
i

Problem Solving with Flowcharts and a

Little Flavor of Programming with

Python

Achla Agarwal

Krishna Agarwal

Laura Goadrich

Mark Goadrich
©2010

ii

iii

Preface

This book was written for students of any age who want to learn the
concepts to enable them to program successfully. Programming is an art and
this text will teach you the techniques and underlying logic that will form the
foundation of future coding skills no matter what language you choose to
program in. Because there are a variety of programming languages that are
changing and evolving, it is important to create a solid skill-set that is
adaptable to any programming language you choose to learn.

Today, computers are used in almost every aspect of our daily lives. From
the alarm clock that wakes you in the morning, to the car or bus that takes
you to and from school, computers are vital to maintain our current
lifestyles. A computer at its core is just metal and silicon. It is the way that
the metal and silicon is organized, in a logical manner that makes computers
useful. One way to incorporate logic into a computer is through instructions
in a program. A program is made up of instructions that execute a specific
task in a language that a computer can understand.

Since programming is a multifaceted area, we use examples from a variety
of areas to reach the interests of a large number of students. We focus our
examples and problems on situations that arise every day. From painting a
room to organizing employee information to examining DNA, we have
included examples in many areas of Science, Technology, Engineering and
Mathematics (STEM) to show the interconnectedness of computers.

The goal of creating a program is to solve a task. This task must be broken
down into clear steps to reach your end goal. We focus on using flowcharts
to allow the learner to visualize and group the steps in the programming
process. Flowcharts are also helpful in organizing thoughts to create a clear
task order.

In addition to flowcharts, we also focus on pseudocode and code tracing.
While flowcharts are a wonderful visual tool, more complicated problems
can be written in a more compact form using pseudocode. To clearly
understand both the execution of the flowchart and pseudocode, it is
important to be able to trace the code as well. We give detailed techniques
for code tracing that will solidify the execution performed in the computer
memory.

iv

Each chapter has been organized to begin with an outline of topics needed
from previous chapter sections for reference. Next we illustrate the reason
for the chapter with a motivating example and then work through lessons
dedicated to new concepts. Each lesson is filled with a variety of examples
and ends with self-check exercises for the student to check their progress
and understanding at each stage. After a summary of the main concepts at
the end of the chapter, there are problem sets for more practice and
application of the lesson topics.

Finally we incorporated Python, a free, straight-forward programming
language, for students to test their programs on the computer. In our years of
teaching, students always desired a more hands-on approach to learning
programming logic and Python is a wonderful tool for applying what has
been learned without requiring a programming background. Also Python can
be installed in a few steps on any platform (see Appendix A for more
information).

The text is outlined to cover techniques for solving problems in Chapter 1
and discusses ways to store and manipulate data in Chapter 2. The next
chapter introduces flowcharts and pseudocode along with standard function
references and applies these techniques to a programming language called
Python. Chapter 4 augments the prior chapter using print and get statements
to interact with a user, incorporating code tracing and debugging while
Chapter 5 introduces operators and Boolean data types. The next chapter
introduces decision and selection structures following with a detailed
discussion about nested selection statements and case statements. Chapter 8
and 9 focus on looping structure and nested loops. The next two chapters
look at functions and arrays. The last chapter covers file input and output.

Note that the three features, flowcharts, pseudocode, Python, can be pulled
apart and used independently to meet the needs for all student and logic
environments. Each chapter focuses on solving everyday problems. These
problems include solutions in Python for the student and instructor to
experiment with and demonstrate the chapter concepts. We feel that the
combination of the three features gives a balanced understanding of
programming logic and a good foundation for programming.

v

Table of Contents

1. Techniques for Solving Problems .. 1

1.1 Steps in solving a problem .. 1

1.2 Motivating example .. 2

Self-Check 1.1... 3

1.3 Programming Skills .. 3

Key Terms ... 4

Exercises ... 4

Self-Check Solutions .. 6

2. Storing Data ... 7

2.1 Characters and Strings .. 7

Self-Check 2.1... 7

2.2 Numerical Data Types .. 10

2.3 Numerical Operators ... 12

2.3.1 Addition and Subtraction ... 12

2.3.2 Multiplicative Operators .. 13

Self-Check 2.2... 14

2.3.3 Negation ... 15

Self-Check 2.3... 16

2.3.4 Exponentiation ... 16

2.4 Casting .. 16

Key Terms ... 17

Exercises ... 18

Self-Check Solutions .. 19

3. Pseudocode, Flowcharts and Python ... 20

3.1 Sequential Order ... 20

3.2 Pseudocode ... 20

3.3 Flowcharts ... 20

3.4 Python ... 21

Problem 3.1 ... 21

Self-Check 3.1... 23

Problem 3.2 ... 26

Key Terms ... 29

Exercises ... 29

Self-Check Solutions .. 33

4. Input and Output .. 34

4.1 Pseudocode “print” and “get” ... 34

4.2 Constants ... 36

4.3 Problem 4.1 ... 37

Self-check 4.1 ... 38

Self-Check 4.2... 39

4.4 Applying Python ... 40

vi

4.4.1: Python “print” and ” input” .. 40

Key Terms ... 42

Exercises ... 42

Self-Check Solutions .. 44

5. Boolean Logic .. 47

5.1 Boolean Data Type ... 47

5.2 Relational Operators ... 47

5.3 Logical Operators.. 49

Self-Check 5.1... 51

Self-Check 5.2... 52

5.4 Assignment Operator .. 52

5.5 Equality Operators .. 53

Key Terms ... 54

Exercises ... 54

Self-Check Solutions .. 55

6. Selection Structures .. 56

6.1 If-Then-Else .. 56

6.2 Problem 6.1 ... 56

6.3 Updating Flowcharts ... 57

6.4 Problem 6.2 ... 60

6.5 Problem 6.3 ... 62

Key Terms ... 65

Exercises ... 65

7. Nested If-Then-Else and Case Statements .. 68

7.1 Nested If-Then-Else .. 68

Problem 7.1 ... 68

Self-Check 7.1... 72

7.2 Case Statement .. 72

Problem 7.2 ... 74

Self-Check 7.2... 76

Key Terms ... 76

Exercises ... 76

Self-Check Solutions .. 79

8. Repetition Structures .. 84

8.1 While loops ... 84

Problem 8.1 ... 85

Self-Check 8.1... 91

Problem 8.2 ... 92

8.2 For loops ... 96

Problem 8.3 ... 97

Problem 8.4 ... 99

8.3 Sentinels in while loops .. 101

vii

Self-check 8.3 ... 102

8.4 Do-While loops ... 102

Problem 8.5 ... 104

8.5 Infinite Loops .. 106

Key Terms ... 106

Exercises ... 106

Self-Check Solutions .. 110

9. Nested Loops.. 114

Problem 9.1 ... 114

Self-Check 9.1... 118

Problem 9.2 ... 119

Self-Check 9.2... 121

Problem 9.3 ... 122

Self-Check 9.3... 124

Key Terms ... 124

Exercises ... 124

Self-Check Solutions .. 126

10. Functions .. 131

10.1 Function parts.. 131

10.2 Comments in functions ... 133

10.3 Value-returning functions ... 134

Problem 10.1 ... 134

Problem 10.2 ... 136

Self-Check 10.1... 138

10.4 Void functions ... 138

Problem 10.3 ... 139

Problem 10.4 ... 140

Self-Check 10.2... 142

Key Terms ... 142

Exercises ... 142

Self-Check Solutions .. 144

11. Arrays... 146

Self-Check 11.1... 147

Self-Check 11.2... 148

Problem 11.1 ... 148

Self-Check 11.3... 154

Problem 11.2 ... 155

11.2 Two-dimensional arrays.. 157

Self-Check 11.4... 158

11.3 Multi-dimensional arrays .. 158

Exercises ... 159

Self-Check Solutions .. 161

viii

12. File Input and Output ... 164

12.1 Pseudocode for File Operations .. 164

12.2 Problem 12.1 ... 165

12.3 Problem 12.2 ... 168

Self-Check 12.1... 172

12.4 Problem 12.3 ... 172

12.5 Problem 12.4 ... 175

Exercises ... 179

Self-Check Solutions .. 182

Appendix A: Installing Python .. 185

References .. 187

Index ... 188

1

1. Techniques for Solving Problems

In life we encounter problems every day, from deciding what to wear in the
morning to planning a trip for summer vacation. Some problems may be
easier to solve than others because we have a preference (I love to eat
eggplant parmesan. So, where should we eat tonight?) while others may be
very taxing (I have only one stick of bubble gum and two friends. Who will
get it?).

This chapter will give you the tools to become a great problem solver. We
will look at formalizing the steps you can take to systematically arrive at a
solution, and how you can use these skills to program a computer.

1.1 Steps in solving a problem

While every problem is unique, there are some core steps that you can
follow to help you break down and solve any situation. The steps that are
outlined here will be used throughout the entire text for you to frame your
programming solutions.

After you have read or listened to the problem presented,

1. Identify your input.
Input is the essential information that a program needs to solve the
problem. The input may be given by an outside source (like the person
using the program) or default values given by the programmer.

2. Identify the goal or objective.
The goal is where you define your end result. This is a description of
when you know your problem has been solved and your objectives
have been met. Sometimes you may have more than one goal, so list
each goal clearly.

3. Create a list of tasks to achieve your objective.
These are the steps required to reach your goal. Make sure you
enumerate your steps in order for clear execution. Also make sure
each step is descriptive and clear. Your list of tasks will result in your
goal from step 2.

2

When you have finished your tasks, make sure that you have answered the
problem and met your goal(s). This is probably the most important part of
the steps, but the easiest one to forget. Remember if your steps (from part 3)
don’t lead to your goal (from part 2) then you didn’t solve the problem and
you should start back at step 1.

1.2 Motivating example

Juanita is planning a trip to visit the Grand Canyon. Since she lives in
Seattle, Washington, she is concerned about the cost of gas needed to make
the trip. Using online mapping software, she calculated that it will take 1,224
miles to reach the Grand Canyon. Traveling on the highway, Juanita’s car
gets 18 miles per gallon (MPG). Estimating that the average cost of gas is
$4.20 per gallon (CPG), calculate how much money it will cost for her to
travel to the Grand Canyon. Using the equation below, you can calculate the
cost of travel by distance divided by MPG times CPG:

cost = distance ÷ MPG×CPG

To solve this with our problem solving steps from section 1.1, we first need
to identify the input (step 1):

 distance: 1224 miles
 MPG: 18
 CPG: $4.20

Now we can state our goal (step 2):

 Find the cost

Lastly we list our tasks to reach our goal (step 3):

 1. Plug the input(s) into the cost equation
 2. Return the cost

Now that the problem is broken down into some clear steps, we can execute
the tasks to reach our goal.

 cost = 1224 / 18 * 4.20

cost = $285.60

3

Self-Check 1.1

1.3 Programming Skills

One of the main goals of this textbook is to teach you the skills to become a
good programmer. Given below, are some of the terms which a person needs
to know in a programming environment.

A programmer is a person who creates programs that solve a
problem using the computer.

A program is a sequence of steps that a computer understands and
executes.

A programming language is a notation used to write instructions into
a computer.

A computer is a logical device, created from silicon and metal, which
runs on electricity.

 An algorithm is a set of instructions designed to complete a task.

 A bug is an error in a program.

Debugging is the process of removing errors, testing and revising a
program to make sure that it performs as expected.

We encounter problems every day, many of them too complex to solve
without help. By defining problems for a computer using the problem-
solving components of inputs, goals, and tasks, we can start the process of
programming a computer to assist us in finding solutions.

Programs have to satisfy clear rules so that a computer knows the exact
specifications of the problem and solution. The rules, or syntax, that you use
to program in will differ based on the type of programming language that
you are using. In this book we will be using a programming language called

What is the purpose of the second step in solving a problem?

4

Python to apply the lessons you are learning. We will discuss more about
programming techniques and Python in Appendix A and from Chapter 3 on.

Key Terms

Exercises

For each of the problems below, identify input, goal and create a list of tasks
to achieve your goal.

1. Reno, Nevada is a desert city supporting a population of over 180,480

people (in the 2000 census). The large population and desert location
makes water a treasured resource. Many citizens of Reno do not own
their own swimming pool because water is so dear; instead they visit the
public swimming pools. If the city charges 1.2 cents per cubic feet of
water, calculate the cost the city pays for water needed to fill a typical
public swim pool if the pool is 20 feet wide, 30 feet long and 10 feet
deep. Use the following equations:

Volume in cubic feet = length * width * height

Cost = cost per cubic feet * Volume in cubic feet

2. Describe how to open a bag of pretzels. Your tasks will be the actions to

perform to reach your goal. Make sure you state your assumptions (i.e.,
what is the position of the bag and the hands). Try to limit your verbs you
use in your tasks to reach, grasp, and pull away.

Algorithm
Bug
Computer
Debugging
Goal
Input

Objective
Programmer
Programming language
Python
Tasks
Syntax

5

3. Jimmy works at the local air force base. On Wednesday, Jimmy worked
from 8:12 hours until 16:38 hours with a lunch break from 12:02 hours
until 12:24 hours. Calculate how long Jimmy worked on Wednesday.

Time worked = ______

4. Describe how to sharpen a pencil using an electric pencil sharpener. Your

tasks will be the actions to perform to reach your goal. Make sure you
state your assumptions (i.e., what is the position of the pencil and the
hand). Try to limit the verbs that you use in your tasks to move, push,

wait, remove, judge, toward, pull, go to.

5. Describe how to fill a glass with water. Your tasks will be the actions to

perform to reach your goal. Make sure you state your assumptions (i.e.,
what is the position of the glass, sink and hand). Try to limit the verbs
that you use in your tasks to move and hold.

6. Describe how to make a peanut butter and jelly sandwich. Try to limit the
number of verbs that you use to less than 10.

7. You have decided to repaint the four walls of your living room and need

to know how many gallons of paint to buy. There is one window and one
entrance to the room. Describe how you would calculate the number of
gallons of paint needed taking the description of the room into account.
Assume one gallon of paint covers 350 square feet.

Hint: Square feet = Length * Width

8. Describe how to open a Kit-Kat bar wrapped in packaging. Your tasks

will be the actions to perform to reach your goal. Make sure you state
your assumptions. Try to limit the verbs that you use in your tasks to
tear and hold.

9. Describe how to organize five books on a bookshelf in alphabetical order
by author. Your tasks will be the actions to perform to reach your goal.
Make sure you state your assumptions. Try to limit the verbs that you
use in your tasks to pick-up and place.

10. Describe how to blow up a rubber balloon. Your tasks will be the actions

to perform to reach your goal. Make sure you state your assumptions.

6

Try to limit the verbs that you use in your tasks to blow, breathe and
hold.

For extra credit, describe how to create a balloon animal in the shape of a
dog. Your tasks will be the actions to perform to reach your goal. Make
sure you state your assumptions. Try to limit the verbs that you use in
your tasks to blow, breathe, twist and hold.

Self-Check Solutions

1.1: The goal step states the end result that is accomplished via your
tasks.

7

2. Storing Data

The computers that we use today were developed mainly in the 1950’s.
Computers are electrical devices built of transistors and switches, which
follow specific logical rules. To be able to program a computer, you will
need to understand these rules. In this chapter we will study the different
ways information is stored in a computer, including alphabetical and
numerical. We will also look at ways this data is manipulated.

2.1 Characters and Strings

Data is a collection of values that we store and manipulate with the
computer. There are many different types of data, and we will refer to each
one as a data type, meaning a type of storage. Let’s consider the case of a
message that we want to send via e-mail to a friend.

 Hi Kendra, do you want to go out to lunch today?

The type of data that we want to send in this case is alphabetic text. For a
computer, we call alphabetic data characters. Looking back at the message
we have characters that are non-alphabetic as well. For example, the spaces,
comma and question mark are also characters that we use.

To represent a character in the computer we use single quotes around the
character. For example, the first character in our previous example is ‘H’,
the next ‘i’ and so on.

Self-Check 2.1

The American National Standards Institute initially standardized the entire
set of characters that are allowed for computers. It created the American
Standard Code for Information Interchange, commonly known by its

How many characters are in the e-mail (assuming there are no spaces
before and after the sentence)?

8

acronym ASCII. In Table 2.1 you can see the entire ASCII code. The
Character column shows all possible characters that you could code with and
represent on the computer starting in 1963.

You should be able to recognize all the characters in this column Character.
Note that there is a unique decimal number, listed as Decimal in the table,
for each character in the ASCII table.

Table 2.1: The ASCII character table

US ASCII Character Codes
(000-063)

Decimal Character

000 NUL

001 SOH

002 STX

003 ETX

004 EOT

005 ENQ

006 ACK

007 BEL

008 BS

009 HT

010 LF

011 VT

012 FF

013 CR

014 SO

015 SI

016 DLE

017 DC1

018 DC2

019 DC3

020 DC4

021 NAK

022 SYN

023 ETB

024 CAN

025 EM

026 SUB

US ASCII Character Codes
(064-127)

Decimal Character

064 @

065 A

066 B

067 C

068 D

069 E

070 F

071 G

072 H

073 I

074 J

075 K

076 L

077 M

078 N

079 O

080 P

081 Q

082 R

083 S

084 T

085 U

086 V

087 W

088 X

089 Y

090 Z

9

027 ESC

028 FS

029 GS

030 RS

031 US

032 SP

033 !

034 "

035 #

036 $

037 %

038 &

039 '

040 (

041)

042 *

043 +

044 ,

045 -

046 .

047 /

048 0

049 1

050 2

051 3

052 4

053 5

054 6

055 7

056 8

057 9

058 :

059 ;

060 <

061 =

062 >

063 ?

091 [

092 \

093]

094 ^

095 _

096 `

097 a

098 b

099 c

100 d

101 e

102 f

103 g

104 h

105 i

106 j

107 k

108 l

109 m

110 n

111 o

112 p

113 q

114 r

115 s

116 t

117 u

118 v

119 w

120 x

121 y

122 z

123 {

124 |

125 }

126 ~

127 DEL

Unfortunately this first code was based only on English and the Roman
alphabet; once computers were used more internationally, there was a need

10

to augment the initial ASCII code. Today the entire available character set is
standardized by Unicode, which includes over 65,000 different characters.
Unicode includes characters for languages like Arabic, Chinese, Greek,
Hindi, and Russian.

So far we know that each individual letter is a character, but many times we
want to create data that contains more than an individual character. You
have already seen an example of this with our e-mail message: it contained a
collection of characters in a specific order called a string.

