the past:

New data mining techniques can be plugged into the system and out-of-
date techniques can be deleted from the system dynamically.
Data mining technique agents can interact at run-time with ease under
this framework, but in other non-agent based systems, these interactions
must be determined at design-time.

Before discussing why hybrid solutions are required in data mining, some
typical data mining techniques are introduced first.

8.1 Typical Data Mining Techniques

There are many variety of data mining techniques used for different applica-
tions, and at different stages of a data mining task. The typical techniques
covered in this section, which are also core topics in data mining, are classifi-
cation, clustering, and association rules. These three are viewed as the major
data mining functions. Other data mining concepts such as prediction, regres-
sion, and pattern matching may be viewed as special cases of these three [145].

8.1.1 Classification

Classification is perhaps the most familiar and most popular data mining
technique. Examples of classification applications include image and pattern
recognition, medical diagnosis, loan approval, detecting faults in industry ap-
plications, and classifying financial market trends. Estimation and prediction
may be viewed as types of classification. When someone estimates your age
or guesses the number of marbles in a jar, these are actually classification
problems. Prediction can be thought of as classifying an attribute value into
one of a set of possible classes. it is often viewed as forecasting a continuous
value, while classification forecasts a discrete value.

All approaches to performing classification assume some knowledge of the
data. Often a training set is used to develop the specific parameters required
by the techniques. Training data consist of sample input data as well as the
classification assignment for the data. Domain experts may also be used to
assist in the process.

The classification problem can be stated as follows:
Given a database of tuples (items, records) and a

set of classes the classification problem is to define
a mapping where each is assigned to one class. A class,

contains precisely those tuples mapped to it; that is,

The definition views classification as a mapping from the database to the
set of classes. Actually, classification is a two-step process:

and
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Create s specific model by evaluating the training data. This step has as
input the training data (including defined classification for each tuple) and
as output a definition of the model developed. The model created classifies
the training data as accurately as possible.
Apply the model developed in step one by classifying tuples from the target
database.

There are various categories of classification algorithms. Statistical algo-
rithms are based directly on the use of statistical information, which include
regression and Bayesian classification. Distance-based algorithms such as K

nearest neighbors use similarity or distance measures to perform the classifi-
cation. Decision tree-based algorithms including ID3, C4.5 and C5.0, CART,
and scalable DT techniques use the corresponding structures to perform the
classification. Neural network-based algorithms also use the structures to per-
form the classification. Rule-based classification algorithms generate if – then

rules to perform the classification.
Before applying any classification algorithms, the following preprocessing

steps may be applied to the data in order to help improve the accuracy,
efficiency, and scalability of the classification.

Data cleaning: This refers to the preprocessing of data in order to re-
move or reduce noise (by applying smoothing techniques, for example)
and the treatment of missing values (e.g., by replacing a missing value
with the most commonly occurring value for that attribute, or with the
most probable value based on statistics). Although most classification al-
gorithms have some mechanisms for handling noisy or missing data, this
step can help reduce confusion during learning.
Relevance analysis: Many of the attributes in the data may be irrele-

vant to the classification task. For example, data recording the day of the
week on which a bank loan application was filed is unlikely to be relevant
to the success of the application. Furthermore, other attributes may be re-

dundant. Hence, relevance analysis may be performed on the data with the
aim of removing any irrelevant or redundant attributes from the learning
process.
Data transformation: The data can be generalized to higher-level con-
cepts. Concept hierarchies may be used for this purpose. This is particu-
larly useful for continuous-valued attributes. For example, numeric values
for the attribute income may be generalized to discrete ranges such as
low, medium, and high. Similarly, nominal-valued attributes, like street,

can be generalized to higher-level concepts, like city. Since generalization
compresses the original training data, fewer input/output operations may
be involved during learning. The data may also be normalized, particularly
when neural networks or algorithms involving distance measurements are
used in the learning step. Normalization involves scaling all values for a
given attribute so that they fall within a small specified rang.
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Different classification algorithms can be compared and evaluated accord-
ing to the following criteria:

Classification accuracy: This refers to the ability of the model to correctly
predict the class label of new or previously unseen data.
Speed: This refers to the computation costs involved in generating and
using the model.
Robustness: This is the ability of the model to make correct classifications
given noisy data or data with missing values.
Scalability: This refers to the ability to construct the model efficiently
given large amounts of data.
Interpretability: This refers to the level of understanding and insight that
is provided by the model.

No one classification technique is always superior to the others in terms of
classification accuracy. However, there are advantages and disadvantages to
the use of each. The regression approaches force the data to fit a predefined
model. If a linear model is chosen, then the data are fit into that model even
though it might not be linear. It requires that linear data be used. The K

nearest neighbor technique requires only that the data be such that distances
can be calculated. This can then be applied even to nonnumeric data. Outliers
are handled by looking only at the K nearest neighbors. Bayesian classifica-
tion assumes that the data attributes are independent with discrete values.
Thus, although it is easy to use and understand, results may not be satisfac-
tory. Decision tree techniques are easy to understand, but they may lead to
overfitting. To avoid this, pruning techniques may be needed. ID3 is applicable
only to categorical data. Improvements on it, C4.5 and C5, allow the use of
continuous data and improved techniques for splitting. CART creates binary
trees and thus may result in very deep trees.

8.1.2 Clustering

In Sect. 6.3.3, a fuzzy clustering algorithm has been employed for initial value
generation of agents’ track records. More details on clustering are given in
this section.

Clustering is similar to classification in that data are grouped. However,
unlike classification, the groups are not predefined. Instead, the grouping is
accomplished by finding similarities between data according to characteris-
tics found in the actual data. The groups are called clusters. The clustering
problem can be stated as follows:

Given a database of tuples and an integer value
(the number of clusters to be created), the clustering problem is to define
a mapping where each is assigned to one cluster

A cluster, contains precisely those tuples mapped to it;
that is, and
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A classification of the different types of clustering algorithms is shown in
Fig. 8.1 (adapted from [145]).

Fig. 8.1. Classification of Clustering Algorithms

Clustering algorithms themselves may be viewed as hierarchical or parti-
tional. With hierarchical clustering, a nested set of clusters is created. Each
level in the hierarchy has a separate set of clusters. At the lowest level, each
item is in its own unique cluster. At the highest level, all items belong to the
same cluster. With hierarchical clustering, the desired number of clusters is
not input. With partitional clustering, the algorithm creates only one set of
clusters. These approaches use the desired number of clusters to drive how
the final set is created. traditional clustering algorithms tend to be targeted
to small numeric databases that fit into memory. There are, however, more
recent clustering algorithms that look at categorical data and are targeted to
larger, perhaps dynamic, databases. Algorithms targeted to larger databases
may adapt to memory constraints by either sampling the database or using
data structures, which can be compressed or pruned to fit into memory regard-
less of the size of the database. Clustering algorithms may also differ based
on whether they produce overlapping or nonoverlapping clusters. The types
of clustering algorithms can be furthered classified based on the implementa-
tion technique used. Hierarchical algorithms can categorized as agglomerative
or divisive. “agglomerative” implies that clusters are created in a bottom-up
fashion, while divisive algorithms work in a top-down fashion.

In data mining, efforts have focused on finding methods for efficient and
effective cluster analysis in large databases. Active themes of research focus on
the scalability of clustering methods, the effectiveness of methods for clustering
complex shapes and types of data, high-dimensional clustering techniques, and
methods for clustering mixed numerical and categorical data in large database.

8.1.3 Association Rules

The purchasing of one product when another product is purchased represents
an association rule. Association rules are frequently used by retail stores to



132 8 Agent-Based Hybrid Intelligent System for Data Mining

assist in marketing, advertising, floor placement, and inventory control. Al-
though they have direct applicability to retail businesses, they have been used
for other purposes as well, including predicting faults in telecommunication
networks. Association rules are used to show the relationships between data
items. These uncovered relationships are not inherent in the data, as with
functional dependencies, and they do not represent any sort of causality or
correlation. Instead, association rules detect common usage of items.

