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Preface

This handbook aims to provide a comprehensive coverage of algorithms and theoretical computer
science for computer scientists, engineers, and other professionals in related scientific and engi-
neering disciplines. Its focus is to provide a compendium of fundamental topics and techniques for
professionals, including practicing engineers, students, and researchers. The handbook is organized
along the main subject areas of the discipline, and also contains chapters from application areas that
illustrate how the fundamental concepts and techniques come together to provide efficient solutions
to important practical problems.

Thecontents of each chapter were chosen in such a manner as to help the computer professional
and the engineer in finding significant information on a topic of his or her interest. While the reader
may not find all the specialized topics in a given chapter, nor will the coverage of each topic be
exhaustive, the reader should be able to find sufficient information for initial inquiries and a number
of references to the current in-depth literature. In addition to defining terminology and presenting
the basic results and techniques for their respective topics, the chapters also provide a glimpse of the
major research issues concerning the relevant topics.

Compared to the first edition, this edition contains 21 new chapters, and therefore provides a
significantly broader coverage of the field and its application areas. This, together with the updating
and revision of many of the chapters from the first edition, has made it necessary to move into a
two-volume format.

It is a pleasure to extend our thanks to the people and organizations who made this handbook
possible. First and foremost the chapter authors, whose dedication and expertise are at the core of
this handbook; the universities and research laboratories with which the authors are affiliated for
providing the computing and communication facilities and the intellectual environment for this
project; Randi Cohen and her colleagues at Taylor & Francis for perfect organization and logistics
that spared us the tedious aspects of such a project and enabled us to focus on its scholarly side; and,
last but not least, our spouses and families, who provided moral support and encouragement.

Mikhail Atallah
Marina Blanton
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Computational Geometry I

D.T. Lee
Academia Sinica
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1.1 Introduction

Computational geometry, since its inception [66] in 1975,has received a great deal of attention
from researchers in the area of design and analysis of algorithms. It has evolved into a discipline
of its own. It is concerned with the computational complexity of geometric problems that arise in
various disciplines such as pattern recognition, computer graphics, geographical information system,
computer vision, CAD/CAM, robotics, VLSI layout, operations research, and statistics. In contrast
with the classical approach to proving mathematical theorems about geometry-related problems,
this discipline emphasizes the computational aspect of these problems and attempts to exploit
the underlying geometric properties possible, e.g., the metric space, to derive efficient algorithmic
solutions.

An objective of this discipline in the theoretical context is to study the computational complex-
ity (giving lower bounds) of geometric problems, and to devise efficient algorithms (giving upper
bounds) whose complexity preferably matches the lower bounds. That is, not only are we interested
in the intrinsic difficulty of geometric computational problems under a certain computation model,
but we are also concerned with the algorithmic solutions that are efficient or provably optimal in the
worst or average case. In this regard, the asymptotic time (or space) complexity of an algorithm,
i.e., the behavior of an algorithm, as the input size approaches infinity, is of interest. Due to its
applications to various science and engineering related disciplines, researchers in this field have
begun to address the efficacy of the algorithms, the issues concerning robustness and numerical sta-
bility [33,82], and the actual running times of their implementations. In order to value and get better
understanding of the geometric algorithms in action, a computational problem solving environment

1-1
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has been developed at the Institute of Information Science and the Research Center for Information
Technology Innovation, Academia Sinica, Taiwan. Actual implementations of several geomet-
ric algorithms have been incorporated into a Java-based algorithm visualization and debugging
software system, dubbed GeoBuilder (http://webcollab.iis.sinica.edu.tw/Components/GeoBuilder/),
which supports remote compilation, visualization of intermediate execution results, and other run-
time features, e.g., visual debugging, etc. This system facilitates geometric algorithmic researchers
in testing their ideas and demonstrating their findings in computational geometry. GeoBuilder sys-
tem is embedded into a knowledge portal [51], called OpenCPS (Open Computational Problem
Solving), (http://www.opencps.org/) and possesses three important features. First, it is a platform-
independent software system based on Java’s promise of portability, and can be invoked by Sun’s
Java Web Start technology in any browser-enabled environment. Second, it has the collabora-
tion capability for multiple users to concurrently develop programs, manipulate geometric objects,
and control the camera. Finally, its three-dimensional (3D) geometric drawing bean provides an
optional function that can automatically position the camera to track 3D objects during algo-
rithm visualization [79]. GeoBuilder develops its rich client platform based on Eclipse RCP and
has already built in certain functionalities such as remote addition, deletion, and saving of files as
well as remote compiling, and execution of LEDA C/C++ programs, etc., based on a multipage
editor. Other notable geometric software projects include, among others, CGAL (http://www.cgal.
org/) [32] and LEDA (http://www.algorithmic-solutions.com/leda/about/index.htm.) [60].

In this and the following chapter (Chapter 2) we concentrate mostly on the theoretical development
of this field in the context of sequential computation, and discuss a number of typical topics and the
algorithmic approaches. We will adopt the real RAM (random access machine) model of computation
in which all arithmetic operations, comparisons, kth root, exponential, or logarithmic functions take
unit time.

1.2 Convex Hull

The convex hull of a set of points in �k is the most fundamental problem in computational geometry.
Given is a set of points in �k, and we are interested in computing its convex hull, which is defined
to be the smallest convex set containing these points. There are two ways to represent a convex hull.
An implicit representation is to list all the extreme points, whereas an explicit representation is to
list all the extreme d-faces of dimensions d = 0, 1, . . . , k − 1. Thus, the complexity of any convex
hull algorithm would have two parts, computation part and the output part. An algorithm is said to
be output-sensitive if its complexity depends on the size of the output.

1.2.1 Convex Hulls in Two and Three Dimensions

For an arbitrary set of n points in two and three dimensions, we can compute its convex hull using the
Graham scan, gift-wrapping method, or divide-and-conquer paradigm, which are briefly described
below.

Note that the convex hull of an arbitrary set S of points in two dimensions is a convex polygon.
We’ll describe algorithms that compute the upper hull of S, since the convex hull is just the union
of the upper and lower hulls. Let v0 denote the point with minimum x-coordinate; if there are more
than one, pick the one with the maximum y-coordinate. Let vn−1 be similarly defined except that
it denotes the point with the maximum x-coordinate. In two dimensions, the upper hull consists
of two vertical lines passing through v0 and vn−1, respectively and a sequence of edges, known as a
polygonal chain, C = {vji−1 , vji | i = 1, 2, . . . , k}, where vj0 = v0 and vjk = vn−1, such that the entire
set S of points lies on one side of or below the lines Li containing each edge vji−1 , vji . See Figure 1.1a
for an illustration of the upper hull. The lower hull is similarly defined.
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(a)
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(b)

Pb

Pc
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FIGURE 1.1 The upper hull of a set of points (a) and illustration of the Graham scan (b).

The Graham scan computes the convex hull by (1) sorting the input set of points in ascending
order of their x-coordinates (in case of ties, in ascending order of their y-coordinates), (2) connecting
these points into a polygonal chain P stored as a doubly linked list L, and (3) performing a linear
scan to compute the upper hull of the polygon [66].

The triple (vi, vj, vk) of points is said to form a right turn if and only if the determinant∣∣∣∣∣∣
xi yi 1
xj yj 1
xk yk 1

∣∣∣∣∣∣ < 0,

where (xi, yi) are the x- and y-coordinates of vi. If the determinant is positive, then the triple (vi, vj, vk)
of points is said to form a left turn. The points vi, vj, and vk are collinear if the determinant is zero.
This is also known as the side test, determining on which side of the line defined by points vi and vj
the point vk lies.

It is obvious that when we scan points in L in ascending order of x-coordinate, the middle point
of a triple (vi, vj, vk) that does not form a right turn is not on the upper hull and can be deleted. The
following is the algorithm.

ALGORITHM GRAHAM_SCAN

Input: A set S of points sorted in lexicographically ascending order of their (x, y)-coordinate
values.

Output: A sorted list L of points in ascending x-coordinates.

begin
if (|S| == 2) return (v0, vn−1);
i = 0; vn−1 =next(vn−1); /* set sentinel */
pa = v0; pb =next(pa), pc =next(pb);
while (pb �= vn−1) do

if (pa, pb, pc) forms a right turn
then begin /* advance */

pa = pb; pb = pc;
pc = next(pb);

end
else begin /* backtrack */

delete pb;



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C001 Finals Page 4 2009-10-19

1-4 Special Topics and Techniques

if (pa �= v0)
then pa = prev(pa);
pb = next(pa); pc = next(pb);

end
pt =next(v0);
L = {v0, pt};
while (pt �= vn−1) do

begin
pu =next(pt);
L = L ∪ {pt , pu};
pt = pu;

end;
return (L);

end.

Step (i) being the dominating step, ALGORITHM GRAHAM_SCAN, takes O(n log n) time. Figure 1.1b
shows the initial list L and vertices not on the upper hull are removed from L. For example, pb is
removed since (pa, pb, pc) forms a left turn; pc is removed since (pa, pc, pd) forms a left turn; pd, and
pe are removed for the same reason.

One can also use the gift-wrapping technique to compute the upper hull. Starting with a vertex that
is known to be on the upper hull, say the point v0 = vi0 . We sweep clockwise the half-line emanating
from v0 in the direction of the positive y-axis. The first point vi1 this half-line hits will be the next
point on the upper hull. We then march to vi1 , repeat the same process by sweeping clockwise the
half-line emanating from vi1 in the direction from vi0 to vi1 , and find the next vertex vi2 . This process
terminates when we reach vn−1. This is similar to wrapping an object with a rope. Finding the next
vertex takes time proportional to the number of points not yet known to be on the upper hull.
Thus, the total time spent is O(nH), where H denotes the number of points on the upper hull. The
gift-wrapping algorithm is output-sensitive, and is more efficient than the ALGORITHM GRAHAM_SCAN

if the number of points on the upper hull is small, i.e., O(log n).
One can also compute the upper hull recursively by divide-and-conquer. This method is more

amenable to parallelization. The divide-and-conquer paradigm consists of the following steps.

ALGORITHM UPPER_HULL_D&C (2d-Point S)

Input: A set S of points.
Output: A sorted list L of points in ascending x-coordinates.

1. If |S| ≤ 3, compute the upper hull UH(S) explicitly and return (UH(S)).
2. Divide S by a vertical line L into two approximately equal subsets Sl and Sr such that

Sl and Sr lie, respectively, to the left and to the right of L.
3. UH(Sl) = Upper_Hull_D&C(Sl).
4. UH(Sr) = Upper_Hull_D&C(Sr).
5. UH(S) = Merge(UH(Sl), UH(Sr)).
6. return (UH(S)).

The key step is the Merge of two upper hulls, each of which is the solution to a subproblem derived
from the recursive step. These two upper hulls are separated by a vertical line L. The Merge step
basically calls for computation of a common tangent, called bridge over line L, of these two upper
hulls (Figure 1.2).

The computation of the bridge begins with a segment connecting the rightmost point l of the left
upper hull to the leftmost point r of the right upper hull, resulting in a sorted list L. Using the Graham
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vn–1

FIGURE 1.2 The bridge p, q over the vertical line L.

scan one can obtain in linear time the two endpoints of the bridge, (p, q shown in Figure 1.2), such
that the entire set of points lies on one side of the line, called supporting line, containing the bridge.
The running time of the divide-and-conquer algorithm is easily shown to be O(n log n) since the
Merge step can be done in O(n) time.

A more sophisticated output-sensitive and optimal algorithm which runs in O(n logH) time
has been developed by Kirkpatrick and Seidel [48]. It is based on a variation of the divide-and-
conquer paradigm, called divide-and-marriage-before-conquest method. It has been shown to be
asymptotically optimal; a lower bound proof of Ω(n logH) can be found in [48]. The main idea
in achieving the optimal result is that of eliminating redundant computations. Observe that in the
divide-and-conquer approach after the bridge is obtained, some vertices belonging to the left and
right upper hulls that are below the bridge are deleted. Had we known that these vertices are not on
the final hull, we could have saved time without computing them. Kirkpatrick and Seidel capitalized
on this concept and introduced the marriage-before-conquest principle putting Merge step before
the two recursive calls.

The divide-and-conquer scheme can be easily generalized to three dimensions. The Merge step
in this case calls for computing common supporting faces that wrap two recursively computed
convex polyhedra. It is observed by Preparata and Shamos [66] that the common supporting faces
are computed from connecting two cyclic sequences of edges, one on each polyhedron (Figure 1.3).
See [3] for a characterization of the two cycles of seam edges. The computation of these supporting

Common supporting
faces

FIGURE 1.3 Common supporting faces of two disjoint convex polyhedra.
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faces can be accomplished in linear time, giving rise to an O(n log n) time algorithm. By applying the
marriage-before-conquest principle Edelsbrunner and Shi [28] obtained an O(n log2 H) algorithm.

The gift-wrapping approach for computing the convex hull in three dimensions would mimic
the process of wrapping a gift with a piece of paper. One starts with a plane supporting S, i.e.,
a plane determined by three points of S such that the entire set of points lie on one side. In general,
the supporting face is a triangle Δ(a, b, c). Pivoting at an edge, say (a, b) of this triangle, one rotates
the plane in space until it hits a third point v, thereby determining another supporting face Δ(a, b, v).
This process repeats until the entire set of points are wrapped by a collection of supporting faces.
These supporting faces are called 2-faces, the edges common to two supporting faces, 1-faces, and
the vertices (or extreme points) common to 2-faces and 1-faces are called 0-faces. The gift-wrapping
method has a running time of O(nH), where H is the total number of i-faces, i = 0, 1, 2.

The following optimal output-sensitive algorithm that runs in O(n logH) time in two and three
dimensions is due to Chan [13]. It is a modification of the gift-wrapping method (also known as the
Jarvis’ March method) and uses a grouping technique.

ALGORITHM 2DHULL (S)

1. For i = 1, 2, . . . do
2. P ← HULL2D (S,H0,H0), where H0 = min{22i

, n}
3. If P �= nil then return P.

FUNCTION HULL2D (S, m,H0)

1. Partition S into subsets S1, S2, . . . , S� n
m �, each of size at most m

2. For i = 1, 2, . . . , � n
m� do

3. Compute CH(Si) and preprocess it in a suitable data structure
4. p0 ← (0, −∞), p1 ← the rightmost point of S
5. For j = 1, 2, . . . ,H0 do
6. For i = 1, 2, . . . , � n

m� do
7. Compute a point qi ∈ Si that maximizes ∩pj−1pjqi

8. pj+1 ← a point q from {q1, . . . , q� n
m �} maximizing ∩pj−1pjq

9. If pj+1 = p1 then return list (p1, . . . , pj)

10. return nil

Let us analyze the complexity of the algorithm. In Step 2, we use an O(m log m) time algo-
rithm for computing the convex hull for each subset of m points, e.g., Graham’s scan for S
in two dimensions, and Preparata–Hong algorithm for S in three dimensions. Thus, it takes
O(( n

m )m log m) = O(n log m) time. In Step 5 we build a suitable data structure that supports
the computation of the supporting vertex or supporting face in logarithmic time. In two dimensions
we can use an array that stores the vertices on the convex hull in say, clockwise order. In three dimen-
sions we use Dobkin–Kirkpatrick hierarchical representation of the faces of the convex hull [24].
Thus, Step 5 takes H0(

n
m )O(log m) time. Setting m = H0 gives an O(n logH0) time. Note that

setting m = 1 we have the Jarvis’ March, and setting m = n the two-dimensional (2D) convex hull
algorithm degenerates to the Graham’s scan. Since we do not know H in advance, we use in Step 2
of ALGORITHM 2DHULL(S) a sequence Hi = 22i

such that H1 + · · · +Hk−1 < H ≤ H1 + · · · +Hk to
guess it. The total running time is

O

( k∑
i=1

n logHi

)
= O

⎛
⎝�log logH�∑

i=1
n2i

⎞
⎠ = O

(
n logH

)
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1.2.2 Convex Hulls in k Dimensions, k > 3

For convex hulls of higher dimensions, Chazelle [16] showed that the convex hull can be computed
in time O(n log n + n�k/2�), which is optimal in all dimensions k ≥ 2 in the worst case. But this
result is insensitive to the output size. The gift-wrapping approach generalizes to higher dimensions
and yields an output-sensitive solution with running time O(nH), where H is the total number of
i-faces, i = 0, 1, . . . , k − 1 and H = O(n�k/2�) [27]. One can also use beneath–beyond method [66]
of adding points one at a time in ascending order along one of the coordinate axis.∗ We compute
the convex hull CH(Si−1) for points Si−1 = {p1, p2, . . . , pi−1}. For each added point pi we update
CH(Si−1) to get CH(Si) for i = 2, 3, . . . , n by deleting those t-faces, t = 0, 1, . . . , k − 1, that are
internal to CH(Si−1 ∪ {pi}). It has been shown by Seidel [27] that O(n2 +H log h) time is sufficient,
where h is the number of extreme points. Later Chan [13] obtained an algorithm based on gift-
wrapping method using the data structures for ray-shooting queries in polytopes developed by
Agarwal and Matoušek [1] and refined by Matoušek and Schwarzkopf [58], that runs in O(n logH+
(nH)1−1/(�k/2�+1) logO(1) n) time. Note that the algorithm is optimal when k = 2, 3. In particular, it
is optimal when H = O(n1/(�k/2�)/ logδ n) for a sufficiently large δ.

We conclude this section with the following theorem [13].

THEOREM 1.1 The convex hull of a set S of n points in �k can be computed in O(n logH) time
for k = 2 or k = 3, and in O(n logH + (nH)1−1/(�k/2�+1) logO(1) n) time for k > 3, where H is the
number of i-faces, i = 0, 1, . . . , k − 1.

1.2.3 Convex Layers of a Planar Set

The convex layers C(S) of a set S of n points in the Euclidean plane is obtained by a process, known
as onion peeling, i.e., compute the convex hull of S and remove its vertices from S, until S becomes
empty. Figure 1.4 shows the convex layer of a point set. This onion peeling process of a point set
is central in the study of robust estimators in statistics, in which the outliers, points lying on the
outermost convex layers, should be removed. In this section we describe an efficient algorithm due
to Chazelle [14] that runs in optimal O(n log n) time.

As described in Section 1.2.1, each convex layer of C(S) can be decomposed into two convex
polygonal chains, called upper and lower hulls (Figure 1.5).

FIGURE 1.4 Convex layers of a point set.

∗ If the points of S are not given a priori, the algorithm can be made on-line by adding an extra step of checking if the
newly added point is internal or external to the current convex hull. If it is internal, just discard it.



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C001 Finals Page 8 2009-10-19

1-8 Special Topics and Techniques

FIGURE 1.5 Decomposition of each convex layer into upper and lower hulls.
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FIGURE 1.6 The hull graph of upper hull (a) and a complete binary tree representation (b).

Let l and r denote the points with the minimum and maximum x-coordinate, respectively,
in a convex layer. The upper (respectively, lower) hull of this layer runs clockwise (respectively,
counterclockwise) from l to r. The upper and lower hulls are the same if the convex layer has one
or two points. Assume that the set S of points p0, p1, . . . , pn−1 are ordered in nondescending order
of their x-coordinates. We shall concentrate on the computation of upper hulls of C(S); the other
case is symmetric. Consider the complete binary tree T (S) with leaves p0, p1, . . . , pn−1 from left to
right. Let S(v) denote the set of points stored at the leaves of the subtree rooted at node v of T and
let U(v) denote its upper hull of the convex hull of S(v). Thus, U(ρ), where ρ denotes the root of T ,
is the upper hull of the convex hull of S in the outermost layer. The union of all the upper hulls U(v)
for all nodes v is a tree, called hull graph [14]. (A similar graph is also computed for the lower hull
of the convex hull.) To minimize the amount of space, at each internal node v we store the bridge
(common tangent) connecting a point in U(vl) and a point in U(vr), where vl and vr are the left
and right children of node v, respectively. Figure 1.6a and b illustrates the binary tree T and the
corresponding hull graph, respectively.

Computation of the hull graph proceeds from bottom up. Computing the bridge at each node takes
time linear in the number of vertices on the respective upper hulls in the left and right subtrees. Thus,
the total time needed to compute the hull graph is O(n log n). The bridges computed at each node v
which are incident upon a vertex pk are naturally separated into two subsets divided by the vertical
line L(pk) passing through pk. Those on the left are arranged in a list L(pk) in counterclockwise
order from the positive y direction of L(pk), and those on the right are arranged in a list R(pk) in
clockwise order. This adjacency list at each vertex in the hull graph can be maintained fairly easily.
Suppose the bridge at node v connects vertex pj in the left subtree and vertex pk in the right subtree.
The edge pj, pk will be inserted at the first position in the current lists R(pj) and L(pk). That is, edge



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C001 Finals Page 9 2009-10-19

Computational Geometry I 1-9

pj, pk is the top edge in both lists R(pj) and L(pk). It is easy to retrieve the vertices on the upper hull
of the outermost layer from the hull graph beginning at the root node of T .

To compute the upper hull of the next convex layer, one needs to remove those vertices on the first
layer (including those vertices in the lower hull). Thus, update of the hull graph includes deletion of
vertices on both upper hull and lower hull. Deletions of vertices on the upper hull can be performed
in an arbitrary order. But if deletions of vertices on the lower hull from the hull graph are done in
say clockwise order, then the update of the adjacency list of each vertex pk can be made easy, e.g.,
R(pk) = ∅. The deletion of a vertex pk on the upper hull entails removal of edges incident on pk in the
hull graph. Let v1, v2, . . . , vl be the list of internal nodes on the leaf-to-root path from pk. The edges
in L(pk) and R(pk) are deleted from bottom up in O(1) time each, i.e., the top edge in each list gets
deleted last. Figure 1.6b shows the leaf-to-root path when vertex p20 is deleted. Figure 1.7a–f shows
the updates of bridges when p20 is deleted and Figure 1.7g is the final upper hull after the update is
finished. It can be shown that the overall time for deletions can be done in O(n log n) time [14].

THEOREM 1.2 The convex layers of a set of n points in the plane can be computed in O(n log n)

time.

Nielsen [64] considered the problem of computing the first k layers of convex hull of a planar
point set S that arises in statistics and pattern recognition, and gave an O(n logHk) time algorithm,
where Hk denotes the number of points on the first k layers of convex hull of S, using the grouping
scheme of Chan [13].

1.2.4 Applications of Convex Hulls

Convex hulls have applications in clustering, linear regression, and Voronoi diagrams (see Chapter 2).
The following problems have solutions derived from the convex hull.

Problem C1 (Set Diameter) Given a set S of n points, find the two points that are the farthest
apart, i.e., find pi, pj ∈ S such that d(pi, pj) = max{d(pk, pl)} ∀pk, pl ∈ S, where d(p, q) denotes the
Euclidean distance between p and q.

In two dimensions O(n log n) time is both sufficient and necessary in the worst case [66]. It is
easy to see that the farthest pair must be extreme points of the convex hull of S. Once the convex
hull is computed, the farthest pair in two dimensions can be found in linear time by observing that
it admits a pair of parallel supporting lines. Various attempts, including geometric sampling and
parametric search method, have been made to solve this problem in three dimensions. See e.g., [59].

Clarkson and Shor [20] gave a randomized algorithm with an optimal expected O(n log n) time.
Later Ramos [67] gave an optimal deterministic algorithm, based on a simplification of the ran-
domization scheme of Clarkson and Shor [20], and derandomization making use of the efficient
construction of ε-nets by Matoušek [57].

Problem C2 (Smallest enclosing rectangle) Given a set S of n points, find the smallest rectangle that
encloses the set.

Problem C3 (Regression line) Given a set S of n points, find a line such that the maximum distance
from S to the line is minimized.

These two problems can be solved in optimal time O(n log n) using the convex hull of S [54] in
two dimensions. In k dimensions Houle et al. [43] gave an O(n�k/2+1�) time and O(n�(k+1)/2�) space
algorithm. The time complexity is essentially that of computing the convex hull of the point set.
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FIGURE 1.7 Update of hull graph.

1.3 Maxima Finding

In this section we discuss a problem concerned with the extremes of a point set which is somewhat
related to that of convex hull problems. Consider a set S of n points in �k in the Cartesian coordinate
system. Let (x1(p), x2(p), . . . , xk(p)) denote the coordinates of point p ∈ �k. Point p is said to
dominate point q, denoted p � q, (or q is dominated by p, denoted q � p) if xi(p) ≥ xi(q) for
all 1 ≤ i ≤ k. A point p is said to be maximal (or a maximum) in S if no point in S dominates
p. The maxima-finding problem is that of finding the set M(S) of maximal elements for a set S of
points in �k.
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1.3.1 Maxima in Two and Three Dimensions

In two dimensions the problem can be done fairly easily by a plane-sweep technique. (For a more
detailed description of plane-sweep technique, see, e.g., [50] or Section 1.5.1) Assume that the set
S of points p1, p2, . . . , pn are ordered in nondescending order of their x-coordinates, i.e., x(p1) ≤
x(p2) ≤ · · · ≤ x(pn).

We shall scan the points from right to left. The point pn is necessarily a maximal element. As we
scan the points, we maintain the maximum y-coordinate among those that have been scanned so
far. Initially, maxy = y(pn). The next point pi is a maximal element if and only if y(pi) > maxy.
If y(pi) > maxy, then pi ∈ M(S), and maxy is set to y(pi), and we continue. Otherwise pi � pj for
some j > i. Thus, after the initial sorting, the set of maxima can be computed in linear time. Note
that the set of maximal elements satisfies the property that their x- and y-coordinates are totally
ordered: If they are ordered in strictly ascending x-coordinate, their y-coordinates are ordered in
strictly descending order.

In three dimensions we can use the same strategy. We will scan the set in descending order of
the x-coordinate by a plane P orthogonal to the x-axis. Point pn as before is a maximal element.
Suppose we have computed M(Si+1), where Si+1 = {pi+1, . . . , pn}, and we are scanning point pi.
Consider the orthogonal projection Sx

i+1 of the points in Si+1 to P with x = x(pi). We now have an

Y

Z

Pi

FIGURE 1.8 Update of max-
imal elements.

instance of an on-line 2D maximal problem, i.e., for point pi, if px
i � px

j
for some px

j ∈ Sx
i+1, then it is not a maximal element, otherwise it is

(px
i denotes the projection of pi onto P). If we maintain the points

in M(Sx
i+1) as a height-balanced binary search tree in either y- or

z-coordinate, then testing whether pi is maximal or not can be done
in logarithmic time. If it is dominated by some point in M(Sx

i+1),
then it is ignored. Otherwise, it is in M(Sx

i+1) (and also in M(Si+1));
M(Sx

i+1) will then be updated to be M(Sx
i ) accordingly. The update

may involve deleting points in M(Sx
i+1) that are no longer maximal

because they are dominated by px
i . Figure 1.8 shows the effect of adding

a maximal element px
i to the set M(Sx

i+1) of maximal elements. Points
in the shaded area will be deleted. Thus, after the initial sorting, the set
of maxima in three dimensions can be computed in O(n logH) time,
as the on-line 2D maximal problem takes O(logH) time to maintain M(Sx

i ) for each point pi, where
H denotes the size of M(S).

Since the total number of points deleted is at most n, we conclude the following.

LEMMA 1.1 Given a set of n points in two and three dimensions, the set of maxima can be
computed in O(n log n) time.

For two and three dimensions one can solve the problem in optimal time O(n logH), where H
denotes the size of M(S). The key observation is that we need not sort S in its entirety. For instance,
in two dimensions one can solve the problem by divide-and-marriage-before-conquest paradigm.
We first use a linear time median finding algorithm to divide the set into two halves L and R with
points in R having larger x-coordinate values than those of points in L. We then recursively compute
M(R). Before we recursively computeM(L) we note that points in L that are dominated by points in
M(R) can be eliminated from consideration. We trim L before we invoke the algorithm recursively.
That is, we compute M(L′) recursively, where L′ ⊆ L consists of points q �� p for all p ∈ M(R). A
careful analysis of the running time shows that the complexity of this algorithm is O(n logH). For
three dimensions we note that other than the initial sorting step, the subsequent plane-sweep step
takes O(n logH) time. It turns out that one can replace the full-fledged O(n log n) sorting step with
a so-called lazy sorting of S using a technique similar to those described in Section 1.2.1 to derive an
output-sensitive algorithm.
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THEOREM 1.3 Given a set S of n points in two and three dimensions, the set M(S) of maxima can
be computed in O(n logH) time, where H is the size of M(S).

1.3.2 Maxima in Higher Dimensions

The set of maximal elements in �k, k ≥ 4, can be solved by a generalization of plane-sweep
method to higher dimensions. We just need to maintain a data structure for M(Si+1), where
Si+1 = {pi+1, . . . , pn}, and test for each point pi if it is a maximal element in Si+1, reducing the
problem to one dimension lower, assuming that the points in S are sorted and scanned in descending
lexicographical order. Thus, in a straightforward manner we can compute M(S) in O(nk−2 log n)

time. However, we shall show below that one can compute the set of maxima in O(n logk−2 n) time,
for k > 3 by, divide-and-conquer. Gabow et al. [36] gave an algorithm which improved the time by
a O

(
log n

log log n

)
factor to O(n log log n logk−3 n).

Let us first consider a bichromatic maxima-finding problem. Consider a set of n red and a set
of m blue points, denoted R and B, respectively. The bichromatic maxima-finding problem is to
find a subset of points in R that are not dominated by any points in B and vice versa. That is, find
M(R, B) = {r|r �� b, b ∈ B} and M(B, R) = {b|b �� r, r ∈ R}.

In three dimensions, this problem can be solved by plane-sweep method in a manner similar to
the maxima-finding problem as follows. As before, the sets R and B are sorted in nondescending
order of x-coordinates and we maintain two subsets of points M

(
Rx

i+1
)

and M
(

Bx
j+1

)
, which are

the maxima of the projections of Ri+1 and Bj+1 onto the yz-plane for Ri+1 = {ri+1, . . . , rn} ⊆ R
and Bj+1 = {bj+1, . . . , bm} ⊆ B, respectively. When the next point ri ∈ R is scanned, we test if rx

i

is dominated by any points in M
(

Bx
j+1

)
. The point ri ∈ M(R, B), if rx

i is not dominated by any

points in M
(

Bx
j+1

)
. We then update the set of maxima for Rx

i = Rx
i+1 ∪ {rx

i }. That is, if rx
i � q

for q ∈ M
(
Rx

i+1
)
, then M

(
Rx

i
) = M

(
Rx

i+1
)
. Otherwise, the subset of M

(
Rx

i+1
)

dominated by rx
i

is removed, and rx
i is included in M

(
Rx

i
)
. If the next point scanned is bj ∈ B, we perform similar

operations. Thus, for each point scanned we spend O(log n + log m) time.

LEMMA 1.2 The bichromatic maxima-finding problem for a set of n red and m blue points in
three dimensions can be solved in O(N log N) time, where N = m + n.

Using Lemma 1.2 as basis, one can solve the bichromatic maxima-finding problem in �k in
O(N logk−2 N) time for k ≥ 3 using multidimensional divide-and-conquer.

LEMMA 1.3 The bichromatic maxima-finding problem for a set of n red and m blue points in �k

can be solved in O(N logk−2 N) time, where N = m + n, and k ≥ 3.

Let us now turn to the maxima-finding problem in �k. We shall use an ordinary divide-
and-conquer method to solve the maxima-finding problem. Assume that the points in S ⊆ �k

have been sorted in all dimensions. Let Lx denote the median of all the x-coordinate values.
We first divide S into two subsets S1 and S2, each of size approximately |S|/2 such that the points in
S1 have x-coordinates larger than Lx and those of points in S2 are less than Lx. We then recursively
compute M(S1) and M(S2). It is clear that M(S1) ⊆ M(S). However, some points in M(S2) may
be dominated by points in M(S1), and hence, are not in M(S). We then project points in S onto
the hyperplane P : x = Lx. The problem now reduces to the bichromatic maxima-finding problem
in �k−1, i.e., finding among M(S2) those that are maxima with respect to M(S1). By Lemma 1.3 we
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know that this bichromatic maxima-finding problem can be solved in O(n logk−3 n) time. Since the
merge step takes O(n logk−3 n) time, we conclude the following.

THEOREM 1.4 The maxima-finding problem for a set of n points in�k can be solved in O(n logk−2 n)

time, for k ≥ 3.

We note here also that if we apply the trimming operation of S2 with M(S1), i.e., removing
points in S2 that are dominated by points in M(S1), before recursion, one can compute M(S) more
efficiently as stated in the following theorem.

THEOREM 1.5 The maxima-finding problem for a set S of n points in �k, k ≥ 4, can be solved in
O(n logk−2 H) time, where H is the number of maxima in S.

1.3.3 Maximal Layers of a Planar Set

The maximal layers of a set of points in the plane can be obtained by a process similar to that of
convex layers discussed in Section 1.2.3. A brute-force method would yield an O(δ · n logH) time,
where δ is the number of layers and H is the maximum number of maximal elements in any layer.
In this section we shall present an algorithm due to Atallah and Kosaraju [7] for computing not only
the maximal layers, but also some other functions associated with dominance relation.

Consider a set S of n points. As in the previous section, let DS(p) denote the set of points in S
dominated by p, i.e., DS(p) = {q ∈ S|q � p}. Since p is always dominated by itself, we shall assume
DS(p) does not include p, when p ∈ S. The first subproblem we consider is the maxdominance
problem, which is defined as follows: for each p ∈ S, find M(DS(p)). That is, for each p ∈ S we are
interested in computing the set of maximal elements among those points that are dominated by p.
Another related problem is to compute the labels of each point p from the labels of those points in
M(DS(p)). More specifically, suppose each point is associated with a weight w(p). The label lS(p) is
defined to be w(p) if DS(p) = ∅ and is w(p) + max{lS(q), q ∈ M(DS(p))}. The max function can be
replaced with min or any other associative functional operation. In other words, lS(p) is equal to the
maximum among the labels of all the points dominated by p. Suppose we let w(p) = 1 for all p ∈ S.
Then those points with labels equal to 1 are points that do not dominate any points. These points can
be thought of as minimal points in S. That a point pi has label λ implies there exists a sequence of λ

points pj1 , pj2 , . . . , pjλ = pi, such that pj1 � pj2 � · · · � pjλ = pi. In general, points with label λ are
on the λth minimal layer and the maximum label gives the number of minimal layers. If we modify
the definition of domination to be p dominates q if and only if x(p) ≤ x(q) and y(p) ≤ y(q), then the
minimal layers obtained using the method to be described below correspond to the maximal layers.

Let us now discuss the labeling problem defined earlier. We recall a few terms as used in [7].∗
Let L and R denote two subsets of points of S separated by a vertical line, such that x(l) ≤ x(r)

for all l ∈ L and r ∈ R. leaderR(p), p ∈ R is the point Hp in DR(p) with the largest y-coordinate.
StripL(p, R), p ∈ R is the subset of points ofDL(p) dominated by p but with y-coordinates greater than
leaderR(p), i.e., StripL(p, R) = {q ∈ DL(p)|y(q) > y(Hp)} for p ∈ R. LeftL(p, R), p ∈ R, is defined to
be the largest lS(q) over all q ∈ StripL(p, R) if StripL(p, R) is nonempty, and −∞ otherwise.

Observe that for each p ∈ RM(DS(p)) is the concatenation ofM(DR(p)) and StripL(p, R). Assume
that the points in S = {p1, p2, . . . , pn} have been sorted as x(p1)< x(p2)< · · · < x(pn). We shall
present a divide-and-conquer algorithm that can be called with R = S and Left∅(p, S) = −∞ for all
p ∈ S to compute lS(p) for all p ∈ S. The correctness of the algorithm hinges on the following lemma.

∗ Some of the notations are slightly modified. In [7] min is used in the label function, instead of max. See [7] for details.
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LEMMA 1.4 For any point p ∈ R, if DS(p) �= ∅, then lS(p) = w(p) + max{LeftL(p, R), max{lS(q),
q ∈ M(DR(p))}}.

ALGORITHM MAXDOM_LABEL(R)

Input: A consecutive sequence of m points of S, i.e., R = {pr , pr+1, . . . , pr+m−1} and for each
p ∈ R, LeftL(p, R), where L = {p1, p2, . . . , pr−1}. Assume a list QR of points of R sorted
by increasing y-coordinate.

Output: The labels lS(q), q ∈ R.

1. If m = 1 then we set lS(pr) to w(pr)+ LeftL(pr , R), if LeftL(pr , R) �= −∞ and to w(pr) if
LeftL(pr , R) = −∞, and return.

2. Partition R by a vertical line V into subsets R1 and R2 such that |R1| = |R2| = m/2 and
R1 is to the left of R2. Extract from QR the lists QR1 and QR2 .

3. Call MAXDOM_LABEL(R1). Since LeftL(p, R1) equals LeftL(p, R), this call will return the
labels for all q ∈ R1 which are the final labels for q ∈ R.

4. Compute LeftR1(p, R2).
5. Compute LeftL∪R1(p, R2), given LeftR1(p, R2) and LeftL(p, R). That is, for each p ∈ R2,

set LeftL∪R1(p, R2) to be max{LeftR1(p, R2), LeftL(p, R)}.
6. Call MAXDOM_LABEL(R2). This will return the labels for all q ∈ R2 which are the final

labels for q ∈ R.

All steps other than Step 4 are self-explanatory. Steps 4 and 5 are needed in order to set up the
correct invariant condition for the second recursive call. The computation of LeftR1(p, R2) and its
complexity is the key to the correctness and time complexity of the algorithm MAXDOM_LABEL(R).
We briefly discuss this problem and show that this step can be done in O(m) time. Since all other
steps take linear time, the overall time complexity is O(m log m).

Consider in general two subsets L and R of points separated by a vertical line V , with L lying to
the left of R and points in L ∪ R are sorted in ascending y-coordinate (Figure 1.9). Suppose we have
computed the labels lL(p), p ∈ L. We compute LeftL(p, R) by using a plane-sweep technique scanning

qStripL (q, R)

r4

r2

r1

r3= leaderR (r4)

v
L R

FIGURE 1.9 Computation of LeftL(p, R).
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points in L ∪ R in ascending y-coordinate. We will maintain for each point r ∈ R StripL(r, R) along
with the highest and rightmost points in the subset, denoted 1stL(r, R) and lastL(r, R), respectively,
and leaderR(r). For each point p ∈ L ∩ StripL(r, R) for some r ∈ R we maintain a label max_l(p),
which is equal to max{lL(q)|q ∈ StripL(r, R) and y(q) < y(p)}.

A stack STR will be used to store leaderR(ri)of ri ∈ R such that any element rt in STR is leaderR(rt+1)
for point rt+1 above rt , and the top element ri of STR is the last scanned point in R. For instance
in Figure 1.9 STR contains r4, r3, r2, and r1 when r4 is scanned. Another stack STL is used to store
StripL(r, R) for a yet-to-be-scanned point r ∈ R. (The staircase above r4 in Figure 1.9 is stored in
STL. The solid staircases indicate StripL(ri, R) for ri, i = 2, 3, 4.)

Let the next point scanned be denoted q. If q ∈ L, we pop off the stack STL all points that are
dominated by q until q′. And we compute max_l(q) to be the larger of lL(q) and max_l(q′). We then
push q onto STL. That is, we update STL to make sure that all the points in STL are maximal.

Suppose q ∈ R. Then StripL(q, R) is initialized to be the entire contents of STL and let 1stL(q, R)

be the top element of STL and lastL(q, R) be the bottom element of STL.
If the top element of STR is equal to leaderR(q), we set LeftL(q, R) to max_l(q′), where q′ is

1stL(q, R), initialize STL to be empty, and continue to scan the next point. Otherwise we need to
pop off the stack STR all points that are not dominated by q, until q′, which is leaderR(q). As shown
in Figure 1.9, ri, i = 4, 3, 2 will be popped off STR when q is scanned. As point ri is popped off
STR, StripL(ri, R) is concatenated with StripL(q, R) to maintain its maximality. That is, the points
in StripL(ri, R) are scanned from 1stL(ri, R) to lastL(ri, R) until a point, if any, αi is encountered
such that x(αi) > x(lastL(q, R)). max_l(q′), q′ = 1stL(q, R), is set to be the larger of max_l(q′) and
max_l(α), and lastL(q, R) is temporarily set to be lastL(ri, R). If no such αi exists, then the entire
StripL(ri, R) is ignored. This process repeats until leaderR(q) of q is on top of STR. At that point, we
would have computed StripL(q, R) and LeftL(q, R) is max_l(q′), where q′ = 1stL(q, R). We initialize
STL to be empty and continue to scan the next point.

It has been shown in [7] that this scanning operation takes linear time (with path compression),
so the overall algorithm takes O(m log m) time.

THEOREM 1.6 Given a set S of n points with weights w(pi), pi ∈ S, i = 1, 2, . . . , n, ALGORITHM

MAXDOM_LABEL(S) returns lS(p) for each point p ∈ S in O(n log n) time.

Now let us briefly describe the algorithm for the maxdominance problem. That is to find for each
p ∈ S, M(DS(p)).

ALGORITHM MAXDOM_LIST(S)

Input: A sorted sequence of n points of S, i.e., S = {p1, p2, . . . , pn}, where x(p1)<

x(p2) < · · · < x(pn).
Output: M(DS(p)) for each p ∈ S and the list QS containing the points of S in ascending

y-coordinates.

1. If n = 1 then we set M(DS(p1)) = ∅ and return.
2. Call ALGORITHM MAXDOM_LIST(L), where L = {p1, p2, . . . , pn/2}. This call returnsM(DS(p))

for each p ∈ L and the list QL.
3. Call ALGORITHM MAXDOM_LIST(R), where R = {pn/2+1, . . . , pn}. This call returnsM(DR(p))

for each p ∈ R and the list QR.
4. Compute for each r ∈ R StripL(r, R) using the algorithm described in Step 4 of ALGORITHM

MAXDOM_LABEL(R).
5. For every r ∈ R compute M(DS(p)) by concatenating StripL(r, R) and M(DR(p)).
6. Merge QL and QR into QS and return.
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Since Steps 4, 5, and 6, excluding the output time, can be done in linear time, we have the
following.

THEOREM 1.7 The maxdominance problem of a set S of n points in the plane can be solved in
O(n log n + F) time, where F = ∑

p∈S |M(DS(p))|.

Note that the problem of computing the layers of maxima in three dimensions can be solved in
O(n log n) time [12].

1.4 Row Maxima Searching in Monotone Matrices

The row maxima-searching problem in a matrix is that given an n × m matrix M of real entries, find
the leftmost maximum entry in each row.

A matrix is said to be monotone, if i1 > i2 implies that j(i1) ≥ j(i2), where j(i) is the index of the
leftmost column containing the maximum in row i. It is totally monotone if all of its submatrices
are monotone.

In fact if every 2 × 2 submatrix M[i, j; k, l] with i < j and k < l is monotone, then the matrix is
totally monotone. Or equivalently if M(i, k) < M(i, l) implies M(j, k) < M(j, l) for any i < j and
k < l, then M is totally monotone.

The algorithm for solving the row maxima-searching problem is due to Aggarwal et al. [2], and
is commonly referred to as the SMAWK algorithm. Specifically the following results were obtained:
O(m log n) time for an n × m monotone matrix, and θ(m) time, m ≥ n, and θ(m(1 + log(n/m)))

time, m < n, if the matrix is totally monotone.
We use as an example the distance matrix between pairs of vertices of a convex n-gon P, represented

as a sequence of vertices p1, p2, . . . , pn in counterclockwise order. For an integer j, let ∗j denote
((j − 1) mod n) + 1. Let M be an n × (2n − 1) matrix defined as follows. If i < j ≤ i + n − 1 then
M[i, j] = d(pi, p∗j), where d(pi, pj) denotes the Euclidean distance between two vertices pi and pj. If
j ≤ i then M[i, j] = j − i, and if j ≥ i + n then M[i, j] = −1. The problem of computing for each
vertex its farthest neighbor is now the same as the row maxima-searching problem.

Consider submatrix M[i, j; k, l], with i < j and k < l, that has only positive entries, i.e., i < j < k <

l < i + n. In this case vertices pi, pj, p∗k, and p∗l are in counterclockwise order around the polygon.
From the triangle inequality we have d(pi, p∗k)+ d(pj, p∗l) ≥ d(pi, p∗l)+ d(pj, p∗k). Thus, M[i, j; k, l]
is monotone. The nonpositive entries ensure that all other 2 × 2 submatrices are monotone. We will
show below that the all farthest neighbor problem for each vertex of a convex n-gon can be solved
in O(n) time.

A straightforward divide-and-conquer algorithm for the row maxima-searching problem in
monotone matrices is as follows.

ALGORITHM MAXIMUM_D&C

1. Find the maximum entry j = j(i), in the ith row, where i = �n
2 �.

2. Recursively solve the row maxima-searching problem for the submatrices M[1, . . . , i − 1;
1, . . . , j] when i, j > 1 and M[i + 1, . . . , n; j, . . . , m] when i < n and j < m.

The time complexity required by the algorithm is given by the recurrence

f (n, m) ≤ m + max
1≤j≤m

(f (�n/2� − 1, j) + f (�n/2�, m − j + 1))

with f (0, m) = f (n, 1) = constant. We have f (n, m) = O(m log n).
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Now let us consider the case when the matrix is totally monotone. We distinguish two cases:
(a) m ≥ n and (b) m < n.

Case (a): Wide matrix m ≥ n.
An entry M[i, j] is bad if j �= j(i), i.e., column j is not a solution to row i. Column j, M[∗, j]
is bad if all M[i, j], 1 ≤ i ≤ n are bad.

LEMMA 1.5 For j1 < j2 if M[r, j1] ≥ M[r, j2], then M[i, j2], 1 ≤ i ≤ r, are bad; otherwise
M[i, j1], r ≤ i ≤ n, are bad.

Consider an n × n matrix C, the index of C is defined to be the largest k such that C[i, j], 1 ≤ i < j,
1 ≤ j ≤ k are bad.

The following algorithm REDUCE reduces in O(m) time a totally monotone m × n matrix M to an
n × n matrix C, a submatrix of M, such that for 1 ≤ i ≤ n it contains column Mj(i). That is, bad
columns of M (which are known not to contain solutions) are eliminated.

ALGORITHM REDUCE(M)

1. C ← M; k ← 1;
2. while C has more than n columns do

case C(k, k) ≥ C(k, k + 1) and k < n: k ← k + 1;
C(k, k) ≥ C(k, k + 1) and k = n: Delete column Ck+1;
C(k, k) < C(k, k + 1): Delete column Ck; if k > 1 then k ← k − 1

end case

3. return(C)

The following algorithm solves the maxima-searching problem in an n×m totally monotone matrix,
where m ≥ n.

ALGORITHM MAX_COMPUTE(M)

1. B ← REDUCE(M);
2. if n = 1 then output the maximum and return;
3. C ← B[2, 4, . . . , 2�n/2�; 1, 2, . . . , n];
4. Call MAX_COMPUTE(C);
5. From the known positions of the maxima in the even rows of B, find the maxima in the

odd rows.

The time complexity of this algorithm is determined by the following recurrence:

f (n, m) ≤ c1n + c2m + f (n/2, n)

with f (0, m) = f (n, 1) = constant. We therefore have f (n, m) = O(m).

Case (b): Narrow matrix m < n.
In this case we decompose the problem into m subproblems each of size �n/m� × m as
follows. Let ri = �in/m�, for 0 ≤ i ≤ m. Apply MAX_COMPUTE to the m×m submatrix
M[r1, r2, . . . , rm; 1, 2, . . . , m] to get c1, c2, . . . , cm, where ci = j(ri). This takes O(m) time.
Let c0 = 1. Consider submatrices Bi = M[ri−1+1, ri−1+2, . . . , ri−1; ci−1, ci−1+1, . . . , ci]
for 1 ≤ i ≤ m and ri−1 ≤ ri − 2. Applying the straightforward divide-and-conquer
algorithm to the submatrices, Bi, we obtain the column positions of the maxima for all
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remaining rows. Since each submatrix has at most �n/m� rows, the time for finding the
maxima is at most c(pi − pi−1 + 1) log(n/m) for some constant c. Summing over all
1 ≤ i ≤ m we get the total time, which is O(m(1 + log(n/m))). The bound can be shown
to be tight [2].

The applications of the matrix-searching algorithm include the problems of finding all farthest
neighbors for all vertices of a convex n-gon (O(n) time), and finding the extremal (maximum
perimeter or area) polygons (inscribed k-gons) of a convex n-gon (O(kn + n log n)). If one adopts
the algorithm by Hershberger and Suri [42] the above problems can be solved in O(n) time. It is also
used in solving the Largest Empty Rectangle Problem discussed in Section 2.3.6 of this book.

1.5 Decomposition

Polygon decomposition arises in pattern recognition [77] in which recognition of a shape is facilitated
by first decomposing it into simpler components, called primitives, and comparing them to templates
previously stored in a library via some similarity measure. This class of decomposition is called
component-directed decomposition. The primitives are often convex.

1.5.1 Trapezoidalization

We will consider first trapezoidalization of a polygon P with n vertices, i.e., decomposition of the
interior of a polygon into a collection of trapezoids with two horizontal sides, one of which may
degenerate into a point, reducing a trapezoid to a triangle. Without loss of generality let us assume
that no edge of P is horizontal. For each vertex v let us consider the horizontal line passing through
v, denoted Hv. The vertices of P are classified into three types. A vertex v is regular if the other two
vertices adjacent to v lie on different sides of Hv. A vertex v is a V-cusp if the two vertices adjacent
to v are above Hv, and is a Λ-cusp if the two vertices adjacent to v are below Hv. In general the
intersection of Hv and the interior of P consists of a number of horizontal segments, one of which
contains v. Let this segment be denoted v�, vr, where v� and vr are called the left and right projections
of v on the boundary of P, denoted ∂P, respectively. If v is regular, either v, v� or v, vr lies totally
in the interior of P. If v is a V-cusp or Λ-cusp, then v�, vr either lies totally in the interior of P or
degenerates to v itself.

Consider only the segments v�, vr that are nondegenerate. These segments collectively partition
the interior of P into a collection of trapezoids, each of which contains no vertex of P in its interior
(Figure 1.10a).

The trapezoidalization can be generalized to a planar straight-line graph G(V , E), where the
entire plane is decomposed into trapezoids, some of which are unbounded. This trapezoidalization
is sometimes referred to as horizontal visibility map of the edges, as the horizontal segments
connect two edges of G that are visible (horizontally) (Figure 1.10b). The trapezoidalization of a
planar straight-line graph G(V , E) can be computed by plane-sweep technique in O(n log n) time,
where n = |V| [66], while the trapezoidalization of a simple polygon can be found in linear time [15].

The plane-sweep algorithm works as follows. The vertices of the graph G(V , E) are sorted in
descending y-coordinates. We will sweep the plane by a horizontal sweep-line from top down.
Associated with this approach there are two basic data structures containing all relevant information
that should be maintained.

1. Sweep-line status, which records the information of the geometric structure that is being
swept. In this example the sweep-line status keeps track of the set of edges intersecting
the current sweep-line.
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FIGURE 1.10 Trapezoidalization of a polygon (a) and horizontal visibility map of a planar straight line graph (b).

2. Event schedule, which defines a sequence of event points that the sweep-line status will
change. In this example, the sweep-line status will change only at the vertices.

The event schedule is normally represented by a data structure, called priority queue. The content
of the queue may not be available entirely at the start of the plane-sweep process. Instead, the list of
events may change dynamically. In this case, the events are static; they are the y-coordinates of the
vertices. The sweep-line status is represented by a suitable data structure that supports insertions,
deletions, and computation of the left and right projections, vl and vr, of each vertex v. In this
example a red-black tree or any height-balanced binary search tree is sufficient for storing the edges
that intersect the sweep-line according to the x-coordinates of the intersections. Suppose at event
point vi−1 we maintain a list of edges intersecting the sweep-line from left to right. Analogous to the
trapezoidalization of a polygon, we say that a vertex v is regular if there are edges incident on v that
lie on different sides of Hv; a vertex v is a V-cusp if all the vertices adjacent to v are above Hv; v is a
Λ-cusp if all the vertices adjacent to v are below Hv. For each event point vi we do the following.

1. vi is regular. Let the leftmost and rightmost edges that are incident on vi and above Hvi
are E�(vi) and Er(vi), respectively. The left projection vi� of vi is the intersection of Hvi
and the edge to the left of E�(vi) in the sweep-line status. Similarly the right projection
vir of vi is the intersection of Hvi and the edge to the right of Er(vi) in the sweep-line
status. All the edges between E�(vi) and Er(vi) in the sweep-line status are replaced in an
order-preserving manner by the edges incident on vi that are below Hvi .

2. vi is a V-cusp. The left and right projections of vi are computed in the same manner as
in Step 1 above. All the edges incident on vi are then deleted from the sweep-line status.

3. vi is a Λ-cusp. We use binary search in the sweep-line status to look for the two adjacent
edges E�(vi) and Er(vi) such that vi lies in between. The left projection vi� of vi is the
intersection of Hvi and E�(vi) and the right projection vir of vi is the intersection of Hvi
and Er(vi). All the edges incident on vi are then inserted in an order-preserving manner
between E�(vi) and Er(vi) in the sweep-line status.

Figure 1.11 illustrates these three cases. Since the update of the sweep-line status for each event point
takes O(log n) time, the total amount of time needed is O(n log n).

THEOREM 1.8 Given a planar straight-line graph G(V , E), the horizontal visibility map of G can
be computed in O(n log n) time, where n = |V|. However, if G is a simple polygon then the horizontal
visibility map can be computed in linear time.
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FIGURE 1.11 Updates of sweep-line status. (a) vi is regular (b) vi is a V-cusp and (c) vi is a Λ-cusp.

1.5.2 Triangulation

In this section we consider triangulating a planar straight-line graph by introducing noncrossing
edges so that each face in the final graph is a triangle and the outermost boundary of the graph forms
a convex polygon. Triangulation of a set of (discrete) points in the plane is a special case. This is a
fundamental problem that arises in computer graphics, geographical information systems, and finite
element methods. Let us start with the simplest case.

1.5.2.1 Polygon Triangulation

Consider a simple polygon P with n vertices. It is obvious that to triangulate the interior of P (into
n − 2 triangles) one needs to introduce at most n − 3 diagonals. A pioneering work is due to Garey
et al. [37] who gave an O(n log n) algorithm and a linear algorithm if the polygon is monotone.
A polygon is monotone if there exists a straight line L such that the intersection of ∂P and any line
orthogonal to L consists of no more than two points. The shaded area in Figure 1.12 is a monotone
polygon.
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FIGURE 1.12 Decomposi-
tion of a simple polygon into
monotone subpolygons.

The O(n log n) time algorithm can be illustrated by the following
two-step procedure.

1. Decompose P into a collection of monotone subpolygons
with respect to the y-axis in time O(n log n).

2. Triangulate each monotone subpolygons in linear time.

To find a decomposition of P into a collection of monotone polygons
we first obtain the horizontal visibility map described in Section 1.5.1.
In particular we obtain for each cusp v the left and right projections
and the associated trapezoid below Hv if v is a V-cusp, and above Hv
if v is a Λ-cusp. (Recall that Hv is the horizontal line passing through
v.) For each V-cusp v we introduce an edge v, w where w is the vertex
through which the other base of the trapezoid below passes. t, u and v, w
in Figure 1.10a illustrate these two possibilities, respectively. For each

Λ-cusp we do the same thing. In this manner we convert each vertex into a regular vertex, except
the cusps v for which vl, vr lies totally outside of P, where vl and vr are the left and right projections
of v in the horizontal visibility map. This process is called regularization [66]. Figure 1.12 shows a
decomposition of the simple polygon in Figure 1.10a into a collection of monotone polygons.

We now describe an algorithm that triangulates a monotone polygon P in linear time. Assume
that the monotone polygon has v0 as the topmost vertex and vn−1 as the lowest vertex. We have
two polygonal chains from v0 to vn−1, denoted L and R, that define the left and right boundary of
P, respectively. Note that vertices on these two polygonal chains are already sorted in descending
order of their y-coordinates. The algorithm is based on a greedy method, i.e., whenever a triangle
can be formed by connecting vertices either on the same chain or on opposite chains, we do so
immediately. We shall examine the vertices in order, and maintain a polygonal chain C consisting
of vertices whose internal angles are greater than π. Initially C consists of two vertices v0 and v1 that
define an edge v0, v1. Suppose C consists of vertices vi0 , vi1 , . . . , vik , k ≥ 1. We distinguish two cases
for each vertex v� examined, l < n − 1. Without loss of generality we assume C is a left chain, i.e.,
vik ∈ L. The other case is treated symmetrically.

1. v� ∈ L. Let vij be the last vertex on C that is visible from v�. That is, the internal angle
∩(vij , vij′ , v�), where j < j′ ≤ k, is less than π, and either vij = vi0 or the internal angle
∩(vij−1 , vij , v�) is greater than π. Add diagonals v�, vij′ , for j ≤ j′ < k. Update C to
be composed of vertices vi0 , vi1 , . . . , vij , v�.

2. v� ∈ R. In this case we add diagonals v�, vij′ , for 0 ≤ j′ ≤ k. C is updated to be composed
of vik and v� and it becomes a right chain.

Figure 1.13a and b illustrates these two cases, respectively, in which the shaded portion has been
triangulated.

Fournier and Montuno [34] and independently Chazelle and Incerpi [17] showed that triangu-
lation of a polygon is linear-time equivalent to computing the horizontal visibility map. Based on
this result Tarjan and Van Wyk [76] first devised an O(n log log n) time algorithm that computes
the horizontal visibility map and hence, an O(n log log n) time algorithm for triangulating a simple
polygon. A breakthrough result of Chazelle [15] finally settled the longstanding open problem, i.e.,
triangulating a simple polygon in linear time. But the method is quite involved. As a result of this
linear triangulation algorithm, a number of problems can be solved asymptotically in linear time.
Note that if the polygons have holes, the problem of triangulating the interior is shown to require
Ω(n log n) time [5].
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FIGURE 1.13 Triangulation of a monotone polygon. (a) v� on the left chain and (b) v� on the right chain.

1.5.2.2 Planar Straight-Line Graph Triangulation

The triangulation is also known as the constrained triangulation. This problem includes the triangu-
lation of a set of points. A triangulation of a given planar straight-line graph G(V , E) with n = |V|
vertices is a planar graph G(V , E) such that E ⊆ E and each face is a triangle, except the exterior one,
which is unbounded. A constrained triangulation G(V , E) of a G(V , E) can be obtained as follows.

1. Compute the convex hull of the set of vertices, ignoring all the edges. Those edges that
belong to the convex hull are necessarily in the constrained triangulation. They define
the boundary of the exterior face.

2. Compute the horizontalvisibility map for the graph, G′ = G ∪ CH(V), where CH(V)

denotes the convex hull of V , i.e., for each vertex, its left and right projections are
calculated, and a collection of trapezoids are obtained.

3. Apply the regularization process by introducing edges to vertices in the graph G′ that are
not regular. An isolated vertex requires two edges, one from above and one from below.
Regularization will yield a collection of monotone polygons that comprise collectively the
interior of CH(V).

4. Triangulate each monotone subpolygon.

It is easily seen that the algorithm runs in time O(n log n), which is asymptotically optimal. (This
is because the problem of sorting is linearly reducible to the problem of constrained triangulation.)

1.5.2.3 Delaunay and Other Special Triangulations

Sometimes we want to look for quality triangulation, instead of just an arbitrary one. For instance,
triangles with large or small angles is not desirable. The Delaunay triangulation of a set of points
in the plane is a triangulation that satisfies the empty circumcircle property, i.e., the circumcircle of
each triangle does not contain any other points in its interior. It is well-known that the Delaunay
triangulation of points in general position is unique and it will maximize the minimum angle. In fact,
the characteristic angle vector of the Delaunay triangulation of a set of points is lexicographically
maximum [49]. The notion of Delaunay triangulation of a set of points can be generalized to a
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planar straight-line graph G(V , E). That is, we would like to have G as a subgraph of a triangulation
G(V , E ′), E ⊆ E ′, such that each triangle satisfies the empty circumcircle property: no vertex visible
from the vertices of triangle is contained in the interior of the circle. This generalized Delaunay
triangulation is thus a constrained triangulation that maximizes the minimum angle. The generalized
Delaunay triangulation was first introduced by the author and an O(n2) (respectively, O(n log n))
algorithm for constructing the generalized triangulation of a planar graph (respectively a simple
polygon) with n vertices was given in [52]. As the generalized Delaunay triangulation (also known
as constrained Delaunay triangulation) is of fundamental importance, we describe in Section 1.5.2.4
an optimal algorithm due to Chew [19] that computes the constrained Delaunay triangulation for a
planar straight-line graph G(V , E) with n vertices in O(n log n) time. Triangulations that minimize
the maximum angle or maximum edge length [29] were also studied. But if the constraints are on
the measure of the triangles, for instance, each triangle in the triangulation must be nonobtuse,
then Steiner points must be introduced. See Bern and Eppstein (in [26, pp. 23–90]) for a survey
of triangulations satisfying different criteria and discussions of triangulations in two and three
dimensions. Bern and Eppstein gave an O(n log n + F) algorithm for constructing a nonobtuse
triangulation of polygons using F triangles. Bern et al. [11] showed that F is O(n) and gave an
O(n log n) time algorithm for simple polygons without holes, and an O(n log2 n) time algorithm for
polygons with holes. For more results about acute triangulations of polygons and special surfaces
see [56,83,84] and the references therein. The problem of finding a triangulation of a set of points
in the plane whose total edge length is minimized, known as the minimum weight triangulation,
is listed as an open problem (called minimum length triangulation) in Johnson’s NP-complete
column [45]. On the assumption that this problem is NP-hard, many researchers have obtained
polynomial-time approximation algorithms for it. See Bern and Eppstein [10] for a survey of
approximation algorithms. Only recently this problem was settled in the affirmative by Mulzer
and Rote [63].

The problem of triangulating a set P of points in �k, k ≥ 3, is less studied. In this case the convex
hull of P is to be partitioned into F nonoverlapping simplices, the vertices of which are points in P.
A simplex in k-dimensions consists of exactly k + 1 points, all of which are extreme points. In �3

O(n log n +F) time suffices, where F is linear if no three points are collinear, and O(n2) otherwise.
Recently Saraf [71] gave a simpler proof that acute triangulations for general polyhedral surfaces
exist and also showed that it is possible to obtain a nonobtuse triangulation of a general polyhedral
surface. See [26] for more references on 3D triangulations and Delaunay triangulations in higher
dimensions.

1.5.2.4 Constrained Delaunay Triangulation

Consider a planar straight-line graph G(V , E), where V is a set of points in the plane, and edges
in E are nonintersecting except possibly at the endpoints. Let n = |V|. Without loss of generality
we assume that the edges on the convex hull CH(V) are all in E. These edges, if not present, can be
computed in O(n log n) time (cf. Section 1.2.1).

In the constrained Delaunay triangulation GDT(V , E) the edges in E \E are called Delaunay edges.
It can be shown that two points p, q ∈ V define a Delaunay edge if there exists a circle K passing
through p and q which does not contain in its interior any other point visible from p and from q.

Let us assume without loss of generality that the points are in general position that no two have
the same x-coordinate, and no four are cocircular. Let the points in V be sorted by ascending order
of x-coordinate so that x(pi) < x(pj) for i < j. Let us associate this set V (and graph G(V , E)) with
it a bounding rectangle RV with diagonal points U(u.x, u.y), L(l.x, l.y), where u.x = x(pn), u.y =
max y(pi), l.x = x(p1), l.y = min y(pi). That is, L is at the lower left corner with x- and y-coordinates
equal to the minimum of the x- and y-coordinates of all the points in V , and U is at the upper right
corner. Given an edge pi, pj, i < j, its x-interval is the interval (x(pi), x(pj)). The x-interval of the
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FIGURE 1.14 Computation of constrained Delaunay triangulation for subgraphs in adjacent bounding rectangles.

bounding rectangle RV , denoted by XV , is the interval (x(p1), x(pn)). The set V will be recursively
divided by vertical lines L’s and so will be the bounding rectangles. We first divide V into two
halves Vl and Vr by a line L(X = m), where m = 1

2 (x(p�n/2�) + x(p�n/2�+1)). The edges in E that
lie totally to the left and to the right of L are assigned respectively to the left graph G�(V�, E�) and
to the right graph Gr(Vr, Er), which are associated respectively with bounding rectangle RV�

and
RVr whose x-intervals are XV�

= (x(p1), m) and XVr = (m, x(pn)), respectively. The edges p, q ∈ E
that are intersected by the dividing line and that do not span∗ the associated x-intervalXV will each get
cut into two edges and a pseudo point ε(p, q) on the edge is introduced. Two edges, called half-edges,
p, ε(p, q) ∈ E� and ε(p, q), q ∈ Er are created. Figure 1.14a shows the creation of half-edges with
pseudo points shown in hollow circles. Note that the edge p, q in the shaded area is not considered
“present” in the associated bounding rectangle, u, v spans the x-interval for which no pseudo point
is created, and s, t is a half-edge that spans the x-interval of the bounding rectangle to the left of the
dividing line (L).

∗ An edge p, q, x(p) < x(q) is said to span an x-interval (a, b), if x(p) < a and x(q) > b.
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It can be shown that for each edge p, q ∈ E, the number of half-edges so created is at most
O(log n). Within each bounding rectangle the edges that span its x-interval will divide the bounding
rectangle into various parts. The constrained Delaunay triangulation gets computed for each part
recursively. At the bottom of recursion each bounding rectangle contains at most three vertices
of V , the edges incident on them, plus a number of half-edges spanning the x-interval including
the pseudo endpoints of half-edges. Figure 1.14b illustrates an example of the constrained Delaunay
triangulation at some intermediate step. No edges shall intersect one another, except at the endpoints.

As is usually the case for divide-and-conquer paradigm, the Merge step is the key to the method.
We describe below the Merge step that combines constrained Delaunay triangulations in adjacent
bounding rectangles that share a common dividing vertical edge L.

1. Eliminate the pseudo points along the boundary edge L, including the Delaunay edges
incident on those pseudo points. This results in a partial constrained Delaunay triangula-
tion within the union of these two bounding rectangles. Figure 1.14c illustrates the partial
constrained Delaunay triangulation as a result of the removal of the Delaunay edges inci-
dent on the pseudo points on the border of the constrained Delaunay triangulation
shown in Figure 1.14b.

2. Compute new Delaunay edges that cross L as follows. Let A and B be the two endpoints
of an edge that crosses L with A on the left and B on the right of L, and A, B is known
to be part of the desired constrained Delaunay triangulation. That is, either A, B is an
edge of E or a Delaunay edge just created. Either A or B may be a pseudo point. Let
A, C be the first edge counterclockwise from edge A, B. To decide if A, C remains to be a
Delaunay edge in the desired constrained Delaunay triangulation, we consider the next
edge A, C1, if it exists counterclockwise from A, C. If A, C1 does not exist, or A, C is in
E, A, C will remain. Otherwise we test if the circumcircle K(A, C, C1) contains B in its
interior. If so, A, C is eliminated, and the test continues on A, C1. Otherwise, A, C stays.
We do the same thing to test edges incident on B, except that we consider edges incident
on B in clockwise direction from B, A. Assume now we have determined that both A, C
and B, D remain. The next thing to do is to decide which of edge B, C and A, D should
belong to the desired constrained Delaunay triangulation. We apply the circle test: test
if circle K(A, B, C) contains D in the interior. If not, B, C is the desired Delaunay edge.
Otherwise A, D is. We then repeat this step.

Step 2 of the merge step is similar to the method of constructing unconstrained Delaunay triangu-
lation given in [52] and can be accomplished in linear time in the number of edges in the combined
bounding rectangle. The dotted lines in Figure 1.14d are the Delaunay edges introduced in Step 2.
We therefore conclude with the following theorem.

THEOREM 1.9 Given a planar straight-line graph G(V , E) with n vertices, the constrained Delaunay
triangulation of G can be computed in O(n log n) time, which is asymptotically optimal.

An implementation of this algorithm can be found in http://www.opencps.org/Members/ta/
Constrained Delaunay Triangulation/cpstype_view

A plane-sweep method, for constructing the constrained Delaunay triangulation was also pre-
sented by De Floriani and Puppo [23] and by Domiter and Žalik [25]. The constrained Delaunay
triangulation has been used as a basis for the so-called Delaunay refinement [31,40,61,68] for gener-
ating triangular meshes satisfying various angle conditions suitable for use in interpolation and the
finite element method. Shewchuk [75] gave a good account of this subject and has also developed a
tool, called Triangle: A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator [74].
See http://www.cs.cmu.edu/∼quake/triangle.html for more details.
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1.5.3 Other Decompositions

Partitioning a simple polygon into shapes such as convex polygons, star-shaped polygons, spiral
polygons, etc., has also been investigated. After a polygon has been triangulated one can partition the
polygon into star-shaped polygons in linear time. This algorithm provided a very simple proof of the
traditional art gallery problem originally posed by Klee, i.e., �n/3� vertex guards are always sufficient
to see the entire region of a simple polygon with n vertices. But if a partition of a simple polygon into
a minimum number of star-shaped polygons is desired, Keil [47] gives an O(n5N2 log n) time, where
N denotes the number of reflex vertices. However, the problem of decomposing a simple polygon
into a minimum number of star-shaped parts that may overlap is shown to be NP-hard [53,65]. This
problem sometimes is referred to as the covering problem, in contrast to the partitioning problem,
in which the components are not allowed to overlap. The problem of partitioning a polygon into a
minimum number of convex parts can be solved in O(N2n log n) time [47]. It is interesting to note
that it may not be possible to partition a simple polygon into convex quadrilaterals, but it is always
possible for rectilinear polygons. The problem of determining if a convex quadrilateralization of a
polygonal region (with holes) exists is NP-complete. It is interesting to note that �n/4� vertex guards
are always sufficient for the art gallery problem in a rectilinear polygon. An O(n log n) algorithm
for computing a convex quadrilateralization or positioning at most �n/4� guards is known (see [65]
for more information). Modifying the proof of Lee and Lin [53], Schuchardt and Hecker [72]
showed that the minimum covering problem by star-shaped polygons for rectilinear polygons is
also NP-hard. Most recently Katz and Roisman [46] proved that even guarding the vertices of a
rectilinear polygon with minimum number of guards is NP-hard. However, the minimum covering
problem by r-star-shaped polygons or by s-star-shaped polygons for rectilinear polygons can be
solved in polynomial time [62,80]. When the rectilinear polygon to be covered is monotone or
uni-s-star-shaped,∗ then the minimum covering by r-star-shaped polygons can be found in linear
time [38,55].

For variations and results of art gallery problems the reader is referred to [65,73,78]. Polynomial
time algorithms for computing the minimum partition of a simple polygon into simpler parts while
allowing Steiner points can be found in [5].

The minimum partition problem for simple polygons becomes NP-hard when the polygons are
allowed to have holes [47]. Asano et al. [4] showed that the problem of partitioning a simple polygon
with h holes into a minimum number of trapezoids with two horizontal sides can be solved in
O(nh+2) time, and that the problem is NP-complete if h is part of the input. An O(n log n) time
3-approximation algorithm was presented.

The problem of partitioning a rectilinear polygon with holes into a minimum number of rectangles
(allowing Steiner points) arises in VLSI artwork data. Imai and Asano [44] gave an O(n3/2 log n) time
and O(n log n) space algorithm for partitioning a rectilinear polygon with holes into a minimum
number of rectangles (allowing Steiner points). The problem of covering a rectilinear polygon
(without holes) with a minimum number of rectangles, however, is NP-hard [21,41].

Given a polyhedron with n vertices and r notches (features causing nonconvexity), Ω(r2) con-
vex components are required for a complete convex decomposition in the worst case. Chazelle
and Palios [18] gave an O((n + r2) log r) time O(n + r2) space algorithm for this problem. Bajaj
and Dey addressed a more general problem where the polyhedron may have holes and internal
voids [9]. The problem of minimum partition into convex parts and the problem of determining if
a nonconvex polyhedron can be partitioned into tetrahedra without introducing Steiner points are
NP-hard [69].

∗ Recall that a rectilinear polygon P is s-star-shaped, if there exists a point p in P such that all the points of P are s-visible
from p. When the staircase paths connecting p and all other s-visible points q in P are of the same (uniform) orientation,
then the rectilinear polygon is uni-s-star-shaped.
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1.6 Research Issues and Summary

We have covered in this chapter a number of topics in computational geometry, including convex
hulls, maximal-finding problems, decomposition, and maxima searching in monotone matrices.
Results, some of which are classical, and some which represent the state of the art of this field, were
presented. More topics will be covered in Chapter 2.

In Section 1.2.3 an optimal algorithm for computing the layers of planar convex hulls is presented.
It shows an interesting fact: within the same time as computing the convex hull (the outermost layer)
of a point set in two dimensions, one can compute all layers of convex hull. Whether or not one
can do the same for higher dimensions �k, k > 2, remains to be seen. Although the triangulation
problem of a simple polygon has been solved by Chazelle [15], the algorithm is far from being
practical. As this problem is at the heart of this field, a simpler and more practical algorithm is of
great interest. Recall that the following two minimum covering problems have been shown to be
NP-hard: the minimum covering of rectilinear polygons by rectangles [21,41], and the minimum
covering of rectilinear polygons by star-shaped polygons [46,72]. However, the minimum covering of
rectilinear polygons by r-star-shaped polygons or by s-star-shaped polygons, as described above, can
be found in polynomial time. There seems to be quite a complexity gap. Note that the components
in the decomposition in these two cases, rectangles versus r-star-shaped polygons and star-shape
polygons versus s-star-shaped polygons, are related in the sense that the former one is a special
case of the latter. That is, a rectangle is an r-star-shaped polygon and a star-shaped primitive of a
rectilinear polygon is s-star-shaped. But the converse is not true. When the primitives used in the
covering problem are more restricted, they seem to make the minimum covering problem harder
computationally. But when and if the fact that the minimum covering of a rectilinear polygon
by s-star-shaped polygons solvable in polynomial time can be used to approximate the minimum
covering by primitives of more restricted types is not clear. The following results, just to give some
examples, were known. Eidenbenz et al. [30] presented inapproximability results of some art gallery
problems and Fragoudakis et al. [35] showed certain maximization problems of guarded boundary
of an art gallery to be APX-complete. There is a good wealth of problems related to art gallery or
polygon decomposition that are worth further investigation.

1.7 Further Information

For some problems we present efficient algorithms in pseudocode and for others that are of more
theoretical interest we only give a sketch of the algorithms and refer the reader to the original articles.
The text book by de Berg et al. [22] contains a very nice treatment of this topic. The reader who
is interested in parallel computational geometry is referred to [6]. For current research results, the
reader may consult the Proceedings of the Annual ACM Symposium on Computational Geometry,
Proceedings of the Annual Canadian Conference on Computational Geometry, and the following three
journals, Discrete & Computational Geometry, International Journal of Computational Geometry &
Applications, and Computational Geometry: Theory and Applications. More references can be found
in [39,50,70,81]. The ftp site <ftp://ftp.cs.usask.ca/pub/geometry/geombib.tar.gz> contains close to
14,000 entries of bibliography in this field.

David Avis announced a convex hull/vertex enumeration code, lrs, based on reverse search and
made it available. It finds all vertices and rays of a polyhedron in �k for any k, defined by a system
of inequalities, and finds a system of inequalities describing the convex hull of a set of vertices
and rays. More details can be found at this site http://cgm.cs.mcgill.ca/∼avis/C/lrs.html. See Avis
et al. [8] for more information about other convex hull codes. Those who are interested in the
implementations or would like to have more information about other software available can consult
http://www.geom.umn.edu/software/cglist/.
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The following WWW page on Geometry in Action maintained by David Eppstein at
http://www.ics.uci.edu/∼eppstein/geom.html and the Computational Geometry Pages by J. Erickson
at http://compgeom.cs. uiuc.edu/∼jeffe/compgeom/ give a comprehensive description of research
activities of computational geometry.

Defining Terms

Asymptotic time or space complexity: Asymptotic behavior of the time (or space) complexity of
an algorithm when the size of the problem approaches infinity. This is usually denoted in big-Oh
notation of a function of input size. A time or space complexity T(n) is O(f (n)) means that there
exists a constant c > 0 such that T(n) ≤ c · f (n) for sufficiently large n, i.e., n > n0, for some n0.
CAD/CAM: Computer-aided design and computer-aided manufacturing, a discipline that concerns
itself with the design and manufacturing of products aided by a computer.
Characteristic angle vector: A vector of minimum angles of each triangle in a triangulation arranged
in nondescending order. For a given point set the number of triangles is the same for all triangulations,
and therefore each of these triangulation has a characteristic angle vector.
Divide-and-marriage-before-conquest: A problem-solving paradigm derived from divide-and-
conquer. A term coined by the Kirkpatrick and Seidel [48], authors of this method. After the divide
step in a divide-and-conquer paradigm, instead of conquering the subproblems by recursively solving
them, a merge operation is performed first on the subproblems. This method is proven more effective
than conventional divide-and-conquer for some applications.
Extreme point: A point in S is an extreme point if it cannot be expressed as a convex combination
of other points in S. A convex combination of points p1, p2, . . . , pn is Σn

i=1αipi, where αi, ∀i is
nonnegative, and Σn

i=1αi = 1.

Geometric duality: A transform between a point and a hyperplane in �k that preserves incidence
and order relation. For a point p = (μ1, μ2, . . . , μk), its dual D(p) is a hyperplane denoted by
xk = Σk−1

j=1 μjxj − μk; for a hyperplane H : xk = Σk−1
j=1 μjxj + μk, its dual D(H) is a point denoted

by (μ1, μ2, . . . , −μk). See [22,27] for more information.
Height-balanced binary search tree: A data structure used to support membership, insert/delete
operations each in time logarithmic in the size of the tree. A typical example is the AVL tree or
red-black tree.
NP-hard problem: A complexity class of problems that are intrinsically harder than those that can
be solved by a Turing machine in nondeterministic polynomial time. When a decision version of
a combinatorial optimization problem is proven to belong to the class of NP-complete problems,
which includes well-known problems such as satisfiability, traveling salesman problem, etc., an
optimization version is NP-hard. For example, to decide if there exist k star-shaped polygons whose
union is equal to a given simple polygon, for some parameter k, is NP-complete. The optimization
version, i.e., finding a minimum number of star-shaped polygons whose union is equal to a given
simple polygon, is NP-hard.
On-line algorithm: An algorithm is said to be online if the input to the algorithm is given one at a
time. This is in contrast to the off-line case where the input is known in advance. The algorithm that
works online is similar to the off-line algorithms that work incrementally, i.e., it computes a partial
solution by considering input data one at a time.
Planar straight-line graph: A graph that can be embedded in the plane without crossings in which
every edge in the graph is a straight line segment. It is sometimes referred to as planar subdivision
or map.
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Star-shaped polygon: A polygon P in which there exists an interior point p such that all the points
of P are visible from p. That is, for any point q on the boundary of P, the intersection of the line
segment p, q with the boundary of P is the point q itself.
r-Star-shaped polygon: A (rectilinear) polygon P in which there exists an interior point p such that
all the points of P are r-visible from p. Two points in P are said to be r-visible if there exists a rectangle
in P that totally contains these two points.
s-Star-shaped polygon: A (rectilinear) polygon P in which there exists an interior point p such that
all the points of P are s-visible from p. Two points in P are said to be s-visible if there exists a staircase
path in P that connects these two points. Recall that a staircase path is a rectilinear path that is
monotone in both x- and y-directions, i.e., its intersection with every horizontal or vertical line is
either empty, a point, or a line segment.
Steiner point: A point that is not part of the input set. It is derived from the notion of Steiner tree.
Consider a set of three points determining a triangle Δ(a, b, c) all of whose angles are smaller than
120◦, in the Euclidean plane. Finding a shortest tree interconnecting these three points is known to
require a fourth point s in the interior such that each side of Δ(a, b, c) subtends the angle at s equal
to 120◦. The optimal tree is called the Steiner tree of the three points, and the fourth point is called
the Steiner point.
Visibility map: A planar subdivision that encodes the visibility information. Two points p and q are
visible if the straight line segment p, q does not intersect any other object. A horizontal (or vertical)
visibility map of a planar straight-line graph is a partition of the plane into regions by drawing a
horizontal (or vertical) straight line through each vertex p until it intersects an edge e of the graph
or extends to infinity. The edge e is said to be horizontally (or vertically) visible from p.
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2.1 Introduction

This chapter is a follow-up of Chapter 1, which deals with geometric problems and their efficient
solutions. The classes of problems that we address in this chapter include proximity, optimization,
intersection, searching, point location, and some discussions of geometric software that has been
developed.

2.2 Proximity

Geometric problems abound pertaining to the questions of how close two geometric entities are
among a collection of objects or how similar two geometric patterns match each other. For example,
in pattern classification and clustering, features that are similar according to some metric are to be
clustered in a group. The two aircrafts that are the closest at any time instant in the air space will have
the largest likelihood of collision with each other. In some cases one may be interested in how far

2-1
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apart or how dissimilar the objects are. Some of these proximity-related problems will be addressed
in this section.

2.2.1 Closest Pair

Consider a set S of n points in �k. The closest pair problem is to find in S a pair of points whose
distance is the minimum, i.e., find pi and pj, such that d(pi, pj) = mink�=l{d(pk, pl), for all points
pk, pl ∈ S}, where d(a, b) denotes the Euclidean distance between a and b. (The result below holds
for any distance metric in Minkowski’s norm.) Enumerating all pairs of distances to find the pair
with the minimum distance would take O(k · n2) time. As is well-known, in one dimension one can
solve the problem much more efficiently: Since the closest pair of points must occur consecutively on
the real line, one can sort these points and then scan them in order to solve the closest pair problem
in O(n log n) time. The time complexity turns out to be the best possible, since the problem has a
lower bound of Ω(n log n), following from a linear time transformation from the element uniqueness
problem [90].

But unfortunately there is no total ordering for points in �k for k ≥ 2, and thus, sorting is not
applicable. We will show that by using divide-and-conquer approach, one can solve this problem in

O(n log n) optimal time. Let us consider the case when k = 2. In the following, we only compute
the minimum distance between the closest pair; the actual identity of the closest pair that realizes the
minimum distance can be found easily by some straightforward bookkeeping operations. Consider
a vertical separating line V that divides S into S1 and S2 such that |S1| = |S2| = n/2. Let δi denote
the minimum distance defined by the closest pair of points in Si, i = 1, 2. Observe that the minimum
distance defined by the closest pair of points in S is either δ1, δ2, or d(p, q) for some p ∈ S1 and
q ∈ S2. In the former case, we are done. In the latter, points p and q must lie in the vertical strip of
width δ = min{δ1, δ2} on each side of the separating line V (Figure 2.1). The problem now reduces
to that of finding the closest pair between points in S1 and S2 that lie inside the strip L of width 2δ.
This subset of points L possesses a special property, known as sparsity, i.e., for each square box∗
of length 2δ the number of points in L is bounded by a constant c = 4 · 3k−1, since in each set Si,
there exists no point that lies in the interior of the δ-ball centered at each point in Si, i = 1, 2 [90]
(Figure 2.2). It is this sparsity property that enables us to solve the bichromatic closest pair problem
in O(n) time.

S1

δ1 S1 S2

S2

δ2
δ δ

(b)(a)

FIGURE 2.1 Divide-and-conquer scheme for closest pair problem. Solutions to subproblems S1 and S2 (a) and
candidates must lie in the vertical strip of width δ on each side of V (b).

∗ A box is a hypercube in higher dimensions.
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(b)

A maximum of 12 points
in the box of width 2δ

2δ

2δ
S2

S1

V

(a)

δδ

δ

δ

FIGURE 2.2 The box of width 2δ dissected by the separating line has at most 12 points; each point in S2 needs to
examine at most 6 points in S1 to find its closest neighbor (a) and the box of width 2δ dissected by the separating line
has at most 12 points (b).

The bichromatic closest pair problem is defined as follows. Given two sets of red and blue points,
denoted R and B, find the closest pair r ∈ R and b ∈ B, such that d(r, b) is minimum among all
possible distances d(u, v), u ∈ R, v ∈ B. Let S i ⊆ Si denote the set of points that lie in the vertical
strip. In two dimensions, the sparsity property ensures that for each point p ∈ S1 the number of
candidate points q ∈ S2 for the closest pair is at most six (Figure 2.2). We, therefore, can scan these
points S1 ∪ S2 in order along the separating line V and compute the distance between each point
in S1 (respectively, S2) scanned and its six candidate points in S2 (respectively, S1). The pair that
gives the minimum distance δ3 is the bichromatic closest pair. The minimum distance of all pairs of
points in S is then equal to δS = min{δ1, δ2, δ3}.

Since the merge step takes linear time, the entire algorithm takes O(n log n) time. This idea
generalizes to higher dimensions, except that to ensure the sparsity property of the set L, the
separating hyperplane should be appropriately chosen so as to obtain an O(n log n)-time algorithm
[90], which is asymptotically optimal.

We note that the bichromatic closest pair problem is in general more difficult than the clos-
est pair problem. Edelsbrunner and Sharir [46] showed that in three dimensions the number of
possible closest pairs is O((|R| · |B|)2/3 + |R| + |B|). Agarwal et al. [3] gave a randomized algo-
rithm with an expected running time of O((mn log m log n)2/3 + m log2 n + n log2 m) in �3 and
O((mn)1−1/(	k/2
+1)+ε + m log n + n log m) in �k, k ≥ 4, where m = |R| and n = |B|. Only when
the two sets possess the sparsity property defined above can the problem be solved in O(n log n) time,
where n = |R|+|B|. A more general problem, known as the fixed radius all nearest neighbor problem
in a sparse set [90], i.e., given a set M of points in �k that satisfies the sparsity condition, finds that
all pairs of points whose distance is less than a given parameter δ can be solved in O(|M| log |M|)
time [90].

The closest pair of vertices u and v of a simple polygon P such that u, v lies totally within P can be
found in linear time [55]; u, v is also known as a diagonal of P.

2.2.2 Voronoi Diagrams

The Voronoi diagram V(S) of a set S of points, called sites, S = {p1, p2, . . . , pn} in �k is a partition
of �k into Voronoi cells V(pi), i = 1, 2, . . . , n, such that each cell contains points that are closer to
site pi than to any other site pj, j �= i, i.e.,

V
(
pi

) =
{

x ∈ Rk
∣∣∣ d

(
x, pi

) ≤ d
(
x, pj

)∀pj ∈ Rk, j �= i
}

.
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(a)

q

(b)

pi

FIGURE 2.3 The Voronoi diagram of a set of 16 points in the plane (a) and its dual graph a Delaunay triangulation (b).

In two dimensions, V(S) is a planar graph and is of size linear in |S|. In dimensions k ≥ 2, the total
number of d-faces of dimensions d = 0, 1, . . . , k − 1, in V(S) is O(n	k/2
).

Figure 2.3a shows the Voronoi diagram of 16 point sites in two dimensions. Figure 2.3b shows
the straight-line dual graph of the Voronoi diagram, which is called the Delaunay triangulation
(cf. Section 1.5.2). In this triangulation, the vertices are the sites, and the two vertices are connected
by an edge, if their Voronoi cells are adjacent.

2.2.2.1 Construction of Voronoi Diagrams in Two Dimensions

The Voronoi diagram possesses many proximity properties. For instance, for each site pi, the closest
site must be among those whose Voronoi cells are adjacent to V(pi). Thus, the closest pair problem
for S in �2 can be solved in linear time after the Voronoi diagram has been computed. Since this
pair of points must be adjacent in the Delaunay triangulation, all one has to do is to examine all
the adjacent pairs of points and report the pair with the smallest distance. A divide-and-conquer
algorithm to compute the Voronoi diagram of a set of points in the Lp-metric for all 1 ≤ p ≤ ∞
is known [62]. There is a rich body of literature concerning the Voronoi diagram. The interested
reader is referred to the surveys [41,93].

We give below a brief description of a plane-sweep algorithm, known as the wavefront approach,
due to Dehne and Klein [38]. Let S = {p1, p2, . . . , pn} be a set of point sites in �2 sorted in ascending
x-coordinate value, i.e., x(p1) < x(p2) < · · · < x(pn). Consider that we sweep a vertical line L from
left to right and as we sweep L, we compute the Voronoi diagram V(St), where

St = {
pi ∈ S

∣∣x (
pi

)
< t

} ∪ {Lt} .

Here Lt denotes the vertical line whose x-coordinate equals t. As is well-known, V(St) will contain
not only straight-line segments, which are portions of perpendicular bisectors of two-point sites,
but also parabolic curve segments, which are portions of bisectors of one-point site and Lt . The
wavefront Wt , consisting of a sequence of parabolae, called waves, is the boundary of the Voronoi
cell V(Lt) with respect to St . Figure 2.4a and b illustrate two instances, V(St) and V(St′). Those
Voronoi cells that do not contribute to the wavefront are final, whereas those that do will change as
L moves to the right. There are two possible events at which the wavefront needs an update. One,
called site event, is when a site is hit by L and a new wave appears. The other, called spike event, is
when an old wave disappears. Let pi and pj be two sites such that the associated waves are adjacent
in Wt . The bisector of pi and pj defines an edge of V(St) to the left of Wt . Its extension into the cell
V(Lt) is called a spike. The spikes can be viewed as tracks along which two neighboring waves travel.
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FIGURE 2.4 The Voronoi diagrams of (a) V(St) and (b) V(St′ ).

A wave disappears from Wt , once it has reached the point where its two neighboring spikes intersect.
In Figure 2.4a dashed lines are spikes and v is a potential spike event point. Without p7 the wave of p3
would disappear first and then the wave of p4. After p7, a site event, has occurred, a new point v′ will
be created and it defines an earlier spike event than v. v′ will be a spike event point at which the wave
of p4 disappears and waves of p5 and p7 become adjacent. Note that the spike event corresponding
to v′ does not occur at Lt , when t = x(v′). Instead, it occurs at Lt , when t = x(v′) + d(v′, p4). If
there is no site event between Lx(p7) and Lt , then the wave of p4 will disappear. It is not difficult to
see that after all site events and spike events have been processed at time τ, V(S) is identical to V(Sτ)

with the wavefront removed.
Since the waves in Wt can be stored in a height-balanced binary search tree and the site events and

spike events can be maintained as a priority queue, the overall time and space needed are O(n log n)

and O(n), respectively.
Although Ω(n log n) is the lower bound for computing the Voronoi diagram for an arbitrary set

of n sites, this lower bound does not apply to special cases, e.g., when the sites are on the vertices
of a convex polygon. In fact, the Voronoi diagram of a convex polygon can be computed in linear
time [5]. This demonstrates further that additional properties of the input can sometimes help reduce
the complexity of the problem.

2.2.2.2 Construction of Voronoi Diagrams in Higher Dimensions

The Voronoi diagrams in �k are related to the convex hulls �k+1 via a geometric duality transfor-
mation. Consider a set S of n sites in �k, which is the hyperplane H0 in �k+1 such that xk+1 = 0, and
a paraboloid P in �k+1 represented as xk+1 = x2

1 + x2
2 + · · · + x2

k. Each site pi = (μ1, μ2, . . . , μk)

X1

X2

FIGURE 2.5 The paraboloid
transformation of a site in one
dimension to a line tangent to
a parabola.

is transformed into a hyperplane H(pi) in �k+1 denoted as xk+1 =
2Σk

j=1μjxj − (Σk
j=1μ

2
j ). That is, H(pi) is tangent to the paraboloid P at

point P(pi)= (μ1, μ2, . . . , μk, μ2
1 + μ2

2 + · · · + μ2
k), which is just the

vertical projection of site pi onto the paraboloid P . See Figure 2.5 for
an illustration of the transformation in one dimension. The half-space
defined byH(pi) and containing the paraboloidP is denoted asH+(pi).
The intersection of all half-spaces

⋂n
i=1 H+(pi) is a convex body and

the boundary of the convex body is denoted by CH(H(S)). Any point
q ∈ �k lies in the Voronoi cell V(pi), if the vertical projection of q onto
CH(H(S)) is contained in H(pi). The distance between point q and its
closest site pi can be shown to be equal to the square root of the vertical
distance between its vertical projection P(q) on the paraboloid P and
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on CH(H(S)). Moreover every κ-face of CH(H(S)) has a vertical projection on the hyperplane H0

equal to the κ-face of the Voronoi diagram of S in H0.
We thus obtain the result which follows from the theorem for the convex hull in Chapter 1.

THEOREM 2.1 The Voronoi diagram of a set S of n points in �k, k ≥ 2 can be computed in
O(n logH) time for k = 2, and in O(n logH+ (nH)1−1/(�(k+1)/2�+1) logO(1) n) time for k > 2, where
H is the number of i-faces, i = 0, 1, . . . , k.

It has been shown that the Voronoi diagram in �k, for k = 3, 4, can be computed in O((n + H)

logk−1 H) time [12].

2.2.2.3 Farthest Neighbor Voronoi Diagram

The Voronoi diagram defined in Section 2.2.2 is also known as the nearest neighbor Voronoi
diagram. The nearest neighbor Voronoi diagram partitions the space into cells such that each
site has its own cell, which contains all the points that are closer to this site than to any other site. A
variation of this partitioning concept is a partition of the space into cells, each of which is associated
with a site, and contains all the points that are farther from the site than from any other site. This dia-
gram is called the farthest neighbor Voronoi diagram. Unlike the nearest neighbor Voronoi diagram,
the farthest neighbor Voronoi diagram only has a subset of sites which have a Voronoi cell associated
with them. Those sites that have a nonempty Voronoi cell are those that lie on the convex hull of
S. A similar partitioning of the space is known as the order κ-nearest neighbor Voronoi diagram, in
which each Voronoi cell is associated with a subset of κ sites in S for some fixed integer κ such that
these κ sites are the closest among all other sites. For κ = 1, we have the nearest neighbor Voronoi
diagram, and for κ = n − 1, we have the farthest neighbor Voronoi diagram. The construction of
the order κ-nearest neighbor Voronoi diagram in the plane can be found in, e.g., [90]. The order
κ Voronoi diagrams in �k are related to the levels of hyperplane arrangements in �k+1 using the
paraboloid transformation discussed in Section 2.2.2.2. See, e.g., [2] for details. Below is a discussion
of the farthest neighbor Voronoi diagram in two dimensions.

Given a set S of sites s1, s2, . . . , sn, the f -neighbor Voronoi cell of site si is the locus of points that
are farther from si than from any other site sj, i �= j, i.e.,

f _V (si) = {
p ∈ �2∣∣ d

(
p, si

) ≥ d
(
p, sj

)
, si �= sj

}
.

The union of these f -neighbor Voronoi cells is called the farthest neighbor Voronoi diagram of S.
Figure 2.6 shows the farthest neighbor Voronoi diagram for a set of 16 sites. Note that only sites that
are on the convex hull CH(S) will have a nonempty f -neighbor Voronoi cell [90] and that all the
f -neighbor Voronoi cells are unbounded.

Since the farthest neighbor Voronoi diagram in the plane is related to the convex hull of the
set of sites, one can use the divide-and-marriage-before-conquest paradigm to compute the farthest
neighbor Voronoi diagram of S in two dimensions in time O(n logH), whereH is the number of sites
on the convex hull. Once the convex hull is available, the linear time algorithm [5] for computing
the Voronoi diagram for a convex polygon can be applied.

2.2.2.4 Weighted Voronoi Diagrams

When the sites have weights such that the distance from a point to the sites is weighted, the structure
of the Voronoi diagram can be drastically different than the unweighted case. We consider a few
examples.
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FIGURE 2.6 The farthest neighbor Voronoi diagram of a set of 16 sites in the plane.

c

a

q

d
b

FIGURE 2.7 The power dia-
gram in two dimensions.
δ(q, a) = δ(q, b) = length of
q, c.

Example 2.1: Power Diagrams

Suppose each site s in �k is associated with a nonnegative weight,
ws. For an arbitrary point p in �k the weighted distance from p to s is
defined as

δ(s, p) = d(s, p)2 − w2
s .

If ws is positive, and if d(s, p) ≥ ws, then
√

δ(s, p) is the length of the
tangent of p to the ball, b(s), of radius ws and centered at s. δ(s, p) is
also called the power of p with respect to the ball b(s). The locus of
points p equidistant from two sites s �= t of equal weight will be
a hyperplane called the chordale of s and t (see Figure 2.7). Point q is
equidistant to sites a and b, and the distance is the length of the tangent
line q, c = q, d.

The power diagram in two dimensions can be used to compute the contour of the union of n
disks, and the connected components of n disks in O(n log n) time, and in higher dimensions, it
can be used to compute the union or intersection of n axis-parallel cones in �k with apexes in a
common hyperplane in time O(CHk+1(n)), the multiplicative-weighted nearest neighbor Voronoi
diagram (defined below) for n points in �k in time O(CHk+2(n)), and the Voronoi diagrams for n
spheres in �k in time O(CHk+2(n)), where CH�(n) denotes the time for constructing the convex hull
of n points in �� [93]. For the best time bound for CH�(n), See Section 1.1. For more results on the
union of spheres and the volumes see [45].

Example 2.2: Multiplicative-Weighted Voronoi Diagrams

Suppose each site s ∈ �k is associated with a positive weight ws. The distance from a point p ∈ �k

to s is defined as

δmulti−w(s, p) = d(p, s)/ws.

In two dimensions, the locus of points equidistant to two sites s �= t is a disk, if ws �= wt , and
a perpendicular bisector of line segment s, t, if ws = wt . Each cell associated with a site s consists
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of all points closer to s than to any other site and may be disconnected. In the worst case, the
multiplicative-weighted nearest neighbor Voronoi diagram of a set S of n points in two dimensions
can have O(n2) regions and can be computed in O(n2) time. But in one dimension, the diagram can
be computed optimally in O(n log n) time. On the other hand, the multiplicative-weighted farthest
neighbor Voronoi diagram has a very different characteristic. Each Voronoi cell associated with a site
remains connected, and the size of the diagram is still linear in the number of sites. An O(n log2 n)-
time algorithm for constructing such a diagram is given in [66]. See [80] for more applications of the
diagram.

Example 2.3: Additive-Weighted Voronoi Diagrams

Suppose each site s ∈ �k is associated with a positive weight ws. The distance of a point p ∈ �k to a
site s is defined as

δadd−w(s, p) = d(p, s) − ws.

In two dimensions, the locus of points equidistant to two sites s �= t is a branch of a hyperbola,
if ws �= wt , and a perpendicular bisector of line segment s, t, if ws = wt . The Voronoi diagram has
properties similar to the ordinary unweighted diagram. For example, each cell is still connected and
the size of the diagram is linear. If the weights are positive, the diagram is the same as the Voronoi
diagram of a set of spheres centered at site s and of radius ws, and in two dimensions, this diagram
for n disks can be computed in O(n log n) time [15,81], and in k ≥ 3, one can use the notion of power
diagram (cf. Example 2.1) to compute the diagram [93].

2.2.2.5 Generalizations of Voronoi Diagrams

We consider two variations of Voronoi diagrams that are of interest and have applications.

v

Si

FIGURE 2.8 The geodesic
Voronoi diagram within a sim-
ple polygon.

Example 2.4: Geodesic Voronoi Diagrams

The nearest neighbor geodesic Voronoi diagram is a Voronoi diagram
of sites in the presence of obstacles. The distance from point p to a
site s, called the geodesic distance between p and s, is the length of the
shortest path from p to s avoiding all the obstacles (cf. Section 2.6.1).
The locus of points equidistant to two sites s and t is in general a
collection of hyperbolic segments. The cell associated with a site is the
locus of points whose geodesic distance to the site is shorter than to
any other site [86]. The farthest neighbor geodesic Voronoi diagram can
be similarly defined. Efficient algorithms for computing either kind of
geodesic Voronoi diagram for k point sites in an n-sided simple polygon
in O((n + k) log(n + k)) time can be found in [86]. Figure 2.8 illustrates the geodesic Voronoi diagram
of a set of point sites within a simple polygon; the whole shaded region is V(si).

Example 2.5: Skew Voronoi Diagrams

A directional distance function between two points in the plane is introduced in Aichholzer et al. [8]
that models a more realistic distance measure. The distance, called skew distance, from point p to
point q is defined as

d̃(p, q) = d(p, q) + k · dy(p, q),

where dy(p, q) = y(q) − y(p), and k ≥ 0 is a parameter. This distance function is asymmetric and
satisfies d̃(p, q) + d̃(q, p) = 2d(p, q), and the triangle inequality. Imagine we have a tilted plane T
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obtained by rotating the xy-plane by an angle α about the x-axis. The height (z-coordinate) h(p) of a
point p on T is related to its y-coordinate by h(p) = y(p) · sin α.

The distance function defined above reflects the cost that is proportional to the difference of their
heights; the distance is smaller going downhill than going uphill. That is, the distance from p to q
defined as d̃(p, q) = d(p, q) + κ · (h(q) − h(p)) for κ > 0 serves this purpose; d̃(p, q) is less than
d̃(q, p), if h(q) is smaller than h(p).

Because the distance is directional, one can define two kinds of Voronoi diagrams defined by the
set of sites. A skew Voronoi cell from a site p, Vfrom(p), is defined as the set of points that are closest
to p than to any other site. That is,

Vfrom(p) = {
x
∣∣d̃(p, x) ≤ d̃(q, x)

}
for all q �= p. Similarly one can define a skew Voronoi cell to a site p as follows:

Vto(p) = {
x
∣∣d̃(x, p) ≤ d̃(x, q)

}
for all q �= p.

The collection of these Voronoi cells for all sites is called the skew (or directional) Voronoi
diagram.

For each site p, we define an r-disk centered at p, denoted fromr(p) to be the set of points to which
the skew distance from p is r. That is, fromr(p) = {x|d̃(p, x) = r}. Symmetrically, we can also define
an r-disk centered at p, denoted tor(p) to be the set of points from which the skew distance to p is r.
That is, tor(p) = {x|d̃(x, p) = r}. The subscript r is omitted, when r = 1. It can be shown that tor(p)

is just a mirror reflection of fromr(p) about the horizontal line passing through p. We shall consider
only the skew Voronoi diagram which is the collection of the cells Vfrom(p) for all p ∈ S.

LEMMA 2.1 For k > 0, the unit disk from(p) is a conic with focus p, directrix the horizontal line
at y-distance 1/k above p, and eccentricity k. Thus, from(p) is an ellipse for k < 1, a parabola for
k = 1, and a hyperbola for k > 1. For k = 0, from(p) is a disk with center p (which can be regarded
as an ellipse of eccentricity zero).

Note that when k equals 0, the skew Voronoi diagram reduces to the ordinary nearest neighbor
Voronoi diagram. When k < 1, it leads to known structures: By Lemma 2.1, the skew distance d̃ is
a convex distance function and the Voronoi diagrams for convex distance functions are well studied
(see, e.g., [93]). They consist of O(n) edges and vertices, and can be constructed in time O(n log n)

by divide-and-conquer.
When k ≥ 1, since the unit disks are no longer bounded, the skew Voronoi diagrams have different

behavior from the ordinary ones. As it turns out, some of the sites do not have nonempty skew
Voronoi cells in this case. In this regard, it looks like ordinary farthest neighbor Voronoi diagram
discussed earlier.

Let L0(p, k) denote the locus of points x such that d̃(p, x) = 0. It can be shown that for k = 1,
L0(p, k) is a vertical line emanating downwards from p; and for k > 1, it consists of two rays,
emanating from, and extending below, p, with slopes 1/(

√
k2 − 1) and −1/(

√
k2 − 1), respectively.

Let N(p, k) denote the area below L0(p, k) (for k > 1). Let the 0-envelope, E0(S), be the upper
boundary of the union of all N(p, k) for p ∈ S. E0(S) is the upper envelope of the graphs of all
L0(p, k), when being seen as functions of the x-coordinate. For each point u lying above E0(S), we
have d̃(p, u) > 0 for all p ∈ S, and for each point v lying below E0(S), there is at least one p ∈ S with
d̃(p, v) < 0. See Figure 2.9 for an example of a 0-envelope (shown as the dashed polygonal line) and
the corresponding skew Voronoi diagram. Note that the skew Voronoi cells associated with sites q
and t are empty. The following results are obtained [8].
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FIGURE 2.9 The 0-envelope and the skew Voronoi diagram when k = 1.5.

LEMMA 2.2 For k > 1, the 0-envelope E0(S) of a set S of n sites can be computed in O(n logH)

time and O(n) space, where H is the number of edges of E0(S).

LEMMA 2.3 Let p ∈ S and k > 1, then Vfrom(p) �= ∅, if and only if p ∈ E0(S). Vfrom(p) is
unbounded if and only if p lies on the upper hull of E0(S). For k = 1, Vfrom(p) is unbounded for all p.

THEOREM 2.2 For any k ≥ 0, the skew Voronoi diagram for n sites can be computed in O(n logH)

time and O(n) space, where H is the number of nonempty skew Voronoi cells in the resulting Voronoi
diagram.

The sites mentioned so far are point sites. They can be of different shapes. For instance, they can
be line segments or polygonal objects. The Voronoi diagram for the edges of a simple polygon P that
divides the interior of P into Voronoi cells is also known as the medial axis or skeleton of P [90]. The
distance function used can also be the convex distance function or other norms.

2.3 Optimization

The geometric optimization problems arise in operations research, Very Large-Scale Integrated
Circuit (VLSI) layout, and other engineering disciplines. We give a brief description of a few
problems in this category that have been studied in the past.

2.3.1 Minimum Cost Spanning Tree

The minimum (cost) spanning tree (MST) of an undirected, weighted graph G(V , E), in which
each edge has a nonnegative weight, is a well-studied problem in graph theory and can be solved
in O(|E| log |V|) time [90]. When cast in the Euclidean or other Lp-metric plane in which the
input consists of a set S of n points, the complexity of this problem becomes different. Instead of
constructing a complete graph with edge weight being the distance between its two endpoints, from
which to extract an MST, a sparse graph, known as the Delaunay triangulation of the point set, is
computed. The Delaunay triangulation of S, which is a planar graph, is the straight-line dual of the
Voronoi diagram of S. That is, two points are connected by an edge, if and only if the Voronoi cells
of these two sites share an edge. (cf. Section 1.5.2.3). It can be shown that the MST of S is a subgraph
of the Delaunay triangulation. Since the MST of a planar graph can be found in linear time [90], the
problem can be solved in O(n log n) time. In fact, this is asymptotically optimal, as the closest pair
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of the set of points must define an edge in the MST, and the closest pair problem is known to have
an Ω(n log n) lower bound, as mentioned in Section 2.2.1.

This problem in dimensions three or higher can be solved in subquadratic time. Agarwal et al.
[3] showed that the Euclidean MST problem for a set of N points in �k can be solved in time
O(Tk(N, N) logk N), where Tk(m, n) denotes the time required to compute a bichromatic closest
pair among m red and n blue points in �k. If Tk(N, N) = Ω(N1+ε), for some fixed ε> 0, then the
running time improves to be O(Tk(N, N)). They also gave a randomized algorithm with an expected
time of O((N log N)4/3) in three dimensions and of O(N2(1−1/(	k/2
+1))+ε) for any positive ε in
k ≥ 4 dimensions [3]. Interestingly enough, if we want to find an MST that spans at least k nodes
in a planar graph (or in the Euclidean plane), for some parameter k ≤ n, then the problem, called
k-MST problem, is NP-hard [92]. Approximation algorithms for the k-MST problem can be found
in [18,75].

2.3.2 Steiner Minimum Tree

The Steiner minimum tree (SMT) of a set of vertices S ⊆ V in an undirected weighted graph G(V , E)

is a spanning tree of S ∪ Q for some Q ⊆ V such that the total weight of the spanning tree is
minimum. This problem differs from MST in that we need to identify a set Q ⊆ V of Steiner vertices
so that the total cost of the spanning tree is minimized. Of course, if S = V , SMT is the same as
MST. It is the identification of the Steiner vertices that makes this problem intractable. In the plane,
we are given a set S of points and are to find the shortest tree interconnecting points in S, while
additional Steiner points are allowed. Both Euclidean and rectilinear (L1-metric) SMT problems are
known to be NP-hard. In the geometric setting, the rectilinear SMT problem arises mostly in VLSI
net routing, in which a number of terminals need to be interconnected using horizontal and vertical
wire segments using the shortest wire length. As this problem is intractable, heuristics are proposed.
For more information, the reader is referred to a special issue of Algorithmica on Steiner trees, edited
by Hwang [57]. Most heuristics for the L1 SMT problem are based on a classical theorem, known as
the Hanan grid theorem, which states that the Steiner points of an SMT must be at the grid defined by
drawing horizontal and vertical lines through each of the given points. However, when the number
of orientations permitted for routing is greater than 2, the Hanan grid theorem no longer holds
true. Lee and Shen [65] established a multi-level grid theorem, which states that the Steiner points
of an SMT for n points must be at the grid defined by drawing λ lines in the feasible orientation
recursively for up to n − 2 levels, where λ denotes the number of orientations of the wires allowed
in routing. That is, the given points are assumed to be at the 0th level. At each level, λ lines in the
feasible orientations are drawn through each new grid point created at the previous level. In this
λ-geometry plane, feasible orientations are assumed to make an angle iπ/λ with the positive x-axis.
For the rectilinear case, λ = 2, Figure 2.10 shows that Hanan grid is insufficient for determining a
Steiner SMT for λ = 3. Steiner point s3 does not lie on the Hanan grid.

S1 S1

S2

(a)

S3

(b)

S2

FIGURE 2.10 Hanan grid theorem fails for λ = 3. Steiner point s3 does not lie on the Hanan grid (a), but they line
on a second-level grid (b).
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DEFINITION 2.1 The performance ratio of any approximation A in metric space M is defined as

ρM(A) = inf
P∈M

Ls(P)

LA(P)

where Ls(P) and LA(P) denote, respectively, the lengths of a Steiner minimum tree and of the
approximation A on P in space M. When the MST is the approximation, the performance ratio is
known as the Steiner ratio, denoted simply as ρ.

It is well-known that the Steiner ratios for the Euclidean and rectilinear SMTs are
√

3
2 and 2

3 ,

respectively [57]. The λ-Steiner ratio∗ for the λ-geometry SMTs is no less than
√

3 cos(π/2λ)
2 . The

following interesting result regarding Steiner ratio is reported in [65], which shows that the Steiner
ratio is not an increasing function from 2

3 to
√

3
2 , as λ varies from 2 to ∞.

THEOREM 2.3 The λ-Steiner ratio is
√

3
2 , when λ is a multiple of 6, and

√
3 cos(π/2λ)

2 when λ is a
multiple of 3 but not a multiple of 6.

2.3.3 Minimum Diameter Spanning Tree

The minimum diameter spanning tree (MDST) of an undirected weighted graph G(V , E) is a spanning
tree such that its diameter, i.e., total weight of the longest path in the tree, is minimum. This arises
in applications to communication network where a tree is sought such that the maximum delay,
instead of the total cost, is to be minimized. Using a graph-theoretic approach one can solve this
problem in O(|E||V| log |V|) time. However, by the triangle inequality one can show that there exists
an MDST such that the longest path in the tree consists of no more than three segments [56]. Based
on this an O(n3)-time algorithm was obtained.

THEOREM 2.4 Given a set S of n points, the minimum diameter spanning tree for S can be found
in θ(n3) time and O(n) space.

We remark that the problem of finding a spanning tree whose total cost and the diameter are both
bounded is NP-complete [56]. In [92], the problem of finding a minimum diameter cost spanning
tree is studied. In this problem for each pair of vertices vi and vj there is a weighting function wi,j
and the diameter cost of a spanning tree is defined to be the maximum over wi,j ∗ di,j, where di,j
denotes the distance between vertices vi and vj. To find a spanning tree with minimum diameter
cost as defined above is shown to be NP-hard [92].

Another similar problem that arises in VLSI clock tree routing is to find a tree from a source
to multiple sinks such that every source-to-sink path is the shortest rectilinear path and the total
wire length is to be minimized. This problem, also known as rectilinear Steiner arborescence problem
(see [57]), has been shown to be NP-complete [98]. A polynomial time approximation scheme
of approximation ratio (1 + 1/ε) in time O(nO(ε) log n) was given by Lu and Ruan [70]. Later a
simple 2-approximation algorithm in time O(n log n) was provided by Ranmath [91]. The problem
of finding a minimum spanning tree such that the longest source-to-sink path is bounded by a given
parameter is shown also to be NP-complete [96].

∗ The λ-Steiner ratio is defined as the greatest lower bound of the length of SMT over the length of MST in the
λ-geometry plane.
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2.3.4 Minimum Enclosing Circle

Given a set S of points the problem is to find the smallest disk enclosing the set. This problem is
also known as the (unweighted) one-center problem. That is, find a center such that the maximum
distance from the center to the points in S is minimized. More formally, we need to find the center
c ∈ �2 such that maxpj∈S d(c, pj) is minimized. The weighted one-center problem, in which the
distance function d(c, pj) is multiplied by the weight wj, is a well-known min–max problem, also
referred to as the emergency center problem in operations research. In two dimensions, the one-center
problem can be solved in O(n) time. The minimum enclosing ball problem in higher dimensions
is also solved by using linear programming technique [103]. The general p-center problem, i.e.,
finding p circles whose union contains S such that the maximum radius is minimized, is known to
be NP-hard. For a special case when p = 2, Eppstein [48] gave an O(n log2 n) randomized algorithm
based on parametric search technique, and Chan [22] gave a deterministic algorithm with a slightly
worse running time. For the problem of finding a minimum enclosing ellipsoid for a point set in �k

and other types of geometric location problem see, e.g., [47,103].

2.3.5 Largest Empty Circle

This problem, in contrast to the minimum enclosing circle problem, is to find a circle centered in
the interior of the convex hull of the set S of points that does not contain any given point and the
radius of the circle is to be maximized. This is mathematically formalized as a max–min problem,
the minimum distance from the center to the set is maximized. The weighted version is also known
as the obnoxious center problem in facility location. For the unweighted version, the center must be
either at a vertex of the Voronoi diagram for S in the convex hull or at the intersection of a Voronoi
edge and the boundary of the convex hull. O(n log n) time is sufficient for this problem. Following the
same strategy one can solve the largest empty square problem for S in O(n log n) time as well, using
the Voronoi diagram in the L∞-metric [62]. The time complexity of the algorithm is asymptotically
optimal, as the maximum gap problem, i.e., finding the maximum gap between two consecutive
numbers on the real line, which requires Ω(n log n) time, is reducible to this problem [90]. In
contrast to the minimum enclosing ellipsoid problem is the largest empty ellipsoid problem, which
has also been studied [43].

2.3.6 Largest Empty Rectangle

In Section 1.2.4, we mentioned the smallest enclosing rectangle problem. Here, we look at the
problem of finding the largest rectangle that is empty. Mukhopadhyay and Rao [78] gave an O(n3)-
time and O(n2)-space algorithm for finding the largest empty arbitrarily oriented rectangle of a set
of n points. A special case of this problem is to find the largest area restricted rectangle with sides
parallel to those of the original rectangle containing a given set S of n points, whose interior contains
no points from S. The problem arises in document analysis of printed-page layout in which white
space in the black-and-white image of the form of a maximal empty rectangle is to be recognized. A
related problem, called the largest empty corner rectangle problem, is that given two subsets Sl and Sr
of S separated by a vertical line, find the largest rectangle containing no other points in S such that
the lower left corner and the upper right corner of the rectangle are in Sl and Sr , respectively. This
problem can be solved in O(n log n) time, where n = |S|, using fast matrix searching technique (cf.
Section 1.4). With this as a subroutine, one can solve the largest empty restricted rectangle problem
in O(n log2 n) time. When the points define a rectilinear polygon that is orthogonally convex,the
largest empty restricted rectangle that can fit inside the polygon can be found in O(nα(n)) time,
where α(n) is the slowly growing inverse of Ackermann’s function using a result of Klawe and
Kleitman [61]. When the polygon P is arbitrary and may contain holes, Daniels et al. [36] gave an
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O(n log2 n) algorithm, for finding the largest empty restricted rectangle in P. Orlowski [82] gave an
O(n log n + s) algorithm, where s is the number of restricted rectangles that are possible candidates,
and showed that s is O(n2) in the worst case and the expected value is O(n log n).

2.3.7 Minimum-Width Annulus

Given a set S of n points find an annulus (defined by two concentric circles) whose center lies
internal to the convex hull of S such that the width of the annulus is minimized. This problem arises
in dimensional tolerancing and metrology which deals with the specification and measurement
of error tolerances in geometric shapes. To measure if a manufactured circular part is round, an
American National Standards Institute (ANSI) standard is to use the width of an annulus covering
the set of points obtained from a number of measurements. This is known as the roundness
problem [51,99,100]. It can be shown that the center of the annulus can be located at the intersection
of the nearest neighbor and the farthest neighbor Voronoi diagrams, as discussed in Section 2.2.2.
The center can be computed in O(n log n) time [51]. If the input is defined by a simple polygon P
with n vertices, then the problem is to find a minimum-width annulus that contains the boundary
of P. The center of the smallest annulus can be located at the medial axis of P [100]. In particular,
the problem can be solved in O(n log n + k), where k denotes the number of intersection points of
the medial axis of the simple polygon and the farthest neighbor Voronoi diagram of the vertices of
P. In [100], k is shown to be θ(n2). However, if the polygon is convex, one can solve this problem
in linear time [100]. Note that the minimum-width annulus problem is equivalent to the best circle
approximation problem, in which a circle approximating a given shape (or a set of points) is sought
such that the error is minimized. The error of the approximating circle is defined to be the maximum
over all distances between points in the set and the approximating circle. To be more precise, the
error is equal to one half of the width of the smallest annulus. See Figure 2.11.

If the center of the smallest annulus of a point set can be arbitrarily placed, the center may lie at
infinity and the annulus degenerates to a pair of parallel lines enclosing the set of points. When the
center is to be located at infinity, the problem becomes the well-known minimum-width problem,
which is to find a pair of parallel lines enclosing the set such that the distance between them is
minimized. The width of a set of n points can be computed in O(n log n) time, which is optimal
[67]. In three dimensions the width of a set is also used as a measure for flatness of a plate, a flatness
problem in computational metrology. Chazelle et al. [28] gave an O(n8/5+ε)-time algorithm for this
problem, improving over a previously known algorithm that runs in O(n2) time.

Shermer and Yap [97] introduced the notion of relative roundness, where one wants to minimize
the ratio of the annulus width and the radius of the inner circle. An O(n2) algorithm was presented.
Duncan et al. [42] define another notion of roundness, called referenced roundness, which becomes
equivalent to the flatness problem when the radius of the reference circle is set to infinity. Specifically
given a reference radius ρ of an annulus A that contains S, i.e., ρ is the mean of the two concentric

(a) (b)

FIGURE 2.11 Minimum-width annulus (a) and the best circle approximation (b).
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circles defining the annulus, find an annulus of a minimum width among all annuli with radius ρ

containing S, or for a given ε > 0, find an annulus containing S whose width is upper bounded by ε.
They presented an O(n log n) algorithm for two dimensions and a near quadratic-time algorithm for
three dimensions. In contrast to the minimum-width annulus problem is the largest empty annulus
problem, in which we want to find the largest-width annulus that contains no points. The problem
is much harder and can be solved in O(n3 log n) time [39].

2.4 Geometric Matching

Matching in general graphs is one of the classical subjects in combinatorial optimization and has
applications in operations research, pattern recognition, and VLSI design. Only geometric versions
of the matching problem are discussed here. For graph-theoretic matching problems, see [83].

Given a weighted undirected complete graph on a set of 2n vertices, a complete matching is a set
of n edges such that each vertex has exactly one edge incident on it. The weight of a matching is
the sum of the weights of the edges in the matching. In a metric space, the vertices are points in the
plane and the weight of an edge between two points is the distance between them. The Euclidean
minimum weight matching problem is that given 2n points, find n matching pairs of points (pi, qi)
such that Σd(pi, qi) is minimized.

It was not known if geometric properties can be exploited to obtain an algorithm that is faster
than the θ(n3) algorithm for general graphs (see [83]). Vaidya [101] settled this question in the
affirmative. His algorithm is based on a well-studied primal-dual algorithm for weighted matching.
Making use of additive-weighted Voronoi diagram discussed in Section 2.2.2.4 and the range search
tree structure (see Section 2.7.1), Vaidya solved the problem in O(n2.5 log4 n) time. This algorithm
also generalizes to �k but the complexity is increased by a logk n factor.

The bipartite minimum weight matching problem is defined similarly, except that we are given
a set of red points R = {r1, r2, . . . , rn} and a set of blue points B = {b1, b2, . . . , bn} in the plane,
and look for n matching pairs of points (r, b) ∈ R × B with minimum cost. In [101] Vaidya gave
an O(n2.5 log n)-time algorithm for Euclidean metric and an O(n2 log3 n) algorithm for L1-metric.
Approximation algorithms for this problem can be found in [7] and in [58].

If these 2n points are given as vertices of a polygon, the problems of minimum weight matching
and bipartite matching can be solved in O(n log n) time if the polygon is convex and in O(n log2 n)

time if the polygon is simple. In this case, the weight of each matching pair of vertices is defined to
be the geodesic distance between them [71]. However, if a maximum weight matching is sought, a
log n factor can be shaved off [71].

Because of the triangle inequality, one can easily show that in a minimum weight matching, the
line segments defined by the matched pairs of points cannot intersect one another. Generalizing
this nonintersecting property the following geodesic minimum matching problem in the presence of
obstacles can be formulated. Given 2m points and polygonal obstacles in the plane, find a matching of
these 2m points such that the sum of the geodesic distances between the matched pairs is minimized.
These m paths must not cross each other (they may have portions of the paths overlapping each
other). There is no efficient algorithm known to date, except for the obvious method of reducing
it to a minimum matching of a complete graph, in which the weight of an edge connecting any
two points is the geodesic distance between them. Note that finding a geodesic matching without
optimization is trivial, since these m noncrossing paths can always be found. This geodesic minimum
matching problem in the general polygonal domain seems nontrivial. The noncrossing constraint
and the optimization objective function (minimizing total weight) makes the problem hard.

When the matching of these 2m points is given a priori, finding m noncrossing paths minimizing
the total weight seems very difficult. This resembles global routing problem in VLSI for which m
two-terminal nets are given, and a routing is sought that optimizes a certain objective function,
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FIGURE 2.12 An instance
of three noncrossing pair
matching problem.

including total wire length, subject to some capacity constraints. The
noncrossing requirement is needed when single-layer routing or planar
routing model is used. Global routing problems in general are NP-
hard. Since the paths defined by matching pairs in an optimal routing
cannot cross each other, paths obtained by earlier matched pairs become
obstacles for subsequently matched pairs. Thus, the sequence in which
the pairs of points are matched is very crucial. In fact, the path defined
by a matched pair of points need not be the shortest. Thus, to route
the matched pairs in a greedy manner sequentially does not give an
optimal routing. Consider the configuration shown in Figure 2.12 in
which R = X, Y , Z, B = x, y, z, and points (X, x), (Y , y), and (Z, z) are
to be matched. Note that in this optimal routing, none of the matched
pairs is realized by the shortest path, i.e., a straight line. This problem
is referred to as the shortest k-pair noncrossing path problem. However, if the m matching pairs of
points are on the boundary of a simple polygon, and the path must be confined to the interior of the
polygon, Papadopoulou [84] gave an O(n+m) algorithm for finding an optimal set of m noncrossing
paths, if a solution exists, where n is the number of vertices of the polygon.

Atallah and Chen [14] considered the following bipartite matching problem: Given n red and n blue
disjoint isothetic rectangles in the plane, find a matching of these n red–blue pairs of rectangles such
that the rectilinear paths connecting the matched pairs are noncrossing and monotone. Surprisingly
enough, they showed that such a matching satisfying the constraints always exists and gave an
asymptotically optimal O(n log n) algorithm for finding such a matching.

To conclude this section we remark that the min–max versions of the general matching or bipartite
matching problems are open. In the red-blue matching, if one of the sets is allowed to translate,
rotate, or scale, we have a different matching problem. In this setting, we often look for the best
match according to min–max criterion, i.e., the maximum error in the matching is to be minimized.
A dual problem can also be defined, i.e., given a maximum error bound, determine if a matching
exists, and if so, what kind of motions are needed. For more information about various types of
matching, see a survey by Alt and Guibas [9].

2.5 Planar Point Location

Planar point location is a fundamental problem in computational geometry. Given a planar sub-
division, and a query point, we want to find the region that contains the query point. Figure 2.13
shows an example of a planar subdivision. This problem arises in geographic information systems,
in which one often is interested in locating, for example, a certain facility in a map. Consider the
skew Voronoi diagram, discussed earlier in Section 2.2.2.5, for a set S of emergency dispatchers.
Suppose an emergency situation arises at a location q and that the nearest dispatcher p is to be called
so that the distance d̃(p, q) is the smallest among all distances d̃(r, q), for r ∈ S. This is equivalent to
locating q in the Voronoi cellVfrom(p) of the skew Voronoi diagram that contains q. In situations like
this, it is vital that the nearest dispatcher be located quickly. We therefore address the point location
problem under the assumption that the underlying planar map is fixed and the main objective is
to have a fast response time to each query. Toward this end we preprocess the planar map into a
suitable structure so that it would facilitate the point location task.

An earlier preprocessing scheme is based on the slab method [90], in which parallel lines are drawn
through each vertex, thus, partitioning the plane into parallel slabs. Each parallel slab is further
divided into subregions by the edges of the subdivision that can be linearly ordered. Any given query
point q can thus be located by two binary searches; one to locate among the n+1 horizontal slabs the



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C002 Finals Page 17 2009-10-5

Computational Geometry II 2-17

C1

(c)

C2

C3

C4

C5

C6

C1

(a)

C2

C3 C4

C5
C6

C1

(b)

C2

C3 C4

C5
C6

FIGURE 2.13 Chain decomposition method for a planar subdivision.

slab containing q, and followed by another to locate the region defined by a pair of consecutive edges
which are ordered from left to right. We use a three tuple, (P(n), S(n), Q(n))= (preprocessing time,
space requirement, query time) to denote the performance of the search strategy. The slab method
gives an (O(n2), O(n2), O(log n)) algorithm. Since preprocessing time is only performed once, the
time requirement is not as critical as the space requirement, which is permanently engaged. The
primary goal of any search strategy is to minimize the query time and the space required. Lee
and Preparata [90] first proposed a chain decomposition method to decompose a monotone planar
subdivision with n points into a collection of m ≤ n monotone chains organized in a complete
binary tree. Each node in the binary tree is associated with a monotone chain of at most n edges,
ordered in y-coordinate. This set of monotone chains forms a totally ordered set partitioning the
plane into collections of regions. In particular, between two adjacent chains, there are a number
of disjoint regions. The point location process begins with the root node of the complete binary
tree. When visiting a node, the query point is compared with the node, hence, the associated chain,
to decide on which side of the chain the query point lies. Each chain comparison takes O(log n)

time, and the total number of nodes visited is O(log m). The search on the binary tree will lead to
two adjacent chains, and, hence, identify a region that contains the point. Thus, the query time is
O(log m log n) = O(log2 n). Unlike the slab method in which each edge may be stored as many as
O(n) times, resulting in O(n2) space, it can be shown that with an appropriate chain assignment
scheme, each edge in the planar subdivision is stored only once. Thus, the space requirement is
O(n). For example, in Figure 2.13, the edges shared by the root chain C4 and its descendant chains
are assigned to the root chain; in general, any edge shared by two nodes on the same root-to-leaf
path will be assigned to the node that is an ancestor of the other node. The chain decomposition
scheme gives rise to an (O(n log n), O(n), O(log2 n)) algorithm. The binary search on the chains
is not efficient enough. Recall that after each chain comparison, we will move down the binary
search tree to perform the next chain comparison and start over another binary search on the same
y-coordinate of the query point to find an edge of the chain, against which a comparison is made to
decide if the point lies to the left or right of the chain. A more efficient scheme is to be able to perform
a binary search of the y-coordinate at the root node and to spend only O(1) time per node as we
go down the chain tree, shaving off an O(log n) factor from the query time. This scheme is similar
to the ones adopted by Chazelle and Guibas [37,90] in fractional cascading search paradigm and by
Willard [37] in his range tree-search method. With the linear time algorithm for triangulating a simple
polygon (cf. Section 1.5), we conclude with the following optimal search structure for planar point
location.

THEOREM 2.5 Given a planar subdivision of n vertices, one can preprocess the subdivision in linear
time and space such that each point location query can be answered in O(log n) time.
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The point location problem in arrangements of hyperplanes is also of significant interest. See,
e.g., [30]. Dynamic versions of the point location problem, where the underlying planar subdivision
is subject to changes (insertions and deletions of vertices or edges), have also been investigated.
See [34] for a survey of dynamic computational geometry.

2.6 Path Planning

This class of problems is mostly cast in the following setting. Given is a set of obstacles O, an object,
called robot, and an initial and final position, called source and destination, respectively. We wish
to find a path for the robot to move from the source to the destination avoiding all the obstacles.
This problem arises in several contexts. For instance, in robotics this is referred to as the piano
movers’ problem or collision avoidance problem, and in VLSI design this is the routing problem for
two-terminal nets. In most applications, we are searching for a collision avoidance path that has
the shortest length, where the distance measure is based on the Euclidean or L1-metric. For more
information regarding motion planning see, e.g., [11,94].

2.6.1 Shortest Paths in Two Dimensions

In two dimensions, the Euclidean shortest path problem in which the robot is a point, and the
obstacles are simple polygons, is well studied. A most fundamental approach is by using the notion
of the visibility graph. Since the shortest path must make turns at polygonal vertices, it is sufficient to
construct a graph whose vertices include the vertices of the polygonal obstacles, the source and the
destination, and whose edges are determined by vertices that are mutually visible, i.e., the segment
connecting the two vertices does not intersect the interior of any obstacle. Once the visibility graph is
constructed with edge weight equal to the Euclidean distance between the two vertices, one can then
apply the Dijkstra’s shortest path algorithms [90] to find the shortest path between the source and
destination. The Euclidean shortest path between two points is referred to as the geodesic path and
the distance as the geodesic distance. The visibility graph for a set of polygonal obstacles with a total
of n vertices can be computed trivially in O(n3) time. The computation of the visibility graph is the
dominating factor for the complexity of any visibility graph-based shortest path algorithm. Research
results aiming at more efficient algorithms for computing the visibility graph and the geodesic path
in time proportional to the size of the graph have been obtained. For example, in [89] Pocchiola and
Vetger gave an optimal output-sensitive algorithm that runs in O(F + n log n) time and O(n) space
for computing the visibility graph, where F denotes the number of edges in the graph.

Mitchell [74] used the continuous Dijkstra wavefront approach to the problem for general polyg-
onal domain of n obstacle vertices and obtained an O(n3/2+ε)-time algorithm. He constructed the
shortest path map that partitions the plane into regions such that all points q that lie in the same
region have the same vertex sequence in the shortest path from the given source to q. The shortest
path map takes O(n) space and enables us to perform the shortest path queries, i.e., find the shortest
path from the given source to any query points, in O(log n) time. Hershberger and Suri [54] on
the other hand used plane subdivision approach and presented an O(n log2 n)-time and O(n log n)-
space algorithm to compute the shortest path map of a given source point. They later improved the
time bound to O(n log n). It remains an open problem if there exists an algorithm for finding the
Eucliedan shortest path in a general polygonal domain of h obstacles and n vertices in O(n + h log h)

time and O(n) space. If the source-destination path is confined in a simple polygon with n vertices,
the shortest path can be found in O(n) time [37].

