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Preface

0.1 What is meant by “Planning Algorithms”?

Due to many exciting developments in the fields of robotics, artificial intelligence,
and control theory, three topics that were once quite distinct are presently on a
collision course. In robotics, motion planning was originally concerned with prob-
lems such as how to move a piano from one room to another in a house without
hitting anything. The field has grown, however, to include complications such as
uncertainties, multiple bodies, and dynamics. In artificial intelligence, planning
originally meant a search for a sequence of logical operators or actions that trans-
form an initial world state into a desired goal state. Presently, planning extends
beyond this to include many decision-theoretic ideas such as Markov decision
processes, imperfect state information, and game-theoretic equilibria. Although
control theory has traditionally been concerned with issues such as stability, feed-
back, and optimality, there has been a growing interest in designing algorithms
that find feasible open-loop trajectories for nonlinear systems. In some of this
work, the term motion planning has been applied, with a different interpretation
of its use in robotics. Thus, even though each originally considered different prob-
lems, the fields of robotics, artificial intelligence, and control theory have expanded
their scope to share an interesting common ground.

In this text, I use the term planning in a broad sense that encompasses this
common ground. This does not, however, imply that the term is meant to cover
everything important in the fields of robotics, artificial intelligence, and control
theory. The presentation is focused primarily on algorithm issues relating to plan-
ning. Within robotics, the focus is on designing algorithms that generate useful
motions by processing complicated geometric models. Within artificial intelli-
gence, the focus is on designing systems that use decision-theoretic models com-
pute appropriate actions. Within control theory, the focus of the presentation
is on algorithms that numerically compute feasible trajectories or even optimal
feedback control laws. This means that analytical techniques, which account for
the majority of control theory literature, are not addressed here.

The phrase “planning and control” is often used to identify complementary is-
sues in developing a system. Planning is often considered as a higher-level process
than control. In this text, we make no such distinctions. Ignoring old connotations
that come with the terms, “planning” or “control” could be used interchangeably.

x1



xii PREFACE

Both can refer to some kind of decision making in this text, with no associated
notion of “high” or “low” level. A hierarchical planning (or control!) strategy
could be developed in any case.

0.2 Who is the Intended Audience?

The text is written primarily for computer science and engineering students at
the advanced undergraduate or beginning graduate level. It is also intended as
an introduction to recent techniques for researchers and developers in robotics
and artificial intelligence. It is expected that the presentation here would be
of interest to those working in other areas such as computational biology (drug
design, protein folding), virtual prototyping, and computer graphics.

I have attempted to make the book as self-contained and readable as possible.
Advanced mathematical concepts (beyond concepts typically learned by under-
graduates in computer science and engineering) are introduced and explained.
For readers with deeper mathematical interests, directions for further study are
given at the end of some chapters.

0.3 Suggested Use

The ideas should flow naturally from chapter to chapter, but at the same time,
the text has been designed to make it easy to skip chapters.

If you are only interested in robot motion planning, it is only necessary to read
Chapters 3-8, possibly with the inclusion of some discrete planning algorithms
from Chapter 2 because they arise in motion planning. Chapters 3 and 4 provide
the foundations needed to understand basic robot motion planning. Chapters 5
and 6 present algorithmic techniques to solve this problem. Chapters 7 and 8
consider extensions of the basic problem. If you are additionally interested in
nonholonomic planning and other problems that involve differential constraints,
then it is safe to jump ahead to Chapters 13-15, after completing Chapters 3-7.

Chapters 11 and 12 cover problems in which there is sensing uncertainty. These
problems live in an information space, which is detailed in Chapter 11. Chapter
12 covers algorithms that plan in the information space.

If you are mainly interested in decision-theoretic planning, then you can read
Chapter 2, and jump straight to Chapters 9-12. The material in these later
chapters does not depend much on Chapters 3 to 8, which cover motion planning.
Thus, if you are not interested in this case, the chapters may be easily skipped.

0.4 Acknowledgments

I am very grateful to many students and colleagues who have given me extensive
feedback and advice in developing this text.



0.5. HELP! xiil

Many thanks go to Stefano Carpin, Sanjit Jhala, Stephane Redon, Sanketh
Shetty, Mohan Sirchabesan, and Zbynek Winkler for pointing out mistakes in the
on-line manuscript.

I also appreciate the efforts of graduate students in my courses who scribed
class notes which served as an early draft for some parts. These include students
at Iowa State: Brian George, ..., and students at the University of Illinois: Shamsi
Tamara Igbal, Rishi Talreja, Sherwin Tam, Benjamin Tovar ...

I am also thankful for the supportive environments provided both by lowa
State University and the University of Illinois. In both universities, I have been
able to develop courses for which the material presented here has been developed
and refined.

I sincerely thank Krzysztof Kozlowski and his staff at the Politechnika Poz-
nanska for their help during my sabbatical in Poland.

0.5 Help!

Since the text appears on the web, it is easy for me to incoprorate feedback
from readers. This will be very helpful as I complete this project. If you find
mistakes, have requests for coverage of topics, find some explanations difficult
to follow, have suggested exercises, etc., please let me know by sending mail to
lavalle@cs.uiuc.edu. Note that this book is current a work in progress. Please be
patient as I update parts over the coming year or two.
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Chapter 1

Introduction

Chapter Status

What does this mean? Check
http://msl.cs.uiuc.edu/planning/status.html
for information on the latest version.

1.1 Planning to Plan

Planning is a term that means different things to different groups of people. A
fundamental need in robotics is to have algorithms that can automatically tell
robots how to move when they are given high-level commands. The terms motion
planning and trajectory planning are often used for these kinds of problems. A
classical version of motion planning is sometimes referred to as the Piano Mover’s
Problem. Imagine giving a precise 3D CAD model of a house and a piano as input
to an algorithm. The algorithm must determine how to move the piano from one
room to another in the house without hitting anything. Most of us have encoun-
tered similar problems when moving a sofa or mattress up a set of stairs. Robot
motion planning usually ignores dynamics and other differential constraints, and
focuses primarily on the translations and rotations required to move the piano.
Recent work, however, does consider other aspects, such as uncertainties, differ-
ential constraints, modeling uncertainties, and optimality. Trajectory planning
usually refers to the problem of taking the solution from a robot motion planning
algorithm and determining how to move along the solution in a way that respects
the mechanical limitations of the robot.

Control theory has historically been concerned with designing inputs to sys-
tems described by differential equations. These could include mechanical systems
such as cars or aircraft, electrical systems such as noise filters, or even systems
arising in areas as diverse as chemistry, economics, and sociology. Classically,
control theory has developed feedback policies, which enable an adaptive response
during execution, and has focused on stability, which ensures that the dynamics
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4 S. M. LaValle: Planning Algorithms

do not cause the system to become wildly out of control. A large emphasis is also
placed on optimizing criteria to minimize resource consumption, such as energy
or time. In recent control theory literature, motion planning sometimes refers to
the construction of inputs to a nonlinear dynamical system that drives it from an
initial state to a specified goal state. For example, imagine trying to operate a
remote-controlled hovercraft that glides over the surface of a frozen pond. Sup-
pose we would like the hovercraft to leave its current resting location and come to
rest at another specified location. Can an algorithm be designed that computes
the desired inputs, even in an ideal simulator that neglects uncertainties that arise
from model inaccuracies? It is possible to add other considerations, such as uncer-
tainties, feedback, and optimality, but the problem is already challenging enough
without these.

In artificial intelligence, the term Al planning takes on a more discrete flavor.
Instead of moving a piano through a continuous space, as in the robot motion
planning problem, the task might be to solve a puzzle, such as the Rubik’s cube or
a sliding tile puzzle. Although such problems could be modeled with continuous
spaces, it seems natural to define a finite set of actions that can be applied to
a discrete set of states, and to construct a solution by giving the appropriate
sequence of actions. Historically, planning has been considered different from
problem solving; however, the distinction seems to have faded away in recent
years. In this book, we do not attempt to make a distinction between the two.
Also, substantial effort has been devoted to representation language issues in
planning. Although some of this will be covered, it is mainly outside of our
focus. Many decision-theoretic ideas have recently been incorporated into the Al
planning problem, to model uncertainties, adversarial scenarios, and optimization.
These issues are important, and are considered here in detail.

Given the broad range of problems to which the term planning has been ap-
plied in the artificial intelligence, control theory, and robotics communities, one
might wonder whether it has a specific meaning. Otherwise, just about anything
could be considered as an instance of planning. Some common elements for plan-
ning problems will be discussed shortly, but first we consider planning as a branch
of algorithms. Hence, this book is entitled Planning Algorithms. The primary
focus is on algorithmic and computational issues of planning problems that have
arisen in several disciplines. On the other hand, this does not mean that planning
algorithms refers to an existing community of researchers within the general algo-
rithms community. This book will not be limited to combinatorics and asymptotic
complexity analysis, which is the main focus in pure algorithms. The focus here
includes numerous modeling considerations and concepts that are not necessarily
algorithmic, but aid in solving or analyzing planning problems.

The obvious goal of virtually any planning algorithm is to produce a plan.
Natural questions are: What is a plan? How is a plan represented? What is it
supposed to achieve? How will its quality be evaluated? Who or what is going to
use it? Regarding the user of the plan, it obviously depends on the application.



1.2. ILLUSTRATIVE PROBLEMS )

In most applications, an algorithm will execute the plan; however, sometimes the
user may be a human. Imagine, for example, that the planning algorithm provides
you with an investment strategy. A generic term that will used frequently here
to refer to the user is decision maker. In robotics, the decision maker is simply
referred to as a robot. In artificial intelligence and related areas, it has become
popular in recent years to use the term agent, possibly with adjectives to make
intelligent agent or software agent. Control theory usually refers to the decision
maker as a system or plant. The plan in this context is sometimes referred to as
a policy or control law. In a game-theoretic context, it might make sense to refer
to decision makers as players. Regardless of the terminology used in a particular
discipline, this book is concerned with planning algorithms that find a strategy for
one or more decision makers. Therefore, it is important to remember that terms
like “robot”, “agent”, and “system” are interchangeable.

1.2 Illustrative Problems

This section only has a couple of pasted examples. It still needs to be written, to
include other examples from discrete planning, information spaces, game theory,
etc. More examples will be added gradually as other parts of the book are written.

Suppose that we have a tiny mobile robot that can move along the floor in a
building. The task is to determine a path that it should follow from a starting
location to a goal location, while avoiding collisions. A reasonable model can be
formulated by assuming that the robot is a moving point in a two-dimensional
environment that contains obstacles.

Let W = R? denote a two-dimensional world which contains a point robot,
denoted by A. A subset, O, of the world is called the obstacle region. Let the
remaining portion of the world, W \ O be referred to as the free space. The
task is to design an algorithm that accepts an obstacle region defined by a set
of polygons, an initial position, and a goal position. The algorithm must return
a path that will bring the robot from the initial position to the goal position,
while only traversing the free space. Algorithms that find exact solutions to this
problem are given in Section 6.2.

Figures 1.2 and 1.3 show considerably more challenging problems.

1.3 Basic Ingredients of Planning
Although the subject of this book spans a broad class of models and problems,

there are several basic ingredients that arise throughout virtually all of the topics
covered as part of planning.

State: Planning problems will involve a state space that captures all possible
situations that could exist. The state could, for example, represent the
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Obstacle Region

A Solution Path

Goal Position

Initial Position

(a) (b)

Figure 1.1: A simple illustration of the two dimensional path planning problem:
a) The obstacles, initial position, and goal positions are specified as input; b) A
path planning algorithm will compute a collision free path from the initial position
to the goal position.

configuration of a robot, the locations of tiles in a puzzle, or the position
and velocity of a helicopter. Both discrete (finite, or countably infinite)
and continuous (uncountably infinite) state spaces will be allowed. One
recurring theme through most of planning is that the state space will usually
be represented implicitly by a planning algorithm. In most applications,
the size of the state space (in terms of number of states or combinatorial
complexity) is much too large to be explicitly represented. Nevertheless, the
definition of the state space is an important component in the formulation
of a planning problem, and in the design and analysis of algorithms that
solve it.

Time: All planning problems involve a sequence of decisions that must be
applied over time. Time might be explicitly modeled, as in a problem such as
driving a car as quickly as possible through an obstacle course. Alternatively,
time may be implicit, by simply reflecting the fact that actions must follow
in succession, as in the case of solving the Rubik’s cube. The particular
time is unimportant, but the proper sequence must be maintained. Another
example is a solution to the Piano Mover’s Problem; the solution to moving
the piano may be converted into an animation over time, but the particular
speed of motions is not specified in the planning problem. Just as in the
case of state, time may be either discrete or continuous. In the latter case,
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Figure 1.2: Remember puzzles like this? Imagine trying to solve one with an
algorithm. The goal is to pull the two bars apart. This example is called the
Alpha 1.0 Puzzle. It was created by Boris Yamrom, GE Corporate Research &
Development Center, and posted as a research benchmark by Nancy Amato at
Texas A&M University. This animation was made by James Kuffner, of Carnegie
Mellon University. The solution was computed by the balanced, bidirectional
RRT algorithm, developed by James Kuffner and Steve LaValle, and covered in
Section 5.5
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Figure 1.3: Using robots to move a piano [177]. This solution was computed using
planning techniques developed by Juan Cortés, Thierry Simeon, and Jean-Paul
Laumond, and are covered in Section 7.4.
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we can imagine that a continuum of decisions are being made by a plan.

Actions: A plan generates actions that manipulate the state. The terms
actions and operators are common in artificial intelligence; in control theory
and robotics, the equivalent terms are inputs or controls. Somewhere in
the planning formulation, it must be specified how the state changes when
actions are applied. This may be expressed as an state-valued function
for the case of discrete time, or as an ordinary differential equation for
continuous time. For most motion planning problems, explicit reference to
time is avoided by designing paths through a continuous state space. Such
paths may be expressed as the integral of differential equations, but it is
an unnecessary complication in this case. For some problems uncontrollable
actions could be chosen by nature, which interfere with the outcome, but are
not specified as part of the plan. This enables various forms of uncertainty
to be introduced into the planning problem.

Initial and goal states: Planning generally involves starting in some initial
state and trying to arrive at a specified goal state. The actions are selected
in a way that causes this to happen.

A criterion: This encodes the desired outcome in terms of state and ac-
tions that are executed. There are generally two different kinds of planning
concerns based on the type of criterion:

1. Feasibility: In this case, the only concern is whether the plan results
in arriving at a goal state.

2. Optimality: Find feasible plans that optimize performance in some
carefully specified manner, in addition to arriving in a goal state.

For most of the problems considered in this book, feasibility is already chal-
lenging enough; achieving optimality is considerably harder for most prob-
lems. Therefore, a substantial amount of focus is on finding feasible solutions
to problems, as opposed to optimal solutions. The majority of literature in
robotics, control theory, and related fields focuses on optimality, but this
is not necessarily important for many problems of interest. In many ap-
plications, it is difficult to even formulate the right criterion to optimize.
Even if a desirable criterion can be formulated, it may be impossible to
obtain a practical algorithm that computes optimal plans. In such cases,
feasible solutions are certainly preferable to having no solutions at all. For-
tunately, for many algorithms, such as those developed in motion planning,
the solutions produced are usually not too far from optimal in practice.
This reduces the amount of motivation for finding optimal solutions. For
problems that involve probabilistic uncertainty, however, optimization arises
more frequently. The probabilities are often utilized to obtain the best per-
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formance in terms of expected costs. Feasibility is usually associated with
performing worst-case analysis of uncertainties.

A plan: In general, a plan will impose a specific strategy or behavior on
decision makers. A plan might simply specify a sequence of actions to be
taken; however, it may be more complicated. If it is impossible to predict
future states, the plan may provide actions as a function of state. In this
case, regardless of future states, the appropriate action is determined. Using
terminology from other fields, this enables feedback or reactive plans. It
might even be the case that the state cannot be measured. In this case, the
action must be chosen based on whatever information is available up to the
current time. This will generally be referred to as an information state, on
which a plan will be conditioned.

1.4 What is a Planning Algorithm?

State
Machine

] Infinite Tape
1/oj1j1j011]0]1 LN

Figure 1.4: According to the Church-Turing thesis, the notion of an algorithm is
equivalent to the notion of a Turing machine.

What is a planning algorithm? This is a difficult question, which is difficult
to completely answer in this section without formally introducing the planning
concepts that appear in later chapters. One point needs to be made clear at
this point: the classical Turing machine model used to define an algorithm in
theoretical computer science is insufficient to encompass planning algorithms. A
Turing machine is a finite state machine with a special head that can read and
write along an infinite piece of tape, as depicted in Figure 1.4. The Church-Turing
thesis states that an algorithm is a Turing machine (see [339, 711] for more details).
The nput to the algorithm is encoded as a string of symbols, usually a binary
string, and then is written to the tape. The Turing machine reads the string,
performs computations and then decides whether to accept or reject the string.
This version of the Turing machine only solves decision problems; however, there
are straightforward extends that can yield other desired outputs, such as a plan.

The trouble with using the Turing machine as a model for planning algorithms
is that plans will be generally assumed to interact with a physical world, as de-
picted in Figure 1.5. This is fundamental to robotics and many other fields in
which planning is used. Using the Turing machine as a foundation for algorithms



1.4. WHAT IS A PLANNING ALGORITHM? 11

Sensing

g
Machine Environment
.

Actuation

a. b.

Figure 1.5: a) The boundary between machine and environment is considered as
an arbitrary line that may be drawn in many ways depending on the context. b)
Once the boundary has been drawn, it is assumed that the machine interacts with
the environment through sensing and actuation.

usually implies that the physical world must be first carefully modeled and writ-
ten on the tape before the algorithm can make decisions. If changes occur in the
world during execution of the algorithm, then it is not clear what should happen.
For example, a mobile robot could be moving in a cluttered environment in which
people are walking around. The robot might throw an object onto a table with-
out being able to precisely predict how the object will come to rest. It can take
measurements of the results with sensors, but it again becomes a difficult task to
determine how much should be explicitly modeled and written on the tape. The
on-line algorithm model is more appropriate for these kind of problems []; how-
ever, it still does not capture a notion of planning algorithms that is sufficiently
broad for the topics of this book.

Turing (@

Robot
O_
il

4y \ y A 4\ g \ y A

AR A AR AR ARETY

Infinite Row of Switches

Figure 1.6: A robot could be used to similate a Turing machine. Through manip-
ulation, many other kinds of behavior could be obtained that fall outside of the
Turing model.

The processes that can occur in a physical world are more complicated than
the interaction between a state machine and a piece of tape filled with symbols.
It is even possible to simulate the tape by imagining a robot that interacts with
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World Compute a Collision— Generate a Trajectory Generate a Feedback Output a
Representation — »l FreePath for the Computed Path ggnmtrp?llltté;i f?—: ;Feectory ——— Moton Strategy

Figure 1.7: A classical model that has been used for decades in robotics.

a long row of switches as depicted in Figure 1.6. The switches serve the same
purpose as the tape, and the robot carries a computer that can simulate the finite
state machine.! The complicated interaction allowed between a robot and its
environment could give rise to many other models of computation. A discussion
of performing computations with mechanical systems is given in [?].

In general, the physical world will be referred to as the environment. The de-
vice that implements a plan will be referred to as the machine. Practical examples
of the machine include a robot, a piece of software, or even specialized hardware
which may be digital or analog. As indicated in Figure 1.5, the boundary between
the machine and the environment is an arbitrary line that varies from problem to
problem. Once drawn, sensors provide information about the environment which
serves as input to the machine during execution. The machine then executes ac-
tions, which provides actuation to the environment. The actuation may alter the
environment is some way that is later measured by sensors. Therefore, there is
close coupling between the machine and its environment during execution.

It is even possible to draw the line between machine and environment in multi-
ple places, which results in a hierarchical approach. The environment with respect
to a machine, M7, might actually include another machine M, that interacts with
its environment, as depicted in Figure ?7. Figure ?? shows a typical hierarchy
used for years in robotics. In general, any number of planning layers may be de-
fined. For the design of planning algorithms, reference will usually only be made
to a single layer. If the models are formulated correctly for each layer, and if each
designed plan functions correctly, then the global hierarchy should solve tasks as
desired. There are many interesting issues involving the construction of such hier-
archies, but these will not be addressed in this book because they depend heavily
on the particular context in which planning is used. Determining the appropriate
places to draw boundaries and modularize a complicated problem is mostly the
burden of the expert who applies planning techniques in a particular context.

Once the boundary has been drawn between the machine and its environment,
a third component can be introduced: the planner. The task of the planner is
to produce a plan based on a description of possible environments. There are
two general models for plans constructed by the planner. The first case is de-
picted in Figure 1.8, in which the planner produces a plan, which is encoded in
some way and given as input to the machine. In this case, the machine is consid-
ered programmable, and can accept possible plans from planner before execution.

LOf course, simulating infinitely-long tape seems impossible in the physical world. Other
versions of Turing machines exist in which the tape is finite, but unbounded. This may be more
appropriate for the current discussion.
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Figure 1.8: A planner produces a plan that may be executed by the machine. The
planner may either be a machine itself or even a human.
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Figure 1.9: Alternatively, the planner may design the entire machine.
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It will generally be assumed that once the plan is given, the machine becomes
autonomous and can no longer interact with the planner.?

The second general model for plans is depicted in Figure 1.9. In this case,
the plan produced by the planner encodes an entire machine. The plan can be
considered as a special-purpose machine that is designed to solve the specific tasks
given originally to the planner. Under this interpretation, it may be preferable to
be minimalist and design the simplest machine possible that is sufficiently solves
the desired tasks.

There are two possible ways to implement the planner. The planner may
either be an algorithm in the Turing machine sense (or some related variant), or
the planner may even be a human. For example, it is perfectly acceptable for a
human to design a state machine that is connected to the environment. There
are no additional inputs in this case because the human fulfilled the role of the
traditional algorithm. The environment model is given as input to the human, and
the human “computes” a plan. An example in which the planner is a traditional
algorithm is given in robotics by classical motion planning. An algorithm receives
a description of the environment in terms of geometric models and them computes
a plan, which is a collision-free path to be followed by the robot. Whether the
planner is a human or is a machine itself, the process of developing plans will be
generally referred to as planning algorithms.

To summarize, there are three general components:

1. The environment, which models the physical world with which a plan must
interact.

2. The machine, which interacts with the environment through sensing and
actuation. The machine may be programmable, which means a plan can be
downloaded, or the machine may simply be the plan itself.

3. The planner, which takes one of a set of environment descriptions and pro-
duces a plan. In some cases, the human designs the planner, and in others,
the human is the planner. In both cases, these will be referred to as planning
algorithms.

1.5 Organization of the Book

PART I: Introductory Material
This provides very basic background for the rest of the book.

e Chapter 1: Introductory Material
This includes some examples and provides a high-level overview of planning
philosophy.

20f course this model can be extended to allow machines to be improved over time be
receiving better plans; however, we want a strict notion of autonomy for the discussion of
planning in this book. This model does not prohibit the updating of plans in practice.
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e Chapter 2: Discrete Planning
This chapter can be considered as a springboard for entering into the rest
of the book. From here, you can continue to Part II, or even head straight
to Part III. Sections 2.2 and 2.3 are most important for heading into Part
II. For Part I1I, Section 2.4 is additionally useful.

PART II: Motion Planning

The main source of inspiration for the problems and algorithms covered in this
part comes from robotics. The methods, however, are general enough to apply to
applications in other areas, such as computational biology, computer-aided design,
and computer graphics. An alternative title that more appropriately reflects the
kind of planning that occurs is “Planning in Continuous State Spaces.”

e Chapter 3: Geometric Representations and Transformations
The chapter gives important background for expressing a motion planning
problem. Section 3.1 describes how to construct geometric models, and the
remaining sections indicate how to transform them. Sections 3.1 and 3.2 are
most important for later chapters.

e Chapter 4: The Configuration Space
This chapter introduces concepts from topology and uses them to formulate
the configuration space, which is the state space that arises in motion plan-
ning. Sections 4.1, 4.2, and 4.3.1 are most critical for understanding most
of the material in later chapters. In addition to the previously mentioned
sections, all of Section 4.3 provides useful background for the combinatorial
methods of Chapter 6.

e Chapter 5: Sampling-Based Motion Planning
This chapter introduces motion planning algorithms that have dominated
the literature in recent years and have been applied in many applications
both in and out of robotics. If you understand the basic idea that the
configuration space represents a continuous state space, most of the concepts
should be understandable. They even apply to other problems in which
continuous state spaces emerge, in addition to motion planning and robotics.

e Chapter 6: Combinatorial Motion Planning
The algorithms covered in this section are sometimes called exact algorithms.
They provide complete (i.e., the find a solution if one exists, or report fail-
ure, otherwise) solutions to motion planing problems. The sampling-based
algorithms have been more useful in practice, but these are not complete in
the same sense.

e Chapter 7: Extensions of Basic Motion Planning
This chapter introduces many problems and algorithms that are extensions
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of the methods from Chapters 5 and 6. Most can be followed with basic un-
derstanding of the material from these chapters. Section 7.4 covers planning
for closed kinematic chains; this requires an understanding of the additional
material, which is covered in Section 4.4

e Chapter 8: Feedback Motion Strategies
This is a transitional chapter that introduces feedback into the motion plan-
ning problem, but still does not introduce differential constraints, which is
deferred until Part IV. The previous chapters of Part II focused on comput-
ing open loop plans, which means that any errors that might occur during
execution of the plan are ignored. The plan will be executed as planned.

PART III: Decision-Theoretic Planning

An alternative title is “Planning under Uncertainty”. Most of the part addresses
discrete state spaces, which can be studied immediately following Part 1. However,
some sections cover extensions to continuous spaces; to understand these parts, it
will be helpful to have read some of Part II.

e Chapter 9: Basic Decision Theory

The concepts and concepts developed here involve making decisions in a
single step, but in the face of uncertainty. Therefore, the problems generally
are not considered planning, and there is no talk of state spaces. This chap-
ter provides important background for Part III, however, because planning
under uncertainty can be considered as multi-step decision making. Chapter
9 covers a single step, which is used as a building block for later planning
concepts.

e Chapter 10: Sequential Decision Theory
This chapter takes the concepts from Chapter 9 and extends them by chain-
ing together a sequence of basic decision-making problems. Dynamic pro-
gramming concepts from Section 2.4 become important here. For all of
the problems in this chapter, it is assumed that the current state is always
known. All uncertainties that exist are with respect to prediction of future
states, as opposed to measuring the current state.

e Chapter 11: The Information Space
The chapter defines a framework for planning when the current state is not
known. Information regarding the state is obtained from sensor observa-
tions and memory of actions that were previously applied. The information
space serves a similar purpose for problems with sensing uncertainty as the
configuration space did for motion planning.

e Chapter 12: Planning in the Information Space
This chapter covers several planning problems and algorithms that involve
sensing uncertainty.
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PART IV: Planning under Differential Constants

This can be considered as a continuation of Part II. Now there can be both global
(obstacles) and local (differential) constants on the continuous state spaces that
arise in motion planning. Dynamical systems are also considered, which yields
state spaces that include both position and velocity information (this coincides
with the notion of a state space in control theory or a phase space in physics and
differential equations).

e Chapter 13: Differential Models
This chapter serves as an introduction to Part IV by giving examples of
differential constraints that arise in practice and explaining how to model
them in the context of planning.

e Chapter 14: Nonholonomic System Theory
This section provides an overview of important theory developed for the con-
trol of nonlinear systems. The basic characteristic is that the dimension of
the action space is less than that of the state space, which locally constraints
the possible motions. This can sometimes be overcome by constructing the
Control Lie Algebra (CLA) of the system.

e Chapter 15: Planning Under Differential Constraints
This covers both sampling-based and exact methods for planning under
differential constraints. If obstacles are involved, sampling-based methods
are usually required because the problems are so difficult. Nevertheless,
many useful and important methods exist for planning under differential
constants alone.



18

S. M. LaValle: Planning Algorithms



Chapter 2

Discrete Planning

Chapter Status

What does this mean? Check
http://msl.cs.uiuc.edu/planning/status.html
for information on the latest version.

2.1 Introduction

This chapter provides introductory concepts that serve as an entry point into
other parts of the book. The planning problems considered here are the simplest
to describe because the state space will be finite in most cases. When it is not
finite, it will at least be countably infinite (i.e., a unique integer may be assigned
to every state). Therefore, no geometric models or differential equations will be
needed to characterize the discrete planning problems. Furthermore, no forms
of uncertainty will be considered, which avoids complications such as probability
theory. All models are completely known and predictable.

There are three main parts to this chapter. Sections 2.2 and 2.3 define and
present search methods for feasible planning, in which the only concern is to reach
a goal state. The search methods will be used throughout the book in numerous
other contexts, including motion planning in continuous state spaces. Follow-
ing feasible planning, Section 2.4 addresses the more general problem of optimal
planning. The principle of optimality or dynamic programming (DP) principle [63]
provides a key insight that greatly reduces the computation effort in many plan-
ning algogrithms. Therefore it forms that basis of the algorithms in Section 2.4
and throughout this book. The relationship between Dijkstra’s algorithm, which
is widely known, and more general dynamic programming iterations is discussed.
Finally, Section 2.5 briefly overviews logic-based representations of planning and
methods that exploit these representations to construct plans.

19
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Although this chapter addresses a form of planning, it may also be sometimes
referred to as problem solving. Throughout the history of artificial intelligence
research, the distinction between problem solving and planning has been rather
elusive. For example, in a current leading textbook [665], two of the eight major
parts are termed “Problem-solving” and “Planning”. The problem solving part
begins by stating, “Problem solving agents decide what to do by finding sequences
of actions that lead to desirable states.” ([665], p. 59). The planning part begins
with, “The task of coming up with a sequence of actions that will achieve a
goal is called planning.” ([665], p. 375). The STRIPS system is considered one
of the first planning algorithms and representations [247], and its name means
STanford Research Institute Problem Solver. Perhaps the term “planning” carries
connotations of future time, where as “problem solving” sounds somewhat more
general. A problem solving task might be to take evidence from a crime scene
and piece together the actions taken by suspects. It might seem odd to call this
a “plan” because it occurred in the past.

Given that there are no clear distinctions between problem solving and plan-
ning, we will simply refer to both as planning. This also helps to keep with the
theme of the book. Note, however, that some of the concepts apply to a broader
set of problems that what is often meant by planning.

2.2 Definition of Discrete Feasible Planning

The discrete feasible planning model will be defined using state space models,
which will appear repeatedly throughout this book. Most of these will be natural
extensions of the model presented in this section. The basic idea is that each
distinct situation for the world is called a state, denoted by x, and the set of all
possible states is called a state space, X. For discrete planning, it will be important
that this set is countable; in most cases it will be finite. In a given application,
the state space should be defined carefully so that irrelevant information is not
encoded into a state (e.g., a planning problem that involves moving a robot in
France should not encode information about whether or not certain light bulbs are
on in China). The inclusion of irrelevant information can easily convert a problem
that is amenable to efficient algorithmic solutions into one that is intractable.

Refer to the model from Chapter 1: The planner is an algorithm that computes
a sequence of actions. There is no feedback from the environment. The actions
are sequenced by the machine.

The world may be transformed through the application of actions that are
chosen by the planner. Each action, u, when applied from the current state, x,
produces a new state, =’ as specified by a state transition function, f. Let U(x)
denote the action space for each state x, which represents the set of all actions that
could be applied from x. For distinct z, 2’ € X, U(x) and U(2’) are not necessarily
disjoint; the same action may be applicable in multiple states. Therefore, it will
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be convenient to define U as the set of all possible actions over all states:

U=]JU(). (2.1)

zeX

As part of the planning problem, a set, X C X of goal states is defined. The
task of a planning algorithm is to determine whether a finite sequence of actions,
when applied, transforms the world from an initial state x; to some state in X.
The model is summarized below:

Formulation 2.2.1 (Discrete Feasible Planning)

1. A nonempty state space, X, which is a finite or countably infinite set of
states.

2. For each state, x € X, a finite action space, U(x).

3. A state transition function, f, which produces a state, f(z,u) € X, for every
r € X and u € U(x).

4. An initial state, xy € X.
5. A goal set, Xg C X.

It is often convenient to view Formulation 2.2.1 as a directed graph G(V, E),
in which V' and E denote the sets of wvertices and edges, respectively. The set
of vertices is the state space, V = X.! Let e(z,2) denote a directed edge from
x € X to a’. Such an edge exists in E only if there exists some u € U(z) such
that ' = f(z,u).

Example 2.2.1 (Moving on a 2D Grid) Suppose that a robot moves around
on a grid in which each grid point has coordinates of the form (4, j), in which ¢ and
j are both integers. The robot takes discrete steps in one of four directions (e.g.,
up, down, left, right), which can increment or decrement one coordinate. The
motions and corresponding graph are shown in Figure 2.1, which can be imagined
as stepping from tile to tile, on an infinite tile floor.

Let X be the set of all integer pairs of the form (i,7), in which i,j € Z.
Let U = {(0,1),(0,-1),(1,0),(0,—1)}. Let U(z) = U for all z € X. The
state transition equation is f(z,u) = = + u, in which z € X and u € U are
treated as two-dimensional vectors for addition. For example, if x = (3,4) and
u = (0,1), then f(z,u) = (3,5). Suppose for convenience that the initial state is
xr = (0,0). Many interesting goal sets are possible. Suppose, for example, that
X¢ = {(100,100)}. It should be easy for the reader to find a sequence of inputs
that transforms the world from (0,0) to (100, 100).

Instead, one may want to make a technical distinction between V and X and define a
bijection between them because each contains a different kind of entities.
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Figure 2.1: An example problem that involves walking around on an infinite tile
floor.

The problem can be made more interesting by shading in some of the square
tiles to represent obstacles that the robot must move around, as shown in Figure
2.2. In this case, any tile that is shaded has its corresponding vertex and associ-
ated edges deleted. An outer boundary can be made to fence in a bounded region
so that X becomes finite. Very complicated labyrinths can be constructed. W

Example 2.2.2 (Rubik’s Cube Puzzle) Many puzzles can be expressed as dis-
crete planning problems. For example, the Rubik’s cube is a puzzle that looks
like a stack of 3 by 3 by 3 little cubes, which together form a larger cube as shown
in Figure 2.3. Each face of the larger cube is painted one of six colors. An action
may be applied to the cube by rotating a 3x3 sheet of cubes by 90 degrees. After
applying many actions to the Rubik’s cube, each face will generally be a jumble
of colors. The state space is the set of configurations for the cube (rotation of the
entire cube is irrelevant). For each state there are 12 possible actions. For some
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Figure 2.2: Interesting planning problems that involve exploring a labyrinth can
be made by shading in tiles.
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Figure 2.3: The Rubik’s cube and other puzzles make nice examples of discrete
planning problems.

arbitrarily chosen configuration of the Rubik’s cube, the planning task is to find
a sequence of actions that returns it to the configuration in which each one of its
six faces is a single color. |

It is important to note that a planning problem is usually specified without
explicitly representing the entire graph G. Instead, it is revealed incrementally
in the planning process. In Example 2.2.1, very little information actually needs
to be given to specify a graph that is infinite in size. If a planning problem is
given as input to an algorithm, close attention must be paid to the encoding
when performing complexity analysis. For a problem in which X is infinite, the
input length must still be finite. For some interesting classes of problems it may be
possible to compactly specify a model that is equivalent to Formulation 2.2.1. Such
representation issues have been the basis of much research in artificial intelligence
over the past decades as different representation logics have been proposed; see
Section 2.5. In a sense, these representations can be viewed as input compression
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schemes.

Readers experienced in computer engineering might recognize that when X is
finite, Formulation 2.2.1 appears almost identical to the definition of a finite state
machine or Mealy/Moore machines. Relating the two models, the actions can be
interpreted as inputs to the state machine, and the output of the machine simply
reports its state. Therefore, the feasible planning problem (if X is finite) may be
interpreted as determining whether there exists a sequence of inputs that makes
a finite state machine eventually report a desired output. From a planning per-
spective, it is assumed that the planning algorithm has a complete representation
of the machine and is able to read its current state at any time.

Readers experienced with theoretical computer science may observe similar
connections to a deterministic finite automaton (DFA), which is a special kind
of finite state machine that reads an input string, and makes a decision about
whether to accept or reject the string. The input string is just a finite sequence
of inputs, in the same sense as for a finite state machine. A DFA definition
includes a set of accept states, which in the planning context, can be renamed to
the goal set. This makes the feasible planning problem (if X is finite) equivalent
to determining whether there exists an input string that is accepted by a given
DFA. Usually, a language is associated with a DFA, which is the set of all strings it
accepts. DFAs are important in the theory of computation because their languages
correspond precisely to regular expressions. The planning problem amounts to
determining whether or not the associated language is empty. In terms of Unix-like
constructions, this means determining whether there is some match to a regular
expression.

Thus, there are several ways to represent and interpret the discrete feasible
planning problem. Other important representation issues will be discussed in
Section 2.5, which often to a very compact, implicit encoding of the problem.
Before reaching these issues, basic planning algorithms are introduced in Section
2.3, and discrete optimal planning is covered in Section 2.4.

2.3 Searching for Feasible Plans

The methods presented in this section are just graph search algorithms, but with
the understanding that the graph is revealed incrementally through the application
of actions. The presentation in this section can be considered as graph search
algorithms from a planning perspective. An important requirement for these or
any search algorithms is to be systematic. If the graph is finite, this means that
the algorithm will visit every reachable state, which enables it to correctly declare
in finite time whether or not a solution exists. To be systematic, the algorithm
should keep track of states already visited. Otherwise, the search may run forever
by cycling through the same states. Ensuring that no redundant exploration
occurs is sufficient to make the search systematic.

If the graph is infinite, then we are willing to tolerate a weaker definition for
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Figure 2.4: a) Many search algorithms focus too much on one direction, which
may prevent them from being systematic on infinite graphs. b) If, for example,
the search carefully expands in wavefronts, then it becomes systematic. The
requirement to be systematic is that in the limit as the number of iterations tends
to infinity, all reachable vertices are reached.

being systematic. If a solution exists, then the search algorithm still must report
it in finite time; however, if a solution does not exist, it is fine for the algorithm
to search forever. This systematic requirement is achieved by ensuring that in the
limit as the number of search iterations tends to infinity, every reachable vertex
in the graph is explored. Since the number of vertices is assumed to be countable,
this must always be possible.

As an example of this requirement, consider Example 2.2.1 on an infinite tile
floor with no obstacles. If the search algorithm explores in only one direction, as
depicted in Figure 2.4.a, then in the limit most of the space will be left uncovered,
even though no states are revisited. If instead the search proceeds outward from
the origin in wavefronts, as depicted in Figure 2.4.b, then it may be systematic.
In generally, each search algorithm has to be carefully analyzed. A search algor-
tihm could expand in multiple directions, or even in wavefronts, but still not be
systematic. If the graph is finite, then it is much simpler: virtually any search
algorithm is systematic, provided that it marks visited states to avoid revisiting
the same parts indefinitely.

2.3.1 General Forward Search

Figure 2.5 gives a general template of search algorithms, expressed using the state
space representation. At any point during the search, there will be three kinds of
states:
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FORWARD_SEARCH
1 Q.Insert(z)

2 while () not empty do

3 x «— Q.GetFirst()

4 if r € Xg

5 return SUCCESS

6 forall v € U(x)

7 ' — f(x,u)

8 if 2’ not visited

9 Mark z’ as visited
10 Q.Insert(z')

11 else

12 Resolve duplicate x’

13 return FAILURE

Figure 2.5: A general template for forward search.

1. Unvisited: States that have not been visited yet. Initially, this is every
state except xj.

2. Dead: States that have been visited, and for which every possible next
state has also been visited. A next state of x is a state 2’ for which there
exists a u € U(x) such that ' = f(z,u). In a sense, these states are dead
because there is nothing more that they can contribute to the search—there
are no new leads that could help in finding a feasible plan. Section 2.4.3
discusses a variant in which dead states can become alive again in an effort
to obtain optimal plans.

3. Alive: States that have been encountered and may have next states that
have not been visited. These are considered alive. Initially, the only alive
state is zj.

The set of alive states is stored in a priority queue, (), for which a priority
function must be specified. The only significant difference between various search
algorithms is the particular function used to sort (). Many variations will be
described later, but for the time being, it might be helpful to pick one. Therefore,
assume for now that @ is a common FIFO (First-In First-Out) queue; whichever
state has been waiting the longest will be chosen when Q.GetFirst() is called.
The rest of the general search algorithm is quite simple. Initially, () contains the
initial state, ;. A while loop is then executed, which terminates only when @
is empty. This will only occur when the entire graph has been explored without
finding any goal states, which results in a FAILURE (unless X is infinite, in which
case the algorithm should never terminate). In each while iteration, the highest-
ranked element, z, of ) is removed. If x lies in X, then it reports SUCCESS
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and terminates. Otherwise, the algorithm tries applying every possible action,
u € U(zx). For each next state, 2’ = f(x,u), it must determine whether z’ is
being encountered for the first time. If it is unvisited, then it is inserted into
(). Otherwise, there is no need to consider it because it must be either dead or
already in Q.

The algorithm description in Figure 2.5 omits several details that often become
important in practice. For example, how efficient is the test whether x € X in
Line 47 This depends, of course, on the size of the state space and on the particular
representations chosen for x and X¢. At this level, we do not specify a particular
method because the representations are not given.

One important detail is that the existing algorithm only indicates whether or
not a solution exists, but does not seem to produce a plan, which is a sequence
of actions that achieves the goal. This can be fixed by simply adding another line
after Line 7 which stores associates with z’ its parent, x. If this is performed each
time, one can simply trace the pointers from the final state to the initial state to
recover the entire plan. For convenience, one might also store which action was
taken, in addition to the pointer.

Lines 8 and 9 are conceptually simple, but how can one tell whether z’ has
been visited? For some problems the G might actually be a tree, which means
that there are no repeated states. Although this does not occur frequently, it is
wonderful when it does because there is no need to check whether states have
been visited. If the states in X all lie on a grid, one can simply make a lookup
table that can be accessed in constant time to determine whether a state has
been visited. In general, however, it might be quite difficult because the state =’
must be compared with every other state in (), and with all of the dead states.
If the representation of each state is long, as is sometimes the case, this will be
very costly. A good hashing scheme or another clever data structure can greatly
alleviate this cost, but in many applications the computation time will remain
high. One alternative is to simply allow repeated states, but this could lead to an
increase in computational cost that far outweighs the benefits. Even if the graph
is very small, search algorithms could run in time exponential in the size of the
graph, or they may not even terminate at all, even if GG is finite.

One final detail is that some search algorithms will require a cost to be com-
puted and associated with every state. It the same state is reached multiple times,
the cost may have to be updated, which is performed in Line 12, if the particular
search algorithm requires it. Such costs may be used in some way to sort the
priority queue, or they may enable the recovery of the plan upon completion of
the algorithm. Instead of storing pointers, as mentioned previously, the optimal
cost to return to the initial state could be stored with each state. This cost alone
is sufficient to determine the action sequence that leads to any state visited state.
Starting at x;, simply choose the action u € U(z) that produces the lowest-cost
next state, and continue the process iteratively until G is reached. The costs must
have a certain monotonicity property, which is obtained by Dijkstra’s algorithm
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and A* search, which will be introduced in Section 2.3.2.

2.3.2 Particular Forward Search Methods

This section presents several single-tree search algorithms, each of which is a
special case of the algorithm in Figure 2.5, obtained by defining a different sorting
function for (). Most of these are just classical graph search algorithms.

Breadth First

The method given in Section 2.3.1 specifies () as a FIFO queue, which selects states
using the first-come, first-serve principle. This causes the search frontier to grow
uniformly, and is therefore referred to as breadth-first search. All plans that have
k steps are exhausted before plans with k + 1 steps are investigated. Therefore,
breadth first guarantees that the first solution found will use the smallest number
of steps. Upon detection that a state has been revisited, there is no work to do
in Line 12. Since the search progresses in a series of wavefronts, breadth first
search is systematic. In fact, it even remains systematic if it does not keep track
of repeated states (however, it will waste time considering irrelevant cycles).

The running time breadth first search is O(|V| + |E|), in which |V] and |E]
are the numbers of vertices and edges, respectively, in the graph representation
of the planning problem. This assumes that all operations, such as determining
whether a state has been visited, are performed in constant time. In practice,
these operations will typically require more time, and must be counting as part
of the algorithm complexity. The running time be expressed in terms of the other
representations. Recall that |V| = | X| is the number of states. If the same actions,
U, are available from every state, then |E| = |U||X]|. If action sets U(z;) and
U(z3) are pairwise disjoint for any x1, x5 € X, then |E| = |U|.

Depth First

By making @ a stack (Last-In, First-Out), aggressive exploration is the graph
occurs, as opposed to the uniform expansion of breadth first search. The resulting
variant is called depth first search because the search dives quickly into the graph.
The preference is toward investigating longer plans very early. Although this
aggressive behavior might seem desirable, note that the particular choice of longer
plans is arbitrary. Actions are applied in the forall loop in whatever order they
happen to be defined. Once again, if a state is revisited, there is no work to do
in Line 12. Depth first search is systematic for finite X, but not for an infinite
X because it could behave like Figure 2.4.a. The search could easily focus on
one “direction” and completely miss large portions of the search space as the
number of iterations tends to infinity. The running time of depth first search is
also O(|V |+ |E|).
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Dijkstra’s Algorithm

Up to this point, there has been no reason to prefer any action over any other in
the search. Section 2.4 will formalize optimal discrete planning, and will present
several algorithms that find optimal plans. Before going into that, we present
a systematic search algorithm that finds optimal plans because it is also useful
for finding feasible plans. The result is the well-known Dijkstra’s algorithm for
finding single-source shortest paths in a graph [], which is a special form of dy-
namic programming. More-general dynamic programming computations appear
in Section 2.4 and throughout the book.

Suppose that every edge, e € F, in the graph representation of a discrete plan-
ning problem, has an associated nonnegative cost [(e), which is the cost to apply
the action. The cost I(e) could be written using the state space representation as
[(x,u), indicating that it costs [(x,u) to apply action u from state x. The total
cost of a plan is just the sum of the edge costs over the path from the initial state
to a goal state.

The priority queue, @, will be sorted according to a function, L* : X — [0, o],
called the optimal cost-to-come or just cost-to-come if it is clearly optimal from
the context. For each state, x, the value C*(z) will represent the optimal? cost to
reach x from the initial state, x;. This optimal cost is obtained by summing edge
costs, [(e), over all possible paths from z; to x, and using the path that produces
the least cumulative cost.

The cost-to-come is computed incrementally during the execution of the search
algorithm in Figure 2.5. Initially, C*(z;) = 0. Each time the state 2’ is generated,
a cost is computed as: C(a’) = C*(z) + I(e), in which e is the edge from = to z’
(equivalently, we may write C'(z') = L*(z) + l(x,u) ). Here, C(2’) represents best
cost-to-come that is known so far, but we do not write C* because it is not yet
known whether x’ was reached optimally. Because of this, some work is required
in Line 12. If 2’ already exists in ), then it is possible that the newly-discovered
path to 2’ is more efficient. If so, then the cost-to-come value C'(z') must be
lowered for 2/, and () must be reordered accordingly.

When does C(z) finally become C*(x) for some state 7 Once x is removed
from @ using Q.GetFirst(), the state becomes dead, and it is known that x
cannot be reached with lower cost. This can be argued by induction. For the
initial state, C*(x) is known, and this serves as the base case. Now assume that
all dead states have their optimal cost-to-come correctly determined. This means
that their cost-to-come values can no longer change. For the first element, z, of @),
the value must be optimal because any path that has lower total cost would have
to travel through another state in ), but these states already have higher cost.
All paths that pass only through dead states were already considered in producing
C(z). Once all edges leaving x are explored, then = can be declared as dead, and
the induction continues. This is not enough detail to constitute a proof; much

2As in optimization literature, we will use * to mean optimal.
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more detailed arguments appear in Section 2.4.3 and [176]. The running time is
O(|V|1lg|V| + |E]), in which |V| and |E| are the numbers of edges and vertices,
respectively, in the graph representation of the discrete planning problem. This
assumes that the priority queue is implemented with a Fibonacci heap, and that
all other operations, such as determining whether a state has been visited, are
performed in constant time. If other data structures are used to implement the
priority queue, then different running times will be obtained.

A-Star

The A* (pronounced “ay star”) search algorithm is a variant of dynamic program-
ming that tries to reduce the total number of states explored by incorporating
a heuristic estimate of the cost to get to the goal from a given state. Let C(x)
denote the cost-to-come from z; to x, and let G(z) denote the cost-to-go from
x to some state in Xg. Although C*(z) can be computed incrementally by dy-
namic programming, there is no way to know the true optimal cost-to-go, G*, in
advance. However, in many applications it is possible to construct a reasonable
underestimate of this cost. As an example of a typical underestimate, consider
planning in the labyrinth depicted in Figure 2.2. Suppose that the cost is the
total number of planning steps. If one state has coordinates (4, j) and another has
(i',7"), then |i" —i| + |7/ — j| is an underestimate because this is the length of a
straightforward plan that ignores obstacles. Once obstacles are included, the cost
can only increase as the robot tries to get around them (which may not even be
possible). Of course, zero could also serve as an underestimate, but that will not
provide any helpful information to the algorithm. The aim is to compute an esti-
mate that is as close as possible to the optimal cost-to-go, and is also guaranteed
to be no greater. Let G*(z) denote such an estimate.

The A* search algorithm works in exactly the same way as Dijktra’s algorithm.
The only difference is the function used to sort ). In the A* algorithm, the sum
C*(x') + G*(:E' ) is used, implying that the priority queue is sorted by estimates
of the optimal cost from z; to Xg. If G () is an underestimate of the true
optimal cost-to-go for all x € X, the A* algorithm is guaranteed to find optimal
plans [247, 622]. As G* becomes closer to G*, fewer nodes tend to be explored in
comparison with dynamic programming. This would always seem advantageous,
but in some problems it is not possible to find a good heuristic. Note that when
G*(z) = 0 for all z € X, then A* degenerates to Dijkstra’s algorithm. In any
case, the search will always be systematic.

Best First

For best first search, the priority queue is sorted according to an estimate of
the optimal cost-to-go. The solutions obtained in this way are not necessarily
optimal; therefore, it does not matter whether or not the estimate exceeds the
true optimal cost-to-go, which was important for A*. Although optimal solutions
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Initial State

Goa State

Figure 2.6: Here is bad example for best-first search. Imagine trying to reach a
state that is directly below the spiral tube. If the initial state starts inside of the
opening at the top of the tube, the search will progress around the spiral instead
of leaving the tube and heading straight for the goal.
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are not found, in many cases, far fewer nodes are explored, which results in much
faster running times. There is no guarantee, however, that this will happen. The
worst-case performance of best first search is worst than that of A* and dynamic
programming. The algorithm is often too greedy because it prefers states that
“look good” very early in the search. Sometimes the price must be paid for being
greedy! Figure 2.6 shows a contrived example in which the planning problem
involves taking small steps in a 3D world. For any specified number, k, of steps,
it is easy to construct a spiral example that wastes at least k steps in comparison
to Dijkstra’s algorithm. Note that best first search is not systematic.

Iterative Deepening

The iterative deepening approach is usually preferable when there is a large branch-
ing factor. This could occur if there are many actions per state and few states are
revisited. The idea is to use depth-first search and find all states that are distance
1 or less from z;. If the goal is not found, then the search graph is discarded,
and depth first is applied to find all states of distance 7 + 1 or less from x;. This
generally iterates from ¢ = 1 and proceeds indefinitely until the goal is found.
The motivation for discarding the work of previous iterations is that the number
of states reached for i + 1 is expected to far exceed (e.g., by a factor of ten) the
number reached for i. Therefore, there once the commitment has been made to
reach level ¢+ + 1, all of the previous efforts to low relative cost. The iterative
deepening method has better worst case performance than breadth-first search
for many problems. If the nearest goal state is ¢ steps from xj, breadth-first in
the worst case might reach nearly all states of distance ¢ + 1. This occurs each
time a state x € Xg of distance ¢ from x; is reached because all new states that
can be reached in one step are placed onto (). The A* idea can be combined with
iterative depending to yield TDA*, in which i is replaced by C*(z') + G*(2'). In
each iteration of IDA*, larger and larger values of total cost are allowed [622].