Association rule mining finds interesting association or correlation rela-
tionships among a large set of data items. Rule support and confidence are two
measures of rule interestingness. Typically, association rules are considered in-
teresting if they satisfy both a minimum support threshold and a minimum

confidence threshold. Such thresholds can be set by users or domain experts.
Given a set of items and a database of transaction

where and an association

rule is an implication of the form where X, Y I are sets of items and
The support for an association rule is the percentage

of transactions in the database that contain This is taken to be the
probability, The confidence or strength for an association rule

is the ratio of the number of transactions that contain to the
number of transactions that contain X. This is taken to be the conditional
probability, That is,

Rules that satisfy both a minimum support threshold (min_sup) and a
minimum confidence threshold (min_conf )  are called strong.

A set of items is referred to as an itemset. An itemset that contains
items is a The set {computer, financial_management_software}
is a 2 – itemset. The occurrence frequency of an itemset is the number of
transactions that contain the itemset. An itemset satisfies minimum support

if the occurrence frequency of the itemset is greater than or equal to the
product of min_sup and the total number of transactions in D. The number of
transactions required for the itemset to satisfy minimum support is therefore
referred to as the minimum support count. If an itemset satisfies minimum
support, then it is a frequent itemset.

Association rule mining is a two-step process:

1. Find all frequent itemsets: By definition, each of these itemsets will
occur at least as frequently as a pre-determined minimum support count.

2. Generate strong association rules from the frequent itemsets:
By definition, these rules must satisfy minimum support and minimum
confidence.

Additional interestingness measures can be applied, if desired. The second
step is the easiest of the two. The overall performance of mining association
rules is determined by the first step.
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8.2 Data Mining Requires Hybrid Solutions

Data mining is concerned with finding patterns in data. It is about exploring
unknown patterns in large data sets. Data is a set of facts (e.g., cases in a
database). The output of a data mining algorithm is typically a pattern, or a
set of patterns, that are valid in the given data. A pattern is an expression, or
statement, in a given language, which describes relationships among the facts
in a subset of given data and is, in some sense, simpler than the enumeration
of all facts in the subset. Typical representative patterns are equations, clas-
sification and regression trees, classification and regression rules, and positive
and negative association rules.

The principal data mining tasks include: predictive modeling (classification
and regression), clustering (grouping similar objects) and summarization (as
exemplified by association rule discovery). According to the main tasks, data
mining techniques can be divided into five classes as follows [135]:

Predictive modeling. The goal is to predict some field(s) in a database
based on other fields. If the field being predicted is a numeric (continuous)
variable then the prediction problem is a regression problem. If the field is
categorical, then it is a classification problem. There is a wide variety of

techniques for classification and regression.

Clustering. Unlike classification, we do not know the number of desired
“clusters” in clustering. Thus clustering algorithms typically employ a two-
stage search: an outer loop over possible cluster numbers and an inner loop
to fit the best possible clustering for a given number of clusters. Given the
number of clusters, clustering methods can be divided into three classes:
metric-distance based methods, model-based methods, and partition-based
methods.
Data summarization. One common method in data summarization is to
take vertical (fields) slices of the input data. This class of methods is
distinguished from the above in that, rather than predicting a specified
field (e.g, classification) or grouping cases together (e.g., clustering), the
goal is to find relations among fields (e.g., association rules).
Dependency modeling. Insight into data is often gained by deriving some
causal structure within the data. Models of causality can be probabilistic or
they can be deterministic, as in deriving functional dependencies between
fields in the data. Density estimation methods in general fall into this
category, as do methods for explicit causal modeling.
Change and deviation detection. These methods account for sequence in-
formation, be it time-series or some other ordering. The distinguishing
feature of this class of methods is that ordering of observations is impor-
tant and must be accounted for.

In a nutshell, there are variety of methods related to different principal
tasks in data mining, and outputs of different data mining methods also have
different forms. However, a single data mining technique has not been proven
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appropriate for every domain and data set. Instead, several techniques may
need to be integrated into hybrid systems and used cooperatively during a
particular data mining operation. Therefore, hybrid intelligent systems are
required for data mining tasks. To further justify this statement, a simple
example is now provided.

How do we identify a set of “promising” securities to be included in an
investment portfolio based on the historical fundamental and technical data
about securities? This is a very appropriate domain for data mining for two
reasons. First, because the number of available securities being traded in the
various exchanges is very large. Identifying appropriate securities for the goals
of a particular portfolio is based on close examination of the performance of
these securities. Without the use of data mining techniques, analysts can only
closely examine small amounts of data. Second, analysts are able to state cri-
teria for identifying securities that can potentially meet a set of investment
goals. However, they cannot identify all the necessary criteria. Furthermore,
even after a set of securities is identified, large volumes of data relating to
these securities still have to be examined in order to fine-tune the stated per-
formance criteria, as well as identify others not previously considered by the
analyst. For this simple task, no single data mining technique is adequate.
Methods are needed to formulate a pattern (hypothesis) and test its validity
on the target databases. Methods to discover other relevant patterns from tar-
get databases are also required. Some other methods, including classification
methods to classify each security, inductive learning methods, and visual-
ization techniques are also helpful for this task. If we construct a computer
system to perform this task, it is evident that this system is a hybrid system
integrating different techniques.

Once again, data mining is an iterative sequence of many steps, while many
techniques are involved in each step. These techniques need to be integrated
into hybrid systems and used cooperatively for data mining tasks.

8.3 Requirements of the Agent-Based Hybrid Systems
for Data Mining

As discussed previously, there are many well established data mining tech-
niques. However, neither of the techniques is a panacea for solving problems
involving hundreds of thousands of highly dimensional records. A data min-
ing technique can work well in some domains but fail in others [128]. To be
able to integrate different data mining techniques into hybrid systems and use
them cooperatively is of paramount importance. For one data mining task,
three techniques may be required to be put together, for another task, five
techniques might need to be integrated, and so on. Thus, the requirements for
such hybrid systems can be identified as follows.
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Different agents based on different data mining techniques can be dy-
namically tailored to different agent-based hybrid intelligent systems for
different data mining tasks.
Agents based on newly invented data mining techniques can be added to
the systems and agents with out-of-date techniques can be deleted from
the systems dynamically. That is, agents can be added to the systems or
deleted without changing the design.
Interactions at run-time are allowed.

8.4 Analysis and Design of the System

Based on the framework and methodology described in Chap. 5, the first
step in the analysis process is to identify the roles in the hybrid system for
data mining. Keeping the requirements in mind, the following roles can be
identified. (To avoid redundancy, only the schema for some of the identified
roles are given.)

One role acting as an interface to the users (USERHANDLER, which is the
same as Fig. 7.5).
One role overseeing the whole process inside the system (WORKPLANNER,

which is also the same as Fig. 7.6).
Two roles which meet the requirements of dynamic tailoring: one keeping
track of the profiles of other roles performing data mining related tasks
(CAPABILITYRECORDER, see Fig. 7.7) and one checking the profiles (CA-
PABILITYMATCHER, refer to Fig. 7.8).
One role to visualize the mined results in certain situations (RESULTVI-
SUALIER).
The behavior of all the data mining is covered by the ATTRIBUTE-
SELECTOR (Fig. 8.2), FREQUENTITEMSETIDENTIFIER, DATACLEANSER,
ASSOCIATIONRULEMINER (Fig. 8.3), DECISIONTREEINDUCER, CLASSIFI-

CATIONRULEGENERATOR, CROSSVALIDATOR, PREDICTIONEVALUATOR,
and RESULTACCURACYANALYZER (Fig. 8.4) roles, etc.
The final role is that of the USER (refer to Fig. 7.12) who requires the data
mining results.

With the respective role definitions in place, the next stage is to define the
associated interaction models for these roles. Here we focus on the interactions
associated with the ASSOCIATIONRULEMINER role.

This role interacts with the WORKPLANNER role to obtain the task that
this role will accomplish (ReceiveTask protocol, Fig. 8.5a). It interacts with
the DATAPREPARER role (maybe ATTRIBUTESELECTOR, FREQUENTITEMSE-

TIDENTIFlER, etc.) from where it can access the data for mining (Accessltem-
sets protocol, Fig. 8.5b). When the ASSOCIATIONRULEMINER role finishes
mining association rules, it sends the RESULTACCURACYANALYZER role its
mined results for the task (SendMinedResults protocol, Fig. 8.5c). For some
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Fig. 8.2. Schema for the Role ATTRIBUTESELECTOR

Fig. 8.3. Schema for Role ASSOCIATlONRULEMINER

roles, the outputs are also sent to the RESULTVISUALIER role to visualize and
display, but not in the case of ASSOCIATIONRULEMINER.