In the context of VLSI routing, one is mostly interested in rectilinear paths (L1-metric) whose
edges are either horizontal or vertical. As the paths are restricted to be rectilinear, the shortest path
problem can be solved more easily. Lee et al. [68] gave a survey on this topic.
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In a two-layer routing model, the number of segments in a rectilinear path reflects the number of
vias, where the wire segments change layers, which is a factor that governs the fabrication cost. In
robotics, a straight-line motion is not as costly as making turns. Thus, the number of segments (or
turns) has also become an objective function. This motivates the study of the problem of finding a
path with the least number of segments, called the minimum link path problem [76].

These two cost measures, length and number of links, are in conflict with each other. That is, the
shortest path may have far too many links, whereas a minimum link path may be arbitrarily long
compared with the shortest path. A path that is optimal in both criteria is called the smallest path.
In fact it can be easily shown that in a general polygonal domain, the smallest path does not exist.
However, the smallest rectilinear path in a simple rectilinear polygon exists, and can be found in linear
time. Instead of optimizing both measures simultaneously one can either seek a path that optimizes
a linear function of both length and the number of links, known as the combined metric [104], or
optimizes them in a lexicographical order. For example, we optimize the length first, and then the
number of links, i.e., among those paths that have the same shortest length, find one whose number
of links is the smallest and vice versa. In the rectilinear case see, e.g., [104]. Mitchell [76] gave a
comprehensive treatment of the geometric shortest path and optimization problems.

A generalization of the collision avoidance problem is to allow collision with a cost. Suppose each
obstacle has a weight which represents the cost if the obstacle is penetrated. Lee et al. [68] studied
this problem in the rectilinear case. They showed that the shortest rectilinear path between two
given points in the presence of weighted rectilinear polygons can be found in O(n log3/2 n) time and
space. Chen et al. [31] showed that a data structure can be constructed in O(n log3/2 n) time and
O(n log n) space that enables one to find the shortest path from a given source to any query point in
O(log n +H) time, where H is the number of links in the path. Another generalization is to include
in the set of obstacles some subset F ⊂ O of obstacles, whose vertices are forbidden for the solution
path to make turns. Of course, when the weight of obstacles is set to be ∞, or the forbidden set
F = ∅, these generalizations reduce to the ordinary collision avoidance problem.

2.6.2 Shortest Paths in Three Dimensions

The Euclidean shortest path problem between two points in a three-dimensional polyhedral envi-
ronment turns out to be much harder than its two-dimensional counterpart. Consider a convex
polyhedron P with n vertices in three dimensions and two points s and d on the surface of P. The
shortest path from s to d on the surface will cross a sequence of edges, denoted by ξ(s, d). ξ(s, d) is
called the shortest path edge sequence induced by s and d and consists of distinct edges. For given s
and d, the shortest path from s to d is not unique. However, ξ(s, d) is unique. If ξ(s, d) is known, the
shortest path between s and d can be computed by a planar unfolding procedure so that these faces
crossed by the path lie in a common plane and the path becomes a straight-line segment.

The shortest paths on the surface of a convex polyhedron P possess the following topological
properties: (1) they do not pass through the vertices of P and do not cross an edge of P more than
once, (2) they do not intersect themselves, i.e., they must be simple, and (3) except for the case
of the two shortest paths sharing a common subpath, they intersect transversely in at most one
point, i.e., they cross each other. If the shortest paths are grouped into equivalent classes according
to the sequences of edges that they cross, then the number of such equivalent classes denoted by
|ξ(P)| is θ(n4), where n is the number of vertices of P. These equivalent classes can be computed in
O(|ξ(P)|n3 log n) time. Chen and Han [32] gave an O(n2) algorithm for finding the shortest path
between a fixed source s and any destination d, where n is the number of vertices and edges of the
polyhedron, which may or may not be convex. If s and d lie on the surface of two different polyhedra,
O(NO(k)) time suffices for computing the shortest path between them amidst a set of k polyhedra,
where N denotes the total number of vertices of these obstacles.
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FIGURE 2.14 The possible shortest path edge sequence between points s and d.

The crux of the problem lies in the fact that the number of possible edge sequences may be
exponential in the number of obstacles, if s and d lie on the surface of different polyhedra. It was
established that the problem of determining the shortest path edge sequence is indeed NP-hard [11].
Figure 2.14 shows an example of the possible shortest path edge sequence induced by s and d in the
presence of three convex polyhedra. Approximation algorithms for this problem can be found in,
e.g., Choi et al. [35] and a recent article [76] for a survey.

2.7 Searching

This class of problems is cast in the form of query-answering. Given a collection of objects, with
preprocessing allowed, one is to find the objects that satisfy the queries. The problem can be static
or dynamic, depending on the fact that if the database to be searched is allowed to change over the
course of query-answering sessions, and it is studied mostly in two modes, count mode and report
mode. In the former case, only the number of objects satisfying the query is to be answered, whereas
in the latter, the actual identity of the objects is to be reported. In the report mode, the query time
of the algorithm consists of two components, the search time and the retrieval time, and expressed
as QA(n) = O(f (n) + F), where n denotes the size of the database, f (n) a function of n, and F the
size of output. Sometimes we may need to perform some semigroup operations to those objects that
satisfy the query. For instance, we may have weights w(v) assigned to each object v, and we want to
compute Σw(v) for all v ∩ q �= ∅. This is referred to as semigroup range searching. The semigroup
range searching problem is the most general form: if the semigroup operation is set union, we get
report-mode range searching problem and if the semigroup operation is just addition (of uniform
weight), we have the count-mode range searching problem. We will not discuss the semigroup range
searching here. It is obvious that algorithms that handle the report-mode queries can also handle the
count-mode queries (F is the answer). It seems natural to expect that the algorithms for count-mode
queries would be more efficient (in terms of the order of magnitude of the space required and query
time), as they need not search for the objects. However, it was argued that in the report-mode range
searching, one could take advantage of the fact that since reporting takes time, the more to report, the
sloppier the search can be. For example, if we were to know that the ratio n/F is O(1), we could use
a sequential search on a linear list. This notion is known as the filtering search [90]. In essence, more
objects than necessary are identified by the search mechanism, followed by a filtering process leaving
out unwanted objects. As indicated below, the count-mode range searching problem is harder than
the report-mode counterpart.
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2.7.1 Range Searching

This is a fundamental problem in database applications. We will discuss this problem and the
algorithm in the two-dimensional space. The generalization to higher dimensions is straightforward
using a known technique, called multidimensional divide-and-conquer [90]. Given is a set of n
points in the plane, and the ranges are specified by a product (l1, u1)× (l2, u2). We would like to find
points p = (x, y) such that l1 ≤ x ≤ u1 and l2 ≤ y ≤ u2. Intuitively we want to find those points
that lie inside a query rectangle specified in the range. This is called orthogonal range searching, as
opposed to other kinds of range searching problems discussed below, e.g., half-space range searching,
and simplex range searching, etc. Unless otherwise specified, a range refers to an orthogonal range.
We discuss the static case, as this belongs to the class of decomposable searching problems, the
dynamization transformation techniques can be applied. We note that the range tree structure
mentioned below can be made dynamic by using a weight-balanced tree, called BB(α) tree.

For count-mode queries, it can be solved by using the locus method as follows. In two dimensions,
we can divide the plane into O(n2) cells by drawing a horizontal and a vertical line through each
point. The answer to the query q, i.e., find the number of points dominated by q (those points
whose x- and y-coordinates are both no greater than those of q), can be found by locating the cell
containing q. Let it be denoted by Dom(q). Thus, the answer to the count-mode range queries can
be obtained by some simple arithmetic operations of Dom(qi) for the four corners, q1, q2, q3, q4,
of the query rectangle. Let q4 be the northeast corner and q2 be the southwest corner. The answer
will be Dom(q4) − Dom(q1) − Dom(q3) + Dom(q2). Thus, in �k, we have Q(k, n) = O(k log n),
S(k, n) = P(k, n) = O(nk). To reduce space requirement at the expense of query time has been a
goal of further research on this topic. Bentley introduced a data structure called the range trees [90].
Using this structure the following results were obtained: for k ≥ 2, Q(k, n) = O(logk−1 n), S(k, n) =
P(k, n) = O(n logk−1 n). See [1,4] for more recent results.

For report-mode queries, by using filtering search technique the space requirement can be further
reduced by a log log n factor. If the range satisfies additional conditions, e.g., grounded in one of the
coordinates, say l1 = 0, or the aspect ratio of the intervals specifying the range is fixed, less space
is needed. For instance, in two dimensions, the space required is linear (a saving of log n/ log log n
factor) for these two cases. By using the so-called functional approach to data structures, Chazelle
developed a compression scheme to reduce further the space requirement. Thus, in k-dimensions,
k ≥ 2, for the count-mode range queries, we have Q(k, n) = O(logk−1 n) and S(k, n) = O(n logk−2 n)

and for report-mode range queries Q(k, n) = O(logk−1 n + F), and S(k, n) = O(n logk−2+ε n) for
some 0 < ε < 1 [1,4].

As regards the lower bound of range searching in terms of space–time trade-offs, Chazelle [23]
showed that in k-dimensions, if the query time is O(logc n+F) for any constant c, the space required
is Ω(n(log n/ log log n)k−1) for the pointer machine models and the bound is tight for any c ≥ 1, if
k = 2, and any c ≥ k − 1 + ε (for any ε > 0), if k > 2. See also [1,4] for more lower-bound results
related to orthogonal range searching problems.

2.7.2 Other Range Searching Problems

There are other range searching problems called simplex range searching problem and the half-
space range searching problem that have been well studied. A simplex range in �k is a range whose
boundary is specified by k + 1 hyperplanes. In two dimensions it is a triangle. For this problem,
there is a lower bound on the query time for simplex range queries: let m denote the space required,
Q(k, n) = Ω((n/ log n)m1/k), k > 2, and Q(2, n) = Ω(n/

√
m) [37].

The report-mode half-space range searching problem in the plane can be solved optimally in
Q(n) = O(log n + F) time and S(n) = O(n) space, using geometric duality transform [37]. But
this method does not generalize to higher dimensions. In [6], Agarwal and Matoušek obtained



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C002 Finals Page 22 2009-10-5

2-22 Special Topics and Techniques

a general result for this problem: for n ≤ m ≤ n�k/2�, with O(m1+ε) space and preprocessing,
Q(k, n) = O((n/m1/�k/2�) log n + F). As half-space range searching problem is also decomposable,
standard dynamization techniques can be applied.

A general method for simplex range searching is to use the notion of partition tree. The search
space is partitioned in a hierarchical manner using cutting hyperplanes [25] and a search structure
is built in a tree structure. Using a cutting theorem of hyperplanes, Matoušek [72] showed that
for k-dimensions, there is a linear space search structure for the simplex range searching problem
with query time O(n1−1/k), which is optimal in two dimensions and within O(log n) factor of being
optimal for k > 2. For more detailed information regarding geometric range searching, see [72].

The above discussion is restricted to the case in which the database is a collection of points.
One may consider also other kinds of objects, such as line segments, rectangles, triangles, etc.,
whatever applications may take. The inverse of the orthogonal range searching problem is that of
point enclosure searching problem. Consider a collection of isothetic rectangles. The point enclosure
searching is to find all rectangles that contain the given query point q. We can cast these problems
as intersection searching problem, i.e., given a set S of objects, and a query object q, find a subset
F of S such that for any f ∈ F , f ∩ q �= ∅. We have then the rectangle enclosure searching
problem, rectangle containment problem, segment intersection searching problem, etc. Janardan
and Lopez [59] generalized the intersection searching in the following manner. The database is a
collection of groups of objects, and the problem is to find all the groups of objects intersecting a
query object. A group is considered to be intersecting the query object if any object in the group
intersects the query object. When each group has only one object, this reduces to the ordinary
searching problems.

2.8 Intersection

This class of problems arises in, for example, architectural design, computer graphics, etc. In an archi-
tectural design, no two objects can share a common region. In computer graphics, the well-known
hidden-line or hidden-surface elimination problems [40] are examples of intersection problems.
This class encompasses two types of problems, intersection detection and intersection computation.

2.8.1 Intersection Detection

The intersection detection problem is of the form: Given a set of objects, do any two intersect? For
instance, given n line segments in the plane, are there two that intersect? The intersection detection
problem has a lower bound of Ω(n log n) [90].

In two dimensions, the problem of detecting if two polygons of r and b vertices intersect was easily
solved in O(n log n) time, where n = r + b using the red–blue segment intersection algorithm [29].
However, this problem can be reduced in linear time to the problem of detecting the self-intersection
of a polygonal curve. The latter problem is known as the simplicity test and can be solved optimally
in linear time by Chazelle’s linear time triangulation algorithm (cf. Section 1.5). If the two polygons
are convex, then O(log n) suffices in detecting if they intersect [26]. Note that although detecting
if two convex polygons intersect can be done in logarithmic time, detecting if the boundary of the
two convex polygons intersect requires Ω(n) time [26]. Mount [77] investigated the intersection
detection of two simple polygons and computed a separator of m links in O(m log2 n) time if they
do not intersect.

In three dimensions, detecting if two convex polyhedra intersect can be solved in linear time [26]
by using a hierarchical representation of the convex polyhedron or by formulating it as a linear
programming problem in three variables.
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2.8.2 Intersection Reporting/Counting

One of the simplest of such intersecting reporting problems is that of reporting pairwise intersection,
e.g., intersecting pairs of line segments in the plane. An earlier result due to Bentley and Ottmann [90]
used the plane-sweep technique that takes O((n +F) log n) time, where F is the output size. This is
based on the observation that the line segments intersected by a vertical sweep-line can be ordered
according to the y-coordinates of their intersection with the sweep-line, and the sweep-line status
can be maintained in logarithmic time per event point, which is either an endpoint of a line segment
or the intersection of two line segments. It is not difficult to see that the lower bound for this problem
is Ω(n log n + F); thus, the above algorithm is O(log n) factor from the optimal. This segment
intersection reporting problem has been solved optimally by Chazelle and Edelsbrunner [27], who
used several important algorithm design and data structuring techniques, as well as some crucial
combinatorial analysis. In contrast to this asymptotically time-optimal deterministic algorithm, a
simpler randomized algorithm was obtained [37] for this problem which is both time- and space-
optimal. That is, it requires only O(n) space (instead of O(n +F) as reported in [27]). Balaban [16]
gave a deterministic algorithm that solves this problem optimally both in time and space.

On a separate front, the problem of finding intersecting pairs of segments from two different sets
was considered. This is called bichromatic line segment intersection problem.

Chazelle et al. [29] used hereditary segment trees structure and fractional cascading and solved both
segment intersection reporting and counting problems optimally in O(n log n) time and O(n) space.
(The termF should be included in case of reporting.) If the two sets of line segments form connected
subdivisions, then merging or overlaying these two subdivisions can be computed in O(n +F) [50].
Boissonnat and Snoeyink [20] gave yet another optimal algorithm for the bichromatic line segment
intersection problem, taking into account the notion of algebraic degree proposed by Liotta et al. [69].

The rectangle intersection reporting problem arises in the design of VLSI, in which each rect-
angle is used to model a certain circuitry component. These rectangles are isothetic, i.e., their
sides are all parallel to the coordinate axes. This is a well-studied classical problem, and opti-
mal algorithms (O(n log n + F) time) have been reported. See [4] for more information. The
k-dimensional hyperrectangle intersection reporting (respectively, counting) problem can be solved
in O(nk−2 log n+F) time and O(n) space (respectively, in time O(nk−1 log n)and space O(nk−2 log n)).
Gupta et al. [53] gave an O(n log n log log n + F log log n)-time and linear-space algorithm for the
rectangle enclosure reporting problem that calls for finding all the enclosing pairs of rectangles.

2.8.3 Intersection Computation

Computing the actual intersection is a basic problem, whose efficient solutions often lead to better
algorithms for many other problems.

Consider the problem of computing the common intersection of half-planes by divide-and-
conquer. Efficient computation of the intersection of the two convex polygons is required during the
merge step. The intersection of the two convex polygons can be solved very efficiently by plane-sweep
in linear time, taking advantage of the fact that the edges of the input polygons are ordered. Observe
that in each vertical strip defined by the two consecutive sweep-lines, we only need to compute the
intersection of two trapezoids, one derived from each polygon [90].

The problem of the intersecting two convex polyhedra was first studied by Muller and Preparata
[90], who gave an O(n log n) algorithm by reducing the problem to the problems of intersection
detection and convex hull computation. Following this result one can easily derive an O(n log2 n)

algorithm for computing the common intersection of n half-spaces in three dimensions by divide-
and-conquer. However, using geometric duality and the concept of separating plane, Preparata
and Muller [90] obtained an O(n log n) algorithm for computing the common intersection of n
half-spaces, which is asymptotically optimal. There appears to be a difference in the approach to
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solving the common intersection problem of half-spaces in two and three dimensions. In the latter, we
resorted to geometric duality instead of divide-and-conquer. This inconsistency was later resolved.
Chazelle [24] combined the hierarchical representation of convex polyhedra, geometric duality, and
other ingenious techniques to obtain a linear time algorithm for computing the intersection of two
convex polyhedra. From this result, several problems can be solved optimally: (1) the common
intersection of half-spaces in three dimensions can now be solved by divide-and-conquer optimally,
(2) the merging of two Voronoi diagrams in the plane can be done in linear time by observing
the relationship between the Voronoi diagram in two dimensions and the convex hull in three
dimensions (cf. Section 1.2), and (3) the medial axis of a simple polygon or the Voronoi diagram of
vertices of a convex polygon [5] can be solved in linear time.

2.9 Research Issues and Summary

We have covered in this chapter a number of topics in computational geometry, including proximity,
optimization, planar point location, geometric matching, path planning, searching, and intersection.
These topics discussed here and in the previous chapter are not meant to be exhaustive. New topics
arise as the field continues to flourish.

In Section 2.3, we discussed the problems of the smallest enclosing circle and the largest empty
circle. These are the two extremes: either the circle is empty or it contains all the points. The
problem of finding the smallest (respectively, largest) circle containing at least (respectively, at most)
k points for some integer 0 ≤ k ≤ n is also a problem of interest. Moreover, the shape of the object
is not limited to circles. A number of open problems remain. Given two points s and t in a simple
polygon, is it NP-complete to decide whether there exists a path with at most k links and of length
at most L? What is the complexity of the shortest k-pair noncrossing path problem discussed in
Section 2.4? Does there exist an algorithm for finding the Eucliedan shortest path in a general
polygonal demain of h obstacles and n vertices in O(n + h log h) time and O(n) space? How fast
can one solve the geodesic minimum matching problem for 2m points in the presence of polygonal
obstacles? Can one solve the largest empty restricted rectangle problem for a rectilinear polygon in
O(n log n) time? The best known algorithm to date runs in O(n log2 n) time [36]. Is Ω(n log n) a
lower bound of the minimum-width annulus problem? Can the technique used in [51] be applied to
the polygonal case to yield an O(n log n)-time algorithm for the minimum-width annulus problem?
In [76] Mitchell listed a few open problems worth studying. Although the minimum spanning tree
problem for general graph with m edges and n vertices can be solved optimally in O(T ∗(m, n))

time, where T ∗ is the minimum number of edge-weight comparisons and T ∗(m, n) = Ω(m) and
T ∗(m, n) = O(m · α(m, n)), where α(m, n) is the inverse of Ackermann’s function [88], an optimal
algorithm for the Euclidean minimum spanning tree is still open. The problem of finding a spanning
tree of bounded cost and bounded diameter is known to be NP-complete [96], but there is no known
approximation algorithm to date.

Researchers in computational geometry have begun to address the issues concerning the actual
running times of the algorithms and their robustness when the computations in their implementa-
tions are not exact [106]. It is understood that the real-RAM computation model with an implicit
infinite-precision arithmetic is unrealistic in practice. In addition to the robustness issue concern-
ing the accuracy of the output of an algorithm, one needs to find a new cost measure to evaluate
the efficiency of an algorithm. In the infinite-precision model, the asymptotic time complexity was
accepted as an adequate cost measure. However, when the input data have a finite-precision repre-
sentation and computation time varies with the precision required, an alternative cost measure is
warranted. The notion of the degree of a geometric algorithm could be an important cost measure
for comparing the efficiency of the algorithms when they are actually implemented [69]. For exam-
ple, Chen et al. [33] showed that the Voronoi diagram of a set of arbitrarily oriented segments can
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be constructed by a plane-sweep algorithm with degree 14 for certain regular k-gon metrics. This
notion of the degree of robustness could play a similar role as the asymptotic time complexity has in
the past for the real-RAM computation model.

On the applied side, there are efforts put into development of geometric software. A project known
as the Computational Geometry Algorithms Library (CGAL) project (http://www.cgal.org/) [49] is
an ongoing collaborative effort of researchers in Europe to organize a system library containing
primitive geometric abstract data types useful for geometric algorithm developers. This is concur-
rent with the Library of Efficient Data Types and Algorithms (LEDA) project [73] which was initiated
at the Max-Planck-Institut für Informatik, Saarbrücken, Germany, and now maintained by Algo-
rithmic Solutions Software GmbH (http://www.algorithmic-solutions.com/leda/about/index.htm.)
LEDA is a C++ class library for efficient data types and algorithms, and provides algorithmic
in-depth knowledge in geometric computing, combinatorial optimization, etc. In Asia, a web-
collaboratory project was initiated at the Institute of Information Science and the Research Center
for Information Technology Innovation, Academia Sinica, from which a geometric algorithm
visualization and debugging system, GeoBuilder, for 2D and 3D geometric computing has been devel-
oped (http://webcollab.iis.sinica.edu.tw/Components/GeoBuilder/). This system facilitates geomet-
ric algorithmic researchers in not only testing their ideas and demonstrating their findings, but also
teaching algorithm design in the classroom. GeoBuilder is embedded into a knowledge portal [64],
called OpenCPS (Open Computational Problem Solving) (http://www.opencps.org/), as a practice
platform for a course on geometric computing and algorithm visualization. The GeoBuilder system
possesses three important features: First, it is a platform-independent software system based on
Java’s promise of portability, and can be invoked by Sun’s Java Web Start technology in any browser-
enabled environment. Second, it has the collaboration capability for multiple users to concurrently
develop programs, manipulate geometric objects and control the camera. Finally, its 3D geometric
drawing bean provides an optional function that can automatically position the camera to track 3D
objects during algorithm visualization [102]. GeoBuilder develops its rich client platform based on
Eclipse RCP and has already built in certain functionalities such as remote addition, deletion, and
saving of files as well as remote compiling, and execution of LEDA C/C++ programs, etc. based on
a multipage editor. Other projects related to the efforts of building geometric software or problem-
solving environment, include GeoLab, developed at the Institute of Computing at UNICAMP
(State University of Campinas) as a programming environment for implementation, testing, and
animation of geometric algorithms (http://www.dcc.unicamp.br/∼rezende/GeoLab.htm), and XYZ
GeoBench, developed at Zürich, as a programming environment on Macintosh computers for geo-
metric algorithms, providing an interactive user interface similar to a drawing program which can
be used to create and manipulate geometric objects such as points, line segments, polygons, etc.
(http://www.schorn.ch/geobench/XYZGeoBench.html).

2.10 Further Information

Additional references about various variations of closest pair problems can be found in [17,21,60,95].
For additional results concerning the Voronoi diagrams in higher dimensions and the duality trans-
formation see [15]. For more information about Voronoi diagrams for sites other than points, in
various distance functions or norms, see [10,19,81,85,87,93]. A recent textbook by de Berg et al. [37]
contains a very nice treatment of computational geometry in general. The book by Narasimhan and
Smid [79] covers topics pertaining to geometric spanner networks. More information can be found in
[52,63,93,105]. The reader who is interested in parallel computational geometry is referred to [13].
For current research activities and results, the reader may consult the Proceedings of the Annual
ACM Symposium on Computational Geometry, Proceedings of the Annual Canadian Conference
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on Computational Geometry and the following three journals: Discrete & Computational Geome-
try, International Journal of Computational Geometry & Applications, and Computational Geometry:
Theory and Applications. The following site http://compgeom.cs.uiuc.edu/∼jeffe/compgeom/
biblios.html contains close to 14,000 entries of bibliography in this field.

Those who are interested in the implementations or would like to have more information about
available software can consult http://www.cgal.org/.

The following WWW page on Geometry in Action maintained by David Eppstein at http://www.
ics.uci.edu/∼eppstein/geom.html and the Computational Geometry Page by J. Erickson at http://
compgeom.cs.uiuc.edu/∼jeffe/compgeom give a comprehensive description of research activities of
computational geometry.

Defining Terms

ANSI: American National Standards Institute.
Bisector: A bisector of two elements ei and ej is defined to be the locus of points equidistant from
both ei and ej. That is, {p|d(p, ei) = d(p, ej)}. For instance, if ei and ej are two points in the Euclidean
plane, the bisector of ei and ej is the perpendicular bisector to the line segment ei, ej.

Cutting theorem: This theorem [25] states that for any set H of n hyperplanes in �k, and any
parameter r, 1 ≤ r ≤ n, there always exists a (1/r)-cutting of size O(rk). In two dimensions, a (1/r)-
cutting of size s is a partition of the plane into s disjoint triangles, some of which are unbounded,
such that no triangle in the partition intersects more than n/r lines inH. In �k, triangles are replaced
by simplices. Such a cutting can be computed in O(nrk−1) time.
Decomposable searching problems: A searching problem with query Q is decomposable if there
exists an efficiently computable associative, and commutative binary operator @ satisfying the
condition: Q(x, A ∪ B) = @(Q(x, A), Q(x, B)). In other words, one can decompose the searched
domain into subsets, find answers to the query from these subsets, and combine these answers to
form the solution to the original problem.
Degree of an algorithm or problem: Assume that each input variable is of arithmetic degree 1 and
that the arithmetic degree of a polynomial is the common arithmetic degree of its monomials, whose
degree is defined to be the sum of the arithmetic degrees of its variables. An algorithm has degree
d, if its test computation involves evaluation of multivariate polynomials of arithmetic degree d.
A problem has degree d, if any algorithm that solves it has degree at least d [69].
Diameter of a graph: The distance between two vertices u and v in a graph is the sum of weights of
the edges of the shortest path between them. (For an unweighted graph, it is the number of edges
of the shortest path.) The diameter of a graph is the maximum among all the distances between all
possible pairs of vertices.
Dynamic versus static: This refers to cases when the underlying problem domain can be subject to
updates, i.e., insertions and deletions. If no updates are permitted, the problem or data structure is
said to be static; otherwise, it is said to be dynamic.
Dynamization transformation: A data structuring technique can transform a static data structure
into a dynamic one. In so doing, the performance of the dynamic structure will exhibit certain
space-time trade-offs. See, e.g., [63,90] for more references.
Geometric duality: A transform between a point and a hyperplane in �k, that preserves incidence
and order relation. For a point p = (μ1, μ2, . . . , μk), its dual D(p) is a hyperplane denoted by
xk = Σk−1

j=1 μjxj − μk; for a hyperplane H : xk = Σk−1
j=1 μjxj + μk, its dual D(H) is a point denoted by

(μ1, μ2, . . . , −μk). There are other duality transformations. What is described in the text is called
the paraboloid transform. See [37,44,90] for more information.
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Height-balanced binary search tree: A data structure used to support membership, insert/delete
operations each in time logarithmic in the size of the tree. A typical example is the AVL tree or
red-black tree.
Orthogonally convex rectilinear polygon: A rectilinear polygon P is orthogonally convex if every
horizontal or vertical segment connecting two points in P lies totally within P.
Priority queue: A data structure used to support insert and delete operations in time logarithmic in
the size of the queue. The elements in the queue are arranged so that the element of the minimum
priority is always at one end of the queue, readily available for delete operation. Deletions only take
place at that end of the queue. Each delete operation can be done in constant time. However, since
restoring the above property after each deletion takes logarithmic time, we often say that each delete
operation takes logarithmic time. A heap is a well-known priority queue.
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3.1 Introduction

According to the Oxford English Dictionary, the word topology is derived from topos (τóπoς)
meaning place, and -logy (λoγια), a variant of the verb λέγειν, meaning to speak. As such, topology
speaks about places: how local neighborhoods connect to each other to form a space. Computational
topology, in turn, undertakes the challenge of studying topology using a computer.

The field of geometry studies intrinsic properties that are invariant under rigid motion, such as the
curvature of a surface. In contrast, topology studies invariants under continuous deformations. The
larger set of transformations enables topology to extract more qualitative information about a space,
such as the number of connected components or tunnels. Computational topology has theoretical
and practical goals. Theoretically, we look at the tractability and complexity of each problem, as well
as the design of efficient data structures and algorithms. Practically, we are interested in heuristics
and fast software for solving problems that arise in diverse disciplines. Our input is often a finite
discrete set of noisy samples from some underlying space. This type of input has renewed interest
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in combinatorial and algebraic topology, areas that had been overshadowed by point set topology in
the last one hundred years.

Computational topology developed in response to topological impediments emerging from within
geometric problems. In computer graphics, researchers encountered the problem of connectivity in
reconstructing watertight surfaces from point sets. Often, their heuristics resulted in surfaces with
extraneous holes or tunnels that had to be detected and removed before proper geometric processing
was feasible. Researchers in computational geometry provided guaranteed surface reconstruction
algorithms that depended on sampling conditions on the input. These results required concepts from
topology, provoking an interest in the subject. Topological problems also arise naturally in areas
that do not deal directly with geometry. In robotics, researchers need to understand the connectivity
of the configuration space of a robot for computing optimal trajectories that minimize resource
consumption. In biology, the thermodynamics hypothesis states that proteins fold to their native
states along such optimal trajectories. In sensor networks, determining coverage without localizing
the sensors requires deriving global information from local connections. Once again the question of
connectivity arises, steering us toward a topological understanding of the problem.

Like topology, computational topology is a large and diverse area. The aim of this chapter is
not to be comprehensive, but to describe the fundamental concepts, methods, and structures that
permeate the field. We begin with our objects of study, topological spaces and their combinatorial
representations, in Section 3.2. We study these spaces through topological invariants, which we
formalize in Section 3.3, classifying all surfaces, and introducing both combinatorial and algebraic
invariants in the process. Sections 3.4 and 3.5 focus on homology and persistent homology, which are
algebraic invariants that derive their popularity from their computability. Geometry and topology
are intrinsically entangled, as revealed by Morse theory through additional structures in Section 3.6.
For topological data analysis, we describe methods for deriving combinatorial structures that rep-
resent point sets in Section 3.7. We end the chapter with a brief discussion of geometric issues in
Section 3.8.

3.2 Topological Spaces

The focus of this section is topological spaces: their definitions, finite representations, and data
structures for efficient manipulation.

3.2.1 Topology

Metric spaces are endowed with a metric that defines open sets, neighborhoods, and continuity.
Without a metric, we must prescribe enough structures to extend these concepts. Intuitively, a
topological space is a set of points, each of which knows its neighbors. A topology on a set X is a
subset T ⊆ 2X such that:

1. If S1, S2 ∈ T, then S1 ∩ S2 ∈ T.
2. If {SJ | j ∈ J} ⊆ T, then ∪j∈JSj ∈ T.
3. ∅, X ∈ T.

A set S ∈ T is an open set and its complement in X is closed. The pair X = (X, T) is a topological
space. A set of points may be endowed with different topologies, but we will abuse notation by using
p ∈ X for p ∈ X.

A function f : X → Y is continuous, if for every open set A in Y, f −1(A) is open in X. We call a
continuous function a map. The closure A of A is the intersection of all closed sets containing A. The
interior

◦
A of A is the union of all open sets contained in A. The boundary ∂A of A is ∂A = A − ◦

A.
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(a) S1 (b) S2 (d) P2 (e) Klein bottle(c) Torus with ∂

FIGURE 3.1 Manifolds. (a) The only compact connected one-manifold is a circle S
1. (b) The sphere is a two-manifold.

(c) The surface of a donut, a torus, is also a two-manifold. This torus has two boundaries, so it is a manifold with
boundary. Its boundary is two circles, a one-manifold. (d) A Boy’s surface is a geometric immersion of the projective
plane P

2, a nonorientable two-manifold. (e) The Klein bottle is another nonorientable two-manifold.

A neighborhood of x ∈ X is any S ∈ T such that x ∈ ◦
S. A subset A ⊆ X with induced topology

TA = {S ∩ A | S ∈ T} is a subspace of X. A homeomorphism f : X → Y is a 1-1 onto function
such that both f and f −1 are continuous. We say that X is homeomorphic to Y, X and Y have the
same topological type, and denote it as X ≈ Y.

3.2.2 Manifolds

A topological space may be viewed as an abstraction of a metric space. Similarly, manifolds generalize
the connectivity of d-dimensional Euclidean spaces R

d by being locally similar, but globally different.
A d-dimensional chart at p ∈ X is a homeomorphism ϕ : U → R

d onto an open subset of R
d, where

U is a neighborhood of p and open is defined using the metric (Apostol, 1969). A d-dimensional
manifold (d-manifold) is a (separable Hausdorff) topological space X with a d-dimensional chart
at every point x ∈ X. We do not define the technical terms separable and Hausdorff as they mainly
disallow pathological spaces. The circle or 1-sphere S

1 in Figure 3.1a is a 1-manifold as every point
has a neighborhood homeomorphic to an open interval in R

1. All neighborhoods on the 2-sphere
S

2 in Figure 3.1b are homeomorphic to open disks, so S
2 is a two-manifold, also called a surface.

The boundary ∂X of a d-manifold X is the set of points in X with neighborhoods homeomorphic to
H

d = {x ∈ R
d | x1 ≥ 0}. If the boundary is nonempty, we say X is a manifold with boundary. The

boundary of a d-manifold with boundary is always a (d−1)-manifold without boundary. Figure 3.1c
displays a torus with boundary, the boundary being two circles.

We may use a homeomorphism to place one manifold within another. An embedding g : X → Y

is a homeomorphism onto its image g(X). This image is called an embedded submanifold, such as
the spaces in Figure 3.1a through c. We are mainly interested in compact manifolds. Again, this is a
technical definition that requires the notion of a limit. For us, a compact manifold is closed and can
be embedded in R

d so that it has a finite extent, i.e. it is bounded. An immersion g : X → Y of a
compact manifold is a local embedding: an immersed compact space may self-intersect, such as the
immersions in Figure 3.1d and e.

3.2.3 Simplicial Complexes

To compute information about a topological space using a computer, we need a finite representation
of the space. In this section, we represent a topological space as a union of simple pieces, deriving
a combinatorial description that is useful in practice. Intuitively, cell complexes are composed of
Euclidean pieces glued together along seams, generalizing polyhedra. Due to their structural sim-
plicity, simplicial complexes are currently a popular representation for topological spaces, so we
describe their construction.
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v1
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(a) Vertex [v0] (b) Edge [v0, v1] (d) Tetrahedron [v0, v1, v2, v3] (c) Triangle [v0, v1, v2]

FIGURE 3.2 Oriented k-simplices, 0 ≤ k ≤ 3. An oriented simplex induces orientation on its faces, as shown for the
edges of the triangle and two faces of the tetrahedron.

(a) A simplicial complex
v0

v1

v2

v3

v5
v4

(b) Missing edge (c) Shared partial edge (d) Nonface intersection

FIGURE 3.3 A simplicial complex (a) and three unions (b, c, d) that are not complexes. The triangle (b) does not
have all its faces, and (c, d) have intersections not along shared faces.

A k-simplex σ is the convex hull of k + 1 affinely independent points S = {v0, v1, . . . , vk}, as
shown in Figure 3.2. The points in S are the vertices of the simplex. A k-simplex σ is a k-dimensional
subspace of R

d, dim σ = k. Since the defining points of a simplex are affinely independent, so is
any subset of them. A simplex τ defined by a subset T ⊆ S is a face of σ and has σ as a coface. For
example, the triangle in Figure 3.2c is a coface of eight faces: itself, its three edges, three vertices, and
the (−1)-simplex defined by the empty set, which is a face of every simplex. A simplicial complex
K is a finite set of simplices such that every face of a simplex in K is also in K, and the nonempty
intersection of any two simplices of K is a face of each of them. The dimension of K is the dimension
of a simplex with the maximum dimension in K. The vertices of K are the zero-simplices in K.
Figure 3.3 displays a simplicial complex and several badly formed unions. A simplex is maximal, if
it has no proper coface in K. In the simplicial complex in the figure, the triangles and the edge v1v2
are maximal.

The underlying space |K| of a simplicial complex K is the topological space |K| = ∪σ∈Kσ, where
we regard each simplex as a topological subspace. A triangulation of a topological space X is a
simplicial complex K such that |K| ≈ X. We say X is triangulable, when K exists. Triangulations
enable us to represent topological spaces compactly as simplicial complexes. For instance, the surface
of the tetrahedron in Figure 3.2d is a triangulation of the sphere S

2 in Figure 3.1b. Two simplicial
complexes K and L are isomorphic iff |K| ≈ |L|.

We may also define simplicial complexes without utilizing geometry, thereby revealing their
combinatorial nature. An abstract simplicial complex is a set S of finite sets such that if A ∈ S ,
so is every subset of A. We say A ∈ S is an (abstract) k-simplex of dimension k, if |A| = k + 1.
A vertex is a 0-simplex, and the face and coface definitions follow as before. Given a (geometric)
simplicial complex K with vertices V , let S be the collection of all subsets {v0, v1, . . . , vk} of V such
that the vertices v0, v1, . . . , vk span a simplex of K. The collection S is the vertex scheme of K
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and is an abstract simplicial complex. For example, the vertex scheme of the simplicial complex in
Figure 3.3a is:⎧⎪⎪⎨

⎪⎪⎩
∅,
{v0}, {v1}, {v2}, {v3}, {v4}, {v5},
{v0, v1}, {v0, v5}, {v1, v2}, {v1, v4}, {v1, v5}, {v2, v3}, {v2, v4}, {v3, v4}, {v4, v5},
{v0, v1, v5}, {v1, v4, v5}, {v2, v3, v4}

⎫⎪⎪⎬
⎪⎪⎭ (3.1)

LetS1 andS2 be abstract simplicial complexes with vertices V1 and V2, respectively. An isomorphism
between S1 and S2 is a bijection ϕ : V1 → V2, such that the sets in S1 and S2 are the same under
the renaming of the vertices by ϕ and its inverse.

There is a strong relationship between the geometric and abstract definitions. Every abstract
simplicial complex S is isomorphic to the vertex scheme of some simplicial complex K, which is its
geometric realization. For example, Figure 3.3a is a geometric realization of vertex scheme (3.1).
Two simplicial complexes are isomorphic iff their vertex schemes are isomorphic. As we shall see in
Section 3.7, we usually compute simplicial complexes using geometric techniques, but discard the
realization and focus on its topology as captured by the vertex scheme. As such, we refer to abstract
simplicial complexes simply as simplicial complexes from now on.

A subcomplex is a subset L ⊆ K that is also a simplicial complex. An important subcomplex is
the k-skeleton, which consists of simplices in K of dimension less than or equal to k. The smallest
subcomplex containing a subset L ⊆ K is its closure, Cl L = {τ ∈ K | τ ⊆ σ ∈ L}. The star of
L contains all of the cofaces of L, St L = {σ ∈ K | σ ⊇ τ ∈ L}. The link of L is the boundary of
its star, Lk L = Cl St L − St (Cl L − {∅}). Stars and links correspond to open sets and boundaries in
topological spaces.

Suppose we fix an order on the set of vertices. An orientation of a k-simplex σ ∈ K, σ =
{v0, v1, . . . , vk}, vi ∈ K is an equivalence class of orderings of the vertices of σ, where (v0, v1, . . . , vk) ∼
(vτ(0), vτ(1), . . . , vτ(k)) are equivalent orderings if the parity of the permutation τ is even. An oriented
simplex is a simplex with an equivalence class of orderings, denoted as a sequence [σ]. We may show
an orientation graphically using arrows, as in Figure 3.2. An oriented simplex induces orientations
on its faces, where we drop the vertices not defining a face in the sequence to get the orientation. For
example, triangle [v0, v1, v2] induces oriented edge [v0, v1]. Two k-simplices sharing a (k − 1)-face
τ are consistently oriented, if they induce different orientations on τ. A triangulable d-manifold is
orientable if all d-simplices in any of its triangulations can be oriented consistently. Otherwise, the
d-manifold is nonorientable.

3.2.4 Data Structures

There exist numerous data structures for storing cell complexes, especially simplicial complexes. In
triangulations, all simplices are maximal and have the same dimension as the underlying manifold.
For instance, all the maximal simplices of a triangulation of a two-manifold, with or without
boundary, are triangles, so we may just store triangles and infer the existence of lower-dimensional
simplices. This is the basic idea behind triangle soup file formats for representing surfaces in graphics,
such as OBJ or PLY.

For topological computation, we require quick access to our neighbors. The key insight is to
store both the complex and its dual at once, as demonstrated by the quadedge data structure for
surfaces (Guibas and Stolfi, 1985). This data structure focuses on a directed edge e, from its origin
Org(e) to its destination Dest(e). Each directed edge separates two regions to its left and right,
as shown in Figure 3.4a. The data structure represents each edge in the triangulation with four
edges: the original edge and edges Rot(e) directed from right to left, Sym(e) from Dest(e) to Org(e),
and Tor(e) from left to right, as shown in Figure 3.4b. The edges e and Sym(e) are in primal
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FIGURE 3.4 The quadedge data structure. (a) A directed edge e from Org(e) to Dest(e). (b) A quadedge is composed
of four edges: e, Sym(e) from Dest(e) to Org(e), and dual edges Rot(e) and Tor(e) that go from right to left and in
reverse, respectively. The edges are stored together in a single data structure. (c) A portion of a triangulation overlaid
with dashed dual edges and quadedge data structure.

space and the edges Rot(e) and Tor(e) are in dual space. Intuitively, we get these edges by rotating
counterclockwise by 90◦ repeatedly, moving between primal and dual spaces. In addition to storing
geometric data, each edge also stores a pointer to the next counterclockwise edge with the same
origin, returning it with operation Onext(e). Figure 3.4c shows a portion of a triangulation, its
dual, and its quadedge data structure. The quadedge stores the four edges together in a single data
structure, so all operations are O(1). The operations form an edge algebra that allows us to walk
quickly across the surface. For example, to get the next clockwise edge with the same origin, we can
define Oprev ≡ Rot ◦ Onext ◦ Rot, as can be checked readily on Figure 3.4c.

For arbitrary-dimensional simplicial complexes, we begin by placing a full ordering on the vertices.
We then place all simplices in a hash table, using their vertices as unique keys. This allows for O(1)

access to faces, but not to cofaces, which require an inverse lookup table.

Computing orientability. Access to the dual structure enables easy computation of many topo-
logical properties, such as orientability. Suppose K is a cell complex whose underlying space is
d-manifold. We begin by orienting one cell arbitrarily. We then use the dual structure to consistently
orient the neighboring cells. We continue to spread the orientation until either all the cells are
consistently oriented, or we arrive at a cell that is inconsistently oriented. In the former case, K is ori-
entable, and in the latter, it is nonorientable. This algorithm takes time O(nd), where nd is the number
of d-cells.

3.3 Topological Invariants

In the last section, we focused on topological spaces and their combinatorial representations. In this
section, we examine the properties of topologically equivalent spaces. The equivalence relation for
topological spaces is the homeomorphism, which places spaces of the same topological type into the
same class. We are interested in intrinsic properties of spaces within each class, that is, properties
that are invariant under homeomorphism. Therefore, a fundamental problem in topology is the
homeomorphism problem: Can we determine whether two objects are homeomorphic?

As we shall see, the homeomorphism problem is computationally intractable for manifolds of
dimensions greater than three. Therefore, we often look for partial answers in the form of invariants.
A topological invariant is a map f that assigns the same object to spaces of the same topological
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type, that is:

X ≈ Y =⇒ f (X) = f (Y) (3.2)

f (X) �= f (Y) =⇒ X �≈ Y (contrapositive) (3.3)

f (X) = f (Y) =⇒ nothing (in general) (3.4)

Note that an invariant is only useful through the contrapositive. The trivial invariant assigns the
same object to all spaces and is therefore useless. The complete invariant assigns different objects
to nonhomeomorphic spaces, so the inverse of the implication (3.2) is true. Most invariants fall in
between these two extremes. A topological invariant implies a classification that is coarser than, but
respects, the topological type. In general, the more powerful an invariant, the harder it is to compute
it, and as we relax the classification to be coarser, the computation becomes easier. In this section,
we learn about several combinatorial and algebraic invariants.

3.3.1 Topological Type for Manifolds

For compact manifolds, the homeomorphism problem is well understood. In one dimension, there
is only a single manifold, namely S

1 in Figure 3.1a, so the homeomorphism problem is trivially
solved. In two dimensions, the situation is more interesting, so we begin by describing an operation
for connecting manifolds. The connected sum of two d-manifolds M1 and M2 is

M1 # M2 = M1 − D
d
1

⋃
∂D

d
1=∂D

d
2

M2 − D
d
2, (3.5)

where D
d
1 and D

d
2 are d-dimensional disks in M1 and M2, respectively. In other words, we cut out two

disks and glue the manifolds together along the boundary of those disks using a homeomorphism,
as shown in Figure 3.5 for two tori. The connected sum of g tori or g projective planes (Figure 3.1d)
is a surface of genus g, and the former has g handles.

Using the connected sum, the homeomorphism problem is fully resolved for compact two-
manifolds: Every triangulable compact surface is homeomorphic to a sphere, the connected sum of
tori, or the connected sum of projective planes. Dehn and Heegaard (1907) give the first rigorous
proof of this result. Rado (1925) completes their proof by showing that all compact surfaces are
triangulable. A classic approach for this proof represents surfaces with polygonal schema, polygons
whose edges are labeled by symbols, as shown in Figure 3.6 (Seifert and Threlfall, 2003). There are
two edges for each symbol, and a represents an edge in the direction opposite to edge a. If we glue the
edges according to direction, we get a compact surface. There is a canonical form of the polygonal
schema for all surfaces. For the sphere, it is the special 2-gon in Figure 3.6a. For orientable manifolds

(a) Torus minus disk (b) Torus minus disk (c) Double torus

FIGURE 3.5 Connected sum. We cut out a disk from each two-manifold and glue the manifolds together along the
boundary of those disks to get a larger manifold. Here, we sum two tori to get a surface with two handles.
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FIGURE 3.6 Canonical forms for polygonal schema. The edges are glued according to the directions. (a) The sphere
S

2 has a special form. (b) A genus g orientable manifold is constructed of a 4g-gon with the specified gluing pattern,
so this is the double torus in Figure 3.5c. Adding diagonals, we triangulate the polygon to get a canonical triangulation
for the surface. (c) A genus g nonorientable manifold is constructed out of a 2g-gon with the specified gluing pattern.
This 4-gon is the Klein bottle in Figure 3.1e, the connected sum of two projective planes in Figure 3.1d.

with genus g, it is a 4g-gon with form a1b1a1b1 . . . agbgagbg , as shown for the genus two torus
in Figure 3.6b. For nonorientable manifolds with genus g, it is a 2g-gon with form a1a1 . . . agag ,
as shown for the genus two surface (Klein bottle) in Figure 3.6c. On the surface, the edges of the
polygonal schema form loops called canonical generators. We can cut along these loops to flatten
the surface into a topological disk, that is, the original polygon. We may also triangulate the polygon
to get a minimal triangulation with a single vertex called the canonical triangulation, as shown in
Figure 3.6b for the double torus.

In dimensions four and higher, Markov (1958) proves that the homeomorphism problem is
undecidable. For the remaining dimension, d = 3, the problem is harder to resolve. Thurston (1982)
conjectures that three-manifolds may be decomposed into pieces with uniform geometry in his
geometrization program. Grigori Perelman completes Thurston’s program in 2003 by eliminating
geometric singularities that may arise from Ricci flow on the manifolds (Morgan and Tian, 2007).

Computing schema and generators. Brahana (1921) gives an algorithm for converting a polygonal
schema into its canonical form. Based on this algorithm, Vegter and Yap (1990) present an algorithm
for triangulated surfaces that runs in O(n log n) time, where n is the size of the complex. They also
sketch an optimal algorithm for computing the canonical generators in O(gn) time for a surface
of genus g. For orientable surfaces, Lazarus et al. (2001) simplify this algorithm, describe a second
optimal algorithm for computing canonical generators, and implement both algorithms. Canonical
generators may be viewed as a one-vertex graph whose removal from the surface gives us a polygon.
A cut graph generalizes this notion as any set of edges whose removal transforms the surface to
a topological disk, a noncanonical schema. Dey and Schipper (1995) compute a cut graph for cell
complexes via a breadth-first search of the dual graph.

3.3.2 The Euler Characteristic

Since the homeomorphism problem can be undecidable, we resort to invariants for classifying spaces.
Let K be any cell complex and nk be the number of k-dimensional cells in K. The Euler characteristic
χ(K) is

χ(K) =
dim K∑
k=0

(−1)knk. (3.6)
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The Euler characteristic is an integer invariant for |K|, so we get the same integer for different
complexes with the same underlying space. For instance, the surface of the tetrahedron in Figure 3.2d
is a triangulation of the sphere S

2 and we have χ(S2) = 4 − 6 + 4 = 2. A cube is a cell complex
homeomorphic to S

2, also giving us χ(S2) = 8 − 12 + 6 = 2.
For compact surfaces, the Euler characteristic, along with orientability, provides us with a complete

invariant. Recall the classification of surfaces from Section 3.3.1. Using small triangulations, it is
easy to show χ(Torus) = 0 and χ(P2) = 1. Similarly, we can show that for compact surfaces M1
and M2, χ(M1 # M2) = χ(M1) + χ(M2) − 2. We may combine these results to compute the Euler
characteristic of connected sums of manifolds. Let Mg be the connected sum of g tori and Ng be the
connected sum of g projective planes. Then, we have

χ(Mg) = 2 − 2g, (3.7)

χ(Ng) = 2 − g. (3.8)

Computing topological types of 2-manifolds. We now have a two-phase algorithm for determin-
ing the topological type of an unknown triangulated compact surface M: (1) Determine orientability
and (2) compute χ(M). Using the algorithm in Section 3.2.4, we determine the orientability in O(n2),
where n2 is the number of triangles in M. We then compute the Euler characteristic using Equa-
tion 3.6 in O(n), where n is the size of M. The characteristic gives us g, completing the classification
of M in linear time.

3.3.3 Homotopy

A homotopy is a family of maps ft : X → Y, t ∈ [0, 1], such that the associated map F : X×[0, 1] →
Y given by F(x, t) = ft(x) is continuous. Then, f0, f1 : X → Y are homotopic via the homotopy ft ,
denoted f0 � f1. A map f : X → Y is a homotopy equivalence, if there exists a map g : Y → X,
such that f ◦ g � 1Y and g ◦ f � 1X, where 1X and 1Y are the identity maps on the respective spaces.
Then, X and Y are homotopy equivalent and have the same homotopy type, denoted as X � Y.
The difference between the two spaces being homeomorphic versus being homotopy equivalent is in
what the compositions of the two functions f and g are forced to be: In the former, the compositions
must be equivalent to the identity maps; in the latter, they only need to be homotopic to them. A space
with the homotopy type of a point is contractible or is null-homotopic. Homotopy is a topological
invariant since X ≈ Y ⇒ X � Y. Markov’s undecidability proof for the homeomorphism problem
extends to show undecidability for homotopy equivalence for d-manifolds, d ≥ 4 (Markov, 1958).

A deformation retraction of a space X onto a subspace A is a family of maps ft : X → X, t ∈ [0, 1]
such that f0 is the identity map, f1(X) = A, and ft|A, the restriction of ft to A, is the identity map
for all t. The family ft should be continuous in the sense described above. Note that f1 and the
inclusion i : A → X give a homotopy equivalence between X and A. For example, a cylinder is not
homeomorphic to a circle, but homotopy equivalent to it, as we may continuously shrink a cylinder
to a circle via a deformation retraction.

Computing homotopy for curves. Within computational geometry, the homotopy problem has
been studied for curves on surfaces: Are two given curves homotopic? Suppose the curves are
specified by n line segments in the plane, with n point obstacles, such as holes. Cabello et al. (2004)
give an efficient O(n log n) time algorithm for simple paths, and an O(n3/2 log n) time algorithm
for self-intersecting paths. For the general case, assume we have two closed curves of size k1 and
k2 on a genus g two-manifold M, represented by a triangulation of size n. Dey and Guha (1999)
utilize combinatorial group theory to give an algorithm that decides if the paths are homotopic in
O(n + k1 + k2) time and space, provided g �= 2 if M is orientable, or g �= 3, 4 if M is nonorientable.

When one path is a point, the homotopy problem reduces to asking whether a closed curve is
contractible. This problem is known also as the contractibility problem. While the above algorithms
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apply, the problem has been studied on its own. For a curve of size k on a genus g surface, Dey and
Schipper (1995) compute a noncanonical polygonal schema to decide contractibility in suboptimal
O(n + k log g) time and O(n + k) space.

3.3.4 The Fundamental Group

The Euler characteristic is an invariant that describes a topological space via a single integer.
Algebraic topology gives invariants that associate richer algebraic structures with topological spaces.
The primary mechanism is via functors, which not only provide algebraic images of topological
spaces, but also provide images of maps between the spaces. In the remainder of this section and the
next two sections, we look at three functors as topological invariants.

The fundamental group captures the structure of homotopic loops within a space. A path in X

is a continuous map f : [0, 1] → X. A loop is a path f with f (0) = f (1), that is, a loop starts and
ends at the same basepoint. The trivial loop never leaves its basepoint. The equivalence class of a
path f under the equivalence relation of homotopy is [f ]. A loop that is the boundary of a disk is a
boundary and since it is contractible, it belongs to the class of the trivial loop. Otherwise, the loop is
nonbounding and belongs to a different class. We see a boundary and two nonbounding loops on a
torus in Figure 3.7. Given two paths f , g : [0, 1] → X with f (1) = g(0), the product path f · g is a
path which traverses f and then g. The fundamental group π1(X, x0) of X and basepoint x0 has the
homotopy classes of loops in X based at x0 as its elements, the equivalence class of the trivial loop as
its identity element, and [f ][g] = [f · g] as its binary operation. For a path-connected space X, the
basepoint is irrelevant, so we refer to the group as π1(X).

Clearly, any loop drawn on S
2 is bounding, so π1(S

2) ∼= {0}, where ∼= denotes group isomorphism
and {0} is the trivial group. For any n ∈ Z, we my go around a circle n times, going clockwise for
positive and counterclockwise for negative integers. Intuitively then, π1(S

1) ∼= Z. Similarly, the two
nonbounding loops in Figure 3.7 generate the fundamental group of a torus, π1(torus) ∼= Z × Z,
where the surface of the torus turns the group Abelian.

The fundamental group was instrumental in two significant historical problems. Markov (1958)
used the fundamental group to reduce the homeomorphism problem for manifolds to the group
isomorphism problem, which was known to be undecidable (Adyan, 1955). Essentially, Markov’s
reduction is through the construction of a d-manifold, d ≥ 4, whose fundamental group is a given
group. In 1904, Poincaré conjectured that if the fundamental group of a three-manifold is trivial,
then the manifold is homeomorphic to S

3: π1(M) ∼= {0} =⇒ M ≈ S
3. Milnor (2008) provides

a detailed history of the Poincaré Conjecture, which was subsumed by Thurston’s Geometrization
program and completed by Perelman.

The fundamental group is the first in a series of homotopy groups πn(X) that extend the notion
of loops to n-dimensional cycles. These invariant groups are very complicated and not directly
computable from a cell complex. Moreover, for an n-dimensional space, only a finite number may
be trivial, giving us an infinite description that is not computationally feasible.

FIGURE 3.7 Loops on a torus. The loop on the left is a boundary as it bounds a disk. The other two loops are
nonbounding and together generate the fundamental group of a torus, π1(torus) ∼= Z × Z.
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Computation. For orientable surfaces, canonical generators or one-vertex cut graphs (Section 3.3.1)
generate the fundamental group. While the fundamental group of specific spaces has been studied,
there is no general algorithm for computing the fundamental group for higher-dimensional spaces.

3.4 Simplicial Homology

Homology is a topological invariant that is quite popular in computational topology as it is easily
computable. Homology groups may be regarded as an algebraization of the first layer of geometry
in cell complexes: how cells of dimension n attach to cells of dimension n − 1 (Hatcher, 2002). We
define homology for simplicial complexes, but the theory extends to arbitrary topological spaces.

3.4.1 Definition

Suppose K is a simplicial complex. A k-chain is
∑

i ni[σi], where ni ∈ Z, σi ∈ K is a k-simplex, and
the brackets indicate orientation (Section 3.2.3). The kth chain group Ck(K) is the set of all chains,
the free Abelian group on oriented k-simplices. For example, [v1, v2] + 2[v0, v5] + [v2, v3] ∈ C1(K)

for the complex in Figure 3.3a. To reduce clutter, we will omit writing the complex below but
emphasize that all groups are defined with respect to some complex. We relate chain groups in
successive dimensions via the boundary operator. For k-simplex σ = [v0, v1, . . . , vk] ∈ K, we let

∂kσ =
∑

i
(−1)i[v0, v1, . . . , v̂i, . . . , vn], (3.9)

where v̂i indicates that vi is deleted from the sequence. The boundary homomorphism ∂k : Ck →
Ck−1 is the linear extension of the operator above, where we define ∂0 ≡ 0. For instance,

∂1([v1, v2] + 2[v0, v5] + [v2, v3]) = ∂1[v1, v2] + 2∂1[v0, v5] + ∂1[v2, v3]
= (v2 − v1) + 2(v5 − v0) + (v3 − v2)

= −2v0 − v1 + v3 + 2v5,

where we have omitted brackets around vertices. A key fact, easily shown, is that ∂k−1∂k ≡ 0 for all
k ≥ 1. The boundary operator connects the chain groups into a chain complex C∗:

. . . → Ck+1
∂k+1−−→ Ck

∂k−→ Ck−1 → . . . . (3.10)

A k-chain with no boundary is a k-cycle. For example, [v1, v2] + [v2, v3] + [v3, v4] − [v1, v4] is a
1-cycle as its boundary is empty. The k-cycles constitute the kernel of ∂k, so they form a subgroup of
Ck, the kth cycle group Zk:

Zk = ker ∂k = {c ∈ Ck | ∂kc = 0}. (3.11)

A k-chain that is the boundary of a (k + 1)-chain is a k-boundary. A k-boundary lies in the image
of ∂k+1. For example, [v0, v1] + [v1, v4] + [v4, v5] + [v5, v0] is a one-boundary as it is the boundary
of the two-chain [v0, v1, v5] + [v1, v4, v5]. The k-boundaries form another subgroup of Ck, the kth
boundary group Bk:

Bk = im ∂k+1 = {c ∈ Ck | ∃d ∈ Ck+1 : c = ∂k+1d}. (3.12)

Cycles and boundaries are like loops and boundaries in the fundamental group, except the former
may have multiple components and are not required to share basepoints. Since ∂k−1∂k ≡ 0, the
subgroups are nested, Bk ⊆ Zk ⊆ Ck. The kth homology group Hk is:

Hk = Zk/Bk = ker ∂k/im ∂k+1. (3.13)
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If z1, z2 ∈ Zk are in the same homology class, z1 and z2 are homologous, and denoted as z1 ∼ z2.
From group theory, we know that we can write z1 = z2 + b, where b ∈ Bk. For example, the
one-cycles z1 = [v1, v2] + [v2, v3] + [v3, v4] + [v4, v1] and z2 = [v1, v2] + [v2, v4] + [v4, v1] are
homologous in Figure 3.3a, as they both describe the hole in the complex. We have z1 = z2 + b,
where b = [v2, v3] + [v3, v4] + [v4, v2] is a one-boundary.

The homology groups are invariants for |K| and homotopy equivalent spaces. Formally, X � Y ⇒
Hk(X) ∼= Hk(Y) for all k. The invariance of simplicial homology gave rise to the Hauptvermutung
(principle conjecture) by Poincaré in 1904, which was shown to be false in dimensions higher than
three (Ranicki, 1997). Homology’s invariance was finally resolved through the axiomatization of
homology and the general theory of singular homology.

3.4.2 Characterization

Since Hk is a finitely generated group, the standard structure theorem states that it decomposes
uniquely into a direct sum

βk⊕
i=1

Z ⊕
m⊕

j=1

Ztj , (3.14)

where βk, tj ∈ Z, tj|tj+1, Ztj = Z/tjZ (Dummit and Foote, 2003). This decomposition defines key
invariants of the group. The left sum captures the free subgroup and its rank is the kth Betti number
βk of K. The right sum captures the torsion subgroup and the integers tj are the torsion coefficients
for the homology group. Table 3.1 lists the homology groups for basic two-manifolds.

For torsion-free spaces in three dimensions, the Betti numbers have intuitive meaning as a
consequence of the Alexander Duality. β0 counts the number of connected components of the
space. β1 is the dimension of any basis for the tunnels. β2 counts the number of enclosed spaces or
voids. For example, the torus is a connected component, has two tunnels that are delineated by the
cycles in Figure 3.7, and encloses one void. Therefore, β0 = 1, β1 = 2, and β2 = 1.

3.4.3 The Euler-Poincaré Formula

We may redefine our first invariant, the Euler characteristic from Section 3.3.2, in terms of the
chain complex C∗. Recall that for a cell complex K, χ(K) is an alternating sum of nk, the number of
k-simplices in K. But since Ck is the free group on oriented k-simplices, its rank is precisely nk. In
other words, we have χ(K) = χ(C∗(K)) = ∑

k(−1)k rank(Ck(K)). We now denote the sequence of
homology functors as H∗. Then, H∗(C∗(K)) is another chain complex:

. . . → Hk+1
∂k+1−−→ Hk

∂k−→ Hk−1 → . . . . (3.15)

The maps between the homology groups are induced by the boundary operators: We map a homology
class to the class that contains it. According to our new definition, the Euler characteristic of our chain

TABLE 3.1 Homology Groups of Basic Two-Manifolds

Two-manifold H0 H1 H2
Sphere Z {0} Z

Torus Z Z × Z Z

Projective plane Z Z2 {0}
Klein bottle Z Z × Z2 {0}
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is χ(H∗(C∗(K))) = ∑
k(−1)k rank(Hk) = ∑

k(−1)kβk, the alternating sum of the Betti numbers.
Surprisingly, the homology functor preserves the Euler characteristic of a chain complex, giving us
the Euler-Poincaré formula:

χ(K) =
∑

k

(−1)knk =
∑

k

(−1)kβk, (3.16)

where nk = |{σ ∈ K | dim σ = k}| and βk = rank Hk(K). For example, we know χ(S2) = 2 from
Section 3.3.2. From Table 3.1, we have β0 = 1, β1 = 0, and β2 = 1 for S

2, and 1 − 0 + 1 = 2. The
formula derives the invariance of the Euler characteristic from the invariance of homology. For a
surface, it also allows us to compute one Betti number given the other two Betti numbers, as we may
compute the Euler characteristic by counting simplices.

3.4.4 Computation

We may view any group as a Z-module, where Z is the ring of coefficients for the chains. This
view allows us to use alternate rings of coefficients, such as finite fields Zp for a prime p, reals R,
or rationals Q. Over a field F, a module becomes a vector space and is fully characterized by its
dimension, the Betti number. This means that we get a full characterization for torsion-free spaces
when computing over fields.

Computing connected components. For torsion-free spaces, we may use the union-find data
structure to compute connected components or β0 (Cormen et al., 2001, Chapter 21). This data
structure maintains a collection of disjoint dynamic sets using three operations that we use below.
For a vertex, we create a new set using MAKE-SET and increment β0. For an edge, we determine if the
endpoints of the edge are in the same component using two calls to FIND-SET. If they are not, we use
UNION to unite the two sets and decrementβ0. Consequently, we computeβ0 in time O(n1+n0α(n0)),
where nk is the number of k-simplices, and α is the inverse of the Ackermann function which is less
than the constant four for all practical values. Since the algorithm is incremental, it also yields Betti
numbers for filtrations as defined in Section 3.5. Using duality, we may extend this algorithm to
compute higher-dimensional Betti numbers for surfaces and three-dimensional complexes whose
highest Betti numbers are known. Delfinado and Edelsbrunner (1995) use this approach to compute
Betti numbers for subcomplexes of triangulations of S

3.

Computing βk over fields. Over a field F, our problem lies within linear algebra. Since ∂k : Ck →
Ck−1 is a linear map, it has a matrix Mk with entries from F in terms of bases for its domain and
codomain. For instance, we may use oriented simplices as respective bases for Ck and Ck−1. The
cycle vector space Zk = ker ∂k is the null space of Mk and the boundary vector space Bk = im ∂k+1
is the range space of Mk+1. By Equation (3.13), βk = dim Hk = dim Zk − dim Bk. We may compute
these dimensions with two Gaussian eliminations in time O(n3), where n is the number of simplices
in K (Uhlig, 2002). Here, we are assuming that the field operations take time O(1), which is true for
simple fields. The matrix Mk is very sparse for a cell complex and the running time is faster than
cubic in practice.

Computing βk over PIDs. The structure theorem also applies for rings of coefficients that are
principal ideal domains (PIDs). For our purposes, a PID is simply a ring in which we may compute
the greatest common divisor of a pair of elements. Starting with the matrix Mk, the reduction
algorithm uses elementary column and row operations to derive alternate bases for the chain
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groups, relative to which the matrix for ∂k has the diagonal Smith normal form:
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b1 0
. . . 0

0 blk

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (3.17)

where bj > 1 and bj|bj+1. The torsion coefficients for Hk−1 are now precisely those diagonal entries
bj that are greater than one. We may also compute the Betti numbers from the ranks of the matrices,
as before.

Over Z, neither the size of the matrix entries nor the number of operations in Z is polynomially
bounded for the reduction algorithm. Consequently, there are sophisticated polynomial algorithms
based on modular arithmetic (Storjohann, 1998), although reduction is preferred in practice (Dumas
et al., 2003). It is important to reiterate that homology computation is easy over fields, but hard over
Z, as this distinction is a source of common misunderstanding in the literature.

Computing generators. In addition to the Betti numbers and torsion coefficients, we may be
interested in actual descriptions of homology classes through representative cycles. To do so, we
may modify Gaussian elimination and the reduction algorithm to keep track of all the elementary
operations during elimination. This process is almost never used since applications for generators
are motivated geometrically, but the computed generators are usually geometrically displeasing. We
discuss geometric descriptions in Section 3.8.2.

3.5 Persistent Homology

Persistent homology is a recently developed invariant that captures the homological history of a
space that is undergoing growth. We model this history for a space X as a filtration, a sequence of
nested spaces ∅ = X0 ⊆ X1 ⊆ . . . ⊆ Xm = X. A space with a filtration is a filtered space. We see
a filtered simplicial complex in Figure 3.8. Note that in a filtered complex, the simplices are always
added, but never removed, implying a partial order on the simplices. Filtrations arise naturally from
many processes, such as the excursion sets of Morse functions over manifolds in Section 3.6 or the
multiscale representations for point sets in Section 3.7.

Over fields, each space Xj has a kth homology group Hk (Xj), a vector space whose dimension
βk(Xj) counts the number of topological attributes in dimension k. Viewing a filtration as a growing
space, we see that topological attributes appear and disappear. For instance, the filtered complex
in Figure 3.8 develops a one-cycle at time 2 that is completely filled at time 5. If we could track an

3 ac 4 acd 5 abc10 2

d

a
b

cd

a
b

c

a
b

cd, abc, d,
bc, ada, b

d

a
b

c d

a b

cd

a
b

c

FIGURE 3.8 A simple filtration of a simplicial complex with newly added simplices highlighted and listed.
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attribute through the filtration, we could talk about its lifetime within this growth history. This is the
intuition behind the theory of persistent homology. Initially, Edelsbrunner et al. (2002) developed
the concept for subcomplexes of S

3 and Z2 coefficients. The treatment here follows later theoretical
development that extended the concept to arbitrary spaces and field coefficients (Zomorodian and
Carlsson, 2005).

3.5.1 Theory

A filtration yields a directed space

∅ = X0
i

↪→ · · · i
↪→ Xj · · · i

↪→ X, (3.18)

where the maps i are the respective inclusions. Applying the Hk to both the spaces and the maps, we
get another directed space

∅ = Hk (X0)
Hk(i)−−−→ · · · Hk(i)−−−→ Hk

(
Xj

) Hk(i)−−−→ · · · Hk(i)−−−→ Hk (X) (3.19)

where Hk(i) are the respective maps induced by inclusion. The persistent homology of the filtration
is the structure of this directed space, and we would like to understand it by classifying and param-
eterizing it. Intuitively, we do so by building a single structure that contains all the complexes in the
directed space. Suppose we are computing over the ring of coefficients R. Then, R[t] is the polynomial
ring, which we may grade with the standard grading Rtn. We then form a graded module over R[t],
⊕n

i=0Hk(i), where the R-module structure is simply the sum of the structures on the individual com-
ponents, and where the action of t is given by t·(m0, m1, m2, . . .) = (0, ϕ0(m0), ϕ1(m1), ϕ2(m2), . . .).
and ϕi is the map induced by homology in the directed space. That is, t simply shifts elements of
the module up in the gradation. In this manner, we encode the ordering of simplices within the
coefficients from the polynomial ring. For instance, vertex a enters the filtration in Figure 3.8 at
time 0, so t · a exists at time 1, t2 · a at time 2, and so on.

When the ring of coefficients is a field F, F[t] is a PID, so the standard structure theorem gives the
unique decomposition of the F[t]-module:

n⊕
i=1

Σαi F[t] ⊕
m⊕

j=1

Σγj F[t]/(tnj), (3.20)

where (tn) = tnF[t] are the ideals of the graded field F[t] and Σα denotes an α-shift upward in
grading. Except for the shifts, the decomposition is essentially the same as the decomposition (3.14)
for groups: the left sum describes free generators and the right sum the torsion subgroup.

Barcodes. Using decomposition (3.20), we may parameterize the isomorphism classes with a
multiset of intervals:

1. Each left summand gives us [αi, ∞), corresponding to a topological attribute that is
created at time αi and exists in the final structure.

2. Each right summand gives us [γj, γj + nj), corresponding to an attribute that is created
at time γj, lives for time nj, and is destroyed.

We refer to this multiset of intervals as a barcode. Like a homology group, a barcode is a homotopy
invariant. For the filtration in Figure 3.8, the β0-barcode is {[0, ∞), [0, 2)} with the intervals describ-
ing the lifetimes of the components created by simplices a and b, respectively. The β1-barcode is
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{[2, 5), [3, 4)} for the two one-cycles created by edges ab and ac, respectively, provided ab enters the
complex after cd at time 2.

3.5.2 Algorithm

While persistence was initially defined for simplicial complexes, the theory extends to singular
homology, and the algorithm extends to a broad class of filtered cell complexes, such as simplicial
complexes, simplicial sets, Δ-complexes, and cubical complexes. In this section, we describe an algo-
rithm that not only computes both persistence barcodes, but also descriptions of the representatives
of persistent homology classes (Zomorodian and Carlsson, 2008). We present the algorithm for cell
complexes over Z2 coefficients, but the same algorithm may be easily adapted to other complexes or
fields.

Recall that a filtration implies a partial order on the cells. We begin by sorting the cells within each
time snapshot by dimension, breaking other ties arbitrarily, and getting a full order. The algorithm,
listed in pseudocode in the procedure PAIR-CELLS, takes this full order as input. Its output consists
of persistence information: It partitions the cells into creators and destroyers of homology classes,
and pairs the cells that are associated to the same class. Also, the procedure computes a generator
for each homology class.

The procedure PAIR-CELLS is incremental, processing one cell at a time. Each cell σ stores its partner,
its paired cell, as shown in Table 3.2 for the filtration in Figure 3.8. Once we have this pairing, we may
simply read off the barcode from the filtration. For instance, since vertex b is paired with edge cd, we
get interval [0, 2) in the β0-barcode. Each cell σ also stores its cascade, a k-chain, which is initially
σ itself. The algorithm focuses the impact of σ’s entry on the topology by determining whether ∂σ

is already a boundary in the complex using a call to the procedure ELIMINATE-BOUNDARIES. After the
call, there are two possibilities on line 5:

1. If ∂(cascade [σ]) = 0, we are able to write ∂σ as a sum of the boundary basis elements, so
∂σ is already a (k−1)-boundary. But now, cascade [σ] is a new k-cycle that σ completed.
That is, σ creates a new homology cycle and is a creator.

2. If ∂(cascade [σ]) �= 0, then ∂σ becomes a boundary after we add σ, so σ destroys the
homology class of its boundary and is a destroyer. On lines 6 through 8, we pair σ with
the youngest cell τ in ∂(cascade [σ]), that is, the cell that has the most recently entered
the filtration.

During each iteration, the algorithm maintains the following invariants: It identifies the ith cell as
a creator or destroyer and computes its cascade; if σ is a creator, its cascade is a generator for the
homology class it creates; otherwise, the boundary of its cascade is a generator for the boundary
class.

TABLE 3.2 Data Structure after Running the Persistence Algorithm
on the Filtration in Figure 3.8

σ a b c d bc ad cd ab ac acd abc
partner [σ] cd bc ad c d b abc acd ac ab
cascade [σ] a b c d bc ad cd ab ac acd abc

ad cd cd acd
bc ad ad

bc

Note: The simplices without partners, or with partners that come after them in the full
order, are creators; the others are destroyers.
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PAIR-CELLS (K)

1 for σ ← σ1 to σn ∈ K
2 do partner [σ] ← ∅
3 cascade [σ] ← σ

4 ELIMINATE-BOUNDARIES (σ)

5 if ∂(cascade [σ]) �= 0
6 then τ ← YOUNGEST(∂(cascade [σ]))
7 partner [σ] ← τ

8 partner [τ] ← σ

The procedure ELIMINATE-BOUNDARIES corresponds to the processing of one row (or column) in
Gaussian elimination. We repeatedly look at the youngest cell τ in ∂(cascade [σ]). If it has no partner,
we are done. If it has one, then the cycle that τ created was destroyed by its partner. We then add τ’s
partner’s cascade to σ’s cascade, which has the effect of adding a boundary to ∂(cascade [σ]). Since
we only add boundaries, we do not change homology classes.

ELIMINATE-BOUNDARIES(σ)

1 while ∂(cascade [σ]) �= 0
2 do τ ← YOUNGEST(∂(cascade [σ]))
3 if partner [τ] = ∅
4 then return
5 else cascade [σ] ← cascade [σ] + cascade [partner [τ]]

Table 3.2 shows the stored attributes for our filtration in Figure 3.8 after the algorithm’s completion.
For example, tracing ELIMINATE-BOUNDARIES (cd) through the iterations of the while loop, we get:

# cascade [cd] τ partner [τ]
1 cd d ad
2 cd + ad c bc
3 cd + ad + bc b ∅

Since partner [b] = ∅ at the time of bc’s entry, we pair b with cd in PAIR-CELLS upon return from
this procedure, as shown in the table. Table 3.2 contains all the persistence information we require. If
∂(cascade [σ]) = 0, σ is a creator and its cascade is a representative of the homology class it created.
Otherwise, σ is a destroyer and its cascade is a chain whose boundary is a representative of the
homology class σ destroyed.

3.6 Morse Theoretic Invariants

In the last three sections, we have looked at a number of combinatorial and algebraic invariants. In
this section, we examine the deep relationship between topology and geometry. We begin with the
following question: Can we define any smooth function on a manifold? Morse theory shows that
the topology of the manifold regulates the geometry of the function on it, answering the question in
the negative. However, this relationship also implies that we may study topology through geometry.
Our study yields a number of combinatorial structures that capture the topology of the underlying
manifold.
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FIGURE 3.9 Selected tangent planes, indicated with disks, and normals on a torus.

3.6.1 Morse Theory

In this section, we generally assume we have a two-manifold M embedded in R
3. We also assume

the manifold is smooth, although we do not extend the notions formally due to lack of space, but
depend on the reader’s intuition Boothby (1986). Most concepts generalize to higher-dimensional
manifolds with Riemannian metrics. Let p be a point on M. A tangent vector vp to R

3 consists of
two points of R

3: its vector part v and its point of application p. A tangent vector vp to R
3 at p is

tangent to M at p if v is the velocity of some curve ϕ in M. The set of all tangent vectors to M at
p is the tangent plane Tp(M), the best linear approximation to M at p. Figure 3.9 shows selected
tangent planes and their respective normals on the torus.

Suppose we have a smooth map h : M → R. The derivative vp[h] of h with respect to vp is the
common value of (d/dt)(h ◦γ)(0), for all curves γ ∈ M with initial velocity vp. The differential dhp
is a linear function on Tp(M) such that dhp(vp) = vp[h], for all tangent vectors vp ∈ Tp(M). The
differential converts vector fields into real-valued functions. A point p is critical for h if dhp is the
zero map. Otherwise, p is regular. Given local coordinates x, y on M, the Hessian of h is

H(p) =
⎡
⎣ ∂2h

∂x2 (p) ∂2h
∂y∂x (p)

∂2h
∂x∂y (p) ∂2h

∂y2 (p)

⎤
⎦ , (3.21)

in terms of the basis (∂/∂x(p), ∂/∂y(p)) for Tp(M). A critical point p is nondegenerate if the Hessian
is nonsingular at p, i.e., det H(p) �= 0. Otherwise, it is degenerate. A map h is a Morse function if all
its critical points are nondegenerate. By the Morse Lemma, it is possible to choose local coordinates
so that the neighborhood of a nondegenerate critical point takes the form h(x, y) = ±x2±y2. The
index of a nondegenerate critical point is the number of minuses in this parameterization, or more
generally, the number of negative eigenvalues of the Hessian. For a d-dimensional manifold, the
index ranges from 0 to d. In two dimensions, a critical point of index 0, 1, or 2 is called a minimum,
saddle, or maximum, respectively, as shown in Figure 3.10. The monkey saddle in the figure is
the neighborhood of a degenerate critical point, a surface with three ridges and valleys. By the

(a) Minimum, 0, (d) Monkey saddle,(c) Maximum, 2,(b) Saddle, 1,

FIGURE 3.10 Neighborhoods of critical points, along with their indices, and mnemonic symbols. All except the
Monkey saddle are nondegenerate.
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(a) Gaussian landscape (b) Critical points

FIGURE 3.11 A Gaussian landscape. A Morse function defined on a two-manifold with boundary (a) has 3 minima,
15 saddles, and 13 peaks, as noted on the view from above (b). We get an additional minimum when we compactify
the disk into a sphere.

Morse Lemma, it cannot be the neighborhood of a critical point of a Morse function. In higher
dimensions, we still have maxima and minima, but more types of saddle points. In Figure 3.11, we
define a Gaussian landscape on a two-manifold with boundary (a closed disk). The landscape has
3 lakes (minima), 15 passes (saddles), and 13 peaks (maxima), as shown in the orthographic view
from above with our mnemonic symbols listed in Figure 3.10. To eliminate the boundary in our
landscape, we place a point at −∞ and identify the boundary to it, turning the disk into S

2, and
adding a minimum to our Morse function. This one-point compactification of the disk is done
combinatorially in practice.

Relationship to homology. Given a manifold M and a Morse function h : M → R, an excursion
set of h at height r is Mr = {m ∈ M|h(m) ≤ r}. We see three excursion sets for our landscape in
Figure 3.12. Using this figure, we now consider the topology of the excursion sets Mr as we increase
r from −∞:

• At a minimum, we get a new component, as demonstrated in the leftmost excursion set.
So, β0 increases by one whenever r passes the height of a minimum point.

• At a saddle point, we have two possibilities. Two components may connect through a
saddle point, as shown in the middle excursion set. Alternatively, the components may
connect around the base of a maxima, forming a one-cycle, as shown in the rightmost
excursion set. So, either β0 increases or β1 decreases by one at a saddle point.

• At a maximum, a one-cycle around that maximum is filled in, so β1 is decremented.
• At regular points, there is no change to topology.

Therefore, minima, saddles, and maxima have the same impact on the Betti numbers as ver-
tices, edges, and triangles. Given this relationship, we may extend the Euler-Poincaré formula
(Equation 3.16):

χ(M) =
∑

k

(−1)knk =
∑

k

(−1)kβk =
∑

k

(−1)kck, (3.22)

FIGURE 3.12 Excursion sets for the Gaussian landscape in Figure 3.11.
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where nk is the number of k-cells for any cellular complex with underlying spaceM,βk = rank Hk(M),
and ck is the number of Morse critical points with index k for any Morse function defined on M. This
beautiful equation relates combinatorial topology, algebraic topology, and Morse theory at once.
For example, our compactified landscape is a sphere with χ(S) = 2. We also have c0 = 4 (counting
the minimum at −∞), c1 = 15, c2 = 13, and 4 − 15 + 13 = 2. That is, the topology of a manifold
implies a relationship on the number of critical points of any function defined on that manifold.

Unfolding and cancellation. In practice, most of our functions are non-Morse, containing degen-
erate critical points, such as the function in Figure 3.13b. Fortunately, we may perturb any function
infinitesimally to be Morse as Morse functions are dense in the space of smooth functions. For
instance, simple calculus shows that we may perturb the function in Figure 3.13b to either a function
with two nondegenerate critical points (Figure 3.13a) or zero critical points (Figure 3.13c). Going
from Figure 3.13b to a is unfolding the degeneracy and its geometric study belongs to singularity
theory (Bruce and Giblin, 1992). Going from Figure 3.13a through c describes the cancellation of
a pair of critical points as motivated by excursion sets and Equation 3.22. Both concepts extend to
higher-dimensional critical points.

The excursion sets of a Morse function form a filtration, as required by persistent homology in
Section 3.5. The relationship between critical points and homology described in the last section
implies a pairing of critical points. In one dimension, a minimum is paired with a maximum, as in
Figure 3.13. In two dimensions, a minimum is paired with a saddle, and a saddle with a maximum.
This pairing dictates an ordering for combinatorial cancellation of critical points and an identification
of the significant critical points in the landscape. To remove the canceled critical points geometrically
as in Figure 3.13c, we need additional structure in higher dimensions, as described in Section 3.6.3.

Nonsmooth manifolds. While Morse theory is defined only for smooth manifolds, most concepts
are not intrinsically dependent upon smoothness. Indeed, the main theorems have been shown to
have analogs within discrete settings. Banchoff (1970) extends critical point theory to polyhedral
surfaces. Forman (1998) defines discrete Morse functions on cell complexes to create a discrete
Morse theory.

3.6.2 Reeb Graph and Contour Tree

Given a manifold M and a Morse function h : M → R, a level set of h at height r is the preimage
h−1(r). Note that level sets are simply the boundaries of excursion sets. Level sets are called isolines
and isosurfaces for two- and three-manifolds, respectively. A contour is a connected component of
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FIGURE 3.13 The function y = x3 (b) has a single degenerate critical point at the origin and is not Morse. We may
unfold the degenerate critical point into a maximum and a minimum (a), two nondegenerate critical points. We may
also smooth it into a regular point (c). Either perturbation yields a Morse functions arbitrarily close to (b). The process
of going from (a) to (c) is cancellation.
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(a) Contours (c) Reeb graph(b) Contour tree

FIGURE 3.14 Topology of contours. (a) Contours from 20 level sets for the landscape in Figure 3.11. (b) The contour
tree for the landscape, superimposed on the landscape. The bottom most critical point is the minimum at −∞. (c)
The Reeb graph for the torus with Morse function equivalent to its z coordinate. The function has one minimum, two
saddles, and one maximum.

a level set. For two-manifolds, a contour is a loop and for three-manifolds, it is a void. In Figure 3.14a,
we see the contours corresponding to 20 level sets of our landscape. As we change the level, contours
appear, join, split, and disappear. To track the topology of the contours, we contract each contour
to a point, obtaining the Reeb graph (Reeb, 1946). When the Reeb graph is a tree, it is known as the
contour tree (Boyell and Ruston, 1963). In Figure 3.14b, we superimpose the contour tree of our
landscape over it. In Figure 3.14c, we see the Reeb graph for a torus standing on its end, where the z
coordinate is the Morse function.

Computation. We often have three-dimensional Morse functions, sampled on a regular voxelized
grid, such as images from CT scans or MRI. We may linearly interpolate between the voxels for
a piece-wise linear approximation of the underlying function. Lorensen and Cline (1987) first
presented the Marching cubes algorithm for extracting isosurfaces using a table-based approach that
exploited the symmetries of a cube. The algorithm has evolved considerably since then (Newman
and Hong, 2006).

Carr et al. (2003) give a simple O(n log n + Nα(N)) time algorithm for computing the contour
tree of a discrete real-valued field interpolated over a simplicial complex with n vertices and N
simplices. Not surprisingly, the algorithm first captures the joining and splitting of contours by
using the union-find data structure, described in Section 3.4.4. Cole-McLaughlin et al. (2004) give
an O(n log n) algorithm for computing Reeb graphs for triangulated two-manifolds, with or without
boundary, where n is the number of edges in the triangulation.

3.6.3 Morse-Smale Complex

The critical points of a Morse function are locations on the two-manifold where the function is
stationary. To extract more structure, we look at what happens on regular points. A vector field or
flow is a function that assigns a vector vp ∈ Tp(M) to each point p ∈ M. A particular vector field is
the gradient ∇h which is defined by

〈dγ

dt
· ∇h

〉
= d(h ◦ γ)

dt
, (3.23)

where γ is any curve passing through p ∈ M, tangent to vp ∈ Tp(M). The gradient is related to the
derivative, as vp[h] = vp ·∇h(p). It is always possible to choose coordinates (x, y) so that the tangent
vectors ∂

∂x (p), ∂
∂y (p) are orthonormal with respect to the chosen metric. For such coordinates,

the gradient is given by the familiar formula ∇h =
(

∂h
∂x (p), ∂h

∂y (p)
)

. We integrate the gradient
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(a) Unstable 1-manifolds (b) Stable 1-manifolds (c) Morse-Smale complex

FIGURE 3.15 The Morse-Smale complex. The unstable manifolds (a) and stable manifolds (b) each decompose the
underlying manifolds into a cell-complex. If the function is Morse-Smale, the stable and unstable manifolds intersect
transversally to form the Morse-Smale complex (c).

to decompose M into regions of uniform flow. An integral line � : R → M is a maximal path
whose tangent vectors agree with the gradient, that is, ∂

∂s�(s) = ∇h(�(s)) for all s ∈ R. We call
org � = lims→−∞ �(s) the origin and dest � = lims→+∞ �(s) the destination of the path �. The
integral lines are either disjoint or the same, cover M, and their limits are critical points, which
are integral lines by themselves. For a critical point p, the unstable manifold U(p) and the stable
manifold S(p) are:

U(p) = {p} ∪ {y ∈ M | y ∈ im �, org � = p}, (3.24)

S(p) = {p} ∪ {y ∈ M | y ∈ im �, dest � = p}. (3.25)

If p has index i, its unstable manifold is an open (2 − i)-cell and its stable manifold is an open
i-cell. For example, the minima on our landscape have open disks as unstable manifolds as shown
in Figure 3.15a. In geographic information systems, a minimum’s unstable manifold is called its
watershed as all the rain in this region flows toward this minimum. The stable manifolds of a Morse
function h, shown in Figure 3.15b, are the unstable manifolds of −h as ∇ is linear. If the stable and
unstable manifolds intersect only transversally, we say that our Morse function h is Morse-Smale.
We then intersect the manifolds to obtain the Morse-Smale complex, as shown in Figure 3.15c. In
two dimensions, the complex is a quadrangulation, where each quadrangle has one maximum, two
saddle points, and one minimum as vertices, and uniform flow from its maximum to its minimum.
In three dimensions, the complex is composed of hexahedra.

Cayley (1859) was the first to conceive of this structure in one of the earliest contributions to Morse
theory. Independently, Maxwell (1870) gave full details of the complex as well as the relationship
between the number of Morse critical points (Equation 3.22), but gave Cayley priority generously
upon learning about the earlier contribution.

Computation. Using Banchoff’s critical point theory, Edelsbrunner et al. (2003b) extend Morse-
Smale complexes to piece-wise linear two-manifolds, giving an algorithm for computing the complex
as well as simplifying it through persistent homology. The complex has also been extended to three-
manifolds (Edelsbrunner et al., 2003a), although its computation remains challenging (Gyulassy
et al., 2007).

3.7 Structures for Point Sets

A principle problem within computational topology is recovering the topology of a finite point set.
The assumption is that the point set, either acquired or simulated, is sampled from some underlying
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topological space, whose connectivity is lost during the sampling process. Also, one often assumes
that the space is a manifold. In this section, we look at techniques for computing structures that
topologically approximate the underlying space of a given point set.

3.7.1 A Cover and Its Nerve

We assume we are given a point set X embedded in R
d, although the ambient space could also be

any Riemannian manifold. Since the point set does not have any interesting topology by itself, we
begin by approximating the underlying space by pieces of the embedding space. An open cover of
X is U = {Ui}i∈I , Ui ⊆ R

d, where I is an indexing set and X ⊆ ∪iUi. The nerve N of U is

1. ∅ ∈ N, and
2. If ∩j∈JUj �= ∅ for J ⊆ I, then J ∈ N.

Clearly, the Nerve is an abstract simplicial complex. Figure 3.16a displays a point set, an open cover
of the points, and the nerve of the cover. We say U is a good cover if all Ui are contractible and so
are all of their nonempty finite intersections. The cover in Figure 3.16a is not good, as the leftmost
set is homotopy equivalent to a circle. According to Leray’s classical Nerve Lemma, the nerve of
a good cover is homotopy equivalent to the cover. Rotman (1988, Lemma 7.26) shows this result
for homology groups and Bott and Tu (1982, Theorem 13.4) prove it for the fundamental group,
but given some technical conditions, one gets a homotopy equivalence. This lemma is the basis
of most methods for representing point sets. We search for good covers whose nerve will be our
representation.

(b) Cover: Union of є-balls; Nerve: Čech complex

(c) Cover: Voronoi diagram; Nerve: Delaunay complex (d) Cover: Restricted Voronoi diagram; Nerve: Alpha complex

(a) Points, open cover, and nerve

FIGURE 3.16 Representing point sets. (a) Given a point set (black points), we represent it using the nerve of an open
cover. (b) The Čech complex is the nerve of a union of ε-balls. (c) The Delaunay complex is the nerve of the Voronoi
diagram. (d) The Alpha complex is the nerve of the restricted Voronoi cells.
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3.7.2 Abstract Complexes

Our first cover is the union of ε-balls centered around the input points, as shown in Figure 3.16b. The
cover is clearly good. More generally, any cover consisting of geodesically convex neighborhoods
will be good. The implicit assumption here is that each ball approximates the space locally whenever
the sampling is dense enough. The nerve of this cover is called the Čech complex. The complex may
have dimension higher than the original embedding space and be as large as the power set of the
original point set in the worst case. In our example, the point set is in R

2, but the complex contains
a tetrahedron.

The Vietoris-Rips complex relaxes the Čech condition for simplex inclusion by allowing a simplex
provided its vertices are pairwise within distance ε (Gromov, 1987). We first compute the 1-skeleton
of the complex, a graph on the vertices. We then perform a series of expansions by dimension,
where we add a simplex provided all its faces are in the complex. This expansion fills in the triangular
hole in the Čech complex in Figure 3.16b, so the complex is not homotopy equivalent to the Čech
complex.

3.7.3 Geometric Complexes

We next look at three methods that use techniques from computational geometry to compute
complexes that are smaller than abstract complexes, but at the cost of intricate geometric computation
that often does not extend to higher dimensions.

For p ∈ X, the Voronoi cell is the set of points in the ambient space closest to p, V(p) =
{x ∈ R

d | d(x, p) ≤ d(x, y), ∀p ∈ X}. The Voronoi diagram decomposes R
d into Voronoi cells

and is a good cover for R
d as all the cells are convex. The Delaunay complex is the nerve of the

Voronoi diagram, as shown in Figure 3.16c (de Berg et al., 2000). The restricted Voronoi diagram
is the intersection of union of ε-balls and the Voronoi diagram, and the alpha complex, shown in
Figure 3.16d, is the nerve of this cover (Edelsbrunner and Mücke, 1994). This complex is homotopy
equivalent to the Čech complex, but is also embedded and has the same dimension as the ambient
space. By construction, the alpha complex is always a subcomplex of the Delaunay complex, so we
may compute the former by computing the latter. A deficiency of the methods that use ε-balls is that
they assume uniform sampling for the point set, which is rarely true in practice. Recently, Cazals
et al. (2006) address this deficiency of the alpha complex by defining the conformal alpha complex
which features a global scale parameter.

Giesen and John (2003) define a distance function based on the point set and define the flow
complex to be the stable manifolds of this function (see Section 3.6.3 for definitions.) Like the
alpha complex, the flow complex is homotopy equivalent to the Čech complex (Dey et al., 2003).
de Silva and Carlsson (2004) define the witness complex using a relaxation of the Delaunay test. The
complex is built on landmarks, a subset of the point sets. The key idea is that the nonlandmark points
participate in the construction of the complex by acting as witnesses to the existence of simplices.
While the witness complex utilizes additional geometry, it is not embedded like the alpha and flow
complex, and only approximates the Čech complex. We usually build the one-skeleton of the witness
complex and perform Vietoris-Rips expansions for higher-dimensional skeletons.

Computing the nearest neighbors. An essential task in computing complexes is enumerating
exact or approximate nearest neighbors. This is a well-studied problem with a rich array of results.
Geometric solutions (Arya et al., 1998) are efficient and feasible in low dimensions (less than
20) as they have an exponential dependence on dimension, the curse of dimensionality. In higher
dimensions, recent hashing techniques have resulted in practical algorithms (Andoni and Indyk,
2006). While lower bounds exist, they often depend on the model of computation (Chakrabarti and
Regev, 2004).
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α (å)0 5 20 40

FIGURE 3.17 Application to biophysics. Below the α-axis are the point set (α = 0) and three complexes from its
alpha complex filtration. Above is the persistence barcode: a multiset of 146 intervals. Most intervals are very short,
but there are two long intervals corresponding to the two visualized voids. The point set contains the phosphate group
coordinates of the unfused inner membranes of a phospholipid molecule.

3.7.4 Using Persistent Homology

All the complexes described in the last two sections describe one-parameter families of spaces. In
each case, the parameter is a notion of scale or local feature size in the space. For instance, the
Čech complexes require a radius ε for its cover. As we increase ε, we get filtered complexes as
defined in Section 3.5.1. Therefore, we may apply persistent homology to capture the topology
of the underlying point set. For instance, Kasson et al. (2007) use topological techniques for an
application in biophysics. In Figure 3.17, we see four complexes from the alpha complex filtration of
the point set at α = 0, which describes the inner membrane of a bilayer vesicle, a primary cellular
transport vehicle. We also see the β2 persistence barcode above the axis, along with descriptions
of the two significant voids that correspond to the two long intervals, both of which are computed
with the persistence algorithm in Section 3.5.2. By analyzing more than 170,000 snapshots of fusion
trajectories, the authors give a systematic topology-based method for measuring structural changes
in membrane fusion.

3.8 Interactions with Geometry

As we noted in the introduction, computational topology was motivated initially by geometric
problems that contained topological subproblems. Having discussed topological techniques, we end
this chapter with a sample of geometric problems that involve topology.

3.8.1 Manifold Reconstruction

Given a finite set of (noisy) samples from a manifold, we would like to recover the original manifold.
For 2-manifold, Dey (2007) surveys results from computational geometry that guarantee a reconstruc-
tion homeomorphic to the original surface, provided the sampling satisfies certain local geometric
conditions. Recently, Boissonnat et al. (2007) use witness complexes to reconstruct manifolds in
arbitrary dimensions. There is also a new focus on finding homotopy equivalent spaces. Niyogi et al.
(2008) give an algorithm to learn the underlying manifold with high confidence, provided the data
is drawn from a sampling probability distribution that has support on or near a submanifold of a
Euclidean space.
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3.8.2 Geometric Descriptions

Topological noise often creates significant problems for subsequent geometry processing of sur-
faces, such as mesh decimation, smoothing, and parameterization for texture mapping or remeshing.
To simplify the surface topologically, we need descriptions of topological attributes that also take
geometry into account. A deciding factor is how one measures the attributes geometrically, as the
complexity of the resulting optimal geometric problem is often dependent on the nature of the
underlying geometric measure.

Noncanonical polygonal schema. Erickson and Har-Peled (2004) show that the problem of
finding the minimum cut graph (Section 3.3.1) is NP-hard, when the geometric measure is either
the total number of cut edges or their total lengths. They also describe a greedy algorithm that gives
an O(log2 g) approximation of the minimum cut graph in O(g2n log n) for a surface of genus g and
combinatorial complexity n.

Homotopic paths in the plane. For a single given path of size kin in the plane with n point
obstacles, Hershberger and Snoeyink (1994) give an optimal O(nkin) time algorithm for finding
the shortest homotopic path, minimizing either the Euclidean length or number of segments. Efrat
et al. (2006) present an output-sensitive algorithm that runs in O(n3/2 + kin log n + kout) time,
where n is the number of obstacles, and kin and kout are the complexity of the input and output
paths, respectively. Bespamyatnikh (2003) gives an O(n log1+ε n + kin log n + kout) time algorithm
for simple paths and an O(n2+ε + k logn) time algorithm for nonsimple paths, where ε > 0 is an
arbitrary small constant. The constants hidden in the notation depend on ε.

Generators for the fundamental group. Colin de Verdière and Lazarus (2005) consider the special
case of one-vertex cut graphs, which are sets of loops which are also a minimum presentation for
the fundamental group. Given a set of loops, they give a polynomial-time algorithm that computes
the shortest system of loops in the same homotopy class on an orientable surface, provided that the
lengths of edges are uniform. For an orientable combinatorial surface with complexity n and a given
basepoint, Erickson and Whittlesey (2005) show that a greedy algorithm can find the shortest set
of loops that generate the fundamental group of the surface in O(n log n) using an application of
Dijkstra’s algorithm.

Generators for homology groups. Erickson and Whittlesey (2005) also give a greedy algorithm
that computes the shortest set of cycles that generate the first homology group over Z2 in time
O(n2 log n + n2g + ng3), where g is the genus of the surface and n is the complexity of the surface.
Zomorodian and Carlsson (2008) consider the problem of localization: finding local homology
groups for arbitrary spaces and dimensions. Rather than using a particular measure, they include
geometry in the input as a cover. They then construct a larger space whose persistent homology
localizes the homology generators with respect to the given cover. Freedman and Chen (2008) define
the size of a homology class to be the radius of the smallest geodesic ball within the ambient space.
Given this measure, they use matroid theory to prove that an optimal basis may be computed by a
greedy method in time O(β4n3 log2 n), where n is the size of the simplicial complex and β is the
Betti number of the homology group.

3.9 Research Issues and Summary

Suppose we were given a million points in 100 dimensions and we wish to recover the topology of
the space from which these points were sampled. Currently, none of our tools either scale to these
many points or extend to this high a dimension. Yet, we are currently inundated with massive data
sets from acquisition devices and computer simulations. Computational topology could provide
powerful tools for understanding the structure of this data. However, we need both theoretical
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results as well as practical algorithms tailored to massive data sets for computational topology to
become successful as a general method for data analysis.

3.10 Further Information

Surveys. The survey by Vegter (2004) contains results on knots, embeddings, and immersions not
in this chapter. Edelsbrunner (2004) considers biological applications of computational topology.
Joswig (2004) focuses on computation of invariants, including cohomology. Ghrist (2007) surveys
recent results in persistent homology and its applications.

Books. Henle (1997) is an accessible introduction to topology. Hatcher (2002) is an excellent textbook
on algebraic topology and is already in its 7th printing, although it is available freely on the web.
Basener (2006) covers topology and its applications. Matsumoto (2002) is a monograph on Morse
theory. Zomorodian (2005) expands on persistent homology and Morse-Smale complexes.

Software. PLEX (2006) is a library of MATLAB R© routines that include construction of Čech, Vietoris-
Rips and witness complexes, as well as computation of homology and persistent homology barcodes.
CHomP (2008) computes homology of cubical complexes using reduction with tailored heuristics.
CGAL (2008) is a computational geometry library that includes construction of alpha complexes.
polymake’s TOPAZ application supports computing simplicial homology and cohomology mod-
ules, as well as more sophisticated invariants, such as cup products (Gawrilow and Joswig, 2008).
ANN (Mount and Arya, 2006) and E2LSH (Andoni, 2006) are software packages for finding approx-
imate nearest neighbors in high dimensions.

Defining Terms

Betti number: In dimension k, the rank of the kth homology group, denoted βk.
Contour: A connected component of a level set h−1(c) of a Morse function h : M → R defined on
a manifold M.
Critical point: A point on a manifold at which the differential of a Morse function is zero. Nonde-
generate critical points on a two-manifold are minima, saddles, and maxima.
Euler characteristic: An integer invariant that relates combinatorial topology to algebraic topology
and Morse theory: χ(M) = ∑

k(−1)knk = ∑
k(−1)kβk = ∑

k(−1)kck, where nk is the number of
k-cells for any cellular complex with underlying space M, βk is the kth Betti number, and ck is the
number of Morse critical points with index k for any Morse function define on M.
Fundamental group: The group of homotopy classes of loops in a space.
Homeomorphism: A 1-1 onto continuous map whose inverse is continuous.
Homology group: An algebraic invariant Hk = Zk/Bk, where Zk is the group of k-cycles and Bk is
the group of k-boundaries in the simplicial complex.
Homotopy: A family of maps ft : X → Y, t ∈ [0, 1], such that the associated map F : X×[0, 1] → Y

given by F(x, t) = ft(x) is continuous.
Manifold: A topological space that is locally Euclidean.
Morse function: A function defined on a manifold whose critical points are nondegenerate.
Persistent homology: The homology of a growing space, which captures the lifetimes of topological
attributes in a multiset of intervals called a barcode.
Reeb graph: A graph that captures the connectivity of contours. When it does not have cycles, it is
called the contour tree.
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Simplicial complex: A collection of finite sets such that if a set is in the complex, so are all its subsets.
It may be visualized as a union of convex hulls of finitely independent points, glued together along
shared faces.
Topological space: A point set with topology, a collection of sets that define the open neighborhoods
of the points.
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4.1 Introduction

People tend to have very different perceptions of what a robot is. For some people, a robot is an
intelligent and sophisticated machine. A robot must have the capability to move autonomously
and make decisions on how to accomplish its task without any human intervention. From this
perspective, examples would include mobile robots used in space exploration, or looking a bit into
the future, autonomous intelligent cars. Other people think of robots more in the context of industrial
automation. In this context, a robot is typically a robotic arm used in assembly lines, for example,
in car manufacturing. Those robots tend to perform the same repetitive motions in their highly
controlled and predictable environment. Precision and accuracy are paramount for this kind of
robots. Finally, it is not uncommon to treat a part or even a molecule as a robot. A major issue in
production lines is how to process parts that arrive at random orientations and have to be oriented
in a certain way before they are used for assembly. During the last few years, it has become a very
important area of research to identify how big molecules—such as proteins—move, by adapting ideas
that were initially developed for robots. This chapter covers some of the fundamental principles and
presents several examples of algorithms that are currently used in robotics.

Robot algorithms differ in significant ways from traditional computer algorithms. The latter have
full control over, and perfect access to the data they use, letting aside, for example, problems related
to floating-point arithmetic. In contrast, robot algorithms eventually apply to physical objects in
the real world, which they attempt to control despite the fact that these objects are subject to the
independently and imperfectly modeled laws of nature. Data acquisition through sensing is also
local and noisy. Robot algorithms hence raise controllability (or reachability) and observability (or
recognizability) issues that are classical in control theory but not present in computer algorithms.

4-1
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On the other hand, control theory often deals with well-defined processes in strictly confined
environments. In contrast, robot tasks tend to be underspecified, which require addressing combi-
natorial issues ignored in control theory. For instance, to reach a goal among obstacles that are not
represented in the input model but are sensed during execution, a robot must search “on the fly” for
a collision-free path, a notoriously hard computational problem.

This blend of control and computational issues is perhaps the main characteristic of robot algo-
rithms. It is presented at greater length in Section 4.2, along with other features of these algorithms.
Section 4.3 then surveys specific areas of robotics (e.g., part manipulation, assembly sequencing,
motion planning, and sensing) and presents algorithmic techniques that have been developed in
those areas.

4.2 Underlying Principles

4.2.1 Robot Algorithms Control

The primary goal of a robot algorithm is to describe a procedure for controlling a subset of the
real world—the workspace—in order to achieve a given goal, say, a spatial arrangement of several
physical objects. The real world, which is subject to the laws of nature (such as gravity, inertia,
friction), can be regarded as performing its own actions, for instance, applying forces. These actions
are not arbitrary, and to some extent, they can be modeled, predicted, and controlled. Therefore, a
robot algorithm should specify robot’s operations whose combination with the (re-)actions of the
real world will result in achieving the goal [8]. Note that the robot is itself an important object in the
workspace; for example, it should not collide with obstacles. Therefore, the algorithm should also
control the relation between the robot and the workspace. The robot’s internal controller, which
drives the actuators and preprocesses sensory data, defines the primitive operations that can be used
to build robot algorithms.

The design of a robot algorithm requires identifying a set of relevant states of the workspace (one
being the goal) and selecting operations that transform the workspace through a sequence of states so
that the final state is the goal. But, due to various inaccuracies (one is in modeling physical laws), an
operation may transform a state into one among several possible states. The algorithm can then use
sensing to refine its knowledge during execution. In turn, because workspace sensing is imperfect,
a state may not be directly recognizable, which means that no combination of sensors may be
capable to return the state’s identity. As a result, the three subproblems—choosing pertinent states,
selecting operations to transit among these states toward the goal, and constructing state-recognition
functions—are strongly interdependent and cannot be solved sequentially.

To illustrate part of the above discussion, consider the task of orienting a convex polygonal part
P on a table using a robot arm equipped with a parallel-jaw gripper, to a desired goal orientation θg.
This is a typical problem in industrial part feeding (Section 4.3.1.6). If an overhead vision system is
available to measure P’s orientation, we can use the following (simplified) algorithm:

ORIENT(P, θg)
1. Measure P’s initial orientation θi
2. Move the gripper to the grasp position of P
3. Close the gripper
4. Rotate the gripper by θg − θi
5. Open the gripper
6. Move the gripper to a resting position

The states of interest are defined by the orientations of P, the position of the gripper relative to P,
and whether the gripper holds P or does not. (Only the initial and goal orientations, θi and θg, are
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FIGURE 4.1 Orienting a convex polygonal part. Starting from four different initial positions, two squeezing opera-
tions can bring the part to the correct orientation. (From Goldberg, K.Y., Algorithmica, 10, 201, 1993. With permission.)

explicitly considered.) Step 1 acquires the initial state. Step 4 achieves the goal state. Steps 2 and 3
produce the intermediate states. Steps 5 and 6 achieve a second goal not mentioned above, that the
robot be away from P at the end of the orientation operation.

A very different algorithm for this same part-orienting task consists of squeezing P several times
between the gripper’s jaws, at appropriately selected orientations of the gripper (see Figure 4.1). This
algorithm, which requires no workspace sensing, is based on the following principle. Let P be at an
arbitrary initial orientation. Any squeezing operation will achieve a new orientation that belongs to
a set of 2n (n being the number of sides of P) possible orientations determined by the geometry of P
and the orientation of the jaws. If P is released and squeezed again with another orientation of the
gripper, the set of possible orientations of P can be reduced further. For any n-sided convex polygon
P, there is a sequence of 2n − 1 squeezes that achieves a single orientation of P (up to symmetries),
for an arbitrary initial orientation of P [20].

The states considered by the second algorithm are individual orientations of P and sets of orien-
tations. The state achieved by each squeeze is determined by the jaws’ orientation and the previous
state. Its prediction is based on understanding the simple mechanics of the operation. The fact that
any convex polygon admits a finite sequence of squeezes ending at a unique orientation guarantees
that any goal is reachable from any state. However, when the number of parameters that the robot can
directly control is smaller than the number of parameters defining a state, the question of whether
the goal state is reachable is more problematic (see Section 4.3.3).

State recognition can also be difficult. To illustrate, consider a mobile robot navigating in an office
environment. Its controller uses dead-reckoning techniques to control the motion of the wheels. But
these techniques yield cumulative errors in the robot’s position with respect to a fixed coordinate
system. For a better localization, the robot algorithm may sense environmental features (e.g., a wall,
a door). However, because sensing is imperfect, a feature may be confused with a similar feature
at a different place; this may occasionally cause a major localization mistake. Therefore, the robot
algorithm must be designed such that enough environmental features will be sensed to make each
successive state reliably recognizable.

To be more specific, consider the workspace of Figure 4.2. Obstacles are shown in bold lines.
The robot is modeled as a point with perfect touch sensing. It can be commanded to move along
any direction φ ∈ [0, 2π) in the plane, but imperfect control makes it move within a cone φ ± θ,
where the angle θ models directional uncertainty. The robot’s goal is to move into G, the goal
state, which is a subset of the wall W (for instance, G is an outlet for recharging batteries). The
robot’s initial location is not precisely known: it is anywhere in the disk I, the initial state. One
candidate algorithm (illustrated in Figure 4.2a) first commands the robot to move perpendicularly
to W until it touches it. Despite directionaluncertainty, the robot is guaranteed to eventually touch
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FIGURE 4.2 Mobile robot navigation with (a) unreliable goal recognition vs. (b) guaranteed goal recognition.

W, somewhere in the region denoted by H. From state H, it can slide along the wall (using touch
to maintain contact) toward G. The robot is guaranteed to eventually reach G. But can it reliably
recognize this achievement? The answer depends on the growth of the dead-reckoning localization
error as the robot moves along W. Clearly, if this error grows by more than half the difference in the
size of G and H, G is not reliably recognizable.

An alternative algorithm is possible, using the wall W′ (Figure 4.2b). It commands the robot to
first move toward W′ until it touches it and then slide along it toward W. At the end of W′, it
continues heading toward W, but with directional uncertainty. The robot is nevertheless guaranteed
to be in G when it senses that it has touched W.

4.2.2 Robot Algorithms Plan

Consider the following variant of the part-orienting task. Parts are successively fed with arbitrary
orientations on a table by an independent machine. They have different and arbitrary convex
polygonal shape, but whenever a part arrives, the feeding machine provides a geometric model of
the part to the robot, along with its goal orientation. In the absence of a vision sensor, the multi-
squeeze approach can still be used, but now the robot algorithm must include a planner to compute
automatically the successive orientations of the gripper.

As another example, consider the pick-and-place task which requires a robot arm to transfer an
object from one position to another. If the obstacles in the workspace are not known in advance, the
robot algorithm needs sensing to localize them, as well as a planner to generate a collision-free path.
If all obstacles cannot be sensed at once, the algorithm may have to interweave sensing, planning,
and acting.

The point is that, for most tasks, the set of states that may have to be considered at the time of
execution is too large to be explicitly anticipated. The robot algorithm must incorporate a planner.
In first approximation, the planner can be seen as a separate algorithm that automatically generates
a control algorithm for achieving a given task, e.g., [25]. The robot algorithm is the combination
of the planning and the control algorithms. More generally, however, it is not sufficient to invoke
the planner once, and planning and control are interleaved. The effect of planning is to dynamically
change the control portion of the robot algorithm, by changing the set of states of the workspace
that are explicitly considered.

Planning, which often requires exploring large search spaces, raises critical complexity issues. For
example, finding a collision-free path for a three-dimensional linkage among polyhedral obstacles
is PSPACE-hard [47], and the proof of this result provides strong evidence that any complete
algorithm will require exponential time in the number of degrees of freedom. Planning the motion
of a point robot among polyhedral obstacles, with bounded uncertainty in control and sensing, is
NEXPTIME-hard [10].

The computational complexity of planning leads to looking for efficient solutions to restricted
problems. For example, for part orienting, there exists a complete planning algorithm that computes
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a sequence of squeezes achieving a single orientation (up to symmetries) of a given convex polygonal
part in quadratic time in the number of sides of the part [20]. Another way of dealing with complexity
is to trade off completeness against time by accepting weaker variants of completeness. A complete
planner is guaranteed to find a solution whenever one exists, and to notify that there exists none
otherwise. A weaker variant is probabilistic completeness: if there exists a solution, the planner
will find one only with high probability. This variant can be very useful if one can show that the
probability of finding a solution (when one exists) tends rapidly toward 1 as the running time
increases. In Section 4.3, we will present planning algorithms that embed similar approaches.

The complexity of a robot algorithm has also some interesting relations with the reachability and
recognizability issues introduced in the previous subsection. We will mention several such relations
in Section 4.3 (in particular, in Section 4.3.3).

The potentially high cost of planning and the fact that it may often have to be done online raise
an additional issue. A robot algorithm must carefully allocate time between computations aimed
at planning and computations aimed at controlling and sensing the workspace. If the workspace is
changing,(say, under the influence of other agents), spending too much time on planning may result
in obsolete control algorithms; on the other hand, not enough planning may yield irreversible failures
[76]. The problem of allocating time between planning and control remains poorly understood,
though several promising ideas have been proposed. For example, it has been suggested to develop
planners that return a plan in whatever amount of time is allocated to them and can be called back
later to incrementally improve the previous plan if more time is allocated to planning [7]. Deliberative
techniques have been proposed to decide what amount of time should be given to planning and
control and update this decision as more information is collected [43].

4.2.3 Robot Algorithms Reason about Geometry

Imagine a robot whose task is to maintain a botanic garden. To set and update its goal agenda,
this robot needs knowledge in domains such as botany and fertilization. The algorithms using this
knowledge can barely be considered parts of a robot algorithm. But, on the other hand, all robots,
including gardener robots, accomplish tasks by eventually moving objects (including themselves) in
the real world. Hence, at some point, all robots must reason about the geometry of their workspace.
Actually, geometry is not enough, since objects have mass inducing gravitational and inertial forces,
while contacts between objects generate frictional forces. All robots must, therefore, reason with
classical mechanics. However, Newtonian concepts of mechanics translate into geometric constructs
(e.g., forces are represented as vectors), so that most of the reasoning of a robot eventually involves
dealing with geometry.

Computing with continuous geometric models raises discretization issues. Several planners, com-
puting a robot’s path, discretize the robot’s free space in order to build a connectivity graph to which
well-known search algorithms can be applied.

Consider, for example, the configuration space. A formal definition of this very important concept
is given in Section 4.3.3, but for now just think of it as the set of all collision-free poses (configurations)
of the robot. One discretization approach is to place a fine regular grid across configuration space
and search that grid for a sequence of adjacent points in free space. The grid is just a computational
tool and has no physical meaning. Its resolution is arbitrarily chosen despite its critical role in
the computation: if it is too coarse, planning is likely to fail; if it is too fine, planning will take
too much time. Instead, criticality-driven discretizations have been proposed, whose underlying
principle is widely applicable. They consist of partitioning the continuous space of interest into cells,
such that some pertinent property remains invariant over each cell and changes when the boundary
separating two cells is crossed. The second part-orienting algorithm in Section 4.2.1 is based on such
a discretization. The set of all possible orientations of the part is represented as the unit circle (the
cyclic interval [0, 2π)). For a given orientation of the gripper, this circle can be partitioned into arcs
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such that, for all initial orientations of the part in the same arc, the part’s final orientation will be the
same after the gripper has closed its jaws. The final orientation is the invariant associated with the
cell. From this decomposition, it is a relatively simple matter to plan a squeezing sequence.

Several such criticality-driven discretizations have been proposed for path planning, assembly
sequence planning, motion planning with uncertainty, robot localization, object recognition, and so
on, as will be described in Section 4.3. Several of them use ideas and tools originally developed in
computational geometry, for instance, plane sweep, constructing arrangements, and constructing
Voronoi diagrams.

Robot algorithms often require dealing with high-dimensional geometric spaces. Although
criticality-based discretization methods apply to such spaces in theory (for instance, see [49]), their
computational complexity is overwhelming. This has led the development of randomized techniques
that efficiently approximate the topology and geometry of such spaces by random discretization.
Such techniques have been particularly successful for building probabilistically complete planners
(Section 4.3.3.4).

4.2.4 Robot Algorithms Have Physical Complexity

Just as the complexity of a computation characterizes the amount of time and memory this compu-
tation requires, we can define the physical complexity of a robot algorithm by the amount of physical
resources it takes, for example, the number of “hands,” the number of motions, or the number of
beacons. Some resources, such as the number of motions, relate to the time spent for executing the
algorithm. Others, such as the number of beacons, relate to the engineering cost induced by the
algorithm. For example, one complexity measure of the multi-squeeze algorithm to orient a convex
polygon (Section 4.2.1) is the maximal number of squeeze operations this algorithm performs. As
another example, consider an assembly operation merging several parts into a subassembly. The
number of subsets of parts moving relative to each other (each subset moving as a single rigid body)
measures the number of hands necessary to hold the parts during the operation. The number of
hands required by an assembly sequence is the maximal number of hands needed by an operation,
over all operations in the sequence (Section 4.3.2). The number of fingers to safely grasp or fixture
an object is another complexity measure (Section 4.3.1.1).

Though there is a strong conceptual analogy between computational and physical complexities,
there are also major differences between the two notions. Physical complexity must be measured along
many more dimensions than computational complexity. Moreover, while computational complexity
typically measures an asymptotic trend, a tighter evaluation is usually needed for physical complexity
since robot tasks involve relatively few objects.

One may also consider the inherent physical complexity of a task, a notion analogous to the
inherent complexity of a computational problem. For example, to orient a convex polygon with n
sides, 2n−1 squeezes may be needed in the worst case; no correct algorithm can perform better in all
cases. By generating all feasible assembly sequences of a product, one could determine the number
of hands needed for each sequence and return the smallest number. This number is a measure of the
inherent complexity of assembling the product. No robot algorithm, to assemble this product, can
require fewer hands.

Evaluating the inherent physical complexity of a task may lead to redefining the task, if it turns out
to be too complex. For example, it has been shown that a product made of n parts may need up to n
hands for its assembly (Section 4.3.1.1), thus requiring the delicate coordination of n − 1 motions.
Perhaps, a product whose assembly requires several hands could be redesigned so that two hands
are sufficient, as is the case for most industrial products. Indeed, designers strive to reduce physical
complexity along various dimensions. For instance, many mass-produced devices are designed to
be assembled with translations only, along very few directions (possibly a single one). The inherent
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physical complexity of a robot task is not a recent concept, but its formal application to task analysis
is [54].

An interesting issue is how the computational and physical complexities of a robot algorithm relate
to each other. For example, planning for mobile robot navigation with uncertainty is a provably hard
computational problem (Section 4.3.5.6). On the other hand, burying wires in the ground or placing
enough infrared beacons allows robots to navigate reliably at small computational cost. But isn’t it
too much? Perhaps, the intractability of motion planning with uncertainty can be eliminated with
less costly engineering.

4.3 State of the Art and Best Practices

Robotics is a broad domain of research. In this subsection, we study a number of specific areas: part
manipulation, assembly sequencing, and motion planning. For each area, we introduce problems
and survey key algorithmic results.

Although we present the current research according to problem domain, there are several tech-
niques that cross over many domains. One of the most frequently applied methods in robotics is the
criticality-based discretization mentioned in Section 4.2.3. This technique allows us to discretize a
continuous space without giving up the completeness or exactness of the solution. It is closely related
to the study of arrangements in computational geometry [23]. When criticality-based discretization
is done in a space representing all possible motions, it yields the so-called “nondirectional” data
structures, which is another prevailing concept in robot algorithms and is exemplified in detail in
Section 4.3.2.4.

Randomization is another important paradigm in robotics. Randomized techniques have made
it possible to cope practically with robot motion planning with many degrees of freedom (Section
4.3.3.4). Also, randomized algorithms are often simpler than their deterministic counterparts and
hence better candidates for efficient implementation. Randomization has recently been applied to
solving problems in grasping as well as in many other areas that involve geometric reasoning.

Throughout this section, we interchangeably use the terms “body,” “physical object,” and “part”
to designate a rigid physical object modeled as a compact manifold with boundary B ⊂ R

k (k = 2
or 3). B’s boundary is also assumed piecewise-smooth.

4.3.1 Part Manipulation

Part manipulation is one of the most frequently performed operations in industrial robotics: parts
are grasped from conveyor belts, they are oriented prior to feeding assembly workcells, and they are
immobilized for machining operations.

4.3.1.1 Grasping

Part grasping has motivated various kinds of research, including the design of versatile mechanical
hands, as well as simple, low-cost grippers. From an algorithmic point of view, the main goal is to
compute “safe” grasps for an object whose model is given as input.

4.3.1.2 Force-Closure Grasp

Informally, a grasp specifies the positions of “fingers” on a body B. A more formal definition uses the
notion of a wrench, a pair [f, p × f], where p denotes a point on the boundary ∂B of B, represented
by its coordinate vector in a frame attached to B; f designates a force applied to B at p; and × is the
vector cross-product. If f is a unit vector, the wrench is said to be a unit wrench. A finger is any tool
that can apply a wrench.
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A grasp of B is a set of unit wrenches wi = [fi, pi × fi], i = 1, . . . , p, defined on B. For each wi, if
the contact is frictionless, fi is normal to ∂B at pi; otherwise, it can span a friction cone (Coulomb
law of friction).

The notion of a safe grasp is captured by force closure. A force-closure grasp {wi}i=1,...,p on
B is such that, for any arbitrary wrench w, there exists a set of real values {f1, . . . , fp} achieving∑p

i=1 fiwi = −w. In other words, a force-closure grasp can resist any external wrench applied to B.
If contacts are nonsticky, we require that fi ≥ 0, for all i = 1, . . . , p, and the grasp is called positive.
Here, we consider only positive grasps. A form-closure grasp is a positive force-closure grasp when
all finger-body contacts are frictionless.

4.3.1.3 Size of a Form/Force-Closure Grasp

The following results characterize the physical complexity of achieving a safe grasp [40]:

• Bodies with rotational symmetry (e.g., discs in two-space, spheres and cylinders in three-
space) admit no form-closure grasps.

• All other bodies admit a form-closure grasp with at most 4 fingers in two-space and 12
fingers in three-space.

• All polyhedral bodies have a form-closure grasp with seven fingers.
• With frictional finger-body contacts, all bodies admit a force-closure grasp that consists

of three fingers in two-space and four fingers in three-space.

4.3.1.4 Testing Force Closure

A necessary and sufficient condition for a grasp {wi}i=1,...,p to achieve force closure in two-space
(respectively, three-space) is that the finger wrenches wi span a space F of dimension three (respec-
tively, six) and that a strictly positive linear combination of them be zero. In other words, the origin
of F (null wrench) should lie in the interior of the convex hull of the finger wrenches [40]. This
condition provides an effective test for deciding in constant time whether a given grasp achieves
force closure.

4.3.1.5 Computing Form/Force Closure Grasps

Most research has concentrated on computing grasps with two to four nonsticky fingers. Algorithms
that compute a single force-closure grasp of a polygonal/polyhedral part in time linear in the part’s
complexity have been derived in [40].

Finding the maximal regions on a body where fingers can be positioned independently while
achieving force closure makes it possible to accommodate errors in finger placement. Geometric
algorithms for constructing such regions are proposed in [42] for grasping polygons with two fingers
(with friction) and four fingers (without friction), and for grasping polyhedra with three fingers
(with frictional contact capable of generating torques) and seven fingers (without friction). Grasping
of curved obstacles is addressed in [45].

4.3.1.6 Fixturing

Most manufacturing operations require fixtures to hold parts. To avoid the custom design of fixtures
for each part, modular reconfigurable fixtures are often used. A typical modular fixture consists of
a workholding surface, usually a plane, that has a lattice of holes where locators, clamps, and edge
fixtures can be placed. Locators are simple round pins, whereas clamps apply pressure on the part.

Contacts between fixture elements and parts are generally assumed to be frictionless. In modular
fixturing, contact locations are restricted by the lattice of holes, and form closure cannot always be
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achieved. In particular, when three locators and one clamp are used on a workholding plane, there
exist polygons of arbitrary size for which no form-closure fixture exists; but, if parts are restricted to
be rectilinear with all edges longer than four lattice units, a form-closure fixture always exists [56].

When the fixturing kit consists of a latticed workholding plane, three locators, and one clamp, it
is possible to find all possible placements of a given part on the workholding surface where form
closure can be achieved, along with the corresponding positions of the locators and the clamp [9].

Algorithms for computing all placements of (frictionless) point fingers that put a polygonal part
in form closure and all placements of point fingers that achieve “2nd-order immobility” [96] of a
polygonal part are presented in [95]. Immobilizing hinged parts are discussed in [97].

4.3.1.7 Part Feeding

Part feeders account for a large fraction of the cost of a robotic assembly workcell. A typical feeder
must bring parts at subsecond rates with high reliability. An example of a flexible feeder is given in
[20] and described in Section 4.2.1.

Part feeding often relies on nonprehensile manipulation, which exploits task mechanics to achieve
a goal state without grasping and frequently allows accomplishing complex feeding tasks with
simple mechanisms [2]. Pushing is one form of nonprehensile manipulation [90]. Work on pushing
originated in [38] where a simple rule is established to qualitatively determine the motion of a pushed
object. This rule makes use of the position of the center of friction of the object on the supporting
surface. Related results include a planning algorithm for a robot that tilts a tray with a planar part of
known shape to orient it to a desired orientation [16], and an algorithm that computes the sequence
of motions of a single articulated fence on a conveyor belt to achieve a goal orientation of an object
[2]. A variety of interesting results on part feeding appear in the thesis [98].

4.3.2 Assembly Sequencing

Most mechanical products consist of multiple parts. The goal of assembly sequencing is to compute
both an order in which parts can be assembled and the corresponding required movements of
the parts. Assembly sequencing can be used during design to verify that the product will be easy to
manufacture and service. An assembly sequence is also a robot algorithm at a high level of abstraction
since parts are assumed free-flying, massless geometric objects.

4.3.2.1 Notion of an Assembly Sequence

An assembly A is a collection of bodies in some given relative placements. Subassemblies are separated
if they are arbitrarily far apart from one another. An assembly operation is a motion that merges s
separated subassemblies (s ≥ 2) into a new subassembly, with each subassembly moving as a single
body. No overlapping between bodies is allowed during the operation. The parameter s is called the
number of hands of the operation. (Hence, a hand is seen here as a grasping or fixturing tool that
can hold an arbitrary number of bodies in fixed relative placements.) Assembly partitioning is the
reverse of an assembly operation.

An assembly sequence is a total ordering on assembly operations that merges the separated parts
composing a new assembly into this assembly. The maximum, over all the operations in the sequence,
of the number of hands of an operation is the number of hands of the sequence.

A monotone assembly sequence contains no operation that brings a body to an intermediate
placement (relative to other bodies), before another operation transfers it to its final placement.
Therefore, the bodies in every subassembly produced by such a sequence are in the same relative
placements as in the complete assembly. Note that a product may admit no monotone assembly
sequence for a given number of hands, while it may admit such sequences if more hands are allowed.
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4.3.2.2 Number of Hands in Assembly

The number of hands needed for various families of assemblies is a measure of the inherent physical
complexity of an assembly task (Section 4.2.4). It has been shown that an assembly of convex
polygons in the plane has a two-handed assembly sequence of translations. In the worst case, s hands
are necessary and sufficient for assemblies of s star-shaped polygons/polyhedra [41].

There exists an assembly of six tetrahedra without a two-handed assembly sequence of translations,
but with a three-handed sequence of translations. Every assembly of five or fewer convex polyhedra
admits a two-handed assembly sequence of translations. There exists an assembly of 30 convex
polyhedra that cannot be assembled with two hands [51].

4.3.2.3 Complexity of Assembly Sequencing

When arbitrary sequences are allowed, assembly sequencing is PSPACE-hard. The problem remains
PSPACE-hard even when the bodies are polygons, each with a constant maximal number of vertices
[41]. When only two-handed monotone sequences are permitted and rigid motions are allowed,
finding a partition of an assembly A into two subassemblies S and A\S is NP-complete. The problem
remains NP-complete when both S and A\S are connected, and motions are restricted to translations
[26]. These latter results were obtained by reducing in polynomial time any instance of the three-SAT
problem to a mechanical assembly such that the partitioning of this assembly gives the solution of
the three-SAT problem instance.

4.3.2.4 Monotone Two-Handed Assembly Sequencing

A popular approach to assembly sequencing is disassembly sequencing. A sequence that separates an
assembly to its individual components is first generated and next reversed. Most existing assembly
sequencers can only generate two-handed monotone sequences. Such a sequence is computed by
partitioning the assembly and, recursively, the obtained subassemblies into two separated assemblies.

The nondirectional blocking graph (NDBG) is proposed in [54] to represent all the blocking
relations in an assembly. It is a subdivision of the space of all allowable motions of separation into
a finite number of cells such that within each cell the set of blocking relations between all pairs of
parts remain fixed. Within each cell, this set is represented in the form of a directed graph, which is
called the directional blocking graph (DBG). The NDBG is the collection of the DBGs over all the
cells in the subdivision. The NDBG is one example of a data structure obtained by a criticality-driven
discretization technique (Section 4.2.3).

We illustrate this approach for polyhedral assemblies when the allowable motions are infinite
translations. The partitioning of an assembly consisting of polyhedral parts into two subassemblies
is done as follows. For an ordered pair of parts Pi, Pj, the three-vector d is a blocking direction if
translating Pi to infinity in direction d will cause Pi to collide with Pj. For each ordered pair of parts,
the set of blocking directions is constructed on the unit sphere S2 by drawing the boundary arcs of
the union of the blocking directions (each arc is a portion of a great circle). The resulting collection
of arcs partitions S2 into maximal regions such that the blocking relation among the parts is the
same for any direction inside such a region.

Next, the blocking graph is computed for one such maximal region. The algorithm then moves
to an adjacent region and updates the DBG by the blocking relations that change at the boundary
between the regions, and so on. After each time the construction of a DBG is completed, this
graph is checked for strong connectivity in time linear in the number of its nodes and edges. The
algorithm stops the first time it encounters a DBG that is not strongly connected, and it outputs
the two subassemblies of the partitioning. The overall sequencing algorithm continues recursively
with the resulting subassemblies. If all the DBGs that are produced during a partitioning step are
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strongly connected, the algorithm notifies that the assembly does not admit a two-handed monotone
assembly sequence with infinite translations.

Polynomial time algorithms are proposed in [54] to compute and exploit NDBGs for restricted
families of motions. In particular, the case of partitioning a polyhedral assembly by a single translation
to infinity is analyzed in detail, and it is shown that partitioning an assembly of m polyhedra with a
total of v vertices takes O(m2v4) time. Another case is where the separating motions are infinitesimal
rigid motions. In such a case, partitioning the polyhedral assembly can be carried out efficiently and
practically [93]. With the above algorithms, every feasible disassembly sequence can be generated in
polynomial time.

4.3.3 Motion Planning

Motion planning is central to robotics, as motion planning algorithms can provide robots with the
capability of deciding automatically which motions to execute to reach their goal. In its simplest
form, the problem is known as path planning because the question is to find a collision free path
from an initial to a final position. A more challenging and general version is captured by the term
motion planning. The distinctive difference is that it is not enough to come up with a collision free
path. In addition, the algorithm must compute the exact actions that the robot’s actuators must
perform to implement the computed path.