2.3.3 Other General Search Schemes

This section covers two other general templates for search algorithms. The first
one is simply a “backwards” version of the tree search algorithm in Figure 2.5.
The second one is a bidirectional approach that grows two search trees, one from
the initial state, and one from a goal state.

Backwards Search

Suppose that there is a single goal state, x. For many planning problems, it might
be the case that the branching factor is large when starting from x;. In this case,
it might be more efficient to start the search at a goal state and work backwards
until the initial state is encountered. A general template for this approach is given
in Figure 2.7. an action u € U(z) is applied from = € X, to obtain a new state,
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' = f(x,u). For backwards search a frequent computation will be to determine
for some 2/, what could be the preceding state, x € X and action u € U(x) such
that o’ = f(z,u)?

For most problems, it may be preferable to precompute a representation of the
state transition equation, f, that is “backwards” to be consistent with the search
algorithm. Some convenient notation will now be constructed for the backwards
version of f. Let U™ = {(z,u) | z € X,u € U(x)}, which represents the set of all
state-action pairs, and can also be considered as the domain of f. Imagine from
a given state 2’ € X, the set of all (z,u) € U~! that map to 2’ using f. This can
be considered as a backwards action space, defined formally for any z' € X as:

U N2) = {(z,u) e U | 2" = f(z,u)}. (2.2)

For convenience, let u~! denote a state-action pair (x,u) which belongs to some
U=Y(2). From any u~' € U~1(2'), there is a unique x € X. Thus, let f~! denote
a backwards state transition equation that yields z from 2’ and u=! € U~1(2/).
Hence, we can write z = f~!(z/,u~!), which looks very similar to the forward
version, ' = f(x,u).

The interpretation of f=! is easy to capture in terms of the graph represen-
tation. Imagine reversing the direction of every edge. This will make finding a
plan in the reversed graph using backwards search equivalent to finding one in the
original graph using forward search. The backwards state transition equation is
just the version of f that is obtained after reversing all of the edges. Each u~!
is just a reversed edge. Since there is a perfect symmetry with respect to the
forward search of Section 2.3.1, any of the search algorithm variants from Section
2.3.2 could be adapted work under the template in Figure 2.7 once f~! has been
defined.

Bidirectional Search

Now that forward and backwards search have been covered, the next reasonable
idea is to conduct a bidirectional search. The general search template given in
Figure 2.8 can be considered as a combination of the two in Figures 2.5 and 2.7.
One tree is grown from the initial state, and the other is grown from the goal state.
The search terminates with success when the two trees meet. Failure occurs if both
priority queues have been exhausted. For many problems bidirectional search can
dramatically reduce the amount of exploration required to solve the problem. The
dynamic programming and A* variants of bidirectional search will lead to optimal
solutions. For best-first and other variants, it may be challenging to ensure that
the two trees meet quickly. They might come very close to each other, and then fail
fail to connect. Additional heuristics may help in some settings to help guide the
trees into each other. One can even extend this framework to allow any number
of serach trees. This may be desirable in some applications, but connecting the
trees becomes even more complicated and expensive.
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BACKWARDS_SEARCH

1 Q.Insert(zq)

2 while () not empty do

3 x «— Q.GetFirst()

4 if v = xa;

5 return SUCCESS

6 forall u € U™ (z)

7 ' — p(x,u)

8 if 2’ not visited

9 Mark 2" as visited
10 Q.Insert(z')

11 else

12 Resolve duplicate x’

13 return FAILURE

Figure 2.7: A general template for backwards search.

2.3.4 A Unified View of the Search Methods

It is convenient to summarize the behavior of all search methods in terms of
several basic steps. Variations of these steps will appear later for more complicated
planning problems. For example, in Section 5.4, a large family sampling-based
motion planning algorithms can be viewed as an extension of the steps presented
here. The extension in this case is made from a discrete state space to a continous
state space (the configuration space).

All of the planning methods from this section followed the same basic template:

1. Initialization: Let the search graph, G(V, E), be initialized with E empty
and V' containing x; and possibly some other states. If bidirectional search
is used, then initially, V' = {x;,zg}. It is possible to grow more than two
trees and merge them during the search process. In this case, more states
can be initialized in V.

2. Select Node: Choose a node n,, € V for expansion. Let z.,. denote its
associated state.

3. Apply an Action: In either a forward or backwards direction, a new state,
Tpew 18 Obtained. This may arise from Z,e, = f(x,u) for some u € U(x)
(forward) or = f(Zpew,u) for some u € U(Zpew) (backwards).

4. Insert A Directed Edge in the Graph: If certain algorithm-specific
tests are passed, then generate an edge from x to x,., for the forward case,
or an edge from x,., to x for the backwards case. If ., is not yet in V| it
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BIDIRECTIONAL_SEARCH

Q. Insert(xy)
Qa-Insert(zg)
while ); not empty or Q¢ not empty do
if Q; not empty
z — Q.GetFirst()
ifrexgorzeQq
return SUCCESS
forall v € U(x)
o' — flz,u)
if 2’ not visited
Mark 2z’ as visited
Qr.Insert(z')
else
Resolve duplicate x’
if Q¢ not empty
' — Qg.GetFirst()
if o/ =x;0r a2’ € Qg
return SUCCESS
forall u=! € U~(a/)
x < ¢(a',ut)
if x not visited
Mark x as visited
Qg Insert(z)
else
Resolve duplicate x
return FAILURE

Figure 2.8: A general template for bidirectional search.
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will be inserted into V.3.

5. Check for Solution: Determine whether GG encodes a path from x; to z¢.
If there is a single search tree, then this is trivial. If there are two or more
search trees, then this step can become expensive.

6. Return to Step 2: Iterate unless a solution has been found or some ter-
mination condition is satisfied, in which case the algorithm reports failure.

Note that in this summary, several iterations may have to be made to generate
one iteration in the previous formulations. The forward search algorithm in Figure
2.5 iterates tries all actions for the first element of ). If there are k actions, this
corresonds to k iterations in the algorithm above.

2.4 Discrete Optimal Planning

This section extends Formulation 2.2.1 to allow optimal planning problems to
be defined. Rather than being satisfied with any sequence of actions that leads
to the goal set, suppose we would like a solution that optimizes some criterion,
such as time, distance, or energy consumed. Three important extensions will be
made: 1) a stage index will be added for convenience to indicate the current
plan step; 2) a cost functional will be introduced, which serves as a kind of taxi
meter to determine how much cost will accumulate; 3) a termination action, which
intuitively indicates when it is time to stop the plan and fix the total cost.

The presentation involves three phases. First, the problem of finding optimal
paths of a fixed length is covered Section 2.4.1. The approach involves performing
dynamic programming iterations over the state space. Although this case is not
very useful by itself, it is much easier to understand than the general case of
variable-length plans. Once the concepts from this section are understood, their
extension to variable-length plans will be much clearer, and is covered in Section
2.4.2. Finally, Section 2.4.3 explains the close relationship between the general
DP iterations of Section 2.4 and the special case of Dijkstra’s algorithm, which
was covered in Section 2.3.1 as a particular search algorithm.

With nearly all optimization problems, there is the arbitrary, symmetric issue
of defining the task in way that requires minimization or maximization. If the
cost is a kind of energy or expense, then minimization seems sensible, as is typical
in control theory. If the cost is a kind of reward, as in investing or typical Al
research, then maximization is preferred. Although this issue remains throughout
the book, we will choose to minimize everything. If maximization is preferred,
then multiplying the costs by —1, and maximizing wherever it says to minimize
(also minimizing where it says to maximize in some later chapters), should suffice.

3In some variations, the vertex could be added without a corresponding edge. This would
start another tree in a multiple-tree approach
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The fixed-length optimal planning model will be given shortly, but first some
new notation is introduced. Let mx denote a K-step plan, which is a sequence
(u1, ug, ..., ug) of K actions. Note that if mx and x; are given, then a sequence
of states, x1, xs, ..., Tx 1, can be derived using the state transition equation, f.
Initially, ;7 = z;, and each following state is obtained by xp11 = f(xg, ug).

The model is now given; the most important addition with respect to Formu-
lation 2.2.1 is L, the cost functional.

Formulation 2.4.1 (Discrete Fixed-Length Optimal Planning)

1. All of the components from Formulation 2.2.1 are inherited directly: X,
U(z), f, 7, and X¢, except here it is assumed that X is finite.

2. A number, K, of stages, which is the exact length of a plan (measured as
the number of actions, uy, us, ..., ug). States will also obtain a stage index:
xr+1 denotes the state obtained after wy is applied.

3. Let L denote a real-valued, additive cost (or loss) functional, which is applied
to a K-step plan, mx. This means that the sequence, (uy, ..., ux), of actions
and the sequence, (x1,...,2x11), of states may appear in an expression of
L. For convenience, let F' = K + 1, to denote the final state (note that the
application of ux advances the stage to K + 1). The cost functional is

K

L(mg) = Y Uwk,up) + Lp(ap). (2.3)

k=1

The final term, [p(zF), is outside of the sum, and is defined as lp(xp) = 0
if vp € Xg, and lp(zp) = 00, otherwise.

An important comment must be made regarding lr. Including lr in (7.26)
is actually unnecessary if it is agreed in advance that L will only be applied
to evaluate plans that reach Xg. It would be undefined for all other plans. The
algorithms to be presented shortly will also function nicely under this assumption;
however, the notation and explanation can become more cumbersome because
the action space must always be restricted to ensure that successful plans are
produced. Instead of this, the domain of L is extended to include all plans,
and those that do not reach X are penalized with infinite cost so that they are
eliminated automatically in any optimization steps. At some point, the role of
lr may become confusing, and is helpful to remember that it is just a trick to
convert feasibility constraints into a straightforward optimization (L = co means
not feasible and L < oo means feasible with cost L).

Now the task is to find a plan that minimizes L. To obtain a feasible planning
problem like Formulation 2.2.1, but restricted to K-step plans, let {(z,u) = 0. To
obtain a planning problem that requires minimizing the number of stages, then
let I(z,u) = 1. The possibility also exists of having goals that are less “crisp” by
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letting {p(z) vary for different © € X¢, as opposed to [g(x) = 0. This is much
more general than what was allowed with feasible planning because now states
may take on any value, as opposed to being classified as inside or outside of X.

2.4.1 Optimal Fixed-Length Plans

Consider computing an optimal plan under Formulation 1. One could naively gen-
erate all length- K sequences of actions and select the sequence that produces the
best cost, but this would require O(JU|¥) running time (imagine K nested loops,
one for each stage), which is clearly prohibitive. Luckily, dynamic programming
(DP) principle will help. We first say in words what will appear later in equations.
The DP idea is that portions of optimal plans are themselves optimal. It would
be absurd to be able to replace a portion of an optimal plan with a portion that
produces lower total cost; this contradicts the optimality of the original plan.

The principle of optimality leads directly to an iterative algorithm that can
solve a vast collection of optimal planning problems, including those that involve
variable-length plans, stochastic uncertainties, imperfect state measurements, and
many other complications. In some cases, the approach can be adapted to the well-
known Dijkstra’s algorithm; however, it is important to realize that this is only a
special case which applies to a narrower set of problems. The following text will
describe the general DP iterations, and Section 2.4.3 discusses their connection to
Dijkstra’s algorithm.

Backwards dynamic programming

Just as for the search methods, there will be both a forward and backwards version
of the approach. The backwards case will be covered first. Even though it does
not appear as straightforward on the surface to progress backwards from the goal,
it turns out that this case is notationally simpler. The forward case will then be
covered once some additional notation is introduced.

The key to deriving long optimal plans from shorter ones lies in the construc-
tion of coptimal cost-to-go functions over X. For 1 < k < F'| let G} denote the
cost that accumulates from stage k to I’ under the execution of the optimal plan:

Ul UK

Gy (xr) = min {Zl(ml,ul)+lF(xp)} (2.4)

Inside of the min of (2.4) are the last K — k + 1 terms of the cost functional,
(7.26). The optimal cost-to-go for the boundary condition of k = F' reduces to

This makes intuitive sense: since there are no stages in which an action can be
applied, the final stage cost is immediately received.
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Now consider an algorithm that makes K passes over X, each time computing
G}, from G}, as k ranges from F' to 1. In the first iteration, G7% is copied from
lp without significant effort. In the second iteration, G is computed for each
g € X as

Gy (rk) = IE}(H {l(zk,uk) + lp(zp).} (2.6)

Because Ip = G} and xp = f(rk,uk), substitutions can be made into (2.6) to
obtain

Gi(rK) = min Urw,ur) + Gp(f(rr, uK))}, (2.7)

which is straightforward to compute for each zx € X. This computes the costs
of all optimal one-step plans from stage K to stage F'= K + 1.

It will next be shown that G} can be computed similarly once G7_, is given.
Carefully study (2.4) and note that it can be written as

Gy (zx) = min  min {l(:z:k,uk) + Z Uz, u;) + ZF(IF>} (2.8)

Uk Uk+415--UK .
i=k+1

by pulling the first term out of the sum, and by separating the minimization over
ug from rest, which range from w1 to ug. The second min does not affect the
(g, ux) term; thus, I[(xy, uy) can be pulled outside to obtain

G (xy) = H&}Cn [l(mk,uk) +  min { Z I, u;) + l(xp)} (2.9)

Uk 415 UK .
’ i=k+1

The inner min is exactly the definition of the cost-to-go function Gy, which
yields the following recurrence:

Gi(wr) = min {Uwg, ur) + G (Tri) } (2.10)

in which zy41 = f(xg, ux). Now that the right side of (2.10) depends only on z,
ug, and Gy, the computation of G}, easily proceeds in O(|X||U]) time. Note
that in each pass over X, some states receive an infinite value only because they
are not reachable: a k-step plan from z to Xg does not exist. In terms of DP,
this means that an action uy € X (1) does not exist that brings xj to some state
Zp41 € X from which a (k — 1)-step plan exists that terminates in Xg.
Summarizing, the computations of cost-to-go functions proceeds as follows:

Gi — Gy — Gy - G — Gi, - G — G, (211

until finally, G7 is determined after O(K|X||U|) time. The resulting G§ may be
applied to yield G7(zy), the optimal cost to get to the goal from x;. It will also
conveniently give the optimal cost to go for any other initial state, which may be
infinity for those from which the X cannot be completed.
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Figure 2.9: A five-state example is shown. Each vertex represents a state, and each
edge represents an input that can be applied to the state transition equation to
change the state. The weights on the edges represent [(xy, uy) (xy is the originating
vertex of the edge).

Figure 2.10: The possibilities are shown for advancing forward one stage. This
is obtained by making two copies of the states from Figure 2.9, one copy for the
current state, and one for the potential next state.

It seems nice that the cost of the optimal plan can be computed so easily, but
how is such a plan extracted? One possibility is to store the action that satisfied
the min from every state, and at every stage. Unfortunately, this requires O(K|X|)
storage, but it can be reduced to O(|X|) using the tricks in Section 2.4.2 for the
more general case of optimizing over variable-length plans.

Example 2.4.1 (A five-state optimal planning problem)

Figure 2.9 shows a graph representation of a planning problem in which X =
{a,c,b,d,e}. Suppose that K = 4, x; = a, and Xg = {d}. There will hence
be four DP iterations, which construct G}, G3, G35, and G7, once the final-stage
cost-to-go, G}, is given.

The cost-to-go functions are:

‘State‘a‘b‘c‘d‘e‘

G |oo|oo|oo| 0 |00
G, |oo| 4|1 |o0|x
Gy | 6|2 |o0| 2 |00
Gy | 416 |3 |o0|x
Gy |6 |45 |4 00
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Figure 2.11: By turning Figure 2.10 sideways and copying it K times, a graph
can be drawn that easily shows all ways to arrive at a final state from an initial
state by flowing from left to right. The DP computations select automatically the
optimal route.

Figures 2.10 and 2.11 help illustrate the computations. For computing G, only b
and c receive finite values because only they can reach d in one stage. For comput-
ing G%, only the values G (b) = 4 and G(c) = 1 are important. Only paths that
reach b or ¢ could possibly lead to d in stage £ = 5. Note that the minimization in
(2.10) always chooses the action that produces the best total cost when arriving
at a vertex in the next stage. [

Forward dynamic programming

The ideas from Section 2.4.1 may be recycled to yield a symmetrically equivalent
method that computes cost-to-come functions from the initial stage. Whereas
backwards DP was able to find optimal plans from all initial states simultaneously,
forward DP can be used to find optimal plans too all states in X. In the backwards
case, Xg must be fixed, and in the forward case, x; must be fixed.

The issue of maintaining feasible solutions appears again. In the forward
direction, the role of [z is not important. It may be applied in the last iteration,
or it can be dropped altogether for problems that do not have a predetermined
X¢g. However, one must force all plans considered by forward DP to originate
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from x;. There is the familiar choice of making notation that imposes constraints
on the action spaces, or simply adding a term that forces infeasible plans to have
infinite cost. Once again, we chose the latter.

Let C}; denote the optimal cost-to-come from stage 1 to stage k, optimized over
all (k — 1)-step plans. To preclude plans that do not start at z;, the definition of
C7 is given by

Ci(z1) = l1(xy), (2.12)

in which [; is a new function that yields I;(z;) = 0 and [;(z) = oo for z # x;.
Thus, any plans that try to start from another state will immediately receive
infinite cost.

For an intermediate stage, k € {2, ..., K} the following represents the optimal
cost-to-come:

ULyeensUl—1

Ci(zk) = min {ll(xl) + Z_:l(xl,ul)} : (2.13)

i=1
Note that the sum refers to a sequence of states, x1,...,x,_1, which is the result
of applying the action sequence (uq,...,ux_1). The last state, xy is not included

because its cost term, [(zy,u;) requires the application of an action, uy, which
has not been chosen. If it is possible to write the cost additively, as [(xg, ug) =
l1(zg)+l2(ug), then the [; (zx) part could be included in the cost-to-come definition,
if desired. This detail will not be considered further.

As in (2.4) it is assumed in (2.13) that u; € U(z;) for every i € {1,...,k—1}.
The resulting xj, obtained after applying u;_; must be the same z; that is named
in the argument on the right side of (2.13). It might appear odd that x; appears
inside of the min above; however, this is not a problem. The state x; can be
completely determined once uy, ..., ur_1 and x; are given.

The final step in forward DP is the arrival at the final stage, F'. The cost-to-
come in this case is

Cl(xp) = min {ll(xl) + Zl(xl,uz)} : (2.14)

ULy UK -
=1

This equation looks the same as (2.7), but [; is used instead of [p. This has the
effect of filtering the plans that are considered to only those that start at x;. The
forward DP iterations will find optimal plans to any reachable final state from x;.
This behavior is complementary to that of backwards DP. In that case, X was
fixed, and optimal plans from any initial state were found. For forward DP, this
is reversed.

To express the DP recurrence, one further issue remains. Suppose that C}_;
is known by induction, and we want to compute C}(z) for a particular z;. This
means that we must start at some state x;_; and arrive in state x; by applying
some action. Once again, the backwards state transition equation from Section
2.3.3 is useful. Using the stage indices, it is written here as zp_; = f~!(x, u,;l).
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Using !, the DP equation is:

Cp(zg) = min ){Cz—l(xk—l)+l(xk—17uk—1)}7 (2.15)

u=teU—(xy

in which z;_, = f‘l(xk,u,gl) and ug_1 € U(xy_1 is the input to which u,;l €
U~(x1) corresponds. Using (2.15), the final cost-to-come may be iteratively
computed in O(K|X||U]|) time, just as in the case of computing the first-stage
cost-to-go in backwards dynamic programming.

Example 2.4.2 (Forward DP for the five-state problem)

Example 2.4.1 will now be revisited for the case of forward DP with fixed plan
length for K = 4. The following cost-to-come functions are obtained by direct
application of (2.15):

‘State‘a‘b‘c‘d‘e‘

Cy [|0]oo|oo|o0| 00
C5 122 |oo|oo| o0
C; |44 3|6 |00
Cy |66 |5 |47
cx 16/5 5|65

It will be helpful to refer to Figures 2.10 and 2.11 once again. The first row cor-
responds to the immediate application of [;. In the second row, finite values are
obtained for a and b, which are reachable in one stage from x; = a. The iterations
continue until £ = 5, at which point that optimal cost-to-come is determined for
every state. |

2.4.2 The General Case

The dynamic programming techniques for fixed-length plans can be generalized
nicely to the more interesting case in which plans of varying lengths are allowed.
There will be no bound on the maximal length of a plan; therefore, the current
case is truly a generalization of Formulation 2.2.1 because arbitrarily long plans
may be attempted in efforts to reach Xg.

The model for the general case does not require the specification of K and also
introduces a special action, ur:

Formulation 2.4.2 (Discrete Optimal Planning)

1. All of the components from Formulation 2.2.1 are inherited directly: X,
U(z), f, 1, and Xg. Also, the notion of stages from Formulation will be
used.
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2. Let L denote a real-valued, additive cost (or loss) functional, which may be
applied to any K-step plan, 7, to yield

L(mg) = Uwp,up) + Ip(rxia). (2.16)

k=1

In comparison with L from Formulation 1, the present expression does not
consider K as a predetermined constant. It will now vary, depending on the
length of the plan. Thus, the domain of L is much larger.

3. Each U(x) contains a special termination action, up. If ur is applied to xg,
at stage k, then the action is repeatedly applied forever, the state remains
in z;, forever, and no more cost accumulates. Thus, for all ¢« > k, u; = ur,
x; = oy, and (z;, ur) = 0.

The termination action is the key to allowing plans of different lengths. It will
appear throughout this book. Suppose we would like to perform the DP iterations
for K = 5, and there is a two-step plan, (u;,us), that that arrives in X¢ from
X7. This plan is equivalent to the five-step plan (uy, us, ur, ur, ur) because the
termination action does not change the state nor does it accumulate cost. The
resulting five-step plan will reach X and cost the same as (ug,us). With this
simple extension, the forward and backwards DP methods of Section 2.4.1 may
be applied for any fixed K to optimize over all plans of length K or less (instead
of fixed K).

The next step is to remove the dependency on K. Consider running backwards
DP indefinitely. At some point, G} will be computed, but there is no reason why
the process cannot be continued onward to Gj, G*,, etc. Recall that x; is not
utilized in the backwards DP; therefore, there is no concern regarding the starting
state of the plans. Suppose that backwards dynamic programming was used for
K = 16 and was executed down to G*g4. This considers all plans of length 25
or less. Note that for convenience, it is harmless to add 9 to all stage indices to
shift all of the cost-to-go functions. Instead of running from G*¢ to G, they can
run from G7 to G%;. The shifting of indices is allowed because none of the costs
depend on the particular index that is given to the stage. The only important
aspect of the DP computations is that they proceed backwards, and sequentially
from state to stage.

Eventually, enough iterations will have executed so that an optimal plan is
known from every state that can reach Xg. From that stage, say k, onward, the
cost-to-go values from one iteration to the next will be stationary, meaning that
for all i« < k, Gi_,(x) = Gf(x) for all z € X. Once the stationary condition is
reached, the cost-to-go no longer depends on a particular stage k.

Are there any conditions under which backwards DP could be run forever,
with each iteration producing a cost-to-go function that in which some values are
different from the previous iteration? If I(z,u) is nonnegative for all x € X and
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u € U(x), then this could never happen. It could certainly be true that for any
fixed K, longer plans will exist, but this cannot be said of optimal plans. For every
x € X, there either exists a plan that reaches X4 or there does not. For each state
from which there exists a plan that reaches X, consider the number of steps in
the optimal plan. Take the maximum number of steps over such optimal plans,
one from each state that can reach Xg. This serves as a limit on the number of
DP iterations that are needed. Any further iterations will just consider solutions
that are worse than the ones already considered (some may be equivalent due to
the termination action and shifting of stages). Some trouble might occur if I(x, u)
contains negative values. If in the corresponding graph representation there is a
cycle whose total cost is negative that it will be preferable to execute a plan that
travels around the cycle forever, reducing the total cost to —oo. We will assume
that the cost functional is defined in a sensible way so that such negative cycles do
not exist. Otherwise, the optimization model itself appears flawed. Some negative
values for (z,u), however, are allowed as long as there are no cycles.

Let —K denote the iteration at which the cost-to-go values become stationary.
At this point, a real-valued, optimal cost-to-go function, G* : X — R, may be
expressed by assigning G* = G* .. In other words, the particular stage index no
longer matters. The value G*(z) gives the optimal cost to go from state z € X
to the specific goal state . The optimal cost-to-go, G*, can be used to recover
the optimal actions, if they were not explicitly stored by the algorithm. Consider
starting from some x € X. What is the optimal next action? This is given by

arg muin {l(z,u) + G (f(z,u))}, (2.17)

which is the action, u, that minizes an expression that is very similar to (2.10).
The only difference is that the stage indices are dropped because the cost-to-go
values no longer depend on them. After applying u, the state transition equation
is used to obtain ' = f(z,u), and (2.17) may be applied again on x’. This process
continues until a state in X is reached. This procedure is based directly on the
DP equations; therefore, it recovers the optimal plan. The function G* serves
as a kind of guide that leads the system from any initial state into the goal set
optimally. This can be considered as a special case of a navigation function, which
will covered in Chapter 8.

Just as in the case of fixed-length plans, the direction of the DP iterations
may be reversed to obtain a forward DP algorithm that solves the variable-length
planning problem. In this case, the backwards state transition equation, f~!, is
used once again. Also, the initial cost term [; instead of [g, just as in (2.13).
The forward DP algorithm can start at £ = 1, and then it iterates until the cost-
to-come become stationary. Once again, the termination action, urp, perserves
the cost of plans that arrived at a state in earlier iterations. Note that it is not
required to specify X for these forward DP iterations. A counterpart to G* may
be obtained, from which optimal actions can be recovered. When the cost-to-come
values become stationary, an optimal cost-to-come function, C* : X — R, may
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Figure 2.12: Compare this figure to Figure 2.11, for which K was fixed at 4. The
effect of the termination action is depicted as dashed-line edges that yield 0 cost
when traversed. This enables plans of all finite lengths to be considered. Also,
the stages extend indefinitely to the left (for the case of backwards DP).

*

be expressed by assigning C* = (7, in which F' is the final stage reached when
the algorithm terminates. The value C*(x) gives the cost of an optimal plan that
starts from x; and reaches x. The optimal action sequence for any specified goal
xe € X can be obtained using

arg min {C*(f M (z,u™") +1(f (2, uh), W)}, (2.18)

u—leU-1

which is the forward DP counterpart of (2.17). The v’ is the action in U(f ! (z,u™"))
that yields x when the state transition equation, f, is applied. The iterations pro-
ceed backwards from zg, and terminate when x; is reached.

Example 2.4.3 (DP iterations for variable-length plans)

Once again, Example 2.4.1 is revisited; however, this time the plan length is not
fixed thanks to the termination action. Its effect is depicted in Figure 2.12 by the
superposition of new edges that have zero cost. It might appear at first there is
no incentive to choose other actions, but remember that any plan that does not
terminate in state xrg = d will receive infinite cost.
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After a few backwards DP iterations, the cost-to-go values become stationary.
After this point, the termination action is being applied from all reachable states
and no further loss accumulates. The final cost-to-go function is defined to be G*.
Since d is not reachable from e, G*(e) = occ.

As an example of using (2.17) to recover optimal actions, consider starting
from state a. The action that leads to b is chosen next because the total cost
2+ G*(b) = 4 is better than 2 + G*(a) = 6 (the 2 comes from the action cost).
From state b, the optimal action leads to ¢, which produces total cost 1+G*(c) = 1.
Similarly, the next action leads to d € X, which terminates the plan.

Using forward DP, suppose that x; = b. The following cost-to-come functions
are obtained:
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For any finite value that remains content from one iteration to the next, the
termination action was applied. Note that the last DP iteration is useless in
this example. Once L] 5 is computed, the optimal cost-to-come to every possible
state from z; is determined, and future cost-to-come functions will look identical.
Therefore, the final cost-to-come is renamed to C*. [ |

2.4.3 Dijkstra Revisited

So far two different kinds of dynamic programming have been covered. The meth-
ods of Section 2.4.2 involve repeated computations over the entire state space.
Dijkstra’s algorithm from Section 2.3.2 flows only once through the state space,
but with the additional overhead of maintaining which states are alive.
Dijkstra’s algorithm can be derived by focusing on the forward dynamic pro-
gramming computations, as in Example 2.4.3, and identifying exactly where the
“interesting” changes occur. Recall that for Dijkstra’s algorithm, it was assumed
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that all costs are nonnegative. For any states that are not reachable, their values
remain at infinity. They are precisely the unvisited states. States for which the op-
timal cost-to-come has already been finalized are dead. For the remaining states,
an initial cost is obtained, but this cost may be lowered multiple times until the
optimal cost is obtained. All states for which the cost is finite, but possibly not
optimal, are in the queue, Q.

After understanding the general DP iterations of this section, it is easier to
understand why Dijkstra’s form of dynamic programming correctly computes op-
timal solutions. It is clear that the unvisited states will remain at infinity in
both algorithms because no plan has reached them. It is helpful to consider the
backwards DP iterations in Example 2.4.3 for comparison. In a sense, Dijkstra’s
algorithm is very much like the general DP iterations, except that it efficiently
maintains the set of states within with cost-to-go values change. It correctly in-
serts any states that are reached for the first time, changing their cost-to-come
from infinity to a finite value. The values are changed in the same manner as
in the DP iterations. At the end of both algorithms, the resulting values should
correspond to the stationary, optimal cost-to-come, C*.

At the end of both algorithms, the resulting values should correspond to the
stationary, optimal cost-to-come, C*.

If Dijkstra’s algorithm seems so clever, then why have we spent time covering
the general DP algorithm? For some problems it may become too expensive to
maintain the sorted queue, and the DP iterations could provide a more efficient
alternative. A more important reason is that the general DP iterations apply to
a much broader class of problems by simple extensions of the method. Examples
to which that apply include optimal planning over continuous state spaces (Sec-
tion ?7?), stochastic optimal planning (Section ?7?), and computing dynamic game
equilibria (Section ?7). In some cases, it is still possible to obtain a Dijkstra-like
algorithm by focusing the computation on the “interesting” region; however, as the
model becomes more complicated, it may be inefficient or impossible in practice
to maintain this region. Therefore, it is important to have a good understanding
of both to determine which is most appropriate for a given problem.

Dijkstra’s algorithm belongs to a broader family of label-correcting algorithms,
which all produce optimal plans by making small modifications to the general
forward search algorithm in Figure 2.5. Figure 2.13 shows the resulting algorithm.
The main difference is to allow states to become alive again if a better cost-to-
come is found. This enables other cost-to-come values to be improved accordingly.
This is not important for Dijkstra’s algorithm and A* because they only need to
visit each state once. Thus, the algorithms in Figures 2.5 and 2.13 are essentially
the same in this case. However, the label-correcting algorithm produces optimal
solutions for any sorting of @, including FIFO (breadth first) and LIFO (depth
first), as long as X is finite. If X is not finite, then the issue of systematic search
dominates because one must guarantee that states are revisited sufficiently many
times to guarantee that optimal solutions will eventually be found.
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FORWARD_LABEL_CORRECTING(z¢)
1 Set G(z) = oo for all x # z;, and set G(z7) =0

2 Q.Insert(xy)

3 while ) not empty do

4 r — Q.GetFirst()

5 forall u € U(x)

6 ' — f(x,u)

7 if G(z) + l(z,u) < min{G(2'), G(z¢)} then
8 G(2') — G(z) + l(z,u)

9 if ' # z¢ then

10 Q.Insert(z')

Figure 2.13: A generalization of Dijkstra’s algorithm, which upon termination
produces an optimal plan (if one exists) for any prioritization of @), as long as X
is finite. Compare this to Figure 2.5.

Another important difference is that the algorithm uses the cost at the goal
state to prune away many candidate paths, which is shown in Line 7. Thus, it
is only formulated to work for a single goal state; it can be adapted to work
for multiple goal states, but performance degrades. The motivation for including
C(z¢) in Line 7 is that there is no need to worry about improving costs at some
state, ', if its new cost-to-come would be higher than C(z¢) because there is no
way it could be along a path that improves the cost to go to zg. Similarly, z¢ is
not inserted in Line 10 because there is no need to consider plans that have z¢
as an intermediate state. To recover the plan, either pointers can be stored from
2 to 2’ each time an update is made in Line 7, or the final, optimal cost-to-come,
C*, can be used to recover the actioins using (2.18).

2.5 Logic-Based Representations of Planning

For many discrete planning problems that we would hope a computer can solve, the
state space is enormous (e.g., 1019 states). Therefore, substantial effort has been
invested in constructing implicit encodings of problems in hopes that the entire
state space does not have to be explored by the algorithm to solve the problem.
This will be a recurring theme throughout the planning algorithms covered in this
book; therefore, it is important to pay close attention to representations. Many
planning problems can appear trivial once everything has been explicitly given.
Logic-based representations have been popular for construcing such implicit
representations of discrete planning. One historical reason is that such repre-
sentations were the basis of the majority of artificial intelligence research during
the 1950s-1980s. Another reason is that they have useful for representing certain
kinds of planning problems very compactly. It may be helpful to think of these
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representations as compression schemes. A string such as “010101010101...” may
compress very nicely, while it is impossible to substantially compress a random
string of bits. Similar principles are true for discrete planning. Some problems
contain a kind of regularity that enables them to be expressed compactly, while
for others it may be impossible to find such representations. This is why there
has been a variety of representation logics proposed through decades of planning
research.

Another reason for using logic-based representations is that many discrete
planning algorithms are implemented in large software systems. At some point,
when these systems solve a problem, they must provide the complete plan to a
user, who may or may not care about the internals of planning. Logic-based rep-
resentations have seemed convenient for producing output that logically explains
the steps involves to arrive at some goal. Other possibilities may exist, but logic
has been a first choice due to its historical popularity.

In spite of these advantages, one shortcoming with logic-based representations
is that they are difficult to generalize to enable concepts such as modeling uncer-
tainty, unpredictability, sensing errors, and game theory to be incorporated into
planning. This is the main reason why the state space representation has been
used so far: it will be easy to extend and adapt to the problems covered through-
out this book. Nevertheless, it is important to study logic-based representations
to understand the relationship between the vast majority of discrete planning re-
search and other problems considered in this book, such as motion planning, or
planning with differential constraints. There are many recurring themes through-
out these different kinds of problems, even though historically they have been
investigated by separate research communities. Understanding these connections
well will give you a powerful understanding of planning issues across all of these
areas.

2.5.1 A STRIPS-Like Representation

STRIPS-like representations have been the most common logic-based representa-
tion for discrete planning problems. This refers to the STRIPS system, which is
considered one of the first planning algorithms and representations [247]; its name
means STanford Research Institute Problem Solver. The original representation
used first-order logic, which had great expressive power but many technical diffi-
culties. Therefore, the representation was later restricted to use only propositional
logic [583], which is similar to the form introduced in this section. There are many
variations of STRIPS-like representations, one of which is presented here.
The following model is given, followed by a detailed explanation.

Formulation 2.5.1 (STRIPS-Like Planning)

1. A nonempty set, I, of instances.
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2. A nonempty set, P, of predicates, which are binary-valued (partial) functions
of one of more instances. Each application of a predicate to a specific set
of instances is called a positive literal if the predicate is TRUE or a negative
literal if it is FALSE .

3. A nonempty set, O, of operators, each of which has: 1) preconditions, which
is a set of positive and negative literals that must hold for the operator to
apply, and 2) effects, which is a set of positive and negative literals that are
the result of applying the operator.

4. An initial set, S, which is expressed as a set of positive literals. All literals
not appearing in S are assumed to be negative.

5. A goal set, G, which is expressed as a set of both positive and negative
literals.

Formulation 2.5.1 provides a definition of discrete feasible planning expressed
in a STRIPS-like representation. The three most important components are the
sets of instances, I, predicates, P, and operators, O. Informally, the instances
characterize the complete set of distinct things that exist in the world. They
could for example be books, cars, trees, etc. The predicates correspond to basic
properties or statements that can be formed regarding the instances. For example,
a predicate called Under might be used to indicate things like Under(Book, T'able)
(the book is under the table) or Under(Dirt, Rug). When a predicate is shown
with instances, such as Under(Dirt, Rug), then it is called a literal, which must
either have the value TRUE or FALSE . If it is TRUE , it is called a positive literal;
otherwise, it is called a megative literal. A predicate can be interpreted as a kind
of function that yields TRUE or FALSE values; however, it is important to note
that it is only a partial function because it might not be desirable to allow any
instance to be inserted as an argument to the predicate.

The role of an operator is to change the world. To be applicable, a set of
preconditions that must all be satisfied. Each element of this set is a literal along
with required a TRUE or FALSE value for the operator to be applicable. Any
literals that can be formed from the predicates, but are not mentioned in the
preconditions, may assume any value for applicability of the operator. If the
operator is applied, then the world is updated in a manner precisely specified by
the set of effects. This set of literals indicates positive and negative literals that
will result from the application if the operator. All other literals that could be
constructed will retain their values if they do not appear in the effects.

The planning problem is expressed in terms of an initial set, S, of positive
literals, and a goal set, G of positive and negative literals. The task is to find a
sequence of operators that when applied in succession will transform the world
from the initial state into one in which all literals of GG are satisfied. For each
operator, the preconditions must also be satisfied before it can be applied.

The following example illustrates Formulation 2.5.1.
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Figure 2.14: An example that involves putting batteries into a flashlight.

Example 2.5.1 Imagine a planning problem that involves putting two batteries
into a flashlight, as shown in Figure 2.14. The set of instances are

I = {Batteryl, Battery2, Cap, Flashlight}. (2.19)

Two different predicates will be defined, On and In, each of which is a partial
function on I. The predicate On may only be applied to evaluate whether the
Cap is On the Flashlight, and is written as On(Cap, Flashlight). The pred-
icate in may be applied in the following two ways: In(Batteryl, Flashlight),
In(Battery2, Flashlight), to indicate whether or not either battery is in the
flashlight. Recall that predicates are only partial functions in general. For pred-
icate In it is not desirable to apply any instance to any argument. For example,
In(Batteryl, Batteryl), and In(Flashlight, Battery2) are senseless to maintain
(they could be included in the model, always retaining a negative value, but it is
inefficient).
The initial set is

S = {On(Cap, Flashlight), ~In(Batteryl, Flashlight), ~In(Battery2, Flashlight)},
(2.20)

which means that the first literal is positive, and the remaining two are negative,

as indicated by the preceding — symbol (the cap is on the flashlight, but the

batteries are outside). The goal state is

G = {On(Cap, Flashlight), In(Batteryl, Flashlight), In(Battery2, Flashlight)}.

(2.21)
which means that both batteries must be in the flashlight, and the cap is on the
flashlight.
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Name Preconditions Effects
PlaceCap {=On(Cap, Flashlight)} {On(Cap, Flashlight)}
RemoveCap {On(Cap, Flashlight)} {=On(Cap, Flashlight)}

Insert(i) {=On(Cap, Flashlight), —In(i, Flashlight)} {In(i, Flashlight)}
Remove(i)  {=On(Cap, Flashlight), In(i, Flashlight)} ~ {—In(i, Flashlight)})

Table 2.1: Four operators for the flashlight problem. Note that an operator can
be expressed with variable argument(s) for which different instances could be
substituted.

The set O consists of the four operators, which are shown in Figure 2.1. Here
is a plan that reaches the goal state in the smallest number of steps:

(RemoveCap, Insert(Batteryl), Insert(Battery2), PlaceCap) (2.22)

In plain english, it simply says to take the cap off, put the batteries in, and place
the cap back on.

This example appears quite simple, and one would expect a planning algo-
rithm to easily find such a solution. It can be made more challenging by adding
many more instances to I, such as more batteries, more flashlights, and a bunch of
objects that are irrelevant to achieving the goal. Also, many other predicates and
operators can be added so that the different combinations of operators becomes
overwhelming. |

2.5.2 Converting to the State Space Representation

It is useful to characterize the relationship between Model 2.5.1 and the original
formulation discrete feasible planning, Formulation 2.2.1. One benefit is that it
will immediately indicate how the search methods of Section 2.3 can be adapted
to work for logic-based representations. It is also helpful to understand the rela-
tionships between the algorithmic complexities of the two representations.

Up to now, the notion of “state” has only been vaguely mentioned in the
context of the STRIPS-like representation. Now consider making this more con-
crete. Suppose that every predicate has k arguments, and in each argument any
instance could appear. This means that there are |P||I|* different literals at any
given time, which corresponds to all ways to substitute instances into all argu-
ments of all predicates. Fach literal may be either TRUE or FALSE . The complete
set of literals may be encoded as a binary string by imposing a linear ordering on
the instances and predicates. The state of the world is then specified in order.
Using Example 2.5.1, this might appear like:

(On(Capl, Flashlightl), ~On(Cap2, Flashlightl), ..., In(Battery7, Flashlight4l),...).
(2.23)
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Using the binary string, each element can be “0” to denote FALSE , or “1” to
denote TRUE . The resulting state would be x = 10---1---, for the example
above. The length of the string is thus |P||I|*. The total number of possible
states of the world that could possibly be distinguished corresponds to the set of
all possible bit strings, which is of size

2IPIIIE, (2.24)

The implication is that with a very small number of instances and predicates, an
enormous state space can be generated. Even though the search algorithms of
Section 2.3 may appear efficient with respect to size of the search graph (or the
number of states), the algorithms appear horribly inefficient with respect to the
sizes of P and I. This has motivated substantial efforts on the development of
heuristics to help guide the search more efficiently by exploiting the structure of
specific representations.

The next step in convering to a state space representation is to encode the
initial state x; as a string. The goal set, Xq, is the set of all strings that are
consistent with the goal positive and negative goal literals. This can be compressed
by extending the string alphabet to include a “don’t care” symbol, . A single
string that has a “0” for each negative literal, a “1” for each positive literal, and
a “0” for all others would suffice in representing any X that is expressed with
positive and negative literals.

The next step is to convert the operators. For each state, x € X, the set
U(z) will represent the set of operators with preconditions that are satisfied by
x. To apply the search techniques of Section 2.3, note that it is not necessary to
determine U(x) explicitly in advance for all x € X. Instead, it can be computed
whenever each x is encountered for the first time in the search. The effect of the
operator is encoded by the state transition equation. From a given x € X, the
next state, f(x,u), is obtained by flipping the bits as prescribed by the effects
part of the operator.

All of the components of Formulation 2.2.1 have been derived from the com-
ponents of Formulation 2.5.1. Adapting the search techniques of Section 2.3 is
straightforward. It is also straightforward to extend Formulation 2.5.1 to repre-
sent optimal planning. A cost can be associated with each operator and set of
literals that capture the current state. This will express [(x,u) of the cost func-
tional, L, from Section 2.4. Thus, it is also possible to adapt the DP iterations to
work under the logic-based representation, yielding optimal plans.

2.5.3 Logic-Based Planning

Need to give a brief survey of heuristic planning methods that work directly with
the logic-based representation.
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Literature

(This will get filled in a little more later. Here are some references for now.)

Introduction of DP [63, 64]

Graph search algorithms [176]

Logic representations [247, 583]

AT search [409, 622, 634]

Discrete-time optimal control [19, 70, 67]

Recent survey on Al planning (which they rename to automated planning,
which expands considerably the subject of Section 2.5. This is an excellent
source of material which is also planning, but is complementary to this book
in many ways. [274]

More coverage of labeling algorithms [67]

Exercises

(Exercises in italics are not yet fully specified)

1.

A simple example to simulate the algorithms. Verify that forward DP itera-
tions and Digkstra get the same result.

Try implementing and experimenting with some search variants.

Using A* search the performance degrades substantially when there are
many alternative solutions that are all optimal, or at least close to opti-
mal. Implement A* search and evaluate it on various labyrinth problems,
based on Example 2.2.1. Compare the performance for two different cases:

(a) Using |¢" —i| + |j" — j| as the heuristic, as suggested in Section 2.3.2.
(b) Using /[¢' —i|2 + |j/ — j|? as the heuristic.

Which heuristic seems superior? Explain your answer.

Design some kind of multiresolution expanding search algorithm for the in-
finite tile floor.

Play with randomization on the grid problem.

Try to construct a worst-case example for best-first search that has proper-
ties similar to that shown in Figure 2.6, but instead involves moving in a
2D world with obstacles, as introduced in Example 2.2.1.
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10.

11.

12.
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It turns out that the general DP iterations can be generalized to a loss
functional of the form

L= l(xk,uk,xk+1)—l—lp(xp), (225)

K
k=1

in which (2, ug) is replaced by l(zy, ug, Tgr1)-

(a) Show that the dynamic programming principle can be appled in this
more general settings to obtain forward and backwards DP iterations
that solve the fixed-length optimal planning problem.

(b) Do the same, but for the more general problem of variable-length plans,
which uses termination conditions.

The cost functional can be generalized to become stage-dependent, which
means that the cost might depend on the particular stage, k, in addition to
the state, x, and the action uy. Extend the DP algorithms of Section 2.4.1
to work for this case, and show that they give optimal solutions. Each term
of the more-general cost-functional should be denoted as [(xy, ug, k).

Recall from Section 2.4.2 the method of defining a termination action, ur
to make the DP iterations work correctly for variable-length planning. In-
stead of requiring that one remains at the same state, it is also possible to
formulate the problem by creating a special state, called the terminal state,
x7. Whenever ur is applied, the state becomes zp. Describe in detail how
to modify the cost functional, state transition equation, and any other nec-
essary components so that the DP iterations will correctly compute shortest
plans.

Dijkstra’s algorithm was presented as a kind of forward search in Section
2.3.1.

(a) Derive a backwards version of Dijkstra’s algorithm that starts from the
goal. Show that it always yields optimal plans.

(b) Describe the relationship between the algorithm from part (a) and the
backwards DP iterations from 2.4.2.

(a) Derive a backwards version of the A* algorithm and show that it yields
optimal plans.

Reformulate the general forward search algorithm of Section 2.3.1 so that
it is expressed in terms of the STRIPS-like representation. Carefully con-
sider what needs to be explicitly constructed by the algorithm and what is
considered only implicitly.

Experiment with the original STRIPS heuristic.
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Overview of Part 1I: Motion Planning

Planning in Continuous Spaces

Part IT makes the transition from discrete to continuous state spaces. Two alter-
native titles may be considered for this part: 1) motion planning, and 2) planning
in continuous state spaces. Chapters 3-8 are based on research from the field of
motion planning, which has been building since the 1970s; therefore, the name
motion planning is widely known to refer to the collection of models and algo-
rithms that will be covered. On the other hand, it is convenient to also think of
Part II as planning in continuous spaces because this is the primary distinction
with respect to most other forms of planning.

In addition, motion planning will frequently refer to motions of a robot in a 2D
or 3D world that contains obstacles. The robot could model an actual robot, or
may any other collection of moving bodies, such as humans or flexible molecules.
A motion plan involves determining what motions are appropriate for the robot so
that it reaches a goal state without colliding with obstacles. An earlier name for
motion planning is the Piano Movers” Problem, which brings to mind the image of
trying to move a grand piano through narrow passages in a house. Have you ever
been involved in an argument about how to move a sofa up some stairs? Motion
planning tries to resolve such debates.

Many issues that arose in Chapter 2 will appear once again in motion planning.
Two themes that may help to see the connection are:

Implicit representations

A familiar theme from Chapter 2 is that planning algorithms must deal with im-
plicit representations of the state space. In motion planning, this will become even
more important because the state space is uncountably infinite. Furthermore, a
complicated transformation exists between the world in which the models are de-
fined and the space in which the planning occurs. Chapter 3 covers ways to model
motion planning problems, which includes defining 2D and 3D geometric models
and transforming them. Chapter 4 introduces the state space that arises for these
problems. Following motion planning literature [504, 437], we will refer to this
state space as the configuration space. The dimension of the configuration space
corresponds to the number of degrees of freedom of the geometric model. Using
the configuration space, motion planning will be viewed as a kind of search in an
implicitly-represented, high-dimensional state space. One additional complication
is that configuration spaces have unusual topological structure that must be cor-
rectly characterized to ensure correct operation of planning algorithms. A motion
plan will then be defined as a continuous path in the configuration space.
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Continuous — discrete

A central theme throughout motion planning is to transform the continuous model
into a discrete one. Because of this transformation, many algorithms from Chap-
ter 2 are embedded in motion planning algorithms. There are two alternatives
to achieving this, which are covered in Chapters 6 and 5, respectively. Chapter
6 covers combinatorial motion planning, which means that from the input model
the algorithms build a discrete representation that exactly represents the origi-
nal problem. This leads to complete planning approaches, which are guaranteed
to find a solution when it exists, or correctly report failure if one does not ex-
ist. Chapter 5 covers sampling-based motion planning, which refers to algorithms
that use collision detection methods to sample the configuration space and con-
duct discrete searches that utilize these samples. In this case, completeness is
sacrificed, but is often replaced with a weaker notion, such as resolution com-
pleteness or probabilistic completeness. 1t is important to study both Chapters 6
and 5 because each methodology has its strengths and weaknesses. Combinatorial
methods can solve virtually any motion planning problem, and in some restricted
cases, very elegant solutions may be efficiently constructed in practice. However,
for the majority of “industrial grade” motion planning problems, the running
time and implementation difficulty of these algorithms make them prohibitive.
Sampling-based algorithms have fulfilled much of this need in recent years by
solving challenging problems in several settings, such as automobile assembly, hu-
manoid robot planning, and conformational analysis in drug design. Although the
completeness guarantees are weaker, the efficiency and ease of implementation of
these methods has bolstered interest in applying motion planning algorithms to a
wide variety of applications.

Two additional chapters appear in Part II. Chapter 7 covers several exten-
sions of the basic motion planning problem from the earlier chapters. These
extensions include avoiding moving obstacles, multiple robot coordination, ma-
nipulation planning, and planning with closed kinematic chains. Algorithms that
solve these problems build on the principles of earlier chapters, but each extension
involves new challenges.

Chapter 8 is a transitional chapter that involves many elements of motion plan-
ning, but is additionally concerned with gracefully recovering from unexpected
deviations during execution. Although uncertainty in predicting the future is
not explicitly modeled until Part III, Chapter 8 redefines the notion of a plan
to be a function over state space, as opposed to being a path through it. The
function gives the appropriate actions to take during exection, regardless of what
configuration is entered. This allows the true configuration to drift away from
the commanded configuration. In later chapters, such uncertainties will be explic-
itly modeled, but this comes at greater modeling and computational costs. It is
worthwhile to develop effective ways to avoid this.



Chapter 3

Geometric Representations and
Transformations

Chapter Status

What does this mean? Check
http://msl.cs.uiuc.edu/planning/status.html
for information on the latest version.

This chapter provides important background material that will be needed for
Part II. Formulating and solving motion planning problems requires defining and
manipulating complicated geometric models of a system of bodies in space. Sec-
tion 3.1 introduces geometric modeling, which focuses mainly on semi-algebraic
modeling because it is an important part of Chapter 6. If your interest is only
in Chapter 6, then understanding semi-algebraic models is not critical. Sections
3.2 and 3.3 describe how to transform a single body and a chain of bodies, re-
spectively. This will enable the robot to “move”. These sections are essential for
understanding all of Part II, and many sections beyond. It is expected that many
readers will already have some or all of this background (especially Section 3.2,
but it is included for completeness. Section 3.4 extends the framework for trans-
forming chains of bodies to transforming trees of bodies, which allows modeling
of complicated systems, such as humanoid robots and flexible organic molecules.
Finally, Section 3.5 briefly covers transformations that do not assume the bodies
are rigid.