In such a system, the most important organizational rule in the organiza-
tional model is that if a role says it has a capability then it can perform the

tasks corresponding to the capability and will do so when asked.

Having completed the analysis of the system, the design phase follows. The
most important model to be generated is the agent model (Fig. 8.6). In some



8.4 Analysis and Design of the System 137

Fig. 8.4. Schema for Role RESULTACCURACYANALYZER

Fig. 8.5. Definition of Protocols Associated with the ASSOCIATIONRULEMINER

Role: (a) ReceiveTask, (b) Accessltemsets, and (c) SendMinedResults.

cases, there is a one-to-one correspondence between roles and agent types
(e.g., USERHANDLER role and InterfaceAgent, WORKPLANNER and Plan-

ningAgent). In some cases, two or more roles are grouped into a single agent
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Fig. 8.6. Agent Model for the Data Mining System

type. For example, the CAPABILITYRECORDER and CAPABILITYMATCHER

roles are grouped into a MiddleAgent because of their high degree of inter-
dependence; the ATTRIBUTESELECTOR, FREQUENTITEMSETIDENTIFIER, and
DATACLEANSER are grouped into the PreprocessingAgent; and so on.

8.5 Implementation of the System

From the above analysis and design phases, it is clear that there are eight
types of agents in the system – user agent, interface agent, planning agent, vi-
sualization agent, middle agent, preprocessing agent, mining agent, and post-
processing agent. To meet the requirements of such systems, the architecture
shown below (Fig. 8.7) is employed to put all these agents together. It is
assumed that there are preprocessing agents, mining agents, and post-
processing agents. These numbers and can be increased or decreased
dynamically. The behavior of each kind of agent in the system (except the user
agent) is briefly described below:

Interface Agent This agent interacts with the user (or user agent). It
asks the user to provide his requirements, and provides the user with mined
results. (These may be visualized.)
Planning Agent The planning agent is in charge of the activation and
synchronization of different agents. It elaborates a work plan, and is in
charge of ensuring that such a work plan is fulfilled. It receives assignments
from the interface agent.
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Fig. 8.7. Architecture of Agent-Based Data Mining System

Visualization Agent Visualizes certain mined results and passes them
to interface agent.
Middle Agent Keeps track of the names, ontologies and capabilities of
all registered agents in the system; it can reply to the query of an agent
with the name and ontology of an appropriate agent having the capabilities
requested. Once again, the introduction of a middle agent in the system
facilitates flexibility and robustness.
Preprocessing Agent Prepares data for mining.
Mining Agent Mines the data prepared by preprocessing agents and
generates relevant patterns.
Post-processing Agent Evaluates the performance and accuracy, etc.,
of mining agents.

The ontology is the foundation of agent communication. All agents in the
system interpret the content of received messages based on the ontology.

The implementation is also supported by JATLite. The kernel support-
ing part of the system is the planning agent and middle agent [41]. Figure 8.8
shows the internal structure of the planning agent. The KQML Message Inter-
preter (KMI) represents the interface between the KQML router and agents.
Once an incoming KQML message is detected, it will be passed to the KMI.
The KMI transfers incoming KQML messages into a form that agents can
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understand. The implementation of KMI is based on JATLite KQMLLayer
Templates. The planning agent allows dynamic reorganization of connected
agents in the system, while middle agent allows the agents to be connected or
disconnected to the system dynamically. All of this facilitates flexibility and
robustness.

Fig. 8.8. Planning Agent Structure

Considering there are some legacy data mining (or machine learning) soft-
ware packages available, approaches should be provided which integrate such
software packages into the system when needed. This means that the software
packages must somehow be converted into agents. As we did in the agent-based
financial investment planning system, a wrapper is implemented to wrap the
software packages by using the Java Native Interface [50] and JATLite KQML
layer templates.

8.6 Case Study

The Weka system ( [129] and http://www.cs.waikato.ac.nz/ml/weka) was re-
implemented from agent perspectives based on the above discussion. The main
focus of Weka is on classifier and filter algorithms. It also includes implemen-
tations of algorithms for learning association rules and for clustering data for
which no class value is specified.

To re-implement the programs in Weka from agent perspectives, the pro-
grams in Weka (written in Java) were compiled into .DLLs (dynamic link
library) first. The Java Native methods and JATLite KQML layer templates
were then employed to wrap these programs in .DLL. In this way, all the
programs in Weka were equipped with KQML communication capability and
were ready to add to the agent system.

In this agent-based data mining experimental system, in addition to the
supporting agents (interface agent, planning agent, middle agent, and so on)
there are 7 attribute selection related agents, 25 classifier related agents, 9
filter related agents, and 2 cluster related agents.
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Fig. 8.9. User Interface of the System

Figure 8.9 shows the user interface of the system, which can start from
any Internet Browser or appletviewer.

To use the system, the user needs to type the user name and preferred
password in the corresponding fields and click ‘register new user’ to register for
the first time. Thereafter, the registered user name and password are simply
entyered and ‘connect’ clicked. If the user wants to leave the system, then
click ‘disconnect’ and ‘unregister’.

The system can work in two modes. In one mode, all the data mining
related agents can run individually, which is similar to executing the original
Weka program from the command line. In this mode, the user provides the
system with the ‘agent type’ and corresponding ‘parameter string’ information
in the corresponding input fields, and then clicks the ‘SendMessage’ button.
The system will activate the given agent and display the results in the ‘result
display’ window. For example, if we type in ‘weka.classifiers.m5.M5Prime’ in
the ‘agent type’ field, and ‘-t data\cpu.arff’ in the ‘parameter string’ field
(‘data\’ was added before the data file as all data files in the system are in
the ‘data’ subdirectory), the system will display the following results , which
are the same as running this program from the command line in Weka. (See
Fig. 8.10.)

Another mode is to provide the planning agent with a work plan. The
system then activates different agents based on the work plan. The work
plan can be generated automatically based on meta-knowledge of the task
contained in the planning agent. A work plan can also be edited manually
according to the work plan specification, and loaded into the planning agent.
Here, only the latter is implemented in the experimental system.

It is worth pointing out that although agent-based implementation facil-
itates the integration of different techniques into a system in which different
techniques can work cooperatively to solve complex problems, it does not
directly contribute to the improvement of performance, or accuracy, of the
original algorithms.



142 8 Agent-Based Hybrid Intelligent System for Data Mining

Fig. 8.10. Output from the M5 Agent for Numeric Prediction
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9

The Less the More

The emphasis of this book is to promote the construction of hybrid intelligent
systems that are essential for solving complex real-world problems. A vari-
ety of intelligent techniques can easily be integrated into one system under
the proposed agent framework. Two agent-based hybrid intelligent systems
were developed based on the framework. The systems built from agent per-
spectives are flexible, robust and interoperable. The success of these systems
indicates that agent technologies can significantly facilitate the building of hy-
brid intelligent systems. As different complementary techniques can be easily
integrated into one system under the unifying agent framework we proposed,
many complex problems, such as financial investment planning, can be solved
within a shorter time frame and also result in higher quality solutions.

In this last chapter, experiments on the flexibility and robustness testing
are described briefly. The future work of agent-based hybrid intelligent systems
is then outlined.

9.1 Flexibility and Robustness Testing

Our interest here does not reside in improving the performance of different
models (techniques), but rather in how to integrate different models into one
system under the unifying agent framework we proposed. Therefore, the ex-
periments conducted are focused on integration, flexibility and robustness.

First, the functions of different agents were tested to see whether they
could work properly after being integrated together. To do this, the same input
data sets were used as those used in non-agent systems. The experimental
results show that all agents in both systems behave correctly, as the two
agent-based systems produce the same results as do non-agent systems.

The flexibility of the three systems was tested by launching them first,
and then adding new agents to the systems as well as deleting running ones
from them. These operations could be done on any host on the Internet. By
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observing the performance of the systems, the prototypes demonstrated very
high flexibility.