When we use a string in a computer, we use double quotes “ ” around the
characters to show the start and end of the string. So now our e-mail
message would be

 “Hi Kendra, do you want to go out to lunch today?”

Note that the Unicode table allows for any type of character. I could create a
string for the cost of groceries for the week:

“75.28”

Perhaps I decide to buy a pint of ice cream too, which costs $2.50.
Unfortunately I cannot just add the cost of the ice cream to the current cost
of the groceries to create the string “77.78”, I would instead have to make an
entirely new string.

This demonstrates that strings are rather inflexible and will not work in
every situation, especially when we want to manipulate numbers
algebraically. We cannot do arithmetic on strings. In this case we need
another data type.

2.2 Numerical Data Types

So far we have seen two data types: characters and strings. Since grade
school, you have been familiar with other types of data found in number
lines. A number line shows us all the different numerical data types.

11

Figure 2.1: Integer Number Line

 -4 -3 -2 -1 0 1 2 3 4

The values on the number line in Figure 2.1 show integer values. An integer
is a positive or negative number without a decimal point (except that zero is
considered to be neither positive nor negative). If there is no sign before the
number, we assume it to be positive.

e.g. -17392
e.g. 930756
e.g. 3

A larger group of numbers, which includes integers, is called floating-point

numbers. The name floating-point gives you a clue of the difference from
integer values. Floating-point numbers have decimal points.

Figure 2.2: Floating-point Number Line

 -2.0 -1.0 0 1.0 2.0

The values on the number line in Figure 2.2 show some floating-point
values. Like an integer, a floating-point is a number that can be positive or
negative. If there is no sign before the number, we assume it to be positive.

e.g. -2.348

Note that any integer value is a floating-point number; it just has zeros after
the decimal point. So 3 is the same as 3.0 and 3.0000000.

The advantage of being able to keep more decimal places is the increase in
accuracy of the numbers that you can store. For example, let’s say that I am
given the task of making a duplicating a wooden table. The original table
measures 7.273 feet long, but I can only store integer data. So I will round
my numbers to the nearest integer, and my new table will be 7 feet long. My
table will probably not be a duplicate if I cannot have the appropriate
accuracy. Therefore, floating point numbers can be more accurate than

12

integer values. The downside of using floating-point numbers is that they
take more room to store in the computer than integers. To better understand
the intricate details of data storage, the topic is covered in detail in a
computer architecture class.

2.3 Numerical Operators

Operators are used to manipulate numerical data. The data that you
manipulate with the operators are known as the operands. You have been
using operators and the associated operands for many years in math class,
and most operators that you know will be similar to the ones in the
computer.

2.3.1 Addition and Subtraction

There are two additive operators, addition and subtraction. Addition is
represented with the + symbol while subtraction is represented with the –
symbol. For addition, the operands are called addends. When both addends
are integer, you will get an integer result. Note that each integer could be
positive or negative. If both addends have the same sign, add the two
addends together and make sure the sign of the result is the same as both
addends

e.g. 10 + 3 gives 13
e.g. -4 + -16 gives -20

If the addends have different signs, take the difference between the two
addends and make sure the sign of the result is the same as the largest
(positive or negative) addend.

e.g. -8 + 6 gives -2

When both addends are floating point, you will get a floating point or an
integer result.

e.g. 4.2 + 3.1 gives 7.3
e.g. 2.6 + 5.4 gives 8

13

When you have one addend a floating point and the other integer, you will
get a floating-point result.

e.g. -19.4 + 3 gives -16.4

If you are adding more than one value, make sure to perform your operations
from left to right. Therefore you will solve the first pair, and then use this
result in combination with the third number, repeating this pattern until all
numbers are added.

Subtraction works similarly, you can think of it as addition where the second
addend is negated.

e.g. 8 – 2 is really 8 + -2 which gives 6

These operations can be checked with a calculator, but you should be
comfortable adding and subtracting by hand since we will be manipulating
numbers throughout the text.

2.3.2 Multiplicative Operators

There are four multiplicative operators, multiplication and three forms of
division. Multiplication is represented with the * symbol. The data type
resulting after multiplying two numbers follows the same rules as addition.

e.g. 4.2 * 5 gives 21

Division is represented with the / symbol. The data type resulting after
division of two numbers follows the same rules as addition and
multiplication.

e.g. 6.8 / 2 gives 3.4
One type of division that you may not be as familiar with is integer

division, represented with the // symbol. The data type resulting from integer
division will always be integer no matter the data type of the numbers being
divided. The result from integer division will always be the truncated result
of the division at the decimal point (not a rounded result).

e.g. 6.8 // 2 gives 3

14

The final type of division is modulus, represented as %. Modulus is the
remainder result after dividing two numbers. Like integer division, modulus
will only return an integer result.

e.g. 7 % 2 gives 1

For // and %, we assume that the divisor is an integer and that both numbers
are positive. If it is not the case, the result may be harder to predict since it
depends on the rules of the particular programming language that you are
using.

Self-Check 2.2

When you are solving a problem with more than one operator, there are
precedence rules that must be followed. Precedence means that there are
some operations that must be conducted before others. Table 2.2 lists some
of the rules of precedence.

Table 2.2: Operator Precedence

Symbols Operator Type Order of precedence

() Parentheses Highest
- Unary (from right to left)

*, /, //, % Multiplicative (from left to right)

+, - Additive Lowest (from left to right)

When two operators have the same precedence, they are listed on the same
row. For instance if you were solving 6/3*2 you would execute the integer
division 6/3 first and the multiplication second since the rule of precedence
is from left to right even though * is listed before / in the table.

a. 10 % 5
b. 10 // 4
c. 32 / 5

15

2.3.3 Negation

The third type of operator is negation, represented by the symbol -. The
multiplicative and additive operators must have two numbers (one on either
side of the symbol) to be solved and are called binary operators (“bi” stands
for two). Yet negation is a unary operator and only needs to have one
number to the right of the symbol.

e.g. -2 is read as “negative 2”

For example, let’s consider a problem that contains several of these symbols.

10/2+8*4//3

For this problem, there are two pieces to be worked through first:

10/2 and 8*4//3

The easier piece is 10/2, which gives us 5. Since 8*4//3 is a compound
problem, and both * and // have the same order of precedence, we will solve
the problem from left to right.

First, 8*4 gives us 32
Now 8*4//3 is 32//3, which gives us 10
Looking back at our original problem, we now have
5 + 10, this results in 15
So, 10/2+8*4//3 is 15

Another way to see this is to diagram out a solution as seen below in Figure
2.3. Each level of the diagram shows that another operation has been
completed getting closer to the solution. This is an excellent method to solve
a problem because your steps are clearly illustrated. If you did make a
mistake while solving, it is easy to correct and update your solution when all
of the solving process has been clearly displayed.

16

Figure 2.3: Evaluating Expressions with Mathematical

Operators

 10/2 + 8*4//3

 _/ _/

 5 + 32 // 3

 \ ___/

 5 + 10

 _____/

 15

Self-Check 2.3

2.3.4 Exponentiation

Another binary operator is the exponent, ^. The carat symbol is used to
represent exponentiation. Exponentiation is a shortcut for multiplication,
therefore 3^2 means that there are two 3’s being multiplied together to give
3*3 or 9. In this example, the 3 is called the base and the 2 is the exponent.
The solution is always the base multiplied by itself for exponent number of
times.

Note that when an exponent is zero, you will always get 1.

e.g. 62 ^ 0 gives 1

When an exponent is negative, you will get a fractional result. We will not
explore this case in class. To learn more about exponents, an algebra course
would be helpful.

2.4 Casting

Casting is a useful way to convert from one data type to another. At this
point there is only one type of casting that you need to be familiar with:
casting an integer to/from a character. This unary operator has an order of

5 + 4 / 2 – 6 * (3 % 2)

17

precedence just under the unary operators, but before the multiplicative
operators.

Looking back at the ASCII table in Table 2.1, you see that there is a column
Character that we examined before, and another column Decimal that stands
for decimal numbers. Decimal goes from the integer value 0 to 127. If I have
an integer value between 0 and 127, there is an associated character
representing that number. And if I have a character in the ASCII table, there
is an associated integer value that represents that character. With this
property, I can cast from integer to character and vice versa.

e.g. (char) 66

The above example will convert 66 to its ASCII equivalent and gives a ‘B’.

e.g. (int) ‘A’

The above example will give the integer value of the 65, which is the start of
the capital letters in the ASCII table.

Table 2.3: Final Operator Precedence

Symbols Operator Type Order of precedence

() Parentheses Highest

^ Exponentiation (from right to left)
- Unary (from right to left)

(type) Cast (from right to left)

*, /, //, % Multiplicative (from left to right)

+, - Additive
Lowest

(from left to right)

Key Terms

Data Numerical Operators Casting
Data type Additive
Character Multiplicative
String Negation
Integer Exponential
Floating-point Assignment Operator

18

Exercises

1. Identify the data type of the following:

a. “hello Sarah”
b. -5.323
c. “45”
d. ‘@’
e. “321.3”
f. 103383994

2. What is the ASCII decimal value for ‘8’?

3. Complete the following operations:

a. 142 – 31
b. 5.3 + 14.62
c. 4 * 1.2
d. 3.5 / 2
e. 25.4 // 7
f. 453 % 5
g. 3^4

4. Complete the following complex operations:

a. 4.2 * 5 / 3 + 15//4
b. 433 % (14 – 6) * 2.47

5. Convert the following:

a. (int) ‘5’
b. (char) 69

6. How many characters are there in the following string:

“This string contains ‘@’ and ‘#’ characters”

7. Are “A” and ‘A’ the same?

19

8. Which operation is performed the last and what will be the result of the
following expression:

 7 * 5 – (2 * 5)

9. Are the following numbers integers or floating point?

 a. -5
 b. 10.5
 c. 100
 d. -80.5

10. Which operator will give you the remainder of 25 divided by 6?

Self-Check Solutions

2.1 48
2.2

a. 0
b. 2
c. 6.4

2.3
 5 + 4 / 2 – 6 * (3 % 2)

 \ _/ \ ___/

 5 + 2 - 6 * 1

 \ \ __/

 5 + 2 - 6

 ____/ /

 7 - 6

 _____/

 1

20

3. Pseudocode, Flowcharts and Python

In Chapter 2, we learned how to store information in the computer and the
rules governing the manipulation of numbers and logical values. Now we
will look at how to organize those rules to create simple programs.

3.1 Sequential Order

Programs are similar to books. In a book, you start reading from the top of
the page and continue to the end of the page. In English, each line of text in
the book contains information that is read from left to right. Likewise, we
write programs for the computer to read in this order from left to right.
Remember assignment statements from the previous chapter, a = 3 means
that a stores the value of 3, not that 3 is a.

Now that we read each line appropriately, we will always start reading from
the top line of our program and continuing until the last line in the program.
The programs that we will look at in this chapter are all executed in
sequential order. We will start with the first line and then continue to the
next line. This sequence control structure can be represented with
pseudocode, flowcharts, and Python code.

3.2 Pseudocode

First we will look at outlining a program using pseudocode. Pseudocode is a
language very close to English that allows us to represent a program
concisely. The only thing you need is a statement to show where you are
starting and where you are ending a program. We will be using the word
Start for the start point and the word Stop to show the finish point. Each
program will contain statements to accomplish our goal; this will satisfy step
3 from Chapter 1.

3.3 Flowcharts

A more visual way to see the behavior of a program is a flowchart which is
appealing to the visual learner. A flowchart uses symbols and shapes to
represent an algorithm. Pseudocode can be translated into a flowchart and
vice versa.

21

Table 3.1 shows some of the symbols used in a flowchart where text is
placed inside of the symbols. The ovals are used when you are starting and
ending a program. Rectangles are used when you are executing assignment
statements. Parallelograms are used when you print statements to the screen
or get information. These print and get topics will be discussed in detail in
Chapter 4. Arrows connect the different symbols together to show the
direction of flow in the program.

Table 3.1: Flowchart Symbols

Flowchart Symbol Explanation

Arrow Shows the direction of the program;
what to execute next.

Oval

Used for the Start and Stop of a
program. Write the word inside the
shape.

Rectangle

Used for assignment statements.
Write the statements inside the
shape.

Parallelogram

Used for input and output. Write the
print/get statements inside the shape.

3.4 Python

Python is a modern programming language invented by Guido von Rossum
in 1995. It has a very nice and simple pseudocode-like syntax (structure). It
is a powerful and an elegant language. We will be coding our solutions in
Python to execute the program and confirm correctness. Coding a solution is
the final stage, bringing together all of the hard work and thoughts written in
pseudocode and visually interpreted in the flowchart. For more information
on installing and setting up Python, read Appendix A.

Now let us look at some problems and their corresponding pseudocode,
flowcharts and Python programs.

Problem 3.1

Calculate and print the average of three numbers: 5, 10, and 15.

Task 1- Identify your input:

22

Values of 5, 10, and 15.

Task 2- Identify the goal or objective:
Average the input values. The equation for calculating an average is to add
all the numbers to create a sum. Then divide the sum by how many numbers
you added.

Make sure you use variables to calculate the average instead of the
numbers. A variable is a location in memory which holds values which can
vary during program execution. Getting into the habit of creating variables
now will be very helpful when you have longer more complicated programs
that use at least one value multiple times. Then updating a value will take
one change, where you assign the value to the variable, no matter how many
times you use the value throughout your program.

Task 3- Create tasks to meet the objective:
1. Assign values for the input.
2. Calculate the sum.
3. Calculate the average.
4. Print the average.

The pseudocode of this program is shown in Figure 3.1.

Figure 3.1: Pseudocode

Note that indentation is important to clearly show the body of the program.
Practice using indentation now, it will become vital as our programs get
more complex.

Also note that when calculating the average, we divide by 3.0 instead of 3.
This is vital to insure the accuracy of our result. To fully understand this
issue, complete the following Self-Check.

Start

num1 = 5

num2 = 10

num3 = 15

sum = num1 + num2 + num3

average = sum/3.0

print average

Stop

23

This program starts by setting the value of three numbers, num1, num2 and
num3, which are needed to be able to calculate sum. Ensuring sequential
order is vital to get the result that you expect. Note that I could not have set a
variable value after calculating sum, as shown below:

We could not calculate sum since it would be missing the value of num1.
This condition occurs because sum is dependent on the values of num1,

num2, and num3. This is a feature of sequential control structure that
specifies that we can only execute code one line at a time from the top to the
bottom of the program.

Note that the order in which num1, num2, and num3are defined does not
matter. Therefore, our pseudocode could look like:

and it would still execute correctly since the variables num1, num2, and
num3are defined before sum is calculated.

Self-Check 3.1

Now let’s examine a more visual solution to the pseudocode problem from
Figure 3.1 by creating a flowchart. Figure 3.2 begins with Start and ends
with Stop, as all programs will. Following the Start, all assignment

Start

num3 = 15

num2 = 10

num1 = 5

sum = num1 + num2 + num3

average = sum/3.0

print average

Stop

num2 = 10

num3 = 15

sum = num1 + num2 + num3

num1 = 5

One dependency was identified in problem 3.1, can you find
another dependency?

24

statements are in rectangles and the print statements are in parallelograms.
Note that all statements must be placed in their appropriate flowchart symbol
with arrows showing the direction of the execution.

Run through the problem by hand executing the flowchart to confirm that
everything works as expected.

Since num1 = 5, num2 = 10, num3 = 15
sum = num1 + num2 + num3

sum = 5 + 10 + 15
= 30

 average = 30/3.0
= 10.0

25

Figure 3.2: Flowchart

You can check your results with a calculator to confirm your solution.

Now let’s finish the exercise with the corresponding Python program and the
output. They are shown in Figure 3.3 and Figure 3.4.

To start making your program, you will need to open the IDLE (Python
GUI) that you installed in Appendix A. Then click on File, New Window to
open a screen that will allow you to type in your program. Note that the
benefit of using Python is that the syntax is very similar to the pseudocode
that we are using. See Figure 3.3 for this program.

When creating a program, it is important to document information with
comments. Comments allow any user to understand the purpose of the

26

function and how to use it appropriately. In Python, the pound sign, ‘#’ will
start a comment from the ‘#’ to the end of the line.

Figure 3.3: Python program

Once you have typed in your Python program, press F5 (or Run, Run
Module) to execute your program. Note that the computer will prompt you
to save your code before it will run your program. See Figure 3.4 for the
results displayed in the original IDLE screen.

Figure 3.4: Output

We will see how to create output in detail in the next chapter.

Problem 3.2

Calculate and print the square and cube of a number.

The square of a number is calculated by multiplying the number by itself.
The cube is calculated by multiplying the number by itself twice.

Assuming that the number we want to square and cube is 4, let’s first look at
the pseudocode to outline the steps in Figure 3.5.

10.0

This program prints the average of three numbers

num1 = 5

num2 = 10

num3 = 15

sum = num1 + num2 + num3

average = sum/3.0

print (average)

27

Figure 3.5: Pseudocode

Looking at the pseudocode, you can find two dependencies. Both square and
cube require that num be defined before they can calculate their values.

Now let us practice again with the flowchart for this problem shown in
Figure 3.6.

Again, run through the problem to confirm that your code works.

 square= 4 * 4
 = 16

 cube= 4 * 4 * 4
 = 64

You can now check your results with a calculator to confirm your solution.
The corresponding Python program and the output are shown in Figure 3.7
and Figure 3.8.

Start

num = 4

square = num*num

cube = num*num*num

print square

print cube

Stop

28

Figure 3.6: Flowchart

Figure 3.7: Python program

#This program prints the square and cube of a number

num = 4

square = num * num

cube = num * num * num

print (square)

print (cube)

29

Figure 3.8: Output

By now you should be getting comfortable using flowchart and pseudocode
symbols. In the next chapter we are going to add to your pseudocode
knowledge and flowchart symbols as we solve more complex problems..

Key Terms

Exercises

Draw flowcharts and create Python code for problems 1 and 2:

1. num1 = 16

num2 = -12

sum = num1 + num2

print sum

2. length = 5

width = 11

area = length * width

print area

3. Create a complete program that will calculate the diameter, area, and
circumference of a circle with the radius of 4.25. Use the following
equations (assuming pi = 3.14159):

16

64

arrows
End
Flowchart
Oval
Parallelogram

Print
Pseudocode
Rectangle
Start
Variable

30

diameter = 2 * radius

area = pi * radius * radius

circumference = 2 * pi * radius

Answer the following questions:

4. Susan wants to put wallpaper on four walls of her room. What are the

three things you would like to know before you can calculate the cost?