3.1 Geometric Modeling

A wide variety of approaches and techniques for geometric modeling exist, and
the particular choice usually depends on the application and the difficulty of the

61
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problem. In most cases, there are generally two alternatives: 1) a boundary repre-
sentation, and 2) a solid representation. Suppose we would like to define a model
of a planet. Using a boundary representation, we might write the equation of a
sphere that roughly coincides with the planet’s surface. Using a solid represen-
tation, we would describe the set of all points that are contained in the sphere.
Both alternatives will be considered in this section.

The first task is to define the world, VW, for which there are two possible
choices: 1) a 2D world, in which W = R? and 2) a 3D world, in which W = R3.
These choices should be sufficient for most problems; however, one might also
want to allow more complicated worlds, such as the surface of a sphere or even a
higher-dimensional space. Such generalities are avoided in this book because their
current applications are limited.

Unless otherwise stated, the world generally contains two kinds of entities:

1. Obstacles: Portions of the world that are “permanently” occupied, for ex-
ample, as in the walls of a building.

2. Robots: Geometric bodies that are controllable via a motion plan.

Based on the terminology, one obvious application is to model a robot that moves
around in a building, however, many other possibilities exist. For example, the
robot could be a flexible molecule and the obstacles could be a folded protein. An
another example, the robot could by a virtual human in a graphical simulation
that involves obstacles (imagine the family of Doom-like adventure games).

This section presents a method of systematically constructing representations
of obstacles and robots using a collection of primitives. Both obstacles and robots
will be considered as (closed) subsets of W. Let the obstacle region, O, denote the
set of all points in W that lie in one or more obstacles; hence, O C W. The next
step is to define a systematic way of representing O that will have great expressive
power and be computationally efficient. Robots will be defined in a similar way;
however, this will be deferred until Section 3.2, where transformations of geometric
bodies are defined.

3.1.1 Polygonal and Polyhedral Models

In Sections 3.1.1 and 3.1.2, a solid representation of O will be developed in terms
of a combination of primitives. Each primitive, H;, represents a subset of W
that is easy to represent and manipulate. A complicated obstacle region will
be represented by taking finite, Boolean combinations of primitives. Using set
theory, this implies that O can also be defined in terms of a finite number of
unions, intersections, and set differences of primitives.

Convex polygons First consider O for the case in which the obstacle region
is a convex, polygonal subset of a 2D world, W = R2. A subset, X C R" is
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called convex if and only if for any pair of points in X, all points along the line
segment that connects them are contained in X. More precisely, this means that
for any x1, 2z, € X, all points that can be expressed in the form Az; + (1 — )z
(linear interpolation), for some scalar A € (0, 1), must also lie in X. Intuitively, X
contains no pockets or indentations. A set that is not convex is called nonconvex
(as opposed to concave, which seems better suited for lenses).

A boundary representation of O is an m-sided polygon, which can be described
using two kinds of features: vertices and edges. Every verter corresponds to a
“corner” of the polygon, and every edge corresponds to a line segment between a
pair of vertices. The polygon can be specified by a sequence, (x1,41), (2, %2), - - -,
(T, Ym), of m points in R?, given in counterclockwise order.

A solid representation of O can be expressed as the intersection of m half-
planes. Each half-plane corresponds to the set of all points that lie to one side
of a line that is common to a polygon edge. Figure 3.1 shows an example of an
octagon that is represented as the intersection of eight half planes.

An edge of the polygon is specified by two points, such as (x1,y1) and (22, y2).
Consider the equation of a line that passes through (z1,y;) and (x2,y2). An
equation can be determined of the form ax + by + ¢ = 0, in which a,b,¢c € R
are constants that are determined from z1, 41, o2, and v». Let f : R> — R be
the function given by f(z,y) = ax + by + ¢. Note that f(x,y) < 0 on one side
of the line, and f(z,y) > 0 on the other. (In fact, f may be interpreted as a
signed Euclidean distance from (x,y) to the line.) The sign of f(z,y) indicates a
half plane that is bounded by the line, as depicted in Figure 3.2. Without loss of
generality, assume that f(x,y) is defined such that f(z,y) < 0 for all points to
the left of the edge from (x1,y;) to (z2,y9) (if it is not, then multiply f(x,y) by
—1).

Let f;(z,y) denote the f function derived from the line that corresponds to
the edge from (x;,y;) to (z;41,yir1) for 1 <i < m. Let f,,(z,y) denote the line
equation that corresponds to the edge from (x,,, ym) to (z1,y1). Let a half plane,
H;, for 1 <i < m be defined as a subset of W:

H; = {(z,y) e W] fi(w,y) < 0}. (3.1)

Above, H; is a primitive that describes the set of all points on one side of the line
fi(z,y) = 0 (including the points on the line).
A convex, m-sided, polygonal obstacle region, O, is expressed as

O=HNHN-NH, (3.2)

Nonconvex polygons The assumption that O is convex is too limited for most
applications. Now suppose that O is a nonconvex, polygonal subset of WW. In this
case, O, can be expressed as

O=0,U0U---UQO,, (3.3)
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Figure 3.1: A convex polygonal region can be identified by the intersection of
half-planes.

Figure 3.2: The sign of the f(z,y) partitions R? into three regions: two half planes
given by f(z,y) <0 and f(z,y) > 0, and the line f(z,y) = 0.
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in which each O; is a convex, polygonal set that is expressed in terms of half
spaces using (3.2). Note that O; and O; for i # j need not be disjoint. Using this
representation, very complicated obstacle regions in VW can be defined. Although
these regions may contain multiple components and holes, if O is bounded (i.e., O
will fit inside of a big enough rectangular box) its boundary will consist of linear
segments.

In general, more complicated representations of O can be defined in terms of
any finite combination of unions, intersections, and set differences of primitives;
however, it always possible to simplify the representation into the form given by
(3.2) and (3.3). A set difference can be avoided by redefining the primitive. Sup-
pose the model requires removing a set defined by a primitive H;, that contains'
fi(z,y) < 0. This is equivalent to keeping all points such that f;(z,y) > 0, which
is equivalent to — f;(x, y) < 0. This can be used to define a new primitive H; which
when taken in union with other sets, is equivalent to the removal of H;. Given
a complicated combination of primitives, once set differences are removed, the
expression can be simplified into a finite union of finite intersections by applying
Boolean algebra laws.

Note that the representation of a nonconvex polygon is not unique. There
are many ways to decompose O into convex components. The decomposition
should be carefully selected to optimize computational performance in whatever
algorithms that model will be used. In most cases, the components may even be
allowed to overlap. Ideally, it seems that it would be nice to represent O with the
minimum number of primitives, but automating such a decomposition may lead to
an NP-hard problem. See the literature remarks at the end of this chapter. One
efficient, practical way to decompose O is to apply the vertical cell decomposition
algorithm, which will be presented in Section 6.2.2

Defining a logical predicate What is the value of the previous representa-
tion? As a simple example, we can define a logical predicate that serves as a
collision detector. Recall from Section 2.5.1 that a predicate is a Boolean-valued
function. Let ¢ be a predicate defined as ¢ : W — {TRUE , FALSE }, which
returns TRUE for a point in W that lies in O, and FALSE otherwise. For a line
given by f(z,y) = 0, let e(z,y) denote a logical predicate that returns TRUE if
f(z,y) <0, and FALSE otherwise.

A predicate the corresponds to a convex polygonal region can be represented
by a logical conjunction,

a(z,y) = e1(z,y) ANea(z,y) A+ Aem(z,y). (3.4)

The predicate a(x,y) returns TRUE if the point (z,y) lies in the convex polyg-
onal region, and FALSE otherwise. An obstacle region that consists of n convex

'In this section, we want the resulting set to include all of the points along the boundary.
Therefore, < is used to model a set for removal, as opposed to <.
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polygons can be represented by a logical disjunction of conjuncts:

¢(r,y) = an(w,y) Vag(z,y) V- -V an(z,y) (3.5)

Although more efficient methods exist, the predicate ¢(z,y) can be used to check
whether a point (x¢, y;) lies inside of O in time O(n), in which n is the number of
primitives that appear in the representation of O (each primitive is evaluated in
constant time).

Note the convenient connection between a logical predicate representation and
a set-theoretic representation. Using the logical predicate, the unions and intersec-
tions of the set-theoretic representation are replaced by logical OR’s and AND’s.
It is well known from Boolean algebra that any complicated logical sentence can
be reduced to a logical disjunction of conjunctions (this is often called “sum of
products” in computer engineering). This is equivalent to our previous statement
that O can always be represented as a union of intersections of primitives.

Polyhedral models For a 3D world, W = R3, and the previous concepts can
be nicely generalized from the 2D case by replacing polygons with polyhedra, and
replacing half-plane primitives with half-space primitives. A boundary represen-
tation can be defined in terms of three features: vertices, edges, and faces. Every
face is a “flat” polygon embedded in R3. Every edge forms a boundary between
two faces. Every vertex forms a boundary between three or more edges.

Several data structures have been proposed that allow one to conveniently
“walk” around the polyhedral features. For example, the doubly-connected edge
list [189] data structure contains three types of records: faces, half edges, and
vertices. Each vertex record holds the point coordinates, and a pointer to an
arbitrary half-edge that touches the vertex. Each face record contains a pointer
to an arbitrary half-edge on its boundary. Each face is bounded by a circular
list of half-edges. There is a pair of directed half-edge records for each edge of
the polyhedon. Each half-edge is shown as an arrow in Figure 3.3.b. Each half-
edge record contains pointers to five other records: 1) the vertex from which the
half-edge originates, 2) the “twin” half-edge, which bounds the neighboring face,
and has the opposite direction, 3) the face that is bounded by the half edge, 4)
the next element in the circular list of edges that bound the face, 5) the previous
element in the circular list of edges that bound the face. One all of these records
have been defined, one can conveniently traverse the structure of the polyhedron.

Next consider a solid representation of a polyhedron. Suppose that O is a
convex polyhedron, as shown in Figure 3.3. A solid representation can be con-
structed from the vertices. Each face of O has at least three vertices along its
boundary. Assuming these vertices are not collinear, an equation of the plane
that passes through them can be determined of the form ax + by +cz+d =0, in
which a, b, c,d € R are constants.

Once again, the function, f can be constructed, except this time f : R® — R,
and f(z,y,2) = ax + by + cz + d. Let a half space, H;, for 1 < i < m, for all m
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Figure 3.3: a) A polyhedron can be described in terms of faces, edges, and vertices.
b) The edges of each face can be stored in a circular list that is traversed in
counterclockwise order with respect to the outward normal vector of the face.

faces of O, be defined as a subset of W:
H; = {([B,y, Z) ew | fi(:c,y,z) < O}- (3.6)

It is important to choose f; so that it takes on negative values inside of the
polyhedron. In the case of a polygonal model, it was possible to consistently
define f; by proceeding in counterclockwise order around the boundary. In the
case of a polyhedron, the half-edge data structure can be used to obtain for each
face the list of edges that form its boundary in counterclockwise order. Figure
3.3.b shows the edge ordering for each face. Note that the boundary of each face
can be traversed in counterclockwise order. For every edge, the arrows point in
opposite directions, as required by the half-edge data structure. The equation
for each face can be consistently determined as follows. Choose three consecutive
vertices, pi1, pa, p3 (they must not be collinear) in counterclockwise order on the
boundary of the face. Let v denote the vector from p; to ps, and let vy3 denote
the vector from ps to ps. The cross product v = v15 X vo3 will always yield a
vector that points out of the polyhedron and is normal to the face. Recall that
the vector [a b ] is parallel to the normal to the plane. If these are chosen as
a =v[l], b=v[2], and ¢ = v[3], then f(x,y,z) < 0 for all points in the half space
that contains the polyhedron.

As in the case of a polygonal model, a convex polyhedron can be defined as
the intersection of a finite number of half spaces, one for each face. A nonconvex
polyhedron can be defined as the union of a finite number of convex polyhedra.
The predicate ¢(z,y, z) can be defined in a similar manner, in this case yielding
TRUE if (x,y, 2) € O and FALSE otherwise.
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Figure 3.4: a) Once again, f is used to partition R? into two regions. In this case,
the algebraic primitive represents a disc-shaped region. b) The shaded “face” can
be exactly modeled using only four algebraic primitives.

3.1.2 Semi-Algebraic Models

In both the polygonal and polyhedral models, f was a linear function. In the
case of a semi-algebraic model for a 2D world, f, can be any polynomial with
real-valued coefficients and variables x and y. For a 3D world, f is a polynomial
with variables xz, y, and z. The class of semi-algebraic models includes both
polygonal and polyhedral models, which use first-degree polynomials. A point set
determined by a single polynomial primitive is called an algebraic set; a point set
that can be obtained by a finite number of unions and intersections algebraic sets
is called a semi-algebraic set.

Consider the case of a 2D world. A solid representation can be defined using
algebraic primitives of the form

H={(z,y) e W] f(z,y) <0}. (3.7)

As an example, let f = 22 + y? — 4. In this case, H, represents a disc of radius
2 that is centered at the origin. This corresponds to the set of points, (z,y), for
which f(z,y) <0, as depicted in Figure 3.4.a.

Example 3.1.1 (Gingerbread face) Consider constructing a model of the shaded
region shown in Figure 3.4.b. Let the center of the outer circle have radius r; and
be centered at the origin. Suppose that the “eyes” have radius r, and r3, and are
centered at (x2,ys) and (x3,ys3), respectively. Let the “mouth” be an ellipse with
major axis a and minor axis b, and is centered at (0, y4). The functions are defined
as fi = 22 +y* =17, fo = —[(x—22)* +(y—y2)*—73], fs = —[(v—23)*+(y—y3)>—73],
and f; = —[2%/a® + (y — y4)?/b* — 1]. For fo, f3, and fy, the familiar circle and
ellipse equations were multiplied by —1 to yield algebraic primitives for all points
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outside of the circle or ellipse. The shaded region, O, can be represented as
O=H NHyNH3;NH,. (3.8)
|

In the case of semi-algebraic models, the intersection of primitives does not
necessarily result in a convex subset of W. In general, however, it might be
necessary to form O be taking unions and intersections of algebraic primitives.

For semi-algebraic models, a logical predicate, ¢(z,y), can once again be
formed, and collision checking is still performed in time that is linear in the num-
ber of primitives because it does not depend on the particular primitives. Note
that it is still very efficient to evaluate every primitive: f is just a polynomial that
is evaluated on the point (z,y, 2).

The ideas generalize easily for the case of a 3D world, obtaining algebraic
primitives of the form

H={(z,y,2) eW| f(x,y,2) <0}, (3.9)

which be used to define a solid representation of a 3D obstacle, O, and also may
be used to construct the predicate ¢(zx,y, z).

Equations 3.7 and 3.9 are sufficient to express any model of interest. One may
define many other primitives based on different relations, such as f(z,y) > 0,
f(z,y) =0, f(x,y) <0, f(zr,y) = 0, and f(z,y) # 0; however, most of them
do not enhance the set of models that can be expressed. They might, however,
be more convenient in certain contexts. To see that some primitives do not allow
new models to be expressed, consider the following primitive

H={(x,y,2) e W| f(x,y,2) > 0}. (3.10)

The right part may be alternatively represented as — f(x,y, z) < 0, and — f may
be considered as a new polynomial function of x, y, and z. For an example that
involves the = relation, consider the primitive

H=A{(z,y,2) e W| f(z,y,2) = 0}. (3.11)
It can instead be constructed as H = Hy N Hs, in which
Hy ={(z,y,2) e W| f(z,y,2) <0} (3.12)
and
Hy ={(z,y,2) e W| — f(z,y,2) <0} (3.13)

The relation < does add some expressive power if it is used to construct primi-
tives.? It is needed to construct models that do not include the outer boundary
(for example, the set of all points inside of a sphere, which does not include points
on the sphere). These are generally called open sets, and are defined Chapter 4.

2An alternative, which yields the same expressivepower is still use <, but allow set comple-
ments, in addition to unions and intersections.
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Figure 3.5: A polygon with holes can be expressed by using different orientations:
counterclockwise for the outer boundary and clockwise for the hole boundaries.
Note that the shaded part is always to the left when following the arrows.

3.1.3 Other Models

The choice of a model often depends on the types of operations that will be
performed by the planning algorithm. For combinatorial planning methods, to be
covered in Chapter 6, the particular representation is critical. On the other hand,
for sampling-based planning methods, to be covered in Chapter 5, the particular
representation is the problem of the collision detection algorithm, which is treated
as a “black box” as far as planning is concerned. Therefore, the models given in the
remainder of this section are more likely to appear in sampling-based approaches,
and may be invisible to the designer of a planning algorithm (although it is never
wise to forget about the representation).

Nonconvex Polygons and Polyhedra

The method in Section 3.1.1 required nonconvex polygons to be represented as
a union of convex polygons. Instead, a boundary representation of a nonconvex
polygon may be directly encoded by listing vertices in a specific order; assume
counterclockwise. Each polygon of m vertices may be encoded by a list of the
form (x1,v1), (2,92), -+ (Tm,Ym). It is assumed that there is an edge between
each (x;,vy;) and (41, ¥i+1), and also between (z,,, ym) and (z1,y;). Ordinarily,
the vertices should be chosen in a way that makes the polygon simple, meaning
that no edges intersect. In this case, there is a well-defined interior of the polygon,
which is to the left of every edge, if the vertices are listed in counterclockwise order.

What if a polygon has a hole in it? In this case, the boundary of the hole
can be expressed as a polygon, but with its vertices expressed in the clockwise
direction. To the left of each edge will be the interior of the outer polygon, and
the to the right is the hole, as shown in Figure 3.5

Although the data structures are a little more complicated for three dimen-
sions, boundary representations of nonconvex polyhedra may be expressed in a
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Figure 3.6: Triangle strips and triangle fans can reduce the number of redundant
points.

similar manner. In this case, instead of an edge list, one must specify faces, edges,
and vertices, with pointers that indicate their incidence relations. Consistent ori-
entations must also be chosen, and holes may be modeled once again by selecting
opposite orientations.

3D triangles

Suppose W = R3. One of the most convenient models to express is a set of trian-
gles, each of which is specified by three points, (x1,y1, 21), (Z2, Y2, 22), (%3, Y3, 23).
This model has been popular in computer graphics because graphics acceleration
in hardware has mainly been developed in terms of triangle primitives. It is as-
sumed that the interior of the triangle is part of the model. Thus, two triangles
are considered as “colliding” if one pokes into the interior of another. This model
offers great flexibility because there are no constraints on the way in which trian-
gles must be expressed; however, this is also one of the drawbacks. There is no
coherency that can be exploited to easily declare whether a point is “inside” or
“outside” of a 3D obstacle. If there is at least some coherency, then it is some-
times preferable to reduce redundancy in the specification of triangle coordinates
(many triangles will share the same corners). Representations that remove this
redundancy are triangle strips, which is a sequence of triangles such that each
adjacent pair share a common edge, and triangle fans, which is triangle strip in
which all triangles share a common vertex. See Figure 3.6.

NonUniform Rational B-Splines (NURBS)

These are used in many engineering design systems to allow convenient design
and adjustment of curved surfaces, in applications such as aircraft or automobile
body design. In contrast to semi-algebraic models, which are implicit equations,
NURBS and other splines are parametric equations. This makes computations
such as rendering easier; however, others, such as collision-detection, become more
difficult. These models may be defined in any dimension. A brief two-dimensional
formulation is given here.
A curve can be expressed as

2": wiPiNi,k(u)
i=0

C(u) =

== : (3.14)
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in which w; € Re are weights, P; are control points. The N; j are normalized basis
functions of degree k, which can be expressed recursively as

u — ti ti k —Uu
— L Nigpoa(u) + =2 N (w). (3.15)

Nigp(u) =
#(1) Livk — ti Livkr1 — tig1

The basis of the recursion is NV; g(u) = 1ift; < u < t;41, and N; o(u) = 0 otherwise.
A knot vector is a nondecreasing sequence of real values, {tq,t1,...,t,}, that
controls that controls the intervals over which certain basic functions take effect.

Bitmaps

For either W = R? or W = R3, it is possible to discretize a bounded portion of
the world into rectangular cells that may or may not be occupied. The resulting
model will look very similar to Example 2.2.1. The resolution of this discretization
determines the number of cells per axis and the quality of the approximation. The
representation may be considered as a binary image in which each “1” in the image
corresponds to a rectangular region that contains at least some part of O, and
“0” represents those that do not contain any of O. Although bitmaps do not have
the elegance of the other models, they often arise in applications. One example
is a digital map constructed by a mobile robot that explores in environment with
its sensors. One generalization of bitmaps is a grey-scale map or occupancy grid.
In this case, a numerical value may be assigned to each cell, indicating quantities
such as “the probability that an obstacle exists” or the “expected difficulty of
traversing the cell”. The latter case is often used in terrain maps for navigating
planetary rovers.

Superquadrics

Instead of using polynomials to define f;, many generalizations can be constructed.
One popular type of model is a superquadric, which generalized quadric surfaces.
One example is a superellipsoid, given for YW = R? by

ny

{Em 12} +12m -1 <0, (3.16)

in which nqy > 2 and ny > 2. If ny = ny = 2, an ellipse is generated. As n; and ns
increase, the superellipsoid becomes shaped like a box with rounded corners.

Generalized cylinders

A generalized cylinder is a generalization of an ordinary cylinder. Instead of being
limited to a line, the center axis is a continuous spine curve, (x(s),y(s), z(s)) for
some parameter s € [0,1]. Instead of a constant radius, a radius function r(s)
along the spine. The value r(s) is the radius of the circle, obtained as the cross
section of the generalized cylinder at the point (z(s),y(s), z(s)). The normal to
the cross section plane is the tangent to the spine curve at s.
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3.2 Rigid Body Transformations

Any of the techniques from Section 3.1 can be used to define both the obstacle
region and the robot. Let O refer to the obstacle region, which is a subset of W.
Let A refer to the robot, which is a subset of R? or R3, matching the dimension
of W. Although O remains fixed in the world, YW, motion planning problems will
require “moving” the robot, A.

3.2.1 General Concepts

Before giving specific transformations, it will be helpful to define them in general
to avoid confusion in later parts when intuitive notions might fall apart. Suppose
that the robot, A, is defined as a subset of R? or R®. A rigid body transformation is
a function, h : A — W, that maps every point of A into VW with two requirements:
1) the distance between any pair of points of A must be preserved, and 2) the
orientation of A must be preserved (no “mirror images”).

Using standard function notation, h(a) for some a € A refers to the point in
W that is “occupied” by a. Let

h(A) = {h(a) € R? | a € A}, (3.17)

which is the image of h, indicating all points in W occupied by the transformed
robot.

Consider transforming a robot model. If A is expressed by naming specific
points in R?, as in a boundary representation of a polygon, then each point is
simply transformed from a to h(a) € W, and the entire model has easily trans-
formed. However, be careful when the model is expressed with primitives, such
as

H; = {a € R?| fi(a) < 0}, (3.18)

which differs slightly from (3.1) because the robot is not directly defined in W,
and also a is used to denote a point (z,y) € A. Under a transformation h, the
half plane in YW may be represented as

h(H;) = {h(a) € W] fi(a) <0} (3.19)

To transform the primitive completely, however, it is better to directly name points
in w € W, as opposed to h(a) € W. This becomes

h(H;) = {w e W] fi(h™}(w)) < 0}, (3.20)

in which the inverse of h appears in the right side because the original point a € A
needs to be recovered to evaluate f;.

Thus, sometimes the forward transformation is needed, and at other times the
inverse is needed. Be careful! Specific samples will be given shortly that clearly
illustrate this.
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The coming sections will introduce families of transformations, in which some
parameters are used to select the particular transformation. Therefore, it makes
sense to generalize h to accept two variables: a new parameter ¢, along with
a € A. The resulting transformed point, a is denoted by h(q,a), and the entire
robot is transformed to h(q, A) C W.

The coming material will use the following shorthand notation, which requires
the specific h to be inferred from the context. Let h(q,a) be shorted to a(q), and
let h(gq,.A) be shortened to .A(q). This notation makes it appear that by adjusting
the parameter ¢, the robot A travels around in W as different transformations are
selected from the family. This is slightly abusive notation, but it is convenient.
The expression A(g) can be considered as a set-valued function that yields the
set of points in W that are occupied by A when it is transformed by ¢. Most of
the time the notation does not cause trouble, but when it does, it is helpful to
remember the definitions from this section, especially when trying to determine
whether forward or inverse versions of the transformations need to be used.

One final comment before starting: note that A, before it is transformed, is
also a subset of W. It was written only as a subset of R? or R? to avoid confusion
in the discussion above. Another way to make the distinction clear is to borrow
from mechanics [], and give the robot a separate coordinate frame from the world.
Thus, the robot is defined in an object frame, and the world is defined in a reference
frame. A transformation indicates where the object frame appears with respect to
the reference frame. When multiple bodies are covered in Section 3.3, each body
will have its own object frame, and all bodies will be expressed with respect to
the reference frame.

3.2.2 2D Transformations

Translation The robot A will be translated by using two parameters, x;,y; € R.
From Section 3.2.1, this means that ¢ = (x4,v;). The function h is defined as
h(z,y) = (z + 2,y + y). A boundary representation of A can be translated by
transforming each vertex in the sequence of polygon vertices. Each point (z;,y;)
in the sequence is simply replaced by (z; + x, y; + v ).

Now consider a solid representation of A, defined in terms of primitives. Each
primitive of the form

H; = {(z,y) € R?| f(z,y) <0} (3.21)
is transformed to
h(H;) = {(z,y) e W | f(z — 2,y — y) <0} (3.22)

For example, suppose the robot is a disc of unit radius, centered at the origin. It
is modeled by a single primitive,

A={(z,y) €eR* |2 +¢y*> -1 <0} (3.23)
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Figure 3.7: For every transformation there are two interpretations.

Suppose A is translated z; units in the = direction, and g, units in the y direction.
The transformed primitive is

hA) = {(z.y) e W] (z —2:)" + (y — w)* — 1 < 0}, (3.24)

which is the familiar equation for a disc centered at (zy,v;). In this example, the
inverse, h~! was used, as described in Section 3.2.1.

The translated robot is denoted as A(x,y:). Translation by (0,0) is the iden-
tity transformation, which results in A(0,0) = A, if it is assumed that 4 C W
(recall that A does not necessarily have to be initially embedded in W). It will be
convenient to use the term degrees of freedom to refer to the maximum number of
independent parameters that can be selected to completely characterize the robot
in the world. If the set of allowable values for x; and y; form a two-dimensional
subset of R?, then the degrees of freedom is two.

As shown in Figure 3.7, there are two interpretations of the transformation
of A: 1) the coordinate system remains fixed, and the A is translated; 2) A
remains fixed and the coordinate system is translated in the opposite direction.
The first one indicates how the transformation appears while standing at the
origin, and the second one indicates how the transformation appears from the
robot’s perspective. Unless stated otherwise, the first interpretation will be used
when we refer to motion planning problems because it often models a robot moving
in a physical world. Note that numerous books cover coordinate transformations
under the second interpretation. This has been known to cause confusion since
the transformations may sometimes appear “backwards” from what is desired.

Rotation The robot, A, can be rotated counterclockwise by some angle 6 €
[0, 27) by mapping every (z,y) € A to (xcost —ysinf, zsinf + ycos ). Using a

2 X 2 rotation matrix,
cos@ —sinf
R(9) = (sin9 cos 6 ) ’ (3.25)
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the transformation can be written as
xcost —ysinf x

(x sin @ + y cos 6> = R(0) (y) ' (3.26)
Using the notation of Section 3.2.1, R(6) would be h(q), for which ¢ = 6. For linear
transformations, such as the one defined above, recall that the column vectors
represent the basis vectors of the new coordinate frame. The column vectors of
R(#) are unit vectors, and their inner product (or dot product) is zero, indicating
they are orthogonal. Suppose that the X and Y coordinate axes are “painted”
on A. The columns of R(f) can be derived by considering the resulting directions
of the X and Y axes, respectively, after performing a counterclockwise rotation
by the angle 6. This interpretation generalizes nicely for rotation matrices of any
dimension.

Note that the rotation is performed about the origin. Thus, when defining the
model of A, the origin should be placed at the intended axis of rotation. Using
the semi-algebraic model, the entire robot model can be rotated by transforming
each primitive, yielding A(f). The inverse rotation, R(—60), must be applied to
each primitive.

Suppose a rotation by 6 is performed, followed by a translation by ¢, y;. This
can be used to place the robot in any desired position and orientation in W.

Note these two transformations do not commute! If the operations are applied
successively, each (z,y) € A is transformed to

rcosf —ysinf + x,
(:c sin @ + y cos 6 + yt) ' (3.27)

Notice that the following matrix multiplication will yield the same result for the
first two vector components

cosf) —sinf x z xcost —ysinf + x,
sinf  cosf@ y| =1 2xsinfd+ycosl+y |. (3.28)
0 0 1 1 1

This implies that the 3 x 3 matrix,

cosf —sinf
T=|sinf cosl y |, (3.29)
0 0 1

may be used to represent a rotation followed by a translation:

cosf —sinf x
T=|sinf cosf y |. (3.30)
0 0 1

The matrix T" will be referred to as a homogeneous transformation. It is important
to remember that 7" represents a rotation followed by a translation (not the other
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Figure 3.8: Any rotation in 3D can be described as a sequence of yaw, pitch, and
roll rotations.

way around). Each primitive can be transformed using the inverse of T', resulting
in a transformed solid model of the robot. The transformed robot is denoted by
A(xy,y;,0), and in this case there are three degrees of freedom. The homogeneous
transformation matrix is a convenient representation of the combined transforma-
tions; therefore, it is frequently used in robotics, mechanics, computer graphics,
and elsewhere. It is called homogeneous because over R3 it is just a linear trans-
formation without any translation. The trick of increasing the dimension by one
to absorb the translational part is borrowed from projective geometry, where it
plays an important role.

3.2.3 3D Transformations

The rigid body transformations for the 3D case are conceptually similar the 2D
case; however, the 3D case appears more difficult because 3D rotations are signif-
icantly more complicated than 2D rotations.

One translates A by some zy, vy, 2, € R by mapping every (z,y,z) € A to
(x+x4,y+ys, 2+ 2). Primitives of the form H; = {(x,y,2) e W fi(x,y,z) < 0},
are transformed to {(z,y,2) € W | fi(xt — x¢,y — yt, 2 — zt) < 0}. The translated
robot is denoted as A(zy, yy, 2¢).

Note that a 3D body can be independently rotated about three orthogonal
axes, as shown in Figure 3.8. Borrowing aviation terminology, these rotations will
be referred to as yaw, pitch, and roll:

1. A yaw is a counterclockwise rotation of a about the Z-axis. The rotation
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matrix is given by

cosae —sina 0
Rz(a) = [ sina cosa 0. (3.31)
0 0 1

Note that the upper left entries of Rz(a) form a 2D rotation applied to the
XY coordinates, while the Z coordinate remains constant.

2. A pitch is a counterclockwise rotation of 3 about the Y-axis. The rotation
matrix is given by

cos 0 sinpg
Ry (B) = 0 1 0 ) (3.32)
—sinf 0 cosf

3. A roll is a counterclockwise rotation of v about the X-axis. The rotation
matrix is given by

1 0 0
Rx(v) =10 cosy —siny|. (3.33)
0 siny cosvy

Each rotation matrix is a simple extension of the 2D rotation matrix, (3.25). For
example, the yaw matrix, R, («) essentially performs a 2D rotation with respect to
the XY coordinates, while leaving the Z coordinate unchanged. Thus, the third
row and third column of R,(a) look like part of the identity matrix, while the
upper right portion of R,(a) looks like the 2D rotation matrix.

The yaw, pitch, and roll rotations can be used to place a 3D body in any
orientation. A single rotation matrix can be formed by multiplying the yaw,
pitch, and roll rotation matrices to obtain R(«, 3,7) = Rz(a) Ry (8) Rx(y) =

cosacos 3 cosasinFsiny —sinacosy cosasin g cosy + sin asiny
sinacos 3 sinasin Fsiny 4+ cosacosy sinasin fcosy — cos a siny
—sin 3 cos 3 sin~y cos 3 cosy
(3.34)
It is important to note that R(«, 3,7) performs the roll first, then the pitch, and
finally the yaw. If the order of these operations is changed, a different rotation
matrix would result. Be careful when interpreting the rotations. Consider the
final rotation, yaw by «. Imagine sitting inside of a robot A that looks like an
aircraft. If § =~ = 0, then the yaw turns the plane in a way that feels like turning
a car to the left. However, for arbitrary values of 3 and +, the final rotation axis
will not be vertically aligned with the aircraft because the aircraft is left in an
unusual orientation before « is applied. The yaw rotation occurs about the Z
axis of the world (or reference) frame, not the frame in which A is defined. Each
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time a new rotation matrix is introduced from the left, it has no concern for the
orientations of any axes that were used for defining A. It simply rotates every
point in R? in terms of the global reference frame.

Note that 3D rotations depend on three parameters, «, 3, and ~, whereas 2D
rotations depend only on a single parameter, . The primitives of the model can
be transformed using R(«, 3,7), resulting in A(c, 3,7).

It is often convenient to determine the «, 3, and v parameters directly from a
given rotation matrix. Suppose an arbitrary rotation matrix,

i1 T2 Ti3
To1 Ta2 To3 |, (3.35)
a1 T32 733
is given. By setting each entry equal to its corresponding entry in (3.34), equations
are obtained that must be solved for «, 3, and 7. Note that r9;/r1; = tan«, and

r32/r33 = tany. Also, 133 = —sin 3, and /13, + r2; = cos 3. Solving for each
angle yields

o = tan"*(ryy/ra), (3.36)
B =tan"'(\/r2 + 13/ —131), (3.37)

and
v = tan™" (rs/7s3)- (3.38)

There is a choice of four quadrants for the inverse tangent functions. How can
the correct quadrant be determined? Each quadrant should be chosen by using
the signs of the numerator and denominator of the argument. The numerator
sign selects whether the direction will be to the left or right of the Y axis, and
the denominator selects whether the direction will be above or below the X axis.
This is the same as the atan2 function in C, which nicely expands the range of
the arctangent to [0, 27). This can be applied to express (3.36), (3.37) and (3.38)
as

a = atan2(riy,ro1), (3.39)
B = atan2(y/ri, + ri;, —r31), (3.40)

and
v = atan2(rsg, r33). (3.41)

Note that this method assumes r9; # 0 and r33 # 0.

As in the 2D case, a homogeneous transformation matrix can be defined. For
the 3D case, a 4 x 4 matrix is obtained that performs the rotation given by
R(a, 3,7), followed by a translation given by zy, y, z;. The result is T' =

cosacos 3 cosasinfFsiny —sinacosy cosasin3cosy +sinasiny

sinacos 3 sinasin Gsiny + cosacosy sinasin fcosy —cosasiny 1y,

—sin 3 cos (Bsin -y cos [ cosy 2

0 0 0 1
(3.42)
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Once again, the order of operations is critical. The matrix 7" in (3.42) represents
the following sequence of transformations:

1. Roll by ~.

2. Pitch by 3.

3. Yaw by a.

4. Translation by (zy, v, 2¢)-

The robot primitives can be transformed, to yield A(x, yq, 2¢, v, 3,7). A 3D rigid
body that is capable of translation and rotation therefore has six degrees of free-
dom.

3.3 Transformations of Kinematic Chains of Bod
ies

The transformations become more complicated for a chain of attached rigid bodies.
For convenience, each rigid body is referred to as a link. Let Ay, As, ..., A,
denote a set of m links. For each 7 such that 1 < i < m, link A; is “attached” to
link A;,; in a way that allows 4;,1 some constrained motion with respect to A4;.
The motion constraint must be explicitly given, and will be discussed shortly. As
an example, imagine a trailer that is attached to the back of a car by a hitch that
allows the trailer to rotate with respect to the car. In general, a set of attached
bodies will be referred to as a linkage. This section considers bodies that are
atteched in a single chain. This leads to a particular linkage called a kinematic
chain.

3.3.1 A Kinematic Chain in R?2

Before considering a chain, suppose A; and A, are two rigid bodies, each of
which is capable of translating and rotating in W = R2. Since each body has
three degrees of freedom, there is a combined total of six degrees of freedom, in
which the independent parameters are z1, y1, 01, T2, ¥2, and 5. When bodies are
attached in a kinematic chain, degrees of freedom are removed.

Figure 3.9 shows two different ways in which a pair of 2D links can be attached.
The place at which the links are attached is called a joint. In Figure 3.9.a, a
revolute joint is shown, in which one link is capable only of rotation with respect to
the other. In Figure 3.9.b, a prismatic joint is shown, in which one link translates
along the other. Each type of joint removes two degrees of freedom from the pair
of bodies. For example, consider a revolute joint that connects A; to As. Assume
that the point (0,0) in the model for As is permanently fixed to a point (x4, y,)
on A;. This implies that the translation of A, will be completely determined once
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Ai

=== Ay

Ay

Figure 3.9: Two types of 2D joints: a) a revolute joint allows one link to rotate
with respect to the other, b) a prismatic joint allows one link to translate with
respect to the other.

x, and y, are given. Note that z, and y, are functions of x1, y;, and ;. This
implies that A; and As have a total of four degrees of freedom when attached.
The independent parameters are x1, xo, 61, and 65. The task in the remainder
of this section is to determine exactly how the models of A;, As, ..., A,, are
transformed, and give the expressions in terms of these independent parameters.

Consider the case of a kinematic chain in which each pair of links is attached by
a revolute joint. The first task is to specify the geometric model for each link, A;.
Recall that for a single rigid body, the origin of the coordinate frame determines
the axis of rotation. When defining the model for a link in a kinematic chain,
excessive complications can be avoided by carefully placing the coordinate frame.
Since rotation occurs about a revolute joint, a natural choice for the origin is the
joint between A; and A;_; for each ¢ > 1. For convenience that will soon become
evident, the X-axis is defined as the line through both joints that lie in A;, as
shown in Figure 3.9. For the last link, A,,, the X-axis can be placed arbitrarily,
assuming that the origin is placed at the joint that connects A,, to A,,_1. The
coordinate frame for the first link, A;, can be placed using the same considerations
as for a single rigid body.

We are now prepared to determine the location of each link. The position
and orientation of link A; in W is determined by applying the 2D homogeneous
transform matrix (3.30),

cost)y —sinb; x;
Ty = | sinf; cosb; 1y |. (3.43)
0 0 1

As shown in Figure 3.10, let a;_; be the distance between the joints in A; ;.
The orientation difference between A; and A;_; is denoted by the angle 6;. Let
T; represent a 3 x 3 homogeneous transform matrix (3.30), specialized for link A;
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Figure 3.10: The coordinate frame that is used to define the geometric model for
each A;, for 1 <7 < m, is based on the joints that connect A; to A;_; and A, .

for 1 < i <m,

COS 91 —sin 92 ;-1
T,=|sinf; cos6; 0 |, (3.44)
0 0 1

which generates the following sequence of transformations:

1. Rotate counterclockwise by 6;.

2. Translate by a;_; along the X-axis.

The transformation T; expresses the difference between the coordinate frame in
which A; was defined, and the frame in which A;_; was defined. The application
of T; moves A; from its initial frame to the frame in which A;_; is defined. The
application of T;_{T; moves both A; and A;_; to the frame in which A;_, is
defined. By following this procedure, the location of any point (x,y) on A,, is
determined by multiplying the transformation matrices to obtain

X
1

Example 3.3.1 To gain an intuitive understanding of these transformations, con-
sider determining the configuration for link A3, as shown in Figure 3.11. Figure
3.11.a shows a three-link chain in which A; is at its initial configuration, and the
other links are each offset by 7 from the previous link. Figure 3.11.b shows the
frame in which the model for As is initially defined. The application of T3 causes
a rotation of #3 and a translation by as. As shown in Figure 3.11.c, this places
Ajs in its appropriate configuration. Note that A5 can be placed in its initial con-
figuration, and it will be attached correctly to As. The application of T3 to the
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X3
Y;
Y,
A4 . A3
.
( V X, X
a) A three-link chain b) Aj in its initial frame
Ys Y
As
o
A«; A2 ,
LA LA S
I— 7 . .

c) Ty puts Ajz in Ay’s initial frame d) T»T3 puts Aj in A;’s initial frame

Figure 3.11: Applying the transformation 7573 to the model of Aj. In this case,
T is the identity matrix.

previous result places both A3 and A, in their proper configurations, and A; can
be placed in its initial configuration. [

For revolute joints, the parameters a; are treated as constants, and the 6; are

variables. The transformed m!" link is represented as A, (2, 3,01, ...,0,). In
some cases, the first link might have a fixed location in the world. In this case, the
revolute joints account for all degrees of freedom, yielding A,,(61,...,60,,). For

prismatic joints, the a; are treated as variables, as opposed to the #;. Of course,
it is possible to include both types of joints in a single kinematic chain.



84 S. M. LaValle: Planning Algorithms

3.3.2 A Kinematic Chain in R?

As for a single rigid body, the 3D case is significantly more complicated than 2D
due to 3D rotations. Also, several more types of joints are possible, as shown
in Figure 3.12. Nevertheless, the main ideas from the transformations of 2D
kinematic chains extend to the 3D case. The following steps from Section 3.3.1
will be recycled here:

1. The coordinate frame must be carefully placed to define the model for each

A;.
2. Based on joint relationships, several parameters are measured.

3. The parameters are used to define a homogeneous transformation matrix,
T;.

4. The transformation of any point on link .4,, is given by applying the matrix
Ty T,

Consider a kinematic chain of m links in W = R?, in which each A; for
1 <4 < mis attached to A; 1 by a revolute joint. Each link can be a complicated,
rigid body as shown in Figure 3.13. For the 2D problem, the coordinate frames
were based on the points of attachment. For the 3D problem, it is convenient to
use the axis of rotation of each revolute joint (this is equivalent to the point of
attachment for the 2D case). The axes of rotation will generally be skew lines in
R3, as shown in Figure 3.14. Let Z; refer to the axis of rotation for the revolute
joint that holds A; to A;_1. Between each pair of axes in succession, let X; join the
closest pair of points between Z; and Z;,1, with the origin on Z; and the direction
pointing towards the nearest point of Z;,;. This axis is uniquely defined if the
Z; and Z;,, are not parallel. The recommended coordinate frame for defining
the geometric model for each A; will be given with respect to Z; and X;, which
are given in Figure 3.14. Assuming a right-handed coordinate system, the Y;
axis points away from us in Figure 3.14. In the transformations that will appear
shortly, the coordinate frame given by X;, Y;, and Z;, will be most convenient for
defining the model for A;. It might not always appear convenient because the
origin of the frame may even lies outside of A;, but the resulting transformation
matrices will be easy to understand.

In Section 3.3.1, each T; was defined in terms of two parameters, a;_; and 6;.
For the 3D case, four parameters will be defined: d;, 0;, a;_1, and a;_;. These are
referred to as Denavit-Hartenberg parameters, or DH parameters for short [316].
The definition of each parameter is indicated in Figure 3.15. Figure 3.15.a shows
the definition of d;. Note that X,;_; and X; contact Z; at two different places.
Let d; denote signed distance between these points of contact. If X, is above
X, 1 along Z;, then d; is positive; otherwise, d; is negative. The parameter 6;
is the angle between X; and X;_;, which corresponds to the rotation about Z;
that moves X; ; to coincide X;. In Figure 3.15.b, Z; is pointing outward. The
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Revolute Prismatic
1 Degree of Freedom 1 Degree of Freedom

4! A i\

Screw Cylindrical
2 Degrees of Freedom

Spherical Planar
3 Degrees of Freedom 3 Degrees of Freedom

Figure 3.12: Types of 3D Joints
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Figure 3.13: The diagram of a generic link.

Figure 3.14: The rotation axes of the generic links are skew lines in R3.
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d; = signed distance
from 51;1 to Sz

a;—1

I

Figure 3.15: Definitions of the four DH parameters: d;, 6;, a;_1, a;_1



88 S. M. LaValle: Planning Algorithms

parameter a; is the distance between Z; and Z;_1; recall these are generally skew
lines in R®. The parameter o;_; is the angle between Z; and Z;_;. In Figure
3.15.d, X;_; is pointing outward.

Two screws The homogeneous transformation matrix 7; will be constructed by
combining two simpler transformations called screws. The transformation

cosf; —sinf; 0 O
sinf; cos6; 0 0

R; = 0 0 | d (3.46)
0 0 0 1

causes a rotation of 6; about the Z; axis, and a translation of d; along the Z; axis.
Notice that the effect of R; is independent of the ordering of the rotation by 6;
and the translation by d; because both operations occur with respect to the same
axis, Z;. The combined operation of a translation and rotation with respect to
the same axis is referred to as a screw (as in the motion of a screw through a
nut). The effect of R; can thus be considered as a screw about Z;. The second
transformation is

1 0 0 a;—1
|0 cosaj—y —sina;—; 0O
Qi1 = 0 sina;_; cosa;_g 0 |’ (3.47)
0 0 0 1

which can be considered as a screw about the X;_; axis. A rotation of «;_; about
X, is followed by a translation of a;_.

Transformation matrix The homogeneous transformation matrix, 7;, for 1 <
1 <m,is

cos b; —sin 6; 0 i1
sinf; cosa;_; cosb;cosa;_; —sino;_; —sina;_1d;
Ti= Qi lli = sin#;sinc;_y cosb;sinc;_; coso;_ cos ov;_1d;
0 0 0 1

(3.48)
This can be considered as the 3D counterpart to the 2D transformation matrix,
(3.30). The following four operations are performed in succession:

1. Translate by d; along the Z-axis.
2. Rotate counterclockwise by 6; about the Z-axis.
3. Translate by a;_; along the X-axis.

4. Rotate counterclockwise by a;_; about the X-axis.
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‘ Matrix ‘ (e 73] ‘ a;—1 ‘ 91 ‘ dl ‘
T(61) | 0 0 |6, ]0
Tg( ) —7T/2 0 (92 d2
Tg( ) O a9 93 d3
T4(94) 7T/2 as 94 d4
T5(0s)

Ts(0)

—71'/2 0 95 0
7T/2 0 ‘96 0

Table 3.1: The DH parameters are shown for substitution into each homogeneous
transformation matrix (3.48). Note that the parameters as and ds must be written
as negative values (they are signed displacements, not distances).

As in the 2D case, the first matrix, 77, is special. To represent any position
and orientation of A, it could be defined as a general rigid-body homogeneous
transformation matrix (3.42). If the first body is only capable of rotation via a
revolute joint, then simple convention is usually followed. Let the ag, g parame-
ters of T} be assigned as ag = oy = 0 (there is no z; axes). This implies that Qg
from (3.47) is the identity matrix, which makes 71 = Rj.

The transformation T; gives the relationship of the frame for A; to the frame
for A;_1. The position of a point (z,y, z) on A, is given by

T\Ty---T,, (3.49)

—_ N e 8

For each revolute joint, 6; is treated as the only variable in 7;. Prismatic joints
can be modeled by allowing a; to vary. More complicated joints can be modeled as
a sequence of degenerate joints. For example, a spherical joint can be considered
as a sequence of three zero-length revolute joints; the joints perform a roll, a
pitch, and a yaw. Another option for more complicated joints is to abandon the
DH representation and directly develop the homogeneous transformation matrix.
This might be needed to preserve topological properties that become important
in Chapter 4.

Example 3.3.2 (PUMA 560) This example demonstrates the 3D chain kine-
matics on a classic robot manipulator, the PUMA 560, shown in Figure 3.16. The
current parameterization here is based on [?, 413]. The procedure is to determine
appropriate coordinate frames to represent each one of the links. The first three
links allow the hand (called an end-effector) to many large movements in the W,
and the last three enable the hand to achieve a desired orientation. There are
six degrees of freedom, each of which arises from a revolute joint. The coordinate
frames are shown in Figure 3.16, and the corresponding DH parameters are given
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Figure 3.16: The Puma 560 is shown along with the the DH parameters and
coordinate frames for each link in the chain. This figure is borrowed from [413]
by courtesy of the authors.

in Table 3.1. Each transformation matrix, 7}, may be considered as a function of
0;; hence, it is written T;(60;). The other parameters are fixed for the this example.
Only 64, 0, ..., ¢ are allowed to vary.

The parameters from Table 3.1 may be substituted into the homogeneous
transformation matrices to obtain

cosy —sinf; 0 0
| sinty costy 0 O

T = 0 0 Lol (3.50)
0 0 01
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cosly —sinfy 0 O

B 0 0 1 dy
L=|_ sinfly —cosfy 0 0 |’ (3.51)

0 0 0 1

cosfl; —sinf; 0 as

| sinfs  cosflz 0 0O
Ty = 0 0 1 dy | (3.52)

0 0 0 1
cosf, —sinf; 0 as
- 0 0 —1 —dy

Ty = sinf, cosf, 0 0 |’ (3.53)

0 0 0 1

costly —sinfs 0 O

0 0 10
T=1|_ sinffs —cosf; 0 0]’ (3.54)

0 0 01

and

cosbg —sinfg 0 O

0 0 -1 0
Ts = sinfg  costly 0 0 (3.55)

0 0 0 1

A point, (z,y, z) in the frame of the last link, Ag appears in W as
T
T1(01)T5(02)T5(03)T4(04)T5(05)T6(06) Z (3.56)
1

[ |

Example 3.3.3 (Transforming Octane) Figure 3.17 shows a ball-and-stick model
of an octane molecule. each “ball” is an atom, and each “stick” represents a bond
between a pair of atoms. There is a linear chain of eight carbon atoms, and a
bond exists between each consecutive pair of carbons in the chain. There are also
numerous hydrogen atoms, but we will ignore them. Each bond between a pair of
carbons is capable of twisting, as shown in Figure 3.18. Studying the configura-
tions (called conformations) of molecules is an important part of computational
biology. It is assumed that there are seven degrees of freedom, each of which
arises from twisting a bond. The techniques from this section can be applied to
represent these transformations.
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Figure 3.17: A hydrocarbon (octane) molecule with 8 carbon atoms and 18 hy-
drogen atoms (courtesy of the New York University Molecular Library).

Figure 3.18: Consider transforming the spine of octane by ignoring hydrogen
atoms and allowing the bonds between carbons to rotate. You could also construct
this easily with Tinkertoys. If the first link is held fixed, then there are six degrees
of freedom. The rotation of the last link is ignored.
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Figure 3.19: Each bond may be interpreted as a “link” of length d; that is aligned
with the Z; axis. Note that most of A; appears in the negative Z; direction.
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Note that the bonds correspond exactly to the axes of rotation. This suggests
that Z; axes shuold be chosen to coincide with the bonds. Since consecutive bonds
meet at atom, there is no distance between them. From Figure 3.15.c, observe
that this will make a; = 0 for all 2. From Figure 3.15.a, it can be seen that each d;
will correspond to a bond length, the distance between consecutive carbon atoms.
See Figure ?7. This leaves two angular parameters, ¢; and «;. Since the only
possible motion of the links is via rotation of the Z; axes, the angle between two
consecutive axes, as shown in Figure 3.15.d, must remain constant. In chemistry,
this is referred to as the bond angle, and is represented in the DH parameterization
as «;. The remaining #; parameters are the variables that represent the degrees of
freedom. However, looking at Figure 3.15.b, observe that the example is degen-
erate because each X, has no frame of reference because each a;, = 0. This does
not, however, cause any problems. For visualization purposes, it may be helpful
to replace X; 1 and X; by Z;,_; and Z;, 1, respectively. This way it easy to see
that as the bond for Z; is twisted, the observed angle changes accordingly. Each
bond is interpreted as a link, A;.