To test the robustness, a dedicated network was set up, and the agent sys-
tem prototypes were run on this network environment. The network consisted
of hosts running different operating systems including, Windows 2000, Win-
dows XP, Linux (RedHat), and Unix (Sun Solaris). The agents were scattered
among the hosts of the network and for some an ‘out of order’ was forced.
In all situations, the systems still provide results. Thus, it was evident the
systems were robust.

9.2 Future Work

As pointed out earlier, hybrid intelligent systems built on our framework have
the following crucial characteristics that differentiate our framework from oth-
ers.

Each agent in the systems can easily access all the intelligent techniques,
including fuzzy logic, neural networks and genetic algorithms, and also
other techniques available in the system, whenever needed.
The ability to add/delete service provider agents to/from the systems dy-
namically.
The presence of middle agents in the systems allows adaptive system or-
ganization.
Overall system robustness is facilitated through the use of middle agents.
For example, if a particular service provider (e.g., an interest rate predic-
tion agent) disappears, a requester agent (decision making agent) can find
another one with the same, or similar, capabilities by interrogating the
middle agent.
The agent-based hybrid intelligent systems can make decisions about the
nature and scope of interactions at run-time. They can be reorganized
dynamically at running time based on the work plans generated by the
planning agents.

To promote the use of our unifying agent framework for building hybrid in-
telligent systems, and pave the way for its introduction into industrial toolkits,
the following two issues must be addressed.

There are many different varieties of intelligent techniques. Different in-
telligent technique agents can be built based on these diverse intelligent tech-
niques, and can result in different internal structures for these agents. To avoid
dealing with these intelligent technique agents case by case when integrating
them into hybrid intelligent systems, a high level abstract model for all these
intelligent technique agents is essential. This can provide transparency of the
different internal structures of these agents for hybrid intelligent system de-
velopers. Then, it is unnecessary for developers to know the details of different
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intelligent techniques as well as the internal structures of the corresponding
agents.

To reorganize an agent-based hybrid intelligent system dynamically at
running time, the planning agents should have the capability to generate the
work plans automatically, or at least semi-automatically, based on the tasks
received. In the systems implemented, this was done by manually editing a
work plan.

In [140], Hannebauer proposed the notion of autonomous dynamic reconfig-

uration. Two individual reconfiguration operations, called agent melting and
agent splitting were introduced. Agent melting means unifying the problem
solving knowledge, goals, resources and skills of two or more agents in a single
agent. On the other hand, agent splitting denotes a process in which a sin-
gle agent splits its problem solving knowledge, goals, resources and skills, and
hands it over to one or more new or existing agents. In contrast to many other
approaches, the approach proposed by Hannebauer resides mainly on the in-
dividual (micro-)level of behavior rather than on the social (macro-)level. To
reconfigure an agent-based hybrid intelligent system dynamically, both the
micro-level and macro-level operations are involved. Some solutions to this
issue have yet to be explored.

Once these issues are solved, the way will be paved to the establishment
of an industrial-strength toolkit that will revolutionize the construction of
agent-based hybrid intelligent systems.
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Appendix: Sample Source Codes

of the Agent-Based Financial Planning System

In the agent-based financial investment planning systems implemented, there
are 13 agents. The implementations are under the support of JATLite as
well as the Native Method in Java. The system can run under Windows
95/98/NT/2000/XP with Java V1.4 and JATLite V0.4 Beta. Make sure that
Java V1.4 and JATLite V0.4 can work properly and the home directory of the
financial system is included in the CLASSPATH environment variable before
starting the agent-based financial investment system. The source codes for
nine of these agents are listed here.

StockData: Data supply agent for other agents in the system;
Stock: Planning agent for portfolio selection;
Moki: Profolio selection agent based on Markowitz’s model;
Fuzz:Profolio selection agent based on fuzzy logic model;
Poss:Profolio selection agent based on possibility distribution model;
Aggr: Decision aggregation agent based on the ordered weighted averaging
operators;
Invpolicy:Planning agent for investment decision-making;
Invppt: Investment decision making agent that determines the client’s fi-
nancial risk tolerance ability and the asset allocation;
Flga: Interest rate prediction agent based on fuzzy logic and genetic algo-
rithms;
Ffin: Interest rate prediction agent based on neural networks.

The following parameters/data files are used by these agents:

stockdataaddressfile: This file contains the information to configure
JATLite Router, RouterRegister, and all other agents in the system. The
configuration information for each agent consists of the following items:
agenttype, agentname, hostname, portnumber, description, registrequest,

idletime, classfilename.

stock.cfg: This file contains the parameters to configure StockData and
Stock agents.
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flga.cfg: This file contains the parameters used by Flga agent for training
and predicting interest rate.
ffin.cfg: This file contains the parameters used by Ffin agent for training
and predicting interest rate.
stockdata file: This file provides initial data for moki, fuzz, and poss agents.

A. Source Codes for Data Supply Agent (StockData)

import java.io
import java.util
import java.lang
import java.awt.event
import Abstract
import KQMLLayer
import RouterLayer.AgentClient

public class StockData extends HHRouterClientAction {

static String DataFile=null;
String cfgfile="stock.cfg";
public StockData() {
super();
}

public StockData(Address myaddress,
Address routeraddress,
Address registraraddress,
int durationtime,
boolean regrequest ){

// use RouterLayer.AgentClient.RouterClientAction constructor
super(myaddress,routeraddress,registraraddress,durationtime,regrequest);

}
public StockData(String cfgfname.String gname){

super(cfgfname,gname);
}

public boolean Act(Object o) {
try {
if(!superAct(o)) return false;
if(perf.equals("task")){
try {
if(DataFile==null)getfilename(cfgfile);
BufferedReader datain =
new BufferedReader(new FileReader(new File(DataFile)));
String datatype="";
String sdata="",cdata="";
while(true){
String line = datain.readLine();
if(line == null) break;
line=line.trim();
if(line.equals("")) continue;

if(line.startsWith(":STOCKDATA")){
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datatype=":STOCKDATA";
continue;
}
if(line.startsWith(":END STOCKDATA")){
datatype="";
continue;
}
if(line.startsWith(":CHECKDATA")){
datatype=":CHECKDATA";
continue;
}
if(line. startsWith( ": END CHECKDATA") ) {
datatype="";
continue;
}
if(datatype.equals(":STOCKDATA"))
sdata+="("+line+") ";
if(datatype.equals(":CHECKDATA"))
cdata+="("+line+") ";
}

sdata="("+sdata+")";
cdata="("+cdata+")";
_returnString="("+sdata+" "+cdata+")";
datain.close();
} catch (Exception e) {
sendErrorMessage("error:"+e.toString());
e.printStackTrace();
}

// send result back to the receiver
sendResult();
}else if(perf.equals("data")){

if(DataFile==null)getfilename(cfgfile);
String datatype=kqml.getValue("datatype");
String tmp=content.substring(1,content.length()-1) ;
int rcode=0;
if(datatype.equals("stockdata"))
rcode=writetofile(DataFile,tmp);
if(rcode==1)
_returnString="(Write to file successfully.)";
else if(rcode==-1)

_returnString="(write to file failed!)";
else
_returnString="(bad datatype,data not write!)";

sendResult();

}else if(perf.equals("error")){
System.out.println("receiever a error:"+content);

}
else{

sendErrorMessage("invalid performtiv:"+perf);
return false;

}
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} catch (Exception e) {
sendErrorMessage("error:"+e.toString());
e .printStackTrace();
return false;

}

return true;
}

protected int getfilename(String configfile){
try{

BufferedReader in = new BufferedReader(new FileReader
(new File(configfile)));

while(true) {
String line = in.readLine();
if(line == null) break;
if(line.startsWith("stockdata")){

int tmp=line.indexOf("=");
DataFile=line.substring(tmp+1,line.length());

}
}
in.close();
return 1;

}catch(Exception e){
System.out.println("read stockdata filename from config file error:"
+e.toString());

e.printStackTrace();
return -1;
}

}

public static void main (String args[]) {
try {
String addressfile="stockaddressfile";
String groupname="stockdata";
StockData server = new StockData(addressfile,groupname);
server.startAgent();
} catch (Exception e) {
System.out.println(e.toString());
e.printStackTrace();
System.exit(0);
}

}
}

Main program
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B. Source Codes of Planning Agent
for Portfolio Selection (Stock)

import java.io
import java.util
import java.lang
import java.awt.event
import Abstract
import KQMLLayer
import RouterLayer.AgentClient

public class stock extends HHRouterClientAction {
StockInfoList tasklist=new StockInfoList();
String alf="0.7";
String[][] data={