It is reasonable to expect that motion planning problems can present various difficulties depending
on the type of robot at hand (e.g., planning for mobile robots, humanoids, reconfigurable robots,
manipulators, etc.). Fortunately, all those differences can be abstracted with the use of the configu-
ration space that is described below. In the rest of this section, several motion planning issues are
discussed. For the case of just path planning, complete algorithms with a complexity analysis are
presented together with more recent sampling-based approaches. Then the case of motion planning
is considered under the prism of planning with differential constraints. The section ends with a
discussion of several other motion planning variants that include planning in dynamic workspaces,
planning with moving obstacles in the environment, multiple robots, movable objects, online plan-
ning, optimal planning, and dealing with uncertainties.

4.3.3.1 Configuration Space

The configuration space has been informally described in Section 4.2.3. At first sight, planning for
a car on the highway looks very different from planning for an industrial robotic arm. It is possible
though, to define a powerful abstraction that hides the robot’s specific details and transforms the
problem into finding a solution for a point robot that has to move from one position to another in
some new space, called the configuration space.

A configuration of a robot A is any mathematical specification of the position and orientation of
every body composing A, relative to a fixed coordinate system. The configuration of a single body is
called a placement or a pose.

The robot’s configuration space is the set of all its configurations. Usually, it is a smooth manifold.
We will always denote the configuration space of a robot by C and its dimension by m. Given a robot
A, we will let A(q) denote the subset of the workspace occupied by A at configuration q.

The number of degrees of freedom of a robot is the dimension m of its configuration space. We
abbreviate “degree of freedom” by dof.

Given an obstacle Bi in the workspace, the subset CBi ⊆ C such that, for any q ∈ CBi, A(q)

intersects Bi is called a C-obstacle. The union CB = ∪iCBi plus the configurations that violate
the mechanical limits of the robot’s joints is called the C-obstacle region. The free space is the
complement of the C-obstacle region in C, that is, C\CB. In most practical cases, C-obstacles are
represented as semialgebraic sets with piecewise smooth boundaries.
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A robot’s path is a continuous map τ : [0, 1] → C. A free path is a path that entirely lies in free
space. A semifree path lies in the closure of free space.

After the configuration space has been defined, solving a path problem for some robot becomes a
question of computing a free or semifree path between two configurations, e.g., [35,36]. A complete
planner is guaranteed to find a (semi)free path between two given configurations whenever such a
path exists, and to report that no such path exists otherwise.

4.3.3.2 Complete Algorithms

Basic path planning for a three-dimensional linkage made of polyhedral links is PSPACE-hard [47].
The proof uses the robot’s dofs to both encode the configuration of a polynomial space bounded
Turing machine and design obstacles which force the robot’s motions to simulate the computation
of this machine. It provides strong evidence that any complete algorithm will require exponential
time in the number of dofs. This result remains true in more specific cases, for instance, when the
robot is a planar arm in which all joints are revolute. However, it no longer holds in some very
simple settings; for instance, planning the path of a planar arm within an empty circle is in P. For a
collection of complexity results on motion planning see [30].

Most complete algorithms first capture the connectivity of the free space into a graph either by
partitioning the free space into a collection of cells (exact cell decomposition techniques) or by
extracting a network of curves (roadmap techniques) [30]. General and specific complete planners
have been proposed. The general ones apply to virtually any robot with an arbitrary number of dofs.
The specific ones apply to a restricted family of robots usually having a fixed small number of dofs.

The general algorithm in [49] computes a cylindrical cell decomposition of the free space using the
Collins method. It takes doubly exponential time in the number m of dofs of the robot. The roadmap
algorithm in [10] computes a semifree path in time singly exponential in m. Both algorithms are
polynomial in the number of polynomial constraints defining the free space and their maximal
degree. Specific algorithms have been developed mainly for robots with 2 or 3 dofs. For a k-sided
polygonal robot moving freely in a polygonal workspace, the algorithm in [24] takes O((kn)2+ε)

time, where n is the total number of edges of the workspace, for any ε > 0.

4.3.3.3 Heuristic Algorithms

Several heuristic techniques have been proposed to speedup path planning. Some of them work well
in practice, but they usually offer no performance guarantee.

Heuristic algorithms often search a regular grid defined over configuration space and generate a
path as a sequence of adjacent grid points. The search can be guided by a potential field, a function
over the free space that has a global minimum at the goal configuration. This function may be
constructed as the sum of an attractive and a repulsive field [28]. The attractive field has a single
minimum at the goal and grows to infinity as the distance to the goal increases. The repulsive field
is zero at all configurations where the distance between the robot and the obstacles is greater than
some predefined value, and grows to infinity as the robot gets closer to an obstacle. Ideally, a robot
could find its way to the goal by following a potential field that has only one global minimum at the
goal (the potential field is then called a navigation function). Yet in general, the configuration space
is usually a high dimensional and strangely shaped manifold, which makes it very hard to design
potential fields that have no local minima where the robot may be trapped.

One may also construct grids at variable resolution. Hierarchical space decomposition techniques
such as octrees and boxtrees have been used to that purpose [30].

4.3.3.4 Sampling-Based Algorithms

The complexity of path planning for robots with many dofs (more than 4 or 5) has led the development
of computational schemes that trade off completeness against computational time. Those methods
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avoid computing an explicit representation of the free space. Instead, their focus is on producing
a graph that approximately captures the connectivity of the free space. As the title of this section
suggests, those planners compute this graph by sampling the configuration space. The general idea
is that a large number of random configurations are sampled from the configuration space. Then
the configurations that correspond to collisions are filtered out, and an attempt is made to connect
pairs of collision free configurations to produce the edges of the connectivity graph.

One of the most popular such planners is the probabilistic roadmap (PRM) [4,27]. The original
algorithm consists of a learning and a querying phase. In the learning phase, the roadmap is
constructed. A sampling strategy is used to generate a large number of configuration samples. The
strategy can be just uniform random sampling, although many sophisticated strategies such as bridge
test, Gaussian, etc., have been proposed over the years [61,62]. Then, an attempt is made to connect
every free sample to its neighboring free samples. For this process, a local planner is used that tries
to interpolate between the two samples using a very simple strategy; for example, along a straight
line in the configuration space. The intermediate configurations on the line must be checked for
collisions [61,62,88] If no collisions are detected, the corresponding edge is added to the graph.
After this phase is over, multiple planning queries can be solved using the same graph as a roadmap.
The initial and goal configuration are connected to the roadmap by producing edges to one of their
respective nearest neighbors on the roadmap. Then, planning is reduced to a graph search problem
which can be solved very efficiently.

PRM was initially intended as a multiquery planner where the same roadmap can be reused. In
many cases though, it is required to solve only a single query as fast as possible, and it is more
important to explore the space toward some goal rather than trying to capture the connectivity of the
whole space. Two very popular such planners are rapidly-exploring random trees (RRT) [68] and
expansive-spaces trees (EST)∗ [69]. Both end up building a tree T, rooted at the initial configuration.
EST proceeds by extending new edges out to the existing tree T. At each step, a node q1 in the tree
is selected according to a probability distribution inverse to the local sampling density. Then, a new
random configuration q2 is sampled in the neighborhood of q1, and an attempt is made to create
an edge between q1 and q2 using a local planner as before. Hopefully at some point, there will be
some configuration node in the tree that can be connected to the goal. RRT has a slightly different
strategy. At each iteration, a new random configuration q is produced, and then an attempt is made
to connect q to its nearest neighbor in the tree. A popular way to make this process more effective is
to select the goal itself as q with some small probability. Several extensions of the above algorithms
can be found in [61,62].

There are a number of issues that can greatly affect the performance of sampling-based planners.
The sampling strategy has already been discussed above and is very important to produce useful
samples. Moreover, sampling-based planners make extensive use of collision checking primitives
[63]. This is a functionality that has to be available to provide the answer to the question of whether
a configuration is in collision with an obstacle, or not. Finally, most of those planners need some
functionality for nearest neighbor’s computations. This is a nontrivial task in general. The reason is
that configuration spaces are usually strangely shaped manifolds where it is not always easy to define
good distance metrics. This issue is discussed at the end of this chapter.

An interesting question is how many samples are required to solve a problem. In general, this is
related to the completeness properties of those algorithms. It is understood that if after some time
the produced roadmap or tree is unable to solve the problem, it could just be that the sampler was
“unlucky” and did not produce enough good samples yet. In principle, sampling-based algorithms
are not complete with respect to the definition given in previous sections. Instead, most of them can
be proven to be probabilistically complete. This is a weaker notion of completeness that guarantees

∗ The term EST was not used in the original paper. It was introduced later [62].
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that a solution will eventually be found if one exists. For this definition to be of practical importance,
it is good to also demand that the convergence to the solution will be fast, that is, exponential in the
number of samples. Nevertheless, attempts have been made to estimate the quality of the roadmap
and the number of samples that will be required. For example, the results reported in [4] bound the
number of samples generated by the algorithm in [27], under the assumption that the configuration
space verifies some simple geometric property.

4.3.4 Motion Planning under Differential Constraints

Real robots are constrained by mechanics and the laws of physics. Moreover, it is commonly the
case that a robot has more dofs than the number of actuators that can control those configuration
space parameters (underactuation). This means that a planner needs to produce paths that respect
those constraints and are thus implementable (feasible). Over the years, many terms have been
used in the literature to describe these classes of problems. Constraints in a robot’s motion that
cannot be converted into constraints that involve no derivatives, such as nonintegrable velocity
constraints in the configuration space, are usually referred to as nonholonomic. A more recent
term is kinodynamic constraints. The latter describes second order constraints on both velocity and
acceleration, and lately it has been used to describe problems that involve dynamics in general. A
generic term that captures all these constraints is differential constraints [61].

Below nonholonomic constraints are examined in some more depth to better understand the
controllability issues introduced in Section 4.2.1. This section ends with a description of the work
on sampling-based planners that can be applied to problems with differential constraints.

4.3.4.1 Planning for Robots with Nonholonomic Constraints

The trajectories of a nonholonomic robot are constrained by p ≥ 1 nonintegrable scalar equality
constraints:

G(q(t), q̇(t)) = (
G1(q(t), q̇(t)), . . . , Gp(q(t), q̇(t))

) = (0, . . . , 0),

where q̇(t) ∈ Tq(t)(C) designates the velocity vector along the trajectory q(t). At every q, the function
Gq = G(q, .) maps the tangent space∗ Tq(C) into R

p. If Gq is smooth and its Jacobian has full rank
(two conditions that are often satisfied), the constraint Gq(q̇) = (0, . . . , 0) constrains q̇ to be in a
linear subspace of Tq(C) of dimension m − p. The nonholonomic robot may also be subject to scalar
inequality constraints of the form Hj(q, q̇) > 0. The subset of Tq(C) that satisfies all the constraints
on q̇ is called the set Ω(q) of controls at q. A feasible path is a piecewise differentiable path whose
tangent lies everywhere in the control set.

A car-like robot is a classical example of a nonholonomic robot. It is constrained by one equality
constraint (the linear velocity must point along the car’s axis so that the car is not allowed to move
sideways). Limits on the steering angle impose two inequality constraints. Other nonholonomic
robots include tractor-trailers, airplanes, and satellites.

A key question when dealing with a nonholonomic robot is: Despite the relatively small number of
controls, can the robot span its configuration space? The study of this question requires introducing
some controllability notions. Given an arbitrary subset U ⊂ C, the configuration q1 ∈ U is said to
be U-accessible from q0 ∈ U if there exists a piecewise constant control q̇(t) in the control set whose
integral is a trajectory joining q0 to q1 that fully lies in U. Let AU(q0) be the set of configurations
U-accessible from q0. The robot is said to be locally controllable at q0 if for every neighborhood U of

∗ The tangent space Tp(M) at a point p of a smooth manifold M is the vector space of all tangent vectors to curves
contained in M and passing through p. It has the same dimension as M.
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q0, AU(q0) is also a neighborhood of q0. It is locally controllable if this is true for all q0 ∈ C. Car-like
robots and tractor-trailers that can go forward and backward are locally controllable [5].

Let X and Y be two smooth vector fields on C. The Lie bracket of X and Y , denoted by [X, Y], is
the smooth vector field on C defined by [X, Y] = dY · X − dX · Y , where dX and dY , respectively,
denote the m × m matrices of the partial derivatives of the components of X and Y w.r.t. the
configuration coordinates in a chart placed on C. The control Lie algebra associated with the control
set Ω, denoted by L(Ω), is the space of all linear combinations of vector fields in Ω closed by the Lie
bracket operation. The following result derives from the controllability rank condition theorem [5]:

A robot is locally controllable if, for every q ∈ C, Ω(q) is symmetric with respect to the origin of
Tq(C), and the set {X(q) | X(q) ∈ L(Ω(q))} has dimension m.

The minimal number of Lie brackets sufficient to express any vector in L(Ω) using vectors in Ω

is called the degree of nonholonomy of the robot. The degree of nonholonomy of a car-like robot is
two. Except at some singular configurations, the degree of nonholonomy of a tractor towing a chain
of s trailers is 2 + s. Intuitively, the higher the degree of nonholonomy the more complex (and the
slower) the robot’s maneuvers to perform some motions.

Let A be a locally controllable nonholonomic robot. A necessary and sufficient condition for
the existence of a feasible free path of A between two given configurations is that they lie in the
same connected component of the open free space. Indeed, local controllability guarantees that a
possibly nonfeasible path can be decomposed into a finite number of subpaths, each short enough
to be replaced by a feasible free subpath [31]. Hence, deciding if there exists a free path for a locally
controllable nonholonomic robot has the same complexity as deciding if there exists a free path for
the holonomic robot having the same geometry. Transforming a nonfeasible free path τ into a feasible
one can be done by recursively decomposing τ into subpaths. The recursion halts at every subpath
that can be replaced by a feasible free subpath. Specific substitution rules (e.g., Reeds and Shepp
curves) have been defined for car-like robots [31]. The complexity of transforming a nonfeasible
free path τ into a feasible one is of the form O(εd), where ε is the smallest clearance between the
robot and the obstacles along τ, and d is the degree of nonholonomy of the robot. The algorithm in
[5] directly constructs a nonholonomic path for a car-like or a tractor-trailer robot by searching a
tree obtained by concatenating short feasible paths, starting at the robot’s initial configuration. The
planner is guaranteed to find a path if one exists, provided that the length of the short feasible paths
is small enough. It can also find paths that minimize the number of cusps (changes of sign of the
linear velocity).

Path planning for nonholonomic robots that are not locally controllable is much less understood.
Research has almost exclusively focused on car-like robots that can only move forward. The algorithm
in [17] decides whether there exists such a path between two configurations, but it runs in time
exponential in obstacle complexity. The algorithm in [1] computes a path in polynomial time under
the assumptions that all obstacles are convex, and their boundaries have a curvature radius greater
than the minimum turning radius of the point (so-called moderate obstacles). Other polynomial
algorithms [5] require some sort of discretization.

4.3.4.2 Planning for Robots with Differential Constraints

A robot’s motion can generally be described by a set of nonlinear equations of motion ẋ = f (x, u),
together with some constraints g(x, ẋ) ≤ 0. x is the robot’s state vector and u is a vector of control
inputs. The robot can be abstracted into a point that moves in a state space. The state space is
a superset of the aforementioned configuration space. For example, a car moving in a plane can
be modeled using a five-dimensional state space where x = (xr, yr, θ, v, s). xr and yr provide the
position of a reference point on the car, and together with orientation θ, they constitute the car’s
configuration. For the state description, we need the components for the linear velocity v and angle
of the steering s. In this model, the car is controlled by two inputs: u = (a, b). a is the car’s linear
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acceleration and b is the car’s steering velocity. Notice that this system can have bounds in its
acceleration which is a second order constraint.

Sampling-based techniques are becoming increasingly popular for tackling problems with kin-
odynamic and in general differential constraints [61,62,72]. For this reason, this section will not
extend beyond sampling-based planners. For planning under differential constraints, the planner
is now called to search the state space described earlier. Since motion is constrained by nonlinear
equations, collision checking is generalized to also check for invalid states (e.g., due to constraint
violations). Moreover, the sampling process is modified. The planner typically produces a random
set of controls that are applied at a given state for some time in an attempt to move the system
toward a newly sampled state. For this process, the planner requires a function that can integrate
the equations of motion forward in time. Notice that all the produced trajectories are feasible by
construction. This is an advantage, since the planner avoids dealing with controllability issues. The
disadvantage is that it becomes hard to drive the system to an exact goal state. To overcome this
difficulty, it is sometimes easier to define a whole region of states that are acceptably close to the goal.

Adaptations of tree-based planners, such as RRT and EST, proved very successful in kinodynamic
problems (for example, see [73,74]). In addition, many newer planners are specifically designed for
problems with differential constraints [70,75] although they can apply to simpler problems as well.
An interesting observation is that the planner only needs the integrator function as a black box. For
this reason, it is possible to use a physical simulator to do the integration of motion [92]. In this
way, it is possible to model more realistic effects and constraints such as inertia, gravity, and friction.
Moreover, it becomes possible to do planning for systems for which the exact equations are not
explicitly written.

4.3.5 Extensions to Motion Planning

Most of the topics discussed so far focused on difficulties presented by the nature of a robot itself.
In practice, there are many interesting problems that extend beyond planning for a robot in a static
known environment. In the following paragraphs, an attempt is made to cover the most important
ones. For more detailed descriptions, the reader is referred to [30,60–62].

4.3.5.1 Dynamic Workspace

In the presence of moving obstacles, one can no longer plan a robot’s motion as a mere geometric
path. The path must be indexed by time and is then called a trajectory. The simplest scenario is
when the trajectories of the moving obstacles are known in advance or can be accurately predicted.
In that case, planning can be done in the configuration×time space (C × [0, +∞)) of the robot.
All workspace obstacles map to static forbidden regions in that space. A free trajectory is a free path
in that space whose tangent at every point points positively along the time axis (or within a more
restricted cone, if the robot’s velocity modulus is bounded).

Computing a free trajectory for a rigid object in three-space among arbitrarily moving obstacles
(with known trajectories) is PSPACE-hard if the robot’s velocity is bounded, and NP-hard otherwise
[48]. The problem remains NP-hard for a point robot moving with bounded velocity in the plane
among convex polygonal obstacles translating at constant linear velocities [10]. A complete planning
algorithm is given in [48] for a polygonal robot that translates in the plane among polygonal obstacles.
The obstacles translate at fixed velocities. This algorithm takes time exponential in the number of
moving obstacles and polynomial in the total number of edges of the robot and the obstacles.

In realistic scenarios, exact information about moving obstacle trajectories is not available. In
those cases, a robot has to make conservative assumptions about where the obstacles will be in
the future. For example, for problems on a plane, moving obstacles with bounded velocity can be
anywhere within a disk whose radius grows in time. As long as the robot’s path does not enter any
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of those disks at any moment in time, the robot’s path will be collision free. This idea is described
in [65] which also shows how to find time-optimal paths. Another approach that tries to address
these issues is by employing an adaptive online replanning strategy [67,70]. In such approaches,
the planner operates in a closed loop and is interleaved with sensing operations that try to keep
track of the motions of the obstacles. A partial plan for some small time horizon is computed and
implemented. Then using the latest available information, the planner is called again to compute a
new plan. Such replanning techniques are also known as online planning and are discussed in a bit
more detail in the relevant section below. For further reference, [94] is closely related to the topics
discussed in this subsection.

4.3.5.2 Planning for Multiple Robots

The case of multiple robots can be trivially addressed by considering them as the components of
a single robot, that is, by planning a path in the cross product of their configuration spaces. This
product is called the composite configuration space of the robots, and the approach is referred to as
centralized planning. This approach can be used to take advantage of the completeness properties
that single robot algorithms have. Owing to the increased complexity, powerful planners need to be
used (e.g., [78]).

One may try to reduce complexity by separately computing a path for each robot, before tuning
the robots’ velocities along their respective paths to avoid inter-robot collision (decoupled planning)
[64]. This approach can be helped by assigning priorities to robots according to some measure of
importance. Then, each robot has to respect the higher priorities robots when planning. Although
inherently incomplete, decoupled planning may work well in some practical applications.

Planning for multiple robots can become really challenging if it has to be done distributedly, with
each robot restricted to its own configuration space. This is a reasonable situation in practice where
each robot may have its own limitations and goals and can interact only with the robots that are
close to it. In [64], the robots move toward their independent goals. During the process, when robots
come close, they form dynamic networks. The robots within a network solve a centralized motion
planning problem to avoid collisions between each other using all available information within the
network. Whenever robots get out of some communication range, networks are dissolved. For this
kind of problems, planning can greatly benefit from utilizing the communication capabilities that
robots typically have. In [76,77], a coordination framework for mulitrobot planning is described. In
this work, each robot plans in its own state space and uses only local information obtained through
communication with neighboring robots. This approach can deal with robots that have nontrivial
kinodynamic constraints. Moreover, it is possible to guarantee collision avoidance between robots
and static obstacles while the robots can move as a connected network. Coordination is achieved
with a distributed message passing scheme.

4.3.5.3 Planning with Movable Objects

Many robot tasks require from the robot to interact with its environment by moving an object. Such
objects are called movable objects and cannot move by themselves; they must be moved by a robot.
These problems fall into the category of manipulation planning.

In [53], the robotA and the movable object M are both convex polygons in a polygonal workspace.
The goal is to bring A and M to specified positions. A can only translate. To grasp M, A must have
one of its edges that exactly coincides with an edge of M. While A grasps M, they move together
as one rigid object. An exact cell decomposition algorithm is given that runs in O(n2) time after
O(n3 log2 n) preprocessing, where n is the total number of edges in the workspace, the robot, and
the movable object. An extension of this problem allowing an infinite set of grasps is solved by an
exact cell decomposition algorithm in [3].
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Heuristic algorithms have also been proposed. The planner in [29] first plans the path of the
movable object M. During that phase, it only verifies that, for every configuration taken by M, there
exists at least one collision-free configuration of the robot where it can hold M. In the second phase,
the planner determines the points along the path of M where the robot must change grasps. It then
computes the paths where the robot moves alone to (re)grasp M. The paths of the robot when it
carries M are obtained through inverse kinematics. This planner is not complete, but it has solved
complex tasks in practice.

Another scenario is that of a robot that needs to move inside a building where the doors are
blocked by obstacles that have to be moved out of the way. Questions of interest are, how many
obstacles must be moved, in which order must these obstacles be moved, and where should the robot
put them so as not to block future motions. [66,91] presents a planner that can solve problems in
class LP. An LPk ⊆ LP problem is one where a series of k − 1 obstacles must be moved before an
obstacle can be reached and moved, so that a room becomes accessible through a blocked door.

4.3.5.4 Online Planning and Exploration

Online planning addresses the case where the workspace is initially unknown or partially unknown.
As the robot moves, it acquires new partial information about the workspace through sensing.
A motion plan is generated using the partial information that is available and updated as new
information is acquired. With this planning strategy, a robot exhibits a “reactive or adaptive behavior”
and can also move in the presence of moving obstacles or other robots.

In [67,70], the robot initially preprocesses the workspace and creates a roadmap as described in
Section 4.3.3.4. Then the robot finds a path to its goal and starts following it, until an unexpected
change, such as a moving obstacle, is sensed. Then, the robot quickly revises its path online, and
chooses a new path on the roadmap that avoids regions that are invalidated by the obstacle. Another
useful application where online planning is needed is that of exploration of unknown environments
[89]. In that case, it is necessary that a robot plans online and revises its plan periodically after
receiving new sensor information. Exploration can be done more efficiently when multiple robots
are used. In [76], a team of robots explores an unknown environment. Each robot plans online and
communicates with neighboring robots to coordinate their actions before computing a new plan. In
this way, robots that have kinodynamic constraints manage to complete their task while avoiding all
collisions between robots or workspace obstacles.

The main difficulty in online planning is that the planner has to run under a time budget and must
generally be very fast in producing a new plan. Moreover, since the overall motion is a concatenation
of small motions that use only partial information without a global view of the workspace, the quality
of the paths can be bad, and it is very hard to establish path optimality.

A way of evaluating an online planner is competitive analysis. The competitive ratio of an online
planner is the maximal ratio (over all possible workspaces) between the length of the path generated
by the online algorithm and the length of the shortest path [44]. Competitive analysis is not restricted
to path length and can be applied to other measures of performance as well.

4.3.5.5 Optimal Planning

There has been considerable research in computational geometry on finding shortest Euclidean
paths [63] (Chapter 26), but minimal Euclidean length is usually not the most suitable criterion in
robotics. Rather, one wishes to minimize execution time, which requires taking the robot’s dynamics
into account.

In optimal-time control planning, the input is a geometric free path τ parameterized by s ∈ [0, L],
the distance traveled from the starting configuration. The problem is to find the time parameterization
s(t) that minimizes travel time along τ, while satisfying actuator limits.
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The dynamic equation of motion of a robot arm with m dofs can be written as M(q)q̈ + V(q̇, q)+
G(q) = Γ , where q, q̇, and q̈, respectively, denote the robot’s configuration, velocity, and acceleration
[12]. M is the m × m inertia matrix of the robot, V the m-vector (quadratic in q̇) of centrifugal and
Coriolis forces, and G the m-vector of gravity forces. Γ is the m-vector of the torques applied by the
joint actuators.

Using the fact that the robot follows τ, this equation can be rewritten in the form: ms̈+vṡ2 +g = Γ ,
where m, v, and g are derived from M, V , and G, respectively. Minimum-time control planning
becomes a two-point boundary value problem: find s(t) that minimizes tf = � L

0 ds/ṡ, subject to
Γ = ms̈ + vṡ2 + g, Γmin ≤ Γ ≤ Γmax, s(0) = 0, s(tf ) = L, and ṡ(0) = ṡ(L) = 0. Numerical
techniques solve this problem by finely discretizing the path τ.

To find a minimal-time trajectory, a common approach is to first plan a geometric free path
and then iteratively deform this path to reduce travel time. Each iteration requires checking the
new path for collision and recomputing the optimal-time control. No bound has been established
on the running time of this approach or the goodness of its outcome. The problem is NP-hard
for a point robot under Newtonian mechanics in three-space. The approximation algorithm in
[13] computes a trajectory ε-close to optimal in time polynomial in both 1/ε and the workspace
complexity.

4.3.5.6 Dealing with Uncertainties in Motion and Sensing

In all of the topics discussed so far, it has been implicitly assumed that the robot has accurate
knowledge about its own state at the present and possibly future times after executing some action.
Unfortunately, this is not the case in practice. Real robots have a number of inherent mechanical
imperfections that affect the result of an action and introduce motion errors. For example, the
actuators introduce errors when executing a motion command, and there is usually discrepancy
between how much the robot thinks it has moved as opposed to how much it has actually moved. The
problem is more pronounced in mobile robots that have odometry errors produced by unaccounted
for wheel slipage. The effect of such errors is that the robot no longer has the exact knowledge of its
own state. Instead, it has to somehow infer its state from the available sensing information. To add
to the overall problem, processing sensor information is computationally intensive and error-prone
due to imperfect sensors. (Notice that reconstructing shapes of objects using simple sensors has
attracted considerable attention [50].)

All these issues amount to the very fundamental problem of dealing with uncertainty in motion
and sensing. A very simple example was already shown in Figure 4.2. A broad area of robotics
algorithms focus on processing all the available information to reduce this uncertainty. There exist
some algorithmic techniques for planning with uncertainty, e.g., [11,15] but maybe the most common
framework for handling uncertainty is based on the theory of Bayesian estimation [60]. The robot
is assumed to be at some state xt which is unknown. The robot maintains a probability distribution
bel(x) called belief, that represents how likely it is that the true state is x. For Bayesian estimation,
some system specific characteristics must be modeled. In particular, a state transition function must
be given to describe how likely it is to move to some new state xt+1 when starting at some state xt
and performing an action/motion. Moreover, a measurement model must be available to describe
how likely it is to take some specific measurement when being at some state. Given the belief at time
t together with the latest action and sensor measurement, Bayesian estimation performs two steps in
an attempt to compute the next belief bel(xt+1). First, there is a prediction step where using bel(xt)
and the state transition model, an estimate of bel(xt+1) is computed. Then, this estimate is refined
using the measurement model to validate the predictions against the latest sensor measurement.
This technique is very general and powerful and has been successfully applied in many robotics
estimation problems. Below, concrete examples of the most important estimation problems are
briefly described. An extensive reference for such problems is [60].
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4.3.5.6.1 Localization
One of the most fundamental problems in robotics is that of robot localization [22]. The goal is
to maintain an accurate estimation of the robot’s state at all times as the robot moves in a known
environment for which a map is available. The easiest version is when the initial state is known with
certainty. Then the problem is called position tracking, and the robot just needs to compensate for
local uncertainty introduced every time it attempts to move, e.g., [33]. A very successful technique
for such problem is the extended Kalman filter (EKF) [60,79]. A more challenging variant is called
global localization [52,57,80]. This is the problem of estimating the robot’s state when the initial
location is also unknown. This kind of problems are usually solved using particle filters [59,60].

4.3.5.6.2 Mapping
The assumption that the robot’s map is known does not always hold. In fact, the mapping problem
tries to address exactly this issue. Here, the robot is assumed to have an accurate mechanism for
tracking its position (e.g., using a GPS). Its target is to use sensor information to build an accurate
map of the environment [55]. The map is usually described by the locations of all the features in the
environment, called landmarks.

In a sense, this is the complementary problem to localization. In a mapping problem, the state
vector describes the map, and bel(x) is the distribution that describes how likely each version of a
map is [82].

4.3.5.6.3 SLAM
One of the most exciting and challenging class of estimation problems is that of simultaneous local-
ization and mapping or SLAM, where localization and mapping have to be tackled simultaneously.
This is a hard problem since in most cases there is a demand to perform all the computations online
as the robot moves. Moreover, this ends up being a “chicken and egg” problem where trusting a map
would increase localization accuracy, while trusting localization can give better estimates about the
position of the obstacles.

The typical difficulty for solving any SLAM problem is in data association. The current estimated
map is represented by the locations of certain landmarks. As the robot moves, the sensors extract
new sensed features, and the algorithm needs to decide whether a sensed feature represents a new
landmark that has never been observed before or not. To solve this correspondence problem between
the sensed features and the current list of observed landmarks, a standard way is to use maximum
likelihood estimation techniques. Another problem that is also a benchmark for the effectiveness
of SLAM algorithms is that of loop closure. As the robot is moving, it often happens that after
spending a lot of time in some newly discovered part of the environment the robot returns to an
area it has visited before, and closes a loop. The ability to detect that indeed a loop was closed
can be a challenging problem especially for online SLAM algorithms. Finally, for SLAM problems,
the state that needs to be estimated tends to be very high dimensional, and this leads to expensive
computations for updating the state. There are a number of state-of-the-art algorithms for SLAM
[58,81,83–85], and the area is an active research field.

4.4 Distance Computation

The efficient computation of (minimum) distances between bodies in two- and three-space is a
crucial element of many algorithms in robotics [63].

Algorithms have been proposed to efficiently compute distances between two convex bodies.
In [14], an algorithm is given which computes the distance between two convex polygons P and Q
(together with the points that realize it) in O(log p + log q) time, where p and q denote the number
of vertices of P and Q, respectively. This time is optimal in the worst case. The algorithm is based
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on the observation that the minimal distance is realized between two vertices or between a vertex
and an edge. It represents P and Q as sequences of vertices and edges and performs a binary search
that eliminates half of the edges in at least one sequence at each step. For treatment of the analogous
problem in three-dimensions see [100]. A widely tested numerical descent technique is described
in [18] to compute the distance between two convex polyhedra; extensive experience indicates that
it runs in approximately linear time in the total complexity of the polyhedra. This observation has
recently been theoretically substantiated in [101].

Most robotics applications, however, involve many bodies. Typically, one must compute the
minimum distance between two sets of bodies, one representing the robot and the other the obstacles.
Each body can be quite complex, and the number of bodies forming the obstacles can be large. The
cost of accurately computing the distance between every pair of bodies is often prohibitive. In that
context, simple bounding volumes, such as parallelepipeds and spheres, have been extensively used
to reduce computation time. They are often coupled with hierarchical decomposition techniques,
such as octrees, boxtrees, or sphere trees (for an example, see [46]). These techniques make it
possible to rapidly eliminate pairs of bodies that are too far apart to contribute the minimum
distance.

When motion is involved, incremental distance computation has been suggested for tracking the
closest points on a pair of convex polyhedra [34,86,87]. It takes advantage of the fact that the closest
features (faces, edges, vertices) change infrequently as the polyhedra move along finely discretized
paths.

4.5 Research Issues and Summary

In this chapter, we have introduced robot algorithms as abstract descriptions of processes consisting
of motions and sensing operations in the physical space. Robot algorithms send commands to
actuators and sensors in order to control a subset of the real world, the workspace, despite the fact
that the workspace is subject to the imperfectly modeled laws of nature. Robot algorithms uniquely
blend controllability, observability, computational complexity, and physical complexity issues, as
described in Section 4.2. Research on robot algorithms is broad and touches many different areas.
In Section 4.3, we have surveyed a number of selected areas in which research has been particularly
active: part manipulation (grasping, fixturing, and feeding), assembly sequencing, motion planning
(including basic path planning, nonholonomic planning, dynamic workspaces, multiple robots, and
optimal-time planning), and sensing.

Many of the core issues reviewed in Section 4.2 have been barely addressed in currently existing
algorithms. There is much more to understand in how controllability, observability, and complexity
interact in robot tasks. The interaction between controllability and complexity has been studied to
some extent for nonholonomic robots. The interaction between observability (or recognizability)
and complexity has been considered in motion planning with uncertainty. But, in both cases, much
more remains to be done.

Concerning the areas studied in Section 4.3, several specific problems remain open. We list a few
below (by no means is this list exhaustive):

• Given a workspace W, find the optimal design of a robot arm that can reach everywhere
in W without collision. The three-dimensional case is largely open. An extension of this
problem is to design the layout of the workspace so that a certain task can be completed
efficiently.

• Given the geometry of the parts to be manipulated, predict feeders’ throughputs to
evaluate alternative feeder designs. In relation to this problem, simulation algorithms
have been used to predict the pose of a part dropped on a flat surface [39].



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C004 Finals Page 22 2009-10-5

4-22 Special Topics and Techniques

• In assembly planning, the complexity of an NDBG grows exponentially with the number
of parameters that control the allowable motions. Are there situations where only a small
portion of the full NDBG needs to be constructed?

• Develop efficient sampling techniques for searching the configuration space of robots
with many degrees of freedom in the context of the scheme given in [4].

• Establish a nontrivial lower bound on the complexity of planning for a nonholonomic
robot that is not locally controllable.

4.6 Further Information

For an introduction to robot arm kinematics, dynamics, and control, see [12]. More on robotic
manipulation can be found in [90]. Robot motion planning and its variants are discussed in a number
of books [30,61,62,71]. Research in all aspects of robotics is published in the IEEE Transactions of
Robotics and Automation and the International Journal of Robotics Research, as well as in the
proceedings of the IEEE International Conference on Robotics and Automation and the International
Symposium on Robotics Research [19]. The Workshop on Algorithmic Foundations of Robotics (see,
e.g., [21,32]) emphasizes algorithmic issues in robotics. Several computational geometry books
contain sections on robotics or motion planning [6].

Defining Terms

Basic path planning problem: Compute a free or semifree path between two input configurations
for a robot moving in a known and static workspace.
C-Obstacle: Given an obstacle Bi, the subset CBi of the configuration space C such that, for any
q ∈ CBi, A(q) intersects Bi. The union CB = ∪iCBi plus the configurations that violate the
mechanical limits of the robot’s joints is called the C-obstacle region.
Complete motion planner: A planner guaranteed to find a (semi)free path between two given
configurations whenever such a path exists, and to notify that no such path exists otherwise.
Configuration: Any mathematical specification of the position and orientation of every body com-
posing a robot A, relative to a fixed coordinate system. The configuration of a single body is called a
placement or a pose.
Configuration space: Set C of all configurations of a robot. For almost any robot, this set is a smooth
manifold.
Differential constraint: A motion constraint that is both nonholonomic (nonintegrable) and kino-
dynamic (at least second order).
Free path: A path in free space.
Free space: The complement of the C-obstacle region in C, that is, C\CB.
Kinodynamic constraint: A second order constraint in the configuration space, that is, for problems
where both velocity and acceleration bounds are specified for the robot’s motion.
Linkage: A collection of rigid objects, called links, in which some pairs of links are connected by
joints (e.g., revolute and/or prismatic joints). Most industrial robot arms are serial linkages with
actuated joints.
Nonholonomic constraint: Constraints in a robot’s motion that cannot be converted into constraints
that involve no derivatives. For example, nonintegrable velocity constraints in the configuration
space.
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Number of degrees of freedom: The dimension m of C.
Obstacle: The workspace W is often defined by a set of obstacles (bodies) Bi (i = 1, . . . , q) such that
W = R

k\⋃q
1 Bi.

Path: A continuous map τ : [0, 1] → C.
Probabilistically complete: An algorithm is probabilistically complete if given enough time, the
probability of finding a solution goes to 1 when a solution exists.
Semifree path: A path in the closure of free space.
State space: The set of all robot’s states. A superset of the configuration space that captures the
robot’s dynamics as well.
Trajectory: Path indexed by time.
Workspace: A subset of the two- or three-dimensional physical space modeled by W ⊂ R

k, k = 2, 3.
Workspace complexity: The total number of features (vertices, edges, faces, etc.) on the boundary
of the obstacles.
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5.1 Introduction

There is an abundance of algorithms developed in the field of image processing and computer
vision ranging from simple algorithms that manipulate binary images based on local point opera-
tions to complex algorithms for the interpretation of the symbolic information extracted from the
images.

Here we concentrate on algorithms for three central problems in image processing and computer
vision that are representative of different types of algorithms developed in this area. The first problem,
connectivity analysis, has been studied since the early days of binary images. It consists of separating
the objects from the background by assigning different labels to the connected components of an
image. The algorithms to identify connected components in binary images are rather straightforward:
the first one is an iterative algorithm that performs several scans of the image and uses only local
operations; the next two algorithms consist of only two scans of the image and use global information
in the form of an equivalence table.

The second problem is that of grouping features extracted from the image (for instance, edge
points) into parametric curves such as straight lines and circles. An algorithm to detect lines, based
on the Hough transform, is described that maps the image data into a parameter space that is
quantized into an accumulator array. The Hough transform is a robust technique since it is relatively
insensitive to noise in the sensory data and to small gaps in a line.

The last problem is that of identifying and locating objects known a priori in an image, a
problem that is generally called model-based object recognition. Our discussion will focus on
the matching task, that is, finding correspondences between the image and model descriptions.
This correspondence can be used to solve the localization problem, i.e., the determination of a

5-1
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geometrical transformation that maps the model into the observed object. Finding correspondences
is difficult, due to the combinatorial nature of the problem and to noise and uncertainty in the
data. We deal mainly with the case of planar objects undergoing rigid transformations in 3D space
followed by scaled orthographic projections. We first assume that both the model and the image
data are represented in terms of sets of feature points and describe two approaches (alignment
and geometric hashing) to solve the point set matching problem. Then we consider model and
image representations in terms of object boundary descriptions. We review dynamic programming
algorithms for matching two sequences of boundary segments, which resemble the algorithm for
the string editing problem. For multiresolution boundary representations, a tree dynamic program-
ming algorithm is discussed. Extensions of the indexing techniques and of the algorithms based on
the hypothesis-and-test paradigm to take advantage of the richer boundary descriptions are also
described.

5.2 Connected Components

The connected component problem consists of assigning a label to each 1-pixel of a binary image
so that two 1-pixels are assigned the same label if and only if they are connected. Two pixels are said
to be connected if there is a path of 1-pixels adjacent along the horizontal and vertical directions
that links them. (A different definition of connectivity includes the diagonal direction as well.)
The set of connected pixels is called a connected component. Figure 5.1 shows a binary image
and its connected components labeled with integers. A simple iterative algorithm to determine the
connected components performs a sequence of scans over the image, propagating a label from each
1-pixel to its adjacent 1-pixels. The algorithm starts with an arbitrary labeling. More precisely, the
algorithm works as follows.

CONNECTED COMPONENT ALGORITHM-Iterative
Step 1. (Initialization phase)

Assign each 1-pixel a unique integer label.
Step 2. Scan the image top-down, left-to-right.

Assign each 1-pixel the smallest between its own label and those
of the adjacent pixels already examined in the scan sequence.

Step 3. Scan the image bottom-up, right-to-left.
Like Step 2 above with a different scan order.

Alternate Step 2 and Step 3 until no changes occur.

(a)

0 0 0 0 0 01 1 1 1
0 0 0 0 0 01 1 0 0
0 0 0 0 0 11 0 0 0
0 0 0 0 0 10 0 0 0
0 1 0 0 1 11 1 0 0
0 1 0 0 0 11 0 0 0
0 1 0 0 0 11 0 0 0
0 1 0 0 0 10 0 1 1
0 1 1 0 0 00 0 0 1
0 0 0 0 0 00 0 0 0

(b)

0 0 0 0 0 01 1 1 1
0 0 0 0 0 01 1 0 0
0 0 0 0 0 21 0 0 0
0 0 0 0 0 20 0 0 0
0 4 0 0 2 23 3 0 0
0 4 0 0 0 23 0 0 0
0 4 0 0 0 23 0 0 0
0 4 0 0 0 20 0 4 4
0 4 4 0 0 00 0 0 4
0 0 0 0 0 00 0 0 0

FIGURE 5.1 (a) A 8×8 image and (b) its labeled connected components.



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C005 Finals Page 3 2009-9-25

Vision and Image Processing Algorithms 5-3

1 1 1 0 0 00 0

0 0 0 0 0 01 1
1 0 0 0 0 01 1
1 0 1 1 1 01 1
1 0 1 1 0 00 1
0 0 0 1 0 00 1
0 0 0 1 1 11 1

(a)

1 2 3 0 0 00 0
4 5 0 0 0 00 0
0 0 0 0 0 06 7
8 0 0 0 0 09 10
11 0 12 13 14 15 0 16
17 0 18 19 0 0 0 20

00 0 21 0 0 0 22
00 0 23 24 25 26 27

(b)

1 1 1 0 0 00 0

(c)

1 1 1 0 0 00 0
1 1 0 0 0 00 0
0 0 0 0 0 06 7
8 0 0 0 0 06 7
8 0 6 6 6 06 7
8 0 7 7 0 00 7
0 0 0 7 0 00 7
0 0 0 7 7 77 7

(d)

1 1 0 0 0 00 0
0 0 0 0 0 06 7
8 0 0 0 0 06 7
8 0 12 12 12 06 7
8 0 12 12 0 00 7
0 0 0 12 0 00 7
0 0 0 12 12 1212 7

(e)

1 1 1 0 0 00 0
1 1 0 0 0 00 0
0 0 0 0 0 06 6
8 0 0 0 0 06 6
8 0 6 6 6 06 6
8 0 6 6 0 00 6
0 0 0 6 0 00 6
0

(f)
0 0 6 6 66 6

1 1 1 0 0 00 0
1 1 0 0 0 00 0
0 0 0 0 0 06 7
8 0 0 0 0 06 7
8 0 6 6 6 06 7
8 0 6 6 0 00 7
0 0 0 6 0 00 7
0 0 0 6 6 66 6

1 1 0 0 0 00 0

FIGURE 5.2 All the steps of the iterative algorithm for the input image (a).

Figure 5.2 shows a few steps of the algorithm (b–f) for the input image (a). It is clear that this algorithm
is highly inefficient on conventional computers; however, it becomes attractive for implementation
on parallel SIMD (single instruction multiple data stream) architectures where all the updates of the
pixel’s labels can be done concurrently. Another advantage of the iterative algorithm is that it does
not require auxiliary memory, unlike the next two algorithms.

A common approach to finding the connected components is based on a two-pass algorithm. First
the image is scanned in a top-bottom, left-to-right fashion and a label is assigned to each 1-pixel
based on the value of adjacent 1-pixels already labeled. If there are no adjacent 1-pixels, a new
label is assigned. Conflicting situations may arise in which a pixel can be given two different labels.
Equivalent classes of labels are then constructed and stored to be used in the second pass of the
algorithm to disambiguate such conflicts. During the second scan of the image, each label is replaced
by the one selected as the representative of the corresponding equivalence class, for instance, the
smallest one in the class if the labels are integers. The details follow.
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CONNECTED COMPONENT ALGORITHM-Equivalence Table
Step 1. Scan the image top-down, left-to-right

for each 1-pixel do
if the upper and left adjacent pixels are all 0-pixels

then assign a new label
if the upper and left adjacent pixels have the same label

then assign that label
if only one adjacent pixel has a label

then assign this label
otherwise

Assign the smaller label to the pixel.
Enter the two equivalent labels into the equivalence table.

Step 2.
Find equivalence classes.
Choose a representative of each class
(i.e., the smallest label).

Step 3. Scan the image top-down, left-to-right.
Replace the label of each 1-pixel with its smallest equivalent one.

Step 2. can be done using the algorithm for UNION-FIND. The drawback of the above algorithm
is that it may require a large number of memory locations to store the equivalent classes.

The next algorithm overcomes this problem by building a local equivalence table that takes into
account only two consecutive rows. Thus, as the image is processed the equivalences are found and
resolved locally. The algorithm works in two passes over the image.

CONNECTED COMPONENT ALGORITHM-Local Equivalence Table
Step 1. Scan the image top-down, left-to-right

for each row r of the image do
Initialize the local equivalence table for row r.
for each 1-pixel of row r do

if the upper and left adjacent pixels are all 0-pixels
then assign a new label

if the upper and left adjacent pixels have the same label
then assign this label

if only one adjacent pixel has a label
then assign this label

otherwise assign the smaller label to the pixel and
enter the two equivalent labels into the local table.

Find equivalence classes of the local table.
Choose a representative of each class.
for each 1-pixel of row r do

replace its label with the smallest equivalent label.
Step 2. Scan the image bottom-up, right-to-left

for each row r of the image do
Initialize the local equivalence table for row r.
for each 1-pixel of row r do

for each adjacent pixel with a different label do
enter the two equivalent labels into the local table.
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Find equivalence classes of the local table.
Choose a representative of each class.
for each 1-pixel of row r do

replace its label with the smallest equivalent label.

It has been shown by experiments that as the image size increases this algorithm works better than
the classical algorithm on a virtual memory computer.

Modifications of the above algorithms involving different partitioning of the image into rectangular
blocks are straightforward.

5.3 The Hough Transform

5.3.1 Line Detection

The Hough transform is a powerful technique for the detection of lines in an image [11,16]. Suppose
we are given a set of image points—for instance, edge points or some other local feature points—
and we want to determine subsets of them lying on straight lines. A straightforward but inefficient
procedure to do that consists of determining for each pair of points the straight line through them
and then counting the number of other points lying on it (or close to it).

The Hough transform formulates the problem as follows. Consider the following parametric
representation of a line:

y = mx + b

where the parameters m, b are the slope and the intercept, respectively. Given a point (x1, y1), the
equation b = −x1m + y1, for varying values of b and m, represents the parameters of all possible
lines through (x1, y1). This equation in the (b, m) plane is the equation of a straight line. Similarly,
point (x2, y2) maps into the line b = −x2m + y2 of the parameter space. These two lines intersect at
a point (b′, m′) that gives the parameters of the line through the (x1, y1) and (x2, y2). More generally,
points aligned in the (x, y) plane along the line with parameters (b′, m′) correspond to lines in the
(b, m) plane intersecting at (b′, m′). Figure 5.3 illustrates this property.

Thus the line detection problem is converted into the problem of finding intersections of sets of
lines in the parameter space. We next see how to solve this latter problem efficiently in the presence
of noise in the image data.

The parameter space is quantized into h × k cells that form an array A, called, accumulator array;
each entry of the array or cell corresponds to a pair (b, m). In other words, the parameter b is
discretized into h values b1, b2, . . . , bh, and m in k values m1, m2, . . . , mk, where bh and mk are the
largest possible values for the two parameters. See Figure 5.4.

m

b

y

x

FIGURE 5.3 Mapping collinear image points into parameter space.
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m1 m2 mk
b1
b2

bh

FIGURE 5.4 The parameter
space.

The line detection algorithm proceeds in two phases. Phase 1 con-
structs the accumulator array as follows.

HOUGH ALGORITHM

Initialize all entries of the accumulator array A to zero.
for each image point (x, y) do

for each mi, i = 1, k do
b ← −mix + y
round b to the nearest discretized value, say, bj
A(bj, mi) ← A(bj, mi) + 1.

At the end of phase 1, the value t at A(b, m) indicates that there are t
image points along the line y = mx + b. Thus a maximum value in the
array corresponds to the best choice of values for the line parameters
describing the image data. Phase 2 of the algorithm determines such a
peak in the accumulator array A or, more generally, the s largest peaks,
for a given s.

Another way of looking at the Hough transform is as a “voting”
process where the image points cast votes in the accumulator array.

(0, 0) xθ
ρ

y

FIGURE 5.5 ρ, θ line repre-
sentation.

The above parametric line representation has the drawback that
the slope m approaches infinity for vertical lines, complicating the
construction of the Hough table. Since vertical lines tend to occur
frequently in real applications, this representation is rarely used. A
better representation is

ρ = x cos θ + y sin θ

where the two parameters ρ and θ denote the distance of the line from the origin and the angle of
the normal line, respectively, as illustrated in Figure 5.5.

An important property of the Hough transform is its insensitivity to noise and to missing parts of
lines.

We now analyze the time complexity of the Hough algorithm. Let n be the number of points
(edges or other feature points) and k × m the size of the accumulator array. Phase 1 of the above
algorithm requires O(nm) operations. Phase 2, that is, finding the maximum in the array, requires
O(km) time for a total of O(m max(k, n)) time.

5.3.2 Detection of Other Parametric Curves
The concept of the Hough transform can be extended in several ways. One extension is to other
parametric curves with a reasonably small number of parameters; circles and ellipses are typical
examples. Consider the case of circle detection. A circle can be represented by the equation

(x − a)2 + (y − b)2 = r2

where the parameters a and b are the coordinates of the center and r is the radius. The transform
maps the image points into a three-dimensional accumulator array indexed by discretized values of
the center coordinates and of the radius. If it is known in advance that only circles with given radii
may be present in an image, which is sometimes true in real applications, only a few two-dimensional
(2D) subarrays need to be considered. If space is a concern this approach can be used only for few
parametric curves, since the array dimensionality grows with the number of the curve parameters.

Another generalization is to arbitrary shapes represented by boundary points [2].
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5.4 Model-Based Object Recognition

The problem of object recognition, central to computer vision, is the identification and localization
of given objects in a scene. The recognition process generally involves two stages. The first is the
extraction from sensed data of information relevant to the problem and the construction of a suitable
symbolic representation. The second is that of matching the image and model representations to
establish a correspondence between their elements. This correspondence can be used to solve the
localization problem, that is the determination of a geometrical transformation that maps the model
into the observed object.

Matching is a difficult task, for a number of reasons. First, a brute-force matching is equivalent to
a combinatorial search with exponential worst-case complexity. Heuristics may be used to reduce
the complexity by pruning the search space that must be explored. Approaches with polynomial
time complexity have also been proposed; but the execution time and memory requirements remain
high. Second, images do not present perfect data: noise and occlusion greatly complicate the task.

There have been many recognition methods and systems proposed to handle this complexity
[7,10,13,19]. Surveys of recognition methods are [1,3,4,8,33]. The systems differ both in the choice
of the representational models and of the matching algorithms used to relate the visual data to the
model data. It is obvious that these two aspects influence each other and that the selection of a
matching strategy heavily depends on which structures are used to represent data. Some methods
use representational models that rely on few high-level features for fast interpretation of the image
data. While this facilitates matching, the process of extracting high-level primitives from the raw
data may be difficult and time consuming. Moreover, in the presence of occlusion the disappearance
of few distinctive features may became fatal. Simpler features are easier to detect and tend to be
dense, implying less sensitivity to noise and occlusion. However, low-level features do not have high
discriminating power, thus affecting the time for matching.

There are a number of other issues that any recognition system needs to address:

1. What class of objects is the system able to deal with?
The objects can be 2D or three-dimensional (3D). 3D objects may be smoothly curved
or approximated by polyhedra. A restricted class of 3D objects includes flat objects,
that is,objects with one dimension much smaller than the other two. Flat objects have
received a lot of attention, because a projective transformation applied to this class of
objects can be effectively approximated by an affine transformation, which is easier to
handle. Another important distinction is whether the objects are rigid or deformable or
composed of parts that are allowed to move with respect to one another.

2. What type of geometric transformation is allowed?
There is a hierarchy of transformations that has been considered in computer vision:
from Euclidean transformations (rotations, translations) to similarity transformations
(rotations, translations, and scaling) to affine transformations (represented by a set of
linear equations) to the more general projective transformations. To remove the effects
of a transformation it is useful to represent the objects by means of features that are
invariant under that class of transformations. As the class of transformations becomes
more general, the invariant features become more complex and harder to extract. For
example, a well-known simple invariant to Euclidean transformations is the distance
between two points; however, distance is not invariant to similarity. For a projective
transformation four points are needed to define an invariant (cross-ratio).

3. Robustness
Is the recognition system able to deal with real data? Some available systems give good
results in controlled environments, with good lighting conditions and with isolated
objects. Noisy and cluttered images represent challenging domains for most systems.
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This chapter reviews algorithms to match an image against stored object models. Topics that are
not covered in this chapter include model representation and organization. The objects are assumed
to be given either by means of sets of feature points or by their boundaries (2D or 3D). For an
introduction to feature and boundary extraction, see the references listed at the end of this chapter.

The objects may have undergone an affine transformation; thus we do not consider here the more
general class of projective transformations.

5.4.1 Matching Sets of Feature Points

In this section we consider recognition of rigid flat objects from an arbitrary viewpoint. Models in the
database are represented by sets of feature points. We assume that an image has been preprocessed
and feature points have been extracted. Such points might be edge points or corners or correspond
to any other relevant feature. The following discussion is independent on the choice of the points
and on the method used to acquire them. In fact, as we will see later, similar techniques can be
applied when other more complex features, for instance line segments, are used instead of points.

In object recognition to obtain independence from external factors such as viewpoints, it is
convenient to represent a shape by means of geometric invariants, that is, shape properties that do
not change under a class of transformations. For a flat object a projective transformation can be
approximated by an affine transformation. For the definition and properties of affine transformations
see Section “Defining Terms.”

5.4.1.1 Affine Matching

There are two main approaches proposed to match objects under affine transformations: alignment
and geometric hashing. The first method, alignment, uses the hypothesis-and-test paradigm [17]. It
computes an affine transformation based on an hypothesized correspondence between an object and
model basis and then verifies the hypothesis by transforming the model to image coordinates and
determining the fraction of model and image points brought into correspondence. This is taken as a
measure of quality of the transformation. The above steps are repeated for all possible groups of three
model and image points, since it is known that they uniquely determine an affine transformation.

The geometric hashing or, more generally, indexing methods [20,21], build at compile time a
lookup table that encodes model information in a redundant way. At run time, hypotheses of
associations between an observed object and the models can be retrieved from the table and then
verified by additional processing. Thus much of the complexity of the task is moved to a preprocessing
phase where the work is done on the models alone. Strategies based on indexing do not consider each
model separately and are therefore more convenient than search-based techniques in applications
involving large databases of models. Crucial to indexing is the choice of image properties to index
the table; these can be groups of features or other geometric properties derived from such groups.
In the following, we first concentrate on hash methods based on triplets of features points, then on
methods based on segments of a boundary object decomposition.

5.4.1.2 Hypothesize-and-Test (Alignment)

Given an image I containing n feature points, alignment consists of the following steps.

ALIGNMENT

for each model M. Let m be the number of model points
for each triple of model points do

for each triple of image points do
hypothesize that they are in correspondence and
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compute the affine transformation based on this correspondence.
for each of the remaining m − 3 model points do

apply that transformation.
Find correspondences between the transformed model points

and the image points.
Measure the quality of the transformation
(based on the number of model points that are paired with image points.)

For a given model, these steps are repeated for all triples of model and image features. In the
worst-case the number of hypotheses is O(m3n3). Thus the total time is O(Tvm3n3), where Tv is
the time for the verification of the hypothesized mapping. Since a verification step is likely to take time
polynomial in the number of model and image features, this approach takes overall polynomial time
which represents a significant improvement over several exponential time approaches to matching
proposed in the literature. In the following, a more detailed description of the verification phase is
given. Once a transformation is found, it is used to superimpose the model and the object. A distance
measure between the two sets of points must be defined so that recognition occurs when such a
distance is below a given threshold. One definition of distance is just the number of model and image
points that can be brought into correspondence. An approximation to this value can be computed
by determining for any transformed model point if an image point can be found in a given small
region around it (for instance a small square of pixels of fixed side). In this way an image point can
be double-counted if it matches two different model points. Nevertheless, in most cases the above
provides a good approximation at a reasonable computational cost.

The search for image points that match each transformed model point can be done sequentially
over the image points in time O(nm). Alternatively, it can be made more efficient with some
preprocessing of the image points and the use of auxiliary data structures. A practical solution uses a
lookup table indexed by the quantized values of the image points coordinates. An entry of the table
contains the set of image points located in the small region represented by the cell in the quantized
space. Each transformed model point is entered into the table to retrieve, in constant time, possible
matching points. Other information besides location of image points can be used to index the table,
for instance orientation, which is already available if the features points are computed through an
edge operator.

The algorithm above iterates over all the k models in the database leading to a total time complexity
O(kTvm3n3).

5.4.1.3 Indexing

The second method, hashing or indexing, is a table lookup method. It consists of representing each
model object by storing transformation-invariant information about it in a hash table. This table is
compiled off-line. At recognition time, similar invariants are extracted from the sensory data I and
used to index the table to find possible instances of the model. The indexing mechanism, referred
to as geometric hashing for point set matching, is based on the following invariant. The coordinates
of a point into a reference frame consisting of three noncollinear points are affine invariant. The
algorithm consists of a preprocessing phase and a recognition phase.

INDEXING

Preprocessing phase
for each model M. Let m be the number of model points

for each triple of noncollinear model points do
form a basis (reference frame)
for each of the m − 3 remaining model points do

determine the point coordinates in that basis.
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Use the triplet of coordinates (after a proper quantization)
as an index to an entry in the hash table, where the pair
(M, basis) is stored.

For k models the algorithm has an O(km4) time complexity. Notice that this process is carried out
only once and off-line. At the end of the preprocessing stage an entry of the hash table contains a list
of pairs: (Mi1, basisi1), (Mi2, basisi2), . . . , (Mit , basisit).

INDEXING

Recognition phase
Initialization
for each entry of the hash table do

set a counter to 0.
Choose three noncollinear points of I as a basis.

for each of the n − 3 remaining image points do
determine its coordinates in that basis.
Use the triplet of coordinates (after a proper quantization )
as an index to an entry in the hash table and
increment the corresponding counter.

Find the pair (M, basis) that achieved the maximum value
of the counter when summed over the hash table.

The last process can be seen as one of “voting,” with a vote tallied by each image point to all pairs
(M, basis) that appear at the corresponding entry in the table.

At the end of these steps after all votes have been cast, if the pair (M, basis) scores a large number
of votes, then there is evidence that the model M is present in the image. If no pair achieves a high
vote, then it might be that the selected basis in the image does not correspond to any basis in the
model database, and therefore it is convenient to repeat the entire process with another selected
basis in the image, until either a match is found or all bases of image points have been explored.

The time complexity of the recognition phase is O(n) if a single selected image basis gives
satisfactory results ( high scores). Otherwise more bases need to be considered leading, in the worst
case, to the time O(n4). In summary, the time complexity of recognition Trecognition is bound by

O(n) ≤ Trecognition ≤ O
(
n4)

There are a few issues that affect the performance of this approach. First, the choice of the basis.
The three selected points of the basis should be far away to reduce the numerical error. Other issues
are the sensitivity to quantization parameters and to noise. A precise analysis of this approach and
a comparison with alignment under uncertainty of sensory data is beyond the scope of this chapter.
The interested reader may refer to [15]. Although alignment is computationally more demanding, it
is less sensitive to noise than hashing and able to deal with uncertainty under a bounded error noise
model. On the other hand, indexing is especially convenient when large databases are involved, since
it does not require to match each model separately and its time complexity is therefore not directly
dependent on the size of the database.

One way to overcome the limitations of geometric hashing and make it less sensitive to noise is to
use more complex global invariants to index the hash table at the expense of preprocessing time to
extract such invariants. More complex invariants have a greater discriminating power and generate
fewer false positive matches.
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5.4.2 Matching Contours of Planar Shapes

It is natural to use contours as a representation for planar objects. Contour information can be
in the form of a polygonal approximation, that is, a sequence of line segments of possibly varying
lengths approximating the curve. A common boundary description is the eight-direction chain code
[36] where all segments of the boundary decomposition have unit length and one of eight possible
directions. Another boundary description is given in terms of concave/convex curve segments.
Boundary representations are simple and compact, since a small number of segments suffices to
accurately describe most shapes. Techniques to derive boundary descriptions are reviewed in the
references listed at the end of this chapter.

Contours have been used in a variety of ways in object recognition to make the process faster and
more accurate. First, the availability of contours allows computation of global invariant properties of
a shape that can be used for fast removal of candidate objects when searching in the model database;
only models found to have similar global properties need be considered for further processing.
Global features that can be used include

• The number of segments of a convex/concave boundary decomposition
• For a close contour, a measure of the area over the length

A combination of the above features allows a reduction of the candidate objects. An object with
extreme values of the global attributes is more easily recognized than an object with average attributes.
Obviously there must be a sufficiently high tolerance in the removal process so that good choices are
not eliminated.

In the following, we first describe techniques based on dynamic programing that have been
developed for contour matching. Then we will see how the methodologies of indexing and alignment
based on point sets can take advantage of the contour information in the verification phase for more
reliable results. The same methodologies can be further modified so that contour segments become
the basic elements of the matching, that is, they are used instead of the feature points to formulate
hypotheses.

5.4.2.1 Dynamic Programming

A number of approaches use dynamic programing to match shape contours. A shape boundary
is described by a string of symbols representing boundary segments. For instance, if the segments
result from the decomposition of the boundary into convex/concave parts, there might be just three
symbols (for convex, concave, and straight) or more if different degrees of convexity or concavity
are considered. The matching problem becomes then a string matching problem [36]. We briefly
review the string matching algorithm. Then we will discuss adaptations of the basic algorithm to
shape recognition that take into account noise and distortion.

Let A = a0, . . . , an−1 and B = b0, . . . , bm−1 be two strings of symbols. Three types of edit
operations, namely, insertion, deletion, and change, are defined to transform A into B.

• Insertion: Insert a symbol a into a string, denoted as λ → a where λ is the null symbol
• Deletion: Delete a symbol from a string, denoted as a → λ

• Change: Change one symbol into another, denoted as a → b

A nonnegative real cost function d(a → b) is assigned to each edit operation a → b. The cost of a
sequence of edit operations that transforms A into B is given by the sum of the costs of the individual
operations. The edit distance D(A, B) is defined as the minimum of such total costs. Let D(i, j) be the
distance between the substrings a0, . . . , ai and b0, . . . , bj. It is D(n, m) = D(A, B). Let D(0, 0) = 0;
then D(i, j), 0 < i < n, 0 < j < m is given by
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D(i, j) = min

⎧⎨
⎩

D(i − 1, j) + d (ai → λ)

D(i, j − 1) + d
(
λ → bj

)
D(i − 1, j − 1) + d

(
ai → bj

) (5.1)

The matching problem can be seen as one of finding an optimal nondecreasing path in the 2D table
D(i, j) from the entry (0, 0) to the entry (n, m). If the elements of the table are computed horizontally
from each row to the next one, then when computing D(i, j) the values that are needed have already
been computed. Since it takes constant time to compute D(i, j), the overall time complexity is given
by O(nm). The space complexity is also quadratic.

5.4.2.2 Using Attributes

A number of variations of the above dynamic programing algorithm have been proposed to adapt it
to the shape matching problem. First, attributes are associated to the symbols of the two strings. The
choice of the attributes depends both on the type of transformations allowed for the shapes and on
the types of boundary segments. Some of the commonly used attributes of concave/convex segments
are the normalized length, and the degree of symmetry Sc. Let La be the length of segment a and LA
the total length of the segments of A. The normalized length is La/LA. LA is used as normalization
factors to obtain scale invariance.

Let f (l) be the curvature function along segment a.

Sa =
La�
0

( s�
0

f (l)dl − 1/2
La�
0

f (l)dl

)
ds

If Sa = 0 then the segment is symmetric, otherwise it is inclined to the left or to the right depending
on whether Sa is positive or negative, respectively.

The attributes are used in the matching process to define the cost d(i, j) of the edit operation that
changes segment ai into bj. The cost d(i, j) is defined as the weighted sum of the differences between
the attributes of ai and bj.

Thus the cost function d(i, j) is defined as

d(i, j) = w1|Lai/LA − Lbj/LB| + w2σ(Sai , Sbj)

where σ(Sa, Sb) is taken to be 0 if Sa and Sb are both positive or negative or both close to zero,
otherwise is 1. In the above expression w1 and w2 are weights used to take into account the different
magnitude of the two terms when summed over all edit operations.

Consider now a shape represented by a polygonal approximation. Typical choices for the attributes
of a segment a are the normalized length and the angle θa that the segment forms with a reference
axis. In this case, the cost function can be defined as

d(i, j) = w1|Lai/LA − Lbj/LB| + w2γ(θai , θbj)

where, again, w1 and w2 are weights to make both terms to lie between 0 and 1.

5.4.2.3 Cyclic Matching

The above algorithm assumes that the correct starting points are known for the correspondences
on both shapes. These could be, for instance, the topmost boundary segments when no rotation
is present. A more reliable choice that is invariant to Euclidean transformations may be obtained
by ranking the segments according to some criterion, for instance the normalized length or the
curvature. The segments on the two curves with highest rank are chosen as the starting points
for the dynamic programing algorithm. Alternatively, when the starting points are not available
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or cannot be computed reliably, cyclic shifts of one of the two strings are needed to try to match
segments starting at any point in one of the boundaries. Let B be the shortest string, i.e., m < n.
To solve the cyclic matching problem a table with n rows and 2m columns is built. Paths in the
D(i, j) table that correspond to optimal solutions can start at any column 1 ≤ j ≤ m of the first
row and end at column j + m of the last row. The dynamic programing algorithm is repeated
for each new starting symbol of the shortest string. This brute-force approach solves the cyclic
matching problem in time O(nm2). A more efficient O(mn log n) solution can be obtained by using
divide-and-conquer [24].

5.4.2.4 Merge Operation

To reduce the effect of noise and distortion and improve matching accuracy, another variant of
the above method suggests the use of a fourth operation, called merge [34], in addition to the
insert, delete, and change operations. Merge allows change of any set of consecutive segments of
one string into any set of consecutive segments in the other string. Let a<k,i> denote the sequence
of k segments ai−k+1 · · · ai. The merge operation a<k,i> → b<h,j> attempts to change the combined
segments from the first string into the combined segments of the second. For k = h = 1, the merge
operation reduces to a change. It has now to be defined what are the attributes associated with
the merged segments. First the length of a<k,i> is simply the normalized sum of the lengths of all
segments in the sequence. As for the direction, assume k = 2. Then the angle θa<2,i> can defined as
follows:

θa2,i = θai−1 + ∣∣θai−1 − θai

∣∣
if θai−1 < θai and

∣∣θai−1 − θai

∣∣ ≤ 180
= θai + ∣∣θai−1 − θai

∣∣
if θai−1 ≥ θai and

∣∣θai−1 − θai

∣∣ ≤ 180
= θai−1 + (

360 − ∣∣θai−1 − θai

∣∣)
if θai−1 ≥ θai and

∣∣θai−1 − θai

∣∣ > 180
= θai + (

360 − ∣∣θai−1 − θai

∣∣)
if θai−1 < θai and

∣∣θai−1 − θai

∣∣ > 180

To include the merge operation in the above algorithm Equation 5.1 has to be replaced by

D(i, j) = min

⎧⎨
⎩

D(i − 1, j) + d (ai → λ)

D(i, j − 1) + d
(
λ → bj

)
Dmerge(i, j)

where
Dmerge(i, j) = min

1≤k≤i,1≤h≤j
D(i − k, j − h) + d

(
a<k,i>, b<h,j>

)
When there is no limitation on the number of merged segments, the time complexity of the dynamic
programming algorithm becomes O(n2m2).

In summary, the dynamic programming algorithm is able to deal with rotation, translation, and
scaling through the combined use of a distance measure invariant to these transformations and of
a cyclic mapping of the two boundaries. Furthermore, noise can be dealt with through the use of
concatenated segments in both shapes.

5.4.2.5 Multiscale Tree Matching

Another approach to match contours of planar shapes uses multiscale data representations. Given a
scene containing multiple objects, a full pyramid of images, taken at various levels of resolution, is
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first constructed (for instance, a Gaussian pyramid [6]). Then contours are extracted at all levels of
resolution and each of them is decomposed into a sequence of segments (either curved or straight
line segments) [25,26].

There are two main ways of matching multiscale objects. One approach, the coarse-to-fine match-
ing, tries to find a good initial pair of corresponding segments at the coarsest level of resolution
and to expand, at the finer levels, the hypothesized correspondences [28,29]. The coarse-to-fine
approach has generally the disadvantage that mismatches at a coarse scale cause errors from which
it is impossible to recover, since the algorithms usually proceed by subdividing the corresponding
coarse elements into subelements. This limitation is heavy particularly for highly deformed shapes
for which the matching is not very reliable at all levels. On the other hand, this method is fast, because
it disregards large portions of the search space. Coarse-to-fine strategies have been successfully used
in a variety of image processing and vision applications, including stereo matching, optical flow
computation, etc.

Alternative approaches [9,35] try to overcome the limitations of a coarse-to-fine strategy by
processing the multiresolution data starting from the finest level. The shape contours are represented
at all scales by sequences of concave/convex segments. In [9], a planar object is modeled as a tree, in
which a node corresponds to a multiscale boundary segment and an arc connects nodes at successive
levels of resolution. The children of a given node describe the structural changes to that segment
at a finer level of resolution. The problem of matching an object against a model is formulated as
the one of determining the best mapping between nodes at all levels of the two corresponding trees,
according to a given distance between segments [23,31]. The distance is chosen to be invariant under
rotation, translation, and change of scale. The mapping has to satisfy the following constraint: for any
path from a leaf node to the root of each of the two trees, there is exactly one node in the mapping.
Thus, if a node is in the mapping none of its proper ancestors nor descendants is. Intuitively, such a
constraint on the mapped nodes means that for any portion of the boundary at the finest resolution
there is one matched segment at some resolution level that covers it.

This method applies to objects for which the entire boundaries are available, implying that it
is able to deal with occlusion when this causes alterations in a boundary without breaking it into
separate pieces.

We now describe a tree matching algorithm based on dynamic programming that has optimal
O(|T||T′|) time complexity, where |T| and |T′| are the number of nodes in the two trees. Let l be
the number of leaves of T. T[i] denotes the node of T whose position in the postorder traversal
of T is i. Recall that in the postorder traversal the nodes are visited by recursively visiting the first
subtree of the root, then the second subtree and so on, and finally visiting the root. In the postorder,
T[1], T[2], . . . , T[i] is in general a forest. anc(i) is the set of ancestor nodes of T[i], including i
itself. The postorder number of the father of node T[i] is denoted by p(i). ll(i) and rl(i) denote the
postorder number of the leftmost leaf and the rightmost leaf, respectively, of the subtree rooted at
T[i]; ll(i) = rl(i) = i when T[i] is a leaf node.

A measure of dissimilarity d(i, j) between nodes i and j is defined as above as the weighted sum of
the attributes of the segments. In addition d(i, j) must contain a term that rewards matches at higher
resolution levels.

The matching problem can be formulated as a minimization problem: find a set of pairs
M = {(ih, jh)} that satisfies the above constraint and minimizes the total cost function, that is,

F
(
T, T′) = MinM

∑
d

(
ih, jh

)

The matching set M of two trees is shown in Figure 5.6. The nodes of the two trees are processed
according to the left-to-right postorder numbering. Let D(i, j) be the distance between the two forests
T[1], T[2], . . . , T[i] and T′[1], T′[2], . . . , T′[j], that is the cost of the best mapping involving nodes
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FIGURE 5.6 The matching set M = {(it , jt)} of two trees.

up to i and j and covering all leaves 1, . . . , rl(i) and 1, . . . , rl(j). D(i, j) = F(T, T′) when i = |T| and
j = |T′|. Let D(0, 0) = 0, D(0, j) = D(i, 0) = ∞, i, j �= 0. D(i, j) is given by the following relations:

• Case 1: if i �= p(i − 1) and j �= p(j − 1)

D(i, j) = D(i − 1, j − 1) + d(i, j);
• Case 2: if i �= p(i − 1) and j = p(j − 1)

D(i, j) = min{D(i, j − 1), D(i − 1, ll(j) − 1) + d(i, j)};
• Case 3: if i = p(i − 1) and j �= p(j − 1)

D(i, j) = min{D(i − 1, j), D(ll(i) − 1, j − 1) + d(i, j)};
• Case 4: if i = p(i − 1) and j = p(j − 1)

D(i, j) = min{D(i − 1, j − 1), D(i − 1, j), D(i, j − 1), D(ll(i) − 1, ll(j) − 1) + d(i, j)}
The above relations suggest the use of dynamic programing to solve the minimization problem.

When computing D(i, j), 1 ≤ i ≤ |T|, 1 ≤ j ≤ |T′|, all the values on the right side of the
recurrence relation above have already been computed. Thus it takes constant time to extend the
mapping to nodes i and j leading to a O(|T||T′|) time algorithm. The space complexity is also
quadratic.

5.4.2.6 Hypothesize-and-Test

A common scheme for matching uses three steps: a hypothesis generation step during which a
few initial matchings are chosen and based on them a transformation is hypothesized, a prediction
step that determines the matching of image and model features that are compatible with the initial
hypothesis, and a verification step that evaluates all the resulting possible matchings. This scheme
is quite general and can be applied to a variety of data representations. The alignment approach
described in Section 5.4.2.1 is one such example. The contour information can be effectively used
in the alignment method to increase the reliability of the match. As described in Section 5.4.2.5,
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hypotheses are generated based on small groups of features points brought into correspondence
and a geometric transformation is derived for each hypothesis. Then a hierarchical verification
process is applied [17]. A preliminary verification phase checks the percentage of model points that
lie within reasonable error ranges of the corresponding image points. This step allows to rapidly
eliminate false matches by considering only location and orientation of points (edge points). A more
accurate and time-consuming verification procedure based on contour information is applied to the
few surviving alignments. Each model segment is mapped through the hypothesized transformation
into the image plane and all nearby image segments are determined. Then, for each pair of model and
image segments, three cases are considered: (1) the segments are almost parallel and of approximately
the same length; (2) the segments are parallel but one is much longer than the other; (3) the segments
cross each other. The three cases contribute positive, neutral, or negative evidence to a match,
respectively. The basic idea underlying this comparison strategy is that very unlikely two almost
coincident segments can be the result of an accidental match. In summary, properties of segments
such as length and parallelism can effectively contribute to the evaluation of the quality of a match
at the expense of some additional processing.

The next application of the hypothesis-and-test paradigm to contour-based 2D shape descriptions
generates hypotheses based on a limited number of corresponding segments. Since the choice of the
initial pairing of segments strongly affects the performance of the process, the image segments are
first ranked according to a given criterion, for instance length. Then segments in the image and the
model are processed in decreasing ranking order of length. Additional constraints can be imposed
before a hypothesis is generated. For each pair a and b of such segments, a hypothesis is generated if
they are compatible. Compatibility is defined depending on the type of transformation. For similarity
transformations a suitable definition can be: segments a and b are compatible (1) if the angle that a
forms with its preceding segment along the boundary is close to the angle of b with its neighbor, and
(2) assuming the scale factor is known, if the ratio of the lengths of the two segments is close to that
value. The verification phase then tries to add more consistent pairings to the initial ones by using
an appropriate definition of geometric consistency. The process stops as soon as a reasonably good
match is found. We omit here the details of this last phase.

5.4.2.7 Indexing

The indexing methods, as described above, are based on the idea of representing an object by storing
invariant information about groups of features in a hash table. Hypotheses of correspondences
between an observed object and the models are retrieved from the table by indexing it with groups
of features extracted from the object.

One approach to indexing uses information collected locally from the boundary shape in the form
of the so-called super-segment [32]. A flat object can be approximated by a polygon. Since there
exist many polygonal approximations of a boundary with different line fitting tolerances, several
of them are used for the purpose of robustness. A super segment is a group of a fixed number of
adjacent segments along the boundary, as in Figure 5.7. Supersegments are the basic elements of the
indexing mechanism. The quantized angles between consecutive segments are used to encode each
super-segment. Assume that there are n segments in a super segment, then the code is

(α1, α2, . . . , αn−1)

FIGURE 5.7 A super-segment.

Other geometric features of a super segment can be used in the
encoding to increase the ability of the system to distinguish between
different super segments. One such feature is the eccentricity, that
is the ratio of the length of the small and long axis of the ellipse
representing the second moment of inertia. A quantized value of
the eccentricity is added to the above list of angles.
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The preprocessing and matching phases of indexing are similar to those described in Section 5.4.1.
Briefly, the super-segments of all models are encoded, and each code is used as a key for a table where
the corresponding super segment is recorded as an entry. During the matching stage, all encoded
super segments extracted from a scene provide indices to the hash table to generate the matching
hypotheses.

A verification phase is needed to check the consistency of all multiple hypotheses generated
by the matching phases. The hypotheses are first divided according to the models they belong
to. For a model Mi, let hi1, . . . , hit be the hypotheses of associations between super-segments
of the image with super-segments of Mi. To check that subsets of such hypotheses are consis-
tent, the following heuristics has been proposed. If three hypotheses are found to be consistent, then
the remaining that are found to be consistent with at least one of the three provide an instantia-
tion of the model in the image. Consistency is defined on the basis of few geometric constraints
such as the distance, the angle, and the direction. More precisely, the distances of corresponding
super-segments must be in the same range. The distance between two super-segments is defined as
the distance between the locations of the segments taken as the midpoints of the middle segments.
Similarly, angles and directions of corresponding super-segments must be in the same range. The
orientation of a super-segment is the vector of the predecessor and successor segments of the middle
segment.

An alternative approach to indexing suggests the use of information spatially distributed over the
object rather than at localized portions of the shape. Groups of points along the curved boundary
are collected and indices are computed on the basis of geometrical relationships between the points
and local properties at those points. These local measures can include location and tangent or higher
order local information as local curve shape.

The difficulty associated with indexing methods arises from the large memory requirements for
representing multidimensional tables. Another crucial point is the distribution of data over the table.

5.4.3 Matching Relational Descriptions of Shapes

5.4.3.1 Graph Matching

An object can be represented by a set of features and their relationships. This representation
may take the form of a graph, where nodes correspond to features and arcs represent geometric
and topological relationships between features. Similarly, a 3D object can have an object-centered
representation consisting of a list of 3D primitives (surface patches, 3D edges, vertices, etc.) and
relationships between primitives such as connections between surfaces, edges, etc. Recognition of
an object becomes a graph isomorphism problem. Given a graph G1 = (V1, E1) corresponding to a
model object and graph G2 = (V2, E2) corresponding to an observed object, the graph isomorphism
can be formulated as follows. Find a one-to-one mapping between the vertices of the two graphs
f : V1 → V2 such that vertices of V1 are adjacent iff and only if their corresponding vertices of V2
are adjacent. In other words, for u, v ∈ V1, it is uv ∈ E1 if f (u)f (v) ∈ E2. Above we considered only
one relation for each graph, but the definition can easily extend to many relations. If an object is only
partially visible in an image, a subgraph isomorphism can be used. Graph problems are covered in
other chapters of this book. Here we sketch some commonly used heuristics to reduce the complexity
of the algorithms for vision applications.

Some researchers [14] have approached the matching problem as one of search, using an inter-
pretation tree. A node in the tree represents a pairing between an image feature and a model feature.
Nodes at the first level of the tree represent all possible assignments of the first image feature. For
each such assignment there a node at the second level for each pairing of the second image feature,
and so on. A path from the root of the tree to a leaf represents a set of consistent pairings that is a
solution to the correspondence problem from which a rigid transformation can be derived. Figure 5.8
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2, 2 2, 3

1, 1 1, 2 . . . .

. . . . . . .. . .

. . . .

2, m 2, 1 3, 2 2, m – 1

1, m

FIGURE 5.8 An interpretation tree with n levels and degree m.

shows the interpretation tree for n and m model and object features, respectively. The exponential
complexity of the search can be reduced by pruning the interpretation tree using different types of
constraints. Mostly geometric constraints involving angles and distances have been considered.

Another approach to cope with the complexity of a brute-force backtracking tree search is the
introduction of forward checking and look-ahead functions [30] in the search. Given a partial
solution, the idea of forward checking is to find a lower bound on the error of all complete solutions
that include the given partial one so that the search can pruned at earlier stages.

5.5 Research Issues and Summary

Most of the work done on image connectivity analysis dates back at least 25 years, and this can be
considered a solved problem. Some more recent work has been done on parallel algorithms for image
connected component determination for a variety of interconnection networks, including meshes,
hypercubes, etc.

The Hough transform is a popular method for line detection, but it is rarely used for more
complex parametric curves, due to the high memory requirements. Parallel algorithms for the
Hough transform have also been proposed.

Substantial effort has been devoted over the past years to the problem of model-based object
recognition, and this is still an area of active research. A number of recognition systems have
been designed and built that are successful for limited application domains. The general problem
of recognition remains complex, even though polynomial time solutions to matching have been
proposed. Practical approaches rely on heuristics based mainly on geometric constraints to reduce
the complexity. An interesting issue not covered in this chapter is the effect of noise and spurious
elements in the recognition problem. Some recent approaches explicitly take into account a noise
error model and formulate the matching problem as one of finding a transformation of model and
image data that is consistent with the error model.

Other approaches to match point sets under translation and rotation, developed in the field of
computational geometry, are based on the computation of the Hausdorff distance.

The problem of finding correspondences is the main component of other important vision tasks,
for instance of the stereo vision problem, which is the problem of deriving 3D information about an
object from different views of the object.

It is also important to observe that some of the matching algorithms used in computer vision can
be applied to other research areas, for instance molecular biology. The problem of matching the 3D
structure of proteins differs from the point set matching problem mostly in the dimensionality of
the data, few tens of feature points for an object and few hundreds of atoms in a protein.
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5.6 Further Information

A good recent introduction to image processing is presented in Machine Vision by R. Jain.
Classical books are: Computer Vision by D. H. Ballard, C. M. Brown, and Digital Picture Processing

by A. Rosenfeld and A. Kak.
A mathematically oriented presentation of the field of computer vision is in Computer and Robot

Vision by R. M. Haralick and L. G. Shapiro.
Good survey papers on object recognition are [1,4,8,33]. Other papers presenting approaches

related to the ones discussed here are [5,12,14,15,18,20,22,27].
Advances on research on computer vision and image processing are reported in the journals IEEE

Transactions on Pattern Analysis and Machine Intelligence, CVIP: Image Understanding, Interna-
tional Journal on Computer Vision, Pattern Recognition. This list is by no means exhaustive.

The following is a list of some of the major conference proceedings that publish related work.

IEEE Computer Vision and Pattern Recognition Conference, IAPR International Conference on Pattern
Recognition, International Conference on Computer Vision.

Defining Terms

Affine transformation: Affine transformations are a subgroup of projective transformations. When
the depth of an object is small compared to its distance from the camera, the affine transformation
effectively approximates a projective one. For a flat object there is a 2D affine transformation T
between two different images of the same object:

T : x → Ax + t

where A is 2 × 2 nonsingular matrix and t is a 2-vector.
An affine transformation maps parallel lines into parallel lines. Another well-known affine invari-

ant is the following. Given three noncollinear points in the plane, they form a basis or reference
frame in which the coordinates of any other point in the plane can be expressed. Such coordinates
are affine invariant, meaning that they do not change when the points are transformed under an
affine transformation. In other words, let xsm1, xsm2, xsm3 be the three noncollinear points, taken as
a basis. Let x be another point and (α, β) its coordinates in the above basis, i.e.,

x = α (xsm1 − xsm3) + β (xsm2 − xsm3) + xsm3

The values α and β are invariant, that is,

T(x) = α (T (xsm1) − T (xsm3)) + β (T (xsm2) − T (xsm3)) + T (xsm3)

The following fact is also known in affine geometry: Given three noncollinear points in the plane
xsm1, xsm2, xsm3 and three corresponding points x′

sm1, x′
sm2, x′

sm3 in the plane, there exists a unique
affine transformation T such that x′

sm1 = T(xsm1) x′
sm2 = T(xsm2), and x′

sm3 = T(xsm3).
The affine transformation T : x → Ax + t can be determined from the set of corresponding

points as follows. Let mi, i = 1, 2, 3 and ii, i = 1, 2, 3 be the set of corresponding model and image
points, respectively, where

mi =
(

mi,x
mi,y

)
and

ii =
(

ii,x
ii,y

)
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The six unknown parameters of the 2 × 2 matrix

A =
(

a11 a12
a21 a22

)

and of the vector

t =
(

t1
t2

)

can be computed by solving the following system of equations⎛
⎝ i1,x i1,y

i2,x i2,y
i3,x i3,y

⎞
⎠ −

⎛
⎝ m1,x m1,y 1

m2,x m2,y 1
m3,x m3,y 1

⎞
⎠

⎛
⎝ a11 a12

a21 a22
t1 t2

⎞
⎠ = 0

Boundary: A closed curve that separates an image component from the background and/or other
components.
Connected component: A set C of connected image points. Two points (i, j) and (h, k) are connected
if there is a path from (i, j) to (h, k) consisting only of points of C

(i, j) = (
i0, j0

)
,
(
i1, j1

)
, . . .

(
it , jt

) = (h, k)

such that (is, js) is adjacent to (is+1, js+1), 0 ≤ s ≤ t − 1. Two definitions of adjacency are generally
used, 4-adjacency and 8-adjacency. Point (i, j) has four 4-adjacent points, those with coordinates
(i−1, j), (i, j−1), (i, j+1), and (i+1, j+1). The 8-adjacent points are, in addition to the four above,
the points along the diagonals, namely: (i − 1, j − 1), (i − 1, j + 1), (i + 1, j − 1), and (i + 1, j + 1).
Digital line: The set of image cells that have a nonempty intersection with a straight-line.
Edge detector: A technique to detect intensity discontinuities. It yields points lying on the
boundary between objects and the background. Some of most popular edge detectors are listed.
Given an image I, the gradient operator is based on the computation of the first-order derivatives,
δI/δx and δI/δy. In a digital image there are different ways of approximating such derivatives. The
first approach involves only four adjacent pixels.

δI/δx = I(x, y) − I(x − 1, y)
δI/δy = I(x, y) − I(x, y − 1)

Alternatively, using eight adjacent values:

δI/δx = [I(x + 1, y − 1) + 2I(x + 1, y) + I(x + 1, y + 1)]
− [I(x − 1, y − 1) + 2I(x − 1, y) + I(x − 1, y + 1)]

The computation of the above expressions can be obtained by applying the following masks, known
as the Sobel operators, to all image points.

−1 −2 −1
0 0 0
1 2 1

−1 0 1
−2 0 2
−1 0 1

The magnitude of the gradient, denoted by G(I(x, y)), is

G(I(x, y)) = [
(δI/δx)2 + (δI/δy)2]1/2
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or simply
G(I(x, y)) = |δI/δx| + |δI/δy|

The Laplacian operator is a second-order derivative operator defined as

L[I(x, y)] = δ2I/δx2 + δ2I/δy2

or, in the digital version, as

L[I(x, y)] = L[I(x + 1, y) + I(x − 1, y) + I(x, y + 1) + I(x, y − 1)] − 4I(x, y)

The zero-crossing operator determines whether the digital Laplacian has a zero-crossing at a given
pixel, that is whether the gradient edge detector has a relative maxima.
Edge point: An image point that is at the border between two image components, that is a point
where there is an abrupt change in intensity.
Hausdorff distance: Let A = {a1, a2, . . . , am} and B = {b1, b2, . . . , bn} two sets of points. The Haus-
dorff distance between A and B is defined as

H(A, B) = max(h(A, B), h(B, A)),

where the one-way Hausdorff distance from A to B is

h(A, B) = max
a∈A

min
b∈B

d(a, b)

and d(a, b) is the distance between two points a and b. The minimum Hausdorff distance is then
defined as

D(A, B) = min
t∈E2

H(t(A), B)

where E2 is the group of planar motions and t(A) is the transformed of A under motion t.
The corresponding Hausdorff decision problem for a given ε is deciding whether the minimum

Hausdorff distance is bounded by ε. This last problem is generally solved as a problem of intersection
of unions of disks in the transformation space.
Image, digital image: A 2D array I of regions or cells each with an assigned integer representing
the intensity value or gray level of the cell. A binary image is an image with only two gray levels: 0
(white), 1 (black).
Polygonal approximation of a curve: A segmentation of a curve into piecewise linear segments
that approximates it. One approach to determine it for an open curve is by considering the segment
between its endpoints and recursively dividing a segment if the maximum distance between the
segment and the curve points is above a given threshold. The segment is divided at the point of
maximum distance.
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6.1 Introduction

Graphs are commonly used in computer science to model relational structures such as programs,
databases, and data structures. For example:

• Petri nets are used extensively to model communications protocols or biological
networks.

• Call graphs of programs are often used in CASE tools.
• Data flow graphs are used widely in Software Engineering; an example is shown in

Figure 6.1a.
• Object oriented design techniques use a variety of graphs; one such example is the UML

class diagram in Figure 6.1b.

One of the critical problems in using such models is that the graph must be drawn in a way that
illuminates the information in the application. A good graph drawing gives a clear understanding of
a structural model; a bad drawing is simply misleading. For example, a graph of a computer network
is pictured in Figure 6.2a; this drawing is easy to follow. A different drawing of the same graph is
shown in Figure 6.2b; this is much more difficult to follow.

A graph drawing algorithm takes a graph and produces a drawing of it. The graph drawing
problem is to find graph drawing algorithms that produce good drawings. To make the problem
more precise, we define a graph G = (V , E) to consist of a set V of vertices and a set E of edges, that

6-1
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FIGURE 6.2 Two drawings of the same computer network.

is, unordered pairs of vertices. A drawing of G assigns a location (in two or three dimensions) to
every vertex of G and a simple curve cuv to every edge (u, v) of G such that the endpoints of cuv are
the locations of u and v. Notation and terminology of graph theory is given in [8].

The remainder of this chapter gives an overview of graph drawing (Section 6.2) and details
algorithms for obtaining planar drawings (straight-line as well as orthogonal, see Sections 6.3.1
and 6.3.2) and symmetric drawings (Section 6.5). Since not every graph is planar, Section 6.4 describes
methods for planarizing a nonplanar graph. A list of research problems is given in Section 6.6, and
a review of the defining terms is given in Section 6.7.

6.2 Overview

In this section, we provide a brief overview of the graph drawing problem. Section 6.2.1 outlines the
main conventions for drawing graphs, and Section 6.2.2 lists the most common “aesthetic criteria,”
or optimization goals, of graph drawing. A brief survey of some significant graph drawing algorithms
is given in Section 6.2.3.

6.2.1 Drawing Conventions

Drawing conventions for graphs differ from one application area to another. Some of the common
conventions are listed below.

• Many graph drawing methods output a grid drawing: the location of each vertex has
integer coordinates. Some grid drawings appear in Figure 6.3.

• In a polyline drawing, the curve representing each edge is a polyline, that is, a chain of
line segments. Polyline drawings are presented in Figures 6.3b and 6.1a. If each polyline
is just a line segment, then the drawing is a straight-line drawing, as in Figure 6.3c.

(b) (c)(a)

FIGURE 6.3 Examples of drawing conventions: (a) a grid drawing, (b) an orthogonal grid drawing, and (c) a
straight-line drawing.
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• In an orthogonal drawing, each edge is a polyline composed of straight line segments
parallel to one of the coordinate axes. Orthogonal drawings are used in many application
areas because horizontal and vertical line segments are easy to follow. Figures 6.3b and
6.1b are orthogonal drawings.

6.2.2 Aesthetic Criteria

The main requirement of a graph drawing method is that the output should be readable; that is, it
should be easy to understand, easy to remember, and it should illuminate rather than obscure the
application. Of course it is difficult to model readability precisely, since it varies from one application
to another, and from one human to another; these variations mean that there are many graph-drawing
problems. The problems can be classified roughly according to the specific optimization goals that
they try to achieve. These goals are called aesthetic criteria; a list of some such criteria is given
below.

• Minimization of the number of edge crossings is an aesthetic criterion, which is important
in many application areas. The drawing in Figure 6.2a has no edge crossings, whereas
the one in Figure 6.2b has ten.

A graph that can be drawn in the plane with no edge crossings is called a planar graph.
Methods for drawing planar graphs are described in Section 6.3.

In general, visualization systems must deal with graphs that are not planar. To exploit
the theory of planar graphs and methods for drawing planar graphs, it is necessary to
planarize nonplanar graphs, that is, to transform them to planar graphs. A planarization
technique is described in Section 6.4.

• Bends: In polyline drawings, it is easier to follow edges with fewer bends. Thus, many
graph drawing methods aim to minimize, or at least bound, the number of edge bends.
In the drawing in Figure 6.3b, there are six edge bends; the maximum number of bends
on an edge is two. Algorithms for straight-line drawings (no bends at all) are given in
Sections 6.3.1 and 6.5.

Very few graphs have an orthogonal drawing with no bends, but there are a number of
methods that aim to keep the number of bends in orthogonal drawings small. A method
for creating two-dimensional planar orthogonal drawings of a planar graph (with a fixed
embedding) with a minimum number of bends is described in Section 6.3.2.

• The vertex resolution of a drawing is the minimum distance between a pair of vertices.
For a given screen size, we would like to have a drawing with maximum resolution.

In most cases, the drawing is a grid drawing; this guarantees that the drawing has vertex
resolution at least one. To ensure adequate vertex resolution, we try to keep the size of
the grid drawing bounded. If a two dimensional grid drawing lies within an isothetic
rectangle of width w and height h, then the vertex resolution for a unit square screen is
at least max(1/w, 1/h). All the methods described in Section 6.3 give grid drawings with
polynomially bounded size.

• Displaying symmetries in a drawing of a graph is an important criterion, as sym-
metry clearly reveals the hidden structure of the graph. For example, the drawing in
Figure 6.2a displays one reflectional (or axial) symmetry. It clearly shows two isomor-
phic subgraphs with congruent drawings. Symmetric drawings are beautiful and easy to
understand.

Maximizing the number of symmetries in a drawing is one of the desired optimization criteria
in graph drawing. Formal models and algorithms for symmetric graph drawings are described in
Section 6.5.
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6.2.3 Drawing Methods

In Sections 6.3 through 6.5, we describe some graph drawing methods in detail. However, there
are many additional approaches to graph drawing. Here, we briefly overview some of the more
significant methods.

6.2.3.1 Force-Directed Methods

Force-directed methods draw a physical analogy between the layout problem and a system of forces
defined on drawings of graphs. For example, vertices may be replaced with bodies that repel each
other, and edges have been replaced with Hooke’s law springs. In general, these methods have two
parts:

The model: This is a “force system” defined by the vertices and edges of the graph. It is
a physical model for a graph. The model may be defined in terms of “energy” rather
than in terms of a system of forces; the force system is just the derivative of the energy
system.

The algorithm: This is a technique for finding an equilibrium state of the force system, that
is, a position for each vertex such that the total force on every vertex is zero. This
state defines a drawing of the graph. If the model is stated as an energy system then the
algorithm is usually stated as a technique for finding a configuration with locally minimal
energy.

Force directed algorithms are easy to understand and easy to implement, and thus they have become
quite popular [20,25]. Moreover, it is relatively easy to integrate various kinds of constraints. Recently,
multilevel methods in combination with spatial data structures such as quad trees have been used to
overcome the problems with large graphs. These methods are fairly successful with regular graphs
(e.g., meshed-based), highly symmetric graphs, and “tree-like” graphs (see Figure 6.4). They work
in both two and three dimensions. Comparisons of the many variations of the basic idea appear in
[10,32].

6.2.3.2 Hierarchical Methods

Hierarchical methods are suitable for directed graphs, especially where the graph has very few
directed cycles.

Suppose that G = (V , E) is an acyclic directed graph. A layering of G is a partition of V into
subsets L1, L2, . . . , Lh, such that if (u, v) ∈ E where u ∈ Li and v ∈ Lj, then i > j. An acyclic directed
graph with a layering is a hierarchical graph.

Hierarchical methods convert a directed graph into a hierarchical graph, and draw the hierarchical
graph such that layer Li lies on the horizontal line y = i. A sample drawing is shown in Figure 6.1a.
The aims of these methods include the following.

a. Represent the “flow” of the graph from top to bottom of the page. This implies that most
arcs should point downward.

b. Ensure that the graph drawing fits the page; that is, it is not too high (not too many
layers) and not too wide (not too many vertices on each layer).

c. Ensure that arcs are not too long. This implies that the y extent |i − j| of an arc (u, v) with
u ∈ Li and v ∈ Lj should be minimized.

d. Reduce the number of edge crossings.
e. Ensure that arcs are as straight as possible.
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There are many hierarchical methods, but the following four steps are common to most.

1. Directed cycles are removed by temporarily reversing some of the arcs. The arcs that are
reversed will appear pointing upward in the final drawing, and thus, the number of arcs
reversed should be small to achieve (a) above.

2. The set of vertices is partitioned into layers. The partition aims to achieve (b) and (c)
above.

3. Vertices within each layer are permuted so that the overall number of crossings is small.
4. Vertices are positioned in each layer so that edges that span more than one layer are as

straight as possible.

Each step involves heuristics for NP-hard optimization problems. A detailed description of hierar-
chical methods appears in [22]. An empirical comparison of various hierarchical drawing methods
appears in [7].

6.2.3.3 Tree Drawing Methods

Rooted trees are special hierarchical graphs, and hierarchical methods apply. We can assign vertices
at depth k in the tree to layer h − k, where h is the maximum depth. The convention that layer i
is drawn on the horizontal line y = i helps the viewer to see the hierarchy represented by the tree.
However, for trees, there are some simpler approaches; here, we outline one such method.

Note that the edge crossing problem is trivial for trees. The main challenge is to create a drawing
with width small enough to fit the page. The Reingold–Tilford algorithm [48] is a simple heuristic
method designed to reduce width. Suppose that T is an oriented binary rooted tree. We denote the left
subtree by TL and the right subtree by TR. Draw subtrees TL and TR recursively on separate sheets of
paper. Move the drawings of TL and TR toward each other as far as possible without the two drawings
touching. Now, center the root of T between its children. The Reingold–Tilford method can be
extended to nonbinary trees [50,12]. A typical tree drawing based on these ideas is shown in Figure 6.5.

6.2.3.4 3D Drawings

Affordable high quality 3D graphics in every PC has motivated a great deal of research in three-
dimensional graph drawing over the last two decades. Three-dimensional graph drawings with a
variety of aesthetics and edge representations have been extensively studied by the graph drawing
community since early 1990. The proceedings of the annual graph drawing conferences document
these developments.

Three-dimensional graph drawing research can be roughly divided into two categories: grid
drawing and nongrid drawing. Grid drawings can be further divided into two categories based
on edge representations: straight-line drawing and orthogonal drawing. Further, for each drawing

FIGURE 6.5 Tree drawn with an algorithm based on the ideas by Reingold–Tilford.
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convention, one can define the following aesthetic (i.e., optimization) criteria: minimize volume
for straight-line grid drawings and orthogonal grid drawings, minimize the number of bends in
orthogonal grid drawings, or maximize symmetry in nongrid straight-line drawings.

Note that there is a recent survey on three-dimensional graph drawing [19], which covers the
state of art survey on three dimensional graph drawing, in particular straight-line grid drawing and
orthogonal grid drawing.

6.3 Planar Graph Drawing

A great deal of the long history of graph theory has been devoted to the study of representations
of graphs in the plane. The concepts and results developed over centuries by graph theorists have
proved very useful in recent visualization and VLSI layout applications. This section describes some
techniques used in finding good drawings in the plane.

A representation of a planar graph without edge crossings in the plane is called a plane represen-
tation or a planar embedding. The graph is then called a plane graph. A planar embedding divides
the plane into regions, which we call faces. The unbounded face is called the outer face. A planar
embedding can be represented by a planar map, that is, a cyclic ordered list of the edges bounding
each face. There are linear time algorithms for testing planarity of a given graph and, in the positive
case, computing a planar map (see, e.g., [9]).

6.3.1 Straight Line Drawings

In this section, we consider the problem of constructing straight-line planar drawings of planar
graphs. This problem predates the applications in information visualization and was considered by
a number of mathematicians (e.g., [23]). The problem with these early approaches was that they
offered poor resolution; that is, they placed vertices exponentially close together. The breakthrough
came with the following theorem from [16].

THEOREM 6.1 [16] Every n-vertex planar graph has a straight-line planar grid drawing which is
contained within a rectangle of dimensions O(n) × O(n).

The purpose of this section is to outline a constructive proof of Theorem 6.1. Roughly speaking,
it proceeds as follows.

1. Dummy edges are added to the graph to ensure that it is a triangulated planar graph, that
is, each face is a triangle.

2. The vertices are ordered in a certain way defined below.
3. The vertices are placed one at a time on the grid in the order defined in step 2.

The first step is not difficult. First we find a planar embedding, and then add edges to every face
until it becomes a triangle. We present steps 2 and 3 in the following two subsections.

6.3.1.1 Computing the Ordering

Let G = (V , E) be a triangulated plane graph with n > 3 vertices, with vertices u, v, and w on the
outer face. Suppose that the vertices of V are ordered v1, v2, . . . , vn. Denote the subgraph induced
by v1, v2, . . . , v� by G�, and the outer face of G� by C�. The ordering v1 = u, v2 = v, . . . , vn = w is
a canonical ordering if for 3 ≤ � ≤ n − 1, G� is two-connected, C� is a cycle containing the edge
(v1, v2), v�+1 is in the outer face of G�, and v�+1 has at least two neighbors in G�, and the neighbors
are consecutive on the path C� − (v1, v2).
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LEMMA 6.1 [16] Every triangulated plane graph has a canonical ordering.

PROOF 6.1 The proof proceeds by reverse induction. The outer face of G is the triangle v1, v2, vn.
Since G is triangulated, the neighbors of vn form a cycle, which is the boundary of the outer face of
G − {vn} = Gn−1. Thus, the lemma holds for � = n − 1.

Suppose that i ≤ n − 2, and assume that vn, vn−1, . . . , vi+2 have been chosen so that Gi+1 and
Ci+1 satisfy the requirements of the lemma. We need to choose a vertex w as vi+1 on Ci+1 so that w
is not incident with a chord of Ci+1. It is not difficult to show that such a vertex exists. �

6.3.1.2 The Drawing Algorithm

The algorithm for drawing the graph begins by drawing vertices v1, v2, and v3 at locations (0, 0),
(2, 0), and (1, 1), respectively. Then, the vertices v4, . . . , vn are placed one at a time, increasing in y
coordinate. After vk has been placed, we have a drawing of the subgraph Gk. Suppose that the outer
face Ck of the drawing of Gk consists of the edge (v1, v2), and a path Pk = (v1 = w1, w2, . . . , wm = v2);
then, the drawing is constructed to satisfy the following three properties:

1. The vertices v1 and v2 are located at (0, 0) and (2k − 4, 0), respectively.
2. The path Pk increases monotonically in the x direction; that is, x(w1) < x(w2) < · · · <

x(wm).
3. For each i ∈ {1, 2, . . . , m − 1}, the edge (wi, wi+1) has slope either +1 or −1.

Such a drawing is illustrated in Figure 6.6.
We proceed by induction to show how a drawing with these properties may be computed. The

drawing of G3 satisfies the three properties. Now, suppose that k ≥ 3, and we have a drawing of Gk
that satisfies the three properties. The canonical ordering of the vertices implies that the neighbors of
vk+1 in Gk occur consecutively on the path Pk; suppose that they are wp, wp+1, . . . , wq. Note that the
intersection of the line of slope +1 through wp with the line of slope −1 through wq is at a grid point
μ(p, q) (since the Manhattan distance between two vertices is even). If we placed vk+1 at μ(p, q), then
the resulting drawing would have no edge crossings, but perhaps the edge (wp, vk+1) would overlap
with the edge (wp, wp+1), as in Figure 6.6. This can be repaired by moving all wp+1, wp+2, . . . , wm
one unit to the right. It is also possible that the edge (vk+1, wq) overlaps the edge (wq−1, wq), so we
move all the vertices wq, wq+1, . . . , wm a further unit to the right. This ensures that the newly added
edges do not overlap with the edges of Gk. Now, we can place vk+1 safely at μ(p, q) as shown in
Figure 6.7 (note that μ(p, q) is still a grid point). The three required properties clearly hold.

But there is a problem with merely moving the vertices on Pk: after the vertices wp, wp+1, . . .
wm are moved to the right, the drawing of Gk may have edge crossings. We must use a more
comprehensive strategy to repair the drawing of Gk; we must move even more vertices. Roughly
speaking, when moving vertex wi to the right, we will also move the vertices to the right below wi.

vk+1

wp+1
wqwp

w1 wm

Gk

FIGURE 6.6 The subgraph Gk with vk+1 placed at μ(p, q).
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vk+1

wp+1

Gk

wq
wp

w1 wm

FIGURE 6.7 The subgraph Gk with vk+1 placed at μ(p, q) after moving the vertices wp+1, . . . , wq−1 one unit and the
vertices wq, . . . , wm two units to the right.

To this end, we define a sequence of sets Mk(w1), Mk(w2), . . . , Mk(wm) below. For a given sequence
α(w1), α(w2), . . . , α(wm) of nonnegative integers, the vertices of Gk are moved successively as
follows: first, all vertices of Mk(w1) are moved by α(w1), then all vertices of Mk(w2) are moved by
α(w2), and so on.

The sets Mk are defined recursively as follows: M3(v1) = {v1, v2, v3}, M3(v2) = {v2, v3}, M3(v3) =
{v3}. To compute Mk+1 from Mk, note that if vk+1 is adjacent to wp, wp+1, . . . , wq, then Pk+1 is
(w1, w2, . . . , wp, vk+1, wq, . . . , wm). For each vertex u on this path, we must define Mk+1(u). Roughly
speaking, we add vk to Mk(wi) if wi is left of vk+1, otherwise Mk(wi) is not altered. More precisely,
for 1 ≤ i ≤ p, we define Mk+1(wi) to be Mk(wi) ∪ {vk+1}, and Mk+1(vk+1) is Mk(wp+1) ∪ {vk+1}.
For q ≤ j ≤ M, we define Mk+1(wj) to be Mk(wj). It is not difficult to show that the sets satisfy the
following three properties:

(a) wj ∈ Mk(wi) if and only if i ≤ j.
(b) Mk(wm) ⊂ Mk(wm−1) ⊂ · · · ⊂ Mk(w1).
(c) Suppose that α(w1), α(w2), . . . , α(wm) is a sequence of nonnegative integers and we

apply algorithm Move to Gk; then the drawing of Gk remains planar.

These properties guarantee planarity.

6.3.1.3 Remarks

The proof of Theorem 6.1 constitutes an algorithm that can be implemented in linear time [15]. The
area of the computed drawing is 2n − 4 × n − 2; this is asymptotically optimal, but the constants can
be reduced to (n − Δ0 − 1) × (n − Δ0 − 1), where 0 ≤ Δ0 ≤ �(n − 1)/2� is the number of cyclic
faces of G with respect to its minimum realizer (see [51]).

A sample drawing appears in Figure 6.8, which also shows some of the problems with the method.
If the input graph is relatively sparse, then the number of “dummy” edges that must be added can be
significant. These dummy edges have considerable influence over the final shape of the drawing but
do not occur in the final drawing; the result may appear strange (see Figure 6.8). Using a different
ordering, the algorithm also works for triconnected and even for biconnected planar graphs [41,27].
This reduces the number of dummy edges considerably.

Although the drawings produced have relatively good vertex resolution, they are not very readable,
because of two reasons: the angles between incident edges can get quite small, and the area is still
too big in practice. These two significant problems can be overcome by allowing bends in the
edges. Kant [41] modifies the algorithm described above to obtain a “mixed model algorithm;” this
algorithm constructs a polyline drawing of a triconnected planar graph such that the size of the
minimal angle is at least 1

d π, where d is the maximal degree of a vertex. Figure 6.9 shows the same
graph as in Figure 6.8 drawn with a modification of the mixed model algorithm for biconnected
planar graphs (see [28]). The grid size of the drawing in Figure 6.8 is 38 × 19, whereas the size for
the mixed model drawing is 10 × 8.
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FIGURE 6.8 Sparse graph drawn with straight line edges.
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FIGURE 6.9 Sparse graph drawn with the mixed model algorithm.

6.3.2 Orthogonal Drawings

In polyline drawings, one aesthetic is to minimize the total number of bends. Computing an orthogo-
nal drawing of a planar graph with the minimum number of bends is an NP-hard problem. However,
for the restricted problem wherein a fixed planar embedding is part of the input, there is a polynomial
time algorithm [49]. In this subsection, we will describe the transformation of this restricted bend
minimization problem into a network flow problem.

6.3.2.1 Mathematical Preliminaries

Intuitively, the orthogonal representation of an orthogonal planar drawing of a graph describes
its “shape;” it does not specify the length of the line-segments but determines the number of
bends of each edge. The algorithm described in this section takes as input a planar embedding,
represented as a planar map (that is a cyclic ordered list of the edges bounding each face). It
produces as output an orthogonal representation with the minimum number of bends. From this,
an actual drawing can be constructed via well-known compaction algorithms (see, e.g., [49,45] or
Chapter 8).
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f1

f2 f3

e2

e3

e4
e5

e1

FIGURE 6.10 A graph and
its orthogonal representation.

Formally, an orthogonal representation is a function H assigning an
ordered list H(f ) to each face f . Each element of H(f ) has the form
(e, s, a), where e is an edge adjacent to f , s is a binary string, and
a ∈ {90, 180, 270, 360}. If r is an element in H(f ), then er , sr , and ar
denote the corresponding entries, that is, r = (er , sr , ar). The list for an
inner face f is ordered so that the edges er appear in clockwise order
around f ; thus, H consists of a planar map of the graph extended by the
s- and a-entries. The kth bit in sr ∈ H(f ) represents the kth bend while
traversing the edge in face f in clockwise order: the entry is 0 if the bend
produces a 90◦ angle (on the right hand side) and 1 otherwise. An edge without bend is represented
by the zero-string ε. The number ar represents the angle between the last line segment of edge er
and the first line segment of edge e′

r , where r′ ∈ H(f ) follows r in the clockwise order around f . For
an outer face f0, the element r = (er , sr , ar) is defined similarly, just by replacing “clockwise order”
by “counterclockwise order.”

An orthogonal representation of Figure 6.10 is

H(f1)=((e1, ε, 270), (e5, 11, 90), (e4, ε, 270), (e2, 1011, 90))

H(f2)=((e1, ε, 90), (e6, ε, 180), (e5, 00, 90))

H(f3)=((e2, 0010, 90), (e4, ε, 90), (e6, ε, 90), (e3, 0, 360), (e3, 1, 90))

Given an orthogonal representation H, the number of bends is obviously given by

B(H) = 1
2

∑
f

∑
r∈H(f )

|sr|,

where |s| is the length of string s. Geometrical observations lead to the following lemma that
characterizes orthogonal representations.

LEMMA 6.2 The function H is an orthogonal representation of an orthogonal planar drawing of
a graph if and only if the properties (P1) to (P4) below are satisfied.

(P1) There is a plane graph with maximal degree four, whose planar map corresponds to the
e-entries in H(f ).

(P2) Suppose that r = (er , sr , ar) and r′ = (er′ , sr′ , ar′) are two elements in the orthogonal
representation representing the same edge, that is, er = er′ . Then, reversing the order of
the elements in the string sr and complementing each bit gives the string sr′ .

(P3) Suppose that ZEROS(s) denotes the number of 0’s in string s, ONES(s), the number of
1’s in string s, and

ROT(r) = ZEROS(sr) − ONES(sr) + (2 − a[r]/90).

Then, the faces described by H build rectilinear polygons, that is, polygons in which the
lines are horizontal and vertical, if and only if

∑
r∈H(f )

ROT(r) =
{

+4 if f is an inner face
−4 otherwise.

(P4) For all vertices v in the plane graph represented by H, the following holds: the sum of
the angles between edges with end vertex v given in the a-entries of the corresponding
elements is 360.
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6.3.2.2 The Transformation into a Network Flow Problem

Suppose that G = (V , E) is a plane graph and P is a planar map with outer face f0, that is, for each face
f of the embedding, P(f ) is a list of the edges on f in clockwise order (respectively counterclockwise
order for f0). Denote the set of faces of G defined by P by F.

We define a network N(P) = (U, A, b, l, u, c) with vertex set U, arc set A, demand/supply b, lower
bound l, capacity u, and cost c, as follows. The vertex set U = UV ∪ UF consists of the vertices in V
and a vertex set UF associated with the set of faces F in G. The vertices iv ∈ UV supply b(iv) = 4 units
of flow. The vertices if ∈ UF have supply respectively demand of

b(if ) =
{

−2|P(f )| + 4 if f is inner face
−2|P(f )| − 4 otherwise.

The arc (multi-)set A consists of the two sets AV and AF , as follows:

• AV contains the arcs (iv, if ), v ∈ V , f ∈ F, for all vertices v that are endpoints of edges in
P(f ) (v is associated with an angle in face f ). Formally, we define E(v, f ) := {e ∈ P(f ) |
e = (u, v)} and AV = {(iv, if ) | e ∈ E(v, f )}. Each arc in AV has lower bound l(iv, if ) = 1,
upper bound u(iv, if ) = 4, and zero cost c(iv, if ) = 0. Intuitively, the flow in these arcs is
associated with the angle at v in face f .

• AF contains two arcs (if , ig) and (ig , if ) for each edge e = (f , g), where f and g are the
faces adjacent to e. Arcs in AF have lower bound l(if , ig) = 0, infinite upper bound, and
unit cost c(if , ig) = c(ig , if ) = 1.

A graph and its network are shown in Figure 6.11. The value of the flow through the network is

B(U) =
∑
v∈V

b(iv)+
∑
f ∈F

b(if ) = 4|V|+
∑
f �=f0

(−2|P(f )|+4)−2|P(f0)|−4 = 4(|V|−|E|+|F|−2) = 0.

The transformation defined above seems to be quite complex, but it can be intuitively interpreted
as follows. Each unit of flow represents an angle of 90◦. The vertices distribute their 4 flow units
among their adjacent faces through the arcs in AV ; this explains the lower and upper bounds of
1 and 4, respectively. Flow in these arcs does not introduce any bends; this explains the zero cost.
In general, the flow arriving from vertices iv ∈ UV at the face vertices if ∈ UF is not equal to the

v3

v1

v6

v5

+4 +4

+4
+4

+4 + 4

– 2

–14

– 8

v2

v4

f1

f0

f2

FIGURE 6.11 A graph and its network. The graph consists of vertices v1, . . . , v6 and the solid edges. The nodes of
the network are labeled with their supply and demand. The arc sets AV and AF are drawn dashed and dotted,
respectively.
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demand or supply of if . For adjusting the imbalances, flow will be sent through arcs in AF . Each
flow unit through such arcs will produce one bend. The flow conservation rule on vertices UV forces
the sum of the angles around the vertices to be 360◦ (see property (P4)). The conservation rule for
vertices UF forces the created faces to be rectilinear polygons (see (P3)). Most importantly, the cost
of a given flow in the network N(P) is equal to the number of bends in the constructed orthogonal
representation.

LEMMA 6.3 [49] For any orthogonal representation H with planar map P, there exists an integer
flow x in N(P) with cost equal to the number of bends b(H).

PROOF 6.3 The flow x in N(P) can be constructed in the following way: With every arc (iv, if ) in
AV , we associate an element r ∈ R(v, f ), where R(v, f ) = {r ∈ H(f ) | er = (u, v)}. The flow value
x(iv, if ) arises from the a-entries in r : x(iv, if ) = ar/90. For every arc (if , ig) in AF , we associate an
element r ∈ R(f , g), where R(f , g) = {r ∈ H(f ) | er ∈ P(g)}. The flow is defined by the s-entries of r:
x(if , ig) = ZEROS(sr). The flow x(if , ig) represents the 90◦ angles within the region f along the edge
represented by r separating f and g. The corresponding 270◦ angles in the face f are represented by
their 90◦ angles in face g through x(ig , if ).

We show that the function x is, indeed, a feasible flow with cost equal to the number of bends in
H. Obviously, the lower and upper bounds of the arcs in AV and AF are satisfied by x. In order to
show that the flow conservation rules at vertices in U are satisfied, we first consider the flow balance
at a vertex iv ∈ UV (using (P4)):

∑
f

x(iv, if ) − 0 =
∑

f

∑
r∈R(v,f )

ar

90
=

∑
f

∑
{r∈H(f )|er=(u,v)}

ar

90
=

∑
er=(u,v)

ar

90
= 4 = biv .

For vertices if ∈ UF (using (P2) and (P3)), we have

∑
g

x(if , ig) −
∑
v∈V

x(iv, if ) −
∑
h∈F

x(ih, if )

= −
∑

r∈H(f )

ar

90
−

∑
r∈H(f )

ONES(sr) +
∑

r∈H(f )

ZEROS(sr)

= −2|P(f )| +
∑

r∈H(f )

ROT(r) = −2|P(f )| ± 4 = bif .

The costs of the flow are equal to the number of bends in H:

B(H) = 1
2

∑
f

∑
r∈H(f )

|sr| =
∑
f ∈F

∑
g∈F

x(if , ig) =
∑
a∈AF

xa =
∑
a∈A

caxa.

�

LEMMA 6.4 [49] For any integer flow x in N(P), there exists an orthogonal representation H with
planar map P. The number of bends in H is equal to the cost of the flow x.

PROOF 6.4 We construct the orthogonal representation H as follows: the edge lists H(f ) are given
by the planar map P(f ). Again, we associate an element r ∈ R(v, f ) with an arc (iv, if ) in AV , and set
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ar = 90 · x(iv, if ). For the bit strings s, we associate with each r ∈ R(f , g) a directed arc (if , ig) ∈ AF .
Then, we determine the element q ∈ H(g) with q �= r and eq = er . We set

sr = 0x(if ,ig)1x(ig ,if ) and sq = 0x(ig ,if )1x(if ,ig).

We claim that the properties (P1) to (P4) are satisfied by the above defined e, s- and a-entries.
Obviously, (P1) and (P2) are satisfied by the construction. The sum of the angles between adjacent
edges to v given by the a-entries is

∑
er=(u,v)

ar =
∑

f

x(iv, if ) · 90 = 360,

thus showing (P4). Finally, it is not hard to show that the faces defined by H build rectilinear polygons
(P3), since ∑

r∈H(f )

ROT(r) = 2|P(f )| + (−2|P(f )| ± 4) = 0 ± 4

The number of bends in the orthogonal representation is given by

B(H) = 1
2

∑
f

∑
r∈H(f )

|sr| = 1
2

∑
(if ,ig)∈AF

x(f , g) =
∑
a∈A

c(a)x(a).

�
In a network with integral costs and capacities, there always exists a min-cost flow with integer

flow values. Hence we have the following theorem.

THEOREM 6.2 [49] Let P be a planar map of a planar graph G with maximal degree 4. The minimal
number of bends in an orthogonal planar drawing with planar map P is equal to the cost of a min-
cost flow in N(P). The orthogonal representation H of any orthogonal planar drawing of G can be
constructed from the integer-valued min-cost flow in N(P).

The algorithm for constructing an orthogonal drawing is as follows. First, construct the network
N(P) in time O(|U| + |A|). A min-cost flow on a planar graph with n vertices can be computed in
time O(n2 log n) (see Chapter 28 for the theory of network algorithms). In this special case, it is even
possible to compute the min-cost flow in time O(n

7
4
√

log n) [26]. The orthogonal representation
can be constructed easily from the given flow. The length of the line segments can be generated by
any compaction algorithm (see [49,45] or Chapter 8).

6.3.2.3 Extensions to Graphs with High Degree

The drawings produced by the bend minimization algorithm look very pleasant (see, e.g., Figures
6.13d and 6.17). Since the algorithm is restricted to planar graphs with maximal degree four, various
models have been suggested for extending the network-flow method to planar graphs with high
degree vertices. Tamassia et al. [4] have suggested the big nodes model where they decompose the
high degree vertices into certain patterns of low degree vertices. Thereby, each edge is assigned to one
of the new low degree vertices. This leads to layouts, in which the corresponding high degree nodes
are drawn much bigger than the original ones (see Figure 6.12a). This can be overcome by placing
vertices of original size into the centers of the big nodes. The quasiorthogonal drawing approach by
Klau and Mutzel does not introduce such patterns, but simply integrates the high degree vertices
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(a) (c)(b)

FIGURE 6.12 A graph with high degree vertices drawn with three different approaches: (a) big-nodes model,
(b) quasiorthogonal drawing, and (c) Kandinsky layout.

into the network [44]. Also here, the high degree vertices expand their size, which is repaired again
by a final replacement step (see Figure 6.12b).

Fößmeier and Kaufmann [24] extend the new network model so that it can deal with a coarse
grid for the vertices and a fine grid for the edges (see Figure 6.12c). Unfortunately, the network
model needs additional arcs and constraints leading to negative cycles. It is open if the min-cost
flow in this Kandinsky model can be found in polynomial time. However, it can be formulated as
an integer linear program, which can be solved to optimality for many practical instances using
commercial ILP-solvers. There also exist approximation algorithms that theoretically guarantee a
two-approximation of the optimal solution. Practical experiments have shown that the solutions
found by these algorithms are very close to the optimal solutions [3].

6.4 Planarization

This section describes methods for transforming a nonplanar graph G into a planar graph. This
transformation yields a planarized representation G′ in which crossings are represented as additional
nodes (called dummy nodes) with degree four. We then apply any planar drawing algorithm to G′
and obtain a drawing of the original graph by simply replacing the dummy nodes in the layout of G′
with edge crossings.

Planarization is a practically successful heuristic for finding a drawing with the minimum number
of crossings [30]. The crossing minimization problem is NP-hard. For this problem, Buchheim
et al. [11] presented an exact branch-and-cut algorithm that is able to solve small to medium size
instances to optimality; cf. [13]. However, the algorithm is very complex in theory and practice so
that it will not replace the planarization method in the future.

The planarization approach via planar subgraph was introduced by Batini et al. [5] as a general
framework consisting of two steps: The first step computes a large planar subgraph, which serves as
a starting point for the following step. The second step reinserts the remaining “nonplanar” edges,
while trying to keep the number of crossings small. This is usually done by processing the edges to
be inserted successively. Each edge insertion step needs to determine which edges will be crossed;
replacing these crossings by dummy nodes with degree four results again in a planar graph that is
taken as input for inserting the next edge. Finally, we obtain a planarized representation P of G.
Figure 6.13 illustrates the application of this approach by an example, where just a single edge needs
to be reinserted.

Finding a planar subgraph of maximum size is an NP-hard optimization problem, which can be
solved using branch-and-cut algorithms, as has been shown by Jünger and Mutzel [39]. On the other
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FIGURE 6.13 Example for the application of the planarization method: (a) input graph, (b) planar graph, (c)
planarized representation, and (d) final drawing.

hand, we can resort to efficient heuristics, e.g., a maximal planar subgraph (i.e., a planar subgraph
such that adding any further edge results in a nonplanar graph) can be computed in linear time
as shown by Djidjev [18]. However, this algorithm is very complex and so far no implementation
exists; a much easier approach is to use a planarity testing algorithm. The easiest way is to start with
a spanning tree of the graph, and add the remaining edges successively; if adding an edge makes the
graph nonplanar, we remove it again and proceed with the next edge.

6.4.1 Edge Insertion with Fixed Embedding

The standard technique for reinserting an edge into a planar graph works as follows. Let e = (v, w)

be the edge we want to insert into the planar graph P. We first compute a planar embedding Π of P,
which fixes the order of edges around each vertex and thus the faces of the drawing. Finding a planar
embedding works in linear time; see [9]. Next, we construct the geometric dual graph Π∗ = (V∗, E∗)
of Π. Its vertices V∗ are exactly the faces of Π, and it contains an edge (f , f ′) for each edge of P, where
f and f ′ are the faces of Π separated by e.

Observe that crossing an edge corresponds to traversing an edge in Π∗; if we want to connect
vertices v and w, we simply have to find a path in Π∗ starting at a face adjacent to v and ending at a face
adjacent to w. Therefore, we add two more vertices v∗ and w∗ (representing v and w, respectively)
to Π∗ and connect v∗ with all faces adjacent to v, and analogously w∗ with all faces adjacent to w,
resulting in a graph Π∗

v,w. Then, connecting v and w with a minimum number of crossings in a
drawing of Π corresponds to finding a shortest path from v∗ to w∗ in Π∗

v,w, which can be found in
linear time by applying breadth-first search. Figure 6.14a shows an example for a geometric dual
graph extended in this way, given by the squared vertices (plus vertex 2 and 5) and the dashed edges.
The shortest path for inserting edge (2,5) is highlighted in (a), and the corresponding drawing is
shown in (b).
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FIGURE 6.14 Inserting an edge e = (2, 5) into a planar graph P with fixed embedding Π: (a) the (extended) geometric
dual graph of Π (dashed edges) and (b) substituting the crossing with a dummy node.
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6.4.2 Edge Insertion with Variable Embedding

The drawback of edge insertion with fixed planar embedding is that the quality of the solution heavily
depends on the choice of the planar embedding. Fixing an unfavorable embedding may result in
arbitrarily many unnecessary crossings, which could be avoided by choosing a different embedding.
Edge insertion with variable embedding overcomes this weakness by also finding an “optimal”
embedding. This requires that we are able to efficiently represent all possible planar embeddings
of the graph; the challenging part here is that the possible number of a graph’s planar embeddings
can be exponential in its size. In the following section, we outline the necessary foundations and an
efficient algorithm to solve the problems. For simplicity, we only consider biconnected graphs.

A compact and efficiently computable representation of all planar embeddings of a biconnected
graph is given by decomposing the graph into its triconnected components, similar to the decom-
position of a graph into its biconnected components. The triconnected components consist of three
types of structures: serial, parallel, and triconnected components. All the components of a graph are
related in a tree-like fashion. Figure 6.15 gives examples; the shaded regions represent subgraphs
that share exactly two vertices (a separation pair) with the rest of the graph. The actual structure
of a component—its skeleton—is obtained by shrinking the shaded parts to single, the so-called
virtual edges; the part that was shrunk is also called the expansion graph of the virtual edge. The
key observation is that we can enumerate all planar embeddings of a graph by permuting the com-
ponents in parallel structures and mirroring triconnected structures; obviously, we cannot afford
explicit enumeration in an algorithm. Typically, triconnected components are represented by a data
structure called SPQR-tree introduced by Di Battista and Tamassia [17], which can be constructed
in linear time and space; see [29].

The optimal edge insertion algorithm by Gutwenger et al. [31] proceeds as follows. Assume that we
want to insert edge (v, w) into the planar and biconnected graph G. First, we compute the SPQR-tree
of G and identify the (shortest) path from a component whose skeleton contains v to a compo-
nent whose skeleton contains w. For each component on this path, we can compute the crossings
contributed by that particular component individually. Starting with the component’s skeleton, we
replace all virtual edges whose expansion graph does not contain v or w (except as an endpoint of
the virtual edge) by their expansion graphs; other virtual edges are split creating a representant for
v or w, respectively. We observe that only the triconnected structures contribute required crossings
(see Figure 6.16): For serial structures, this is trivial, and parallel structures can always be arranged
such that the affected parts are neighbored. Triconnected structures can be handled analogously
as in the fixed embedding case, since their skeletons themselves are triconnected and thus admit
unique embeddings (up to mirroring), and it can be shown that it is permitted to choose arbitrary
embeddings for the expansion graphs. Finally, the obtained crossings are linked together in the order
given by the computed path in the SPQR-tree. The overall runtime of the algorithm is linear, thus
even matching the algorithm for the fixed embedding case.

(a) (b) (c)

FIGURE 6.15 Triconnected components: (a) serial, (b) parallel, and (c) triconnected structures.
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(a) (b) (c)

FIGURE 6.16 Edge insertion: serial (a) and parallel (b) components do not contribute any crossings; triconnected
structures can be handled as the fixed embedding case.

6.4.3 Remarks

A graph drawn (by the software library OGDF [47]) using the planarization approach and network
flow techniques (for drawing the planarized graph) is shown in Figure 6.17.

The question arises whether the insertion of an edge into a planar graph G using the opti-
mal edge insertion algorithm will lead to a crossing minimum drawing. However, Gutwenger
et al. [31] have presented a class of almost planar graphs for which optimal edge insertion does
not lead to an approximation algorithm with a constant factor. An almost planar graph G is a
graph containing an edge e ∈ G such that G − e is planar. On the other hand, Hliněný and
Salazar [33] have shown that optimal edge insertion approximates the optimal number of crossings
in almost planar graphs by a factor of Δ, where Δ denotes the maximum node degree in the given
graph.

FIGURE 6.17 A graph drawn using the planarization approach and network flow techniques.

6.5 Symmetric Graph Drawing

Symmetry is a much admired property in visualization. Drawings of graphs in graph theory textbooks
are often symmetric, because the symmetry clearly reveals the structure of the graph.

The aim of symmetric graph drawing is to take as input a graph G and construct a drawing of G
that is as symmetric as possible. In general, constructing a symmetric graph drawing has two steps:

1. Detection of symmetries in an abstract graph
2. Display of the symmetries in a drawing of the graph
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Note that the first step is much harder than the second step. As a result, most research in symmetric
graph drawing has been devoted to the first step. In this survey, we also focus on symmetry detection
algorithms.

We first start with a short review on symmetric graph drawing in two dimensions for a brief
comparison.

6.5.1 Two-Dimensional Symmetric Graph Drawing

A symmetry of a two-dimensional figure is an isometry of the plane that fixes the figure. There are
two types of two dimensional symmetries, rotational symmetry and reflectional (or axial) symmetry.
Rotational symmetry is a rotation about a point and reflectional symmetry is a reflection with respect
to an axis.

Symmetric graph drawing in two dimensions has been widely investigated by a number of authors
for the last two decades. For details, see a recent survey on symmetric graph drawing in two
dimensions (see, e.g., [21]). Here, we briefly summarize fundamental results.

The problem of determining whether a given graph can be drawn symmetrically is NP-complete
in general [46]; however, exact algorithms are presented based on group-theoretic approaches [1].
Linear-time algorithms for constructing maximally symmetric drawings are available for restricted
classes of graphs. A series of linear time algorithms developed for constructing maximally sym-
metric drawings of planar graphs, including trees, outerplanar graphs, triconnected planar graphs,
biconnected planar graphs, one-connected planar graphs, and disconnected planar graphs (see, e.g.,
[46,36]).