The origin of each A; must be chosen to coincide with the intersection point
of Z; and Z; 1. Thus, most of the points in A; will lie in the —Z; direction; see
Figure ?7.

The next task is to write down the matrices. Attach a coordinate frame to the
first bond, with the second atom at the origin, and the bond aligned with the Z
axis, in the negative direction; see Figure ??7. To define 77, recall that T} = R,
from (3.46) because )y is dropped. The parameter d; represents the distance
between the intersection points of Axis 0 and Axis 2 along Axis 1. Since there is
no Axis 0, there is freedom to choose d;; hence, let d; = 0 to obtain

cosf; —sinb,
sinf); cos6;
0 0
0 0

Ti(61) = Ra(61) = (3.57)

O = O O
_ o O O

The application of 77 to points in A; causes them to rotate around the Z; axis,
which appears correct.

The matrices for the remaining six bonds are

cos 0, —sin 6; 0 0
T0,) — sin#; cosq;_; cosbf;cosa;_; —sina;_; —sino;_1d; 358
i(0:) = sinf;sino;_q cosb;sino;_;  coso,_q cosa;_1d; |’ (3.58)
0 0 0 1

for i € {2,...,7}. The notation T;(0;) indicates that 6; is the only variable. All
other parameters of T; are constants. The position of any point, (z,y, z) on the
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Figure 3.20: General linkages: a) Instead of a chain of rigid bodies, a “tree” of
rigid bodies can be considered; b) if there are loops, then parameters must be
carefully assigned to ensure that the loops are closed.

last link, A7, is given by

T1(01)T5(02)T3(03)T4(04)T5(05)T6(06)T7(67) (3.59)

— N e 8

3.4 Transformations of Kinematic Trees

Motivation For many interesting problems, the linkage is arranged in a “tree”
as shown in Figure 3.20.a. Assume here that the links are not attached in ways that
form loops (i.e., Figure 3.20.b); that case is deferred until Section 4.4, although
some comments are also made at the end of this section. The human body, with its
joints and limbs attached to the torso, is an example that can be modeled as a tree
of rigid links. Joints such as knees and elbows are considered as revolute joints.
A shoulder joint is an example of a spherical joint, although it cannot achieve
any orientation (without a visit to the emergency room!). As indicated by Figure
7?7, there is widespread interest in animating humans in virtual environments and
also in developing humanoid robots. Both of these cases rely on formulations of
kinematics that mimic the human body.

Another problem that involves kinematic trees is the conformational analysis
of molecules. Example 77 involved a single chain; however, most organic molecules
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Figure 3.21: a) This is a picture of the H7 humanoid robot and one of its de-
velopers, S. Kagami. It was developed in the JSK Laboratory at the University
of Tokyo. b) This is a digital actor whose motions were generated by planning
algorithms. This was part of the Ph.D. thesis of James Kuffner at Stanford Uni-
versity.

are more complicated, as in the familiar drugs shown in Figure 3.22. The bonds
may twist to give degrees of freedom to the molecule. Moving through the space
of conformations requires the formulation of a kinematic tree. Studying these con-
formations is important because scientists need to determine for some candidate
drug whether or not the molecule can twist the right way so that it docks nicely
(low energy) with a protein cavity; this induces a pharmacological effect, which
hopefully is the desired one. Another important problem is determining how com-
plicated protein molecules fold into certain configurations. These molecules are
orders of magnitude larger (in terms of numbers of atoms and degrees of freedom)
than typical drug molecules.

Common joints for W = R? First consider the simplest case in which there is
a 2D tree of links for which every link has only two points at which revolute joints
may be attached. This corresponds to Figure 3.20.a. A single link is designated
as the root, A;, of the tree. To determine the transformation of a body, A;, in
the tree, the tools from Section 3.3.1 are directly applied to chain of bodies that
connects A; to Ay, while ignoring all other bodies. When determining the degrees
of freedom of the entire tree, there will be one 0; for each link of the tree. This
case seems quite straightforward; unfortunately, it is not this easy in general.
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Caffeine Ibuprofen

Figure 3.22: Several familiar drugs are pictured as ball-and-stick models (courtesy
of the New York University Molecular Library). Analyzing the flexibility of these
molecules is an important part of drug design. Note that they can be treated
as robots made of many links. Kinematic tree and closed chain issues become
important.

Junctions with more than two rotation axes Now consider modeling a
more complicated collection of attached links. The main novelty that is that one
link may have joints attached to it in more than two locations, as in A; from
Figure 3.23. A link with more than two joints will be referred to as a junction.
If there is only one junction, then most of the complications arising from
junctions can be avoided by choosing the junction as the root. For example, for
a simple humanoid model, the torso would be a junction. It would be sensible
to make this the root of the tree, as opposed to the right foot, for instance. The
legs, arms, and head could all be modeled as independent chains. In each chain,
the only concern is that the first link will not necessarily be defined around the
coordinate origin. The could be accounted for by inserting a fixed, fictitious link
that connects from the origin of the torso to the attachment point of the limb.
The situation is more interesting if there are multiple junctions. Suppose that
Figure 3.23 represents part of a 2D system of links for which the root, A; is
attached to via a chain of bodies to As. To transform link Ay, the tools from
Section 3.3.1 may be directly applied to yield a sequence of transformations,

x
Ty T5T6T718Ty |y | (3.60)
1

for a point (z,y) € Ay. Likewise, to transform T}3, the sequence
x
Ty T5T6T7T2Ts |y | (3.61)
1

can be used by ignoring the chain of links Ag and Ag. So far everything seems to
work well, but take a close look at A7. As shown in Figure 3.24, its coordinate
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Figure 3.23: Now it is possible for a link to have more than two joints, as in As.

frame was defined in two different ways, one for each chain. If both are forced to
use the same frame, then at least one must abandon the nice conventions of Section
3.3.1 for choosing frames. This situation becomes worse for 3D trees because this
would suggest abandoning the DH parameterization.

Constraining parameters Fortunately, it is fine to use different frames when
following different chains; however, one extra piece of information is needed. Imag-
ine transforming the whole tree. The variable 6; will appear twice, once from each
of the upper and lower chains. Let 67, and 67 denote these 0’s. Can @ really be
chosen two different ways? This would imply that the tree is instead as pictured
in Figure 3.25, in which there are two independently-moving links, A7, and A7;.
To fix this problem, a constraint must be imposed. Suppose that 6, is treated as
an independent variable. The parameter 6, must then be chosen as 67 + ¢, in
which ¢ is shown in Figure 3.24.

For a 3D tree of bodies the same general principles may be followed. In some
cases, there will not be any complications that involve special considerations of
junctions and constraints. One example of this is the transformation of flexible
molecules because all consecutive rotation axes intersect, and junctions occur
directly at these points of intersection. In general, however, the DH parameter
technique may be applied for each chain, and then the appropriate constraints
have to be determined and applied to represent the true degrees of freedom of the
tree.

Example 3.4.1 Figure 3.26 shows a 2D example that involves six links. To trans-
form Ag, the only relevant links are Aj;, Az, and A;. The chain of transformations
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Figure 3.24: The junction is assigned two different frames, depending on which
chain was followed. The solid axes were obtained from transforming Ay, and the
dashed axes were obtained from transforming A4;3.

is

in which
cos 0,
T, = | sinf,
0

cos Oy
sin (92[

0

Ty =

cos b5
Ts = | sinf;
0

and
cos bg
Ts = | sinbg
0

TyTyT5Tg
—sinf;
cost;
0 1
—sin 921 aq
cosfy O
0 1
—sin ‘95 [45)
cosfs 0 | =
0 1
—sinfg as
cosfg 0
0 1

Y

cosfy —sinf; 0O
sinfy cosf; O
0 0 1

sinfly cosfy O
0 0 1

cosfy —sinby 1)
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sinfls  cosfs 0
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(3.62)

(3.63)

(3.64)

(3.65)
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Figure 3.25: Choosing each #; independently would result in a tree that ignores
that fact that A7 is rigid.

in which T5; denotes the fact that the lower chain was followed. The transformation
for points in A, is

x
T, TyTs |y |, (3-67)
1
in which 77 is the same as before, and
cosfl; —sinfs; as cosfs —sinf; /2
T3 = [ sinf3 cos#s 0 | = [sinfs cosfs 0 |, (3.68)
0 0 1 0 0 1
and
cosfy —sinf; ay cosfy —sinf; 0
Ty=|sinfy cosfy O | =|sinfy cosl, 0 (3.69)
0 0 1 0 0 1
The interesting case is
cos by, —sinfy, a; cos(fy +m/4) —sin(fy +7/4) a;
Ty, = | sinfy, cosfy, 0 | = |sin(0y+7/4) cos(fy+7/4) 0 |,
0 0 1 0 0 1
(3.70)
in which the constraint s, = 0y + m/4 is imposed to enforce the fact that Aj is
a junction. |

What if there are loops? The most general case includes links that are con-
nected in loops, as shown in Figure 3.27. These are generally referred to as closed
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(1,0) (3,00 (4,0

Figure 3.26: A tree of bodies in which the joints are attached in different places.

kinematic chains. This arises in many applications. For example, with humanoid
robotics or digital actors, a loop is formed when both feet touch the ground. An
another example, suppose that two robot manipulators, like the Puma 560 from
Example 3.3.2, cooperate together to carry an object. If each robot grasps the
same object with its hand, then a loop will be formed. Furthermore, a large
fraction of organic molecules have flexible loops. Exploring the space of their
conformations requires careful consideration of the difficulties imposed by these
loops.

The main difficulty of working with closed kinematic chains is that it is hard
to determine which parameter values are within an acceptable range to ensure
closure. If these values are given, then the transformations are handled in the
same way as the case of trees. For example, the links in Figure 3.27 may be
transformed by breaking the loop into two different chains. Suppose we forget
that the joint between As and Ajg exists. Consider two different kinematic chains
that start at the joint on the extreme left. There is an upper chain from A; to As,
and a lower chain from Ay to Ag. The transformations for these any of bodies
can be obtained directly from the techniques of Section 3.3.1. Thus, it is easy to
transform the bodies, but how do we choose parameter values that ensure A5 and
Ag are connected at their common joint? Using the upper chain, the position of
this joint may be expressed as

Ty (0,)To(02) T (03) Ty (04)T5(05) o , (3.71)
1

in which (as,0) € As is the location of joint of A5 that is supposed to connect to
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Figure 3.27: There are ten links and ten revolute joints arranged in a loop. This
is an example of a closed kinematic chain.

Ag. The position of this joint may also be expressed using the lower chain as

Tyo(010) T (89) T (0) T (67) T (65) o , (3.72)
1

with (ag,0) representing the position of the joint in the frame of Ag. If the loop
does not have to be maintained, then any values for 61, ..., 619, may be selected,

resulting in ten degrees of freedom. However, if a loop must maintained, then
(3.71) and (3.72) must be equal,

Tl (91)T2(92)T3(93)T4<04)T5(05) (105 = TlO(910)T9(99)T8(98)T7(67>T6<96) aoﬁ )
1 1
(3.73)

which is quite a mess of nonlinear, trigonometric equations that must be solved.
The set of solutions to (3.73) could be very complicated. For the example, the
total degrees of freedom is eight because two were removed by making the joint
common. Since the common joint allows the links to rotate, only two degrees of
freedom are lost. If A5 and Ag had to be rigidly attached, then the total degrees
of freedom would be only seven. For most problems that involve loops, it will not
be possible to obtain a nice parameterization of the set of solutions. The problem
is a form of the well-known inverse kinematics problem ||.

In general, a complicated arrangement of links can be imagined in which there
are many loops. Each time a joint along a loop is “ignored”, as in the procedure
just described, then one less loop exists. This process can be repeated iteratively,
until there are no more loops in the graph. The resulting arrangement of links
will be a tree for which the previous techniques of this section may be applied.
However, for each joint that was “ignored” an equation similar to (3.73) must be
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Figure 3.28: Loops may be opened to enable tree-based transformations to be
applied; however, a closure constraint must still be satisfied.

introduced. All of these equations must be satisfied simultaneously to respect the
original loop constraints. Suppose that a set of value parameters is already given.
This could happen, for example, using motion capture technology to measure
the position and orientation of every part of a human body in contact with the
ground. From this the solution parameters could be computed and all of the
transformations are easy to represent. However, as soon as the model moves, it
is difficult to ensure that the new transformations respect the closure constraints.
The foot of the digital actor may push through the floor, for example. Further
information on characterizing this complicated solution space is given in Section
4.4.

3.5 Nonrigid Transformations

One can easily imagine motion planning for nonrigid bodies. This falls outside
of the families of transformations studied so far in this chapter. Several kinds of
nonrigid transformations are briefly surveyed here.

Linear transformations Rotations are a special case of linear transformations,
which are generally expressed by a n x n matrix, M, if the transformations are
performed over R". Consider transforming points, (x,y) in a 2D robot, A, as

() (7). -

If M is a rotation matrix, then the “shape” of A will remain the same. In some
applications, however, it may be desirable to distort the shape.
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Figure 3.29: Shearing transformations may be performed.

The robot can by scaled by my; along the X axis and mss along the Y axis by

applying
mi1 0 T
) 3.75
(5" ) () 375

for positive real values mq; and maos. If one of them is negated, then a mirror
image of A is obtained.
In addition to scaling, A can be sheared by applying

((1) m112> (;j) (3.76)

for myy # 0. The case of mis = 1 is shown in Figure 3.29.

The scaling, shearing, and rotation matrices may be multiplied together to
yield a general transformation matrix that explicitly parameterizes each effect.
It is also possible to extend the M from n x n to (n 4+ 1) X (n + 1) to obtain a
homogeneous transformation that includes translation. Also, the concepts extend
in a straightforward way to R® and beyond. This enables the additional effects of
scaling and shearing to be incorporated directly into the concepts from Sections
3.2-3.4.

Flexible materials In some applications there is motivation to move beyond
linear transformations. Imagine trying to warp a flexible material, such as a
mattress, through a doorway. The mattress could be approximated by a 2D
array of links; however, the complexity and degrees of freedom would be too
cumbersome. For another example, suppose that a snake-like robot is designed by
connecting a hundred revolute joints together in a chain. The tools from Section
3.3 may be used to transform it with 100 rotation parameters, 01, ..., 0199, but
this may become unwieldy for use in a planning algorithm. An alternative is to
approximate the snake with a deformable curve or shape.

For problems such as these, it is desirable to use a parameterized family of
curves or surfaces. Spline models are often most appropriate because these are
designed to provide easy control over the shape of a curve through the adjustment
of a small number of parameters. Other possibilities include generalized cylinders
and superquadric models that were mentioned in Section 3.1.3.
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One complication is that complicated constraints may be imposed on the space
of allowable parameters. For example, each joint of a snake-like robot could have a
small range of rotation. This would be easy to model using a kinematic chain; how-
ever, determining which splines from a spline family satisfy this extra constraint
may be difficult. Likewise for manipulating flexible materials, there are usually
complicated constraints based on the elasticity of the material. Even determining
its correct shape under the application of some forces requires integration of an
elastic energy function over the material [?].
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Literature

A thorough coverage of solid and boundary representations, including semi-algebraic
models, can be found in [331]. A standard geometric modeling book from a
CAD/CAM perspective, including NURBs models is [568]. NURB models are
also surveyed in [628].

The logical predicate defined in Section 3.1 can check whether a point lies inside
of O in O(n) time, in which n is the number of primitives. Many algorithms exist
that can accomplish this much more quickly. For a convex polygon, it can be
determined whether a point lies inside or outsize in time O(lnn) by performing
range searching on the upper and lower chains of edges [|. need more refs and
info.

Discussion of optimal decompositions See Suri’s survey, pp. 429-444 of CRC
Handbook on DCG.

Theoretical algorithm issues regarding semi-algebraic models are covered in
[558, 559]. The subject of transformations of rigid bodies and chains of bodies
is covered in most robotics texts. Classic references include [180, 618]. The DH
parameters were introduced in [316].

Need to talk about half-edge data structures, and related variations.

There are many ways to parameterize the set of all 3D rotation matrices. The
yaw-pitch-roll formulation was selected because it is the easiest to understand.
There are generally 12 different variants of the yaw-pitch-roll formulation (also
called Fuler angles) based on different rotation orderings and axis selections. This
formulation, however, it not best suited for the development of motion planning
(sorry!) algorithms. It is the easiest (and safe) to use for making quick 3D ani-
mations of motion planning output, but it incorrectly captures the state space for
the planning algorithm. Section 4.2 introduces the quaternion parameterization,
which correctly captures this state space; however, it is harder to interpret when
constructing examples. Therefore, it is helpful to understand both. In addition to
Euler angles and quaternions, there is still motivation for many other parameteri-
zations of rotations, such as spherical coordinates, Cayley-Rodrigues parameters,
and stereographic projection. Chapter 5 of [155] provides extensive coverage of
3D rotations and different parameterizations.

The coverage of transformations of chains of bodies was heavily influenced
by classic robotics texts [180, 618, ?]. The standard approach in these books is
to introduce the kinematic chain formulations and DH parameters in the first
couple of chapters, and then move on to topics that are crucial for controlling
robot manipulators, including dynamics modeling, singularities, manipulability,
and control. Since this book is concerned instead with planning algorithms, we
depart at the point where dynamics would usually be covered, and move into
careful study of the configuration space in Chapter 4.



3.5. NONRIGID TRANSFORMATIONS 107

Interesting Web Pages

NYU Molecular Library: http://www.nyu.edu/pages/mathmol/library/

Exercises

1. How would you define the semi-algebraic model to remove a triangular
“nose” from the region shown in Figure 3.47

2. For distinct values of yaw, pitch, and roll, is it possible to generate the same
rotation. In other words, R(a,3,7) = R(«’,(',7), if at least one of the
angles is distinct. Characterize the sets of angles for which this occurs.

3. Using rotation matrices, prove that 2D rotation is commutative, but 3D
rotation is not.

4. An alternative to the yaw-pitch-roll formulation from Section 3.2.3 is con-
sidered here. Consider the following Fuler angle representation of rotation
(there are many other variants). The first rotation is Rz(7), which is just
(3.31) with « replaced by . The next two rotations are identical to the
yaw-pitch-roll formulation: Ry (/) is applied, followed by Rz(«). This yields
Rewer(e, B,7) = Rz(a) Ry (B)Rz(7).

(a) Determine the matrix Reye-
(b) Show that Reuler(a7 ﬁa P)/) = Reuler(a -, _67 Y= 7T)'

(c) Suppose that a rotation matrix is given as shown in (3.35). Show that
the Euler angles are

a = atan2(raz, m13), (3.77)
B = atan2(y/1 — 135, 733), (3.78)

and
v = atan2(rsz, —r31). (3.79)

5. There are 12 different variants of yaw-pitch-roll (or Euler angles), depending
on which axes are used and the order of these axes. Determine all of the
possibilities, using only notation such as Rz(«)Ry(3)Rz(v) for each one.
Give brief arguments that support why or why not specific combinations
rotations are included in your list of 12.

6. Suppose that A is a unit disc, centered at the origin and W = R?. Assume
that A is represented by a single, semi-algebraic primitive, H = {(x,y) | 2%+
y*> < 1}. Show that the transformed primitive is unchanged after rotation.



108

S. M. LaValle: Planning Algorithms

7. Consider the articulated chain of bodies shown below. There are three

identical rectangular bars in the plane, called A;, A3, A3. Each bar has
width 2 and length 12. The distance between the two points of attachment
is 10. The first bar, A;, is attached to the origin. The second bar As is
attached to the A, and Aj is attached to the A,. Each bar is allowed to
rotate about its point of attachment. The configuration of the chain can be
expressed with three angles, (01, 6,,05). The first angle, 6, represents the
angle between the segment drawn between the two points of attachment of
A; and the x axis. The second angle, 5, represents the angle between A,
and A; (A2 = 0 when they are parallel). The third angle, 63 represents the

angle between A3 and As,.
c

(0.0)

\

I

10

12

Suppose the configuration is (7/4,7/2, —m/4). Use the homogeneous trans-
formation matrices to determine the locations of points a, b, and ¢. Name
the set of all configurations such that final point of attachment (near the
end of Aj3) is at (0,0) (you should be able to figure this out without using
the matrices).

. A three-link articulated body that lives in a 2D world is shown below. The

first link is attached at (0, 0), but can rotate. Each remaining link is attached
to another link with a revolute joint. The second link is a rigid ring, and
the other two links are rectangular bars.

(3,00 4,0

Assume that the structure is shown in the zero configuration. Suppose that
the structure is moved to the configuration (61, 0,,03) = (§, 75, %), in which
0, is the angle of Link 1, 65 is the angle of Link 2 with respect to Link 1,
and #3 is the angle of Link 3 with respect to Link 2. Using homogeneous

coordinate transformations, compute the position of the point at (4,0) in
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10.

11.

12.

the figure above, when the structure is at configuration (
is attached to Link 3).

, 5. %) (the point

. Approximate a spherical joint as a chain of three short links that are at-

tached by revolute joints and give the sequence of transformation matrices.
If the link lengths approach zero, show that the resulting sequence of trans-
formation matrices can be used to exactly represent the kinematics of a
spherical joint.

Recall Example 3.4.1. How should the transformations be modified so that
te links are in the positions shown in Figure 3.26 precisely when 6; = 0 for
every revolute joint whose angle can be independently chosen.

Project: Virtual Tinkertoys Design and implement a system in which
the user can attach various links to make a 3D kinematic tree. Assume that
all joints are revolute. The user should be allowed to change parameters and
see the resulting positions of all of the links.

Project: Virtual Human Animation Construct a model of the human
body as a tree of links in a 3D world. For simplicity, the geometric model
may be limited to spheres and cylinders. Design and implement a system
that displays the virtual human, and allows the user to click on joints of the
body to enable them to rotate.
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Chapter 4

The Configuration Space

Chapter Status

1

| | What does this mean? Check

http://msl.cs.uiuc.edu/planning /status.html
for information on the latest version.

Chapter 3 only covered how to model and transform a collection of bodies;
however, for the purposes of planning it is important to define a whole state space.
The state space for motion planning is a set of possible transformations that could
be applied to the robot. This will be referred to as the configuration space, based
on the seminal work of Lozano-Pérez [507, 503, 504], who introduced this notion
in the context of planning. The motion planning literature was further unified
around this concept by Latombe’s book [437]. Once the configuration space is
clearly understood, many motion planning problems that appear different in terms
of geometry and kinematics can be solved by the same planning algorithms. This
level of abstraction is therefore very important.

This chapter provides important foundational material that will be very useful
in Chapters 5 to 8 and other places where planning over continuous state spaces
occurs. Many of concepts introduced in this chapter come directly from mathe-
matics, particularly from topology. Therefore, Section 4.1 gives a basic overview
of topological concepts. Section 4.2 uses the concepts from Chapter 3 to define the
configuration. After reading this, you should be able to precisely characterize the
configuration space and understand its structure. In Section 4.3, obstacles in the
world are transformed into obstacles in the configuration space, but it is important
to understand that this transformation may not be explicitly constructed. The
implicit representation of the state space is a recurring theme throughout plan-
ning. Section 4.4 covers the important case of kinematic chains that have loops,
which was mentioned in Section 3.4. This case is so difficult that even the space
of transformations usually cannot explicitly characterized (i.e., parameterized).

111
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4.1 Basic Topological Concepts

4.1.1 Topological Spaces

Recall from basic mathematics, the concepts of open and closed intervals in the
set of real numbersm R. An open interval, such as (0, 1) includes all real numbers
between 0 and 1, except 0 and 1. However, for either endpoint, an infinite sequence
may be defined that converges to it. For example, the sequence 1/2, 1/4, ..., 1/2¢,
converges to 0 as ¢ tends to infinity. This means that we can get within any small,
positive distance from 0 or 1, but we cannot stand exactly on the boundary of the
interval. For a closed interval, such as [0, 1], these boundary points are included.

The notion of an open set lies at the heart of topology. The open set definition
that will appear here is a substantial generalization of the concept of an open
interval. The concept will apply to a very general collection of subsets of some
larger space. It is general enough to easily include any kind of configuration space
that may be encountered in planning.

A set X is called a topological space if there is a collection of subsets of X
called open sets such that the following axioms hold:

1. The union of a countable number of open sets is an open set.
2. The intersection of a finite number of open set is an open set.
3. Both X and () are open sets.

Note that in the first axiom, the union of an infinite number of open sets may be
taken, and the result must remain an open set. This will not necessarily be true
for closed sets.

For the special case of X = R, the open sets include open intervals, as expected.
Note that many sets that are not intervals are be included because taking unions
and intersections of open intervals generates many other open sets. For example,

the set
/102
-2 4.1
U (53): (11)

=1

which is an infinite union of intervals, is open.

Closed sets Open sets appear directly in the definition of a topological space.
It next seems that closed sets are needed. Suppose X is a topological space. A
subset C' C X is defined to be a closed set if and only if X'\ C'is an open set. Thus,
the complement of any open set is closed, and vice versa. Any closed interval, such
as [0, 1] is a closed set because its complement (—oo,0) U (1,00) is an open set.
For another example, (0,1) is an open set; therefore, R\ (0,1) = (—o0, 0] U[1, c0)
is a closed set. The use of “(” may seem wrong in the last expression, but “[”
cannot be used because —oo and oo do not belong to R. Thus, the use of “(” is
just a notational quirk.
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]

Figure 4.1: An illustration of the boundary definition. Suppose X = R?, and U
is a subset as shown. Three kinds of points appear: 1) z; is a boundary point, 2)
T is an interior point, and 3) x3 is an exterior point. Both x; and zy are limit
points.

Here is a question to ponder: are all subsets of X either closed or open?
Although it appears that open sets and closed sets are opposites in some sense,
the answer is NO. For X = R, the interval [0, 27) is neither open nor closed (the
interval [27,00) is closed, and (—o0,0) is open). Note that for any topological
space, X and () are both open and closed!

Special points From the definitions and examples so far, it should seem that
points on the “edge” or “border” of a set are important. There are several terms
that capture where points are relative to the border. Let X be a topological space,
and let U be any subset of X, and let  be any point in X. The following terms
capture the position of point z relative to U (see Figure 4.1):

e [f there exists an open set, O, such that x € O and O C U, then x is called
an interior point of U. The set of all interior points in X is called the interior
of U, and is denoted by int(U).

e If there exists an open set, O, such that x € O and O C X \ O, then x is
called an exterior point with respect to U.

o If x is neither an interior point nor an exterior point, then it is called a
boundary point of U. The set of all boundary points in X is called the
boundary of U, and is denoted by OU.

e All points in z € X must be one of the three above; however, another term
is often used, even though it is redundant given the other three. If x is either
an interior point or a boundary point, then it is called a limit point of U.



114 S. M. LaValle: Planning Algorithms

The set of all limit points of U is a closed set called the closure of U, and is
denoted by ¢l(U). Note that cl(U) = int(U) U JU.

For the case of X = R, the boundary points are the endpoints of intervals.
Thus, 0 and 1 are boundary points of intervals, (0,1), [0,1], [0,0), and (0, 1].
Thus, U may or may not include its boundary points. All of the points in (0, 1)
are interior points, and all of the points in [0, 1] are limit points. The motivation
of the name “limit point” comes from the fact that such a point might be the limit
of an infinite sequence of points. For example, 0 is the limit point of the sequence
generated by 1/2¢ for each i € N, the natural numbers.

There are several convenient consequences of the definitions. A closed set, C,
contains the limit point of any sequence that is a subset of C'. This implies that
it contains all of its boundary points. The closure, cl, always results in a closed
set because it adds all of the boundary points to the set. On the other hand, an
open set contains none of its boundary points. These interpretations will come in
handy when considering obstacles in the configuration space for motion planning.

Some examples The definition of a topological space is so general that an
incredible variety of topological spaces can be constructed.

Example 4.1.1 (X = R") We should expect that R" for any integer n is a topo-
logical space. This requires characterizing the open sets. An open ball, B(z, p) is
the set of points in the interior of a sphere of radius p, centered at x. Thus

B(z,p) = o' € R" | |12’ 2] < p}, (4.2)

in which || - || denotes the Euclidean norm (or magnitude) of z. Such sets is
considered an open set in R™. Furthermore, all other open sets can be expressed
as a countable union of open balls.! For the case of R, note that this degenerates
to representing all open sets as a union of intervals, which we have done so far.
Even though it is possible to express open sets of R"” as unions of balls, we
prefer to use other representations, with the understanding that one could revert
to open balls if necessary. The primitives of Section 3.1 can be used to generate
many interesting open and closed sets. For example, any algebraic primitive ex-
pressed in the form H = {x € R" | f(z) < 0}, in which 2 € R", produces a closed
set. Taking finite unions and intersections of these primitives will produce more
closed sets. Therefore, all of the models from Sections 3.1.1 and 3.1.2 produce an
obstacle region, O, that is a closed set. As mentioned in Section 3.1.2 that sets
constructed only from primitives that use the < relation are open. |

Example 4.1.2 (Subspace topology) A new topological space can easily be
constructed from a subset of a topological space. This will be very useful in the

ISuch a collection is often referred to as a basis.
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coming sections. Let X be a topological space, and let Y C X be a subset. The
subspace topology on Y is obtained by defining the open sets to be any subset of
Y that can be represented as U N'Y for some open set U of X. Thus, the open
sets for Y are almost the same as for X, except the points that do not lie in Y are
trimmed away. New subspaces can be constructed by intersecting open sets of R™
with a complicated region defined by semi-algebraic models. This leads to many
interesting topological spaces, some of which will appear in later in this chapter. B

Example 4.1.3 (Trivial topology) For any set X, there is always one trivial
example of a topological space that can be constructed from it. Declare that X
and () are the only open sets. Note that all of the axioms are satisfied. |

Example 4.1.4 (X = {cat, dog, tree, house}) It is important to keep in mind the
almost absurd level of generality that is allowed by the definition of a topological
space. A topological space can be defined for any set, as long as the declared open
sets obey the axioms. For this case, suppose that {cat} and {dog} are open sets.
Then, {cat,dog} must also be an open set. Closed sets and boundary points can
be even be derived for this topology once the open sets are defined. |

After the last example, it seems that topological spaces are so general that not
much can be said about them. Most spaces that are considered in topology and
analysis satisfy more axioms. For R™ and any configuration spaces that arise in
this book, the following is satisfied:

Hausdorff Axiom: For any distinct x1, x5 € X, there exist open sets A; and
Ay such that 2, € Ay, 25 € Ay, and A1 N Ay = 0.

In other words, it is possible to separate x; and x5 into nonoverlapping open
sets. Think about how to do this for R™ by selecting small enough open balls. Any
topological space X that satisfies the Hausdorff axiom is referred to as a Hausdorff
space. The manifold definition that is used in Section 4.1.2 will guarantee that
the resulting topological space is a Hausdorff space.

Continuous functions A very simple definition of continuity exists for topo-
logical spaces. It nicely generalizes the definitions from standard calculus. Let
f : X — Y denote a function between topological spaces X and Y. For any set
B C Y, let the preimage of B be denoted and defined by

J7'(B)={z € X | f(x) € BY. (4.3)

Note that this definition does not require f to have an inverse.

The function f is called continuous if f~1(O) is an open set for every open
set O C Y. Analysis is greatly simplified by this definition of continuity. For
example, to show that the composition of functions is continuous requires only a
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one-line argument that the preimage of the preimage will be open. Compare this
to the cumbersome classical proof that requires a mess of §’s and €’s.

Homeomorphism: Making a donut into a coffee cup You might heard
the expression that to a topologist, a donut and a coffee cup appear the same?. In
many branches of mathematics, it is important to define when two basic objects
are equivalent. In graph theory (and group theory), this equivalence relation
is called a isomorphism. In topology, the most basic equivalence is based on
homeomorphism, which allows spaces that appear quite different in most other
subjects to be declared equivalent in topology. A donut and coffeecup (with one
handle) are considered equivalent because both have a single hole. This notion
needs to be made more precise!

Suppose f: X — Y is a bijective (1-1 and onto) function between topological
spaces X and Y. Since f is bijective, the inverse f~! exists. If both f and f~! are
continuous, then f is called a homeomorphism. Two topological spaces, X and Y,
are said to be homeomorphic, denoted by X2=2Y, if there exists a homeomorphism
between them. This is denoted by X=Y . This implies an equivalence relation on
the set of topological spaces (verify that the reflexive, symmetric, and transitive
properties are implied by the homeomorphism).

Example 4.1.5 (Interval homeomorphisms) Any open interval of R is home-
omorphic to any other interval. For example, (0,1) can be mapped to (0,5) by
the continuous mapping = — 5z. Note that (0,1) and (0,5) are each being in-
terpreted here as topological subspaces of R. This kind of homeomorphism can
be generalized substantially using linear algebra. If a subset, X C R™ that can
be mapped to another, ¥ C R", via a nonsingular linear transformation, then X
and Y are homeomorphic. For example, the rigid body transformations of the
previous chapter were examples of homeomorphisms applied to the robot. Thus,
the topology of the robot does not change when it is translated or rotated. (In
this example, note that the robot itself is the topological space. This will not be
the case for the rest of the chapter.)

Be careful when mixing closed and open sets. The space [0, 1] is not homeomor-
phic to (0, 1), and neither is homeomorphic to [0,1). The endpoints cause trouble
when trying to make a bijective, continuous function. Surprisingly, a bounded
and unbounded set may be homeomorphic. A subset X of R" is called bounded if
there exists a ball B C R™ such that X C B. The mapping x — 1/x establishes
that (0,1) and (1, 00) are homeomorphic. The mapping z — tan~! x establishes
that (—7/2,7/2) and all of R are homeomorphic! |

Example 4.1.6 (Topological graphs) Let X be a topological space. The pre-
vious example can be extended nicely to make homeomorphisms look like graph

2T also heard a vulgar version (from a mathematician) about topologists not knowing their
... from a hole in the ground.
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Figure 4.2: Even though the graphs are not isomorphic, the corresponding topo-
logical spaces may be homeomorphic due to useless vertices. The example graphs

map into R? and are all homeomorphic to a circle.

Figure 4.3: The following topological graphs map into subsets of R? that are not
homeomorphic to each other.

isomorphisms. Let a topological graph® be a graph for which every vertex corre-
sponds to a point in X, and every edge corresponds to a continuous, injective
(one-to-one) function, 7 : [0,1] — X. The image of 7 connects the points in X
that correspond to the endpoints (vertices) of the edge. The images of different
edge functions are not allowed to intersect, except at vertices. Recall from graph
theory that two graphs, G1(Vi, E1) and Go(Vs, Es) are called isomorphic is there
exists a bijective mapping, f : Vi — V5 such that if there is an edge between v,
and v} in G, then there exists an edge between f(vy) and f(v}) in Go.

The bijective mapping used in the graph isomorphism can be extended to pro-
duce a homeomorphism. Each edge in F; is mapped continuously to its correspond
edge in F5. The mappings will nicely coincide at the vertices. Now you should see
that two topological graphs are homeomorphic if they are isomorphic under the
standard definition from graph theory.* What if the graphs are not isomorphic?

3In topology this is called a 1-complex [317].
4Technically, the images of the topological graphs, as subspaces of X, are homeomprohic,
not the graphs themselves.
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There is still a chance that the topological graphss may be homeomorphic, as
shown in Figure 4.2. The problem is that there appear to be “useless” vertices
in the graph. By removing vertices of degree two that can be deleted without
affecting the connectivity of the graph, the problem is fixed. In this case, graphs
that are not isomorphic produce topological graphs that are not homeomorphic.
This allows many distinct, interesting topological spaces to be constructed. A few
are shown in Figure 4.3. |

4.1.2 Manifolds

In motion planning, efforts are made to ensure that the resulting configuration
space has nice properties that reflect the true structure of the space of transfor-
mations. One important kind of topological space, which is general enough to
include most of the configuration spaces considered in Part II, is called a mani-
fold. Intuitively, a manifold can be considered as a “nice” topological space that
behaves at every point like our intuitive notion of a surface.

Manifold definition A topological space M C R™ is a manifold® if for every
x € M, an open set O C M exists such that: 1) z € O, 2) O is homeomorphic to
R”, and 3) n is fixed for all x € M. The fixed n is referred to as the dimension of
the manifold, M. The second condition is the most important. It states that in
the vicinity of any point, the space behaves like R™; we can move a small amount
in any direction. Several simple examples that may or may not be manifolds are
shown in Figure 4.4.

One natural consequence will be that m > n. According to Whitney’s theorem
], m < 2n. In other words, R*" is “big enough” to hold any n-dimensional
manifold. Technically, it is said that the n-dimensional manifold, M, is embedded
in R™, which means that an injective mapping exists from M to R™ (if it is not
injective, then the topology of M could change).

As it stands, it is impossible for a manifold to include its boundary points
because they are not contained in open sets. A manifold with boundary can be
defined requiring that boundary points of M are homeomorphic to half spaces of
dimension n, which were defined for R? and R? in Section 3.1, and the interior
points must be homeomorphic to R”.

5Manifolds that are not subsets of R™ may also be defined. This requires that M is a
Hausdorff space and is second countable, which means that there is a countable number of open
sets from which any other open set can be constructed by taking a union of some of them.
These conditions are automatically satisfied when assuming M C R"; thus, it avoids these extra
complications and is still general enough for our purposes. Some authors use the term manifold
to refer to a differentiable manifold. This requires the definition of an atlas of charts and the
homeomorphism is replaced by diffeomorphism. This extra structure is not needed here, but
will be introduced when it is needed in Chapter 13.
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Figure 4.4: Some subsets of R? that may or may not be manifolds.

Yes

The presentation now turns to ways of constructing some manifolds that fre-
quently appear in motion planning. It is important to keep in mind that two
manifolds will be considered equivalent if they are homeomorphic (recall the donut
and coffee cup).

Cartesian products The Cartesian product provides a convenient way to con-
struct new topological spaces from existing ones. Suppose that X and Y are
topological spaces. The Cartesian product, X x Y, defines a new topological
space as follows. Every z € X and y € Y, generates a point (z,y) exists in
X x Y. Each open set in X x Y is formed by taking the Cartesian product of
one open set from X and one from Y. Exactly one open set exists in X x Y for
every pair of open sets that can be formed by taking one from X and one from
Y. No other open sets appear in X x Y'; therefore, its open sets are automatically
determined.

A familiar example of a Cartesian product is R x R, which is equivalent to R2.
In general, R" is equivalent to R x R"!. The Cartesian product can be taken
over many spaces at once. For example, R x R x --- x R = R". In the coming
text, interesting manifolds will be constructed via Cartesian products.

One-dimensional manifolds R is the most obvious example of a one-dimensional
manifold because R certainly looks like R in the vicinity of every point. The range
can restricted to the unit interval to yield the manifold (0,1) because they are
homeomorphic (recall Example 4.1.5).

Another 1D manifold, which is not homeomorphic to (0,1), is a circle, S!. In
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this case R™ = R?, and let
St = {(z,y) € R? | 2® +¢* = 1}. (4.4)

If you are thinking like a topologist, it should appear that this particular circle
is not important because there are numerous ways to define manifolds that are
homeomorphic to S!. For any manifold that is homeomorphic to S, we will
sometimes say that the manifold is S, just represented in a different way. Also,
St will be called a circle, but this is meant only in the topological sense; it is
homeomorphic to a circle that we learned about in high school geometry. Also,
when referring to R, we might instead substitute (0, 1) without any trouble.

Another way to represent S! will be given by identification, which is a general
method of declaring that some points of a space are identical, although originally
were distinct.® For a topological space X, let X/ ~ denote that X has been
redefined through some form of identification. The open sets of X are redefined
by directly applying the identification to their elements. Using identification, S*
can be defined as [0,1]/ ~, in which the identification declares is that 0 and 1
are equivalent, denoted as 0 ~ 1. This has the effect of “gluing” the ends of
the interval together, forming a closed loop. To see the homeomorphism that
makes this possible, just use polar coordinates to obtain 6 +— (cos 276, sin 276).
You should already be familiar with 0 and 27 leading to the same point in polar
coordinates; here they are just normalized to 0 and 1. Letting # run from 0 up
to 1, and then “wrap around” to 0 is a convenient way to represent S! because it
does not need to be curved as in (4.4).

It might appear that identifications are cheating because the definition of a
manifold requires it to be a subset of R™. This is not a problem because Whitney’s
theorem states that any n-dimensional manifold can be embedded in R*" [317].
The identifications just cut down on the number of dimensions that are needed for
visualization. They are also convenient in the implementation of motion planning
algorithms.

Two-dimensional manifolds A variety of interesting, two-dimensional mani-
folds can be defined by applying the Cartesian product to one-dimensional mani-
folds. The two-dimensional manifold R? is formed by R x R. The product R x S!
defines a manifold that is equivalent to an infinite cylinder. The product S! x S!
is a manifold that is equivalent to a torus (the outer shell of a donut).

Can any other two-dimensional manifolds be defined? See Figure 4.5. The
identification idea can be applied to generate several new manifolds. Start with
an open square M = (0,1) x (0,1), which is homeomorphic to R?. Let (z,y)
denote a point in the plane. A flat cylinder is obtained making the identification
[0,y] ~ [1,y] for all y € (0,1), and adding all of these points to M. The result is
depicted in Figure 4.5 by drawing arrows where the identification occurs.

6This is usually defined more formally and called a quotient topology.
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Identification Name Notation
Plane R?
N N
Cylinder R x St
N v

Mobius band

»
N N
» Torus T2
»
N v
» Klein bottle
»
N v
& Projective plane RP?
< 7
//
7/
7/
A // N
7/
//
//
3 Two-sphere S?

Figure 4.5: Some common two-dimensional manifolds.
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A Moébius band can be constructed by taking a strip of paper and connecting
the ends after making a 180-degree twist. This result is not homeomorphic to
the cylinder. The Mobius band can constructed by putting the twist into the
identification, as [0,y] ~ [1,1 — y] for all y € (0,1). In this case, the arrows are
drawn in opposite directions. The Mdbius band has the famous properties that
is has only one side (trace along the paper strip with a pencil, and you will visit
both sides of the paper) and is nonorientable (if you try to draw it in the plane,
without using identification tricks, it will always have a twist).

For all of the cases so far, there has been a boundary to the set. The next few
manifolds will not have even have a boundary, even though they may be bounded.
If you were to live in one of them, it means that you could walk forever along any
trajectory and never encounter the edge of your universe. It might seem like the
universe is unbounded, but it would only be an illusion. Furthermore, there are
several distinct possibilities for the universe that are not homeomorphic to each
other. In higher dimensions, such possibilities are the subject of cosmology, which
is a branch of astrophysics that uses topology to characterize the structure of the
universe.

A torus can be constructed by performing identifications of the form [0, y] ~
[1,y], which was done for the cylinder, and also [z, 0] ~ [z, 1], which identifies the
top and bottom. Note that the point (0,0) must be included, and is identified
with three other points. Double arrows are used in Figure 4.5 to indicate the
top and bottom identification. All of the identification points must be added to
M. Note that there are no twists. A funny interpretation of the resulting flat
torus is as the universe appears for a spacecraft in some 1980s-style asteroids-like
video games. The spaceship flies off of the screen in one direction and appears
somewhere else, as prescribed by the identification.

Two interesting manifolds can be made by adding twists. Consider performing
all of the identifications that were made for the torus, except put a twist in the
side identification, as was done for the Mobius band. This yields a fascinating
manifold called the Klein bottle, which can be embedded in R* as a closed two-
dimensional surface in which the inside and the outside are the same! (This is
in a sense similar to that of the Mdbius band.) Now suppose there are twists in
both the sides and the top and bottom. This results in the most bizarre manifold
yet: the real projective plane, RP?. The 3D version, RP?, happens to be one of
the most important manifolds for motion planning!

One extremely important two-dimensional manifold remains to be defined. Let
S? denote the sphere, which can be easily defined as

S? = {(2,y,2) € B |2® + 47 + 2 = 1}. (4.5)

Another way to define S? is by making the identifications shown in the last line
of Figure 4.5. A dashed line is indicated where the equator might appear, if we
wanted to make a distorted wall map of the earth. The poles would be at the
upper left and lower right corners.
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Higher-dimensional manifolds The construction techniques used for the two-
dimensional manifolds generalize nicely to higher dimensions. Of course, R", is
an n-dimensional manifold. An n-dimensional torus, 7", can be made by taking
a Cartesian product of n copies of S'. Note that S' x S' # S2. Therefore, the
notation 7™ is used for (S')". Different kinds of n-dimensional cylinders can be
made by forming a Cartesian product R? x TY for integers ¢ and j such that
1+ j = n. Higher dimensional spheres can be defined as

S"={z e R | [|laf| = 1}, (4.6)

in which ||z|| denotes the Euclidean norm of .

Many interesting spaces can be made by identifying faces of the cube (0,1)™
(or even faces of a polyhedron or polytope), especially if different kinds of twists
are allowed. An n-dimensional flat real projective space can be defined in this
way, for example. Lens spaces are an interesting family manifolds that can be
constructed in by identification of polyhedral faces [662].

The standard definition of an n-dimensional real projective space, RP", is the
set of all lines in R™*! that pass through the origin. Each line is considered as a
point in RP". Using the definition of S™ in (4.6), note that each one of these lines
in R"*! intersects S® C R™*! in exactly two places. These intersection points are
called antipodal, which means that they are as far from each other as possible on
S™. They are also unique for each line. If we identify all pairs of antipodal points
of S", a continuous bijection can be defined between each line in R"*! and each
antipodal pair on the sphere. This means that the resulting manifold S/ ~ is
homeomorphic to RP".

Another way to interpret this is that RP" is just the upper half of S™, but
with every equatorial point identified with its antipodal point. Thus, if you try
to walk into the southern hemisphere, you will find yourself on the other side of
the world walking north. It is helpful to visualize the special case of R? and S2.
Imagine warping the picture of RP? from Figure 4.5 from a square into a circular
disc, with opposite points identified. This also represents RP?2. The center of the
disc can now be lifted out of the plane to form the upper half of S2.

4.1.3 Paths and Connectivity

At the core of motion planning is determining whether one part of reachable from
another. In Chapter 2, one part of the space was reached from another by applying
a sequence of actions. For a continuous state space, we would need a continuum
of actions. The application of the continuum of actions produces a path in the
state space. This will be formalized in Part IV, but the short explanation is that
the path is obtained through the integration of a vector field that is derived from
the plan. Here now consider the effect of a plan, which is the continuum of states
visited. Therefore, the notion of a continuous path will become very important.
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Paths Let X be a topological space, which for our purposes will also be a
manifold. A path, 7, in X is a continuous function, 7 : [0, 1] — X. Other intervals
of R may alternatively be used for the domain of 7. Note that a path is a function,
not a set of points. Each point along the path is given by 7(s) for some s € [0, 1].
This makes it appear as a nice generalization to the sequence of states visited,
when a plan from Chapter 2 is applied. Recall in that case, a countable set of
stages was defined, and the states visited could be represented as x1, 3, .... In
the current setting 7(s) is used, in which s replaces the stage index. To make
connection clearer, we could use z instead of 7, to obtain z(s) for each s € [0, 1].

Connected vs. path connected A topological space, X, is said to be con-
nected if it cannot be represented as the union of two disjoint, nonempty, open
sets. While this definition is rather elegant and general, if X is connected, it does
not imply that a path exists between any pair of points in X thanks to crazy
examples like the topologist’s sine curve:

X ={(z,y) e R* |z =0or y=sin(1/x)}. (4.7)

The sin(1/x) part creates oscillations near the Y axis in which the frequency tends
to infinity. After union is taken with the Y axis, this space is connected, but there
is no path that reaches the Y axis from the sine curve.

How can we avoid such problems? The standard way to fix this is to use the
path definition directly in the definition of connectedness. A topological space,
X, is said to be path connected if for all x1,zs € X, there exists a path, 7, such
that 7(0) = 21 and 7(1) = x5. It can be shown that if X is path connected, then
it is also connected in the sense defined previously.

Another way to fix it is to make restrictions on the kinds of topological spaces
that will be considered. This approach will be taken here by assuming that all
topological spaces are manifolds. In this case, no strange things like (4.7) can
happen’, and the definitions of connected and path connected coincide []. There-
fore, we will just say a space is connected. However, it is important to remember
that this definition of connected is sometimes inadequate, and one should really
say that X is path connected.

Simply connected Now that the notion of connectedness has been established,
the next step is to express different kinds of connectivity. This may be done by
using the notion of homotopy, which can intuitively be considered as a way to
continuously “warp” or “morph” one path into another, as depicted in Figure
4.6.a.

Two paths 71 and 7, are called homotopic (with endpoints fixed) if there exists
a continuous function A : [0, 1] x [0, 1] — X such that the following four conditions

"The topologist’s sine curve is not a manifold because all open sets that contain the point
(0,0) contain some of the points from the sine curve. These open sets are not homeomorphic to
R.
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a. b.

Figure 4.6: a) Homotopy continuously warps one path into another. b) The image
of the path cannot be continuously warped over a hole in R? because it causes a
discontinuity. In this case, the two paths are not homotopic.

are met:
h(s,0) = 7i(s) for all s € [0,1], (4.8)
h(s,1) = 1o(s) for all s € [0,1], (4.9)
h(0,t) = h(0,0) for all ¢t € [0,1], (4.10)
and
h(1,t) = h(1,0) for all ¢t € [0,1]. (4.11)

The parameter ¢ can be interpreted as a knob that is turned to gradually deform
the path from 7 into 7. The value t = 0 yields 7 and ¢t = 1 yields 7.

During the warping process, the path image will not not allowed to jump over
certain kinds of holes, such as the one shown in Figure 4.6.b. The key to preventing
homotopy from jumping over some holes is that A must be continuous. In higher
dimensions, however, there are many different kinds of holes. For the case of R3,
for example, suppose the space is like a block of Swiss cheese that contains air
bubbles. Homotopy can easily go around the air bubbles, but it will not be able to
pass through a hole that is drilled through the entire block of cheese. Air bubbles
and other kinds of holes that appear in higher dimensions can be characterized
by generalizing homotopy to the warping of surfaces, as opposed to paths.

It is straightforward to show that homotopy defines an equivalence relation
on the set of all paths from some z; € X to some x5 € X. The resulting notion
of “equivalent paths” appears frequently in motion planning, control theory, and
many other contexts. Suppose that X is path connected. If all paths fall into
the same equivalence class, then X will be called simply-connected. Otherwise, X

will be called multiply-connected. The case of multiply-connected spaces is very
interesting. SAY SOMETHING ABOUT CONTRACTIBLE SPACES?
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The fundamental group The equivalence relation induced by homotopy starts
to enter the realm of algebraic topology, which is a branch of mathematics that
characterizes the structure of topological spaces in terms of algebraic objects,
such as groups. These resulting groups have important implications for motion
planning. Therefore, a brief overview is given here.

At the highest level of abstraction, the task is often considered as a mapping
between the category of all topological spaces and a category of some algebraic
objects, such as all groups. The fundamental group is the simplest of these map-
pings to explain. It is often denoted as 71(X), which is the fundamental group
(first homotopy group) associated with a topological space, X. Let a (continuous)
path for which f(0) = f(1) be called a loop. Let some x; € X be designated as
a base point. For some arbitrary but fixed based point, x;, consider the set of all
loops such that f(0) = f(1) = x;. This can be made into a group by defining the
following binary operation. Let 7 : [0,1] — X and 7 : [0,1] — X be two loop
paths with the same base point. Their product 7 = 71 o 73 is defined as

(2t) if t €[0,1/2
m(t) = { ngt— 1) ifte %1/2,/1]) (4.12)

This results in a continuous loop path because 7, always terminates at z;, and 7
always begins at x;. In a sense, the two paths are concatenated end-to-end.