{"alf","0.7"},
{"starth","0.1"},
{"steph","0.3"},
{"up","0.75"},
{"growth","1.17"}

};
int sorts=3;//moki,fuzz,poss
String stockparmstr="";
public stock() {

super();
}

public stock(Address myaddress,
Address routeraddress,
Address registraraddress,
int durationtime,
boolean regrequest ){

// use RouterLayer.AgentClient.RouterClientAction constructor
super(myaddress,routeraddress,registraraddress,durationtime,regrequest);

readparm("stock.cfg");
}

public stock(String cfgfname,String gname){
super(cfgfname,gname);
readparm("stock.cfg");

}

public boolean Act(Object o) {
try {
if(!superAct(o)) return false;
if(content == null) {
sendErrorMessage("error:content is null!");
return false;
}else if(perf.equals("task")){
if(msgstamp==null)
msgstamp=""+mail.getTime();
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Vector v=new takeOffList(content);
String risk,amount,invpolicy;
if(v.size() == 2) {
String tempstr=(String)v.elementAt(0);
Vector v1=new takeOffList(tempstr);
amount=(String)v1.elementAt(0);
risk=(String)v1.elementAt(1);
invpolicy=(String)v.elementAt(1);
}else{

amount="1";
invpolicy="()";
risk="()";
}

if(tasklist.FindbyNo(msgstamp)==null){
tasklist.Add(msgstamp);
tasklist.setasker(msgstamp,tasksender);
tasklist.setamount(msgstamp,amount);
tasklist.setinvpolicy(msgstamp,invpolicy);
tasklist.setrisk(msgstamp,risk);
sendtask("stockdata");
}

}else
if(perf.equals("replytask")) {
String tempstr=content. substring(1, content. length()-1) ;
String stockdata="";
if(tasktype.equals("stockdata")) {
Vector vall=new takeOffList(content);
if(vall.size() < 1) {
sendErrorMessage("Agent stock needs

more than 1 numbers in content!");
return false;
}
stockdata=(String)vall.elementAt(0);
String checkdata=(String)vall.elementAt(1);

Vector v = new takeOffList(stockdata);
Vector v1=new takeOffList((String)v.elementAt(0));
int n=v1.size();
int m=v.size();
tasklist.setyears(msgstamp,""+(m-1));
_returnString="";

for(int i=1;i<m;i++){
_returnString+=(String)v.elementAt(i)+" ";
}
_returnString="("+_returnString+") "+stockparmstr;
sendtask("moki");
sendtask("fuzz");
sendtask("poss");
tasklist.setStockData(msgstamp,stockdata);
tasklist.setcheckdata(msgstamp,checkdata);

}else
if(tasktype.equals("moki")){
tasklist.setmoki(msgstamp,tempstr);
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tempstr=tasklist.getResult(msgstamp);
if(tempstr!=null){
_returnString="("+alf+" "+tempstr+")";
sendtask("aggr");
}

}else
if(tasktype.equals("fuzz")){
tasklist. setfuzz(msgstamp, tempstr) ;
tempstr=tasklist.getResult(msgstamp);
if(tempstr!=null){
_returnString="("+alf+" "+tempstr+")";
sendtask("aggr");
}

}else
if(tasktype.equals("poss")){
tasklist.setposs(msgstamp,tempstr);
tempstr=tasklist.getResult(msgstamp);
if(tempstr!=null){
_returnString="("+alf+" "+tempstr+")";
sendtask("aggr");
}

}else
if(tasktype.equals("aggr")){
Vector vdata=new takeOffList

(tasklist.getstockdata(msgstamp));
String stockname=(String)vdata.elementAt(0);
Vector vstockname=new takeOffList(stockname);
int m=vdata.size();
int n=vstockname.size();
double damount=
(Double.valueOf(tasklist.getamount(msgstamp))).doubleValue()
_returnString=tasklist.getyears(msgstamp)+" "

+tasklist .getrisk(msgstamp)+" ";
_returnString+="("+tasklist.getinvpolicy(msgstamp)+" (";
Vector v2 = new takeOffList(content);
double dt=0,maxdt=0;
int maxdtxb=0;
double [] pt=new double [n] ;
for(int i=0;i<n;i++){
String temp=(String)v2.elementAt(i);
dt=Math.rint((Double.valueOf(temp)).doubleValue());
pt[i]=dt;
if(dt>maxdt){maxdt=dt;maxdtxb=i;}
}
int tempsum=0;
for(int i=0;i<n;i++){
if(i!=maxdtxb){tempsum+=pt[i];}
}
pt[maxdtxb]=100-tempsum;
for(int i=0;i<n;i++){
if(pt[i]>0){
_returnString+="("+(String)vstockname.elementAt(i)+

}
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}
_returnString+=")) ";
String allresult=tasklist.getResult(msgstamp);
String checkdata=tasklist.getcheckdata(msgstamp);

_returnString+=" ("+stockname+" "+allresult+" "+content+") ";
v2=new takeOffList("("+allresult+content+")");
//System.out.println("Four Result:"+allresult+content);
Vector v3=new takeOffList(checkdata);
//System.out.println("checkdata:\n"+checkdata);
int checkyears=v3.size();
int cs=v2.size();

double[][] dcheckdata=new double[checkyears][n] ;
for(int i=0;i<checkyears;i++){
Vector vv=new takeOffList((String)v3.elementAt(i));
for(int j=0;j<vv.size();j++){
dcheckdata[i][j] =
(Double.valueOf((String)vv.elementAt(j))).doubleValue();

}
}

double[][] dallresult=new double[n][cs];
for(int i=0;i<cs;i++){
Vector vv=new takeOffList((String)v2.elementAt(i));
for(int j=0;j<vv.size() - 1;j++){
dallresult[j][i]=
(Double. valueOf((String)vv.elementAt(j))).doubleValue();
}
}

for(int i=0;i<n;i++)
dcheckdata[0][i]=dcheckdata[0][i]+1;
for(int i=1;i<checkyears;i++){
for(int j=0;j<n;j++){

}
}

for(int i=0;i<n;i++)
dcheckdata[0][i]=dcheckdata[0][i]-1;

for(int i=1;i<checkyears;i++){
for(int j=0;j<n;j++){
dcheckdata[i][j]=Math.pow(dcheckdata[i][j],(double)1/(i+1))-1;
}
}

String checkresult="";
double dtemp=0;
for(int i=0;i<checkyears;i++){
String temp="";
for(int j=0;j<cs;j++){
dtemp=0;
for(int k=0;k<n;k++){
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}

}
checkresult+="("+temp+")";
}

checkresult=" ("+checkresult+") ";
_returnString+=checkresult;
_returnString="("+_returnString+")";
tasktype="stock";
sendResult();
tasklist.DeletebyNo(msgstamp);
}else{
sendErrorMessage("invalid tasktype where replay!");

}
}else if(perf.equals("error")){
sendErrorMessage(content);

}else{
sendErrorMessage("invalid performtiv:"+perf);
return false;
}

} catch (Exception e) {
sendErrorMessage(e .toString() ) ;
e.printStackTrace();
return false;

}
return true;

}
private void readparm(String cfgfilename){
try{
BufferedReader in = new BufferedReader(new FileReader(

new File(cfgfilename)));
while(true) {
String line = in.readLine();
String tmpstr;
if(line == null) break;
for(int i=0;i<data.length;i++){
if(line.trim().startsWith((String)data[i][0])){
int tmp=line.indexOf("=");
tmpstr=line. substring(tmp+1,line.length());
data[i][1]=tmpstr.trim();
}
}
}

in.close();
alf=data[0][1];
for(int i=1;i<data.length;i++){
stockparmstr=stockparmstr+" : "+data[i][0]+" "+data[i][1]+" ";
}
System.out.println("stockparmstr: "+stockparmstr);

}catch(Exception e){
System.out.println("read flga filename from config file error:"
+e.toString());
}
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}

public static void main(String args[]) {
try  {

String addressfile="stockaddressfile";
String groupname="stock";
stock server = new stock(addressfile,groupname);
server.startAgent();

} catch (Exception e) {
System.out.println(e.toString());
System.exit(0);