5. Assuming 1% of your income is spent on school supplies. Create a

program that will create two variables to store the amount you are paid
and another to calculate the amount which is spent on school supplies.

6. Make the flowchart, and run the Python program for the following
problem:

You have decided to enter a model boat race. You put your boat at the
start line next to your best friend Jill’s boat. Create a program to print out
the distance that both of your boats traveled given the speed your boat
travels in (feet per minute), the speed that Jill’s boat travels and the
number of minutes in the race.

Distance = speed * time

Use the following sample Data:

speedMe = 6.2

speedJill = 5.9

time = 2

distanceMe = speedMe * time

 = 6.2 * 2

 = 12.4

distanceJill = speedJill * time

 = 5.9 * 2

 = 11.8

7. Write the pseudocode, and run the Python program for the following
problem:

31

A recipe you are reading states how many grams you need for the
ingredient. Unfortunately, your store only sells items in ounces. Create a
program to convert grams to ounces.

ounces = 28.3495231 * grams

Use the following sample data:

grams = 45

ounces = 28.3495231 * grams

 = 28.3495231 * 45

 = 1275.72854

8. Make the flowchart, and run the Python program for the following

problem:

Given the rate of pay (in dollars per hour) and the number of hours an
employee has worked for a week, calculate the amount the employee
should be paid.

Use the following sample Data:

rate = 6

hours = 30

pay = 6 * 30 = 180

9. Make the flowchart, and run the Python program for the following

problem:

Given a Fahrenheit temperature, calculate and display the equivalent
centigrade temperature. The following formula is used for the
conversion:

C = 5 / 9 * (F – 32)

where F and C are the Fahrenheit and centigrade temperatures.

Use the following sample data:

32

F = 72

C = 5 / 9 * (72 – 32) = .556 * 40 = 22.24

10. Write the pseudocode, and run the Python program for the following
problem:

Calculate the amount obtained by investing the principal P for N years at
the rate of R. The flowchart given below shows the sequence of steps
necessary to accomplish this task. The following formula is used for the
computation:

A = P * (1 + R) ^ N

Use the following sample Data:

P = 1000

N = 5

R = .05

A = 1276.28

11. Make the flowchart, write the pseudocode, and run the Python program

for the following problem:

33

Given the meter reading at the beginning of the month, at the end of the
month, and the price/unit of the electricity consumed, calculate the cost
of the electricity consumed. The following formulas are used:

Number of units consumed: ending meter reading – beginning meter

reading

Cost: Number of units consumed * price/unit

Use the following sample data:

Beginning meter reading: 11239

Ending meter reading: 20850

Price per unit = 10 cents

Self-Check Solutions

3.1 The variable average is dependent on sum being defined.

34

4. Input and Output

In Chapter 3 we learned how to create simple programs using logical rules.
So far, all the information is in the computer and does not leave the
computer; there is no interaction between the user and the information. In
this chapter, we will be looking at methods to store and retrieve information
in a computer to make the machine more effective and useful. We will look
at how to first show information on the computer screen and then retrieve
information from the user in pseudocode, then in flowcharts and finally in
Python.

4.1 Pseudocode “print” and “get”

Every time you use a computer you give it input. Perhaps you type an e-
mail to a friend or use your mouse to click on websites. Both of these are
forms of input into the computer. We will be gathering input from the person
using our program; this person will often be referred to as the user since
they are using the program we created.

To make sure that we get the information we want, or to display our results
on the screen, we will also need to use output. You get output from the
computer in a variety of ways, from listening to sounds from the speakers to
looking at the display on the monitor. For example, if I want to get a
person’s age for my program, I would need to ask for the information
(output) and retrieve that information (input).

To display information on the computer screen we use the keyword print.
After print, we must tell the machine what we want to print, selecting from
one of the data types that we learned about in chapter 1.

print “Please enter your age:”

Now to retrieve the information, we use the key word get. After get, we must
tell the machine where we want to store the information. The storage
location (or place) will be a variable. Make sure your variable is
appropriately named so that it is easy to recall its purpose later. One popular
method of creating descriptive variables is camel notation (like the humps
in a camel). To accomplish this we capitalize the first letter of the
subsequent words. In this example, we want to use the words “current age”

35

to describe the variable, but we cannot have spaces, so we will use camel
notation and combine the words together as below:

get currentAge

Now when the value 22 is typed on the keyboard, it is stored in the variable
currentAge.

With the print and get pseudocode statements, we can print and retrieve any
information that we need. Note that get can only obtain one data type. Print
is more flexible. I am able to print more than one data type if I use a
concatenation operator, ‘+’. A concatenation operator does not work like
addition, even though the symbol is the same. Concatenation is a binary
operator that appends two operands together.

Let’s write our psuedocode program with an ending line printed that will
repeat the user’s information.

print “Please enter your age.”

get currentAge

print “Your current age is ” + currentAge

If the user entered 22 for their age, then the final print statement would
display:

Your current age is 22.

If I wanted to complete some complicated logical instructions inside of a
print statement, then it is best to surround the instructions with parentheses,
since by order of operations, the parentheses will always be executed first.

print “There are 365 days in the year and ” + 365//30) +

“ months in a year.”

The output from the above statement would be

 There are 365 days in the year and 12 months in a year.

You can also have string concatenation, for example:
 print 2+2

 print “2” + “2”

 print “2” + 2

36

In this case, the first line would produce 4 (because + adds the two numbers
together) while the second and third lines would produce “22” (because + is
now interpreted as string concatenation).

4.2 Constants

In our earlier discussion we have used variables to store information.
Sometimes we want to make sure that the information does not change
throughout a program. To do this we create a constant which stores data like
a variable, but cannot be changed once it is assigned a value. A constant is
represented by letters or numbers following the rules listed below:

Rules for naming a constant:

1. The first letter of a constant cannot be a number.
2. All letters must be capitalized.

We cannot use the same trick in naming a constant with more than one word
as we did with a variable since all letters are capitalized. Instead you can use
an underscore to represent spaces in the constant.

e.g. DAYS_IN_YEAR = 365

Now I can rewrite the above print statement in pseudocode using the
constant and get the same result.

print “There are ” + DAYS_IN_YEAR + “days in the year

and ” + (DAYS_IN_YEAR //30) + “ months in a year.”

In Python, the statement will need to be modified slightly using str() to print
the numerical information as string. Note that str() is a function, you can tell
with the () at the end of the name.

print (“There are ” + str(DAYS_IN_YEAR) + “days in the

year and ” + str(DAYS_IN_YEAR //30) + “ months in a

year.”)

Here you also see that there is the possibility of wrapping your text when
you run out of room on one line. This will not change your result, but by
indenting your second line you can easily group the print statement for
clarity.

37

Another nice feature about constants is that when I wish to change the value
of the constant, I only have to change it in one location. For example, let’s
say that I was talking about Venus instead of earth, assuming that there are
30 days in a Venus month and 225 days in its year. I would need my code to
be:

DAYS_IN_YEAR =225

print “There are ” + DAYS_IN_YEAR + “days in the year and ” +

 (DAYS_IN_YEAR //30) + “ months in a year.”

Now by changing one value, everything has been updated to account for
Venus instead of Earth.

4.3 Problem 4.1

Now that you have a solid basis, you can create more complicated programs.
Let’s create a pseudocode program that will calculate the number of miles
per gallon that a car gets. Remember that the equation you will need is:

 milesPerGallon = numOfMiles / numOfGallons

So the pseudocode is:

Figure 4.1: Pseudocode for Problem 4.1

Start

 print “Please enter the number of miles the car has driven.”

 get numOfMiles

 print “Please enter the number of gallons that the car consumed.”

 get numOfGallons

 milesPerGallon = numMiles / numGallons

 print “The number of miles per gallon your car consumed was ” +

milesPerGallons

Stop

38

Self-check 4.1

Now we can make the flowchart for Problem 4.1. Note that we can combine
pieces inside the same shape when consecutive lines of code will use the
same flowchart symbol. Make sure that each code segment is on a separate
line within the shape.

Note that the two “gets” could be in one box or in two separate boxes. Here
we first get the number of miles and then the number of gallons.

Write Pseudocode to calculate and print out the amount of
pay that an employee should be paid. First identify the
input, goal and tasks using what you learned in Chapter 1.

39

Figure 4.1: Flowchart for Problem 4.1

Self-Check 4.2

Create a flowchart for the self-check problem in Section 4.3.

40

4.4 Applying Python

4.4.1: Python “print” and ” input”

In Python, the pseudocode print statement works just as expected, but there
is no get in Python. Instead, we use int(input()) to get numerical integer
information. Note that int is a function which converts the string read in by

input() which is also a function, you can tell with the () at the end of the
name. We will discuss functions in detail in chapter 10. The two pseudocode
statements can be written separately,

 print (“Please enter your age:”)

 currentAge = int(input())

Or they can be combined by putting the print statement inside the
parentheses

 currentAge = int(input(“Please enter your age:”))

In either case, what the user sees on the screen is the request. After the
request, the cursor waits for the user’s response. In the first scenario, the
cursor will blink on the next line to wait for the user input. In the second
scenario, the cursor will blink at the end of the prompt to wait for the user
input.

Figure 4.1: User input for Python for the first scenario

When the user enters their response, perhaps the age of 22, then the screen
will appear as:

Figure 4.2: User input for Python using the second scenario

Please enter your age:22

Please enter your age:

|

41

Likewise in Python, concatenation needs the same data types. So we would
modify the statement to be:

 currentAge= int(input(“Please enter your age: ”))

 print(“Your current age is ”+ str(currentAge))

By placing str before currentAge, we can convert currentAge into a string to
print the result. If you don’t do this, you will get the following error message
from the code.

Figure 4.3: Python print error message

Note also that it is important to include a space after “is ” so that you print a
sentence with appropriate spacing. Try it without the space and watch your
currentAge get squished next to the is.

To accomplish the next part of Section 4.1 in Python, we just have to
remember to convert the values to strings when needed.

print (“There are 365 days in the year and ” +

str(365//30) + “ months in a year.”)

For the last part of 4.1, we will get the same printouts in Python as in the
pseudocode except for the last statement, where the conversion is needed
again

 print (“2” + str(2))

print(“Your current age is ” + currentAge)
Error: TypeError: can’t convert 'int' object to str implicitly

42

Figure 4.1: Python program for Problem 4.1

Figure 4.1: Output for Python 4.1

Key Terms

Exercises

Complete the following problems.

1. Given the variables below

 a = “the”
 b = “cat”
 c = “happy”
 d = “ ”

Translate the following concatenated statement: a + d + c + d + b

2. Given the variables below

This program inputs number of miles driven and the

gallons used and calculates miles per gallon

miles = int(input("Enter number of miles: "))

gallons = int(input("Enter number of gallons used: "))

milesPerGallon = miles/gallons
print ("Miles per gallon: ", milesPerGallon)

Enter number of miles: 200

Enter number of gallons used: 20

Miles per gallon: 10.0

input
output
print

camel notation
constant
get

43

 a = “enjoy”
 b = “1”
 c = “life”
 d = “2”
 e = “happy”
 f = “be”
 g = “ ”

Translate the following concatenated statement:

b + g + a + g + c + g + d + g + f + g + e

3. What is the solution to the following concatenation?

 “3” + “2”

4. What is the value of the variable j?

 j = 01234

5. What is the value of the variable k?

 k= “01234”

6. Using problems 4 and 5, what is the result of j==k

7. Create a program to double a number’s value (where the number is given

by the user). First identify the input, goal and tasks using what you
learned in Chapter 1.

8. Using problem 7, create a flowchart of the tasks.

Draw flowcharts to do the following:

9. Read in two numbers and print the sum of the two numbers.

10. Read in length and width of a rectangle and print its area.

area = length * width

44

11. Read in radius of a circle and print the diameter, area and circumference
of the circle (assuming pi = 3.14159).

diameter = 2 * radius

area = pi * radius * radius

circumference = 2 * pi * radius

12. Susan wants to put wall paper on four walls of her room. What are the
three things you would like to know before you can calculate the cost?

13. 1% of one’s pay is spent on school supplies. Read in pay and calculate

and print the amount which is spent on school supplies.

14. Print area and perimeter of the hexagon.

 area of hexagon = 6 * area of one triangle

 area of one triangle = 1 / 2 * b * h

 area of hexagon = 6 * 1 / 2 * b * h

 perimeter of this hexagon = 6 * b

15. Read the base and the height of a right angle triangle and calculate and

print the hypotenuse.

 hypotenuse = √(b

2
+h

2
)

Self-Check Solutions

4.1 Input: hoursWorked, payRate

Goal: grossPay

Tasks:

1. Enter hoursWorked

2. Enter payRate

3. Calculate grossPay
4. Print grossPay

45

Pseudocode:

4.2 Note that we are leaving out the prompt statements here since they are
implicit.

Start

print “Please enter the number of hours the

employee worked.”

 get numHours

 print “Please enter the employee’s pay rate.”

 get payRate

 grossPay = numHours * payRate

 print “The employee earned $” + grossPay

Stop

46

Flowchart:

47

5. Boolean Logic

Every decision you make can be broken down into a choice between two
different options, with the question being “Do you choose the first option?”
If you answer “Yes,” you choose one way, but if you answer “No,” you
choose another way. This “yes” or “no” question can be rephrased as the
statement “I choose the first option.” This statement is either True (instead
of Yes) or False (instead of No). As a computer scientist, programming a
decision that has two options is one of the most common tasks that you will
perform. This chapter will introduce and explore the way Boolean logic can
help formally pose these questions.

5.1 Boolean Data Type

There is one remaining data type that is commonly used in computers, a
Boolean. Named after George Boole, a 19th century mathematician, a
Boolean variable has only two possible values, either True or False. There
are many times when it is convenient to use a Boolean in place of a
numerical, character or string data type; to understand why we need to
explore the physical foundations of a computer.

By itself, a single bit is not very powerful, but when you string together a
long list of 0’s and 1’s, we call this machine code or binary data. In fact,
everything you do on the computer must be translated into 0’s and 1’s for
the machine to work. To learn more about this interaction, you will want to
take a class in computer architecture. For now, we will be content to
understand the origin of the 0’s and 1’s and will represent them as Booleans.

5.2 Relational Operators

There are six relational operators that you need to be familiar with for
programming. Relational operators are always binary, such that they
involve comparing two values. The operands will be numerical and their
result will always be Boolean. Different programming languages may have
different symbols for these operators, but the ideas behind the operators will
be the same. These operators are “<” (less than), “<=” (less than or equal to),
“>” (greater than), “>=” (greater than or equal to), “==” (equal to), “!=” (not
equal to). Note that not all operators have the same precedence. The first

48

four operators all have stronger precedence than the last two (as displayed in
table 5.1).

Table 5.1: Relational operator table

Operator Description Precedence

> Greater than Highest
< Less than Highest

>= Greater than or equal to Highest

<= Less than or equal to Highest
!= Not equal to Lowest
== Equal to Lowest

In Table 5.2 you can see the results of using all of the possible relational
operators when you have set values for the variables.

Table 5.2: Examples of Boolean expressions for x = 10 and y =5

Expression Result of the expression

x > y True

x < y False
x >= y True
x <= y False

x != y True
x == y False

For the above table, substitute the values of x=10 and y = 5 to get the result.
For example, x > y is 10 > 5 which is True. Similarly for another example,
x != y is 10 != 5 which is also True.

It is possible to combine other operators with relational operators by
following the rules of precedence. Note that the relational operators have a
lower precedence than all other operators we have seen so far, see Table 5.3
for a summary of the operator precedence.

49

Table 5.3: Operator Precedence

Symbols Operator Type Order of precedence

() Parentheses Highest
^ Exponentiation (from right to left)
- Unary (from right to left)

*, /, //, % Multiplicative (from left to right)
+, - Additive (from left to right)

<, <=, >, >= Relational (from left to right)

==, != Relational Lowest

5.3 Logical Operators

So far we have only considered problems that result in a numerical solution
from numerical input. Now that we have a new data type, we can solve
problems which involve Boolean values as inputs or intermediary
computations. There are three types of logical operators that allow us to
handle Boolean input: AND, OR, NOT. For each of these operators, since
they have a Boolean input, their result will also be Boolean.

The following order of precedence applies: NOT is the strongest operator,
followed by AND, then by OR. So our table of precedence for these
operators is seen in Table 5.4. But logical operators are not as strong as the
other operators that we have learned so far, such as the additive and
multiplicative operators, and we will integrate them all at the end of this
chapter.

Table 5.4: Logical Operator Precedence

Operator Description Precedence

! NOT Highest
&& AND Middle

|| OR Lowest

To understand the rules for logical operators, we create truth tables. A truth
table displays all possibilities for the inputs of the logical operator for every
possible input. First let’s look at a truth table for NOT:

50

Table 5.5: Truth Table for NOT

input NOT input

True False

False True

Starting with the first row in Table 5.5, we see that the result of NOT True is
False and the second row of the table shows us that the result of NOT False
is True. Therefore, NOT changes or flips the value of its Boolean input.

Now let’s look at AND, the next strongest logical operator in Table 5.6.
Note that this operator is binary, so it needs two inputs. Instead of using the
term input as was done before for NOT, let’s generalize to P for the first
input and Q for the second input. This way we can see the truth table for the
statement P AND Q. The result of the AND operator is True only if both
inputs P and Q are True.

Table 5.6: Truth Table for AND

P Q P AND Q

True True True
True False False
False True False

False False False

Finally, let’s look at OR, the weakest of the logical operators. This operator
is also binary, so it will need two inputs just like AND. The result of the OR
operator is False only if both inputs P and Q are False. Note that this is not
an exclusive condition; both P and Q could be True, and P OR Q will still be
True.

51

Table 5.7: Truth Table for OR

P Q P OR Q

True True True
True False True

False True True
False False False

Our table of precedence says that the two logical operators AND and OR are
executed from left to right. This is important when there are more than two
inputs, as seen in the figures below.

Figure 5.1: Evaluating Expressions with Logical Operators

True AND False AND True

 \ _______/ |

False AND True

 _______________/

 False

Self-Check 5.1

As with numerical operators, we need to also be comfortable with using
parentheses, which have a stronger precedence. This is shown in Figure 5.2.

Figure 5.2: Evaluating Expressions with Logical Operators

NOT (False OR True) AND True

 ________/ |

NOT True AND True

 __________/ |

 False AND True

 _______________/

 False

Evaluate the following expression:
 False OR True OR False

52

It doesn’t matter how many ANDs, ORs and NOTs are strung together, the
same rules will apply. If you follow the rules of precedence and the truth
tables for the operators, you will come to the correct conclusion.