Suppose now that the equivalence relation induced by homotopy is applied to
the set of all loop paths through a fixed point, x;. It will no longer be important
which particular path was chosen from a class; any representative may be used.
The equivalence relation also applies when the set of loops is interpreted as a
group. The group operation actually occurs over the set of equivalences of paths.

Consider what happens when paths from two equivalence classes are combined
using o. Is the resulting path homotopic to either of the first two? Is the result-
ing path homotopic if the original two are from the same homotopy class? The
answers in general are NO and NO. The groups that result provide an interesting
characterization of the connectivity of a topological space. Since these groups are
based on paths, there is a nice connection to motion planning.

Example 4.1.7 (A simply-connected space) Suppose that a topological space,
X, is simply connected. In this case, all loop paths from a based point, x;, are
homotopic, resulting in one equivalence class. The result is m1(X) = 1g, which
just contains the identity element. [

Example 4.1.8 (The circle) Suppose X = S!. In this case, there is an equiva-
lence class for each ¢ € Z, the set of integers. Here is one possible definition. If
i > 0, then it means that the path winds i times around S' in the counterclock-
wise direction and then returns to the x;. If ¢« < 0, then the path winds around
¢ times in the clockwise direction. If ¢ = 0, then the path is equivalent to one
that remains at the base point. The fundamental group is Z, with respect to the
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Figure 4.7: An illustration of why 7 (RP?) = Z,. (a) Two paths are shown
that are not equivalent. The integers 1 and 2 indicate precisely there the path
continues when it reaches the boundary. (b) A path that winds around twice. (c)
This is homotopy to a loop path that does not wind around at all, as shown in a.
Eventually, the part of the part that appears at the bottom is pulled through the
top.

operation of addition. If 7 travels i; times counterclockwise, and 75 travels iy
times counterclockwise, then 7 = 7 o 75 belongs to the class of loops that travel
around i, + io times counterclockwise. Think about additive inverses. If a path
travels 7 times around S!, and it is combined with a path that travels 7 times in

the opposite direction, the result will be homotopic to a path that never leaves
the base point. Thus, 7 (S!) = Z. |

Example 4.1.9 (The torus) For the torus, 7 (7T") = Z", which the " com-
ponent of Z" corresponds to the number of times a loop path wraps around the
i'" component of T™. This makes intuitive sense since T™ is just the Cartesian
product of n circles. The fundamental group Z" will be obtained if we start with a
simply connected subset of the plane and drill out n disjoint, bounded holes. This
situation arises frequently in motion planning when a mobile robot must avoid

colliding with n disjoint obstacles. [ |

By now it seems that the fundamental group simply keeps track of how many
times a path loops around holes. This next example yields some very bizarre
behavior that helps illustrate some of the interesting structure arises in algebraic
topology.

Example 4.1.10 (RP?) Suppose X = RP? the projective plane. In this case,
there are only two equivalence classes. All paths that “wrap around” an even
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number of times are homotopic. Likewise, all paths that wrap around an odd
number of times are homotopic. This strange behavior is illustrated in Figure 4.7.
The resulting fundamental group therefore has only two elements, 7, (RP?) = Z,,
the cyclic group of order 2, which corresponds to addition mod 2. This makes
intuitive sense because the group keeps track of whether a sum of integers is odd
or even, which in this application corresponds to the total number of windings
around RP?. The fundamental group is the same for RP?, which will be seen in
Section 4.2.2 to be homeomorphic to the set of 3D rotations.

Thus, there are surprisingly only two path classes for the set of 3D rotations. B

Unfortunately, even if two topological spaces are not homeomorphic, their
fundamental groups may be identical. For example, Z is the fundamental group
of S, the cylinder, R x S!, and the Mobius band. In the last case, the fundamental
group does not care that there is a “twist” in the space. Another problem is that
spaces with interesting connectivity may be declared as simply connected. The
fundamental group of the sphere, S?, is just 0, the same as for R?. Try envisioning
loop paths on the sphere; it can be seen that they all fall into one equivalence class.
The fundamental group will also neglect bubbles in R?* because the homotopy
can warp paths around them. (Note that this space is even considered simply
connected by our definition.) This last problem can be fixed by defining second-
order homotopy groups. For example, a continuous function, [0, 1] x [0,1] — X,
of two variables can be used instead of a path. The resulting homotopy generates
a kind of sheet or surface that can be warped through the space, to yield a
homotopy group m(X) that will wrap around bubbles in R?, producing a different
group. This idea can be extended beyond beyond two dimensions to detect many
different kinds of holes in higher dimensional spaces. This leads to the higher-order
homotopy groups. A stronger concept than simply connected for a space is that
its homotopy groups of all orders are equal to the identity group. This prevents
all kinds of holds from occuring, and implies this that a space, X, is contractible,
which means a homotopy can constructed that shrinks X to a point [317]. In
many motion planning contexts, this notion may be a preferable substitute for
simply-connected.

An alternative to basing groups on homotopy is to derive them using homology,
which is based on the structure of cell complexes instead of homotopy mappings.
This subject is much more complicated to present, but is much more powerful for
proving topology theorems. See the literature overview at the end of the chapter
for suggested further reading on algebraic topology.

4.2 Defining the Configuration Space

This section defines the manifolds that arise from the transformations of Chapter
3. For each robot a set of transformations can be made. If the robot has n de-
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grees of freedom, this leads to a manifold of dimension n called the configuration
space or C-space. It will be generally denoted by C. In the context of this book,
the configuration space may be considered as a special form of state space. To
solve a motion planning problem, algorithms must conduct a search in this space.
The configuration space notion provides a powerful abstraction that converts the
complicated models and transformations of Chapter 3 into the general problem
of computing a path in a manifold. By developing algorithms directly for this
purpose, they apply to a wide variety of different kinds of robots and transforma-
tions. In Section 4.3 the problem will be complicated by bringing obstacles into
the confutation space, but in this section there will be no obstacles.

4.2.1 2D Rigid Bodies: SE(2)

Section 3.2.2 expressed how to transform a rigid body in R? by a homogeneous
matrix, T, given by (3.30). The task in this chapter is to characterize the set of
all possible rigid body transformations. Which manifold will this be? Here is the
answer and brief explanation. Since any x;,7; € R can be selected for translation,
this alone yields a manifold M; = R?. Independently, any rotation, 6 € [0, 27), can
be applied. Since 27 yields the same rotation as 0, they can be identified, which
makes the set of 2D rotations into a manifold, M, = S'. To obtain the manifold
that corresponds to all rigid body motions, simply take C = M; x M, = R? x S*.
The answer to the question is that the C-space is a kind of cylinder.

Now a more detailed technical argument will be given. The main purpose
is that such a simple, intuitive argument will not work for the 3D case. Our
approach is to introduce some of the technical machinery here for the 2D case,
which is easier to understand, and then extend it to the 3D case in Section 4.2.2.

Groups The first step is to consider the set of transformations as a group, in
addition to a topological space.® A group is a set, G, together with a binary
operation, o, such that the group axioms are satisfied:

1. (Closure) For any a,b € G, the product xoy € G.

2. (Associativity) For all a,b,c € G, (aob)oc = ao(boc). Hence, parentheses
are not needed, and the product may be written as a o b o c.

3. (Identity) There is an element e € G, called the identity, such that for all
a€G,eoca=eandaoe =e.

4. (Inverse) For every element a € G, there is an element a™', called the
inverse of a, for which aoa™' =eand a™! xa =e.

8The groups considered in this section are actually Lie groups because they are differentiable
manifolds. We will not use the name here, however, because the notion of a differentiable
strutucture was not defined. Readers familar with Lie groups, however, will be recongize most
of the coming concepts.
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Here are some simple examples. The set of integers, Z, is a group with respect
to addition. The identity is 0, and the inverse of each i is —i. The set, Q \ 0, of
rational numbers with 0 removed, is a group with respect to multiplication. The
identity is 1, and the inverse of every element, ¢ is 1/q (0 was removed to avoid
division by zero).

Matrix groups Groups will now be derived from sets of matrices, ultimately
leading to SO(n), the group of n x n rotation matrices, which is very important for
motion planning. The set of all nonsingular n x n real-valued matrices is called the
general linear group, denoted by GL(n), with respect to matrix multiplication.
Each matrix A € GL(n) has an inverse A~! € GL(n), which when multiplied
yields the identity matrix, AA~' = I. The matrices must be nonsingular for the
same reason that 0 was removed from Q. The analog of division by zero for matrix
algebra is the inability to invert a singular matrix.

Many interesting groups can be formed from one group, GG1, by removing some
elements to obtain a subgroup, Go. To be a subgroup, G5 must be a subset of G,
and must satisfy the group axioms. By constructing subgroups, we will arrive at
the set of rotation matrices. One important subgroup of GL(n) is the orthogonal
group, O(n), which is the set of all matrices, A € GL(n) for which AAT = I,
in which A" denotes the matrix transpose of A. Note that matrices will have
orthogonal columns (the inner product of any pair is zero) and the determinant
will be 1 or —1. This can be seen by observing that AA” takes the inner product
of every pair of columns. If the columns are different, the result must 0; if they
are the same, the result is 1 because the AAT = I. The special orthogonal group,
SO(n), is the subgroup of O(n), in which every matrix has determinant 1. Another
name for SO(n) is the group of n-dimensional rotation matrices.

A chain of groups, SO(n) < O(n) < GL(n), has been described in which <
denotes “a subgroup of”. These can also be considered as topological spaces. The
set of all n x n matrices (which is not a group with respect to multiplication)
with real-valued entries is homeomorphic to R™ because there are n? entries in
the matrix that can be independently chosen. For GL(n), singular matrices are
removed, but a n?-dimensional manifold is still obtained. For O(n), the expression
AAT = I corresponds to n? algebraic equations that have to be satisfied. This
should substantially drop the dimension. Note, however, that many of the equa-
tions are redundant (pick your favorite value for n, multiply the matrices, and

see what happens). There are only ways (pairwise combinations) to take

n
2
the inner product of pairs of columns, and there are n equations that require the
magnitude of each column to be 1. This yields a total of n(n + 1)/2 independent
equations. Each independent equation drops the manifold dimension by one, and
the resulting dimension of O(n) is n? — n(n +1)/2 = n(n — 1)/2, which is easily

remembered as <Z) To obtain SO(n), the constraint det A = 1 is added, which
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eliminates exactly half of the elements of O(n), but keeps the dimension the same.

Example 4.2.1 It is helpful to illustrate the concepts for n = 2. The set of all
2 x 2 matrices may be denoted by

{ (ﬁ Z) ‘ for which a,b,c,d € R} , (4.13)

and is homeomorphic to R*. The group GL(2) is formed from the set of all
nonsingular 2 x 2 matrices, which introduces the constraint that ad — bc # 0. The
set of singular matrices forms a 3D manifold with boundary in R*, but all other
elements of R* are in GL(2); therefore, GL(2) is a four dimensional manifold.
Next, the constraint AAT = I is enforced to obtain O(2). This becomes

G861 w1

which directly yields four algebraic equations

a®+v =1 (4.15)
ac+bd =0 (4.16)
ca+db=0 (4.17)
+d*=1. (4.18)

There are two kinds of equations. There is = 1 equation, (4.16), that forces

n
2
the inner product of the columns to be 0. There are n = 2 other constraints, (4.15)
and (4.18), which force the columns to be unit vectors. The resulting dimension

of the manifold is Z = 1 because we started with R* and lost three dimensions

from (4.15), (4.16), and (4.18). What does this manifold look like? Imagine that
there are two different two-dimensional unit vectors, (a,b) and (c,d). Any value
can be chosen for (a,b) as long as a® + b*> = 1. This looks like S', but the inner
product of (a, b) and (¢, d) must also be 0. Therefore, for each value of (a,b), there
are two choices for b and d: 1) c=band d = —a, or 2) c = —band d = a. It
appears that there are two circles! The manifold is S' U'S!, in which LI denotes
the union of disjoint sets. Note that this manifold is not connected because no
path exists from one circle to the other.

The final step is to require that det A = ad — bc = 1, to obtain SO(2), the set
of all 2D rotation matrices. Without this condition, there would be matrices that
produce a rotated mirror image of the rigid body. The constraint simply forces
the choice for ¢ and d to be ¢ = —b and a = d. This throws away one of the circles
from O(2), to obtain a single circle for SO(2). We have finally obtained what you
already knew: SO(2) is homeomorphic to S'. The circle can be parameterized
using polar coordinates to obtain the standard 2D rotation matrix, (3.25), given
in Section 3.2.2. [ ]
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Special Euclidean group Now that the group of rotations, SO(n), is charac-
terized, the next step is to allow both rotations and translations. This corresponds
to the set of all (n + 1) x (n + 1) transformation matrices of the form

{(g 11}) ‘ for which R € SO(n) and v € R"} : (4.19)

This should look like a generalization of (3.44) and (3.48), which were for n = 2
and n = 3, respectively. The R part of the matrix achieves rotation of an n-
dimensional body in R", and the v part achieves translation of the same body.
The result is a group, SE(n), which is called the special Euclidean group. As a
topological space, SFE(n) is homeomorphic to R™ x SO(n), because the rotation
matrix and translation vectors may be chosen independently. In the case of n = 2,
this means SE(2) is homeomorphic to R? x S!, which verifies what was stated at
the beginning of this section. Thus, the C-space is

C=R? x S! (4.20)

for the case of an unconstrained rigid body.

Interpreting the C-space It is important to consider the topological impli-
cations of C. Since S! is multiply connected, R x S' and R? x S! are multiply
connected. It is difficult to visualize C because it is a three-dimensional manifold;
however, there is a nice interpretation using identification. Start with the open
unit cube, (0,1)> C R3. Add in the boundary points of the form (x,,0), and
make the identification (z,y,0) ~ (x,y,1) for all z,y € (0,1). This means that
when traveling in the X and Y directions, there is an “edge” to the configuration
space; however, traveling in the Z direction will cause a wraparound.

It is very important for a motion planning algorithm to understand this this
wraparound exists. For example, consider R x S' because it is easier to visualize.
Imagine a path planning problem for which C=R x S!, as depicted in Figure 4.8.
Suppose the top and bottom are identified to make a cylinder, and there is an
obstacle across the middle. Suppose the task is to find a path from ¢; to g,. If
the top and bottom were not identified, then it would not be possible to connect
¢; to q4; however, if the algorithm realizes it was given a cylinder, the task is
straightforward. In general, it is very important to understand the topology of C;
otherwise, potential solutions will be lost.

The next section addresses SE(n) for n = 3. The main obstacle is determining
the topology of SO(3). At least we do not have to go beyond n = 3 in this book.

4.2.2 3D Rigid Bodies: SE(3)

One might expect that defining C for a 3D rigid body is an obvious extension of the
2D case; however, 3D rotations are significantly more complicated. The resulting
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Figure 4.8: A planning algorithm may have to cross the identification boundary
to find a solution path.

C-space will be a six-dimensional manifold, C=R? x RP?. Three dimensions come
from translation and three more from rotation.

The main quest in this section is to determine the topology of SO(3). In Sec-
tion 3.2.3, yaw, pitch, and roll were used to generate rotation matrices. These
angles were very convenient for visualization, performing transformations in soft-
ware, and also for deriving the DH parameters. However, these were concerned
with a single rotation, whereas the current problem is to characterize the set of
all rotations. It is possible to use «, (3, and 7 to parameterize the set of rotations,
but it causes serious troubles. There are some cases in which nonzero angles yield
the identity rotation matrix, which is equivalent to a = 3 = v = 0. There are
also cases in which a continuum of values for yaw, pitch, and roll angles yield the
same rotation matrix. These problems destroy the topology, which causes both
theoretical and practical difficulties in motion planning.

Consider applying the matrix group concepts from Section 4.2.1. The general
linear group GL(3) is homeomorphic to R?. The special orthogonal group, O(3),
3 = 3 indepen-
dent equations that require distinct columns to be orthogonal, and 3 independent
equations that force the magnitude of each column to be 1. This means that
O(3) will have three dimensions, which matches our intuition since there were
three rotation parameters in Section 3.2.3. To obtain SO(3), the last constraint,
det A = 1, is added. Recall from Example 4.2.1 that SO(2) consists of two circles,
and the constraint det A = 1 selects one of them. In the case of O(3), there will
be two three-spheres, S? LU'S?, and det A = 1 selects one of them. However, there
is one additional complication: antipodal points on these spheres generate the
same rotation matrix. This will be seen shortly when quaternions are used to
parameterize SO(3).

is determined by imposing the constraint AA? = I. There are

Using complex numbers to represent SO(2) Before introducing quater-
nions to represent 3D rotations, consider using complex numbers to represent 2D
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rotations. Let the term unit complex number refer to any complex number, a + bi
for which a? + b* = 1.

Note that the set of all unit complex numbers forms a group under multipli-
cation. It will be seen that it is “the same” group as SO(2). This idea needs to
be made more precise. Two groups, G and H, are considered “the same” if they
are isomorphic, which means that there exists a bijective function f : G — H
such that for all a,b € G, f(a) o f(b) = f(aob). This means that we can perform
some calculations with G for a while, map the result to H, perform more calcu-
lations, and map back to G without any trouble. The groups G and H are just
two different representations of the same thing.

This is true of the unit complex numbers and SO(2). To see this clearly, recall
that complex numbers can be represented in polar form as re; a unit complex
number is simply e”. A bijective mapping can be made between 2D rotation
matrices and unit complex numbers by letting e correspond to the rotation
matrix (3.25).

If complex numbers are used to represent rotations, it is important that they
behave algebraically in the same way. If two rotations are combined, the matrices
are multiplied. The equivalent operation will be multiplication of complex num-
bers. Suppose that a 2D robot is rotated by 6, followed by #,. In polar form, the
complex numbers are multiplied to yield e?1e?? = /%1 +%) which clearly repre-
sents a rotation of 6; 4+ 5. If the unit complex number is represented in Cartesian
form, then the rotations corresponding to a; + byt and as + bei are combined to
obtain (ajas — bi1by) + (a1by + asby)i. Note that we did not use complex numbers
to express the solution to a polynomial equation; we simply borrowed their nice
algebraic properties. At any time, a complex number a + bz can be converted into
the equivalent rotation matrix

R(a,b) = (Z _b> . (4.21)

a

Recall that only one independent parameter needs to be specified because a? +
b?> = 1. Hence, it appears that the set of unit complex numbers is that same
manifold as SO(2), which is the circle, S! (recall, that “same” means in the sense
of homeomorphism).

Quaternions The manner in which complex numbers were used to represent 2D
rotations will now be adapted to using quaternions to represent 3D rotations. Let
H represent the set of quaternions, in which each quaternion, h € H is represented
as h =a+bi+cj+dk, and a,b,c,d € R. A quaternion can be considered as a four-
dimensional vector. The symbols 7, j, and k, are used to denote three “imaginary”
components of the quaternion. The following relationships are defined: i? =
j2 =k* = —1,4j =k, jk = i, and ki = j. Using these, multiplication of two
quaternions, h; = a1 + b1t +c1j+dik and hy = as +bei + o7 + dok, can be derived
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Figure 4.9: Any 3D rotation can be considered as a rotation by an angle 6 about
the axis given by the unit direction vector v = [v; vy wv3].

to obtain hy - he = ag + bst + c3j + dsk, in which

as = ajas — biby — cico — dyds ( )
bz = ai1by + asby + c1dy — cady ( )
C3 = a1Co + ascy + bady — bids (4.24)
ds = a1ds + asdy + bicy — bacy. ( )

Using this operation, it can be shown that H is a group with respect to quaternion
multiplication. Note, however, that the multiplication is not commutative! This
was also true of 3D rotations; there must be a good reason.

For convenience, quaternion multiplication can be expressed in terms of vector
multiplications, a dot product, and a cross product. Let v = [b ¢ d] be a three
dimensional vector that represents the final three quaternion components. The
first component of hy - hy is ajas — vy - vo. The final three components are given
by the three-dimensional vector aivs + asv; — v1 X vs.

Just as unit complex numbers were needed for SO(2), unit quaternions are
needed for SO(3), which means that H is restricted to quaternions for which
a? 4+ b? + c? 4+ d? = 1. Note that this forms a subgroup because the multiplication
of unit quaternions yields a unit quaternion, and the other group axioms hold.

The next step is to describe a mapping from unit quaternions to SO(3). Let
the unit quaternion h = a + bi + ¢j + dk map to the matrix

2(a®* +b*) —1  2(bc — ad) 2(bd + ac)
R(h)=| 2(bc+ad) 2a*+c*)—1 2(cd—ab) |, (4.26)
2(bd — ac) 2(cd +ab)  2(a®>+d?*) —1

which can be verified as orthogonal and det R(h) = 1. Therefore, it belongs to
SO(3). It is not shown here, but it conveniently turns out that h represents the
rotation shown in Figure 4.9, by making the assignment

9 .0 .0 .0
h:cos§+vlsm§2—1—0251115]—{—2;3511&5k:. (4.27)
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210

Figure 4.10: There are two ways to encode the same rotation.

Unfortunately, this representation is not unique. It can be verified in (4.26)
that R(h) = R(—h). A nice geometric interpretation is given in Figure ??. The
quaternions h and —h represent the same rotation because a rotation of # about
the direction v is equivalent to a rotation of 2w — 6 about the direction —uv.
Consider the quaternion representation of the second expression of rotation with
respect to the first. The real part will be

2r — 60 0 0
cos( 7T2 ) = cos(m — 5) = — COS<§) = —a. (4.28)
The i, j, and & components will be
2 — 0 6 6
—vsin( T ) = —vsin(m — 5) = —v sin(§) =[-b —c —d|. (4.29)

The quaternion —h has been constructed. Thus, A~ and —h represent the same
rotation. Luckily, this is the only problem, and the mapping given by (4.26) is
two-to-one.

This can be fixed by the identification trick. Note that the set of unit quater-
nions is homeomorphic to S? because of the constraint a® + %> + c? + d?> = 1. The
algebraic properties of quaternions are not relevant at this point. Just imagine
each h as an element of R*, and the constraint a® + b + ¢ + d? = 1 forces the
points to lie on S*. Using identification, declare h ~ —h for all unit quaternions.
This means that the antipodal points of S? are identified. Recall from the end of
Section 4.1.2 that when antipodal points are identified, then S"/ ~~RP". Hence,
SO(3)=RP?, which can be considered as the set of all lines through the original
of R*, but this is hard to visualize. An extension of the representation of RP? in
Figure 4.5 can be made to RP?. Start with (0,1)% C R?, and make three different
kinds of identifications, one for each pair of opposite cube faces, and add all of the
points to the manifold. For each kind of identification a twist needs to be made
(without the twist, T would be obtained). For example, in the Z direction, let
(x,y,0) ~ (1 — 2,1 —y,1)forallx,y € [0, 1].

A useful way to force uniqueness of rotations is to require staying in the “upper
half” of S3. For example, we can require that a > 0, as long as the boundary case
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of a = 0 is handled properly because of antipodal points at the equator of S3. If
a = 0, then we can require that b > 0. However, if a = b = 0, then we must
require that ¢ > 0 because points such as (0,0, —1,0) and (0,0, 1,0) are the same
rotation. Finally, if a = b = ¢ = 0, then only d = 1 is allowed. If such restrictions
are made, it is important, however, to remember the connectivity of RP?. If a
path travels across the equator of S3, it must be mapped to the appropriate place
in the “northern hemisphere”. At the instant it hits the equator, it must move
to the antipodal point. These concepts are much easier to visualize if you remove
a dimension and imagine these concepts for S* C R3, as described at the end of
Section 4.1.2.

Using quaternion multiplication The representation of rotations boiled down
to picking points on S? and respecting the fact that antipodal points give the same
element of SO(3). In a sense, this has nothing to do with the algebraic properties
of quaternions. It merely means that SO(3) can be parameterized by picking
points in S3, just like SO(2) was parameterized by picking points in S' (ignoring
for the antipodal identification problem for SO(3)).

However, one important reason why the quaternion arithmetic was introduced
is that the group of unit quaternions is also isomorphic to SO(3). This means that
a sequence of rotations can be multiplied together using quaternion multiplication
instead of matrix multiplication. This is important because fewer operations are
required for quaternion multiplication in comparison to matrix multiplication. At
any point, (4.26) can be used to convert the result back into a matrix; however,
this is not even necessary. It turns out that a point in the world, (z,y, 2) € R3, can
be transformed by directly using quaternion arithmetic. An analog to the complex
conjugate from complex numbers will be needed. For any h = a+bi+cj+dk € H,
let h* = a —bi — cj — dk. For any point (x,y,2) € R?, let p € H be the quaternion
0+ i 4+ yj + zk. It can be shown (with a lot of algebra) that the rotated point
(x,y,2) is given by h-p-h*. The i, j, k components of the resulting quaternion
will be new coordinates for the transformed point. It will be equivalent to having
transformed (z,y, z) with the matrix R(h).

Finding quaternion parameters from a rotation matrix Recall from Sec-
tion 3.2.3 that given a rotation matrix (3.35), the yaw, pitch, roll parameters could
be directly determined using the atan2 function. It turns out that the quaternion
representation can also be determined directly from the matrix. This is the inverse
of the function in (4.26).°

For a given rotation matrix (3.35), the quaternion parameters, h = a + bi +
¢j + dk can be computed as follows [155]. The first component is

1
a = 5\/’/’11"‘7"224‘7’334‘1, (430)

9Since that function was two-to-one, it is technically not an inverse until the quaternions are
restricted to the upper hemisphere, as described previously.
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and if a # 0, then

T'3g — T'23
b= —— 4.31
—=, (4.31)
13 — T3
=2 o 4.32
=B, (4.32)
and
21 — T12
d= ——. 4.33
” (4.33)

If a = 0, then the previously mentioned equator problem occurs. In this case,
then

137
b= 2 .2 132 122 2 .2 (4'34)
\/7’127’13 + T3 3T
19T
c= 22 (4.35)

- 2.2 2.2 2.2’
\/T127‘13 R UL S AT

and

d= 11572 . (4.36)
\/7"%27"%3 + 715735 + 113733
This method will fail if 15 = 793 = 0 or r13 = 193 = 0 or r19 = 793 = 0. These
correspond precisely to the cases in which the rotation matrix is a yaw, (3.31),
pitch, (3.32), or roll, (3.33), which can be detected in advance.

Special Euclidean group Now that the complicated part of representing SO(3)
has been handled, the determination of SE(3) is straightforward. The general
form of a matrix in SF(3) is given by (4.19), in which R € SO(3) and v € R?.
Since SO(3)=RP?, and the translations are chosen independently, the resulting
configuration space for a rigid body that rotates and translates in R3 is

C=R* x RP?, (4.37)

which is a six-dimensional manifold. As expected, the dimension of C is exactly
the number of degrees of freedom of a free-floating body in space.

4.2.3 Chains and Trees of Bodies

If there are multiple bodies that are allowed to move independently, then their
configuration spaces can be combined using Cartesian products. Let C; denote
the configuration space of A;. If there are n free-floating bodies in WW = R? or
W = R3, then

C=C xCyx-xC,. (4.38)

If the bodies are attached to form a kinematic chain or kinematic tree, then
each configuration space must be considered on a case-by-case basis. There is no
general rule that simplifies the process. One thing to generally be careful about
is that the full range of motion might not be possible for typical joints. For
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example, a revolute might not be able to swing all of the way around to enable
any 6 € [0,27). If 6 cannot wind around S', then the configuration space for
this joint is homeomorphic to R instead of S!. A similar situation occurs for a
spherical joint. A typical ball joint cannot achieve any orientation in SO(3) due
to mechanical obstructions. In this case, the C-space will not be RP?, because
part of SO(3) is missing.

Another complication in the process of determining the configuration space
is that the DH parameterization of Section 3.3.2 designed to facilitate the as-
signment of coordinate frames and computation of transformations, but neglects
considerations of topology. For example, a common approach to representing a
spherical robot wrist is to make three zero-length lengths that each behave as a
revolute joint. If the range of motion is limited, this might not cause problems,
but in general the problems would be similar to using yaw, pitch, roll to represent
SO(3). There may be multiple ways to express the same arm configuration.

Several examples are given below to help in determining C-spaces for chains
and trees of bodies. Suppose W = R?, and there is a chain of n bodies that are
attached by revolute joints. Suppose that the first joint is capable of rotation only
about a fixed point (e.g., it spins around a nail). If each joint has the full range
of motion 6; € [0,27), the configuration space is

C=S' x St x - xSt =1T" (4.39)

However, if each joint is restricted to 0, € (—n/2,7/2), then C = R". If any
transformation in SE(2) can be applied to A;, then an additional R? is needed.
In the case of restricted joint motions, this yields R™*2. If the joints can achieve
any orientation, then C=R? x T™. If there are prismatic joints, then each one
contributes an R to the C-space.

Recall from Figure 3.12 that for W = R3 there are six different kinds of joints.
The cases of revolute and prismatic joints behave the same as for YW = R2. Each
screw joint contributes an R. A cylindrical joint contributes an R x S, unless its
rotational motion is restricted. A planar joint contributes R? x S' because any
motion motion SE(2) is possible. If its rotational motions are restricted, then
it contributes R?. Finally, a spherical joint can theoretically contribute RP?. In
practice, however, this will rarely occur. It is more likely to contribute R? x S!
or R? after restrictions are imposed. Note that if the first joint is a free-floating
body, then it contributes R?® x RP?.

Kinematic trees can be handled in the same way as kinematic chains. One
issue that has not been mentioned is that there might be collisions between the
links. This has been ignored up to this point, but obviously this imposes very
complicated restrictions. The concepts from Section 4.3 can be applied to handle
this case and the placement of additional obstacles in WW. Reasoning about these
kinds of restrictions and the connectivity of the resulting space is indeed the main
point of motion planning.
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4.3 Configuration Space Obstacles

Section 4.2 defined C, the manifold of robot transformations, in the absence of
any collision constraints. Section 4.3 removes from C the configurations that
either cause the robot to collide with obstacles or different links of the robot to
collide with each other. The removed part is referred to as the obstacle region.
The leftover space is precisely where the planning occurs. A motion planning
algorithm must find a collision-free path from an initial configuration to a goal
confniguration. Finally, after the models of Chapter 7?7 and the previous sections
of this chapter, the motion planning problem can be precisely described.

4.3.1 Definition of the Basic Motion Planning Problem

Obstacle region for a rigid body Suppose that the world, W = R2 or W =
R3, contains an obstacle region, © C W. Assume here that a rigid robot, A C W
is defined; the case of multiple links will be handled shortly. Assume that both
A and O are modeled using semi-algebraic primitives (which includes polygonal
and polyhedral primitives) from Section 3.1. Let ¢ € C denote the configuration
of A, in which ¢ = (24, 9;,0) for W = R? and q = (24,9, 2, h) for W = R? (h
represents the unit quaternion).
The obstacle region, Cys, is defined as

Cops = {q € C | A(q) N O # 0}, (4.40)

which is the set of all configurations, ¢, at which A(g), the transformed robot,
intersects the obstacle region, O. Since O and A(q) are closed sets in W, the
obstacle region becomes a closed set in C.

The leftover configurations are called the free space, which is defined and de-
noted as Cgree = C \ Cops- Since C is a topological space and Cs is closed, then
Cfree must be an open set. This means that in the way the model is defined,
the robot can come arbitrarily close to the obstacles and remain in Cgpe. If A
“touches” O,

int(O) Nint(A(g)) =0 and O N A(q) # 0, (4.41)

then g € C,ps. The notion of getting arbitrarily close may be nonsense in practical
robotics, but it makes a clean formulation of the motion planning problem. Since
Cree 1s open, it becomes impossible to formulate some optimization problems, such
as finding the shortest path. For such extensions, the closure, cl(Cyye.), should be
used, as described in Section 7.7.

Obstacle region for multiple bodies If the robot consists of multiple bodies,
the situation is more complicated. The definition in (4.40) only implies that the
robot does not collide with the obstacles; however, if the robot consists of multiple
bodies, then it might also be appropriate to avoid collisions between different
parts of the robot. Let the robot be modeled as a collection, {A;, As, ..., A},
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of m links, which could be attached by joints, or may be unattached. A single
configuration vector, ¢, is given for the entire collection of links. We will write
A;(q) for each link, i, even though some of the parameters of ¢ may be irrelevant
for moving link A;. For example, in a kinematic chain, the configuration of the
second body does not depend on the angle between the ninth and tenth bodies.

Let P denote that set of collision pairs, in which each collision pair, (i, j),
represents a pair of link indices i,7 € {1,2,...,m}, such that i # j. If (4,7)
appears in P, it means that A; and A; are not allowed to be in a configuration,
g, for which A;(q) N A;(q) # 0. Usually, P does not represent all pairs because
consecutive links are usually in contact all of the time because of the joint between
them. One common definition for P is that each link must avoid collisions with
links to which it is not attached by a joint. For m bodies, P is generally of size
O(m?); however, in practice it is often possible eliminate many pairs by some
geometric analysis of the linkage. Collisions between some pairs of links may be
impossible over all of C, in which case, they do not need to appear in P.

Using P, the consideration of robot self-collisions may be added to the defini-
tion of C,s to obtain

Cobs = {U{q €ClA(g)nO# (0}} U4 U {aec|Aig)nA4(q) # 0}
=1 [i,j]eP
(4.42)
Thus, a configuration ¢ € C is in C,s if at least one link collides with O, or a pair
of links indicated by P collide with each other.

Definition of basic motion planning Finally, enough tools have been intro-
duced to precisely define the motion planning problem. The problem is concep-
tually illustrated in Figure 4.11. The main difficulty is that is neither straight-
forward nor efficient to construct an explicit boundary or solid representation of
either Cree Or Cops.

Formulation 4.3.1 (The Piano Mover’s Problem)
1. A world, W, is defined, in which either W = R? or W = R3.
2. A semi-algebraic obstacle region O C W is defined in the world.

3. A semi-algebraic robot is defined in W. It may be a rigid robot, A, or a
collection of links, A;, As, ..., Ap,.

4. The configuration space, C, is determined by specifying the set of all possible
transformations that may be applied to the robot. From this, Cops and Cyyee
are derived.

5. A configuration ¢; € Cy.. is designated as the initial configuration.
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Figure 4.11: The basic motion planning problem is conceptually very simple using
the configuration space ideas. The task is to find a path from g; to g, in Cypee.
The entire blob represents C = Cyyee L Cops-

6. A configuration ¢, € Cy.. is designated as the goal configuration.

7. An algorithm must compute a (continuous) path, 7 : [0, 1] — Cyyee such that
7(0) = ¢; and 7(1) = g, or correctly report that such a path does not exist.

It was shown by Reif [651] that this problem is PSPACE-hard, which implies
NP-hard. The main problem is that the dimension of C is unbounded.

4.3.2 Explicitly Modeling C,,;: The Translational Case

It is important to understand how to construct a representation of C.s. In some
algorithms, especially the combinatorial methods of Chapter 6, this represents
an important first step to solving the problem. In other algorithms, especially
the sampling-based planning algorithms of Chapter 5, it helps to understand why
such constructions are avoided due to their complexity.

The simplest case for characterizing Cs is when C = R” for n = 1, 2, and 3,
and the robot is a rigid body that is restricted to translation only. Under these
conditions, Cus can be expressed as a type of convolution. For any two subsets of
X, Y C R”, let their Minkowski difference, denoted by & be

XoY={r—yeR"|zeXandyeY}, (4.43)

in which  — y is just vector subtraction on R".
In terms of the Minkowski difference, Cpps = O © A(0). To see this, it is
helpful to consider a one-dimensional example. The Minkowski difference between
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obs

Figure 4.12: A one-dimensional example.

X and Y can also be considered as the Minkowski sum of X and —Y. The
Minkowski sum, @, is obtained by simply adding elements of X and Y, as opposed
to subtracting them. The set —Y is obtained by replacing each y € Y by —y.
In Figure 4.12, both the robot, A = [—1,2] and obstacle region, O = [0,4] are
intervals in a one-dimensional world, W = R.

The negation, —A, of the robot is shown as the interval [—2,1]. Finally, by
applying the Minkowski sum to O and —A, Cps = [—2,4].

The Minkowski difference is often considered as a convolution. It can even
be defined to appear the same as in studied in differential equations and system
theory. For the one-dimensional example, let f : R — {0,1} be a function such
that f(z) = 1 if and only if z € O. Similarly, let g : R — {0,1} be a function
such that g(z) = 1 if and only if x € A. The following convolution,

W)= [ 1()g(a = i
will yield a function h of x that is 1 if x € C,,, and 0 otherwise.

A polygonal C-space obstacle An efficient method of computing Cs exists
in the case of a 2D world that contains a convex polygonal obstacle, O, and a
convex polygonal robot, A [504]. For this problem, C,s is also a convex polygon.
Recall that nonconvex obstacles and robots can be modeled as the union of convex
parts. The concepts discussed below can also be applied in the nonconvex case by
considering C,s as the union of convex components, each of which corresponds to
a convex component of A colliding with a convex component of O.

The method is based on sorting normals to the edges of the polygons on the
basis of angles. The key observation is that every edge of Cus is a translated edge
from either A or O. In fact, every edge from O and A is used exactly once in
the construction of C,,. The only problem is to determine the ordering of these
edges of Cps. Let aq, ao, ..., a, denote the angles of the inward edge normals
in counterclockwise order around A. Let (51, (s, ..., (5, denote the outward edge
normals to . After sorting both sets of angles in circular order around S!, Cs can
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Figure 4.13: A triangular robot and a rectangular obstacle.

—— _,-._—/—7
7

Figure 4.14: Slide the robot around the obstacle while keeping them both in
contact.

be constructed incrementally by adding the edges that correspond to the sorted
normals, in the order in which they are encountered.

To gain an understanding of the method, consider the case of a triangular
robot and a rectangular obstacle, as shown in Figure 4.13. The black dot on A
denotes the origin of its coordinate frame. Consider sliding the robot around the
obstacle in such a way that they are always in contact, as shown in Figure 4.14.
This corresponds to the traversal of all of the configurations in dC.s. The origin
of A, will trace out the edges of Cu., as shown in Figure 4.15. There are 7 edges,
and each edge corresponds to either an edge of A or an edge of @. The directions
of the normals are defined as shown in Figure 4.16. When sorted as shown in
Figure 4.17, the edges of C,,s can be incrementally constructed.

The running time of the algorithm is O(n + m), in which n is the number of
edges defining A, and m is the number of edges defining O. Note that the angles
can be sorted in linear time because they already appear in counterclockwise order
around A and O; the only need to be merged. If two edges are collinear, then
they can be placed end-to-end as a single edge of C,ps.

The previous method quickly identifies each edge that contributes to Cops. This
method can also construct a solid representation C in terms of half planes. This
requires defining n + m linear equations (assuming there are no collinear edges).

There are two different ways in which an edge of C. is generated, as shown
in Figure 4.18 [207, 504]. Type EV contact refers to the case in which an edge
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obs

Figure 4.15: The traced out edges of the configuration space obstacle are shown.

-

J

Figure 4.16: The directions of the normals are sorted around the circle.

[341

Figure 4.17: The edge normals are sorted by orientation.
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Type A Type B

Figure 4.18: Two different types of contact, each of generates a different kind of
edge [205, 504].

of A is in contact with a vertex of O. Type EV contacts contribute to n edges
of Cups, once for each edge of A. Type B contact refers to the case in which an
edge of A is in contact with a vertex of (J. This contributes to m edges of Cps.
The relationships between the edge normals are also shown in Figure 4.18. For
Type EV, the inward edge normal lies between the outward edge normals of the
obstacle edges that share the contact vertex. Likewise for Type B, the outward
edge normal of O lies between the inward edge normals of A.

Using the ordering shown in Figure 4.17, Type EV contacts occur precisely
when an edge normal of A is encountered, and Type B contacts occur precisely
when an edge normal of O is encountered. The task is to determine a line equation
at each of these instances. Consider the case of a Type EV contact; the Type B
contact can be handled in a similar manner. In addition to the constraint on the
directions of the edge normals, the contact vertex of O must lie on the contact
edge of A. Recall that convex obstacles were constructed by the intersection of
half planes. Each edge of C,s can be defined in terms of a supporting half plane;
hence, it is only necessary to determine whether the vertex of O lies on the line
through the contact edge of A. This condition occurs precisely when the vectors
n and v, shown in Figure 4.19 are perpendicular, i.e., n-v = 0.

Note that the normal vector, n, does not depend on the configuration of A
because it can only translate. The vector v, however, depends on the translation,
q = (x4, y) of the point p. Therefore, it is more appropriate to write the condition
as n-v(zy, y) = 0. The transformation equations are linear for translation; hence,
n-v = 0 is the equation of a line in C. For example, if the coordinates of p are
(1,2) when A is at the origin, then the expression for p at configuration (z,y;) is
(1+a¢,2+y:). Let f(zy, ) =n-v. Let H = {(zt,y:) € C | f(zy,y:) < 0}. Observe
that the configurations not in A must lie in Cp.. The half plane H is used to
define one edge of C,s. The obstacle region C,s can be completely characterized
by intersecting the resulting half planes for each of the Type EV and Type B
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/p
Figure 4.19: Contact occurs when n and v are perpendicular.

contacts. This yields a convex polygon in C that has n + m sides, as expected.

Example 4.3.1 Consider building a geometric model of C,, for the example in
Figure 4.20. Suppose that the orientation of A is fixed as shown, and C=R2. In
this case, Cpps Will be a convex polygon with seven sides. The contact conditions
that occur are shown in Table 4.1. The ordering is given as normals appear as
shown in Figure 4.17.

A A

0,1) a2 1.0 (-1,1) [__T
63% - (-1,-1) l——l (1,-1)
-1,-1) b,

b3
Y Y
Robot Obstacle

bl
(1.1)

Figure 4.20: Consider constructing the obstacle region for this example.
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Type Vtx. O Edge n v Half Plane
B as by-b1 [1,0] [mt—Q,yt] HB:{QGC |£L't—2§0}
B as b1-bo [0,1] [xt—Q,yt—Q] HBZ{(]EC’yt—QSO}
A ba as-aq [1,-2] [—24,2—y] Ha={qeC| —x +2y —4 <0}
B al bz—bg [—1,0] [2+$t,yt—1] HB:{QEC’ —l’t—QSO}
A b a1-as 1,1 [-1—x4y—y] Ha={qeC| —xy—y—1<0}
B as b3-b4 [0,—1] [xt—i-l,yt—f—Q] HB:{q€C| —yt—2§0}
A ba ar-az [-2,1] [2—x4—y] Ha={qeC|2z—y —4<0}

Table 4.1: The various contact conditions are shown in the order as normals
appear in Figure 4.17.

A polyhedral C-space obstacle Most of the previous ideas generalize nicely
for the case of a polyhedral robot that is capable of translation only in a 3D
world that contains polyhedral obstacles. If A and O are convex polyhedra, the
resulting Cg 18 a convex polyhedron.

There are three different kinds of contacts that lead to half spaces:

e Type FV: A face of A and a vertex of O
e Type VF: A vertex of A and a face of O
e Type EE: An edge of A and an edge of O

Each half space defines a face of the polyhedron. The resulting polyhedron can
be constructed in O(n + m + k) time, in which n is the number of faces of A, m
is the number of faces of O, and k is the number of faces of C,,s, which is at most

4.3.3 Explicitly Modeling C,s: The General Case

Unfortunately, the cases in which Cus is polygonal or polyhedral are quite lim-
ited. Most problems yield extremely complicated C-space obstacles. One good
point is that C,s can be expressed using semi-algebraic models, for any robots
and obstacles defined using semi-algebraic models, and after applying any of the
transformations of Sections 3.2 to 3.4. It might not be true for other kinds of
transformations, such as parameters that warp a flexible material [?].

Consider the case of a convex polygonal robot and a convex polygonal obstacle
in a 2D world. Any transformation in SE(2) may be applied to A; thus, C=R? x S
and ¢ = (24, y,0). The task is to define a set of algebraic primitives that can
be combined to define C,,. Once again, it is important to distinguish between
Type EV and Type B contacts. We will describe how to construct the algebraic
primitives for the Type EV contacts; Type B can be handled in a similar manner.

For the translation-only case, we were able to determine all of the Type EV
conditions by sorting the edge normals. With rotation, the ordering of edge nor-
mals depends on 6. This implies that the applicability of a Type EV contact
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Figure 4.21: An illustration to help in constructing the obstacle representation in
the C-space.

depends on 6. Recall the constraint that the inward normal of A must lie between
the outward normals of the edges of O that contain the vertex of contact. See
Figure 4.21. This constraint can be expressed in terms of inner products using
the vectors v; and ve. The statement regarding the directions of the normals can
equivalently be formulated as the statement that the angle between n and v, and
between n and vq, must each be less than 7. Using inner products, this implies
that n-v; > 0 and n-vy > 0. As in the translation case, the condition n-v = 0 is
required for contact. Observe that n depends on ¢. For any ¢ € C, if n(q) -v; > 0,
n(q) - va > 0, and n(q) - v(g) > 0, then ¢ € Cfree. Let Hy denote the set of
configurations that satisfy these conditions. These conditions can be used to de-
termine whether a point is in Cy,..; however, it is not a complete characterization
of Cree; any other Type EV and Type B contacts could add more points to Cyce.
Ordinarily, Hy C Cfree, which implies that the complement, C \ Hy, is a superset

of Cops, 1.€., Cops C C\ Hy. Let Hy = C\ Hy. Let the following primitives,

Hy ={qeC|n(q)- vs <0}, (4.45)
and
Hy = {q € C|n(q)-v(q) <0}, (4.46)

define Hy = H; U Hy U H;.

It is known that Cps © Ha, but Hy may still overlap with Cypee. The situ-
ation is similar to what was explained in Section 3.1.1 for bulding a model of a
convex polygon from half planes. In the current setting, it is only known that any
configuration outside of H4 must be in Cye.. If Hy is intersected with all other

corresponding sets for each possible Type EV and Type B contact, the result will
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be Cops. Each contact has the opportunity to remove a portion of Cyye. from con-
sideration. Eventually, enough pieces of Cy,e. are removed so that the only config-
urations remaining lie in Cpps. For any Type EV constraint, (HyUHs)\ Hs C Cfree.
A similar statement can be made for Type B constraints. A logical predicate, sim-
ilar to that defined in Section 3.1.1, can be constructed to detect whether or not
q € Cops in time that is linear in the number of Cs primitives.

One important issue remains. The expression n(g) is not a polynomial because
of the cos @ and sin # terms in the rotation matrix of SO(2). If polynomials could
be substituted for these expressions, then everything would be fixed because the
expression of the normal vector (not a unit normal) and the inner product are
both linear functions, thus transforming polynomials into polynomials. Such a
substitution can be made using stereographic projection [437]; however, a simpler
substitution can be made using complex numbers to represent rotation. Recall
that when a + bi is used to represent rotation, each rotation matrix in SO(2) is
represented as (4.21), and the 3 x 3 homogeneous transformation matrix becomes

a —b x
T(a,byxy,y)) = b a wy |- (4.47)
0O 0 1

Using this matrix to transform a point [z y 1] results in the point coordinates
(ax — by + 20, bx + ay + y;). Thus, any transformed point on A will be a linear
function of a, b, xy, and ;.

This was a simple trick to make a nice, linear function, but what was the cost?
The dependency is now on a and b, instead of 6. This appears to increase the
dimension of C from 3 to 4, and C = R*. However, an algebraic primitive will be
added to constrain the angles to lie in S!.

By using complex numbers, primitives in R* are obtained for each Type EV
and Type B contact. By defining C = R*, the following algebraic primitives are
obtained for a Type EV contact:

H, = {(xtvytaaa b) ecC ’ n(xtaybaab) v < 0}, (4.48)
H2 = {<xt7yt7a7 b) eC ’ n('xtayt?avb) “vg < O}a (449)

and
H3 - {(xtvytaa7 b) € C | n(xt7yt7a’ b) : U(l‘hytaa)b) S 0} (450)

This yields Hy = H,; U Hy U Hy. To preserve the correct R? x S! topology of C,
the set

Hs - {(xt;yt’%b) S C ‘ CL2 + b2 —1= 0} (451)

is intersected with H 4. This constraint preserves the topology of the original
configuration space. The set Hg remains fixed over all Type EV and Type B
contacts; therefore, it only needs to be considered once.
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Example 4.3.2 Consider adding rotation to the model considered in Example
4.3.1. In this case, all possible contacts must be considered. For this example,
there are 12 Type EV contacts and 12 Type B contacts. Each contact produces 3
algebraic primitives. With the inclusion of Hj, this simple example produces 73
primitives! Rather than construct all of these, we derive the primitives for a single
contact. Consider the Type B contact between as and bs-b;. The outward edge
normal, n, remains fixed at n = [1,0]. The vectors v; and vy are derived from the
edges that share ag, which are as-as and as-a;. Note that each of aq, as, and ag
depend on the configuration. Using the 2D homogeneous transformation, (3.30),
a; at configuration (x¢,y;,0) is (cosf + x4, sinf + y;). Using a + bi to represent
rotation, the expression of a; becomes (a + x;, b+ y;). The expressions of ay and
asz are (=b+ x4, a+y,) and (—a+ b+ xy, —b— a+y;), respectively. It follows that
v = as —az = [a — 2b,2a + b] and vy = a1 — az = [2a — b, a + 2b]. Note that v;
and vy depend only on the orientation of A, as expected. Assume that v is drawn
from by to ag. This yields v =a3 —by =[-a+b+x, —1,—a— b+ 1y, + 1]. The
inner products vy - n, v9 - n, and v - n can easily be computed to form Hy, Hs, and
Hj as algebraic primitives.

One interesting observation can be made here. The only nonlinear primitive
is a® + b*> = 1. Therefore, C,s can be considered as a linear polytope (like a
polyhedron, but one dimension higher) in R* that is intersected with a cylinder.

3D Rigid Bodies For the case of a 3D rigid body to which any transformation
in SE(3) may be applied, the same general principles apply. The quaternion
parameterization once again becomes the right way to represent SO(3) because
using (4.26) avoids all trigonometric functions in the same way that (4.21) avoided
them for SO(2). Unfortunately, (4.26) is not linear in the configuration variables,
as it was for (4.21), but it is at least polynomial. This enables semi-algebraic
models to be formed for C,s. Recall that there will be Type FV, VF, and EE
contacts for case of SE(3). From all of the contact conditions, polynomials that
correspond to each patch of C,s can be made. Note that these patches will be
polynomials in seven variables: ¢, 4, 2¢, a, b, ¢, d. Once again, a special primitive
must be intersected with all others to enforce the constraint that unit quaternions
are used. This reduces the dimension from 7 back down to 6. Also, constraints may
be added to throw away half of S*, which is redundant because of the identification.

Chains and Trees of Bodies For chains and trees of bodies, the ideas are con-
ceptually the same, but the algebra becomes more cumbersome. Recall that the
transformation for each link is obtained by a product of homogeneous transforma-
tion matrices, as given in (3.45) and (3.49) for the 2D and 3D cases, respectively.
If the rotation part is parameterized using complex numbers for SO(2) or quater-
nions for SO(3), then each matrix will consist of polynomial entries. After the
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matrix product is formed, polynomial expressions in terms of the configuration
variables are obtained. Therefore, a semi-algebraic model can be constructed.
For each link, all of the contact types need to be considered. Extrapolating from
Examples 4.3.1 and 4.3.2, you can imagine that no human would ever want to do
all of that by hand, but at least it can be automated. It is also very important
for the existence of theoretical algorithms that solve the motion planning problem
combinatorially.

If the kinematic chains were formulated for W = R? using the DH parameter-
ization, it may be inconvenient to convert to the quaternion representation. One
way to avoid this is to use complex numbers to represent each of the ¢; and «;
variables that appear as configuration variables. This can be accomplished be-
cause only cos and sin functions appear in the transformation matrices. These can
be replaced by the real and imaginary parts, respectively, of a complex number.
The dimension will be increased, but this is will be appropriately reduced when
imposing the constraints that all complex numbers must have unit magnitude.