6.5.2 Three-Dimensional Symmetric Graph Drawing

Symmetry in three dimensions is much richer than that in two dimensions. For example, a maximal
symmetric drawing of the icosahedron graph in two dimensions shows six symmetries. However, the
maximal symmetric drawing of the icosahedron graph in three dimensions shows 120 symmetries.

Recently, symmetric graph drawing in three dimensions has been investigated. The problem of
drawing a given graph with the maximum number of symmetries in three dimensions is NP-hard [34].
Nevertheless, fast exact algorithms for general graphs based on group theory are available [1].
Also, there are linear time algorithms for constructing maximally symmetric drawings of restricted
classes of graphs in three dimensions. Examples include trees, series parallel digraphs, and planar
graphs [34,35,37].

6.5.3 Geometric Automorphisms and Three-Dimensional
Symmetry Groups

A symmetry of a drawing D of a graph G = (V , E) induces a permutation of the vertices, which is
an automorphism of the graph; this automorphism is displayed by the symmetry. We say that the
automorphism is a geometric automorphism of a graph G [1]. The symmetry group of a drawing D
of a graph G induces a subgroup of the automorphism group of G. The subgroup P is a geometric
automorphism group if there is a drawing D of G, which displays every element of P as a symmetry
of the drawing [1]. The size of a symmetry group is the number of elements of the group. The aim of
symmetric graph drawing is to construct a drawing of a given graph with a maximum size geometric
automorphism group.

The structure of three-dimensional symmetry groups can be quite complex. A complete list of all
possible three dimensional symmetry groups can be found in [2]. However, all are variations on just
three types: regular pyramid, regular prism, and Platonic solids, which are described below.
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A regular pyramid is a pyramid with a regular g-gon as its base. It has only one g-fold rotation axis,
called the vertical rotation axis, passing through the apex and the center of its base. It has g rotational
symmetries, called vertical rotations, each of which is a rotation of 2πi/g, i = 0, 1, . . . , g − 1. Also,
there are g vertical reflections in reflection planes, each containing the vertical rotation axis. In total,
the regular pyramid has 2g symmetries.

A regular prism has a regular g-gon as its top and bottom face. There are g + 1 rotation axes,
and they can be divided into two classes. The first one, called the principal axis or vertical rotation
axis, is a g-fold rotation axis that passes through the centers of the two g-gon faces. The second
class, called secondary axes or horizontal rotation axes, consists of g two-fold rotation axes that lie
in a plane perpendicular to the principal axis. The number of rotational symmetries is 2g. Also,
there are g reflection planes, called vertical reflection planes, each containing the principal axis, and
another reflection plane perpendicular to the principal axis, called horizontal reflection. Further, it
has g − 1 rotary reflections, composition of a rotation and a reflection. In total, the regular prism has
4g symmetries.

Platonic solids have more axes of symmetry. The tetrahedron has four three-fold rotation axes
and three two-fold rotation axes. It has 12 rotational symmetries and in total 24 symmetries. The
octahedron has three four-fold rotation axes, four three-fold axes, and six two-fold rotation axes. It
has 24 rotational symmetries and a full symmetry group of size 48. The icosahedron has six 5-fold
rotation axes, ten 3-fold rotation axes, and fifteen 2-fold rotation axes. It has 60 rotational symmetries
and a full symmetry group of size 120. Note that the cube and the octahedron are dual solids, and
the dodecahedron and the icosahedron are dual.

Other symmetry groups are derived from those of the regular pyramid, the regular prism, and the
Platonic solids. In fact, the variations have less symmetries than the three basic types. For example, a
variation of regular pyramid is a pyramid with only vertical rotations, without the vertical reflections.
For more details of three-dimensional symmetry groups and their relations, see [2].

6.5.4 Algorithm for Drawing Trees with Maximum Symmetries

Here, we sketch an algorithm for finding maximally symmetric drawings of trees in three dimen-
sions [35].

Fortunately, maximally symmetric three-dimensional drawings of trees have only a few kinds of
groups. First, note a trivial case: every tree has a planar drawing in the xy-plane; a reflection in this
plane is a symmetry of the drawing. This kind of symmetry display, where every vertex is mapped to
itself, is inconsequential.

LEMMA 6.5 [35] The maximum size three-dimensional symmetry group of a tree T is either
inconsequential or one of the following three types:

1. Symmetry group of a regular pyramid
2. Symmetry group of a regular prism
3. Symmetry group of one of the Platonic solids

The symmetry finding algorithm for trees constructs all three possible symmetric configurations
(i.e., pyramid, prism, and Platonic solids), and then chooses the configuration that has the maximum
number of symmetries.

A vertex is fixed by a given three-dimensional symmetry if it is mapped onto itself by that symmetry.
Note that the center of a tree T is fixed by every automorphism of T; thus, every symmetry of a
drawing of T fixes the location of the center.
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We first place the center of the input tree at the apex for the pyramid configuration, at the centroid
for the prism and the Platonic solids configuration. Then, we place each subtree attached to the
center to form a symmetric configuration.

The symmetry finding algorithm uses an auxiliary tree called the Isomorphism Class Tree. This tree
is a fundamental structure describing the isomorphisms between subtrees in the input tree. Suppose
that T is a tree rooted at r, and that T1, T2, . . . , Tk are the subtrees formed by deleting r. Then, the
ICT tree IT of T has a root node nr corresponding to r. Each child of nr in IT corresponds to an
isomorphism class of the subtrees T1, T2, . . . , Tk. Information about each isomorphism class is stored
at the node. The subtrees under these children are defined recursively. Using a tree isomorphism
algorithm that runs in linear time, we can compute the ICT tree in linear time.

Thus, we can state the symmetry finding algorithm as follows.

1. Find the center of T and root T at the center.
2. Construct the Isomorphism Class Tree (ICT) of T.
3. Find three-dimensional symmetry groups of each type:

a. Construct a pyramid configuration.

b. Construct a prism configuration.

c. Construct Platonic solids configuration.

4. Output the group of the configuration that has the maximum size.

There are some variations for each configuration, based on the number of subtrees fixed by the
three dimensional symmetry group.

For the pyramid configuration, we construct a pyramid-type drawing by placing the center of the
tree at the apex of a pyramid, some fixed subtrees about the rotation axis, and g isomorphic subtrees
in the reflection planes that contain the side edges of the pyramid. The resulting drawing has the
same symmetry group of the g-gon based pyramid.

The pyramid configuration can have up to two fixed subtrees, one on each side of the center on
the rotation axis. For example, Figure 6.18a shows two fixed isomorphic subtrees, and Figure 6.18b
shows two fixed nonisomorphic subtrees. Both drawings display four rotational symmetries and
four reflectional symmetries. Note that if we do not fix the two subtrees on the rotation axes, the tree
in Figure 6.18a can display only two rotational symmetries in three dimensions.

In order to find the three-dimensional pyramid symmetry group of maximum size, we need to
consider each subtree as a possible candidate for a fixed subtree. Further, we need to compute the
size of the rotational symmetry group of each subtree, as it affects the size of the rotational symmetry
group of each configuration as a whole. For example, if the fixed subtrees in Figure 6.18b were

(b)(a)

FIGURE 6.18 Pyramid configuration with two fixed subtrees.
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(b)(a)

FIGURE 6.19 Prism configuration with fixed subtrees on the xy-plane and the z-axis.

redrawn to display only two rotational symmetries, then the size of the rotational symmetry group
of the whole drawing would be merely two. The ICT can be used to find the fixed subtrees efficiently,
and thus to compute a maximum size rotational group for the pyramid configuration in linear time.

The symmetries of a tree drawn in the prism configuration can be more complex than those of
the pyramid configuration. The main reason is that a prism has two kinds of rotation axis: the first,
called the principal axis, passes through the regular polygons at each end of the prism.

Suppose that the prism has a g-fold rotation about the principal axis. We assume that the principal
axis is the z-axis. There are also g two-fold secondary axes in the xy-plane, each at an angle of
πi/g to the x-axis, for i = 0, 1, . . . , g − 1. The prism has a rotational symmetry by an angle of
π about each of these axes. The complexity of prism drawings of trees comes from the fact that
each of these g + 1 rotation axes may fix subtrees. For example, see Figure 6.19. The drawing in
Figure 6.19a shows two isomorphic fixed subtrees on the z-axis, and four isomorphic subtrees on the
secondary axis. The drawing in Figure 6.19b shows two different types of four isomorphic subtrees

FIGURE 6.20 The cube configu-
ration with fixed subtrees on four-
fold axes.

on the secondary axis, in addition to the two isomorphic fixed
subtrees on the z-axis.

Again, using the ICT, we can compute a maximum size rotational
group for prism configuration in linear time.

The Platonic solids have many rotation axes. However, the sym-
metry groups of the Platonic solids are fixed, and we only need to
test whether we can construct a three-dimensional drawing of a
tree that has the same symmetry group as one of the Platonic solids.
Using a method similar to the previous cases, we can test this in
linear time.

For example, Figure 6.20 shows the fixed subtree on the four-fold
axes of the cube configuration.

The main thrust of the algorithms for the pyramid, prism, and
the Platonic solids is the use of the ICT to determine the fixed
subtrees.

Once we compute the maximum size three-dimensional symme-
try group, one can use a linear time straight-line drawing algorithm that arranges subtrees in wedges
and cones in [35].

The following theorem summarizes the main results of this section.

THEOREM 6.3 [35] There is a linear time algorithm that constructs symmetric drawings of trees
with maximum number of three-dimensional symmetries.
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6.6 Research Issues

The field of graph drawing is still developing and there are many fundamental questions to be
resolved. Here, we list a few related to the above-mentioned drawing methods.

• The grid size for planar straight-line drawings is bounded below; there is an n-vertex
plane graph G such that, for any straight-line grid drawing of G, each dimension of the
grid is at least � 2(n−1)

3 � even if the other dimension is allowed to be unbounded [16,14].
It is conjectured that this lower bound is almost achievable; more precisely, every planar
graph with n vertices has a two-dimensional straight-line drawing on a grid of size
� 2n

3 � × � 2n
3 �. So far, the best known upper bound is (n − Δ0 − 1) × (n − Δ0 − 1), where

0 ≤ Δ0 ≤ �(n − 1)/2� is the number of cyclic faces of G with respect to its minimum
realizer (see [51]).

• The network-flow approach by Tamassia for achieving a bend-minimum orthogonal
planar drawing works only for plane graphs with maximum degree 4. So far there is no
perfect model or method for extending the network-flow approach to plane graphs with
maximum vertex degree > 4. A specific open research question is the problem of finding
a polynomial time algorithm for computing bend-minimum drawings in the Kandinsky
model for high-degree plane graphs.

• A lot of research has been done in the field of crossing minimization, but there are still
open fundamental problems. Though there is a polynomial time algorithm to approxi-
mate the crossing number for almost planar graphs with bounded degree, it is unknown
if there is such a polynomial time approximation (or even exact) algorithm for almost
planar graphs in general. Furthermore, if we consider apex graphs, i.e., graphs contain-
ing a vertex whose removal leaves a planar graph, we do not even know if there is a
polynomial time approximation algorithm in the case of bounded degree.

• Every triconnected planar graph G can be realized as the one-skeleton of a convex
polytope P in R

3 such that all automorphisms of G are induced by isometries of P
(see, e.g., [21], Theorem by Mani). Is there a linear time algorithm for constructing a
symmetric convex polytope of a triconnected planar graph?

6.7 Further Information

Books on graph drawing appeared in [6,42]. The proceedings of the annual international Graph
Drawing Symposia are published in the Lecture Notes in Computer Science Series by Springer; see,
for example, [43,38]. There exist various software packages for graph drawing (e.g., [40]). The Graph
Drawing E-Print Archive (GDEA) is an electronic repository and archive for research materials on
the topic of graph drawing (see, http://gdea.informatik.uni-koeln.de).

Defining Terms

Graph drawing: A geometric representation of a graph is a graph drawing. Usually, the representation
is in either 2-or 3-dimensional Euclidean space, where a vertex v is represented by a point p(v) and
an edge (u, v) is represented by a simple curve whose endpoints are p(u) and p(v).
Edge crossing: Two edges cross in a graph drawing if their geometric representations intersect. The
number of crossings in a graph drawing is the number of pairs of edges that cross.
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Planar graph: A graph drawing in two-dimensional space is planar if it has no edge crossings. A
graph is planar if it has a planar drawing.
Almost planar graph: A graph is almost planar if it contains an edge whose removal leaves a planar
graph.

FIGURE 6.21 Planarization
by crossing vertices.

Planarization: Informally, planarization is the process of transforming
a graph into a planar graph. More precisely, the transformation involves
either removing edges (planarization by edge removal) or replacing
pairs of nonincident edges by four-stars, as in Figure 6.21 (planarization
by adding crossing vertices). In both cases, the aim of planarization is
to make the number of operations (either removing edges or replacing
pairs of nonincident edges by four-stars) as small as possible.
Grid drawing: A grid drawing is a graph drawing in which each vertex is represented by a point
with integer coordinates.
Straight-line drawing: A straight-line drawing is a graph drawing in which each edge is represented
by a straight line segment.
Orthogonal drawing: An orthogonal drawing is a graph drawing in which each edge is represented
by a polyline, each segment of which is parallel to a coordinate axis.
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Intensity-modulated radiation therapy (IMRT) is a modern cancer treatment technique aiming
to deliver a prescribed conformal radiation dose to a target tumor while sparing the surrounding
normal tissues and critical structures. In this chapter, we consider a set of combinatorial and
geometric problems that arise in IMRT planning and delivery: (1) the static leaf sequencing problem,
(2) the static leaf sequencing with error control problem, (3) the field splitting problem, (4) the
dose simplification problem, (5) the dynamic leaf sequencing problem, and (6) the single-arc leaf
sequencing problem. We discuss new efficient algorithms for these problems. The main ideas of the
algorithms are to exploit the underlying geometric and combinatorial properties of the problems
and transform them into graph problems such as shortest paths, optimal matchings, maximum
flows, multicommodity demand flows, or linear programming problems. Some open problems and
promising directions for future research are also given.

7.1 Introduction

The study of mathematical and geometric optimization problems that arise in the field of medicine
is becoming a significant research area. Many medical applications call for effective and efficient

7-1
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algorithmic solutions for various discrete or continuous algorithmic problems. In this chapter, we
will cover a number of combinatorial and geometric problems that arise in the research of intensity-
modulated radiation therapy (IMRT).

IMRT is a modern cancer therapy technique that aims to deliver a highly conformal radiation dose
to a target volume in 3-D (e.g., a tumor) while sparing the surrounding normal tissues and critical
structures. Performing IMRT is based on the ability to accurately and efficiently deliver prescribed
dose distributions of radiation, called intensity maps (IMs). An IM is specified by a set of nonnegative
integers on a uniform 2-D grid (see Figure 7.1a). The value in each grid cell indicates the intensity
level (in units) of radiation to be delivered to the body region corresponding to that IM cell. For real
medical prescriptions, an IM cell is typically measured from 0.5 cm × 0.5 cm to 1 cm × 1 cm [29].

Currently, most IMRT delivery system consists of two major components: (1) a medical linear
accelerator (LINAC), which generates photon beams used in IMRT, and (2) the multileaf collimator
(MLC) [44,72,73]. An MLC is made of many pairs of tungsten alloy leaves of the same rectangular
shape and size (see Figure 7.1b). The opposite leaves of a pair are aligned to each other. These
leaves, which are controlled by a computer, can move left and right to form a rectilinear polygonal
region, called an MLC-aperture. During IMRT treatment, the patient is positioned and secured
to the treatment couch (see Figure 7.1c) and the LINAC delivers radiation beams to the tumor
from various directions. The direction of the radiation beam is controlled by rotating the gantry
to the desired angle. The MLC is mounted on the gantry and the cross section of the cylindrical
radiation beam is shaped by an MLC-aperture to deliver a uniform dose to (a portion of) an IM
[17,33,51–53,63,67,80,83].

Currently, there are three popular MLC systems that are used for clinical cancer treatment. The
systems are the Elekta, the Siemens, and the Varian MLCs [44]. Depending on the actual MLC system
in use, there are some differences among the required geometric shapes of the rectilinear polygonal
regions that can be formed by the MLC. The details on the differences between these MLC systems
will be discussed in Section 7.2.1.

2 4 3 5 5 0 06
2 4 7 8 7 6 05
3 4 4 8 6 5 05
3 6 7 3 3 4 00
2 4 5 5 5 5 11
2 4 6 4 7 5 34
3 5 6 7 8 7 35
2 4 2 4 6 0 14

y

(a) (b)
x

y

x

Couch

(c)

Gantry rotation

FIGURE 7.1 (a) An IM. (b) A schematic drawing of a multileaf collimator (MLC), where the shaded rectangles
represent the MLC leaves which can move left and right (as indicated by the arrows) to form an MLC-aperture.
(c) Patient couch and rotatable gantry.
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Using a computer-controlled MLC, the IMs are usually delivered either statically, or dynamically.
In the static approach [11–16,30,35,41,40,74,79], the MLC leaves do not move during irradiation,
and reposition to form another beam shape only when the radiation is turned off. In the dynamic
approach [28,29,31,45,69–71], the MLC leaves keep moving across an IM field while the radiation
remains on. Note that MLC leaves are capable of changing their positions quickly compared to
the total radiation time, and the actually delivered IMs can still remain to be of integer values in
the dynamic approach. In both approaches, the gantry is fixed during irradiation. Arc-modulated
radiation therapy (AMRT) is a newly emerging IMRT delivery technique [82]. AMRT differs from
the traditional static and dynamic IMRT approach in that the gantry is rotating, typically along a
single 3-D circular arc around the patient, during delivery. In the meantime, the MLC leaves also
move quickly across the IM field to reproduce the prescribed IM.

A treatment plan for a given IM gives a precise description of how to control the MLC leaves
to delivering the IM. For static IMRT, the treatment plan must also specify how to turn on/off the
radiation beam source. Two key criteria are used to evaluate the quality of an IMRT treatment plan:

1. Delivery time (the efficiency): Minimizing the delivery time is important because it not
only lowers the treatment costs but also increases the patient throughput. Short delivery
time also reduces the recurrence of tumor cells. For static IMRT, the delivery time
consists of two parts: (1) the beam-on time and (2) the machine setup time. Here, the
beam-on time refers to the total amount of time when a patient is actually exposed to
radiation, and the machine setup time refers to the time associated with turning on/off
the radiation source and repositioning MLC leaves. Minimizing the beam-on time has
been considered as an effective way to enhance the radiation efficiency of the machine
(referred to as MU efficiency in the medical literature) as well as to reduce the patient’s
risk under radiation [10]. For dynamic IMRT or AMRT, since the radiation source is
always on when delivering an IM, the treatment time equals to the beam-on time.

2. Delivery error (the accuracy): For various reasons, there is a discrepancy between the
prescribed IM and actually delivered IM. We distinguish two types of delivery error:
(1) approximation error and (2) tongue-and-groove error. The approximation error
refers to the discrepancy of the prescribed IM and actually delivered IM that resides
in the interior of the IM cells; and the tongue-and-groove error [68,79,81] refers to the
discrepancy of the prescribed IM and actually delivered IM that appears on the boundary
of the IM cells, which is due to the special geometric shape design, called tongue-and-
groove design, of the MLC leaves [81] (Section 7.2.2 discusses more on its nature).

In this chapter, we consider the following problems that arise in the planning and delivery of
IMRT: (1) the static leaf sequencing (SLS) problem, (2) the SLS with tongue-and-groove error control
problem, (3) the field splitting problem, (4) the dose simplification problem, (5) the dynamic leaf
sequencing problem (DLS), and (6) the single-arc leaf sequencing problem (SALS). The definitions
of the above problems will be given in later sections.

The rest of this chapter is organized as follows. Section 7.2 discusses the MLC constraints and its
tongue-and-groove feature. Sections 7.3 through 7.7 discuss the aforementioned problems and give
efficient algorithms. Section 7.8 discusses some open problems and promising directions for future
research.

7.2 Preliminaries

In this section, we first discuss the three popular MLC systems and their constraints, then characterize
the tongue-and-groove error associated with IMRT treatments using such MLC systems.
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7.2.1 Constraints of Multileaf Collimators

As mentioned in Section 7.1, there are three popular MLC systems currently used in clinical treat-
ments [44]: the Elekta, Siemens, and Varian MLC systems. The mechanical structure of these MLCs,
although is quite flexible, is not perfect in that it still precludes certain aperture shapes from being
used [29,44,73] for treatment. In the following, we summarize the common constraints that appear
in these MLC systems:

1. The minimum leaf separation constraint. This requires the distance between the opposite
leaves of any MLC leaf pair (e.g., on the Elekta or Varian MLC) to be no smaller than a
given value δ (e.g., δ = 1 cm).

2. The interleaf motion constraint. On the Elekta or Siemens MLC, the tip of each MLC
leaf is not allowed to surpass those of its neighboring leaves on the opposite leaf bank.

3. The maximum leaf spread constraint. This requires the maximum distance between the
tip of leftmost left leaf and the tip of the rightmost right leaf of the MLC is no more than
a threshold distance (e.g., 25 cm for Elekta MLCs). This constraint applies to all existing
MLCs.

4. The maximum leaf motion speed constraint. This requires the MLC leaves cannot move
faster than a threshold value (e.g., 3 cm/s for Varian MLCs). This constraint applies to
all existing MLCs.

Figure 7.2 shows the constraints (1) and (2) of these MLC systems. The Elekta MLC is subject to
both the minimum leaf separation and interleaf motion constraints. The Siemens MLC is subject
to only the interleaf motion constraint. Hence a degenerate rectilinear y-monotone polygon can
be formed by the Siemens MLC, by closing some leaf pairs (see Figure 7.2b). (A polygon P in
the plane is called y-monotone if every line orthogonal to the y-axis intersects P at most twice. A
y-monotone polygon is degenerate if its interior is not a single connected piece. ) The Varian MLC
is subject to the minimum leaf separation constraint, but allows interleaf motion. Thus, to “close”
a leaf pair in the Varian system, we can move the leaf opening under the backup diaphragms (see
Figure 7.2c). But, the Elekta MLC cannot “close” its leaf pairs in a similar manner due to its interleaf
motion constraint.

Geometrically, on the Elekta, each MLC-aperture is a rectilinear y-monotone simple polygon
whose minimum vertical “width” is ≥ the minimum separation value δ, while on the Siemens or
Varian, an MLC-aperture can be a degenerate y-monotone polygon (i.e., with several connected
components).

(a) (b) (c)

FIGURE 7.2 Illustrating the constraints of three different MLC systems. The shaded rectangles represent the MLC
leaves, and the unshaded rectangles represent the backup diaphragms which form a bounding box of an MLC-aperture.
(a) The Elekta MLC; (b) the Siemens MLC. (Notice that unlike the Elekta and Varian MLCs, the Siemens MLC only
has a single pair of backup metal diaphragms.); and (c) the Varian MLC.
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7.2.2 Tongue-and-Groove Design of the MLC Leaves

On most current MLCs, the sides of the leaves are designed to have a “tongue-and-groove” interlock
feature (see Figure 7.3a). This design reduces the radiation leakage through the gap between two
neighboring MLC leaves and minimizes the friction during leaf movement [68,73,79,81]. But, it also
causes an unwanted underdose and leakage situation when an MLC leaf is used for blocking radiation
(see Figure 7.3b and c). Geometrically, the underdose and leakage error caused by the tongue-and-
groove feature associated with an MLC-aperture is a set of 3-D axis-parallel boxes w · li · h, where
w is the (fixed) width of the tongue or groove side of an MLC leaf, li is the length of the portion of
the ith leaf that is actually involved in blocking radiation, and h = α · r is the amount of radiation
leakage with α being the (fixed) leakage ratio and r being the amount of radiation delivered by that
MLC-aperture. Figure 7.3b illustrates the height of the underdose and leakage error, and Figure 7.3c
illustrates the width and length of the underdose and leakage error.

The tongue-or-groove error of an MLC-aperture is defined as the amount of underdose and
leakage error occurred whenever the tongue side or groove side of an MLC leaf is used for block-
ing radiation. The tongue-or-groove error of an IMRT plan (i.e., a set of MLC-apertures) is the
sum of the tongue-or-groove errors of all its MLC-apertures. The tongue-and-groove error occurs
whenever the tongue side of an MLC leaf and the corresponding groove side of its neighboring
leaf are both used for blocking radiation in any two different MLC-apertures of an IMRT plan
(see Figure 7.4). Note that the tongue-or-groove error is defined on each individual MLC-aperture,
while the tongue-and-groove error is defined by the relations between different MLC-apertures.
Clearly, the tongue-and-groove error is a subset of the tongue-or-groove error. In medical physics,
the tongue-and-groove error has received more attention than tongue-or-groove error because it

(c)
X MLC leaves
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Y

Y

Z

Dose

Dose
Y

B

Radiation

A
Machine

underdose
area

Actual
dose

Ideal
dose

FIGURE 7.3 (a) Illustrating the tongue-and-groove interlock feature of the MLC in 3-D, where leaf B is used for
blocking radiation. (b) When leaf B is used for blocking radiation, there is an underdose and leakage in the tongue or
groove area. (c) The underdose and leakage areas of the tongue-and-groove feature on an MLC-aperture region.
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FIGURE 7.4 Illustrating the tongue-and-groove error. (a) and (b): Two MLC-apertures (the shaded rectangles
represent MLC leaves). (c) When delivering the two MLC-apertures in (a) and (b) (one by one), the groove side of
leaf B and tongue side of leaf C are both used for blocking radiation, causing a tongue-and-groove error in the area
between the leaves B and C. (d) Illustrating a dose “dip” in the final dose distribution where a tongue-and-groove
error occurs.

usually occurs in the middle of the delivered IMs, causing insufficient dose coverage to the tumor
[79]. According to a recent study [30], tongue-and-groove error may cause a point dose error up to
10%, well beyond the allowed 3%–5% limit.

Chen et al. [24] introduced the notion of error-norm, which is closely related to the tongue-or-
groove error. The error-norm ||A||E of an IM A = (ai,j) of size m × n is defined as

||A||E =
m∑

i=1

⎛
⎝|ai,1| +

n−1∑
j=1

|ai,j − ai,j+1| + |ai,n|
⎞
⎠ . (7.1)

Chen et al. [23] proved that for any treatment plan S that exactly delivers IM A, the difference
between the associated tongue-or-groove error T or G(S) and the tongue-and-groove error T and
G(S) always equals to ||A||E. Thus minimizing tongue-or-groove error is equivalent to minimization
tongue-and-groove error. Chen et al. [23] further showed that ||A||E is the strict lower bound for
T or G(S), which implies that the tongue-and-groove error has a strict lower bound 0 for any
input IM.

7.3 Static Leaf Sequencing

7.3.1 Problem Definition

The SLS problem arises in the static IMRT delivery. In this delivery approach, an IM is delivered as
follows:

1. Form an MLC-aperture.
2. Turn on the beam source and deliver radiation to the area of the IM exposed by the

MLC-aperture.
3. Turn off the beam source.
4. Reposition the MLC leaves to form another MLC-aperture, and repeat steps 2–4 until

the entire IM is done.
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In this setting, the boundary of each MLC-aperture does not intersect the interior of any IM cell,
i.e., any IM cell is either completely inside or completely outside the polygonal region formed by
the MLC-aperture. In delivering a beam shaped by an MLC-aperture, all the cells inside the region
of the MLC-aperture receive the same integral amount of radiation dose (say, one unit), i.e., the
numbers in all such cells are decreased by the same integer value. The IM is done when each cell has
a value zero.

The SLS problem, in general, seeks a treatment plan S (i.e., a set of MLC-apertures together with
their weights) for exactly delivering a given IM A such that the delivery time is minimized. Note
that the weight of an MLC-aperture corresponds to the amount of radiation dose delivered to the
area of the IM exposed by the MLC-aperture, and by “exactly delivering” we mean there is no
approximation error but may have tongue-or-groove error. We will discuss how to minimize the
tongue-or-groove error in static IMRT delivery in the next section.

Several variations of the SLS problem have been studied in the literature: (1) the SLS problem
with minimum beam-on time (MBT) [3,7,10,13,46,54], (2) the SLS problem with minimum machine
setup time [7,23,25,30,79], and (3) the SLS problem with MBT plus machine setup time [7,54]. Recall
that for static IMRT, the delivery time equals the sum of beam-on time and machine setup time.

The SLS problem with MBT is polynomial time solvable [10]. Ahuja and Hamacher [3] formulated
this problem as a minimum cost flow problem in a directed network and gave an optimal linear
time algorithm for the case when the MLC is not subject to the minimum separation constraint
and interleaf motion constraint, e.g., the Varian MLC. Kamath et al. [46] proposed a different
approach by sweeping the IM field from left to right and generating MLC-apertures accordingly.
They showed how to handle the minimum separation constraint and interleaf motion constraint
during the sweeping and achieve MBT.

The SLS problem with minimum machine setup time is, in general, NP-hard. Burkard [18] proved
that for IMs with at least two rows, the problem can be reduced from the subset sum problem [38].
Baatar et al. [7] further showed that NP-hardness holds even for input IMs with a single row, using a
reduction from the 3-partition problem [38]. Chen et al. [22], independently, gave an NP-hardness
proof of this problem based on a reduction from the 0-1 knapsack problem [38]. The SLS problem
with MBT plus machine setup time is also NP-hard [10]. We are not aware of any efficient algorithms
for the MLC problem with MBT plus machine setup time.

In this section, we will study the following 3-D SLS problem [79]: Given an IM, find a minimum
set S of MLC-apertures (together with their weights) for delivering the IM (i.e., the size |S| is
minimized). Note that our goal is to minimize the number of MLC-apertures used for delivering
an IM, which is equivalent to minimizing the machine setup time under the assumption that the
setup time needed to go from one MLC-aperture shape to another shape is constant. While the MLC
problem with MBT plus machine setup time seems more general, our formulation of the 3-D SLS
problem also well captures the total delivery time. This is because the machine setup time for the
MLC-apertures dominates the total delivery time [30,79], and algorithms that minimize the number
of MLC-apertures used are desired to reduce the delivery time [79]. It should be pointed out that
even though the SLS problem with the MBT is polynomial time solvable, the resulting plan can use
a very large number of MLC-apertures [36], and thus a prolonged total delivery time.

A key special case of the SLS problem, called the basic 3-D SLS problem, is also of clinical value
[11–16]: Given an IM, find a minimum set of MLC-apertures for the IM, such that each MLC-
aperture has a unit height. Note that in the general SLS problem, the weight of each MLC-aperture
can be any integer ≥1. Studying the basic case is important because the maximum heights of the
majority of IMs used in current clinical treatments are around five, and an optimal solution for
the basic case on such an IM is often very close to an optimal solution for the general case.

The rest of this section is organized as follows. In Section 7.3.2, we consider the special SLS case
that the input IM has a single row. In Section 7.3.3, we consider the special SLS case that the input
IM has only 0 or 1 in its cells. In Section 7.3.4, we study the 3-D SLS problem.
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7.3.2 The 1-D SLS Problem

When the input IM is of a single row, the 3-D SLS problem reduces to the 1-D case. The input IM
becomes a one-dimensional intensity profile and the output MLC-apertures become a set of leaf
openings with weighted intensity levels (see Figure 7.5). Such openings are obtained by setting the
left and right leaves of an MLC leaf pair to specific positions. The goal is to minimize the number of
leaf openings.

The basic 1-D SLS problem, in which the output leaf openings are required to have unit weights,
can be easily solved using a sweeping method proposed by Boyer and Yu [17]. The method first
distinguishes the left and right ends along the intensity profile curve, and then uses a greedy approach
to generate a delivery option, i.e., a valid pairing in which a left end is always paired with a right
end on its right. An interesting question is how to generate all possible delivery options for a basic
1-D SLS instance. Yu [80] pointed out that for an IM row with N left ends and N right ends, there
are in the worst case N! delivery options. Webb [74] presented a general formula for determining
the total number of delivery options for an arbitrary IM row, and showed that this number in
general tends to be considerably smaller than N!. Luan et al. [56] gave an efficient algorithm for
producing all possible delivery options that runs in optimal time, linearly proportional to the number
of output delivery options. The key idea of the algorithm is to impose an order onto how the left
and right ends should be paired: it recursively pairs the rightmost unpaired left end with an unpaired
right end such that the pair does not define an illegal opening.

The general 1-D SLS problem, in which the output leaf openings are not required to have unit
weights, is NP-hard [7,22]. It is quite easy to observe that a horizontal trapezoidal decomposition of
the input intensity profile curve yields a 2-approximation solution for the general 1-D SLS problem
(e.g., see Figure 7.5).

Bansal et al. [8] modeled the general 1-D SLS problem as a maximum partition problem of prefix
positive zero sum vectors, and proposed several approximation algorithms with approximation ratio
less than two. For the unimodal input intensity profile curves, i.e., of only one peak, they gave a 9

7
approximation algorithm by reducing the general 1-D SLS problem to the set packing problem [43].
For arbitrary input intensity profile curves, they gave a 24

13 approximation based on rounding the
solution of a certain linear programming problem.

Independently, Chen et al. [21] studied the shape rectangularization (SR) problem of finding
minimum set of rectangles to build a given functional curve, which turns out to be equivalent to the
general 1-D SLS problem. They presented a ( 3

2 + ε)-approximation algorithm for the SR problem.
They pointed out two interesting geometric observations: (1) For the SR problem, it is sufficient to
consider only a special type of rectangle sets, called canonical rectangle sets, in which the left and
right ends of the rectangles coincide with the left and right ends of the input intensity profiles; (2) An
optimal rectangle set which is also canonical is isomorphic to a forest of weighted trees. Based on the
above observations, they proposed a combinatorial optimization problem, called the primary block
set (PBS) problem space [21], which is related to the SR problem in the sense that for any μ≥ 2,
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FIGURE 7.5 The leaf openings A, B, C, D, and E for delivering the dose profile curve of an IM of a single row.
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a μ-approximation PBS algorithm immediately implies a (2 − 1
μ

)-approximation SR algorithm.
Further, they showed that the PBS problem can be reformulated, in polynomial time, as a multi-
commodity demand flow (MDF) problem [19] on a path. Chekuri et al. [19] gave a polynomial time
(2+ε)-approximation algorithm for the MDF problem on a path when the maximum demand dmax
is less than or equal to the minimum capacity cmin. Chen et al. [21] extended Chekuri et al.’s result
and gave a (2 + ε)-approximation algorithm for the MDF problem on a path when dmax ≤ λ · cmin,
where λ> 0 is any constant. This leads to a ( 3

2 + ε)-approximation algorithm for the SR problem
when Mf ≤ λ · mf , where mf (or Mf ) is the global positive minimum (or maximum) of the input
intensity profile curve f .

7.3.3 The 2-D SLS Problem

When the input IM has only 0 or 1 in its cells, the 3-D SLS problem becomes a 2-D one (called
the 2-D SLS problem), and an optimal set of MLC-apertures is just a minimum set of rectilinear
y-monotone simple polygons. For MLCs with the minimum separation constraint, each rectilinear
y-monotone simple polygon must have a minimum width ≥ δ (the parameter δ represents the
minimum separation constraint discussed in Section 7.2.1). As shown in Section 7.3.4, a good
algorithm for partitioning a rectilinear polygonal region (possibly with holes) into a minimum set
of rectilinear y-monotone simple polygons can become a key procedure for solving the general 3-D
SLS problem.

Chen et al. [23] presented a unified approach for solving the minimum y-monotone partition
problem on an n-vertex polygonal domain (possibly with holes) in various settings. This problem
can be reduced to computing a maximum bipartite matching. But, due to the specific geometric
setting, an explicit construction of the underlying bipartite graph for a maximum matching is
too costly. They overcome this difficulty by reducing the matching problem to a maximum flow
problem on a geometric graph. Since the matching information is implicitly stored in the flow
graph, they use a special depth-first search to find an actual optimal matching. Thus, an O(n2) time
algorithm is obtained for partitioning a polygonal domain (possibly with holes) into a minimum set of
y-monotone parts, improving the previous O(n3) time algorithm [55] (which works only for the
simple polygon case). The ideas can be extended to handling the minimum separation constraint by
modifying the edge capacities of the flow graph.

7.3.4 The 3-D SLS Problem

In this subsection, we study the 3-D SLS problem, which seeks a minimum set S of MLC-apertures
(together with their weights) for delivering the given IM.

7.3.4.1 The Basic 3-D SLS Problem

The basic 3-D SLS problem, in which all weights of the MLC-apertures are required to be 1, has been
studied under different MLC constraints. For MLCs that are not subject to the minimum separation
constraint nor the interleaf motion constraint, the problem can be easily reduced to the basic 1-D
SLS problem (see Section 7.3.4), since each leaf pair is fully independent. For MLCs subjective to
the minimum separation constraint but not the interleaf motion constraint, Kamath et al. [46] gave
an algorithm that generates an optimal MLC-aperture set. The algorithm first generates an optimal
MLC-aperture set without considering the minimum separation constraint, and then performs
a sweeping of the IM field; during the sweeping, it repeatedly detects instances of violation and
eliminates them accordingly.

For MLCs subjective to both the minimum separation and interleaf motion constraints,
Chen et al. [25] modeled the corresponding 3-D SLS problem as an optimal terrain construction
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problem. To compute an optimal set of MLC-apertures for the IM, the algorithm builds a graph
G: (1) Generate all distinct delivery options for each IM row, and let every vertex of G correspond
to exactly one such delivery option; (2) for any two delivery options for two consecutive IM rows,
put left-to-right directed edges whose weights are determined by the optimal bipartite matchings
between the leaf openings of the two delivery options. The basic 3-D SLS problem is then solved by
finding the shortest path in the graph G [25].

This algorithm, however, does not handle two crucial issues well. The first issue is on the worst-
case time bound of the algorithm that has a multiplicative factor of N!. Recall that there can be N!
distinct delivery options in the worst case for every IM row (see Section 7.3.2). The second issue
is on the optimality of the MLC-aperture set produced. Since the algorithm uses only the minimal
delivery options for each IM row to compute a set of MLC-apertures (i.e., each such delivery option
has the minimum number of leaf opening for building the corresponding IM row), the output may
not be truly optimal. It is possible that a truly optimal MLC-aperture set for an IM need not use a
minimal delivery option for each row; instead, some of the delivery options used may be defined by
Steiner points [23].

Chen et al. [23] proposed a polynomial time basic 3-D SLS algorithm that can handle the above
two issues. The key idea is based on new geometric observations which imply that it is sufficient to
use only very few special delivery options, which they called canonical delivery options, for each IM
row without sacrificing the optimality of the output MLC-aperture set. This produces guaranteed
optimal quality solutions for the case when a constant number of Steiner points is used on each
IM row.

7.3.4.2 The General 3-D SLS Problem

We now study the general 3-D SLS problem, in which the weights of the MLC-apertures can be
arbitrary positive integers.

Several heuristic methods for the general 3-D SLS problem have been proposed [11–16,29,30,
35,41,74,79]. They all have several main steps: (1) choose the upper monotone boundary of an
MLC-aperture (by using some simple criteria), (2) choose the lower monotone boundary, (3) check
whether the two monotone boundaries enclose an MLC-aperture, and (4) output the MLC-aperture
thus obtained. These steps are repeated until the entire IM is built. Depending on where the upper
monotone boundary is placed, these algorithms are further classified as either the “sliding window” or
“reducing level” methods. The sliding window methods always place the upper monotone boundary
at the boundary of the planar projection of the remaining IM to be built, while the reducing level
methods normally set the upper monotone boundary at the place with the maximum height of the
remaining IM.

Chen et al. [23] presented a heuristic algorithm for the general 3-D SLS problem based on their
solutions for the 2-D SLS problem (see Section 7.3.3) and basic 3-D SLS problem (see Section 7.3.4.1).
To make use of the 2-D SLS algorithm and basic 3-D SLS algorithm, they partition the input IM
into a “good” set of sub-IMs, such that each sub-IM can be handled optimally by one of these two
algorithms (i.e., each resulting sub-IM must be of a uniform height, or the maximum height of each
such sub-IM should be reasonably small, say, ≤5). The partition is carried out in a recursive fashion
and for each recursive step, several partition schemes are tested and compared, and the algorithm
finally chooses the best result using dynamic programming.

Luan et al. [57] gave two approximation general 3-D SLS algorithms for MLCs without
the minimum separation constraint nor the interleaf motion constraint (e.g., the Varian MLC).
The first is a (�log h� + 1)-approximation where h > 0 is the largest entry in the IM. The second
is a 2(�log D� + 1)-approximation algorithm where D is the maximum element of a set containing
(1) all absolute differences between any two consecutive row entries over all rows, (2) the first
entry of each row, (3) the last entry of each row, and (4) the value 1. The main ideas include (1)
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2-approximation algorithm for the single-row case, and (2) an IM partition scheme that partitions
the input IM into logarithmic number of sub-IMs with weights that are all powers of two. These two
algorithms have a running time complexity of O(mn log h) and O(mn log D), respectively.

7.4 Static Leaf Sequencing with Tongue-and-Groove
Error Control

In this section, we study the SLS problem with tongue-and-groove error control, i.e., we will seek
to minimize both the delivery time and the tongue-and-groove error. As we will show later in this
section, there is actually a trade-off between these two criteria. Thus this problem has been studied
in two variations: (1) minimizing the delivery time subject to the constraint that the tongue-and-
groove error is completely eliminated [24,49,65] and (2) minimizing the delivery time subject to the
constraint that the tongue-and-groove error is no more than a given error bound [22].

Que et al. [65] gave a heuristic SLS algorithm that eliminates the tongue-and-groove error based
on the “sliding-windows” method proposed by Bortfeld et al. [13]. The algorithm, however, does
not guarantee optimal delivery time, either in terms of beam-on time or in terms of the number of
MLC-apertures.

Kamath et al. [49] gave an SLS algorithm that minimizes beam-on time of the output plan
subjective to the constraint that the tongue-and-groove error is completely eliminated. Their algo-
rithm consists of a scanning scheme they proposed earlier [46] for solving the SLS problem with
MBT (and without tongue-and-groove error control), and a modification scheme that rectifies that
possible tongue-and-groove error violation.

Chen et al. [22] presented a graph modeling of the basic SLS problem (i.e., each MLC-aperture
is of unit weight) with a tradeoff between the tongue-and-groove error and the number of MLC
apertures, and an efficient algorithm for the problem on the Elekta MLC model, which has both the
minimum separation and interleaf motion constraints. In their solution, the problem is formulated
as a k-weight shortest path problem on a directed graph, in which each edge is defined by a minimum
weight g-cardinality matching. Every such k-weight path specifies a set S of k MLC-apertures for
delivering the given IM, and the cost of the path indicates the tongue-and-groove error of the set S
of MLC-apertures. Chen et al. [22] also extended the above algorithm to other MLC models, such
as Siemens and Varian, based on computing a minimum g-path cover of a directed acyclic graph
(DAG). They used a partition scheme developed in paper [23] for handling the general case, i.e.,
each MLC-aperture can be of an arbitrary weight.

Chen et al. [24] presented an algorithm for SLS problem with minimum number of MLC-apertures
subjective to the constraint that the tongue-and-groove error is completely eliminated. The main
ideas of their algorithm include

• A novel IM partition scheme, called mountain reduction, for reducing a “tall” 3-D
IM (mountain) to a small set of “low” sub-IM mountains that introduces no tongue-
and-groove error. (In contrast, the partition scheme used in paper [22] may introduce
tongue-and-groove error.) The key to their mountain reduction scheme is the profile-
preserving mountain cutting (PPMC) problem, which seeks to cut an IM A into two
IMs qB and C (i.e., A = q · B + C, where q ≥ 2 is a chosen integer), such that qB and
C have the same profile as A. Two IMs M′ and M′′ are said to have the same profile
if for all i, j, M′

i,j ≥ M′
i,j+1 ⇔ M′′

i,j ≥ M′′
i,j+1 and M′

i,j ≤ M′
i,j+1 ⇔ M′′

i,j ≤ M′′
i,j+1. They

showed that the profile-preserving cutting introduces no tongue-and-groove error. They
formulated this PPMC problem as a bottleneck shortest path (BSP) problem on a DAG
G′ of a pseudo-polynomial size. By exploiting interesting properties of this DAG, they
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compute the BSP by searching only a small (linear size) portion of G′ and achieve an
optimal linear time PPMC algorithm.

• An efficient graph-based algorithm for partitioning a sub-IM into a minimum number of
MLC-apertures without tongue-and-groove error. They directly incorporated the zero
tongue-and-groove error constraint with the previous graph-based algorithm proposed
in paper [22], and by exploiting geometric properties, they show that the size of the graph
can be significantly reduced and computing the weights of edges can be done in a much
faster manner using a new matching algorithm.

7.5 Field Splitting

In this section, we study a few geometric partition problems, called field splitting, which arise in
IMRT. Due to the maximum leaf spread constraint (see Section 7.2.1), an MLC cannot enclose
an IM of a too large width. For example, on one of the most popular MLC systems called Varian, the
maximum leaf spread constraint limits the maximum allowed field width to about 14.5 cm. Hence,
this necessitates a large-width IM field to be split into two or more adjacent subfields, each of which
can be delivered separately by the MLC subject to the maximum leaf spread constraint [32,42,75].
But, such IM splitting may result in a prolonged beam-on time and thus affect the treatment quality.
The field splitting problem, roughly speaking, is to split an IM of a large width into several subfields
whose widths are all no bigger than a threshold value, such that the total beam-on time of these
subfields is minimized.

In this section, we will focus our discussion on the Varian MLCs, whose maximum spread
threshold value (i.e., 14.5 cm) is the smallest among existing popular MLCs and where the field
splitting is often needed for medium and large size tumor cases. Henceforth, we always assume the
MLCs under discussion do not have the minimum separation constraint nor the interleaf motion
constraint.

Engel [34] showed that for an IM M of size m × n, when n is no larger than the maximum allowed
field width w, the MBT of M is captured by the following formula

MBT(M) = m
max
i=1

{Mi,1 +
n∑

j=2

max{0, Mi,j − Mi,j−1}} (7.2)

Engel also described a class of algorithms achieving this minimum value.
Geometrically, we distinguish three versions of the field splitting problem based on how an IM

is split (see Figure 7.6c through e): (1) splitting using vertical lines; (2) splitting using y-monotone
paths; (3) splitting with overlapping. Note that in versions (1) and (2), an IM cell belongs to exactly
one subfield; but in version (3), a cell can belong to two adjacent subfields, with a nonnegative value
in both subfields, and in the resulting sequence of subfields, each subfield is allowed to overlap only
with the subfield immediately before or after it.

Kamath et al. [50] studied the field splitting using vertical lines (FSVL) problem with minimum
total MBT, i.e., the sum of the MBTs of the resulting subfields. Their algorithm worked in a brute-
force manner and split a size m × n IM using vertical lines into at most three subfields (i.e., n ≤ 3w
for their algorithm, where w is the maximum allowed field width), and took O(mn2) time. Wu [77]
formulated the FSVL problem that splits IMs of arbitrary widths into k ≥ 3 subfields as a k-link
shortest path problem in a directed acyclic graph. Each vertex in the graph represents a possible
splitting line, and each edge represents the subfield enclosed by the two lines and is assigned a weight
which equals the MBT for its associated subfield. With a carefully characterization of the intrinsic
structures of the graph, an O(mnw) time algorithm was achieved.
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FIGURE 7.6 (a) An MLC. (b) An IM. (c)–(e) Examples of splitting an IM into three subfields, M1, M2, and M3,
using vertical lines, y-monotone paths, and with overlapping, respectively. The dark cells in (e) show the overlapping
regions of the subfields; the prescribed dose in each dark cell is divided into two parts and allocated to two adjacent
subfields.

Chen and Wang [27] studied the field splitting using y-monotone paths (FSMP) problem. Their
key observation is that there are at most a number of mw + 1, instead of O((w + 1)m), candidates for
the leftmost y-monotone path used in the splitting that need to be considered. They then showed
that all these candidate paths can be enumerated efficiently by using a heap data structure and an
interesting new method called MBT-sweeping [27]. Further, they exploited the geometric properties
of the underlying field splitting problem to speed up the computation of the total MBT of the induced
subfields. The resulting FSMP algorithm took polynomial time as long as the number of subfields is
a constant.

The field splitting with overlapping (FSO) problem has also been studied. Kamath et al. [47]
studied a special FSO case in which an IM is split into at most three overlapping subfields and the
overlapping regions of the subfields are fixed; a greedy scanning algorithm is proposed that produces
optimal solutions in O(mn) time for this special case. In fact, it was pointed out in paper [27] that by
considering all possible combinations of overlapping regions, the algorithm in [47] can be extended
to solving the general FSO problem, i.e., the overlapping regions of the subfields are not fixed and
the number d of resulting subfields is any integer ≥ 2, in O(mnwd−2) time.

Chen and Wang [27] presented an O(mn + mwd−2) time FSO algorithm, improving the time
bound of Kamath et al.’s algorithm [47] by a factor of min{wd−2, n}. The algorithm hinges on a
nontrivial integer linear programming (ILP) formulation of the field splitting with fixed overlapping
(FSFO) problem. Basically, this is the FSO problem subject to the constraint that the sizes and
positions of the d sought subfields are all fixed. They showed that the constraint matrix of the
induced ILP problem is totally unimodular [64], and thus the ILP problem can be solved optimally
by linear programming (LP). Further, they showed that the dual of this LP is a shortest path problem
on a DAG, and the FSFO problem is solvable in totally O(mn) time. The algorithm then reduced
the original FSO problem to a set of O(wd−2) FSFO problem instances. They pointed out that under
the ILP formulation of the FSFO problem, with an O(mn) time preprocess, each FSFO instance is
solvable in only O(m) time. This finally gave an O(mn + mwd−2) time FSO algorithm.
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7.6 Dose Simplification

In this section, we study the dose simplification problem that arises in IMRT. During the IMRT
treatment planning process, the shapes, sizes, and relative positions of a tumor volume and other
surrounding tissues are determined by 3-D image data, and an “ideal” radiation distribution is
computed by a computer system. Without loss of generality, let the z-axis be the beam orien-
tation. Then this “ideal” radiation distribution is a function defined on the xy-plane (geomet-
rically, it is a 3-D functional surface above the xy-plane), which is usually of a complicated
shape and not deliverable by the MLC. Thus, the “ideal” radiation distribution must be “simpli-
fied” to a discrete IM (see Section 7.1), i.e., a discrete IM approximates the “ideal” distribution
under certain criteria. In some literature, an “ideal” radiation distribution is also referred to as a
continuous IM.

The dose simplification problem has been studied under two major variants, depending on how
the complexity of a (discrete) IM is defined:

• (Clustering) If the complexity of an IM is defined by the number of distinct intensity
levels in the IM, then the dose simplification problem can be modeled as a constrained
1-D K-means clustering problem [9,20,61,78]: Given an “ideal” radiation distribution of
size m × n, the mn intensity values in the distribution need to be grouped into K clusters
for the smallest possible number K, such that the maximum difference between any two
intensity values in each cluster is no bigger than a given bandwidth parameter δ and the
total sum of variances of the K clusters is minimized. The resulting clusters are then used
to specify a discrete IM.

• (Shape Approximation) If the complexity of an IM is defined by the number of MLC-
apertures required to deliver the IM, then the dose simplification problem can be modeled
as a shape approximation problem: Given an “ideal” radiation distribution, find K MLC-
apertures for the smallest possible number K, such that the approximation error between
the “ideal” radiation distribution and the discrete IM (defined by the sum of the K
MLC-apertures) is within a given error bound E .

Several algorithms for the constrained 1-D K-means clustering problems have been given in
medical literature and used in clinical IMRT planning systems [9,61,78]. These algorithms use
heuristic numerical methods to determine the clusters iteratively [9,61,78], and can be trapped in
a local minimal. To the best of our knowledge, no theoretical analysis has been given on their
convergence speed.

Chen et al. [20] presented an efficient geometric algorithm for computing optimal solutions to the
constrained 1-D K-means problem. They modeled the problem as a K-link shortest path problem
on a weighted DAG. By exploiting the Monge property [1,2,62,76] of the DAG, the algorithm runs
in O

(
min

{
Kn, n2

√
log K log log n

})
time.

The shape approximation variant of the dose simplification problem appears to be much harder.
Several papers [13,21,35,73] discussed a simple version of the problem: Given a 1-D dose profile
functional curve f , find a minimum set of rectangles whose sum approximates f within a given error
bound E . Due to its relation with the SR problem (see Section 7.3.2), Chen et al. [21] called this special
case the generalized shape rectangularization (GSR) problem and pointed out its NP-hardness. They
also showed the relation between the GSR problem and the forest of block towers (FBT) problem: an
optimal FBT solution immediately implies a 2-approximation GSR solution. Here, the FBT problem
is a special GSR case in which the output rectangles are required to satisfy the inclusion–exclusion
constraint [13,35], meaning that for any two rectangles, either their projected intervals on the x-axis
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do not intersect each other (except possibly at an endpoint), or one interval is fully contained in the
other interval.

Some work has been done on the FBT problem in the medical field [13,35,73]. An approach based
on Newton’s method and calculus techniques was used in [35]; but, it works well only when the
input curve f has few “peaks,” and must handle exponentially many cases as the number of “peaks,”
of f increases. Chen et al. [21] presented an FBT algorithm that produces optimal solutions for
arbitrary input curves. They made a set of geometric observations, which imply that only a finite set
of rectangles needs to be considered as candidates for the sought rectangles, and a graph G on such
rectangles can be built. They then modeled the FBT problem as a k-MST [4–6,37,39,59,60,66,84]
problem in G. By exploiting the geometry of G, they gave an efficient dynamic programming-based
FBT algorithm.

7.7 Leaf Sequencing for Dynamic IMRT and AMRT

In this section, we study the DLS problem and the SALS problem, i.e., the leaf sequencing problems
for dynamic IMRT delivery and AMRT (see Section 7.1), respectively.

7.7.1 Dynamic Leaf Sequencing

Dynamic IMRT delivery is different from static delivery in that the radiation beam is always on
and the leaf positions change with respect to time. The DLS problem seeks a set of trajectories of
the left and right leaf tips of the MLC leaf pairs, i.e., the leaf tip position at any time, to deliver a
given IM with minimum total delivery time. Unlike the SLS problem (see Section 7.3), we need to
consider an additional MLC constraint, namely, the maximum leaf motion speed constraint (see
Section 7.2.1), in the DLS problem. Note that the actual delivered radiation dose to an IM cell A(i, j)
in the IM A is proportional to the amount of time the cell is exposed to the radiation beam, (i.e., the
total time the cell is inside the leaf opening formed by the ith MLC leaf pair) during the dynamic
delivery.

DLS algorithms [13,28,45,58,70,69] were given for exactly delivering an input IM with a short
delivery time, under the maximum leaf motion speed constraint. Spirou and Chui’s algorithm [69]
computes the MLC leaf trajectories for exactly delivering the input IM. Their algorithm scans all
IM cells from left to right, and when entering a new cell, produces the corresponding leaf positions.
They proved that the algorithm optimizes the delivery time under the assumption that on each
IM row, the corresponding MLC leaf tips always move from the left boundary of the leftmost
nonzero cell to the right boundary of the rightmost nonzero cell. Kamath et al. [48] presented a DLS
algorithm that can handle the interleaf motion MLC constraint, which occurs in some MLC systems
such as Elekta and Siemens. The algorithm interleaves a scanning procedure similar to Spirou and
Chui’s [69] with detecting and rectifying possible violations of the interleaf motion constraint. The
algorithm makes the same assumption on the starting and ending leaf tip positions as the algorithm
in paper [69].

Chen et al. [26] pointed out that the assumption on the starting and ending leaf tip positions made
in papers [48,69] may sacrifice the optimality of the output DLS solution. For MLCs without the
interleaf motion constraint, they modeled the DLS problem as the following coupled path planning
(CPP) problem [26]. The problem is defined on a uniform grid Rg of size n × H for some integers
n and H such that the length of each grid edge is one unit. A path on the plane is said to be
xy-monotone if it is monotone with respect to both the x-axis and the y-axis. For an integer c > 0, an
xy-monotone (rectilinear) path p along the edges of Rg is said to be c-steep if every vertical segment
of p is of a length at least c (i.e., formed by c or more grid edges) and every horizontal segment has a
unit length. The CPP problem is defined as follows: Given a nonnegative function f defined on the
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FIGURE 7.7 (a) Illustrating the CPP problem: pl and pr are two noncrossing c-steep paths with c = 1; the darkened
area shows the vertical section on the ith column of the region enclosed by the two paths, whose length corresponds
to the amount of actually delivered radiation dose. (b) The input (intensity) function f for the CPP problem, which is
defined on {1, 2, . . . , n}; the darkened area shows the value of f at the ith cell, which specifies the amount of prescribed
dose at that cell.

integer set {1, 2, . . . , n} and positive integers c and Δ (Δ ≤ H), find two noncrossing c-steep paths
on Rg , each starting at the bottom boundary and ending at the top boundary of Rg , such that the
two paths, possibly with the bottom and top boundaries of Rg , enclose a (rectilinear) region P in
Rg such that (1) for any column Ci of Rg , the vertical length of the intersection between Ci and P
approximates the function value f (i) (i.e., the value of f at i) within the given error bound Δ (see
Figure 7.7a and b), and (2) the total sum of errors on P is minimized. Note that in the CPP problem,
f corresponds to the intensity profile function specifying one row of an IM (see Figure 7.7b), and the
two output paths specify the moving trajectories of the two MLC leaf tips, i.e., the leaf tip position
(the x-coordinate) at any unit time (the y-coordinate). The maximum motion speed constraint of
MLC is reflected in the c-steepness constraint on the paths. The CPP problem basically seeks to
minimize the total approximation error of delivery within a given amount H units of delivery time.

Chen et al. [26] presented a novel approach based on interesting geometric observations for the
CPP problem. The key idea is to formulate the problem as computing a shortest path in a weighted
DAG of O(nHΔ) vertices and O(nH2Δ2) edges. They exploited a set of geometric properties, such
as certain domination relations among the vertices, to speed up the shortest path computation,
resulting in an O(nHΔ) time CPP algorithm. One unique feature of their algorithm is it computes a
tradeoff between the delivery time and the approximation error.

7.7.2 Arc Modulated Radiation Therapy

Arc modulated radiation therapy (AMRT) is a newly patented IMRT delivery technique [82].
In an AMRT delivery, the beam source rotates along a single arc path in 3-D, and for every θ degrees
(usually θ= 10), a prescribed IM of size m × n is delivered toward the target regions. A key problem
in AMRT delivery is the so-called SALS problem, which seeks to optimally convert a given set of K
IMs (with K = 360

θ
) into MLC leaf trajectories. The MLC is assumed to be free of the interleaf motion

constraint, and thus each MLC leaf pair is treated independently.
Chen et al. [26] pointed out the close relation between the SALS problem and the constrained CPP

problem, which is a special version the CPP problem (see Section 7.7.1) where the starting and ending
points of the sought paths are given as part of the input. Based on a graph modeling, it was shown
[26] that the SALS problem can be computed by solving the set of all constrained CPP problem
instances. More specifically, for all possible combinations of starting and ending leaf pair positions,
the optimal solutions are sought for the corresponding constrained CPP instances (in total, there are
O(n4) problems instances). They proposed a nontrivial graph transformation scheme that allows a
batch fashion computation of the instances. Further, the shortest path computation is accelerated by
exploiting the Monge property of the transformed graphs. Consequently, an O(n4Δ + n2HΔ2) time
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algorithm was given for solving the set of all constrained CPP problem instances. The final SALS
algorithm takes O(Kmn2Δ(n2 + HΔ)) time.

7.8 Concluding Remarks

As pointed out by Webb [73], two of the most important developments in improving the quality of
radiation therapy are (1) the introduction of IMs in the treatment planning stage to approximate
the geometric shape of the planning target volume, and (2) the usage of MLCs in the treatment
delivery stage to geometrically shape the radiation beams. These developments are at the leading
edge of the field and call for effective and efficient methods for treatment planning and delivery.
In this chapter, we have discussed various geometric and combinatorial problems that arise in the
treatment planning and the treatment delivery phases of IMRT.

There are many exciting and important computational problems in IMRT that are yet to be solved.
We would like to discuss some of the open problems and research directions that are likely to receive
considerable attention in the future:

• For the general 3-D SLS problem discussed in Section 7.3.4.2, the existing approximation
algorithm by Luan et al. [57] has an approximation ratio related to the complexity of the
input IM and applies to MLCs without the interleaf motion constraint and the minimum
separation constraint. However, what about the MLCs (e.g., Elekta and Siemens MLCs)
that have one or both of these constraints? And is it possible to achieve a polynomial
time algorithm with better approximation ratio, say a constant?

• Current field splitting algorithms (see Section 7.5) all target at the Varian MLCs which
are not subject to the interleaf motion constraint and seek to minimize the total beam-on
time. Can one extend those field splitting algorithms to other types of MLCs? Also, is it
possible to develop efficient field splitting algorithms that minimize the total number of
MLC-apertures?

• The shape approximation variant of the dose simplification problem still remains to be
intriguing. The FBT algorithm (see Section 7.6) presented is a weakly polynomial time
algorithm. Is it possible to develop strongly polynomial time algorithms for the FBT
problem? Also, can we develop approximation algorithms for the shape approximation
variant of the dose simplification problem, which is known to be NP-hard?

• For the DLS problem, the CPP-based algorithm (see Section 7.7.1) produces truly optimal
solutions for MLCs without the interleaf motion constraint. Is it possible to extend this
algorithm so that it can handle MLCs with the interleaf motion constraint?

• Recent development of radiation therapy calls for the combination of IMRT with Image-
guided radiation therapy (IGRT). IGRT is a process of using various imaging technologies
to locate a tumor target prior to a radiation therapy treatment. This process is aimed to
improve the treatment accuracy by eliminating the need for large target margins which
have traditionally been used to compensate for errors in localization. Advanced imaging
techniques using CT, MRI, and ultrasound are applied to accurately delineate treatment
target. One key problem arising in IGRT is the so-called medical image registration
problem, which aims to transform one set of medical image data into others (e.g.,
data of the same patient taken at different points in time). The main difficulty here
is to cope with elastic deformations of the body parts imaged. Existing medical image
registration algorithms generally require lots of human interaction in order to find a
satisfactory transformation, and do not work well for deformable cases. We believe the
underlying problem could be formulated by some special matching and flow problems
in graphs.
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One of the many application areas that has made effective use of algorithm design and analysis is
computer-aided design (CAD) of digital circuits. Many aspects of circuit design yield to combinatorial
models and the algorithmic techniques discussed in other chapters. In this chapter we focus on one
area within the field of CAD: layout of very large scale integrated (VLSI) circuits, which is a
particularly good example of the effective use of algorithm design and analysis. We will discuss
specific problems in VLSI layout and how algorithmic techniques have been successfully applied.
This chapter will not provide a broad survey of CAD techniques for layout, but will highlight a few
problems that are important and have particularly nice algorithmic solutions. The reader may find
more complete discussions of the field in the references discussed in Section 8.9 at the end of this
chapter.

Integrated circuits are made by arranging active elements (usually transistors) on a planar substrate
and interconnecting these elements with conducting wires that are also patterned on the planar
substrate [41]. There may be several layers that can be used for wires, but there are restrictions
on how wires in different layers can connect, as well as requirements of separations between wires
and elements. Therefore, the layout of integrated circuits is usually modeled as a planar-embedding
problem with several layers in the plane.

VLSI circuits contain millions of transistors. Therefore, it is not feasible to consider the positioning
of each transistor separately. Transistors are organized into subcircuits called components; this may
be done hierarchically, resulting in several levels of component definition between the individual

∗ Supported in part by the National Science Foundation, FAW award MIP-9023542.

8-1



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C008 Finals Page 2 2009-10-6

8-2 Special Topics and Techniques

transistors and the complete VLSI circuit. The layout problem for VLSI circuits becomes one of
positioning components and their interconnecting wires on a plane, following the design rules, and
optimizing some measure such as area or wire length. Within this basic problem structure are a
multitude of variations rising from changes in design rules and flexibilities within components as to
size, shape, and regions where wires may connect to components. Graph models are used heavily,
both to model the components and interconnections themselves and to capture constraint between
objects. Geometric aspects of the layout problem must also be modeled. Most layout problems
are optimization problems and most are NP-complete. Therefore, heuristics are also employed
heavily. In the following text, we present several of the best known and best understood problems in
VLSI layout.

8.1 Background

We will consider a design style known as “general cell.” In general cell layout, components vary in
size and degree of functional complexity. Some components may be from a predesigned component
library and have rigidly defined layouts (e.g., a register bank) and others may be full custom designs,
in which the building blocks are individual transistors and wires.∗ Components may be defined
hierarchically, so that the degree of flexibility in the layout of each component is quite variable.
Other design styles, such as standard cell and gate array, are more constrained but share many of the
same layout techniques.

The layout problem for a VLSI chip is often decomposed into two stages: placement of components
and routing of wires. For this decomposition, the circuit is described as a set of components and a set
of interconnections among those components. The components are first placed on the plane based
on their size, shape, and interconnectivity. Paths for wires are then found to interconnect specified
positions on the components. Thus, a placement problem is to position a set of components in a
planar region; either the region is bounded, or a measure such as the total area of the region used is
optimized. The area needed for the yet undetermined routing must be taken into account. A routing
problem is, given a collection of sets of points in the plane, to interconnect each set of points (called a
net) using paths from an allowable set of paths. The allowable set of paths captures all the constraints
on wire routes. In routing problems, the width of wires is abstracted away by representing only the
midline of each wire and ensuring enough room for the actual wires through the definition of the
set of allowable paths.

This description of the decomposition of a layout problem into placement and routing is meant to
be very general. To discuss specific problems and algorithms, we will use a more constrained model.
In our model, components will be rectangles. Each component will contain a set of points along
its boundary, the terminals. Sets of these terminals are the nets, which must be interconnected. A
layout consists of a placement of the components in the plane and a set of paths in the plane that
do not intersect the components except at terminals and interconnect the terminals as specified
by the nets. The paths are composed of segments in various layers of the plane. Further constraints
on the set of allowable paths define the routing style, and will be discussed for each style individually.
The area of a layout will be the area of the minimum-area rectangle that contains the components
and wire paths (see Figure 8.1).

While we still have a fairly general model, we have now restricted our component shapes to be
rectangular, our terminals to be single points on component boundaries, and our routing paths to
avoid components. (Components are thus assumed to be densely populated with circuitry.) While

∗ We will not discuss special algorithms for laying out transistors, used in tools called “cell generators” or “leaf-cell
generators” for building components from low-level layout primitives. The reader is referred to [22] as a starting point
for an investigation of this topic.
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FIGURE 8.1 Example of a layout. This layout is rectilinear and has two layers for wiring.

these assumptions are common and allow us to illustrate important algorithmic results, there is
quite a bit of work on nonrectangular components (e.g., [16,21]), more flexible terminals (see [37]),
and “over-the-cell” routing (see [37]). Often, layouts are further constrained to be rectilinear. In
rectilinear layouts, there is an underlying pair of orthogonal axes defining “horizontal” and “vertical”
and the sides of the components are oriented parallel to these axes. The paths of wires are composed
of horizontal and vertical segments. In our ensuing discussion, we too will often assume rectilinear
layouts.

If a VLSI system is too large to fit on one chip, then it is first partitioned into chip-sized pieces.
During partitioning, the goal is to create the fewest chips with the fewest connections between chips.
Estimates are used for the amount of space needed by wires to interconnect the components on one
chip. The underlying graph problem for this task is graph partitioning, which is discussed in the
following text.

Closely related to the placement problem is the floorplanning problem. Floorplanning occurs
before the designs of components in a general cell design have been completed. The resulting
approximate layout is called a floorplan. Estimates are used for the size of each component, based on
either the functionality of the component or a hierarchical decomposition of the component. Rough
positions are determined for the components. These positions can influence the shape and terminal
placement within each component as its layout is refined. For hierarchically defined components,
one can work bottom up to get rough estimates of size, then top down to get rough estimates of
position, then bottom up again to refine positions and sizes.

Once a layout is obtained for a VLSI circuit, either through the use of tools or by hand with a layout
editor, there may still be room for improvement. Compaction refers to the process of modifying a
given layout to remove extra spaces between features of the layout, spaces not required by design
rules. Humans may introduce such space by virtue of the complexity of the layout task. Tools may
place artificial restrictions on layout in order to have tractable models for the main problems of
placement and routing. Compaction becomes a postprocessing step to make improvements too
difficult to carry out during placement and routing.
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8.2 Placement Techniques

Placement algorithms can be divided into two types: constructive initial placement algorithms and
iterative improvement algorithms. A constructive initial placement algorithm has as input a set of com-
ponents and a set of nets. The algorithm constructs a legal placement with the goal of optimizing some
cost function for the layout. Common cost functions measure component area, estimated routing area,
estimated total wire length, estimated maximum wire length of a net, or a combination of these. An
iterative improvement algorithm has as input the set of components, set of nets, and an initial place-
ment; it modifies the placement, usually repeatedly, to improve a cost function. The initial placement
may be a random placement or may be the output of a constructive initial placement algorithm.
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FIGURE 8.2 Partitioning used in
placement construction. (a) Par-
titioning the circuit: Each vertex
represents a component; the area
of the component is the num-
ber inside the vertex. Connections
between components are repre-
sented by edges. Multiple edges
between vertices indicate multi-
ple nets connecting components.
(b) Partitioning the layout rectan-
gle proportionally to the partition
of component area.

The iterative improvement of placements can proceed in a variety
of ways. A set of allowable moves, that is, ways in which a placement
can be modified, must be identified. These moves should be simple
to carry out, including reevaluating the cost function. Typically,
a component is rotated or a pair of components are exchanged.
An iterative improvement algorithm repeatedly modifies the place-
ment, evaluates the new placement, and decides whether the move
should be kept as a starting point for further moves or as a ten-
tative final placement. In the simplest of iterative improvement
algorithms, a move is kept only if the placement cost function
is improved by it. One more sophisticated paradigm for iterative
improvement is simulated annealing (see Chapter 33 of Algorithms
and Theory of Computation Handbook, Second Edition: General
Concepts and Techniques). It has been applied successfully to the
placement problem, for example, [36], and the floorplanning prob-
lem, for example, [4].

For general cell placement, one of the most widely used initial
placement algorithms is a recursive partitioning method (see [24,
p. 333]). In this method, a rectangular area for the layout is esti-
mated based on component sizes and connectivity. The algorithm
partitions the set of components into two roughly equal-sized sub-
sets such that the number of interconnections between the two
subsets is minimized and simultaneously partitions the layout area
into two subrectangles of sizes equal to the sizes of the subsets (see
Figure 8.2). This partitioning proceeds recursively on the two sub-
sets and subrectangles until each component is in its own subset and
the rectangle contains a region for each component. The recursive
partitioning method is also heavily used in floorplanning [16].

The fundamental problem underlying placement by partitioning
is graph partitioning.∗ Given a graph G = (V , E), a vertex weight function w : V → N, an edge cost
function c : E → N, and a balance factor βε[1/2, 1], the graph partitioning problem is to partition
V into two subsets V1 and V2 such that∑

vεV1

w(v) ≤ β
∑
vεV

w(v) (8.1)

∑
vεV2

w(v) ≤ β
∑
vεV

w(v) (8.2)

∗ Our definitions follow those in [24].
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and the cost of the partition,
∑

eεE∩(V1×V2)

c(e) (8.3)

is minimized. This problem is NP-complete (see [10, pp. 209,210]). Graph partitioning is a well-
studied problem. The version we have defined is actually bipartitioning. Heuristics for this problem
form the core of heuristic algorithms for more general versions of the partition problem where one
partitions into more than two vertex sets. The hypergraph version of partitioning, in which each
edge is a set of two or more vertices rather than simply a pair of vertices, is a more accurate version
for placement, since nets may contain many terminals on many components. But heuristics for the
hypergraph version again are based on techniques used for the graph bipartitioning problem.

Among many techniques for graph partitioning, two—the Kernighan–Lin algorithm [17], and
simulated annealing—are best known. Both are techniques for iteratively improving a partition. The
Kernighan–Lin approach involves exchanging pairs of vertices across the partition. It was improved
in the context of layout problems by Fiduccia and Mattheyses [9], who moved a single vertex at a
time. As applied to graph partitioning, simulated annealing also considers the exchange of vertices
across the partition or the movement of a vertex from one side of the partition to the other. The
methods of deciding which partitions are altered, which moves are tried, and when to stop the
iteration process differentiate the two techniques.

Alternatives to iterative improvement have also received attention for circuit applications, espe-
cially as performance-related criteria have been added to the partitioning problem. Examples of these
alternatives are spectral methods, based on eigenvectors of the Laplacian, and the use of network
flow. The reader is referred to [1] or [32] for a more complete discussion of partitioning heuristics.

A second group of algorithms for constructing placements is based on agglomerative clustering.
In this approach, components are selected one at a time and placed in the layout area according
to their connectivity to components previously placed. Components are clustered so that highly
connected sets of components are close to each other.

When the cost function for a layout involves estimating wire length, several methods can be
used. The goal is to define a measure for each net that estimates the length of that net after it is
routed. These estimated lengths can then be summed over all nets to get the estimate on the total
wire length, or the maximum can be taken over all nets to get maximum net length. Two estimates
are commonly used: (1) the half-perimeter of the smallest rectangle containing all terminals of a
net and (2) the minimum Euclidean spanning tree of the net. Given a placement, the Euclidean
spanning tree of a net is the spanning tree of a graph whose vertices are the terminals of the net,
whose edges are all edges between vertices, and whose edge costs are the Euclidean distances in the
given placement between the pair of terminals that are endpoints of the edges. Another often-used
estimate is the minimum rectilinear spanning tree. This is because rectilinear layouts are common.
For a rectilinear layout, the length of the shortest path between a pair of points, (xa, ya) and (xb, yb),
is |xa − xb| + |ya − yb| (assuming no obstacles). This distance, rather than the Euclidean distance,
is used as the distance between terminals. (This is also called the L1 or Manhattan metric.) A more
accurate estimate of the wire length of a net would be the minimum Euclidean (or rectilinear) Steiner
tree for the net. A Steiner tree for a set of points in the plane is a spanning tree for a superset of
the points, that is, additional points may be introduced to decrease the length of the tree. Finding
minimum Steiner trees is NP-hard (see [10]), while finding minimum spanning trees can be done in
O(|E| + |V| log |V|) time for general graphs∗ and in O(|V| log |V|) time for Euclidean or rectilinear
spanning trees (see Chapter 7 of Algorithms and Theory of Computation Handbook, Second Edition:

∗ Actually, using more sophisticated techniques, finding minimum spanning trees can be done in time almost linear
in |E|.
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General Concepts and Techniques and Chapter 1 of this book). The cost of a minimum spanning
tree is an upper bound on the cost of a minimum Steiner tree. For rectilinear Steiner trees, the
half-perimeter measure and two-thirds the cost of a minimum rectilinear spanning tree are lower
bounds on the cost of a Steiner tree [14].

The minimum spanning tree is also useful for estimating routing area. The minimum spanning
tree for each net is used as an approximation of the set of paths for the wires of the net. Congested
areas of the layout can then be identified and space for routing allocated accordingly.

8.3 Compaction and the Single-Source Shortest
Path Problem

Compaction can be done at various levels of design: an entire layout can be compacted at the
level of transistors and wires; the layouts of individual components can be compacted; a layout
of components can be compacted without changing the layout within components. To simplify
our discussion, we will assume that layouts are rectilinear. For compaction, we model a layout as
composed entirely of rectangles. These rectangles may represent the most basic geometric building
blocks of the circuit: pieces of transistors and segments of wires, or may represent more complex
objects such as complex components. We refer to these rectangles as the features of the layout. We
distinguish two types of features: those that are of fixed size and shape and those that can be stretched
or shrunk in one or both dimensions. For example, a wire segment may be able to stretch or shrink
in one dimension, representing a lengthening or shortening of the wire, but be fixed in the other
dimension, representing a wire of fixed width. We refer to the horizontal dimension of a feature as
its width and the vertical dimension as its height.

Compaction is fundamentally a two-dimensional problem. However, two-dimensional com-
paction is very difficult. Algorithms based on branch and bound techniques for integer linear
programming (see Chapter 31 of Algorithms and Theory of Computation Handbook, Second Edition:
General Concepts and Techniques) have been developed, but none is efficient enough to use in prac-
tice (see [24], Chapter 6 of [34]). Therefore, the problem is commonly simplified by compacting in
each dimension separately: first all features of a layout are pushed together horizontally as much
as the design rules will allow, keeping their vertical positions fixed; then all features of a layout are
pushed together vertically as much as the design rules will allow, keeping their horizontal positions
fixed. The vertical compaction may in fact make possible more horizontal compaction, and so the
process may be iterated. This method is not guaranteed to find a minimum area compaction, but,
for each dimension, the compaction problem can be solved optimally. We are assuming that we start
with a legal layout and that one-dimensional compaction cannot change order relationships in the
compaction direction. That is, if two features are intersected by the same horizontal (vertical) line
and one feature is to the left of (above) the other, then horizontal (vertical) compaction will maintain
this property. The algorithm we present is based on the single-source shortest path algorithm (see
Chapter 7 of Algorithms and Theory of Computation Handbook, Second Edition: General Concepts
and Techniques). It is an excellent example of a widely used application of this graph algorithm.

The compaction approach we are presenting is called “constraint-based” compaction because
it models constraints on and between features explicitly. We shall discuss the algorithm in terms
of horizontal compaction, vertical compaction being analogous. We use a graph model in which
vertices represent the horizontal positions of features; edges represent constraints between the
positions of features. Constraints capture the layout design rules, relationships between features such
as connectivity, and possibly other desirable constraints such as performance-related constraints.
Design rules are of two types: feature-size rules and separation rules. Feature-size rules give exact
sizes or minimum dimensions of features. For example, each type of wire has a minimum width;
each transistor in a layout is of a fixed size. Separation rules require that certain features of a layout
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be at least a minimum distance apart to avoid electrical interaction or problems during fabrication.
Connectivity constraints occur when a wire segment is allowed to connect to a component (or
another wire segment) anywhere in a given interval along the component boundary. Performance
requirements may dictate that certain elements are not too far apart. A detailed discussion of the
issues in the extraction of constraints from a layout can be found in Chapter 6 of [34].

In the simplest case, we start with a legal layout and only consider feature-size rules and separation
rules. We assume all wire segments connect at fixed positions on component boundaries and there
are no performance constraints. Furthermore, we assume all features that have a variable width
attach at their left and right edges to features with fixed width, for example, a wire segment stretched
between two components. Then, we need only represent features with fixed width; we can use
one variable for each feature. In this case, any constraints on the width of a variable-width feature
are translated into constraints on the positions of the fixed-width features attached to either end
(see Figure 8.3). We are left with only separation constraints, which are of the form

xB ≥ xA + dmin (8.4)

or equivalently

xB − xA ≥ dmin (8.5)

where B is a feature to the right of A, xA is the horizontal position of A, xB is the horizontal position
of B, and the minimum separation between xA and xB is dmin. In our graph model, there is an edge
from the vertex for feature A to the vertex for feature B with length dmin. We add a single extra
source vertex to the graph and a 0-length edge from this source vertex to every other vertex in the
graph. This source vertex represents the left edge of the layout. Then finding the longest path from
this source vertex to every vertex in the graph will give the leftmost legal position of each feature—as
if we had pushed each feature as far to the left as possible. Finding the longest path is converted
to a single-source shortest path problem by negating all the lengths on edges. This is equivalent to
rewriting the constraint as

xA − xB ≤ −dmin. (8.6)

From now on, we will write constraints in this form. Note that this graph is acyclic. Therefore,
as explained in the following text, the single-source shortest path problem can be solved in time
O(n + |E|) by a topological sort, where n is the number of features and E is the set of edges in the
constraint graph.

A topological sorting algorithm is an algorithm for visiting the vertices of a directed acyclic graph
(DAG). The edges of a DAG induce a partial order on the vertices: v < u if there is a (directed) path

Fixed size

A

Fixed size

B

Variable
width

FIGURE 8.3 Generating separation constraints. The constraint on the separation between features A and B is the
larger of the minimum separation between them and the minimum width of the flexible feature connecting them.
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from v to u in the graph. A topological order is any total ordering of the vertices that is consistent
with this partial order. A topological sorting algorithm visits the vertices in some topological order.
In Chapter 7 of Algorithms and Theory of Computation Handbook, Second Edition: General Concepts
and Techniques, a topological sorting algorithm based on depth-first search is presented. For our
purposes, a modified breadth-first search approach is more convenient. In this modification, we visit
a node as soon as all its immediate predecessors have been visited (rather than as soon as any single
immediate predecessor has been visited). For a graph G = (V , E) this algorithm can be expressed as
follows:

TOPOLOGICAL SORT (G)

1 S ← all vertices with no incoming edges (sources)
2 U ← V
3 while S is not empty
4 do choose any vertex v from S
5 VISIT v
6 for each vertex u such that (v, u)εE
7 do E ← E − {(v, u)}
8 if u is now a source
9 then S ← S ∪ {u}
10 U ← U − {v}
11 S ← S − {v}
12 if U is not empty
13 then error 	 G is not acyclic

In our single-source shortest path problem, we start with only one source, s, the vertex representing
the left edge of the layout. We compute the length of the shortest path from s to each vertex v, denoted
as �(v). We initialize �(v) before line 3 to be 0 for �(s) and ∞ for all other vertices. Then for each
vertex v we select at line 4, and each edge (v, u) we delete at line 7 we update for all shortest paths that
go through v by �(u) ← min{�(u), �(v) + length(v, u)}. When the topological sort has completed,
�(v) will contain the length of the shortest path from s to v (unless G was not acyclic to begin with).
The algorithm takes O(|V| + |E|) time.

In our simplest case, all our constraints were minimum separation constraints. In the general case,
we may have maximum separation constraints as well. These occur when connectivity constraints
are used and also when performance constraints that limit the length of wires are used. Then we
have constraints of the form

xB ≤ xA + dmax (8.7)
or equivalently

xB − xA ≤ dmax. (8.8)

xC

xW

rl

FIGURE 8.4 Modeling a connec-
tion that can be made along an
interval of a component boundary.

Such a constraint is modeled as an edge from the vertex for feature
B to the vertex for feature A with weight dmax. For example, to
model a horizontal wire W that has an interval from l to r along
which it can connect to a component C (see Figure 8.4), we use the
pair of constraints

xC − xW ≤ −l (8.9)

and
xW − xC ≤ r. (8.10)

Once we allow both minimum and maximum separation con-
straints, we have a much more general linear constraint system.
All constraints are still of the form

x − y ≤ d, (8.11)
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but the resulting constraint graph need not be acyclic. (Note that equality constraints y − x = d may
be expressed as y−x ≤ d and x−y ≤ −d. Equality constraints may also be handled in a preprocessing
step that merges vertices that are related by equality constraints.) To solve the single-source shortest
path algorithm, we now need the O(|V||E|)-time Bellman–Ford algorithm (see [6]). This algorithm
only works if the graph contains no negative cycle. If the constraint graph is derived from a layout
that satisfies all the constraints, this will be true, since a negative cycle represents an infeasible set
of constraints. However, if the initial layout does not satisfy all the constraints, for example, the
designer adds constraints for performance to a rough layout, then the graph may be cyclic. The
Bellman–Ford algorithm can detect this condition, but since the set of constraints is infeasible, no
layout can be produced.

If the constraint graph is derived from a layout that satisfies all the constraints, an observation by
Maley [26] allows us to use Dijkstra’s algorithm to compute the shortest paths more efficiently. To
use Dijkstra’s algorithm, the weights on all the edges must be positive (see Chapter 7 of Algorithms
and Theory of Computation Handbook, Second Edition: General Concepts and Techniques). Maley
observed that when an initial layout exists, the initial positions of the features can be used to convert
all lengths to positive lengths as follows. Let pA and pB be initial positions of features A and B.
The constraint graph is modified so that the length of an edge (vA, vB) from the vertex for A to
the vertex for B becomes length(vA, vB) + pB − pA. Since the initial layout satisfies the constraint
xA − xB ≤ length(vA, vB), we have pB − pA ≥ −length(vA, vB) and pB − pA + length(vA, vB) ≥ 0.
Maley shows that this transformation of the edge lengths preserves the shortest paths. Since all edge
weights have been converted to positive lengths, Dijkstra’s algorithm can be used, giving a running
time of O(|V| log |V| + |E|) or O(|E| log |V|), depending on the implementation used.∗

Even when the constraint graph is not acyclic and an initial feasible layout is not available,
restrictions on the type or structure of constraints can be used to get faster algorithms. For example,
Lengauer and Mehlhorn give an O(|V|+|E|)-time algorithm when the constraint graph has a special
structure called a “chain DAG” that is found when the only constraints other than minimum separa-
tion constraints are those coming from flexible connections such as those modeled by Equations 8.9
and 8.10 (see [24, p. 614]). Liao and Wong [25] and Mata [28]† present O(|Ex| × |E|)-time algo-
rithms, where Ex is the set of edges derived from constraints other than the minimum-separation
constraints. These algorithms are based on the observation that E − Ex is a DAG (as in our simple
case earlier). Topological sort is used as a subroutine to solve the single-source shortest path problem
with edges E−Ex. The solution to this problem may violate constraints represented by Ex. Therefore,
after finding the shortest paths for E − Ex, positions are modified in an attempt to satisfy the other
constraints (represented by Ex), and the single-source shortest path algorithm for E − Ex is run
again. This technique is iterated until it converges to a solution for the entire set of constraints or
the set of constraints is shown to be infeasible, which is proven to be within |Ex| iterations. If |Ex| is
small, this algorithm is more efficient than using Bellman–Ford.

The single-dimensional compaction that we have discussed ignores many practical issues. One
major issue is the introduction of bends in wires. The fact that a straight wire segment connects
two components may be an artifact of the layout, but it puts the components in lock-step during
compaction. Adding a bend to the wire would allow the components to move independently,
stretching the bend accordingly. Although the bend may require extra area, the overall area might
improve through compaction with the components moving separately.

∗ The O(|V| log |V| + |E|) running time depends on using Fibonacci heaps for a priority queue. If the simpler binary
heap is used, the running time is O(|E| log |V|). This comment also holds for finding minimum spanning trees using
Prim’s algorithm. See Chapter 7 of Algorithms and Theory of Computation Handbook, Second Edition: General Concepts
and Techniques for a discussion on the running times of Dijkstra’s algorithm and Prim’s algorithm.
† The technique used by Mata is the same as that by Liao and Wong, but Mata has a different stopping condition for his
search, which can lead to more efficient execution.
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Another issue is allowing components to change their order from left to right or top to bottom.
This change might allow for a smaller layout, but the compaction problem becomes much more
difficult. In fact, a definition of one-dimensional compaction that allows for such exchanges is
NP-complete (see [24, p. 587]). Practically speaking, such exchanges may cause problems for wire
routing. The compaction problem we have presented requires that the topological relationships
between the layout features remain unchanged while space is compressed.

8.4 Floorplan Sizing and Classic Divide and Conquer

The problem we will now consider, called floorplan sizing, is one encountered during certain styles
of placement or floorplanning. With some reasonable assumptions about the form of the layout, the
problem can be solved optimally by a polynomial-time algorithm that is an example of classic divide
and conquer.

Floorplan sizing occurs when a floorplan is initially specified as a partitioning of a rectangular
layout area, representing the chip, into subrectangles, representing components (see Figure 8.5a).
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FIGURE 8.5 A floorplan and the derived layout. (a) A partition of a rectangle representing a floorplan. (b) A
layout with actual components corresponding to the floorplan. (c) The horizontal constraint graph for the layout.
Bidirectional 0-length edges are not shown. Instead, vertices constrained to have the same horizontal position due to
chains of 0-length edges are shown in the same oval. They are treated as a single vertex.
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Each subrectangle corresponds to some component. We assume that the rectangular partitioning
is rectilinear. For this discussion, given a set of components C, by “a floorplan for C,” we shall
mean such a rectangular partition of a rectangle into |C| subrectangles, and a one-to-one mapping
from C to the subrectangles. This partition indicates the relative position of components, but the
subrectangles are constrained only to have approximately the same area as the components (possibly
with some bloating to account for routing), not to have the same aspect ratio as the components.
When the actual components are placed in the locations, the layout will change (see Figure 8.5b).
Furthermore, it may be possible to orient each component so that the longer dimension may be
either horizontal or vertical, affecting the ultimate size of the layout. In fact, if the component layouts
have not been completed, the components may be able to assume many shapes while satisfying an
area bound that is represented by the corresponding subrectangle. We will formalize this through
the use of a shape function.

Definition: A shape function for a component is a mapping s : [wmin, ∞] → [hmin, ∞] such that
s is monotonically decreasing, where [wmin, ∞] and [hmin, ∞] are intervals of �+.

The interpretation of s(w) is that it is the minimum height (vertical dimension) of any rectangle
of width w that contains a layout of the component. wmin is the minimum width of any rectangle
that contains a layout and hmin is the minimum height. The monotonicity requirement represents
the fact that if there is a layout for a component that fits in a w × s(w) rectangle, it certainly must fit
in a (w + d) × s(w) rectangle for any d ≥ 0; therefore, s(w + d)≤ s(w). In this discussion we will
restrict ourselves to piecewise linear shape functions.

Given an actual shape (width and height) for each component, determining the minimum width
and minimum height of the rectangular layout area becomes a simple compaction problem as
discussed earlier. Each dimension is done separately, and two constraint graphs are built. We will
discuss the horizontal constraint graph; the vertical constraint graph is analogous. The reader should
refer to Figure 8.5c. The horizontal constraint graph has a vertex for each vertical side of the layout
rectangle and each vertical side of a subrectangle (representing a component) in the rectangular
partition. There is a directed edge from each vertex representing the left side of a subrectangle to
each vertex representing the right side of a subrectangle; this edge has a length that is the width of the
corresponding component. There are also two directed edges (one in each direction) between the
vertices representing any two overlapping sides of the layout rectangle or subrectangles; the length of
these edges is 0. Thus, the vertex representing the left side of the layout rectangle has 0-length edges
between it and the vertices representing the left sides of the leftmost subrectangles. Note that these
constraints force two subrectangles that do not touch but are related through a chain of 0-length
edges between one’s left side and the other’s right side to lie on opposite sides of a vertical line in the
layout (e.g., components B and H in Figure 8.5a). This is an added restriction to the layout, but an
important one for the correctness of the algorithm presented later for the sizing of slicing floorplans.

Given an actual width for each component and having constructed the horizontal constraint
graph as described in the preceding paragraph, to determine the minimum width of the rectangular
layout area, one simply finds the longest path from the vertex representing the left side of the layout
rectangle to the vertex representing the right side of the layout rectangle. To simplify the problem to
one in an acyclic graph, vertices connected by pairs of 0-length edges can be collapsed into a single
vertex; only the longest edge between each pair of (collapsed) vertices is needed. Then topological
sort can be used to find the longest path between the left side and the right side of the floorplan, as
discussed in Section 8.3.

We now have the machinery to state the problem of interest:
Floorplan sizing: Given a set C of components, a piecewise linear shape function for each compo-

nent, and a floorplan for C, find an assignment of specific shapes to the components so that the area
of the layout is minimized.

Stockmeyer [39] showed that for general floorplans, the floorplan sizing problem is NP-complete.
This holds even if the components are of fixed shape, but can be rotated 90◦. In this case, the shape
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FIGURE 8.6 A slicing floorplan.

function of each component is a step function with at most two
steps: s(x) = d2 for d1 ≤ x < d2 and s(x) = d1 for d2 ≤ x, where the
dimensions of the component are d1 and d2 with d1 ≤ d2. However,
for floorplans of a special form, called slicing floorplans, Stockmeyer
gave a polynomial-time algorithm for the floorplan sizing problem
when components are of fixed shape but can rotate. Otten [29] gen-
eralized this result to any piecewise-linear shape function. A slicing
floorplan is one in which the partition of the layout rectangle can
be constructed by a recursive cutting of a rectangular region into
two subregions using either a vertical or horizontal line segment
(see Figure 8.6). The rectangular regions that are not further par-
titioned are the subrectangles corresponding to components. The recursive partitioning method of
constructing a placement discussed earlier produces a slicing floorplan.

A slicing floorplan can be represented by a binary tree. The root of the tree represents the entire
layout rectangle and is labeled with the direction of the first cut. Other interior vertices represent
rectangular subregions that are to be further subdivided, and the label on any such vertex is the
direction of the cut used to subdivide it. The two children of any vertex are the rectangular regions
resulting from cutting the rectangle represented by the vertex. The leaves of the binary tree represent
the rectangles corresponding to components.

The algorithm for the sizing of a slicing floorplan uses the binary tree representation in a funda-
mental way. The key observation is that one only needs the shape functions of the two subregions
represented by the children of a vertex to determine the shape function of a vertex. If the shape func-
tions can be represented succinctly and combined efficiently for each vertex, the shape function of the
root can be determined efficiently. We will present the combining step for shape functions that are
step functions (i.e., piecewise constant) following the description in [24], since it illustrates the tech-
nique but is a straightforward calculation. Otten [29] shows how to combine piecewise linear slicing
functions, but Lengauer [24] comments that arithmetic precision can become an issue in this case.

We shall represent a shape function that is a step function by a list of pairs (wi, s(wi)) for
0 ≤ i ≤ bs and w0 = wmin. The interpretation is that for all x, wi ≤ x < wi+1 (with wbs+1 = ∞),
s(x)= s(wi). Parameter bs is the number of breaks in the step function. The representation of the
function is linear in the number of breaks. (This represents a step function whose constant intervals
are left closed and right open and is the most logical form of step function for shape functions.
However, other forms of step functions also can be represented in size linear in the number of breaks.)

Given step functions, sl and sr , for the shapes of two children of a vertex, the shape function, s, for
the vertex will also be a step function. When the direction of the cut is horizontal, the shape functions
can simply be added, that is, s(x) = sl(x)+ sr(x). wmin for s is the maximum of wmin,l for sl and wmin,r
for sr . Each subsequent break point for sl or sr is a break point for s, so that bs ≤ bsl + bsr . Combining
the shape functions takes time O(bsl + bsr ). When the direction is vertical, the step functions must
first be inverted, the inverted functions combined, and then the combined function inverted back.
The inversion of a step function s is straightforward and can be done in O(bs) time.

To compute the shape function for the root of a slicing floorplan, one simply does a postorder
traversal of the binary tree (see Chapter 7 of Algorithms and Theory of Computation Handbook,
Second Edition: General Concepts and Techniques), computing the shape function for each vertex
from the shape functions for the children of the vertices. The number of breaks in the shape function
for any vertex is no more than the number of breaks in the shape functions for the leaves of the
subtree rooted at that vertex. Let b be the maximum number of breaks in any shape function of a
component. Then, the running time of this algorithm for a slicing floorplan with n components is

T(n) ≤ T(nl) + T(nr) + bn (8.12)
≤ dbn, (8.13)
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where d is the depth of the tree (the length of the longest path from the root to a leaf). We have the
following:

Given an instance of the floorplan sizing problem that has a slicing floorplan and step
functions as shape functions for the components, there is an O(dbn)-time algorithm to
compute the shape function of the layout rectangle.

Given the shape function for the layout rectangle, the minimum area shape can be found by
computing the area at each break in linear time in the number of breaks, which is at most O(bn).

Shi [38] has presented a modification to this technique that improves the running time for
imbalanced slicing trees. For general (nonslicing) floorplans, many heuristics have been proposed:
for example, Pan and Liu [31] present a generalization of the slicing floorplan technique to general
floorplans.

8.5 Routing Problems

We shall only discuss the most common routing model for general cell placement—the rectilinear
channel-routing model. In this model, the layout is rectilinear. The regions of the layout that are
not covered by components are partitioned into nonoverlapping rectangles, called channels. The
allowed partitions are restricted so that each channel only has components touching its horizontal
edges (a horizontal channel) or its vertical edges (a vertical channel). These edges will be referred
to as the “top” and “bottom” of the channel, regardless of whether the channel is horizontal or
vertical. The orthogonal edges, referred to as the “left edge” and “right edge” of the channel, can
only touch another channel. These channels compose the area for the wire routing. There are several
strategies for partitioning the routing area into channels, that is “defining” the channels, but most use
maximal rectangles where possible (i.e., no two channels can be merged to form a larger channel).
The layout area becomes a rectangle that is partitioned into subrectangles of two types: components
and channels (see Figure 8.7).

Given a layout with channels defined, the routing problem can be decomposed into two subprob-
lems: global routing and local or detailed routing. Global routing is the problem of choosing which
channels will be used to make the interconnections for each net. Actual paths are not produced. By
doing global routing first, one can determine the actual paths for wires in each channel separately.
The problem of detailed routing is to determine these actual paths and is more commonly referred
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FIGURE 8.7 The decomposition of a layout into routing channels and components.
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to as “channel routing.” Of course, the segments of a wire path in each channel must join at the edges
of the channel to produce an actual interconnection of terminals. To understand the approaches for
handling this interfacing, we must have a more detailed definition of the channel-routing problem,
which we give next.

The channel-routing problem is defined so that there are initial positional constraints in only
one dimension. Recall that we define channels to abut components on only two parallel sides, the
“top” and “bottom.” This is so that the routes in the channel will only be constrained by terminal
positions on two sides. The standard channel-routing problem has the following input: a rectangle
(the channel) containing points (terminals) at fixed positions along its top and bottom edges, a set of
nets that must be routed in the channel, and an assignment of each of the terminals on the channel
to one of these nets. Moreover, two (possibly empty) subsets of nets are specified: one containing
nets whose routing must interface with the left edge of the channel and one containing nets whose
routing must interface with the right edge of the channel. The positions at which wires must intersect
the left and right edges of the channel are not specified. The dimension of the channel from the left
edge to the right edge is called the length of the channel; the dimension from the top edge to the
bottom edge is the width of the channel (see Figure 8.8). Since there are no terminals on the left and
right edges, the width is often taken to be variable, and the goal is to find routing paths achieving the
connections specified by the nets and minimizing the width of the channel. In this case, the space
needed for the wires determines the width of the channel. The length of the channel is more often
viewed as fixed, although there are channel-routing models in which routes are allowed to cross
outside the left and right edges of the channel.

We can now discuss the problem of interfacing routes at channel edges. There are two main
approaches to handling the interfacing of channels. One is to define the channels so that all adjacent
channels form s (no + s). Then, if the channel routing is done for the base of the  first, the
positions of paths leaving the base of the  and entering the crosspiece of the  are fixed by the
routing of the base and can be treated as terminal positions for the crosspiece of the . Using this
approach places constraints on the routing order of the channels. We can model these constraints
using a directed graph: there is a vertex, vC, for each channel C and an edge from vA to vB if channel A
and channel B abut with channel A as the base of the  and channel B as the crosspiece of the .
The edge from vA to vB represents that channel A must be routed before channel B. This graph must
be acyclic for the set of constraints on the order of routing to be feasible. If the graph is not acyclic,
another method must be used to deal with some of the channel interfaces. Slicing floorplans are
very good for this approach because if each slice is defined to be a channel, then the channel order
constraint graph will be acyclic.
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FIGURE 8.8 A channel. Nets interfacing at the left and right edges are not in a given order.
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The second alternative for handling the interfaces of channels is to define a special kind of channel,
called a switch box, which is constrained by terminal locations on all four sides. In this alternative,
some or all of the standard channels abut switch boxes. Special algorithms are used to do the switch
box routing, since, practically speaking, this is a more difficult problem than standard channel
routing.

8.6 Global Routing

Since global routing need not produce actual paths for wires, the channels can be modeled by a graph,
called the channel intersection graph. For each channel, project the terminals lying on the top and
bottom of the channel onto the midline of the channel. Each channel can be divided into segments
by the positions of these projected terminals. The channel intersection graph is an undirected graph
with one vertex for each projected terminal and one vertex for each intersection of channels. There is
one edge for each segment of a channel, which connects the pair of vertices representing the terminals
and/or channel intersections bounding the segment. A length and a capacity can be assigned to each
edge, representing, respectively, the length between the ends of the channel segment and the width
of the channel. Different versions of the global routing problem use one or both of the length and
capacity parameters.

Given the channel intersection graph, the problem of finding a global routing for a set of nets
becomes the problem of finding a Steiner tree in the channel intersection graph for the terminals of
each net. Earlier in this chapter, we defined Steiner trees for points in the plane. For a general graph
G = (V , E), a Steiner tree for a subset of vertices U ⊂ V is a set of edges of G that form a tree in
G and whose set of endpoints contains the set U. Various versions of the global routing problem
are produced by the constraints and optimization criteria used. For example, one can simply ask for
the minimum length Steiner tree for each net, or one can ask for a set of Steiner trees that does not
violate capacity constraints and has total minimum length. For each edge, the capacity used by a
set of Steiner trees is the number of Steiner trees containing that edge; this must be no greater than
the capacity of the edge. Another choice is not to have constraints on the capacity of edges but to
minimize the maximum capacity used for any edge. In general, any combination of constraints and
cost functions on length and capacity can be used. However, regardless of the criteria, the global
routing problem is invariably NP-complete. A more detailed discussion of variations of the problem
and their complexity can be found in [24]. There, a number of sophisticated algorithms for Steiner
tree problems are also discussed. Here we will only discuss two techniques based on basic graph
algorithms: breadth-first search and Dijkstra’s single-source shortest path algorithm.

The minimum Steiner tree problem is itself NP-complete (see pages 208–209 in [10]). Therefore,
one approach to global routing is to avoid finding Steiner trees by breaking up each net into a
collection of point-to-point connections. One way to do this is to find the minimum Euclidean or
rectilinear spanning tree for the terminals belonging to each net (ignoring the channel structure),
and use the edges of this tree to define the point-to-point connections. Then one can use Dijkstra’s
single-source shortest path algorithm on the channel intersection graph to find a shortest path
for each point-to-point connection. Paths for connections of the same net that share edges can
then be merged, yielding a Steiner tree. If there are no capacity constraints on edges, the quality
of this solution is only limited by the quality of the approximation of a minimum Steiner tree by
the chosen collection of point-to-point paths. If there are capacity constraints, then after solving
each shortest path problem, one must remove from the channel intersection graph the edges whose
used capacity already equals the edge capacity. In this case, the order in which nets and terminals
within a net are routed is significant. Heuristics are used to choose this order. One can better
approximate Steiner trees for the nets by, at each iteration for connections within one net, choosing
a terminal not yet connected to any other terminals in the net as the source of Dijkstra’s algorithm.
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Since this algorithm computes the shortest path to every other vertex in the graph from the source,
the shortest path, which connects to any other vertex in the channel intersection graph that is
already on a path connecting terminals of the net can be used. Of course, there are variations on
this idea.

For any graph, breadth-first search from a vertex v will find a shortest path from v to every other
vertex in the graph when the length of each edge is 1. Breadth-first search takes time O(|V| + |E|)
compared to the best worst-case running time known for Dijkstra’s algorithm: O(|V| log |V| + |E|)
time. It is also very straightforward to implement. It is easy to incorporate heuristics that take into
account the capacity of an edge already used and bias the search toward edges with little capacity
used. Furthermore, breadth-first search can be started from several vertices simultaneously, so
that all terminals of a net could be starting points of the search simultaneously. If it is adequate
to view all channel segments as being of equal length, then the edge lengths can all be assigned
value 1 and breadth-first search can be used. This might occur when the terminals are uniformly
distributed and so divide channels into approximately equal-length segments. Alternatively, one
can add new vertices to the channel intersection graph to further decompose the channel segments
into unit-length segments. This can substantially increase |V| and |E| so that they are proportional
to the dimensions of the underlying grid defining the unit of length rather than the number of
channels and terminals in the problem. However, this allows one to use breadth-first search to
compute shortest paths while modeling the actual lengths of channels. In fact, breadth-first search
was developed by Lee [20]∗ for the routing of circuit boards in exactly this manner. He modeled
the entire board by a grid graph, and modeled obstacles to routing paths as grid vertices that
were missing from the graph. Each wire route was found by doing a breadth-first search in the
grid graph.

8.7 Channel Routing

Channel routing is not one single problem, but rather a family of problems based on the allowable
paths for wires in the channel. We will limit our discussion to grid-based routing. While both grid-
free rectilinear and nonrectilinear routing techniques exist, the most basic techniques are grid-based.
We assume that there is a grid underlying the channel, the sides of the channel lie on grid edges,
terminals lie on grid points, and all routing paths must follow edges in the grid. For ease of discussion,
we shall refer to channel directions as though the channel were oriented with its length running
horizontally. The vertical segments of the grid that run from the top to the bottom of the channel
are referred to as columns. The horizontal segments of the grid that run from the left edge to the
right edge of the channel are referred to as tracks. We will consider channel-routing problems that
allow the width of the channel to vary. Therefore, the number of columns, determining the channel
length, will be fixed, but the number of tracks, determining the channel width, will be variable. The
goal is to minimize the number of tracks used to route the channel.

The next distinction is based on how many routing layers are presumed. If there are � routing
layers, then there are � overlaid copies of the grid, one for each layer. Routes that use the same edge
on different layers do not interact and are considered disjoint. Routes change layer at grid points.
The exact rules for how routes can change layers vary, but the most common is to view a route
that goes from layer i to layer j (j > i) at a grid point as using layers i + 1, . . . , j − 1 as well at the
grid point.

∗ The first published description of breadth-first search was by E.F. Moore for finding a path in a maze. Lee developed
the algorithm for routing in grid graphs under a variety of path costs. See the discussion on page 394 of [24].
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One can separate the channel-routing problem into two subproblems: finding Steiner trees in the
grid that achieve the interconnections, and finding a layer assignment for each edge in each Steiner
tree so that the resulting set of routes is legal. One channel-routing model for which this separation
is made is knock-knee routing (see Section 9.5 of [24]). Given any set of trees in the grid (not only
those for knock-knee routes), a legal layer assignment can be determined efficiently for two layers.
Maximal single-layer segments in each tree can be represented as vertices of a conflict graph, with
segments that must be on different layers related by conflict edges. Then finding a legal two-layer
assignment is equivalent to two-coloring the conflict graph. A more challenging problem is via
minimization, which is to find a legal layer assignment that minimizes the number of grid points at
which layer change occurs. This problem is also solvable in polynomial time as long as none of the
Steiner trees contain a four-way split (a technical limitation of the algorithm). For more than two
layers, both layer assignment and via minimization are NP-complete (see Section 9.5.3 of [24]).

We have chosen to discuss two routing models in detail: single-layer routing and two-layer
Manhattan routing. Routing models that allow more than two layers, called multilayer models, are
becoming more popular as technology is able to provide more layers for wires. However, many of
the multilayer routing techniques are derived from single-layer or two-layer Manhattan techniques,
so we focus this restricted discussion on those models. A more detailed review of channel-routing
algorithms can be found in [19]. Neither model requires layer assignment. In single-layer routing
there is no issue of layer assignment; in Manhattan routing, the model is such that the layer assignment
is automatically derived from the paths. Therefore, for each model, our discussion need only address
how to find a collection of Steiner trees that satisfy the restrictions of the routing model.

8.7.1 Manhattan Routing

Manhattan routing is the dominant two-layer routing model. It dates back to printed circuit boards
[13]. It dominates because it finesses the issue of layer assignment by defining all vertical wire
segments to be on one layer and all horizontal wire segments to be on the other layer. Therefore, a
horizontal routing path and a vertical routing path can cross without interacting, but any path that
bends at a grid point is on both layers at that point and no path for a disjoint net can use the same
point. Thus, under the Manhattan model, the problem of routing can be stated completely in terms
of finding a set of paths such that paths for distinct nets may cross but do not share edges or bend
points.

Although Manhattan routing provides a simple model of legal routes, the resulting channel-
routing problem is NP-complete. An important lower bound on the width of a channel is the
channel density. The density at any vertical line cutting the channel (not necessarily a column)
is the number of nets that have terminals both to the left and the right of the vertical line. The
interpretation is that each net must have at least one wire crossing the vertical line, and thus a
number of tracks equal to the density at the vertical line is necessary. For columns, nets that contain
a terminal on the column are counted in the density unless the net contains exactly two terminals
and these are at the top and bottom of the column. (Such a net can be routed with a vertical path
the extent of the column.) The channel density is the maximum density of any vertical cut of the
channel. In practice, the channel-routing problem is solved with heuristic algorithms that find routes
giving a channel width within one or two of density, although such performance is not provably
achievable.

If a channel-routing instance has no top terminal and bottom terminal on the same column,
then a number of tracks equal to the channel density suffices and a route achieving this density
can be solved in O(m + n log n) time, where n is the number of nets and m is the number of
terminals. Under this restriction, the channel-routing problem becomes equivalent to the problem
of interval graph coloring. The equivalence is based on the observation that if no column con-
tains terminals at its top and bottom, then any terminal can connect to any track by a vertical
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FIGURE 8.9 Connecting to tracks without conflicts. Each of the nets can reach any of the tracks with a vertical
segment in the column containing the terminal.

segment that does not conflict with any other path (see Figure 8.9). Each net can use one horizontal
segment that spans all the columns containing its terminals. The issue is to pack these horizontal
segments into the minimum number of tracks so that no segments intersect. Equivalently, the goal
is to color the segments (or intervals) with the minimum number of colors so that no two seg-
ments that intersect are of the same color. Hence, we have the relationship to interval graphs, which
have a set of vertices that represent intervals on a line and edges between vertices of intersecting
intervals.

A classic greedy algorithm can assign a set I of intervals to d tracks, where d is the channel density.
Intervals are placed in tracks in order of their left endpoints; all tracks are filled with intervals from
left to right concurrently (the actual position of each track does not matter). The set of interval
endpoints is first sorted so that the combined order of left (starting) endpoints and right (ending)
endpoints is known. At any point in the algorithm, there are tracks containing intervals that have
not yet ended and tracks that are free to receive new intervals. A queue F is used to hold the free
tracks; the function FREE inserts (enqueues) a track in F. The unprocessed endpoints are stored in a
queue of points, P, sorted from left to right. The function DEQUEUE is the standard deletion operation
for a queue (see Chapter 4 of Algorithms and Theory of Computation Handbook, Second Edition:
General Concepts and Techniques or [6]). The algorithm starts with only one track and adds tracks
as needed; variable t holds the number of tracks used.

INTERVAL-BY-INTERVAL ASSIGNMENT (I)

1 Sort the endpoints of the intervals in I and build queue P
2 t ← 1
3 FREE track 1
4 while P is not empty
5 do p ← DEQUEUE(P)

6 if p is the left endpoint of an interval i
7 then do if F is empty
8 then do t ← t + 1
9 Put i in track t
10 else do track ← DEQUEUE(F)
11 Put i in track
12 else do FREE the track containing the interval whose right endpoint is p

To see that this algorithm never uses more than a number of tracks equal to the density d of the
channel, note that when t is increased at line 8 it is because the current t tracks all contain intervals
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that have not yet ended when the left endpoint p obtained in line 5 is considered. Therefore, when t is
increased for the last time to value w, all tracks numbered less than w contain intervals that span the
current p; hence d ≥ w. Since no overlapping intervals are places in the same track, w = d. Therefore,
the algorithm finds an optimal track assignment. Preprocessing to find the interval for each net takes
time O(m) and INTERVAL-BY-INTERVAL ASSIGNMENT has running time O(|I| log |I|) = O(n log n), due to
the initial sorting of the endpoints of I.

Once one allows terminals at both the top and the bottom of a column (except when all such pairs of
terminals belong to the same net), one introduces a new set of constraints called vertical constraints.
These constraints capture the fact that if net i has a terminal at the top of column c and net j has a
terminal at the bottom of column c, then to connect these terminals to horizontal segments using
vertical segments at column c, the horizontal segment for i must be above the horizontal segment
for j. One can construct a vertical constraint graph that has a vertex vi for each net i and a directed
edge between vi and vj if there is a column that contains a terminal in i at the top and a terminal in
j at the bottom. If one considers only routes that use at most one horizontal segment per net, then
the constraint graph represents order constraints on the tracks used by the horizontal segments. If
the vertical constraint graph is cyclic, then the routing cannot be done with one horizontal segment
per net. If the vertical constraint graph is acyclic, it is NP-complete to determine if the routing
can be achieved in a given number of tracks (see [24, p. 547]). Furthermore, even if an optimal
or good routing using one horizontal segment per net is found, the number of tracks required is
often substantially larger than what could be obtained using more horizontal segments. For these
reasons, practical channel-routing algorithms allow the route for each net to traverse portions of
several tracks. Each time a route changes from one track to another, it uses a section of a column;
this is called a jog (see Figure 8.10).

Manhattan channel routing remains NP-complete even if unrestricted jogs are allowed (see [24,
p. 541]). Therefore, the practical routing algorithms for this problem use heuristics. The earliest of
these is by Deutsch [7]. Deutsch allows the route for a net to jog only in a column that contains a
terminal of the net; he calls these jogs “doglegs” (see Figure 8.10). This approach effectively breaks
up each net into two-point subnets, and one can then define a vertical constraint graph in which
each vertex represents a subnet. Deutsch’s algorithm is based on a modification of INTERVAL-BY-

INTERVAL ASSIGNMENT called track-by-track assignment. Track-by-track assignment also fills tracks
greedily from left to right but fills one track to completion before starting the next. Deutsch’s basic
algorithm does track-by-track assignment but does not assign an interval for a subnet to a track if the
assignment would violate a vertical constraint. Embellishments on the basic algorithm try to improve
its performance and minimize the number of doglegs. Others have also modified the approach

1 4 2 6 5 3 5 6 7
Top

Tracks

Bottom
4175

Dogleg

Wiring layer 1
Wiring layer 2

Terminal
Layer change

Jog

432

JogJog

FIGURE 8.10 A channel routing in the two-layer Manhattan model showing jogs.
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(see the discussion in Section 9.6.1.4 of [24]). The class of algorithms based on greedy assignment of
sorted intervals is also known as “left-edge algorithms.”

Manhattan channel routing is arguably the most widely used and detailed routing model, and
many algorithms have been developed. The reader is referred to [37] or [19] for a survey of
algorithms. In this chapter, we will discuss only one more algorithm—an algorithm that proceeds
column-by-column in contrast to the track-by-track algorithm. The column-by-column algorithm
was originally proposed by Rivest and Fiduccia [35] and was called by them a “greedy” router. This
algorithm routes all nets simultaneously. It starts at the leftmost column of the channel and proceeds
to the right, considering each column in order. As it proceeds left to right it creates, destroys, and
continues horizontal segments for nets in the channel. Using this approach, it is easy to introduce
a jog for a net in any column. At each column, the algorithm connects terminals at the top and the
bottom to horizontal segments for their nets, starting new segments when necessary, and ending
segments when justified. At each column, for each continuing net with terminals to the right, it may
also create a jog to bring a horizontal segment of the route closer to the channel edge containing the
next terminal to the right. Thus, the algorithm employs some “look ahead” in determining what track
to use for each net at each column. The algorithm is actually a framework with many parameters
that can be adjusted. It may create, for one net, multiple horizontal segments that cross the same
column and may extend routes beyond the left and the right edges of the channel. It is a very flexible
framework that allows many competing criteria to be considered and allows the interaction of nets
more directly than strategies that route one net at a time. Many routing tools have adopted this
approach.

8.7.2 Single-Layer Routing

From a practical perspective, single-layer channel routing is needed to route bus structures and plays
a role in the routing of multilayer channels (e.g., [11]). For bus structures, additional performance
constraints are often present (e.g., [30]). From a theoretical perspective, single-layer channel routing
is of great significance because, even in its most general form, it can be solved optimally in polynomial
time. There is a rich theory of single-layer detailed routing that has been developed not only for
channel routing, but also for routing in more general regions (see [27]). The first algorithmic results
for single-layer channel routing were by Tompa [40], who considered river routing problems.
A river routing problem is a single-layer channel-routing problem in which each net contains
exactly two terminals, one at the top edge of the channel and one at the bottom edge of the
channel. The nets have terminals in the same order along the top and the bottom—a requirement
if the problem is to be routable in one layer. Tompa considered unconstrained (versus rectilinear)
wire paths and gave an O(n2)-time algorithm for n nets to test routability and find the route
that minimizes both the individual wire lengths and the total wire length when the width of the
channel is fixed. This algorithm can be used as a subroutine within binary search to find the
minimum-width channel in O(n2 log n) time. Tompa also suggested how to modify his algorithm
for the rectilinear case. Dolev et al. [8] built upon Tompa’s theory for the rectilinear case and
presented an O(n)-time algorithm to compute the minimum width of the channel and an O(n2)-
time algorithm to actually produce the rectilinear routing. The difference in running times comes
from the fact that the routing may actually have n segments per net, and thus would take O(n2)-time
to generate (see Figure 8.11). In contrast, the testing for routability can be done by examining a
set of constraints for the channel. The results were generalized to multiterminal nets by Greenberg
and Maley [12], where the time to calculate the minimum width remains linear in the number of
terminals.

We now present the theory that allows the width of a river-routing channel to be computed in
linear time. Our presentation is an amalgam of the presentations in [8] and [23]. The heart of the



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C008 Finals Page 21 2009-10-6

VLSI Layout Algorithms 8-21

a1 a2 a3

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

a4 a5 a6 a7 a8 a9 a10

FIGURE 8.11 A river routing. The route for a single net may bend O(n) times.

theory is the observation that for river routing, cut lines other than the vertical lines that define
channel density also contribute to a lower bound for the width of the channel. This lower bound
is then shown to be an upper bound as well. Indexing from left to right, let the ith net of a routing
channel, 1 ≤ i ≤ n, be denoted by the pair (ai, bi) where ai is the horizontal position of its terminal
on the top of the channel and bi is the horizontal position of its terminal on the bottom of the
channel. Consider a line from bi to ai+k, k > 0, cutting the channel. There are k + 1 nets that
must cross this line. Measuring slopes from 0◦ to 180◦, if the line has slope ≥90◦, then k + 1 nets
must cross the vertical (90◦) line at bi, and there must be k + 1 tracks. If the line has slope <90◦
and >45◦, then each vertical grid segment that crosses the line can be paired with a horizontal grid
segment that must also cross the line and which cannot be used by a different net. Therefore, the line
must cross k + 1 tracks. Finally, if the line has slope ≤45◦, then each horizontal grid segment that
crosses the line can be paired with a vertical grid segment that must also cross the line and which
cannot be used by a different net. Therefore, there must be k + 1 columns crossing the line, that is,
ai+k − bi ≥ k. Similarly, by considering a line from bi+k to ai, we conclude k + 1 tracks are necessary
unless bk+i − ai ≥ k. In the case of k = 0, ai must equal bi for no horizontal track to be required.
Based on this observation, it can be proved that the minimum number of tracks t required by an
instance of river routing is the least t such that for all 1 ≤ i ≤ n − t

bi+t − ai ≥ t (8.14)

and
ai+t − bi ≥ t. (8.15)

To find the minimum such t in linear time, observe that ai+k+1 ≥ ai+k + 1 and bi+k+1 ≥ bi+k + 1.
Therefore,

if bi+k − ai ≥ k then bi+k+1 − ai ≥ bi+k + 1 − ai ≥ k + 1 (8.16)

and
if ai+k − bi ≥ k then ai+k+1 − bi ≥ ai+k + 1 − bi ≥ k + 1. (8.17)

Therefore, we can start with t = 0 and search for violated constraints from i = 1 to n − t; each
time a constraint of the form of (8.14) or (8.15) above is violated, we increase t by one and continue
the search; t can be no larger than n. Let N denote the set of nets in a river routing channel,
|N| = n. The following algorithm calculates the minimum number of tracks needed to route this
channel.
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RIVER-ROUTING WIDTH (N)

1 i ← 1
2 t ← 0
3 while i ≤ |N| − t
4 do if bi+t − ai ≥ t and ai+t − bi ≥ t
5 then do i ← i + 1
6 else do t ← t + 1
7 return t

The actual routing for a river-routing channel can be produced in a greedy fashion by routing one
net at a time from left to right, and routing each net beginning with its left terminal. The route of any
net travels vertically whenever it is not blocked by a previously routed net, travels horizontally right
until it can travel vertically again or until it reaches the horizontal position of the right terminal of
the net. This routing takes worst-case time O(n2), as the example in Figure 8.11 illustrates.

8.8 Research Issues and Summary

This chapter has given an overview of the design problems arising from the computer-aided layout
of VLSI circuits and some of the algorithmic approaches used. The algorithms presented in this
chapter draw upon the theoretical foundations discussed in other chapters. Graph models are
predominant and are frequently used to capture constraints. Since many of the problems are NP-
complete, heuristics are used. Research continues in this field, both to find better methods of solving
these difficult problems—both in the efficiency and the quality of solution—and to model and solve
new layout problems arising from the ever-changing technology of VLSI fabrication and packaging
and the ever-increasing complexity of VLSI circuits. Layout techniques particular to increasingly
popular technologies such as field-programmable gate arrays (FPGAs) have been and continue to
be developed. System-on-chip (SoC) designs have brought new challenges due not only to their
increased complexity but also to the use of a mixture of design styles for one chip.

A major theme of current research in VLSI layout is the consideration of circuit performance as
well as layout area. As feature sizes continue to shrink, wire delay is becoming an increasingly large
fraction of total circuit delay. Therefore, the delay introduced by routing is increasingly important.
The consideration of performance has necessitated new techniques, not only for routing but also
for partitioning and placement as well. In some cases, the techniques for area-based layout have
been extended to consider delay. For example, the simulated annealing approach to placement
has been modified to consider delay on critical paths. However, many researchers are developing
new approaches for performance-based layout. For example, one finds the use of the techniques of
linear programming, integer programming, and even specialized higher-order programming (see
Chapters 30 and 31 of Algorithms and Theory of Computation Handbook, Second Edition: General
Concepts and Techniques) in recent work on performance-driven layout. Clock-tree routing, to
minimize clock delay and clock skew, is also receiving attention as an important component of
performance-driven layout.

The reader is referred to the references given in “Further Information” for broader descriptions
of the field and, in particular, for more thorough treatments of current research.

8.9 Further Information

This chapter has provided several examples of the successful application of the theory of combinato-
rial algorithms to problems in VLSI layout. It is by no means a survey of all the important problems
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and algorithms in the area. Several textbooks have been written on algorithms for VLSI layout, such
as [24,34,37,42], and the reader is referred to these for more complete coverage of the area. Other
review articles of interest are [33] and [5] on placement, [2] on geometric algorithms for layout, [18]
on layout, [3] on relaxation techniques for layout problems, [19] on channel routing, [15] on layer
assignment, and [1] and [32] on netlist partitioning. There are many conferences and workshops
on CAD that contain papers presenting algorithms for layout. The ACM/IEEE Design Automation
Conference, the IEEE/ACM International Conference on Computer-Aided Design, and the ACM Inter-
national Symposium on Physical Design have traditionally been good sources of algorithms among
these conferences. Major journals on the topic are IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on VLSI Systems, ACM Transactions on Design
Automation of Electronic Systems, and Integration, the VLSI Journal published by North-Holland
Publishing. Layout algorithms also appear in journals focusing on general algorithm development
such as SIAM Journal on Computing, published by the Society of Industrial and Applied Mathematics,
Journal of Algorithms, published by Elsevier, and Algorithmica, published by Springer-Verlag.

Defining Terms

Channel: A rectangular region for routing wires, with terminals lying on two opposite edges, called
the “top” and the “bottom.” The other two edges contain no terminals, but wires may cross these
edges for nets that enter the channel from other channels. The routing area of a layout is decomposed
into several channels.
Channel density: Orient a channel so that the top and the bottom are horizontal edges. Then the
density at any vertical line cutting the channel is the number of nets that have terminals both to the
left and the right of the vertical line. Nets with a terminal on the vertical line contribute to the density
unless all of the terminals of the net lie on the vertical line. The channel density is the maximum
density of any vertical cut of the channel.
Channel routing: The problem of determining the routes, that is, paths and layers, for wires in a
routing channel.
Compaction: The process of modifying a given layout to remove extra space between features of the
layout.
Floorplan: An approximate layout of a circuit that is made before the layouts of the components
composing the circuit have been completely determined.
Floorplan sizing: Given a floorplan and a set of components, each with a shape function, finding an
assignment of specific shapes to the components so that the area of the layout is minimized.
Floorplanning: Designing a floorplan.
General cell layout: A style of layout in which the components may be of arbitrary height and width
and functional complexity.
Global routing: When a layout area is decomposed into channels, global routing is the problem of
choosing which channels will be used to make the interconnections for each net.
Graph partitioning: Given a graph with weights on its vertices and costs on its edges, the problem
of partitioning the vertices into some given number k of approximately equal-weight subsets such
that the cost of the edges that connect vertices in different subsets is minimized.
Interval graph coloring: Given a finite set of n intervals {[li, ri], 1 ≤ i ≤ n}, for integer li and ri, color
the intervals with a minimum number of colors so that no two intervals that intersect are of the
same color. The graph representation is direct: each vertex represents an interval, and there is an
edge between two vertices if the corresponding intervals intersect. Then coloring the interval graph
corresponds to coloring the intervals.
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Jog: In a rectilinear routing model, a vertical segment in a path that is generally running horizontally,
or vice versa.

Layer assignment: Given a set of trees in the plane, each interconnecting the terminals of a net, an
assignment of a routing layer to each segment of each tree so that the resulting wiring layout is legal
under the routing model.

Manhattan routing: A popular rectilinear channel-routing model in which paths for disjoint nets
can cross (a vertical segment crosses a horizontal segment) but cannot contain segments that overlap
in the same direction at even a point.

Net: A set of terminals to be connected together.

Rectilinear: With respect to layouts, describes a layout for which there is an underlying pair of
orthogonal axes defining “horizontal” and “vertical;” the features of the layout, such as the sides of
the components and the segments of the paths of wires, are horizontal and vertical line segments.

River routing: A single-layer channel-routing problem in which each net contains exactly two
terminals, one at the top edge of the channel and one at the bottom edge of the channel. The nets
have terminals in the same order along the top and bottom—a requirement if the problem is to be
routable in one layer.

Shape function: A function that gives the possible dimensions of the layout of a component with a
flexible (or not yet completely determined) layout. For a shape function s : [wmin, ∞] → [hmin, ∞]
with [wmin, ∞] and [hmin, ∞] subsets of �+, s(w) is the minimum height of any rectangle of width
w that contains a layout of the component.

Slicing floorplan: A floorplan that can be obtained by the recursive bipartitioning of a rectangular
layout area using vertical and horizontal line segments.

Steiner tree: Given a graph G = (V , E) a Steiner tree for a subset of vertices U of V is a subset
of edges of G that form a tree and contain among their endpoints all the vertices of U. The tree
may contain other vertices than those in U. For a Euclidean Steiner tree, U is a set of points in the
Euclidean plane, and the tree interconnecting U can contain arbitrary points and line segments in
the plane.

Switch box: A rectangular routing region containing terminals to be connected on all four sides
of the rectangle boundary and for which the entire interior of the rectangle can be used by wires
(contains no obstacles).

Terminal: A position within a component where a wire attaches. Usually a terminal is a single point
on the boundary of a component, but a terminal can be on the interior of a component and may
consist of a set of points, any of which may be used for the connection. A typical set of points is an
interval along the component boundary.

Topological sort: Given a directed, acyclic graph, a topological sort of the vertices of the graph is a
total ordering of the vertices such that if vertex u comes before vertex v in the ordering, there is no
directed path from v to u.

Via minimization: Given a set of trees in the plane, each interconnecting the terminals of a net,
determining a layer assignment that minimizes the number of points (vias) at which a layer change
occurs.
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9.1 Introduction

Cryptography studies methods to protect several aspects of data, in particular privacy and authen-
ticity, against a malicious adversary who tries to break the security. In contrast with steganography,
where the data and their existence are physically hidden, cryptography transforms the data mathe-
matically, usually using a key. Cryptanalysis is the study of methods to break cryptosystems.

Cryptography has been studied for centuries [19,28], although initially it focused only on pro-
tecting privacy. Originally, it was used in the context of military and diplomatic communication.
Nowadays, most of these historical cryptoschemes have no practical value since they have been
cryptanalyzed, that is, broken. However, it should be noted that it has taken cryptanalysts (those
researchers or technicians trying to break cryptosystems) more than 300 years to find a general
method to solve polyalphabetic ciphers with repeating keywords [19] (see Section 9.2.4). This con-
trasts with popular modern cryptosystems, such as Data Encryption Standard (DES) and RSA (see
Sections 9.5.1 and 10.3.2), that have only been around for a few decades, which brings us to modern
cryptography now.

Modern cryptography differs from historical cryptography in many respects. First of all, mathe-
matics plays a more important role than ever before. By means of probability theory, Shannon was
able to prove that Vernam’s one-time pad (see Section 9.4) is secure. Second, the rather new area of
computational complexity has been used as a foundation for cryptography. Indeed, the concept of
public key, which facilitates the use of cryptography (see Section 9.3.4), finds its origin there. Third,

9-1
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the widespread use of communication implies that cryptography is no longer a uniquely military
topic. High-speed networks and computers are responsible for a world in which postal mail has
almost been replaced by electronic communication in such applications as bank transactions, access
to worldwide databases as in the World Wide Web, e-mail, etc. This also implies a whole new range of
security needs that need to be addressed, for example: anonymity (see Chapter 18), authenticity (see
Chapter 12), commitment and identification, law enforcement, nonrepudiation (see Chapter 12),
revocation, secure distributed computation, timestamping, traceability, witnessing, etc.

To illustrate the concept, we will first describe some historical cryptosystems in Section 9.2 and
explain how these can be broken. In Section 9.3, we will define cryptosystems.

9.2 Historical Cryptosystems

Here, we will discuss some historical cryptosystems to lay the foundation for describing how they
can be broken. For a more complete survey of historical cryptosystems, the reader may refer to the
literature.

9.2.1 The Caesar Cipher and Exhaustive Key Search

One of the oldest cryptosystems is Caesar cipher, often incorrectly cited as the first cryptosystem.
Caesar replaced each symbol in the original text, which is now called plaintext or cleartext, by
one that was three positions further in the alphabet, counted cyclically. The word “plaintext,” for
example, would become “sodlqwhaw” in this system. The result is called ciphertext. The problem
with this scheme is that anyone who knows how the text is encoded can break it. To prevent this, a
key is used.

To describe a more modern variant of the Caesar cipher, let n be the cardinality of the alphabet
being used, which is 26 for the English alphabet, or 27 when the space symbol is included in the
alphabet. (In many old cryptoschemes, the space symbol was dropped since it would facilitate
breaking the code.) The first symbol of the plaintext is mapped into the number 0, the second into 1,
etc. To encrypt with the Caesar cipher, one adds modulo n the key k to the symbol m, represented
as an integer between 0 and n − 1. (Two integers, a and b, are equivalent modulo n, denoted
as a ≡ b mod n, when a and b have the same nonnegative remainder when divided by n). The
corresponding symbol, then, in the ciphertext is c = m + k mod n, where the equality indicates that
0 ≤ c < n. If a long enough message contains redundancy, as plain English does, then an exhaustive
search of all possible keys will reveal the correct plaintext. Decryptions (the process that permits
the person who knows the secret key to compute the plaintext from the ciphertext) with the wrong
key will (likely) not produce an understandable text. Since it is feasible to test all possible keys, the
keyspace in the Caesar cipher is too small.