}
}

}

Main program
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C. Source Codes for Portfolio Selection Agent Based
on Markowitz’s Model (Moki)

import java.io
import java.util
import java.lang
import java.awt.event
import Abstract
import KQMLLayer
import RouterLayer.AgentClient

public class moki extends HHRouterClientAction {

public moki() {
super();
}

public moki(Address myaddress,
Address routeraddress,
Address registraraddress,
int durationtime,
boolean regrequest ){

// use RouterLayer.AgentClient.RouterClientAction constructor
super(myaddress,routeraddress,registraraddress,durationtime,regrequest);
}

public moki(String cfgfname,String gname){
super(cfgfname,gname);
}

public boolean Act(Object o) {
try  {
if(!superAct(o)) return false;
if(content == null) {
sendErrorMessage("content is null");
return false;
}
else
if(perf.equals("task")){
_returnString="";
Vector v = new takeOffList(content);
if(v.size() < 1) {
sendErrorMessage("parm less than 1!");
return false;
}
int m=v.size() ;
Vector v1=new takeOffList ((String)v.elementAt(0));
int n=v1.size();

double arr [] = new double [n] ;
double data[] = new double
String tmp;
for(int i=0;i<m;i++){
v1=new takeOffList((String)v.elementAt(i));
for(int j=0;j<v1.size();j++){
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tmp=(String)v1.elementAt(j);

}
}

double starth=0.1,steph=0.3,up=0.75,growth=1.17;
tmp=kqml.getValue("starth");
if((tmp!=null)&&(!tmp.equals("null")){
starth= (Double.valueOf(tmp)).doubleValue() ;
}
tmp=kqml.getValue("steph");
if((tmp!=null)&&(!tmp.equals("null") ) ) {
steph=(Double.valueOf(tmp)).doubleValue();
}
tmp=kqml.getValue("up");
if((tmp!=null)&&(!tmp.equals("null"))){
up=(Double.valueOf(tmp)).doubleValue();
}
tmp=kqml.getValue("growth");
if((tmp!=null)&&(!tmp.equals("null"))){
growth=(Double.valueOf(tmp)).doubleValue();
}
for (int i = 0; i <n-1; i++) {
arr[i] = 0;
}
int risk=sovmoki.getportfilio(m,n,starth,steph,up,growth,data,arr);
if(risk!=-1){
for (int i - 0; i <= n-1; i++) {
_returnString+=

}
_returnString+=risk;
sendResult();
}else
sendErrorMessage("Error when call moki.dll");
}else if (perf .equals("error")){
sendErrorMessage(content);
}
else{
sendErrorMessage("invalid performtiv:"+perf);
return false;

}
} catch (Exception e) {

sendErrorMessage ("error "+e.toString());
return false;

}

return true;
}

public static void main(String args[]) {
try {

String addressfile="stockaddressfile";
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String groupname="moki";
moki server = new moki(addressfile.groupname);
server.startAgent();

} catch (Exception e) {
System.out.println(e.toString());
System.exit(0);

}
}

}
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D. Source Codes for Portfolio Selection Agent

Based on Fuzzy Logic Model (Fuzz)

import java.io
import java.util
import java.lang
import java.awt.event
import Abstract
import KQMLLayer
import RouterLayer.AgentClient

public class fuzz extends HHRouterClientAction {

public fuzz() {
super();
}
public fuzz(Address myaddress,

Address routeraddress.
Address registraraddress,
int durationtime,
boolean regrequest ){

// use RouterLayer.AgentClient.RouterClientAction constructor
super(myaddress,routeraddress,registraraddress,durationtime,regrequest);
}
public fuzz(String cfgfname,String gname){
super(cfgfname,gname);
}

public boolean Act(Object o) {
try {
if(!superAct(o)) return false;

if(content == null) {
//sendErrorMessage(kqml,receiver);
sendErrorMessage("content is null");
return false;
}
else
if(perf.equals("task")){

// send result back to the receiver
_returnString="";
Vector v = new takeOffList(content);
if(v.size() < 1) {
sendErrorMessage("parm less than 1!");
return false;
}
int m=v.size();
Vector v1=new takeOffList((String)v.elementAt(0));
int n=v1.size();

double arr[] = new double[n];
double data[] = new double
String tmp;
for(int i=0;i<m;i++){
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v1=new takeOffList((String)v.elementAt(i));
for(int j=0;j<v1.size();j++){
tmp=(String)v1.elementAt(j);

}
}
double starth=0.1,steph=0.3,up=0.75,growth=l.17;
tmp=kqml.getValue("starth");
if((tmp!=null)&&(!tmp.equals("null"))){
starth=(Double.valueOf(tmp)).doubleValue();
}
tmp=kqml.getValue("steph");
if((tmp!=null)&&(!tmp.equals("null"))){
steph=(Double.valueOf(tmp)).doubleValue();
}

tmp=kqml.getValue("up");
if((tmp!=null)&&(!tmp.equals("nul1"))){
up=(Double.valueOf(tmp)).doubleValue();
}
tmp=kqml.getValue("growth");
if((tmp!=null)&&(!tmp.equals("null"))){
growth=(Double.valueOf(tmp)).doubleValue();
}
for (int i = 0; i <n-1; i++) {
arr[i] = 0;
}
int risk=

sovfuzz.getportfilio(m,n,starth,steph,up,growth.data,arr);
if(risk!=-1){
for (int i = 0; i <=n-1; i++) {

}
_returnString+=risk;
sendResult();
}else
sendErrorMessage("Error when call fuzz.dll");

}else if(perf.equals("replyregister")){
System.out.println(getName()+" register:"+coutent);
if(!content.equals("success")){
return false;
}

}else if(perf.equals("error")){
sendErrorMessage(content);
}

else{
sendErrorMessage("invalid performtiv:"+perf);
return false;
}

} catch (Exception e) {
sendErrorMessage("error:"+e.toString());
return false;

}

return true;
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}

Main program

public static void main(String args[]) {
try {

String addressfile="stockaddressfile";
String groupname="fuzz";
fuzz server = new fuzz(addressfile.groupname);
server.startAgent();

} catch (Exception e) {
System.out.println(e.toString());
System.exit(0);

}
}

}
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E. Source Codes for Portfolio Selection Agent

Based on Possibility Distribution Model (Poss)

import java.io
import java.util
import java.lang
import java.awt.event
import Abstract
import KQMLLayer
import RouterLayer.AgentClient

public class poss extends HHRouterClientAction {

public poss() {
super();
}

public poss(Address myaddress,
Address routeraddress,
Address registraraddress,
int durationtime,
boolean regrequest ){

// use RouterLayer.AgentClient.RouterClientAction constructor
super(myaddress,routeraddress,registraraddress,durationtime,regrequest);
}
public poss(String cfgfname,String gname){
super(cfgfname,gname);
}
public boolean Act(Object o) {
try {
if(!superAct(o)) return false;
if(content == null) {
sendErrorMessage("content is null");
return false;
}
else
if(perf.equals("task")){

// send result back to the receiver
_returnString="";
Vector v = new takeOffList(content);
if(v.size() < 1) {
sendErrorMessage("parm less than 1!");
return false;
}
int m=v.size();
Vector v1=new takeOffList((String)v.elementAt(0));
int n=v1.size();

double arr [] = new double [n] ;
double data[] =
String tmp;
for(int i=0;<m;i++){
v1=new takeOffList((String)v.elementAt(i));
for(int j=0;j<v1.size();j++){
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tmp=(String)v1.elementAt(j);

}
}
double starth=0.1,steph=0.3,up=0.75,growth=1.17;
tmp=kqml.getValue("starth");
if ((tmp! =null)&&(! tmp. equals("null")){
starth=(Double.valueOf(tmp)).doubleValue();
}
tmp=kqml.getValue("steph");
if((tmp!=null) && (!tmp.equals("null"))){
steph=(Double. valueOf (tmp)) .doubleValue() ;
}
tmp=kqml.getValue("up");
if ((tmp!=null)&&(!tmp.equals("null") ) ) {
up=(Double.valueOf(tmp)).doubleValue();
}
tmp=kqml.getValue("growth");
if((tmp!=null)&&(!tmp.equals("null"))){
growth=(Double.valueOf(tmp)).doubleValue();
}
for (int i = 0; i <n-1; i++) {
arr[i] = 0;
}
int risk=sovposs.getportfilio(m,n,starth,steph,up,growth.data,arr);
if(risk!=-1){
for (int i = 0; i <= n-1; i++) {
_returnString+=