4.4 Kinematic Closure and Varieties

This section continues where the discussion at the end of Section 3.4 finished.
Suppose that a collection of links are arranged in a way that forms loops. In
this case, the configuration space becomes much more complicated because the
joint angles must be chosen to ensure that the loops remain closed. This leads
to constraints such as that shown in (3.72) and Figure 3.27, in which some links
must maintain specified positions relative to each other. Consider the set of all
configurations that satisfy such constraints. Is this a manifold? It turns out,
unfortunately, that the answer is NO. However, the configuration space belongs a
nice family of spaces from algebraic geometry called varieties. Algebraic geometry
deals with characterizing the solution sets of polynomials. As seen so far in this
chapter, all of the kinematics can be expressed as polynomials. Therefore, it may
not be surprising that the resulting constraints will be a system of polynomials
whose solution set represents the configuration space for closed kinematic linkages.
Although the algebraic varieties considered here need not be manifolds, they can
be decomposed into a finite collection of manifolds that fit together nicely.!°.
Unfortunately, a parameterization of the variety that arises from closed chains
is available in only a few simple cases. Even the topology of the variety is ex-
tremely difficult to characterize. To make matters worse, it was proved in [369]
that for every closed, bounded real algebraic variety that can be embedded in
R™, there exists a linkage whose configuration space is homeomorphic to it. This
difficulty implies that most of the time, motion planning algorithms need to ma-
nipulate implicit polynomials when searching the space. For the algebraic methods
of Section 6.4.2, this will not pose any conceptual difficulty because they methods

10This is called a Whitney stratification [123, 772]
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already work directly with polynomials. Sampling-based methods usually rely on
being able to sample configurations, which cannot be easily adapted to a vari-
ety without a parameterization. Section 7.4 covers recent methods that extend
sampling-based planning algorithms to work for varieties that arise from closed
chains.

4.4.1 Mathematical Concepts

To understand varieties, it will be helpful to have definitions of polynomials and
their solutions that are more formal than the presentation in Chapter 3.

Fields Polynomials are usually defined over a field, which is another object from
algebra. A field is similar to a group, but it has more operations and axioms. The
definition is given below, and while reading them it may be helpful to keep in
mind several familiar examples of fields: the rationals, Q, the reals, R, and the
complex plane, C. You may verify that these fields satisfy the six axioms below.

A field is a set F that has two binary operations, - : F x F — F (called
multiplication) and + : F x F — F (called addition), for which the following
axioms are satisfied:

1. (Associativity) For all a,b,c € F, (a+b)+c=a+ (b+c¢) and (a-b)-c=
a-(b-c).

2. (Commutativity) For all a,b € F,a+b=b+aand a-b=10-a.
3. (Distributivity) For all a,b,c € F, a-(b+¢)=a-b+a-c.
4. (Identities) There exist 0,1 € F, such that a +0=a-1=a for alla € F.

5. (Additive Inverses) For every a € FF, there exists some b € F such that
a+b=0.

6. (Multiplicative Inverses:) For every a € F, except a = 0, there exists
some ¢ € [F such that a-c=1.

Compare these axioms to the group definition from Section 4.2.1. Note that
a field can be considered as two different kinds of groups, one with respect to
multiplication, and the other with respect to addition. Fields additionally require
commutativity; hence, we cannot, for example, build a field from quaternions.
The distributivity axiom appears because there is now an interaction between
two different operations, which was not possible with groups.
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Polynomials Suppose there are n variables, x1, 2o, ..., 2x,. A monomial over a
field, IF, is a product of the form

i oad e (4.52)
in which all of the exponents dy, ds, ..., d,, are positive integers. The total degree
of the monomial is d; + - -+ d,,.

A polynomial f in x1,...,x, with coefficients in F finite linear combination of

monomials that have coefficients in F. A polynomial can be expressed as

m

Z CiMmy, (4.53)

=1

in which m; is a monomial as shown in (4.52) and ¢; € F is a coefficient. If ¢; # 0,
then each ¢;m; is called a term. Note that the exponents, d;, may be different
for every term of f. The total degree of f is the maximum total degree among
the monomials of the terms of f. The set of all polynomials in z1,...,z, with
coeflicients in F is denoted by Flxy, ..., x,].

Example 4.4.1 The definitions correspond exactly to our intuitive notion of
a polynomial. For example, suppose F = Q. An example of a polynomial in

Q[x1, 2, 73] is .
T} — 51'1952333 + 2l + 4. (4.54)

Note that 1 is a valid monomial; hence, any element of I may appear alone as a
term, such as the 4 € Q in the polynomial above. The total degree if (4.54) is
5 due to the second term. An equivalent polynomial may be written using nicer
variables. Using x, y, and z as variables yields

1

rt — Qxyzg + 2%y? + 4, (4.55)

which belongs to Q|z, y, z]. |

The set, Flzy, ..., x,], of polynomials is actually a group with respect to addi-
tion; however, it is not a field. Even though polynomials can be multiplied, some
polynomials do not have a multiplicative inverse. Therefore, the set F[zq, ..., z,]
is often referred to as a commutative ring of polynomials. A commutative ring is
a set with two operations for which every axiom for fields is satisfied except the
last one, which requires a multiplicative inverse.

Varieties For a given field F and positive integer n, the n-dimensional affine
space over I is the set

F* ={(c1,...,¢n) | c15...,cp € F}. (4.56)
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For our purposes in this section, an affine space can be considered as a vector
space (the exact definition appears in []). F" is like a vector version of the scalar
field F. Familiar examples of this are Q", R", and C".

A polynomial in F[zy,...,z,] can be converted into function
f:F" =T (4.57)

by substituting elements of F for each variable, and evaluating the expression
using the field operations. This can be written as f(aq,...,a,) € F, in which each
a; denotes an element of F that is substituted for the variable x;.

We now arrive at an interesting question. For a given f, what are the elements
of F" such that f(xy,...,2,) = 07 We could also ask the question for some
nonzero element, but notice that this is not necessary because the polynomial
may be redefined for formulate the question with 0. For example, what are the
elements of R? such that 2% + y' = 1? This familiar equation for S' can be
reformulated as to yield: what are the elements of R? such that 2% + y? — 1 = 0?

Let IF be a field and let fi,..., fx be polynomials in F[zy,...,z,]. The set

V(fi,-., fx) ={(a1,...,a,) € F| filas,...,a,) =0forall 1 <i <k}, (4.58)

is called the (affine) variety defined by fi,..., fr. One interesting fact is that
unions and intersections of varieties are varieties. Therefore, they behave like the
semi-algebraic sets from Section 3.1.2, but notice that for varieties only equa-
tions of the form f = 0 are allowed. Consider the varieties V(fi,..., fx) and
V(g1,--.,g1). Their intersection is given by

V(fl; ceey fk) N V(gl; . 7gl) = V(fl, Ce ,fk,gl, RN ,gl), (459)

because each element of F™ must be produce a 0 value for each of the polynomials
S Je g1 91

To obtain unions, the polynomials simply need to be multiplied. For example,
consider the varieties Vi, Vo C F defined as

Vi={(ay,...,a,) € F| filas,...,a,) =0} (4.60)

and
Vo ={(ay,...,a,) € F| folay,...,a,) =0} (4.61)

The set V; UV, C T is obtained by forming the polynomial f = f;fs;. Note that
flay,...,a,) = 0 if either fi(ai,...,a,) = 0 or fa(ay,...,a,) = 0. Therefore,
V1 UV; is a variety. The varieties V; and V5 were defined using a single polynomial,
but the same idea applies to any variety. All pairs of the form f;g; must appear
in the list of polynomials in V() if there are multiple polynomials.



156 S. M. LaValle: Planning Algorithms

4.4.2 Kinematic Chains in R?

To illustrate the concepts it will be helpful to study a simple case in detail. Let
W = R?, and suppose there is a chain of links, A;, ..., A,, as considered in
Example 3.3.1 for n = 3. Suppose that the first link is attached at the origin of
W, by a revolute joint, and every other link, A; is attached to A;_; by a revolute
joint. This yields the configuration space

C=S' x St x - x St =1T", (4.62)

the n-dimensional torus

Two links If there are three links, A;, As, and Aj, then the configuration
space can be nicely visualized as a 3D cube with opposite faces identified. Each
coordinate, 6;, ranges from 0 to 27, for which 0 ~ 27. Suppose that each link has
length 1. This yields a; = as = 1. A point, (x,y) € A3 is transformed as

cosf)y —sinf; 0 cosfy —sinfy 1 T
sinf; cosfy 0 sinfy cosfy O] [y]. (4.63)
0 0 1 0 0 1 1

To obtain polynomials, the technique from Section 4.2.2 is applied to replace
the trigonometric functions using a; = cos#; and b; = sin#;, subject to the con-
straint a? + b? = 1. This results in

a1 _bl 0 a9 —bg 1 T
b1 aq 0 bg as 0 Yy y (464)
0 0 1 0 0 1 1

for which the constraints a? 4+ b7 = 1 for < = 1,2 must be satisfied. This preserves
the torus topology of C, but now it is embedded in R*. The coordinates of each
point are (a1, by, as,by) € R*; however, there are only two degrees of freedom
because each a;, b; pair must lie on a unit circle.

Multiplying the matrices in (4.64) yields the polynomials, f1, fo € Rlaq, by, as, bo],

f1 =Tajay — y&lbg — iL'ble + ya2b1 “+ ay (465)

and
fo = —yajas + zaibs + xasby — ybiby + by, (4.66)

for the X and Y coordinates, respectively. Note that the polynomial variables
are configuration parameters, not x and y. For a given point (z,y) in A, all
coefficients are determined.

Now a kinematic closure constraint will be imposed. Fix the point (1,0) in A,
at (1,1) in W. This yields the constraints

fi=aiaz = biby +ay =1 (4.67)
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Figure 4.22: There are two configurations that hold the point p at (1,1).

and
f2 = aiby + azby + by =1, (4.68)

by substituting x = 1 and y = 0 into (4.65) and (4.66). This yields the variety
V(a1a2 - blbg +a; — ]_, albg + CLle + bl - 17 a% + b% - 17 a% -+ bg - 1), (469)

which is a subset of R%. The polynomials are slightly modified because each
constraint must be written in the form f = 0.

Although (4.69) represents the constrained configuration space for the chain
of two links, it is not very explicit. Without an explicit characterization (e.g., a
parameterization), it complicates motion planning. From Figure 4.22 it can be
seen that there are only two solutions. These occur for ¢; = 0, §; = 7/2, and
0, = 7/2, 05 = —m/2. In terms of the polynomial variables, (ai,bq,as,bs), the
two solutions are (1,0,0,1) and (0,1,0,—1). These may be substituted into each
polynomial in (4.69) to verify that 0 is obtained. Thus, the variety represents two
points in R*. This can also be interpreted as two points on the torus S x S!.

It might not be surprising that the set of solutions has dimension zero because
there are four independent constraints, shown in (4.69), and four variables. De-
pending on the choices, the variety may be empty. For example, it is physically
impossible to bring the point (1,0) in Ay to (1000,0) in W.

The most interesting and complicated situations occur when there are a con-
tinuum of solutions. For example, if one of the constraints is removed, then a
one-dimensional set of solutions can be obtained. Suppose only one variable is
constrained for the example in Figure 4.22. Intuitively, this should yield a one-
dimensional variety. Set the X coordinate to 0, which yields

aijag — blbg +a; = O, (470)
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and allow any possible value for y. As shown in Figure 4.23.a, the point p must
follow the Y axis. (This is equivalent to a three-bar linkage that can be con-
structed by making a third joint that is prismatic and forced to stay along the Y
axis.) Figure 4.23.b shows the resulting variety V (ajas — biby +aq), but plotted in
0, — 05 coordinates to reduce the dimension from 4 to 2 for visualization purposes.
To correctly interpret the figures in Figure 4.23, recall that the topology is S' x St,
which means that the top and bottom are identified, and also the sides are identi-
fied. The center of Figure 4.23.b, which corresponds to (61,02) = (m, ), prevents
the variety from being a manifold. The resulting space is actually homeomorphic
to two circles that touch at a point. Thus, even with such a simple example,
the nice manifold structure may disappear. Observe that at (m,7) the links are
completely overlapped, and the point p of A, is placed at (0,0) in W. The hori-
zontal line in Figure 4.23.b corresponds to keeping the two links overlapping, and
swinging them around together by varying 6;. The diagonal lines correspond to
moving along configurations such as the one shown in Figure 4.23.a. Note that
the links and the Y axis always form an isosceles triangle, which can be used to
show that the solution set is any pair of angles, 6, 6, for which 6, = 7 — 6. This
is the reason why the diagonal curves in Figure 4.23.b are linear. Figures 4.23.c
and 4.23.d show the varieties for the constraints

1
aiag — blbg +a; = g, (471)

and
a1ao — b1b2 +ap = 1, (472)

respectively. In these cases, the point (0,1) in A; must follow the z = 1/8 and
r = 1 axes, respectively. The varieties are manifolds, which are homeomorphic
to S'. The sequence from Figure 4.23.b to 4.23.d can be imagined as part of an
animation in which the solution shrinks into a small circle. Eventually, it shrinks
to a point for the case ajas — bibs + a1 = 2, because the only solution is when
0, = 0 = 0. Beyond this, the variety is the empty set because there are no
solutions. Thus, but allowing one constraint to vary, four different topologies
were obtained: 1) two circles joined at a point, 2) a circle, 3) a point, and 4) the
empty set.

Three links Since visualization is still possible with one more dimension, sup-
pose there are three links, A;, A,, and As. The configuration space can be
visualized as a 3D cube with opposite faces identified. Each coordinate, 6;, ranges
from 0 to 2w, for which 0 ~ 27. Suppose that each link has length 1 to obtain
a; = as = 1. A point, (z,y) € A3 is transformed as

cosf; —sin6; 0 cosfly —sinf, 10 cosf; —sinfs; 10 T
sind; cosf; O sinfly  cosfy 0 sinfl; cosfs 0 Y
0 0 1 0 0 1 0 0 1 1

(4.73)
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Figure 4.23: A single constraint was added to the point p on A, as shown in (a).
The curves in (b), (¢), and (d) depict the variety for the cases of f; =0, f; = 1/8,
and f =1, respectively.
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To obtain polynomials, let a; = cos; and b; = sin 6;, to obtain

ay —bl 0 as — bg 1 as —b3 1 X
b1 aq 0 bg a9 0 b3 as 0 Yy s (474)
0 0 1 0 0 1 0 0 1 1

for which the constraints a?+b7 = 1 for ¢ = 1,2, 3 must be satisfied. This preserves
the torus topology of C, but now it is embedded in R®. Multiplying the matrices
yields the polynomials fi, fo € Rlaq, by, ag, by, as, bs], defined as

fl = 2@1(12&3 — albgbg + a1a9 — 2b1b2a3 - b1a2b3 + as, (475)

and
fg = 2b1a2a3 — blbgbg + 61&2 + 2a1b2a3 + &1@253, (476)

for the X and Y coordinates, respectively.
Again, consider imposing a single constraint,

2(11&2@3 — a1b2b3 + ajas — 2b1b2a3 - b1a2b3 +a; = 0, (477)

which constrains the point (1,0) € A3 to traverse the Y axis. The resulting variety
is an interesting manifold, as depicted from three different viewpoints in Figures
4.24 to 4.26 (remember that the sides of the cube are identified).

By increasing the X value for the constraint on the final point, the variety can
once again be forced to shrink. Snapshots for f; = 7/8 and f; = 2 are shown
in Figure 4.27. At f; = 1, the variety is not a manifold, but changes to S%.
Eventually, this sphere is reduced to a point, at f; = 3, and then for f; > 3 the
variety is empty.

Instead of the constraint f; = 0, we could instead constrain the Y coordinate
of p to obtain fy = 0. This yields another two-dimensional variety. If both
constraints are enforced simultaneously, then the result is the intersection of the
two original varieties. For example, suppose f; = 1 and f; = 0. This is equivalent
to a kind of four-bar mechanism [|, in which the fourth link, 4, is fixed along the
X axis from 0 to 1. The resulting variety,

V(2a1a2a3—a1b2b3+a1a2—2b1b2a3—blagbg+a1—1, 2b1a2a3—61bzbg+bla2+2albga3+a1a2b3),
(4.78)

is depicted in Figure 4.28. Using 61, 0>, 03 coordinates, the solution may be easily

parameterized as a collection of line segments. For all ¢ € [0, 7], there exist

solution points at (0,2t,7), (¢,27 —t,m +t), (2r — t, t, 7 — 1), 2 —t,m, 7w+ 1),

and (t,7,m —t). Note that once again, the variety is not a manifold. A family

of interesting varieties can be generated for the four-bar mechanism by selecting

different lengths for the links. The topologies of these mechanisms have been

determined for both 2D [] and a 3D extension that uses spherical joints [553].
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Figure 4.24: The two-dimensional variety for the three-link chain with f; = 0.

4.4.3 Defining the Variety for General Problems

Now a general methodology for defining the variety will be described. Keeping
the previous examples in mind will help in understanding the formulation. In the
general case, each constraint can be thought of as a statement of the form:

The it" coordinate of a point p € A; needs to be held at the value x in
the coordinate frame of Ay.

For the variety in Figure 4.23.b, the first coordinate of a point p € A, was held at
the value 0 in W (which is the same frame as for A;. The general form must also
allow a point to be fixed with respect to the frame of links other than A;, which
did not occur in Section 4.4.2

Suppose that n links, A;,..., A, move in W = R? or W = R3. One link, A,
for convenience, is designated as the root, as defined in Section 3.4. Let denote a
finite set of joints, in which each joint is represented as (4, 7), which indicates that
A, is attached to A; by a joint. Is it assumed that i # j.

A linkage graph, G(V, E), is constructed from the links and joints. Each vertex
of GG represents a link in L. Each edge in G represents a joint. This definition
may seem somewhat backwards, especially in the plane because links often look
like edges and joints look like vertices. This assignment is also possible, but is
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Figure 4.25: Another view of the variety in Figure 4.24.

not easy to generalize to the case of a single link that has more than two joints.
If more than two links are attached at the same point, each will generate an edge
in our representation.

The steps to determine the polynomial constraints that express the variety
are:

1. Define the linkage graph, GG, with one vertex per link and one edge per joint.
If a joint connects more than two bodies, then one body must be designated
as a junction. See Figures 4.29 and 4.30.a. In Figure 4.30, links 4, 13, and
23 were designated as junctions in this way.

2. Designate one link as the root, A;. This link may either be fixed in W, or
transformations may be applied. In the latter case, the set of transforma-
tions could be SE(2) or SE(3), depending on the dimension of W. This
enables the entire linkage to move independently of its internal motions.

3. Eliminate the loops by constructing a spanning tree, T, of the linkage graph,
G. This implies that every vertex (or link) is reachable by a path from the
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Figure 4.26: A third view of the variety in Figure 4.24.

root). Any spanning tree may be used. Figure 4.30.b shows a resulting
spanning tree after deleting the edges shown with dashed lines.

. Apply the techniques of Section 3.4 to assign frames and transformations to

the resulting tree of links.

. For each edge of G that does not appear in T', write a set of constraints

between the two corresponding links. In Figure 4.30.b, it can be seen that
constraints are needed between four pairs of links: 14-15, 21-22, 23-24, and
19-23.

This is perhaps the trickiest part. For examples like the one shown in Figure
3.28, the constraint may be formulated as in (3.73). This is equivalent to
what was done to obtain the example in Figure 4.28, which means that
there are actually two constraints, one for each of the X and Y coordinates.
This will also work for the example shown in Figure 4.29 if all joints are
revolute. Suppose instead that two bodies, A; and A, must be rigidly
attached. This would require adding one more constraint that prevents
mutual rotation. This could be achieved by selecting another point on A4;
and ensuring that one of its coordinates is in the correct position in the
frame of Aj. If four equations are added, two from each point, then one
of them will be redundant because there are only three degrees of freedom
possible for A; relative to Ay (which comes from the dimension of SE(2)).

A similar, but more complicated, situation occurs for W = R3. Holding a
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Figure 4.27: If f; > 0 then variety shrinks. If 1 < p < 3, the variety is a sphere.
At f; = 0 it is a point, and for f; > 3 it completely vanishes.

single point fixed produces three constraints. If a single point is held fixed,
then A; may achieve any rotation in SO(3), with respect to A,. This implies
that A; and Ay are attached by a spherical joint. If they are attached by a
revolute joint, then two more constraints are needed, which can be chosen
from the coordinates of a second point. If A; and Aj are rigidly attached,
then one constraint from a third point will be needed. In total, however,

there can be no more than six independent constraints because this is the
dimension of SE(3).

6. Convert the trigonometric functions to polynomials. For any 2D transforma-
tions, the familiar substitution of complex numbers may be made. If the DH
parameterization is used for the 3D case, then each of the cos 6;, sin 6; terms
can be parameterized with one complex number, and each of the cos a;,sin o;
terms can be parameterized with another. If the rotation matrix for SO(3)
is directly used in the parameterization, then the quaternion parameteriza-
tion should be used. In all of these cases, polynomial transformations will
result.

7. List the constraints as polynomials of the form f = 0. To write the descrip-
tion of the variety, all of the polynomials must be set equal to zero, as was
done for the examples in Section 4.4.2.

It is possible to determine the dimension of the variety from the number of in-
dependent constraints? The answer is generally NO, which can be easily seen from
chains of links in Section 4.4.2, which produced varieties of various dimensions,
depending on the particular equations. Techniques for computing the dimension
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Figure 4.28: If two constraints, f; = 1 and f, = 0, are imposed, then the vari-
eties are intersected to obtain a one-dimensional set of solutions. The example is
equivalent to a well-studied four-bar mechanism.

exist but require much more machinery than is presented here (see the literature
section at the end of the chapter). However, there is a way to provide a simple
upper bound on the number of degrees of freedom. Suppose the total degrees of
freedom of the linkage in spanning tree form is m. Each independent constraint
can remove at most one degree of freedom. Thus, if there are [ independent
constraints, then the variety can have no more than m — [ dimensions.

One final concern is the obstacle region, C,s. Once the variety has been
identified, then the obstacle region and motion planning definitions in (4.40) and
Formulation 4.3.1 are do not need to changed, with the understanding that C
represents the linkages that maintain loops while moving.
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Figure 4.29: A complicated linkage that has 29 links, several loops, links with
more than two bodies, and bodies with more than two links. Each integer, 1,
indicates link A;.

Figure 4.30: a) One way to make the linkage graph that corresponds to the linkage
in Figure 4.29. b) A spanning tree is indicated by showing the removed edges with
dashed lines.



4.4. KINEMATIC CLOSURE AND VARIETIES 167

Literature

Books are basic topology are [23, 328]. An excellent introduction to algebraic
topology is the book by Allen Hatcher [317], which is available online at:

http://www.math.cornell.edu/ hatcher/AT/ATpage.html

This is a graduate-level mathematics textbook. For an undergraduate-level topol-
ogy book that covers homology and contains many interesting examples and il-
lustrations, see [399].

Much of the presentation in Section 4.4 was inspired by the nice undergraduate-
level introduction to algebraic varieties in [178]. Examples of simple robot arms
that form closed chains are also included. In the context of motion planning, and
excellent source on motion planning for closed chains is the recent thesis of Juan
Cortés [177].

C-space for points moving on a graph/[2].

Mention better theoretical algorithms for computing C-space obstacles.

Computing the dimension of algebraic varieties, etc. [178].

Exercises

1. Consider the set X ={1,2,3,4,5}. Let X, 0, {1,3}, {1,2}, {2,3}, {1}, {2},
and {3} be the collection of all subsets of X that are designated as open
sets. Is X a topological space? Is it a topological space if {1,2,3} is added
to the collection of open sets? Explain. What are the closed sets (assuming
{1,2,3} is included as an open set)? Are any subsets of X neither open nor
closed?

2. For the letters of the Russian alphabet A, B, B, I, E, E, ’K, 3, I, U, K,
JI, M, H, O, II, P, I1, T, ¥, &, 11, Y, I, III, 7, ?, 7, KO, f determine

which pairs are homeomorphic.

3. Prove the homeomorphism yields an equivalence relation on the category of
all topological spaces.

4. What is the dimension of the configuration space for a cylindrical rod that
can translate and rotate in R3? If the rod is rotated about its central axis,
it is assumed that the rod’s position and orientation is not changed in any
detectable way. Express the configuration space of the rod in terms of a
Cartesian product of simpler spaces (such as S!, S?, R", P? etc.). What is
your reasoning?

5. Let 71 : [0,1] — R? be a loop path in the plane, defined as follows: 7(s) =
(cos(2ms), sin(27s)). This path traverses a unit circle. Let 75 : [0, 1] — R? be
another loop path, defined as follows: 7(s) = (=2 + 3 cos(2ms), 5 sin(27s)).
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This path traverses an ellipse that is centered at (—2,0). Show that 7, and
T are homotopic (by constructing a continuous function with an additional
parameter that "morphs” 77 into 73).

Prove that homotopy implies an equivalence relation on the set of all paths
from some z; € X to some x5 € X, in which z; and x5 may be chosen
arbitrarily.

Determine the configuration space for a spacecraft in an asteroids game.
Determine the equations for Type B constaints.

Determine the configuration space for a car that drives around on a huge
sphere (such as the earth with no mountains or oceans). Assume the sphere
is big enough so that its curvature may be neglected (e.g., the car sits flatly
on the earth without wobbling). [Hint: it is not S? x S']

Show that (4.26) is a valid rotation matrix for all unit quaternions.

Show that Fxq,...,z,], the set of polynomials over a field F' with variables
x1,...,T, is & group with respect to addition.

a) Define a unit quaternion, k1, that expresses a rotation of —% (-90 degrees)
around the axis given by the vector [% % \/Lg]

b) Define a unit quaternion, hs, that expresses a rotation of 7 around the
axis given by the vector [0 1 0].

c) Suppose the rotation represented by hy is performed, followed by the
rotation represented by hs. This combination of rotations can be represented
as a single rotation around an axis given by a vector. Find this axis and the
angle of rotation about this axis. Please convert the trig functions whenever
possible (for example sinf = 1, sin% = %, and sinf = ?)

Suppose there are five polyhedral bodies that can float freely in a 3D world.
They are each capable of rotating and translating. If these are treated as
“one” composite robot, what would be the topology of the resulting config-
uration space (assume that the bodies are NOT attached to each other)?
What is its dimension?

build the configuration space for containment
The figure below shows the Mobius band defined by identification of sides

of the unit square. Imagine that scissors are used to cut the band along the
two dashed lines. Describe the resulting topological space. Is it a manifold?
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16. Consider the set of points in R? that are remaining after a closed disk of

radius } with center (z,y) is removed for every value of (z,y) such that x

and y are both integers. Is this a manifold? Explain.

17. Show that the solution curves shown in Figure 4.28 correctly illustrate the
variety given in (4.78).
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Chapter 5

Sampling-Based Motion Planning

Chapter Status

1

| | What does this mean? Check

http://msl.cs.uiuc.edu/planning /status.html
for information on the latest version.

There are two main philosophies for addressing the motion planning prob-
lem, Formulation 4.3.1 from Section 4.3.1. This chapter presents sampling-based
motion planning, which is outlined in Figure 5.1. The main idea is to avoid the
explicit construction of C,,, as shown in Section 4.3, and instead conduct a search
that probes the C-space with a sampling scheme. This probing is enabled by a
collision detection module, which the motion planning algorithm considers as a
“black box.” This enables the development of planning algorithms that are in-
dependent of the particular geometric models. The collision detection module
handles concerns such as whether the models are semi-algebraic, 3D triangles,
nonconvex polyhedra, etc. This general philosophy has been very successful in
recent years for solving problems from industrial and biological applications that
involve thousands and even millions of geometric primitives. Such problems would
be practically impossible to solve using explicit Cus construction techniques.

Section 5.1 presents metric and measure space concepts, which are fundamen-
tal to nearly all sampling-based planning algorithms. Section 5.2 presents general
sampling concepts and quality criteria that are effective for analyzing the perfor-
mance of sampling-based algorithms. Section 5.3 gives a brief overview of collision
detection algorithms, to gain an understanding of the information available to a
planning algorithm, and the computation price that must be paid to obtain it.
Section 5.4 presents a framework that defines algorithms which solving motion
planning problems by integrating sampling and discrete planning (i.e., searching)
techniques. These approaches can be considered single query in the sense that a
single initial and goal are given, and the algorithm must search until it finds a

171
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Geometric Collision  (<#——— Motion Planning Algorithm
Models —®= Detection
—>.
Discrete” | | C-Space|

Planning | | Sampling

Figure 5.1: The sampling-based planning philosophy uses collision detection as
a “black box” that separates the motion planning from the particular geometric
and kinematic models. C-space sampling and discrete planning (i.e., searching)
are performed.

solution (or it may report early failure). Section 5.5 focuses on Rapidly-exploring
Random Trees (RRTs) and Rapidly-exploring Dense Trees, which are used to de-
velop efficient single-query planning algorithms. Section 5.6 covers multiple-query
algorithms, which invest substantial preprocessing effort to build a data structure
that is later used to obtain efficient solutions for many initial-goal pairs. In this
case, it is assumed that the obstacles, Q remain the same for every query.

5.1 Distance and Volume in C-Space

Virtually all sampling-based planning algorithms require a function that measures
distance between two points in C. In most cases, this results in a metric space,
which is introduced in Section 5.1.1. Useful examples for motion planning are
given in Section 5.1.2. It will also be important to many of these algorithms to
have a notion of the volume of a subset of C. This will result in a measure space,
which is introduced in Section 5.1.3. Section 5.1.4 introduces invariant measures,
which should be used whenever possible.

5.1.1 Metric Spaces

We are all familiar with the notion of Euclidean distance in R™. To define a
distance function over C, it will have to satisfy certain axioms so that it coincides
with our expectations about distances based on Fuclidean distance.

The following definition and axioms are used to create a function that converts
a topological space into a metric space.® A metric space, (X, p), is a topological
space, X, equipped with a function, p : X x X — R such that for any a,b,c € X:

1. (Non-negativity) p(a,b) >0

'Some topological spaces are not metrizable, which means that no function exists that satisfies
the axioms. There are many metrization theorems that give sufficient conditions for a topological
space to be metrizable [328], and virtually any space that arises in motion planning will be
metrizable.
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2. (Reflexivity) p(a,b) =0 if and only if a = b
3. (Symmetry) p(a,b) = p(b,a)
4. (Triangle inequality) p(a,b) + p(b,c) > p(a,c).

The function p defines distances between points in the metric space, and each
of the four conditions on p agrees with our intuitions about distance. The final
condition implies that p is optimal in the sense that the distance from a to ¢ will
always be less than or equal to the total distance obtained by traveling through
an intermediate point b, on the way from a to c.

L, metrics The most important family of metrics over R" is given for any p > 1
as

p(z, ") [Z |lz; — x;\p] ' . (5.1)

For each value of p, (5.1) is called an L, metric (pronounced “el pee”). The three
most common cases are:

Lo: The Fuclidean metric, which is the familiar Euclidean distance in R"™.

Li: The Manhattan metric, which is often nicknamed this way because in R?
it corresponds to the length of a path that is obtained by moving along
an axis-aligned grid. For example, the distance from (0,0) to (2,5) is 7 by
traveling “east two blocks” and then “north five blocks”.

Lo: The L., metric must actually be defined by taking the limit of (5.1) as p
tends to infinity. The result is

Loo(z,2") = max |, — (5.2)
which seems correct because the larger the value of p, the more the largest
term of the sum in (5.1) dominates.

An L, metric can be derived from a norm on a vector space. An L, norm over
R™ is defined as

el = [Z w] B 53)

The case of p = 2 is the familiar definition of the magnitude of a vector, which is
called the Fuclidean norm. For example, assume the vector space is R™ and let
| - || be the standard Euclidean norm. The Ly metric is p(x,y) = ||z — y||. Any
L, metric can be written in terms of a vector subtraction, which is notationally
convenient.
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Metric subspaces By verifying the axioms, it can be shown that any subspace,
Y, of a metric space, (X, p), itself becomes a metric space by restricting the
domain of p to Y. This conveniently provides metrics on any of the manifolds
and varieties from Chapter 4 by simply using any L, metric on R™, the space in
which the manifold or variety is embedded.

Cartesian products of metric spaces Metrics extend nicely across Carte-
sian products, which is very convenient because configuration spaces are often
constructed from Cartesian products, especially in the case of multiple bodies.
Let (X, p,), and (Y, p,) be two metric spaces. A metric space, (Z,p,), can be
constructed for the Cartesian product Z = X x Y by defining the metric p, as

p=(21, 22) = p(x1, Y1, T2, Y2) = C1p(T1, T2) + c2py (Y1, Y2), (5.4)

in which ¢; > 0 and ¢y > 0 are any positive, real constants, and x{,z, € X and
y1,y2 € Y. Other combinations lead to a metric for Z; for example,

p2(21,2) = (e1ph(ar, @0) + caplyr, )7 (5.5)

for any positive integer p. In either of these cases, two positive constants must be
chosen. It is important to understand that many choices are possible, and there
may not necessarily be a “correct” one.

5.1.2 Important Metric Spaces for Motion Planning

Example 5.1.1 (SO(2) metric using complex numbers) If SO(2) is repre-
sented by unit complex numbers, recall that this leads to a subset of R? given by
{(a,b) € R? | a* 4+ b* = 1}. Therefore, any L, metric from R? may be used. Using
the Euclidean metric,

plas, br, az, by) = /(a1 — az)? + (by — ba)?. (5.6)

for any pair of points (a1, b1) and (asg, by). |

Example 5.1.2 (SO(2) metric by comparing angles) You might have noticed
that the previous metric for SO(2) does not give the distance traveling along the
circle. It instead takes a short cut by computing the length of the line segment
that connects the two points. This distortion may be undesirable. An alternative
metric is obtained by directly comparing angles, #; and #,. However, in this case
special care has to be given to the identification, since there are two ways to reach
0y from 6, by traveling along the circle. This causes a min to appear in the metric
definition:

p(91,92) = m1n(|91 — 92|,27T — ‘91 — (92|), (57)
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for which 6,,0, € [0,27]/ ~. This may be alternatively be expressed using the
complex number representation a + bi as an angle between two vectors:

play, by, az,by) = cos™ (ajag + biby), (5.8)

for two points (a, b;) and (az, be). [ |

Example 5.1.3 (An SE(2) metric) Again by using the subspace principle, a
metric can easily be obtained for SE(2). Using the complex number representa-
tion of SO(2), each element of SFE(2) is a point (x4, y;, a,b) € RY. The Euclidean
metric, or any other L, metric on R?, can be immediately applied to obtain a
metric. |

Example 5.1.4 (SO(3) metrics using quaternions) As usual, the situation
becomes more complicated for SO(3). The unit quaternions form a subset, S?, of
R*. Therefore, any L, metric may be used define a metric on S?, but this will not
be a metric for SO(3) because antipodal points need to be identified. This leads
to a min in the metric. Let hy, hy € R?* represent two unit quaternions (which
are being interpreted here as elements of R* by ignoring the quaternion algebra).
The resulting metric is

p(h; ha) = min([|hy = o[, [|hy + hal]), (5.9)

in which the two arguments of the mean correspond to the distances from h; to
hy and —hsy, respectively. The h; + ho appears because hy was negated to yield
its antipodal point, —hs.

Just as in the case of SO(2), the metric in (5.9) may seem distorted because
it measures the length of line segments that cut through the interior of S3, as
opposed to traveling along the surface. This problem can be fixed to give a very
natural metric for SO(3), which is based on spherical linear interpolation. This
takes the line segment that connects the points and pushes outward onto S3. It
is easier to visualize by dropping a dimension. Imagine computing the distance
between to points on S?. If these points lie on the equator, then spherical linear
interpolation yields a distance proportional to that obtained by traveling along
the equator, as opposed to cutting through the interior of S? (for points not on
the equator, use the great circle through the points).

It turns out that this metric can easily be defined in terms of the inner product
between the two quaternions. Recall that for unit vectors, v; and vy in R",
vy - vy = cos @, in which @ is the angle between the vectors. This angle is precisely
what is needed to give the proper distance along S3. The resulting metric is a
surprisingly simple extension of (5.8):

p(hl, hg) = cosfl(alag -+ blbg + c1co + dldg), (510)
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in which each h; = (a;, b;, ¢;, d;). [ |

Example 5.1.5 (Another SE(2) metric) A metric defined on SFE(2) must com-
pare both distance in the plane and an angular quantity. For example, even if
c1 = ¢y = 1, the range for S! is [0,27) using radians, but [0,360) using degrees.
If the same constant ¢y is used in either case, two very different metrics will be
obtained. The units applied to R? and S' are completely incompatible. [ |

Example 5.1.6 (Robot displacement metric) Sometimes this incompatibil-
ity problem can be fixed by considering the robot displacement. For any two
configurations q1, g2 € C, a robot displacement metric can be defined as

plar; ¢2) = max|la(q1) — a(a2)ll (5.11)

in which a(g;) is the position of the point a in the world, when the robot, A is at
configuration ¢;. Intuitively, the robot displacement metric yields the maximum
amount in WV that any part of the robot is displaced when moving from configu-
ration ¢; to qo. ]

Example 5.1.7 (7" metrics) Next consider making a metric over a torus, 7.
The Cartesian product rule (??) can be extended over every copy of S' (one for
each parameter, 6;). This leads to n arbitrary coefficients, ¢y, ca, ..., ¢,. Robot
displacement could be used to determine the coefficients. For example, if robot
is a chain of links, it might make sense to weight changes in the first link more
heavily because the ensure linkage moves in this case. When the last parameter
is changed, only the last link moves; in this case, it might make sense to give less
weight. |

Example 5.1.8 (SE(3) metrics) Metrics for SE(3) can be formed by applying
the Cartesian product rules to a metric for R? and the metric for SO(3), which
is given in (5.10). Again, this unfortunately leaves coefficients to choose. These
issues will arise again in Section 5.3.4, where more details appear on robot disc
displacement. [ |

Pseudometrics In many planning algorithms one may want to define functions
that behave somewhat like a distance function, but may fail to satisfy all of the
metric axioms. If such distance functions are used, they will be referred to as
pseudometrics. One general principle that can be used to derive pseudometrics
is by defining the distance to be the optimal cost-to-go for some criterion (recall
discrete cost-to-go functions from Section 2.4).
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In the continuous setting, the cost could correspond to the distance traveled
by a robot, or even the amount of energy consumed. Sometimes, the resulting
pseudometric will not be symmetric. For example, it requires less energy for a
car to travel downhill, as opposed to uphill. Suppose that a car is only capable of
driving forward. It might travel a short distance to go forward from ¢; to some
g2, but it might have to travel a longer distance to reach g; from ¢, because it
cannot drive in reverse. This issues arose for the Dubins car, which is covered in
Section 13.3.1.

Another example of a pseudometric is the concept of a potential function in
robotics. This function is an important part of the randomized potential field
method, which is discussed in Section 5.4.3. The idea is to make a scalar function
that estimates the distance to the goal; however, there may be additional terms
that attempt to repel the robot away from obstacles. This will generally cause local
minima to appear in the distance function, which may cause potential functions
to violate the triangle inequality.

5.1.3 Basic Measure Theory Definitions

This section briefly indicates how to measure volume in a metric space. This
provides a basis for defining concepts such as integrals or probability densities.
Measure theory is an advanced mathematical topic that is well beyond the scope
of this book; however, it is worthwhile to briefly introduce some of the basic
definitions because they sometimes arise in sampling-based planning.

Measure can be considered as a function that produces real values for subsets
of a metric space, (X, p). Ideally, we would like to produce a nonnegative value,
wu(A) € [0, 00], for any subset A C X. Unfortunately, due to the Banach-Tarski
paradox, if X = R", there are some subsets for which trying to assign volume
leads to a contradiction. If X is finite, this cannot happen. Therefore, it is hard
to visualize the problem; see [664] for a construction of these bizarre sets. Because
of this problem, a workaround was developed that defines a collection of subsets
that does avoids the paradoxical ones. A collection, B of subsets of X is called a
sigma algebra if the following axioms are satisfied:

1. The empty set is in B.
2. If B € B, then X \ B € B.

3. For any collection of countable number of sets in B, their union must also

be in B.

Note that the last two conditions together that the intersection of a countable
number of sets in B is also in B. The sets in B are called the measurable sets.

A nice sigma algebra, called the Borel sets, can be formed from any metric
space (X, p) as follows. Start with the set of all open balls in X. This yields sets
of the form

B(z,r)={2" € X | p(x,2") <r} (5.12)
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for any # € X and any r € [0,00). From the open balls, Borel sets, B, are the
sets that can be constructed from these open balls by using the sigma algebra
axioms. For example, an open square in R? is in B because it can be constructed
as the union of a countable number of balls (infinitely many are needed because
the curved balls must converge to covering the straight square edges). By using
Borel sets, the nastiness of nonmeasurable sets is safely avoided.

Example 5.1.9 A simple example of B can be constructed for R. The open balls
are just the set of all open intervals, (z1,z5) C R, for any x1, 22 € R such that
T < Toa. ]

Using B, a measure, i, is now defined as a function p : B — [0, c0] such that
the measure azioms are satisfied:

1. For the empty set, u({}) = 0.

2. For any collection, Fq, Es, Ej, .. ., of a countable number of pairwise disjoint,
measurable sets, let E denote their union. The measure, p, must satisfy

wE) =3 B (5.13)

in which 7 counts over the whole collection.

Example 5.1.10 (Lebesgue measure) The most common and important mea-
sure is the Lebesgue measure, which becomes the standard notions of length in R,
area in R?, and volume in R” for n > 3. One important concept about Lebesgue
measure is the existence of sets of measure zero. For any countable set, A, the
Lebesgue measure yields pu(A) = 0. For example, what is the total length of the
point {1} C R? The length of any single point must be zero. To satisfy the
measure axioms, sets such as {1,3,4,5} must also have measure zero. Even infi-
nite subsets, such as Z and Q have measure zero in R. If the dimension of a set,
A CR™, is n for some integer n < m, then pu(A) = 0, using the Lebesgue measure
on R™. For example, the set S? C R? has measure zero because the sphere has no
volume. However, we might want to restrict the measure space to be S? and then
define surface area. In this case nonzero measure is obtained. |

Example 5.1.11 (The counting measure) If (X, p) is finite, then the count-
ing measure can be defined. In this case, the measure can be defined over the
entire power set of X. For any A C X, the counting measure yields u(A) = |A|,
the number of elements in A. Verify that this satisfies the measure axioms. M
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Example 5.1.12 (Probability measure) Measure theory even unifies discrete
and continuous probability theory. The measure u can be defined to yield proba-
bility mass. The probability axioms are consistent with the measure axioms, while
yields a measure space. The integrals and sums needed to define expectations of
random variables for continuous and discrete cases, respectively, unify into single
measure-theoretic integral. [ |

Measure theory can be used to define very general notions of integration that
are much more powerful than the Riemann integral that is learned in classical
calculus. One of the most important concepts is the Lebesgue integral. Instead
of being limited to partitioning the domain of integration into intervals, virtually
any partition into measurable sets can be used. Its definition requires the notion
of a measurable function to ensure that the function domain is partitioned into
measurable sets. For further study, see [253, 664].

5.1.4 Using the Correct Measure

Since many metrics and measures are possible, it may sometimes seem that there is
no “correct” choice. This can be frustrating because the performance of sampling-
based planning algorithms can depend strongly on these. Fortunately, there is a
natural measure, called the Haar measure, for the transformation groups SO(N)
and SE(N). Good metrics also follow from the Haar measure, but unfortunately,
there are still arbitrary alternatives.

The basic requirement is that the measure does not vary when the sets are
transformed using the group elements. More formally, let G represent a matrix
group with real-valued entries, and let p denote a measure on G. If for any
measurable subset A C G, and any element g € G, u(A) = pu(gA) = u(Ag), then
i is called the Haar measure? for G. The notation gA represents the set of all
matrices obtained by the product ga, for any a € A. Similarly, Ag represents all
products of the form ag.

Example 5.1.13 (Haar measure for SO(2)) The Haar measure for SO(2) can
be obtained by parameterizing the rotations as [0, 1]/ ~ with 0 and 1 identified,
and letting p be the Lebesgue measure on the unit interval. To see the invariance
property, consider the interval [1/4,1/2], which produces a set A C SO(2) of
rotation matrices. These correspond to the set of all rotations from 6 = 7/2 to
0 = m. The measure yields u(A) = 1/4. Now consider multiplying every matrix
a € A by a rotation matrix, g € SO(2), to yield Ag. Suppose g is the rotation
matrix for § = 7. The set Ag is the set of all rotation matrices from 6 = 37 /2
up to # = 27 = 0. The measure, u(Ag) = 1/4 remains unchanged. Similarly,
invariance for gA may be checked. The transformation g translates the intervals

2Such a measure is unique up to scale, and exists for any locally-compact topological group
[253, 664]
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in [0,1]/ ~. Since the measure is based on interval lengths, it is invariant with
respect to translation. Note that p can be multiplied by a fixed constant (such as
27) without affecting the invariance property.

An invariant metric can also be defined from the Haar measure on SO(2). For
any points x1, s € [0, 1], let p = p([z1, 22]), in which [zq, o] is the shortest-length
(smallest measure) interval that contains z; and x2 as endpoints. This metric was
already given in Example 5.1.2.

To obtain examples that are not the Haar measure, let u represent probabil-
ity mass over [0, 1], and define any nonuniform probability density function (the
uniform density yields the Haar measure). Any shifting of intervals will change
the probability mass, resulting in a different measure.

Note that failing to use the Haar measure weights some parts of SO(2) more
heavily than others. Sometimes imposing a bias may be desirable, but it is at least
as important to know how to eliminate bias. These ideas may appear obvious, but
in the case of SO(3) and many other groups it is more challenging to eliminate
this bias and obtain the Haar measure. |

Example 5.1.14 (Haar measure for SO(3)) For SO(3) it turns out once again
that quaternions come to the rescue. If unit quaternions are used, recall that
SO(3) becomes parameterized in terms of S?, but opposite points are identified.
It can be shown that the surface area on S* is the Haar measure. (Since S? is a
three-dimensional manifold, it may more appropriately be considered as a bound-
ary volume.) It will be seen in Section 5.2.2 that uniform random sampling over
SO(3) must be done with a uniform probability density over S®. This corresponds
exactly to the Haar measure. If instead, SO(3) is parameterized with Euler angles,
the Haar measure will not be obtained. An unintentional bias will be introduced;
some rotations in SO(3) will have more weight than others for no particularly
good reason. ]

5.2 Sampling Theory

5.2.1 Motivation and Basic Concepts

The state space for motion planning, C, is uncountably infinite, yet any planning
algorithm can consider at most a countable number of samples. If the algorithm
runs forever, this may be countably infinite, but in practice, we expect it to ter-
minate early after only considering a finite number of samples. This mismatch
between the cardinality of C and the set that can be probed by an algorithm moti-
vates careful consideration of sampling techniques. Once the sampling component
has been defined, discrete planning methods from Chapter 2 may be adapted to
the current setting. Their performance, however, hinges on the way the C-space
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is sampled.

Since sampling-based planning algorithms will often be terminated early, the
particular order in which samples are chosen becomes critical. Therefore, a dis-
tinction is made between a sample set and a sample sequence. A unique sample
set can always be constructed from a sample sequence, but many sequences can
be constructed from one sample set.

Denseness Consider constructing an infinite sample sequence over C. What
would be some desirable properties for this sequence? It would be nice if the
sequence eventually reached every point in C, but this is impossible because C is
uncountably infinite. Strangely, it is still possible for a sequence to get arbitrarily
close to every element of C (assuming C C R™). In topology, this is the notion
of denseness. Let U and V' be any subsets of a topological space. The set U is
said to be dense in V if cl(U) =V (recall the closure of a set from Section 4.1.1).
This means adding the boundary points to U produces V. A simple example is
that (0,1) C R is dense in [0,1] € R. A more interesting example is that the
set Q of rational numbers is both countable and dense in R. Think about why.
For any real number, such as m € R, there exists a sequence of fractions that will
converge to it. The sequence fractions is a subset of Q. A sequence will be called
dense if its underlying set is dense. The bare minimum for sampling methods is
that that produce a dense sequence. Stronger requirements, such as uniformity
and regularity, will be explained shortly.

A random sequence is probably dense One of the simplest ways concep-
tually to obtain a dense sequence is to pick points at random in [0, 1]. Suppose
I C [0,1] is an interval of length e. If k& samples are chosen independently at
random, the probability that none of them falls into I is e*. As k approaches
infinity, this probability converges to zero. This means that the probability that
any interval in [0, 1] contains no points converges to zero. One small technicality
exists. The infinite sequence of independently, randomly chosen points is dense
with probability one, which is not the same as being guaranteed. This is one of the
strange outcomes of dealing with uncountably infinite sets in probability theory.
For example, if a number between [0, 1] is chosen at random, the probably that
/4 is chosen is zero; however, it is still possible. (The probability is just the
Lebesgue measure, which is zero for a set of measure zero.) For motion planning
purposes, this technicality has no practical implications; however if k is not very
large, then it might be frustrating to obtain only probabilistic assurances, as op-
posed to absolute guarantees of coverage. The next sequence is guaranteed to be
dense because it is deterministic.

The van der Corput sequence A beautiful yet underutilized sequence was
published in 1935 by van der Corput, a Dutch mathematician [759]. It exhibits
many ideal qualities for applications. At the same time, it is based on a simple
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naive reverse van der

i sequence binary binary Corput Points in [0,1]/ ~

1 0 .0000  .0000 0 ® ®
2 1/16 .0001  .1000 1/2 o ® O
3 1/8 .0010  .0100 1/4 o ® O O
4 3/16 .0011  .1100 3/4 o O O ® O
5 1/4 .0100  .0010 1/8 c—eoO O O O
6 5/16 .0101  .1010 5/8 o—-~Oo0—O0—"0Ce0——=0
7 3/8 .0110  .0110 3/8 o—O0—-O00000—™0
8 7/16 0111 1110 7/8 0—0—0—0—0—0—0—e—0
9 1/2 1000 .0001  1/16 000—O0—0—0—000-=0
10 9/16 1001 1001 9/16 000—0—0—000—0—0-0
11 5/8 1010 .0101  5/16 000—0e0—000—0—0—0
12 11/16 1011 1101 13/16 CO0O0—000—000—0e0—0
13 3/4 1100 .0011  3/16 000e000—000—000—0
14 13/16 1101 1011 11/16 19,0,0,0,0,0,0.,0,0,0, 10,0,0.0
15 7/8 A110 0111 7/16 0000000800 00000—0
16 15/16 d111 0 1111 15/16 19,0,0,0,0,0,0,0,0,0,0,0,0,0,0, L0

Figure 5.2: The van der Corput sequence is obtained by reversing the bits in the
binary decimal representation of the naive sequence.

idea. Unfortunately, it is only defined for the unit interval. The quest to extend
many of its qualities to higher-dimensional spaces motivates the formal quality
measures and sampling techniques in the remainder of this section.

To explain the van der Corput sequence, let C = [0,1]/ ~, in which 0 ~ 1
(recall identifications from Section 4.1.2), which can be interpreted as SO(2).
Suppose that we want to place 16 samples in C. An ideal choice is the set S =
{i/16 | 0 < i < 16}, which evenly spaces the points at intervals of length 1/16.
This means that no point in C is further than 1/32 from the nearest sample. What
if we want to make S into a sequence. What is the best ordering? What if we
are not even sure that 16 points are sufficient? Maybe 16 is too few or even too
many.