9.2.2 Substitution Cipher and Ciphertext-Only Attack

We will now consider the substitution cipher. In plaintext, each symbol m is replaced by the symbol
Ek(m), specified by the key k. To allow unique decryption, the function Ek must be one-to-one.
Moreover, if the same symbols are used in the ciphertext as in the plaintext, it must be a bijection. If
the key can specify any such bijection, the cipher is called a simple substitution cipher. Obviously,
for the English alphabet, there are 26! = 403291461126605635584000000, roughly 4∗1026, different
keys. We will now discuss the security of the scheme, assuming that only the cryptanalyst knows the
ciphertext and the fact that a substitution cipher was used. Such an attack is called a ciphertext-only
attack. Note that an exhaustive key search would take too long on a modern computer. Indeed, a
modern parallel computer can perform 1015 operations per second. For simplicity, assume that such
a computer could perform 1015 symbol decryptions per second. One wonders then how long the
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ciphertext needs to be before one can be certain that the cryptanalyst has found a sufficiently correct
key. This measure is called the unicity distance. Shannon’s theory of secrecy [30] tells us that there
are 28 symbols for an English text. An exhaustive key search would roughly take 3.6 ∗ 105 years
before finding a sufficiently correct key. However, a much faster method for breaking a substitution
cipher exists, which we will describe now.

In English, the letter “e” is the most frequently used. Furthermore, no other letter has a frequency
of occurrence that comes close to that of “e.” A cryptanalyst starts the procedure by counting how
many times each letter appears in the ciphertext. When the ciphertext is long enough, the most
frequent letter in the ciphertext corresponds to the letter “e” in the plaintext. The frequencies of
the letters “T,O,A,N,I,R,S,H” are too similar to decide by which letter they have been substituted.
Therefore, the cryptanalyst will use the frequency distribution of two or three consecutive letters,
called a digram and a trigram. When the space symbols have been discounted, the most frequent
digrams are: “th”; “e” as the first letter, decreasing in order as follows: “er,ed,es,en,ea”; and “e” as
the second letter: “he,re.” The digram “he” is also quite common. This permits the identification of
the letter “h,” and then the letter “t.” The next step is to distinguish the vowels from the consonants.
With the exception of the diagrams “ea,io,” two vowels rarely follow one another. This allows one
to identify the letter “n,” since 4 out of 5 letters following “n” are vowels. Using similar properties of
other digrams and trigrams, the full key is found. If mistakes are made, they are easily spotted, and
one can recover using backtracking.

9.2.3 Ideal Ciphers and Known-Plaintext Attack

Redundancy in a language permits breaking a substitution cipher; however, one may question the
security of a text if it is compressed first. Shannon proved that if all redundancy is removed by the
source coder, a cryptanalyst using a ciphertext-only attack cannot find a unique plaintext solution.
In fact, there are 26 meaningful plaintexts! Shannon called such systems ideal. However, one cannot
conclude that such a system is secure. Indeed, if a cryptanalyst knows just one (not too short) plaintext
and its corresponding ciphertext, finding the key and breaking all future ciphertexts encrypted with
the same key is a straightforward procedure. Such an attack is known as a known-plaintext attack.

Other types of attacks are the chosen text attacks, which comprise chosen-plaintext and chosen-
ciphertext attacks. In a chosen-plaintext attack, the cryptanalyst succeeds in having a plaintext of his
choice being encrypted. In a chosen-ciphertext attack, it is a ciphertext of his choice that is decrypted.
The cryptanalyst can, in this context, break the simple substitution cipher by having the string of all
the different symbols in the alphabet encrypted or decrypted. Chosen-plaintext attacks in which the
text is not excessively long are quite realistic in a commercial environment [12]. Indeed, company A
could send a (encrypted) message about a potential collaboration to a local branch of company B.
This company, after having decrypted the message, will most likely forward it to its headquarters,
encrypting it with a key that the cryptanalyst in company A wants to break. In order to break it,
it is sufficient to eavesdrop on the corresponding ciphertext. Note that a chosen-ciphertext attack
is a little harder. It requires access to the output of the decryption device, for example, when the
corresponding, and likely unreadable, text is discarded.

Although ideal ciphers are a nice information theoretical concept, their applicability is limited
in an industrial context where standard letters, facilitating a known-plaintext attack, are often sent.
Information theory is unable to deal with known-plaintext attack. Indeed, finding out whether a
known-plaintext is difficult or not is a computational complexity issue. A similar note applies to
the unicity distance. Many modern ciphers, such as Advanced Encryption Standards (AES) (see
Section 9.5.3), have unicity distances shorter than that of the substitution cipher, but no method
is known to break them in a very efficient way. Therefore, we will not discuss in further detail the
results of ideal ciphers and unicity distance.
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9.2.4 Other Historical Ciphers

Before finishing the discussion on historic cryptosystems, we will briefly mention the transposition
cipher and the polyalphabetic ciphers with repeating keywords. In a transposition cipher, also known
as a permutation cipher, the text is split into blocks of equal length, and the order of the letters in
each block is mixed according to the key. Note that in a transposition cipher, the frequency of
individual letters is not affected by encrypting the data, but the frequency of digrams is. It can be
cryptanalyzed by trying to restore the distribution of digrams and trigrams. In most polyalphabetic
ciphers, known as periodic substitution ciphers, the plaintext is also split into blocks of equal length,
called the period d. One uses d substitution ciphers by encrypting the ith symbol (1 ≤ i ≤ d) in a
block using the ith substitution cipher. The cryptanalysis is similar to the simple substitution cipher
once the period d has been found. The Kasiski [20] method analyzes repetition in the ciphertext to
find the exact period. Friedman [16] index of coincidence to find the period is beyond the scope
of this introduction. Other types of polyalphabetic ciphers are running key ciphers, the Vernam’s
one-time pad (see Section 9.4), and rotor machines, such as Enigma.

Many modern cryptosystems are polygram substitution ciphers, which are a substitutions of
many symbols at once. To make them practical, only a subset of keys is used. For example, DES
(see Section 9.5.1) used in Electronic Code Book mode substitutes 64 bits at a time using a 56 bit
key instead of a log2(264!) bit key (which is longer than 264 bits) if any polygram substitution is
allowed. Substitution and transposition ciphers are examples of block ciphers, in which the plaintext
and ciphertext are divided into strings of equal length, called blocks, and each block is encrypted
one-at-a-time.

9.3 Definitions

As mentioned in Section 9.1, modern cryptography covers more than simply the protection of
privacy, but to give all these definitions is beyond the scope of this chapter. We will focus on privacy
and authenticity.

9.3.1 Privacy

DEFINITION 9.1 A cryptosystem used to protect privacy, also called an encryption scheme or
system, consists of an encryption algorithm E and a decryption algorithm D. The input to E is a
plaintext message m ∈ M and a key k in the key space K. The algorithm might use randomness
r ∈ R as an extra input. The output of the encryption is called the ciphertext c ∈ C and c = Ek(m) =
fE(k, m, r).

The decryption algorithm (which may use randomness) has input a key k′ ∈ K ′ and a ciphertext
c ∈ C and outputs the plaintext m, so, m = Dk′(Ek(m)). To guarantee unique decryption, the
following must be satisfied:

for all k ∈ K, for all m, for all m′ �= m, for all r and r′ : fE(k, m, r) �= fE(k, m′, r′).

9.3.1.1 Security

Clearly, in order to prevent any unauthorized person from decrypting the ciphertext, the decryption
key k′ must be secret. Indeed, revealing parts of it may help the cryptanalyst.

The types of attacks that a cryptanalyst can use have been informally described in Section 9.2. The
most powerful attack is the adaptive chosen text attack in which the cryptanalyst employs several
chosen texts. In each run, the cryptanalyst observes the output and adapts the next chosen text based
on the previous ones and the output of previous attacks.
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An encryption scheme is secure if, given public parameters and old plaintext-ciphertext pairs
obtained using known-plaintexts and/or chosen text attacks, the possible new ciphertexts for mes-
sages m0 and m1 are indistinguishable. A sufficient condition is that they are indistinguishable from a
random string of the same length uniformly chosen. We will discuss this further in the Sections 9.3.3
and 9.4.2.

9.3.2 Authenticity

While the terminology is rather standard for cryptosystem’s protecting privacy, that for authenticity
is not. Research and a better understanding of the topic have made it clear that using concepts as
encryption and decryption makes no sense. This was done in the early stages when the concept was
introduced.

DEFINITION 9.2 A cryptosystem used to protect authenticity, also called an authentication
scheme or system, consists of an authenticator generation algorithm G and a verification algorithm
V . The input to G is a message m ∈ M and a key k′ in the key space K ′. The algorithm might use
randomness r ∈ R as an extra input. The output of the generation algorithm is the authenticated
message (m, a) where m is the message, and a is the authenticator. In other words, (m, a) = Gk′(m) =
(m, fG(k′, m, r)).

The inputs of the verification algorithm V (which may use randomness) are a key k ∈ K and a
string (m′, a′). The message is accepted as authentic if V(m′, a′, k) returns ACCEPT, else it is rejected.
To guarantee that authentic messages are accepted, one needs that Vk(Gk′(m)) is (almost always)
ACCEPT.

9.3.2.1 Security

It is clear that to prevent any unauthorized person from authenticating fraudulent messages, the key
k′ must be secret. Indeed, revealing parts of it may help the cryptanalyst.

The types of attacks that a cryptanalyst can use are similar to those that have been informally
described in Section 9.2. The goal of the cryptanalyst has changed. It is to construct a new, not
yet authenticated, message. The most powerful attack is the adaptive chosen text attack, in which
the cryptanalyst employs several chosen messages which are given as input to G. The cryptanalyst
observes the output of G in order to adapt the next chosen message based on previous ones and the
output of previous attacks.

An authentication scheme is secure if, given public parameters and old message-authenticator pairs
obtained using known message and/or chosen message attacks, the probability that any cryptanalyst
can construct a a new pair (m′, a′) in which the verification algorithm V will accept as authentic is
negligible. Chapter 12 discusses this in more details.

9.3.3 Levels of Security

Modern cryptography uses different models to define security. One distinguishes between: heuristic
security, as secure as, proven secure, quantum secure, and unconditionally secure.

A cryptographic system or protocol is heuristically secure as long as no attack has been found.
Many practical cryptosystems fall within this category.

One says that a cryptosystem or protocol is as secure as another if it can be proven that a new
attack against one implies a new attack against the other and vice versa. A much stronger statement
is that a system is proven secure.
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To speak about proven security, one must first formally model what security is, which is not
always obvious. A system or protocol is said to be proven secure relative to an assumption if one can
prove that if the assumption is true, this implies that the formal security definition is satisfied for
that system or protocol.

In all aforementioned cryptosystems, one usually assumes that the opponent, for example, the
eavesdropper, has a bounded computer power. In the modern theoretical computer science model,
this is usually expressed as having the running time of the opponent be bounded above by a
polynomial in function of the security parameter, which often is the length of the secret key. Infeasible
corresponds with a minimum running time bounded below by a superpolynomial in the length of
the security parameter. Note that there is no need to use a polynomial versus superpolynomial
model. Indeed, having a huge constant as a lower bound for a cryptanalytic effort would be perfectly
satisfactory. For example, according to quantum physics, time is discrete. A huge constant could be
the estimated number of time units which have elapsed since the (alleged) big bang.

A cryptosystem is unconditionally secure when the computer power of the opponent is unbounded,
and it satisfies a formal definition of security. Although these systems are not based on mathematical
or computational assumptions, usually these systems can only exist in the real world when true
randomness can be extracted from the universe. In Section 9.4, we will discuss an unconditionally
secure encryption scheme.

A special class of cryptosystems assumes the correctness of the laws of quantum physics. These
cryptosystems are known as quantum cryptography [1].

9.3.4 Conventional Cryptography versus Public Key

We will now discuss whether k must remain secret and analyze the relationship between k′ and k.
If it is easy to compute k′ from k, it is obvious that k must also remain secret. The key is unique
to a sender-receiver pair. In this case, the cryptosystem is called a conventional or symmetric
cryptosystem.

If, on the other hand, given k it is hard to compute k′ and hard to compute a k′′, which allows
partial cryptanalysis, then the key k can be made public. The system, the concept of which was
invented by Diffie and Hellman and independently by Merkle, is called a public key or asymmetric
cryptosystem. This means that for privacy protection each receiver R will publish a personal kR, and
for authentication, the sender S makes kS public. In the latter case, the obtained authenticator is called
a digital signature, since anyone who knows the correct public key kS can verify the correctness.
The scheme is then called a signature scheme. Note that recently some have unified the formal
definitions for authentication and digital signature using the terminology of “digital signature,”
which is unfortunately a poor choice of wording.

The public key k is considered a given input in the discussion on the security of encryption and
authentication schemes (see Sections 9.3.1 and 9.3.2).

It was stated in the literature that digital signature schemes have the property that the sender cannot
deny having sent the message. However, the sender can claim that the secret key was physically stolen.
This would allow him to deny even having sent a message [29]. Such situations must be dealt with
by an authority. Protocols have been presented in which the message is being deposited to a notary
public or arbiter [25]. Schemes have been developed in which the arbiter does not need to know
the message that was authenticated [9,10]. Another solution is digital timestamping [18] based on
cryptography (the signer needs to alert an authority that his public key must have been stolen).

The original description of public key systems did not explain the importance of the authenticity
of the public key [27]. Indeed, if it is not authentic, the one who created the fake public key can
decrypt messages intended for the legitimate receiver, or can sign claiming to be the sender. So, the
security is then lost. In practice, this problem is solved by using a certificate which is itself a digital
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signature(s) of the public key. It is provided by a known trusted entity(ies) who guarantee(s) that
the public key of S is kS.

We will now explain the need to use randomness in public key encryption systems. If no random
input is used, the public key system is vulnerable to a partially known-plaintext attack. In particular,
if the sender S, for example, a supervisor, uses a standard letter to send almost the same message
to different receivers, for example, to inform them about their salary increase, the system does not
guarantee privacy. Indeed, any of the receivers of these letters can exhaustively fill in the nonstandard
part and encrypt the resulting letter using the public key of the receiver until the obtained ciphertext
corresponds with the eavesdropped one! So, if no redundancy is used, the eavesdropper can always
verify whether a particular message has been encrypted. It is easy to see that if no randomness is
used, the resulting ciphertext will have a probability distribution which is 0 for all values, except
for the deterministic encryption of the plaintext. Although these attacks are well known, very few
practical public key systems take precautions against them. Goldwasser–Micali [17] called schemes
avoiding this weakness as probabilistic encryption schemes and presented a first solution (see
Section 10.7). It is secure against known-plaintext attack under a computational number theoretic
assumption.

9.3.5 Practical Concerns

To be practical, the encryption, decryption, authentication, and verification algorithms must be
efficient. In the modern theoretical computer science model, this is usually expressed as having a
running time bounded by a polynomial in function of the length of the key and by stating that the
length of the message is bounded by a polynomial in function of the length of the key.

It is clear that to be useful M = {0, 1}∗ (or have a polynomial length). However, this is often not
the case. A mode or protocol is then needed to specify how the encryption and decryption algorithms
(or the authentication and verification algorithms) are used on a longer text. For an example, see
Section 9.5.4.

9.4 The One-Time Pad

The one-time pad (a conventional cryptosystem) and Shannon’s analysis of its security are the most
important discoveries in modern cryptography. We will first discuss the scheme, then give a formal
definition of the security, prove it to be secure, and briefly discuss some of the applications of the
one-time pad.

9.4.1 The Scheme

In Vernam’s one-time pad, the key is (at least) as long as the message. Let the message be a string of
symbols belonging to the alphabet (a finite set) S, for example, {0, 1}, on which a binary operation
“∗” is defined, for example, the exor (exclusive-or). We assume that S(∗) forms a group.

Before encrypting the message, the sender and receiver have obtained a secret key, a string, of
which the symbols have been chosen uniformly random in the set S and independent. Let mi, ki, and
ci be the ith symbols of, respectively, the message, the key, and the ciphertext, each belonging to S. The
encryption algorithm produces ci = mi ∗ ki in S. To decrypt, the receiver computes mi = ci ∗ k−1

i .
The key is used only once. This implies that if a new message needs to be encrypted, a new key is
chosen, which explains the terminology: one-time pad.

It is trivial to verify that this is an encryption scheme. In the case S(∗) = Z2(+) = {0, 1}(+), the
integers modulo 2, the encryption algorithm, and the decryption algorithm are identical, and the
operation corresponds with an exor (exclusive or). We will now define what privacy means.
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9.4.2 Security

DEFINITION 9.3 Shannon defined an encryption system to be perfect when, for a cryptanalyst
not knowing the secret key, the message m is independent of the ciphertext c, formally:

prob(m = m | c = Ek(m)) = prob(m = m). (9.1)

THEOREM 9.4 The one-time pad is perfect.

PROOF 9.4 Let the length of the message be l (expressed as the number of symbols). Then the
message, key, and ciphertext belong to Sl = S × S × · · · × S. Since Sl is a group, it is sufficient to
discuss the proof for the case l = 1. Let c = Ek(m) = m ∗ k in S. Now, if k′ = m−1 ∗ c = k, then
prob(c = c | m = m, k = k′) = 1, else it is 0. Using this fact we obtain:

prob(m = m, c = c) =
∑
k′∈S

prob(c = c | m = m, k = k′) · prob(m = m, k = k′)

= prob(m = m, k = k)
= prob(m = m) · prob(k = k) (k is independent of m)

= prob(m = m) · 1
|S| (k is uniform)

Also, if c = m′ ∗ k′, then prob(c = Ek(m) | m = m′, k = k′) = 1, else it is 0. This gives:

prob(c = c) =
∑
k′,m′

prob(c = c | m = m′, k = k′) · prob(m = m′, k = k′)

=
∑
k′ ,m′

c=m′∗k′

prob(m = m′, k = k′)

=
∑
m′

prob(m = m′) · prob(k = (m′)−1 ∗ c) (k is independent of m)

= 1
|S| ·

∑
m′∈S

prob(m = m′) (k is uniform)

= 1
|S| ,

implying that prob(m = m, c = c) = prob(m = m) · prob(c = c). �

COROLLARY 9.5 In the one-time pad, the ciphertext has a uniform distribution.

This corollary corresponds with the more modern view on the definition of privacy. Note that it
is easy to make variants of the one-time pad that are also perfect.

Shannon proved that the length of the key must be at least, what he called, the entropy (see
Chapter 12) of the message. More recent work has demonstrated that the length of the key must be
at least the length of the message [2,22].

9.4.3 Its Use

The use of the one-time pad to protect private communication is rather limited since a new secret
key is needed for each message. However, many zero-knowledge interactive proofs use the principle
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that the product in a group of a uniformly chosen element with any element of the group, whatever
distribution, gives a uniform element.

Also, the idea of stream cipher, in which the truly random tape is replaced by a pseudo-random
tape finds its origin in the one-time pad.

9.5 Block Ciphers

As already observed in Section 9.2.4, many modern encryption schemes, in particular conventional
encryption schemes, are (based on) polygram substitution ciphers. To obtain a practical scheme,
the number of possible keys needs to be reduced from the maximum possible ones. To solve this
problem, Shannon proposed the use of mixing transformation, in which the plaintext is iteratively
transformed using substitution and transposition ciphers. Feistel adapted this idea. The outdated
DES is a typical example of a Feistel scheme, which we describe in Section 9.5.1. The more modern
scheme, called the AES, is given in Section 9.5.3. The official modes used for AES are discussed in
Section 9.5.4.

9.5.1 The DES Algorithm

The messages belong to {0, 1}64 and the key has 56 bits. To encrypt a message longer than 64 bits, a
mode is used (see Section 9.5.4). Since the algorithm is outdated, we only discuss it briefly. A more
complete description can be found in [8,33].

First, the detailed design criteria of the DES algorithm are classified, while the algorithm itself is
public. The DES algorithm [33], as described by NBS (now called NIST), consists of three fundamental
parts:

• The enciphering computation which follows a typical Feistel approach
• The calculation of f (R, K)

• The key schedule calculation

The Feistel part is described in Figure 9.1 and briefly described below.
In the enciphering computation, the input is first permuted by a fixed permutation IP from 64

bits into 64 bits. The result is split up into 32 left bits and 32 right bits, respectively. In Figure 9.1, this
corresponds to L and R. Then a bitwise modulo 2 sum of the left part Li and of f (Ri, Ki) is carried
out. After this transformation, the left and right 32 bit blocks are interchanged. From Figure 9.1,
one can observe that the encryption operation continues iteratively for 16 steps or rounds. In the
last round, no interchange of the finally obtained left and right parts is performed. The output is
obtained by applying the inverse of the initial permutation IP to the result of the 16th round.

Owing to the symmetry, the decryption algorithm is identical to the encryption operation, except
that one uses K16 as first subkey, K15 as second, etc.

9.5.2 Variants of DES

Since the introduction of the DES, several variants were proposed. The popularity of these variants
is different from country to country. Some examples are FEAL, IDEA, and GOST. The security of
these schemes varies. Note that DES is no longer secure due to fast exhaustive key search machines
[15]. To avoid this weakness, double and triple encryption are used. Both use a 112 bit key. Double
encryption DES is obtained by running DESk1 ◦ DESk2 . Triple encryption uses DES as encryption
and as decryption, denoted as DES−1 giving: DESk1 ◦ DES−1

k2
◦ DESk1 . However, the block length of

the double and triple variants is too short for high security. So, AES is preferred.
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FIGURE 9.1 DES block diagram of the enciphering computation.

9.5.3 AES

The AES is a new encryption standard since November 2001. In contrast with the development of the
DES, the development process of AES was open. AES was proposed by researchers from academia.

AES is a block cipher. The size of a plaintext/ciphertext block is 128 bits (the original scheme,
called Rijndael allowed for larger block sizes, but these are not part of the standard). The key can
have 128, 192, or 256 bits.

Figure 9.2 is a schematic representation of a typical round in the AES finalist. Depending on the
key size block, the number of rounds varies, that is, 10, 12, or 14 rounds. The first and last round
differ slightly from the other rounds.
A typical round in AES consists of:

Byte sub, which are fixed byte substitutions. In contrast with DES, only one S-box is used.
It is a substitution, which was not the case in DES. The substitution is nonlinear. It
consists of an inverse operation in a finite field GF(28), followed by an affine (invertible)
transformation over GF(2).

Shift row, a permutation of the bytes.
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Byte sub

Shift row

Mix column

Add round key

S S S S S S S S S S S S S S S S

FIGURE 9.2 A typical one round of the AES finalist, as explained at the 23rd National Information Systems
Security Conference. (From Daemen, J. and Rijmen, V., Rijndael, Presentation given at the 23rd National Informa-
tion Systems Security Conference, October 16–19, 2000, http://csrc.nist.gov/encryption/aes/rijndael/misc/nissc2.pdf.
With permission.)

Mix column, which are fixed linear combinations. Each linear combination over GF(28) acts
on 4 bytes and outputs 4 bytes.

Add round key, which performs an exor with the round key. The round key is obtained from
the initial key by the key scheduling. The key scheduling uses linear combinations and
the Byte Sub operation.

9.5.4 The Modes

Some of the modes that were used with the DES are outdated and have been replaced by new modes
and/or updated modes. NIST recommends five confidentiality modes, one authentication mode, an
authenticated encryption mode, and finally a high-throughput authenticated encryption mode. The
AES Key Wrap mode is under preparation. Nonstandard modes have been developed and are, for
example, used in Kerberos [3,21]. It is beyond the scope of this chapter to give all the details and
properties for these modes; the reader can find them in several publications [7,13,14,26].

The five confidentiality modes are briefly surveyed. How these work for decryption is left as an
exercise. When we refer to the Triple DES/AES encryption algorithm, we silently assume that each
time a key is given as input.

The ECB mode, in encryption, works similarly to a substitution cipher. The plaintext is divided
into full size blocks, mi (64 bits for DES, Triple DES and 128 bits for AES). The ith input to DES/AES
is the plaintext block mi. The output corresponds to the ciphertext block ci. This mode is not
recommended. As we discussed in Section 9.2, most texts contain redundancy. If the same key is
used for too long a time, most parts of the plaintext can be recovered.

In the CBC mode in encryption, the ciphertext block ci is the 64/128 bit output of the DES/AES
encryption algorithm. The input to the DES/AES is the bitwise modulo 2 sum (EXOR) of the 64/128
bit plaintext mi and of the previous 64/128 bit ciphertext ci−1. The initial vector used, IV, should be
unpredictable.
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In the CFB and OFB mode, the ciphertext block ci and the plaintext block mi are n bits, where
1 ≤ n ≤ 64/128. In both modes, the ciphertext block ci = mi ⊕ Selectn(DESk(di)), where di is the
input to DES (similarly for AES), ⊕ is the bitwise modulo 2 sum, and Selectn selects the n most
significant bits.

The input di to the DES/AES in the CFB encryption mode is constructed from the (64 − n) (or
128 − n) least significant bits of di−1 (the previous input), shifted to the left by n positions, and
concatenated with ci−1, the n bits of the ciphertext. The initial vector should be unpredictable.

In the OFB mode in encryption, DES/AES is used as a stream cipher (see Section 9.4.3). The
output of DES/AES is used as a pseudo-random generator. The input di is the concatenation of the
(64 − n) (or (128 − n)) least significant bits of di−1 (the previous input), shifted to the left by n
positions, and the n most significant bits of DESk(di−1) (similarly for AES). The initial vector must
be unique to each plaintext.

The counter mode (CTR mode) in encryption is similar to the OFB mode, in the sense that both
form stream ciphers. However, the input to the encryption algorithm is the output of a counter.

9.5.4.1 Authentication

While the CBC and CFB modes were originally considered for authentication with DES, for AES,
a new mode exists. The original CBC-MAC should not be used since it is weak. The current
recommendation is a variant of it, which was developed by academics. (Consult [14] for details.)

9.6 Research Issues and Summary

It is important to remark that cryptography does not solve all modern security problems. Cryptogra-
phy, although rarely stated explicitly, assumes the existence of secure and reliable hard or software.
Some research on secure distributed computation has allowed this assumption to be relaxed slightly.
Also, in the communication context, modern cryptography only addresses part of a bigger problem.
Spread spectrum techniques prevent jamming attacks, and reliable fault tolerant networks reduce
the impact of the destruction of communication equipment.

Finally, it should be pointed out that cryptography is not sufficient to protect data. For example,
it only eliminates the threat of eavesdropping while transmitted remotely. However, data can often
be gathered at the source or at the destination using, for example, physical methods. These include
theft (physical or virtual), the caption of electromagnetic radiation when data are displayed on a
normal screen, etc.

This chapter introduced elementary principles of modern cryptography, including the concepts
of conventional cryptosystems and public key systems, several different types of attacks, different
levels of security schemes can have, one-time pad, and AES as an example of a block cipher.

9.7 Further Information

Since the introduction of public key, the research on cryptography has boomed. Readers interested
in applied oriented cryptography should consult [23]. This book discusses block ciphers in great
length. Those who prefer a textbook can consult [32].

The most known annual conferences on the topic of cryptography are Eurocrypt and Crypto, run-
ning since the early 1980s, of which the proceedings are published in Springer’s Lecture Notes
in Computer Science. Conferences and workshops running since the 1990s include Asiacrypt
(which absorbed Auscrypt), FSE, and Public Key Cryptography (PKC). Some conferences focus on
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computer security issues as well as cryptography, for example, the ACM Conference on Computer
and Communications Security. Several local and regional conferences are also organized, many
with proceedings published in Springer’s Lecture Notes in Computer Science, for example the IMA
Conference on Cryptography and Coding in Britain. Some results on the topic have appeared in less
specialized conferences such as FOCS, STOC, etc.

Articles on the topic appear in a wide variety of journals but unfortunately several years after the
results have been presented at conferences. The Journal of Cryptology is dedicated to research
on cryptography. Design, Codes and Cryptography is another journal. Some other specialized
journals have a different focus, for example, Cryptologia is primarily on historic aspects of
cryptography.

Defining Terms

Asymmetric cryptosystem: A cryptosystem in which given the key of one party (sender or receiver,
depending from context), it is computationally difficult or, when using information theory, impos-
sible to obtain the other parties secret key.
Block cipher: A family of cryptosystems in which the plaintext and ciphertext are divided into strings
of equal length, called blocks, and each block is encrypted one-at-a-time.
Ciphertext: The result of an encryption operation.
Cleartext: The unencrypted, usually readable text.
Conventional cryptosystem: A cryptosystem in which the keys of all parties must remain secret.
Cryptanalysis: The study of methods to break cryptosystems.
Cryptanalyst: A person who (wants to) breaks cryptosystems.
Decryption: The operation that tranforms ciphertext into plaintext using a key.
Digital signature: The digital equivalent of a handwritten signature. A digital signature of a message
is strongly message dependent and is generated by the sender using his/her secret key and a suitable
public key cryptosystem.
Encrypt: The operation that tranforms plaintext into ciphertext.
Exhaustive search: A method to break a cryptosystem by trying all possible inputs, in particular all
possible keys.
Plaintext: A synonym for cleartext, that is, the unencrypted text.
Polygram substitution cipher: A substitution cipher of many symbols at once.
Probabilistic encryption scheme: A public key system in which randomness is used, such that two
encryptions of the same ciphertext give, very likely, different ciphertexts.
Public key: A key that is public, or a family of cryptosystems in which a key of one of the parties can
be made public.
Symmetric cryptosystem: A system in which it is easy to find one party’s key from the other
party’s key.
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10.1 Introduction

Several conventional encryption schemes were discussed in Chapter 9. The concept of public key
was introduced in Section 9.3.4. In this chapter, we will discuss some public key encryption systems
based on number theory. First, we give the minimal number theory and algebraic background needed
to understand these schemes from a mathematical viewpoint (see Section 10.2). Then, we present,
in Section 10.3, the most popular schemes based on number theory. We explain in Section 10.4
the computational number theory required to understand why these schemes run in (expected)
polynomial time. To avoid overburdening the reader with number theory, we will postpone the
number theory needed to understand the computational aspect until Section 10.4. We briefly discuss
security issues in Section 10.7.

10-1
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10.2 Minimal Background

10.2.1 Algebra

For the reader who is not familiar with elementary algebra, we review the definition of a semigroup,
monoid, group, etc.

DEFINITION 10.1 A set M with an operator “∗,” denoted as M(∗), is a semigroup if the following
conditions are satisfied:

1. the operation is closed in M, i.e., ∀a, b ∈ M : (a ∗ b) ∈ M,
2. the operation is associative in M, i.e., ∀a, b, c ∈ M : (a ∗ b) ∗ c = a ∗ (b ∗ c),

When additionally

3. the operation has an identity element in M, i.e., ∃e : ∀a ∈ M : a ∗ e = e ∗ a = a,

we call M(∗) a monoid. When M(∗) is a monoid, we call the cardinality of M the order of M.

When using multiplicative notation (∗), we will usually denote the identity element as 1 and when
using additive notation (+) as 0.

DEFINITION 10.2 In a monoid M(∗), the element a ∈ M has an inverse if an element denoted as
a−1 exists such that:

a ∗ a−1 = a−1 ∗ a = e,

where e is the identity element in M(∗). Two elements a, b ∈ M commute if a ∗ b = b ∗ a.

An element having an inverse is often called a unit. When working in a monoid, we define
a−n = (a−1)n and a0 = 1.

DEFINITION 10.3 A monoid G(∗) is a group if each element in G has an inverse. It is an Abelian
group if, additionally, any two elements of G commute.

If H is a monoid (group) and H ⊆ G, where G is also a monoid (group), then H is called a
submonoid (subgroup).

DEFINITION 10.4 Let M(∗) be a monoid and a ∈ M. One defines

〈a〉 = {ak | k ∈ N}

where N are the natural numbers, i.e., {0, 1, . . .}. If 〈a〉 is a group, we call it a cyclic group and call
the order of 〈a〉 the order of a, or ord(a).

Note that in modern cryptography, finite sets are more important than infinite sets. In this respect,
the following result is interesting.

THEOREM 10.1 Let M(∗) be finite monoid. If a ∈ M has an inverse in M(∗), then 〈a〉 is an Abelian
group. Also, ord(a) is the smallest positive integer m for which am = 1.
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PROOF Since the set M is finite, positive integers k1 and k2 must exist, where k1 < k2, such that
ak1 = ak2 . Now, since a is invertible, this means ak1−k2 = 1. This implies that 〈a〉 is an Abelian
group. So, then 〈a〉 = {ak | 0 ≤ k < ord(a)}. �

We will now define what a ring is. Unfortunately, there are two different definitions for it in the
literature, but we will use the one that is most relevant to modern cryptography.

DEFINITION 10.5 A set R with two operations + and ∗ and two distinct elements 0 and 1 is a
ring if:

1. R(+) is an Abelian group with identity element 0.
2. R(∗) is a monoid with identity element 1.
3. R is distributive, i.e., ∀a, b, c ∈ R :

a ∗ (b + c) =(a ∗ b) + (a ∗ c)
(a + b) ∗ c =(a ∗ c) + (b ∗ c)

A ring R is commutative if it is commutative for the multiplication. A ring R in which R0 = R \ {0}
is an Abelian group for the multiplication is called a field.

A subring is defined similarly as a subgroup.

10.2.2 Number Theory

10.2.2.1 Integers

We denote the set of integers as Z, and the positive integers as Z+, i.e., {1, 2, . . .}.

DEFINITION 10.6 If α is a real number, we call 
α� the integer such that


α� ≤ α < 
α� + 1. (10.1)

THEOREM 10.2 ∀a ∈ Z ∀b ∈ Z+ ∃q, r ∈ Z : a = q · b + r where 0 ≤ r < b.

PROOF From 10.1, it follows that

0 ≤ a
b

−
⌊a

b

⌋
< 1.

Since b > 0, this gives
0 ≤ a − b ·

⌊a
b

⌋
< b.

By taking q = 
a/b� and r = a − b · 
a/b�, we obtain the result. �

The reader has probably recognized q and r as the quotient and non-negative remainder of the
division of a by b. If the remainder is zero, then a is a multiple of b or b divides a, written as b | a.
We also say that b is a factor of a. If b is different from 1 and a, then b is a nontrivial factor or a
proper divisor of a.

One can categorize the positive integers based on the number of distinct positive divisors. The ele-
ment 1 has one positive divisor. Primes have exactly two, and the other elements, called composites,
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have more than two. In cryptography, a prime number is usually denoted as p or q. Theorem 10.3 is
easy to prove using induction and the following lemma.

LEMMA 10.1 When n is composite, the least positive nontrivial factor of n is a prime.

PROOF Let a, b, c ∈ Z+. It is easy to prove that if b | a and c | b, then c | a. Also, if b is a nontrivial
factor of a, then 1 < b < a. Using contradiction, this implies the lemma. �

THEOREM 10.3 If n ≥ 2, then n is the product of primes.

10.2.2.2 Greatest Common Divisor

Using a definition other than the standard one and proving these to be equivalent will allow us to
introduce several important results. First, we will define what an integral modulus is.

DEFINITION 10.7 A modulus is a subset of the integers which is closed under addition and
subtraction. A modulus that contains only 0 is called the zero modulus.

THEOREM 10.4 For each non-zero modulus, a positive integer d exists such that all the elements of
the modulus are multiplies of d.

PROOF If such an element exists, it must clearly be the least positive integer. We will now prove
its existence by contradiction. Suppose that a is not a multiple of d, then, using Theorem 10.2, we
have a = qd + r, where q and r are integers such that 1 ≤ r < d. Clearly, r is then an element of the
modulus and is smaller than d. We obtain a contradiction. �

It is obvious that if a and b are integers, then am + bn, where m and n are any integers, forms a
modulus. (For those familiar with ring theory, it implies that this modulus is an ideal.) We are now
ready to define the greatest common divisor.

DEFINITION 10.8 When a and b are integers and are not zero, then the least positive integer d
in the modulus am + bn is the greatest common divisor of a and b, denoted as gcd(a, b) or (a, b). If
(a, b) = 1, a and b are called co-prime.

COROLLARY 10.1 Theorem 10.4 implies:

∃x, y ∈ Z : ax + by = gcd(a, b) (10.2)

∀x, y ∈ Z : gcd(a, b) | ax + by (10.3)

If c | a and c | b, then c | gcd(a, b). (10.4)

PROOF 10.2 and 10.3 follow from Theorem 10.4 and 10.2 implies 10.4. �

Due to 10.4, the definition of the greatest common divisor is equivalent to the traditional one.
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10.2.2.3 Congruences

In Section 9.2.1, we defined what it means for two numbers to be equivalent modulo n. It is easy to
see that this satisfies the definition of equivalence relation. The corresponding equivalence classes
are called residue classes. When a is an integer, we let â = {b | b ≡ a mod n}. When we work
modulo n, we call Zn = {̂0, 1̂, . . . , n̂ − 1} the set of all residue classes. Other notations for Zn, which
we do not explain, are Z/(n) and Z/nZ. The following theorem is trivial to prove.

THEOREM 10.5 If a ≡ b (mod n) and c ≡ d (mod n), then a + c ≡ b + d (mod n) and
a ∗ c ≡ b ∗ d (mod n).

Due to this theorem, we can say that if a ≡ b mod n, that a and b are congruent modulo n. Now
let A and B be two residue classes, and we define A + B = {a + b | a ∈ A and b ∈ B} and similarly
A ∗ B. Theorem 10.5 tells us that A + B and A ∗ B are residue classes. This implies:

COROLLARY 10.2 Zm is a commutative ring.

PROOF Given that Z is a commutative ring, this follows easily from Theorem 10.5. �

If one selects one representative out of each residue class, we call the resulting set of integers a
complete residue system. It is easy to see that {0, 1, . . . , m − 1} is a complete residue system. Adding
(multiplying) two integers a and b in this complete residue system is easy by adding (multiplying)
them as integers and taking the non-negative remainder after division by m. If c is the result, we write
c = a+b mod n (c = a∗b mod n), as was done in Section 9.2.1. Using this addition (multiplication),
one can view the ring Zn as corresponding to the set {0, 1, . . . , n − 1}. We do not discuss this
formally.

THEOREM 10.6 Let n ≥ 2. The element a ∈ Zn has an inverse modulo n if and only if
gcd(a, n) = 1.

PROOF If gcd(a, n) = 1, then 10.2 implies that integers x and y exist such that xa + yn = 1, or
xa = 1 mod n. So x ≡ a−1.

Now if an inverse a−1 ∈ Zn exists, then a · a−1 ≡ 1 mod n. Using the definition of congruence,
this means that n | (a · a−1 − 1) or that a · a−1 − 1 = yn, where y is an integer. From 10.3, this
implies that gcd(a, n) | 1. �

COROLLARY 10.3 Z∗
n , the set of elements in Zn relatively prime to n is an Abelian group for the

multiplication.

COROLLARY 10.4 When p is a prime, Zp is a finite field.

COROLLARY 10.5 If gcd(a, n) = 1, then the equation ax ≡ b mod n has exactly one solution
modulo n.

PROOF Assume that we had different solutions modulo n. Let us say x1 and x2. Then ax1 ≡
ax2 mod n, and since a has an inverse, we obtain that x1 ≡ x2 mod n. This is a contradiction. �
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10.2.2.4 Euler–Fermat’s Theorem

The Euler–Fermat theorem is probably the most important theorem for understanding the RSA
cryptosystem (see Section 10.3.2). We first give the following definition.

DEFINITION 10.9 The order of Z∗
n is denoted as φ(n). The function φ is called the Euler-totient

function, or Euler function. If one selects one representative out of each residue class co-prime to n,
we call the resulting set of integers a reduced residue system.

LEMMA 10.2 If {a1, a2, . . . , aφ(n)} is a reduced residue system, and gcd(k, n) = 1, then {ka1, ka2,
. . . , kaφ(n)} is a reduced residue system.

PROOF First, gcd(kai, n) = 1. Second, if i �= j, then kai �≡ kaj mod n, by contradiction. �

This lemma implies the Euler–Fermat theorem.

THEOREM 10.7 ∀b ∈ Z∗
n : bφ(n) ≡ 1 mod n

PROOF Let {a1, a2, . . . , aφ(n)} be a reduced residue system. Lemma 10.2 implies that

φ(n)∏
h=1

(bah) ≡
φ(n)∏
h=1

ah mod n. (10.5)

Since gcd(ah, n) = 1, a−1
h exists, so:

φ(n)∏
h=1

(
a−1

h ahb
) ≡

φ(n)∏
h=1

a−1
h ah mod n, implying

bφ(n) ≡ 1 mod n

�

COROLLARY 10.6 If m ∈ Z∗
n , then mφ(n)+a ≡ ma mod n.

It is easy to see that when p is a prime, φ(p) = p − 1. The next corollary is known as Fermat’s
little theorem.

COROLLARY 10.7 Let p be a prime. ∀b ∈ Zp : bp ≡ b mod p

10.3 Encryption Schemes

We will explain some encryption schemes from a mathematical viewpoint without addressing the
algorithms needed. These are explained in Section 10.4.
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10.3.1 Discrete Log

Given an element b ∈ 〈a〉, a cyclic group, we know that a k exists such that b = ak in this cyclic
group. This k is called the discrete logarithm of b in the base a and often denoted as k = loga(b). To
have any value to cryptography, it must be hard to find this k. So, a proper group needs to be chosen,
which we discuss later.

One of the first schemes that was based on discrete logarithm is a key distribution scheme. Here,
we discuss the ElGamal encryption scheme [16].

10.3.1.1 Generating a Public Key

We assume that a finite group 〈g〉(·) has been chosen of a large enough order, and that q, a multiple
of the order of the ord(g), is given (it is sufficient that not too large an upperbound on q is known).
Note that q is not necessarily a prime. For simplicity, we assume that q is public. This information
could be part of a person’s public key. We also assume that the group operation (·) and the inverse
of an element can be computed in (expected) polynomial time.

When Alice wants to generate her public key, she chooses a uniform random a ∈ Zq and computes
yA = ga in this group and makes yA public.

10.3.1.2 ElGamal Encryption

To encrypt a message m ∈ 〈g〉 (otherwise a hybrid scheme is used, see Section 10.7), the sender finds
the public key yA of the receiver. The sender chooses∗ a uniformly random k ∈ Zq and sends as
ciphertext c = (c1, c2) = (gk, m · yk

A) computed in 〈g〉.

10.3.1.3 ElGamal Decryption

To decrypt the ciphertext, the legitimate receiver knowing the secret key a computes m′ = c2 ·(ca
1)

−1.
It is easy to verify that m′ = m · (ga)k · (gk)−a = m.

10.3.1.4 Suitable Group

As we already mentioned, to have any cryptographic value, the discrete logarithm must be hard.
Unfortunately, there is no proof that the discrete logarithm is a hard problem. One can only state
that so far no one has found an algorithm running in polynomial time for the general problem. For
some groups, the problem is a little easier than in the general case. For some, the discrete logarithm
is even easy. Indeed, for example, for the cyclic group Zn(+), the discrete logarithm corresponds
with finding x such that ax = b mod n, which is easy as we will discuss in Sections 10.4.3 and 10.5.3.

Groups that are used in practice are the multiplicative group of a finite field (see also Section 10.5.9),
or a subgroup of it and elliptic curve groups.

10.3.2 RSA

RSA, which is a heuristic cryptosystem, is an acronym for the inventors of the scheme, Rivest et al.
[35]. It is basically an application of the Euler–Fermat theorem.

∗ It is possible that q is secret. For example, when the group 〈g〉 was selected by the one who constructed the public key.
We then assume that a not too large upperbound on q is public and is used instead of q.
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10.3.2.1 Generating a Public Key

To select her public key, Alice chooses two random primes p and q, large enough, and multiplies
these to obtain n = p · q. She chooses a random element e ∈ Z∗

φ(n)
uniformly and computes

d = e−1 mod φ(n). She publishes (n, e) as public key and keeps d as a secret key. Note that p, q and
φ(n) need to remain secret.

10.3.2.2 Encryption

To encrypt a message, the sender finds the public key of the receiver, which we call (n, e). When
m ∈ Zn (otherwise a hybrid scheme is used, see Section 10.7), the resulting ciphertext c = me mod n.

10.3.2.3 Decryption

To decrypt a ciphertext c ∈ Zn, the legitimate receiver, let us say Alice, knowing her secret key d
computes m′ = cd mod n.

We will now explain why the decryption works for the case m ∈ Z∗
n . This can easily be generalized

for all m ∈ Zn, using the Chinese Remainder theorem (see Theorem 10.22). Since e·d = 1 mod φ(n),
we have e ·d = 1+kφ(n) for some integer k. So, due to Euler–Fermat’s theorem (see Corollary 10.6),
when m ∈ Z∗

n , we have that cd = med = mk·φ(n)+1 = m mod n. So m′ = m.

10.3.2.4 Notes

RSA is also very popular as a signature scheme (see Chapter 12).
To speed up encryption, it has been suggested to choose e = 3, or a small e, or an e such that w(e),

the Hamming∗ weight of e, is small. Several attacks have been presented against such solutions. To
avoid these, it seems best to choose e as described.

When m is chosen as a uniformly random element in Zn, and p and q are large enough, no attack
is known for finding m. It has been argued, without proof, (see Section 10.5.2 for more details) that
this is as hard as factoring n.

10.4 Computational Number Theory: Part 1

When describing the RSA and the ElGamal public key systems, we silently assume many efficient
algorithms. Indeed for the ElGamal system, we need efficient algorithms to

• Select an element of large enough order (when choosing the public key),
• Select a uniformly random element in Zq (when generating a public key and when

encrypting),
• Raise an element in a group to a power (when constructing the public key, when encrypt-

ing and decrypting),
• Multiply two elements in the group (when encrypting and decrypting),
• Compute an inverse, for example in Z∗

p (when decrypting), and
• Guarantee that m ∈ 〈g〉 (when encrypting).

For RSA we need algorithms to

• Select a random prime (when generating a public key),
• Multiply two large integers (when constructing a public key),

∗ The Hamming weight of a binary string is the number of ones in the string.
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• Compute φ(n), or a multiple of it (when constructing a public key),
• Randomly select an element in Z∗

φ(n)
(when constructing a public key),

• Compute an inverse (when constructing a public key), and
• Raise an element in a group to a power (when encrypting and decrypting).

We now discuss the necessary algorithms. To avoid repetition, we will proceed in a different order
than listed above. If necessary, we will discuss on more number theory before giving the algorithm.

10.4.1 Multiplication and Modulo Multiplication

Discussing fast integer multiplication and modulo multiplication is a chapter in itself, and therefore,
beyond the scope of this chapter. Although algorithms based on FFT are order wise very fast, the
numbers used in modern cryptography are too small to compensate for the rather large constants
in FFT based algorithms.

The algorithms used are the trivial ones learned in elementary school. However, usually the base
is a power of 2, instead of 10.

10.4.2 Fast Exponentiation

Assume that we have a semigroup M(∗) in which an efficient algorithm exists for multiplying two
elements. Since squaring an element might be faster [24] than multiplying, we allow for a separate
algorithm square to square an element.

Input declaration: an element a ∈ M and b a positive integer.
Output declaration: ab in M(∗)

function fastexpo(a, b)

begin
case

b = 1 then fastexpo:= a
b > 1 and odd then fastexpo:= a∗fastexpo(a, b − 1)

b is even then fastexpo:= square(fastexpo(a,b/2))
end

The above function uses, at maximum, 2|b| multiplications, where |b| is the binary length of b.

10.4.3 Gcd and Modulo Inverses

Let a ≥ b ≥ 0. The algorithm to compute the greatest common divisor goes back to Euclid and is,
therefore, called the Euclidean algorithm. It is based on the observation that gcd(a, b) = gcd(a−b, b).
This trick can be repeated until 0 ≤ r = a − mb < b, which exists (see Theorem 10.2). This gives
the modern version of the Euclidean algorithm:

Input declaration: non-negative integers a, b where a ≥ b
Output declaration: gcd(a, b)

function gcd(a, b)

begin
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if b = 0 then gcd := a
else gcd := gcd(b, a mod b)

end

Note: We assume that a mod b returns the least non-negative remainder of a when divided by b.
When a = b = 0, the function returns 0.

THEOREM 10.8 The number of divisions required to compute the gcd(a, b) when 0 < b < a, is, at
maximum, 1 + 
logR a�, where R = (1 + √

5)/2.

PROOF We denote r−1 = a, r0 = b, and ri the remainder obtained in the ith division. Note that
the gcd(a, b) will be such a remainder. We define n such that rn−1 = gcd(a, b), implying that rn = 0.
We call the ith quotient di. So, we have:

di =
⌊

ri−2

ri−1

⌋
(1 ≤ i ≤ n) (10.6)

ri−2 = di · ri−1 + ri (1 ≤ i ≤ n) (10.7)
rn−2 = dn · rn−1.

Note that ri < ri−1 (0 ≤ i ≤ n), rn−1 ≥ 1 = f2, and rn−2 ≥ 2 = f3, where fn is the nth Fibonacci
number. Using this and the fact that fn+1−i = fn−i + fn−i−1 and 10.7, it is easy to prove with inverse
induction, starting from i = n − 1, that ri ≥ fn+1−i. So, a ≥ fn+2 and b ≥ fn+1. Since rn−2 ≥ 2,
this implies the following. When the Euclidean algorithm takes exactly n divisions to compute
gcd(a, b), we have a ≥ fn+2 and b ≥ fn+1. So, if b′ < a′ < fn+2, then there are, at maximum,
n − 1 divisions when computing the greatest common divisor of a′ and b′ using the Euclidean
algorithm.

Now since R2 = R + 1, we have Rn−1 = Rn−2 + Rn−3. This implies, using induction, that
∀n ≥ 1 : Rn−2 ≤ fn ≤ Rn−1. So, if 0 < b′ < a′ and Rn−2 < a′ < Rn, there are, at maximum, n − 1
divisions. This corresponds to saying that if n − 2 < logR(a′) < n, or n − 2 ≤ 
logR(a′)� < n there
are, at maximum, n − 1 divisions.

An extended version of the Euclidean algorithm allows computing the inverse of b modulo a,
where 0 < b < a.

ALGORITHM 10.1
Input: positive integers a, b where a > b > 0
Output: g = gcd(a, b), x and y, integers such that ax + by = gcd(a, b) and c = b−1 mod a if it exists
(otherwise c = 0)
begin
r−1 = a; r0 = b; x−1 := 1; y−1 := 0; x0 := 0; y0 := 1; i := 0;
while ri �= 0 do

begin
i := i + 1;
d :=

⌊
ri−2
ri−1

⌋
;

ri := ri−2 − d ∗ ri−1;
xi := xi−2 − d ∗ xi−1;
yi := yi−2 − d ∗ yi−1;

end
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g := ri−1; x := xi−1; y := yi−1;
if g = 1 then

if i mod 2 = 1 then c := y
else c := y + a

else c := 0;
end

Observe that only d, ri, ri−1, xi, xi−1, yi, and yi−1 are needed. So, a more careful implementation
allows saving memory.

LEMMA 10.3 For i ≥ −1, we have in Algorithm 10.1 that

axi + byi = ri. (10.8)

PROOF We use the definition of di in 10.6. It is easy to verify that 10.8 holds for i = −1 and
i = 0. For larger values, we use induction and assume that 10.8 has been proven for i − 1 and i − 2.
Observe that xi = xi−2 − dixi−1 and yi = yi−2 − diyi−1. So

axi +byi = a(xi−2 −dixi−1)+b(yi−2 −diyi−1) = (axi−2 +byi−2)−di(axi−1 +byi−1) = ri−2 −diri−1

using the induction hypothesis. Since ri = ri−2 − di ∗ ri−1, we have proven the claim. �

THEOREM 10.9 In Algorithm 10.1, c = b−1 mod a if b−1 mod a exists and 0 ≤ c < a.

PROOF We assume that gcd(a, b) = 1. From the proof of Theorem 10.8 and Lemma 10.3,
we have for the x and y returned by Algorithm 10.1 that ax + by = gcd(a, b). This implies that
c ≡ b−1 mod a. So, we only need to prove that 0 ≤ c < a.

We let n be as in the proof of Theorem 10.8 and di be as in 10.6. We first claim that

(−1)iyi ≥ 0 (10.9)

when −1 ≤ i ≤ n. This is easy to verify for i = −1 and i = 0. We now assume that 10.9 is true for
i = k − 1 and i = k − 2. Since di > 0 when 0 < b < a and using the recursive definition of yi,
we have (−1)kyk = (−1)k(yk−2 − dkyk−1) = (−1)k−2yk−2 + (−1)k−1dkyk−1 ≥ 0 by the induction
hypothesis.

Due to 10.9, we have |yi| = |yi−2| + di ∗ |yi−1|. Since y0 = 1 and di ≥ 1, we have

|y1| ≥ |y0| and |yi| > |yi−1| for 2 ≤ i ≤ n, (10.10)

as is easy to verify using induction.
Finally, we claim that for all i (0 ≤ i ≤ n):

yi−1ri − yiri−1 = (−1)i+1a (10.11)

xi−1ri − xiri−1 = (−1)ib (10.12)

For i = 0, 10.11 is trivially satisfied. Assume that the equations are satisfied for i = k − 1. Noticing
that rk = rk−2 − dkrk−1 and yk = yk−2 − dkyk−1, we obtain for i = k that

yk−1rk − ykrk−1 = yk−1(rk−2 − dkrk−1) − (yk−2 − dkyk−1)rk−1

= yk−1rk−2 − yk−2rk−1

= −(yk−2rk−1 − yk−1rk−2),

which, using the induction hypothesis, proves 10.11. Similarly, one can prove 10.12.



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C010 Finals Page 12 2009-9-25

10-12 Special Topics and Techniques

Since rn = 0 and rn−1 = gcd(a, b) = 1, 10.11 and 10.12 imply that yn = (−1)na and xn =
(−1)n+1b, respectively. So if n ≥ 2 then, using 10.10, |yn−1| < a and |yn−1| �= 0. If n = 1, then
by the definition x1 = x−1 − d1 ∗ x0 = 1 and by 10.12 x1 = b, so b = 1 and yn−1 = y0 = 1 < a.
Thus, 0 < |yn−1| < a. Using this and 10.9, we obtain that if n is odd c = yn−1 < a and c > 0, else
−a < yn−1 < 0, so 0 < c = a + yn−1 < a. �

10.4.4 Random Selection

We assume that the user has a binary random generator which outputs a string of independent bits
with uniform distribution. Using this generator to output one bit is called a coin flip.

We will now describe how to select a natural number a with uniform distribution such that
0 ≤ a ≤ b, where 2k−1 ≤ b < 2k. One lets the generator output k bits. We view these bits as a binary
representation of an integer x. If x ≤ b, one outputs a = x, else one flips k new bits until x ≤ b. The
expected number of coin flips is bounded above by 2k.

The case one requires that b1 ≤ a ≤ b2 is easy to reduce to the previous one. Indeed, choose a′
uniformly such that 0 ≤ a′ ≤ (b2 − b1) and add b1 to the result.

Selecting an element in Z∗
n can be done by selecting an integer a such that 0 ≤ a ≤ n − 1 and

by repeating the procedure until gcd(a, n) = 1. The expected number of coin flips is O(log log(n) ·
log(n)), which we do not prove.

Before we discuss how to select a prime, we will discuss more on number theory. This number
theory will also be useful to explain the first probabilistic encryption scheme (see Section 10.7.1).

10.5 More Algebra and Number Theory

10.5.1 Primes and Factorization

LEMMA 10.4 If p is a prime and p | a · b, then p divides a or b.

PROOF If p /| a, then gcd(a, p) = 1. So, due to Corollary 10.1, integers x, y exist such that
xa + yp = 1, or xab + ybp = b. Since p | ab, this implies that p | b. �

THEOREM 10.10 Prime factorization of any integer n is unique, i.e., the primes p1, . . . , pk and the
integers ai ≥ 1 such that

n =
k∏

i=1
pai

i

are unique.

PROOF From Theorem 10.3, we know that n is a product of primes. Assume that

k∏
i=1

pai
i =

m∏
j=1

qbj
j , (10.13)

where qj are primes and bj ≥ 1. First, due to Lemma 10.4 and the fact that pi and qj are primes, a pi
is equal to some qj and vice versa (by induction). So, k = m and when renaming pi = qi. If ai > bi
and dividing both sides of 10.13 by pbi

i , we obtain a contradiction due to Lemma 10.4. �
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COROLLARY 10.8 The least common multiple of a and b, denoted as lcm(a, b) = a ·b/ gcd(a, b).

PROOF The proof is left as an exercise. �

10.5.2 Euler-Totient Function

The algorithm used to compute φ(n) when constructing an RSA public key is trivially based on the
following theorem. First, we define what, in number theory, is called a multiplicative function, and
we also introduce the Möbius function.

DEFINITION 10.10 A real or a complex valued function defined on the positive integers is called
an arithmetical or a number-theoretic function. An arithmetical function f is multiplicative if it
is not the zero function, and if for all positive integers m and n where gcd(m, n) = 1, we have
f (m · n) = f (m) · f (n). If the gcd restriction is removed, it is completely multiplicative.

DEFINITION 10.11 A square is an integer to the power 2. The Möbius function is defined as being

μ(n) =
{

0 if n is divisible by a square different from 1,
(−1)k if n = p1 · p2 · · · pk, where pi are distinct primes.

A number is squarefree if μ(n) �= 0.

LEMMA 10.5 If n ≥ 1, we have∑
d|n

μ(d) =
⌊

1
n

⌋
=

{
1 if n = 1,
0 if n > 1. (10.14)

PROOF When n = 1, μ(1) = 1 since it is the product of 0 different primes. We now discuss the
case that n > 1, and then accordingly to Theorem 10.10 n = ∏k

i=1 pai
i , where pi are distinct primes.

In 10.14, only when d is squarefree, μ(d) �= 0, so∑
d|n

μ(d) = μ(1) + μ(p1) + · · · + μ(pk) + μ(p1 · p2) + · · · + μ(pk−1 · pk) + · · · + μ(p1 · p2 · · · pk)

= 1 +
(

k
1

)
· (−1) +

(
k
2

)
· (−1)2 + · · · +

(
k
k

)
(−1)k = (1 − 1)k = 0

�

LEMMA 10.6 If n ≥ 1 then

φ(n) = n ·
∑
d|n

μ(d)

d
.

PROOF From the definition of the Euler-totient function, we immediately have

φ(n) =
n∑

k=1

⌊
1

gcd(k, n)

⌋
.
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This can be rewritten, using Lemma 10.5, as

φ(n) =
n∑

k=1

∑
d|gcd(k,n)

μ(d) =
n∑

k=1

∑
d|k
d|n

μ(d).

In the second sum, all d divide n. For such a fixed d, k must be a multiple of d, i.e., k = md. Now,
1 ≤ k ≤ n, which is equivalent to the requirement that 1 ≤ m ≤ n/d. Thus,

φ(n) =
∑
d|n

n
d∑

m=1
μ(d) =

∑
d|n

μ(d)

n
d∑

m=1
1 =

∑
d|n

μ(d) · n
d

.

�

THEOREM 10.11 φ(n) = n ·
∏
p|n

(
1 − 1

p

)
, where p are distinct primes.

PROOF When n = 1, no primes divide n, so the product is equal to 1. We will now consider the
case where n > 1, so n = ∏m

i=1 pai
i , where pi are distinct primes and ai ≥ 1. Obviously,

m∏
i=1

(
1 − 1

pi

)
= 1 −

m∑
i=1

1
pi

+
∑

i,j
i�=j

1
pipj

−
∑
i,j,k
i�=j
i�=k
j�=k

1
pipjpk

+ · · · + (−1)m

p1p2 · · · pm
. (10.15)

Each term on the right hand side corresponds to a ±1/d, where d is a squarefree divisor of n.
For those, the numerator is μ(d). For the other divisors of n, μ(d) = 0, so the sum in 10.15 is∑

d|n(μ(d)/d). Using Lemma 10.6, we have proven the theorem. �

COROLLARY 10.9 φ(n) is multiplicative.

This corollary implies that, given the factorization of n, it is easy to compute φ(n). Assuming the
correctness of the Extended Riemann Hypothesis and given φ(n), one can factor n in polynomial
time, which we will not prove.

10.5.3 Linear Equations

THEOREM 10.12 The equation
ax = b mod n (10.16)

has no solution if gcd(a, n) /| b, else it has gcd(a, n) solutions.

PROOF If ax = b mod n, an integer y exists such that ax+ny = b. Statement 10.3 in Corollary 10.1
tells us that gcd(a, n) must divide b. From now on, we assume it does. We will prove that there are
then gcd(a, n) solutions.



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C010 Finals Page 15 2009-9-25

Encryption Schemes 10-15

Corollary 10.5 tells us that if gcd(a, n) = 1, the solution is unique. Suppose now that d = gcd(a, n)

and ax = b mod n, then d | n | (ax − b), which implies that

a
d

x = b
d

mod
n
d

.

This has a unique solution x0 modulo n/d, since gcd(a/d, n/d) = 1. Using the definition of
congruence, this implies that x0 is a solution of 10.16. Another implication is that all other solutions
modulo n must have the form

x = x0 + m · n
d

where 0 ≤ m ≤ d − 1.

�

10.5.4 Polynomials

The following theorem plays an important role in secret sharing (see Chapter 13).

THEOREM 10.13 Let p be a prime and f a polynomial. The number of solutions (including repeating
ones) of f (x) = 0 mod p is, at maximum, the degree of f .

PROOF The theorem is trivially satisfied when the number of solutions is zero. If a1 is a solution,
then f (x) = (x − a1)q1(x) + r1(x), where r1(x) is the remainder, i.e., has degree zero. Since p | f (a1)
and p | (a1−a1)q1(a1), r1(x) = 0 mod p. If a1 is a solution of q1(x)obtain, f (x) = (x−a1)

2q′
1(x) mod

p. In general, an f1(x) exists such that f (x) = (x − a1)
h1 f1(x) mod p and f1(a1) �≡ 0 mod p. Clearly,

the degree of f1(x) is m−h1. Suppose that a2 is another solution modulo p, then, f (a2) = (a2 −a1)
h1

f1(a2) = 0 mod p. Since a2 �≡ a1 mod p, Lemma 10.4 implies p | f1(a2), or, in other words,
that f1(a2) mod p. So, using a similar argument as previously, we obtain that f (x) = (x − a1)

h1

(x − a2)
h2 f2(x), where a1 and a2 are solutions of f2(x) = 0. This gives (using induction) the

following:

f (x) =
( l∏

i=1
(x − ai)

hi

)
fl(x),

where fl(x) = 0 mod p has no solutions. This immediately implies the theorem. �

When p is composite, the theorem does not extend, as we will briefly discuss in Section 10.5.7.

10.5.5 Quadratic Residues

DEFINITION 10.12 The set of quadratic residue modulo n is denoted as QRn = {x | ∃y ∈ Z∗
n :

x ≡ y2 mod n}. The set of quadratic nonresidues modulo n is QNRn = Z∗
n \ QRn.

THEOREM 10.14 If p is an odd prime, then |QRp| = |QNRp| = (p − 1)/2.

PROOF First x2 = a mod p has, at maximum, two solutions due to Theorem 10.13. Now, squaring
all elements of Z∗

p and noticing that x2 ≡ (−x)2 mod p, we obtain the result. �
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DEFINITION 10.13 Let p be an odd prime. The Legendre symbol

(
a
p

)
= (a | p) =

⎧⎨
⎩

1 if a ∈ QRp,
−1 if a ∈ QNRp,

0 if a ≡ 0 mod p.

We will now discuss Euler’s criterion.

THEOREM 10.15 Let p be an odd prime. (a | p) = a(p−1)/2 mod p.

PROOF The case a ≡ 0 mod p is trivial, which we will now exclude. If (a | p) = 1, then an integer
x exists such that x2 = a mod p, so a(p−1)/2 = xp−1 = 1 mod p due to Fermat’s little theorem
(Corollary 10.7). Since |QRp| = (p − 1)/2, the polynomial equation

a
p−1

2 = 1 mod p (10.17)

in a has at least (p − 1)/2 solutions (see Theorem 10.14), and using Theorem 10.13, this implies
exactly (p − 1)/2 solutions. So, if a(p−1)/2 = 1 mod p, then (a | p) = 1.

Similarly, using Fermat’s little theorem, the equation

ap−1 − 1 = 0 mod p (10.18)

in a has exactly p−1 solutions. Now ap−1−1 = (a(p−1)/2−1)(a(p−1)/2+1). So, the (p−1)/2 solutions
of 10.18 that are not solutions of 10.17 must be the solutions of the equation (a(p−1)/2+1) = 0 mod p.
Since |QNRp| = (p−1)/2, and all solutions of 10.17 are quadratic residues, we have for all a ∈ QNRp
that (a(p−1)/2 + 1) = 0 mod p. �

COROLLARY 10.10 If p is an odd prime, then (a | p) · (b | p) = (a · b | p).

COROLLARY 10.11 If p is an odd prime, then (−1 | p) = (−1)
p−1

2 .

We now discuss Gauss’ lemma.

THEOREM 10.16 Let p be an odd prime, n an integer such that p /| n and m the cardinality of
the set

A = {ai | ai = k · n mod p for 1 ≤ k ≤ (p − 1)/2 and p/2 < ai < p}.

Then, (n | p) = (−1)m.

PROOF Let B = {bk | bk = k · n mod p for 1 ≤ k ≤ (p − 1)/2}. We define C = {cj} = B \ A,
and let |C| = l. Observe that for all cj and ai we have that p �= ai + cj, by contradiction. Indeed,
otherwise p | (ai + cj) = (ki + kj)n, which is not possible. Therefore,

⎛
⎝ l∏

j=1

cj

⎞
⎠ ·

( m∏
i=1

(p − ai)

)
=

(
p − 1

2

)
! (10.19)



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C010 Finals Page 17 2009-9-25

Encryption Schemes 10-17

Now, trivially,⎛
⎝ l∏

j=1

cj

⎞
⎠ ·

( m∏
i=1

ai

)
≡

p−1
2∏

k=1

(k · n) =
(

p − 1
2

)
! · (n

p−1
2 ) (mod p). (10.20)

≡ (−1)m ·
(

p − 1
2

)
! (mod p) (10.21)

using 10.19 to obtain the last congruence. So, combining 10.20 and 10.21, we have n(p−1)/2 ≡
(−1)m mod p, which gives the result using Euler’s criterion. �

COROLLARY 10.12 If p is an odd prime, then(
2
p

)
=

{
1 if p ≡ 1 mod 8 or p ≡ 7 mod 8,

−1 if p ≡ 3 mod 8 or p ≡ 5 mod 8.

PROOF It is easy to verify that when n = 2, the set A = {
(p + 3)/4� · 2, . . . , ((p − 1)/2) · 2}.
So, m = (p − 1)/2 − 
p/4�. Let p = 8a + r, where r = 1, 3, 5, or 7. Then, m modulo 2 is respectively
0, 1, 1, and 0. �

Using Gauss’ lemma, one can prove the law of quadratic reciprocity. Since the proof is rather long
(but not complicated), we refer the reader to the literature.

THEOREM 10.17 If p and q are odd distinct primes, we have(
p
q

)
·
(

q
p

)
= (−1)

(p−1)(q−1)
4 .

10.5.6 Jacobi Symbol

DEFINITION 10.14 Let n = ∏h
i=1 pi, where pi are (not necessarily distinct) primes and a an

integer. The Jacobi symbol (a | n) = ∏h
i=1(a | pi). The set Z+1

n = {a ∈ Zn | (a | n) = 1}.

Since 1 = p0, we have that (a | 1) = 1. Also, if n is a prime, it is obvious that the Jacobi symbol
is the same as the Legendre symbol. We will discuss why there is no need to factor n to compute the
Jacobi symbol. The following theorems are useful in this respect.

THEOREM 10.18 The Jacobi symbol has the following properties:

1. If a ≡ b mod n, then (a | n) = (b | n).
2. (a | n) · (a | m) = (a | n · m).
3. (a | n) · (b | n) = (a · b | n).

PROOF These follow immediately from the definition and Corollary 10.10. �
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THEOREM 10.19 When n is an odd positive integer, we have (−1 | n) = (−1)(n−1)/2.

PROOF When a and b are odd, then trivially

(a − 1)/2 + (b − 1)/2 ≡ (ab − 1)/2 mod 2. (10.22)

This allows one to prove by induction that

h∑
i=1

pi − 1
2

≡

( h∏
i=1

pi

)
− 1

2
mod 2. (10.23)

The rest follows from Corollary 10.11. �

THEOREM 10.20 If n is an odd positive integer, then

(
2
n

)
=

{
1 if n ≡ 1 mod 8 or n ≡ 7 mod 8,

−1 if n ≡ 3 mod 8 or n ≡ 5 mod 8.

PROOF It is easy to verify that Corollary 10.12 can be rewritten as (2 | p) = (−1)(p2−1)/8. The
rest of the proof is similar to that of the preceding theorem replacing 10.22 by

(a2 − 1)/8 + (b2 − 1)/8 ≡ (a2b2 − 1)/8 mod 2,

where a and b are odd integers. Note that k(k + 1) is always even. �

THEOREM 10.21 If m and n are odd positive integers and gcd(m, n) = 1, then

(m
n

)
·
( n

m

)
= (−1)

(m−1)(n−1)
4 .

PROOF Let m = ∏k
i=1 pi and n = ∏l

j=1 qj, where pi and qj are primes. From Theorem 10.18,
we have

(m
n

)
·
( n

m

)
=

⎛
⎝ k∏

i=1

l∏
j=1

(
pi

qj

)⎞
⎠ ·

⎛
⎝ k∏

i=1

l∏
j=1

(
qj

pi

)⎞
⎠ =

⎛
⎝ k∏

i=1

l∏
j=1

(
pi

qj

)
·
(

qj

pi

)⎞
⎠

=
k∏

i=1

l∏
j=1

(−1)
(pi−1)(qj−1)

4 = (−1)
(m−1)(n−1)

4

using Theorem 10.17 to obtain the second to the last equation and 10.23 to obtain the last. �

One could wonder whether (a | n) = 1 implies that a ∈ QRn. Before disproving this, we discuss
the Chinese Remainder Theorem.
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10.5.7 Chinese Remainder Theorem

THEOREM 10.22 If gcd(n1, n2) = 1, then the system of equations

x ≡ a1 mod n1 (10.24)

x ≡ a2 mod n2 (10.25)

has exactly one solution modulo n1 · n2.

PROOF Due to 10.24 and the definition of modulo computation, x must have the form x =
a1 + n1 · y for some y. Using 10.25, a1 + n1 · y ≡ a2 mod n2, which has exactly one solution in y
modulo n2. This follows from Corollary 10.5 since gcd(n1, n2) = 1. So, n1y has only one solution
modulo n1 · n2, or x = a1 + n1 · y is unique modulo n1 · n2. �

As an application, we consider the equation x2 = a mod n, where n is the product of two different
primes, p and q. Since p | n | (x2 − a), a solution modulo n is also a solution modulo p (and q
respectively). The Chinese Remainder Theorem tells us that it is sufficient to consider the solutions of
x2 = a mod p and x2 = a mod q, which we now discuss. If (a | p) = 1, then there are two solutions
modulo p; when (a | p) = −1, there are no solutions modulo p; and finally when (a | p) = 0, there
is one solution modulo p. So a ∈ QRn only if (a | p) = 1 and (a | q) = 1, implying that (a | n) = 1.
However, the converse is obviously not true, so (a | n) = 1 does not necessarily imply that a ∈ QRn.

10.5.8 Order of an Element

We describe some general properties of the order of an element.

LEMMA 10.7 Let 〈α〉(·) be a cyclic group of order l, an integer. If αm = 1, then l | m.

PROOF From Theorem 10.1, we have that l is the smallest positive integer for which αl = 1.
Assume that l /| m, then m = ql + r, where 0 < r < l. So, 1 = αm = (αl)q · αr = 1 · αr . So, r is a
smaller positive integer for which αr = 1. So, we have a contradiction. �

LEMMA 10.8 Let K(·) be an Abelian group and α, β ∈ K with k = ord(α) and l = ord(β). If
gcd(k, l) = 1, then ord(α · β) = ord(α) · ord(β).

PROOF Let us call m the order of α · β. Since (αβ)m = 1, we have αm = β−m. This implies
that αlm = β−lm = (βl)−m = 1 and β−km = (αk)m = 1. Using Lemma 10.7, we obtain that k | lm
and respectively l | km. Since gcd(k, l) = 1, this implies that k | m and l | m, and so, kl | m. Now,
trivially, (αβ)kl = 1. Using Lemma 10.7, this implies that kl must be the order of αβ. �

THEOREM 10.23 Let K(·) be an Abelian group and let

m = max
α∈K

(ord(α)).

We have that ∀β ∈ K : ord(β) | m.
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PROOF We prove this by contradiction. When β = 1, the identity, the result is trivial. We now
assume that β �= 1. Let d = ord(β) and suppose that d /| m. Then, a prime p and an integer e ≥ 1
exit such that pe | d, pe /| m, but pe−1 | m. It is easy to verify that when ord(α) = m we have that
ord(αpe−1

) = m/(pe−1) and that ord(βd/pe
) = pe. Since gcd(m/(pe−1), pe) = 1, Lemma 10.8 implies

that ord(αpe−1 · βd/pe
) = m · p, which is larger than m. So, we obtain a contradiction. �

DEFINITION 10.15 The exponent, exp(K), of a finite group K is the smallest positive integer such
that ∀β ∈ K : βexp(K) = 1.

COROLLARY 10.13 When K is a finite Abelian group, then exp(K) = maxα∈K(ord(α)).

The following theorem is used to prove that Z∗
p , where p is prime, is a cyclic group.

THEOREM 10.24 Let K be a finite Abelian group. K is cyclic if and only if exp(K) = |K|.

PROOF First, if K = 〈α〉, then |K| = ord(α), so exp(K) = |K|. Second, let K be a finite Abelian
group such that exp(K) = |K|. By Corollary 10.13, an element α exists such that exp(K) = ord(α).
Since exp(K) = |K|, we have that |K| = ord(α) = |〈α〉|, implying that K is cyclic. �

10.5.9 Primitive Elements

Before proving that Z∗
p (p is a prime) is a cyclic group, we will define a primitive element.

DEFINITION 10.16 If the order of α in the group Z∗
n is φ(n), then we say that α is a primitive

element of Z∗
n , or a primitive root modn, or a generator of Z∗

n .

So, when Z∗
n has a primitive element, the group is cyclic.

THEOREM 10.25 If p is prime, Z∗
p is cyclic.

PROOF Due to Fermat’s little theorem (Corollary 10.7), we have that ∀a ∈ Z∗
p : a|Z∗

p | = 1. So
exp(Z∗

p) ≤ |Z∗
p |. By the definition of the exponent of a group, all elements of Z∗

p satisfy the equation
xexp(Z∗

p ) −1 = 0. Now by Theorem 10.13, this equation has at most exp(Z∗
p) solutions in Zp, therefore

at most exp(Z∗
p) solutions in Z∗

p . So, |Z∗
p | ≤ exp(Z∗

p). Since these results imply |Z∗
p | = exp(Z∗

p), using
Theorem 10.24, the theorem is proven. �

To prove that Zpe is cyclic when p is an odd prime, we use the following lemma.

LEMMA 10.9 When p is an odd prime, a primitive root g mod p exists such that for all integers
e > 1:

gφ(pe−1) �≡ 1 mod pe. (10.26)
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PROOF We will start with the case where e = 2. If g is a primitive root modp which satisfies
10.26, then there is nothing to prove. Else, when gφ(pe−1) = 1 mod p2, we choose g0 = g +p (modulo
p) as a primitive element. Now, using Theorem 10.11,

(g0)
φ(pe−1) ≡ (g + p)p−1 ≡

p−1∑
i=0

(
p − 1

i

)
pigp−1−i ≡ 1 + (p − 1)pgp−2 + 0 �≡ 1(mod p2),

satisfying 10.26. So, we assume from now on that g satisfies 10.26 when e = 2.
The case e > 2 is proven by induction. We will assume that 10.26, up to e ≥ 2, has been proven.

Due to Euler–Fermat’s theorem, gφ(pe−1) ≡ 1 mod pe−1, or

gφ(pe−1) = 1 + lpe−1,

for an integer l. Due to our assumption, p /| l. Since e ≥ 2, φ(pe) = pφ(pe−1). So,

gφ(p(e−1)+1) = (1+ lpe−1)p =
p∑

i=0

(
p
i

)
lipi(e−1) = 1+plpe−1 + p(p − 1)

2
l2p2(e−1)+rp3(e−1), (10.27)

for some integer r. Since p is odd, we have that 2 | (p − 1). This implies pe+1 | p(p − 1)p2(e−1)/2,
since e + 1 ≤ 2e − 1 when e ≥ 2. Also, e + 1 ≤ 3e − 3 when e ≥ 2. So, modulo pe+1 Equation 10.27
becomes

gφ(pe) ≡ 1 + lpe �≡ 1 mod pe+1.

�

THEOREM 10.26 When p is an odd prime and e ≥ 1 is an integer, Zpe is cyclic.

PROOF The case e = 1 was proven in Theorem 10.25. When e ≥ 2, we consider a g satisfying
the conditions in Lemma 10.9 and call k the order of g modulo pe. Since g is a primitive root
modulo p, p − 1 | k, so k = m(p − 1). From Euler–Fermat’s theorem k | φ(pe), it is implying that
m | pe−1, or m = ps. So, k = (p − 1)ps. Now, s = e − 1, otherwise we have a contradiction with
Lemma 10.9. �

DEFINITION 10.17 The Carmichael function λ(n) = exp(Z∗
n).

THEOREM 10.27 We have that

λ(2k) =
{

2k−1 if k < 3
2k−2 if k ≥ 3

PROOF It is easy to verify that 1 and 3 are primitive roots modulo 2 and 4, respectively. When
k ≥ 3, we prove by induction that

∀a ∈ Z∗
2k : a2k−2 = 1 mod 2k. (10.28)

First, if k = 3, then 2k−2 = 2. Now all a are odd, and a2 = (2l +1)2 = 4l(l +1)+1, for some l. Since
l(l + 1) is even, a2 = 1 mod 8. We will now assume that 10.28 is valid for k. This implies that for all
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odd integers a2k−2 = 1+q2k, and squaring both sides gives a2k−1 = 1+q2k+1+q222k ≡ 1 mod 2k+1.
So, when k ≥ 3 and a ∈ Z2k , then ord(a) | 2k−2. We now need to prove that an a ∈ Z∗

2k exists for

which ord(a) = 2k−2. We take a = 3 and need to prove that 32k−3 �≡ 1 mod 2k. Using 10.28 instead
of the Euler–Fermat theorem, the last part of the proof of Lemma 10.9 can easily be adapted to prove
the claim, and this is left as an exercise. �

The Chinese Remainder Theorem implies the following corollary.

COROLLARY 10.14 If n = 2a0 pa1
1 · · · pak

k , where pi are different odd primes, then

λ(n) = lcm(λ(2a0), φ(pa1
1 ), . . . , φ(pak

k )).

COROLLARY 10.15 When n is the product of two different odd primes, as in RSA, Z∗
n is not cyclic.

10.5.10 Lagrange Theorem

The following theorem is well known in elementary algebra.

THEOREM 10.28 The order of a subgroup H of a finite group G is a factor of the order of G.

PROOF Define the left coset of x ∈ G relative to the subgroup H as Hx = {hx | h ∈ H}. First,
any two cosets, let us say Hx and Hy, have the same cardinality. Indeed, the map mapping a ∈ Hx
to ax−1y is a bijection. Second, these cosets partition G. Obviously, a coset is not empty and any
element a ∈ G belongs to the coset Ha. Suppose now that b belongs to two different cosets Hx
and Hy, then b = h1x, h1 ∈ H and b = h2y, where h2 ∈ H. But then y = h−1

2 h1x, so y ∈ Hx.
Then any element z ∈ Hy will also belong to Hx, since z = hy for some h ∈ H. So, we have a
contradiction. Since each coset has the same cardinality and they form a partition, the result follows
immediately. �

10.6 Computational Number Theory: Part 2

10.6.1 Computing the Jacobi Symbol

Theorems 10.18–10.21 can easily be used to adapt the Euclidean algorithm to compute the Jacobi
symbol.

Input declaration: integers a, n, where 0 ≤ a < n
Output declaration: (a | n)

function Jacobi(a, n)

begin

if n = 1
then Jacobi := 1
else if a = 0

then Jacobi := 0
else if a = 1
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then Jacobi := 1
else if a is even

then if (n ≡ 3 mod 8) or (n ≡ 5 mod 8)
then Jacobi := −Jacobi(a/2 mod n, n)

else Jacobi := Jacobi(a/2 mod n, n)

else if n is even
then Jacobi := Jacobi(a mod 2, 2) · Jacobi(a mod n/2, n/2)

else if (a ≡ 3 mod 4) and (n ≡ 3 mod 4)
then Jacobi := −Jacobi(n mod a, a)

else Jacobi := Jacobi(n mod a, a)

end

Note that if a ≥ n then (a | n) = (a mod n | n). The proof of correctness, the analysis of the
algorithm, and a non-recursive version are left as exercises.

10.6.2 Selecting a Prime

The methods used to select a (uniform random) prime of a certain length consist in choosing a
(uniformly random) positive integer of a certain length and then testing whether the number is a
prime. There are several methods to test whether a number is a prime. Since the research on this
topic is so extensive, it is worth a book in itself. We will, therefore, limit our discussion.

Primality testing belongs to NP ∩ co − NP as proven by Pratt [32]. In 2004, it was proven that
the problem is in P [1], which was an unexpected result. The algorithm is unfortunately not very
practical. In most applications in cryptography, it is sufficient to know that a number is likely a
prime. We distinguish two types of primality tests, depending on who chooses the prime. We will
first discuss the case where the user of the prime chooses it.

10.6.2.1 Fermat Pseudoprimes

We will start by discussing primality tests where the user chooses a uniformly random number of
a certain length and tests for primality. In this case, a Fermat pseudoprime test is sufficient. The
contrapositive of Fermat’s little theorem (see Corollary 10.7) tells us that if a number is composite,
a witness a �≡ 0 mod n exists such that an−1 �≡ 1 mod n, and then n is composite. A number n
is called a Fermat pseudoprime to the base a if an−1 �≡ 1 mod n. Although all primes are Fermat
pseudoprimes, unfortunately, not all pseudoprimes are necessarily primes. The Carmichael numbers
are composite numbers but have the property that for all a ∈ Z∗

n : an−1 = 1 mod n. In other words,
that λ(n) | n − 1. It is easy to verify that n = 3 ∗ 11 ∗ 17 satisfies this. Alford et al. [3] showed that
there are infinitely many Carmichael numbers. We will use the following result.

THEOREM 10.29 If n is a Carmichael number, then n is odd and squarefree.

PROOF 2 is not a Carmichael number and if n > 2, then 2 | λ(n). Since n is a Carmichael
number, λ(n) | n − 1, so n is odd. Suppose now that p2 | n, where p is a prime. Since p �= 2, using
Corollary 10.14, we have that p | λ(n). This implies that p | n − 1, since λ(n) | n − 1. Now, p | n and
p | n − 1, implying that p | 1, which is a contradiction. �

In the case, where an odd number n is chosen uniformly random among those of a given length
and one uses Fermat’s primality test with a = 2, the probability that the obtained number is not a
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prime is sufficiently small for cryptographic applications. However, if the number n is not chosen by
the user and is given by an outsider, Fermat’s test makes no sense due to the existence of Carmichael
numbers, which the outsider could choose. We will now discuss how to check whether a number
given by an outsider is likely to be a prime.

10.6.2.2 Probabilistic Primality Tests

We will now describe the Solovay–Strassen algorithm in which the probability of receiving an
incorrect statement that a composite n is prime can be made sufficiently small for each number n.
The algorithm was also independently discovered by D. H. Lehmer.

We will assume that using a function call to Random, with input n, outputs a natural number a
with a uniform distribution such that 1 ≤ a < n.

Input declaration: an odd integer n > 2.
Output declaration: element of {likely-prime, composite}
function Solovay-Strassen(n)

begin
a := Random(n); (so, 1 ≤ a ≤ n − 1)
if gcd(a, n) �= 1, then Solovay–Strassen:=composite

else if (a | n) �≡ a
n−1

2 mod n, then Solovay–Strassen:=composite
else Solovay–Strassen:=likely-prime

end

To discuss how good this algorithm is, we first introduce the set

E(n) = {a ∈ Z∗
n | (a | n) ≡ a

n−1
2 mod n}.

LEMMA 10.10 Let n ≥ 3 be an odd integer. We have that n is prime if and only if E(n) = Z∗
n .

PROOF If n is an odd prime, the claim follows directly from Euler’s criterion (Theorem 10.15).
We prove the converse using a contradiction. So, we assume that n is composite and E(n) = Z∗

n ,
which implies (by squaring) that ∀a ∈ Z∗

n : an−1 ≡ 1 mod n. Thus, n is a Carmichael number,
implying that n is squarefree (see Theorem 10.29). So, n = pr, where p is a prime and gcd(p, r) = 1. Let
b be a quadratic nonresidue modulo p and a ≡ b mod p and a ≡ 1 mod r. Now, from Theorem 10.18,
(a | n) = (a | p)(a | r) = (b | p) = −1. Thus, due to our assumption, a(n−1)/2 = −1 mod n,
implying that a(n−1)/2 = −1 mod r, since r | n | (a(n−1)/2 + 1). This contradicts with the choice of
a ≡ 1 mod r. �

THEOREM 10.30 If n is an odd prime, then Solovay–Strassen(n) returns likely-prime. If n is an odd
composite, then Solovay–Strassen(n) returns likely-prime with a probability less or equal to 1/2.

PROOF The first part follows from Corollary 10.4 and Theorem 10.15. To prove the second part,
we use Lemma 10.10. It implies that E(n) �= Z∗

n . So, since E(n) is a subgroup of Z∗
n , as is easy to

verify E(n), it is a proper subgroup. Applying Lagrange’s theorem (see Theorem 10.28) implies that
|E(n)| ≤ |Z∗

n|/2 = φ(n)/2 ≤ (n − 1)/2, which implies the theorem. �
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It is easy to verify that the protocol runs in expected polynomial time. If, when running the
Solovay–Strassen algorithm k times for a given integer n, it returns each time likely-prime, then the
probability that n is composite is, at maximum, 2−k.

It should be observed that the Miller–Rabin primality test algorithm has an even smaller probability
of making a mistake.

10.6.3 Selecting an Element with a Larger Order

We will discuss how to select an element of large order in Z∗
p , where p a prime. On the basis of

the Chinese Remainder Theorem, Pohlig–Hellman [30] proved that if p − 1 has only small prime
factors, it is easy to compute the discrete logarithm in Z∗

p . Even if p − 1 has one large prime factor,
uniformly picking a random element will not necessarily imply that it has (with high probability)
a high order. Therefore, we will discuss how one can generate a primitive element when the prime
factorization of p − 1 is given. The algorithm follows immediately from the following theorem.

THEOREM 10.31 If p is a prime, then an integer a exists such that

for all primes q | p − 1, we have a
p−1

q �≡ 1 mod p. (10.29)

Such an element a is a primitive root modulo p.

PROOF A primitive element must satisfy 10.29 and exists due to Theorem 10.25. We now prove,
using a contradiction, that an element satisfying 10.29 must be a primitive element. Let l = ord(a)

modulo p. First, Lemma 10.7 implies that l | p − 1. So, when p − 1 = ∏m
i=1 qbi

i , where qi are different
primes and bi ≥ 1, then l = ∏m

i=1 qci
i , where ci ≤ bi. Suppose cj < bj, then a(p−1)/qj ≡ 1 mod p,

which is a contradiction. �

As in the Solovay–Strassen algorithm, we will use a random generator.

Input declaration: a prime p and the prime factorization of p − 1 = ∏m
i=1 qbi

i
Output declaration: a primitive root modulo p

function generator(p)

begin
repeat

generator:=Random(p); (so, 1 ≤ generator ≤ p − 1)
until for all qi (generator)(p−1)/qi �= 1 mod p
end

The expected running time follows from the following theorem.

THEOREM 10.32 Z∗
p , where p a prime, has φ(p − 1) different generators.

PROOF Theorem 10.25 says that there is at least one primitive root. Assume that g is a primitive
root modulo p and let a ∈ Z∗

p−1. Then an element b = a−1 mod p−1 exists, so ab = k(p−1)+1. We
claim that h = ga mod p is a primitive root. Indeed, hb = gab = gk(p−1)+1 = g mod p. Therefore,
any element gi = hbi mod p. So, we have proven that there are at least φ(p − 1) primitive roots.
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Now if d = gcd(a, n) �= 1, then h = ga mod p cannot be a generator. Indeed, if h is the generator,
then hx = 1 mod p implies that x ≡ 0 mod p − 1. Now, hx = gax = 1 mod p, or ax = 0 mod p − 1,
which has only gcd(a, p − 1) incongruent solutions modulo p − 1 (see Theorem 10.12). �

This algorithm can easily be adapted to construct an element of a given order. This is important
in the DSS signature scheme. A variant of this algorithm allows one to prove that p is a prime.

10.6.4 Other Algorithms

We have only discussed computational algorithms needed to explain the encryption schemes
explained in this chapter. However, so much research has been done in the area of computa-
tional number theory, that a series of books are necessary to give a decent, up-to-date description of
the area. For example, we did not discuss an algorithm to compute square roots, nor did we discuss
algorithms used to cryptanalyze cryptosystems, such as algorithms to factor integers and to compute
discrete logarithms. It is the progress on these algorithms and their implementations that dictates
the size of the numbers one needs to choose to obtain a decent security.

10.7 Security Issues

To truly estimate the security of public key systems, the area of computational complexity has to
advance significantly. In its early stages of public key encryption, heuristic security (see Chapter 9)
was used. Today, proven secure public key encryption schemes have been proposed. We briefly
discuss the concepts of probabilistic encryption and semantic security, concepts that played major
roles in the work on proven secure public key encryption. We then briefly survey the research
on security against chosen text attacks. We briefly mention the work on proven secure hybrid
encryption.

10.7.1 Probabilistic Encryption

10.7.1.1 Introduction

There is the following problem with the use of the first public key encryption schemes, as these were
described originally. When resending the same message to a receiver, the corresponding ciphertext
will be identical. This problem arises in particular when the message is short or when the uncertainty
of the message (entropy) is low. When taking, for example, what is called today textbook RSA, the
ciphertext C = Me mod n only depends on the message, and so suffers from this problem.

The idea of probabilistic encryption is also to use randomness to avoid this. The first such public
key scheme was the Goldwasser–Micali probabilistic encryption scheme. Although it is not very
practical, its historical contribution is too significant to be ignored.

10.7.1.2 Generating a Public Key in Goldwasser–Micali

When Alice wants to generate her public key, she first selects (randomly) two primes p and q of
equal binary length. She computes n = p · q. Then she repeats choosing a random element y until
(y | n) = 1 and y ∈ QNRn. Knowing the prime factorization of n, the generation of such a y will
take expected polynomial time. She then publishes (n, y) as her public key.

Note that if p ≡ q ≡ 3 mod 4, y = −1 is such a number since (−1 | p) = (−1 | q) = −1, which
is due to Corollary 10.11.
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10.7.1.3 Encryption in Goldwasser–Micali

To encrypt a bit b, the sender uniformly chooses an r ∈ Z∗
n and sends c = ybr2 mod n as ciphertext.

10.7.1.4 Decryption in Goldwasser–Micali

To decrypt, Alice sets b = 0 if (c | p) = 1. If, however, (c | p) = −1, then b = 1. Due to
Corollary 10.10, the decryption is correct.

10.7.2 Semantic Security

As discussed in Section 9.3.3, we must first model formally what security means. In the context
of public key encryption, the weakest level of security usually studied is called semantic security.
Basically, it requires that no polynomial time algorithm exists which can distinguish the encryptions
of a string x from these of a string y of the same length (polynomial in the security parameter)
substantially better than guessing. For a formal definition, see [18,19].

One can prove that the Goldwasser–Micali scheme is sematically secure if it is hard to decide
whether a number a ∈ Z+1

n is a quadratic residue or not.
A practical problem with the Goldwasser–Micali scheme is the huge ciphertext expansion, i.e.,

the ciphertext is |n| longer than the plaintext! Although no security proof was originally provided
for the much more practical ElGamal encryption scheme (see Section 10.3.1), it is not too difficult to
prove that it is semantically secure assuming the difficulty of the Decisional Diffie–Hellman problem.
Although the problem finds its origin in the context of secure key exchange (or key agreement), it is
one of the corner stones of making proven secure cryptosystems more practical. It assumes that no
computer algorithm can distinguish in expected polynomial time between the choice of (ga, gb, gab)
and (ga, gb, gc), where a, b, and c are chosen uniformly random modulo ord(g), where, e.g., ord(g)

is a prime.

10.7.3 Security against Chosen Ciphertexts

In several circumstances, semantic security alone does not guarantee an acceptable level of security
against a sophisticated attack, as discussed in Section 9.2.3. Although proven secure public key
encryption schemes were designed early on [28,34], one had to wait till 1998 for a rather practical
scheme [14]. Although this scheme is substantially faster than earlier work, it is still more than twice
as slow as ElGamal. For this reason, the scheme is not used in practice.

An approach dating back to the early days of public key encryption is the use of hybrid encryption.
The basic idea is that a public key encryption scheme is only used to send a session key, chosen
by the sender. A conventional encryption scheme is then used to send the actual message. The key
of the conventional encryption is the session key sent using the public key encryption algorithm.
Decryption is straightforward. Shoup [36] was the first to study how to use and adapt hybrid
encryption in a way to achieve a proven secure approach (see also [15]). Their solution relies
on underlying public key and conventional cryptosystems that are both secure against (adaptive)
chosen ciphertext attacks. In 2004, it was shown that this condition can be relaxed, leading to faster
schemes [25].

The above solutions to achieve proven security are based on the standard model, which is essentially
using classical reduction proofs from computational complexity theory. An alternative approach is
to use what has been called a random oracle. Recently, this approach has been found to be potentially
flawed [12], although no practical schemes have been broken this way (so far). OAEP (Optimal
Asymmetric Encryption Padding) [8] is a method to convert a deterministic scheme (such as RSA)
to a probabilistic one (see also [17,37]). Its security relies on the more controversial random oracle.
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10.8 Research Issues and Summary

This chapter surveyed some modern public key encryption schemes and the number theory and
computational number theory required to understand these schemes. Public key schemes used in
practice seem to be based on the discrete logarithm problem and the integer factorization problem.
However, no proofs have been provided linking these actual assumptions to the actual cryptosystems.
Proven secure encryption schemes (public key and hybrid) have come a long way in the last 25 years.
Such schemes, today, are not widely used, although these are only a constant factor slower than
the practical ones. The many years of research on this topic will only pay off when the speed ratio
between heuristic schemes and proven secure ones (under the standard model) becomes close to 1.
Although the adaptation of AES was a major success for academia (see Chapter 9), proven secure
conventional encryption is still in its infancy.

The problem of making new public key encryption schemes that are secure and significantly faster
than surveyed remains an important issue. Many researchers have addressed this and have usually
been unsuccessful.

10.9 Further Information

The Further Information section in the previous chapter discusses information on public key encryp-
tion schemes.

The number theory required to understand modern public key systems can be found in many
books on number theory such as [4,13,20,21,26] and the algebra in [9,10,22,23]. These books discuss
detailed proofs of the law of quadratic reciprocity (Theorem 10.17).

More information on computational number theory, also called algorithmic number theory, can
be found in the book by Bach and Shallit [6] (see also [2,7,11,29]). In the first volume, the authors
have discussed number theoretical problems that can be solved in (expected) polynomial time. In the
forthcoming second volume, they will discuss the number theoretical problems that are considered
intractable today. For primality testing consult [3,27,33,38] and for factoring related work, e.g., [5,31].
Knuth’s book on seminumerical algorithms [24] is a worthy reference book. ANTS (Algorithmic
Number Theory Symposium) is a conference that takes place every two years. The proceedings of
the conferences are published in the Lecture Notes in Computer Science (Springer-Verlag). Results
on the topic have also appeared in a wide range of conferences and journals, such as FOCS and
STOC.

Defining Terms

Composite: An integer with at least three different positive divisors.
Congruent: Two numbers a and b are congruent modulo c if they have the same non-negative
remainder after division by c.
Cyclic group: A group that can be generated by one element, i.e., all elements are powers of that one
element.
Discrete logarithm problem: Given α and β in a group, the discrete logarithm decision problem is
to decide whether β is a power of α in that group. The discrete logarithm search problem is to find
what this power is (if it exists).
Integer factorization problem: Is to find a nontrivial divisor of a given integer.
Order of an element: Is the smallest positive integer such that the element raised to this integer is
the identity element.
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Prime: An integer with exactly two different positive divisors, namely 1 and itself.
Primitive element: An element that generates all the elements of the group, in particular of the
group of integers modulo a given prime.
Pseudoprime: An integer, not necessarily prime, that passes some test.
Quadratic nonresidue modulo n: Is an integer relatively prime to n, which is not congruent to a
square modulo n.
Quadratic residue modulo n: Is an integer relatively prime to n, which is congruent to a square
modulo n.
Random oracle: Is an assumption which states that some function (such as hash function) behaves
as (is indistinguishable) from a true random function (a function chosen uniformly random).
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11.1 Introduction

A cipher is a secret way of writing in which plaintext is enciphered into ciphertext under the
control of a key. Those who know the key can easily decipher the ciphertext back into the plaintext.
Cryptanalysis is the study of breaking ciphers, that is, finding the key or converting the ciphertext
into the plaintext without knowing the key.

For a given cipher, key, and plaintext, let M, C, and K denote the plaintext, the corresponding
ciphertext, and the key, respectively. If EK and DK represent the enciphering and deciphering
functions when the key is K, then we may write C = EK(M) and M = DK(C). For all M and K, we
must have DK(EK(M)) = M.

There are four kinds of cryptanalytic attacks. All four kinds assume that the forms of the enci-
phering and deciphering functions are known.

1. Ciphertext only: Given C, find K or at least M for which C = EK(M).
2. Known plaintext: Given M and the corresponding C, find K for which C = EK(M).
3. Chosen plaintext: The cryptanalyst may choose M. He is told C and must find K for

which C = EK(M).
4. Chosen ciphertext: The cryptanalyst may choose C. He is told M and must find K for

which C = EK(M).
The ciphertext only attack is hardest. To carry it out, one may exploit knowledge of the language

of the plaintext, its redundancy, or its common words.

11-1
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An obvious known plaintext attack is to try all possible keys K and stop when one is found with
C = EK(M). This is feasible only when the number of possible keys is small.

The chosen plaintext and ciphertext attacks may be possible when the enemy can be tricked into
enciphering or deciphering some text or after the capture of a cryptographic chip with an embedded,
unreadable key.

The cryptanalyst has a priori information about the plaintext. For example, he knows that a string
like “the” is more probable than the string “wqx.” One goal of cryptanalysis is to modify the a priori
probability distribution of possible plaintexts to make the correct plaintext more probable than the
incorrect ones, although not necessarily certain. Shannon’s [Sha49] information theory is used to
formalize this process. It estimates, for example, the unicity distance of a cipher, which is the shortest
length of the ciphertext needed to make the correct plaintext more probable than the incorrect ones.

11.2 Types of Ciphers

There is no general method of attack on all ciphers. There are many ad hoc methods which work on
just one cipher or, at best, one type of cipher. We will list some of the kinds of ciphers and describe
what methods one might use to break them. In the later sections, we will describe some of the more
sophisticated methods of cryptanalysis.

Ciphers may be classified as transposition ciphers, substitution ciphers, or product ciphers.
Transposition ciphers rearrange the characters of the plaintext to form the ciphertext. For example,

enciphering may consist of writing the plaintext into a matrix row-wise and reading out the ciphertext
column-wise. More generally, one may split the plaintext into blocks of fixed length L and encipher
by applying a given permutation, the key, to each block. It is easy to recognize transposition ciphers,
because the frequency distribution of ciphertext letters is the same as the usual distribution of letters
in the language of the plaintext. One may guess the period length L from the message length and the
spacing between repeated strings. Once L is guessed, the permutation may be constructed by trial
and error using the frequency distribution of pairs or triples of letters.

In a simple substitution cipher, the key is a fixed permutation of the alphabet. The ciphertext is
formed from the plaintext by replacing each letter by its image under the permutation. These ciphers
are broken by trial and error, comparing the frequency distribution of the ciphertext letters with that
of the plaintext letters. For example, “e” is the most common letter in English. Therefore, the most
frequent ciphertext letter is probably the image of “e.” The frequency distribution of pairs or triples
of letters helps, too. The pair “th” is common in English. Hence, a pair of letters with high frequency
in the ciphertext might be the image of “th.”

A homophonic substitution cipher uses a ciphertext alphabet larger than the plaintext alphabet,
to confound the frequency analysis just described. The key is an assignment of each plaintext letter
to a subset of the ciphertext alphabet, called the homophones of the plaintext letter. The homo-
phones of different letters are disjoint sets, and the size of the homophone set is often proportional
to the frequency of the corresponding letter in an ordinary plaintext. Thus, “e” would have the
largest homophone set. Plaintext is enciphered by replacing each letter by a random element of its
homophone set. As a result, a frequency analysis of single ciphertext letters will find that they have
a uniform distribution, which is useless for cryptanalysis. Homophonic substitution ciphers may be
broken by analysis of the frequency distribution of pairs and triples of letters.

Polyalphabetic substitution ciphers use multiple permutations (called alphabets) of the plaintext
alphabet onto the ciphertext alphabet. The key is a description of these permutations. If the per-
mutations repeat in a certain sequence, as in the Beaufort and Vigenère ciphers, one may break the
cipher by first determining the number d of different alphabets and then solving d interleaved simple
substitution ciphers. Either the Kasiski method or the index of coincidence may be used to find d.
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The Kasiski method looks for repeated ciphertext strings with the hope that they may be encipher-
ments of the same plaintext word which occurs each time at the same place in the cycle of alphabets.
For example, if the ciphertext “wqx” occurs twice, starting in positions i and j, then probably d
divides j − i. When several repeated pairs are found, d may be the greatest common divisor of a
subset of the differences in their starting points.

The index of coincidence (IC) (see Friedman [Fri76]) measures frequency variations of letters to
estimate the size of d. Let {a1, . . . , an} be the alphabet (plaintext or ciphertext). For 1 ≤ i ≤ n, let Fi
be the frequency of occurrence of ai in a ciphertext of length N. The IC is given by the formula

IC =
(

N
2

)−1 n∑
i=1

(
Fi

2

)
.

Then, IC is the probability that two letters chosen at random in the ciphertext are the same letter.
One can estimate IC theoretically in terms of d, N, and the usual frequency distribution of letters in
plaintext. For English, n = 26, and the expected value of IC is

1
d

(
N − d
N − 1

)
(0.066) +

(
d − 1

d

) (
N

N − 1

)
1

26
.

One estimates d by comparing IC, computed from the ciphertext, with its expected value for
various d.

These two methods of finding d often complement each other in that the IC tells the approximate
size of d, while the Kasiski method gives a number that d divides. For example, the IC may suggest
that d is 5, 6, or 7, and the Kasiski method may predict that d probably divides 12. In this case, d = 6.

Rotor machines, like the German Enigma and Hagelin machines, are hardware devices which
implement polyalphabetic substitution ciphers with very long periods d. They can be cryptana-
lyzed using group theory (see Barker [Bar77], Kahn [Kah67], and Konheim [Kon81]). The UNIX
crypt(1) command uses a similar cipher. See Reeds and Weinberger [RW84] for its cryptanalysis.

A one-time pad is a polyalphabetic substitution cipher whose alphabets do not repeat. They are
selected by a random sequence which is the key. The key is as long as the plaintext. If the key
sequence is truly random and if it is used only once, then this cipher is unbreakable. However, if
the key sequence is itself an ordinary text, as in a running-key cipher, the cipher can be broken by
frequency analysis, beginning with the assumption that usually in each position both the plaintext
letter and key letter are letters which occur with high frequency. Frequency analysis also works when
a key is reused to encipher a second message. In this case, one assumes that in each position the
plaintext letters from both messages are letters which occur with high frequency.

A polygram substitution cipher enciphers a block of several letters together to prevent frequency
analysis. For example, the Playfair cipher enciphers pairs of plaintext letters into pairs of ciphertext
letters. It may be broken by analyzing the frequency of pairs of ciphertext letters (see Hitt [Hit18]
for details). The Hill cipher treats a block of plaintext or ciphertext letters as a vector and enciphers
by matrix multiplication. If the vector dimension is two or three, then the cipher may be broken by
frequency analysis of pairs or triples of letters. A known plaintext attack on a Hill cipher is an easy
exercise in linear algebra. (Compare with linear feedback shift registers in the next section.)

The Pohlig–Hellman cipher and most public key ciphers are polygram substitution ciphers with
a block length of several hundred characters. The domain and range of the substitution mapping are
so large that the key must be a compact description of this function, such as exponentiation modulo
a large number (see Sections 11.7 through 11.10 for cryptanalysis of such ciphers).

A product cipher is a cipher formed by composing several transposition and substitution ciphers.
A classic example is the data encryption standard (DES), which alternates transposition and substi-
tution ciphers in 16 rounds (see Diffie and Hellman [DH77] for general cryptanalysis of DES and
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Section 11.5 for a powerful attack on DES and similar product ciphers). The advanced encryption
standard (AES) is another product cipher discussed subsequently.

Ciphers are also classified as block or stream ciphers. All ciphers split long messages into blocks
and encipher each block separately. Block sizes range from one bit to thousands of bits per block.

A block cipher enciphers each block with the same key.
A stream cipher has a sequence or stream of keys and enciphers each block with the next key.

The key stream may be periodic, as in the Vigenère cipher or a linear feedback shift register, or not
periodic, as in a one-time pad. Ciphertext is often formed in stream ciphers by exclusive-oring the
plaintext with the key.

11.3 Linear Feedback Shift Registers

A linear feedback shift register is a device which generates a key stream for a stream cipher. It consists
of an n-bit shift register and an XOR gate. Let the shift register hold the vector R = (r0, r1, . . . , rn−1).
The inputs to the XOR gate are several bits selected (tapped) from fixed bit positions in the register.
Let the 1 bits in the vector T = (t0, t1, . . . , tn−1) specify the tapped bit positions. Then the output
of the XOR gate is the scalar product TR = ∑n−1

i=0 tiri mod 2, and this bit is shifted into the shift
register. Let R′ = (r′

0, r′
1, . . . , r′

n−1) be the contents of the register after the shift. Then r′
i = ri−1 for

1 ≤ i < n and r′
0 = TR. In other words, R′ ≡ HR mod 2, where H is the n × n matrix with T as its

first row, 1s just below the main diagonal and 0s elsewhere.

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

t0 t1 . . . tn−2 tn−1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

The bit rn−1 is shifted out of the register and into the key stream. One can choose T so that the
period of the bit stream is 2n − 1, which is the maximum possible period. If n is a few thousand, this
length may make the cipher to appear secure, but the linearity makes it easy to break.

Suppose 2n consecutive key bits k0, . . . , k2n−1 are known. Let X and Y be the n × n matrices

X =

⎛
⎜⎜⎜⎝

kn−1 kn . . . k2n−2
kn−2 kn−1 . . . k2n−3

...
...

. . .
...

k0 k1 . . . kn−1

⎞
⎟⎟⎟⎠

Y =

⎛
⎜⎜⎜⎝

kn kn+1 . . . k2n−1
kn−1 kn . . . k2n−2

...
...

. . .
...

k1 k2 . . . kn

⎞
⎟⎟⎟⎠

It follows from R′ ≡ HR mod 2 that Y ≡ HX mod 2, so H may be computed from H ≡ YX−1 mod 2.
The inverse matrix X−1 mod 2 is easy to compute by Gaussian elimination or by the Berlekamp-
Massey algorithm for n up to at least 105. The tap vector T is the first row of H, and the initial
contents R of the shift register are (kn−1, . . . , k0).

See Ding et al. [DXS91] for more information about linear feedback shift registers and variations
of them.
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11.4 Meet in the Middle Attacks

One might think that a way to make block ciphers more secure is to use them twice with different
keys. If the key length is n bits, a brute force known plaintext attack on the basic block cipher would
take up to 2n encryptions. It might appear that the double encryption C = EK2(EK1(M)), where K1
and K2 are independent n-bit keys, which would take up to 22n encryptions to find the two keys. The
meet-in-the-middle attack is a known plaintext attack which trades time for memory and breaks
the double cipher using only about 2n+1 encryptions and space to store 2n blocks and keys. Let M1
and M2 be two known plaintexts, and let C1 and C2 be the corresponding ciphertexts. (A third pair
may be needed.) For each possible key K, store the pair (K, EK(M1)) in a file. Sort the 2n pairs by
second component. For each possible key K, compute DK(C1) and look for this value as the second
component of a pair in the file. If it is found, the current key might be K2, and the key in the pair
found in the file might be K1. Check whether C2 = EK2(EK1(M2)) to determine whether K1 and K2
are really the keys.

In the case of DES, n = 56, and the meet-in-the-middle attack requires enough memory to store
256 plaintext-ciphertext pairs, more than is available now. But, some day, there may be enough
memory to make the attack feasible.

11.5 Differential and Linear Cryptanalysis

Differential cryptanalysis is an attack on DES and some related ciphers, which is faster than exhaustive
search. It requires about 247 steps to break DES rather than the 255 steps needed on an average to try
keys until the correct one is found.

Note: Although there are 256 keys for DES, one can test both a key K and its complement K with
a single DES encipherment using the equivalence

C = DESK(M) ⇐⇒ C = DESK(M).

The adjective “differential” here refers to a difference modulo 2 or XOR. The basic idea of
differential cryptanalysis is to form many input plaintext pairs M, M∗ whose XOR M ⊕ M∗ is
constant and study the distribution of the output XORs DESK(M) ⊕ DESK(M∗). The XOR of two
inputs to DES, or a part of DES, is called the input XOR, and the XOR of the outputs is called the
output XOR.

DES (see Chapter 9) consists of permutations, XORs, and F functions. The F functions are built
from an expansion (48 bits from 32 bits), S-boxes, and permutations. It is easy to see that permutations
P, expansions E, and XORs satisfy these equations:

P(X) ⊕ P(X∗) = P(X ⊕ X∗),
E(X) ⊕ E(X∗) = E(X ⊕ X∗)

and

(X ⊕ K) ⊕ (X∗ ⊕ K) = X ⊕ X∗.

These operations are linear (as functions on vector spaces over the field with two elements). In
contrast, S-boxes are nonlinear. They do not preserve XORs:

S(X) ⊕ S(X∗) 	= S(X ⊕ X∗).

Indeed, if one tabulates the distribution of the four-bit output XOR of an S-box as a function of the
six-bit input XOR, one obtains an irregular table. We show a portion of this table for the S-box S1.
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TABLE 11.1 XOR Distribution for S-box S1

Input
XOR

Output XOR

0H 1H 2H 3H 4H 5H 6H 7H . . . EH FH
0H 64 0 0 0 0 0 0 0 . . . 0 0
1H 0 0 0 6 0 2 4 4 . . . 2 4
2H 0 0 0 8 0 4 4 4 . . . 4 2
3H 14 4 2 2 10 6 4 2 . . . 2 0
...

...
...

...
...

...
...

...
... . . .

...
...

34H 0 8 16 6 2 0 0 12 . . . 0 6
...

...
...

...
...

...
...

...
... . . .

...
...

3FH 4 8 4 2 4 0 2 4 . . . 2 2

The row and column labels are hexadecimal numbers. All counts are even numbers since a pair
(X, X∗) is counted in an entry if and only if (X∗, X) is counted. Note also that if the input XOR is 0,
then the output XOR is 0, too. Hence, the first row (0H) has the entry 64 in column 0H and 0 counts
for the other 15 columns. The other rows have no entry greater than 16 and 20% to 30% 0 counts.
The average entry size is 64/16 = 4. The 64 rows for each S-box are all different.

Here is an overview of the differential cryptanalysis of DES. Encipher many plaintext pairs having
a fixed XOR and save the ciphertext pairs. The input to the F function in the last round is R15 = L16,
which can be computed from the ciphertext by undoing the final permutation. Thus, we can find
the input XOR and output XOR for each S-box in the last round. Consider one S-box. If we knew
the output E of expansion and the input X to the S-box, we could compute 6 bits (K) of the key
used here by K = E ⊕ X, since the F function computes X = E ⊕ K. For each of the 64 possible
6-bit blocks K of the key, count the number of pairs that result with the known output XOR using
this key value in the last round. Compare this distribution with the rows of the XOR table for the
S box. When enough pairs have been enciphered, the distribution will be similar to a unique row,
and this will give six of the 48 key bits used in the last round. After this has been done for all eight S
boxes, one knows 48 of the 56 key bits. The remaining 8 bits can be found quickly by trying the 256
possibilities.

The input XORs to the last round may be specified by using as plaintext XORs certain 64-bit
patterns which, with a small positive probability, remain invariant under the first 15 rounds. Plaintext
pairs which produce the desired input to the last round are called right pairs. Other plaintext pairs
are called wrong pairs. In the statistical analysis, right pairs predict correct key bits while wrong
pairs predict random key bits. When enough plaintext pairs have been analyzed, the correct key bits
overcome the random bits by becoming the most frequently suggested values.

The above description gives the chosen plaintext attack on DES. A known plaintext attack may be
performed as follows. Suppose we need m plaintext pairs to perform a chosen plaintext attack. Let
232√2m random known plaintexts be given together with their corresponding ciphertexts. Consider
all (232√2m)2/2 = 264m possible (unordered) pairs of known plaintext. Since the block size is 64
bits, there are only 264 possible plaintext XOR values. Hence, there are about 264m/264 = m pairs,
giving each plaintext XOR value. Therefore, it is likely that there are m pairs with each of the plaintext
XORs needed for a chosen plaintext attack.

Although we have described the attack for ECB mode, it works also for the other modes (CBC,
CFB, and OFB), because it is easy to compute the real input and output of DES from the plaintext
and ciphertext in these modes.

The linearity of parts of the DES algorithm mentioned earlier is the basis for Matsui’s [Mat94]
linear cryptanalysis. In this known plaintext attack on DES, one XORs together certain plaintext
and ciphertext bits to form a linear approximation for the XOR of certain bits of the key. This
approximation will be correct with some probability p. Irregularity in the definition of the S-boxes



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C011 Finals Page 7 2009-9-25

Cryptanalysis 11-7

allows one to choose bit positions from the plaintext, ciphertext, and key for which the XOR
approximation is valid with probability p 	= 1/2. This bias can be amplified by computing the XOR
of the key bits for many different known plaintext-ciphertext pairs. When enough XORs of key bits
have been guessed, one can compute the key bits by solving a system of linear equations over the
field with 2 elements. Linear cryptanalysis of DES requires about 243 known plaintext-ciphertext
pairs to determine the 56-bit key.

Differential and linear cryptanalysis apply also to many substitution/permutation ciphers similar
to DES. These include FEAL, LOKI, Lucifer, and REDOC-II. The same methods can break some
hash functions such as Snefru and N-hash, by producing two messages with the same hash value.

See Biham and Shamir in [BS91] and [BS93] for more information about differential cryptanalysis.
See Matsui [Mat94] for the details of linear cryptanalysis.

11.6 The Advanced Encryption Standard

In 2000, the US National Institute of Standards selected a cipher called Rijndael as the AES to replace
DES. Like DES, AES performs bit operations (rather than arithmetic with large integers, say) and is
very fast on a binary computer. Its design is public (unlike that of DES) and is based on the theory
of finite fields. The specification of the algorithm may be found at the NIST web site [NIS].

AES is a block cipher and may be used in the same modes as DES. The block size and key length
are independent and each may be 128, 192, or 256 bits. It has 10, 12, or 14 rounds, depending on
the block size and key length. Differential and linear cryptanalysis cannot successfully attack AES
because it has more nonlinearity than DES. If AES is reduced to four rounds, there is an attack
called the “square attack” that can break this simplified cipher. With effort, the square attack can be
extended to break AES with five or six rounds. For AES with at least seven rounds, no attack faster
than exhaustive search of all possible keys is known to work.

Some ciphers, like DES and IDEA, have weak keys that are easy to identify in a chosen plaintext
attack, perhaps because they produce repeated round subkeys. This weakness occurs for some ciphers
whose nonlinear operations depend on the key value or whose key expansion is linear. As the fraction
of weak keys is minuscule for most ciphers, it is unlikely that a randomly chosen key will be weak.
However, they can be exploited in some one-way function applications, where the attacker can
choose the key. The nonlinearity in AES resides in its fixed S-boxes and does not depend on the key.
Also, the key expansion in AES is nonlinear. Therefore, AES has no weak keys and no restriction on
key selection. See [NIS] for more information about the square attack and weak keys.

11.7 Knapsack Ciphers

We describe a variation of Shamir’s attack on the Merkle–Hellman knapsack. A similar attack will
work for almost all known knapsacks, including iterated ones. The only public key knapsack not yet
broken is that of Chor and Rivest [CR85].

Let the public knapsack weights be the positive integers ai for 1 ≤ i ≤ n. An n-bit plaintext block
x1, . . . , xn is enciphered as E = ∑n

i=1 aixi.
Let the secret superincreasing knapsack weights be si for 1 ≤ i ≤ n, where

∑j
i=1 si < sj+1 for

1 ≤ j < n. Let the secret modulus M and multiplier W satisfy 1 < W < M, gcd(W, M) = 1 and
M >

∑n
i=1 si. Then ai ≡ W−1si mod M or Wai ≡ si mod M for 1 ≤ i ≤ n.

To attack this cryptosystem, we rewrite the last congruence as Wai − Mki = si for 1 ≤ i ≤ n,
where the ki are unknown nonnegative integers. Divide by Mai to get

W
M

− ki

ai
= si

Mai
.
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This equation shows that, at least for small i, the fraction ki/ai is a close approximation to the fraction
W/M. The inequalities

∑j
i=1 si < sj+1 and

∑n
i=1 si < M imply si ≤ 2−n+iM. For almost all W, we

have ai ≥ M/n2. Hence,

W
M

− ki

ai
= si

Mai
≤ 2−n+i

ai
≤ 2−n+in2

M
.

We expect that all ki and all ai are about the same size as M, so that

ki

k1
− ai

a1
= O(2−n+in2/M).

This says that the vector (a2/a1, . . . , an/a1), constructed from the public weights, is a very close
approximation to the vector (k2/k1, . . . , kn/k1), which involves numbers ki from which one can
compute the secret weights si. Given a vector like (a2/a1, . . . , an/a1), one can find close approxima-
tions to it, like (k2/k1, . . . , kn/k1), by integer programming or the Lenstra–Lenstra–Lovasz theorem.
After k1 is found, M and W are easily determined from the fact that k1/a1 is a close approximation
to W/M. Finally, Shamir showed that if W∗/M∗ is any reasonably close approximation to W/M,
then W∗ and M∗ can be used to decrypt every ciphertext.

See Brickell and Odlyzko [BO88] for more information about breaking knapsacks.

11.8 Cryptanalysis of RSA

Suppose an RSA cipher (see Rivest, Shamir, and Adleman [RSA78]) is used with public modulus
n = pq, where p < q are large secret primes, public enciphering exponent e, and secret deciphering
exponent d.

Most attacks on RSA try to factor n. One could read the message without factoring n if the sender
of the enciphered message packed only one letter per plaintext block. Then the number of different
ciphertext blocks would be small (the alphabet size), and the ciphertext could be cryptanalyzed as a
simple substitution cipher.

Here are four cases in which n = pq might be easy to factor.

1. If p and q are too close, that is, if q−p is not much larger than n1/4, then n can be factored by
Fermat’s difference of squares method. It finds x and y so that n = x2−y2 = (x−y)(x+y),
as follows. Let m = �√n and write x = m. If z = x2 − n is a square y2, then p = x − y,
q = x + y and we are done. Otherwise, we add 2m + 1 to z and 2 to m and then test
whether z = (x+1)2 −n is a square, and so on. Most z can be eliminated quickly because
squares must lie in certain congruence classes. For example, squares must be ≡ 0, 1, 4,
or 9 mod16, which eliminates three out of four possible values for z. If p = k

√
n, where

0 < k < 1, then this algorithm tests about ((1 − k)2/(2k))
√

n zs to discover p. The
difference of squares method normally is not at all used to factor large integers. Its only
modern use is to ensure that no one forms an RSA modulus by multiplying two 100-digit
primes having the same high order 45 digits, say. Riesel [Rie94] has a nice description of
Fermat’s difference of squares method.

2. If either p − 1 or q − 1 has a small (<109, say) largest prime factor, then n can be factored
easily by Pollard’s p − 1 factoring algorithm. The idea of this method is that if p − 1
divides Q, and p does not divide b, then p divides bQ − 1. This assertion follows from
Fermat’s little theorem. Typically, Q is the product of all prime powers below some limit.
The method is feasible when this limit is as large as 109. If Q = ∏k

i=1 qi, when qi are
prime powers, then one computes
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POLLARD (b, k, n)

1 x ← b
2 for i ← 1 to k
3 do x ← xqi mod n
4 if (g ← gcd(x − 1, n)) > 1,
5 then return factor g of n

This method and the following one have analogues in which p − 1 and q − 1 are replaced
by p + 1 and q + 1. See Riesel [Rie94] for more details of Pollard’s p − 1 method. See
Williams [Wil82] for details of the p + 1 method.

3. The number g = gcd(p − 1, q − 1) divides n − 1 and may be found by factoring n − 1,
which may be much easier than factoring n. When g is small, as usually happens, it is not
useful for finding p or q. But when g is large, it may help find p or q. In that case, for each
large factor g <

√
n of n − 1, one can seek a factorization n = (ag + 1)(bg + 1).

4. If n is small, n < 10150, say, then one can factor n by a general factoring algorithm like
those described in the next section.

See Boneh [Bon99] for many other attacks on RSA.

11.9 Integer Factoring

We outline the quadratic sieve (QS) and the number field sieve (NFS), which are currently the
two fastest known integer factoring algorithms that work for any composite number, even an RSA
modulus.

Both of these methods factor the odd composite positive integer n by finding integers x, y so that
x2 ≡ y2 mod n but x 	≡ ±y mod n. The first congruence implies that n divides (x − y)(x + y), while
the second congruence implies that n does not divide x − y or x + y. It follows that at least one
prime factor of n divides x − y and at least one prime factor of n does not divide x − y. Therefore,
gcd(n, x−y) is a proper factor of n. (This analysis fails if n is a power of a prime, but an RSA modulus
would never be a prime power because it would be easy to recognize.)

However, these two factoring methods ignore the condition x 	≡ ±y mod n and seek many random
solutions to x2 ≡ y2 mod n. If n is odd and not a prime power, at least half of all solutions with
y 	≡ 0 mod n satisfy x 	≡ ±y mod n and factor n. Actually, if n has k different prime factors, the
probability of successfully factoring n is 1 − 21−k, for each random congruence x2 ≡ y2 mod n with
y 	≡ 0 mod n.

In QS, many congruences (called relations) of the form z2 ≡ q mod n are produced with q factored
completely. One uses linear algebra over the field GF(2) with two elements to pair these primes and
finds a subset of the relations in which the product of the qs is a square, y2, say. Let x be the product
of the zs in these relations. Then x2 ≡ y2 mod n, as desired.

The linear algebra is done as follows: Let p1, . . . , pr be all of the primes which divide any q. Then
write the relations as:

z2
i ≡ qi =

r∏
j=1

peij
j mod n, for 1 ≤ i ≤ s,

where s > r. Note that
∏r

j=1 pfj
j is the square of an integer if and only if every fi ≡ 0 mod 2. Suppose

(t1, . . . , ts) is not the zero vector in the s-dimensional vector space GF(2)s but does lie in the null



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C011 Finals Page 10 2009-9-25

11-10 Special Topics and Techniques

space of the matrix [eij], that is,
∑s

i=1 eijti = 0 in GF(2). Then

s∏
i=1
ti=1

qi =
r∏

j=1

s∏
i=1
ti=1

peij
j .

The exponent on pj in this double product is
∑s

i=1 eijti, which is an even integer since the t vector is
in the null space of the matrix. Therefore,

s∏
i=1
ti=1

qi

is a square because each of its prime factors appears raised to an even power. We call this square y2

and let

x =
s∏

i=1
ti=1

zi.

Then x2 ≡ y2 mod n.
In QS, the relations z2 ≡ q mod n with q factored completely are produced as follows: Small

primes p1, . . . , pr for which n is a quadratic residue (square) are chosen as the factor base. If we
choose many pairs a, b of integers with a = c2 for some integer c, b2 ≡ n mod a and |b| ≤ a/2, then
the quadratic polynomials

Q(t) = 1
a
[(at + b)2 − n] = at2 + 2bt + b2 − n

a

will take integer values at every integer t. If a value of t is found for which the right hand side
is factored completely, a relation z2 ≡ q mod n is produced, with z ≡ (at + b)c−1 mod n and
q = Q(t) = ∏r

j=1 pfj
j , as desired. No trial division by the primes in the factor base is necessary.

A sieve quickly factors millions of Q(t)s. Let t1 and t2 be the two solutions of

(at + b)2 ≡ n mod pi in 0 ≤ t1, t2 < pi.

(A prime p is put in the factor base for QS only if this congruence has solutions, that is, only if n
is a quadratic residue modulo p.) Then all solutions of Q(t) ≡ 0 mod pi are t1 + kpi and t2 + kpi
for k ∈ Z. In most implementations, Q(t) is represented by one byte Q[t] and log pi is added to
this byte to avoid division of Q(t) by pi, a slow operation. Let U denote the upper limit of the sieve
interval, p denote the current prime pi, and L denote the byte approximation to log pi. The two inner
loops are

LOOP (p, L, t1, U)

1 t ← t1
2 while t < U
3 do Q[t] ← Q[t] + L
4 t ← t + p

and LOOP(p, L, t2, U). After the sieve completes, one harvests the relations z2 ≡ q mod n from those
t for which Q[t] exceeds a threshold. Only at this point is Q(t) formed and factored, the latter
operation being done by trial division with the primes in the factor base.
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The time QS that takes to factor n is about

exp((1 + ε(n))(log n)1/2(log log n)1/2),

where ε(n) → 0 as n → ∞.
We begin our outline of the NFS by describing the special number field sieve (SNFS), which

factors numbers of the form n = re − s, where r and |s| are small positive integers. It uses some
algebraic number theory. Choose a small positive integer d, the degree of an extension field. Let
k be the least positive integer for which kd ≥ e. Let t = srkd−e. Let f be the polynomial Xd − t.
Let m = rk. Then f (m) = rkd − srkd−e = rkd−en is a multiple of n. The optimal degree for f is
((3 + ε(e)) log n/(2 log log n))1/3 as e → ∞ uniformly for r, s in a finite set, where ε(e) → 0 as
e → ∞.

Let α be a zero of f . Let K = Q(α). Assume f is irreducible, so the degree of K over Q is d. Let
Qn denote the ring of rational numbers with denominator coprime to n. The subring Qn[α] of K
consists of expressions

∑d−1
i=0 (si/ti)α

i with si, ti ∈ Z and gcd(n, ti) = 1. Define a ring homomorphism
φ : Qn[α] → Z/nZ by the formula φ(α) = (m mod n). Thus, φ(a + bα) ≡ a + bm mod n.

For 0 < a ≤ A and −B ≤ b ≤ B, SNFS uses a sieve (as in QS) to factor a + bm and the norm
of a + bα in Z. The norm of a + bα is (−b)df (−a/b). This polynomial of degree d has d roots
modulo p which must be sieved, just like the two roots of Q(t) in QS. A pair (a, b) is saved in a file if
gcd(a, b) = 1, and a + bm and the norm of a + bα both have only small prime factors (ones in the
factor base, say).

We use linear algebra to pair the prime factors just as in QS, except that now we must form squares
on both sides of the congruences. The result is a nonempty set S of pairs (a, b) of coprime integers
such that ∏

(a,b)∈S

(a + bm) is a square in Z,

and ∏
(a,b)∈S

(a + bα) is a square in Qn[α].

Let the integer x be a square root of the first product. Let β ∈ Qn[α] be a square root of the second
product. We have φ(β2) ≡ x2 mod n, since φ(a + bα) ≡ a + bm mod n. Let y be an integer for
which φ(β) ≡ y mod n. Then x2 ≡ y2 mod n, which will factor n with a probability of at least 1/2.

In the general NFS, we must factor an arbitrary n for which no obvious polynomial is given.
The key properties required for the polynomial are that it is irreducible, it has moderately small
coefficients so that the norm of α is small, and we know a nontrivial root m modulo n of it. Research
in good polynomial selection is still in progress. One simple choice is to let m be some integer near
n1/d and write n in radix m as n = cdmd + · · · + c0, where 0 ≤ ci < m. Then use the polynomial
f (X) = cdXd + · · · + c0. With this choice, the time needed by NFS to factor n is

exp(((64/9)1/3 + ε(n))(log n)1/3(log log n)2/3),

where ε(n) → 0 as n → ∞. QS is faster than NFS for factoring numbers up to a certain size,
and NFS is faster for larger numbers. This crossover size is between 100 and 120 decimal digits,
depending on the implementation and the size of the coefficients of the NFS polynomial.

See Riesel [Rie94] for a description of the QS and NFS factoring algorithms. See also Lenstra and
Lenstra [LL93] for more information about NFS.
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11.10 Discrete Logarithms

The Diffie–Hellman key exchange, the ElGamal public key cryptosystem, the Pohlig–Hellman private
key cryptosystem, and the digital signature algorithm could all be broken if we could compute discrete
logarithms quickly, that is, if we could solve the equation ax = b in a large finite field. For simplicity,
we assume that the finite field is either the integers modulo a prime p or the field with 2n elements.

Consider first the exponential congruence ax ≡ b mod p. By analogy to ordinary logarithms, we
may write x = loga b when p is understood from the context. These discrete logarithms enjoy many
properties of ordinary logarithms, such as loga bc = loga b + loga c, except that the arithmetic with
logarithms must be done modulo p − 1 because ap−1 ≡ 1 mod p. Neglecting powers of log p, the
congruence may be solved in O(p) time and O(1) space by raising a to successive powers modulo
p and comparing each with b. It may also be solved in O(1) time and O(p) space by looking up
x in a precomputed table of pairs (x, ax mod p) sorted by the second coordinate. Shanks’ “giant
step–baby step” algorithm solves the congruence in O(

√p) time and O(
√p) space as follows. Let

m = �√p − 1. Compute and sort the m ordered pairs (j, amj mod p), for j from 0 to m − 1, by the
second coordinate. Compute and sort the m ordered pairs (i, ba−i mod p), for i from 0 to m − 1, by
the second coordinate. Find a pair (j, y) in the first list and a pair (i, y) in the second list. This search
will succeed because every integer between 0 and p − 1 can be written as a two-digit number ji in
radix m. Finally, x = (mj + i) mod (p − 1).

There are two probabilistic algorithms, the rho method and the lambda (or kangaroo) method,
for solving ax ≡ b mod p which also have time complexity O(

√p), but space complexity O(1). See
[Wag03] for details of these methods.