}
_returnString+=risk;
sendResult();
}else
sendErrorMessage("Error when call poss.dll");

}else if(perf.equals("replyregister")){
System.out.println(getName()+" register:"+content);
if(!content.equals("success")){
return false;
}

}else if(perf.equals("error")){
sendErrorMessage(content);

}
else{
// error message
sendErrorMessage("invalid performtiv:"+perf);
System.out.println("invalid performtiv:"+perf);
return false;
}
} catch (Exception e) {

sendErrorMessage("error:"+e.toString());
return false;

}
return true;

}
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Main program
public static void main(String args[]) {

try {
String addressfile="stockaddressfile";
String groupname="poss";
poss server = new poss(addressfile,groupname);
server.startAgent();

} catch (Exception e) {
System.out.println(e.toString());
System.exit(0);

}
}

}



168 Appendix: Sample Source Codes

F. Source Codes for Decision Aggregation Agent
Based on Ordered Weighted Averaging Operators (Aggr)

import java.io
import java.util
import java.lang
import java.awt.event
import Abstract
import KQMLLayer
import RouterLayer.AgentClient
import javax.swing

import java.awt

public class aggr extends HHRouterClientAction {

public aggr() {
super();
}

public aggr(Address myaddress,
Address routeraddress,
Address registraraddress,
int durationtime,
boolean regrequest ){

// use RouterLayer.AgentClient.RouterClientAction constructor
super(myaddress,routeraddress,registraraddress,durationtime,regrequest);

}
public aggr(String cfgfname,String gname){
super(cfgfname,gname);
}

public boolean Act(Object o) {
try {
if(!superAct(o)) return false;

if(content == null) {
seudErrorMessage("error:content is null!");
return false;
}
else
if(perf.equals("task")){

// send result back to the receiver
_returnString="";
Vector v = new takeOffList(content);

if(v.size() < 2) {
sendErrorMessage("para numbers must be more than 2 parts!");
return false;
}
String Salf=(String)v.elementAt(0) ;
double alf=(Double.valueOf(Salf)).doubleValue();
int kinds=v.size()-1;

Vector v1=new takeOffList((String)v.elementAt(1));



Appendix: Sample Source Codes 169

int n=v1.size();

double arr [] = new double [n] ;

String tmp;
for(int k=1; k<=kinds; k++) {
v1=new takeOffList((String)v.elementAt(k));
for(int i=0;i<v1.size();i++){
tmp=(String)v1.elementAt(i);

}
}
for (int i = 0; i <n; i++) {
arr[i] = 0;
}
int sum=sovaggr.getportfilio(kinds,n,alf,data,arr);
if(sum!=-1){
for (int i = 0; i < n; i++) {

}
_returnString="("+_returnString+")";
sendResult();
}else
sendErrorMessage("Error when call aggr.dll!");

}else if(perf.equals("error")){
sendErrorMessage(content);
}

else{
sendErrorMessage("invalid performative:"+perf);
return false;
}

} catch (Exception e) {
sendErrorMessage("error:"+e.toString());
e.printStackTrace();
return false;

}

return true;
}

Main program

public static void main (String args[]) {
try {

String addressfile="stockaddressfile";
String groupname="aggr";
aggr server = new aggr(addressfile,groupname);
server.startAgent();

} catch (Exception e) {
System.out.println(e.toString());
System.exit(0);

}
}

}
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G. Source Codes for Planning Agent
of Investment Decision-Making (Invpolicy)

import java.io
import java.util
import java.lang
import java.awt.event
import Abstract
import KQMLLayer
import RouterLayer.AgentClient

public class invpolicy extends HHRouterClientAction {
InvInfoList tasklist=new InvInfoList();

public invpolicy() {
super();
}
public invpolicy(Address myaddress,

Address routeraddress,
Address registraraddress,
int durationtime,
boolean regrequest ){

// use RouterLayer.AgentClient.RouterClientAction constructor
super(myaddress,routeraddress,registraraddress,durationtime,regrequest);
}

public invpolicy(String cfgfname,String gname){
super(cfgfname,gname);
}

public boolean Act(Object o) {
try {
if(!superAct(o)) return false;
if(content == null) {
sendErrorMessage("error:content is null!");
return false;
}else if(perf.equals("task")){
if(msgstamp==null)
msgstamp=""+mail.getTime();

if(tasklist.FindbyNo(msgstamp)==null){
tasklist.Add(msgstamp);
tasklist.setasker(msgstamp,tasksender);
Vector v = new takeOffList(content);
if(v.size() != 5) {
sendErrorMessage("agent invpolicy needs 5 numbers in content!");
return false;
}
String n=(String)v.elementAt(0);
tasklist.setcai(msgstamp,n);
n=(String)v.elementAt(1);
tasklist.setnetw(msgstamp,n);
n=(String)v.elementAt(2);
tasklist.setage(msgstamp,n);
n=(String)v.elementAt(3);
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tasklist.setamount(msgstamp,n);
n=(String)v.elementAt(4);
tasklist .setautlevel(msgstamp,n);
sendtask("flga");
sendtask("ffin");
}
}else if(perf.equals("replytask")){
String tempstr=content.substring(1,content.length()-1);
_returnString=content;
if(tasktype.equals("flga")){
Vector v = new takeOffList(content);
String n=(String)v.elementAt(0);
tasklist.setirate(msgstamp,n);
n=tasklist.getResult(msgstamp);
if(n!=null){
_returnString="("+n+")";
sendtask("invppt");
}

else{
System.out.println("result is null!");
return false;
}
}else
if(tasktype.equals("invppt")){
sendtask("stock");

}else
if (tasktype. equals ("stock")){
tasktype="invpolicy";
sendResult();
tasklist.DeletebyNo(msgstamp);
}else{
//sender=tasklist.getasker(msgstamp);
sendErrorMessage("invalid tasktype where replay!");
}

}else if(perf.equals("error")){
//sender=tasklist.getasker(msgstamp);
sendErrorMessage(content);
}else{
//sender=tasklist.getasker(msgstamp);
sendErrorMessage("invalid performtiv:"+perf);
return false;
}

} catch (Exception e) {
//sender=tasklist.getasker(msgstamp);
sendErrorMessage(e.toString());
return false;

}
return true;

}

Main program

public static void main(String args[]) {
try {
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String addressfile="stockaddressfile";
String groupname="invpolicy";
invpolicy server = new invpolicy(addressfile.groupname);
server.startAgent();

} catch (Exception e) {
System. out. println(e.toString() ) ;
System.exit(0);

}
}

}
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H. Source Codes for Investment Decision-Making Agent
(Invppt)

This agent takes client’s tax status, annual income etc. as inputs, and deter-
mines the client’s financial risk tolerance ability as well as the asset allocation
percentage etc.

import java.io
import java.util
import java.lang
import java.awt.event
import Abstract
import KQMLLayer
import RouterLayer.AgentClient

public class invppt extends HHRouterClientAction {
public invppt() {
super();
}
public invppt(Address myaddress,

Address routeraddress,
Address registraraddress,
int durationtime,
boolean regrequest ){

// use RouterLayer.AgentClient.RouterClientAction constructor
super(myaddress,routeraddress,registraraddress,durationtime,regrequest);
}

public invppt (String cfgfname,String gname){
super(cfgfname, gname);
}
public boolean Act(Object o) {
try {
if (!superAct(o)) return false;
if(content == null) {
sendErrorMessage("content is null");
return false;
}
else
if(perf.equals("task")){