The first two columns of Figure 5.2 show a naive attempt at making S into
sequence by sorting them by increasing value. The problem is that it after i = 8,
half of C has been neglected. It would be preferable to have a nice covering of
C for any i. van der Corput’s clever idea was to reverse the order of the bits,
when the sequence is represented with binary decimals. In the original sequence,
the most significant bit toggles only once, while the least significant bit toggles in
every step. By reversing the bits, the most significant bit toggles in every step,
which means that the sequence alternates between the lower and upper halves of
C. The third and fourth columns of Figure 5.2 show the original and revered-order
binary representations. The resulting sequence dances around [0, 1]/ ~ in a nice
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way, as shown in the last two columns of Figure 5.2. Let v(i) denote the i** point
of the van der Corput sequence.

In contrast to the naive sequence, each v(7) lies far away from v(i + 1). Fur-
thermore, the first ¢ points of the sequence, for any 7, provide reasonably-uniform
coverage of C. When ¢ is a power of 2, the points are perfectly spaced. For other
1, the coverage is still good in the sense that the number of points that appear
in any interval of length [ will be roughly /. For example, when ¢ = 10, every
interval of length 1/2 contains roughly 5 points.

The length, 16, of the naive sequence is actually not important. If instead
8 was used, the same v(1), ..., ¥(8) would be obtained. Observe in the reverse
binary column of Figure 5.2, this amounts to removing the last zero from each
binary decimal representation, which does not alter their values. If 32 is used
for the naive sequence, then the same v(1), ..., v(16) will be obtained, and the
sequence would continue nicely from v(17) to v(32). To obtain the van der Corput
sequence from v(33) to v(64), six-bit sequences are reversed (corresponding to the
case in which the naive sequence has 64 points). The process repeats to produce
an infinite sequence that does not require a fixed number of points to be a priori
specified. In addition to the nice uniformity properties for every ¢, the infinite
van der Corput sequence is also dense in [0, 1]/ ~. There implies that every open
subset must contain at least one sample.

You have now seen ways to generate nice samples in a unit interval both ran-
domly and deterministically. Sections 5.2.2-5.2.4 explain how to generate dense
samples with nice properties in the complicated spaces that arise in motion plan-
ning.

5.2.2 Random Sampling

Now imagine moving beyond [0, 1] and generating a dense sample sequence for
any bounded configuration space, C C R™. In this section the goal is to gener-
ate uniform random samples. This means that the probability density function
p(q) over C is uniform. Wherever relevant, it also will mean that the probability
density is also consistent with the Haar measure. We will not allow any artificial
bias to be introduced by selecting a poor parameterization. For example, pick-
ing uniform random Euler angles does not lead to uniform random samples over
SO(3). However, picking uniform random unit quaternions will work perfectly
because quaternions use the same parameterization as the Haar measure; both
choose points on S3.

Random sampling is the easiest of all sampling methods to apply to configura-
tion spaces. One of the main reasons is that C-spaces are formed from Cartesian
products, and independent random samples extend easily across these products.
If X = X x X35, and a uniform random samples, x; and x5 taken from X; and Xs,
respectively, then (z1,x2) is a uniform random sample for X. This is very conve-
nient in implementations. For example, if the motion planning problem involves
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15 robots that each translate for any (x;,y;) € [0, 1]?. This yields C = [0, 1]*. In
this case, 30 points can be chosen uniformly at random from [0, 1] and combined
into a 30-dimensional vector. Samples generated this way will be uniformly ran-
domly distributed over C. Combining samples over Cartesian products is much
more difficult for nonrandom (deterministic) methods, presented in Sections 5.2.3

and 5.2.4.

Generating a random element of SO(3) One has to be very careful about
sampling uniformly over the space of rotations. The probability density must
correspond to the Haar measure, which means that a random rotation should be
obtained by picking a point at random on S* and forming the unit quaternion. An
extremely clever way to sample SO(3) uniformly at random is given in [26], and
is reproduced here. Choose three points u, ug, us € [0, 1] uniformly at random.
The random quaternion is given by the simple expression

h = (V1 —uysin2mug, /1 — uy cos2mug, /uy sin 2wug, \/uy cos 2mug). (5.14)

A full explanation of the method is given in [26], and a brief intuition is given
here. First drop down a dimension and pick uy,us € [0,1] to generate points
on S?. Let u; represent the value for the third coordinate, (0,0,u;) € R?. The
slice of points on S? for which u; is fixed for 0 < u; < 1 yields a circle on S,
that corresponds to some line of latitude on S?. The second parameter selects the
longitude, 27uy. Unfortunately, the points will not be uniformly distributed over
S?. Why? Imagine S? as the crust on a spherical loaf of bread that is run through
a bread slicer. The slices are cut in a direction parallel to the equator, and are of
equal thickness. The crusts of each slice will not have equal area; therefore, the
points will not be uniformly distributed. However, for S?, the 3D crusts happen to
have the same area (or measure); this can be shown by evaluating surface integrals.
This implies that a (infinitesimal) slice can be selected uniformly at random with
w1, and a point on the crust is selected uniformly at random by uy and us. For S*
and beyond, the measure of the crusts vary, which means this elegant scheme only
works for S3. To respect the antipodal identification for rotations, any quaternion
h found in the lower hemisphere (i.e., a < 0) can be negated to yield —h. This
will not affect the uniform random distribution of the samples.

Generating random directions Some sampling-based algorithms require choos-
ing motion directions at random. From a configuration ¢, the possible directions
of motion can be imagined as being distributed around a sphere. In an (n + 1)-
dimensional C-space, this corresponds to sampling on S™. For example, choosing
a direction in R? amounts to picking an element of S'; this can be parameter-
ized as 0 € [0,27]/ ~. If n = 3, then the previously mentioned trick for SO(3)
should be used. If n = 2 or n > 3, then samples can be generated using a
slightly more expensive method that exploits spherical symmetries of the multi-
dimensional Gaussian density function [251]. The method is explained for R™*!;
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boundaries and identifications must be taken into account for other spaces. For
each of the n + 1 coordinates, generate a sample, u;, from a zero-mean Gaussian
distribution with the same variance for each coordinate. Following from the Cen-
tral Limit Theorem, u; can be approximately obtained by generating k£ samples
at random over [—1, 1] and adding them (k < 12 is usually sufficient). The vector
(w1, U, ..., Ups1) gives a random direction in R™! because each u; was obtained
independently, and the level sets of the resulting probability density function are
spheres. We did not use uniform random samples for each u; because this would
bias the directions toward the corners of a cube; instead, the Gaussian yields
spherical symmetry. The final step is to normalize the vector by taking u;/||ul|
for each coordinate.

Pseudorandom number generation Although there are advantages to uni-
form random sampling, there are also several disadvantages. This motivates the
consideration of deterministic alternatives. Since there are tradeoffs, it is impor-
tant to understand how to use both kinds of sampling in motion planning. One of
the first issues is that computer-generated numbers are not random.® A pseudo-
random number generator is usually employed, which is a deterministic method
that simulates the behavior of randomness. Since the samples are not truly ran-
dom, the advantage of extending the samples over Cartesian products does not
necessarily hold. Sometimes problems are caused by unforeseen deterministic de-
pendencies. One of the best pseudorandom number generators for avoiding such
troubles is the Mersenne twister [540], for which implementations can be found
on the internet.

To help see the general difficulties, the classical linear congruential pseudo-
random number generator is briefly explained [478, 579]. The method uses three
integer parameters, M, a, and ¢, which are chosen by the user. The first two, M
and a must be relatively prime, meaning gcd(M, a) = 1. The third parameter, c,
must be chosen to satisfy 0 < ¢ < M. Using modular arithmetic, a sequence can
be generated as

Yir1 = ay; + ¢ mod M, (5.15)

by starting with some arbitrary seed 1 < yg < M. Pseudorandom numbers in
[0, 1] are generated by the sequence

x; = y;/M. (5.16)

The sequence is periodic; therefore, M is typically very large (e.g., M = 231 —1).
Due to periodicity, there are potential problems of regularity appearing in the
samples, especially when applied across a Cartesian product to generate points in
R™. Particular values must be chosen for the parameters, and statistical tests are
used to evaluate the samples either experimentally or theoretically [579].

3There are exceptions which use physical phenomena as a random source.
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Testing for randomness Thus, it is important to realize that even the “ran-
dom” samples are deterministic. They are designed to optimize performance on
statistical tests. Many sophisticated statistical test of uniform randomness are
used. One of the simplest, the chi-square test, is described here. This test mea-
sures how far computed statistics are their expected value. As a simple example,
suppose C = [0, 1] and is partitioned into a 10 by 10 array of 100 square boxes.
If a set, P, of k samples is chosen at random, then intuitively each box should
receive roughly £/100 of the samples. An error function can be defined to measure
how far from true this intuition is:

100

e(P) =) (b — k/100)*, (5.17)

=1

in which b; is the number of samples that fall into box 4. It is shown [391] that
e(P) will follow a chi-squared distribution. A surprising fact is that the goal is not
to minimize e(P). If this value is too small, we would declare that the samples are
too uniform to be random! Imagine k£ = 1,000,000 and exactly 10,000 samples
appeared in each of the 100 boxes. This yields e(P) = 0, but how likely is this
to ever occur? The value must generally be larger (it appears in many statistical
tables) to account for the irregularity due to randomness.

(a) 196 pseudo-random samples (b) 196 pseudo-random samples

Figure 5.3: Irregularity in a collection of (pseudo)random samples can be nicely
observed with Voronoi diagrams.

This irregularity can be observed in terms of Voronoi diagrams, as shown in
Figure 5.3. The Voronoi diagram partitions R? into regions based on the samples.
Each sample, z, has an associated Voronoi region, Vor(z). For any point y €
Vor(z), x is the closest sample to y using Euclidean distance. The different sizes
and shapes of these regions gives some indication of the required irregularity of
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(a) Lo Dispersion (b) Lo Dispersion

Figure 5.4: Reducing dispersion means reducing the radius of the largest empty
ball.

random sampling. This irregularity may be undesirable for sampling-based motion
planning, and is somewhat repaired by the deterministic sampling methods of
Sections 5.2.3 and 5.2.4 (however, these methods also have drawbacks).

5.2.3 Low-Dispersion Sampling

This section describes describes an alternative to random sampling. Instead, the
goal is to optimize a criterion called dispersion [579]. Intuitively, the idea is to
place samples in a way that makes the largest uncovered area be as small as
possible. This will yield a generalization of the idea of resolution. For a grid, the
resolution may be selected by defining the step size for each axis. As the step size
is decreased, the resolution increases. If a grid-based motion planning planning
algorithm can increase the resolution arbitrarily, it becomes resolution complete.
Using the concepts in this section, it may instead reduce its dispersion arbitrarily
to obtain a dispersion complete algorithm. This applies to multiresolution grids
or any other dense sample sequence. These concepts are explained further at the
end of Section 5.4.2.

Dispersion definition The dispersion® of a set P of samples in a metric space
(X, p) is
d(P) = sup min p(z, p). (5.18)

zeX PEP

4The definition is unfortunately backwards from intuition. Lower dispersion means that the
points are nicely dispersed. Thus, more dispersion is bad, which is counterintuitive.
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(a) 196-point Sukharev grid (b) 196 lattice points

Figure 5.5: The Sukharev grid and a lattice.

Figure 5.4 gives an interpretation of the definition for two different metrics. An
alternative way to consider dispersion is as the radius of the largest empty ball
(for the L., metric, the balls are actually cubes). Note that at the boundary (if it
exists), the empty ball becomes truncated because it cannot exceed the boundary.
There is also a nice interpretation in terms of Voronoi diagrams. This in Figure
5.3 for L, dispersion in R2. The Voronoi vertices are the points at which three or
more Voronoi regions meet. These are points in C for which the nearest sample
is far. An open, empty disc can be placed at any Voronoi vertex, with a radius
equal to the distance to the three (or more) closest samples. The radius of the
largest disc among those places at all Voronoi vertices is the dispersion. This
interpretation extends nicely to higher dimensions.

Making good grids Optimizing dispersion will force the points to be dis-
tributed more uniformly over C. This causes them to fail statistical tests, but
the point distribution is often better for motion planning purposes. Consider the
best way to reduce dispersion if p is the Lo, metric and X = [0, 1]". Suppose that
the number of samples, k, is given. Optimal dispersion is obtained by partition-
ing [0, 1] into a grid of cubes, and a point is placed at the center of each cube, as
shown for n = 2 and k£ = 96 in Figure 5.5.a. The number of cubes per axis must
be |k= |, in which |-] denotes the floor. If k= is not an integer, then there will
be leftover points that may be placed anywhere without affecting the dispersion.
Notice that kn just gives the number of points per axis for a grid of k points in n
dimensions. The resulting grid will be referred to as a Sukharev grid [728].

The dispersion obtained by the Sukharev grid is the best possible. Therefore,
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a useful lower bound can be given for any set, P, of k samples [728]:

1
oF) 2 2|Ni|

(5.19)

This implies that keeping dispersion fixed requires exponentially many points in
dimension.

At this point you might wonder why L., was used instead of Ly, which seems
more natural. This is because the Ly case is extremely difficult to optimize (except
in R?, where a tiling of equilateral triangles can be made, with a point in the center
of each one). Even for simple problem of determining the best way to distribute
a fixed number of points in [0, 1]* is unsolved for most values of k. See [174] for
extensive treatment of this problem.

Suppose now that other topologies are considered, instead of [0,1]". Let X =
[0,1]/ ~, in which the identification produces a torus. The situation is quite
different because X no longer has a boundary. The Sukharev grid still produces
optimal dispersion, but it can also be shifted without increasing the dispersion.
In this case, a standard grid may also be used, which has the same number of
points as the Sukharev grid, but is translated to the origin. Thus, the first grid
point is (0, 0), which is actually the same as 2" — 1 other points by identification.
If X represents a cylinder and the number of points, k, is given, then it is best to
just use the Sukharev grid. It is possible, however, to shift each coordinate that
behaves like S*. If X is rectangular, but not a square, a good grid can still be made
by tiling the space with cubes. In some cases this will produce optimal dispersion.
For complicated spaces such as SO(3) no grid exists in the sense defined so far. It
is possible, however, to generate grids on the faces of an inscribed Platonic solid
and lift the samples to S™ with relatively little distortion [787]. For example, to
sample S?, Sukharev grids can be placed on each face of a cube. These are lifted
to obtain the warped grid shown in Figure 5.6.

Example 5.2.1 Suppose that n =2 and k = 9. If X = [0, 1]?, then the Sukharev
grid yields points for the nine cases in which either coordinate may be 1/6, 1/2,
or 5/6. The L, dispersion is 1/6. The spacing between the points along each axis
is 1/3, which is twice the dispersion. If instead X = [0, 1]?/ ~, which represents
a torus, then the nine points may be shifted to yield the standard grid. In this
case each coordinate may be 0, 1/3, or 2/3. The dispersion and spacing between
the points remains unchanged. |

One nice property of grids is that they have a lattice structure. This means
that neighboring points can be obtained very easily be adding or subtracting
vectors. Let g; be an n-dimensional vector called a generator. A point on a lattice
an be expressed as

T = kg, (5.20)
j=1
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Figure 5.6: A distorted grid can even be placed over spheres and SO(3) by putting
grids on faces an inscribed cube and lifting them to the surface.

Figure 5.7: A lattice can be considered as a grid in which the generators are not
necessarily orthogonal.
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for n independent generators, as depicted in Figure 5.7. In a 2D grid, the gener-
ators represent up and right. If X = [0,100]%, and a standard grid with integer
spacing is used, then the neighbors of the point (50,50) are obtained by adding
(0,1), (0,—1), (—=1,0) or (1,0). In a general lattice, the generators need not be or-
thogonal. An example is shown in Figure 5.5.b. In Section 5.4.2 lattice structure
will become important and convenient for defining the search graph.

Infinite sequences Now suppose that the number, k, of samples is not given.
The task is to define an infinite sequence that has the nice properties of the
van der Corput sequence, but works for any dimension. This will become the
notion of a multiresolution grid. The resolution can be iteratively doubled. For a
multiresolution standard grid in R"™, the sequence will first place one point at the
origin. After 2" points have been placed, there will be a grid with two points per
axis. After 4" points, there will be four points per axis. Thus, after 2™ points
for any positive integer i, a grid with 2¢ points per axis will be represented. If
we are only allowed to use complete grids, then it becomes clear why they appear
inappropriate for high-dimensional problems. For example, if n = 10, then full
grids appear after 1, 219 220 230 etc., samples. Each doubling in resolution
multiplies the number of points by 2". Thus, to use grids in high dimensions, one
must be willing to accept partial grids, and define an infinite sequence that places
points in a nice way.

The van der Corput sequence can be extended in a straightforward way as
follows. Suppose X = T? = [0,1]?/ ~. The original van der Corput sequence
started by counting in binary. The least significant bit was used to selected which
half of [0, 1] was sampled. In the current setting, the two least significant bits can
be used to select the quadrant of [0, 1]>. The next two bits can be used to selected
the quadrant within the quadrant. This procedure will continue recursively to
obtain a complete grid after k& = 2% points, for any positive integer i. For any
k, however, there will be only a partial grid. The points will be distributed
with optimal L., dispersion. This same idea can be applied in dimension n by
using n bits at a time from the binary sequence to select the octant. There are
many other orderings that produce L..-optimal dispersion. Selecting orderings
that additionally optimize other criteria, such as discrepancy or L, dispersion are
covered in [495, ?7]. Unfortunately, it is more difficult to make a multiresolution
Sukharev grid. The base becomes 3 instead of 2; after every 3™ points a complete
grid will be obtained. For example, in one dimension, the first point appears
at 1/2. The next two points appear at 1/6 and 5/6. The next complete one-
dimensional grid appears after there are 9 points.

Dispersion bounds Since the sample sequence is infinite, it is interesting to
consider asymptotic bounds on dispersion. It is known that for X = [0, 1]" and
any L, metric, the best possible asymptotic dispersion is O(k=/™), for k points
and n dimensions [579]. In this expression, k is the variable in the limit, and n
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is treated as a constant. Therefore, any function of n may appear as a constant
(ie., O(f(n)k=Y/") = O(k~Y™) for any positive f(n)). An important practical
consideration is the size of f(n) in the asymptotic analysis. For example, for the
van der Corput sequence from Section 5.2.1, the dispersion is bounded by 1/k,
which means that f(n) = 1. This does not seem good because for values of k
that are powers of two, the dispersion is 1/2k. Using a multi-resolution Sukharev
grid, the constant becomes 3/2 because it takes a longer time before a full grid
is obtained. Nongrid, low-dispersion infinite sequences exist that have f(n) = ﬁ
[579]; these are not even uniformly distributed, which is rather surprising.

5.2.4 Low-Discrepancy Sampling

In some applications, selecting points that align with the coordinate axis may be
undesirable. Therefore, extensive sampling theory has been developed to deter-
mine methods that avoid alignments while distributing the points uniformly. In
sampling-based motion planning, grids sometimes yield unexpected behavior be-
cause a row of points may align nicely with an corridor in Cfye.. In some cases, a
solution is obtained with surprisingly few samples, and in others, too many sam-
ples are necessary. These alignment problems, when they exist, general drive the
variance higher in computation times because it is difficult to predict when they
will help or hurt. This provides motivation for developing sampling techniques
that try to reduce this sensitivity.

Discrepancy theory and its corresponding sampling methods were developed to
avoid these problems for numerical integration [579]. Let X be a measure space,
such as [0,1]". Let R be a collection of subsets of X that is called a range space.
In most cases, R is chosen as the set of all axis-aligned rectangular subsets; hence,
this will be assumed from this point onward. With respect to a particular point
set, P, and range space, R, the discrepancy [768] for k samples is defined as

(5.21)

D(P,R) = sup ‘

P )
ReER

k 1(X)

in which |P N R| denotes the number of points in P N R. Each term in the
supremum considers how well P can be used to estimate the volume of R. For
example, if p(R) is 1/5, then we would hope that about 1/5 of the points in P
fall into R. The discrepancy measures the largest volume estimation error that
can be obtained over all sets in R.

Asymptotic bounds There are many different asymptotic bounds for discrep-
ancy, depending on the particular range space and measure space [538]. The most
widely referenced bounds are based on the standard range space of axis-aligned
rectangular boxes in [0, 1]". There are two different bounds, depending on whether
or not the number of points, k, is given. The best possible asymptotic discrep-
ancy for a single sequence is O(k~1log" k). This implies that & is not specified.
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Figure 5.8: Discrepancy measures whether the right number of points fall into
boxes. It is related to the chi-square test, but optimizes over all possible boxes.

If, however, for every k a new set of points can be chosen, then the best possible
discrepancy is O(k~'log™ ' k). This lower bound corresponds to the best that
can be achieved by a sequence of point sets, as opposed to a single sequence.

Relating Dispersion and Discrepancy Since balls have volume, there is a
close relationship between discrepancy, which is measure-based, and dispersion,
which is metric-based. For example, for any P C [0, 1]",

§(P, Ls) < D(P,R)Y4, (5.22)

which means low-discrepancy implies low-dispersion. Note that the converse is
not true. An axis-aligned grid yields high discrepancy because of alignments with
the boundaries of sets in R, but the dispersion is very low. Even though low-
discrepancy implies low-dispersion, lower dispersion can usually be obtained by
ignoring discrepancy (this is one less constraint to worry about). Thus, there is a
tradeoff that must be carefully considered in applications.

Low-discrepancy sampling methods Due to the fundamental importance of
numerical integration, and the intricate link between discrepancy and integration
error, most of the literature has led to low-discrepancy sequences and point sets
[579, 712, 744]. Although motion planning is quite different from integration, it
is worth evaluating these carefully-constructed and well-analyzed samples. Their
potential use in motion planning is no less reasonable than using pseudo-random
sequences, which were also designed with a different intention in mind (satisfying
statistical tests of randomness).

Low-discrepancy sampling methods can be divided into three categories: 1)
Halton/Hammersley sampling, 2) (t,s)-sequences and (t,m,s)-nets, and 3) lattices.
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The first category represents one of the earliest methods, based on extending the
van der Corput sequence. The Halton sequence is an n-dimensional generalization
van der Corput sequences, but instead of using binary representations, a different
basis is used for each coordinate [311]. The result is a reasonable deterministic
replacement for random samples in many applications. The resulting discrepancy
(and dispersion) is lower than that for random samples (with high probability).
Figure 5.9.a shows the first 196 Halton points in R2.

Choose n relatively prime integers pi,ps,...,p, (usually the first n primes,
p1 = 2, pp = 3, ..., are chosen). To construct the i'® sample, consider the
digits of the base p representation for ¢ in the reverse order (that is, write i =
ao+paj +p*as+pPaz+. .., where each a; € {0,1,...,p}) and define the following
element of [0, 1]:

rp(i) = =+ =+ = — - (5.23)
The i* sample in the Halton sequence is

(s (1), T (1), - 7, (0)), i=0,1,2,.... (5.24)

Suppose instead, that k, the required number of points is known. In this case,
a better distribution of samples can be obtained. The Hammersley point set is an
adaptation of the Halton sequence [312]. Using only d — 1 distinct primes, the i*"
sample in a Hammersley point set with £ elements is

(%,rpl(z'), . ,rpdl(z')> . i=0,1,...,N—1. (5.25)

Figure 5.9.b shows the Hammersley set for n = 2 and k£ = 196.

The construction of Halton/Hammersley samples is simple and efficient, which
has led to widespread application. They both achieve asymptotically optimal
discrepancy; however, the constant in their asymptotic analysis increases more
than exponentially with dimension [579]. The constant for the dispersion also
increases exponentially, which is must worst than for the methods of Section 5.2.3.

Improved constants are obtained for sequences and finite points by using (t,s)-
sequences, and (t,m,s)-nets, respectively [579]. The key idea is to enforce zero
discrepancy over a particular subset of R known as canonical rectangles, and all
remaining ranges in R will contribute small amounts to discrepancy. The most
famous and widely-used (t,s)-sequences are Sobol’ and Faure (see [579]). The
Niederreiter-Xing (t,s)-sequence has the best-known asymptotic constant, (a/d)¢,
in which a is a small constant [581].

The third category is lattices, which can be considered as a generalization of
grids that allows nonorthogonal axes [538, 712, 765]. As an example, consider
Figure 5.5.b, which shows 196 lattice points generated by the following technique.
Let « be a positive irrational number. For a fixed k (lattices are closed sample

sets), generate the i point according to (%, {ie}), in which {-} denotes the frac-

tional part of the real value (modulo-one arithmetic). In Figure 5.5.b, a = @,
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(a) 196 Halton points

Figure 5.9: The Halton and Hammersley points are easy to construct and provide
a nice alternative to random sampling that achieves more regularity. Compare
the Voronoi regions to those in Figure 5.3. Beware that although these sequences

produce asymptotically optimal discrepancy, their performance degrades substan-
tially in higher dimensions (e.g., beyond 10).

the Golden Ratio. This procedure can be generalized to d dimensions by picking
d — 1 distinct irrational numbers. A technique for choosing the a parameters by
using the roots of irreducible polynomials is discussed in [538]. The i** sample in
the lattice is

(% (i}, {mn_l}) | (5.26)

Recent analysis shows that some lattice sets achieve asymptotic discrepancy
that is very close to that of the best-known non-lattice sample sets [323, 745].
Thus, restricting the points to lie on a lattice seems to entail little or no loss in
performance, but with the added benefit of a regular neighborhood structure that
is useful for path planning. Historically, lattices have required the specification
of k in advance; however, there has been increasing interest in extensible lattices,
which are infinite sequences [324, 745].

5.3 Collision Detection

Collision detection is a critical component of sampling-based planning. Even
though it is often treated as a black box, it is important to study its inner work-
ings to understand the information it provides and its associated computational
cost. In most applications, the majority of computation time is spent in collision
checking, as opposed to planning.
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A variety of collision detection algorithms exist, ranging from theoretical algo-
rithms that have excellent computational complexity to heuristic, practical algo-
rithms whose performance is tailored to a particular application. The techniques
from Section 4.3 can, of course, be used to develop a collision detection algorithm
by defining a logical predicate using the geometric model of C,;s. For the case of a
2D world, with a convex robot and obstacle, this leads to an linear-time collision
detection algorithm.

5.3.1 Basic Concepts

Just as in Section 3.1.1, collision detection may be viewed as a logical predicate. In
the current setting it appears as ¢ : C — {TRUE , FALSE }, in which the domain
is C instead of W. If g € Cys, then ¢(q) = TRUE ; otherwise, ¢(q) = FALSE .

Hausdorff Distance For the boolean-valued function, ¢, there is no informa-
tion about how far the robot is from hitting the obstacles. Such information is
very important in planning algorithms. A distance function provides this infor-
mation, and is defined as d : C — [0, 00), in which the real-value in the range of f
indicates the distance in the world, W, between the closest pair of points over all
pairs from A(q) and O. In general, for two closed, bounded subsets, £ and F, of
R™, the Hausdorff distance is defined as

E, F) = minmin ||e — 2
p(E, F) = minmin le — f] (5.27)

in which || - || is the Euclidean norm. Clearly, if E N F # (), then p(E, F) = 0.
The methods described in this section may be used to either compute distance,
or only determine whether ¢ € Cus. In the latter case, the computation is often
must faster because less information is required.

Two-phase collision detection Suppose that the robot is a collection of m
attached links, Ay, As, ..., A,,, and that O has k connected components. For this
complicated situation, collision detection can be viewed as a two-phase process.

1. In the broad phase, the task is to avoid performing expensive computations
for bodies that are far from each other. Simple bounding boxes can be
placed around each of the bodies, and simple tests can be performed to
avoid costly collision checking unless the boxes overlap. Hashing schemes
can be employed in some cases to greatly reduce the number of pairs of
boxes that have to be tested for overlap [?]. For a robot that consists of
multiple bodies, the pairs of bodies that should be considered for collision
must be specified in advance, as described in Section 4.3.1.

2. In the narrow phase, individual pairs of bodies are each checked carefully
for collision. Approaches to this phase are described in Sections 5.3.2 and
5.3.3.
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o477

Figure 5.10: Four different kinds of bounding regions: a) sphere, b) axis-aligned
bounding box (AABB), c) oriented bounding box (OBB), d) convex hull. Each
one usually provides a tighter approximation than the previous one, but is more
expensive to test for overlapping pairs.

5.3.2 Hierarchical Methods

In this section, suppose that two complicated, nonconvex bodies, I and F', are
to be checked for collision. Each body could be part of either the robot or the
obstacle region. They are subsets of R? or R3, defined using any kind of geometric
primitives, such as triangles in R®. Hierarchical methods generally represent each
body as a tree in which each node represents a bounding region that contains all
of the points in one portion of the body. The bounding region of the root node
contains all of the points in the body.

There are generally two opposing criteria that guide the selection of the type
of bounding region::

1. The region should fit the actual data as tightly as possible.
2. The intersection test for two regions should be as efficient as possible.

Several popular choices are shown in Figure 5.10 for an L-shaped body.

The tree is constructed for a body, E (or alternatively, F) recursively as follows.
For each node, consider the set, X, of all points in F that are contained in
the bounding region. Two child nodes are constructed by defining two smaller
bounding regions whose union covers X. The split is made so that the portion
covered by each child is of similar size. If the geometric model consists of primitives
such as triangles, then a split could be made separate the triangles into two sets
of roughly the same number of triangles. A bounding region is then computed
for each of the children. Figure 5.11 shows an example of a split for the case of
an L-shaped body. Children are generated recursively by making splits until very
simple sets are obtained. For example, in the case of triangles in space, a split is
made unless the node represents a single triangle. In this case, it is easy to test
for intersection of two triangles.

Consider the problem of determining whether bodies £ and F' are in collision.
Suppose that a trees, T, and T, have been constructed for £ and F’, respectively.
If the bounding regions of the root nodes of T, and T do not intersect, then it
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Figure 5.11: The large circle shows the bounding region for a node that covers an
L-shaped body. After performing a split along the dashed line, two smaller circles
are used to cover the two halves of the body. Each circle corresponds to a child
node.

is known that T, and T} are not in collision without performing any additional
computation. If the bounding regions do intersect, then the bounding regions of
the children of T; are compared to the bounding region of T%. If either of these
intersect, then the bounding region of T is replaced with the bounding regions
of its children, and the process continues recursively. As long as the bounding
regions overlap, lower levels of the trees will be traversed, until eventually the
leaves are reached. If triangle primitives are used for the geometric models, then
at the leaves, the algorithm will test the individual triangles for collision, instead of
bounding regions. Note that as the trees are traversed, if a bounding region from
the node, ny, of T, does not intersect the bounding region from a node, ng, of 7%,
then no children of n; have to be compared to children of n;. This can generally
result in dramatic reduction in comparison to the amount of comparisons needed
in a naive approach that, for example, tests all pairs of triangles for intersection.

It is possible to extend the hierarchical collision detection scheme to also com-
pute distance. If at any time, a pair of bounding regions have a distance greater
then the smallest distance computed so far, then their children do not have to be
considered [493].

5.3.3 Incremental Methods

This section focuses on a particular approach called incremental distance com-
putation, which assumes that between successive calls to a when the collision
detection algorithm, the bodies move only a small amount. Under this assump-
tion, the algorithm achieves “almost constant time” performance for the case of
convex polyhedral bodies [492, 556]. Nonconvex bodies can be decomposed into
convex components.

These collision detection algorithms seem to offer wonderful performance, but
this comes at a price. The models must be coherent, which means that all of
the primitives must fit together nicely. For example, if a 2D model uses line



5.3. COLLISION DETECTION 199

Figure 5.12: The Voronoi regions alternate between being edge-based and vertex-
based. The Voronoi regions of vertices are labeled with a “V” and the Voronoi
regions of edges are labeled with an “E”. Note that the Voronoi regions alternate
between “V” and “E” (no two Voronoi regions of the same kind are adjacent).
The adjacencies between these Voronoi regions follow the same pattern as the
adjacencies between vertices and edges in the polygon (a vertex is always between
two edges, etc.).

segments, all of the line segments must fit together perfectly to form polygons.
There can be no isolated segments or chains of segments. In 3D, polyhedral models
are required to have all faces comes together perfectly to form the boundaries of
three-dimensional shapes. It cannot be an arbitrary collection of 3D triangles.

The method will be explained for the case of 2D convex polygons. Voronoi
regions will be defined for a convex polygon, in terms of features. The feature set
is the set of all vertices and edges of a convex polygon. Thus, a polygon with
n edges has 2n features. Any point outside of the polygon has a closest feature
in terms of Euclidean distance. For a given feature, g, the set of all points from
which ¢ is the closest feature is the Voronoi region of g, denoted Vor(g). Figure
5.12 shows all ten Voronoi regions for a pentagon.

For any two convex polygons that do not intersect, the closest point will be
determined by a pair of points, one on each polygon (usually the points are unique,
except in the case of parallel edges). Consider the feature for each point in this
pair. There are only three possible combinations:

o Edge-Edge Each point of the closest pair each lies on an edge. In this case,
the edges must be parallel.

e Edge-Vertex One point of the closest pair lies on an edge, and the other
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lies on a vertex.
e Vertex-Vertex Each point of the closest pair is a vertex of a polygon.

Let g. and gy represent any feature pair of £ and F', respectively. Let (z., y.) €
ge and (xf,ys) € gy denote the closest pair of points, among all pairs of points in
ge and gy, respectively. The following condition can be used to determine whether
the distance between (z.,y.) and (zy,yy) is the distance between E and F:

(zy,yr) € Vor(ge) and (ac,y.) € Vor(gy) (5.28)

If this condition is satisfied for a given feature pair, then the distance between
E and F equal to the distance between g. and g;. This implies that the distance
between E and F' can be determined in constant time. The assumption that E
moves only a small amount is made to increase the likelihood that the closest
feature pair will remain the same. This is why the phrase “almost constant time”
is used to describe the performance of the algorithm. Of course, it is possible
that the closest feature pair will change. In this case, neighboring features can be
tested using the condition above, until the new closest pair of features is found.
In this worst case, this search could be costly, but this violates the assumption
that the bodies to not move far between successively calls.

The same ideas can be applied for the 3D case in which the bodies are convex
polyhedra [492, 556]. The primary difference is that three kinds of features are
considered: faces, edges, and vertices. The cases become more complicated, but
the idea is the same. Once again, the condition regarding mutual Voronoi regions
holds, and the algorithm has nearly constant time performance.

5.3.4 Checking a Path Segment

Collision detection algorithms determine whether a configuration lies in C ., but
motion planning algorithms require that an entire path maps into Cfe.. The
interface between the planner and collision detection usually involves validation
of a path segment (i.e., a path, but often a short one). This cannot be checked
point-by-point because it would require an uncountably infinite number of calls
to the collision detection algorithm.

Suppose that a path, 7 : [0,1] — C. needs to be checked to determine whether
7([0,1]) C Cfree- A common approach is to sample the interval [0, 1], and call the
collision checker only on the samples. What resolution of sampling is required?
How can one ever guarantee that the places where the path is not sampled are
collision free? There are both practical and theoretical answers to these questions.
In practice, a fixed Aq is chosen as the configuration space step size. Points t1,ty €
[0, 1] are then chosen close enough together to ensure that p(7(t1),7(t2)) < Ag, in
which p is the metric on C. The value of Aq is often determined experimentally.
If Agq is too small, then considerable time is wasted on collision checking. If Ag
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is too large, then there is a chance that the robot could jump through a thin
obstacle.

Setting Aq empirically might not seem satisfying. Fortunately, there are sound
algorithmic ways to verify that a path is collision free. In some cases the methods
are still not used because they are trickier to implement and they often yield
worse performance. Therefore, both methods are presented here, and you can
decide which is appropriate, depending on the context and your personal tastes.

Ensuring that 7(]0,1]) C Cpree requires the use of both Hausdorff distance
information and bounds on the distance that points on A can travel in R. Such
bounds can be obtained by using the robot displacement metric from Example
5.1.6. Before expressing the general case, first the concept will be explained in
terms of a rigid robot that translates and rotates in W = R2. Let x,, vy, € R? and
0 € [0,27]/ ~. Suppose that a collision detection algorithm indicates that A(q)
is at least d units away from collision with obstacles in WW. This information can
be used to determine a region in Cy,.. that contains g. Suppose that the next
candidate configuration to be checked along 7 is ¢’. If no point on A travels more
than distance d when moving from ¢ to ¢’ along 7, then ¢’ and all configurations
between ¢ and ¢’ must be collision free. This assumes that the path from ¢ to
¢’ is monotonic (if the robot can take any path between ¢ and ¢’, then no such
guarantee could possibly be made).

Y

Figure 5.13: The furthest point on A from the origin travels the fastest when
rotated. At most it can be displaced by 2zr, if x; and y; are fixed.

When A undergoes a translation, all points move the same distance. For
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rotation, however, the distance traveled depends on how far the point on A is
from the rotation center, (0,0). Let a, = (z,,y,) denote the point on A that
has the largest magnitude, r = (/22 + y2. Figure 5.13 shows an example. A
transformed point, a € A may be denoted by a(x, y;, 0). The following bound is
obtained for any a € A, if the robot is rotated from orientation 6 to '

|(l($t, Yt, 6)) - a(xta Yt 8/>’ S |a7“(xt)yt7 9) - a'f(xt7yt7 0,)| < T|0 - 6),‘7 (529>

assuming that a path in C is followed that interpolates between 6 and 0" (using
the shortest path in S' between 6 and #). Thus, if A(q) is at least d away from
the obstacles, then the orientation may be changed as long as r|§ — ¢’| < d. Note
that this is a loose upper bound since a, travels along a circular arc, and can be
displaced by no more than 27r.

Similarly, z; and y; may individually vary up to d, yielding |z, — z}| < d and
|y — ;| < d. If all three parameters vary at same time, then a region in Cyye. may
be defined as

{(@}, 91, 0') € C [ | — 24| + lye — gl + 7|0 — 0] < d. (5.30)

Such bounds can generally be used to set the step size, Aq, for collision checking
that guarantees the intermediate points lie in Cf.e. The particular value used
may vary depending on d and the direction® of the path.

For the case of SO(3), once again the displacement of the point on A that
has the largest magnitude can be bounded. It is best in this case to express the
bounds in terms of quaternion differences, || —A'||. Euler angles may also be used
to obtain a straightforward generalization of (5.30) that has six terms, three for
translation and three for rotation. For each of the three rotation parts, a point
with largest magnitude in the plane perpendicular to the rotation axis must be
chosen.

If there are multiple links, it becomes much more complicated to determine the
step size. Each point a € A; s transformed by some nonlinear function based on
the kinematic expressions from Sections 3.3 and 3.4. Let a : C — W denote this
transformation. In some cases, it might be possible to derive a Lipschitz bound
of the form

la(g) = a(d)l < cllg =4, (5.31)

in which ¢ € (0,00) is a fixed constant, a is any point on A;, and the expression
holds for any ¢, ¢ € C. The goal is to make ¢ as small as possible to enable larger
variations in q.

A better method is to individually bound the link displacement with respect
to each parameter,

lalqr, - s @izt Gis Giv1s - -y Gn) — alquy - oo s Gim1y Gy Giv1s - - - Q)| < cil@i — 40,
(5.32)

5To formally talk about directions, it would be better to define a differentiable structure on
C. This will be deferred to Section ??, where it seems unavoidable.
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to obtain the Lipschitz constants cq, ..., ¢,. The bound on robot displacement

becomes
n

la(q) — a(d)l < > eilai — dll- (5.33)
i=1

The benefit of using individual parameter bounds can be seen by considering a long
chain. Consider a 50-link chain of line segments in R?, and each link has length
10. The configuration space is T°°, which can be parameterized as [0, 27]°0/ ~.
Suppose that the chain is in a straight-line configuration (6; = 0 for all 1 <7 < n),
which means that last point is at the point (500, 0). Changes in ¢, the orientation
of the first link, will dramatically move Asq. However, changes in 65, will move
Aso a smaller amount. Therefore, it is advantageous to pick different Ag; for each
1 < ¢ < n. In this example, a smaller value should be used for Af; in comparison
to A950.

Unfortunately, there are more complications. Suppose the 50-link chain is in
a configuration that folds all of the links on top of each other (f; = 7 for each
1 < i < n). In this case, A5 does not move as fast when 6; is perturbed, in
comparison to the straight-line configuration. A larger step size for 6; could be
used for this configuration, relative to other parts of C. The implication is that
although Lipschitz constants can be made to hold over all of C, it still might be
preferable to determine in a local region around ¢ € C how much link displacement
is possible with respect to each parameter perturbation. A linear method could
be obtained by analyzing the Jacobian of the transformations, such as (3.45) and
(3.49).

Another important concern when checking a path is the order in which the
samples are checked. For simplicity, suppose that Agq is constant and that the path
is a constant-speed parameterization. Should the collision checker step along from
0 up to 17 Experimental evidence indicates that it is best to use recursive binary
strategy [272]. This will make no difference if the path is collision-free, but it
often saves time when the path is in collision. This is a kind of sampling problem
over [0, 1], which is addressed nicely by the van der Corput sequence, v. The last
column in Figure 5.2 indicates precisely where to check along the path in each
step. Initially, 7(1) is checked. Following this, points from the van der Corput
sequence are checked in order: 7(0), 7(1/2), 7(1/4), 7(3/4), 7(1/8), .... The
process terminates if a collision is found, or when the dispersion falls below Ag.
If Aq is not constant, then it is possible to skip over some points of v in regions
where the allowable variation is larger.

5.4 Incremental Sampling and Searching

5.4.1 The General Framework

The algorithms of Sections 5.4 and 5.5 follow the single query model, which means
¢; and g, are given only once per robot and obstacle set. This means that there are
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no advantages to precomputation, and the sampling-based motion planning prob-
lem can be considered as a kind of search. In fact, these sampling-based planning
algorithms are strikingly similar to the family of search algorithms summarized
in Section 2.3.4. The main difference lies in Step 3 below, in which applying an
action, u, is replaced by generating a path segment, 7,. Another difference is
that GG is an undirected graph whose edges represent paths, as opposed to a di-
rected graph who edges represent actions. It is possible to make these look similar
by defining an action space for motion planning that consists of a collection of
paths, but this is avoided here. In the case of motion planning with differential
constraints, this will actually be required; see Chapter 15.
Most single-query sampling-based planning follow this template:

1. Initialization: Let G(V, E) represent an undirected search graph, for which
the node set, V' contains a node for ¢; and possibly other states in Cyy., and
the edge set, E, is empty.

2. Vertex Selection Method (VSM): Choose a vertex g, € V for expan-
sion.

3. Local Planning Method (LPM): For some ¢y, € Cfree Which may or
may not be represented by a vertex in V, attempt to construct a path
Ts : [0, 1] = Cfree such that 7(0) = geyr and 7(1) = @new- Using the methods
of Section 5.3.4, 7, must be checked to ensure that it does not cause a
collision. If this step fails to produce a collision-free path segment, then go
to Step 2.

4. Insert Edge in Graph: Insert 7, into E, as an edge from ¢, t0 ¢pew. If
(new 1s Not already in V/, it is added.

5. Check for Solution: Determine whether GG encodes a solution path. As in
the discrete case, if there is a single search tree, then this is trivial; otherwise,
it can become expensive.

6. Return to Step 2: Iterate unless a solution has been found or some ter-
mination condition is satisfied, in which case the algorithm reports failure.

In the present context, G is a topological graph, as defined in Example 4.1.6.
Each vertex is a configuration and each edge is a path that connects two config-
urations. In this chapter, it will be simply referred to as a graph when there is
no chance of confusion. Some authors might refer to such a graph as a roadmap;
however, we reserve the term roadmap for a graph that contains enough paths to
make any motion planning query easily solvable. This case is covered in Section
5.6 and throughout Chapter 6.

A large family of sampling-based algorithms can be described by varying the
implementations of Steps 2 and 3. Implementations of the other steps may also
vary, but this is less important and will be described where appropriate. For
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Figure 5.14: Imagine a problem in which the configuration space obstacle is a giant
“bowl” that can trap the configuration. This figure is drawn in two dimensions,
but imagine that the C has many dimensions, such as 6 for SFE(3) or perhaps
dozens for a linkage. If the discrete planning algorithms from Section 2.3 are
applied to a high-resolution grid approximation of C, then they will all waste their
time filling up the bowl before being able to escape to g,. The number of grid
states in this bowl would typically be on the order of 100", for an n-dimensional
configuration space.

convenience, Step 2 will be called the Vertex Selection Method (VSM) and Step 3
will be called the Local Planning Method (LPM). The role of the VSM is similar to
that of the priority queue, @) in Section 2.3.1. The role of the LPM is to compute
a collision-free path segment that can be added to the graph. It is called local
because the path segment is usually simple (e.g., the shortest path) and travels a
short distance. It is not global in the sense that the LPM does not try to solve the
entire planning problem; it is expected that the LPM may often fail to construct
path segments.

It will be formalized shortly, but imagine for the time being that any of the
search algorithms from Section 2.3 may be applied to motion planning by ap-
proximating C with a high-resolution grid. The resulting problem looks like a
multidimensional extension of Example 2.2.1 (the “labyrinth” is formed by Cyps).
For a high-resolution grid in a high-dimensional space, most classical discrete
searching algorithms have trouble becoming trapped in a local minimum. There
could be an astronomical number of states that fall within a concavity in C,ps
that must be escaped to solve the problem, as shown in Figure 5.14. Therefore,
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sampling-based motion planning algorithms combine sampling and searching in a
way that attempts to overcome these kinds of difficulties.

Just as in the case of discrete search algorithms, there are several classes of
algorithms based on the number of search trees.

Unidirectional (single tree) methods: In this case, the planning appears
very similar to discrete forward search, which was given in Figure 2.5. The
main difference between algorithms in this category is how they implement
the VSM and LPM. Figure 5.15 shows a bug trap® example for which forward
search algorithms will have great trouble; however, the problem might not
be difficult for backwards search, if the planner incorporates some kind of
greedy, best-first behavior.

Bidirectional (two tree) methods: Since it is not known whether or not
¢; or ¢, might lie in a bug trap (or another challenging region), a bidirec-
tional approach is often preferable. This follows from an intuition that two
propagating wavefronts, one centered on ¢; and the other on g,, will meet
after covering less area in comparison to a single wavefront centered at g;
that must arrive at g,. A bidirectional search is achieved by defining the
VSM to alternate between trees when selecting nodes. The LPM sometimes
generates paths that explore new parts of Csye., and at other times it tries
to generate a path that connects the two trees.

Multidirectional (more than two trees) methods: If the problem is
so bad that a double bug trap exists, as shown in Figure 5.16, then it might
make sense to grow trees from other places in the hopes that there are
better chances to enter the traps in the other direction. This complicates
the problem of connecting trees, however. For which pairs should attempts
be made to connect? How often should these attempts be made? Which
vertex pairs should be selected. Many heuristic parameters may be needed
to answer these questions.

Of course, we can play the devil’'s advocate and construct the example in Figure
5.17, for which virtually all sampling-based planning algorithms are doomed. Sev-
eral variations can also be made. For example, the connecting pipe could have a
small hold in it; this does not help. The two bug traps could even be disconnected,
as long as the entrance to each is hard to find.

5.4.2 Adapting Classical Search Algorithms

One of the most convenient and straightforward ways to make sampling-based
planning algorithms is to define a grid over C and conduct a discrete search using
the algorithms of Chapter 2. The resulting planning problem actually looks very

6This principle is actually used in real life to trap flying bugs. This example and analogy
was suggested by James O’Brien in a discussion with James Kuffner.
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di g

Figure 5.15: This example, again in high dimensions, can be considered as a kind
of “bug trap”. To leave the trap, a path must be found from ¢; into the narrow
opening. Imagine a fly buzzing around through the high-dimensional trap. The
escape opening might not look too difficult in two dimensions, but if it has a small
range with respect to each configuration parameter, it will be nearly impossible to
find the opening. The tip of the volcano would be astronomically small compared
to the rest of the bug trap. Examples such as this provide some motivation for
bidirectional algorithms. It might be easier for a search tree that starts in g, to
arrive in the bug trap.
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Figure 5.16: The double bug trap is trouble even for bidirectional search. This
may motivate the construction of more than two trees.

Figure 5.17: A multidimensional search cannot even help with this example, which
involves two bug traps connected by a thin tube. We must accept the fact that
some problems are hopeless to solve using sampling-based planning methods, un-
less there is some problem-specific structure that can be additionally exploited.
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similar to Example 2.2.1. Each edge now corresponds to a path in Cfpe.. Some
edges may not exist because of collisions, but this will have to be revealed during
the search because an explicit characterization of C is to expensive to construct
(recall Section 4.3).

Assume that an n-dimensional configuration space is represented as a unit
cube, C = [0,1]"/ ~, in which ~ indicates that identifications of the sides of the
cube are made to reflect the C-space topology. Representing C as a unit cube
usually requires a reparameterization. For example, an angle 6 € [0, 27) would be
replaced with 6/27 to make the range lie within [0, 1]. If quaternions are used for
SO(3), then the upper half of S? will have to be deformed into [0,1]?/ ~.

Discretization Assume that C is discretized by using the resolutions kq, ka,. . .,

and kg, in which each k; is a positive integer. This allows the resolution to be

different for each C-space coordinate Either a standard grid or a Sukharev grid
1

can be used. Let Ag; =1[0 -~ 0 & 0 --- 0]. A grid point is a configuration

q € C that can be expressed in the form?
i=1

in which each j; € {0,1,...,k;}. The integers ji, ..., j, can be imagined as array
indices for the grid. Let the term boundary grid point refer to a grid point that
has j; = 0 or j; = k; for some 7. Note that due to identification, boundary grid
points might have more than one representation.

Neighborhoods For each grid point, ¢, we need to define the set of nearby
grid points for which an edge may be constructed. Special care must be given to
defining the neighborhood of a boundary grid point to ensure that identifications
and the C-space boundary (if it exists) are respected. If ¢ is not a boundary grid
point, then the I-neighborhood is defined as

Ni(q) ={q+Aq, ., ¢+ A, q—Aq,...,q — Agn}. (5.35)

For an n-dimensional configuration space there at most 2n l-neighbors. In two
dimensions, this yields 4 1-neighbors, which can be thought of as “up”, “down”,
“left” and “right”. We say “at most” because some directions may be blocked by

the obstacle region.
A 2-neighborhood is defined as

No(q) ={q£Aq+Aq; | 1 <45 <n,i#j}UNi(qg). (5.36)

Similarly, a k-neighborhood can be defined for any positive integer £ < n. For
a n-neighborhood, there are at most 3" — 1 neighbors; there may be fewer due
to collisions. The definitions can be extended in a straightforward to handle the
boundary points.

TAlternatively, the general lattice definition in (5.20) could be used.
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(c) (d)

Figure 5.18: A topological graph can be constructed during the search, and can
successfully solve a problem using very few samples.



5.4. INCREMENTAL SAMPLING AND SEARCHING 211

Obtaining a discrete planning problem Once the grid and neighborhoods
have been defined, it is straightforward to define a discrete planning problem.
Figure 5.18 depicts the process for a problem in which there are 9 Sukharev grid
points in [0, 1]2. Using 1-neighborhoods, the potential edges in the search graph,
G(V, E), appear in Figure 5.18.a. Note that G is a topological graph, as defined
in Example 4.1.6 because each vertex is a configuration and each edge is a path.
If ¢; and ¢, do not coincide with grid points, they need to be connected to some
nearby grid points, as shown in Figure 5.18.b. What grid points should ¢; and g,
be connected to? As a general rule, if k-neighbors are used, then one should try
connecting ¢; and g, to any grid points that are at least as close as the furthest
k-neighbor from a typical grid point.