There are faster ways to solve ax ≡ b mod p using methods similar to the two integer factoring
algorithms QS and NFS. Here is the analogue for QS. Choose a factor base of primes p1, . . . , pk.
Perform the following precomputation which depends on a and p but not on b. For many random
values of x, try to factor ax mod p using the primes in the factor base. Save at least k + 20 of the
factored residues:

axj ≡
k∏

i=1
peij

i mod p for 1 ≤ j ≤ k + 20,

or equivalently

xj ≡
k∑

i=1
eij loga pi mod (p − 1) for 1 ≤ j ≤ k + 20.

When b is given, perform the following main computation to find loga b. Try many random values
for s until one is found for which bas mod p can be factored using only the primes in the factor base.
Write it as

bas ≡
k∏

i=1
pci

i mod p

or

(loga b) + s ≡
k∑

i=1
ci loga pi mod (p − 1).

Use linear algebra as in QS to solve the linear system of congruences modulo p − 1 for loga b. One
can prove that the precomputation takes time

exp((1 + ε(p))
√

log p log log p),
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where ε(p) → 0 as p → ∞, while the main computation takes time

exp((0.5 + ε(p))
√

log p log log p),

where ε(p) → 0 as p → ∞.
There is a similar algorithm for solving congruences of the form ax ≡ b mod p which is analogous

to NFS and runs faster than the above for large p.
There is a method of Coppersmith [Cop84] for solving equations of the form ax = b in the field

with 2n elements, which is practical for n up to about 1000. Empirically, it is about as difficult to
solve ax = b in the field with pn elements as it is to factor a general number about as large as pn.
As these are the two problems which must be solved in order to break the RSA and the ElGamal
cryptosystems, it is not clear which one of these systems is more secure for a fixed size of modulus.

11.11 Elliptic Curve Discrete Logarithms

All of the cryptographic algorithms whose security relies on the difficulty of solving the discrete
logarithm problem ax = b in a large finite field have analogues in which the multiplicative group
of the field is replaced by the additive group of points on an elliptic curve. The discrete logarithm
problem in the field has this analogue on an elliptic curve E modulo a prime p: Given points P and
Q on E, find an integer x so that Q = xP, where xP denotes the sum P + P + · · · + P of x copies of P.
It is also given that such an integer x exists, perhaps because P generates E, that is, the curve consists
of the points mP for all integers m.

The algorithms for solving ax ≡ b mod p with time or space complexity O(p) given in the
preceding section have analogues for solving the discrete logarithm problem Q = xP on an elliptic
curve E modulo p. By Hasse’s theorem, the size of E is O(p), so these algorithms also have time or
space complexity O(p). Similarly, there is an analogue of Shanks’ “giant step–baby-step” algorithm
which solves Q = xP in time and space O(

√p), ignoring small powers of log p. Likewise, the rho
and lambda algorithms have elliptic curve analogues with time complexity O(

√p). In fact, these
algorithms work in all groups, not just those mentioned here.

An important property of elliptic curves is that, for most curves, the analogues just mentioned are
the fastest known ways to solve the elliptic curve discrete logarithm problem. The subexponential
algorithms for solving ax ≡ b mod p which are similar to QS and NFS have no known analogues
for general elliptic curves. Because of this hardness of the elliptic curve discrete logarithm problem,
one may choose the modulus p of the curve much smaller than would be needed to make it hard to
solve ax ≡ b mod p. The modulus p of an elliptic curve only needs to be large enough so that it is not
feasible for an attacker to perform O(

√p) operations. According to NIST guidelines, the discrete
logarithm problem for an elliptic curve modulo a 163-bit prime is about as hard as solving ax ≡ b
modulo a 1024-bit prime. Since the arithmetic of multiplying numbers modulo p and adding points
on an elliptic curve modulo p both have time complexity O((log p)2), cryptographic algorithms
using these operations will run faster when p is smaller. Thus, it is faster to use an elliptic curve in
a cryptographic algorithm than to use the multiplicative group of integers modulo a prime large
enough to have an equally hard discrete logarithm problem.

The MOV attack [MOV93] uses the Weil pairing to convert a discrete logarithm problem in
an elliptic curve E modulo p into an equivalent discrete logarithm problem in the field with pm

elements, where the embedding degree m is a certain positive integer that depends on E. If m were
small, subexponential methods would make it feasible to solve the equivalent discrete logarithm
problem. Generally, m is a large positive integer, and the discrete logarithm problem in the field
with pm elements is infeasible. Balasubramanian and Koblitz [BK98] have shown that m ≥ 7 for
almost all elliptic curves. For such m, the discrete logarithm problem in the field with pm elements
is infeasible when p has at least 163 bits.
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Weil descent converts an elliptic curve discrete logarithm problem to one in a hyperelliptic curve
of high genus, where it can sometimes be solved. As with the MOV attack, this attack is infeasible
for almost all elliptic curves. See Diem [Die04] for more details.

11.12 Research Issues and Summary

This chapter presents an overview of some of the many techniques of breaking ciphers. This sub-
ject has a long and rich history. We gave some historical perspective by mentioning some of the
older ciphers whose cryptanalysis is well understood. Most of this article deals with the cryptanal-
ysis of ciphers still being used today, such as DES, AES, RSA, Pohlig–Hellman, etc. We still do
not know how to break these ciphers quickly, and research into methods for doing this remains
intense today.

New cryptosystems are invented frequently. Most of them are broken quickly. For example,
research continues on multistage knapsacks, some of which have not been broken yet, but probably
will be soon. Some variations of differential cryptanalysis being studied now include higher-order
differential cryptanalysis and a combination of linear and differential cryptanalysis. Some recent
advances in integer factoring algorithms include the use of several primes outside the factor base in
QS, the self-initializing QS, faster computation of the square root (β) in the NFS, better methods
of polynomial selection for the general NFS, and the lattice sieve variation of the NFS. Most of
these advances apply equally to computing discrete logarithms in a field with p elements. Several
efforts are under way to accelerate the addition of points on an elliptic curve, a basic operation in
cryptosystems that use elliptic curves. One approach uses an elliptic curve over the field with pn

elements, but whose coefficients lie in the field with p elements. Another approach uses hyperelliptic
curves over a finite field. These methods accelerate cryptographic algorithms that use elliptic curves
but could lead to failures in the algorithms. In both approaches the fields must have appropriate
sizes and the coefficients must be chosen wisely to avoid the MOV and Weil descent attacks.

We have omitted discussion of many important ciphers in this short article. Even for the ciphers
which were mentioned, the citations are far from complete. See Section 11.13 for general references.

11.13 Further Information

Research on cryptanalysis is published often in the journals Journal of Cryptology, Cryptologia, and
Computers and Security. Such research appears occasionally in the journals Algorithmica, AT&T
Technical Journal, Communications of the ACM, Electronics Letters, Information Processing Letters,
IBM Journal of Research and Development, IEEE Transactions on Information Theory, IEEE Spectrum,
Mathematics of Computation, and Philips Journal of Research.

Several annual or semi-annual conferences with published proceedings deal with cryptanalysis.
CRYPTO has been held since 1981 and has published proceedings since 1982. See CRYPTO ’82,
CRYPTO ’83, etc. EUROCRYPT has published its proceedings in 1982, 1984, 1985, 1987, 1988, etc.
The conference AUSCRYPT is held in even numbered years since 1990, while ASIACRYPT is held
in odd numbered years since 1991. ANTS, the Algorithmic Number Theory Symposium, began in
1994 and is held biannually.

Kahn [Kah67] gives a comprehensive history of cryptology up to 1967. Public key cryptography
was launched by Diffie and Hellman [DH76]. Denning [Den83] and Konheim [Kon81] have lots
of information about and examples of old ciphers and some information about recent ones. Biham
and Shamir [BS93] is the basic reference for differential cryptanalysis of DES and related ciphers.
Wagstaff [Wag03] emphasizes cryptanalysis of ciphers based on number theory.



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C011 Finals Page 15 2009-9-25

Cryptanalysis 11-15

Defining Terms

Breaking a cipher: Finding the key to the cipher by analysis of the ciphertext or, sometimes, both
the plaintext and corresponding ciphertext.
Coprime: Relatively prime. Refers to integers having no common factor greater than 1.
Differential cryptanalysis: An attack on ciphers like DES which tries to find the key by examining
how certain differences (XORs) of plaintext pairs affect differences in the corresponding ciphertext
pairs.
Digital signature algorithm: A public-key algorithm for signing or authenticating messages. It was
proposed by the National Institute of Standards and Technology in 1991.
Factor base: A fixed set of small primes, usually all suitable primes up to some limit, used in factoring
auxiliary numbers in the quadratic and number field sieves.
Homophone: One of several ciphertext letters used to encipher a single plaintext letter.
Key stream: A sequence of bits, bytes, or longer strings used as keys to encipher successive blocks of
plaintext.
Permutation or transposition cipher: A cipher which enciphers a block of plaintext by rearranging
the bits or letters.
Quadratic residue modulo m: A number r which is coprime to m and for which there exists an x so
that x2 ≡ r mod m.
Sieve: A number theoretic algorithm in which, for each prime number p in a list, some operation is
performed on every pth entry in an array.
Substitution cipher: A cipher which enciphers by replacing letters or blocks of plaintext by ciphertext
letters or blocks under the control of a key.
XOR: Exclusive-or or sum of bits modulo 2.
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12.1 Introduction

In this chapter, we discuss four related areas of cryptology, namely, authentication, hashing, message
authentication codes (MACs), and digital signatures. These topics represent active and growing
research topics in cryptology. Space limitations allow us to concentrate only on the essential aspects
of each topic. The bibliography is intended to supplement our survey. We have selected those items
which providean overview of the current state of knowledge in the above areas.

Authentication deals with the problem of providing assurance to a receiver that a communicated
message originates from a particular transmitter, and that the received message has the same content
as the transmitted message. A typical authentication scenario occurs in computer networks, where
the identity of two communicating entities is established by means of authentication.

Hashing is concerned with the problem of providing a relatively short digest–fingerprint of
a much longer message or electronic document. A hashing function must satisfy (at least) the
critical requirement that the fingerprints of two distinct messages are distinct. Hashing functions
have numerous applications in cryptology. They are often used as primitives to construct other
cryptographic functions.

12-1
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MACs are symmetric key primitives that provide message integrity against active spoofing by
appending a cryptographic checksum to a message that is verifiable only by the intended recipient
of the message. Message authentication is one of the most important ways of ensuring the integrity
of information that is transferred by electronic means.

Digital signatures provide electronic equivalents of handwritten signatures. They preserve the
essential features of handwritten signatures and can be used to sign electronic documents. Digital
signatures can potentially be used in legal contexts.

12.2 Authentication

One of the main goals of a cryptographic system is to provide authentication, which simply means
providing assurance about the content and origin of communicated messages.

Historically, cryptography began with secret writing, and this remained the main area of develop-
ment until recently. With the rapid progress in data communication, the need for providing message
integrity and authenticity has escalated to the extent that currently authentication is seen as an urgent
goal of cryptographic systems.

Traditionally, it was assumed that a secrecy system provides authentication by the virtue of
the secret key being only known to the intended communicants; this would prevent an adversary
from constructing a fraudulent message. Simmons [60] argued that the two goals of cryptogra-
phy are independent. He showed that a system that provides perfect secrecy might not provide
any protection against authentication threats. Similarly, a system can provide perfect authentication
without concealing messages.

In the rest of this chapter, we use the term communication system to encompass message trans-
mission as well as storage. The system consists of a transmitter who wants to send a message, a
receiver who is the intended recipient of the message, and an adversary who attempts to construct
a fraudulent message with the aim of getting it accepted by the receiver unwittingly. In some cases,
there is a fourth party, called the arbiter, whose basic role is to provide protection against cheating
by the transmitter and/or the receiver. The communication is assumed to take place over a public
channel, and hence the communicated messages can be seen by all the players. An authentication
threat is an attempt by an adversary in the system to modify a communicated message or inject
a fraudulent message into the channel. In a secrecy system, the attacker is passive, while in an
authentication system, the adversary is active and not only observes the communicated messages
and gathers information such as plaintext and ciphertext, but also actively interacts with the system
to achieve his or her goal. This view of the system clearly explains Simmons’ motivation for basing
authentication systems on game theory.

The most important criteria that can be used to classify authentication systems are

• The relation between authenticity and secrecy
• The framework for the security analysis

The first criterion divides authentication systems into those that provide authentication with and
without secrecy. The second criterion divides systems into systems with unconditional security,
systems with computational security, and systems with provable security. Unconditional security
implies that the adversary has unlimited computational power, while in computational security the
resources of the adversary are bounded, and security relies on the fact that the required computation
exceeds this bound. A provably secure system is in fact a subclass of computationally secure systems,
and compromising the system is equivalent to solving a known difficult problem.

These two classifications are orthogonal and produce four subclasses. Below, we review the basic
concepts of authentication theory, some known bounds and constructions in unconditional security,
and then consider computational security.
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12.2.1 Unconditional Security

A basic model introduced by Simmons [60] has remained the mainstay of most of the theoretical
research on authentication systems. The model has the same structure as described in Section 12.2
but excludes the arbiter. To provide protection against an adversary, the transmitter and receiver
use an authentication code (A-code). An A-code is a collection E of mappings called encoding rules
(also called keys) from a set S of source states (also called transmitter states) into the set M of
cryptogram (also called codewords). For A-codes without secrecy, also called Cartesian A-codes, a
codeword uniquely determines a source state. That is, the set of codewords is partitioned into subsets
each corresponding to a distinct source state. In a systematic Cartesian A-code, M=S × T where
T is a set of authentication tags and each codeword is of the form s.t, s ∈ S , t ∈ T where ‘.’ denotes
concatenation. Let the cardinality of the set S of source states be denoted as k; that is, |S| = k. Let
E = |E | and M = |M|. The encoding process adds key dependent redundancy to the message, so
k < M. A key (or encoding rule) e determines a subset Me ⊂ M of codewords that are authentic
under e.

The incidence matrix A of an A-code is a binary matrix of size E × M whose rows are labeled by
encoding rules and columns by codewords, such that A(e, m)= 1 if m is a valid codeword under e,
and A(e, m)= 0, otherwise.

An authentication matrix B of a Cartesian A-code is a matrix of size E × k whose rows are labeled
by the encoding rules and columns by the source states, and B(e, s)= t if t is the tag for the source
state s under the encoding rule e.

To use the system, the transmitter and receiver must secretly share an encoding rule. The adversary
does not know the encoding rule and uses an impersonation attack, which only requires a knowledge
of the system, or a substitution attack in which the adversary waits to see a transmitted codeword,
and then constructs a fraudulent codeword. The security of the system is measured in terms of
the adversary’s chance of success with the chosen attack. The adversary’s chance of success in an
impersonation attack is denoted by P0, and in a substitution attack by P1. The best chance an
adversary has in succeeding in either of the above attacks is called the probability of deception, Pd.

An attack is said to be spoofing of order � if the adversary has seen � communicated codewords
under a single key. The adversary’s chance of success in this case is denoted by P�.

The chance of success can be defined using two different approaches. The first approach corre-
sponds to an average case analysis of the system and can be described as the adversary’s payoff in
the game theory model. It has been used by a number of authors, including MacWilliams et al., [40],
Fak [27], and Simmons [60]. The second is to consider the worst-case scenario. This approach is
based on the relation between A-codes and error correcting codes (also called E-codes).

Using the game theory model, Pj is the value of a zero-sum game between communicants and the
adversary. For impersonation

P0 = max
m∈M

(payoff(m)),

and for substitution

P1 =
E∑

j=1

∑
m∈M

P(m) max
m′ payoff(m, m′),

where P(m) is the probability of a codeword m occurring in the channel, and payoff(m, m′) is the
adversary’s payoff (best chance of success) when it substitutes an intercepted codeword m with a
fraudulent one, m′.
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12.2.2 Bounds on the Performance of the A-Code

The first types of bounds relate the main parameters of an A-code, that is, E, M, k, and hence are
usually called combinatorial bounds. The most important combinatorial bound for A-codes with
secrecy is

Pi ≥ k − i
M − i

, i = 1, 2, . . .

and for A-codes without secrecy is

Pi ≥ k/M, i = 1, 2, . . . .

An A-code that satisfies these bounds with equality, that is, with Pi = k−i
M−i for A-codes with

secrecy and Pi = k/M for Cartesian A-codes is said to provide perfect protection for spoofing of
order i. The adversary’s best strategy in spoofing of order i for such an A-code is to randomly select
one of the remaining codewords.

A-codes that provide perfect protection for all orders of spoofing up to r are said to be r-fold
secure. These codes can be characterized using combinatorial structures, such as orthogonal arrays
and t-designs.

An orthogonal array OAλ(t, k, v) is an array with λvt rows, each row of size k, from the elements
of set X of v symbols, such that in any t columns of the array every t-tuple of elements of X occurs
in exactly λ rows. Usually, t is referred to as the strength of the OA.

The following table gives an OA2(2, 5, 2) on the set {0, 1}:

0 0 0 0 0
1 1 0 0 0
0 0 0 1 1
1 1 0 1 1
1 0 1 0 1
0 1 1 0 1
1 0 1 1 0
0 1 1 1 0

A t-(v, k, λ) design is a collection of b subsets, each of size k of a set X of size v where every distinct
subset of size t occurs exactly λ times.

The incidence matrix of a t-(v, k, λ) is a binary matrix, A = (aij), of size b × v such that aij = 1 if
element j is in block i and 0 otherwise.

The following table gives a 3-(8, 4, 1) design on the set {0, 1, 2, 3, 4, 5, 6, 7}:

7 0 1 3
7 1 2 4
7 2 3 5
7 3 4 6
7 4 5 0
7 5 6 1
7 6 0 2
2 4 5 6
3 5 6 0
4 6 0 1
5 0 1 2
6 1 2 3
0 2 3 4
1 3 4 5
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with incidence matrix:

1 1 0 1 0 0 0 1
0 1 1 0 1 0 0 1
0 0 1 1 0 1 0 1
0 0 0 1 1 0 1 1
1 0 0 0 1 1 0 1
0 1 0 0 0 1 1 1
1 0 1 0 0 0 1 1
0 0 1 0 1 1 1 0
1 0 0 1 0 1 1 0
1 1 0 0 1 0 1 0
1 1 1 0 0 1 0 0
0 1 1 1 0 0 1 0
1 0 1 1 1 0 0 0
0 1 0 1 1 1 0 0

The main theorems relating A-codes with r-fold security and combinatorial structures are due to
a number of authors, including Stinson [62], and Tombak and Safavi-Naini [70]. The following are
the most general forms of these theorems.

Let the source be r-fold uniform. Then an A-code provides r-fold security against spoofing if and
only if the incidence matrix of the code is the incidence matrix of a (r + 1) − (M, k, λ) design.

In the above theorem, an r-fold uniform source is a source for which every string of r distinct
outputs from the source has probability 1

k(k−1)···(k−r+1)
.

Let P0 = P1 = P2 = · · · = Pr = k/M. Then the authentication matrix is a OA(r + 1, k, �) where
�= M/k.

The so-called information theoretic bounds characterize the adversary’s chance of success using
uncertainty measures (entropy). The first such bound for Cartesian A-codes, derived by MacWilliams
et al. [40], is

P1 ≥ 2− H(M)
2

where H(M) is the entropy of the codeword space. The first general bound on P0, due to
Simmons [60], is

P0 ≥ 2−(H(E)−H(E|M)),

where H(E) is the entropy of the key space and H(E|M) is the conditional entropy of the key when
a codeword is intercepted. Write I(E; M) for the mutual information of E and M. Then,

P0 ≥ 2−I(E; M).

The above bound relates the adversary’s best chance of success to the mutual information between
the cryptogram space and the key space. A general form of this bound, proved independently by
Rosenbaum [57] and Pei [44], is

P� ≥ 2−I(E; M�),

where I(E; M�) is the mutual information between a string of � codewords and m� is the key.
Similar bounds for A-codes without secrecy were proved by MacWilliams et al. [40] and

Walker [72].
A general bound on the probability of deception, Pdr , derived by Rosenbaum [57], is

Pdr ≥ 2− H(E)
r+1 .
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12.2.3 Other Types of Attack

Tombak and Safavi-Naini [69] consider other types of attacks, similar to those for secrecy systems.
In a plaintext attack against A-codes with secrecy, the adversary not only knows the codeword but
also knows the corresponding plaintext. In chosen content attack, the adversary wants to succeed
with a codeword that has a prescribed plaintext. It is shown that by applying some transformation
on the A-code it is possible to provide immunity against the above attacks.

A-codes with secrecy are generally more difficult to analyze than Cartesian A-codes. Moreover,
the verification process for the former is not efficient. In the case of Cartesian A-codes, verification
of a received codeword, s.t, amounts to recalculating the tag using the secret key and the source state
s to obtain t′ and comparing it to the received tag t. For an authentic codeword, we have t = t′. In
the case of A-codes with secrecy, when a codeword m is received, the receiver must try all authentic
codewords using his or her secret key, otherwise there must be an inverse algorithm that allows the
receiver to find and verify the source state. The former process is costly, and the latter does not exist
for a general A-code. For practical reasons, the majority of research has concentrated on Cartesian
A-codes.

12.2.4 Efficiency

Authentication systems require secure transmission of key information prior to the communication
and hence, similar to secrecy systems, it is desirable to have a small number of key bits.

Rees and Stinson [54] prove that for any (M, k, E) A-code that is onefold secure, E ≥ M. For
A-codes with secrecy that provide onefold security, Stinson [62] shows that

E ≥ M2 − M
k2 − k

.

Under similar conditions for Cartesian A-codes, Stinson [62] shows that

E ≥ k(� − 1) + 1,

where �= k/M.
For A-codes with r-fold security, Stinson [64] shows that

E ≥ M(M − 1) · · · (M − r)
k(k − 1) · · · (k − r)

.

An A-code provides perfect authenticity of order r if Pdr = k/M. In such codes, the probability of
success of the spoofer does not improve with the interception of extra codewords.

The following bound is established by Tombak and Safavi-Naini [68] for codes of the above type:

E ≥ Mr+1

kr+1 .

Their bound shows that the provision of perfect authenticity requires log M − log k extra key bits on
an average for every added order of spoofing. Hence, using the same key for authentication of more
than one message is expensive.

A second measure of efficiency, often used for systematic Cartesian A-codes, is the size of the tag
space for a fixed size of source space and probability of success in substitution. Stinson [65] shows
that, for perfect protection against substitution, the size of key space grows linearly with the size of
the source. Johansson et al. [35] show that if P1 > P0, A-codes with an exponential (in E) number
of source states can be obtained.
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12.2.5 A-Codes and E-Codes

An error correcting code provides protection against random channel error. The study of error-
correcting codes was motivated by Shannon’s Channel Capacity Theorem and has been a very active
research area since the early 1950s. Error-correcting codes add redundancy to a message in such a
way that a codeword corrupted by the channel noise can be detected and/or corrected. The main
difference between an A-code and an E-code is that in the former redundancy depends on a secret
key, while in the latter it only depends on the message being coded. There exists a duality between
authentication codes and error correcting codes. In the words of Simmons [60], “. . . one (coding
theory) is concerned with clustering the most likely alterations as closely about the original code
as possible and the other (authentication theory) with spreading the optimal (to the opponent)
alterations as uniformly as possible over M”.

The relation between E-codes and A-codes is explored in the work of Johansson et al. [35], who
show that it is possible to construct E-codes from A-codes and vice-versa. Their work uses a worst
case analysis approach in analyzing the security of A-codes. That is, in the case of substitution
attack, they consider the best chance of success that an adversary has when it intercepts all possible
codewords. This contrasts with the information theoretic (or game theory) approach in which the
average success probability of the adversary over all possible intercepted codewords is calculated.

The work of Johansson et al. is especially useful as it allows the well-developed body of bounds
and asymptotic results from the theory of error correcting codes to be employed in the context of
authentication codes, to derive upper and lower bounds on the size of the source for A-codes with
given E, T, and P1.

12.2.6 Authentication with Arbiter

In the basic model of authentication discussed above, the adversary is an outsider, and we assume
that the transmitter and the receiver are trustworthy. Moreover, because the key is shared by the
transmitter and the receiver, the two players are cryptographically indistinguishable. In an attempt
to model authentication systems in which the transmitter and the receiver are distinguished and to
remove assumptions about the trustworthiness of the two, Simmons [60] introduced a fourth player
called the arbiter. The transmitter and receiver have different keys, and the arbiter has access to all
or part of the key information. The system has a key distribution phase during which keys satisfying
certain conditions are chosen. After that there is a transmission phase during which the transmitter
uses its key to produce a codeword and finally a dispute phase during which disputes are resolved
with the aid of the arbiter. The arbiter in Simmons’ model is active during the transmission phase
and is assumed to be trustworthy. Yung and Desmedt [78] relax this assumption and consider a
model in which the arbiter is only trusted to resolve disputes. Johansson [33] and Kurosawa [38]
derive lower bounds on the probability of deception in such codes. Johansson [34] and Taylor [66]
proposed constructions.

12.2.7 Shared Generation of Authenticators

Many applications require the power to generate an authentic message and/or to verify the authen-
ticity of a message to be distributed among a number of players. An example of such a situation is
multiple signatures in a bank account or court room. Desmedt and Frankel [24] introduced systems
with shared generation of authenticators (SGA-systems), which have been studied by Safavi-Naini
[58]. In such systems, there is a group P of transmitters created with a structure Γ that determines
authorized subsets of P. Each player has a secret key which is used to generate a partial tag. The
system has two phases. In the key distribution phase, a trusted authority generates keys for the
transmitters and receivers and securely delivers the keys to them. In the communication phase,
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the trusted authority is not active. When an authorized group of transmitters wants to construct an
authentic codeword, using its key, each group member generates a partial tag for the source state s
which needs to be authenticated and sends it to a combiner. The combiner is a fixed algorithm with
no secret input. It combines its inputs to produce a tag, t, to be appended to s. The receiver is able
to authenticate this codeword using its secret key.

12.2.8 Multiple Authentication

As mentioned earlier, in the theory of A-codes, the possible attacks by the adversary are limited
to impersonation and substitution. This means that the security of the system is only for one
message communication; after that the key must be changed. To extend protection over more
than one message transmission, there exist a number of alternatives. The most obvious ones use
A-codes that provide perfect protection against spoofing of order �. However, little is known about
the construction of such codes, and it is preferable to use A-codes that provide protection against
substitution for more that one message transmission. Vanroose et al. [77] suggest key strategies
in which the communicants change their key after each transmitted codeword, using some pre-
specified strategy. In this case, the key information shared by the communicants is the sequence
of keys to be used for consecutive transmission slots. The resulting bounds on the probability of
deception generalize the bounds given by the following authors: Pei [44], Rosenbaum [57], and
Walker [72].

Another successful approach proposed by Wegman and Carter [75] uses a special class of hash
functions together with a one time pad of random numbers. This construction is discussed in more
detail in Section 12.5.

12.3 Computationally Secure Systems

The study of computationally secure A-systems is relatively informal, cf. Simmons [61]. The basic
framework is similar to unconditionally secure systems. A simple computationally secure A-code
can be obtained by considering S = GF(240) and M= GF(264). We use E to be the collection of
DES [47] encryption functions and so E = 256. To construct the codeword corresponding to a source
state s, using the key k, we append 24 zeros to s, and then use DES with key k to encrypt s.024, where
024 is the string of 24 zeros.

It is easy to see that the above scheme is an A-code with secrecy. It allows the receiver to easily
verify the authenticity of a received codeword by decrypting a received codeword and checking the
existence of the string of zeros. If an adversary wants to impersonate the transmitter, its chance of
success is 2−56, which is the probability of guessing the correct key. For a substitution attack, the
adversary waits to see a transmitted codeword. Then it uses all the keys to decrypt the codeword,
and once a decryption of the right form (ending in 24 zeros) is obtained, a possible key is found. In
general, there is more than one key with this property. On an average, there are 256 × 240/264 = 232

pairs (s, k) that produce the same cryptogram and hence the chance of guessing correctly is 2−32.
A better strategy for the adversary is to randomly choose a cryptogram and send it to the receiver.
In this case, the chance of success is 2−24, which is better than the previous case.

The security of computationally secure A-systems weakens rapidly as the adversary intercepts
more cryptograms. Trying all possible keys on � received cryptograms enables the adversary to
uniquely identify the key, in this case the adversary succeeds with a probability of one.

Computationally secure A-systems without secrecy are obtained by appending an authenticator
to the message which is verifiable by the intended receiver. The authenticator can be produced by a
symmetric key algorithm or an asymmetric key algorithm. The former is the subject of the section
on MAC, whilethe latter is discussed in the section on digital signatures.
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12.4 Hashing

In many cryptographic applications, it is necessary to produce a relatively short fingerprint of a
much longer message or electronic document. The fingerprint is also called a digest of the message.
Ideally, a hash function should produce a unique digest of a fixed length for a message of an arbitrary
length. Obviously, this is impossible as any hash function is, in fact, a many-to-one mapping. The
properties required for secure hashing can be summarized as follows:

• Hashing should be a many-to-one function producing a digest that is a complex function
of all bits of the message.

• A hash function should behave as a random function that creates a digest for a given
message by randomly choosing an element from the whole digest space.

• For any pair of messages, it should be computationally difficult to find a collision;
that is, distinct messages with the same digest.

• A hash function should be one-way; that is, it should be easy to compute the digest of a
given message but difficult to determine the message corresponding to a given digest.

The main requirement of secure hashing is that it should be collision-free in the sense that finding
two colliding messages is computationally intractable. This requirement must hold for long as well
as short messages.

12.4.1 Strong and Weak Hash Functions

Hash functions can be broadly classified into two classes: strong one-way hash functions (also called
collision-free hash functions) and weak one-way hash functions (also known as universal one-way
hash functions). A strong one-way hash function is a function h satisfying the following conditions:

1. h can be applied to any message or document M of any size.
2. h produces a fixed size digest.
3. Given h and M, it is easy to compute the digest h(M).
4. Given h, it is computationally infeasible to find two distinct messages M1, M2 that collide,

that is, h(M1)= h(M2).

On the other hand, a weak one-way hash function is a function that satisfies conditions 1, 2, 3 and
the following:

5. Given h and a randomly chosen message M, it is computationally intractable to find
another message M′ that collides with M, that is, h(M)= h(M′).

Strong one-way hash functions are easier to use since there is no precondition on the selection of
the messages. On the other hand, for weak one-way hash functions, there is no guarantee that a
nonrandom selection of two messages is collision-free. This means that the space of easily found
colliding messages must be small. Otherwise, a random selection of two messages would produce a
collision with a nonnegligible probability.

12.4.2 Theoretic Constructions

Naor and Yung [43] introduced the concept of a universal one-way hash function (UOWHF)
and suggested a construction based on a one-way permutation. In their construction, they employ
the notion of a universal family of functions with collision accessibility property [75]. The above
functions are defined as follows. Suppose G = {g | A → B} is a set of functions, G is strongly
universalr if given any r distinct elements a1, . . . , ar ∈ A, and any r elements b1, . . . , br ∈ B, there
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are |G|/|B|2 functions which take a1 to b1, a2 to b2, etc. (|G| and |B| denote the cardinality of sets G
and B, respectively.)

A strongly universalr family of functions G has the collision accessibility property if it is possible
to generate in polynomial time of a function g ∈ G that satisfies the equations

g(ai) = bi, 1 ≤ i ≤ r.

Naor and Yung construct a family of UOWHFs by concatenating any one-way permutation with
a family of strongly universal2 hash functions having the collision accessibility property. In this
construction, the one-way permutation provides the one-wayness of the UOWHF, and the strongly
universal2 family of hash functions provides the mapping to the small length output. When a
function is chosen randomly and uniformly from the family, the output is distributed randomly and
uniformly over the output space.

De Santis and Yung [23] construct hash functions from one-way functions with an almost-
known preimage size. In other words, if an element of the domain is given, then with a polynomial
uncertainty an estimate of the size of the preimage set is easily computable. A regular function is
an example of such a function. (In a regular function, each image of an n-bit input has the same
number of preimages of length n.)

Rompel [56] constructs a UOWHF from any one-way function. His construction is rather elab-
orate. Briefly, his idea is to transform any one-way function into a UOWHF through a sequence of
complicated procedures. First, the one-way function is transformed into another one-way function
such that for most elements of the domain except for a fraction, it is easy to find a collision. From
this, another one-way function is constructed such that for most of the elements it is hard to find
a collision. Subsequently, a length increasing one-way function is constructed for which it is hard
to find collisions almost everywhere. Finally, this is turned into a UOWHF which compresses the
input in a way that makes it difficult to find a collision.

12.4.3 Hashing Based on Block Ciphers

To minimize the design effort for cryptographically secure hash functions, the designers of hash
functions tend to base their schemes on existing encryption algorithms. For example, sequential
hashing can be obtained by dividing a given message into blocks and applying an encryption
algorithm on the message blocks. The message block length must be the same as the block length
of the encryption algorithm. If the message length is not a multiple of the block length, then the
last block is usually padded with some redundant bits. To provide a randomizing element, an initial
public vector is normally used. The proof of the security of such schemes relies on the collision
freeness of the underlying encryption algorithm.

In the following, let E denote an arbitrary encryption algorithm. Let E(K, M) denote the
encryption of message M with key K using E; let IV denote the initial vector.

Rabin [50] showed that any private-key cryptosystem can be used for hashing. Rabin’s scheme is
the following. First the message is divided into blocks M1, M2, . . . of the same size as the block length
of the encryption algorithm. In the case of DES, the message is divided into 64-bit blocks. To hash a
message M = (M1, M2, . . . , Mt), the following computations are performed:

H0 = IV
Hi = E(Mi, Hi−1) i = 1, 2, . . . , t

H(M) = Ht

where Mi is a message block, Hi are intermediate results of hashing, and H(M) is the digest. Although
Rabin’s scheme is simple and elegant, it is susceptible to the so-called birthday attack when the size
of the hash value is 64 bits.
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Winternitz [76] proposes a scheme for the construction of a one-way hash function from any block
cipher. In any good block cipher, given an input and an output, it should be difficult to determine
the key, but from the key and the output, it should be easy to determine the input. The scheme uses
an operation E∗ defined by:

E∗(K ‖ M) = E(K, M) ⊕ M.

On the basis of the above scheme, Davies [22] proposed the following hashing algorithm:

H0 = IV
Hi = E(Mi, Hi−1) ⊕ Hi−1 i = 1, 2, . . . , t

H(M) = Ht .

If E(K, M) is DES, then it may be vulnerable to attacks based on weak keys or a key-collision search.
The meet-in-the-middle attack is avoided because E(K, M) is a one-way function.

Merkle [42] proposed hashing schemes based on Winternitz’s construction. These schemes use
DES to produce digests of size ≈ 128 bits.

Their construction follows a general method for producing hash algorithms, called the meta
method. This is same as the serial method of Damgård [21]. The description of the method is
as follows. The message is first divided into blocks of 106 bits. Each 106-bit block Mi of data is
concatenated with the 128-bit block Hi−1. The concatenation Xi = Mi ‖ Hi−1 contains 234 bits.
Each block Xi is further divided into halves, Xi1 and Xi2.

H0 = IV
Xi = Hi−1 ‖ Mi

Hi = E∗(00 ‖ first 59 bits of {E∗(100 ‖ X1i)} ‖
first 59 bits of {E∗(101 ‖ X2i)}) ‖
E∗(01 ‖ first 59 bits of {E∗(110 ‖ X1i)} ‖
first 59 bits of {E∗(111 ‖ X2i)})

H(M) = Ht .

In this scheme, E∗ is defined in the Winternitz construction. The strings 00, 01, 100, 101, 110, and
111 above are used to prevent the manipulation of weak keys.

12.4.4 Hashing Functions Based on Intractable Problems

Hashing functions can also be based on one-way functions such as exponentiation, squaring, knap-
sack (cf. Pieprzyk and Sadeghiyan [46]), and discrete logarithm. More recently, a group-theoretic
construction using the SL2 groups has been proposed by Tillich and Zémor [67].

A scheme based on RSA exponentiation as the underlying one-way function is defined by

H0 = IV
Hi = (Hi−1 ⊕ Mi)

e mod N i = 1, 2, . . . , t
H(M) = Ht

where the modulus N and the exponent e are public. A correcting block attack can be used to
compromise the scheme by appending or inserting a carefully selected last block message to achieve
a desired hash value. To immunize the scheme against this attack, it is necessary to add redundancy
to the message so that the last message block cannot be manipulated (cf. Davies and Price [22]). To
ensure the security of RSA, N should be at least 512 bits in length, making the implementation of
the above scheme very slow.
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To improve the performance of the above scheme, the public exponent can be made small. For
example, squaring can be used:

Hi = (Hi−1 ⊕ Mi)
2 mod N.

It is suggested that 64 bits of every message block be set to 0 to avoid a correcting block attack.
An algorithm for hashing based on squaring is proposed in Appendix D of the X.509 recommen-

dations of the CCITT standards on secure message handling. The proposal stipulates that 256 bits
of redundancy be distributed over every 256-bit message block by interleaving every four bits of the
message with 1111, so that the total number of bits in each block becomes 512. The exponentiation
algorithm, with exponent two, is then run on the modified message in CBC mode (cf. Pieprzyk and
Sadeghiyan [46]). In this scheme, the four most significant bits of every byte in each block are set
to 1. Coppersmith [19] shows how to construct colliding messages in this scheme.

Damgård [21] described a scheme based on squaring, which maps a block of n bits into a block of
m bits. The scheme is defined by

H0 = IV

Hi = extract(00111111‖Hi−1‖ Mi)
2 mod N

H(M) = Ht .

In the above scheme, the role of extract is to extract m bits from the result of the squaring function.
To obtain a secure scheme, m should be sufficiently large so as to thwart the birthday attack; this
attack will be explained later. Moreover, extract should select those bits for which finding colliding
inputs is difficult. One way to do this is to extract m bits uniformly. However, for practical reasons, it
is better to bind them together in bytes. Another possibility is to extract every fourth byte. Daemen
et al. [20] showed that this scheme can be broken.

Impagliazzo and Naor [32] propose a hashing function based on the knapsack problem. The
description of the scheme is as follows. Choose at random numbers a1, . . . , an in the interval
0, . . . , N, where n indicates the length of the message in bits, and N = 2� − 1 where �< n. A binary
message M = M1, M2, . . . , Mn is hashed as

H(M) =
n∑

i=1
aiMi mod 2�.

Impagliazzo and Naor do not give any concrete parameters for the above scheme, but they have
shown that it is theoretically sound.

Gibson [30] constructs hash functions whose security is conditional upon the difficulty of factor-
ing certain numbers. The hash function is defined by

f (x) = ax(mod n),

where n = pq, p and q are large primes, and a is a primitive element of the ring Zn. In Gibson’s hash
function, n has to be sufficiently large to ensure the difficulty of factoring. This constraint makes the
hash function considerably slower than the MD4 algorithm.

Tillich and Zémor [67] proposed a hashing scheme where the message digests are given by two-
dimensional matrices with entries in the binary Galois fields GF(2n) for 130 ≤ n ≤ 170. The hashing
functions are parameterized by the irreducible polynomials Pn(X) of degree n over GF(2); their
choice is left to the user. Their scheme has several provably secure properties: detection of local
modification of text; and resistance to the birthday attack as well as other attacks. Hashing is fast as
digests are produced by matrix multiplication in GF(2n) which can be parallelized.
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Messages (encoded as a binary strings) x1x2 . . . of arbitrary length are mapped to products of a
selected pair of generators {A, B} of the group SL(2, 2n), as follows:

xi =
{

A if xi = 0
B if xi = 1.

The resulting product belongs to the (infinite) group SL(2, GF(2)[X]), where GF(2)[X] is the ring
of all polynomials over GF(2). The product is then reduced modulo an irreducible polynomial of
degree n (Euclidean algorithm), mapping it to an element of SL(2, 2n). The four n-bit entries of the
reduced matrix give the (3n + 1)-bit message digest of x1x2 . . ..

Charnes and Pieprzyk [15] showed how to find irreducible polynomials which produce collisions
for the SL2 hash functions. Geiselmann [29] gave an algorithm for producing potential collisions for
the SL(2, 2n) hashing scheme, which is independent of the choice of the irreducible polynomials. The
complexity of his algorithm is that of the discrete logarithm problem in GF(2n) or GF(22n). However,
no collisions in the specified range of the hash function have been found using this algorithm. Some
pairs of rather long colliding strings are obtained for a toy example of GF(221).

12.4.5 Hashing Algorithms

Rivest [51] proposed a hashing algorithm called MD4. It is a software-oriented scheme that is
especially designed to be fast on 32-bit machines. The algorithm produces a 128-bit output, so it
is not computationally feasible to produce two messages having the same hash value. The scheme
provides diffusion and confusion using three Boolean functions. The MD5 hashing algorithm is a
strengthened version of MD4 [52]. MD4 has been broken by Dobbertin [25].

HAVAL stands for a one-way hashing algorithm with a variable length of output. It was designed
at the University of Wollongong by Zheng et al. [79]. It compresses a message of an arbitrary length
into a digest of either 128, 160, 192, 224, or 256 bits. The security level can be adjusted by selecting
3, 4, or 5 passes. The structure of HAVAL is based on MD4 and MD5. Unlike MD4 and MD5 whose
basic operations are done using functions of three Boolean variables, HAVAL employs five Boolean
functions of seven variables (each function serves a single pass). All functions used in HAVAL are
highly nonlinear, 0-1 balanced, linearly inequivalent, mutually output-uncorrelated, and satisfy the
strict avalanche criterion (SAC).

Charnes and Pieprzyk [14] proposed a modified version of HAVAL based on five Boolean functions
of five variables. The resulting hashing algorithm is faster than the five pass, seven variable version of
the original HAVAL algorithm. They use the same cryptographic criteria that were used to select the
Boolean functions in the original scheme. Unlike the seven variable case, the choice of the Boolean
functions is fairly restricted in the modified setting. Using the shortest algebraic normal form of the
Boolean functions as one of the criteria (to maximize the speed of processing), it was shown in [14]
that the Boolean functions are optimal. No attacks have been reported for the five variable version.

12.4.6 Attacks

The best method to evaluate a hashing scheme is to see what attacks an adversary can perform to
find collisions. A good hashing algorithm produces a fixed length number which depends on all
the bits of the message. It is generally assumed that the adversary knows the hashing algorithm.
In a conservative approach, it is assumed that the adversary can perform an adaptive chosen
message attack, where it may choose messages, ask for their digests, and try to compute colliding
messages. There are several methods for using such pairs to attack a hashing scheme and calculate
colliding messages. Some methods are quite general and can be applied against any hashing scheme;
for example, the so-called birthday attack. Other methods are applicable only to specific hashing
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schemes. Some attacks can be used against a wide range of hash functions. For example, the so-called
meet-in-the-middle attack is applicable to any scheme that uses some sort of block chaining in its
structure. In another example, the so-called correcting block attack is applicable mainly to hash
functions based on modular arithmetic.

12.4.6.1 Birthday Attack

The idea behind this attack originates from a famous problem from probability theory, called the
birthday paradox. The paradox can be stated as follows. What is the minimum number of pupils in
a classroom so the probability that at least two pupils have the same birthday which is greater than
0.5? The answer to this question is 23, which is much smaller than the value suggested by intuition.
The justification for the paradox is as follows. Suppose that the pupils are entering the classroom
one at a time, the probability that the birthday of the first pupil falls on a specific day of the year is
equal to 1

365 . The probability that the birthday of the second pupil is not the same as the first one is
equal to 1 − 1

365 . If the birthdays of the first two pupils are different, the probability that the birthday
of the third pupil is different from the first one and the second one is equal to 1 − 2

365 . Consequently,
the probability that t students have different birthdays is equal to

(
1 − 1

365
) (

1 − 2
365

)
. . .

(
1 − t−1

365
)
,

and the probability that at least two of them have the same birthday is

P = 1 −
(

1 − 1
365

) (
1 − 2

365

)
. . .

(
1 − t − 1

365

)
.

It can be easily computed that for t ≥ 23, this probability is greater than 0.5.
The birthday paradox can be employed for attacking hash functions. Suppose that the number of

bits of the hash value is n, an adversary generates r1 variations of a bogus message and r2 variations
of a genuine message. The probability of finding a bogus message and a genuine message that hash
to the same digest is

P ≈ 1 − e− r1r2
2n

where r2 � 1. When r1 = r2 = 2
n
2 , the above probability is ≈ 0.63. Therefore, any hashing algorithm

which produces digests of length around 64 bits is insecure, since the time complexity function for
the birthday attack is ≈ 232. It is usually recommended that the hash value should be around 128
bits to thwart the birthday attack.

This method of attack does not take advantage of the structural properties of the hash scheme or its
algebraic weaknesses. It applies to any hash scheme. In addition, it is assumed that the hash scheme
assigns a value to a message which is chosen with a uniform probability among all the possible hash
values. Note that if the structure is weak or has certain algebraic properties, the digests do not have
a uniform probability distribution. In such cases, it may be possible to find colliding messages with
a better probability and fewer message-digest pairs.

12.4.6.2 Meet-in-the-Middle Attack

This is a variation of the birthday attack, but instead of comparing the digests, the intermediate
results in the chain are compared. The attack can be made against schemes which employ some
sort of block chaining in their structure. In contrast to birthday attack, a meet-in-the-middle attack
enables an attacker to construct a bogus message with a desired digest. In this attack, the message
is divided into two parts. The attacker generates r1 variations on the first part of a bogus message.
He starts from the initial value and goes forward to the intermediate stage. He also generates r2
variations on the second part of the bogus message. He starts from the desired false digest and goes
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backward to the intermediate stage. The probability of a match in the intermediate stage is the same
as the probability of success in the birthday attack.

12.4.6.3 Correcting-Block Attack

In a correcting block attack, a bogus message is concatenated with a block to produce a corrected
digest of the desired value. This attack is often applied to the last block and is called correcting last
block attack, although it can be applied to other blocks as well. Hash functions based on modular
arithmetic are especially sensitive to the correcting last block attack. The introduction of redundancy
into the message in these schemes makes finding a correcting block with the necessary redundancy
difficult. However, it makes the scheme less efficient. The difficulty of finding a correcting block
depends on the nature of the redundancy introduced.

12.4.6.4 Differential Analysis

Biham and Shamir [11] developed a method for attacking block ciphers, known as differential
cryptanalysis. This is a general method for attacking cryptographic algorithms, including hashing
schemes. Dobbertin [25] was the first to cryptanalyze the MD4 hashing algorithm, and he also made
a preliminary cryptanalysis of MD5. In 2004 Wang et al. [74] announced they had found colliding
pairs of messages forthe hash functions MD4, MD5, HAVAL-128, and RIPEMD. More specifically,
these differential attacks find two differing vectors with the same hash; they are not preimage attacks
which attempt to find data set with a given hash. For example, the MD5 algorithm, which is used
widely for password authentication systems (it became the most common Unix password hashing
algorithm in the 1990s), is not affected by the attacks of [74]. In response to the attacks of [74], the
Australian Government Defence Signals Directorate (DSD) issued a public bulletin in 2005 stating
that: “DSD does not believe the recent results represent a practical threat to users of SHA-1 or MD5
for most purposes.”

12.5 MAC

MAC provide message integrity and are one of the most important security primitives in current
distributed information systems. A MAC is a symmetric key cryptographic primitive that consists of
two algorithms. A MAC generation algorithm, G = {Gk : k = 1, . . . , N}, takes an arbitrary message,
s, from a given collection S of messages and produces a tag, t = Gk(s), which is appended to the
message to produce an authentic message, m = (s.t). A MAC verification algorithm, V = {Vk(.) :
k = 1, . . . , N}, takes authenticated messages of the form (s.t) and produces a true or false value,
depending on whether the message is authentic. The security of a MAC depends on the best chance
that an active spoofer has to successfully substitute a received message (s.Gk(s)) for a fraudulent one,
m′ = (s′, t), so that Vk(m′) produces a true result. In MAC systems, the communicants share a secret
key and are therefore not distinguishable cryptographically.

The security of MACs can be studied from the point of view of unconditional or computational
security.

Unconditionally secure MACs are equivalent to cartesian authentication codes. However, in
MAC systems only multiple communications are of interest. In Section 12.2, A-codes that provide
protection for multiple transmissions were discussed. In Section 12.5.1, we present a construction for
a MAC that has been the basis of all the recent MAC constructions and have a number of important
properties. It is provably secure; the number of key bits required is asymptotically minimal; and it
has a fast implementation.

Computationally secure MACs have arisen from the needs of the banking community. They
are also studied under other names, such as keyed hash functions and keying hash functions.
In Section 12.5.3, we review the main properties and constructions of such MACs.
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12.5.1 Unconditionally Secure MACs

When the adversary has unlimited computational resources, attacks against MAC systems and the
analysis of security are similar to that of Cartesian A-codes. The adversary observes n codewords
of the form si.ti, i = 1, . . . , n, in the channel and attempts to construct a fraudulent codeword s.t
which is accepted by the receiver. (This is the same as spoofing of order n in an A-code.) If the
communicants want to limit the adversary’s chance of success to p after n message transmissions,
the number of authentication functions (number of keys) must be greater than a lower bound which
depends on p. If the adversary’s chance of success in spoofing of order i, i = 1, . . . , n is pi, then at
least 1/p1p2 . . . pn keys are required; see Fak [27], Wegman and Carter [75] for a proof of this. For
pi = p, i = 1, . . . , n, the required number of key bits is −n log2 p. That is, for every message, − log2 p
key bits are required. This is the absolute minimum for the required number of key bits.

Perfect protection is obtained when the adversary’s best strategy is a random choice of a tag and
appending it to the message; this strategy succeeds with probability p = 2−k, if the size of the tag is k
bits. In this case, the number of required key bits for every extra message is k.

Wegman and Carter [75] give a general construction for unconditionally secure MACs that can
be used for providing protection for an arbitrary number of messages.

Their construction uses universal classes of hash functions. Traditionally, a hash function is used
to achieve fast average performance over all inputs in varied applications, such as databases. By using
a universal class of hash functions, it is possible to achieve provable average performance without
restricting the input distribution.

Let h : A → B be a hash function mapping the elements of a set A to a set B. A strongly universaln
class of hash function is a class of hash functions with the property that for n distinct elements
a1, . . . , an of A and n distinct elements b1, . . . , bn of B, exactly |H|/(bn) functions map ai to bi,
for i = 1, . . . , n. Strongly universaln hash functions give perfect protection for multiple messages
as follows. The transmitter and the receiver use a publicly known class of strongly universaln hash
functions, and a shared secret key determines a particular member of the class that they will use
for their communication. Stinson [63] shows that a class of strongly universal2 that maps a set of a
elements to a set of b elements is equivalent to an orthogonal array OAλ(2, a, b) with λ= |H|/b2.
Similar results can be proved for strongly universaln classes of hash functions. Because of this
equivalence, universaln hash functions are not a practically attractive solution. In particular, this
proposal is limited by the constraints of constructing orthogonal arrays with arbitrary parameters.
A good account of orthogonal arrays and other combinatorial structures can be found in the
monograph by Beth et al. [10].

12.5.2 Wegman and Carter Construction

Wegman and Carter show that, instead of strongly universaln, one can always use a strongly
universal2 family of hash functions together with a one time pad of random numbers. The sys-
tem works as follows. Let B denote the set of tags consisting of the sequences of k bit strings. Let H
denote a strongly universal2 class of hash functions mapping S to B. Two communicants share a key
that specifies a function h ∈ H together with a one-time pad containing k-bit random numbers. The
tag for the jth message sj is h(sj) ⊕ rj, where rj is the jth number on the pad. It can be proved that
this system limits the adversary’s chance of success to 2−k as long as the pad is random and not used
repeatedly. The system requires nk + K bits of key, where K is the number of bits required to specify
an element of H, n is the number of messages to be authenticated, and k is the size of the tags.

This construction has a number of remarkable properties. First, for large n, the key requirement for
the system approaches the theoretical minimum of k bits per message. This is because for large n the
number of key bits is effectively determined by nk. Second, the construction of MAC with provable
security for multiple communications is effectively reduced to the construction of a better studied
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primitive, that is, strongly universal2 class of hash functions. Finally, by replacing the one-time
pad with a pseudorandom sequence generator, unconditional security is replaced by computational
security.

Wegman and Carter’s important observation is the following. By not insisting on the minimum
value for the probability of success in spoofing of order one, that is, allowing p1 > 1/k, it is possible
to reduce the number of functions and thus the required number of keys. This observation leads to
the notion of almost strongly universal2 class.

An ε-almost universal2 (or ε-AU2) class of hash functions has the following property. For any pair
x, y ∈ A, x = y, the number of hash functions h with h(x)= h(y) is at most equal to ε. The ε-almost
strongly-universal2 (or ε-ASU2) hash functions have the added property that for any x ∈ A, y ∈ B,
the number of functions with h(x)= y is |H|/|B|. Using an ε-almost strongly universal2 class of
functions in the Wegman and Carter construction results in MAC systems for which the probability
of success for an intruder is ε. Such MACs are called ε-otp-secure, see Krawczyk [37].

Stinson [65] gives several methods for combining hash functions of class AU2 and ASU2. The
following theorem shows that an ε-ASU2 class can be constructed from an ε-AU2 class.

[65] Suppose H1 is an ε1-AU2 class of hash functions from A1 to B1, and suppose H2 is an ε2-ASU2
class of hash functions from B1 to B2, then there exists an ε-ASU2 class H of hash functions from
A1 to B2, where ε= ε1 + ε2 and |H| = |H1| × |H2|.

This theorem further reduces the construction of MACs with provable security to the construction
of ε-AU2 class of hash functions.

Several constructions for ε-ASU2 hash functions are given by Stinson [65]. Johansson et al. [35]
establish relationships between ASU2 hash functions and error correcting codes. They use geometric
error correcting codes to construct new classes of ε-ASU2 hash function of smaller size. This reduces
the key size.

Krawczyk [37] shows that in the Wegman–Carter construction, ε-ASU2 hash functions can be
replaced with a less demanding class of hash functions, called ε-otp-secure. The definition of this
class differs from other classes of hash functions, in that it is directly related to MAC constructions
and their security, in particular, to the Wegman–Carter construction.

Let s ∈ S denote a message that is to be authenticated by a k bit tag h(s) ⊕ r, constructed by
Wegman and Carter’s method. An adversary succeeds in a spoofing attack if he or she can find
s′ = s, t′ = h(s′) ⊕ r, assuming that he or she knows H but does not know h and r. A class H of hash
functions is ε-otp-secure if for any message no adversary succeeds in the above attack scenario with
a probability greater than ε.

[37] A necessary and sufficient condition for a family H of hash functions to be ε-otp-secure
is that

∀a1 = a2, c, Prh (h (a1) ⊕ h (a2) = c) ≤ ε.

The need for high speed MACs has increased with the progress in high speed data communication.
A successful approach to the construction of such MACs uses hash function families in which the
message is hashed by multiplying it by a binary matrix. Because hashing is achieved with exclusive-or
operations, it can be efficiently implemented in software. An obvious candidate for such a class of hash
functions, originally proposed by Wegman and Carter [13,75], is the set of linear transformations
from A to B. It is shown that this forms an ε-AU2 class of hash functions. However, the size of
the key—the number of entries in the matrix—is too large, and too many operations are required
for hashing. Later proposals by Krawczyk [37] and by Rogaway [55] are aimed at alleviating these
problems and have a fast software implementation. The former uses Topelitz matrices [37], while
the latter uses binary matrices with only three ones per column. In both cases, the resulting family
is ε-AU2.

The design of a complete MAC usually involves a number of hash functions which are combined
by methods, similar to those proposed by Stinson [65]. The role of some of the hash functions is to
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produce high compression (small b), while others produce the desired spread and uniformity (see
Rogaway [55]).

Reducing the key size of the hash function is especially important in practical applications,
because the one-time pad is replaced by the output of a pseudorandom generator with a short key
(of the order of 128 bits). Hence, it is desirable to have the key size of the hash function of similar
order.

12.5.3 Computational Security

In the computationally secure approach, protection is achieved because excessive computation is
required for a successful forgery. Although a hash value can be used as a checksum to detect
random changes in the data, a secret key must be used to provide protection against active tam-
pering. Methods for constructing MACs from hash functions have traditionally followed one of the
following approaches: the so-called hash-then-encrypt and keying a hash function.

Hash-then-encrypt: To construct a MAC, for a message x with this method, the hash value of x is
calculated, and the result is encrypted using an encryption algorithm. This is similar to signature
generation, where a public key algorithm is replaced by a private key encryption function.

There are a number of drawbacks to this method. First, the overall scheme is slow. This is because
the two primitives used in the construction, that is, the cryptographic hash functions and encryption
functions are designed for other purposes and have extra security properties which are not strictly
required in the construction. Although this construction can produce a secure MAC, the speed of
the MAC is bounded by the speed of its constituent algorithms. For example, cryptographic hash
functions are designed to be one-way. It is not clear whether this is a required property in the hash-
then-encrypt construction, where the output of the hash function is encrypted and one-wayness is
effectively obtained through the difficulty in finding the plaintext from the ciphertext.

Keying a Hash Function: In the second approach, a secret key is incorporated into a hashing
algorithm. This operation is sometimes called keying a hash function (see Bellare et al. [4]). This
method is attractive, because of the availability of hashing algorithms and their relative speed in
software implementation; these algorithms are not subject to export restrictions.

Although this scheme can be implemented more efficiently in software than the previous scheme,
the objection to the superfluous properties of the hash functions remains.

The keying method depends on the structure of the hash function. Tsudik [71] proposed three
methods of incorporating the key into the data. In the secret prefix method, Gk(s)= H(k‖s), while in
the secret suffix, we have Gk(s)= H(s‖k). Finally, the envelope method combines the previous two
methods with Gk(s)= H(k1‖s‖k2) and k = k1‖k2.

Instead of including the key into the data, the key information can be included into the hashing
algorithm. In iterative hash functions such as MD5 and SHA, the key can be incorporated into the
initial vector, compression function, or into the output transformation.

There have also been some attempts at defining and constructing secure keyed hash functions as
independent primitives, namely by Berson et al. [9] and Bakhtiari et al. [1]. The former propose a
set of criteria for secure keyed hash functions and give constructions using one-way hash functions.
The latter argue that the suggested criteria for security are in most cases excessive; relaxing these
allows constructions of more efficient secure keyed hash functions. Bakhtiari et al. also give a design
of a keyed hash function from scratch. Their design is based mostly on intuitive principles and
lacks a rigorous proof of security. A similar approach is taken in the design of MDx-MAC by
Preneel and van Oorschot [48], which is a scheme for constructing a MAC from a MD5-type hash
function.
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12.5.3.1 Security Analysis of Computationally Secure MACs

The security analysis of computationally secure MACs has followed two different approaches. In the
first approach, the security assessment is based on an analysis of some possible attacks. In the second
approach, a security model is developed and used to examine the proposed MAC.

Security Analysis Through Attacks: Consider a MAC algorithm that produces MACs of length m
using a k bit key. In general, an attack might result in a successful forgery, or in the recovery of the
key. According to the classification given by Preneel and van Oorschot [49], a forgery in a MAC can
be either existential—the opponent can construct a valid message and MAC without the knowledge
of the key pair—or selective—the opponent can determine the MAC for a message of his choice.
Protection against the former type of attack imposes more stringent conditions than the latter type of
attack. A forgery is verifiable if the attacker can determine with a high probability whether the attack is
successful. In a chosen text attack, the attacker is given the MACs for the messages of his own choice.
In an adaptive attack, the attacker chooses text for which he can see the result of his previous request
before forming his next request. In a key recovery attack, the aim of the attacker is to find the key.
If the attacker is successful, he can perform selective forgery on any message of his choice, and the
security of the system is totally compromised.

For an ideal MAC, any method to find the key is as expensive as an exhaustive search of O(2k)
operations. If m < k, the attacker may randomly choose the MAC for a message with the probability
of success equal to 1/2m. However, in this attack, the attacker cannot verify whether his attack has
been successful.

The complexity of various attacks is discussed by several authors: Tsudik [71], Bakhtiari et al.
[2], and Bellare et al. [5]. Preneel and van Oorschot [48,49] propose constructions resistant to such
attacks. Some attacks can be applied to all MACs obtained using a specific construction method
while other attacks are limited to particular instances of the method.

12.5.3.2 Formal Security Analysis

The main attempts at formalizing the security analysis of computationally secure MACs are due
to Bellare et al. [4], and Bellare and Rogaway [6]. In both papers, an attack model is first carefully
defined, and the security of a MAC with respect to that model is considered. Bellare et al. [4] use
their model to prove the security of a generic construction on the basis of pseudorandom functions,
while Bellare and Rogaway [6] use their model to prove the security of a generic construction on the
basis of hash functions.

MAC from pseudorandom functions: The formal definition of security given by Bellare et al. [6]
assumes that the adversary can ask the transmitter to construct tags for messages of his choice and
also ask the receiver to verify chosen message and tag pairs. The number of these requests is limited,
and a limited time t can be spent on the attack. Security of the MAC is expressed as an upper bound
on the adversary’s chance of succeeding in its best attack.

The construction proposed by Bellare et al. applies to any pseudorandom function. Their pro-
posal, called XOR-MAC, basically breaks a message into blocks. For each block, the output of the
pseudorandom function is calculated, and the outputs are finally XORed. Two schemes based on
this approach are proposed: the randomized XOR scheme and the counter-based scheme.

The pseudorandom function used in the above construction can be an encryption function, such
as DES, or a hash function, such as MD5. It is proved that the counter based scheme is more secure
than the randomized scheme, and if DES is used, both schemes are more secure than CBC MAC.
Some of the desirable features of this construction are parallelization and incrementality. The former
means that message blocks can be fed into the pseudorandom function in parallel. The latter refers
to the feature of calculating incrementally the value of the MAC for a message s′ which differs from
s in only a few blocks.
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MAC from hash functions: The model used by Bellare and Rogaway [6] is similar to the above
one. The adversary can obtain information by asking queries; however, in this case, queries are only
addressed to the transmitter.

A family of functions {Fk} is (ε, t, q, L)-secure MAC [5] if any adversary that is not given
the key k, is limited to spend total time t, and sees the values of the function Fk computed on q
messages s1, s2, . . . , sq of its choice, each of length at most L, cannot find a message and tag pair
(s, t), s = si, i = 1, . . . , q, such that t = Fk(s) with a probability better that ε.

Two general constructions for MAC from hash functions, the so-called NMAC (the nested
construction) and HMAC (the hash-based MAC) are given and their security is formally
proved in [4].

If the keyed compression function f is a (εf , t, q, L)-secure MAC and the keyed iterated hash
function F is (εF , t, q, L)-weakly collision-resistant, then the NMAC is (εf +εF , t, q, L)-secure MAC.

Weak collision-resistance is a much weaker notion than the collision resistance of (unkeyed)
hash functions, because the adversary does not know the secret key and finding collision is much
more difficult in this case. More precisely, a family of keyed hash functions {Fk} is (ε, t, q, L)-
weakly collision-resistant if any adversary, that is not given the key k, is limited to spend total
time t, and sees the values of the function Fk computed on q messages m1, m2, . . . , mq of its
choice, each of length at most L, cannot find messages m and m′ for which Fk(m)= Fk(m′) with
probability better that ε. With some extra assumptions, similar results are proved for the HMAC
construction.

A related construction is the collisionful keyed hash function proposed by Gong [31]. In his
construction, the collisions can be selected and the resulting function can be claimed to provide
security against password guessing attacks. Bakhtiari et al. [3] explore the security of Gong’s function
and a key exchange protocol based on collisionful hash functions.

Two distinguishers for HMACs based on the hash functions HAVAL, MD4, MD5, SHA-0, and
SHA-1 were described byKim et al. [36]. It was shown that these can be used to devise a forgery attack
on the HMACs and NMACs based on these functions. (A distinguishing attack establishes that with
some probability, the output of a stream cipher’s keystream differs from a random bitstream.) Bellare
[8] proves that HMAC is a pseudo randomfunction without the assumption that the underlying
hash function is collisionresistant; see Section 12.4.6.

12.5.4 Applications

The main application of a MAC is to provide protection against active spoofing (see Carter and
Wegman [13]). This is particularly important in open distributed systems such as the Internet.
Other applications include secure password checking and software protection. MACs can be used to
construct encryption functions and have been used in authentication protocols in place of encryption
functions (cf. Bird et al. [12]). An important advantage of MAC functions is that they are not subject
to export restrictions. Other applications of MAC functions are to protect software against viruses or
to protect computer files against tampering. Integrity checking is an important service in a computer
operating system which can be automated with software tools.

12.6 Digital Signatures

Digital signatures are meant to be the electronic equivalents of handwritten signatures. They should
preserve the main features of handwritten signatures. Obviously, it is desirable that digital signatures
be as legally binding as handwritten ones. There are three elements in every signature: the signer,
the document, and the time of signing.



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C012 Finals Page 21 2009-10-5

Crypto Topics and Applications I 12-21

In most cases, the document already includes a timestamp. A digital signature must reflect both
the content of the document and the identity of the signer. The signer is uniquely identified by its
secret key. In particular, we require the signature to be

• Unique—a given signature reflects the document and can be generated by the signer
only

• Unforgeable—it must be computationally intractable for an opponent to forge the
signature

• Easy to generate by the signer and easy to verify by recipients
• Impossible to deny by the signer (nonrepudiation)

A digital signature differs from a handwritten signature such that it is not physically attached
to the document on a piece of paper. Digital signatures have to be related both to the signer and
the document by a cryptographic algorithm. Signatures can be verified by any potential recipient.
Therefore, the verification algorithm must be public. Signature verification succeeds only when the
signer and document match the signature.

There are two general classes of signature schemes:

• One-time signature schemes
• Multiple signature schemes

One-time signature schemes can be used to sign only one message. To sign a second message,
the signature scheme has to be reinitialized; however, any signature can be verified repeatedly.
Multiple signature schemes can be used to sign several messages without the necessity to reinitialize
the signature scheme.

In practice, a signature scheme is required to provide a relatively short signature for a document
of an arbitrary length. We sign the document by generating a signature for its digest. The hashing
employed to produce the digest must be secure and collision free.

12.6.1 One-Time Signature Schemes

This class of signature schemes can be implemented using any one-way function. These schemes
were first developed using private key cryptosystems. We follow the original notation. An encryption
algorithm is used as a one-way function. To set up the signature scheme, the signer chooses a one-
way function (encryption algorithm). The signer selects an index k (secret key) randomly and
uniformly from the set of keys, K. The index determines an instance of the one-way function, that
is, Ek : Σn → Σn, where Σ= {0, 1}; it is known only by the signer. Note that n has to be large enough
to avoid birthday attacks.

12.6.1.1 Lamport Scheme

Lamport’s scheme [39] generates signatures for n-bit messages. To sign a message, the signer first
chooses randomly n key pairs:

(K10, K11) , (K20, K21) , . . . ,
(
Kn0 , Kn1

)
. (12.1)

The pairs of keys are kept secret and are known to the signer only. Next, the signer creates two
sequences, S and R:

S = {(S10, S11) , (S20, S21) , . . . ,
(
Sn0 , Sn1

)},

R = {(R10, R11) , (R20, R21) , . . . ,
(
Rn0 , Rn1

)}. (12.2)



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C012 Finals Page 22 2009-10-5

12-22 Special Topics and Techniques

The elements of S are selected randomly and the elements of R are cryptograms of S so

Rij = EKij

(
Sij

)
for i = 1, . . . , n and j = 0, 1, (12.3)

where EK is the encryption function of the selected symmetric cryptosystem. S and R are stored in a
read-only public register; they are known by the receivers.

The signature of an n-bit message M = (m1, . . . , mn), mi ∈ {0, 1} for i = 1, . . . , n, is a sequence of
cryptographic keys,

S(M) = {K1i1 , K2i2 , . . . , Knin} (12.4)

where ij = 0 if mj = 0; otherwise ij = 1, j = 1, . . . , n. A receiver validates the signature S(M) by
verifying whether suitable pairs of S and R match each other for known keys.

12.6.1.2 Rabin Scheme

In Rabin’s scheme [50], a signer begins the construction of the signature by generating 2r keys at
random:

K1, K2, . . . , K2r . (12.5)

The parameter r is determined by the security requirements. The Ki are secret and known only to
the signer. Next, the signer creates two sequences which are needed by the recipients to verify the
signature. The first sequence,

S = {S1, S2, . . . , S2r}
comprises binary blocks chosen at random by the signer. The second,

R = {R1, R2, . . . , R2r},

is created using the sequence S, Ri = EKi(Si) for i = 1, . . . , 2r. S and R are stored in a read-only public
register.

The signature is generated using the following steps. The message to be signed M is enciphered
under keys K1, . . . , K2r . The cryptograms

EK1(M), . . . , EK2r (M) (12.6)

form the signature S(M). The pair (S(M), M) is sent to the receivers.
To verify the signature, a receiver selects randomly a 2r-bit sequence σ of r-ones and r-zeros. A

copy of σ is forwarded to the signer. Using σ, the signer forms an r-element subset of the keys with
the property that Ki belongs to the subset if and only if the ith element of the 2r-bit sequence is ‘1’;
i = 1, . . . , 2r. The subset of keys is then communicated to the receiver. To verify the key subset, the
receiver generates and compares r suitable cryptograms of S with the originals kept in the public
register.

12.6.1.3 Matyas–Meyer Scheme

Matyas and Meyer [41] propose a signature scheme based on the DES algorithm. However, any
one-way function can be used in this scheme.

The signer first selects a random matrix U = [ui,j] i = 1, . . . , 30, j = 1, . . . , 31 and ui,j ∈ Σn. Using
U, a 31 × 31 matrix KEY = [ki,j] is constructed for ki,j ∈ Σn. The first row of KEY matrix is chosen
at random, the other rows are

ki+1,j = Eki,j

(
ui,j

)
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for i = 1, . . . , 30 and j = 1, . . . , 31. Finally, the signer installs the matrix U and the vector (k31,1, . . . ,
k31,31) (the last row of KEY) in a public registry. To sign a message m ∈ Σn, the cryptograms

ci = Ek31,i(m) for i = 1, . . . , 31

are computed. The cryptograms are considered as integers and ordered according to their values so
ci1 < ci2 < · · · < ci31 . The signature of m is the sequence of keys

SGk(m) = (
ki1,1, ki2,2, . . . , ki31,31

)
.

The verifier takes the message m, recreates the cryptograms ci, and orders them in increasing
order. Next, the signature-keys are put into the “empty” matrix KEY in the entries indicated by the
ordered sequence of ci’s. The verifier then repeats the signer’s steps and computes all keys below the
keys of the signature. The signature is accepted if the last row of KEY is identical to the row stored
in the registry.

12.6.2 Signature Schemes Based on Public-Key Cryptosystems

12.6.2.1 RSA Signature Scheme

First, a signer sets up the RSA system [53] with the modulus N = p × q, where the two primes p and
q are fixed. Next a random decryption key d ∈ ZN is chosen; the encryption key e is

e × d ≡ 1 (mod (p − 1, q − 1)).

The signer publishes both the modulus N and the decryption key d.
Given a message M ∈ ZN , the signature generated by the signer is

S ≡ Me (mod N).

Since the decryption key is public, anyone can verify whether

M ≡ Sd (mod N).

The signature is considered to be valid if this congruence is satisfied. RSA signatures are subject to
various attacks which exploit the commutativity of exponentiation.

12.6.2.2 ElGamal Signature Scheme

The signature scheme due to ElGamal [26] is based on the discrete logarithm problem. The signer
chooses a finite field GF(p) for a sufficiently large prime p. A primitive element g ∈ GF(p) and a
random integer r ∈ GF(p) are fixed. Next, the signer computes

K ≡ gr (mod p)

and announces K, g, and p. To sign a message M ∈ GF(p), the signer selects a random integer
R ∈ GF(p) such that gcd (R, p − 1)= 1 and calculates

X ≡ gR (mod p).

Using this data, following congruence is solved

M ≡ r × X + R × Y (mod p − 1)



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C012 Finals Page 24 2009-10-5

12-24 Special Topics and Techniques

for Y using Euclid’s algorithm. The signature of M is the triple (M, X, Y). Note that r and R are kept
secret by the signer. The recipient of the signed message forms

A ≡ KXXY (mod p)

and accepts the message M as authentic if A ≡ gM (mod p). It is worth to note that knowledge of
the pair (X, Y) does not reveal the message M. As a matter of fact, there are many pairs matching
the message—for every pair (r, R), there is a pair (X, Y).

Since discrete exponent systems can be based on any cyclic group, the ElGamal signature scheme
can be extended to this setting.

12.6.3 Special Signatures

Sometimes, additional conditions are imposed on digital signatures. Blind signatures are useful in
situations where the message to be signed should not be revealed to the signer. Unlike typical digital
signatures, the undeniable versions require the participation of the signer to verify the signature. Fail-
stop signatures are used whenever there is a need for protection against a very powerful adversary.
As these signatures require interactions among the parties involved, the signatures are sometimes
called signature protocols.

12.6.3.1 Blind Signatures

The concept of blind signatures was introduced by Chaum [17]. They are applicable to situations
where the holder of a message M needs to get M signed by a signer (which could be a public registry)
without revealing the message. This can be done with the following steps:

• The holder of the message first encrypts it.
• The holder sends a cryptogram of the message to the signer.
• The signer generates the signature for the cryptogram and sends it back to the holder.
• The holder decodes the encryption and obtains the signature of the message.

This scheme works if the encryption and signature operations commute, for example, the RSA
scheme can be used to implement blind signatures.

Assume that the signer has set up a RSA signature scheme with modulus N and public decryption
key d, the holder of the message M selects at random an integer k ∈ ZN and computes the cryptogram

C ≡ M × kd (mod N).

The cryptogram C is now sent to the signer who computes the blind signature

SC ≡ (
M × kd)e

(mod N).

The blind signature SC is returned to the holder who computes the signature for M as follows:

SM ≡ SC × k−1 ≡ Me (mod N).

It is not necessary to have special signature schemes to generate blind signatures. It is enough
for the holder of the message to use a secure hash function h(). To get a (blind) signature from
the signer, the holder first compresses the message M using h(). The digest D = h(M) is sent to the
signer. After signing the digest, the signature SGk(D) is communicated to the holder who attaches
the message M to the signature SGk(D). Note that the signer cannot recover the message M from
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the digest, since h() is a one-way hash function. Also the holder cannot cheat by attaching a “false”
message unless collisions for the hash function can be found.

12.6.3.2 Undeniable Signatures

The concept of undeniable signatures is due to Chaum and van Antwerpen [18]. The characteristic
feature of undeniable signatures is that signatures cannot be verified without the cooperation of the
signer. Assume we have selected a large prime p and a primitive element g ∈ GF(p), both p and g are
public. The signer randomly selects its secret k ∈ GF(p) and announces gk(mod p). For a message
M, the signer creates the signature

S ≡ Mk(mod p).

Verification needs the cooperation of the verifier and signer and proceeds as follows.

• The verifier selects two random numbers a, b ∈ GF(p) and sends C ≡ Sa(gk)b (mod p)

to the signer.
• The signer computes k−1 such that k × k−1 ≡ 1 (mod p − 1) and returns d = Ck−1 ≡

Ma × gb (mod p) to the verifier.
• The verifier accepts or rejects the signature as genuine depending on whether d ≡ Ma×gb

(mod p).

There are two possible ways in which a verification can fail. Either the signer has tried to disavow a
genuine signature or the signature is indeed false. The first possibility is prevented by incorporating
a disavowal protocol. The protocol requires two runs for verification. In the first run, the verifier
randomly selects two integers a1, b1 ∈ GF(p) and sends C1 ≡ Sa1(gk)b1(mod p) to the signer. The
signer returns d1 = Ck−1

1 to the verifier. The verifier checks whether

d1 = Ma1 × gb1(mod p).

If the congruence is not satisfied, the verifier repeats the process using a different pair a2, b2 ∈ GF(p).
The verifier concludes that S is a forgery if and only if(

d1g−b1
)a2 ≡

(
d2g−b2

)a1
(mod p);

otherwise, the signer is cheating.

12.6.3.3 Fail-Stop Signatures

The concept of fail-stop signatures was introduced by Pfitzmann and Waidner [45]. Fail-stop
signatures protect signatures against a powerful adversary. As usual, the signature is produced by a
signer who holds a particular secret key. There are, however, many other keys which can be used
to produce the same signature and which thus works with the original public key. There is a high
probability that the key chosen by the adversary differs from the key held by the signer. Fail-stop
signatures provide signing and verification algorithms as well as an algorithm to detect forgery.

Let k be a secret key known to the signer only and K be the public key. The signature on a message
M is denoted as s = SGk(M). A fail-stop signature must satisfy the following conditions:

• An opponent with unlimited computational power can forge a signature with a negligible
probability. More precisely, an opponent who knows the pair (s = SGk(M), M) and the
signer’s public key K can create a collection of all keys Ks,M such that k∗ ∈ Ks,M if
and only if s = SGk∗(M)= SGk(M). The size of Ks,M has to increase exponentially as a
function of the security parameter n. Without knowing the secret k, the opponent can
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only randomly choose an element from Ks,M . Let this element be k∗. If the opponent
signs another message M∗ = M, it is a requirement that s∗ = SGk∗(M∗) = SGk(M∗)
with a probability close to one.

• There is a polynomial-time algorithm that produces a proof of forgery as output, when
given the following inputs: a secret key k, a public key K, a message M, a valid signature
s, and a forged signature s∗.

• A signer with polynomially bounded computing power cannot construct a valid signature
that it can later deny by proving it to be a forgery.

Clearly, after the signer has provided a proof of forgery, the scheme is compromised and is no longer
used. This is why it is called “fail-stop.”

12.7 Research Issues and Summary

In this chapter, we discussed authentication, hashing, MACs, and digital signatures. We have pre-
sented the fundamental ideas underlying each topic and indicated the current research developments
in these topics. This is reflected in our list of references.

We will now summarize the topics covered in this chapter.
Authentication deals with the problem of providing assurance to a receiver that a communicated

message originates from a particular transmitter, and that the received message has the same content
as the transmitted message. A typical and widely used application of authentication occurs in
computer networks. Here the problem is to provide a protocol to establish the identity of two parties
wishing to communicate or make transactions via the network. Motivated by such applications, the
theory of authentication codes has developed into a mature area of research, drawing from several
areas of mathematics.

Hashing algorithms provide a relatively short digest of a much longer input. Hashing must satisfy
the critical requirement that the digests of two distinct messages are distinct. Hashing functions
constructed from block encryption ciphers are an important type of hashing function. They have
numerous applications in cryptology. Algebraic methods have also been proposed as a source of
good hashing functions. These offer some provable security properties.

MACs are symmetric key primitives providing message integrity against active spoofing, by
appending a cryptographic checksum to a message that is verifiable only by the intended recipient of
the message. Message authentication is one of the most important ways of ensuring the integrity of
information communicated by electronic means. This is especially relevant in the rapidly developing
sphere of electronic commerce.

Digital signatures are the electronic equivalents of handwritten signatures. They are designed so
as to preserve the essential features of handwritten signatures. They can be used to sign electronic
documents and have potential applications in legal contexts.

12.8 Further Information

Current research in cryptology is represented in the proceedings of the conferences CRYPTO,
EUROCRYPT, ASIACRYPT, and AUSCRYPT. More specialized conferences deal with topics such
as hashing, fast software encryption, and network security. The proceedings are published by Springer
in their LNCS series. The Journal of Cryptology, IEEE Proceedings on Information Theory, Information
Processing Letters, Designs Codes and Cryptography, and other journals publish extended versions of
the articles that were presented in the above-mentioned conferences. The International Association
for Cryptologic Research ePrint Server (http://eprint.iacr.org) is a source of electronically distributed
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recent papers which are immediately accessible. The papers are placed on the server by the authors
and undergo almost no refereeing, other than a superficial check for relevance to cryptology.

Defining Terms

Authentication: One of the main two goals of cryptography (the other is secrecy). An authentication
system ensures that messages transmitted over a communication channel are authentic.
Cryptology: The art/science of design and analysis of cryptographic systems.
Digital signatures: An asymmetric cryptographic primitive that is the digital counterpart of a
signature and links a document to a unique person.
Distinguishing attack: A concept derived from formal models of security.A distinguisher is a
statistical measure which allows an adversary to distinguish between the output of a particular
cipher and the output of a random source with a nonnegligible probability.
Encryption algorithm: Transforms an input text by “mixing” it with a randomly chosen bit string—
the key—to produce the cipher text. In a symmetric encryption algorithm, the plain text can be
recovered by applying the key to the cipher text.
Hashing: Hashing is accomplished by applying a function to an arbitrary length message to create
a digest/hash value, which is usually of fixed length.
Key: An input provided by the user of a cryptographic system. This piece of information is kept
secret and is the source of security in a cryptographic system. Sometimes a part of key information
is made public, in which case the secret part is the source of security.
Message authentication codes: A symmetric cryptographic primitive that is used for providing
authenticity.
Plain text, cipher text: The cipher text is the “scrambled” version of an original source—the plain
text. It is assumed that the scrambled text, produced by an encryption algorithm, can be inspected
by persons not having the key and not reveal the content of the source.
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13.1 Introduction

In this chapter we continue the exposition of crypto topics that was begun in the previous chapter.
This chapter covers secret sharing, threshold cryptography, signature schemes, and finally quantum
key distribution and quantum cryptography. As in the previous chapter, we have focused only on
the essentials of each topic. We have selected in the bibliography a list of representative items, which
can be consulted for further details.

First we give a synopsis of the topics that are discussed in this chapter.
Secret sharing is concerned with the problem of how to distribute a secret among a group of

participating individuals, or entities, so that only predesignated collections of individuals are able
to recreate the secret by collectively combining the parts of the secret that were allocated to them.
There are numerous applications of secret-sharing schemes in practice. One example of secret
sharing occurs in banking. For instance, the combination to a vault may be distributed in such a
way that only specified collections of employees can open the vault by pooling their portions of the
combination. In this way the authority to initiate an action, e.g., the opening of a bank vault, is divided
for the purposes of providing security and for added functionality, such as auditing, if required.

13-1
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Threshold cryptography is a relatively recently studied area of cryptography. It deals with situations
where the authority to initiate or perform cryptographic operations is distributed among a group
of individuals. Many of the standard operations of single-user cryptography have counterparts in
threshold cryptography.

Signature schemes deal with the problem of generating and verifying (electronic) signatures for
documents. A subclass of signature schemes is concerned with the shared-generation and the shared-
verification of signatures, where a collaborating group of individuals are required to perform these
actions.

A new paradigm of security has recently been introduced into cryptography with the emergence
of the ideas of quantum key distribution and quantum cryptography. While classical cryptography
employs various mathematical techniques to restrict eavesdroppers from learning the contents of
encrypted messages, in quantum cryptography the information is protected by the laws of physics.

13.2 Secret Sharing

13.2.1 Introduction

Secret sharing is concerned with the problem of distributing a secret among a group of participating
individuals, or entities, so that only predesignated collections of individuals are able to recreate the
secret by collectively combining their shares of the secret.

The earliest and the most widely studied type of secret-sharing schemes are called (t, n)-threshold
schemes. In these schemes the access structure—a precise specification of the participants authorized
to recreate the secret, comprises all possible t-element subsets of an n-element set.

The problem of realizing, i.e., implementing, secret-sharing schemes for threshold structures was
solved independently by Blakley [17] and Shamir [92] in 1979. Shamir’s solution is based on the
property of polynomial interpolation in finite fields; Blakley formulated and solved the problem in
terms of finite geometries.

In a (t, n)-threshold scheme, each of the n participants holds some shares (also called shadows) of
the secret. The parameter t ≤ n is the threshold value. A fundamental property of a (t, n)-threshold
scheme is that the secret can only be recreated if at least t shareholders combine their shares, but
less than t shareholders cannot recreate the secret. The fact that the key can be recovered from any
t of the shares makes threshold schemes very useful in key management. Threshold schemes can
tolerate the invalidation of up to n − t shares—the secret can still be recreated from the remaining
intact shares.

Secret-sharing schemes are also used to control the authority to perform critical actions. For
example, a bank vault can be opened only if say, any two out of three trusted employees of the bank
agree to do so by combining their partial knowledge of the vault combination. In this case, even if
any one of the three employees is not present at any given time the vault can still be opened, but no
single employee has sufficient information about the combination to open the vault.

Secret-sharing schemes that do not reveal any information about the shared secret to unauthorized
individuals are called perfect. This notion will be formally defined in Section 13.2.2. In this survey,
we discuss both perfect and nonperfect schemes, as the latter schemes are proving to be useful in
various secret-sharing applications.

Besides the (t, n)-threshold structures, more general access structures are encountered in the
theory of secret sharing. These will be considered in Section 13.2.8. General access structures apply
to situations where the trust status of the participants is not uniform. For example, in the bank
scenario described earlier, it could be considered more secure to authorize either the bank manager
or any two out of three senior employees to open the vault.

Since Blakley’s and Shamir’s papers have appeared, the study of secret sharing has developed into
an active area of research in cryptography. A fundamental problem of the theory and practice of
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secret sharing is the issue of how to implement secret-sharing schemes for arbitrary access structures.
We shall discuss later some of the solutions to this problem. Simmons [96] gives numerous examples
of practical situations, which require secret-sharing schemes. He also gives a detailed account of the
geometric approach to secret sharing. Stinson’s [102] survey is broader and more condensed.

Simmons [95] discusses secret-sharing schemes with extended capabilities. He argues that there
are realistic applications in which schemes with extended capabilities are required. In our discussion,
we will assume that there is a key distribution center (KDC) that is trusted unconditionally.

13.2.2 Models of Secret Sharing

A common model of secret sharing has two phases. In the initialization phase, a trusted entity—the
dealer—distributes shares of a secret to the participants via secure means. In the reconstruction
phase, the authorized participants submit their shares to a combiner, which reconstructs the secret
on their behalf. It is assumed that the combiner is an algorithm, which only performs the task of
reconstructing the secret. We denote the sets of all possible secrets and shares byK andS respectively;
the set of participants in a scheme is denoted by P . Secret-sharing schemes can be modeled by the
information theory concept of entropy (cf. [52]). This approach was initiated by Karnin et al. [63]
and developed further by Capocelli et al. [28].

A secret-sharing scheme is a collection of two algorithms. The first (the dealer) is a probabilistic
mapping:

D : K → S1 × S2 × · · · × Sn

where Si ⊂ S (i = 1, 2, . . . , n) and Si is a subset of shares which is used to generate a share for the
participant Pi ∈ P . The second (the combiner) is a function:

C : Si1 × Si2 × · · · × Sit → K

such that if the corresponding subset of participants {Pi1 , Pi2 , . . . , Pit } belongs to the access structure
Γ , it produces the secret K ∈ K, i.e.,

H
(
K | Pi1 , Pi2 , . . . , Pit

) = 0. (13.1)

The combiner fails to recompute the secret if the subset of participants does not belong to the
access structure Γ , i.e.,

H (K | Sl) ≥ 0 (13.2)

for Sl = {si1 , si2 , . . . , sil} and Sl /∈ Γ .
In Equation 13.1, H(K | Pi1 , Pi2 , . . . , Pit ) is calculated with respect to the shares of the participants.

A secret-sharing scheme is called perfect if H(K | Sl) = H(K) for any unauthorized subset of
participants, i.e., not belonging to an access structure Γ (cf. Section 13.2.8).

The following result is proved by Karnin et al. [63]. A necessary condition for a perfect threshold
scheme is that for each share si, the inequality H(si) ≥ H(K) holds.

Most of the secret-sharing schemes that we discuss satisfy this inequality, but we will also con-
sider in Section 13.2.12 schemes that do not satisfy this inequality; these are called nonperfect
schemes.

13.2.2.1 The Matrix Model

A matrix representation of perfect secret-sharing schemes was introduced by Brickell and
Stinson [26]. The matrix model is often used in theoretical investigations of secret sharing.
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In this model, a perfect secret-sharing scheme is formulated as a matrix M that is known by all
the participants P in the scheme. The |P|+ 1 columns of M are indexed as follows. The first column
corresponds to the dealer D, the remaining columns are indexed by the remaining participants in
P . Each row of M contains one of the possible keys K that is to be shared in column D, and the
shares of K are located in the remaining columns. When the dealer wants share K, a row r that has K
in the D-column is chosen uniformly and randomly. The dealer distributes the shares of K to each
participant using the matrix M, i.e., participant Pj receives the entry Mr,j as his share.

The general requirements of a perfect secret scheme translate into the following combinatorial
conditions in the matrix model; see Stinson [102], and Blundo et al. [20]. Suppose that Γ is an access
structure:

1. If B ∈ Γ and M(r, P) = M(r′, P) for all P ∈ B, then M(r,D) = M(r′,D).
2. If B �∈ Γ , then for every possible assignment f of shares to the participants in B, say

f = (fP : P ∈ B), a nonnegative integer λ(f ,B) exists such that∣∣{r : M(r, P) = fP ∀P ∈ B, M(r, D) = K
}∣∣ = λ(f ,B)

is independent of the value of K.

13.2.2.2 Information Rate

The information rate of secret-sharing schemes was studied by Brickell and Stinson [26]. It is a
measure of the amount of information that the participants need to keep secret in a secret-sharing
scheme. The information rate of a participant Pi in a secret-sharing scheme with |Si| shares is

ρi = log2 |K|
log2 |Si| .

The information rate of the scheme, denoted ρ, is defined to be the minimum of the ρi.
A proof of the fact that ρ ≤ 1 is given by Stinson [102]. This result motivates the definition of

ideal secret-sharing schemes.
A perfect secret-sharing scheme is called ideal if ρ = 1; that is, if the size of each participants

share, measured in the number of bits, equals the size of the secret.
We now define another measure used to quantify the comparison between secret-sharing schemes

(cf. Section 13.2.8).
ρ∗(Γ) is the maximum value of ρ for any perfect secret-sharing scheme realizing the access

structure Γ .
For any access structure it is desirable to implement a secret-sharing scheme with the information

rate close to 1. This minimizes the amount of information that needs to be kept secret by the
participants, which means that there is a greater chance of the scheme remaining secure. For example,
a (t, n)-threshold scheme implemented by Shamir’s method is ideal, but when the scheme is modified
to prevent cheating as proposed by Tompa and Woll [107], it is no longer ideal (cf. Section 13.2.7).

13.2.3 Some Known Schemes

We now describe several well-known threshold secret-sharing schemes.

13.2.3.1 Blakley’s Scheme

Blakley [17] implements threshold schemes using projective spaces over finite fields GF(q). A
projective space PG(t, q) is obtained from the corresponding (t + 1)-dimensional vector space
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V(t + 1, q) by omitting the zero vector of V(t + 1, q), and identifying two vectors v and v′, which
satisfy the relation v = λv′ for some nonzero λ in GF(q). This equivalence relation partitions the
vectors of V(t + 1, q) into equivalence classes, i.e., the lines through the origin of V(t + 1, q). These
are the points of PG(t, q), and there are (qt − 1)/(q − 1) such points. Similarly, each k-dimensional
subspace of V(t + 1, q) corresponds to a (k − 1)-dimensional subspace of PG(t, q). And every point
of PG(t, q) lies on (qt − 1)/(q − 1) (t − 1)-dimensional subspaces, which are called the hyperplanes
of PG(t, q).

To realize a (t, n)-threshold scheme, the secret is represented by a point p chosen randomly from
PG(t, q); each point p belongs to (qt − 1)/(q − 1) hyperplanes. The shares of the secret are the n
hyperplanes, which are randomly selected and distributed to the participants. If q is sufficiently large
and n is not too large, then the probability that any t of the hyperplanes intersect in some point other
than p is close to zero; cf. Blakley [17]. Thus in general the secret can be recovered from any t of
the n shares. The secret cannot be recovered from the knowledge of less than t hyperplanes, as these
will intersect only in some subspace containing p. This scheme is not perfect, since a coalition of
unauthorized insider participants has a greater chance of guessing the secret than an unauthorized
group of outsider participants.

Blakley’s geometric solution to the secret-sharing problem has grown into an active area of
research. We will cover some of these developments in this survey.

13.2.3.2 Simmons’ Scheme

Simmons formulates secret-sharing schemes in terms of affine spaces instead of projective spaces.
The reasons for using affine spaces instead of projective spaces are explained by Simmons [96].
(There is a correspondence between projective spaces and affine spaces, cf. Beth et al. [14].)
Briefly, an affine space AG(n, q) consists of points—the vectors of V(n, q), and a hierarchy of
l-dimensional subspaces for l ≤ n and their cosets. These correspond to the equivalence classes
in projective geometry mentioned earlier, and are called the flats of AG(n, q). The equivalence
classes of lines, planes, etc., of AG(t, q) are the 1-dimensional, 2-dimensional, etc., flats. A hyper-
plane is a flat of codimension one. To realize a (t, n)-threshold scheme in AG(t, q), the secret is
represented by a point p chosen randomly from AG(t, q), which lies on a publicly known line
Vd (lines have q points). A hyperplane Vi of the indicator variety is selected so that Vi intersects
Vd in a single point p. The shares of the secret are the subsets of points of Vi. An authorized
subset of participants, which spans Vi, enables the reconstruction of the secret. If an unautho-
rized subset of participants attempts to reconstruct the secret, their shares will only span a flat
that intersects Vd in the empty set. Thus they gain no information about the secret. The precise
amount of information gained by the unauthorized participants about the secret can be expressed
in terms of the defining parameters of AG(n, q). These schemes are perfect. Simmons [96] gives a
detailed explanation of the implementation of secret-sharing schemes using projective and affine
spaces.

13.2.3.3 Shamir’s Scheme

Shamir’s [92] scheme realizes (t, n)-access structures using polynomial interpolation over finite
fields. In his scheme, the secrets S belong to a prime power finite field GF(q), which satisfies
q ≥ n + 1. In the initialization phase, the dealer D chooses n distinct nonzero elements {x1, . . . , xn}
from GF(q) and allocates these to participants {P1, . . . , Pn}. This correspondence is publicly known,
and has undesirable side effects if any of the participants are dishonest; see Section 13.2.7. However
for now, we will assume that all the participants obey faithfully the protocol for reconstructing
the secret.
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Fix a random element of GF(q) as the secret K. The shares of K are created using the following
protocol:

1. D chooses a1, a2, . . . , at−1 from GF(q) randomly, uniformly, and independently.
2. Let a(x) be a polynomial of degree at most t − 1, defined as a(x) = K + a1x + a2x2 +

· · · + ak−1xk−1.
3. The shares of the secret key are yi = a(xi), for 1 ≤ i ≤ n.

With the aforementioned data, if any t out of the n participants {xi1 , . . . , xit } combine their shares
{yi1 , . . . , yit }, then by Lagrangian interpolation, there is a unique polynomial of degree at most (t−1)

passing through the points {(xi1 , yi1), . . . , (xit , yit )}. So the combined shares of the t participants can
be used to recreate the polynomial a(x), and hence the secret, which is K = a(0).

The relation between the secret and the shares is given by Lagrange’s interpolation formula:

K =
t∑

j=1

yij bj, (13.3)

where the bj are defined as

bj =
∏

1≤k≤t,
k�=j

xik
xik − xij

.

Shamir’s scheme is computationally efficient in terms of the computational effort required to create
the shares and to recover the secret. Also the share size is optimal in an information theoretic sense,
cf. Definition 13.2.2.

The reconstruction phase in Shamir’s scheme can be also considered as a system of linear equations,
which are defined by the shares Ki. If t shares are submitted to the combiner, the system of linear
equations

yij = K + a1xij + a2x2
ij + · · · + ak−1xk−1

ij , j = 1, . . . , t

can be solved for the unknowns K, a1, a2, . . . , at−1 because the determinant of this system of
equations is a nonsingular Vandermonde determinant (the {x1, . . . , xn} are pair-wise distinct).
However, if t − 1 participants try to reconstruct the secret, they face the problem of solving t − 1
linear equations in t unknowns. This system of equations has one degree of freedom. Consequently,
t − 1 participants do not obtain any information about the secret, as K was selected uniformly and
randomly from GF(q). Shamir’s system is perfect.

13.2.3.4 A (t,t) Threshold Scheme

Karnin et al. [63] describe a secret-sharing scheme which realizes (t, t)-access structures. The interest
in such schemes is that they can be used as the basis for other cryptographic constructions.

In their scheme, the set of secrets S is the ring of residue classes Zm, where m is any integer. (In
applications m is large.) The secret K is shared using the following algorithm:

1. D secretly chooses randomly, uniformly, and independently t−1 elements y1, y2, . . . , yt−1
from Zm; the yt are defined as

yt = K −
t−1∑
i=1

yi mod m .

2. Participant Pi for 1 ≤ i ≤ t receives the share yi from D.
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The above system is perfect as the following argument shows. The set of shares of l < t participants
attempting to reconstruct the secret either contains the share yt = K − ∑t−1

i=1 yi mod m, or not. In
both cases the (unauthorized) participants lack the necessary information to determine K. Shamir’s
scheme with t = n provides an alternative construction of (t, t)-threshold schemes, using the fields
GF(q) instead of Zm.

13.2.4 Threshold Schemes and Discrete Logarithms

The discrete logarithm has been widely employed in the literature to transform threshold schemes
into conditionally secure schemes with extra properties. This idea is exploited in the papers by
Benaloh [4], Beth [15], Charnes et al. [32], Charnes and Pieprzyk [33], Lin and Harn [69], Lang-
ford [66], and Hwang and Chang [58].

It is a consequence of the linearity of Equation 13.3 that Shamir’s scheme can be modified to
obtain schemes having enhanced properties, such as disenrollment capability, in which shares from
one or more participants can be made incapable of forming an updated secret. (The formal analysis
of schemes with this property was given by Blakley et al. [18].) Let a(x) be a polynomial and let a(i)
be the shares in Shamir’s scheme. In the modified threshold scheme proposed in [32], ga(0) is the
secret and the shares are si = gci , ci = a(i). A generator g of the cyclic group of the field GF(2n) is
chosen so that 2n − 1 is a Mersenne prime.

The modified (t, n)-threshold schemes can disenrol participants whose shares have been com-
promised either through loss or theft, and still maintain the original threshold level. In the event
that some of the original shares are compromised, the KDC can issue using a public authenticated
channel a new generator g′ of the cyclic group of GF(2n). The shareholders can calculate their new
shares si

′ from the initial secret data according to

si
′ = g′ci .

Hwang and Chang [58] used a similar setting to obtain dynamic threshold schemes.
Threshold schemes with disenrollment capability, without the assumption of the intractability of

the discrete logarithm problem, can be based on families of threshold schemes. The properties of
these schemes are studied in a paper by Charnes et al. [31]; here we provide the basic definition.

A threshold scheme family (TSF) is defined by an (m × n) matrix of shares [si,j], such that

1. Any row (si,1, si,2, . . . , si,n) represents an instance of TSri(ti, n), where i = 1, . . . , m.
2. Any column (s1,j, s2,j, . . . , sm,j) represents an instance of TScj(tj, m), where j = 1, . . . , n.

A family of threshold schemes in which all rows and all columns are ideal schemes is called an ideal
threshold scheme family, or ITS family for short. In these schemes it is possible to alter dynamically
the threshold values by moving from one level of the matrix to another.

Lin and Harn [69], and Langford [66] use the discrete logarithm to transform Shamir’s scheme
into a conditionally secure scheme which does not require a trusted KDC. A similar approach is used
by Langford [66] to obtain a threshold signature scheme. Beth [15] describes a protocol for verifiable
secret sharing for general access structures based on geometric schemes. The discrete logarithm
problem is used to encode the secret and the shares so that they can be publicly announced for
verification purposes.

It should be noted that the definition of disenrollment used in [32] is not the same as that of Blakley
et al. [18]. Blakley et al. established a lower bound on the number of bits required to encode the
shares in schemes that can disenrol participants. Their bound shows that this number grows linearly
with the number of participants that the scheme can disenrol. They also present two geometric
(t, n)-threshold schemes, which meet this bound.
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It is interesting to note that Benaloh [4] used the discrete logarithm to transform Shamir’s scheme,
but for a very different purpose. One of the properties of the discrete logarithm is that the sum of
the discrete logarithms of the shares of a secret is equal to the discrete logarithm of the product of
the shares of the secret. This property has an application in secret-ballot elections (cf. Benaloh [4])
where, in contrast with schemes earlier mentioned the discrete logarithm problem is required to be
tractable.

The homomorphic property introduced by Benaloh [4] has prompted the question whether similar
schemes can be set up in noncommutative groups—other than the additive and the multiplicative
groups of finite fields. It is an open problem to find useful applications of homomorphic schemes in
abelian groups.

13.2.5 Error Correcting Codes and Secret Sharing

McEliece and Sarwate [75] observed that Shamir’s scheme is closely related to Reed–Solomon
codes [76]. The advantage of this formulation is that the error correcting capabilities of the Reed–
Solomon codes can be translated into desirable secret-sharing properties.

Let (α0, α1, . . . , αq−1) be a fixed list of the nonzero elements of a finite field GF(q) containing
q elements. In a Reed–Solomon code, an information word a = (a0, a1, . . . , ak−1), ai ∈ GF(q), is
encoded into the codeword D = (D1, D2, . . . , Dr−1), where Di = ∑k−1

j=0 ajαi
j. In this formulation,

the secret is a0 = −∑r−1
i=1 Di and the shares distributed to the participants are the Di.

In the above formulation of threshold schemes, algorithms, such as the errors-and-erasures
decoding algorithm, can be used to correct t out of s shares where s − 2t ≥ k in a (k, n)-threshold
scheme, if for some reason these shares were corrupted. The algorithm will also locate which
invalid shares Di were submitted, either as a result of deliberate tampering or as a result of storage
degradation.

Karnin et al. [63] realize threshold schemes using linear codes. Massey [71] introduced the concept
of minimal codewords, and proved that the access structure of a secret-sharing scheme based on
a [n, k] linear code is determined by the minimal codewords of the dual code. To realize a (t, n)-
threshold scheme, a linear [n + 1, t; q] code C over GF(q) is selected. If G is the generator matrix
of C and s ∈ GF(q) is the secret, then the information vector s = (s0, s1, . . . , st−1) is any vector
satisfying s = s · gT , where gT is the first column vector of G. The codeword corresponding to s is
sG = (t0, t1, . . . , tn). Each participant in the scheme receives ti as its share and t0 is the secret. To
recover the secret, first the linear dependency between g and the other column vectors in the (public)
generator matrix G is determined. If g = ∑

xjgj is the linear relation, the secret is given by
∑

xjtij ,
where {ti1 , ti2 , . . . , tit } is a set of t shares.

Renvall and Ding [84] consider the access structures of secret-sharing schemes based on linear
codes as used by McEliece and Sarwate, and Karnin et al. They determine the access structures
that arise from [n + 1, k, n − k + 2] MDS codes—codes which achieve the singleton bound [76].
Bertilsson and Ingemarsson [13] use linear block codes to realize secret-sharing schemes for general
access structures. Their algorithm takes a description of an access structure by a monotone Boolean
formula Γ , and outputs the generator matrix of a linear code that realizes Γ .

13.2.6 Combinatorial Structures and Secret Sharing

There are various connections between combinatorial structures and secret sharing, cf. [14]. Stinson
and Vanstone [105], and Schellenberg and Stinson [88] study threshold schemes based on combina-
torial designs. Stinson [102] uses balanced incomplete blocks designs to obtain general bounds on
the information rate ρ∗ of schemes with access structure based on graphs (cf. Section 13.2.10).
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Street [100] surveys defining sets for t-designs and critical sets for Latin squares, with the view
of applying these concepts to multilevel secret-sharing schemes, in which a hierarchical structure
can be imposed on the shares. To illustrate these methods, we give an example of a (2, 3)-threshold
scheme based on a small Latin square, cf. Chaudhry and Seberry [36]. For an example of a scheme
with a hierarchical share structure, cf. Street [100].

Let (i, j; k) denote that the value k is in the position (i, j) of the Latin square:

L =
⎛
⎝1 2 3

2 3 1
3 1 2

⎞
⎠ .

The shares of the secret, which is L, are S = {(2, 1; 1), (3, 2; 1), (1, 3; 3)}.
More recently, critical sets in Room squares have been used to realize multilevel secret-sharing

schemes, cf. Chaudhry and Seberry [36]. Some other approaches to multilevel schemes are considered
in the papers by Beutelspacher [16] and Cooper et al. [38]. The schemes based on Latin and Room
squares are examples of nonperfect schemes, which will be discussed in Section 13.2.12.

13.2.7 The Problem of Cheaters

So far we have assumed that the participants in a secret-sharing scheme are honest and obey the
reconstruction protocol. However, there are conceivable situations where a dishonest clique of
participants (assuming an honest KDC) may attempt to defraud the honest participants by altering
the shares they were issued.

In the McEliece and Sarwate formulation of Shamir’s scheme, invalid shares can be identified.
Schemes with this capability are said to have the cheater identification property. A weaker capability
ascertains that invalid shares were submitted in the reconstruction phase without necessarily locating
the source of these shares; this is called cheater detection.

Tompa and Woll [107] show that the public knowledge of the abscissae in Shamir’s scheme allows
a clique of dishonest participants to modify their shares resulting in the recreation of an invalid
secret K ′. Suppose that participants i1, i2, . . . , it agree to pool their shares in order to recreate the
secret. A dishonest participant, say i1, can determine a polynomial Δ(x) of degree at most t − 1 from
Δ(0) = −1 and Δ(i2) = Δ(i3) = · · · = Δ(it) = 0 using Lagrangian interpolation. Instead of the
share originally issued by the dealer, the cheater submits the modified share a(i1)+Δ(i1). Lagrangian
interpolation of points using the modified share will result in the polynomial a(x) + Δ(x) being
recreated, instead of the intended polynomial a(x). Now the constant term is a(0) + Δ(0) = K − 1,
a legal but incorrect secret. The honest participants believe that the secret is K − 1, while the cheater
will privately recover the correct secret since K = (K − 1) + 1.

To prevent this type of cheating, Tompa and Woll define the shares in their modified scheme
to be: (x1, d1), (x2, d2), . . . , (xn, dn). The dealer chooses randomly and uniformly a permutation
(x1, x2, . . . , xn) of n distinct elements from {1, 2, . . . , q − 1}, and di = a(xi). The modified scheme
resists the aforementioned attack for up to t − 1 cheaters. The expected running time of the
scheme is polynomial in k, n, log s, and log(1/ε), where ε is a designated security parameter of
the scheme and the secret k is chosen from {0, 1, . . . , s − 1}. The overhead is that the participants
need to keep secure two shares instead of the usual single share.

Using the error correcting code approach to secret sharing [75], Ogata and Kurosawa [81] for-
mulated the problem of cheaters in secret-sharing schemes by introducing dcheat. This is more
appropriate than the minimum Hamming distance dmin of the related error correcting code in
situations where only the correct secret needs to be recovered (as opposed to identifying the cheaters
in the scheme). For general access structures Γ (see the following text), Ogata and Kurosawa prove
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that dmin ≤ dcheat = n − maxB/∈Γ |B|. Secret-sharing schemes for which the two bounds coincide are
called maximally distance separable, or (MDS) schemes.

Brickell and Stinson [25] modified Blakley’s geometric (t, n)-scheme and obtained a scheme in
which cheaters can be detected and identified. Blakley et al. [18] proved that this scheme can disenrol
participants, cf. Section 13.2.4. To set up the scheme, the dealer performs certain computations,
such as checking that the shadows are in general position. It is an open problem whether these
computations can be done efficiently as the numbers of participants increase.

The problem of secret sharing without the usual assumptions about the honesty of the participants,
or even the KDC, has been considered in the literature. For example, in verifiable secret sharing it
is not assumed that the dealer is honest. This problem is studied by Chor et al. [37]. The problem
is how to convince the participants in a (t, n)-threshold scheme that every subset of t shares of a
share set {s1, s2, . . . , sn} defines the same secret. This is called t-consistency. In Shamir’s scheme,
t-consistency is equivalent to the condition that interpolation on the points (1, s1), (2, s2), . . . , (n, sn)
yields a polynomial of degree at most t − 1. As application of homomorphic schemes, Benaloh [4]
gives an interactive proof that Shamir’s scheme is t-consistent.

13.2.8 General Access Structures

A complete discussion of secret sharing requires the notion of a general access structure.
Ito et al. [61] describe a method to realize secret-sharing schemes for general access structures.

They observe that for most applications of secret sharing it suffices to consider monotone access
structures (MAS) defined as follows.

Given a set P of n participants (|P| = n), an MAS on P is a family of subsets A ⊆ 2P such that

A ⊆ A′ ⊆ P ⇒ A′ ∈ A (13.4)

The intersection A1 ∩ A2 and the union A1 ∪ A2 of two MASs is a MAS. If A is a MAS, then
2P \A = Ā is not a MAS. Any MAS can be expressed equivalently by a monotone Boolean function.
Conversely, any Boolean expression without negations represents a MAS.

In view of the above observations, we consider the minimal authorized subsets of an access
structure A on P . A set B ∈ A is minimal authorized, if for each proper subset A of B, it is the case
that A �∈ A. The set of minimal authorized subsets of A is called the basis. An access structure A is
the unique closure of the basis, i.e., all subsets of P that are supersets of the basis elements.

Some examples of inequivalent access structures on four participants are given by the follow-
ing monotone formulae: Γ1 = P1P2P3 + P1P2P4 + P1P3P4 + P2P3P4 − a (3, 4)-threshold scheme;
Γ2 = P1P2 +P3P4; Γ4 = P1P2 +P2P3 +P3P4. In these formulae, the Pi’s represent the participants in
the scheme (sometimes the literals A, B, etc., are used). The authorized subsets in the access structure
are specified precisely by these formulae. For example, Γ2 stipulates that either P1 AND P2 OR P3
AND P4 are the authorized subsets. (It is known that no threshold scheme can realize the access
structure defined by Γ2. For a proof, cf. Benaloh and Leichter [7].)

The inequivalent access structures on three and four participants, and the information rates of
secret-sharing schemes realizing these structures are given by Simmons et al. [97] and Stinson [102].
The information rates of all inequivalent access structures on five participants are given in [73].
It should be remarked that a practical examination of access structures is probably limited to five
participants, since the number of equivalence classes of monotone Boolean formulae becomes too
great to consider for more than five participants. However, Martin and Jackson [73] provide inductive
methods using which the information rates of an access structure Γ is related to the information
rates of smaller access structures that are “embedded” in Γ .
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Secret-sharing schemes for nonmonotone access structures have also been investigated, cf.
Simmons [96].

13.2.9 Realizing General Access Structures

Ito et al. [61] were the first to show how to realize secret-sharing schemes for general access structures.
Benaloh and Leichter [7] simplified the method of Ito et al.

They show that any monotone access structure can be recognized by a monotone Boolean circuit.
In a monotone circuit, each variable corresponds to an element of P . The circuit outputs a true
value only when the set of variables which take a true value correspond to an authorized subset
of P , i.e., belongs to the access structure. Monotone circuits are described by Boolean formulae
which involve only AND and OR operators. Using Benaloh and Leichter’s method, one can realize
any access structure as a composite of subsecrets. The subsecrets are shared across AND gates by
(t, t)-threshold schemes for appropriate t, and all the inputs to the OR gates have the same value.

Simmons et al. [97] showed how cumulative arrays, first studied by Ito et al. [61], can be used to
realize geometric secret-sharing schemes for general access structures.

A cumulative array CA = (S , f )A for the access structure A is a pair comprising of the share set
S = {s1, s2, . . .}, and the dealer function f : P → 2S that assigns subset of shares to each participant.

As an example, consider the following access structure:

A = closure {{P1, P2} , {P2, P3} , {P3, P4} , {P1, P4}} ,

whereP = {P1, P2, P3, P4}. LetS = {s1, s2}. A cumulative array for this access structure is f (P1) = s1,
f (P2) = s2, f (P3) = s1, and f (P4) = s2.

Perfect geometric secret-sharing schemes are obtained from cumulative arrays as follows. Choose
a projective space Vi = PG(m − 1, q), where m is the number of columns in the cumulative array.
In Vi, let {si, . . . , sm, K} be m + 1 points, such that no m points lie on a hyperplane of Vi — the
points are in general position. A domain variety Vd is chosen so that Vi

⋂
Vd = {K}. The set

of shares in the geometric scheme is {si, . . . , sm} and K is the secret. The shares are distributed
using the cumulative array: participant Pi receives share sj if and only if the (i, j) entry of the
array is one. Note that it could be difficult to verify the general position hypothesis for large m,
cf. Brickell and Stinson [25]. Jackson and Martin [62] show that any geometric secret-sharing
scheme realizing an access structure is “contained” in the cumulative array, which realizes the access
structure.

For any access structure A on the set P , there is a unique minimal cumulative array. Thus
to implement geometric secret-sharing schemes with the minimal number of shares, we need to
consider only minimal cumulative arrays. It remains only to have a means by which the minimal
cumulative array can be calculated given an arbitrary monotone Boolean function Γ . Such a method
was first given by Simmons et al. [97]. It relies on minimizing the Boolean expression, which results
when the AND and OR operators in Γ are exchanged.

An alternative method for calculating minimal cumulative arrays is described by Charnes and
Pieprzyk [34]. This method has the advantage that the complete truth table of Γ is not required for
some Γ , thereby avoiding an exponential time computation. For general Boolean expressions, as the
number of variables increases the time complexity of the aforementioned method and that of [97]
are the same.

To describe the method of [34], we require the following.
The representative matrix MΓ of a monotone Boolean function Γ(P1, P2, . . . , Pn), expressed as a

disjunctive sum of r products of n variables, is an n × r matrix with rows indexed by the Pi and
columns by the product terms of the Pi [34]. The (i, j)-entry is one if Pi occurs in the jth product,
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and is zero otherwise. For example, if Γ = P1P2 + P2P3 + P3P4, then MΓ is the following matrix:

P1P2 P2P3 P3P4
P1 1 0 0
P2 1 1 0
P3 0 1 1
P4 0 0 1

Suppose that Γ(P1, P2, . . . , Pn) is a monotone formula expressed in minimal disjunctive form, i.e.,
a disjunctive sum of products of the Pi and no product term is contained in any other representative
set. Let MΓ be its representative matrix.

[34] A subset {Pl, Pm, . . .} of the variables of Γ(P1, P2, . . . , Pn) is a relation set if PlPm . . . is
represented in MΓ by the all ones vector.

In the previous representative matrix {P1, P3}, {P2, P3}, and {P2, P4} are the minimal representative
sets, i.e., not contained in any other representative set. The Boolean formula derived from these sets
is P1P3 + P2P3 + P2P4.

Let Γ(P1, P2, . . . , Pn) be a monotone formula and MΓ its representative matrix [34]. Let R be the
collection of minimal relation sets of MΓ . Then the representative matrix whose rows are indexed
by the variables Pi and columns by product terms derived from R is the minimal cumulative
array for A.

Thus, using the above theorem the matrix

P1P3 P2P3 P2P4
P1 1 0 0
P2 0 1 1
P3 1 1 0
P4 0 0 1

is the minimal cumulative array for Γ = P1P2 + P2P3 + P3P4. To realize Γ as a geometric scheme,
we require a projective space Vi = PG(2, q). The secret K ∈ Vd, and the shares {s1, s2, s3} are
points chosen in general position in Vi. The cumulative array specifies the distribution of the shares:
P1 receives share {s1}; P2 receives shares {s2, s3}; P3 receives shares {s1, s2}; P4 receives share {s3}.
It can be easily verified that only the authorized subsets of participants can recreate the secret,
e.g., the combined shares of P1 and P2 span Vi, hence these participants can recover the secret as
Vi ∩ Vd = {K}. But unauthorized participants, e.g., P1 and P3, cannot recover the secret.

An algorithm for calculating cumulative arrays, based on Theorem 13.2.9, is given in [34]. This
algorithm is efficient for those Γ for which MΓ contains columns with many zeros. Thus in the
previous example, the combinations {P1, P2}, {P1, P4}, and {P3, P4} cannot produce relation sets and
can be ignored. Further computational savings are obtained if the Boolean formula has symmetries;
i.e., permutations of the participants that do not change Γ .

13.2.10 Ideal and Other Schemes

Brickell [23] gives a vector space construction for realizing ideal secret-sharing schemes for certain
types of access structures, Γ . Let φ be a function

φ : P ∪ {D} → GF(q)d

with the property that φ(D) can be expressed as a linear combination of the vectors in < φ(Pi) :
Pi ∈ B > if and only if B is an authorized subset, i.e., B ∈ Γ . Then, for any such φ, the distribution
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rules (cf. Section 13.2.2.1) are for any vector a = (a1, . . . , sd) in GF(q)d, a distribution rule is given
by the inner product of a and φ(x) for every x ∈ P ∪ {D}. Under the previous conditions, the
collection of distribution rules is an ideal secret-sharing scheme for Γ . A proof of this result can be
found in a paper by Stinson [102].

Shamir’s (t, n)-threshold scheme is an instance of the vector space construction. Access structures
Γ(G), whose basis is the edge set of certain undirected graphs, can also be realized as ideal schemes by
this construction. In particular the access structure Γ(G), where G = (V , E) is a complete multigraph,
can be realized as an ideal scheme. A proof of this is given by Stinson [102].

A relation between ideal secret sharing schemes and matroids was established by Brickell and
Davenport [24]. The matroid theory counterpart of a minimal linearly dependent set of vectors in a
vector space is called a circuit. A coordinatizable matroid is one that can be mapped into a vector
space over a field in a way that preserves linear independence. Brickell and Davenport [24] prove
the following theorem about coordinatizable matroids.

Suppose the connected matroid M = (X, I) is coordinatizable over a finite field [24]. Let x ∈ X
and let P = X\{x}. Then there exists an ideal scheme for the connected access structure having basis
Γ0 = {C\{x} : x ∈ C ∈ C}, where C denotes the set of circuits of M.

Not all access structures can be realized as ideal secret-sharing schemes. This was first established
by Benaloh and Leichter [7]. They proved that the access structure on four participants specified by
the monotone formula Γ = P1P2 + P2P3 + P3P4 cannot be realized by an ideal scheme. The relation
between the size of the shares and the secret for Γ was made precise by Capocelli et al. [28]. They
proved the following information theoretic bound.

For the access structure Γ = closure {{P1, P2}, {P2, P3}, {P3, P4}} on four participants {P1, P2,
P3, P4}, the inequality H(P2) + H(P3)≥ 3H(K) holds for any secret-sharing scheme realizing Γ .

From this theorem, it follows that the information rate ρ of any secret-sharing scheme realizing
Γ satisfies the bound ρ ≤ 2

3 . Bounds are also derived by Capocelli et al. [28] for the maximum
information rate ρ∗ of access structures Γ(G), where the graph G is a path Pn (n ≥ 3); a cycle Cn,
n ≥ 6, for n even and n ≥ 5, for n odd; or any tree Tn.

13.2.11 Realizing Schemes Efficiently

In view of bounds on the information rates of secret-sharing schemes, it is natural to ask whether
there exist schemes whose information rates equal the known bounds. For example, for Γ = P1P2 +
P2P3 + P3P4 one is interested in the realizations of Γ with ρ = 2

3 .
Stinson [102] used a general method, called decomposition construction, to build larger schemes

starting from smaller ideal schemes. In this method, the basis Γ0 of an access structure is decomposed
into smaller access structures, as Γ0 = ∪Γk, where the Γk are the basis of the constituent access
structures which can be realized as ideal schemes. From such decompositions of access structures,
Stinson [102] derived a lower bound ρ∗(Γ) ≥ �/R, where � and R are two quantities defined in
terms of the ideal decomposition of Γ0. The decomposition construction and its precursor, the
graph decomposition construction (cf. Blundo et al. [20]), can be formulated as linear programming
problems in order to derive the best possible information rates that are obtainable using these
constructions.

Other ways of realizing schemes with optimal or close to optimal information rates are considered
by Charnes and Pieprzyk [35]. Their method combines multiple copies of cumulative arrays using
the notion of composite shares—combinations of the ordinary shares in cumulative arrays. This
procedure is stated as an algorithm that outputs a cumulative array with the best information rate.
It is not clear how efficient this algorithm is as the number of participants increases. However, the
optimal information rates for access structures on four participants given by Stinson [102] can be
attained by combining cumulative arrays.
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13.2.12 Nonperfect Schemes

It is known that in nonperfect secret sharing schemes the size of the shares is less that the size of the
secret, i.e., H(si)< H(K). Because of this inequality, a nonperfect scheme can be used to disperse a
computer file to n sites, in such a way that the file can be recovered from its images that are held at
any t of the sites for t ≤ n. Moreover, this can be done so that the size of the images is less than the
size of the original file resulting in an obvious saving of disk space. Making backups of computer
files with this method provides insurance against the loss or the destruction of valuable data. For
details, cf. Karnin et al. [63].

A formal analysis of nonperfect secret sharing schemes is given by Ogata et al. [80]. Their
analysis characterizes, using information theory, secret-sharing schemes in which the participants
not belonging to an access structure do gain some information about the secret. This possibility is
precluded in perfect secret-sharing schemes.

Ogata et al. [80] define a nonperfect scheme in using a triple of access sets (Γ1, Γ2, Γ3), which
partition the set of all subsets of the participants P . Γ1 is the family of access subsets, Γ2 is the family
of semiaccess subsets; and Γ3 is the family of nonaccess subsets. The participants belonging to the
semiaccess subsets are able to obtain some, but not complete information about the secret. The
participants belonging to the nonaccess subsets gain no information about the secret.

The ramp schemes of Blakley and Meadows [19] are examples of nonperfect schemes where the
access structure consists of semiaccess subsets. Another way of viewing ramp schemes is that the
collective uncertainty about a secret gradually decreases as more participants join the collective.

Ogata et al. [80] prove a lower bound on the size of the shares in nonperfect schemes. They also
characterize nonperfect schemes for which the size of the shares is |K|/2.

Ogata and Kurosawa [79] establish a general lower bound for the sizes of shares in nonperfect
schemes. They show that there is an access hierarchy for which the size of the shares is strictly larger
than this bound. It is in general a difficult problem to realize nonperfect secret-sharing schemes with
the optimum share size, as in the case of perfect schemes.

13.3 Threshold Cryptography

There are circumstances in cryptography where an action requires to be executed by a group of
people. For example, to transfer money from a bank a manager and a clerk need to concur. A bank
vault can be opened only if three high-ranking bank employees cooperate. A ballistic missile can be
launched only if two officers authorize the action.

Democratic groups usually exhibit a flat relational structure where every member has equal rights.
On the other hand, in hierarchical groups, the privileges of group members depend on their position
in the hierarchy. A member on the level i − 1 inherits all the privileges from the level i, as well as
additional privileges specific to its position.

Unlike single-user cryptography, threshold or society-oriented cryptography allows groups to
perform cryptographic operations, such as encryption, decryption, and signature. A trivial imple-
mentation of group-oriented cryptography can be achieved by concatenating secret-sharing schemes
and a single user cryptosystem. This arrangement is usually unacceptable as the cooperating sub-
group must first recover the cryptographic key. Having access to the key can compromise the system,
as its use is not confined to the requested operation. Ideally, the cooperating participants should
perform their private computations in one go. Their partial results are then sent to a so-called
combiner who calculates the final result. Note that at no point is the secret key exposed.

A group-oriented cryptosystem is usually set up by a dealer who is a trusted authority. The dealer
generates all the parameters, distributes elements via secure channels if the elements are secret, or
broadcasts the parameters if they need not be protected. After setting up a group cryptosystem, the
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dealer is no longer required, as all the necessary information has been deposited with the participants
of the group cryptosystem.

If some participants want to cooperate to perform a cryptographic operation, they use a combiner
to perform the final computations on behalf of the group. The final result is always correct if the
participants belong to the access structure and follow the steps of the algorithm. The combiner fails
if the participants do not belong to the access structure, or if the participants do not follow the
algorithm (that is, they cheat). The combiner need not be trusted; it suffices to assume that it will
perform some computations reliably but not necessarily all.

The access structure is the collection of all subsets of participants authorized to perform an
action. An example is a (t, n)-threshold scheme, where any t out of n participants are authorized
subsets t ≤ n.

Threshold cryptography provides tools for groups to perform the following tasks:

• Threshold encryption—a group generates a valid cryptogram which can later be decrypted
by a single receiver.

• Threshold decryption—a single sender generates a valid cryptogram that can be decrypted
by a group.

• Threshold authentication—a group of senders agrees to co-authenticate the message so
that the receiver can decide whether the message is authentic or not.

• Threshold signature (multisignature)—a group signs a message that is later validated by
a single verifier.

• Threshold pseudorandom generation.

13.3.1 Threshold Encryption

Public-key cryptography can be used as a basis for simple group encryption. Assume that a receiver
wants to have a communication channel from a group of n participants P = {P1, . . . , Pn}. Further
suppose that the receiver can decrypt a cryptogram only if all participants cooperate, i.e., a (n, n)-
threshold encryption system. Group encryption works as follows.

Assume that the group and the receiver agree to use the RSA cryptosystem with the modulus
N = pq. The receiver first computes a pair of keys: one for encryption e and the other for decryption
d, where e × d ≡ 1 mod (p − 1)(q − 1). Both keys are secret. The factors p and q are known by the
receiver only. The encryption key is communicated to the dealer (via a secure channel). The dealer
selects n − 1 shares ei of the encryption key at random from the interval [0, e/n]. The last share is

en = e −
n−1∑
i=1

ei.

Each share ei is communicated to participant Pi via a secure channel (i = 1, . . . , n).
Now if the group wants to send a message m to the receiver, each participant Pi prepares a partial

cryptogram ci ≡ mei mod N (i = 1, . . . , n). After collecting n partial cryptograms, the receiver can
recover the message m ≡ (

∏n
i=1 ci)

d mod N. Note that the receiver also plays the role of a combiner.
Moreover, the participants need not reconstruct the secret encryption key e and at no stage of
decryption is the encryption key revealed—this is a characteristic feature of threshold cryptography.

Many existing secret-key algorithms, such as the DES [78], the LOKI [27], the FEAL [93], or
the Russian GOST [99], are not homomorphic. These algorithms cannot be used for threshold
encryption. The homomorphic property is necessary in order to generate shares of the key so that
partial cryptograms can be combined into a cryptogram for the correct message, cf. [4].

Threshold encryption has not received a great deal of attention, perhaps because of its limited
practical significance.



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C013 Finals Page 16 2009-10-5

13-16 Special Topics and Techniques

13.3.2 Threshold Decryption

Hwang [57] proposes a cryptosystem for group decryption based on the discrete logarithm problem.
In his system, it is assumed that the sender knows the participants of the group. The sender encrypts
the message using a predetermined (either private or public key) cryptosystem with a secret key
known to the sender only. The sender then distributes the secret key among the group of intended
receivers using Shamir’s (t, n)-threshold scheme. Any t cooperating participants can recover the
decryption key and decrypt the cryptogram. In Hwang’s scheme, key distribution is based on
the Diffie–Hellman [45] protocol. Thus the security of his scheme is equivalent to the security of
the discrete logarithm problem. However, the main problem with the above solution is that the key
can be recovered by a straightforward application of secret sharing. This violates the fundamental
requirement that the decryption key must never be revealed to the group (or the combiner).

We consider now an implementation of a scheme for (t, n)-threshold decryption. The group
decryption used here is based on the ElGamal public-key cryptosystem [47] and is described by
Desmedt and Frankel [41].

The system is set up by the dealer D who first chooses a Galois field GF(q) such that q − 1 is
a Mersenne prime and q = 2�. Further D selects a primitive element g ∈ GF(q) and a nonzero
random integer s ∈ GF(q). The dealer computes y = gs mod q and publishes the triple (g, q, y) as the
public parameters of the system. The dealer then uses Shamir’s (t, n)-threshold scheme to distribute
the secret s among the n shareholders in such a way that for any subset B of t participants, the secret
s = ∑

Pi∈B si mod (q − 1) (all calculations are performed in GF(q)).
Suppose that user A wants to send a message m ∈ GF(q) to the group. A first chooses at random

an integer k ∈ GF(q) and computes the cryptogram c = (gk, myk) for the message m.
Assume that B is an authorized subset, so it contains at least t participants. The first stage of

decryption is executed separately by each participant Pi ∈ B. Pi takes the first part of the cryptogram
and computes (gk)si mod q. The result is sent to the combiner, who computes yk = gks = ∏

i∈B gksi ,
and decrypts (using the multiplicative inverse y−k) the cryptogram

m ≡ myk × y−k mod p.

Group decryption can also be based on a combination of the RSA cryptosystem [85] and Shamir’s
threshold scheme. The scheme described by Desmedt and Frankel [42] works as follows. The dealer
D computes the modulus N = pq, where p, q are strong primes, i.e., p = 2p′ + 1 and q = 2q′ + 1
(p′ and q′ are large and distinct primes). The dealer selects at random an integer e such that e
and λ(N) are coprime (λ(N) is the least common multiple of two integers p − 1 and q − 1, so
λ(N) = 2p′q′). Next D publishes e and N as the public parameters of the system, but keeps p, q, and
d secret (d satisfies the congruence ed = 1 mod λ(N)). It is clear that computing d is easy for the
dealer who knows λ(N), but is difficult—equivalent to the factoring of N—to someone who does
not know λ(N). The dealer then uses Shamir’s scheme to distribute the secret s = d − 1 amongst n
participants. The shares are denoted as si and any t cooperating participants (the set B) can retrieve
the secret. We have,

s =
∑
i∈B

si mod λ(N).

Group decryption of the cryptogram c ≡ me mod N starts from individual computations. Each
Pi ∈ B calculates a partial cryptogram csi mod N. All the partial cryptograms are sent to the
combiner who recovers the message

m =
∏
i∈B

csi × c ≡ c(
∑

i∈B si+1) ≡ cd ≡ (
me)d mod N.

Again the secret s = d − 1 is never exposed during the decryption.
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Ghodosi et al. [53] proposed a solution to the problem of group decryption which does not require
a dealer. It uses the RSA cryptosystem and Shamir’s threshold scheme. The system works under the
assumption that all participants from P = {P1, . . . , Pn} have their entries in a public registry (white
pages). The registry provides the public parameters of a given participant. A participant Pi has Ni, ei
as its RSA entry in the registry, and this entry cannot be modified by an unauthorized person.

The sender first selects the group P = {P1, . . . , Pn}. For the message m (0 < m <
∏n

i=1 Ni), the
sender computes

mi ≡ m mod Ni

for i = 1, . . . , n. Next the sender selects at random a polynomial f (x) of degree at most t over GF(p),
where p < mini Ni. Let

f (x) = a0 + a1x + · · · + at−1xt−1.

The sender computes ci = f (xi) for public xi, k = f (0), cei
i mod Ni, and mk

i mod Ni (i = 1, . . . , n).
Finally, the sender merges cei

i mod Ni into C1 and mk
i mod Ni into C2 using the Chinese Remainder

Theorem. The sender broadcasts the tuple (N, p, t, C1, C2) as the cryptogram.
The participants check whether they are the intended recipients, for instance, by finding the

gcd (Ni, N). Note that the sender can give the list of all participants instead of the modulus N.
A participant Pi first recovers the pair (cei

i mod Ni) and (mk
i mod Ni) from C1 and C2, respectively.