Figure 5.3: Evaluating Expressions with many Operators

6+3 > 8 OR False

__/ | |

 9 > 8 OR False

 ___/ |

 True OR False

 _______/

 True

Self-Check 5.2

5.4 Assignment Operator

The assignment operator is represented with a single equal symbol, “=”.
This is the weakest of all operators and will be performed after all other
operators have been evaluated. Assignment is particularly helpful when you
want to assign a variable to have a certain value and then remember this
value later. A variable is a letter or group of letters and numbers that holds a
value.

For example, let’s store a value into the variable num1 using assignment.

num1 = 6 (This can also be read as num1 gets 6.)

Now I can use num1 in an equation.

answer = num1 * 3 + 2

This results in the value of 20 being stored in answer.

Evaluate the following expression:

 True AND 16 % 5 < 3 OR False

53

Rules for variable names

1. The first letter is a lowercase alphabet.
2. Numbers 0 to 9 can be used after the first letter.
3. There are no spaces or non-alphanumeric characters (Note

alphanumeric means numbers or alphabetic characters).

Example Validity Reason

payRate valid
pay Rate invalid Space is not allowed
numHoursWorked valid

4numHoursWorked invalid A number is not allowed for the
first character

time@Day invalid Special characters are not allowed
region-sales invalid Hyphen not allowed

car_color invalid _ is not allowed

As mentioned in Chapter 3, if you want to combine two or more words
together for a variable name, note that you cannot use a space. But one
handy trick is to use camel notation where you capitalize the first letter of
every word after the first word in the name.

A variable can store a value of any of the five data type as discussed in
Chapter 2.

e.g. currentValue = True

5.5 Equality Operators

Both operands of “==” (and of“!=”) must be Boolean or both must be
numerical, but the resulting answer will always be Boolean. Note that there
is a difference between using a single equals sign, “=”, used in assignment
of values to variables. Whereas a double equals sign, “==”, is used in
comparing two values. If both of the operands for “==” have the same value,
then the result will be True, otherwise the value will be False. When using
“!=”, the result will be True only when the operands are different.

e.g. True == False results in False
e.g. 5 == 5 results in True

54

Table 5.8: Revised Operator Precedence

Symbols Operator Type Order of precedence

() Parentheses Highest
^ Exponentiation (from right to left)

- Unary (from right to left)
*, /, //, % Multiplicative (from left to right)

+, - Additive (from left to right)

<, <=, >, >= Relational (from left to right)
==, != Relational (from left to right)
NOT Logical (from right to left)

AND Logical (from left to right)
OR Logical Lowest (from left to right)
= Assignment Lowest

Key Terms

Exercises

1. Calculate the following (True or False):

a. 23 != 15
b. 5 + 3 < 10
c. 6 > 10 == 10 < 2
d. 4 ≤ 4 AND True == NOT False

2. Given that a = 3 and b = 8, what are the results of the following

statements

a. a < b
b. 6 ≥ a
c. b > a == False

Assignment operator
Boolean
False

Logical
True
Truth Table
Variable

55

d. True != (a==b)
3. Given that c = True and d = False, what are the results of the following

statements:

a. c AND d
b. NOT d OR c
c. c == d AND True
d. (NOT c OR NOT d) == NOT (c AND d)

Note that this is also known as DeMorgan’s law.

4. Using the shell in IDLE, convert all parts of problem 3 into Python code

(using table 5.4). Note that your answers to problem 3 should be the same
as what you get from Python.

5. Which of the following are valid variable names? If it is not a valid
variable name, state why.

a. Donkey
b. Game board
c. myFirstCounter
d. 4months

Self-Check Solutions

1. True
2. True

56

6. Selection Structures

We make choices in the world every day, from what color of shirt you wear
to what station you watch on television. The previous chapter explored
Boolean logic and relational operators. In this chapter we will look at how to
create more flexible programs containing decisions based on Boolean logic.

6.1 If-Then-Else

One of the most common cases that we encounter every day is the choice
between two objects: Should I get vanilla or chocolate ice cream? Should I
turn left or right at this intersection? These choices can be represented with
the following form in pseudocode:

There are four keywords that must be included: If, Then, Else and EndIf. To
distinguish these words from possible variables, we capitalize the first letter
of each word. It is a common convention to indent the code as shown above
to make it easy to understand.

6.2 Problem 6.1

Let’s look at an example:

a = 4

b = 3

If a > b Then

 print “Variable a is greater than variable b”

Else

 print “Variable b is greater than or equal to variable a”

EndIf

In this case, our Boolean expression is “a > b”. Since the variable a has a
value greater than the value in b, we have a True statement. With our

If BooleanExpression Then

 trueChoice

Else

 falseChoice

EndIf

57

Boolean expression satisfied, we would print “Variable a is greater than
variable b” to the computer screen.

Now suppose we changed the values of our variables to be:

a = 2

b = 3

With the same If-Then-Else statement, we would no longer have a True
statement for the Boolean expression, so we would print “Variable b is
greater than or equal to variable a” to the computer screen.

Note that the trueChoice and the falseChoice can be single or multiple lines
of code, including print or get statements, assignment statements, and even
other If statements.

6.3 Updating Flowcharts

Now that we have examined the pseudocode for making decisions with If-
Then-Else, we need to update the symbol chart for our flowcharts to include
the ability to have a Boolean expression.

Figure 6.1: Updated Flowchart Symbols

Flowchart Symbol Explanation

Arrow Shows the direction of the program;
what to execute next

Oval

Used for the Start and Stop of a
program. Write the word inside the
shape.

Rectangle

Used for assignment statements.
Write the statements inside the
shape.

Rhombus

Used for input and output. Write the
get/print statements inside the shape.

Diamond

Used for a Boolean condition. Write
the Boolean statement inside the
shape.

In the general case of an If-Then-Else, you have the following layout for a
flowchart:

58

To give you an idea of how this behavior is used in a flowchart, let’s look at
the example for a traffic light. When you see a traffic light you automatically
ask yourself “Is the light green?” Based on the answer, you decide to either
drive though the intersection or wait until the light turns green to continue.
This decision structure is illustrated in the example below.

Notice that there are some distinct differences between the flowchart and the
pseudocode. The flowchart does not contain the If or EndIf statements. In a
flowchart, these statements are not necessary since the arrows help us to

59

direct the control and an If-Then-Else will be the only decision statement
with this flowchart format. Also notice that the words True and False are
included on the arrows coming from the diamond. This is vital to include in
your diagram; this is the only reference in the flowchart to tell you which
branch is to be executed when the condition is True and which one when the
condition is False.

Let’s get some practice by converting the previous problem 6.1, into a
flowchart.

We can use this decision pattern to create a complete program. Let us
discuss some problems to illustrate this point.

60

6.4 Problem 6.2

Determine whether a number entered by the user is even or odd.

To determine whether a number is even or not, you divide the number by
two. If the remainder is zero, it is an even number otherwise it is odd.
Remember from Chapter 2 that the modulus operator returns the remainder
of a division. So, if the result of number % 2 equals zero, it would be an
even number, otherwise it would be an odd number.

Figure 6.2 shows the pseudocode, Figure 6.3 shows the flowchart and the
Figure 6.4 shows the Python code for the problem.

Figure 6.2: Pseudocode

Start

 print “Please input a number”

 get num

 If (num % 2) == 0 Then

 print “Even Number”

 Else

 print “Odd Number”

 EndIf

Stop

61

Figure 6.3: Flowchart

Figure 6.4: Python program

#This program inputs a number and prints if it is odd

#or even

num = int(input("Enter a number: "))

if num % 2 = = 0:

 print ("Even number")

else:

 print ("Odd number")

62

Figure 6.5: Output

Sample Data 1:

num = 6
Since 6 % 2 = 0, “Even number” is printed.

Sample Data 2:

num = 17
Since 17 % 2 = 1, “Odd number” is printed.

To give you more practice with flowcharts, let’s look at one more problem.

6.5 Problem 6.3

Read in the rate of pay (in dollars per hour) and the number of hours an
employee has worked for a week. Calculate the amount the employee should
be paid according to the following rules:

(a) Regular pay: up to 40 hours, at the given rate.
(b) Overtime pay: for each hour above 40, at 1.5 times the given rate.

Figure 6.6: Pseudocode

Enter a number: 6

Even number

Enter a number: 17
Odd number

Start

 print “Please enter rate of pay: ”

 get rate

 print “Please enter hours worked: ”

 get hours

 If hours > 40 Then

 pay = 40 * rate + (hours - 40) * 1.5 * rate

 Else

 pay = hours * rate

 EndIf

 print “Pay=$” + pay

Stop

63

Figure 6.7: Flowchart

64

Figure 6.8: Python program

Figure 6.9: Output

Sample Data 1:

rate = 6

hours = 30

pay = 6 * 30 = 180.

Sample Data 2:

rate = 6

hours = 50

pay = 40 * 6 + (50 – 40) * 1.5 * 6

 = 240 + 10 * 1.5 * 6

 = 240 + 90

 = 330

Enter rate: 6

Enter hours worked: 30

For this week you earned $ = 180.0

Enter rate: 6

Enter hours worked: 50

For this week you earned $ = 330.0

#This program calculates and prints pay given

#rate and hours worked

rate = float(input("Enter rate: "))

hours = float(input("Enter hours worked: "))

if hours > 40:

 pay = 40 * rate + (hours - 40) * 1.5 * rate

else:

 pay = hours * rate

print ("Pay=$", pay)

65

Key Terms

Exercises

1. What will be printed for each case in the flowchart below? Assume the

following values:

a. num = 8
b. num = 25
c. num = 10

Start

num < 10?
False

result = 2 * num

True

print result

Stop

get num

result = 3 * num

If
Else
Endif

falseChoice
Then
trueChoice

66

2. What will be printed for each case in the flowchart below? Assume the
following values:

a. a= 8, b=9, c=4, d=8
b. a= 12, b=5, c=4, d=8

c. a= 8, b=8, c=4, d=8

3. Create a flowchart that will tell the user if they need to take their jacket
based on the temperature outside.

a. First ask the user what the temperature is.
b. If the temperature is over 65 degrees then tell the user that they will

NOT need a jacket
c. Otherwise, if the temperature is 65 or less then encourage them to

bring a jacket.

67

4. Create pseudocode for a tip program based on if the user thought the
restaurant service was acceptable or not.

a. Ask the user for the amount on the bill.
b. Ask the user if they thought that the restaurant service was

acceptable or not.
c. If they didn’t like the service, then give a 10% tip.
d. If they did like the service, then give a 20% tip.
e. Your program should return the final bill value with tip included

that the patron should pay.

5. In the guessing game “Hi/Low”, you see if the user can guess your
number. If the user does not guess your number, then you print out if they
were Hi or Low.

a. Create a variable yourNumber and assign it a value.
b. Ask the user for their guess.
c. If the number guessed is above yourNumber, print out “You

guessed too high.”
d. In a separate If statement, if the number guessed is below

yourNumber, print out “You guessed too low.”
e. In a separate If statement, if the number guessed is equal to

yourNumber, print out “Congratulations, you guessed my
number.”

6. You are working as a cashier for the fundraiser to raise money for your
computer science club. Assuming that the patron always gives the exact
change or overpays and requires change, complete the following program
to help you out.

a. Ask for the amount of money that the patron owes.
b. Ask for the amount money that the patron gives you.
c. If the amount of money given is more than the amount of money

owed, then return the amount of money they overpaid.

68

7. Nested If-Then-Else and Case

Statements

Most real-world problems are more complicated than we have shown so far.
These complicated problems are based on the same ideas that have been
expressed in previous chapters, but we just need the tools to expand those
ideas. That is what we will examine in this chapter.

7.1 Nested If-Then-Else

When you have a choice that is dependent on another choice, you cannot use
a simple If-Then-Else statement. We need to use a multiple-alternative

selection structure. In this structure, an If-Then is followed by a dependent
If-Then. This style nests the If-Then-Else inside one another to solve more
complex problems. Let us examine this scenario with multiple problems
discussed below.

Problem 7.1

Read three numbers and print the largest among them.

Figure 7.1 shows the pseudocode and the Figure 7.2 shows the flowchart
necessary to accomplish this task.

69

Figure 7.1: Pseudocode

Start

 print “Enter first number: ”

 get n1

 print “Enter second number: ”

 get n2

 print “Enter third number: ”

 get n3

 If n1 > n2 Then

 If n1 > n3 Then

 print n1 + “ is the largest number”

 Else

 print n3 + “ is the largest number”

 EndIf

 Else

 If n2 > n3 Then

 print n2 + “ is the largest number”

 Else

 print n3 + “ is the largest number”

 EndIf

 EndIf

Stop

70

Figure 7.2: Flowchart

71

Sample Data 1:

n1 = 10
n2 = 25
n3 = 5

Using the above sample data in the first comparison, n1 is compared with n2
(note n1 > n2, i.e. 10 > 25). Since the statement is False, the False path is
followed. Now n2 is compared with n3 (note n2 > n3, i.e., 25 > 5). Since the
statement is True, the True path is followed and “25 is the largest number” is
printed to the computer screen.

Sample Data 2:

n1 = 15
n2 = 12
n3 = 18

Using the sample data 2 in the second comparison, n1 is compared with n2
(note n1 > n2, i.e. 15 > 12). Since the statement is True, the True path is
followed. Now n1 is compared with n3 (n1 > n3 is done, i.e., 15 > 18). Since
the statement is False, the False path is followed and “18 is the largest
number” is printed.

Figure 7.3: Python program

#This program calculates and prints the largest of the

#three numbers

N1 = int(input("Enter first number: "))

N2 = int(input("Enter second number: "))

N3 = int(input("Enter third number: "))

if N1 > N2:

 if N1 > N3:

 print (N1, " is the largest number")

 else:

 print (N3, " is the largest number")

 else:

 if N2 > N3:

 print (N2, " is the largest number")

 else:
 print (N3, " is the largest number")

72

Figure 7.4: Output

Self-Check 7.1

Read a score and print the corresponding grade. The grade is
calculated as follows:

Score Grade

90 or above

>= 80 but less than 90

>= 70 but less than 80

>= 60 but less than 70

less than 60

‘A’

‘B’

‘C’

‘D’

‘F’

Create the flowchart, pseudocode and Python code for this problem.

7.2 Case Statement

When there are lots of choices that require multiple Else Ifs in an If-Then-

Else, there is another condensed alternative to writing the conditions; using a
case statement. Note that a case statement will only work when you have an
exact value that the variable can be equal to.

Figure 7.5: General case statement

Enter first number: 10

Enter first number: 25

Enter first number: 5

25 is the largest number

Case of variable:

 Case value1: statement1: break

 Case value2: statement2: break

 Default: defaultStatement

EndCase

73

Here value1, value2 and other possible values would be the same data type
as the variable. When the variable has a particular value, it would print out
the associated statement. So if variable = value2 then statement2 would be
executed. In this case the Default is just like the Else in an If-Then-Else; the
default statement will be executed if variable does not match the other
values given. Also note that there can be one or more statements after every
case and default. Flowchart 7.2 shows the flowchart for the general case
statement.

When all the lines of code are executed for one case, a break is required to
let the computer know when the case is finished. Without a break you end up
with fall-through code, where all statements will be executed until a break,
or the EndCase is found.

Figure 7.6: General case statement

74

Problem 7.2

Create a grade program, assuming that we know the student’s letter grade.

Figure 7.7: Pseudocode

The flowchart for a case statement branches on all the choices and
condenses the space that would be needed for an If-Then-Else.

Start

 print “Please enter the student’s grade.”

 get grade

 Case of grade:

 Case ‘A’: print “Excellent”: break

 Case ‘B’: print “Above Average”: break

 Case ‘C’: print “Average”: break

 Case ‘D’: print “Below Average”: break

 Case ‘F’: print “Failing”: break

 Default: print “Incorrect grade”

 EndCase

Stop

75

Figure 7.8: Flowchart

Python doesn’t have a case statement- instead you will need to use the
nested If-Then-Else structure to perform the task.

76

Self-Check 7.2

Get two numbers and a code for the operation to be performed on
those two numbers. Use the following table for valid “op” codes types
and their meaning:

OP CODE MEANING

A Addition

S Subtraction

M Multiplication

D Division

% Remainder (MOD)

Perform the operation and print the answer.

Create the pseudocode, flowchart and Python code for the problem.

Since Python doesn’t have a case statement, the code will use If-Then-Else
as you have seen before.

Key Terms

Exercises

1. Draw a flowchart to do the following:

a. Get total income and total expense from a user.
b. Print “It is a profit” if income > expense

Print “It is neither profit nor loss” if income equals expense
Print “It is a loss” if income < expense.

break
case statement
fall-through

multiple-alternative selection structure
nest

77

2. Create a case statement in pseudocode for a calendar program that will
take in user input as a number from 1 to 12 and print out the associated
month’s name.

3. Draw a flowchart which will print either “0 week vacation”, or “2 week
vacation” or “3 week vacation” depending on the following rule:

Number of years employed Weeks of vacation

0 - 2 0

2 - 5 2

More than 5 3

4. Draw a selection structure which will read a number and:

Print “Number is positive” if the number is > 0.
Print “Number is zero” if the number is 0.
Print “Number is negative”.

5. Create a flowchart for a program to display a menu as shown below.

Based on the user’s choice, display the volume of a cube, or a rectangular
solid, or a cylinder, or a sphere, or a cone.

Menu

1 = volume of a cube

2 = volume of a rectangular solid

3 = volume of a cylinder

4 = volume of a sphere

5 = volume of a cone

Hints:

If user’s choice = 1, prompt the user for the side of a cube (s), use the
following formula:

volume = s
3

If user’s choice = 2, prompt the user for the length of the rectangular
solid (l) , width of the rectangular solid (w), height of the rectangular
solid (h) , use the following formula:

78

volume = l * w * h

If user’s choice = 3, prompt the user for the height of the cylinder (h),
radius of the cylinder (r). Note that pi is 3.14. Use the following
formula:

volume = pi * r
2
 * h

If user’s choice = 4, prompt the user for the radius of the sphere (s),
Use the following formula:

volume = 4/3 * pi * r
3

If user’s choice = 5, radius of the cone (r), height of the cone (h),
Use the following formula:

volume = 1/3 * pi * r
2
 * h

6. Write the pseudocode for the following scenario:
There is a sale at your local clothing store. This store is selling short
sleeved blouses for $14.59 dollars each, tank tops for $9.99 each and
sweaters for $19.99. Based on what you choose to buy, the amount you
owe is different. Include the Else just in case the user typed in the wrong
choice.