// send result back to the receiver
_returnString="";
Vector v = new takeOffList(content);
if(v.size() != 6) {
sendErrorMessage("Agent invppt need 6 numbers in content!");
return false;
}
double cai=0,cnt=0,irate=0,amount=0,autlevel=0;
int age=0;
String Sm=(String)v.elementAt(0);
cai= (Double. valueOf(Sm)).doubleValue();
Sm=(String)v.elementAt(1);
cnt=(Double. valueOf(Sm)).doubleValue();
Sm=(String)v.elementAt(2);
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age=(Integer.valueOf(Sm)).intValue();
Sm=(String)v.elementAt(3);
irate=(Double.valueOf(Sm)).doubleValue();
Sm=(String)v.elementAt(4);
amount=(Double. valueOf(Sm)).doubleValue() ;
Sm=(String)v.elementAt(5);
autlevel=(Double.valueOf(Sm)).doubleValue();

int invsorts=3;
double risk [] = new double[3] ;
double ret [] = new double[invsorts];
double retcode=0;
for (int i = 0; i < invsorts; i++) {
ret[i] = 0;
}
for (int i = 0; i < 3; i++) {
risk[i] = 0;
}
retcode=sovinvppt.getinvppt(cai,cnt,age,irate,autlevel,ret,risk);

double maxpart=0,temp=0;
int xb=0;
for(int i=0;i<invsorts;i++){
ret[i]=Math.rint(ret[i]);
if(ret[i]>maxpart){
maxpart=ret[i];
xb=i;
}
}

for(int i=0;i<invsorts;i++){
if(i!=xb){temp+=ret[i];}
}
String riskstr="";
for(int i=0;i<3;i++){

}
riskstr+=irate+" "+autlevel;
ret[xb]=100-temp;

_returnString=" "+_returnString+"

_returnString=_returnString+"

_returnString=_returnString+"

_returnString="("+_returnString+")";
sendResult() ;
}else if(perf.equals("error")){

sendErrorMessage(content);
}
else{
sendErrorMessage("invalid performtiv:"+perf);
return false;
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}
} catch (Exception e) {

sendErrorMessage("error:"+e.toString());
return false;

}

return true;
}

Main program
public static void main(String args[]) {

try {
String addressfile="stockaddressfile";
String groupname="invppt";
invppt server = new invppt(addressfile,groupname);
server.startAgent();

} catch (Exception e) {
System.out.println(e.toString());
System.exit(0);

}
}

}
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I. Source Codes for Interest Prediction Agent
Based on Fuzzy Logic and Genetic Algorithms (Flga)

import java.io
import java.util
import java.lang
import java.awt.event
import Abstract
import KQMLLayer
import RouterLayer.AgentClient

public class flga extends HHRouterClientAction {

String fuzzy_system_file_name,training_file_name,out_data_file_name;
public flga() {
super();
}
public flga(Address myaddress,

Address routeraddress,
Address registraraddress,
int durationtime,
boolean regrequest ){

// use RouterLayer.AgentClient.RouterClientAction constructor
super(myaddress,routeraddress.registraraddress.durationtime,regrequest);
}

public flga(String cfgfname, String gname){
super(cfgfname.gname);
}
public boolean Act(Object o) {
try {
if(!superAct(o)) return false;
if(perf.equals("task")){
// send results back to the receiver

if (content.equals("(train) ")){
sovflga.train();
_returnString="(train over!)";
}
else{
double irate=sovflga.getirate();
_returnString="("+irate+")";
}

sendResult();
}else if(perf.equals("replyregister")){
System.out.println(getName()+" register:"+content);
if(!content, equals ("success")){
return false;
}
}else if(perf.equals("data")){
If((fuzzy_system_file_name==null) (training_file_name==null)

(out_data_file_name==null)) getfilename("flga.cfg") ;
String datatype=kqml.getValue("datatype");
String tmp=content.substring(1,content.length()-1);
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int rcode=0;
if(datatype.equals("fuzzy_system_file_name"))
rcode=writetofile(fuzzy_system_file_name,tmp);
else
if(datatype.equals("training_file_name"))
rcode=writetofile(training_file_name,tmp);
else
if(datatype.equals("out_data_file_name"))
rcode=writetofile(out_data_file_name,tmp);
if(rcode==1)
_returnString="(Write to file successfully.)";
else if(rcode==-1)
_returnString="(write to file failed!)";
else
_returnString="(bad datatype,data not write!)";
sendResult();

}else if(perf.equals("error")){
sendErrorMessage(content);
System.out.println("receiever a error!");

}
else{
sendErrorMessage("invalid performtiv:"+perf);
return false;
}

} catch (Exception e) {
sendErrorMessage("error:"+e.toString());
return false;

}

return true;
}
protected int getfilename(String configfile){
try{
BufferedReader in = new BufferedReader(

new FileReader(new File(configfile)));
while(true) {
String line = in.readLine();
if(line == null) break;
if(line.startsWith("fuzzy_system_file_name")){
int tmp=line.indexOf("=");
fuzzy_system_file_name=line.substring(tmp+1,line.length());
}else
if(line.startsWith("training_file_name")){
int tmp=line.indexof("=");
training_file_name=line.substring(tmp+1,line.length());
}else
if(line.startsWith( "out_data_file_name")){
int tmp=line.indexOf("=");
out_data_file_name=line.substring(tmp+1,line.length());
}
}

in.close();
return 1;
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}catch(Exception e){
System.out.println("read flga filename from config file error:"

+e.toString());
return -1;
}

}

public static void main(String args[]) {
try {

String addressfile="stockaddressfile";
String groupname="flga";
flga server = new flga(addressfile,groupname);
server.startAgent();

} catch (Exception e) {
System.out.println(e.toString());
System.exit(0);

}
}

}
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J. Source Codes for Interest Prediction Agent
Based on Neural Networks (Ffin)

import java.io
import java.util
import java.lang
import java.awt.event
import Abstract
import KQMLLayer
import RouterLayer.AgentClient

public class ffin extends HHRouterClientAction {

String in_wts_file_name,test_file_name;
public ffin() {
super();
}

public ffin(Address myaddress,
Address routeraddress,
Address registraraddress,
int durationtime,
boolean regrequest ){

// use RouterLayer.AgentClient.RouterClientAction constructor
super(myaddress,routeraddress,registraraddress,durationtime,regrequest);

}
public ffin(String cfgfname,String gname){
super(cfgfname,gname);
}

public boolean Act(Object o) {
try {
if(!superAct(o)) return false;
if(perf.equals("task")){
if(content.equals("train")){
sovffin.train();
_returnString="(train over)";
}else
if(content.equals("(createtrainfile)")){
sovffin.createtrainfile();
_returnString="(train file created!)";
}else{

//send result back to the receiver
double irate=sovffin.getirate();
_returnString="("+irate+")";
}
sendResult() ;
}else if(perf.equals("replyregister")){

System.out.println(getName()+" register:"+content);
if(!content.equals("success")){
return false;
}

}else if(perf.equals("data")){
if((in_wts_file_name==null) (test_file_name==null))

getfilename("ffin.cfg");
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String datatype=kqml.getValue("datatype");
String tmp=content.substring(1,content.length()-1) ;
int rcode=0;
if(datatype.equals("in_wts_file_name"))

rcode=writetofile(in_wts_file_name,tmp);
else
if(datatype.equals("test_file_name"))
rcode=writetofile(test_file_name,tmp);

if(rcode==1)
_returnString="(Write to file successfully.)";

else if(rcode==-1)
_returnString="(write to file failed!)";

else
_returnString="(bad datatype,data not write!)";
System.out.println("send result to :"+tasksender);
sendResult();

}else if(perf.equals("error")){
sendErrorMessage(content);

}
else{
sendErrorMessage("invalid performtiv:"+perf);
return false;
}
} catch (Exception e) {

sendErrorMessage("error: "+e.toString() ) ;
return false;
}
return true;

}
protected int getfilename(String configfile) {
try{
BufferedReader in = new BufferedReader

(new FileReader(new File(configfile)));
while(true) {
String line = in.readLine();
if(line == null) break;
if(line.startsWith("in_wts_file_name")){
int tmp=line.indexOf("=");
in_wts_file_name=line.substring(tmp+1,line.length());

}else
if (line.startsWith("test_file_name")){
int tmp=line.indexOf("=");
test_file_name=line.substring(tmp+1, line. length());
}
}
in.close();
return 1;

}catch(Exception e){
System.out.println("read flga filename from config file error:"

+e.toString());
return -1;
}

}
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public static void main(String args[]) {
try {

String addressfile="stockaddressfile";
String groupname="ffin";
ffin server = new ffin(addressfile,groupname);
server.startAgent();

} catch (Exception e) {
System.out.println(e.toString());
System.exit(0);

}
}

}
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