Using its secret key di, the participant retrieves ci. The ci are now broadcast so that each participant
can reconstruct f (x) and find k = f (0). Note that none of the participants can cheat as it can be
readily verified whether c′

i satisfies the congruence

c′ei
i ≡ C1 mod Ni.

Knowing k, each participant finds the message mi ≡ Ck−1
2 mod Ni. Although k is public, only

participant Pi can find k−1 × k mod (pi − 1)(qi − 1) from his knowledge of the factorization of
Ni = piqi. Lastly, all the partial messages are communicated to the combiner who recovers the
message m by the Chinese Remainder Theorem.

13.4 Signature Schemes

A signature scheme consists of two algorithms: signature generation and signature verification. Each
of these algorithms can be collaboratively performed. A shared-generation scheme allows a group
of signers to collaboratively sign a document. In a signature scheme with shared verification, the
signature verification requires the collaboration of a group. We examine the two types of systems
and note that the two can be combined if necessary.

13.4.1 Shared Generation Schemes

In these schemes, a signer group P of n participants has a public/private key pair. The private part is
shared among members of the group such that each member has part of the private key that is not
known to anyone else. The signature scheme is usually based on one of the well-known signature
schemes, such as ElGamal, Schnorr, RSA, and Fiat–Shamir.

The group is created with an access structure that determines the authorized groups of signers.
A special case of shared-generation schemes is the multisignature scheme, in which the collabo-
ration of all members in P is necessary. Most systems proposed for shared generation are of the
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multisignature type, or its generalization, (t, n)-threshold signature. In the latter type of signature,
each subgroup p, p ⊂ P of size t can generate the signature.

A shared-generation scheme can be sequential or simultaneous. In a sequential scheme, each
member of the group signs the message and forwards it to the next group member. In some schemes,
after the first signer the message is not readable and all subsequent signers must blindly sign the
message. In a simultaneous scheme, each group member forms a partial signature that is sent to a
combiner who forms the final signature.

There are a number of issues that differentiate shared-generation systems:

1. Mutually trusted party: a system may need a mutually trusted party who is usually active
during the key generation phase; it chooses the group secret key and generates secrets for
all group members. In systems without a trusted party, each signer produces his secret
key and participates in a protocol with other signers to generate the group public key.

2. The security of most signatures schemes is based on the intractability of one of the fol-
lowing problems: discrete logarithm or integer factorization. Shared-generation schemes
based on ElGamal and Schnorr signature schemes use the former, while those based on
RSA and Fiat–Shamir use the latter.

3. Using many/few interactions for producing signature. The amount of interaction between
the signers and the trusted third party varies in different schemes.

There are properties—some essential and some desirable—that a shared-generation scheme must
satisfy. The essential properties are as follows:

A1 Signature generation must require the collaboration of all members of the authorized
group and no signer in the group should be able to deny his signature. Verification must
be possible by any outsider.

A2 An unauthorized group should not be able to forge the signature of an authorized group.
It should not also be possible for an authorized group to forge the signature of another
authorized group.

A3 No secret information should be derivable from the released group and partial signatures.

The desirable properties are as follows:

1. Each signer must have the same power and be able to see the message that he is signing.
2. The order of signing in a sequential scheme should not be fixed.
3. The size of the multisignature should be comparable to, preferably the same as, the size

of the individual signature.

For a (t, n) threshold signature scheme, (A1) and (A2) reduce to

B1 From any t partial signature the group signature should be easily derivable.
B2 Knowledge of t − 1 or fewer partial signatures should not reduce the chance of forgery

of an unauthorized group.

13.4.2 Constructions

The earliest proposals for shared-generation schemes are by Itakura and Nakamura [60] and by
Boyd [21]. Boyd’s scheme is a (n, n)-threshold group signature based on RSA, in which if n > 2
most participants must blindly sign the message.
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13.4.2.1 Threshold RSA Signature

Desmedt and Frankel [42] construct a simultaneous threshold (t, n) RSA signature that requires a
trusted third party to generate and distribute the group public key and the secret keys of the signers.

Their scheme works as follows. In the initialization stage, a trusted KDC (dealer) selects at random
a polynomial of degree t − 1: f (x) = a0 + a1x + a2x2 + · · · + at−1xt−1. The group secret key k is
fixed as a0 = f (0). The dealer gives yi = f (xi) to participant Pi, for each i, via a secure channel. The
computations are performed in Zλ(N), where λ = 2p′q′ and p = 2p′ + 1, q = 2q′ + 1. To sign a
message m (0 ≤ m < N), each participant Pi ∈ B calculates their partial signature si = mki mod N
and transmits the result to the combiner. The combiner computes the signature S of the message m
according to the following equation:

S = m ×
∏
Pi∈B

si = m ×
t∏

Pi∈B
i=1

mki = m × md−1 = md mod N.

The signature verification is similar to the conventional RSA signature scheme.

13.4.2.2 Threshold Signature Based on Discrete Logarithm

Ohta and Okamoto [82] propose a sequential multisignature scheme based on the Fiat–Shamir
signature scheme. In their scheme, the order of signing is not restricted but the scheme requires a
trusted center for key generation.

A variation of group signature is undeniable group signature, in which verification requires the
collaboration of signers. The signature scheme has a “commitment phase” during which t group
members work together to sign a message, and a “verification phase” during which all signers work
together to prove the validity of the signature to an outsider. Harn and Yang [56] propose two
(t, n)-threshold schemes with t = 1 and t = n. Their schemes do not require a trusted third party
and the algorithm is based on the discrete logarithm problem.

Harn [55] proposes three simultaneous multisignature schemes based on the difficulty of discrete
logarithm. Two of these schemes do not require a trusted third party. We briefly review one of the
schemes. We use the notation of Harn [55].

Let KDC denote the key distribution center. The KDC selects

1. p, a large prime, in the range 2511 ≤ p ≤ 2512.
2. q, a prime divisor of p − 1.
3. {ai, i = 0, . . . , t − 1} and f (x) = a0 + a1x + · · · + at−1xt−1 (mod q) where 0 < ai < q.
4. α, where α = h(p−1)/q (mod p) > 1. α is a generator with order q in GF(p); p, q and α

are made public.

The KDC computes the group public key y = αf (0) mod p, where f (0) is the group secret key.
The KDC also computes public keys for all group members as

yi = αf (xi) (mod p), for i = 1, 2, . . . , n

where f (xi) mod q is the share of participant i from the group secret key. (Note that, since α is a
generator with order q in GF(p), αr mod p = αr mod q, for any nonnegative integer r.)

In order to generate the group signature on a message m, each participant of a group B (|B| ≥ t)
randomly selects an integer, ki ∈ [1, q − 1], and computes a public value, ri = αki mod p and
broadcasts ri to all members in B. Knowing all the ri (i ∈ B), each member of the group B computes

r =
∏
i∈B

ri (mod p).
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Participant i computes his partial signature as

si = m′ × f (xi) ×

⎛
⎜⎜⎝∏

i,j∈B
i�j

xj(
xi − xj

)
⎞
⎟⎟⎠ − ki × r (mod p)

where H(m) = m′ (H is a one-way and collision free hash function) and transmits (ri, si) to a
designated combiner.

Once the combiner receives the partial signature (ri, si), it is verified using

y(m′)

⎛
⎝∏

i,j∈B
i�=j

xj
(xi−xj)

⎞
⎠

i = αsi rr
i (mod p).

If all the partial signatures are verified, then the combiner calculates the group signature (r, s) on
message m, where s = ∑

i∈B si (mod q).
An outsider who receives the signature (r, s) on the message m can verify the validity of the

signature using the check ym′ = αsrr (mod p). This check works because

f (0) =
∑
i∈B

f (xi)
∏
i,j∈B
i�=j

xj(
xi − xj

) (mod q)

and thus,

ym′ =
(
αf (0)

)m′
= α

(∑
i∈B f (xi)

∏
i,j∈B
i�=j

xj
(xi−xj)

)m′

=
∏
i∈B

y(m′)

⎛
⎝∏

i,j∈B
i�=j

xj
(xi−xj)

⎞
⎠

i =
∏
i∈B

(
rr

i as
i
) = rrαs.

An interesting security problem in these schemes, as discussed by Desmedt and Frankel [42] and
by Harn [55], is that if more than t signers collaborate they can find the secrets of the system with a
high probability, and thus identify the rest of the shareholders. Possible solutions to this problem in
the case of discrete logarithm-based schemes can be found in a paper by Li et al. [68].

A concept related to threshold signature is t-resilient digital signatures. In these schemes, n
members of a group can collaboratively sign a message even if there are t dishonest members.
Moreover no subset of t dishonest members can forge a signature.

Desmedt [40] shows that a t-resilient signature scheme with no trusted center can be constructed
for any signature scheme using a general multiparty protocol. Cerecedo et al. [29] present efficient
protocols for the shared generation of signatures based on the discrete logarithm problem, Schnorr’s
scheme, and variants of the ElGamal scheme. Their protocols are based on an efficient multiparty
protocol for the shared computation of products and they do not need a trusted party. Park and
Kurosawa [83] discuss a (t, n)-threshold scheme based on the discrete logarithm, more precisely a
version of digital signature standard (DSS), which does not require multiplication and only uses
linear combination for the combination of shares.

Chang and Liou [30] and Langford [66] propose other signature schemes based on the discrete
logarithm problem.
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13.4.3 Shared Verification of Signatures

Signature schemes with shared verification are not commonly found in the literature.
De Soete et al. [98] propose a system for the shared verification of signatures. But their system is

not really a signature scheme in the sense that it does not produce a signature for every message.
Each user has a secret that enables her/him to verify herself/himself to others. It requires at least two
verifiers for the secret to be verified.

Laih and Yen [65] argue that in some cases it might be necessary to sign a message such that
only a specified group of participants can verify the signed message. The main requirements of such
schemes are

1. A can sign any message M for any specified group B.
2. Only the specified group can validate the signature of A. No other group, except B, can

validate the signature of A on M.
3. B should not be able to forge A’s signature on M for another user C, even if B and C

conspire.
4. No one should be able to forge A’s signature on another message M′.
5. If A disavows his signature, it must be possible for a third party to resolve the dispute

between A and B.

The scheme proposed by Laih and Yen [65] is based on Harn’s scheme, which is an efficient
ElGamal type shared-generation scheme. In the proposed scheme a group of signers can create a
digital shared-generation scheme for a specified group, who can collectively check the validity of the
signature. The secret key of the users is chosen by the users themselves and each group has a public
key for signature generation or verification. Since the private key of the verifiers is not known, dispute
settlement by a third party requires an extra protocol between the third party and the verifiers.

13.5 Quantum Key Distribution—Quantum Cryptography

While classical cryptography employs various mathematical techniques to restrict eavesdroppers
from learning the contents of encrypted messages, in quantum mechanics the information is pro-
tected by the laws of physics. In classical cryptography absolute security of information cannot be
guaranteed. However on the quantum level there is a law called the Heisenberg uncertainty principle.
This states that even the most refined measurement on a quantum object cannot reveal everything
about the state of the object before the measurement. This is because the object may be altered by
simply taking the measurement. The Heisenberg uncertainty principle and quantum entanglement
can be exploited in a system of secure communication, often referred to as “quantum cryptogra-
phy” [11]. Quantum cryptography provides the means for two parties to exchange a enciphering key
over a private channel with complete security of communication.

There are least two main types of quantum cryptosystems for the key distribution:

• BB-protocol: Cryptosystems with encoding based on two nonsimultaneously measurable
observables proposed by Wiesner [110] and Bennett and Brassard [10]

• EPR-type: Cryptosystems with encoding built upon quantum entanglement and the Bell
Theorem proposed by Ekert [48]

A typical Quantum key distribution (QKD) protocol is comprised of the following stages:

1. Random number generation by Alice
2. Quantum communication
3. Sifting
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4. Reconciliation
5. Estimation of Eve’s partial information gain
6. Privacy amplification
7. Authentication of public messages
8. Key confirmation

For detailed explanations of these terms we refer the reader to [3], here we will give an informal
explanation of some of these steps using the following simple example.

A BB quantum cryptosystem includes a transmitter, Alice, and a receiver, Bob. Alice may use the
transmitter to send photons in one of the four polarizations: 0◦, 45◦, 90◦, or 135◦. Bob at the other
end uses the receiver to measure the polarization. According to the laws of quantum mechanics,
Bob’s receiver can distinguish between rectilinear polarizations (0 and 90; basis I), or it can quickly
be reconfigured to discriminate between diagonal polarizations (45 and 135; basis II); it can never,
however, distinguish both types. The key distribution requires several steps.

Alice sends photons with one of the four polarizations which are chosen at random. For each
incoming photon, Bob chooses at random the type of measurement: either the rectilinear type or the
diagonal type. Bob records the results of the measurements but keeps them secret. Subsequently Bob
publicly announces the type of measurement (but not the results) and Alice tells the receiver which
measurements were correct—the measurement is done in the same basis as the preparation. Alice and
Bob (the sender and the receiver) keep all cases in which Bob’s measurements were of the correct type.
These cases are then translated into bits (1’s and 0’s) and thereby become the key. An eavesdropper
(Eve) is bound to introduce errors to this transmission because she does not know in advance the type
of polarization of each photon and quantum mechanics does not allow her to acquire the sharp values
of two nonsimultaneously measurable observables (here the rectilinear and diagonal polarizations).

The two legitimate users of the quantum channel, Alice and Bob, test for eavesdropping by
revealing a random subset of the key bits and checking (in public) the error rate. Although they
cannot prevent eavesdropping, they will never be fooled by Eve because any effort to tap the channel,
however subtle and sophisticated, will be detected. Whenever they are not satisfied with the security
of the channel they can try to set up the key distribution again. Privacy amplification is used to distill
a secret key between Alice and Bob from these interactions, cf. Bennett et al. [12].

In our example, we will consider two types of measurement: we consider \ and / to be one type
(diagonal) and | and − to be the other (rectilinear).

1. Alice’s polarization | \ − | / − − − − \ /

2. Bits Alice sent 0 0 1 0 0 1 1 1 0 1 1
3. Bob’s polarization | \ | \ | | / | − \ −
4. Bits Bob registered 0 0 1 1 0 1 0 1 0 1 1
5. Alice states publicly

whether Bob’s Yes Yes Yes No No Yes No Yes Yes Yes No
polarization was
correct or not

6. Alice’s remaining bits 0 0 1 x x 1 x 1 0 1 x
7. Bob’s remaining bits 0 0 1 x x 1 x 1 0 1 x

x means discard
8. Alice and Bob 0 0 1 x x 1 x 1 0 1 x

compare bits 0 0 1 x x 1 x 1 0 1 x
chosen at random OK OK OK

9. Alice’s remaining bits x 0 1 x x 1 x x 0 x x
10. Bob’s remaining bits x 0 1 x x 1 x x 0 x x
11. The key 0 1 1 0
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The basic idea of cryptosystems of EPR-type is as follows. A sequence of correlated particle pairs
is generated, with one member of each pair being detected by Alice and the other by Bob (e.g., a pair
prepared in a Bell state, whose polarizations are measured by Alice and Bob). To eavesdrop on this
communication, Eve would have to detect a particle to read the signal, and retransmit it in order to
conceal her presence. However, the act of detection of one particle of a pair destroys its quantum
correlation with the other. Thus Alice and Bob can easily verify whether this has been done, without
revealing the results of their own measurements, by communication over an open channel.

In the BB-protocol, Eve does not gain any information about the key material by passively
monitoring Alice and Bob’s public channel communications; however, it is essential that these
messages are authenticated. Otherwise Eve could perform a man-in-the-middle attack in which
he/she masquerades as Bob to Alice and as Alice to Bob, while forming separate keys with each. This
scenario can be avoided if Alice and Bob append an authentication tag to their public messages,
which is computed using a keyed hash function (cf. Wegman & Carter Construction, Section 12.5.2).
Upon receiving a message, Alice and Bob can each verify that the received tag value matches the
value computed from the message using the keyed hash function. This requires that Alice and Bob
share a short initial key, which needs to be kept secret only for the duration of the transfer of Alice’s
photons to Bob. The QKD procedure produces large quantities of shared long-term secret bits, a few
of which can be used to authenticate the next QKD session.

In the original proposal of Bennett and Brassard, the shared keys produced by quantum key
distribution would be used directly for encryption as a one-time pad (encryption-mode QKD). With
present day technology (c 2009), it is more practical to use QKD for the transfer or the generation
of conventional symmetric cryptographic keys.

13.5.1 Practicalities—Quantum Cryptography

The field of quantum cryptography was pioneered by Wiesner [110]. Around 1970 at Columbia
University in New York he showed how quantum effects could in theory be used to produce
“quantum bank notes” that are immune to counterfeiting. The first feasible cryptosystems were
proposed between 1982 and 1984 by the American physicist Charles H. Bennett of IBM’s Thomas
J. Watson Research Center in Yorktown Heights in the United States and by the Canadian expert
in cryptography, Gilles Brassard from the University of Montreal [10]. In 1991 Artur Ekert [48]
developed the idea along slightly different lines. This system is based on another aspect of quantum
theory called entanglement.

By the early 1980s, the theory of secure quantum key distribution based on both the Heisenberg
uncertainty principle and the quantum entanglement had evolved into a proposal for a testable
system, though this was by no means easy to set up experimentally. The first apparatus, constructed
by Bennett, Brassard and colleagues in 1989 at IBM’s research center, was capable of transmitting
a secret key over a distance of approximately 30 cm [9]. The practical use of this technology was
established when the first demonstrations over optical fiber were implemented in the early 1990s.

Since then, other researchers have looked at systems based on correlations of another quantum
property of light called phase. Phase is a measure of how far a photon has gone in its cycle of
vibration. Information about the key is encoded in this property of phase instead of polarization.
This has the advantage that with current technology, phase is easier to handle over a long distance.
Since 1991 John Rarity and Paul Tapster of Britain’s [49,106,108] Defense Research Agency in
Malvern have been developing a system to increase the transmission distance. They have designed
and tested an optical system good enough to transmit photons that stay correlated in phase over
several hundred meters. With improvements in the technology of optical fibers and semiconductor
photo detectors, which allowed better transmission and detection and thereby reducing background
errors, the maximum transmission distance achieved by the mid-1990s was approximately 10 km.
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In theory, cryptosystems based on entanglement should also allow quantum keys to be stored
by storing photons without performing any measurements. At present, however, photons cannot
be kept correlated longer than a small fraction of a second, so they are not a good medium for
information storage. But a fraction of a second is long enough for a photon to cover a long distance,
so photons are suitable for sending information and for key distribution.

Since the mid-1990s there have been important advances in quantum cryptography, such as

• Increase in transmission distance to about 150 km
• Implementations of practical systems (from the optical table to a 19′′ rack)
• Development of commercial products

Current research in QKD focuses on implementations, which use weak laser pulses, single-photon
sources, entangled pairs, and continuous variables. A comprehensive evaluation of the transmission
distances that can be achieved by these technologies and their relative merits can be found in the
Quantum Information and Technology Roadmapping Project [3]. The review papers [54,74,101]
provide details of the current experimental implementations of QKD.

In 2006, IdQuantique (Switzerland) and Senetas (Australia) released commercially a hybrid
quantum/classical encryption system. This system uses quantum key distribution to securely exchange
encryption keys, which are used by a high speed classical network for encryption at speeds up to 10
Gbps. It was used in October 2007 to secure the transmission of federal election results in the State
of Geneva. The system features AES 256 bit encryption, BB84 and SARG [87] protocols for QKD,
HMAC-SHA-1 authentication for the classical link, and Wegmann & Carter for the QKD link. The
cyryptographic keys are refreshed at the rate of 1 key/min up to four encryption appliances, and
transmitted by a quantum link channel of length up to 80 km on single mode dark fiber.

13.5.2 Shor’s Quantum Factoring Algorithm

Mathematicians have tried hard to solve the key distribution problem, and in the 1970s a clever
mathematical discovery called “public-key” systems gave an elegant solution. Public-key cryptosys-
tems avoid the key distribution problem, but unfortunately their security depends on unproven
mathematical assumptions, such as the difficulty of factoring large integers (RSA, the most popular
public key cryptosystem, gets its security from the difficulty of factoring large numbers). An enemy
who knows your public key can in principle calculate your private key because the two keys are
mathematically related; however, the difficulty of computing the private key from the respective
public key is exactly that of factoring big integers.

Difficulty of factoring grows rapidly with the size, i.e., number of digits, of the number we want to
factor. To see this, take a number N with � decimal digits (N ≈ 10� ) and try to factor it by dividing
it by 2, 3, . . . ,

√
N and checking the remainder. In the worst case, approximately

√
N ≈ 10�/2

divisions may be needed to solve the problem—an exponential increase as a function of �. Now
imagine computer capable of performing 1010 divisions per second. The computer can then factor
any number N, using the trial division method, in about

√
N/1010 s. Take a 100-digit number N, so

that N ≈ 10100. The computer will factor this number in about 1040 s which is much longer than
1017 s—the estimated age of the universe!

It seems that factoring big numbers will remain beyond the capabilities of any realistic computing
devices and unless mathematicians or computer scientists come up with an efficient factoring
algorithm public-key cryptosystems will remain secure. Or will they? As it turns out we know
that this is not the case; the classical, purely mathematical, theory of computation is not complete
simply because it does not describe all physically possible computations. In particular, it does not
describe computations that can be performed by quantum devices. Indeed, recent work in quantum
computation shows that a quantum computer can factor much faster than any classical computer.
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Quantum computers can compute faster because they can accept as input not just one number,
but a coherent superposition of many different numbers, and subsequently perform a computation
(a sequence of unitary operations) on all of these numbers simultaneously. This can be viewed as a
massive parallel computation, but instead of having many processors working in parallel we have
only one quantum processor performing a computation that affects all the components of the state
vector. To see how it works let us describe Shor’s factoring using a quantum computer composed of
two quantum registers.

Consider two quantum registers, each register composed of a certain number of two-state quantum
systems, which we call “qubits” (quantum bits). We take the first register and place it in a quantum
superposition of all the possible integer numbers it can contain. This can be done by starting with
all qubits in the |0〉 states and applying a simple unitary transformation to each qubit that creates a
superposition of |0〉 and |1〉 states:

|0〉 −→ 1√
2
(|0〉 + |1〉). (13.5)

Imagine a two-qubit register, for example. After this procedure the register will be in a superpo-
sition of all four numbers it can contain

1√
2
(|0〉 + |1〉) 1√

2
(|0〉 + |1〉) = 1

2
(|00〉 + |01〉 + |10〉 + |11〉) (13.6)

where |00〉 is binary for 0, |01〉 is binary for 1, |10〉 is binary for 2, and finally |11〉 which is binary
for 3.

Then we perform an arithmetical operation that takes advantage of quantum parallelism by
computing the function FN(x) for each number x in the superposition. The values of FN(x) are
placed in the second register so that after the computation the two registers become entangled:∑

x
|x〉|FN(x)〉 (13.7)

(we have ignored the normalization constant). Now we perform a measurement on the second
register. The measurement yields a randomly selected value FN(k) for some k. The state of the
first register immediately after the measurement, due to the periodicity of FN(k), is a coherent
superposition of all states |x〉 such that x = k, k + r, k + 2r, . . ., i.e., all x for which FN(x) = FN(k).
The value k is randomly selected by the measurement: therefore, the state of the first register is
subsequently transformed via a unitary operation that sets any k to 0 (i.e., |k〉 becomes |0〉 plus a
phase factor) and modifies the period from r to a multiple of 1/r. This operation is known as the
quantum Fourier transform. The first register is then ready for the final measurement and yields
an integer, which is the best whole approximation of a multiple of 1/r. From this result r, and
subsequently factors of N, can be easily calculated (see the following text). The execution time of the
quantum factoring algorithm can be estimated to grow as a quadratic function of �, and numbers
100 decimal digits long can be factored in a fraction of a second!

When the first quantum factoring devices are built, the security of public-key cryptosystems will
vanish. The mathematical solution to the key distribution problem is shattered by the power of
quantum computation. Does it leave us without any means to protect our privacy? Fortunately
quantum mechanics after destroying classical ciphers comes to rescue our privacy and offers its own
solution to the key distribution problem.

The main reference for this brief account of quantum cryptanalysis is Shor’s paper [94].
Ekert and Jozsa [50] give a comprehensive exposition of Shor’s algorithm for factoring on a
quantum computer, which includes some relevant background in number theory, computational
complexity theory, and quantum computation as well as remarks about possible experimental
realizations.
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13.5.2.1 Factoring

Quantum factoring of an integer N is based on calculating the period of the function FN(x) =
ax (mod N). We form the increasing powers of a until they start to repeat with a period we denote
r. Once r is known, the factors of N can be found using the Euclidean algorithm to find the greatest
common divisor of ar/2 ± 1 and N.

Suppose we want to factor 91. Let us take a number at random, say 28, and raise it to the powers
2, 3, . . .. After 12 iterations we find the number 28 repeated and so we use r = 12. Hence we want
to find gcd(91, 286 ± 1), which we find to be 1 and 13, respectively. From here we can factorize 91.
Classically, calculating r is as difficult as trying to factor N and the execution time is exponential in
the number of digits in N. Quantum computers can find r in time, which grows only as a quadratic
function of the number of digits of N.

13.5.3 Practicalities—Quantum Computation

The idea of a quantum computer is simple, however, its realization is not. Quantum comput-
ers require a coherent, controlled evolution for a period of time, which is necessary to complete
the computation. Many view this requirement as an insurmountable experimental problem; how-
ever, others believe that technological progress will sooner or later make such devices feasible. In
an ordinary, classical computer, all the bits have a definite state at a given instant in time, say
0 1 1 0 0 0 1 0 1 0 . . .. However, in a quantum computer the state of the bits is described by a pure
quantum state of the form

Ψ = a|0 1 1 0 0 0 1 0 1 . . .〉 + b|1 1 1 0 0 0 0 0 1 . . .〉. (13.8)

The coefficients a, b, . . . are complex numbers and the probability that the computer is in the state
0 1 1 0 0 0 1 0 1 . . . is |a|2, that it is in the state 1 1 1 0 0 0 0 0 1 . . . is |b|2, and so on. However,
describing the state of the computer by the quantum state of 13.8 does not merely imply the
ordinary uncertainties that we describe using probabilities. For instance, the phases of the complex
coefficients a, b, . . . have genuine significance: they can describe interference between different states
of the computer, which is very useful for quantum computation. The quantum state declares that
the computer exists in all of its computational basis states simultaneously so long as that state is not
measured; when we do choose to measure it, a particular computational basis state will be observed
with the prescribed probability.

Since quantum computers have the potential to perform certain computational tasks more effi-
ciently than their classical counterparts, there has been an intense international research effort aimed
at realizing these devices. In early research on the synthesis of quantum logical circuits, DiVincenzo
[46] showed how to construct the quantum analogue of the one-bit NOT, or inverter gate, with
spectroscopic techniques that have been well known in physics for over 50 years. He established
that the three-qubit AND operation can be performed using three XOR gates and four single-qubit
rotations.

There are currently several promising approaches to the realization of a quantum computer:
nuclear magnetic resonance (NMR), trapped ions, neutral atoms, cavity QED, optical, solid state,
and superconducting devices. The potentials of these technologies are evaluated by the DiVincenzo
criteria in the Quantum Information and Technology Roadmapping Project [2], which also gives
medium- and long-term objectives for the realization of a quantum computer.

A prominent example of this technology is the Cirac Zoller proposal for a scalable quantum
computer based on a string of trapped ions whose electronic states represent the quantum bits
of information. In this scheme, quantum logical gates involving any subset of ions are realized
by coupling the ions through their collective quantized motion. In 2003, the CNOT quantum gate
according to the Cirac Zoller proposal was experimentally demonstrated by Schmidt-Kaler et al. [89]
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In 2001, Vandersypen et al. [109] realized experimentally Shor’s algorithm using liquid-state NMR
techniques. In 2007, a linear optics realization of Shor’s algorithm was demonstrated by Lanyon et
al. [67]. Both teams chose the simplest instance of this algorithm, i.e., factorization of “N = 15”. The
linear optics experiment represents an essential step toward the full realization of Shor’s algorithm
and scalable linear optics quantum computation.

13.6 Further Information

As in the previous chapter we mention the conferences CRYPTO, EUROCRYPT, ASIACRYPT,
AUSCRYPT, and conferences dealing with security such as ACISP. Information can also be found
in Journals such as the Communications of the ACM. Quantum cryptography is also covered in the
physics literature, e.g., Europhysics Letters, Physical Review Letters, and QIPC Strategic Report: Quan-
tum Information Processing and Communication in Europe http://qist.ect.it/Reports/reports.htm
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14.1 Introduction

A plethora of mutually beneficial information collaboration opportunities exist when organizations
and individuals share information. Some examples of such collaborations include (1) hospitals
sharing information about patients with a rare disease in order to develop better treatments; (2)
suppliers and retailers sharing their holding costs, inventory on hand, and other supply-chain
information in order to reduce their costs; and (3) finding interorganization purchase patterns by
sharing customer records to perform collaborative data mining. Clearly, there are many potential
benefits, both monetary and societal, for such collaborations, however, one significant drawback is
concerns about confidentiality and privacy that are associated with sharing information. Returning
to the examples above, sensitivity concerns include (1) patients’ information is private and there may
be laws preventing such sharing of information (e.g., in the United States, HIPAA restricts the sharing
of medical information); (2) the supplier and retailer may be concerned that their cost information
could be used against them in a future interaction; and (3) sharing customers’ information may
violate the customers’ privacy. Thus, while significant benefit may result from such collaborations,
these collaborations may not occur due to privacy and confidentiality concerns.

Secure protocols (also called privacy-preserving or confidentiality-preserving protocols) are cryp-
tographic techniques that obtain the result of information collaboration while preserving privacy
and confidentiality. More specifically, secure protocols are cryptographic techniques for computing
functions (i.e., collaboration outcomes) over distributed inputs while revealing only the result of

14-1
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the function. Thus, secure protocols are a way to have the best of both worlds—we can obtain the
benefit of collaboration without the drawback of revealing too much information. While this may
seem like an intractable goal for many problems, there have been many general results which state,
under various assumptions, that any function computable in polynomial time can also be computed
securely with polynomial communication and polynomial computation. The problem of computing
any function in a secure manner is called secure multiparty computation (SMC).

This chapter provides a description of techniques for building secure protocols from an applied
standpoint. That is, this chapter is not an exhaustive description of SMC techniques, but rather this
chapter describes a few key building blocks that facilitate the creation of several secure protocols.
For the reader that is interested in a formal description of cryptographic primitives and SMC we
refer you to [15,16]. The rest of this chapter is organized as follows: in Section 14.2 secure protocols
are defined more formally. Section 14.3 presents a survey of known results for secure protocols.
Section 14.4 describes practicality problems for the general SMC results along with methods that
help overcome these problems. In Sections 14.5 through 14.7 several specific techniques for two-party
secure protocols are described, and in Section 14.8 we summarize this chapter.

14.2 What Is a “Secure” Protocol?

Before describing techniques for “secure” protocols, one must define what is meant by “secure.”
Before formally defining this notion, we provide some intuition into the definition. One trivial way
to securely compute any function is for all parties to send their input to a fully trusted third party
(TTP), and this TTP then computes the desired result and sends the output of the function to each
party. Obviously, it is unlikely that such a TTP exists, but this protocol achieves the best possible
outcome—that is, the only information revealed about inputs is the output of the protocol and
inferences that can be made from this output along with one or more inputs.∗ Thus a protocol is
considered “secure” if it is no worse than the above-described TTP protocol. More specifically, a
secure protocol is a protocol that reveals only the result of the function and inferences that can be
deduced from this output with one or more input values.

The following is a simple example of a secure protocol that helps clarify the above intuition.
Suppose N people are sitting around a table lamenting that they are vastly underpaid; to help justify
their complaints, this group has a genuine interest in finding the mean salary of everyone at the
table, but due to privacy concerns, they do not want to reveal individual salaries to the group. Now
if there are only two people at the table, then when given the result (i.e., the average salary) and one
person’s salary, one can deduce the other person’s salary. Thus for N = 2 a secure protocol is as
simple as having both parties reveal their salaries to each other, because one party’s value can be
deduced from the result and the other input. However, when N ≥ 3, such exact inferences cannot
be made, so a more complicated protocol is needed.

One way to compute the average salary (for N ≥ 3) is as follows. The first person chooses a
random number R from a range of values much larger than the range of salaries. This person adds
his salary to R, writes the result on a slip of paper, and then passes this piece of paper to the next
person at the table. When this person receives the slip of paper, he adds his salary to the value on the
paper, writes down the new sum on a different piece of paper, destroys the original piece of paper,
and passes the new paper to the person next to him. The paper passing continues until everyone
has incorporated their salary into the sum. After everyone has had a turn, the final piece of paper is
passed back to the first person. The first person then subtracts R from the sum to learn the sum of
everyone’s salary. He then divides this sum by the number of people to learn the average salary and
then he reveals the average salary to everyone at the table.

∗ In a multiple party protocol it is possible that participants will collude and share inputs with each other.
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Let us examine the properties of this average salary protocol. By adding a large random value
R to the first person’s salary, this person’s salary is hidden with high probability (furthermore the
probability is controllable by the range from which R is chosen). More generally, assuming that
there is no collusion between members, then all that the ith person learns from the protocol is the
sum of the first i − 1 salaries and R, and since R is chosen from a large range, the sum of the first i − 1
salaries is hidden with high probability. Of course, there are some problems with this protocol: (1) the
protocol is not collusion-resistant—for example, if the 2nd and 4th parties collaborate together, then
they could learn the 3rd party’s salary; (2) the first person can learn the actual result and announce a
different result; and (3) any participant can modify the value that is being passed around the group
to increase or reduce the average.

Clearly, there are different types of adversaries that must be considered when creating secure
protocols. There are two basic types of adversaries that are considered in the SMC literature. The
first adversary type is called an honest-but-curious (HBC) adversary model (also called semi-honest
or passive adversaries). In this adversary model, the adversary will faithfully follow the specified
protocol, but after the protocol has completed it will attempt to learn additional information about
other inputs. While this model is unrealistic in many regards, if an efficient protocol cannot be
developed for this simplified model, then there is little hope that a protocol can be developed for a
more realistic adversary model. The second adversary model is a more realistic adversary model,
and it is often called the malicious or active adversary model. A malicious adversary will deviate
arbitrarily∗ from the protocol in order to gain some advantage over the other participants. The
advantages that an adversary can try to obtain include (1) to learn additional information about
other inputs; (2) to modify the result of the protocol; (3) to abort the protocol prematurely (perhaps
after the adversary learns a partial result it aborts the protocol to prevent others from learning the
results).

14.2.1 Definition of Two-Party HBC Secure Protocols

We are now ready to formalize the above informal definition for two parties in the HBC adversary
model. Recall that a two-party protocol is secure if everything that can be computed from the
protocol can be deduced from the output and one of the input values. To make this more concrete
suppose Alice and Bob are engaging in a protocol to compute a function f . This protocol involves
one or more message exchanges between Alice and Bob; we will call these messages the transcript
of the protocol. It must be shown that the transcript sent from Alice and Bob (and vica versa) does
not reveal too much information. More specifically, the transcript sent from Alice to Bob should be
computable from the result of the protocol and Bob’s inputs, otherwise the protocol would reveal
more information to Bob than the results (a similar statement must be made about the transcript
from Bob to Alice). In the remainder of this section we formalize this definition. The reader that
is already familiar with the cryptographic literature should feel free to skip the remainder of this
section, and we refer the reader that is interested in more details about these definitions to [15,16].

As any cryptographic protocol will fail with some probability (one can always guess the other
party’s inputs), it is necessary to define an acceptable probability threshold for which a protocol is
deemed secure. Clearly, a fixed constant probability is undesirable since an adversary can simply
repeat the attack several times in order to increase the probability. The standard technique used in
the cryptographic literature is the notion of a negligible probability. More specifically, a function
μ(k) is negligible in k if for any polynomial p, for large enough k, μ(k) < 1

p(k) . A protocol is deemed
secure if the adversary’s success probability is negligible in a security parameter. One advantage of

∗ Adversaries are usually modeled as probabilistic-polynomial time adversaries, and this is the only bound placed on
malicious adversaries.
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using a negligible probability is that even if the adversary repeats the attack a polynomial number of
times, the success probability will still be negligible.

As mentioned above, to show that a protocol is secure, it must be shown that the communication
transcript from the protocol can be simulated when given the results and one party’s input. One
way to do this is to require that the communication transcript be exactly generatable from the
output of the protocol, but this is very limiting. However, if the adversary is computationally-
bounded, then it is enough to generate a transcript that is so close to the real transcript that
the adversary cannot distinguish between the real and simulated transcripts. In the cryptographic
literature, this notion of “close enough” is called computational indistinguishability. More formally,
two random probability ensembles {Xn}n∈N and {Yn}n∈N are computationally indistinguishable if
for any probabilistic polynomial time algorithm D the following value is negligible in n:

|Pr[D(Xn, 1n) = 1] − Pr[D(Yn, 1n) = 1]|

It is now possible to define a secure two-party protocol in the HBC model. Suppose that Alice
and Bob have respective inputs xA and xB, and that at the end of the protocol Alice should learn
fA(xA, xB) and Bob should learn fB(xA, xB). Note that in many cases fA and fB will be the same
function, but to make the definition as general as possible, it incorporates the possibility that
Alice and Bob will learn different results. Now given a protocol Π, Alice’s view of the protocol
(i.e., all messages she receives from Bob) is denoted by {viewΠ

A (xA, xB)}xA,xB∈{0,1}∗ , and similarly
Bob’s view is denoted by {viewΠ

B (xA, xB)}xA,xB∈{0,1}∗ . The protocol Π is said to be secure in the
HBC model if there exist probabilistic polynomial time simulation algorithms SA and SB, such that
(1) {SA(xA, fA(xA, xB))}xA,xB∈{0,1}∗ and {viewΠ

A (xA, xB)}xA,xB∈{0,1}∗ are computationally indistinguish-
able and (2) {SB(xB, fB(xA, xB))}xA,xB∈{0,1}∗ and {viewΠ

B (xA, xB)}xA,xB∈{0,1}∗ are computationally indis-
tinguishable. To see how this definition matches the intuition from before, this definition states that
an efficient algorithm exists that can simulate all of the messages sent by Bob (resp. Alice) when
given only Alice’s (resp. Bob’s) input and output. Thus anything learned from the protocol must also
be learnable from the result alone, and therefore the protocol reveals only the result and inferences
derived from this result.

14.2.2 Beyond Two-Party and HBC Adversaries

The definition in the previous section can be extended to the malicious adversary model, but as this
definition is quite cumbersome we opt for an informal discussion (we refer the interested reader
to [16] for more details). Reconsider the TTP setting for computing a function securely, while this
protocol is unrealistic it does provide an “ideal” goal for an SMC protocol. That is, a protocol
will be secure if for any attack in the real protocol, there is another attack (with similar adversary
complexity) in the ideal protocol with the TTP. Consider a malicious adversary in the TTP setting,
this adversary can do the following actions: (1) refuse to participate in the protocol; (2) abort the
protocol prematurely; and (3) modify its inputs. A protocol is secure in the malicious model if for
any PPT adversary in the real protocol there is a malicious adversary in the TTP setting that can
achieve the same∗ results. One limitation of the two-party secure computation is fairness of the
protocols, that is, one party will learn its result before the other party and then can stop participating
in the protocol to prevent the other party from obtaining its output. Unfortunately, the impossibility
results in Byzantine agreement [11] imply that fairness is not achievable in two-party computation
(e.g., a strict majority of the parties must be honest).

∗ That is, computationally indistinguishable.



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C014 Finals Page 5 2009-9-25

Secure Multiparty Computation 14-5

14.3 Survey of General SMC Results

The first protocol for computing any two-party function securely in the semi-honest model was
proposed in [30], and was later improved in [31] (in the latter we refer to this scheme as Yao’s
scheme), to require only a constant number of communication rounds. The basic idea of this
approach is to build a logical circuit for the function in question, and then to use a secure protocol
to blindly evaluate the circuit (for details on how this is accomplished, see Section 14.5). While
the original scheme did not have a detailed security proof, the scheme was proven secure in [21].
Furthermore, Yao’s scheme has been implemented in the FAIRPLAY system [22], and it was shown
that this scheme is practical for some problems. Several protocols have extended Yao’s system to
make it secure in the malicious model [22,24,29]).

With regards to multiparty computation, it was shown in [17] that as long as a majority of the
participants are honest, it is possible to securely compute any function. In [23] a scheme was given
to securely compute any function in such a model in a constant number of rounds. There have been
several extensions to more sophisticated adversary models, including (but not limited to) adaptive
adversaries that corrupt participants after the protocol has began [5] and secure protocols against
computationally unbounded adversaries [2,6].

14.4 Methods for Practical Secure Protocols

In this section, we consider techniques for making secure protocols practical. Since the general
results of SMC state that there is a secure protocol for any number of participants, a first approach
is to have all participants engage in a secure protocol as depicted in Figure 14.1. Typically, such
schemes require a portion (e.g., a strict majority) of the participants to be honest. These protocols
are robust in that after the initial rounds of such protocols, even when some of the participants
abort the protocol (intentionally or unintentionally) the rest of the participants can still compute the
result. While this natural protocol architecture does allow for secure computation there are several
disadvantages including (1) all participants must be online at the same time which may be difficult
in some environments and (2) for large numbers of participants these protocols are very expensive.
In summary, this architecture works very well for a small number of participants (especially for two
people), but it does not scale well.

To further emphasize the problems with this initial architecture consider creating a secure protocol
for an auction system, where several bidders are bidding on an item held by a seller. Clearly,
bidders will want to protect their bid values. In this architecture all of the bidders and the seller
would have to agree upon a fixed time to engage in a protocol to compute the results. In many
auctions this is impractical, because the identities of the bidders is unknown until they make a bid,

Party 3

Party 1

Party 2Party 4

FIGURE 14.1 Example of first
architecture.

and furthermore the number of bidders could make this protocol
impractical.

Thus, for many problems having all participants engage in a
protocol together is unlikely to be practical. One way to mitigate
this problem is for many of the participants to delegate their portion
of the protocol to another party. Of course, participants would not
want to reveal their values to their representatives, but if the inputs
could be split among different representatives so that no small
group of the representatives can learn the values, then this may
be acceptable. In the next section we describe various techniques
for splitting values and then in Section 14.4.2 we formalize this
representative-based architecture.
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14.4.1 Splitting Values

The following are three techniques for splitting a value x among n participants.
Sharing: In sharing approaches all n participants are required to recover the value. One example,

of this approach is that party i has a value xi such that x = x1 ⊕ x2 ⊕ · · · ⊕ xn where ⊕ is XOR.
To split x in such a manner, n − 1 random values are chosen for x1, . . . , xn−1 and xn is set to
x ⊕ x1 ⊕ · · · ⊕ xn−1. Another similar sharing approach is to store x as the sum of n values modulo
some value. That is, the shares of a value x are x1, . . . , xn where x = x1 + x2 + · · · + xn mod N for
some value N.

When given values in a modularly additive split format, then one can perform certain arithmetic
operations on the split values. For example, if two values x and y are split among a group of
participants then without communicating this group can compute x + y (modulo the splitting
modulus) by having each member add up their shares of x and y. Also, a group of participants can
multiply their shared value by a constant by each multiplying their individual values by the constant.

Threshold sharing: Another approach to sharing values is to split the values in such a way that t
participants are required to recover the value (t < n). A classic technique for achieving such sharing
is Shamir’s secret sharing [28]. In this approach a t − 1 degree polynomial P is chosen such that
P(0) = x. Furthermore, participant i is given (i, P(i)). Now if any t parties share their values, they can
interpolate their values to recover P and thus learn P(0) (i.e., x). However, t − 1 or less participants
do not have enough information to reconstruct P and thus x is still protected. This is often referred
to as a (t, n) threshold sharing scheme.

When given values split using such a sharing approach, it is possible to perform some mathematical
operations on the values without having the participants communicate. Suppose that values x and y
are split with a (t, n) sharing scheme and where each participant’s points have the same x-coordinate.
Then it is possible to compute x + y in a threshold (t, n) simply by having each participant add the
y-coordinates of their points. Furthermore, it is also possible to compute x ∗ y in a (2t, n) shared
manner by having each participant multiply the y-coordinates of their points. Finally, it is trivial to
multiply a (t, n) shared value by a constant and obtain a (t, n) shared value by having each participant
multiply their y-coordinate by the constant.

Encoding/value: Suppose that x ∈ {0, 1} and that n = 2. In this case a specialized form of splitting
is achieved by having one party learn two large random values v0 and v1 and having the other party
learn vi. Thus the first party knows the semantics of the encoding, but does not know the actual
value. On the other hand, the second party knows the encoded value but does not know what it
means. To split a value in this form the party owning x chooses v0 and v1 and sends them to party
one and then sends vx to party two. Of course, this can be extended to � values in a larger range in
a natural way. Furthermore, this idea can be extended to multiple parties by splitting the encodings
among the parties (using either sharing or threshold sharing) and giving all parties the value.

14.4.2 Representative-Based Architectures for SMC

An architecture (formalized in [9]) that increases scalability is to separate the participants into three,
not necessarily mutually exclusive, groups: input servers, computation servers, and output servers.
The input servers split their inputs (using the techniques described in the previous section) among
the computation servers so that no small group of computation servers can recover the inputs. The
computation servers then engage in a secure protocol to compute the results in a split fashion. And
finally, the split results are sent to the output servers who then learn the results. This representative-
based architecture is depicted in Figure 14.2. This architecture mitigates many of the disadvantages
of the original protocol architecture described earlier. That is, the input servers do not all need to be
online at the same time because they can submit their values to the computation servers and then go
offline. Furthermore, the number of computation servers is typically much smaller than the number
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Computation
server 1

Computation
server 2

Party 1

Party 2

Party 3

Output
server

Split input Split outputSecure
protocol

FIGURE 14.2 Example of representative-based architecture.

of input servers, and thus this approach is more scalable. The downside of this representative-based
approach is that this usually requires some level of trust in an outside party (i.e., a party that is
neither an input nor an output server).

In [25] a version of this representative-based architecture was used to provide a practical privacy-
preserving auction. In this scheme a third party called the auctioneer is utilized. The sole purpose
of the auctioneer is to help the seller compute the winning bid. The bidders split their bids between
the auctioneer and the seller so that neither individual learns information about the bids. Once
the auctioneer and the seller have received all bids, the seller and the auctioneer engage in a
secure protocol to compute the winning bidder along with the winning bid in a split fashion.
This information is then revealed to the seller and to the bidders. The only trust assumption is
that the bidders trust the auctioneer not to collude with the seller, and this level of trust is more
reasonable than the fully trusted third party approach, and may be applicable in many practical
situations.

Since the focus of this chapter is practical SMC techniques, the focus will be on two-party SMC
techniques (as these are more likely to be practical). Thus for problems with more than two parties
we will assume a representative-based architecture with two computational servers.

14.5 Logical Circuit Based Approaches

In this section we discuss a technique for computing any two-party function in a secure manner.
The main focus is on the HBC model, but extensions to the malicious model are also discussed. The
principal idea is that we will represent the function f as a logical circuit Cf . In [31], a technique was
described that securely evaluates a logical circuit with communication and computation proportional
to the number of gates in the circuit and with a constant number of rounds; in [21] this technique
was proven secure. Now, any function computable in polynomial time can be computed with a
polynomially sized logical circuit, and so these two things imply that any function computable in
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polynomial-time can be computed securely with polynomial communication and computation and
a constant number of rounds. In the remainder of this section we first describe the cryptographic
primitives needed for Yao’s construction in Section 14.5.1. Then Yao’s scrambled circuit evaluation
technique for the HBC adversary model is described in Section 14.5.2. In Section 14.5.3 extensions
to the malicious model are described. Finally, in Section 14.5.4 applications of Yao’s approach are
described.

14.5.1 Cryptographic Primitives

One building block that is used is a form of symmetric key encryption. The encryption scheme
for Yao’s scrambled circuit evaluation requires specific properties: elusive range (it is difficult to
choose a value that is a valid ciphertext for a particular key k) and efficiently verifiable range (given
a ciphertext and a key it is possible to determine if the ciphertext is a possible encryption with the
key k). These properties are possible for cryptosystems, and we refer the reader to [21] for more
information about these properties. In the remainder of the paper we use the notation Enc(M, k) to
denote the encryption of the message M with the key k.

The other core building block needed for Yao’s scrambled circuit evaluation is 1-out-of-2 chosen
oblivious transfer; oblivious transfer (OT) was introduced in [27]. In the original OT protocols the
sender would have a message and the receiver would obtain the value with probability one-half. In
[10], a variation was introduced where the sender has two messages and the receiver obtains message
one with probability one-half and receives message two with probability one-half; furthermore, the
sender would not know which message the sender obtained. While these two versions of OT seem
different, they were proved to be equivalent in [7]. The version that will be used in the remainder
of the chapter is chosen 1-out-of-k OT (also called all or nothing disclosure of secrets) and was
introduced in [3]. In this version of OT the sender has k messages and the receiver obtains a specific
message that the receiver gets to choose. We will denote this protocol as OTk

1((M1, M2, . . . , Mk), i)
where the receiver learns Mi and the sender learns nothing.

The following is a protocol described in [1] for chosen 1-out-of-2 OT. Note that there are many
other protocols for OT in the literature, but as OT is not the focus of this chapter only one such
protocol is described (see Figure 14.3).

The above protocol for OT requires a single round (once the setup has been done), and it requires
O(1) modular exponentiations and other computations. We now give a sketch of security argument
for the above protocol. First, an honest receiver will obtain Mb, because βr

b = (gsb)r = (gr)sb = γb.
However, the receiver cannot obtain M1−b, because this would imply that the receiver also learns

Input: The sender inputs two messages M0 and M1, and the receiver inputs b ∈ {0, 1}.
Output: The receiver obtains Mb.

1. The sender chooses a large prime p, a generator g of Z∗
p , and a value C in Z∗

p where the receiver does not
know the discrete log of C. The values p, g, and C are sent to the receiver. Note that this step needs to be
done only once for several OT protocols.

2. The receiver chooses a random value r computes two values α0 and α1 where αb = gr and α1−b = C
gr . The

receiver sends α0 to the sender.
3. The sender computes α1 = C

α0 . It then chooses two random values s0 and s1, and computes: βi = gsi ,
γi = α

sii , and δi = Mi ⊕ γi for i ∈ {0, 1}. It then sends β0, β1, δ0, and δ1 to the receiver.
4. The receiver computes βr

b=(gsb )r=(gr)sb = γb. The receiver then computes δb ⊕ γb = Mb.

FIGURE 14.3 Oblivious transfer protocol.
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γ1−b, which is
(

C
gr

)s1−b
, which is gms1−b for some value m. The receiver does not know this value,

because otherwise the receiver would know the discrete logarithm of C. Thus the receiver knows
gm and gs1−b , and needs to calculate gms1−b (which is the Diffie–Hellman problem). The sender
is unaware of which item the receiver is choosing because C

gr and gr are indistinguishable for a
randomly chosen (and unknown) value r. For a more detailed argument as to why this scheme is
secure see [1].

14.5.2 Simulating Circuits with Yao’s Method

A high-level overview of Yao’s approach is as follows: one party is labeled the circuit generator and
the other party is labeled the circuit evaluator. For each wire in the circuit the generator creates two
encodings (one for 0 and one for 1), and the evaluator will learn the encoding that corresponds to the
actual value of each wire without knowing what the encoding corresponds to. A crucial piece of this
protocol is a gate encoding that allows the evaluator to obtain the gate’s output wire’s encoding when
given the gate’s input wires’ encodings. Finally, to learn the final result the evaluator is given the
mapping between the circuit’s output wire encodings and their values. In what follows we describe
the details of this process.

Setup: Assume that Alice is playing the role of the generator and that Bob is the evaluator. Suppose
the circuit in question consists of wires w1, . . . , wn that are partitioned into four mutually exclusive
sets A (Alice’s inputs), B (Bob’s inputs), I (intermediate wires), and O (output wires). Furthermore,
suppose these wires are connected to a set of binary gates G1, . . . , Gm and that each wire is either
in A ∪ B or is an output from some gate. We denote the actual value of the wire wi by vi, and
we denote the binary function that corresponds to gate Gi ad gi, e.g., gi : {0, 1} × {0, 1} → {0, 1}.
Finally, the input wires to Gi are denoted by xi and yi, and the output wire is denoted by zi. That is,
vzi = g(vxi , vyi).

Circuit generation: For each wire wi Alice randomly chooses two encryption keys wi[0] and wi[1],
and she also chooses a random bit λi ∈ {0, 1}. One of the goals of the protocol is for Bob to learn
(vi ⊕ λi)||wi[vi ⊕ λi] for each wire in the circuit. Note that the λ value hides from Bob the actual
value of a wire.

Furthermore, for each gate Gi, the generator creates four messages, denoted by Gi[0, 0], Gi[0, 1],
Gi[1, 0], and Gi[1, 1], where Gi[a, b] is Enc(si[a, b]||wzi[si[a, b]], wxi [a] ⊕ wyi [b])∗ where si[a, b] =
gi(a ⊕ λxi , b ⊕ λyi) ⊕ λzi .

Circuit evaluation: The circuit generator and the evaluator do the following:

1. For each a ∈ A, Alice sends (va ⊕ λa)||wa[va ⊕ λa] to Bob.
2. For each b ∈ B, Alice and Bob engage in OT2

1({λb||wb[λb], λ̄b||wb[λ̄b]}; vb) where Alice
plays the role of the sender.

3. Alice sends to Bob Gi[0, 0], Gi[0, 1], Gi[1, 0], and Gi[1, 1] for every gate.
4. For each o ∈ O, Alice sends λo to Bob.

After Bob receives the above information, he evaluates the circuit. First, for each wire i ∈ A ∪ B,
Bob knows (vi ⊕λi)||wi[vi ⊕λi] (from Steps 1 and 2 in the protocol above). Once Bob has learned the
encodings for wires xj and yj, he computes Dec(Gj[vxj ⊕λvxj

, vyj ⊕λvyj
], wxj [vxj ⊕λvxj

]⊕wyj[vyj ⊕λvyj
])

∗ Note that this notation indicates that si[a, b]||wzi [si[a, b]] is encrypted with the key wxi [a]⊕ wyi [b], and thus to be able
to decrypt this value one would need both wxi [a] and wyi [b].
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a, w1
EQ

a = b, w3

b, w2

FIGURE 14.4 Example circuit.

to obtain the encoding of the output wire of Gj (i.e., wire zj). That is,
this value is (vzj ⊕ λvzj

)||wzj[vzj ⊕ λvzj
]. Once Bob has these values

for all wires, he can compute vo for all wires in O, since he knows
λo (from Step 4 of the protocol above).

To clarify the details of the above protocol, consider the following
example. Suppose we have a small circuit where Alice has a single
input bit a and Bob has a single input b. Furthermore, the output of
the circuit is the predicate a = b. Note that this can be viewed as a
circuit with a single equality gate (i.e., a not XOR gate). Furthermore,
we will label the circuit as in Figure 14.4. To make this a concrete example, let us suppose that a = 0
and b = 1.

For each wire wi Alice will choose encoding values wi[0] and wi[1] and λi. Let us suppose that
Alice chooses λ1 = 0, λ2 = 1, and λ3 = 1. Alice will send to Bob the values (a ⊕ λ1)||w1[a ⊕ λ1],
that is she sends 0||w1[0] to Bob. Alice and Bob will also engage in a 1-out-of-2 OT to reveal 0||w2[0]
(this corresponds to Bob’s input wire).

For the gate information, Alice will calculate the following four messages:

• s1[0, 0] = EQ(λ1, λ2) ⊕ λ3 = 1
• s1[0, 1] = EQ(λ1, λ̄2) ⊕ λ3 = 0
• s1[1, 0] = EQ(λ̄1, λ2) ⊕ λ3 = 0
• s1[1, 1] = EQ(λ̄1, λ̄2) ⊕ λ3 = 1

Thus the gate information that Alice uses will be as follows:

• G1[0, 0] = Enc(1||w3[1], w1[0] ⊕ w2[0])
• G1[0, 1] = Enc(0||w3[0], w1[0] ⊕ w2[1])
• G1[1, 0] = Enc(0||w3[0], w1[1] ⊕ w2[0])
• G1[1, 1] = Enc(1||w3[1], w1[1] ⊕ w2[1])

Once Bob has this gate information, and he has the values 0||w1[0] and 0||w2[0] the only gate
message he can decrypt is G1[0, 0], and he thus receives 1||w3[1]. If this was to be used as an
intermediate wire, he would not know the actual value of wire w3, because it depends on λ3 which
he does not know. However, if this is an output wire, then Alice will reveal λ3 and he will learn that
the result is actually 0.

14.5.3 What about Malicious Behavior

Consider a malicious adversary in Yao’s protocol. If the malicious player is the evaluator, then there is
little that this player can do other than change his inputs. However, if the generator is malicious then
this adversary can create any circuit with the same topology as the desired function. One mechanism
that has been suggested to mitigate this attack is a cut-and-choose approach [22,24,25,29]. In this
approach the generator creates several versions of the circuit and sends them all to the evaluator.
The evaluator then requests that the generator “open" (i.e., give them all wire keys) a subset of the
circuits. The evaluator then verifies that this subset of circuits was created properly.

In the simplest instantiation of this scheme the generator creates N circuits, and the evaluator
verifies N −1 of the circuits. In this case, if a malicious generator wants to evaluate a faulty circuit, the
malicious generator’s chances of not being caught is 1

N . In a more complicated approach the evaluator
verifies N

2 circuits and computes the result for the other N
2 circuits. If the evaluated circuits’ outputs

differ then the evaluator sets the result to the most frequent output. In this case a cheating adversary
is successful with a probability that is exponentially small in N. Many of the details on how this
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cut-and-choose model is implemented have been omitted, but we refer the reader to [22,24,25,29]
for more details.

14.5.4 Using Circuits

To use the scrambled circuit evaluation approach one needs to construct a circuit for the problem
at hand. One approach that was used in FAIRPLAY [22] was to build a compiler that converted a
programming language into a circuit. However, depending on the needs of the application one may
decide to construct the circuits by hand. Some common circuits are described below.

• To test two n-bit values, a1, . . . , an and b1, . . . , bn for equality one can use the following
circuit:

∧n
i=1 (ai ⊕ bi). Note that this circuit requires O(n) gates.

• To test if an n-bit value a1, . . . , an is greater than another n-bit value b1, . . . , bn one can
use the following circuit:

∨n
i=1(ai ∧ b̄i ∧∧i−1

j=1((aj ⊕ bj))). Note that this circuit has O(n)

gates.

One difficulty with using this approach is the difficulty with constructing circuit for some problems.
Furthermore, circuits are inefficient for some problems such as indirect access into a list of values,
that is if there is a list of items v1, . . . , vn given and an index i ∈ [1, n] is computed by the circuit,
then it requires O(n) computation to obtain vi in the circuit.

14.6 Computing on Encrypted Data

Because of the results in the previous section, one may wonder if all secure protocol problems have
been solved. While the above techniques do imply that any polynomially computable function can be
securely evaluated in the semi-honest model with polynomial communication, it is believed that for
many problems the general solutions may not be practical. However, in some situations an efficient
domain-specific protocol exists for some problems [18]. In this section we focus on one class of
problems that have solutions based on arithmetic expressions.

14.6.1 Homomorphic Encryption

A homomorphic encryption scheme allows computation using encrypted values; this is useful
because it facilitates some protocols based on arithmetic that are more efficient than their circuit
counterparts. The idea behind these types of protocols is that the values can be encrypted and then
someone can compute the encryption of a result without knowing the values. Specific homomorphic
encryption schemes are described in [8,26]. In [26] the arithmetic is done mod n where n is an RSA
modulus, and in [8], the arithmetic is done mod nk where n is an RSA modulus and k is an integer.
We now formally describe the properties of a homomorphic encryption scheme.

1. Public key: The systems are public-key encryption schemes in that anyone with the public
parameters of the scheme can encrypt, but only those with the private parameters can
decrypt.

2. Semantically secure: We require that the scheme be semantically-secure as defined in
[19]. That is, given the following game between a probabilistic polynomial time (PPT)
adversary A and a challenger C:

a. C creates a public–private key pair (E, D) for the encryption system and sends E to A.

b. A generates two messages M0 and M1 and sends them back to C.
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c. C picks a random bit b ∈ {0, 1} and sends E(Mb) to A.

d. A outputs a guess b′ ∈ {0, 1}.

We say that A wins the game if b′ = b. We define the advantage of A for a security
paramater k to be AdvA(k) = Pr[(b = b′)−(1/2)]. We say that the scheme is semantically
secure if AdvA(k) is negligible in k.

3. Additive: Given the E(x) and E(y) and the public parameters of the scheme, one can
compute E(x + y) by calculating E(x) ∗ E(y).

4. Multiplication: A natural extension of the previous property is that when given E(x) and
c, one can compute E(xc) by calculating E(x)c.

5. Re-encryption: When given an encryption E(x), one can compute another encryption of
x, simply by multiplying the original encryption by E(0).

14.6.2 Scalar Product

It should not come as a surprise that homomorphic encryption facilitates efficient protocols that
compute some arithmetic expression. One example of such a protocol is the calculation of the scalar
product of two vectors. That is given 
A =< a1, . . . , an > and 
B =< b1, . . . , bn >, the goal is to
compute 
A ◦ 
B = ∑n

i=1(ai ∗ bi). One protocol for secure scalar product was introduced in [14], and
Figure 14.5 is such a protocol.

14.6.3 Polynomial Operations

Another application of homomorphic encryption is the ability to compute various polynomial
operations. This has been useful for set operations (which are described in detail in the next section),
including [12,13,20]. To encrypt a polynomial with homomorphic encryption, each coefficient
of the polynomial is encrypted with the encryption scheme. That is, the encryption of P(x) =
pnxn + · · · + p1x + p0 is E(pn), . . . , E(p1), E(p0), and we denote this value by Epoly(P). Given an
encrypted polynomial it is possible to perform some polynomial operations, including

1. Polynomial evaluation: Given Epoly(P) and z it is possible to compute E(P(z)). If P(x) =
pnxn + · · · + p1x + p0, then E(P(z)) = E(pnzn + · · · + p1z + p0) = E(pnzn) ∗ · · · ∗
E(p1z) ∗ E(p0) = E(pn)

zn ∗ · · · ∗ E(p1)
z ∗ E(p0) which can be computed with knowledge

of Epoly(P) and z.
2. Polynomial addition: Given Epoly(P) and Epoly(Q) it is possible to compute Epoly(P + Q).

Assume that P(x) = pnxn + · · · + p1x + p0, and Q(x) = qnxn + · · · + q1x + q0, if P and
Q have different degrees, then one of them can be padded with 0’s to make the degrees
the same. Now P + Q(x) = (pn + qn)xn +· · ·+ (p1 + q1)x + (p0 + q0), thus Epoly(P + Q)

Input: Alice has a vector 
A =< a1, . . . , an > and Bob has a vector 
B =< b1, . . . , bn >.
Output: Alice learns 
A ◦ 
B.

1. Setup: Alice creates parameters for a semantically secure additively homomorphic encryption scheme and
sends Bob the public parameters; we denote encryption by E. Note that this setup phase has to happen only
once for multiple executions of the protocol.

2. Alice sends to Bob the values E(a1), . . . , E(an).
3. Bob calculates the following value: E(a1)b1 ∗ · · · ∗ E(an)bn ∗ E(0). It is straightforward to verify that this value

is E(
A ◦ 
B), and the multiplication by E(0) is to re-randomize the encryption. Bob sends this value to Alice.
4. Alice decrypts the result and learns 
A ◦ 
B.

FIGURE 14.5 Two-party HBC protocol for scalar product.
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is E(pn + qn), . . . , E(p1 + q1), E(p0 + q0) which is just E(pn) ∗ E(qn), . . . , E(p1) ∗ E(q1),
E(p0) ∗ E(q0).

3. Polynomial multiplication: Given Epoly(P) and Q it is possible to compute Epoly(P ∗ Q).
Assume that P(x) = pnxn + · · · + p1x + p0, and Q(x) = qmxm + · · · + q1x + q0. Now,
P ∗ Q(x) = sn+mxn+m + · · · + s1x + s0 where si = ∑i

j=0(pj ∗ qi−j).∗ Furthermore,

E(si) = ∏i
j=0 E(pj)

qi−j
which can be computed from knowledge of Epoly(P) and Q.

4. Polynomial differentiation: Given Epoly(P), it is possible to compute Epoly(P′) where P′ is
the first derivative of P. Note that other derivatives can be computed by repeating this
process. Assume that P(x) = pnxn + · · · + p1x + p0, then P′(x) = npnxn−1 + · · · + p1,
and so the new coefficients can be computed with the knowledge of Epoly(P).

14.6.4 Set Operations

The ability to perform polynomial operations is useful for computing set operations (set union, set
intersection, etc.) [12,13,20]. Set operations are useful for other privacy-preserving computations
(such as privacy-preserving data mining). The basic idea behind many of these protocols is to
represent the sets as polynomials and then perform set operations on these sets by doing polynomial
operations.

To represent a set S = {s1, . . . , sm}, the polynomial PS(x) = (x − s1) · · · (x − sm) is used. Note
that PS(z) = 0 if and only if z ∈ S.† Using the polynomial operations from the previous section, we
can do some types of set operations.

1. Polynomial evaluation: Given Epoly(PS), one can compute E(PS(z)), and this will be an
encryption of 0 iff z ∈ S. Thus this is a method for detecting if an element is in a set.

2. Polynomial addition: The polynomial PS + PT will be 0 at all values in S ∩ T. Thus this
is useful for computing set intersection.

3. Polynomial multiplication: The polynomial PS ∗PT will be the polynomial that represents
the multiset union of S and T.

4. Polynomial derivation: The polynomial PS
′ will be 0 for all items that are in S two or

more times, and thus this is useful for eliminating duplicates in a multiset.

The above building blocks can be combined together to form protocols for set intersection and set
union. Figure 14.6 is a simplified version of the protocol in [12] for set intersection, and Figure 14.7
describes a simplified protocol for secure two-party set union that was introduced in [13].

14.7 Composing Secure Protocols

One may wonder how to put secure building blocks together to form a secure protocol. However,
secure protocols are not always composable. For example, suppose Alice has a point in Cartesian
space and that Bob has a point in Cartesian space. Furthermore, suppose that a threshold distance
T is known to both Alice and Bob. Furthermore, suppose that the goal of the protocol is for Alice
to learn if the distance between her and Bob’s points is smaller than T. One way of doing this is to
use a secure protocol to compute the distance between the two points and to reveal this value to
Alice. Then Alice would compute the result from this value and T. Clearly, the resulting protocol
would not be secure, because it reveals the distance between the two points. On a positive note, it

∗ Note that p� = 0 for � > n and q� = 0 for � > m.
† It is worth noting that if we are doing modular arithmetic over a large base that the more correct statement is: PS(z) = 0
if z ∈ S and if z ∈ S, then PS(z) = 0 with high probability.
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Input: Alice has a set A = {a1, . . . , an} and Bob has a set B = {b1, . . . , bm}.
Output: Alice learns A ∩ B.
Steps:

1. Alice creates a key pair for a semantically secure homomorphic encryption scheme and sends the public
parameters to Bob. We denote encryption with this scheme by E and decryption by D.

2. Alice computes a polynomial P(x) = (x − a1) ∗ · · · ∗ (x − an) = cnxn + cn−1xn−1 + · · · + c1x + c0. She then
sends E(P) = E(cn), . . . , E(c1), E(c0) to Bob.

3. For each item bi ∈ B, Bob computes E(P(bi) ∗ ri + bi) for a randomly chosen value ri and sends all of these
values to Alice. Note that E(P(bi) ∗ ri + bi) is E(bi) if bi ∈ A and is a random value otherwise.

4. Alice decrypts all of the values that she receives from Bob and outputs all decrypted values that are in her set.

FIGURE 14.6 Two-party HBC protocol for set intersection.

Input: Alice has a set A = {a1, . . . , an} and Bob has a set B = {b1, . . . , bm}.
Output: Alice learns A ∪ B.
Steps:

1. Alice creates a key pair for a semantically secure homomorphic encryption scheme and sends the public
parameters to Bob. We denote encryption with this scheme by E and decryption by D.

2. Alice computes a polynomial P(x) = (x − a1) ∗ · · · ∗ (x − an) = cnxn + cn−1xn−1 + · · · + c1x + c0. She then
sends E(P) = E(cn), . . . , E(c1), E(c0) to Bob.

3. For each item bi ∈ B, Bob computes a tuple (E(P(bi) ∗ ri) ; E(P(bi) ∗ ri ∗ bi)) for a randomly chosen value
ri and sends all of these values to Alice. Note that if bi ∈ A then this tuple will be (0 ; 0) and if bi ∈ A then
this tuple will be (E(R) ; E(R ∗ bi)) for some random value R. In the latter case, bi is recoverable from the
decryption of the tuple by multiplying the second value the inverse of the first value.

4. Alice decrypts all of the tuple that she receives from Bob. If a tuple is (0 ; 0) then she does nothing and
otherwise she recovers the value by multiplying the second value the inverse of the first value. She outputs all
recovered values along with her own set.

FIGURE 14.7 Two-party HBC protocol for set union.

was shown in [4] that protocols can be composed in certain circumstances. More specifically, if the
protocol can be proven secure when each secure building block is replaced with the ideal protocol
for the building block (i.e., with the trusted third party solution), then the protocol that uses the
secure protocols (instead of the ideal protocols) is also secure.

The following is a contrived example of a secure protocol composition, suppose we are trying
to calculate the intersection of two sets A and B that are known respectively to Alice and Bob.
Suppose we have two building blocks: (1) CARDINALITY(A; B)—which outputs the |A ∩ B|, and
(2) SETINT(A, |A ∩ B|; B) that outputs A ∩ B. In this case one way to compute this value would be to
first run CARDINALITY(A, B) to obtain |A∩B|, and then use SETINT(A, |A∩B|; B) to calculate the
result. If the individual protocols SETINT and CARDINALTITY are secure then this composition
is also secure, because revealing the cardinality as an intermediate input is not a privacy violation
because it is also revealed by the final result.

14.8 Summary

In summary, secure protocols provide a way to compute a function over distributed inputs, without
revealing anything other than the result of the protocol. Of course, unless the function is independent
of the inputs, the result will reveal some information about the inputs into the protocol, but a secure
protocol should not reveal anything about the inputs other than what can be deduced from the output.
In some cases, the output may be too revealing, i.e., the output of the function reveals too much
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information. However, when the result of a specific information collaboration is not too revealing,
secure protocols are a promising technique, because they allow the result of the collaboration to be
computed while preserving the privacy of the inputs. In fact, secure protocols have been created
for many application domains, including auctions, data mining, set operations, benchmarking, and
privacy-preserving surveys.
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15.1 Introduction

Electronic voting is probably the single most controversial application in the field of information
security. Almost any area in information security, from computer security and cryptographic issues
to human psychology and legal issues, is brought together when designing secure electronic voting
systems. Not surprisingly, a wide variety of approaches have been used and a multitude of voting
systems have been proposed.

This chapter is about cryptographic schemes for electronic voting, or voting schemes for short,
whose main task is to facilitate a secure and private way of casting and counting votes.∗ The first
wave of interest in voting schemes started in the early 1980s with the publication of Chaum’s paper
on anonymous communication [8]. Subsequently, approaches to voting were discovered, where the
emphasis was on concepts and feasibility, much like other work in cryptography in that decade.
A second wave started in the 1990s with the emergence of the World Wide Web, which created a
huge interest in remote voting. Also, the emphasis shifted to efficiency concerns resulting in quite

∗ The game-theoretic aspect of what choices to offer voters to ensure as much as possible that the most favored candidates
actually win is outside the scope of this chapter. Social choice theory, with results such as Arrow’s impossibility theorem
in the 1950s (generalizing voting paradoxes such as Condorcet’s paradox from the late eighteenth century), deals with
these issues. Ideally, voting schemes are sufficiently versatile to support any electoral system such as plurality voting,
approval voting, single transfer voting, etc., but often voting schemes are biased toward a particular electoral system.

15-1
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practical schemes. And, currently, we are experiencing a third wave because of the “Florida 2000”
U.S. election fiasco, which renewed interest in voting from polling stations leading to voting schemes
that combine cryptographic and physical aspects.

Voting schemes are intended to form the cryptographic core of electronic voting systems. The
general goal of these schemes is to eliminate as many security problems as possible, thereby limiting
the number and the extent of the residual assumptions needed to ensure the security of the overall
voting system.

For example, proper encryption and authentication of votes ensure that no illegal modifications of
existing votes and insertions of extra votes are possible, whereas appropriate redundancy techniques
from distributed computing (realizing Byzantine fault tolerance; see also Chapter 29 of Algorithm
and Theory of Computation Handbook, Second Edition: General Concepts and Techniques) ensure
that no votes can be deleted from the system. However, these basic techniques which are com-
monly used to implement the main goals in information security, namely, confidentiality, integrity,
and availability (CIA) are not sufficient for the special combinations of security properties found
in electronic voting. For example, a strict level of ballot secrecy and full verifiability of the election
result can only be achieved by using special forms of encryption and authentication rather than
conventional ones. The strongest voting schemes thus employ advanced cryptographic techniques,
such as threshold cryptography, homomorphic encryption, blind signatures, and zero-knowledge
proofs, thereby eliminating the need for trusting individual (or small groups of) entities. This goes
beyond what is common in the voting machine industry, where the design, the implementation, and
the operation of voting machines are essentially split between a very limited number of key players
(often, involving just one company, at best two or three companies). The challenge is to find the
sweet spot with the best trade-off between cryptography and other security measures.

15.2 Problem Description

The main reason why voting schemes pose a challenge is the desire to achieve some form of ballot
secrecy, i.e., hiding people’s votes. Secret ballot elections are important to facilitate free choice such
that voters need not be concerned or afraid of the consequences of making a particular choice. Even
stronger, voters should not be able to willingly exchange their votes for money or other favors. Of
course, by choosing a particular candidate voters also expect some favorable results in the long run,
but rich candidates should not be able to buy poor people’s votes by alleviating their immediate needs.

Ballot secrecy must be maintained while ensuring at the same time that only eligible voters are
able to cast votes (one (wo)man, one vote). The difficulty is to authenticate the voters, or rather
to authenticate the secret ballots, while not creating any links between voters and their votes. In
traditional elections, voters are present in person and use some physical token to cast their vote, e.g.,
by using a small ball of a particular color (a colored pea or bean, called a “ballotta” in Italian) or
marking a paper ballot form. Before counting the votes, these tokens are shuffled to remove any link
between voters and votes (advances in forensic analysis may also necessitate cleaning of the tokens,
or even require voters to wear gloves).

For remote voting, the physical presence of the voter is not required. Still, voters need to be able to
cast their votes in an authenticated but secret manner. Postal voting is a traditional way to facilitate
remote voting. The voter sends its voted ballot sealed inside two envelopes, where the outer envelope
is signed (and linked to the voter) and the inner envelope is anonymous. Each outer envelope will
be checked and if okay the inner envelope is put in a ballot box. After shuffling the ballot box, the
inner envelopes are opened and the votes are counted.

In general, the essence of the voting problem can be captured by formulating it as a problem in
secure multiparty computation. Each voter Vi provides its vote vi, 1 ≤ i ≤ n, as private input, and
the object is to compute the election result f (v1, . . . , vn) correctly. A simple example is a referendum,
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where vi ∈ {0, 1} either represents a yes-vote (vi = 1) or a no-vote (vi = 0), and the election result
is the sum of the votes v1 + v2 + · · · + vn. Here, it is understood that the list of eligible voters
V1, . . . , Vn is known (and has been compiled as intended—voter registration is beyond the scope of
voting schemes).

Voting schemes solving the voting problem should thus enable the correct computation of
f (v1, . . . , vn), while hiding any further information on the votes v1, . . . , vn, and should do noth-
ing else. Another way to state this is that we want to achieve the effect of an ideal election, which
could be run using a single (completely) trusted party as follows: each voter identifies itself to the
trusted party, and then tells the trusted party its vote in private; once all votes have been cast, the
trusted party announces the election result. A voting scheme must emulate such an ideal election,
though without relying on a single trusted party. Instead, multiple parties (or entities) will be involved
in the protocols constituting a voting scheme, thereby reducing the level of trust put into each party
individually.

This succinct formulation encompasses many security properties. For example, by stating that
only the election result should be revealed, it means that no intermediate results or results per
county or precinct should be revealed. Similarly, as only the trusted party learns the votes, voters
cannot convince anyone else of how they voted. Also, there is the premise that the trusted party can
actually identify voters upon accepting their votes. As identification of voters cannot be solved by
cryptographic means only, we have to assume some external mechanism. For instance, a common
assumption is that each (eligible) voter holds a key pair for authentication purposes, where the public
key is registered as part of a public key infrastructure (PKI). Voter authentication may also involve
biometrics to ensure that someone is taking part in person in the voting protocol.

Voting schemes consist of several protocols involving entities, such as election officials, voters,
talliers, and observers (or scrutinizers). Protocols for voting and tallying cover the main tasks of a
voting scheme, while additional protocols for setting up various parts of the system and possibly
for various verification tasks need to be provided as well. As explained earlier, the goal for a voting
scheme is to emulate the trusted party as close as possible, under reasonable assumptions. We will
use a basic measure of resilience to indicate how well a voting scheme emulates the trusted party.
A scheme will be called k-resilient, if at least k parties need to be corrupted in order to compromise
the scheme. Similarly, a scheme is called k-resilient w.r.t. a security property, if at least k parties
need to be corrupted to compromise the security property.

The ideal scheme outlined earlier is thus 1-resilient, but this is often unacceptable. Generally,
a (k + 1)-resilient system is better than a k-resilient system. In some cases, ∞-resilience is possible,
for security properties that hold unconditionally. However, k-resilience (w.r.t. a security property)
is not an absolute measure. Another important factor is the total number of parties running the
system: if more parties are involved, it is generally easier to find a collusion of corrupted parties. For
example, a 1-resilient system in which any of 10 involved parties can be corrupted is worse than a
1-resilient system in which any of five involved parties can be corrupted. Thus, from a security point
of view, introducing additional parties to a voting system must be done with care.

In this chapter, we focus on the voting protocol and the closely connected tally protocol. We will
discuss a variety of ways to design the voting schemes of sufficient resilience. Important aspects are
the assumptions needed and the building blocks used (the mere use of which may imply further
assumptions). A full security analysis of a voting scheme is often elusive, because determining the
security properties and their resilience, including a complete list of assumptions, is a complex task.

15.3 Building Blocks

In this section we recapitulate several (cryptographic) primitives that are typically used in the design
of advanced voting schemes. Our description of each primitive may be deceptively simple, in no way
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reflecting the potential complexity or the subtlety of implementations for the primitive. However,
application of these primitives may incur considerable costs, and similar primitives need not be
interchangeable.

15.3.1 Communication Primitives

Voting schemes are formulated in terms of a communication model that describes what type of
channels are available between which pairs or subsets of the entities involved. The communication
model hides the implementation details of these channels, which are often far from trivial and may
also come with a substantial cost. Voting schemes sharing the same communication model can be
compared meaningfully, but when different types of channels are used the implementation details
of the channels may be required for a useful comparison.

A bulletin board, or public authenticated broadcast channel, lets a sender broadcast a message
such that everybody sees the same message. Each sender has a designated section on the bulletin
board implying that senders are authenticated. In principle, a bulletin board requires a complex
protocol involving techniques, such as Byzantine agreement (see Chapter 29 of Algorithm and
Theory of Computation Handbook, Second Edition: General Concepts and Techniques).

The basic goal of an anonymous channel [8] is to hide the identity of the sender, whereas the
receiver is not necessarily anonymous. A sender is able to transmit messages to an intended receiver,
and possibly allows for an acknowledgement by the receiver as well. In particular, an anonymous
channel must withstand traffic analysis, where an adversary monitors the activity throughout an
entire network to see who is communicating with whom.

A private channel allows for information-theoretically private communication between two
nodes, protecting against eavesdroppers, and possibly providing end-to-end authentication as well.
Private channels are typically used as building blocks in protocols for unconditionally secure mul-
tiparty computation (e.g., see [3]). Private channels are often not realistic to assume, as keys for
one-time pad encryption (see Chapter 9 of this book) must have been set up previously, requiring
an untappable channel (see following text).

A secure channel is similar to a private channel, but usually provides computational security
only (for encryption and/or authentication). Secure channels provide a means for abstracting away
everything required to ensure a protected link between two nodes. Commonly, secure channels are
implemented by combining some form of key exchange resulting in session keys used for symmetric
encryption and authentication. Secure sockets layer (SSL) is a practical example.

Finally, untappable channels have been introduced [5] to accommodate totally unobservable
communication preventing the adversary from capturing any of the information transmitted. The
analogy here is that one may observe two persons whispering to each other, but one has no way
of listening in. An untappable channel is meant to be implemented physically, by some form of
out-of-band communication.

Combinations of these channels are possible as well, but care must be applied to see what is
sensible, and to see what it takes for a good implementation. For example, an anonymous channel
is already hard to implement, let alone an untappable anonymous channel. Furthermore, one can
refine these notions by considering directed links, which results in notions like one-way untappable
channels.

15.3.2 Authentication Primitives

Voter authentication is a basic issue, which must be addressed by any voting scheme. An important
distinction is whether the authentication mechanism is external or internal to the voting scheme. An
external authentication mechanism provides the link with the list of eligible (or registered) voters,
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hence forms an integral part of any voting scheme. Depending on the voting scheme, further internal
authentication mechanisms can be used, typically providing some form of anonymous signatures as
described in the following.

A wide range of voter authentication mechanisms is used, generally using a mixture of physical
and digital techniques. External authentication of voters may be as simple as matching voters’ names
against a list (electoral roll) by an election official at a polling station. Similarly, internal authentication
may be done implicitly by having successfully authenticated voters line up for a voting machine, or
by handing out a ticket to them, which must be handed to the person at the voting machine. Some
basic internet voting schemes use sealed envelopes containing unique authentication codes, which
are sent by postal mail to the addresses of all registered voters. Here, external authentication relies
on the sealed envelopes indeed reaching the intended voters, whereas the codes are used for internal
authentication, possibly without the printer keeping track of who gets which code—to provide some
level of anonymity.

Cryptographic techniques are used to increase the resilience of voting schemes. External authen-
tication of voters can be based on any conventional symmetric technique (incl. password-based
authentication) or asymmetric technique (digital signatures, incl. one-time signatures or PKI-based
signatures), where the main security concern is protection against impersonation attacks; see Chap-
ter 12 of this book for more information.

For internal authentication, more advanced authentication primitives may be used, which we will
collectively call anonymous signatures. Ordinary digital signatures are verified against the public
key of the signer revealing the identity of the signer. In many applications, however, there is a need
for digital signatures providing the authentication of messages without revealing the identity of the
signer. Anonymous signature schemes aim at various levels of privacy for the signer, examples of
which with relevance to electronic voting, are blind signatures [9] (see Chapter 12 of this book),
group signatures [11], restrictive blind signatures [6], ring signatures [38], and list signatures [7]. In
these schemes, all signatures are verified with respect to the public key of a designated party, called
the issuer, which uses the corresponding private key to assist in the generation of signatures. The
key property is that the issuer does not learn the contents of the messages thus signed nor is able to
recognize the actual signatures thus produced.

The proper use of anonymous signatures usually requires the availability of anonymous channels.
Moreover, special care must be taken, e.g., to prevent that additional blind signatures can be issued,
which are then used to cast additional votes or to replace votes cast by legitimate voters (which may
go unnoticed as long as the total number of votes does not exceed the total number of voters). Use
of threshold cryptography to enforce that (blind) signatures are issued jointly by a number of parties
(rather than a single issuer) and this helps to achieve an acceptable level of resilience; see Chapter 13
of this book for some more details.

15.3.3 Encryption Primitives

Basic symmetric and asymmetric cryptosystems as well as some more advanced and related tech-
niques have been covered extensively in previous chapters. Voting schemes use a large variety of
such techniques to let voters encrypt their votes in some secure way. Here, it should be stressed that
“vote encryption” is meant in a broad sense. Apart from encryption using a cryptosystem, we also
use it to cover any application of secret-sharing and/or commitment schemes. For instance, vote
encryption may also be done by having a voter distributing shares of its vote to a number of parties:
this way, the voter performs the role of the dealer in a secret-sharing scheme, and decryption is
done by reconstructing the secret (vote) from the shares. Similarly, vote encryption may actually be
done by publishing a commitment to the vote, in which case decryption is done by later opening the
commitment.
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Throughout this chapter, we will use [[v]] as an abstract notation for any such encryption of a
vote v. A basic feature of a vote encryption [[v]], which is suppressed from the notation, is the fact
that [[v]] is obtained in a probabilistic way. This ensures semantic security, which means that given
a vote encryption [[v]] one cannot get any information on vote v. In particular, if [[v]] and [[v′]] are
produced by two different voters, one cannot even decide if v = v′ holds, or not.

Two particular features for encryption schemes used in voting are homomorphic encryption and
threshold decryption. Informally, homomorphic encryption satisfies the property that the product
of two encryptions is an encryption of the sum of the corresponding messages:

[[x]][[y]] = [[x + y]],
for messages x and y. For a basic example, let 〈g〉 = {1, g, g2, . . . , gq−1} be a cyclic group, written
multiplicatively, of large prime order q. Hence, g is a generator of order q, gq = 1. Let h ∈ 〈g〉 be
a public key. Then, an additively homomorphic ElGamal encryption [16] of a message x ∈ Zq is
computed as

[[x]] = (A, B) = (gr , hrgx),

where r is chosen uniformly at random in Zq. The homomorphic property holds if we define the
product of two encryptions (A, B) and (C, D) in the obvious way as (AC, BD), and we define + as
addition modulo q. Given the private key α = logg h, encryption (A, B) is decrypted as

x = logg(b/aα).

Compared to standard ElGamal encryption, recovering message x from an additively homomorphic
ElGamal encryption [[x]] thus involves the computation of a discrete logarithm in 〈g〉, which is in
general hard. However, if x is known to be from a limited set of values, one may still recover x
efficiently (e.g., if 0 ≤ x < u, one may find x by a straightforward O(u) linear search, or by Pollard’s
O(

√
u) lambda method [36]).

A strongly related example is Pedersen’s commitment scheme [35] in which commitments are
computed as

[[x]] = hrgx,

where r is chosen uniformly at random in Zq. Hence, Pedersen commitments are just elements of
〈g〉, and the homomorphic property clearly holds. Strictly speaking, [[x]] is not an encryption in the
sense that it completely determines x (knowing g and h). The idea is that by publishing the value
of [[x]], one is committed to the value of x meaning that one can at a later stage open [[x]] in only
one way by revealing the pair (r, x) (assuming that it is infeasible for the committer to compute the
discrete log logg h): indeed, knowledge of any (r, x) 
= (r′, x′) with hrgx = hr′gx′

implies that one
knows logg h = (x′ − x)/(r − r′) as well. Also, for a given value of [[x]] = hrgx and an hypothesized
value x′ for the committed message there exists exactly one r′ ∈ Zq such that [[x]] = hr′gx′ , which
implies that even with unlimited computational power one is not able to extract any information on
x from [[x]]. The value of x is thus said to be unconditionally (or information-theoretically) hidden.

Threshold decryption is another feature, which is particularly useful when constructing voting
schemes. Briefly, for threshold decryption the private key of a public key cryptosystem is generated
in such a way that each of � parties obtains a share of the private key such that any t parties can
cooperate to jointly decrypt a given encryption. The critical security property is that the private key
is never revealed to anyone as part of the decryption protocol (nor as part of the key generation
protocol). See Chapter 13 of this book for more details on threshold cryptography, where it is shown
how threshold decryption can be realized, starting from Shamir’s threshold secret-sharing scheme.

Voting schemes rely on threshold decryption to prevent that a single entity or single master key
suffices to decrypt votes. As shown in [34], there is also an efficient way to generate the key pair for
discrete log-based cryptosystems, such as ElGamal.
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15.3.4 Verification Primitives

The category of verification primitives provide some further functionality that is not covered by the
primitives discussed so far. A zero-knowledge proof is the main example of a verification primitive,
which allows a prover to convince a skeptical verifier of the validity of a given statement without
revealing any information beyond the truth of the statement. The theory of zero-knowledge proofs
tells us that any so-called NP-statement can actually be proved in zero-knowledge (see, e.g., [21]).
We will see some concrete zero-knowledge proofs when discussing particular voting schemes later
on; these proofs are generally noninteractive, which means that the proof is produced by the prover
on its own, and may then be verified independently by multiple verifiers (much like a digitally signed
message can be verified multiple times, by different verifiers).

A designated verifier proof is a special type of noninteractive zero-knowledge proof, which is
convincing only to a single verifier, specified by the proof [26]. The idea is to refer to a particular
verifier V by using its public key pkV , say, and to provide a noninteractive zero-knowledge proof for
a statement of the form “I know the private key skV for public key pkV or statement Φ holds.” This
proof will not be convincing to anyone else than verifier V , because only V is sure that the prover
did not know skV , hence statement Φ must actually hold. Note that this approach works only if the
verifier properly protects its private key skV . Designated verifier proofs are typically used to achieve
some level of receipt-freeness in voting schemes (see Section 15.6).

15.4 Classification of Voting Schemes

The design and the analysis of electronic voting systems is a truly complex endeavor, which is
approached in many different ways, revolving around many types of voting schemes. The literature
on voting schemes is vast, and consists mostly of rather informal conference papers. Finding a useful,
pragmatic way to group the known and yet unknown voting schemes is therefore a challenging task.

In the following text, we will identify a few characteristics, which are all formulated in terms of
building blocks used and other properties, but without reference to which security properties hold
(hence classification can be done by inspecting the description of the voting system rather than
performing a security analysis). Based on these characteristics we present a very brief taxonomy
distinguishing two major types of voting schemes.

15.4.1 Characteristics

A basic characteristic is whether the voting protocol requires interaction between voters. Almost
every voting protocol avoids interaction such that voters may cast their votes independently and in
parallel to each other. However, see, e.g., [28] for a voting protocol in which a cryptographic counter
is updated in turn by each of the voters. Interaction may also be limited, e.g., to all voters belonging
to a given precinct, say. In this chapter, we focus on voting protocols without interaction between
voters, which is the common case.

The main technical characteristics we use are derived from the contents and the properties of the
voted ballot. The voted ballot (ballot, for short) consists of the information recorded by the voting
servers (or machines), upon completion of the voting protocol by a voter. As such, the voted ballot
is the interface between the voting stage and the tallying stage: it comprises all the information that
is created during the voting protocol as a function of the voters’ votes, and which is needed for
successful tallying after the election closes.

A major characteristic is whether the voted ballot is anonymous vs. identifiable. Normally, an
anonymous voted ballot is submitted via an anonymous channel preventing any link with the voter’s
identity. For identifiable voted ballots, there is no need for an anonymous channel. A subtle point
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is that even if voted ballots are anonymous, there may be further information available from the
voting stage (possibly, in combination with information from other stages) that helps in identifying
voters. For instance, the IP address from which a vote is cast may help in identifying a voter, but an
IP address is in general not part of the voted ballot.

Another important characteristic is whether the voted ballot contains the vote in the clear (deriv-
able from public information only), or in encrypted form. If the vote is in the clear, then intermediate
election results will be available, which is usually not allowed. Encryption of votes in some form is
always needed for the voted ballots to prevent that intermediate election results can be computed.
Thus, to count the votes based on the voted ballots at least one secret key should be required and
preferably shared between several parties.

As a final characteristic, we look at how votes (or, voted ballots) are authenticated, and in particular
if authentication is done in an identifiable way or an anonymous way. Proper authentication should
ensure that each voter casts at most one vote.

15.4.2 A Brief Taxonomy

For the purpose of this chapter, we will just consider two characteristics: whether voted ballots are
anonymous or not, and how voted ballots are authenticated. As for the other characteristics we will
simply assume that the voting protocol requires no interaction between voters, and further that
voted ballots are not in the clear, hence encrypted (or committed) in some way.

The main question is how authentication and encryption of voted ballots are accomplished. Given
that a voted ballot contains the vote in encrypted form, we consider three basic possibilities: (1) outer
authentication (a signed encrypted vote), (2) inner authentication (an encrypted signed vote), or (3)
both outer and inner authentications (a signed encrypted signed vote). Outer authentication can be
checked as part of the voting protocol (and also later), and invalid voted ballots can be discarded
immediately. Inner authentication can only be checked during the tallying stage (and also later) after
the decryption of the votes.

The main distinction is anonymous vs. identifiable voted ballots.

15.4.2.1 Type I: Anonymous Voted Ballots

An anonymous voted ballot, as stored upon completion of the voting protocol, contains no informa-
tion that helps in identifying the voter. Clearly, an anonymous channel should be used for the delivery
of such voted ballots to prevent that the voting server or anyone monitoring communications may
correlate voted ballots with voters or their computers.

The voted ballots should be authenticated to ensure that each eligible voter is able to cast at most
one valid vote. Anonymous signatures are used for this purpose, both for outer authentication and
inner authentication.

15.4.2.2 Type II: Identifiable Voted Ballots

For identifiable voted ballots, the voted ballot may be delivered in a nonanonymous way, e.g., posted
to a bulletin board. For outer authentication one can use ordinary digital signatures (possible relying
on a PKI). For inner authentication, if present, anonymous signatures need to be used, however,
as this signature will typically be revealed in conjunction with the vote (thus the case of inner
authentication only does not occur as this corresponds to an anonymous voted ballot).

15.4.3 Examples

Well-known examples of type I schemes are [17] and follow-up papers, such as [25,32,33]. In these
examples, voters need to get a blind signature (preferably, a threshold blind signature, where the
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power of the issuer is shared among a number of parties) prior to the election, which is then used to
authenticate an encrypted vote (preferably, a threshold encryption, such that the power to decrypt
is shared among a number of parties). An anonymous channel is used to sent such an anonymously
authenticated encrypted votes to the voting server, which is supposed to publish these data objects
on a bulletin board. Once the election closes, the votes may be counted by threshold decrypting each
of the voted ballots with valid authentication.

Well-known examples of Type II schemes are the homomorphic schemes of [13] and follow-up
work such as [2,4,15,16,39,41], and the mix-based schemes, such as [19,31,40]. In these schemes, the
voter may directly post a digitally signed encrypted vote to a bulletin board. We will consider these
schemes in more detail in the next sections, emphasizing the universal (public) verifiability property
of these schemes.

However, type II schemes are not necessarily universally verifiable. This depends on the details
of the vote encryptions and the tally protocols. A limited level of verifiability may, for instance, be
achieved by letting each voter encrypt its vote v together with a random bit string R of sufficient
length resulting in an encrypted vote of the form [[v, R]]. (This idea was already used in an early voting
protocol by Merritt [30].) The encrypted votes are mixed before decryption takes place, however,
without providing a zero-knowledge proof of validity (unlike in verifiable mixing, see the following
text). The tallied votes are published together with the random strings so that voters can check their
votes. A major drawback of this approach is that all voters are required to actively check their votes,
which may be unrealistic. Moreover, it is not clear how to resolve disputes and in particular how to
maintain ballot secrecy when resolving disputes: for example, how should a voter efficiently prove
(in zero-knowledge) that its pair (v, R) is not present among the millions of tallied votes?

15.5 Verifiable Elections

We will now focus on two main approaches for achieving universally verifiable elections. We will
show how electronic elections can be made universally (or, publicly) verifiable in much the same
way as digital signatures are. Namely, to verify a digital signature all that one needs are (a) the
public key of the signer, (b) a message, and (c) a purported signature. By applying a given predicate,
represented as a formula or algorithm, to these three data values, it is decided unequivocally whether
the signature is valid or not (w.r.t. the given message and public key). Moreover, the verification can
be repeated by anyone who is interested and as many times as deemed necessary, always giving the
same result.

Similarly, to verify an election one needs (a) the joint public key of the talliers, (b) the encrypted
votes, and (c) the election result. By applying a given predicate to these data values, it can now
be decided unequivocally whether the election result is valid or not. Admittedly, the predicate for
electronic elections is a bit more involved than for digital signatures, but the underlying principle
is the same: the predicate evaluates to true (or, accept) if and only if the election result corresponds
exactly to the votes, which are given in an encrypted form only.

The digital signature analogy also works when considering the use of the private keys. To produce
the election result, the talliers need to use their (shared) private key similar to a signer using its
private key to produce a digital signature. Namely, once tallying is completed, resulting in a valid
election result, there is no need to repeat this process ever. As such, the purpose of a recount is lost!
However, as with digital signatures, the verification of the election result is universal meaning that
it can be performed by anyone and repeated as many times as desired.

The difficulty with verifiable elections is of course that ballot secrecy must be maintained as
well—at all times. Since we are considering a type II election, it is known which voter produced
which encrypted vote (because the encrypted votes are digitally signed). The hard cryptographic
problem that needs to be solved is thus formulated as follows. Suppose a threshold homomorphic
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cryptosystem [[·]] (cf. Section 15.3) has been set up between a plurality of parties (talliers) P1, . . . , P�.
We wish to design a protocol TALLY satisfying a specification of the following form:

Protocol TALLY
Input: [[v1]], . . . , [[vn]] + Validity Proofs
Output: f (v1, . . . , vn) + Validity Proof

Here, each [[vi]] denotes a probabilistically encrypted vote vi. The election result is defined as some
function f of these votes. A common example is f (v1, . . . , vn) = ∑n

i=1 vi for yes/no votes, where
vi = 1 means “yes” and vi = 0 means “no”. But, function f may potentially hide even more
information on the votes, e.g., f (v1, . . . , vn) ≡ ∑n

i=1 vi > n/2, indicating whether there is a strict
majority or not (but revealing nothing else, like how small or large the majority is). A possibility
at the other extreme is f (v1, . . . , vn) = (v1, . . . , vn), where all votes are simply revealed in the same
order as in the input.

Each encrypted vote [[vi]] is required to be accompanied by a validity proof, which is commonly
used to show that vi is within a given range. In addition, the validity proof must provide a cryp-
tographic link with the voter’s identity, which we will denote by VIDi. By this way one prevents
encrypted votes getting duplicated by other voters (without actually knowing the contents of the
duplicated votes).

We will consider two types of tallying in more detail: homomorphic tallying and mix-based
tallying. Both approaches are built using a threshold homomorphic cryptosystem, but in different
ways. The challenge in designing the protocols is to find efficient ones, and in particular, to find
efficient ways of rendering universally verifiable validity proofs.

15.5.1 Homomorphic Tallying

The basic premise of homomorphic tallying is that individual votes can somehow be added in a
meaningful way. Hence, the election result takes the following form:

f (v1, . . . , vn) =
n∑

i=1
vi.

The addition of votes may be defined in various ways. The case of yes/no votes corresponds to
integer addition of votes vi ∈ {0, 1}. But, for example, elections based on approval voting in a race
with m candidates also fit this pattern: votes vi ∈ {0, 1}m are binary m-tuples, which are added
componentwise. This allows each voter to indicate whether they approve of each candidate or not,
and candidates with the highest numbers of vote (approvals) win. As a further example, consider
voting on a scale, where voters express how strong they (dis)favor a given proposition by using votes
vi ∈ {−2, −1, 0, 1, 2} � {−−, −, ◦, +, ++}. Using integer addition to compute

∑n
i=1 vi, one can

determine how much, on average, the electorate (dis)favors the proposition.
A protocol for homomorphic tallying can in general be described as follows: one simply multiplies

together all encrypted votes vi which—by the homomorphic property of the cryptosystem— results
in an encryption of the sum of the votes. Protocol TALLY thus consists of the following steps:

1. Check the validity proof of every [[vi]], and discard all invalid ones.
2. Multiply all the valid encryptions: C = ∏

i[[vi]] = [[∑n
i=1 vi]].

3. Jointly decrypt C to obtain T = ∑
i vi plus a validity proof.

The validity proof in the final step shows that T is indeed the plaintext contained in C implying
that T = ∑

i vi. The validity proofs for the given encryptions [[vi]] prevent malicious voters from
entering multiple votes. For instance, in a binary (yes/no) election, voters are supposed to enter an
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encryption [[0]] or [[1]], but not encryptions like [[2]] (twice “yes”) or [[−7]] (seven times “no”). As
long as 0 ≤ T ≤ n, the presence of such illegal encryptions may remain unnoticed. A validity proof
for [[vi]] shows that vi ∈ {0, 1} without revealing any further information on vi.

To verify the election result T, anyone interested executes the following steps:

1. Check that encryption C is equal to the product of all valid encryptions [[vi]].
2. Check the validity proof showing that T is the threshold-decryption of C.

The validity proofs are checked against the public key of the threshold homomorphic cryptosys-
tem [[·]].

As a concrete example, we consider the simplest case of the voting scheme of [16], namely,
the case of yes/no votes in combination with additively homomorphic ElGamal encryption. The
knowledge of the public key h, say, of the ElGamal threshold homomorphic cryptosystem, as set up by
the talliers, suffices for encryption as well as validation of the votes. As explained in Section 15.3, the
encryption of a vote v ∈ {0, 1} takes the following form:

[[v]] = (A, B) = (gr , hrgv) (15.1)

for a uniformly random value r ∈ Zq.
Since such an encryption [[v]] can easily be formed for any value v ∈ Zq, a validity proof is required

to show that either v = 0 or v = 1 without revealing which of the two cases holds. In other words,
the proof must be zero-knowledge. Technically, the validity proof for [[v]] amounts to showing the
existence of a v ∈ {0, 1} and an r ∈ Zq such that A = gr and B = hrgv, which can be reformulated
by stating that either logg A = logh B holds (if v = 0) or logg A = logh(B/g) holds (if v = 1).

Let H denote a suitable cryptographic hash function. Applying the theory of [14] to the Chaum-
Pedersen protocol for proving the equality of discrete logarithms [12], the noninteractive zero-
knowledge validity proof is a 4-tuple (d0, r0, d1, r1) computed as follows:

d1−v ∈R Zq
r1−v ∈R Zq,
dv = H(a0, b0, a1, b1, A, B, VIDi) − d1−v (mod q),
rv = w − rdv (mod q),

where
a1−v = gr1−v Ad1−v , b1−v = hr1−v(B/g1−v)d1−v ,
av = gw, bv = hw, for w ∈R Zq.

A proof (d0, r0, d1, r1) is valid for encryption (A, B) and voter identity VIDi w.r.t. public key h if and
only if

d0 + d1 = H(gr0 Ad0 , hr0 Bd0 , gr1 Ad1 , hr1(B/g)d1 , A, B, VIDi) (mod q). (15.2)

Note that the order in which a0, b0, a1, b1 are computed when generating the proof is determined by
the value of v but the verification of the proof is done independently of v.

In the random oracle model (which means that H is viewed as an ideal hash function, selected
uniformly at random from all functions of the appropriate type), it can be proved that these validity
proofs release no information on the vote v. The voter’s identity VIDi (a bit string unique to the
voter) is included as one of the inputs to H in order to bind the proof to a particular voter. This
prevents voters from duplicating other voters’ votes (copying both the encryption and the validity
proof); even though voters would not know the value of the votes they are duplicating, the basic
requirement of independence would be violated. For the same reason, no partial election results
should be available during an election (and it is usually not even allowed to announce the results of
exit polls during election day).
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So, in principle, the talliers need to perform a single joint decryption only. For more advanced
elections, such as approval voting and voting on a scale (see previous text), vote encryptions and the
validity proofs get a bit more complicated; e.g., approval voting for a race with m candidates can be
done by running m instances of a yes/no election (one per candidate) in parallel.

15.5.2 Mix-Based Tallying

In mix-based tallying the basic idea is to mimic the use of a ballot box in traditional paper-based
elections. Once the election is closed, or each time a ballot is inserted into the ballot box, the ballot
box is shaken so as to remove any dependency on the order in which the ballots were actually inserted
during the election.

Translated to our setting, the election result takes the following form:

f (v1, . . . , vn) = (vπ(1), . . . , vπ(n))

for a permutation π. To ensure ballot secrecy, permutation π will be generated uniformly at random
between the talliers by means of the following TALLY protocol:

1. Check the validity proof of every [[vi]], and discard all invalid ones.
2. The talliers take turns in verifiably mixing the list of encrypted votes resulting in a final

list of permuted votes [[v′
1]], . . . , [[v′

n]].
3. Jointly decrypt every [[v′

i]] to obtain v′
i plus a validity proof.

Clearly, if at least one of the talliers is honest, the final list will indeed be randomly permuted. The
validity proof in the first step is simply a proof of plaintext knowledge proving that the contents
of the encryption was known to the voter upon casting the vote. This prevents vote duplication,
which may be particularly harmful when mix-based tallying is used: by duplicating the encrypted
vote of voter X, say, once or several times, and by checking for duplicates in the output of the TALLY
protocol one may learn what X voted.

The final step is the same as for homomorphic tallying except that decryption must be done for
each encrypted vote separately. To verify the election result one performs these steps:

1. Check that the list of valid encryptions [[vi]] is computed correctly.
2. Check the validity proof for each mix performed by a tallier.
3. Check the validity proof for each decrypted permuted vote.

As a concrete example, we consider verifiable mixing of homomorphic ElGamal encryptions.
On input of a list of encryptions C = (c1, . . . , cn) = ([[m1]], . . . , [[mn]]), one sets

di = [[0]] cπ(i) (15.3)

i = 1, . . . , n, for a random permutation π. The output is the list of encryptions D = (d1, . . . , dn).
Here, each occurrence of [[0]] = (gri , hri) denotes a probabilistic encryption of 0 using its own random
value ri ∈ Zq, and due to the homomorphic property, [[0]]cπ(i) and cπ(i) both contain plaintext mπ(i).
Therefore, [[0]]cπ(i) is called a random reencryption of cπ(i). Combined with randomly permuting
the encryptions it is ensured that one cannot tell which entry of the output list corresponds to which
entry of the input list—of course, relying on the semantic security of the ElGamal cryptosystem.
Since encryptions are never decrypted (only reencrypted) access to the private decryption key is not
required for mixing.

To make mixing verifiable, it must be proved (in zero-knowledge) that the lists C and D represent
the same multiset of plaintexts. Efficient zero-knowledge proofs for this task are quite advanced. To
give some intuition we first describe a simple but rather inefficient way ([40], based on similarity with
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zero-knowledge proofs for graph isomorphism). The prover generates an additional list E computed
in the same way as D was computed from C, using a fresh permutation and randomness. Then a
challenge bit is given, which indicates whether the prover should show how E corresponds to C or
to D (by revealing which permutation and which randomness transforms list E into the requested
one). It is not difficult to see that by this way no information is leaked on how D exactly corresponds
to C. However, if D is not a valid mix of C, then E can correspond to C or to D but not to both at
the same time! So, the probability of being caught is at least 1/2. By repeating this protocol k times,
cheating will remain undetected with probability at most 2−k.

The computational complexity of this protocol is rather high, namely O(kn), modular exponenti-
ations, for n voters and security parameter k. With more advanced techniques, however, it is possible
to achieve a computational complexity of O(n) modular exponentiations.

Neff [31] starts by stating that the polynomial c(x) = ∏n
i=1(x − mi) corresponding to the input

list C should be identical to the polynomial d(x) = ∏n
i=1(x − mπ(i)) corresponding to the output

list D. A key observation is that these polynomials are defined over the message space Zq, where q is
a very large prime (e.g., q ≈ 2256), so to prove that c(x) = d(x) it suffices to evaluate the polynomial
c(x) − d(x) at a random value x′ ∈R Zq: if c(x) 
= d(x), the probability that c(x′) − d(x′) = 0
is bounded by n/q, which is negligibly small (as the number of roots of c(x) − d(x) is at most its
degree n). Neff uses this property in the design of an efficient verifiable mix requiring O(n) modular
exponentiations only.

Furukawa and Sako [19] approach the problem in terms of permutation matrices. The relation
(Equation 15.3) between the input and output encryptions can be written as

di = [[0]]
n∏

j=1

cAij
j

for an n × n permutation matrix A. The key property for their zero-knowledge proof is that A is a
permutation matrix if and only if for all 1 ≤ i, j, k ≤ n

n∑
h=1

AhiAhj = δij,
n∑

h=1

AhiAhjAh,k = δijδjk,

where δij denotes the Kronecker delta (δij = 1 if i = j, and δij = 0 otherwise). The entries of A are
numbers modulo q, for a prime q, hence A is defined over a finite field. Furukawa and Sako show
how to prove that A satisfies these conditions, without leaking any further information on A, and
without requiring more than O(n) time (counting modular exponentiations).

Follow-up papers, such as by Groth [22] and by Furukawa [18], improve upon Neff’s protocol
and Furukawa-Sako’s protocol, respectively. For instance, [18] uses the observation that if q 
≡ 1
(mod 3), then A is a permutation matrix if and only if

∑n
h=1 AhiAhjAh,k = δijδjk, which leads to

some improvements under a mild restriction on q. All these verifiable mixes use O(n) modular
exponentiations and O(nk) bits communication, where the hidden constant is reasonably small (say,
around 5, not counting the modular exponentiations for the random reencryptions).

The mixes described so far are known as reencryption mixes. So-called decryption mixes have
also been considered in the literature. In a decryption mix (e.g., see [18]), the mixing stage and the
decryption stage are combined such that each tallier needs to be active only once: each tallier uses its
share of the private key to partially decrypt the elements on the input list and at the same time mixes
the list as before. The zero-knowledge proofs for decryption mixes are slightly more complicated
than the proofs for reencryption mixes, but decryption mixes may lead to an overall performance
gain. Reencryption mixes, however, are more generally applicable, and in the context of universally
verifiable elections are more flexible, as the roles of mixers and talliers can be decoupled.
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For a basic decryption mix, one assumes that each mix will actually contribute to the decryption.
In other words, one uses (t, �)-threshold decryption with t = �. To tolerate faulty or corrupt mixes,
one can instead use (t, �)-threshold decryption with t < �. However, the set of t mixes going to
perform the decryption must be decided upon before the mixing starts; and one needs to backup
and let all mixes do some extra work if any mix drops out.

15.5.3 Other Tallying Methods

If applicable, homomorphic tallying is very simple and efficient. However, the complexity of the
validity proof for each vote [[vi]]may become the bottleneck for increasingly complex votes (e.g., single
transfer voting [STV] where each vote vi is an ordered list of candidates may lead to prohibitively
expensive validity proofs). For mixed-based tallying, the complexity is hardly sensitive to the range
of possible values for votes vi; here, the bottleneck is that each of the talliers must operate in turn
handling O(n) encryptions.

By using techniques from secure multiparty computation, however, other methods for tallying
are conceivable, which are potentially more efficient or flexible. For example, an alternative to
mixed-based tallying is sorting-based tallying:

f (v1, . . . , vn) = (w1, . . . , wn),

where w1 ≤ w2 ≤ · · · ≤ wn and {v1, . . . , vn} = {w1, . . . , wn} (as a multiset). Hence, the votes are
output in sorted order destroying any link with how the votes were entered. A protocol along these
lines uses secure comparators, which put two encrypted input values in sorted order (e.g., on input
[[a]], [[b]], output [[0]][[min(a, b)]], [[0]][[max(a, b)]]). Each secure comparator may be implemented as
a joint protocol between the talliers, involving one or more joint decryptions (see, e.g., [20]). Sorting-
based tallying is then done by arranging these secure comparators in a sorting network. Practical
sorting networks such as odd-even mergesort and bitonic sort, are of depth O(log2 n) with each layer
consisting of O(n) comparators where the hidden constants are small (see, e.g., [29, Section 5.3.4]).

15.6 Receipt-Freeness and Incoercibility

So far, we have considered the problem of maintaining ballot secrecy during the tallying stage, where
it must be prevented that anyone is able to find out who voted what. This protects against large scale
fraud, where a small number of people directly involved in running the election (insiders such as,
election officials, talliers, auditors, equipment manufacturers) compromise ballot secrecy of many,
potentially targeted individual voters. The severity of such a large scale, centralized violation of ballot
secrecy is exacerbated by the fact that it can remain completely unnoticed, without leaving any traces
in the operational systems. For example, if vote encryption depends on a single (nonshared) master
key, a copy of the master key suffices to read the contents of any encrypted vote. The existence of
such copies of the master key cannot be excluded—in a verifiable way—and in fact some copies may
be required as backups.

So, no one should be able to find out what voters voted, except the voters themselves! A tautology,
but nevertheless a serious issue, because many remote voting schemes actually allow voters to tell
others what they voted for in a verifiable way. This leads to problems known as voter coercion and
vote trading, where voters either unwillingly or willingly give up the rights to their vote.

Whereas centralized violations of ballot secrecy by insiders, as mentioned earlier, may remain
completely unnoticed by the voters, it is clear that voters will be completely aware of any (attempts
to) voter coercion or vote trading. This means that large scale coercion is risky as the chances of
detection are high: any of the affected voters involved may leak to the press what happened. And,
e.g., internet sites facilitating vote trading will be hard to hide as well.
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A technical aspect is whether a voter is able to convince the coercer or vote buyer of having voted
in a particular way, i.e., whether a voter is able to produce a receipt proving how it voted. A voting
scheme is said to be receipt-free if voters cannot produce such receipts. Note that the ideal voting
scheme mentioned in Section 15.2 was indeed receipt-free as the voters tell their vote to the trusted
party in private. In the following we will see to what extent receipt-freeness can be achieved for
cryptographic voting schemes. The property of incoercibility is even stronger than receipt-freeness,
and is mostly beyond the scope of cryptographic techniques: e.g., a coercer may force a voter not to
vote at all.

15.6.1 Coercion in Paper-Based Elections

For postal voting, it is hard to rule out that others watch someone casting a vote, willingly or
unwillingly. This leads to problems such as family voting where the ballots are marked by the
dominating family members. However, even when people vote in person from a voting booth at a
polling station, coercion is still possible as voters may produce receipts in subtle ways—of course,
these days people should be asked to hand in their mobile phones, spy cams, etc., before entering the
(Faraday cage like) voting booth, and this should be checked using similar equipments as for airport
security.

Two well-known attacks illustrating the problem of coercion in paper-based elections are as
follows. Chain voting is a simple attack, which makes the essential use of the fact that spare ballot
forms are (and should be) not readily available. To mount a chain voting attack, the coercer must
first get hold of a ballot form. Next, the coercer marks this ballot form in the desired way, and hands
the premarked ballot form to a voter, upon entering the polling station, and the voter is kindly asked
to return with an empty ballot form. The empty ballot form serves a receipt convincing the coercer
that the voter put the premarked ballot form in the ballot box and may be used to repeat the attack.

A so-called Italian attack is applicable when ballot forms allow voters to cast their votes each in
a unique way. Sometimes this may be done by marking the paper ballot in a particular way using
recognizable marks. A more subtle way, which also works for electronic voting, applies when voters
are supposed to rank the candidates (by listing them in the preferred order on the ballot form),
such as in single transfer voting (STV) elections. In that case, the coercer will demand the intended
winner to be put at the top followed by the remaining candidates in an order unique for the targeted
voter. Later, the coercer will check if the requested ballot appears on the list of voted ballots.

15.6.2 Receipt-Freeness for Encrypted Votes

The secrecy of a probabilistic public key encryption actually depends on two factors: the secrecy
of the private decryption key held by the receiver and the secrecy of the randomness used by the
sender. Hence the necessity of secure (pseudo)random generators both during key generation and
encryption. But what if the sender willingly discloses the randomness?

For instance, if ElGamal encryption is used to encrypt a vote v as [[v]] = (A, B) = (gr , hrgv), then
revealing the random value r to a coercer proves that the vote contained in [[v]] is equal to v. Indeed,
the coercer first checks that A = gr holds, and if so, checks that b = hrgv holds as well. In other
words, the value of r serves as a receipt. Clearly, this is true for probabilistic public key cryptosystems
in general: the randomness used to compute an encryption can be used as a receipt.

Obviously, for revealing r to the coercer the voter needs to have access to this value. If a software
voting client is used, running on a platform controlled by the voter, such as a PC or a smart phone, it
will be quite easy to extract the value of r. In fact, since the voting protocol is known (and preferably
based on an openly available specification), the voter (or the coercer, for that matter) may program
its own voting client with the additional feature of copying the value of r to the output. Hence, a
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way to make the voting protocol receipt-free is to execute it on a platform beyond the control of
the voter, such as a smart card or a direct-recording electronic (DRE) voting machine, with the
immediate drawback that the voter is not ensured anymore that its vote is recorded as intended and
the additional problem that the voter must trust the smart card or the voting machine with its vote.

A more refined approach is to use what it is known as a randomizer, an idea reminiscent of the use
of the wallet-with-observer paradigm due to Chaum (see Chapter 44 of first edition). A randomizer,
which may be implemented as a smart card or as a part attached to a voting machine, runs a protocol
with a voter to jointly produce an encrypted vote together with a validity proof. To this end, the
voter and the randomizer communicate with each other over an untappable channel.

The randomizer will generate part of the randomness used to encrypt the vote and to generate the
validity proof. The basic idea is to let the randomizer produce a random reencryption of the voter’s
encryption, and modify the validity proof (as generated by the voter) accordingly. So, the voter starts
out by sending a homomorphic encryption [[v]] of its vote v to the randomizer over the untappable
channel. The randomizer will then reply with a reencryption of the form [[0]][[v]] accompanied by a
designated verifier proof for the validity of the reencryption. This proof is only meaningful to the
voter as it is bound to the public key of the voter. The tricky part is how to divert the validity proof
of the voter for [[v]] to a validity proof for [[0]][[v]]. This is done by first jointly generating a proof for
[[v]] and then adjusting it to a proof for [[0]][[v]].

As an example we apply Hirt’s technique [23, Chapter 5 of Algorithm and Theory of Computation
Handbook, Second Edition: General Concepts and Techniques] to the yes/no voting protocol described
in the previous section. The diverted proof looks as follows. Let [[v]] = (A, B) = (gr , hrgv) denote
the voter’s encryption of vote v. The randomizer reencrypts this to (A′′, B′′) = (gr′ , hr′

)(A, B),
where r′ ∈R Zq. As before, the voter will contribute a proof (d0, r0, d1, r1) for (A, B) satisfying
(Equation 15.2), except that this time the challenge hash is applied to appropriately blinded versions
of (a0, b0, a1, b1). This results in a proof (d′′

0 , r′′
0 , d′′

1 , r′′
1 ) for the validity of encryption (A′′, B′′) satisfying

(Equation 15.2). The contribution of the randomizer to the proof consists of d′
0, d′

1, r′
0, r′

1 ∈ Zq subject
to d′

0 + d′
1 = 0, such that

d′′
0 = d0 + d′

0, d′′
1 = d1 + d′

1

r′′
0 = r0 + r′

0 − r′d′′
0 , r′′

1 = r1 + r′
1 − r′d′′

1 .

Note that the randomizer does not learn what vote v is. And, the voter does not know how to open
(A′′, B′′) as the value of r′ remains hidden to the voter. And, even if the coercer forces the voter to
compute (A, B) and the proof (d0, r0, d1, r1) in a particular way, it is still possible to simulate the
protocol transcript where the voter actually uses a different vote.

A randomizer may be implemented as a tamper-resistant smart card. The voter’s software client
will communicate with the smart card privately. Voters are required to use the randomizer, which
can be ensured by a digital signature of the randomizer on the reencrypted vote. The smart cards
should be beyond the reach of the coercers, and one needs to assume that the smart cards use good
randomness. If the voter has a choice between several randomizers, all of these must be noncoerced,
otherwise the coercer will force the voter to use a coerced one.

The use of randomizers can be seen as an add-on solution. One may decide per election, and also
per category of voters, whether and how many randomizers are required. As large scale vote trading
or coercion may be hard to hide anyway, one needs to weigh the use of cryptographic measures,
such as randomizers, against other measures, such as severe punishments.

15.7 Untrusted Voting Clients

A basic assumption in the voting schemes described earlier is that each voter has a PC, a mobile
phone, or any other computer device at its disposal, which can be used as a voting client. The voting
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protocol is assumed to be implemented on such a device, and, given an open specification of the
voting protocol, voters may in principle build their own implementations (or, pick one from many
vendors who comply with the open specification).

In many elections, such as traditional elections from polling stations, there is no possibility for
voters to use their own computer devices and software. Instead, one needs to trust equipment
provided at a polling station, e.g., running software that cannot be monitored. This raises the
question whether, e.g., verifiable elections are still possible in such a setting.

Similarly, for paper-based elections verifiability is limited: election observers must continuously
monitor all proceedings and trace exactly what happens to each of the paper ballots. There is no
reliable way for checking whether one’s voted ballot is actually included in the final tally. Also, using
numbered ballot forms and giving each voter a copy of the marked ballot form may violate ballot
secrecy and is clearly not receipt-free. More advanced techniques are needed to ensure in a verifiable
way that each and every legitimately cast paper ballot—and no other ones—will be tabulated.

Much recent work has thus been focused on addressing the issue of ensuring that votes are cast
as intended, complementing the work on verifiable tally protocols, which ensures that votes are
counted as cast. Work in this direction was initiated by Chaum (see, e.g., [10] and references therein)
and by Neff (see, e.g., [1] and references therein, incl. “Practical High Certainty Intent Verification
for Encrypted Votes” by Neff, 2004).

To illustrate the ideas behind these new approaches, we briefly describe the common idea behind
a range of proposals by Randell and Ryan (see, e.g., [37] and references therein). Consider an election
in which voters must pick one candidate from a list of candidates. The idea is that each paper ballot
is perforated vertically with the left-hand side containing the names of the candidates in a random
order and the right-hand side containing an empty box for each candidate. To cast a vote, the voter
will (1) mark the box of the candidate of its choice, (2) tear the ballot form into two parts, (3) destroy
the left-hand half, and (4) drop the right-hand half into a ballot box—possibly after receiving a copy
of this part. Since the candidates were listed in a random order on the left-hand half, the marked
right-hand half does not reveal which candidate was chosen.

The ballot forms are numbered, though, in such a way that each right-hand half can be linked
to an encryption of information indicating how the marked right-hand half should be interpreted.
Cryptographically, the technique is similar to the use of masked ballots as introduced in [39], and
used in [16] as well for yes/no votes. Similar to Equation 15.1, one precomputes an encryption of
the form:

[[b]] = (gr , hrgb), (15.4)

for a uniformly random value r ∈ Zq, and a uniformly random bit b ∈R {0, 1}. Depending on the
value of b, the ballot form will list the options in the order no-yes or yes-no. Together with the
position of the mark on the marked ballot, encryption [[b]] is then publicly transformed into an
encryption [[v]] of the intended vote v. The encrypted votes [[v]] may then be tallied in a verifiable
way, as described earlier.

The production of the ballot forms and the associated encryptions forms a critical part of these
voting systems. Encryptions, such as (Equation 15.4), must be produced in a private yet secure
way such that they correspond to the printed ballot forms, but without revealing the contents of
these encryptions. Thus, this problem is best viewed as a (nontrivial) problem in secure multiparty
computation as well. The challenge is to achieve efficient solutions for these problems.

These new approaches are still under scrutiny and several issues need to be addressed. For
instance, even though a receipt (e.g., a copy of the marked right-half) does not reveal the vote, such a
receipt nevertheless opens a possibility for coercion because of the so-called randomization attacks
due to Schoenmakers who noted this issue first for the voting scheme of [24] (see also [27]). In a
randomization attack, a coercer will simply specify for each voter to mark a particular box on the
right-hand half—regardless of which candidate this box corresponds to. The coercer can easily check
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whether a voter complied to the specified rule (e.g., “mark the box at the bottom of the form”). Since
the candidates are listed in a random order, different on each ballot form, the coercer thus forces a
voter to effectively cast a random vote, which may have a deciding influence on an election.

15.8 Further Information

As described in the introduction, research in voting schemes developed in three waves, starting in the
1980s, 1990s, and 2000s, respectively. The first wave started from within the emerging cryptographic
community, and many research papers on electronic voting can thus be found in the cryptographic
literature, which is described extensively in Chapters 9–13 and 17, of this book and Chapter 44 of
first edition. Information on the practical deployment of electronic voting schemes can be found
on the Internet since the mid-1990s when the first experiments started. Interest in both theoretical
and practical aspects of electronic voting has been growing ever since, and especially since “Florida
2000” there is also a lot of political and societal interest as well.

Research in electronic voting is shaping up witnessed by a flurry of workshops devoted to the
topic. Researchers from various backgrounds now meet on a regular basis. Examples of work-
shops are those under the flag of the IAVOSS (see www.iavoss.org) including WOTE and other
workshops, the EVT workshops colocated with the USENIX Security Symposium, and the EVOTE
workshops organized by e-voting.cc.

Traditionally, many countries and organizations work on their own voting systems and imple-
mentations, and the business has been limited to a relatively small number of companies. The market
is opening up though. A major impetus to this process will be the development of open standards
capturing the main voting schemes as described in this chapter. In particular, when focusing on type
II schemes with identifiable voted ballots, a lot of flexibility regarding the network delivery of the
voted ballots (e.g., by email, by https, over a cable TV network, . . . ) and regarding the outer authen-
tication of the voted ballots will be possible, whereas the encryption of the votes will be prescribed
by the standards. Implementations of the key generation, voting, tally, and verification protocols
adhering to these standards may then be offered by a multitude of suppliers, incl. noncommercial
ones.

Even though electronic voting will remain controversial for years to come—and remote voting
even more so—it’s the author’s opinion that inevitably remote electronic voting will start to be used
for major elections in the coming decades. With the advance of communication and computation
technologies, instant large scale elections in which everyone votes online within a time frame of one
hour (or one minute?) will be possible. And, how else would one vote in virtual communities, or in
games like Second Life? Future generations may have an innate distrust of paper-based elections,
once paper becomes something archaic, used only by magicians or other tricksters.

Defining Terms

Anonymous channel: A communication channel that hides the identity of the sender, and possibly
allows for an acknowledgment by the receiver as well.
Blind signature: A signature scheme where the signer cannot recognize the message-signature pairs
resulting from the signing protocol.
Bulletin Board: A publicly readable broadcast channel, possibly with authenticated write operations.
Computational security: If a security property holds subject to a computational intractability
assumption.
Designated verifier proof: A noninteractive zero-knowledge proof bound to a particular public key
that only convinces the holder of the corresponding private key.
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Homomorphic encryption: A public key cryptosystem in which the product of two encryptions is
equal to an encryption of the sum of the corresponding plaintexts.
Information theoretic security: If a security property holds regardless of the attacker’s computa-
tional power.
Private channel: A communication channel protected against eavesdropping, and possibly providing
end-to-end authentication as well, achieving information-theoretic security.
Secure channel: A communication channel protected against eavesdropping, and possibly providing
end-to-end authentication as well, achieving computational security.
Threshold decryption: A public key cryptosystem in which decryption requires the participation of
a certain number of parties, each holding a share of the private key.
Untappable channel: A totally unobservable (out-of-band) communication channel.
Validity proof: A zero-knowledge proof showing the validity of an input, or step performed in a
protocol.
Zero-knowledge proof: A proof for a statement without giving away why it is true.
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The word “auction” generally refers to a mechanism for allocating one or more resources to one
or more parties (or bidders). Generally, once the allocation is determined, some amount of money
changes hands; the precise monetary transfers are determined by the auction process. While in some
auction protocols, such as the English auction, bidders repeatedly increase their bids in an attempt
to outbid each other, this is not an essential component of an auction. There are many other auction
protocols, and we will study some of them in this chapter.

Auctions have traditionally been studied mostly by economists. In recent years, computer scien-
tists have also become interested in auctions, for a variety of reasons. Auctions can be useful for
allocating various computing resources across users. In artificial intelligence, they can be used to allo-
cate resources and tasks across multiple artificially intelligent “agents.” Auctions are also important
in electronic commerce: there are of course several well-known auction Web sites, but additionally,
search engines use auctions to sell advertising space on their results pages. Finally, increased com-
puting power and improved algorithms have made new types of auctions possible—most notably
combinatorial auctions, in which multiple items are for sale in the same auction, and bidders can
bid on bundles of items.

16-1
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We begin this chapter by studying single-item auctions. Even though most computer scientists
are perhaps more interested in combinatorial auctions, single-item auctions allow us to more easily
introduce certain concepts that are also of key importance in combinatorial auctions.

16.1 Standard Single-Item Auction Protocols

In this section, we review some basic protocols for auctioning a single item. The reader is encouraged
to think about which of these protocols are similar to each other; we will discuss relationships among
them shortly.
English. The English auction is the most familiar protocol to most people. In an English auction, every
bidder is allowed to place a bid higher than the current highest bid. If at some point, no bidder wishes
to place a higher bid, then the bidder with the current highest bid wins the item, and pays her bid.
Dutch. The Dutch auction proceeds in the opposite direction from the English auction. In a Dutch
auction, an initial price is set that is very high, after which the price is gradually decreased. At any
moment, any bidder can claim the item. She then wins the item and has to pay the current price.
Japanese. In a Japanese auction, the initial price is zero; the price is then gradually increased. A bidder
can leave the room when the price becomes too high for her. Once there is only one bidder remaining,
that bidder wins the item, and pays the price at which the last other bidder left the room.
First-price sealed-bid. In a first-price sealed-bid auction, each bidder communicates a bid privately
to the auctioneer—say, in a sealed envelope. The auctioneer then opens all the envelopes; the bidder
with the highest bid wins the item, and pays the bid that she placed.
Second-price sealed-bid (also known as Vickrey). The second-price sealed-bid auction proceeds
exactly as the first-price sealed-bid auction, except the highest bidder (who still wins the item) now
pays the second-highest bid, instead of her own.

Let us consider which of these auction protocols are similar to each other. Perhaps the most
obvious similarity is between the English and the Japanese auctions. For both, there is a price that
is rising, and the last remaining bidder wins. There is a distinction, however: in an English auction,
two bidders may be bidding each other up, while a third bidder quietly sits by, even though she
remains interested in the item. In this case, the first two bidders are unaware that they have another
competitor. In a Japanese auction, this situation cannot occur.

The Japanese auction and the second-price sealed-bid auction are also closely related (and the
English auction is related to the second-price sealed-bid auction in a similar way). Suppose, for a
second, that each bidder in a Japanese auction decides at the beginning of the auction on the price
at which she will leave the room. Of course, other strategies are possible: a bidder may base how
long she stays in the room on which other bidders are still left. However, if the bidders follow the
former kind of strategy, then the bidder who, at the beginning, chose the highest price will end up
winning, and she will end up paying the second-highest price selected by a bidder—similarly to the
second-price sealed-bid auction.

The Dutch auction and the first-price sealed-bid auction are even more closely related. Similarly to
the Japanese auction, in a Dutch auction, a bidder may decide at the beginning on the price at which
she will claim the item (if this price is reached). In fact, unlike in the Japanese auction, there is little else
that a bidder can do in terms of strategizing. In a Japanese auction, a bidder can let her bidding strategy
depend on who else is left; but in a Dutch auction, there is nothing to condition her strategy on, since
the only event that can happen is that someone else claims the item—but at that point the auction is
over and it no longer matters what anyone does. Now, the bidder who chooses the highest price will
win, and pay that price—similarly to the first-price sealed-bid auction. Because of this argument,
the Dutch and first-price sealed-bid auctions are usually considered strategically equivalent.