79

Self-Check Solutions

7.1
Pseudocode:

Start

 print “Please enter a score “

 get score

 If score < 60 Then

 grade = ‘F’

 Else If score < 70 Then

 grade = ‘D’

 Else If score < 80 Then

 grade = ‘C’

 Else If score < 90 Then

 grade = ‘B’

 Else If score <= 100 Then

 grade = ‘A’

 Else

 grade = ‘Z’

 EndIf

 If grade = ’Z’ Then

 print “Error”

 Else

 print grade

 EndIf

Stop

80

Flowchart:

81

Python code for self-check exercises:

Corresponding output:

Enter score: 75
Grade = C

#This program prints grade given score

score = int(input("Enter score: "))

if score < 60:

 grade = 'F'

elif score < 70:

 grade = 'D'

elif score < 80:

 grade = 'C'

elif score < 90:

 grade = 'B'

elif score <= 100:

 grade = 'A'

else: grade = 'Z'

if grade == 'Z':

 print ("ERROR")

else:

 print ("Grade = ", grade)

82

7.2

Pseudocode:

 Start

 print “Enter first number: ”

 get n1

 print “Enter second number: ”

 get n2

 get operation

 Case of operation:

 Case ‘A’: answer = n1 + n2

 print answer

 break

 Case ‘S’: answer = n1 - n2

 print answer

 break

 Case ‘M’: answer = n1 * n2

 print answer

 break

 Case ‘D’: answer = n1 / n2

 print answer

 break

 Case ‘%’: answer = n1 % n2

 print answer

 break

 Default: print “ERROR”

 EndCase

Stop

83

Flowchart:

84

8. Repetition Structures

In life we encounter tasks that we must repeat every day. Let’s consider
when you walk from your car to a building. To make progress toward your
goal of reaching the building you will need to put one foot in front of the
other, reducing the distance to the building at each step. When you repeat an
action or process, you have a loop. Placing your right foot in front of the left
foot until you reach the building is a loop, in this case a loop of steps. All
loops must have a starting place and ending location; in this case you start at
your car and end at the building.

8.1 While loops

The basic loop structure is the while loop. From this one type of loop we
will see that the other loop types are based on very similar ideas. Within a
while loop there are some very important pieces that need to be determined
before you create a loop.

a. The initialization will assign a starting value for a variable.
b. The condition is a Boolean expression that will execute the

statements in the body of the loop while the condition is True.

First let’s look at the flowchart for our while loop. We already have all the
shapes needed to illustrate the concept of a while loop.

85

Figure 8.1: Flowchart for a general while loop

Note that the translation from flowchart to pseudocode is very direct; we just
need to add a note for when the loop is finished.

Figure 8.2: Pseudocode for general while loop

One type of loop is a counter controlled loop. In this case, there is a
designated variable to update the condition when the loop executes. One
type of update could be an increment or decrement which will change the
value of the variable in the condition. If the value of the variable doesn’t
change, then the loop will never end- creating an infinite loop.

Let us look at an example of a counter controlled loop.

initialization

While condition Do

 statements

 …

EndWhile

86

Problem 8.1

Print out the numbers from 1 to 3.

First let’s create the pseudocode for this problem. We will need to initialize
a variable, count, to be the first number that we want to print, 1.

Start

count = 1

Starting the loop, we need to state our ending condition, the condition that
will make us leave the loop. In this case, the ending condition is after we
have printed the value of count as 3, which is the expression count <= 3.

Start

count = 1

While count <= 3 Do

The body of the loop contains the statements. For this loop, we only need to
print the value of count, so we have:

Start

count = 1

While count <= 3 Do

 print count

Finally we complete the loop with the increment or decrement line. In this
case we want count to increment by 1 each time in the loop. Now our
completed pseudocode is:

Start

count = 1

While count <= 3 Do

 print count

 count = count + 1

EndWhile

Stop

And the translation into the flowchart follows directly:

87

Figure 8.3: Flowchart

To follow how the pseudocode and flowchart are behaving, we often use the
technique of tracing the code. Code tracing requires you to step through a
program as a computer would and update the variables as appropriate.

To look at this process we are going to first create a table to keep track of the
variables and output, in this case our only variable is count.

count Output

Now as we execute each line (indicated in bold), the chart will be updated.
First we execute the first line of the code

count = 1

While count <=3 Do

 print count

 count =count + 1

EndWhile

count Output

1

88

As we go to the second line, we check to make sure that our condition,
 count <= 3 is met. Since the condition is True, we continue to the third line
and update the output of the chart.

count = 1

While count <=3 Do

 print count

 count =count + 1

EndWhile

count Output

1 1

On the fourth line we increase the value of count by one by crossing out the
old value and updating the chart with the new value. By keeping the old
values around, we can see possible errors in the behavior of our code when
we debug.

count = 1

While count <=3 Do

 print count

 count =count + 1

EndWhile

count Output

1 1

2

Now that we have hit the end of the loop, we return to the second line and
check our condition again. Since count = 2, and 2 <= 3, our condition is met
and we can continue to the third line and update our output. Note that the
previous value of the output will remain since we are adding to the 1 we
already printed to the screen.

count = 1

While count <=3 Do

 print count

 count =count + 1

EndWhile

count Output

1 1

2 2

Continuing to the fourth line, we update the value of count, crossing out the
previous value.

count = 1

While count <=3 Do

 print count

 count =count + 1

EndWhile

count Output

1 1

2 2

3

We have hit the end of the loop and return to the second line to check our
condition. Now count = 3, and 3 <= 3 is still True, so we will continue with

89

the body of the loop again, continuing to the third line and updating the
output.

count = 1

While count <=3 Do

 print count

 count =count + 1

EndWhile

count Output

1 1

2 2

3 3

Continuing to the fourth line, we update the count.

count = 1

While count <=3 Do

 print count

 count =count + 1

EndWhile

count Output

1 1

2 2

3 3

4

Now we return to the second line to check our condition to find that
count = 4, and 4 <= 3 is no longer satisfied. Since the condition returns
False, we must exit the loop. Therefore the output to the screen, as displayed
in our trace table is shown below:

1
2
3

This output is exactly what we wanted the program to accomplish: print out
the numbers from 1 to 3.

Sometimes it is more convenient to keep more information about the
progress of executing a code segment. To do this, we need a more
formalized charting system to keep track of the variable updates. Let’s label
our flowchart cells in Table 8.1 to keep track of where we are at in the code.

The Figure 8.4 is reintroduced below with the reference letters to help
illustrate the execution process of the flowchart.

90

Figure 8.4: Flowchart

The following trace table will be using the references (A-E) in the above
flowchart to refer to different locations within the program.

Table 8.1: Trace table for problem 8.1

Iteration # Box # count count<= 3? Output

Start

 A 1

1 B True

 C 1

 D 2

2 B True

 C 2

 D 3

3 B True

 C 3

 D 4

91

4 B False

Stop E

Before the loop, the value of count is set to 1, as seen in the first white row
of the trace table. The condition in box B is count <= 3 i.e., 1 <= 3, the
condition is True and the value of 1 is printed to the screen (box C) and
recorded in the Output column. Continuing to box D, the value of count is
incremented to 2 and the loop brings us back to check the condition in box
B. This process is repeated and the results recorded in the trace table (see
Table 8.1) until the condition returns a False value and we leave the loop.

Note that the column “Iteration #” helps keep track of how many times we
have been in the loop. For this loop, the iterations match the value of count.
We update the value in the iteration column every time we re-evaluate the
condition for the while loop.

Finally, let’s create our Python program. Our code would be modified to the
following and we can check that we do get the correct output. The only
changes from the pseudocode to Python are that the condition is followed by
a colon (without Do) and there is no need for an EndWhile since the
indented code is in the loop.

Figure 8.5: Python program

Figure 8.6: Output

Self-Check 8.1

 Using a While loop, create the pseudocode, flowchart and Python code to
calculate and print squares of numbers between 1 and 4 inclusive. Show
the trace table and the final output from the program to the screen.

1

2
3

#Print numbers from 1 to 3

count = 1

while count <= 3:

 print (count)
 count = count + 1

92

Problem 8.2

Calculate and print average of scores. An average is calculated by dividing
the sum by the count. Note that a score of zero will end the loop.

Sample Data:

90

80

75

85

0

For the data shown above, the average would be: 330/4 = 82.5.

First let’s create the flowchart for this problem.

93

Figure 8.7: Flowchart

Start

counter = 0

score != 0?
counter =

 counter + 1

sum =

 sum + score
get score

sum = 0

get score

average =

 sum / counter

True

False

A

B

C

D E F G

H

I

Stop

print

“Average = ”,

average

And the translation into the pseudocode follows directly:

94

Figure 8.8: Pseudocode

Remember from Chapter 2 that if you divide an integer by another integer,
your result will also be an integer. That is not what we want in this problem.
Here we want to be as accurate as possible with our division, so we need to
declare sum as a float by using the statement sum = 0.0.

Figure 8.9: Python program

Start

 counter = 0

 sum = 0

 get score

 While score != 0 Do

 counter = counter + 1

 sum = sum + score

 get score

 EndWhile

 average = sum/counter

 print “Average = ”, average

Stop

#This program calculates and prints average of scores

#entered by the user.

counter = 0

sum = 0.0

score = int(input("Enter score: "))

while score != 0:

 counter = counter + 1

 sum = sum + score

 score = int(input("Enter score: "))

average = sum / counter

print ("Average = ", average)

95

Figure 8.10: Output

Table 8.2: Trace table

Iteration # Box counter sum score score !=0 Average Output

1 A 0

 B 0

 C 90

 D True

 E 1

 F 90

 G 80

2 D True

 E 2

 F 170

 G 75

3 D True

 E 3

 F 245

 G 85

4 D True

 E 4

 F 330

 G 0

5 D False

1 H 82.5

1 I Average = 82.5

Note that the Box letters refer to the same letters in the flowchart. The trace
table starts with Box A and B initializing the values of counter and sum to 0.
Box C retrieves the score from the user (in this case score is 90) and we
begin the loop with Box D. Since the score is not 0, we update counter to 1,
add the score to sum, to make sum 90 and get the next score from the user.

Enter score: 90

Enter score: 80

Enter score: 75

Enter score: 85

Enter score: 0
Average = 82.5

96

This is repeated until a score of 0 is retrieved from the user, at this point we
exit the loop, proceeding to Box H and I to print the Average of 82.5.

8.2 For loops

Since while loops are used so often, there is a short-cut called a for loop that
incorporates the three key pieces of a while loop in a concise style. A for
loop accomplishes the same task as a while loop, it is just considered more
succinct by most programmers.

Figure 8.11: Pseudocode for general for loop

Figure 8.12: Flowchart for general for loop

For (initialization, condition, increment)

 statements

EndFor

97

Problem 8.3

This problem is a modification of Problem 8.1. Any while loop can be
converted to a for loop, and vice-versa. So let’s look at Problem 8.1 again
and rewrite it as a for loop.

Our task remains the same: print out numbers from 1 to 3.

First let’s create the flowchart for this problem.

Figure 8.13: Flowchart

EXIT

print count

Start

Stop

for (count =1,

count <=3,

count = count +1)

And the translation into the pseudocode follows directly:

Figure 8.14: Pseudocode

For (count = 1, count <= 3, count = count + 1)

 print count

EndFor

98

In walking through the loop for the code trace, we start with the
initialization, just like in the while loop and obtain

For (count=1,count<=3,count=count+1)

 print count

EndFor

count Output

1

Now we check for the condition, again like the while loop, and since the
count = 1, and 1<= 3, we can continue to the second line of code and print
the current value of count.

For (count=1,count<=3,count=count+1)

 print count

EndFor

count Output

1 1

Now we return to the first line and execute the increment, updating our chart
appropriately.

For (count=1,count<=3,count=count+1)

 print count

EndFor

Count Output

1 1

2

Note, like the while loop, we now check the condition again (the
initialization is executed only once). Since count = 2, and 2<= 3 is True,
then we continue to the second line and print the updated count to the screen.

For (count=1,count<=3,count=count+1)

 print count

EndFor

Count Output

1 1

2 2

Returning to the first line, we execute the increment and update our chart.

For (count=1,count<=3,count=count+1)

 print count

EndFor

Count Output

1 1

2 2

3

Checking our condition, we find that count = 3, and 3<= 3 is still True, and
continue to execute the second line.

For (count=1,count<=3,count=count+1)

 print count

EndFor

Count Output

1 1

2 2

3 3

99

Returning to the first line, we complete the increment and update our chart
accordingly.

For (count=1,count<=3,count=count+1)

 print count

EndFor

Count Output

1 1

2 2

3 3

4

Now when we check our condition, we find that count = 4, and 4 <= 3 is
False, and so we jump out of the loop.

Figure 8.15: Python program

Figure 8.16: Output

Self-check 8.2

Problem 8.4

Compute and print the product of odd numbers between 1 and 30.

1

2
3

To get some practice, convert the previous self-check problem (to
calculate and print squares of numbers between 1 and 4 inclusive)
into a for loop for the pseudocode, flowchart, and Python code
showing the final output from the program to the screen.

#An example of a simple for loop which prints

#out numbers from 1 to 3

for count in range(1, 4):

 print (count)

100

Figure 8.17: Flowchart

Let’s analyze the flowchart above. First we set the product to be equal to 1.
Note that anything times 1 will give you back the same thing (i.e. 5*1 = 5),
if product were equal to zero, then we would only be getting back zero (i.e.
5*0 = 0). The for loop will go through all the odd values from 1 (num = 1)
up to 30 (num <= 30). Because we only want odd values, and we are starting
with 1, then the next odd value would be 3 (or 1 + 2) and the subsequent odd
value would be 5 (or 3 + 2). Therefore, we want num to increase by two each
time we are in the loop (num = num + 2).

Figure 8.18: Pseudocode

Start

 product =1

 For (num = 1, num <= 30, num = num + 2)

 product = product * num

 EndFor

 print product

Stop

101

Figure 8.19: Python program

Figure 8.20: Output

8.3 Sentinels in while loops

Values that are used to end loops are referred to as sentinel values. Consider
the following example

get sales

While (sales > 0)

bonus= sales * 0.1

display bonus

get sales

All values of sales that are 0 or less than 0 will stop this loop. All of these
values are known as sentinel values. In problem 8.2, 0 will be the sentinel
value as it will stop the loop.

Let’s look at an example of a simple game below. In this game the user will
have three options chosen by the user entering the values of 1 to 3. If the
value of 1 or 2 is entered by the user, then we will state that they selected
that particular option. Since the value of more will not change for the input
of 1 or 2, the user will then be asked what their option is. When the user
selects option 3, they will be told their option and then more is updated to
False. Now the loop ends.

6190283353629375

#This program prints the product of odd

#numbers between 1 and 30

product = 1

for num in range (1, 30, 2):

 product = product * num

print (product)

102

more = True

While more Do

 print “Please enter an option from 1 to 3: ”

 get option

 If option == 1 Then

 print “You selected option 1.”

 Else If option == 2 Then

 print “You selected option 2.”

 Else

 print “You selected option 3. Good Bye.”

 more = False

 EndIf

EndWhile

Note that we will stay in the loop as long as the condition, more, is True.
When the user selects option 3, more is updated to False and subsequently,
we leave the loop. Therefore, the value False is the sentinel value.

Self-check 8.3

Now that the code is in Python, try it out and think of the games that you
have played where you get a menu of options to choose between. Now you
know the code that makes the menu work.

8.4 Do-While loops

Sometimes we want to execute the body of a loop first and then check the
condition later. To accomplish this task, the condition will need to be at the
end of the loop rather than at the beginning. This structure change is called a
Do-While loop. This means that the body of loop will execute at least one
time.

Do

 statement1

1. Convert the above pseudocode into Python code.
2. Sentinel values do not always need to be Boolean; they could also be a

Boolean expression. How could you replace the Boolean more with a
Boolean expression?

103

 statement2

While condition

The flowchart for this type of loop looks like:

104

Figure 8.21: Flowchart for general Do-While loop

The one place where a While loop and For loop are not as helpful is with
checking for user input correctness. To accomplish this task with a While
loop you must repeat code. For example, look at the problem below.

Problem 8.5

Create a pseudocode segment to have the user enter a positive value in both
a While loop and a Do-While loop.

print “Please enter a positive value.”

get value

While value < 0 Do

 print “You entered a negative value, try again”

 get value

EndWhile

Note that the repeated sections of code are the print and get for value. You
must print a request for the user to enter a value before and inside of the
loop. If we convert the code to a do-while loop, this repetition disappears.

105

Do

 print “Please enter a positive value.”

 get value

While value < 0

We have gone from 6 lines of code in the While loop to 4 in the Do-While.
Note that our code is also more concise with only one print and one get
request to the user.

Let’s convert the above code to Python and test for user correctness by
running the program. Note that Python does not have a Do-While structure,
but the same can be accomplished initializing negative outside of the While
loop.

Python code:

Viewing some sample runs for this:

Please enter a positive value: -4

Please enter a positive value: -10

Please enter a positive value: 5

negative = True

while negative:

 value = int(input(“Please enter a positive value: “))

 if value >= 0:
 negative = False

106

8.5 Infinite Loops

There are cases when your loop does not end, we call these infinite loops.
Infinity is a value that has no bounds; it is very large. You can easily tell
when you have an infinite loop in your program, because your program will
not perform as expected.

An example of an infinite loop would be

While true

 print “hello”

EndWhile

Note that the above code segment will continually print “hello”. One way
that you can end an infinite loop is to type Ctrl-X or to type Ctrl-C.
Sometimes for a Windows machine, you must end the program you are
running by selecting Ctrl-Alt-Delete and ending the current task.

Key Terms

Exercises

For each of the problems below, show the pseudocode, flowchart, and
Python code. Run the Python code to ensure your code runs as desired.

1. Print numbers from 5 to 1 in descending order. Use a While loop.

2. Print numbers from 5 to 1 in descending order. Use a For loop.

3. Read in a number and print its factorial. The factorial of a number N
is:

Condition
Decrement
Do-While
For-loop
Increment
Infinite Loop

Initialization
Loop
Sentinel
Trace table
While

107

1 * 2 * 3 *...* N

Sample Data :

num =5

Factorial of num is:
1 * 2 * 3 * 4 * 5 = 120

4. Print the maximum and the minimum of a set of positive numbers.

Sample Data :

50
40
60
85
-1 Sentinel Value

Corresponding output:

The maximum number is: 85
The minimum number is: 40

5. Read a set of numbers and print whether each number is even or odd.

Sample Data :

31
40
25
85
-1 Sentinel Value

Corresponding output:
31 is odd
40 is even
25 is odd
85 is odd

108

6. Walk through the following flowchart and describe what happens
using a trace table.

7. Calculate and print the sum of the first ten numbers (i.e., 1 to 10). Use

a While loop.