Usually, all of the vertices and edges shown in Figure 5.18.a will not appear
in G because some will intersect with C,,. Figure 5.18.c shows a more typical
situation, in which some of the potential vertices and edges are removed because of
collisions. This representation could be computed in advance by collision checking
all potential vertices and edges. This would lead to a roadmap, which is suited
for multiple queries, and is covered in Section 5.6. In this section, it is assumed
that G is revealed “on the fly” during the search. This is the same situation that
occurs for the discrete planning methods from Section 2.3. In the current setting,
the potential edges of GG are validated during the search. The candidate edges to
evaluate are given by the definition of the k neighborhoods. During the search,
any edge or vertex that has been checked for collision explicitly appears in a data
structure so that it does not need to be checked again. At the end of the search,
a path is found, as depicted in Figure 5.18.d.

Grid resolution issues The method explained so far will nicely find the solu-
tion to many problems, when provided with the correct resolution. If the number
of points per axis is too high, then the search may be too slow. This motivates
selecting fewer points per axis, but then solutions might be missed. This problem
is fundamental to sampling-based motion planning. In a more general setting, if
other forms of sampling and neighborhoods are used, then enough samples have
to be generated to yield the right dispersion.

There are two general ways to avoid having to select this resolution (or more
generally, dispersion):

1. Tteratively refine the resolution until a solution is found. In this case, sam-
pling and searching become interleaved. One important variable is how
frequently to alternative between the two processes. this will be presented
shortly.

2. An alternative is to abandon the adaptation of classical discrete search al-
gorithms, and develop algorithms directly for the continuous problem. This
forms the basis of the methods in Sections 5.4.3, 5.4.4, and 5.5.
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The most straightforward approach is to iteratively improve the grid resolution.
Suppose that initially, a standard grid with 2" points total and 2 points per axis
is searched using one of the discrete search algorithms, such as best-first or A*. If
the search fails, what should be done? One possibility is to double the resolution,
which yields a grid with 4™ points. Many of the edges can be reused from the
first grid; however, this savings diminishes rapidly in higher dimensions. Once the
resolution is doubled, the search can be applied again. If it fails again, then the
resolution can be doubled again to yield 8" points. In general, there would be a
full grid for 2 points, for each 7. The problem is that if n is large, then the rate
of growth is too large. For example, if n = 10, then there would initially be 1024
points; however, when this fails, the search is not performed again until there are
over one million points! If this also fails, then it might take a very long time to
reach the next level of resolution, which has 23° points.

An similar to iterative deepening from Section 2.3.2 would be preferable. Sim-
ply discard the efforts of the previous resolution, and make grids that have "
points per axis, for each iteration i. This will yield grids of sizes 2", 3", 4", etc.,
which is much better. The amount of effort involved in searching a larger grid is
insignificant compared to the time wasted on lower resolution grids. Therefore, it
seems harmless to discard previous work.

A better solution is not to require that a complete grid exists before it can
be searched. For example, the resolution can be increased for one axis at a time
before attempting to search again. Even better yet may be to tightly interleave
searching and sampling. For example, imagine that the samples appear as an
infinite, dense sequence «. The graph can be searched after every 100 points are
added, assuming that neighborhoods can be defined or constructed even though
the grid is only partially completed. If the search is performed too frequently, then
searching this would dominate the running time. An easy way make this efficient is
to apply the union-find algorithm [176, 655] to iteratively keep track of connected
components in G instead of performing explicit searching. If ¢; and g, become part
of the same connected component, then a solution path has been found. Every
time a new point in the sequence « is added, the “search” is performed in almost®
constant time by the union-find algorithm. This is the tightest interleaving of
the sampling and searching, and results in a nice sampling-based algorithm that
requires no resolution parameter. It is perhaps best to select a sequence « that
contains some lattice structure to facilitate the determination of neighborhoods
in each iteration.

What if we simply declare the resolution to be outrageously high at the outset?
Imagine there are 100™ points in the grid. This places all of the burden on the
search algorithm. If the search algorithm itself is good at avoiding local minima
and has built-in multiresolution qualities, then it may perform well without the

8Tt is not constant because the running time includes the inverse Ackerman function, which
grows very, very slowly. For all practical purposes, the algorithm operates in constant time. See
Section ?77.
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iterative refinement of the sampling. The method of Section 5.4.3 is based on
this idea by performing best-first search on a high-resolution grid, combined with
random walks to avoid local minima. The search algorithms of Section 5.5 go one
step further and search in a multiresolution way without requiring resolutions and
neighborhoods to be explicitly determined. This can be considered as the limiting
case as the number of points per axis approaches infinity.

Although this section focused on grids, it is also possible to use other forms of
sampling from Section 5.2. This requires defining the neighborhoods in a suitable
way that generalizes the k-neighborhoods of this section. In every case, an infinite,
dense sample sequence must be defined to obtain dispersion completeness. Meth-
ods for obtaining neighborhoods for irregular sample sets have been developed in
the context of sampling-based roadmaps; see Section 5.6. The notion of improv-
ing resolution becomes generalized to adding samples that improve dispersion (or
even discrepancy).

Notions of completeness It is useful to define several notions of completeness
for sampling-based algorithms. An algorithm is considered complete if for any
input it correctly reports whether or not there is a solution in a finite amount of
time. If there is a solution, it must return it. Unfortunately, completeness cannnot
be achieved with sampling-based planning. If o is a deterministic, dense sequence,
then the refinement scheme described so far produces a dispersion complete al-
gorithm. This means that if a solution exists, then the algorithm will find it;
however, if no solution exists, then the algorithm will run forever. If is terminates
early without finsding a solution, it may declare that either no solution exists, or
if the solution exists, it requires sampling with a smaller dispersion. This implies
that the path must travel through a narrow passage. A special case of dispersion
completeness is when a multiresolution grid or lattice is used. In this case, an
algorithm may be called resolution complete. Finally, if « is a random sequence
that is dense with probability one, then the resolution algorithm is probabilistically
complete. This means that with enough points, the probably that it will find a
solution converges to one. The most relevant information, however, is the rate at
which the convergence occurs. This is usually very difficult to establish.

5.4.3 Randomized Potential Fields

Adapting the classical algorithms, as described in Section 5.4.2, works well if the
problem can be solved with a small number of points. The number of points per
axis must be small or the dimension must be low, to ensure that the number of
points, k™, for k points per axis and n dimension, is small enough so that every
vertex in g can be reached in a reasonable amount of time. If, for example, the
problem requires 50 points per axis and the dimension is 10, then it is impossible
to search all of the 50! samples. Planners that exploit best-first heuristics might
find the answer without searching most of them; however, for a simple problem
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Figure 5.19: The randomized potential field method can be modeled as a three-
state machine.

such as that shown in Figure 5.14, the planner will take too long exploring the
nodes in the bowl.”

The randomized potential field approach uses random walks to attempt to es-
cape local minima when best-first search becomes stuck [51, 53, 437], was one of
the first sampling-based planners that developed specialized techniques beyond
classical search, in an attempt to better solve challenging motion planning prob-
lems. In many cases, remarkable results were obtained. In its time, the approach
was able to solve problems up to 31 degrees of freedom, which was well beyond
what had been previously possible. The main drawback, however, was that the
method involved many heuristic parameters that had to be adjusted for each
problem. This frustration eventually led to the development of better approaches,
which are covered in Sections 5.4.4, 5.5, and 5.6. Nevertheless, it is worthwhile to
study the clever heuristics involved in this earlier method because they illustrate
many interesting issues, and the method was very influential in the development
of other sampling-based planning algorithms.!®

The most complicated part of the algorithm is the definition of a potential
function, which can be considered as a pseudometric that tries to estimate the
distance of any configuration from the goal. In most formulations, there is an
attractive term that is just a metric on C which yields distance to the goal, and
a repulsive term, which penalizes robot as it gets too close to obstacles. The
construction of potential functions involves many heuristics and is covered in great
detail in [437]. One of the most effective methods involves constructing cost-to-go
functions over W and lifting them to C [52]. In this section, it will be sufficient to
assume that some potential function, g(q), is defined, which is the same notation
(and notion) as a cost-to-go function in Section 2.3.2. In this case, however, there
is no requirement that g(q) is optimal or even an underestimate of the true cost
to go.

When a random walk is needed, it is executed for some number of iterations.

90f course, that problem does not appear to need so many points per axis; fewer may be
used instead, if the algorithm can adapt the sampling resolution or dispersion.

10The exciting results obtained by the method also helped inspire me to work in motion
planning.
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Using the discretization procedures of Section 5.4.2; a high-resolution grid (e.g., 50
points per axis) is initially defined. In each iteration, the current configuration is
modified as follows. Each coordinate, g;, is increased or decreased by Ag; (the grid
step size) based on the outcome of a fair coin toss. Topological identifications must
be respected, of course. After each iteration, the new configuration is checked for
collision, or whether it exceeds the boundary of C (if it has a boundary). If so,
then it is discarded and another attempt is made from the previous configuration.
The failures can repeat indefinitely until a configuration in Cy,.. is obtained.

The resulting planner can be described in terms of a three-state machine, which
is shown in Figure 5.19. Each state will be called a mode to avoid confusion with
earlier state space concepts. The VSM and LPM are defined in terms of the mode.
Initially, the planner is in the BEST FIRST mode, and uses ¢; to start a gradient
descent. While in the BEST FIRST mode, the VSM selects the newest vertex,
v € V. In the first iteration, this is ¢;. The LPM creates a new vertex, v,, in a
neighborhood of v, in a direction that minimizes g. The direction sampling may
be performed using randomly-selected or deterministic samples. Using random
samples, the sphere sampling method from Section 5.2.2 may be applied. The
method for generating random samples from 5.2.2 can be used. After some number
of tries (another parameter), if the LPM is unsuccessful at reducing g, then the
mode is changed to RANDOM WALK because the best first search is stuck in a local
minimum.

In the RANDOM WALK mode, a random walk is executed from the newest node.
The random walk terminates if either g is lowered, or a specified limit of iterations
is reached. The limit is actually sampled from a predetermined random variable
(which contains parameters that also must be selected). When the RANDOM
WALK mode terminates, the mode is changed back to BEST FIRST. A counter
is incremented to keep track of the number of times that the random walk was
attempted. If BEST FIRST fails after K random walks have been attempted, then
the BACKTRACK mode is entered. The K is another parameter (a typical value
is K = 20 [52]). The BACKTRACK mode selects a vertex at random from among
the vertices in V' there were obtained during a random walk. Following this, the
counter is reset, and the mode is changed back to BEST FIRST.

Due to the random walks, the resulting paths are often too complicated to be
useful in applications. Fortunately, it is straightforward to transform a computed
path into a simpler one that is still collision free. A common approach is to
iteratively pick pairs of points at random along the domain of the path, and
attempt to replace the path segment with a straight-line path (or geodesic). For
example, suppose t1,ts € [0,1] are chosen at random and 7 : [0, 1] — Cyee is the
solution path. This path is transformed into a new path

7(t) if0<t<t
T/(t) = CLT(tl) + (]. - G)T(tg) if tl S t S tg s (537)
() if ty <t <1

in which a € [0, 1] represents the fraction of the way from ¢; to t. Explicitly,
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a = (tg —t)/(t2 — t1). The new path must be checked for collision. If it passes,
then it replaces the old path; otherwise, it is discarded and a new pair tq, to, is
chosen.

The randomized potential field approach can escape high-dimensional local
minima, which allowed interesting solutions to be found for many challenging
high-dimensional problems. Unfortunately, the heavy amount of parameter tuning
caused most people to abandon the method in recent times, in favor of newer
methods.

5.4.4 Other Methods

Several influential sampling-based methods are given here. Each of them appears
to offer advantages over the randomized potential field method. All of them use
randomization, which was perhaps inspired by the potential field method.

Ariadne’s Clew algorithm This approach grows a search tree that is biased
to explore as much new territory as possible in each iteration [544, 543]. There are
two modes, SEARCH and EXPLORE, which alternate over successive iterations. In
the EXPLORE mode, the VSM simply selects a vertex, v., at random, and the LPM
finds a new configuration that can be easily connected to v., and is a far as possible
from the other vertices in GG. A global optimization function that aggregates the
distances to other vertices is optimized using a genetic algorithm. In the SEARCH
mode, an attempt is made to extend the vertex added in the EXPLORE mode to the
goal configuration. The key idea from this approach, which influenced both next
approach and the methods in Section 5.5 is that some of the time must be spend
exploring the space, as opposed to focusing on finding the solution. The greedy
behavior of the randomized potential field led to some efficiency, but was also its
downfall for some problems because it was all based on escaping local minima
with respect to the goal instead of investing some time on pure exploration. One
disadvantage of Ariadne’s Clew algorithm is that it is very difficult to solve the
optimization problem for placing a new vertex in the EXPLORE mode. Genetic
algorithms were used in [543], which are generally avoided for motion planning
because of the required problem-specific parameter tuning.

Expansive space planner This method [344, 670] generates samples in a way
that attempts to explore new parts of the space. In this sense, it is similar to the
explore mode of the Ariadne’s Clew algorithm. Furthermore, the planner is made
more efficient by borrowing the bidirectional search idea from discrete algorithms,
as covered in Section 2.3.3. The VSM selects a vertex, v., in G with a probability
that is inversely proportional to the number of other vertices of G that lie within a
predetermined neighborhood of v.. Thus, “isolated” vertices are more likely to be
chosen. The LPM generates a new vertex v,, at random within a predetermined
neighborhood of v.. It will decide to insert v, into G with a probability that
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is inversely proportional to the number of other vertices of G' that lie within a
predetermined neighborhood of v,,. For a fixed number of iterations, the VSM
will repeatedly choose the same vertex, until moving on to another vertex. The
resulting planner is able to solve many interesting problems by using a surprisingly
simple criterion for the placement of points. The main drawbacks are that the
planner requires substantial parameter tuning which is problem specific (or at least
specific to a similar family of problems), and the performance tends to degrade
if the query requires systematically searching a long labyrinth. Choosing the
radius of the predetermined neighborhoods is essentially tries to determine the
appropriate resolution.

Random walk planner A surprisingly simple and efficient algorithm can be
made entirely from random walks [127]. To avoid parameter tuning, the algorithm
adjusts its distribution of directions and magnitude in each iteration, based on
the success of the past k iterations (perhaps k is the only parameter). In each
iteration, the VSM just selects the vertex that was most recently added to G.
The LPM generates a direction and magnitude by generating samples from a
multivariate Gaussian distribution whose covariance parameters are adaptively
tuned. The main drawback of the method is similar to that of the previous
method. Both have difficulty traveling through long, winding corridors. It would
be interesting to combine adaptive random walks with other search algorithms,
such as the potential field planner, but this has not been attempted to date.

5.5 Rapidly-Exploring Dense Trees

This section introduces an incremental sampling and search approach that yields
good performance in practice without any parameter tuning.!' The idea is to
incrementally construct a search tree that gradually improves the resolution, but
does not need to explicitly set any resolution parameters. In the limit, the tree
will densely cover the space. Thus, it has properties similar to space filling curves
[668], but instead of one long path, there are shorter paths that are organized
into a tree. A dense sequence of samples is used as a guide in the incremental
construction of the tree. If this sequence is random, the resulting tree will be called
a Rapidly-exploring Random Tree (RRT). In general, this family of trees, whether
the sequence is random or deterministic, will be referred to as Rapidly-exploring
Dense Trees (RDTs) to indicate that a dense covering the space is obtained.
This method was originally developed for problems with differential constraints
[463, 466]; that case is covered in Section 15.3.3.

"The original RRT [449] was introduced with a step size parameter, but this is eliminated in
the current presentation. For implementation purposes, one might still want to revert to this
older way of formulating the algorithm because the implementation is a little easier. This will
be discussed shortly.
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SIMPLE_RDT(qo)
1 G.init(qo);
2 fori=1tokdo
3 G.add_vertex(a(i));
4 ¢n < NEAREST(S, a(1));
5 G.add_edge(qy, «(7));

Figure 5.20: The basic algorithm for constructing RDTs (including RRTs) when
there are no obstacles. It requires the availability of a dense sequence, «, and
iteratively connects from «(i) to the closest point among all those reached by G.

Figure 5.21: Suppose inductively that the following tree has been constructed so
far using the algorithm in Figure 5.20.

5.5.1 The Exploration Algorithm

Before explaining how to use these trees to solve a planning query, imagine that
the goal is to get as close as possible to every configuration, starting from an
initial configuration. The method will work for any dense sequence. Therefore,
let o denote an infinite, dense sequence of samples in C. The i** sample is de-
noted by a(7). Let this also include a uniform, random sequence, which is dense
with probability one. Random sequences that induce a nonuniform bias are also
acceptable, as long as they are dense with probability one.

An RDT will actually be a topological graph, G(V, E). Let S C Cyy. indicate
the set of all points reached by G. Since each e € E is a path, this can be expressed
as

S=Je(0,1)), (5.38)
ecFE
in which e([0, 1]) C Cyyee is the image of the path e.

The exploration algorithm is first explained in Figure 5.20 without any obsta-
cles or boundary obstructions. It is assumed that C is a metric space. Initially, a
vertex is made at gg. For k iterations, a tree is iteratively grown by connecting
a(i) to its closest point on S. The connection is usually made along the shortest
possible path. In every iteration, «(i) becomes a vertex. Therefore, the resulting
tree is dense. Figures 5.21-5.23 illustrate an iteration graphically. Suppose the
tree has 3 edges and 4 vertices, as shown in Figure 5.21. If the nearest point,
qn € S, to (i) is a vertex, as shown in Figure 5.22; then an edge is made from
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Figure 5.22: A new edge is added, which connects from the sample a(i) to the
nearest point in .S, which is the vertex ¢,.

Figure 5.23: If the nearest point S lies in an edge, then the edge is split into two,
and a new vertex is inserted into G.

45 iterations 390 iterations

Figure 5.24: The RRT quickly reaches the unexplored parts.
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Figure 5.25: The RRT is dense in the limit (with probability one).
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Figure 5.26: If there is an obstacle, the edge travels up to the obstacle boundary,
as far as allowed by the collision detection algorithm.

qn to a(i). However, if the closest point lies in the interior of an edge, as shown
in Figure 5.23, then the existing edge is split so that ¢, appears as a new vertex,
and an edge is made from g, to a(i).

The method as described here does not fit precisely under the general frame-
work from Section 5.4.1; however, with modifications suggested in Section 5.5.2,
it can be adapted to fit. In the present formulation, the NEAREST functions serves
the purpose of the VSM, but in this case, a point may be selected from anywhere
in the interior of an edge, in addition to a vertex. The LPM tries to connect (i)
to g, along the shortest path possible in C.

Figures 5.24 and 5.25 show an implementation of the algorithm in Figure 5.20
for the case in which C = [0, 1]?, and gy = (1/2,1/2). Tt exhibits a kind of fractal
behavior.!? Several main branches are first constructed as it rapidly reaches the
far corners of the space. Gradually, more and more area is filled in by smaller
branches. From the pictures, it is clear that in the limit, the tree will densely fill
the space. Thus, it can be seen that the tree gradually improves the resolution
(or dispersion) as the iterations continue. This behavior turns out to be ideal for
sampling-based motion planning.

Recall that in sampling-based motion planning, the obstacle region C,, is not
explicitly represented. Therefore, it must be taken into account in the construc-
tion of the tree. Figure 5.26 indicates how to modify the algorithm in Figure 5.20
so that collision checking is taken into account. The pseudocode for the modi-

121f o is uniform, random, then a stochastic fractal [435] is obtained. Deterministic fractals
can be constructed using sequences that have appropriate symmetries.
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RDT(qo)
1 G.init(qo);
2 fori:=1tokdo
3 ¢n < NEAREST(S, a(1));
¢s < STOPPING-CONFIGURATION(qp,,c(1));
if ¢, # ¢, then
G.add_vertex(qs);
G.add edge(qn, gs);

~ O Ut i~

Figure 5.27: The RDT with obstacles.

fied algorithm appears in Figure 5.27. The procedure STOPPING-CONFIGURATION
yields the closest configuration possible to the boundary of Cy.., along the direc-
tion toward «(i). The closest point ¢, € S is defined to be same (obstacles are
ignored); however, the new edge might not reach to a(i). In this case, an edge is
made from ¢, to gs, the last point possible before hitting the obstacle. How close
can the edge come to the obstacle boundary? This depends on the method used
to check for collision, as explained in Section 5.3.4. It is sometimes possible that
¢n 1s already as close as possible to the boundary of Cy,.. in the direction of «(3).
In this case, no new edge or vertex is added that for that iteration.

5.5.2 Efficiently Finding Nearest Points

There are several interesting alternatives for implementing the NEAREST function
in Line 3 of the algorithm in Figure 5.20. There are generally two families of
methods: exact or approrimate. First consider the exact case.

Exact solutions Suppose that all edges in GG are line segments in R™ for some
dimension m > n. An edge that is generated early in the construction process will
be split many times in later iterations. For the purposes of finding the nearest
point in S; however, it is best to handle this as a single segment. For example,
see the three large branches that extend from the root in Figure 5.24. As the
number of points increases, the benefit of agglomerating the segments increases.
Let each of these agglomerated segments be referred to as a supersegment. To
implement NEAREST, a primitive is needed that computes the distance between
a point and a line segment. This can be performed in constant time with simple
vector computations. Using this primitive, NEAREST is implemented by iterating
over all of the supersegments and taking the point with minimum distance among
all of them. It may be possible to improve performance by building hierarchical
data structures that can eliminate large sets of supersegments, but this remains
to be seen experimentally.

In some cases, the edges of G may not be line segments. For example, the
shortest paths between two points in SO(3) are actually circular arcs along S3.



5.5. RAPIDLY-EXPLORING DENSE TREES 223

an

Figure 5.28: For implementation ease, intermediate vertices can be inserted to
avoid checking for close points along line segments. The tradeoff is that the
number of vertices is increased.

One possible solution is to maintain a separate parameterization of C for the
purposes of computing the NEAREST function. For example, SO(3) can be rep-
resented as [0,1]%/ ~, by making the appropriate identifications to obtain RP?,
Then straight line segments can be used. The problem is that the resulting met-
ric is not consistent with the Haar measure, which means that an accidental bias
would result. Another option is to tightly enclose S? in a 4D cube. Every point on
S? can be mapped outward onto a cube face. Because of antipodal identification,
only 4 of the 8 cube faces need to be used to obtain a bijection between the set
of all rotation and the cube surface. Linear interpolation can be used along the
cube faces, as long as both points remain on the same face. If the points are on
different faces, then two line segments can be used by bending the shortest path
around the corner between the two faces. This scheme will result in less distortion
than mapping SO(3) to [0,1]3/ ~; however, some distortion will still exist.

Another approach is to avoid distortion altogether and implement primitives
that can compute the distance between a point and a curve. In the case of SO(3),
a primitive is needed that can find the distance between a circular arc in R™
and a point in R™. This might not be too difficult, but if the curves are more
complicated, then an exact implementation of the NEAREST function may be too
expensive computationally.

Approximate solutions Approximate solutions are much easier to construct,
however, a resolution parameter is introduced. Each path segment can be approx-
imated by inserting intermediate vertices along long segments, as shown in Figure
5.28. The intermediate vertices should be added each time a new sample, a(i), is
inserted into G. A parameter Ag can be defined, and intermediate samples are
inserted to ensure that no two consecutive vertices in G are ever further than Ag
from each other. Using intermediate vertices, the interiors of the edges in GG are
ignored when finding the nearest point in S. The approximate computation of
NEAREST is performed by finding the closest vertex to «(i) in G. This approach
is by far the simplest to implement (in fact, it was done to obtain the results in
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Figure 5.29: The Kd-tree can be used for efficient nearest neighbor computations.

Figure 5.24). It also fits precisely under the incremental sampling and searching
framework from Section 5.4.1.

When using intermediate vertices, the tradeoffs are clear. The computation
time for each evaluation of NEAREST is linear in the number of vertices. Increas-
ing the number of vertices improves the quality of the approximation, but also
dramatically increases running time. One way to recover some of this cost of
the insert the vertices into an efficient data structure for nearest-neighbor search-
ing. One of the most practical and widely-used data structures is the Kd-tree
(189, 263, 599]. A depiction is shown in Figure 5.29 for 14 points in R?. The
Kd-tree can be considered as a multidimensional generalization of a binary search
tree. The Kd-tree is constructed for points, P, in R? as follows. Initially, sort
the points with respect to the X coordinate. Take the median point, p € P, and
divide P into two sets depending on which side of a vertical line through p the
other points fall. For each of the two sides, sort the points by the Y coordinate,
and find the medians. Points are divided at this level based on whether they are
above or below horizontal lines. At the next level of recursion, vertical lines are
used again, followed by horizontal again, and so forth. The same idea can be ap-
plied in R™ by cycling through the n coordinates, instead of alternating between
X and Y, to form the divisions. In [32], the Kd-tree is extended to topological
spaces that arise in motion planning, and is shown to yield good performance for
RRTs and sampling-based roadmaps. The Kd-tree can be constructed in O(nlg k)
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time. The topology must be carefully considered when traversing the tree. When
a query is made, a point, ¢ € T, is given, and the closest point to ¢ is found. At
first the query algorithm descends to a leaf node which contains the query point,
finds all distances from the data points in this leaf to the query point, and picks
up the closest one. Then, it recursively visits those surrounding leaf nodes which
are further from the query point than the closest point found so far [32]. The
nearest point can be found in time logarithmic in &.

Unfortunately, these bounds hide a constant that increases exponentially with
n. In practice, the Kd-tree is useful in motion planning for problems of up to
about 20 dimensions. After this, the performance usually degrades too much. As
an empirical rule, if there there are more than 2" points, then the Kd-tree should
be more efficient than naive nearest neighbors. In general, the tradeoffs must
be carefully considered in a particular application to determine whether exact
solutions, approximate solutions with naive nearest neighbor computations, or
approximate solutions with Kd-trees will be more efficient. There is also the issue
of implementation complexity, which probably has caused most people to prefer
the approximate solution with naive nearest neighbor computations.

5.5.3 Using the Trees for Planning

So far, the discussion has focused on exploring Cye, but this does not solve a
planning query by itself. There are many ways that RRTs and RDTs in general
can be used in planning algorithms. For example, they could be used to escape
local minima in the randomized potential field planner of Section 5.4.3.

Single-tree search A reasonably efficient planner can be made by directly using
the algorithm in Figure 5.27, if the sequence a contains the appropriate bias.
If the sample sequence is random, which generates an RRT, then the following
modification will work well. In each iteration, toss a biased coin that has probably
49/50 of being HEADS, and 1/50 of being TAILS. If the result is HEADS, then
set (i), to be the next element of the pseudorandom sequence. Otherwise, set
a(i) = g,. This will force the RDT to occasionally attempt making a connection
to the goal, ¢,. Of course, 1/50 is arbitrary, but it in a range that works well
experimentally. If the bias is too strong, then the RDT will become too greedy
like the randomized potential field. If the bias is not strong enough, then there
will be no incentive to connect the tree to g,.

If (i) is a deterministic sequence, then g, can be selected with a fixed fre-
quency. For example, the Halton sequence can be used, but for every positive
integer 7, g, is inserted into the Halton sequence between points 507 and 507 + 1.
Thus, in every 50" iteration, the RDT will attempt to connect to the goal. Of
course, the fixed frequency could also be combined with the random sampling.

Other variations can be made by using a dense, but nonuniform sequence in
C. For example, in the case of random sampling, the probability density function
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RDT_BALANCED_BIDIRECTIONAL(g;, ¢,)

1 T,.init(g;); Tp.init(g,);

2 fori=1to K do

3 Gn < NEAREST(S,, a(1));

4 ¢s < STOPPING-CONFIGURATION(q,,,cx(7));
) if ¢; # ¢, then

6 T,.add vertex(qs);

7 T,.add_edge(qn, gs);

8 q), < NEAREST(Sp, s );

9 ¢\ < STOPPING-CONFIGURATION(q/,,qs);
10 if ¢/ # ¢/, then

11 Ty.add_vertex(q.,);

12 Ty.add_edge(q.,, q%);

13 if ¢/ = ¢s then Return Solution;

14 if |T,| > |T,| then SWAP(T,,T});
15 Return Failure

Figure 5.30: A bidirectional RDT-based planner.

could contain a gentle bias towards the goal. Choosing such a bias is a difficult
heuristic problem; therefore, such a technique should be used with caution (or
avoided altogether).

Balanced, bidirectional search '3

Much better performance can usually be obtained by growing two RDTs, one
from ¢; and the other from g,. This is particularly valuable for escaping one of the
bug traps, as mentioned in Section 5.4.1. For a grid search, it is straightforward
to implement a bidirectional search that ensures that the two trees meet. For the
RDT, the special considerations must be made to ensure that the two trees will
connect while retaining their rapidly-exploring property. One additional idea is
to make sure that the bidirectional search is balanced [], which will ensure that
both trees are the same size.

Figure 5.30 gives an outline of the algorithm. The graph, G, is decomposed
into two trees, denoted by T;, and T. Initially, these trees start from ¢; and g,
respectively. After some iterations, T, and T}, will be swapped; therefore, keep in
mind that 7, is not always the tree that contains ¢;. In each iteration, 7T}, is grown
exactly the same way as in one iteration of the algorithm in Figure 5.20. If a new
vertex, ¢, is added to T,, then an attempt is made in Lines 10-12 to extend Tj.
Rather than using «(7) to extend Ty, the new vertex, ¢, of T, is used. This will
cause T}, to try to grow towards T,. If the two connect, which is tested in Line 13,
then a solution has been found.

13This particular planner is due to an unpublished collaborative effort with James Kuffner.
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Line 14 represents an important step that balances the search. This is partic-
ularly important for a problem such as the bug trap shown in Figure 5.15 or the
puzzle shown in Figure 1.2. If one of the trees is having trouble exploring, then
it makes sense to focus more energy on it. Therefore, new exploration is always
performed for the smaller tree. How is “smaller” defined? A simple criterion is to
use the total number of vertices. Another reasonable criterion is the use the total
length of all segments in the tree.

An unbalanced bidirectional search can instead by made by forcing the trees
to be swapped in every iteration. Once the trees are swapped, then the roles are
reversed. For example, after the first swap, T; is extended in the same way as an
integration in Figure 5.20, and if a new vertex, ¢, is added then an attempt is
made to connect T, to gs.

One important concern exists when « is deterministic. It might be possible
that even through « is dense, when the samples are divided among the trees, each
may not receive a dense set. If each uses its own deterministic sequence, then this
problem can be avoided. In the case of making a bidirectional RRT planner, the
same (pseudo)random sequence can be used without such troubles.

More than two trees If a dual-tree approach offers advantages over a single
tree, then it is natural to ask whether growing three or more RDTs might be
even better. This is particularly helpful for problems like the double bug trap in
Figure 5.16. New trees can be grown from parts of C that are difficult to reach.
Controlling the number of trees and determining when to attempt connections
between them is a difficult. Some promising experimental work has been done in
this direction, but it currently requires substantial parameter tuning [62].

These additional trees could be started at arbitrary (possible random) configu-
rations. As more trees are considered, a complicated decision problem arises. The
computation time must be divided between attempting to explore the space and
attempting to connect trees to each other. It is also not clear which connections
should be attempted. Many research issues remain in the development of this and
other RRT-based planners. A limiting case would be to start a new tree from
every sample in (i), and to try to connect nearby trees whenever possible. This
approach leads to a graph that covers the space in a nice way that is independent
of the query. This leads to the main topic of the next section.

5.6 Roadmap Methods for Multiple Queries

Previously, it was assumed that a single initial-goal pair was given to the planning
algorithm. Suppose now that that numerous initial-goal queries will be given the
algorithm, while keeping the robot model and obstacles fixed. This leads to a
multiple-query version of the motion planning problem. In this case, it makes
sense to invent substantial time to preprocess the models so that future queries
can be answered efficiently. The goal is to construct a roadmap that can be used



228 S. M. LaValle: Planning Algorithms

BUILD_ROADMAP

1 G.init();

2 fori=1to N

3 if a(i) € Cfree then
G.add_vertex(«(i));
for each ¢ € NEIGHBORHOOD(«(1),&)

if ((not G.same_component(a(i),q)) and CONNECT(«(i),q)) then
G.add_edge(a(i), q);

-1 O Ut

Figure 5.31: The basic construction algorithm for sampling-based roadmaps.

to efficiently solve queries. Intuitively, the paths on the roadmap will be easy
to reach from each of ¢; and ¢4, and the network of paths in the roadmap can
be quickly searched for a solution. The general framework presented here was
mainly introduced in [387] under the name Probabilistic Roadmaps (PRMs). The
probabilistic aspect, however, is not important to the method. Therefore, we call
this family of methods sampling-based roadmaps. This distinguishes them from
combinatorial roadmaps which will appear in Chapter 6.

5.6.1 The Basic Method

Once again, let G(V, E) represent a topological graph in which V' is a set of
vertices and F is the set of paths that map into Cse.. Under the multiple-query
philosophy, motion planning is divided into two phases of computation:

Preprocessing Phase: During the preprocessing phase, substantial effort
is invested to build G' in a way that will be useful for quickly answering
future queries. For this reason, it is called a roadmap, which in some sense
should be capable of reaching every part of Cyy ..

Query Phase: During the query phase, a pair, ¢; and ¢4, is given. Each
configuration must be connected easily to G using a local planner. Following
this, a discrete search is performed using any of the algorithms in Section
2.3 to obtain a sequence of edges that forms a path from ¢; to ¢g.

Generic preprocessing phase Figure 5.31 presents an outline of the basic
preprocessing phase. Figure 5.32 illustrates the algorithm. As seen throughout
this chapter, the algorithm utilizes a uniform, dense sequence «. In each iteration,
the algorithm must check whether ¢ € Cyyee. If ¢ € Cops, then it must continue to
iterate until a collision-free sample is found. Once a(i) € Cyye., then it is inserted
into G, in Line 4. The next step is to try to connect (i) to some nearby vertices,
q, of G. Each connection is attempted by the connect function, which is a typical
LPM (local planning method) from Section 5.4.1. In most implementations, this
will simply test the shortest path between «(i) and g. Experimentally, it seems
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Figure 5.32: The sampling-based roadmap is constructed incrementally by at-
tempting to connect each new sample, (i), to nearby vertices in the roadmap.

most efficient to use the multiresolution, van der Corput-based method described
at the end of Section 5.3.4 [272]. Instead of the shortest path, it is possible to
use more sophisticated connection methods, such as the bidirectional algorithm
in Figure 5.30. If the path is collision free, then CONNECT returns TRUE.

The same_component condition in Line 6 checks to make sure (i) and ¢ are
in different components of G before wasting time on collision checking. This will
ensure that every time a connection is made, the number of connected components
of G is decreased. This can be implemented very efficiently (near constant time)
using the previously-mentioned union-find algorithm [176, 655]. In some imple-
mentations this step may be ignored, especially if it is important to keep multiple
solutions. For example, it may be desirable to generate solution paths from differ-
ent homotopy classes. In this case the condition (not G.same_component(«(7), q))
may be replaced with with G.vertex_degree(q) < K, for some fixed K (e.g., K =
15).

Selecting neighboring samples Several possible implementations of Line 5
can be made. In all of these, it seems best to sort the vertices that will be
considered for connection in order in increasing distance from (7). This makes
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sense because shorter paths are usually less costly to check for collision, and
they also have a high likelihood of being collision free. If a connection is made,
this avoids costly collision checking of longer paths to configurations that would
eventually belong to the same connected component.

Several useful implementations of NEIGHBORHOOD are:

1. Nearest K: The K closest points to «(i) are considered. This requires
setting the parameter K. A typical value is 15. If you are unsure which
implementation to use, try this one.

2. Component K: Try to obtain up to K nearest samples from each connected
component of GG. A reasonable value is K = 1 in this case; otherwise, too
many connections would be tried.

3. Radius: Take all points within a ball of radius r, centered at «(i). An
upper limit, K, may be set to prevent too many connections from being
attempted. Typically, K = 20. A radius can be determined adaptively by
shrinking the ball as the number of points increases. This reduction can
be based on dispersion or discrepancy, if either of these is available for a.
Note that if the samples are highly regular (e.g., a grid) then choosing the
nearest K and taking points within a ball become essentially equivalent.
If the point set is highly irregular, as in the case of random samples, then
taking the nearest K seems preferable.

4. Visibility: In Section 5.6.2, a variant will be described for which it is
worthwhile to try connecting « to all vertices in G.

Note that all of these require C to be a metric space. One variation that has not yet
been given much attention is to ensure that the directions of the NEIGHBORHOOD
points relative to «(i) are distributed uniformly. For example, if the 20 closest
points are all clumped together in the same direction, then it may be preferable
to try connecting to a further point because it is in the opposite direction.

Query phase In the query phase, it is assumed that G is sufficiently complete
to answer many queries, each of which gives an initial configuration, ¢;, and a
goal configuration, g,. First, the query algorithm pretends as if ¢; and g, were
chosen from « for connection to GG. This requires running two more iterations
of the algorithm in Figure 5.31. If ¢; and ¢, are successfully connected to other
vertices in G, then a search is performed for a path that connects the vertex ¢;
to the vertex ¢q,. The path in the graph corresponds directly to a path in Cype,
which is a solution to the query. Unfortunately, if this method fails, it cannot
be determined conclusively whether a solution exists. If the dispersion is known
for sample sequence, «, then it is at least possible to conclude that no solution
exists for the resolution of the planner. In other words, if a solution does exist, it
would require the path to travel through a corridor no wider than the radius of
the largest empty ball [453].



5.6. ROADMAP METHODS FOR MULTIPLE QUERIES 231

Figure 5.33: Examples such as these are difficult because of the narrow corridor
that links two portions of Cgyee.

Some analysis There have been many works that analyze the performance
of sampling-based roadmaps. The basic idea from one of them [49] is briefly
presented here. Consider problems such as those in Figure 5.33, in which the
CONNECT method will mostly likely fail, even though a connection exists. The
higher-dimensional versions of these problems are even more difficult. Many plan-
ning problems involve moving a robot through an area with tight clearance. This
will generally cause narrow channels to form in Cy,., which leads to a challenging
planning problem for the sampling-based roadmap algorithm. Finding the escape
of a bug trap is also challenging, but for the roadmap methods, even traveling
through through a corridor is hard (unless more-sophisticated LPMs are used).

Let V' (g) denote the set of all configurations that can be connected to ¢ using
the CONNECT method. Intuitively, this can be considered as the set of all config-
urations that can be V(gq) “seen” using line-of-sight visibility, as shown in Figure
5.34.a

The e-goodness of Cy,e. is defined as

€= min M, (5.39)

q€Csrece ,U(Cfree)
in which p represents the measure. Intuitively, € represents the small fraction of
Cfree that is visible from any point. In terms of € and the number of vertices in G,
bounds can be established that yield the probability that a solution will be found
[49]. The main difficulties are that the e-goodness concept is very conservative
(it uses worst-case analysis over all configurations), and e-goodness is defined
in terms of the structure of Cye., which cannot be computed efficiently. This
result and other related results are interesting for gaining a better understanding
of sampling-based planning, but such bounds are difficult to use in a particular
application to determine whether an algorithm will perform well.
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Vig)

(a) Visibility definition (b) Visibility roadmap

Figure 5.34: a) V(q) is the set of points reachable by the LPM from ¢. b) A
visibility roadmap has two kinds of vertices: guards, which are shown in black,
and connectors, shown in white. Guards are not allowed to see other guards.
Connectors must see at least two guards.

5.6.2 Visibility Roadmap

One of the most interesting variations of sampling-based roadmaps is the visibility
roadmap [705]. The approach works very hard to ensure that the roadmap repre-
sentation is small, yet covers Cype. well. The running time is often greater than
the basic algorithm in Figure 5.31, but the extra expense is usually worthwhile if
the multiple query philosophy is taken to its fullest extent.

The idea is to define two different kinds of vertices in G:

Guards: To become a guard, a vertex, ¢ must not be able to see over guards.
Thus, the visibility region, V(¢), must be empty of guards.

Connectors: To become a connector, a vertex, g, must see at least two
guards. Thus, there exists guards ¢; and ¢, such that ¢ € V(q1) Nov(g2).

The roadmap construction phase proceeds similarly to the algorithm in Figure
5.31. The neighborhood function returns all vertices in G. Therefore, for each new
sample «(7), an attempt is made to connect it to every other vertex in G.

The main novelty of the visibility roadmap is that a strong criterion exists to
determine whether to keep «(i) and its associated edges in G. There are three
possible cases for each «a(7):

1. The new sample, «(i), is not able to connect to any guards. In this case,
a(1) earns the privilege of becoming a guard itself, and is inserted into G.

2. The new sample can connect to guards from at least two different connected
components of GG. In this case, it becomes a connector, and is inserted into GG
along with its associated edges that connect it to these guards from different
components.
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3. Neither of the previous two conditions were satisfied. This means that the
sample could only connect to guards in the same connected component. In
this case, «(1) is discarded.

Figure 5.35 shows the dramatic reduction in the number of vertices for two
different examples.'* Each column from top to bottom shows the problem, a basic
sampling-based roadmap, and the visibility roadmap. The first example is for a
point robot, and the second example is for a rectangular robot that can translate
or rotate.

One problem with the method described is that is does not allow guards to
be deleted in favor of better guards that might appear later. The placement of
guards depends strongly on the order in which samples appear in .. The method
may perform poorly if guards are not positioned well early in the sequence. It
would be better to have an adaptive scheme in which could allow guards to be
reassigned in later iterations as better positions become available. Accomplishing
this efficiently remains an open problem.

5.6.3 Heuristics for Improving Roadmaps

The quest to design a good roadmap though sampling has spawned many heuristic
approaches to sampling and making connections in roadmaps. Most of these
exploit properties specific to the shape of the configuration space and/or the
particular geometry and kinematics of the robot and obstacles. The emphasis is
usually on finding ways to dramatically reduce the number or required samples.
Several of these methods are briefly described here.

Original node enhancement [387] This heuristic strategy focuses effort on
nodes that were difficult to connect to other nodes in the roadmap construction
algorithm in Figure 5.31. A probability distribution, P(v), is defined over the
vertices v € V. A number of iterations are then performed in which a vertex is
sampled from V' according to P(v), and then some random motions are performed
from v to try to reach new configurations. These new configurations are added as
vertices, and attempts are made to connect them to other vertices, as selected by
the NEIGHBORHOOD function in an ordinary iteration of the algorithm in Figure
5.31. A recommended heuristic [387] for defining P(v) is to define a statistic for
each v as ny/(ny + 1), in which n, is the total number of connections attempted
for v, and ny is the number of times these attempts failed. The probability P(v)
is assigned as ny/(n; + 1)m, in which m is the sum of the statistics over all v € V
(this serves to normalize the statistics to obtain a valid probability distribution).

Sampling on the Cy,.. boundary [13, 16] This scheme is based on the intu-
ition that it is sometimes better to sample along the boundary, OC .., rather than

14These examples are taken from a class project of Andrew Olson and Kevin Crotty completed
at Iowa State University.
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Figure 5.35: The visibility roadmap is more costly to construct, but can dramat-

ically reduce the number of vertices.
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Figure 5.36: To obtain samples along the boundary, binary search is used along
random directions from a sample in Cps.

wasting samples on large areas of Cy,.. that might be free of obstacles. Figure 5.36
shows one way in which this can be implemented. For each sample of «(i) that
falls into C,ps, a number of random directions are chosen in C; these directions can
be sampled using the S™ method in Section 5.2.2. For each direction, a binary
search is performed to get a sample in Cy,e that is as close as possible to Cops.
The order of point evaluation in the binary search is shown in Figure 5.36. Let
7 : [0, 1] denote the path, for which 7(0) € Cups and 7(1) € Cfree. In the first step,
test the midpoint, 7(1/2). If 7(1/2) € Cyree, this means that ICpy e lies between
7(0) and 7(1/2); otherwise, it lies between 7(1/2) and 7(1). The next iterations
selects the midpoint of the path segment that contains 9C ... This will be either
7(1/4) or 7(3/4). The process continuously recursively until the desired resolution
is obtained.

Gaussian sampling [86] The Gaussian sampling strategy follows some of the
same motivation for sampling on the boundary. In this case, the goal is to obtain
points near dCy,.. by using a Gaussian distribution in which biases the samples to
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Figure 5.37: The bridge test finds narrow corridors by examining a triple of sam-
ples.

Figure 5.38: The medial axis is traced out by the centers of the largest inscribed
balls. The five line segments inside of the rectangle correspond to the medial axis.

be closer to OCyye, but the bias is gentler, as prescribed by the variance parameter
of the Gaussian. The samples are generated as follows. Generate one sample,
¢1 € C, uniformly at random. Following this, generate another sample ¢ € C
according to a Gaussian with mean ¢;; the distribution must be adapted for any
topological identifications and/or boundaries of C. If one of ¢; or g; lies in Cyyee,
and the other lies in Cys, then the one that lies in Cy,. is used as a vertex in the
roadmap. For some examples, this dramatically prunes the number of required
vertices.

Bridge test sampling [341] The Gaussian sampling strategy decides to keep
a point based on part on testing a pair of samples. This idea can be carried
one step further to obtain a bridge test, which uses three samples along a line
segment. If the samples are arranged as shown in Figure 5.37, then the middle
sample becomes a vertex. This is based on the intuition that narrow corridors are
thin in at least one direction. The bridge test indicates that there a corridor is
thin, while is a difficult and important place to locate a vertex.
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Medial axis sampling [332, 490, 774] Rather than trying to sample close
to the boundary, another strategy is to force the samples to be as far from the
boundary as possible. Let (X, p) be a metric space. Let a mazimal ball be a ball
B(z,r) € X such that no other ball can be a proper subset. The centers of all
maximal balls trace out a one-dimensional set of points referred to as the medial
azis. A simple example of a medial axis is shown for a rectangular subset of R?
in Figure 5.38. The medial axis in Cy,. is based on the largest balls that can be
inscribed in ¢l(Cfee). Sampling on the medial axis is generally difficult, especially
because the representation of Cy,.. is implicit. Distance information from collision
checking can be used to start with a sample, a(i), and iteratively perturb it to
increase its distance from 9Cy,. [490, 774]. Sampling on the medial axis of W\ O
has also been proposed [332]. In this case, the medial axis in W\ O is easier to
compute, and can be used to heuristically guide the placement of good roadmap
vertices in Cyree.

Literature

Explain [81] somewhere.

Should say something about disconnection proofs.

Need to cite the exact collision detection method of Latombe et al from WAFR
2002.

The following is from the section entitled “The Rise of Sampling-Based Motion
Planning” in an ISSR 2003 paper coauthored with Steve Lindemann. It needs to
be shortened here.

To fully understand the continuing evolution of sampling-based motion plan-
ning and its current issues, it is helpful to understand how sampling-based algo-
rithms have developed and changed over time. In this section, we will describe
how sampling-based algorithms began to emerge, and how they have continued
to develop up to the present time.

In the 1980s, constructing a representation of C,ps, either completely or in part,
was the predominate approach to motion planning. Examples include the planner
by Brooks and Lozano-Pérez for a polygon rotating and translating in the plane
[102], work by Donald for planning for a 3D rigid body [205, 207], and a planner
by Lozano-Pérez for manipulator arms [505]. References to many combinatorial
planners and a few early sampling-based ones can be found in Hwang and Ahuja’s
survey [357]. Glimpses of sampling-based motion planning began to emerge in
the late 1980s. These algorithms typically centered around advances in efficient
calculation of distance between polyhedra. Faverjon and Tournassoud introduced
a manipulator planner which computed local collision-free motions using distance
computation and hierarchical CAD models [243, 242]. The introduction of algo-
rithms such as the Gilbert-Johnson-Keerthi algorithm [279] made sampling-based
approaches more common. A good example of an approach is the manipulator
planner of Paden et al. [602]. They create a 2¢-tree representation of the configu-
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ration space, labelling cells as “freespace,” “obstacle,” or “not sure or mixed.” To
classify cells correctly (or at least, conservatively), they find the uniform bound on
the Jacobian for the given manipulator. Then, based on this information and the
workspace distance returned by the GJK algorithm, they can determine whether
or not an entire cell can be classified as freespace or obstacle. If neither apply,
then the cell is labelled mixed and will be subdivided, if a predefined minimum
resolution has not yet been reached. After preprocessing the environment in such
a way, it is simple to find a path, if one exists in the tree, or to determine that
greater resolution is required to resolve small mixed cells.

The use of distance information from a collision detector permits hierarchi-
cal grid-based approaches as in Paden et al., but computing this information is
more expensive than simply returning the boolean result of an intersection test
(the most basic form of collision detection). A less-expensive grid-based approach
might discretize the space at a sufficiently fine resolution and use an inexpensive
collision detection method to determine whether each cell belongs to Cyyc, thus
creating a bitmap of C-space. The resulting data structure can then be searched
by classical Al search techniques to find a path, if one exists. In fact, this very ap-
proach was taken by Lengyel et al. [479]. Their algorithm uses graphics hardware
to plan for a polygonal robot translating and rotating in the plane. They divide the
rotational degree of freedom, 6, into a number of slices, and use graphics hardware
to calculate the Minkowski sum of the robot and obstacles for a particular value
of #. They combine all resulting slices and have a bitmap representation of the
three-dimensional C-space, which they then search with a dynamic programming
technique.

In general, however, this kind of approach is limited to lower dimensions since
the number of resultant grid cells grows exponentially with the number of DOF's
of the problem, and the a fine resolution is required. Hence, checking them all for
collision becomes impractical. Nevertheless, when general sampling-based motion
planning algorithms began to proliferate in the early 90’s, several of these were
clearly influenced by the grid search approach. We will consider two of this type,
along with two other early sampling-based algorithms, before describing several
more recent, state-of-the-art sampling-based motion planners.

One early planner that strongly reflects classical grid search techniques is that
of Kondo [406]. Kondo’s planner is based on the observation that even if a fine
grid is placed over the configuration space, it may be possible to find a solution
without visiting large portions of that grid. Hence, if one delays collision checking
until needed—a “lazy” approach-only (relatively) few collision checks will need to
be performed, thus avoiding the expensive preprocessing step of naive grid search.
The planner searches a grid bidirectionally, assigning cost f(C) = g(C) + h(C) to
each expanded grid cell, in which ¢(C) is the standard cost-to-come and h(C) is
a heuristic weighted sum-of-squares cost. Kondo’s planner uses multiple heuris-
tics (i.e., different assignments of the heuristic weight constants), and adaptively
selects between them based on an estimate of their effectiveness. Hence, the effec-
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tiveness of the planner strongly depends on the quality of the heuristic functions,
and on the planner’s ability to choose the appropriate one to apply. If either
of these are poor, then performance will degrade greatly. Kondo gives several
six-dimensional examples, with the resolution of the grid being 27 points per axis
yielding 22 total grid cells. However, for the results reported, typically less than
20000 collision checks were needed to solve the problem. The influence of Kondo’s
multiple-heuristic approach can be seen in recent PRM-related work by Isto [362].

In 1990, Barraquand and Latombe introduced the planner that came to be
called the Randomized Path Planner [51]. This planner is important for three
primary reasons: first, it was the perhaps the first well-known sampling-based
motion planner; second, it solved problems with many DOFs, typically many
more than other planners at the time were capable of handling; and third, it
advocated randomization as a means of efficiently finding solutions in the high-
dimensional configuration space. Its influence in this third respect can hardly be
overestimated, since for the following decade virtually every significant sampling-
based motion planning algorithm used randomization. In fact, only recently has
the role of randomization in sampling-based motion planning begun to be studied
in depth. We will discuss this issue in some depth in subsequent sections. RPP
operates as follows: first, the planner defines several potential fields over a grid
imposed on the workspace; each potential field corresponds to a “control point” on
the robot. A finer-resolution grid is also defined over the configuration space, and
the potential value of each configuration-space grid cell is defined by the following
non-negative, real-valued function on C'.:

Ulq) = G (Up, (X(p1,9)), -, Up, (X (Pn, 7)),

in which pq, ..., p, are the control points, X is a function mapping a point on the
the robot to its position in the workspace