8. Calculate and print the sum of first ten numbers. Use a For loop.

9. Calculate and print the following sum:

1 + 1/2 + 1/3 + 1/4 + 1/5

Show pseudocode for both a For loop and a While loop.

109

10. Given a positive integer, determine whether or not it is a “perfect
number”.

Explanation:

A number is “perfect” if all its divisors (including the number 1,
but not including the number itself) add up to the number. For
example, 6 is perfect since the sum of its divisors 1, 2 and 3 is 6.
15 is not perfect since its divisors 1, 3 and 5 add up to 9 and not
15. 28 is perfect since its divisors 1, 2, 4, 7 and 14 add up to 28. 14
is not perfect since its divisors 1, 2 and 7 add up to 10 and not 14.

The technique for one possible solution can be explained in words
as follows: (a) Read in the number n. (b) Try out the divisors 1, 2,
3,…., (n-1). If any of these divisors divide n, update sum by
divisor.

Hint:

It is very important to start out with a 0 value for sum, so that the
operation sum + divisor is done properly. If either sum or divisor
did not have a known value, it is meaningless to add them together.
Note that sum is set to 0 before testing out the divisors. In most
programming languages, MOD is a built-in function that “returns”
the remainder obtained after dividing the first integer value by the
second. If the remainder returned is 0, then the second integer
divides the first. Note that if divisor was not incremented within
the loop, we would get an “infinite” loop, i.e. a loop that will never
end. Flowcharts with infinite loops are completely meaningless.

Finally, a check is made to see if the number is perfect. This is
done by using sum==n?, which corresponds precisely to the
definition of a perfect number.

110

Self-Check Solutions
8.1

Pseudocode:

Flowchart:

Python code:

#This program prints squares of numbers from 1 to 4.

num = 1

while num <= 4:

 square = num * num

 print (square)
 num = num + 1

Start

 num = 1

 While num <= 4 Do

 square = num * num

 print square

 num = num + 1

 EndWhile
Stop

111

Corresponding Output:

Trace Table for Self-check problem:

Iteration # Box # num num<= 4? square Output

Start

1 A 1

 B True

 C 1

 D 1

 E 2

2 B True

 C 4

 D 4

 E 3

3 B True

 C 9

 D 9

 E 4

4 B True

 C 16

 D 16

 E 5

5 B False

Stop

8.2

Pseudocode:

Start

 For (num = 1, num <= 4, num = num + 1)

 square = num * num

 print square

 EndFor

Stop

1

4

9
16

112

Flowchart:

Python code:

Output:

#This program prints the square of numbers from 1 to 4

for num in range(1,5):

 square = num * num
 print (square)

1

4

9
16

113

8.3

 1.

2. option <> 3

Note that this statement will be False only when the user has entered
the value of 3.

Corresponding output:

more = True

while more:

 option = int(input("Please enter an option from 1 to 3:"))

 if option == 1:

 print ("You selected option 1.")

 elif option ==2:

 print ("You selected option 2.")

 else:

 print ("You selected option 3. Good Bye.")

 more = False

Please enter an option from 1 to 3: 2

You selected option: 2.

Please enter an option from 1 to 3: 1

You selected option: 1.

Please enter an option from 1 to 3: 3

You selected option: 3. Good Bye.

114

9. Nested Loops

Single loops are great when you want to continue repeating one task as we
saw in the previous chapter. But in life, we often have situations where our
tasks are more complicated and we cannot complete them in such a straight
forward manner. A nested loop is similar to a nested If-Then-Else where we
have at least one loop inside another loop.

When you get up in the morning, you may start the day by brushing your
teeth. Exploring this concept deeper, perhaps you brush up and down with
your toothbrush on the right side of your mouth 15 times and 18 times on the
left side. Now we have created a nested loop (similar to a nested If statement
seen in the previous chapter) where you brush your teeth everyday and for
every day you brush each side many times each day.

Let us look at some of the problems which use nested loops.

Problem 9.1

When we have one loop nested inside another, we can create two
dimensional objects like a box of stars. We will let the user decide the size
of the box and then create the box to those specifications using nested loops.
For example, if the user chooses the height to be 3, then we want to print:

In looking at the problem, you need to see the pieces that are needed for the
variables. A computer can only print one line at a time, starting at the top
line and working its way down. So the first thing that we want to print is:

This will require a loop to print a * three times. From the last chapter, we
can create the single loop,

column = 0

While column < 3 Do

 print ‘*’

115

 column = column + 1

EndWhile

Now we need to print that row two more times. Therefore the above code
becomes our inner loop, the outer loop will print it a total of three times.
Each time we print one row of three *’s, we need to end the line with a
carriage return. The symbol for a carriage return is ‘\n’ (refer to Chapter 2
ASCII code). Note that we include comments in the pseudocode to aide in
understanding by using ‘#’ symbol and highlighting the code in bold.

row = 0

While row < 3 Do

 column = 0

 While column < 3 Do

 print ‘*’

 column = column + 1

 EndWhile
 #wrapping up the outer loop by using a carriage return

 print ‘\n’

 row = row + 1

EndWhile

Now we only need to get the user to enter the height of the square we are
creating and use that variable to terminate the loop.

Figure 9.1: Pseudocode

Start

 print “Please enter a number”

 get height

 row = 0

 While row < height Do

 column = 0

 While column < height Do

 print ‘*’

 column = column + 1

 EndWhile
 #wrapping up the outer loop by using a carriage return

 print ‘\n’

 row = row + 1

 EndWhile
Stop

116

Figure 9.2: Flowchart

117

In Python, you can print on separate lines by using the print statement as
shown below:

print(“a”)

print(“b”)

will result in the output on two separate lines.

 a
 b

You can print to one line if you include a comma after the first argument.

 print (“a”, “b”)

or you can use a comma at the end of the first print statement.

print(“a”),

print(“b”)

Either approaches will result in the same output

 ab

To print the end of a line by itself, you can use the command

 print ()

Now let’s look at the Python code to print the solution to our initial problem.

118

Figure 9.3: Python program

Figure 9.4: Output

Self-Check 9.1

Use a nested loop to create a triangle of stars. We will let the user decide
the height of the triangle and then create a triangle to those
specifications.

If the user chose the triangle height to be 4, then our printed triangle
would be:

*
**

Create the pseudocode, flowchart and Python code to gain practice with
nested loops.

height = int(input("Please enter height: "))

row = 0

while row < height:

 column = 0

 while column < height:

 print ('*', end='')

 column = column + 1

 print()

 row = row + 1

Please enter height: 3

119

Problem 9.2

Nested loops can have more than one loop nested inside of them. Let’s
modify the triangle created in the self-check to align to the right instead of
the left, so if the height was again 4, our triangle would look like:

 *

 **

The difference is that, for each row, we want to print out spaces before we
print the stars for that row. Note that the number of spaces is different at
each line; this decreasing amount of stars can be accomplished with a loop to
print the spaces before we have the loop to print the stars.

Figure 9.5: Pseudocode

Start

 print “Please enter the height.”

 get height

 row = 0

 While row < height Do

 # Create spaces before the stars on each row

 spaces = 0

 While spaces < height – row – 1 Do

 print ‘ ’

 spaces = spaces + 1

 EndWhile

 #Create the correct number of stars per row

 column = 0

 While column <= row Do

 print ‘*’

 column = column + 1

 EndWhile

 # Ends the current row and starts a new row

 print ‘\n’

 row = row + 1

 EndWhile

Stop

120

Figure 9.6: Flowchart

121

Figure 9.7: Python program

Figure 9.8: Output

Self-Check 9.2

By now you have gained a good amount of experience manipulating nested
loops. Let’s try two more before we leave these *’s and spaces.

A small modification to the right aligned triangle code can create a
pyramid. If the user wants a height of 4, then the resulting pyramid
would be

 *

Note that the only difference between the previous triangle and the
above pyramid is the number of stars that are printed on each line.
Write the pseudocode to create a triangle with user specified height.

Please enter height: 4

 *

 **

height = int(input(“Please enter height: “))

row = 0

while row < height:

 spaces = 0

 while spaces < (height – row – 1)

 print(‘ ’, end=’’)

 spaces = spaces + 1

 column = 0

 while column <= row:

 print(‘*’, end=’’)

 column = column + 1

 print ()
 row = row + 1

122

Problem 9.3

Now that you have a pyramid, let’s create a diamond which is just two
pyramids sandwiched together. If the user wants a height of 4, then the
resulting diamond would be:

 *

 *

Note that the only difference between the previous pyramid and the above
diamond is that an upside down pyramid has been attached to the bottom.
Therefore, all of the code that we have created before will be used as is, we
will just need to add additional code to create the reversed pyramid. Namely
we need to count the rows down to zero rather than up to height. The
modifications from the previous problem are highlighted in gray.

123

Figure 9.9: Pseudocode

Start

 print “Please enter height”

 get height

 # Create the upper half of the diamond

 row = 0

 While row < height Do

 # Create spaces before the stars on each row

 spaces = 0

 While spaces < height – row – 1 Do

 print ‘ ’

 spaces = spaces + 1

 EndWhile

 # Create the correct number of stars per row

 column = 0

 While column < row*2 + 1 Do

 print ‘*’

 column = column + 1

 EndWhile

 # Ends the current row and starts a new row

 print ‘\n’

 row = row + 1

 EndWhile

 # Create the lower half of the pyramid

 row = height - 1

 While row > 0 Do

 # Create spaces before the stars on each row

 spaces = 0

 While spaces < height – row Do

 print ‘ ’

 spaces = spaces + 1

 EndWhile

 # Create the correct number of stars per row

 column = 0

 While column < row*2 + 1 Do

 print ‘*’

 column = column + 1

 EndWhile

 # Ends the current row and starts a new row

 print ‘\n’

 row = row - 1

 EndWhile

Stop

124

Self-Check 9.3

Note that this task is not as complicated as the filled diamond due to the
smaller number of stars that must be printed.

Key Terms

Exercises

1. Create a multiplication table that will have 12 rows and 12 columns. The
output should appear as below:

1 2 3 4 5 6 7 8 9 10 11 12
2 4 6 8 10 12 14 16 18 20 22 24
3 6 9 12 15 18 21 24 27 30 33 36
4 8 12 16 20 24 28 32 36 40 44 48
5 10 15 20 25 30 35 40 45 50 55 60
6 12 18 24 30 36 42 48 54 60 66 72
7 14 21 28 35 42 49 56 63 70 77 84
8 16 24 32 40 48 56 64 72 80 88 96
9 18 27 36 45 54 63 72 81 90 99 108

10 20 30 40 50 60 70 80 90 100 110 120
11 22 33 44 55 66 77 88 99 110 121 132
12 24 36 48 60 72 84 96 108 120 132 144

Nested loop
Inner loop
Outer loop

Using everything that you have learned in this chapter, you have
created substantial code segments to accomplish a wide variety of
tasks. Now you should be able to create a nested loop to print a
hollow diamond. If the user wants a height of 4, then the resulting
diamond would be:

 *

 * *

 * *

 * *

 * *

 * *

 *

Write the pseudocode to create a diamond as stated above with a user
specified height.

125

2. You want to invest your money in a local bank. They are currently
offering several plans, one with simple interest and the other with
compound interest. The rates offered at the bank are 5%, 10% and 15%.
Your task is to vary the principle invested from $10,000 to $15,000 with
an increment of $1,000 for each rate.

a) Create a flowchart to accomplish the task for problem2 using nested
loops.

b) Create a Python program to accomplish the task for problem 2 using
nested loops.

Hint: The pseudocode is:

N=5 #where N is number of years

For (rate = 0.05, rate <= 0.15, rate = rate + 0.05)

 For (principal=10000, principal <=15000, principal=principal+1000)

 simple = principal * (1 + rate * N) #where N is number of years

 compound = principal * (1 + rate) ^ N

 print simple + “ “ + compound

 EndFor

 EndFor

3. How many times will “Hello World” be printed for the pseudocode
below?

For (i= 1, i<=5, i = i + 1)

 For (j= 1, j <=3, j = j + 1)

 print“Hello World”

 EndFor
 EndFor

4. What will be the conditions for the inner and the outer loop for the

following pattern:
* * * * * * *

* * * * *

* * *

*

5. What will be the conditions for the inner and the outer loop for the
following pattern:

* * * * * * *

* * * * *

126

* * *

*

6. What will be the conditions for the inner and the outer loop for the
following pattern:

* *

* * * *

* * * * * *

* * * * * * * *

7. What will be the conditions for the inner and the outer loop for the
following pattern:

* * * * * * * *

* * * * * *

* * * *

* *

8. What will be the output of the following pseudocode:

For (i= 1, i<=5, i = i + 1)

 For (j= 1, j <=4, j = j + 1)

 print i + j

 EndFor
 EndFor

Self-Check Solutions

9.1

Note that the outer loop will be the same as when we created a box of
stars, but the inner loop will be different because we don’t want so
many stars to print. There is really only one small change that will
need to be made, modifying the second condition for the loop.

Pseudocode:

Start

 Get height

 row = 0

 While row < height Do

 column = 0

 While column <= row Do

 print ‘*’

 column = column + 1

 EndWhile

 print ‘\n’

 row = row + 1

 EndWhile

Stop

127

Flowchart:

128

Python code:

Corresponding output:

9.2

Only the second inner loop needs to be modified to print more stars.
Let’s look at a small chart to see the number of stars needed per row:

row stars

1 1

2 3

3 5

4 7

Perhaps you already see the pattern, but if not, look at an added
column for row*2 below

row row*2 stars

1 2 1

2 4 3

3 6 5

4 8 7

Now you can see that the only difference between row*2 and stars is a
1. Therefore, we can create our solution.

height = int(input(“Please enter height: “))

row = 0

while row < height:

 column = 0

 while column < row:

 print(‘*’, end=’’)

 column = column + 1

 print ()

 row = row + 1

Please enter height: 4

*

**

129

Pseudocode:

Start

 print “Please enter height”

 get height

 row = 0

 While row < height Do

 # Create spaces before the stars on each row

 spaces = 0

 While spaces < height – row - 1 Do

 print ‘ ’

 spaces = spaces + 1

 EndWhile

 # Create the correct number of stars per row

 column = 0

 While column < row*2 + 1 Do

 print ‘*’

 column = column + 1

 EndWhile

 # Ends the current row and starts a new row

 print ‘\n’

 row = row + 1

 EndWhile

Stop

130

9.3

Pseudocode:

Start

 print “Please enter height”

 get height

 row = 0

 While row < height Do

 spaces = 0

 While spaces < height – row – 1 Do

 print ‘ ’

 spaces = spaces + 1

 EndWhile

 print ‘*’

 row = row + 1

 EndWhile

 # Now make the bottom half

 row = height -1

 While row > 0 Do

 spaces = 0

 While spaces < height – row Do

 print ‘ ’

 spaces = spaces + 1

 EndWhile

 print ‘*\n’

 row = row - 1

 EndWhile

Stop

131

10. Functions

So far we have been creating and using scripts to perform tasks. These
scripts are independent pieces of code that require no prior knowledge to
execute. While scripts are flexible, they require the data values to be set or to
request the values from the user before they can work. When you want to
perform a task multiple times, possibly changing the data values each time,
then a function is a better choice than a script. In working with a group of
programmers to complete a task, functions are vital so that problems can be
broken down into smaller tasks that each group can handle individually and
then come together with the completed project.

10.1 Function parts

A function has several parts. Figure 10.1 shows the syntax of a value
returning function.

Figure 10.1: Syntax of a value-returning function

Function returnValue functionName(parameter1,parameter2, …)

 Statement1

 Statement2

 return Value

EndFunction

Main program will call the function

variable = functionName(parameter1, parameter2, …)

The first line of the function is known as the header. In Figure 10.1, the
header is

Function returnValue functionName(parameter1,parameter2, …)

The next three lines comprise the body of the function. In Figure 10.1, the
body is

Statement1

 Statement2

 return Value

132

In the header, returnValue is the data type of the value returned by the
function. Note that the function will not be executed unless it is called by its
name. In Figure 10.1, functionName is the name of the function. Therefore,
the main program, or another function, or script, must call the function with
the appropriate parameters to use the code created. The function’s
parameters must match the data type and number of parameters passed with
the function call.

Referring to Figure 10.2, when a statement in Box A is encountered, the
execution branches to Box B. Statements in Box C-F are executed and the
execution branches back to the main program in Box A. The result of Box F
is assigned to the variable in Box A of the main program. Then execution
continues with Box G –I.

Figure 10.2: Flowchart of a value-returning function

A

B

G

C

H

D

I F

E

133

Within the parentheses above, there is a description of parameter1,
parameter2, etc. These are parameters, variables that must be supplied to
execute the function. There are two types of parameters that may be passed
into a function: call-by-reference and call-by-value. A call-by-value
parameter passes the value to be used by the function while a call-by-
reference parameter’s value may be updated and used in the program that
called the function. The way to distinguish between the two different types
of parameters is different based on which language you are using. For our
pseudocode, we will use a star before the parameter’s name to distinguish
call-by-reference; i.e. *parameter2.

Note that there do not have to be any parameters, in which case you would
only have functionName() or there could be a large number of parameters in
which case you would separate them with commas. There can also be more
or fewer statements inside the function to be executed.

In most cases, you want to have each function have a unique name. But a
function can have the same name as another function as long as the
parameters passed are different.

For example, if I have a function summation() and another function
summation(x,y) then the computer knows which function I want to use when
in my code I state, summation(3,16). In this case I want to use the second
summation function that was created because the number of parameters
match.

If I had two functions called summation(), then the computer would not
know which function I want to use when I call the function summation() in
my program. Hence it is not a good idea to have the same name for two
different functions.

10.2 Comments in functions

When you create a function, it is important to document information about
your function with comments. Remember that comments allow any user to
understand the purpose of the function and how to use it appropriately. In
pseudocode and Python, the pound sign, ‘#’ will start a comment from the
‘#’ to the end of the line.

134

Below is the minimal information that you should include before any
function that you create.

Purpose: state the purpose of the function

Parameter1: expected type of this parameter

Parameter2: expected type of this parameter

Return type: state the return type

10.3 Value-returning functions

You have already used functions when you gather input from the user for
Python.

 a = int(input(String))

 b = float(input(String))

In this case, input is a built-in function that has one parameter, a string, and
returns a string to store in a. A built-in function is a function that is supplied
by a library of functions in the language (here Python) that we are using.
When you create a function yourself, that is called a user-defined function.
Note, int(input(String)) is a combination of two functions, where the int()
function converts the value read-in by input(String) to an integer

Note that in order to return a value, you must use the key word return in
your function followed by the variable or value that you want the function to
return. Let us see some problems to understand value-returning functions.

Problem 10.1

Write a function calcSquare which receives a number and returns its square.

Figure 10.3: Pseudocode

Purpose: To square a value

Parameter1: value to be squared

Return type: numerical

Function numerical calcSquare(number)

 return number * number

EndFunction

135

To call this function, we could use the following code.

num = calcSquare(5)

After the above line of code, num would contain 25.

Figure 10.4: Flowchart

Start

Stop

result = calcSquare(5)

print result

calcSquare(5)

result = num * num

Return result

For Python, a function is defined as def and there is a “:” after the function
definition. The statement inside of a function is indented to the right. In the
code below, the function calcSquare(num) is called on the fourth line
(including the blank line). Also, note that Python begins execution at line 4
after skipping over the function definition.

136

Figure 10.5: Python Program

Note that result will have the value of 25 after the line:

 result = calcSquare(5)

In order to see the value of result, we need to print the variable. Hence the
last line of code is:

 print(result)

Corresponding output:

Problem 10.2

Write a function calcAverage which receives three numbers and returns their
average.

Figure 10.6: Pseudocode

def calcSquare(num):

 return num * num

result = calcSquare(5)

print (result)

25

Purpose: To return the average of three numbers

Parameter1, Parameter2, Parameter3: numbers to be averaged

Return type: numerical

Function numerical calcAverage(num1, num2, num3)

 return (num1 + num2 + num3) / 3.0

EndFunction

call the function with the values of 2, 3, and 4

result = calcAverage(2,3,4)

print result

137

Figure 10.7: Flowchart

Figure 10.8: Python program

Figure 10.9: Output

def calcAverage(x, y, z):

 return (x+y+z)/3.0

result = calcAverage(2, 3, 4)
print (result)

3.0

138

Self-Check 10.1

10.4 Void functions

When a function does not return a value, then we call it a void function.
Some functions that don’t return a value have tasks to print out information
to the screen. The only changes from the pseudocode that we saw before, is
that the comment for return type is now void, the returnType is replaced
with void in the header.

Figure 10.10: Syntax of a void function

Write pseudocode for a function called minimum that will return
the minimum of two values given as parameters. Also draw its
flowchart and write the corresponding Python code.

Purpose: state the purpose of the function

Parameter1: expected type of this parameter

Parameter2: expected type of this parameter

Return type: void

Function void functionName(parameter1, parameter2, …)

 statement1

 statement2

EndFunction

139

Figure 10.11: Flowchart of a void function

Problem 10.3

Write a function calcFahrenheit which receives a Celsius temperature as
input and converts and prints its equivalent Fahrenheit temperature.

Figure 10.12: Pseudocode

Purpose: To display a Fahrenheit temperature

Parameter1: Celsius

Return type: void

Function void calcFahrenheit(celsius)

 print (9/5.0)*celsius + 32

endFunction

call the function with the Celsius value of 40

calcFahrenheit(40)

140

Figure 10.13: Flowchart

Figure 10.14: Python program

Figure 10.15: Output

Problem 10.4

Write a void function printInfo to print the name, date and project number.

104.0

def calcFahrenheit(celsius):

 print (9.0/5.0 * celsius + 32)

calcFahrenheit(40)

141

Figure 10.16: Pseudocode

Figure 10.17: Flowchart

Figure 10.18: Python program

def printInfo(name, date, project):

 print ("name:" + name)

 print ("date:" + date)

 print ("project:" + project)

printInfo("John Doe", "6/10", "19")

Purpose: To print out basic header information

Parameter1: String for the name of the user

Parameter2: String for the date of the project

Parameter3: String for the project name

Return type: void

Function void printInfo(name, date, project)

 print “Name: ” + name

 print “Date: ” + date

 print “Project: ” + project

EndFunction

printInfo("John Doe", "6/10", "19")

142

Note that void Python functions do not need a return.

Figure 10.19: Output

Self-Check 10.2

Key Terms

Figure 6.1:

Exercises
For each problem, create the pseudocode, flowchart and Python code.

1. Create a function called minimum that will return the minimum of three

numerical parameters.

2. Create a void function that will create a pyramid of stars whose height is
based on the parameter.

3. Create a conversion function named ASCII that will take an integer value

and return the associated ASCII character. Note that there are only 168
ASCII characters, so your program will need to return “There is no
ASCII character associated with that value.” if the user inputs a value
below or above the possible ASCII decimal values.

Create a void function called triangle that will print out a left aligned
triangle of stars based on the height specified in the numerical
parameter.

Script
Function
Parameter
Call-by-reference

Call-by-value
Built-in function
User-defined function
Void function

Name:John Doe

Date:6/10

Project:19

143

4. Create a void function that will output the ASCII decimal and associated
character values.

5. Create a power function that will take the base and exponent and return

the base to power of the exponent.

6. Create a summation function that will take three numbers as parameters

and return the sum of the numbers.

7. Create a function to play the game hi/low. In this function there are no

parameters and no return value. The program flow is:

a) Create a random integer from 1 to 100. Note that Python already has a
random number generator. To access it, you need to import math at the
start of your function.

b) Ask the user to guess the number.

c) If the number is too high, state “You guessed too high.”
 If the number is too low, state “You guessed too low.”

If the number is just right, state “Congratulations, you guessed my
number.”

You should repeat b) and c) until the user guesses the number correctly.

144

Self-Check Solutions
10.1

Pseudocode:

Flowchart:

Purpose: this function will return the smallest of

the two parameters passed

Paremeter1: numerical

Paremter2: numerical

Return value: numerical

Function numerical minimum(value1, value2)

 If value1 < value2 Then

 min = value1

 Else

 min = value2

 EndIf

 return min

EndFunction

145

Python:

10.2

Pseudocode:

5

Purpose: To create a left-aligned

triangle of stars

Parameter1: height of the triangle

Return type: void

Function void triangle(height)

row = 0

While row < height Do

 column = 0

 While column <= row Do

 print ‘*’

 column = column + 1

 Endwhile

 print ‘\n’

 row = row + 1

 Endwhile

return

EndFunction

#Function min receives two parameters and

returns the minimum of the two values

def min(value1, value2):

 if value1 < value2:

 min = value1

 else:

 min = value2

 return min

#Main program

#The line below calls the function min

minimum = min(5,15)
print (minimum)

146

11. Arrays

We have come a long way in the text so far. Among many tasks, two tasks
that you learned were to create variables and to perform repetitious tasks
with loops. As of now, each variable you create can hold one value. When
each variable holds a different data type, this is necessary, but when each
variable holds the same data type, there is a better way to store and update
your values - an array. An array is a collection of variables with the same
data type.

In pseudocode, we define an array as

 arrayName [numberOfElements] = {values}

In the above case, arrayName is the name of the array. The brackets enclose
an integer for the total number of elements, numberOfElements, in the array.
The curly braces state the initial value of the elements of the array. Note that
there are two ways to assign values to an array, you can either use commas
to separate the values or you can state one value for all the elements of the
array.

For example, let’s create an array of months:

months[12]= {“Jan”, “Feb”, “Mar”, “Apr”, “May”,

“June”, “July”, “Aug”, “Sep”, “Oct”, “Nov”, “Dec”}

You can visualize the array in a tabular form

months[0]

months[1]

months[2]

months[3]

 …….

months[10]

months[11]

Jan

Mar

Apr

Nov

 Dec

Feb

147

To access the first month of the year, we use:

 months[0]

We refer to the value 0 as the index or subscript specifying the location into
the array and it is read “month sub zero”. In most programming languages,
the index starts with 0.

Self-Check 11.1

To initialize all elements of an array to the same value, we can just include
one value in the curly braces. For example, let’s create an array to keep track
of the final grades in a course of three students.

 finalGrades[3] = {0}

0

0

0

 finalGrades[0] finalGrades [1] finalGrades [2]

This is called initializing your array, so that every element in the array starts
with the same value in the case above, 0.

Let’s create a parallel array to match the student names with their final
grades. For example, Jennifer’s grade is stored in finalGrades[0], Juan’s in
finalGrades[1], and Kerry’s in finalGrades[2].

studentNames[3] = {“Jennifer”, “Juan”, “Kerry”}

studentNames[0] studentNames[1] studentNames[2]

A one-dimensional array can be thought of as a table of values.

Jennifer Juan Kerry

How can you access the last month of the year in the previous
example?

148

Self-Check 11.2

In the prior examples, you see that arrays usually have an underlying theme
that connects all of the array variables. Let’s say that we want to create a
variable to keep track of class sizes for all classes in an entire school. Then
we would need an array that has the same number of elements as the number
of classes. So each class has a separate spot to store its class sizes.

Now imagine that we didn’t have just three students, but we had three
hundred. In this case, it would take three hundred lines of code to reference
every student, but we can reduce this by using information we already know-
a loop.

Let us look at some examples of how to access individual elements of an
array with a loop.

Problem 11.1

Read five numbers into an array then print the contents in the reverse order.

Figure 11.1: Pseudocode

If we know that Juan got an 87 on his exam, show the
pseudocode that assigns his grade to the appropriate value in
the array of finalGrades.

Purpose: To read and reverse print five numbers in an array

Start

 A[5] = {0.0}

 For (index = 0; index < 5; index = index + 1)

 A[index]= input(“Please enter a number to store.”)

 EndFor

 print “The reversed numbers are: ”

 For (index = 4; index >=0; index = index -1)

 print A[index]

 EndFor

Stop

149

Note that the only changes needed for going through an array forward or
backward is the starting place, ending place and increment (or decrement).
Fortunately a for loop structure provides a great organization to place all of
the modifications on the first line of the loop.

To clearly understand how this program works, let’s examine the following
flowchart and trace table to see how we can store the variables in the array
using the first for loop created with the user-entered data below:

Sample Data:

 14

 30

 15

 12

 18

To enter the data above as requested by the program, the user must first enter
the value and then press enter after each value.

To understand the behavior of the code completely, let’s examine the
flowchart of the pseudocode and then run the program in Python.

150

Figure 11.2: Flowchart

In executing the first loop of the Figure 11.1, we will be looking at the boxed
areas for A-E. Initially we begin with an index of 0 at Box B. Since the
condition is True, index is 0 < 5 in Box C, we continue to Box D and read
the value entered by the user for A[0] which is 14. The updated memory
diagram is:

151

A[0] A[1] A[2] A[3] A[4]

14 0.0 0.0 0.0 0.0

For Box E, the index is increased to 1 and we return to check the condition
in Box C. Since index is 1 < 5 is True, we continue to Box D and the user
enters 30 to be stored in A[1]. The updated memory diagram is:

A[0] A[1] A[2] A[3] A[4]

14.0 30.0 0.0 0.0 0.0

For Box E, the index is increased to 2 and we return to check the condition
in Box C. Since index is 2 < 5 is True, we continue to Box C and the user
enters 15 to be stored in A[2]. The updated memory diagram is:

A[0] A[1] A[2] A[3] A[4]

14.0 30.0 15.0 0.0 0.0

For Box E, the index is increased to 3 and we return to check the condition
in Box C. Since the index is 3 < 5 is True, we continue to Box D and the
user enters 12 to be stored in A[3]. The updated memory diagram is:

A[0] A[1] A[2] A[3] A[4]

14.0 30.0 15.0 12.0 0.0

For Box E, the index is increased to 4 and we return to check the condition
in Box C. Since the index is 4 < 5 is True, we continue to Box D and the
user enters 18 to be stored in A[4]. The updated memory diagram is:

A[0] A[1] A[2] A[3] A[4]

14.0 30.0 15.0 12.0 18.0

For Box E, the index is increased to 5 and we return to check the condition
in Box C. Since the index is 5 < 5 is False, we do not enter the loop and
continue past the first loop.

For the second loop, we will be focusing on the boxed areas for F-I.
Similarly, the second loop will start with index as 4 and loops through all the
values in the array in reverse order until the index is negative. Note that the
array is not modified in this loop, it is only viewed.

152

Table 11.1: Trace table for the first loop

Iteration # Box # index index< 5? A[index]

Start

1 B 0

 C True

 D 14

 E 1

2 C True

 D 30

 E 2

3 C True

 D 15

 E 3

4 C True

 D 12

 E 4

5 C True

 D 18

 E 5

6 C False

Stop

Now we can examine what has been stored in the array by looking at a
graphical picture of the storage:

A[0] A[1] A[2] A[3] A[4]

14.0 30.0 15.0 12.0 18.0

To see the behavior of the second for loop, let’s look at the trace table below
and see how the information will be printed back out to the screen.

Table 11.2: Trace table for the second loop

Iteration # Box # index Index >=
0?

Output
A[index]

Start

1 F 4

 G True

 H 18

 I 3

2 G True

153

Therefore, our resulting output will be:

Figure 11.3: Output

In Python, no distinction is made between arrays and lists. To declare an
array with 5 elements in Python, we can say:

 A = [14, 30, 15, 12, 18]

The first element is at location 0:

 A[0]

which will return the value of 14. To access the next element use:

 A[1]

which will return the value of 30.

When you want to print the reverse list of all the elements using a loop, a for
loop provides an excellent structure using the keyword range. Let’s first
examine the pseudocode again:

 H 12

 I 2

3 G True

 H 15

 I 1

4 G True

 H 30

 I 0

5 G True

 H 14

 I -1

6 G False

Stop

18

12

15

30

14

154

 print “The reversed numbers are: ”

 For (index = 4; index >=0; index = index -1)

 print A[index]

 EndFor

In the for loop we used the condition index>= 0; for Python there is only the
condition index>value, so we must change the condition to be index>-1 to
accomplish the same task. In Python, index will initially be 4 and decreases
by 1 in each iteration until index>-1. Therefore, the pseudocode for the for
loop described above will give the same output as the for loop in the Python
program fragment shown below.

 for index in range(4, -1, -1)

Figure 11.4: Python program

Figure 11.5: Output

Self-Check 11.3

Convert the previous problem to read in 10 values and then print
every other value in reverse order starting with the last value.

Enter a number: 14

Enter a number: 30

Enter a number: 15

Enter a number: 12

Enter a number: 18

18

12

15

30

14

A = []

for i in range(0,5):

 x = int(input("Enter a number: "))

 A.append(x)

for i in range (4, -1, -1):

 print (A[i])

155

Problem 11.2

Create a program that will print the smallest value in an array containing
numbers.

Figure 11.6: Pseudocode

By initializing min = values[0] we are guaranteed that the initialized value
of min is not smaller than all the other elements in the values array. Since
we have this initialization, I can start my index for the for loop with 1.

Purpose: Print the smallest value in a user

entered array(main program)

Start

 A[10]={0}

 index = 0

 While index < 10 do

 get A[index]

 index = index + 1

 EndWhile

 min= A[0]

 index = 1

 While index < 10 Do

 If (min > A[index]) Then

 min = A[index]

 EndIf

 index = index + 1

 EndWhile

 print min

Stop

156

Figure 11.7: Flowchart

157

Figure 11.8: Python program

Figure 11.9: Output

11.2 Two-dimensional arrays

Arrays don’t have to be just one dimensional. When you calculate your bills
for the month, you have both rows and columns. In the example below, you
have two columns and two rows:

Bills for the month

Company Cost

Water and Sewer $15.87

Electricity $35.67

In creating a two-dimensional array, you will need to make sure that all
elements of the array are of the same data type. The pseudocode will look

Enter a number: 72

Enter a number: 95

Enter a number: 56

Enter a number: 84

Enter a number: 93

Enter a number: 45

Enter a number: 69

Enter a number: 35

Enter a number: 25

Enter a number: 78

25

A = []

for index in range(0,10):

 x = int(input("Enter a number: "))

 A.append(x)

min = A[0]

index =1

while index <=9:

 if A[index] < min:

 min = A[index]

 index = index + 1
print (min)

158

very similar, but now you will need to have a value for the second
dimension. For example:

arrayName[numOfRows][numOfColumns]

= {{row1col1,row1col2}, {row2col1, row2col2}, …}

Let’s say that we want to create the following table:

1 2

3 4

5 6

Your declaration will be:

 numberArray[3][2]= {{1,2},{3,4},{5,6}}

Let’s say that you wanted to access the element in the second row, first
column, then you would say:

 numberArray[1][0]

which would return the value of ‘3’.

In Python you can create a list of lists to simulate a two-dimensional array.

Self-Check 11.4

11.3 Multi-dimensional arrays

In theory, there is no limit to the number of dimensions that an array can
have. When you have more than two dimensions, we refer to the arrays as
multi-dimensional array. It is beyond the scope of this text to cover this
topic in more detail, but is important to be aware of the concept.

Create the following array:

1 2 3

4 5 6

Write the pseudocode to print the element with the value of 5.

159

Key Terms

Array
Index
Subscript
Initialize
Parallel array

One-dimensional array
Elements
Multi-dimensional array
Two-dimensional array

Exercises

1. Assume that there are ten numerical elements in an array that has
already been populated with values. Draw the flowchart to print the
largest of all the elements of one-dimensional array.

2. Draw a flowchart to create an array of six elements. Your flowchart

should prompt the user to populate the array. Sample data is shown
below:

3 5 7 11 13 17

3. Write a Python program to create a multiplication table for the
number 5 as shown below:

5 10 15 20 25

4. What will following program display?

5. Write a Python program that creates an array of 6 elements and using
a loop stores the ascending values from 5 to 10 in the array. Then
print the contents of each element of the array in reverse order.

num = []

for i in range(0,5):

 num.append(i)

for i in range(0,5):

 print (num[i] – 2)

160

6. Examining the Python program below, show what will be printed to
the monitor.

7. What is printed out from the code below if the user enters the
following numbers for the array: 7, 12, -3, 6, 15, 17, 19, 14, 2, -7 ?

8. Complete the following parts:

a. Draw a flowchart to increment each element of an array by 12.
Assume there are 5 elements.

b. Write the corresponding Python program. Run and test your
program with the following sample data:

10 5 20 30 12

 After the run, your program should display:
 22 17 32 42 24

9. Complete the following parts:
a. Draw a flowchart to display the sum of all the elements of the

array. Assume there are five elements.

b. Write the corresponding Python program. Run and test your
program with the following sample data:

num = []

for i in range(0,5):

 num.append(2 * i)

for i in range(0,5):

 print (num[i])

for i in range(4,-1,-1):

 print (num[i])

A = []

for i in range(0,10):

 x = int(input("Enter a number: "))

 A.append(x)

sum = 0

i=0

while i<= 9:

 sum = sum + A[i]

 i = i + 1

print ("Average = ", sum/10.0)

161

10 5 15 20 30

 Your program should display 80.

Self-Check Solutions

11.1

Since we start counting at zero, the last month must be at
numberOfElements – 1, i.e. month[11]

11.2
finalGrades[1] = 87

11.3

Pseudocode:

Start

Purpose: To read ten numbers and reverse print every other

number in an array.

A[10] = {0.0}

For (index = 0; index < 10; index = index + 1)

 A[index]= input(“Please enter a number to store.”)

EndFor

print “Every other reversed number is: ”

For (index = 9; index >= 0; index = index - 2)

 print A[index] + “,”

EndFor

Stop

162

Flowchart

Jennifer

163

11.4

numberArray[2][3]= {{1,2,3},{4,5,6}}

Print numberArray[1][1]

164

12. File Input and Output

Did the last chapter give you the idea that you could be creating a large
amount of data easily using loops? Imagine a loop that goes through all of a
company’s employees to print their monthly time sheets. Would you want to
type in all their names and addresses manually every month? What happens
if you make a mistake when you manually input the information?

When you have large amounts of information that you want to keep track of,
the best approach is to store the information in a file. You have already been
storing your code for functions and scripts in a file. In this chapter we are
going to examine how to store data in files too.

When you are reading information from a file, we call the file an input file.
Likewise, when you are sending information to be stored in a file, we call
the file an output file.

12.1 Pseudocode for File Operations

To send or retrieve information from a file, you need to open the file first.
We use the command below to accomplish this task.

open fileName

When you want to send output to a file, use the key word write followed by
the fileName and what you want to go into the file (i.e. a string)

write filename “This information is for my file.”

You may also use a variable

write filename newPay

To read from a file that has already been opened, you need to use the
keyword read along with the fileName and the variable to store the
information that you just read.

 read fileName variable

165

As you read information from a file, you continue reading until you
encounter the end of the file, EOF. The end of file can be detected by a
simple test. It is usually a special character attached to the end of a file.
Therefore you can create a loop that will continue until the EOF.

When you have finished editing or reading from a file, you will need to close
the file. The command for this is:

 close fileName

12.2 Problem 12.1

This section demonstrates a file I/O problem without a loop. We write a
program to read a name and three scores from an input file named data.txt.
An input file is a file that contains data you will be reading. Then send the
name and the average of three scores to the output file. To create a data file
for input, you can use the New File feature of IDLE. In IDLE, go to File ->

New Window and type the file data. Just make sure you save your file with
the appropriate name. In Windows, you may also use Notepad to create a
data file. Do NOT use Word or WordPad to create a data file because the file
is saved in a format that is not easy to read.

The input file contains the following data:

Figure 12.1: Input file (data.txt)

We want to send the output to another file. An output file is a file where you
can write your results. sol.txt is the name of the output file. The output file is
created under the same directory where the Python program is located.
Similarly, the input file should be located in the same directory as the
Python program.

166

Figure 12.2: Output file (sol.txt)

The average is calculated by adding the three scores and dividing by 3.

average = (70 + 95 + 85) /3 = 250/3 = 83.33

One solution to problem 12.1 is shown in figures 12.3 – 12.6 below.

Figure 12.3: Pseudocode

Start

 # open and read info from input file:data.txt

 open data.txt

 read data.txt name

 read data.txt grade1, grade2, grade3

 close data.txt

 # sending information to the output file:sol.txt

 open sol.txt

 write sol.txt “Name: ” + name

 average = (grade1 + grade2 + grade3)/3.0

 write sol.txt “Average= ” + average

 close sol.txt

Stop

167

Figure 12.4: Flowchart

168

Figure 12.5: Python program

Note that input files should be in the same directory as the Python program.
Output files are also created in the same directory. The first inFile.readline()
reads “John Doe” from the file and assigns it to the name variable. The
second inFile.readline() assigns “70” to score1, the third inFile.readline()
assigns “90” to score2 and the fourth inFile.readline() assigns“85”to

score3. Note that score1, score2 and score3 are of type string and they need
to be converted to type integer before they can be used for the calculation.
The contents of output file are shown below.

Figure 12.6: Output

12.3 Problem 12.2

This section demonstrates a file I/O problem with a loop. Modifying the
above example, create a program to read a name and three scores from an

inFile=open(“data.txt”,'r')

name = inFile.readline()

score1=inFile.readline()

score2=inFile.readline()

score3=inFile.readline()

inFile.close()

outFile=open(“sol.txt”,'w')

s1=int(score1)

s2=int(score2)

s3=int(score3)

average = (s1+s2+s3)/3.0

outFile.write("Name:")

outFile.write(name)

outFile.write("Average = ")

outFile.write(str(average))

outFile.close()

169

input file known as data.txt. We may have any number of students. This will
require us to read names and grades until we encounter the EOF.

One solution to problem 12.2 is shown in figures 12.7 – 12.11 below.

Figure 12.7: Pseudocode

Start

 # open and read info from input file:data.txt

 open data.txt

 open sol.txt

 read data.txt name

 While(not EOF)

 read data.txt grade1, grade2, grade3

 # sending information to the output file:sol.txt

 write sol.txt “Name: ” + name

 average = (grade1 + grade2 + grade3)/3.0

 write sol.txt “Average= ” + average

 read data.txt name

 EndWhile

 close data.txt

 close sol.txt

Stop

170

Figure 12.8: Flowchart

171

Figure 12.9: Python program

Figure 12.10: Input file (data.txt)

Pat Smith

60

70

75

Chris White

80

90

95

Jerry Waldon

60

90

80

Josh Cathey

77

99

88

Figure 12.11: Output file sol.txt

inFile=open(“data.txt”,'r')

outFile=open(“sol.txt”,'w')

name = inFile.readline()

while (name != ""):

 grade1=inFile.readline()

 grade2=inFile.readline()

 grade3=inFile.readline()

 outFile.write(name + "\n"))

 s1=int(grade1)

 s2=int(grade2)

 s3=int(grade3)

 average = (s1+s2+s3)/3.0

 outFile.write(str(average)+"\n")

 name = inFile.readline()

inFile.close()
outFile.close()

Pat Smith

68.3333333333

Chris White

88.3333333333

Jerry Waldon

76.6666666667

Josh Cathey

88.0

172

Self-Check 12.1

12.4 Problem 12.3

This section discusses another file I/O problem with a loop. Modifying the
problem of 12.2, we read name and grades. We calculate the average of
grades but do not know how many grades we are averaging. This will
require us to sum all the grades until we encounter the EOF.

Figure 12.12: Pseudocode

Rewrite the problem in Section 12.2 by storing and
retrieving the numerical information in a grade array.

Start

 # open and read info from file

 open data.txt

 read data.txt name

 # we must read the first value to see if we are at the EOF

 read data.txt grade

 count = 0

 sum = 0.0

 While !EOF of data.txt Do

 count = count + 1

 sum = sum + grade

 read data.txt grade

 EndWhile

 close data.txt

 # printing information to the solution file

 open sol.txt

 write sol.txt “Name: ” + name

 average = sum/count

 write sol.txt “Average= ” + average

 close sol.txt

Stop

173

Figure 12.13: Flowchart

174

Figure 12.14: Python program

Figure 12.15: Input file (data.txt)

Figure 12.16: Output file sol.txt

inFile=open(“data.txt”,'r')

outFile=open(“sol.txt”,'w')

name = inFile.readline()

grade = inFile.readline()

count = 0

sum = 0.0

while (grade != ""):

 count = count + 1

 sum = sum + float(grade)

 grade = inFile.readline()

inFile.close()

outFile.write("Name = " + name + "\n")

average = sum / count

outFile.write("Average = " + str(average))
outFile.close()

Pat Smith

60

70

75

80

90

95

Name = Pat Smith

Average = 78.3333333333

175

12.5 Problem 12.4

Given the following information in a purchase.txt file, create a program that
will read the information and send the contents to the output file print.txt.

The file, purchase.txt, will contain the following records mentioned above in
the following format:

Figure 12.17: Input file purchase.txt

Note that the name of the patron is followed by the item purchased. This is
followed by the price and then the tax on that item.

We want output to be in the following format:

Patron 1: Juanita Story

Purchase: Shirt

Cost: $5.17

Patron 2: Mary Stratford

Purchase: Scarf

Cost: $12.77

Patron 3: Joseph Albert

Purchase: Trousers

Cost: $17.98

Note that the cost is the sum of the price and the tax of the item.

176

Figure 12.18: Pseudocode

Start

 # open and read info from input file:purchase.txt

 open purchase.txt

 open print.txt

 i=1

 read purchase.txt name

 While(not EOF) Do

 read purchase.txt type, cost, tax

 # sending information to the output file:print.txt

 write print.txt “Patron ” + i + ": " + name

 write print.txt “Purchase: ” + type

 write print.txt “Cost: ” + (cost+tax)

 i = i+ 1

 read purchase.txt name

 EndWhile

 close purchase.txt

 close print.txt

Stop

177

Figure 12.19: Flowchart

178

Figure 12.20: Python program

Figure 12.21: Output file sol.txt

Normally, when you open a file for writing, you start writing at the
beginning of the file and all previously written information in the file is
erased. If you wanted to add information to an existing output file, you need
to append the information to the end of the file. The only difference is that
you use the keyword append when opening the file.

 open fileName append

Everything is performed as before, but all the information is now
automatically written at the end of the file.

inFile=open(“purchase.txt”,'r')

outFile=open(“sol.txt”,'w')

name = inFile.readline()

grade = inFIle.readline()

count = 0

sum = 0.0

while(grade != "")

 count = count + 1

 sum = sum + float(grade)

 grade = inFile.readline()

inFile.close()

outFile.write("Name = " + name)

average = sum / count

outFile.write("Average = " + str(average))

outFile.close()

Patron 1: Juanita Story

Purchase: Shirt

Cost: $5.17

Patron 2: Mary Stratford

Purchase: Scarf

Cost: $12.77

Patron 3: Joseph Albert

Purchase: Trousers
Cost: $17.98

179

Key Terms

Open
Read
EOF
Close

Input
New File
Output
Append

Exercises

1. You are a teaching assistant to Mr. Couch and he has asked you to create

a file with the records of all student grades for his History 1 class. In
addition, you have been asked to create a python program to read in the
input file and send out the class average to an output file. Note that you
will need a loop to read the data from the input file until EOF is reached.

Below is the information that Mr. Couch needs in his input grade file.
Create the grade file (i.e. using Notepad) and send the class average to an
output file.

Mandy Bloom

88

Jeff Davis

81

Hector Juarez

92

Sandra Manning

89

Thomas Nuez

78

Karen Tunes

81

2. Write a Python program to read pairs of numbers from an input file and
calculate their sum. Send the sum of each pair with the appropriate
message to an output file. See example below.

inputFile.txt

 10 20
 5 15
 30 80

180

 75 10

outputFile.txt

 The sum of 10 and 20 is 30.

The sum of 5 and 15 is 20.
The sum of 30 and 80 is 110.
The sum of 75 and 10 is 85.

3. You have been thinking about creating a home theatre and want to keep
all your notes in a file to be able to quickly calculate the total cost of the
system. The input file should contain the data shown below; send the
appropriate message along with the total cost to the output file. Note that
you will need a loop to read the data from the input file until EOF is
reached.

Below is the information that has been gathered for the input file. Create
a python program to calculate the total cost of the system and send the
answer to an output file.

Receiver

310

Flat Screen TV

959

Center Speaker

109

Side Speakers

289

Rear Speakers

199

HDMI cable for DVD to TV

39

Cables for speaker

26

DVD

34.99

4. Create a Python program which asks the user for a number. Then the

program determines whether that number is even or odd. This program
should continue to ask the user for input until the user enters a zero. Send
the numbers and your findings to an output file.

181

User input from the keyboard:
 5

10
17
0

outputFile.txt

 5 is an odd number.

10 is an even number.
17 is an odd number.

5. In order to organize your monthly bills, you want to create a file listing

all of your July expenses with the amount due for the month. Below is
the information entered by the user via the keyboard that will need to end
up in the output file along with the total amount spent for the month.

Gas

22.10

Electric

69.31

GrocWk1

52.12

GrocWk2

48.61

GrocWk3

60.92

GrocWk4

54.74

Water&Sewer

15.19

6. Looking over your personal library, you want a record of all the books

you own. You want to create a file with at least five books titles and
author and another file that can read your collection and print it in a table
using the tab character, ‘\t’, as needed. Make sure you print titles for
your table to include the Author and Title columns.

7. You are helping your local environmental group keep track of their
expenses for the year to create a file using Notepad with the information
below and another file to print the total cost for the club for the year.

182

Below you will find the information containing the yearly costs accrued
by the club. Create a file with this information and print the total cost for
the year to the screen with the comment before “Total Yearly Club Cost:”
followed with the cost.

Arbor day trees

83.48

Awareness Flyers

34.99

Roadside Clean-up supplies

12.51

Reseeding Wildflower Area

36.22

Toxic chemical Reclamation Supplies

43.33

Elementary Awareness Supplies

14.31

8. Create a Python program to store a class of students with their associated
grade information in a file called classGrades.txt. Ask the user for the
name of the students and for each students homework and exam grades.
Note that you will need the user to state how many students are in the
class, how many homework grades each student will have and how many
exam grades each student will have. Note that each student will have the
same number of homework and exam grades.

Self-Check Solutions

12.1

Pseudocode:

Start

 open data.txt

 read name

 read grade[0], grade[1], grade[2]

 close data.txt

 # Printing result to screen

 print “Name: ” + name

 average = (grade[0]+ grade[1] + grade[2])/3.0

 print “Average= ” + average

Stop

183

184

Python:

Input File (data.txt)

Corresponding output:

grade = []

inFile=open("someFile.txt",'r')

name = inFile.readline()

score1=inFile.readline()

grade.append(int(score1))

score2=inFile.readline()

grade.append(int(score2))

score3=inFile.readline()

grade.append(int(score3))

inFile.close()

average = (grade[0]+grade[1]+grade[2])/3.0

print ("Name = " + name)

print ("Score1 = ", grade[0])

print ("Score2 = ", grade[1])

print ("Score3 = ", grade[2])

print ("average = ", average)

Name = “John Doe”

Score1 = 70

Score2 = 90

Score3 = 85

Average = 81.6666666667

John Doe

70

90
85

185

Appendix A: Installing Python

Python is a wonderful language to use for a first programming language. In
teaching introduction to programming classes, we have found that students
greatly enjoy applying the skills they learn to a real application, like Python.

There are many programming languages available to you, but we have found
that the beginning programmer can use Python to accomplish tasks that other
languages make more challenging; such as reading and writing values to the
console window. Also, unlike other languages, Python does not require you
to understand, or ignore, advanced concepts before you can write your first
line of code.

Since Python is a free language, there are many free materials for you to use
available on the Internet. An Internet search will come up with many hits for
Python resources. Some great resources include

1. Python is available free online from http://www.python.org/downloads
Just follow the instructions given.

2. Think Python: an Introduction to Software Design by Allen B. Downey is
a free book under the GNU License found at:
http://www.greenteapress.com/thinkpython/ which will delve deeper into
the mysteries of Python.

The following figure shows the Python shell that you will see when you first
start Python.

186

If you select “File” and then “New” in the Python Shell, you can enter a
Python program in the window

Once you have entered a Python program, program
selecting “Run” and then “Run Module”.
your file before the code is executed. You can save your program file at any
time by selecting “File” and
documentation on the website for more details.

and then “New” in the Python Shell, you can enter a
Python program in the window shown below.

Once you have entered a Python program, program file can be executed
selecting “Run” and then “Run Module”. You should be prompted to save
your file before the code is executed. You can save your program file at any
time by selecting “File” and then “Save”. Please see the Python
documentation on the website for more details.

and then “New” in the Python Shell, you can enter a

file can be executed by
You should be prompted to save

your file before the code is executed. You can save your program file at any
lease see the Python

187

References

We have included books that we have found helpful in creating our courses over the
years and broken them down by area.

Programming Logic:
Starting out with Programming Logic and Design by Tony Gaddis, Addison Wesley, first
edition, 2008.

Language Specific:
An Introduction to Programming with C++ by Diane Zak, Thompson Course
Technology, fifth edition, 2005.

There are always new books being added to the Internet. For more resources, please
search for “Python book” online.

188

Index

A

accuracy, 11

addition, 12

algorithm, 3

AND, 50

append, 176

array, 145

arrow, 21

ASCII, 8

B

binary, 15

bit, 47

Boolean, 47

break, 73

bug, 3

built-in function, 133

C

call-by-reference, 131

call-by-value, 131

camel notation, 34

case statement, 72

casting, 16

character, 7

close, 162

code tracing, 87

computer, 3

condition, 84

constant, 36

D

data, 7

data type, 7

debugging, 3

decrement, 84

dependent, 23

Do-While, 102

E

Else, 56

EndIf, 56

ending condition, 86

EOF, 162

exponent, 16

exponentiation, 16

F

fall-through, 73

False, 47

falseChoice, 57

floating-point, 11

flowchart, 20

for loop, 96

function, 130

G

get, 21, 34

goal, 1

Guido von Rossum, 21

I

If, 56

increment, 84

index, 146

infinite loop, 84

infinite loops, 105

initialization, 84

inner loop, 114

input, 1, 34

input file, 163

integer, 11

integer division, 13

L

logical operator, 49

M

modulus, 14

multiple-alternative selection structure, 68

N

negation, 15

nest, 68

nested If-Then-Else, 75

nested loop, 113

NOT, 49

O

objective, 1

open, 162

operand, 12

operator, 12

OR, 50

189

outer loop, 114

output, 34

output file, 163

oval, 21

P

parallelogram, 21

parameter, 131

print, 21, 34

program, 3

programmer, 3

programming language, 3

pseudocode, 20

Python, 4, 21

R

read, 162

rectangle, 21

relational operators, 47

S

scripts, 130

sentinel, 101

sequence control structure, 20

sequential, 20

Start, 20

Stop, 20

string, 10

subtraction, 12

syntax, 3

T

task, 1

Then, 56

True, 47

trueChoice, 57

truncated, 13

truth table, 49

U

unary, 15

user-defined function, 133

V

variable, 22, 52

void functions, 137

W

while, 84