We will see some other single-item auctions later in this chapter. For most of this chapter,
we will focus on sealed-bid auctions. As we have seen, for each of the auctions studied so far,
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there is a roughly equivalent sealed-bid auction; in a sense, this is true for any auction, as we will
see shortly. Nevertheless, there are reasons to use English, Japanese, and Dutch auctions (more
generally, ascending and descending auctions). One reason is that they allow bidders to postpone
certain decisions until later. For example, if a bidder in a Dutch auction is deciding whether to claim
the item at $60 or $50, she may as well wait until the price drops to, say, $70, before she starts to
think about what she will do. If another bidder claims the item before that, the former bidder will
have saved herself some unnecessary agonizing. This is related to preference elicitation, which we
will discuss toward the end of this chapter.

16.2 Valuations and Utilities

How a bidder should bid in an auction depends on how much the item for sale is worth to her. In
this chapter, we will assume that each bidder can determine how much the item is worth to her, and
that events in the auction will not change her assessment. That is, each bidder i has an unchanging
valuation vi for the item, which she can determine at the beginning of the auction. This assumption
is not always realistic. For example, if a bidder sees that other bidders are bidding aggressively on an
item, this may be evidence to her that, before the auction, those bidders inspected the item in person
and found it to be of good quality. This evidence may improve the first bidder’s perception of—and
hence, valuation for—the item. Settings such as these, where some bidders have private information
that would affect the valuation of other bidders for the item, are known as interdependent valuations
settings. Most research assumes away the possibility of interdependent valuations, and we will do so
in this chapter.

In general, each bidder has a utility for each outcome of the auction, and acts to maximize her
expected utility. We will assume that a bidder’s utility for winning the item and having to pay πi is
ui = vi − πi, and her utility for not winning the item and having to pay πi is ui = −πi. (Generally,
losing bidders will not be made to pay anything; however, later in this chapter, we will see an auction
that makes payments to losing bidders, in which case πi is negative.) Thus, we are assuming that
a bidder’s utility function decomposes into separate valuation and payment components, and that
utility is linear in money. This assumption is known as the quasilinear preferences assumption.
It, too, is not always realistic, for the following reasons. In general, one’s utility may be strictly concave
in money (that is, one may have decreasing marginal utility for money: the utility of having another
(say) dollar may decrease as one accumulates more money), since at some point one runs out of
uses for money. Also, in general, the effect of money on utility may depend on whether one has won
the item: for example, if a bidder wins a pair of skis in an auction, she needs money to travel on a
skiing vacation (and hence has high marginal utility for money), whereas if she does not win, she
has less use for additional money (and hence has low marginal utility for money). Nevertheless, the
quasilinearity assumption is usually made, and we will do so in this chapter.

Another assumption that is implicit in the above text is that a bidder who does not win the item
does not care about which other bidder wins the item, and that bidders do not care about how much
other bidders pay. This assumption is known as the no externalities assumption. Once again, this
assumption is not always realistic: a bidder may prefer to see the item end up with a friend rather
than with an enemy, or she may prefer to see the other bidders run out of money so that they will
not compete in future auctions. Again, we will not go into detail on this in this chapter.

16.3 Strategic Bidding

It does not always make sense for a bidder to simply bid her true valuation. For example, if bidder
i bids her true valuation vi in a first-price sealed-bid auction, then even if she wins, her utility will
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be vi − πi = vi − vi = 0. Hence, she should bid lower than her true valuation to have any chance of
obtaining positive utility. But how much lower should she bid? Intuitively, this should depend on
her beliefs about the other bidders’ valuations. If she expects to be the only bidder who is seriously
interested in obtaining the item, she can place a low bid and still probably win; whereas if she expects
there to be many other competitive bidders, she should bid closer to her true valuation to have a
decent chance of winning. However, it is not obvious how to calculate her optimal bid precisely,
even given a probability distribution over the others’ valuations. This is because she cannot expect
the other bidders to bid their true valuations, either: they also need to bid below their true valuations
to have a chance of obtaining positive utility. And precisely how much lower is optimal for them to
bid depends, in turn, on how the first bidder bids.

16.3.1 Solving the First-Price Sealed-Bid Auction

To resolve this circularity, we need to turn to game theory, which studies settings in which each
bidder’s (or, more generally, agent’s) optimal course of action depends on the actions of the other
bidders. To apply game theory to the first-price sealed-bid auction, we first need to introduce the
concept of a strategy. In a sealed-bid auction, a strategy for bidder i is a function si : R

≥0 → R
≥0,

where si(vi) is the bid that i will place if her true valuation is vi. That is, for every valuation that the
bidder may have, the strategy specifies what she should bid. This may appear somewhat excessive: if
the bidder already knows her true valuation, why should she have to specify what she would have
bid if her valuation had been different? The reason that we need to think about this is that the other
bidders do not know bidder i’s valuation, and they need to think about what i would do for each
valuation. In turn, bidder i needs to think about what the other bidders will do, and hence also needs
to think about what they think she will do.

Let us suppose that for each bidder i, there is a (commonly known) prior probability distribution
pi over her valuation vi; moreover, let us assume that the valuations are drawn independently.
Hence, each bidder i knows her own valuation vi exactly, but for every other bidder j �= i, i’s
probability distribution over j’s valuation is pj. Now, if bidder i knows the strategies of the other
bidders, then for every bid that she might place, she can evaluate her expected utility; and of course
she should choose one that maximizes her expected utility. As is typically done in game theory,
we will look for an equilibrium, which prescribes a strategy for every bidder such that, for every
bidder, for every possible valuation for that bidder, her strategy will prescribe a bid that maximizes
her expected utility, given the other strategies. Formally, a Bayes–Nash equilibrium consists of a
strategy si : R

≥0 → R
≥0 for every bidder such that, for every bidder i, for every vi ∈ R

≥0, and for
every alternative bid v̂i ∈ R

≥0:

�
v−i

⎛
⎝∏

j�=i

pj(vj)

⎞
⎠ ui(vi, s−i(v−i), si(vi))dv−i ≥

�
v−i

⎛
⎝∏

j�=i

pj(vj)

⎞
⎠ ui(vi, s−i(v−i), v̂i)dv−i

Let us dissect this complicated inequality. First, the notation −i is shorthand for “the bidders other
than i,” so that v−i is shorthand for v1, . . . , vi−1, vi+1, . . . , vn. The notation v̂i is generally used for
bidder i’s bid, not necessarily equal to her true valuation vi. ui(vi, v̂−i, v̂i) is the utility that bidder
i obtains if her true valuation is vi, but she bid v̂i, and the other bidders bid v̂−i. In the first-price
sealed-bid auction, ui(vi, v̂−i, v̂i)= vi − v̂i if v̂i is higher than all the bids in v̂−i, and it is 0 otherwise.
Now we can see that the inequality says that, if the bidders other than i follow their strategies, then
i’s expected utility for bidding si(vi) should be at least equal to her expected utility for bidding any
other v̂i—that is, she should not be able to do better by not following the strategy si, given that the
other bidders are indeed following their strategies s−i.

We will now give an example of an equilibrium. Suppose that each pi is a uniform distribution
over [0, 1]. We will show that the strategies defined by si(vi)= vi(n − 1)/n (where n is the number
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of bidders) constitute an equilibrium. (We will not get into detail here on how one might have
actually derived these strategies, but there are techniques for doing so.) Suppose that all other
bidders (−i) indeed follow these strategies. Then, the expected utility for i of bidding v̂i ≤ (n − 1)/n
is (v̂in/(n − 1))n−1(vi − v̂i), because the probability that a given other bidder bids less than v̂i is
v̂in/(n − 1). (There is no reason to bid more than (n − 1)/n, because no other bidder will bid more
than (n − 1)/n.) Using simple calculus, one can check that this expression is maximized by setting
v̂i equal to vi(n − 1)/n—exactly as the strategy prescribes! This proves that these strategies indeed
constitute an equilibrium.

16.3.2 Solving the Second-Price Sealed-Bid Auction

Now, let us turn to the second-price sealed-bid auction. As it turns out, the analysis needed to
solve this auction is not nearly as complicated. In fact, in the second-price sealed-bid auction, it
is always optimal for a bidder to bid her true valuation, regardless of the other bids! That is, the
strategy si(vi)= vi is a dominant strategy. While this may come as a surprise at first, it is not so
difficult to see why it is true. Suppose, for a second, that bidder i can actually see the others’ bids
before placing her own bid. Let us consider the value v̂max, the highest bid among the other bidders.
Bidder i effectively has only two choices: to bid higher than v̂max, and obtain utility vi − v̂max;
or to bid lower than v̂max, and obtain utility 0. Clearly, she should do the former if and only if
vi > v̂max. But this is exactly what would happen if she just bid her true valuation—for which she
does not even need to know the others’ bids! Hence, by bidding her true valuation, she performs
as well as she could have performed even if she had known the others’ bids. This implies that
bidding truthfully is also a Bayes–Nash equilibrium, although the result is much stronger than
that. For example, in the first-price auction, if one knows the bids of the other bidders, then
certainly one might be better off bidding differently from the equilibrium that we derived for that
auction (which we derived under the assumption that bidders do not know each other’s valuations).
Hence, the strategies in the first-price auction equilibrium are not dominant strategies. Mechanisms
in which revealing one’s true valuation is a dominant strategy (such as the second-price sealed-
bid auction) are called (dominant-strategies) incentive compatible, strategy-proof, or simply
truthful.

16.4 Revenue Equivalence

Now that we have analyzed how bidders should bid in these two auctions, let us ask the following
question: which one obtains more revenue for the seller, in expectation? The answer is not immedi-
ately obvious: naïvely, one might say that the first-price auction should result in more revenue, since
after all it charges the highest bid rather than the second-highest; but then again, in equilibrium, the
bids are lower in the first-price auction. Which of these two effects is stronger?

For the case of independent uniform priors over [0, 1], we can compute the expected revenues
using the equilibrium strategies from above text. For the first-price auction, the probability that all
bids are below a given value b is (bn/(n − 1))n, which is also the probability that the revenue will be
below b. That is, this expression gives the cumulative density function of the revenue of the first-price
auction, and using it one can compute the expected revenue to be (n−1)/(n+1). For the second-price
auction, the probability that there is at most one bid higher than b is bn + nbn−1(1 −b), which is also
the probability that the revenue will be below b. That is, this expression gives the cumulative density
function of the revenue of the second-price auction, and using it one can compute the expected
revenue to be (n − 1)/(n + 1)—the same as that for the first-price auction! This is no accident: it is a
special case of the following result, which is known as the revenue equivalence theorem (Myerson,
1981; Riley and Samuelson, 1981).
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THEOREM 16.1 Suppose that the bidders’ valuations are independent and identically distributed
over a continuous interval [L, H], and that there are no “gaps” in this distribution. Then, any two
auction mechanisms that

1. in equilibrium always allocate the item to the bidder with the highest valuation, and
2. give a bidder with valuation L an expected utility of 0,

will result in the same expected revenue for the seller.

(There are more general versions of this result.) In the next section, we will see single-item auction
mechanisms that result in different expected revenues, because they violate one of the two conditions
in the theorem. From this point on, we will study only truthful mechanisms. This is justified by a
result known as the revelation principle (Gibbard, 1973; Green and Laffont, 1977; Myerson, 1979,
1981), which states (roughly) that, if bidders bid strategically, then for every mechanism that is not
a truthful mechanism, there is a truthful mechanism that performs equally well.

16.5 Auctions with Different Revenues

Suppose that we have a prior distribution over each bidder’s valuation, and that we wish to design
a mechanism that maximizes expected revenue. It is easy to see that running, say, a second-price
sealed-bid auction is not always optimal. For example, suppose there is only one bidder. The second-
price sealed-bid auction will never collect any revenue in this case, because there is no second bidder.
However, we can also make a take-it-or-leave-it offer to the one bidder: the bidder will obtain the
item if and only if it is worth more than some fixed value k to her, in which case she will pay k;
otherwise, the seller keeps the item. This will generate a revenue of k at least some of the time. While
this may not seem like an auction, setting a reserve price of k in a second-price sealed-bid auction
will have the same effect. (In such an auction, if only one bid is above the reserve price, then that bid
pays the reserve price.)

In general, the auction that maximizes expected revenue is known as the Myerson auction (Myer-
son, 1981), and it proceeds as follows. For each bidder i, compute her virtual valuation ψi(v̂i) as a
function of her bid, as follows:

ψi(v̂i)= v̂i − (1 − Fi(v̂i))/fi(v̂i)

Here, Fi is the cumulative density function of i’s valuation, and fi is its derivative, the probability
density function. The bidder with the highest virtual valuation wins, unless this bidder has a virtual
valuation below 0, in which case nobody wins. The price that the winning bidder pays is the lowest
value that she could have bid while still winning. For example, if each bidder’s valuation is drawn from
the uniform distribution over [0, 1], then the Myerson auction becomes a second-price sealed-bid
auction with a reserve price of 1/2. This is because

ψi(1/2) = 1/2 − (1 − Fi(1/2))/fi(1/2) = 1/2 − (1 − 1/2)/1 = 0

It does not always make sense to try to maximize expected revenue. In some settings, our main
goal is to allocate the item efficiently (that is, to the bidder that values it most), and payments are
merely a necessary nuisance in achieving this goal. For example, suppose that several parties jointly
own an item, and they wish to run an auction amongst themselves to decide on a single owner. What
should happen to the revenue of this auction? It seems to make sense to redistribute it back to the
bidders themselves, but doing so effectively changes the auction mechanism. For example, suppose
that the bidders run a second-price sealed-bid auction for the item, and then redistribute the revenue
of this auction equally (each bidder receives 1/n of the revenue). Unlike the second-price sealed-bid
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auction without redistribution, this auction is actually not truthful: the second-highest bidder now
has an incentive to increase her bid to drive up the price that the highest bidder pays, because the
second-highest bidder will receive a fraction of this price.

Fortunately, it turns out that we can redistribute at least some of the revenue while maintaining
truthfulness. One auction mechanism that achieves this is the following [independently invented on
at least three different occasions (Bailey, 1997; Porter et al., 2004; Cavallo, 2006)]. Let us define v2−i
to be the second-highest bid among bidders other than bidder i. For the top two bidders, this is the
third-highest bid overall (v3); for the remaining n − 2 bidders, it is the second-highest bid (v2). We
run the second-price sealed-bid auction, and we redistribute v2−i/n to bidder i. This redistribution
payment does not affect bidders’ incentives in bidding, because no bidder can affect her own
redistribution payment. Hence, the auction remains truthful. Additionally, the total redistributed
is 2v3/n + (n − 2)v2/n ≤ v2—so the total redistributed is no more than is collected from the
second-price sealed-bid auction. A total of 2(v2 − v3)/n is not redistributed. This money must be
given to someone else (but not someone whom the bidders care about, since that might affect their
incentives), or, say, burned. It is impossible to achieve efficient allocation without ever wasting any
money, but it is possible to waste even less money (either on average or in the worst case): this is
achieved by also letting bidder i’s redistribution payment depend on v3−i, v4−i, . . . , vn−1−i (Guo and
Conitzer, 2007; Moulin, 2007).

It is interesting to note that the revenue equivalence theorem from above text does not apply to
Myerson’s auction because the first condition is not satisfied; it does not apply to the redistribution
mechanisms because the second condition is not satisfied.

16.6 Complementarity and Substitutability

Now that we have studied single-item auctions, let us consider settings where multiple items are
for sale. One possibility is to sell each item in a separate single-item auction; these auctions can be
held simultaneously (parallel auctions) or back-to-back (sequential auctions). If, for each item, each
bidder’s valuation for that item does not depend on which other items she wins, then the individual
auctions are entirely separate events, and we can apply the techniques that we have studied up to
this point. However, this is not always a realistic assumption. For example, if the items for sale are
a plane ticket to Las Vegas and a hotel reservation in Las Vegas, then it may be that the bidder’s
valuation for the plane ticket alone is 200, her valuation for the hotel reservation alone is 100, but
her valuation for both together is 500. The package of both items is worth more than the sum of its
parts, that is, the items are complementary.

Now suppose that the plane ticket is auctioned first, and the hotel reservation second (both in
second-price sealed-bid auctions). How much should the bidder bid in the first auction? If she bids
200 for the ticket, she may lose to a bidder bidding 201, only to later find out she could have won
the hotel reservation for 101, so that she regrets not bidding higher in the first auction. However,
if she bids 400 for the ticket, she may win it at a price of 399, only to later find out that the hotel
reservation sells for 1000, so that she regrets winning the ticket. It is not clear what the bidder should
do—she no longer has a dominant strategy. Moreover, the resulting allocation of items can be
inefficient.

Another possibility is that the package of items is worth less than the sum of its parts, in which case
the items are said to be substitutable. For example, if reservations for two different hotels are for sale,
a bidder may value each individual reservation at 100, but the package of both reservations at 150.
In sequential auctions, substitutability can cause problems similar to those caused by complemen-
tarity. Both can also cause similar problems in parallel auctions.

Instead of making the bidders agonize over the prices at which items in future or parallel auctions
are likely to sell, an alternative is to let each bidder report all her valuations, one for each subset of
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the items, and decide on the allocation of items to bidders based on that information. This is what
is done in a combinatorial auction, and it circumvents the problems that parallel and sequential
auctions run into when there are complementarities and substitutabilities.

16.7 Combinatorial Auctions

In a combinatorial auction, a set I of multiple items is (simultaneously) for sale, and bidders can bid
on any bundle (that is, subset) of items. If we again make the assumptions that bidders’ valuations
for the items do not change based on other bidders’ private information, utilities are quasilinear, and
there are no externalities, then each bidder i has a privately held valuation function vi : 2I → R

≥0,
where vi(S) is i’s valuation for bundle S ⊆ I; and the utility of bidder i when she wins bundle S
and pays πi is vi(S) − πi. Generally it is assumed that vi(∅)= 0, and additionally that for S ⊆ S′,
vi(S) ≤ vi(S′). (The latter assumption is often called free disposal: receiving additional items can
never decrease a bidder’s valuation, because at worst the additional items can simply be discarded.)
We will start by looking at sealed-bid combinatorial auctions. An immediate problem with this
approach is that in general, each bidder must reveal 2m − 1 real numbers (where m = |I|), one for
each nonempty bundle. Once m gets to be somewhat large, this becomes impractical. However, there
is usually some structure in the bidders’ valuation functions, so that they can be represented more
concisely.

One very restrictive, but commonly studied assumption about this structure is that bidders are
single-minded. A bidder i is single-minded if there exists some bundle Si and some real number vi
such that vi(S)= vi if Si ⊆ S, and vi(S)= 0 otherwise. That is, there is a single bundle of items that
the bidder wishes to obtain; she will simply discard any additional items, and if she fails to obtain
even one item within her desired bundle, her valuation drops to 0. If bidders are single-minded, then
a bid can be represented simply as an ordered pair (Si, vi) ∈ 2I × R

≥0.
A single-minded bid cannot represent even fairly straightforward valuation functions, such as

additive valuation functions. (A valuation function vi is additive if for all S ⊆ I, vi(S)= ∑
s∈S vi({s}).

That is, there are no complementarities or substitutabilities.) We would like to give bidders some
more flexibility, by providing them with a richer bidding language in which to describe their
valuation function. One such bidding language is the OR language, which effectively allows a bidder
to submit multiple single-minded bids. Formally, a bid in the OR language takes the form (S1, v1)
OR (S2, v2) OR . . . OR (Sk, vk). Such a bid is interpreted as follows: for any subset T ⊆ {1, . . . , k}
with the property that for any j1, j2 ∈ T, j1 �= j2, we have Sj1 ∩ Sj2 = ∅, vi(

⋃
j∈T Sj)= ∑

j∈T vj. That
is, the auctioneer can accept any subcollection of the single-minded bids within the OR-bid, as long
as there is no overlap between the accepted Sj. (To be precise, the last = symbol should really be a ≥
symbol, because it is possible that the same set

⋃
j∈T Sj (or a subset thereof) can be written as a union

of disjoint Sj in a different way that results in a greater sum of vj. The bidder’s valuation for the subset
is the maximum value that can be obtained in this way. Hence, equality holds only if there is no better
way to write the bundle as a union of disjoint Sj. For example, given the bid ({A}, 1) OR ({A, B}, 3) OR
({B, C}, 3) OR ({C}, 2), we have vi({A, B, C}) = vi({A, B}) + vi({C}) = 5 > 4 = vi({A}) + vi({B, C}).)
The OR language allows for representing additive valuations, simply by OR-ing together singleton
bundles.

Nevertheless, there are valuation functions that the OR language cannot capture. For exam-
ple, suppose there are two items, a and b, and that bidder i’s valuation function is given by
vi({a}) = 1, vi({b}) = 1, vi({a, b}) = 1. That is, she wants either item, and having both items is no
more useful to her than having a single one. This function cannot be represented in the OR lan-
guage: the bid would have to contain the terms ({a}, 1) and ({b}, 1), but this would already imply
that vi({a, b}) ≥ 2. A language that can capture this valuation function is the XOR language. The
difference between the OR and XOR languages is that the auctioneer can accept at most one of the
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single-minded bids that are XORed together, even if they do not overlap. For example, the above
valuation function is easily expressed as ({a}, 1) XOR ({b}, 1): this bid implies a valuation of only
1 for the bundle {a, b}, since it is not possible to accept both single-minded bids in the bid. Using
XORs, we can in fact represent any valuation function, by using a single-minded bid for every
possible bundle and XOR-ing them all together. Of course, this is not a very concise representation.
Unfortunately, even representing additive valuation functions can require exponentially long bids
if we use only XORs. But it is also possible to use ORs and XORs simultaneously, to get the best of
both worlds. For example, the bid (({a}, 1) XOR ({b}, 1)) OR ({c}, 2) indicates a value of 1 + 2 = 3
for the bundle {a, b, c}. There are other bidding languages that are not based on ORs and XORs, but
we will not discuss them in this chapter.

16.8 The Winner Determination Problem

Now that we have considered how to bid in a (sealed-bid) combinatorial auction, we must consider
how to determine who wins what. Of course, we cannot award a single item to two different bidders.
But this still leaves plenty of options. One natural approach is to maximize efficiency, the total value
generated. That is, if Si is the bundle of items that we award to bidder i, then we should maximize∑n

i = 1 v̂i(Si) (under the constraint that Si ∩ Sj = ∅ for all i �= j). This optimization problem is known
as the winner determination problem (WDP).

As it turns out, the WDP is computationally hard. Even if we consider the special case where each
bidder submits a single-minded bid, the problem turns out to be equivalent to WEIGHTED-SET-
PACKING, which is NP-hard (Rothkopf et al., 1998) and inapproximable (Sandholm, 2002). On the
other hand, the problem does not become any harder if we allow bidders to use ORs, since a bidder
using ORs is effectively submitting multiple single-minded bids. In fact, even if we allow XORs, the
problem in a sense becomes no harder: this is because, for the purpose of solving the WDP, we can
transform an instance with XORs into one with only ORs using the following trick (Fujishima et al.,
1999; Nisan, 2000). Given a bid of the form (S1, v1) XOR (S2, v2), we create a new “dummy” item,
d, and replace the bid by (S1 ∪ {d}, v1) OR (S2 ∪ {d}, v2). Even though there is an OR between these
two bids, they cannot both be accepted, since they have an item in common; moreover, since no
other bids mention this item, everything else remains unaffected. Because of this, in the next two
subsections, we will focus on algorithms for the single-minded case only. We will consider optimal
algorithms for both the general case and some special cases. We will postpone the discussion of
approximation algorithms until later, because we will require a particular kind of approximation
algorithm in this context.

16.8.1 General-Purpose Winner Determination Algorithms

Given single-minded bids {(Si, v̂i)}, one straightforward way to solve the winner determination
problem is to solve the following integer program, which uses a binary variable bi to indicate
whether bid i is accepted:

maximize
∑

i biv̂i
subject to
for each s ∈ I, (

∑
i:s∈Si

bi) ≤ 1
for each i, bi ∈ {0, 1}

The main constraint of this integer program ensures that each item is awarded at most once.
Software packages such as CPLEX can be used to solve such an integer program; since the WDP is
NP-hard, it should come as no surprise that solving integer programs is also NP-hard.



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C016 Finals Page 10 2009-9-25

16-10 Special Topics and Techniques

One interesting aside is that in some settings, bids can be accepted partially. For example, if we
have three bids, ({a, b}, 2), ({a, c}, 2), and ({b, c}, 2), it may be possible to accept half of each bid,
awarding half of a and half of b to the first bidder for a value of 1, half of a and half of c to the
second bidder for a value of 1, and half of b and half of c to the third bidder for a value of 1. This
gives us a total value of 3 (we note that if we cannot accept bids partially, then we can obtain only 2).
If accepting bids partially is possible, then we can solve the WDP by modifying the above program
slightly. We make the bi continuous variables, replacing the last constraint by

for each i, 0 ≤ bi ≤ 1

At this point, the program has become a linear program, and linear programs can be solved in
polynomial time (Khachiyan, 1979). However, in the remainder of this chapter we will assume that
it is not possible to accept bids partially.

An alternative approach to solving the general WDP is to write a search algorithm based on
techniques from artificial intelligence; for an overview of work along this line, see Sandholm (2006).
It should be noted that such algorithms are in many ways similar to algorithms for solving integer
programs.

Yet another option is to use the following dynamic programming approach (Rothkopf et al., 1998).
For any subset S ⊆ I, let w(S) be the maximum total value that can be obtained using only items in
S (that is, if we threw away the items in I − S). Let B(S) be the collection of all proper subsets S′ ⊂ S
such that there is at least one bid on exactly S′. Then, we have

w(S) = max{max
i

v̂i(S), max
S′∈B(S)

w(S′) + w(S − S′)}

Since the occurrences of w on the right-hand side involve subsets smaller than S, we can use dynamic
programming to compute w(S) for every subset, starting with the small ones and working our way
up to I—and w(I) gives the maximum value that can be obtained overall. This algorithm runs in
O(n3m) time (where m is the number of items). It is straightforward to extend the dynamic program
to keep track not only of the values that can be obtained, but also of the bids that need to be accepted
to obtain these values.

16.8.2 Special-Purpose Winner Determination Algorithms

The WDP is NP-hard in general. Nevertheless, if the bids have some structure, then the WDP is
sometimes solvable in polynomial time. For example, suppose that there are only (single-minded)
bids on pairs of items (Rothkopf et al., 1998). Certainly, if multiple bids bid on the same pair of items,
it never makes sense to accept a bid that is not the highest. Hence, we know the value of pairing any
two given items together for sale (namely, the highest bid for that pair), and the only decision left
is which items to pair together. This is a MAXIMUM-WEIGHTED-MATCHING problem, which
can be solved in polynomial time. (This can easily be extended to also allow for bids on individual
items—for example, by adding dummy items.) Unfortunately, if we allow for bids on sets of three
items, the problem becomes NP-hard (by reduction from EXACT-COVER-BY-3-SETS).

As another example, suppose that the items are arranged as the vertices of a graph, and that every
bid is on a bundle of items that constitutes a connected component in the graph. This is always
possible by adding an edge between every pair of items (that is, making the graph a complete graph),
but we will be interested in restricted classes of graphs. In particular, if the graph is a tree or a cycle,
or, more generally, has bounded treewidth, then the WDP can be solved in polynomial time using
dynamic programming (Sandholm and Suri, 2003; Conitzer et al., 2004). To use a result like this, we
can either collect the bids first and then find a graph with which they are consistent, or we can specify
the graph beforehand and require all bids to be consistent with this graph. A later result generalizes
this even further by considering hypertree decompositions (Gottlob and Greco, 2007).
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There are various other works on structure that bids may have that makes the WDP easier
(Tennenholtz, 2000; Penn and Tennenholtz, 2000; Sandholm and Suri, 2003). Even if the bidders’
valuations are not likely to have the required structure exactly, one possibility is to force the bidders
to only use bids with this structure. This comes at the loss of some economic efficiency, because
bidders can no longer express their exact valuations; nevertheless, it is generally better than reverting
to single-item auctions.

16.9 The Generalized Vickrey Auction

So far, we have not yet considered how much a winning bidder should pay in a combinatorial
auction. We could simply make such a bidder pay her bid (that is, her reported valuation for the
bundle she won), resulting in a first-price sealed-bid combinatorial auction. As in the case of a
first-price sealed-bid single-item auction, no bidder would ever bid her true valuation function,
since this would guarantee that even if she wins something, she will have a utility of 0. We recall
that an auction is truthful if revealing one’s true valuation function is always optimal, regardless
of the others’ bids. Can we create a truthful combinatorial auction? A natural approach is to try
to generalize the (truthful) second-price sealed-bid (aka. Vickrey) auction to the combinatorial
setting. There are multiple ways in which one can generalize the Vickrey auction. For example,
one can charge a winning bidder the highest other bid that was placed on exactly the same bundle.
To see that this is not a good idea, consider the following example. Suppose that the bids are ({a}, 1),
({b}, 1), and ({a, b}, 5), all from different bidders. The third bidder would win both items, and this
bidder would pay 0, because nobody else bid on the bundle {a, b}. This intuitively feels wrong, since
there was demand for the items from the other bidders. If the third bidder had bid ({a}, 5) instead,
she would have had to pay 1; thus, by bidding for more items, the bidder actually pays less! This also
shows that this particular generalization is not truthful: if the third bidder is in fact interested only
in a, she is still better off bidding on both items, and just throwing b away.

Fortunately, there is another generalization that does work. Let V̂ be the total value of the accepted
bids. Let V̂−i be the total value that would have resulted if i had never entered the auction. (Computing
this requires solving the winner determination problem again, this time without i.) Then, if Si is
the bundle that bidder i wins (possibly the empty bundle), she must pay V̂−i − (V̂ − v̂i(Si)). This
expression is the difference between how much the other bidders would have valued the allocation
that would have resulted if i had never been present, and how much they value the current allocation.
(For this reason, it is sometimes said that i pays the externality that she imposes on the other bidders.)
Let us consider the above example with bids ({a}, 1), ({b}, 1), and ({a, b}, 5). If the third bidder had
not been present, the first two bids would have been accepted, so V−3 = 2. Hence, bidder 3 pays
2 − (5 − 5)= 2. Let us make the example slightly richer, by adding bids ({c}, 2) and ({a, c}, 5),
again from different bidders. Now, the third and fourth bidders win, for a total value of 5 + 2 = 7.
Without the third bidder, the second and fifth bidders would have won, for a total value of 1 + 5 = 6.
Hence, the third bidder must pay 6 − (7 − 5)= 4. Without the fourth bidder, again, the second and
fifth bidders would have won, for a total value of 6. Hence, the fourth bidder must pay 6−(7−2)= 1.

This way of computing payments is usually called the Generalized Vickrey Auction (GVA).
It is sometimes also called the Clarke mechanism, or the VCG mechanism [for Vickrey, Clarke,
and Groves (Vickrey, 1961; Clarke, 1971; Groves, 1973)]. (Clarke and VCG refer to generalizations
beyond auctions.) The GVA has several nice properties. For one, it is truthful. To see this, we note that
bidder i’s eventual utility is vi(Si)−πi = vi(Si)−(V̂−i −(V̂ − v̂i(Si))) = vi(Si)+(V̂ − v̂i(Si))− V̂−i. It
is impossible for i to affect V̂−i; therefore, i can focus on maximizing vi(Si) + (V̂ − v̂i(Si))= vi(Si) +∑

j�=i v̂j(Sj). There is only one way in which this expression depends on i’s bid v̂i: her bid affects
the chosen allocation S1, . . . , Sn. Now, if i had complete control over the chosen allocation (which
she does not, but let us suppose for a second that she does), then she would choose the Sj to
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maximize vi(Si)+∑
j�=i v̂j(Sj). The winner determination algorithm, on the other hand, chooses the

Sj to maximize
∑

j v̂j(Sj)= v̂i(Si) + ∑
j�=i v̂j(Sj). The only difference between the two expressions

is that the first uses vi, and the second uses v̂i. But then, if bidder i truthfully reports v̂i = vi, the
two expressions will be the same, and the winner determination algorithm will choose exactly the
allocation that maximizes i’s utility! Hence, the GVA is truthful.

A very observant reader may have noticed that in the proof of truthfulness, the only property of the
payment term V̂−i that we used is that i cannot affect it with her bid. Therefore, if truthfulness is all that
we care about, we can replace the term V̂−i in the payment expression with any other term that does
not depend on i’s bid. The mechanisms that can be obtained in this way are the Groves mechanisms
(the G in VCG). The GVA mechanism, however, does have some additional nice properties that
not all Groves mechanisms have. For one, it satisfies voluntary participation (aka. individual
rationality): a bidder never receives negative utility as a result of participating in the auction, as long
as she bids truthfully. This is because V̂ ≥ V̂−i (if this were false, it would mean that we had chosen
a suboptimal allocation), and hence vi(Si) − πi = vi(Si) + (V̂ − v̂i(Si)) − V̂−i ≥ vi(Si) − v̂i(Si); and
the last expression is zero if i reports truthfully. A final nice property of the GVA is the nondeficit
(aka. weak budget balance) property: at least as much money is collected from the bidders as is
given to them. In fact, no money is ever given to a bidder. This is because V̂−i ≥ V̂ − v̂i(Si)

(V̂ − v̂i(Si) is the value of an allocation that is feasible even when i is not present), and hence
πi = V̂−i − (V̂ − v̂i(Si)) ≥ 0.

16.10 Collusion and False-Name Bidding

The GVA is truthful, so it is not possible for an individual bidder to benefit from misreporting her
valuation function. However, if multiple bidders simultaneously misreport, that is, they collude,
then it is possible that all of them benefit from this. To some extent, this problem occurs even in a
single-item Vickrey auction. For example, suppose that there are three bidders with valuations 1, 3,
and 4. If the third bidder can convince the second bidder not to place any bid, then the third bidder
has to pay only 1 instead of 3. The third bidder may even pay the second bidder 1 for staying out, so
that they each increase their utility by 1 from this. [In general, the colluders need some protocol for
colluding (Graham and Marshall, 1987; Leyton-Brown et al., 2000, 2002), but we will not concern
ourselves with that here.]

Still, there is a limit on what colluders can achieve in a single-item Vickrey auction. For example,
they can never win the item at a price lower than the highest bid by a noncolluder; nor can they
reduce the seller’s revenue below what the seller would have made if the colluders had not participated.
It turns out that in a combinatorial auction, not even these properties are true. For example, consider
a GVA with only two items, a and b. Suppose two bidders have each placed a bid ({a, b}, 1). If these
are the only bidders, then one of them will win, and pay 1. However, let us now suppose that there
are two additional bidders (the colluders): one of them bids ({a}, 2) and the other bids ({b}, 2). The
colluders then win. How much does each colluder pay? If we remove one of the colluders, then
the other colluder still wins—that is, the remainder of the allocation does not change. Thus, each
colluder (individually) imposes no externality on the other bidders, and hence pays 0. The colluders
benefit from this (assuming they have some value for the items they receive), and the auction’s
revenue has actually decreased as a result of the additional bids. More detail on collusion in the GVA
can be found, for example, in work by Ausubel and Milgrom (2006) and Conitzer and Sandholm
(2006).

The same example can also be used to demonstrate a different vulnerability of the GVA. Suppose
that the auction is run in an open, anonymous environment such as the Internet. In such an auction,
it is usually possible for a single bidder to participate in the auction under multiple identifiers
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(for example, e-mail addresses). Thus, given two other bids ({a, b}, 1), a single bidder can place
a bid ({a}, 2) under one identifier, and a bid ({b}, 2) under another identifier. As a result, the
“false-name” bidder will win both items, and, as before, the price charged to each bid is 0. Hence,
bidders sometimes have an incentive to bid under multiple identifiers; that is, the GVA is not false-
name-proof (Yokoo et al., 2001, 2004).

It should be emphasized that this manipulation cannot be performed simply by submitting
multiple bids under a single identifier [for example by bidding ({a}, 2) OR ({b}, 2)]. In this case, to
compute the bidder’s GVA payment, we would remove the bidder’s OR-bid in its entirety, so that the
resulting payment would be 1. In the example where the bidder uses two different identifiers, there
would be no problem if we could tell that the two identifiers correspond to the same real bidder,
because in that case we would remove both identifiers’ bids simultaneously to compute the bidder’s
GVA payment. Unfortunately, it is generally not possible to tell which identifiers were created by
the same bidder.

One may wonder whether we can address some of these problems by using a combinatorial
auction mechanism other than the GVA. It has been shown that any mechanism that avoids these
issues (revenue nonmonotonicity, collusion, and false-name bidding) must have some unnatural
properties (Rastegari et al., 2007). Still, several false-name-proof combinatorial auction mechanisms
have been designed (Yokoo et al., 2001; Yokoo, 2003; Yokoo et al., 2004). It is also possible to
make the use of multiple identifiers suboptimal by verifying the identities of some of the bidders
(Conitzer, 2007).

16.11 Computationally Efficient Truthful Combinatorial
Auctions

Another problem with the GVA is that it requires us to solve the winner determination problem
to optimality. In fact, to compute the GVA payments, we need to solve up to n additional WDP
instances: for each winning bidder, we need to solve the problem again with that bidder omitted.
[It should be noted that at least in some settings, some of the computational work can be reused
across the different instances (Hershberger and Suri, 2001).] An obvious idea is to not solve the
WDP to optimality, but rather to use an approximation algorithm that returns a solution that is close
to optimal. However, this effectively changes the mechanism, and there is no reason to think that
desirable properties such as truthfulness and voluntary participation will continue to hold (Nisan
and Ronen, 2001).

Let us consider the special case of single-minded bidders. One natural approximation algorithm is
the following. Sort the bids (Si, vi) by vi/|Si|, the per-item value of the bid, in descending order. Then,
consider the bids in this order, and accept any bid that can still be accepted. For example, suppose the
bids are, in sorted order, ({a}, 11), ({b, c}, 20), ({a, d}, 18), ({a, c}, 16), ({c}, 7), ({d}, 6). The algorithm
will accept the first two bids; the next three bids can then no longer be accepted, because one of their
items has already been allocated; finally, the last bid is accepted. The total value of this allocation is
11+20+6 = 37 (which is less than the 20+ 18 = 38 that could have been obtained by accepting just
the second and third bids). Now, if we wish to calculate the first bidder’s GVA payment using this
approximation algorithm, we must remove this bid, and run the algorithm again. After removing the
first bid, the algorithm will actually accept the bids ({b, c}, 20) and ({a, d}, 18), the optimal solution.
Hence, the first bidder’s (approximated) GVA payment is 38 − (37 − 11) = 12. This is more than
the bidder’s valuation! It follows that this approximation of the GVA mechanism does not satisfy
voluntary participation (and hence it is also not truthful, because the bidder would have been better
off bidding 0).
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However, we can use this approximation algorithm for the WDP to obtain a truthful mechanism
that satisfies voluntary participation: we just need to compute the payments somewhat differ-
ently (Lehmann et al., 2002). For each winning bid, consider the first bid in the sorted list that was
forced out by this bid. The ratio vi/|Si| for that bid is what the winning bid must pay per item. For
example, in the above instance, the first bid forced out by the winning bid ({a}, 11) is ({a, d}, 18).
Hence, the bid ({a}, 11) pays 18/|{a, b}| = 9 per item—and since it wins only one item (a), that
means it pays 9. As for the winning bid ({b, c}, 20), the first bid forced out by it is ({c}, 7) (it is not
({a, c}, 16), because this bid was already forced out by ({a}, 11)), so the bid pays 7/|{c}| = 7 per item,
and since it wins two items, it pays 14. The final winning bid, ({d}, 6), forces no other bids out and
hence pays 0. Given that bidders are single-minded, this mechanism satisfies voluntary participation
and truthfulness (each winning bidder pays the lowest amount that they could have bid while still
winning).

The above approximation algorithm for the WDP has a worst-case approximation ratio of m, the
number of items. If we sort the bids by vi/

√|Si| instead, then the approximation ratio is improved
to

√
m.

There is a significant body of work on computationally efficient truthful combinatorial auctions:
see, for example, Nisan and Ronen (2000); Mu’alem and Nisan (2002); Bartal et al. (2003); Archer
et al. (2003); Dobzinski et al. (2006); Bikhchandani et al. (2006); Dobzinski and Nisan (2007a,b).

16.12 Iterative Combinatorial Auctions and Preference
Elicitation

In a perfect world, every bidder would have a valuation function that can be concisely expressed
in the bidding language of the combinatorial auction. Unfortunately, in reality, this is often not
the case. This does not mean that bidders usually submit extremely long bids (such as an XOR
of 2m − 1 bundles): this is too impractical, not only because it requires the communication of an
exponential amount of information, but also because determining one’s valuation for a given bundle
is generally a nontrivial task. Instead, bidders bid on a few bundles on which they think their bids
will be competitive. But they may not know exactly on which bundles they would be competitive,
and if they do not bid on the right bundles, this results in decreased economic welfare.

A potential remedy for this is to, during the auction, give the bidders feedback on how they are
doing in the auction. This means that we must abandon the sealed-bid format, and instead consider
iterative auction mechanisms. We have already seen some examples of iterative auctions in the
single-item context, namely the English, Japanese, and Dutch auctions. For example, in the English
auction, a bidder knows if she is currently winning, and if she is not, she can choose to raise her bid.
The English and the Japanese auctions are ascending auctions.

It turns out that we can also create ascending combinatorial auctions. As an example, let us study
the iBundle ascending combinatorial auction (Parkes and Ungar, 2000). This auction maintains,
for each bidder i, for each bundle S, a current price pi(S). In each round of the auction, the bidder
is supposed to choose the bundle(s) most attractive to her at her current prices, that is, the set
arg maxS vi(S)− pi(S), and bid pi(S) on these bundles. The exception is if vi(S)− pi(S) < 0 for every
bundle S, in which case the bidder is supposed to drop out. If a bidder follows this strategy, she is said
to bid straightforwardly. At the end of the round, the winner determination problem is solved with
the submitted bids. Then, for every active bidder i that is not winning anything, for every bundle
S that she bid on, the price pi(S) is increased by some predetermined amount ε. Eventually, there
will be a round where every active bidder wins something, and at this point the auction terminates
with the current allocation and payments. This auction is known to have some nice properties:
for example, if the bidders’ valuations satisfy a condition known as buyer submodularity, then
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straightforward bidding is an ex-post equilibrium, and the GVA outcome results (Ausubel and
Milgrom, 2002). Informally, buyer submodularity means that the more bidders are already present,
the less having additional bidders adds to the final allocation value. Strategies are said to be in
ex-post equilibrium if for each bidder i, it is optimal to follow the strategy, assuming that the other
bidders follow their strategies (but regardless of what the other bidders’ valuations are). Numerous
other iterative combinatorial auctions have been proposed [for an overview, see (Parkes, 2006)], and
inherent limitations of this approach have also been studied (Blumrosen and Nisan, 2005).

More generally, the auctioneer can sequentially ask the bidders various queries about their
valuation functions, until the auctioneer has enough information to determine the final outcome.
If the final outcome is (always) the GVA outcome, then responding truthfully to the auctioneer is
an ex-post equilibrium. This flexible query-based approach is generally referred to as preference
elicitation (Conen and Sandholm, 2001). Common queries include value queries (“What is your
valuation for bundle S?”) and demand queries (“Given these prices, which bundle(s) do you prefer?”).
Demand queries can use either item prices, where the price for a bundle is the sum of the prices
of the individual items, or bundle prices, where each bundle has a separate price (as we saw in
the iBundle auction above). For some restricted classes of valuation functions, it has been shown
that a polynomial number of queries suffices to learn a bidder’s valuation function completely (if
we assume that the valuation function lies in that class). For example, a valuation function can be
elicited using a number of (bundle-price) demand queries that is polynomial in the length of the
function’s XOR-representation (Lahaie and Parkes, 2004), though in general an exponential number
of queries is required if only item prices (and value queries) are allowed (Blum et al., 2004). Various
other results have been obtained on classes of valuation functions that can(not) be elicited using a
polynomial number of queries (Zinkevich et al., 2003; Santi et al., 2004; Blumrosen and Nisan, 2005;
Conitzer et al., 2005; Lahaie et al., 2005).

Without any restrictions on the valuation functions, negative results are known: for example, solv-
ing the winner determination problem in general requires an exponential amount of communication,
regardless of what types of query are used (Nisan and Segal, 2005).

16.13 Additional Topics

In this final section, we mention a few additional topics and provide some references for the interested
reader.

There are several important variants of (combinatorial) auctions, including (combinatorial)
reverse auctions and (combinatorial) exchanges. In a reverse auction, the auctioneer seeks to buy
one or more items, and the bidders submit bids indicating how much they need to be compensated
to provide the items. In an exchange, bidders can act as buyers as well as sellers. While these
variants display some significant similarities to regular (forward) auctions, there are also important
differences (Sandholm et al., 2002).

Quite a few researchers have tried to generalize Myerson’s expected-revenue maximizing auction
to combinatorial auctions; this turns out to be surprisingly difficult (Avery and Hendershott, 2000;
Armstrong, 2000; Conitzer and Sandholm, 2004; Likhodedov and Sandholm, 2004, 2005). A different
take on this problem is to design competitive auctions, which obtain a revenue that is within a factor
of the revenue that can be obtained with a single sale price (Goldberg et al., 2006).

A final important direction is the design of online auctions. “Online” here does not refer to
Internet auctions; rather, it refers to settings in which the bidders arrive at and depart from the
auction over time, and allocation decisions must be made before all the bidders have arrived. (More
detail can be found in, for example, Lavi and Nisan, 2000; Awerbuch et al., 2003; Blum et al., 2003;
Friedman and Parkes, 2003; Kleinberg and Leighton, 2003; Hajiaghayi et al., 2004, 2005; Bredin and
Parkes, 2005; Blum et al., 2006; Babaioff et al., 2007; Hajiaghayi et al., 2007; Parkes and Duong, 2007.)
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17.1 Introduction

This chapter concerns the generation of pseudorandom sequences and the role of these sequences in
stream ciphers. Pseudorandom sequences are also used in various probabilistic algorithms that arise
in cryptography. In this latter context, however, the role of pseudorandomness is essentially the same
as in other probabilistic algorithms and we leave this aspect of pseudorandomness to other chapters.

The only completely secure cryptosystem is the one-time pad. In this private key system the
message alphabet is the integers modulo an integer m. The key or keystream is a sequence of symbols
from the message alphabet generated uniformly independently at random. The key is known to both
the sender and receiver. To encrypt a message, the key is added to the message symbol by symbol
modulo m. From the point of view of Shannon’s information theory this system is unconditionally
secure. That is, an adversary who knows any subset of the symbols of the key (or, equivalently,
any set of known plaintext/ciphertext pairs) can determine any other symbol of the message with
probability no better than guessing. Such a system is further advantageous because encryption is as
fast as the method of generating the random symbols. The drawback is that sharing the key between
the sender and the receiver is no easier than sharing the message, since the key is as large as the
message. Thus the one-time pad is only practical when the sender and receiver have access to a
secure channel at some point (when they can share the key) and plan to use an insecure channel to
share a message at some later time. Such situations are rare.

A stream cipher uses a pseudorandom sequence as the keystream in place of a truly random one.
By pseudorandom we mean that the key is apparently random by various criteria that are related
to the effectiveness of the system. Since the actual encryption is simple and well understood, the
issues surrounding the effectiveness of a stream cipher have to do mainly with the generation of
keys. The symbols of the key must be difficult to determine from a subset of the symbols and the

17-1
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key must be efficiently generated. There is widespread belief in the cryptographic community that
stream ciphers are less secure than either well-designed block ciphers or public key systems. Thus
they are considered practical only if they achieve much higher speed. We stress, however, that the
relative security of types of cryptosystems is largely a matter of belief, often depending on unproved
complexity theoretic assumptions.

Stream ciphers can be implemented either in hardware, which has the advantage of speed of
execution, or in software, which has the advantages of speed of implementation and portability. The
choice often affects the choice of message alphabet. A binary alphabet is typically used in hardware
implementations. An alphabet of size 256 is often used in software implementations. In much of this
chapter we treat the case of stream ciphers based on binary sequences, since this case has been more
extensively studied. In many instances the analysis is considerably simpler with binary sequences.
Also, hardware implementations are essentially finite state devices. Their output sequences are thus
eventually periodic and this is often an assumption about the sequences used in stream ciphers.

As with most cryptography there are two aspects to the study of stream ciphers: their design and
their cryptanalysis. Of course there is a relationship. Stream ciphers must be designed to resist any
general cryptanalytic attacks and the cryptanalysis of a system depends on its design.

17.1.1 Classification and Modes of Stream Ciphers

In the greatest generality a stream cipher is a parametrized nonterminating finite automaton with
output. More precisely, it consists of

1. A state space A, a key space K, and a message alphabet M
2. A state change function F : K × A × M → A
3. An output function g : K × A × M → M

For a given message sequence x0, x1, . . . ∈ M, initial state α0 ∈ A, and key k ∈ K, the stream cipher
generates a state sequence and output (i.e., ciphertext) sequence by

αi+1 = F (k, αi, xi)

yi = g (k, αi, xi).

Most commonly
g(k, α, x) = x + h(k, α) mod m,

where M is the integers modulo an integer m. In this case the sequence zi = h(k, αi) is called the
keystream and the pair (F, h) is called a keystream generator.

Keystreamgeneratorsmaybeclassifiedassynchronousorself-synchronizing.Inaself-synchronizing
generator the state depends on the previous few output symbols,

αi+1 = F
(
yi, . . . , yi−r+1

)
.

In effect the state consists of the previous r output symbols. The advantage of such a system is that
if symbols are lost, then the receiver can resynchronize after r output symbols have been received.
The disadvantage is that distorted symbols cause error propagation for r symbols.

In a synchronous generator the keystream is independent of the message sequence. That is,
F : K × A → A. Synchronous generators are unable to recover from lost symbols without resetting
to an initial state. However, an external mechanism can be added to solve the synchronization
problem. Distorted symbols result in no error propagation. Nonetheless, in most applications using
noisy channels it is likely that an underlying error correction mechanism will be used. Synchronous
generators are the most commonly used stream ciphers.
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Synchronous generators are often restricted to one of two special cases. In counter mode, αi+1 =
F(αi) and zi = h(k, αi). An example of a counter mode generator is the cyclotomic generator,
described below. In output feedback mode, αi+1 = F(k, αi) and zi = h(αi). Most of the feedback
register based generators described in this chapter run in output feedback mode.

17.2 Underlying Principles

The mathematical tools used to study cryptographically strong pseudorandom sequences are algebra,
information theory, and probability theory. In this section various formalizations of the notion of
randomness are described. We also describe the structure and analysis of linear feedback shift
registers. These are fundamental building blocks in the design of keystream generators. Of particular
importance in this analysis is the theory of finite fields [22,23].

17.2.1 Randomness

There are several different notions of randomness that have been applied to sequences. These include
information theoretic randomness, statistical randomness, unpredictability (a complexity theoretic
notion), and Kolmogorov complexity. The first three have the greatest relevance for cryptography,
and we describe them in more detail next.

17.2.1.1 Information Theoretic Randomness

The mathematical analysis of cryptographic systems was initiated by Shannon’s invention of infor-
mation theory [37]. Shannon’s approach was to analyze the information that can be derived about a
system by an adversary who has unlimited computational resources. The analysis is probabilistic. The
cryptanalyst has a known ciphertext and knows the probability distribution of plaintexts, keys, and
ciphertexts. The a priori distribution on the plaintexts arises by assuming they lie in some restricted
class of strings such as a natural language. By conditioning this distribution on the known cipher-
text, a new distribution on plaintext is determined. The cryptanalyst is successful if one plaintext has
conditional probability close to one.

Let X be a discrete random variable whose distribution is given by pi = Pr(X = i). The entropy
of X is defined by

H(X) = −
∑

i,pi �=0

pi log
(
pi
)
.

The entropy is a measure of uncertainty about X. Shannon gave a set of properties that the uncertainty
intuitively should have and proved that the so-defined entropy function is the unique function that
has them. For any X, H(X) ≤ log(n), with equality if and only if pi = 1/n for all i. The notion of
entropy also plays a role in compression. It is a lower bound on the average number of bits required
to encode a finite set. An introduction to information theory and its role in coding theory and
cryptography can be found in the book by Welsh [38].

If X and Y are two random variables, the notion of entropy extends naturally to the joint entropy
H(X, Y), the conditional entropy H(X|Y) (the uncertainty about X if Y is known), and the mutual
information

I(X; Y) = H(X) − H(X|Y)

between X and Y (the information common to X and Y). If I(X; Y) = 0, then X and Y are
independent, so Y reveals nothing about X. Conversely, if I(X; Y) = H(X), i.e., is maximal, then
H(X|Y) = 0 so there is no uncertainty about X when Y is known.
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Now consider the case of a cryptosystem. Suppose that Xn = x1, x2, . . . , xn is an n-bit plaintext,
K is a key, and Yn = y1, y2, . . . , yn is the corresponding n-bit ciphertext. In general,

H
(
K|Yn) = H

(
Xn|Yn) + H

(
K|Xn, Yn) .

If I(Xn; Yn) = 0, then the ciphertext reveals nothing of the plaintext and the system is said to have
perfect secrecy. In this case

H(K) ≥ H
(
K|Yn) ≥ H

(
Xn|Yn) = H

(
Xn) .

Thus the uncertainty about the key must be at least as great as the uncertainty about the plaintext. It
follows that the average length of the minimal length encoding of the key must be at least as great as
that of the plaintext. That is, to achieve perfect secrecy the key must be as long as the plaintext. This
is a fundamental limit on the power of private key encryption.

At the other extreme, if I(Xn; Yn) is asymptotic to H(Xn), then for long enough plaintexts
knowledge of the ciphertext essentially determines the plaintext and the system can be broken
(although it still may require an exhaustive search to find the plaintext).

In the intermediate cases 0 < I(Xn; Yn) < rH(Xn) for some positive constant r < 1. For arbitrarily
long messages there is some uncertainty about the plaintext. It follows that

H
(
K|Yn) > (1 − r)H

(
Xn)

is bounded away from zero. Such a cryptosystem is called ideally secure. This means that the key
can never be determined from the ciphertext with perfect certainty. However, the uncertainty may
be small enough that significant portions of the plaintext are revealed.

Shannon also defined a measure of how much ciphertext is necessary to determine the key. The
unicity distance nu is the minimum length n such that H(K|Yn) ∼ 0. Under reasonable assumptions,
we have

nu = H(K)

1 − h
,

where h is the information rate of the plaintext (so 1 − h is the redundancy).

17.2.1.2 Statistical Randomness

A sequence is statistically random if various statistical properties are close to those of a truly
random sequence. The failure of these properties to hold does not necessarily lead directly to a
cryptanalytic attack. However, such failure is reason for concern that an attack may be found in
the future. Following are some of the randomness criteria that have been considered for periodic
binary sequences. Let a = a0, a1, a2, . . . denote such a sequence. Its period, denoted ρ(a), is the least
positive integer n such that ai = ai+n for every i. The period of a keystream must be large.

17.2.1.2.1 Balance
A sequence is balanced if the number of occurrences of 0 equals the number of occurrences of 1 in
each period. In the extreme, a highly unbalanced sequence allows a cryptanalyst to read most of a
message either directly or by complementing all bits. In less extreme cases, unbalanced sequences
have been shown to leak essential information [18]. Of course if ρ(a) is odd, then a cannot be
perfectly balanced.

17.2.1.2.2 Subsequence Distribution
If r is any integer, we can count the number of occurrences of each binary r-tuple b0, . . . , br−1 in
a period of a (more precisely, we count the number of indices i such that 0 ≤ i ≤ n − 1, and
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ai = b0, a1 = bi+1, . . . air−1 = br−1). It is desirable that the distribution of occurrences be close to
uniform. A sequence of period 2r such that every binary r-tuple occurs exactly once in a period is
known as a de Bruijn sequence.

17.2.1.2.3 Autocorrelations
The autocorrelation with shift τ of a is defined as

Asma(τ) =
ρ(sma)−1∑

i=0
(−1)ai+ai+τ ,

or, equivalently, the number of bits in one period of a and a τ shift of a that are equal minus the
number of bits that are not equal. If a is independent of its τ shift, then the autocorrelation is zero,
while if for each i, ai determines ai+τ, then the autocorrelation is plus or minus ρ(a). Thus the
autocorrelation measures the extent to which a sequence is independent of its shifts. The failure of
the autocorrelation to be close to zero can sometimes be used to derive essential information about
a cryptosystem.

17.2.1.2.4 Run Property
A run in a sequence is a maximal subsequence consisting of only zeros or only ones. A binary
sequence can be thought of as a series of runs of varying lengths. A sequence has the run property
if the distribution of runs is close to what would be expected of a truly random sequence. If a run
starts at position i, then it has length r with probability 2−r .

17.2.1.2.5 Nonlinearity
Generally, linearity can be exploited in constructing cryptanalytic attacks. Thus, loosely speaking,
the sequence should not exhibit linear structure. This statement can be interpreted in various ways.
For example, the sequence defines a function from its set of indices to {0, 1}. Whenever we interpret
the index set as an algebraic structure (say, modular integers or a finite field), this function should
be highly nonlinear. Various approaches have been taken to defining the degree to which such a
function is nonlinear.

A Boolean function f on n bits satisfies the strict avalanche criterion (or SAC) if f (x̄) + f (x̄ + ȳ)
is a balanced function of x̄ for every ȳ with ||ȳ|| = 1. Here ||ȳ|| denotes the number of ones in ȳ,
known as its Hamming weight. That is, changing any single bit of the input to f gives a function
that is uncorrelated with f . The function f satisfies SAC(k) if holding any k bits constant results in
a function that satisfies SAC. Preneel et al. gave conditions under which various SAC(k) hold [28].
More generally, f satisfies the propagation criterion of degree k if f (x̄) + f (x̄ + ȳ) is a balanced
function of x̄ for every ȳ with 1 ≤ ||ȳ|| ≤ k.

The Walsh transform of f is defined as

F̂(w̄) =
∑

x̄

(−1)f (x̄)+w̄·x̄.

Parseval’s theorem says that ∑
w̄

(
F̂(w̄)

)2 = 22n.

A function is bent if each Walsh transform achieves exactly the average value implied by Parseval’s
theorem, ∣∣∣F̂(w̄)

∣∣∣ = 2n/2

for every w [30]. That is, the maximum correlation of f with a linear function is as small as possible.
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The notions of correlation immunity and the degree of algebraic nonlinearity are described in
subsequent sections.

17.2.1.3 Unpredictability

In a very different attempt to define a notion of randomness suitable for cryptography, Yao [39]
and Blum and Micali [3] considered what would make it effectively impossible for an adversary to
determine the next bit of a sequence if a prefix were known. The adversary in their model is assumed
to have limited resources, so their definition of unpredictability is complexity theoretic.

In Blum and Micali’s model a generator G inputs a security parameter n and a random number
0 ≤ i < 2n and outputs a pseudorandom bit sequence a. Such a generator is a cryptographically
strong pseudorandom bit generator or CSPRB generator if the following hold.

1. The bits aj are easy to generate. That is, it should take time polynomial in n to output the
jth bit.

2. The bits are unpredictable. Given G, n, and a0, . . . , aj−1, but not i, it should be compu-
tationally infeasible to predict aj with probability significantly greater than 1/2.

More precisely, suppose the output from G has length p(n) if n is the security parameter.
A predicting family is a polynomial (in n) size family of circuits

C =
{

Cj
n : j < p(n)

}

such that each Cj
n has j inputs and one output. If the input is a0, . . . , aj−1, and the output is d, let Pj,i

be the probability that d = aj. Then G passes the next bit test C if for every polynomial q(n), every
large enough n, every j < p(n), and every i < 2n,

Pj,i <
1
2

+ 1
q(n)

.

A generator is perfect if it passes all polynomial size next bit tests. A different, but equivalent,
formulation was given by Yao. In Section 17.3.3, we describe Blum and Micali’s construction of a
generator that passes the next bit test assuming the hardness of the discrete log problem.

17.2.2 Feedback Shift Registers

Many devices that are proposed for generating cryptographically strong pseudorandom sequences
are based on linear feedback shift registers or LFSRs for short [14]. An LFSR of length r has an r-bit
state vector that is updated by shifting by one position and filling the vacated position by a linear
function of the previous state. More specifically, if we let the state be ā = (a0, . . . , ar−1), ai ∈ {0, 1},
then there is a linear feedback function

f (ā) =
(r−1∑

i=0
ciai

)
mod 2,

where each ci is a bit. The state is updated by replacing ā with (a1, . . . , ar−1, f (ā)). A diagram of an
LFSR is given in Figure 17.1.

In hardware the state change can be thought of as tapping the cells whose corresponding cis equal
1 and adding the values modulo 2. Thus LFSRs are extremely fast, especially when implemented in
hardware and when the number of tapped cells is small. They can be designed to generate sequences
of large period—up to 2r − 1. A sequence of period 2r − 1 output by an LFSR of length r is called
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a0 a1 ar–1

cr–1c1
fc0

FIGURE 17.1 Linear feedback shift register.

an m-sequence. These sequences have many of the desirable statistical properties mentioned in
Section 17.2.1.2. They are optimally balanced for odd period sequences. Every subsequence of length
t ≤ r occurs 2r−t times, except the all-zero subsequence which occurs 2r−t − 1 times. The shifted
autocorrelations all equal −1. The distribution of subsequences of each length up to r is nearly
uniform and the distribution on runs is nearly perfect.

There is a useful algebraic theory of LFSRs. To describe this, some algebraic background is needed.
If q = 2r , then there is a unique finite field with q elements, called GF(q). An element α of GF(q)

is called primitive if every nonzero element of GF(q) is a power of α. (Compare to Section 10.5 of
Chapter 10 of this book). Primitive elements exist in every GF(q). The minimal degree polynomial
with coefficients in GF(2) = Z/2Z = {0, 1} for which α is a root is called a primitive polynomial.
We also need the trace function, defined by

Trr
1(x) = x + x2 + x4 + · · · + x2r−1

.

The trace function maps GF(q) to GF(2), is nonzero, and is GF(2)-linear, thinking of GF(q) as a
vector space over GF(2). In fact, every such linear function is of the form x �→ Trr

1(γx) for some
γ ∈ GF(q). These notions generalize to a setting where the base field GF(2) is replaced by an arbitrary
finite field of arbitrary characteristic. This makes it possible to extend the following analysis of LFSR
sequences to LFSRs whose entries lie in an arbitrary finite field.

We can associate to any eventually periodic sequence a the generating function

g(x) =
∞∑

i=0
aixi.

We can associate to any LFSR with feedback function
∑r−1

i=0 ciai the connection polynomial

q(x) =
r∑

i=1
cr−ixi − 1.

These are defined over GF(2). Then g(x) is a rational function and, when represented as a quotient
of two relatively prime polynomials, the denominator is the connection polynomial of the smallest
LFSR that outputs a. An LFSR sequence is an m-sequence if and only if the connection polynomial
is primitive. The period of a is the least n such that g(x) divides xn − 1. Also, it can be shown
that if the connection polynomial of an LFSR is irreducible, then there are elements γ, α ∈ GF(2r)
such that

ai = Trr
1
(
γαi) .

The sequence a is an m-sequence if and only if α is primitive. It is these algebraic structures that
make it possible to analyze many of the statistical properties of m-sequences mentioned above.

Despite their nice statistical properties m-sequences are cryptologically weak. This is due to the
linearity of the feedback function and the associated algebraic structures.

If a is any sequence, then the size of the smallest LFSR that outputs a is called the linear span or
linear complexity of a. We denote this quantity by λ(a). There is an algorithm, due to Berlekamp
and Massey [24] which, given 2λ(a) bits of a sequence, outputs a description of a minimal length
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BERLEKAMP–MASSEY (a)

1 input ais until the first nonzero ak−1 is found
2 g ← ak−1 · xk−1
3 pk−1 ← 0
4 qk−1 ← 1
5 m ← k − 1
6 pk ← xk−1

7 qk ← xk−1 + 1
8 while there are more bits
9 do input a new bit ak
10 g ← g + akxk

11 if g · qk ≡ pk
(
modxk+1

)
12 then qk+1 ← qk
13 pk+1 ← pk
14 else qk+1 ← qk + xk−mqm
15 pk+1 ← pk + xk−mpm
16 if deg

(
qk+1

)
> deg

(
qk

)
17 then m ← k
18 k = k + 1
19 return qk , pk

FIGURE 17.2 The Berlekamp–Massey algorithm.

LFSR that generates a. This algorithm is given in Figure 17.2. At the kth stage the best rational
representation of the generating function modulo xk is found. Details of the proof that the algorithm
achieves this and converges in 2λ(a) steps were given by Massey [24]. Furthermore, the Berlekamp–
Massey algorithm can be made efficient by computing the product in step 11 from previous values
in linear time. Thus if the algorithm examines T bits of a sequence, then it runs in time O(T2).
If the period of a sequence is exponentially larger than its linear span, then this time is quite small.
This is the case for m-sequences. Thus LFSRs are unsuitable for generating sequences for stream
ciphers. Moreover, sequences generated by other means must have large linear span or they will still
be susceptible to the Berlekamp–Massey algorithm.

A major goal of research on stream ciphers has been to design efficient keystream generators whose
output has large linear span. Despite the cryptographic weakness of LFSRs, their speed, simplicity,
and ability to be analyzed make them important building blocks for stream ciphers. They are useful
as well in other areas such as spread spectrum systems, radar systems, and Monte Carlo simulation.
Many variations on LFSRs have been proposed that gain cryptographic strength by introducing
some nonlinearity. Several of these are described in Section 17.3.

It has long been known that a small change in a sequence can result in an enormous change in the
linear span. For example, the all 0 sequence has linear span 0, but if we change every nth position to
a 1, then the resulting sequence has linear span n (any register of length less than n that outputs this
sequence must reach an all 0 state, and will output all 0s from then on, which is a contradiction).
Suppose a is any sequence of period n and b is another sequence with the same period that differs
from a in a small number k of bits per period. If a cryptanalyst is given a prefix ū = a0, . . . , am−1 of
a, she can run the Berlekamp–Massey algorithm for every m-tuple that differs from ū in at most k
positions. Among the resulting generators will be one that outputs b, although it may be problematic
deciding which generator to select. This led Ding et al. [10] to define the sphere complexity. Let
O(a, k) be the set of sequences of period n that differ from a in at least 1 and at most k positions.
Then the sphere complexity of a is defined as

SCk(a) = min
smb∈O(sma,k)

λ(b).
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Although less important than the linear span, it is desirable that the sphere complexity of a sequence
be large.

LFSRs can be generalized to feedback registers whose entries are elements of an arbitrary fixed finite
field GF(q). The coefficients ai are arbitrary elements of GF(q). Such a register outputs a sequence
of elements of GF(q). Essentially everything we have said about LFSRs applies in this more general
setting, although some slight modification is necessary in steps 14 and 15 of the Berlekemp–Massey
algorithm.

17.3 State of the Art

The importance of cryptanalysis is threefold. First, it reveals weaknesses in existing systems so
that users know what to avoid. Second, it provides a limited means of certification: users are
more confident in a system that has withstood attack for a reasonable time. This is important
in an area where formal proofs of security seem unlikely and systems often intentionally defy
formal analysis. Third, the study of cryptanalysis often reveals general principles for the design
of future cryptosystems. In addition to the Berlekamp–Massey algorithm there have been several
general methods of cryptanalysis of stream ciphers. In Section 17.3.1 we discuss correlation attacks
[12,26,36] and 2-adic rational approximation [20].

The ultimate goal of research on stream ciphers is to provide fast methods of securely transmit-
ting data. Methods that have been proposed in recent years include feedback shift register based
methods such as nonlinear filter generators [15]; nonlinear combiners [31]; clock-controlled shift
registers [13]; shrinking generators [7]; and cyclotomic generators [9]. There have also been several
recent proposals of generators that are not based on shift registers, and are suitable for software
implementations. These include RC4 and SEAL [29]. In Section 17.3.2 we survey these approaches.

In contrast to public key cryptosystems, the theoretical foundations of stream ciphers are generally
weak or only weakly connected to practice. In Section 17.3.3 we discuss complexity theoretic models
for stream cipher security [3,39]; and models for security against broad generalizations of the
Berlekamp–Massey algorithm [19].

17.3.1 Cryptanalysis

In this section we describe general methods of cryptanalyzing stream ciphers.

17.3.1.1 Correlation Attacks

Consider a situation in which one or more feedback registers are made to interact to produce an
output sequence. Suppose a cryptanalyst knows the structure of the feedback registers and how
they interact but not the start states. This is a typical arrangement when keystream generators are
implemented in hardware. The goal of the cryptanalyst then is to determine the initial states of the
registers from a known segment of key stream. If the generator is constructed so that the state is
large enough, then an exhaustive search is infeasible. The idea behind a correlation attack is to find
statistical correlations between keystream bits and state bits. These correlations can then be used to
improve searches for the initial states. Typically, exhaustive search is performed on the start state of
one of the underlying registers until the correlations match the prediction.

This general framework has been used to attack combination generators, nonlinear filter genera-
tors, and various clock-controlled shift registers. These attacks are described in greater detail in the
sections below on the specific generators.
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17.3.1.2 2-Adic Rational Approximation

The method of 2-adic rational approximation is based on a class of feedback registers invented by
Goresky and Klapper [20] that is analogous to LFSRs. These registers, called feedback with carry
shift registers or FCSRs, are based on algebra over the integers and 2-adic numbers just as LFSRs are
based on algebra over polynomials and power series. An FCSR of length r has an r-bit state vector
ā = (a0, . . . , ar−1) plus an integer memory m. The state is updated similarly to that of an LFSR, but
the addition is performed as integers rather than modulo 2. The low bit is fed back to the register
and the high bits are retained in m as a carry to the next state change. More precisely, there is a linear
feedback function

f (ā, m) = m +
r−1∑
i=0

ciai,

where each ci is a bit. The state is updated by replacing ā with(
a1, . . . , ar−1, f (ā, m) mod 2

)
and replacing m by ⌊

f (ā, m)/2
⌋

.

A diagram of an FCSR is given in Figure 17.3.
FCSRs are very simple and fast devices that can output sequences that are exponentially larger

than the size of the register. There are many analogies between LFSRs and FCSRs. Associated with
the output sequence a is the 2-adic number

α =
∞∑

i=0
ai2i.

The algebra of 2-adic numbers is like that of power series, but addition and multiplication are
performed with carry to higher terms instead of modulo 2. Associated with the FCSR is the connection
number

q =
r∑

i=1
cr−ixi − 1.

An FCSR sequence is always eventually periodic. The associated 2-adic number α is rational, and q
is the denominator of a rational representation of α. Thus the cryptanalytic problem of finding the
smallest FCSR that outputs a given sequence is equivalent to the problem of finding the minimal
rational representation for a 2-adic number. This problem was solved by de Weger’s algorithm. An
adaptive version appears in [20], where the notion of 2-adic span (the minimal number of bits of
storage used by an FCSR that outputs a) is defined. As with linear span, in order for a sequence
to be cryptographically strong it must have large 2-adic span. It was further shown that sequences
generated by summation combiners (see Section 17.3.2.1) have relatively low 2-adic span. Various

a0 a1

c0 c1 cr–1

ar–1 m

Σ

FIGURE 17.3 Feedback with carry shift register.
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generalizations of FCSRs have been proposed by exploiting known generalizations of the algebra of
2-adic numbers.

Despite this cryptanalysis, maximal period FCSR sequences (ones for which 2 is a primitive
root modulo the connection number) have many desirable statistical properties. Their periods are
exponentially larger than the sizes of their generators, they are balanced, their arithmetic correlations
vanish, and they are nearly de Bruijn sequences. Thus they are potential substitutes for m-sequences
as building blocks for keystream generators.

17.3.2 Keystream Generation

In this section we survey various methods of generating sequences for stream ciphers. Much of the
research in this area has concentrated on generating sequences with large linear span and immunity
to correlation attacks.

17.3.2.1 Linear Congruential Generators

Linear congruential generators are often suggested as pseudorandom generators because they are
simple, have large period, and are readily available on computer systems. However, they are highly
linear and hence are cryptographically weak.

A linear congruential generator is determined by an integer modulus, m, and a pair of integers,
u and v, with 0 < u < m and 0 ≤ v < m. A sequence of integers a0, a1, a2, . . . is generated by
choosing a0 arbitrarily and computing

an = uan−1 + v mod m.

If v is relatively prime to m and u has maximal order modulo m (that is, ui = 1 mod m only if φ(m)

divides i, where φ is Euler’s function), then this sequence has maximal period φ(m).
Several attacks on linear congruential generators have appeared in the literature. The one due to

Boyar assumes that u, v, and m are unknown and the cryptanalyst does not know the log(log(m))

low order bits of each an [4]. Lagarias and Reeds have described an attack on a generalization of the
linear congruential generator in which the linear function is replaced by an arbitrary polynomial.

17.3.2.2 Nonlinear Combiners

A nonlinear combiner takes the outputs from a set of k LFSRs and combines them with a nonlinear
function h : GF(2)k → GF(2). We denote by aj the output from the jth LFSR. Then the output b of
the nonlinear combiner is the sequence whose ith bit is bi = h(a1

i , . . . , ak
i ). A diagram of a nonlinear

combiner with k = 2 is given in Figure 17.4.

a1
0 a1

1

a2
0 a2

1

c11c10

c20 c21

c1r1–1

a1
r1–1

a2
r2–1

c2r2–1

h

f2

f1

FIGURE 17.4 Nonlinear combiner.



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C017 Finals Page 12 2009-9-25

17-12 Special Topics and Techniques

The Geffe generator is a special case using three LFSRs. The output from the third register is
used to select between the first two. That is, h(a1, a2, a3) = a3a1 ⊕ (¬a3)a2. The period of the Geffe
generator is n1n2n3 and the linear span is

λ
(
a1) λ

(
a3) + λ

(
a2) (1 + λ

(
a3)) .

However, state information is leaked since

Prob
(
h
(
a1, a2, a3) = a1) = Prob

(
h
(
a1, a2, a3) = a2) = 3

4
.

Another special case is the threshold generator. This generator combines k LFSR sequences by
outputting a 1 if and only if the majority of the outputs are 1. That is,

h
(

a1, . . . , ak
)

=

⎧⎪⎨
⎪⎩

1 if
k∑

i=1
ai >

k
2

0 otherwise.

In case k = 3 the period is n1n2n3 and the linear span is

λ
(
a1) λ

(
a2) + λ

(
a2) λ

(
a3) + λ

(
a1) λ

(
a3) .

Once again, however, there is a positive correlation between the output sequence b and each sequence
ai. Specifically, the mutual information I(b; ai) is 0.189 bits.

In the general case it is known that the period is bounded by

ρ(b) ≤ lcm
(
ρ
(
a1) , . . . , ρ

(
ak
))

and the linear span is bounded by

λ(b) ≤ h∗ (λ
(
a1) , . . . , λ

(
ak
))

,

where h∗ is h thought of as a polynomial over the integers [32]. Further, Key [17] showed that these
inequalities become equalities when the a j are m-sequences with relatively prime periods. These
results generalize to sequences over arbitrary finite fields.

Nonlinear combiners can be further generalized by allowing the combining function to retain a
small amount of memory, say m bits. Such a combiner is specified by a pair of functions,

h : GF(2)k × GF(2)m → GF(2)

and

u : GF(2)k × GF(2)m → GF(2)m.

Thus if the state of the memory is c, then the combiner outputs bi = h(a1
i , . . . , ak

i , c) and updates
the memory by c = u(a1

i , . . . , ak
i , c). Of particular interest is the summation combiner which adds

its input sequence with carry, using the extra memory bits to save the carry. That is,

h
(

a1, . . . , ak, c
)

= c +
∑

j

a j mod 2

and

u
(

a1, . . . , ak, c
)

=
⎢⎢⎢⎣
⎛
⎝c +

∑
j

a j

⎞
⎠/2

⎥⎥⎥⎦ ,
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where we treat c as an integer. Rueppel [31] showed that if the input sequences to a summation
combiner are m-sequences with relatively prime periods ρ1, . . . , ρk, then the output of the sequence
has period

∏
i ρi and linear span close to its period. Summation combiners are susceptible to a 2-adic

rational approximation attack.
Combiner generators are vulnerable to correlation attacks. This was first observed by Siegenthaler.

The cryptanalyst is assumed to know the combining function h and the individual LFSRs, but not
the initial states of the LFSRs. This is equivalent to saying that the cryptanalyst knows the individual
LFSR sequences but not the phase shifts that gave rise to the keystream. The idea of Siegenthaler’s
correlation attack is to pick one of the input sequences to h and compute the correlation of each phase
shift with the known bits of the keystream until one is found that matches the predicted correlation.
The time needed to determine the initial states of all the LFSRs is proportional to the sum of their
periods times the number of known keystream bits. This is much smaller than the time needed to
do an exhaustive search of all states, which is proportional to at least the products of the periods of
the sequences. An attack such as this that attacks a piece of a generator at a time is sometimes called
a divide-and-conquer attack.

To compute statistics it is assumed that each input to h is a sequence of independent uniformly
distributed binary random variables. Let b be the output sequence and suppose b0, . . . , bn−1 are
known. For each j let pj be the probability that the jth input to h equals the output. If pj is close to
1/2, then n must be enormous. On the other hand suppose pj is far from 1/2. For each phase shift τ

the correlation

Csmaj,smb(τ)
def= 1

n

n−1∑
i=0

(−1)a j
i+τ(−1)bi

is computed. For some T the phase shifts that give the T best correlations are chosen as candidates.
(Best means closest to 2pj − 1, the a priori expected correlation.) If n and T are large enough, then
the probability that the correct phase shift is in the candidate set is large. For example, suppose the
length of the jth LFSR is 41, pj = 0.75, and n = 300. Then the probability that the correct phase shift
is among the best 1000 candidates is 0.98.

In order to build a combiner that resists this correlation attack, it is necessary that all the prob-
abilities pj be close to 1/2. However, even if this is the case it may be possible to find a correlation
between the output from h and a small subset of its inputs. In this case a similar divide-and-conquer
attack can be used. The goal is then to find a combining function h that has no such correlations.
This gives rise to the notion of correlation immunity, which was defined by Siegenthaler [34].

DEFINITION 17.1 A function h(x1, x2, . . . , xk) : GF(2)k → GF(2) is mth order correlation
immune if the random variable given by any m-tuple of xjs is statistically independent of
h(x1, x2, . . . , xk).

This condition is equivalent to the condition that, for every choice of binary vector w̄ =
(w1, . . . , wk) with ||w̄|| ≤ m, h(x1, x2, . . . , xk) is statistically independent of the inner product
w̄ · x̄. It can also be shown that h is mth order correlation immune if and only if Ĥ(w̄) = 0 whenever
1 ≤ ||w̄|| ≤ m (where Ĥ(w̄) is the Walsh transform of h).

Siegenthaler showed that there is a trade-off between the order of correlation immunity and
the attainable nonlinearity. The nonlinear order of h is the maximum number of variables in any
monomial in the algebraic normal form of h. If h is mth-order correlation immune and 1 ≤ m < k,
then its nonlinear order is at most k − m. This is lowered to k − m − 1 if h is balanced and
m �= k − 1, and this is tight. Since both measures cannot be large, memoriless nonlinear combiners
are cryptographically weak.
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Combiners with memory were invented in part to remedy this. For example, a combiner with
output function

h
(
x̄, ȳ

) =
k∑

i=1
xi + g

(
ȳ
)

mod 2

is (n − 1)st-order immune for any nonzero g and any state change function u. Thus g and u
can be chosen to satisfy any nonlinearity conditions. Meier and Staffelbach [26] observed that the
correlation immunity of such combiners arises because the linear functions applied to input bits in
computing the correlations fail to take earlier bits into account. However, if at stage i one considers
all bits {

aj
� : 0 ≤ � ≤ i and 1 ≤ j ≤ k

}
,

then there must be correlations between the ith output bit bi and linear functions of the form

i∑
�=0

k∑
j=1

w�,ja
j
�.

For the summation combiner and for general combiners with a single bit of memory Meier and
Staffelbach found explicit linear functions for which these correlations are large. This analysis was
generalized to combiners with arbitrary amounts of memory by Golić [12], who showed that if the
size of the memory is sufficiently large, then the correlations between inputs and outputs can be kept
small.

17.3.2.3 Nonlinear Filter Generators

A nonlinear filter generator applies a nonlinear function h to the state of a linear feedback shift
register to produce the output sequence b. Thus if the register has length r, then h is a function from
GF(2)r to GF(2). For speed and ease of implementation it is desirable that h have few terms when
expressed as a polynomial. If n is the period of the underlying LFSR sequence, then it is possible
to generate any sequence of period dividing n by a nonlinear filter generator. However, when the
function h is expressed as a polynomial, it may have as many terms as the period of the sequence.
Key [17] showed that if h has degree d then

λ(b) ≤
d∑

i=1

(
r
i

)
.

This result was generalized by Chan et al. [6] to registers with nonlinear feedback functions.
It follows from Key’s result that h must have high degree. Lower bounds are the real need for
cryptographic purposes but such results have been rare. Kumar and Scholtz [21] showed that if h is
a bent function and 4 divides r, then

λ(b) ≥ 2r/4
(

r/2
r/4

)
∼ 2

2r/2
√

πr
.

Weaker lower bounds for more general classes of filter generators have been shown by Rueppel [31].
It is unknown how to construct filter generators with maximal linear span where h has few terms.

Chan and Games considered the following generalization. Let a be an m-sequence over a finite
field GF(q). Let h : GF(q) → GF(2). Let bi = h(ai). The sequence b is called a geometric sequence.
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If q is even, then h can be represented algebraically and results of Herlestam [16] and Brynielsson
can be used to show that if h(x) = ∑q−1

i=0 cixi, then

λ(b) =
∑
ci �=0

λ(a)||i||

≤ qlog2(λ(sma)+1).

To be cryptographically strong, a register of this size would need a linear span close to qλ(a). Chan
and Games showed that if q is odd, then λ(b) can be made as large as qλ(sma)−1. Furthermore,
geometric sequences have optimal autocorrelations (and in some cases low cross-correlations).
However, Klapper later showed that if one considers these sequences as sequences over GF(q) (that
simply happen to have only two values), then the linear span is low and, by exploiting the imbalance
of the sequences, the parameter q can be found with a probabilistic attack [18].

Filter generators are vulnerable to correlation attacks. This was first observed by Siegenthaler [35].
The easiest way to see this is to consider a filter generator whose underlying LFSR has length r as a
nonlinear combiner with r input sequences. The LFSRs generating the input sequences are identical,
but the initial state of the ith register is the second state of the (i − 1)st register. Then the same
correlation attack that was used on a nonlinear combiner can be used. In fact the attack is now faster
since all the underlying registers have the same structure. It is only necessary to cycle through the
set of initial states once looking for correlations.

17.3.2.4 Clock-Controlled Generators

A quite different way to introduce nonlinearity in a generator is to irregularly clock certain parts of
the generator. A survey of these clock-controlled generators as of 1989 was given by Gollman and
Chambers [13]. In a simple case, two LFSRs are used: L1 and L2 of lengths n1 and n2, respectively.
We are also given a function

f : {0, 1}n1 → Z.

At each step we clock L1 once and extract f (si) where si = (si,1, . . . , si,n1) is the ith state of L1. Register
L2 then changes state (i.e., is clocked) f (si) times and the bit produced by the last state change is taken
as the ith output of the clock-controlled generator (if b is the output from L2, this is ci = bσ(i), where
σ(i) = ∑i

i=0 f (si)). The case when f (si) = si,1 is called the stop-and-go generator and is weak, since
each change in the output reveals that a 1 has been generated by L1. Also, there is a large correlation
between consecutive output bits. The strength is improved by taking f (si) = 1 + si,1, giving rise to
the step-once-twice generator.

For general clock-controlled generators, if ρi is the period of L1 and T is the sum of the f values
of the states of L1 in one period, then the period of the output sequence c is

ρ(c) = ρ1ρ2/ gcd (T, ρ2) .

Assuming gcd(T, ρ2) = 1, the period is maximal. We make this assumption for the remainder of this
discussion. The linear span of c is upper bounded by λ(c) ≤ n2ρ1, hence is large but not maximal. If
L1 generates an m-sequence, then the stop-and-go generator achieves the upper bound. If L1 and L2
generate the same m-sequence, then both the stop-and-go and step-once-twice generators achieve
the maximum linear span [1].

Several authors have described correlation attacks on clock-controlled shift registers. For example,
Golić showed that in some circumstances the feedback polynomial and the initial state of the clocked
register can be determined [11].

A variation on the stop-and-go generator, called the alternating step generator, was proposed by
Günther. Two stop-and-go generators are used, sharing the same control (L1) register. The outputs
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FIGURE 17.5 Cascaded clock
controlled shift register of
height = 3.

are then added modulo 2. Let ρ2 and ρ′
2 be the periods of the L2 reg-

isters, which have lengths n2 and n′
2. Assume that the control register

produces a de Bruijn sequence of period 2m and the connection poly-
nomials for the L2 registers are irreducible. Then the output period
is 2mρ1ρ2. The output linear span satisfies

(
n2 + n′

2
)

2m−1 < λ(c) ≤ (
n2 + n′

2
)

2m.

Günther also gave conditions under which the distribution of sub-
sequences and the autocorrelations are close to ideal. Unfortunately,
the alternating step generator is vulnerable to a divide-and-conquer
attack against the control register.

Clock-controlled shift registers can be extended by using a cascade of registers, each output
sequence clocking the next register. The structure may be modified so that the output from stage
k − 1 both clocks stage i and is added to the output of stage k modulo 2. A diagram of a cascaded
clock controlled shift register of height 3 is given in Figure 17.5.

If 0,1 clocking is used (that is, a cascaded stop-and-go generator), each LFSR has maximal period
and length n, and all LFSRs have distinct primitive connection polynomials, then the output period
is (2n − 1)k and the linear span is n(2n − 1)k−1. For arbitrary s, t clocking suppose the LFSRs have
irreducible degree d connection polynomials and period p with p2 � |(2p−1 − 1). Then the output
period is pn and the output linear span is at least d(pn −1)/(p−1). The distribution of subsequences
of any fixed length approaches the uniform distribution as k approaches infinity.

Correlation attacks may be used to recover state information about the last stage of a cascaded
clock controlled shift register. Another attack based on iteratively reconstructing the states of the
registers is possible in some circumstances [5]. The cryptanalyst is assumed to know the individual
shift register sequences but not the correct phase shifts. She attempts to determine the phase shift
of each stage in turn, starting with the last stage. In some cases if she guesses the phase of a given
stage and reverses the register one step at a time, then the reconstructed output from the preceding
stage eventually locks into the correct phase. This allows the reconstruction to be repeated at the
preceding stage.

With a self-clocking generator a single LFSR is used to clock itself. The case when the clocking
function satisfies f (si) = d if si,1 = 0 and f (si) = k if si,1 = 1 is called the [d, k] self-decimation
generator, to which we restrict our attention. We also assume the underlying LFSR has maximal
period 2n −1. The state graph of a [d, k] self-decimation generator may not be purely cyclic. If d �= k,
then the (eventual) period is at most (3/4)(2n −1). In case gcd(d, 2n −1) = 1 and 2d ≡ k mod 2n −1
or 2n−1d ≡ k mod 2n −1 the period is exactly (2/3)(2n −1). The distribution of short subsequences
is close to uniform. There is evidence that the linear span is at least 2n−1 but this has not been proved.
The drawback to the [d, k]-self decimation generator is that each output bit reveals a state bit and
reveals which state bit is revealed by the next output bit. One way of avoiding this is to use different
state bits for output and clocking control.

17.3.2.5 The Shrinking Generator

A somewhat different type of clocking occurs in the shrinking generator [7]. Again, we start with
a pair of LFSRs, L1 and L2, with lengths n1 and n2 and output sequences a and b. At each stage, if
ai = 1, then bi is output. Otherwise no bit is output. Thus the output c is a shrunken version of
b: cj = bij if ij is the position of the jth 1 in a. If a and b are m-sequences and ρ(a) and ρ(b) are
relatively prime, then c has period

ρ(c) = ρ(b)2n1−1 = (
2n2 − 1

)
2n1−1.
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The linear span of c satisfies

n12n2−2 < λ(c) ≤ n12n2−1.

It can also be shown that the distribution on fixed length subsequences in c is close to uniform. One
drawback is the irregularity of the output. A string of zeros in a leads to a delay in generating the next
bit. Buffering can be used to alleviate this problem. A variation called the self-shrinking generator,
where a single register clocks itself, has also been considered.

17.3.2.6 Cyclotomic Generator

Ding [9] proved a lower bound on the linear span of a sequence based only on its period. If n is an
integer with prime factorization

n =
t∏

i=1
pei

i ,

q is a prime power relatively prime to n, and a is a periodic sequence of period n over GF(q), then

λ(a) ≥ max
{

ordpi(q) : 1 ≤ i ≤ t
}

.

The sphere complexity is similarly bounded. If k < min{||a||, n − ||a||}, where ||a|| is the Hamming
weight of a single period of a, then

SCk(a) ≥ max
{

ordpi(q) : 1 ≤ i ≤ t
}

.

In particular, if the period n is prime and q is a primitive element modulo n, then the linear span
is at least n − 1, as is the sphere complexity for k < min{||a||, n − ||a||}. When n is prime, various
conditions guarantee that 2 is a primitive element modulo n. For example, (1) n4t ± 1, t an odd
prime; or (2) n = t1t2 ± 1, each ti an odd prime and 2ti �≡ −1 mod n.

Sequences satisfying the hypotheses of the above results can be produced by a class of generators
called cyclotomic generators whose analysis is based on the theory of cyclotomic numbers. These
generators use a base register that counts by ones modulo n. A function h is then applied to the value
of the counter to produce an output bit. The simplest case is the cyclotomic generator of order 2k,
for which

h(i) =
(

i(n−1)/2k mod n
)

mod 2.

Here (x mod n) mod 2 means reduce x modulo n to a residue in the range 0 to n − 1, then take the
parity. It can further be shown that the autocorrelations of these sequences are ideal. Several
generalizations of this generator have also been considered by Ding [9].

RC4(a)

1 while more bytes are needed
2 x ← x + 1
3 y ← y + P[x]
4 swap P[x] and P[y]
5 output P[P[x] + P[y]]

FIGURE 17.6 The RC4 stream
cipher.

17.3.2.7 RC4

RC4 is a byte-oriented stream cipher designed by Rivest for RSA
Data Security, Inc. in 1987. It is intended for use in software. Its
details were unpublished and proprietary until 1994, when they
were anonymously leaked on the sci.crypt newsgroup. The state
consists of two nonnegative integer variables x and y, each less than
256, and an array P of 256 bytes. P must contain a permutation of
{0, 1, . . . , 255}. A sequence of bytes is generated by the pseudocode
in Figure 17.6. All addition is modulo 256.
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The key is an array of bytes, K[0], . . . , K[m − 1] for some m. This is used to initialize the state
as follows: The variables x and y are set to 0 and the array P is set to (0, 1, . . . , 255). Then the RC4
algorithm in Figure 17.6 is iterated 256 times, with line 3 replaced by

y ← y + P[x] + K[x mod m],
and with line 5 deleted. Finally, x and y are reset to 0. Very little is publicly known about the security of
RC4. RSA Data Security, Inc. claims the algorithm is immune to linear and differential cryptanalysis
[8], has no small cycles, and is highly nonlinear.

17.3.2.8 SEAL

Software-optimized encryption algorithm (SEAL) was proposed in 1993 by Rogaway and Copper-
smith [29]. Since it is quite new, little is known about its cryptanalysis. SEAL is designed for use in
software. It depends on a 32-bit architecture and uses eight 32-bit registers and about 3 kB of cache.
It is claimed to have a data rate ten to thirty times faster than DES, the most popular block cipher.

A basic design principle of SEAL is to generate a large table in a preprocessing stage. This stage is
relatively slow but is intended to take place concurrently with the (generally slow) key exchange at
the beginning of a session. In such a setting the preprocessing of SEAL incurs little extra cost. The
table is generated by a complex mix of bit-wise ands, bit-wise ors, bit-wise exclusive-ors, bit-wise
complements, concatenations, shifts, and additions modulo 232.

The input to SEAL is a 160 bit string a and a message size L. For each a, a function SEALa is deter-
mined from the set of positive integers to the set of infinite binary strings. Encryption is performed
by computing the bit-wise exclusive or of the nth message and the first L bits of SEALa(n). In practice
only the first 128 �L/128� bits of SEALa(n) are generated. Again, the computation of SEALa(n) is
a complex mix of bit-wise ands, bit-wise ors, bit-wise exclusive-ors, bit-wise complements, con-
catenations, shifts, and additions modulo 232, plus table lookups using the tables generated in the
preprocessing stage.

The assumed strength of SEAL depends on the fact that, if a is chosen uniformly at random, then
SEALa(n) is computationally indistinguishable from a random L-bit function of n.

17.3.3 Universal Security

In this section we consider the existence of universally secure generators from several theoretical
viewpoints. We start with complexity theoretic considerations.

17.3.3.1 Blum–Micali Discrete Log Generator

Blum and Micali designed a generator whose security is based on the assumed hardness of the
discrete log problem [3]. Suppose p is a prime number and g is a generator of Z∗

p , the multiplicative
group of integers modulo p. If x ∈ Z∗

p , then the discrete logarithm of x with respect to g is the
unique integer k such that x = gk mod p. The discrete log problem is to find k given p, g, and x.
This problem is widely believed to be computationally infeasible. If x is a quadratic residue modulo
p, then its discrete log is of the form 2t with 0 ≤ t < (p − 1)/2. Its square roots are gt and
gt+(p−1)/2. The latter is called the principle square root. The discrete log problem is polynomial time
reducible to the problem of determining whether an element is a principle square root. Define the
predicate

ψp(x) =
{

1 if x < (p − 1)/2,
0 otherwise.



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C017 Finals Page 19 2009-9-25

Pseudorandom Sequences and Stream Ciphers 17-19

The state of a Blum–Micali generator is an element x ∈ Z∗
p . At each stage the generator outputs ψ(x)

and changes state to gx mod p. It can be shown that if a certain assumption about the infeasibility
of solving the discrete log problem with polynomial size circuits is true, then the Blum–Micali
generator is perfect in the sense of Section 17.2.1.3 in Section 17.2 when the initial state (seed) is
chosen randomly.

17.3.3.2 Other Perfect Generators

The Blum–Micali generator is actually an example of a general construction that can be based on any
one-way permutation f (in the case of the discrete log generator, f (x) = gx) and binary predicate B
on the domain of the predicate (in the case of the discrete log generator, B(x) = ψp(x)). There is a
notion of an unpredictable predicate that guarantees that the resulting generator is perfect. The goal
is to design a predicate whose unpredictability is equivalent to some problem that is infeasible. Such
a predicate is called hard core for f . In reality we have no proof of infeasibility for the problems that
arise this way, so belief in the security of such generators depends on belief in the infeasibility of the
underlying problem (e.g., the discrete log problem).

One such construction is based on the infeasibility of inverting RSA ciphertexts. If n = pq is
a product of two primes and e is relatively prime to (p − 1)(q − 1), then the domain is Z∗

n. The
permutation is f (x) = xe and the hard core predicate is the least significant bit. It can be shown
that if RSA ciphertexts cannot be inverted in expected polynomial time, then the RSA generator is
perfect.

Another such construction is based on the infeasibility of computing square roots modulo a
product of two primes that are congruent to 3 modulo 4 [2]. This problem is known to be equivalent
to factoring the modulus. Here the domain is the set of quadratic residues modulo an RSA modulus
(i.e., a product of two large primes), the permutation is squaring, and the hard core predicate is the
least significant bit. It can be shown that if it is impossible to compute modular square roots with
polynomial size circuits on a polynomial fraction of the moduli n, correctly on all but a polynomial
fraction of Z∗

n, then the quadratic residue generator is perfect.
There have been several recent results that show that other bits (in addition to the least significant

bit) are hard core, thus expanding the suite of perfect generators. For example, Näslund showed that
any bit in a random linear function modulo a random prime is hard core for any one-way function.

17.3.3.3 Provable Security

Several attacks on stream ciphers synthesize a generator given a prefix of the keystream. The
synthesized generator belongs to a specific class of generators F . If enough bits are available, the
attack should produce the smallest generator (in the sense of the size of the state space) in F
that outputs the given sequence. The Berlekamp–Massey and the 2-adic rational approximation
algorithms are examples of such attacks.

Klapper [19] studied the question of whether there exists a family of generators that resists all such
attacks. For a family F and a sequence a the size of the smallest generator is denoted λF (a). Such
an attack A is called effective if it runs in polynomial time and is successful whenever the number
of bits available is at least a fixed polynomial in λF (a). The existence of an effective F-synthesizing
algorithm implies that λF (a) is a measure of security for stream ciphers, analogous to the linear
span. By a diagonalization argument it can be shown that there exists a family of efficiently generated
sequences S such that, for any effective algorithm synthesizing generators in a familyF , λF (a) grows
superpolynomially in the log of the period of a ∈ S. Various generalizations of this result are possible
for weaker notions of security.

A quite different approach to provable security was taken by Maurer [25]. He considered stream
ciphers based on the availability of a public global source of randomness. Maurer described such a
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randomized stream cipher that is perfectly secure with high probability. The proof of this result is
based on Shannon’s information theory. The sender and receiver need only share a short key, while
the cryptanalyst must examine an infeasible number of random bits in order to attack the system.
The drawback to this system is the difficulty in making a source of a large number of truly random
bits publicly available.

17.4 Research Issues and Summary

In this article we provide a survey of techniques related to pseudorandom sequence generation
and its role in cryptography. Stream ciphers, the resulting systems, are generally much faster than
other cipher systems. Thus they are useful when high-speed secure communications is needed.
Proving their security, however, is more difficult than that of many public key systems. Techniques
for generating sequences that have cryptographically strong properties are presented, as well as
techniques for cryptanalyzing sequences. A number of measures of randomness are also described.

A variety of sequence generators are presented. Many of these are based on modifications of linear
feedback shift registers to eliminate vulnerability to Berlekamp–Massey type attacks. In most cases
the best that can be said is that the generators resist certain known attacks and have various desirable
randomness properties. In some cases the security of a generator is described in complexity theoretic
(and in particular asymptotic) terms. Unfortunately such generators tend to be slow.

A few of the cryptanalytic techniques presented are general and can be tried on any stream cipher.
Such techniques give rise to general measures of security. More often, cryptanalytic techniques are
specific to generators or classes of generators. Nonetheless, they can sometimes be adapted to other
classes of generators. Attempting the cryptanalysis of a generator is important for its certification as
a secure system.

One focus of current research is the development of new techniques of keystream generation.
There are no known provably secure efficient keystream generators, so their need persists. When
each new technique of cryptanalysis is developed, new generators are needed that resist the new
attack, as well as all old attacks. The difficulty faced by designers of keystream generators is that
the presence of enough structure to prove that a generator resists known attacks and has other
desirable properties often leads to the development of new cryptanalytic techniques to which the
generator is vulnerable. The ideal would be to design a type of keystream generator that resists all
computationally feasible cryptanalytic attacks, is efficient, and has an efficient description. This is a
goal for security defined in various models.

Simultaneously, considerable research is focused on developing new cryptanalytic techniques. The
challenge is to find exploitable structure in systems that are often designed to have little clear structure
or to combine several types of apparently incompatible structure. The search for cryptanalytic tools
may at first seem perverse and counter productive. However, when a system has weaknesses it is
important that potential users be aware of this. These weaknesses may be known already to hostile
cryptanalysts who are unlikely to advertise their knowledge.

17.5 Further Information

Research on pseudorandom sequences and stream ciphers is extensively published in the IEEE
Transactions on Information Theory and the Journal of Cryptology.

Many major results appear initially in the proceedings of the annual conferences Crypto, held
in Santa Barbara, California, Eurocrypt, held in various countries in Europe, and Asiacrypt, held
in various countries in Asia and Australia. The proceedings of these conferences appear in the
Springer-Verlag Lecture Notes in Computer Science series. Crypto and Eurocrypt are held under the
auspices of the IACR, the International Association for Cryptologic Research.



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C017 Finals Page 21 2009-9-25

Pseudorandom Sequences and Stream Ciphers 17-21

Many papers have also appeared at specialty workshops such as “Fast Software Encryption,” whose
proceedings also appear in the Springer-Verlag Lecture Notes in Computer Science series.

Information about the IACR and about many conferences on cryptography can be found at the
IACR web-site, http://www.iacr.org/∼iacr/.

The chapter by Rueppel in Simmon’s Contemporary Cryptography [36] provides a more detailed
summary of the state of the art as of 1990.

Menezes, van Oorschot, and Vanstone’s CRC Handbook of Applied Cryptograpy [27] provides a
thorough summary as of 1996.

A thorough treatment of the basic analysis of linear feedback shift registers can be found in
Golomb’s classic Shift Register Sequences [14].

Many aspects of shift registers, stream ciphers, and linear span are treated in Rueppel’s Analysis
and Design of Stream Ciphers [31].

Many of the more practical aspects of stream ciphers, as well as a thorough bibliography, can be
found in Schneier’s Applied Cryptography [33].

Good sources for the mathematical foundations of the study of pseudorandom sequences are
Lidl and Niederreiter’s Finite Fields [22] and McEliece’s Finite Fields for Computer Scientists and
Engineers [23].

Defining Terms

Autocorrelation: The number of positions where a periodic binary sequence agrees with a shift of
itself minus the number of places where it disagrees.
Balance: The number of zeros minus the number of ones in a single period of a periodic binary
sequence.
Clock-controlled generator: A keystream generator in which one LFSR is used to determine which
output symbols of a second LFSR are used as the final output.
Correlation attack: A cryptanalytic attack on a keystream generator based on improving key search
by exploiting correlations between output bits and initial state or seed bits.
Correlation immunity: A measure of resistance of a nonlinear combiner to correlation attacks.
Cryptographically strong pseudorandom bit generator (CSPRB): An efficient family of keystream
generators such that it is infeasible to predict bits with probability significantly greater than one half.
Entropy: A formal measure of the uncertainty in a random variable.
Feedback with carry shift register (FCSR): A feedback register similar to an LFSR, but where the
addition in the feedback function is performed with carry, the carry being retained for the next stage
in extra memory.
Information theory: The mathematical study of the information content of random variables.
Keystream generator: A device or algorithm for generating a pseudorandom sequence.
Linear feedback shift register (LFSR): A device for generating infinite periodic sequences. The
state updates by shifting its state vector one position and generating a new state symbol as a linear
function of the old state vector. The output is the symbol shifted out of the register.
Linear span: Also called the linear complexity, the length of the shortest linear feedback shift register
that outputs a given sequence.
m-Sequence: A maximal period linear feedback shift register sequence.
Next bit test: A family of circuits used to predict the next bit of a sequence given a prefix of the
sequence.
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Nonlinear combiner: A keystream generator in which the outputs of several LFSRs are combined
by a nonlinear function. The combining function may have a small amount of memory.
Nonlinear filter generator: A linear feedback shift register modified so the output is computed as a
nonlinear function of the state.
One-time pad: A stream cipher in which the key bits are chosen independently at random.
Pseudorandom sequence: An infinite periodic sequence that behaves like a truly random sequence
with respect to various measures of randomness.
Stream cipher: A private key cryptosystem in which the key is added to the plaintext symbol by
symbol modulo the size of the plaintext alphabet.
Strict avalanche condition (SAC): A nonlinearity condition. A function satisfies SAC if changing
any single bit results in a function uncorrelated with f .
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18.1 Introduction

The increased power and interconnectivity of computer systems and the advances in memory sizes,
disk storage capacity, and networking bandwidth allow data to be collected, stored, and analyzed
in ways that were impossible in the past due to the restricted access to the data and the expensive
processing (in both time and resources) of them. Huge data collections can be analyzed by powerful
techniques (e.g., data mining techniques [12]) and sophisticated algorithms thus making possible
linking attacks combining information available through different sources to infer information that
was not intended for disclosure. For instance, by linking deidentified medical records (i.e., records
where the explicit identifiers such as the social security numbers (SSN) have been removed) with
other publicly available data or by looking at unique characteristics found in the released medical
data, a data observer will most certainly be able to reduce the uncertainty about the identities of
the users to whom the medical records refer, or—worse—to determine them exactly. This identity
disclosure often implies leakage of sensitive information, for example, allowing data observers to
infer the illness of patients. The need for privacy is therefore becoming an issue that most people
are concerned about. Although there are many attempts to create a unified and simple definition of
privacy, privacy by its own nature is a multifaceted concept that may encompass several meaning,
depending on different contexts.

In this chapter, we focus our attention on the technological aspect of privacy within today’s global
network infrastructure, where users interact with remote information sources for retrieving data or
for using online services. In such a context, privacy involves the following three different but related
concepts.

18-1
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• Privacy of the user. It corresponds to the problem of protecting the relationship of users
with a particular action and outcome. Since we focus on network infrastructures, we are
interested in protecting the relationship between a user and the messages the user sends,
which can be, for example, queries for retrieving some information or requests for using
a particular online service.

• Privacy of the communication. It corresponds to the classical problem of protecting the
confidentiality of personal information when transmitted over the network (or with other
forms of communication), and to the problem of protecting the privacy of a request to a
service provider hiding the content of the request from every party, as well as from the
service provider.

• Privacy of the information. It involves privacy policies as well as technologies for ensuring
proper data protection. A basic requirement of a privacy policy is to establish both the
responsibilities of the data holder with respect to data use and dissemination, and the
rights of the user to whom the information refers to regulate such use and dissemination.
Each user should be able to control further disclosure, view data collected about the user
and, possibly, make or require corrections.

We now discuss these three aspects more in details.

18.1.1 Privacy of the User

Privacy of the user concerns protecting the identities of the parties that communicate through a
network to avoid possible attacks that have the main purpose to trace who is communicating with
whom, or who is interacting with which server or searching for which data. This problem can be
solved by providing techniques and protocols that guarantee an anonymous communication among
different parties. In particular, anonymous communication is about the protection of the relationship
between senders and the messages they send, called sender anonymity, between recipients and the
messages they receive, called recipient anonymity, or both, meaning that anonymous senders send
messages to anonymous recipients. In the literature, there are a number of approaches providing
anonymous communication.

Mix networks, first proposed by Chaum [8], are a way of achieving anonymity on communication
networks. Intuitively, a mix is a special node in a network that relays messages in such a way that
an outside observer cannot link an outgoing message with an incoming message. Several mix nodes
can also be chained to relay a message anonymously. Since their introduction, a large amount of
research on mixnets has been performed and different mixnet topologies have been studied and
compared [36].

Onion routing [38] is another solution for ensuring anonymous connections. The main goal of
onion routing is to guarantee that malicious users cannot determine the contents of messages flowing
from a sender to a recipient, and that they cannot verify whether the sender and the recipient are
communicating with each other. Onion routing also provides sender anonymity while preserving the
ability of the recipient to send a reply to the sender. With onion routing, a network includes a set of
onion routers, which work as the ordinary routers, combined with mixing properties. When a sender
wants to communicate anonymously with a particular recipient, an anonymous connection has to be
set up. The sender therefore connects to a particular onion router that prepares an onion. An onion
is a layered data structure including information about the route of the anonymous connection. In
particular, the onion router randomly selects other onion routers and generates a message for each
of such a router, providing it with symmetric keys for decrypting messages, and telling it which the
next hop (an onion router or the final recipient) in the path will be. Note that anonymity is only
provided from the first to the last onion router. The connections from the sender to the first onion
router, and from the last onion router to the recipient are not anonymous.



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C018 Finals Page 3 2009-10-6

Theory of Privacy and Anonymity 18-3

Tor [17] allows users to communicate anonymously on the Internet. Tor is primarily used for
anonymous TCP-based applications. Basically, messages are encrypted and then sent through a
randomly chosen path of different servers in such a way that an observer cannot discover the source
and the destination of the message.

Crowds [34] provides anonymity based on the definition of groups of users, called crowds, who
collectively perform requests. In this way, each request is equally likely to originate from any user
in the crowd. Each user is represented by a local jondo stored on the user’s machine that receives
a request from the user and removes from such a request all identifying information. A jondo acts
as a Web proxy that can forward both the user’s and other users’ requests to the end server, or to
another jondo. In this way, since a jondo cannot tell whether or not a request has been initiated
by the previous jondo (or the one before it, and so on), users maintain their anonymity within the
crowd. The communications along a path of jondos is encrypted and such a path remains the same
for the whole session, meaning that requests and replies follow the same path.

18.1.2 Privacy of the Communication

Privacy of the communication is related to two aspects: (1) protection of the confidentiality
of personal information sent through a network; and (2) protection of the content of requests
to prevent, for example, user profiling. The confidentiality of the personal information transmitted
over the network can be ensured by adopting protocols (e.g., SSL) that encrypt it. The need for
protecting also the request content arises because there are many real-world scenarios where the
request content could be misused by service providers. For instance, consider a medical database that
contains information about known illnesses, symptoms, treatment options, specialists, and treat-
ment costs. Suppose that a user submits a query to the medical database to collect information about
a specific illness. Any other user, including the database administrator, who is able to observe such a
query can then infer that the requestor, or a near relative/friend, might suffer from that specific illness.

The problem of protecting the request content is known as Private Information Retrieval (PIR)
problem [10]. There are many different ways for formally defining the PIR problem. The first
formulation assumes that a database can be modeled as an N-bit string and a user is interested
in privately retrieving the ith bit of the N bits stored at the server, meaning that the server does
not know which is the bit the user is interested in. Starting from this formulation, many results
and advancements have been obtained. In particular, depending on the assumptions about the
computational power of the service provider, PIR proposals can be classified into two main classes:
theoretical PIR and computational PIR. Theoretical PIR does not make any assumption about the
computational power of the service provider and the privacy of the request must then be provided
independently from the computational power of an attacker. Computational PIR assumes that a
request is private if the service provider must solve a computationally intractable problem to break
it. A naive solution to the theoretical PIR problem consists in completely downloading the database
at the client side and performing the research on the local copy of the data. Such a solution however
has a high communication cost, especially when the database contains a huge data collection. In [10]
the authors prove that if there is only one copy of the database stored on one service provider, there
is no solution to the theoretical PIR problem that is better than the solution corresponding to the
download of the whole database. By contrast, if there are m copies of the data been stored at different
noncommunicating servers, the theoretical PIR problem can be solved by submitting m independent
requests (each single request does not provide any information about the bit on which the user is
interested in) to the corresponding service providers. The m results are then combined by the user
to obtain the answer to their request [5,10,23]. The computational PIR problem is typically solved
by encrypting the request submitted to the service provider [7,9,26]. By exploiting properties of the
encryption function, the server computes the encrypted result of the request, which can be decrypted
only by the requestor.
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Note that the PIR problem can also be seen as a Secure Multiparty Computation (SMC) problem
[19,41]. The main goal of SMC is to allow a set of parties to compute the value of a function f
on private inputs provided by the parties without revealing to them the private inputs of the other
parties. The SMC problem is usually solved by modeling function f through a Boolean circuit,
where gates correspond to protocols that require the collaboration among parties, since they know
the input and share knowledge on the output. Other examples of SMC problems are represented
by privacy-preserving statistical analysis [18] and privacy-preserving data mining [4,30]. The SMC
problem will be discussed in more details in Chapter 14.

18.1.3 Privacy of the Information

Privacy of the information is related to the definition of privacy policies expressing and combining
different protection requirements, as well as the development of technologies for ensuring proper
data protection. An important aspect of the data protection issue relates to the protection of the
identities of the users to whom the data refer, meaning that the anonymity of the users must be
guaranteed. Anonymity does not imply that no information at all is released, but requires that
information released be nonidentifiable. More precisely, given a collection of personal information
about a user, the privacy of the user is protected if the value of the user’s personal information is
kept private. Whenever a subset of the personal information can be used to identify the user, the
anonymity of the user depends on keeping such a subset private. For instance, a recent study [22]
shows that in 2000, 63% of the U.S. population was uniquely identifiable by gender, ZIP code,
and full date of birth. This means that while these individual pieces of information do not
identify a user and therefore the user is anonymous according to the usual meaning of the term, the
combined knowledge ofgender,ZIP code, and fulldate of birthmay result in the unique
identification of a user. Note also that anonymity is always related to the identification of a user
rather than the specification of that user. For instance, a user can be univocally identified through
her SSN but in the absence of an information source that associates that SSN with a specific identity,
the user is still anonymous. Ensuring proper anonymity protection then requires the investigation
of the following different issues [13].

• Identity disclosure protection. Identity disclosure occurs whenever it is possible to
reidentify a user, called respondent, from the released data. Techniques for limiting
the possibility of reidentifying respondents should therefore be adopted.

• Attribute disclosure protection. Identity disclosure protection alone does not guarantee
privacy of sensitive information because all the respondents in a group could have the
same sensitive information. To overcome this issue, mechanisms that protect sensitive
information about respondents should be adopted.

• Inference channel protection. Given the possibly enormous amount of data to be consid-
ered, and the possible interrelationships between data, it is important that the security
specifications and enforcement mechanisms provide automatic support for complex
security requirements, such as those due to inference and data association channels [15].

Protection of anonymity is a key aspect in many different contexts, where the identities of the users
(or organizations, associations, and so on) to whom the data refer have been removed, encrypted, or
coded. The identity information removed or encoded to produce anonymous data includes names,
telephone numbers, and SSNs. Although apparently anonymous, the deidentified data may contain
other identifying information that uniquely or almost uniquely distinguishes the user [14,20,21],
such as the gender, ZIP code, and full date of birth mentioned above. By linking such
an information to publicly available databases (e.g., many countries provide access to public records
to their citizens thus making available a broad range of personal information) associating them to
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the user’s identity, a data recipient can determine to which user each piece of released information
belongs, or restrict the user’s uncertainty to a specific subset of users. To avoid this, specific data
protection norms apply to data collected for a given purpose that state that such data can be further
elaborated for historical, statistical, or scientific purposes, provided that appropriate safeguards
are applied. In general, the “appropriate safeguards” depend on the method in which the data are
released. In the past, data were principally released in the form of macrodata, which are statistics on
users or organizations usually presented as two-dimensional tables, and through statistical databases,
which are databases whose users may retrieve only aggregate statistics [1]. Macrodata protection
techniques are based on the selective obfuscation of sensitive cells [13]. Techniques for protecting
statistical databases follow two main approaches [16]. The first approach restricts the statistical
queries that can be made (e.g., queries that identify a small/large number of tuples) or the data that
can be published. The second approach provides protection by returning to the user a modified result.
The modification can be enforced directly on the stored data or at run time (i.e., when computing
the result to be returned to the user). Many situations require today that the specific microdata,
that is, data actually stored in the database and not an aggregation of them, are released. The
advantage of releasing microdata instead of specific precomputed statistics is an increased flexibility
and availability of information for the users. At the same time, however, microdata, releasing more
specific information, are subject to a greater risk of privacy breaches. Several techniques have been
proposed in the literature to protect the disclosure of information that should be kept private [11,13].
In this chapter, we focus on k-anonymity [35], an approach that, compared to the other commonly
used approaches (e.g., sampling, swapping values, and adding noise to the data while maintaining
some overall statistical properties of the resulting table), has the great advantage of protecting
respondents’ identities while releasing truthful information.

In the remainder of this chapter, we describe the k-anonymity concept (Section 18.2) and illus-
trate some proposals for its enforcement (Sections 18.3 and 18.4). Note that k-anonymity protects
identity disclosure, while remaining exposed to attribute disclosure [35]. We will see then how
some researchers have just started proposing extensions to k-anonymity to protect also attribute
disclosure [31] (Section 18.5).

18.2 k-Anonymity: The Problem

Although k-anonymity is a concept that applies to any kind of data, for simplicity its formulation
considers data represented by a relational table. Formally, let A be a set of attributes, D be a set
of domains, and dom: A → D be a function that associates with each attribute A ∈ A a domain
D = dom(A) ∈ D, containing the set of values that A can assume. A tuple t over a set {A1, . . . , Ap} of
attributes is a function that associates with each attribute Ai a value v ∈ dom(Ai), i = 1, . . . , p.

DEFINITION 18.1 (Relational table) Let A be a set of attributes, D be a set of domains, and
dom : A → D be a function associating each attribute with its domain. A relational table T over
a finite set {A1, . . . , Ap}⊆ A of attributes, denoted T(A1, . . . , Ap) is a set of tuples over the set
{A1, . . . , Ap} of attributes.

Notation dom(A, T) denotes the domain of attribute A in T, |T| denotes the number of tuples
in T, and t[A] represents the value v associated with attribute A in t. Similarly, t[A1, . . . , Ak]
denotes the subtuple of t containing the values of attributes {A1, . . . , Ak}. By extending this notation,
T[A1, . . . , Ak] represents the subtuples of T containing the values of attributes {A1, . . . , Ak}, that is,
the projection of T over {A1, . . . , Ak}, keeping duplicates.

In the remainder of this chapter, the relational table storing the data to be protected is called
private table, denoted PT. Each tuple t in PT reports data referred to a specific respondent (usually
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SSN Name ZIP MaritalStatus Sex Disease
1 22030 married F hypertension
2 22030 married F hypertension
3 22030 single M obesity
4 22032 single M HIV
5 22032 single M obesity
6 22032 divorced F hypertension
7 22045 divorced M obesity
8 22047 widow M HIV
9 22047 widow M HIV

10 22047 single F obesity

FIGURE 18.1 An example of private table PT.

an individual). For instance, Figure 18.1 illustrates an example of private table over attributes
SSN, Name, Zip, MaritalStatus, Sex, and Disease containing 10 tuples. Here, the identity
information, that is, attributes SSN and Name, have been removed. The attributes (columns) of PT
can be classified as follows.

• Identifiers. Attributes that uniquely identify a respondent. For instance, attribute SSN
uniquely identifies the person with which it is associated.

• Quasi-identifiers. Attributes that, in combination, can be linked with external
information, reducing the uncertainty over the identities of all or some of the respon-
dents to whom information in PT refers. For instance, the set of attributes ZIP,
MaritalStatus, and Sex may represent a quasi-identifier that can be exploited for
linking PTwith an external information source that associates ZIP, MaritalStatus,
and Sex with Name and Address.

• Confidential attributes. Attributes that contain sensitive information. For instance,
attribute Disease can be considered sensitive.

• Nonconfidential attributes. Attributes that do not fall into any of the categories above, that
is, they do not identify respondents, cannot be exploited for linking, and do not contain
sensitive information. For instance, attribute FavoriteColor is a nonconfidential
attribute.

Although all the explicit identifiers (e.g., SSN) are removed from a private table PT, that is public
or semipublic released, the privacy of the respondents is at risk, since quasi-identifiers can be used
to link each tuple in PT to a limited number of respondents. The main goal of k-anonymity is
therefore to protect the released data against possible reidentification of the respondents to whom
the data refer.

The k-anonymity requirement is formally stated by the following definition [35].

DEFINITION 18.2 (k-anonymity requirement) Each release of data must be such that every
combination of values of quasi-identifiers can be indistinctly matched to at least k respondents.

The k-anonymity requirement implicitly assumes that the data owner knows how many respon-
dents each released tuple matches. This information can be known precisely only by explicitly
linking the released data with externally available data. Since it is not realistic to assume that the data
owner knows the data in external tables, the definition of k-anonymity translates the k-anonymity
requirement in terms of the released data themselves. k-anonymity requires each respondent to be
indistinguishable with respect to at least other k − 1 respondents in the released table, as stated by
the following definition.
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DEFINITION 18.3 (k-anonymity) Let T(A1, . . . , Ap) be a table, and QI be a quasi-identifier
associated with it. T is said to satisfy k-anonymity with respect to QI iff each sequence of values in
T[QI] appears at least with k occurrences in T[QI].

The definition of k-anonymity represents a sufficient (but not a necessary) condition for the
k-anonymity requirement. As a matter of fact, if a subset of QI appears in a publicly available
table, the combination of the released k-anonymous table with the public table never allows an
adversary to associate each released tuple with less than k respondents. For instance, the private
table in Figure 18.1 is 1-anonymous w.r.t. QI = {ZIP, MaritalStatus, Sex}, since there are
unique combinations of values of the quasi-identifying attributes (e.g., 〈22030, single, M〉). However,
the same table is 2-anonymous with respect to QI = {MaritalStatus}. To correctly enforce
k-anonymity, it is then necessary to identify the quasi-identifiers. The identification of quasi-
identifiers depends on which data are known to a potential adversary. Since different adversaries may
have different knowledge, and it seems highly improbable to exactly know which data are available to
each adversary, the original k-anonymity proposal [35] assumes to define a unique quasi-identifier
for each private table, including all attributes that are possibly externally available.

18.2.1 Generalization and Suppression

Although different data disclosure protection techniques have been developed (e.g., scrambling,
swapping values, and adding noise), k-anonymity is typically enforced by combining two nonper-
turbative protecting techniques, called generalization and suppression, which have the advantage of
preserving the truthfulness of the information, in contrast to other techniques that compromise the
correctness of the information [13].

18.2.1.1 Generalization

Generalization consists in substituting the values in a column (or cell) of PT[QI] with more general
values. Each attribute A in PT is initially associated with a ground domain D = dom(A,PT). The
generalization maps each value v ∈ D to a more general value v′ ∈ D′, where D′ is a generalized
domain for D. Given a ground domain D, we distinguish two classes of generalizations depending
on how the generalized domain D′ is defined.

• Hierarchy-based generalization. This technique is based on the definition of a general-
ization hierarchy for each attribute in QI, where the most general value is at the root of
the hierarchy and the leaves correspond to the most specific values (i.e., to the values in
the ground domain for the attribute). A hierarchy-based generalization maps the values
represented by the leaf vertices with one of their ancestor vertices at a higher level (see
Section 18.3). As an example, attribute ZIP can be generalized by suppressing, at each
generalization step, the rightmost digit.

• Recoding-based generalization. This technique is based on the recoding into intervals
protection method [13] and typically assumes a total order relationship among values in
the considered domain. The ground domain of each attribute in QI is partitioned into
possibly disjoint intervals and each interval is associated with a label (e.g., the extreme
interval values). A recoding-based generalization maps the values in the ground domain
with the intervals they belong to (see Section 18.4).

It is interesting to note that one of the main differences between hierarchy-based and recoding-based
generalizations is that while hierarchies need to be predefined, intervals for the recoding are usually
computed at runtime during the generalization process. Accordingly, the k-anonymity algorithms
adopting a hierarchy-based generalization will receive as an input the generalization hierarchies
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associated with attributes in QI, while the k-anonymity algorithms adopting a recoding-based
generalization will have the additional task of defining the intervals.

18.2.1.2 Suppression

Suppression consists in removing from the private table a cell, a column, a tuple, or a set thereof.
The intuition behind the introduction of suppression is that the combined use of generalization
and suppression can reduce the amount of generalization necessary to satisfy the k-anonymity
constraint. As a matter of fact, when a limited number of outliers (i.e., tuples with less than k
occurrences) would force a great amount of generalization, their suppression allows the release of
a less general (more precise) table. For instance, the suppression of tuples 3, 6, 7, and 10 of the
private table in Figure 18.1 satisfies 2-anonymity with respect to QI = {ZIP, MaritalStatus,
Sex} without any generalization.

18.2.2 Classification of k-Anonymity Techniques

Generalization and suppression can be applied at different granularity levels, which correspond
to different approaches and solutions to the k-anonymity problem, and introduce a taxonomy
of k-anonymity solutions [11]. Such a taxonomy is orthogonal to the type of generalization (i.e.,
hierarchy- or recoding-based) adopted.

Generalization can be applied at the level of:

• Attribute (AG): Generalization is performed at the level of column; a generalization step
generalizes all the values in the column.

• Cell (CG): Generalization is performed on individual cells; as a result a generalized table
may contain, for a specific column, values at different generalization levels.
Generalizing at the cell level has the advantage of allowing the release of more specific
values (since generalization can be confined to specific cells rather than hitting whole
columns). However, besides a higher complexity of the problem, a possible drawback
in the application of generalization at the cell level is the complication arising from the
management of values at different generalization levels within the same column.

Suppression can be applied at the level of

• Tuple (TS): Suppression is performed at the level of row; a suppression operation removes
a whole tuple.

• Attribute (AS): Suppression is performed at the level of column; a suppression operation
obscures all the values of a column.

• Cell (CS): Suppression is performed at the level of single cells; as a result a k-anonymized
table may wipe out only certain cells of a given tuple/attribute.

Figure 18.2 summarizes the different combinations of generalization and suppression at all
possible granularity levels (including combinations where one of the two techniques is not adopted).
It is interesting to note that the application of generalization and suppression at the same granularity
level is equivalent to the application of generalization only (AG_≡AG_AS and CG_≡CG_CS),
since suppression can be modeled as a generalization of all domain values to a unique value.
Combinations CG_TS (cell generalization, tuple suppression) and CG_AS (cell generalization,
attribute suppression) are not applicable since the application of generalization at the cell level
implies the application of suppression at that level too.
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Suppression
Generalization Tuple Attribute Cell None

Attribute AG_TS AG_AS AG_CS AG_
≡ AG_ ≡ AG_AS

Cell CG_TS CG_AS CG_CS CG_
not applicable not applicable ≡ CG_ ≡ CG_CS

None _TS _AS _CS _
not interesting

FIGURE 18.2 Classification of k-anonymity techniques.

18.3 k-Anonymity with Hierarchy-Based Generalization

The problem of k-anonymizing a private table by exploiting generalization and suppression has
been widely studied and a number of approaches have been proposed. In this section we focus on
those solutions that adopt a hierarchy-based generalization (together with suppression) to achieve
k-anonymity. Before discussing such solutions, we first formally define how generalization can be
performed by adopting a predefined hierarchy and we then discuss the problem complexity.

For each ground domain D ∈ D, we assume the existence of a set of generalized domains. The set
of all ground and generalized domains is denoted Dom. The relationship between a ground domain
and domains generalization of it is formally defined as follows.

DEFINITION 18.4 (Domain generalization relationship) Let Dom be a set of ground and gen-
eralized domains. A domain generalization relationship, denoted ≤D, is a partial order relation on
Dom that satisfies the following conditions:

C1: ∀Di, Dj, Dz ∈ Dom: Di ≤D Dj, Di ≤D Dz ⇒ Dj ≤D Dz ∨ Dz ≤D Dj

C2: all maximal elements of Dom are singleton

Condition C1 states that, for each domain Di, the set of its generalized domains is totally ordered
and each Di has at most one direct generalized domain Dj. This condition ensures determinism
in the generalization process. Condition C2 ensures that all values in each domain can always be
generalized to a single value. The definition of the domain generalization relationship implies the
existence, for each domain D ∈ Dom, of a totally ordered hierarchy, called domain generalization
hierarchy and denoted DGHD. Each DGHD can be graphically represented as a chain of vertices,
where the top element corresponds to the singleton generalized domain, and the bottom element
corresponds to D.

Analogously, a value generalization relationship, denoted ≤V, can also be defined that associates
with each value vi ∈ Di a unique value vj ∈ Dj, where Dj is the direct generalization of Di. The
definition of the value generalization relationship implies the existence, for each domain D ∈ Dom,
of a partially ordered hierarchy, called value generalization hierarchy and denotedVGHD. EachVGHD
can be graphically represented as a tree, where the root element corresponds to the unique value in
the top domain in DGHD, and the leaves correspond to the values in D. Figure 18.3 shows an example
of domain and value generalization hierarchies for attributes ZIP, Sex, and MaritalStatus.
AttributeZIP, with domainZ0 = {22030, 22032, 22045, 22047}, is generalized by suppressing, at each
step, the rightmost digit. Attribute Sex, with domain S0 = {M, F}, is generalized to the not_released
value (domain S1). Attribute MaritalStatus, with domain M0 = {single, married, divorced,
widow}, is first generalized to the been_married and never_married values (domain M1), and then
to the not_released value (domain M2).
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M F

Z2 = {220**}

DGHS0 VGHS0

S0 ={M, F}

S1 = {not_released} not_released

22047220452203222030

2204*2203*

220**

Z1= {2203*,2204*}

Z0 = {22030, 22032, 22045, 22047}
DGHZ0 VGHZ0

(b)(a)

M2 = {not_released}

M1 = {been_married, never_married}

M0 = {married, widow, divorced, single}

not_released

never_ marriedbeen_married

DGHM0 VGHM0
(c)

married widow divorced single

FIGURE 18.3 Examples of domain and value generalization hierarchies: (a) ZIP. (b) Sex. (c) MaritalStatus.

Since most k-anonymity approaches work on sets of attributes, the definition of domain gen-
eralization hierarchy is extended to tuples of domains. A domain tuple DT = 〈D1, . . . , Dn〉 is an
ordered set of domains composed through the Cartesian product to impose coordinate-wise order
among domains. Since each domain Di ∈ DT is characterized by a total order domain generalization
hierarchy DGHDi , domain tuple DT is characterized by a domain generalization hierarchy DGHDT
defined as DGHDT =DGHD1× · · · ×DGHDn . DGHDT is a lattice where the bottom element is DT and
the top element is the tuple composed of all top elements in DGHDi , i = 1, . . . , n. Each path from
the bottom to the top element in DGHDT is called generalization strategy and represents a possi-
ble strategy for generalizing quasi-identifier QI= {A1, . . . , An}, where dom(Ai)= Di, i = 1, . . . , n.
Figure 18.4 illustrates the domain generalization hierarchy built on the domain tuple 〈Z0,M0,S0〉
and obtained through the combination of the domain generalization hierarchies DGHZ0 , DGHM0 , and
DGHS0 illustrated in Figure 18.3.

[2, 0, 1]

[1, 1, 0]

[1, 0, 0]

[2, 0, 0]

[2, 1, 0]

[2, 2, 0]

[2, 2, 1]

[0, 0, 1]

[0, 2, 0]

[0, 2, 1]

[1, 2, 1]

[1, 1, 1]

[0, 1, 0]

[1, 2, 0]

[0, 1, 1]

[0, 0, 0]

[1, 0, 1]

[2, 1, 1]

(b)(a) DGH DT VL DT

Z2, M1, S0

Z2, M0, S0

Z2, M2, S0

Z1, M0, S0

Z2, M0, S1

Z1, M1, S0

Z1, M1, S1

Z1, M0, S1

Z0, M1, S0

Z0, M0, S0

Z2, M1, S1

Z2, M2, S1

Z1, M2, S0

Z0, M1, S1

Z0, M2, S1

Z0, M2, S0

Z1, M2, S1

Z0, M0, S1

FIGURE 18.4 Domain generalization hierarchy (a) and distance vector hierarchy (b) for DT = 〈Z0,M0,S0〉.
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Given a private table PT and its quasi-identifier QI, the application of generalization and sup-
pression produces a generalized table T containing less information (more general values and less
tuples) than PT, formally defined as follows.

DEFINITION 18.5 (Generalized table) Let Ti(A1, . . . , An) and Tj(A1, . . . , An) be two tables defined
on the same set of attributes. Table Tj is said to be a generalization (with tuple suppression) of table
Ti, denoted TiTj, iff:

1. |Tj| ≤ |Ti|.
2. ∀A ∈ {A1, . . . , An}: dom(A, Ti) ≤D dom(A, Tj).
3. It is possible to define an injective mapping associating each tuple tj ∈ Tj with a tuple

ti ∈ Ti, such that ti[A] ≤V tj[A], for all A ∈ {A1, . . . , An}.

Given a private table PT and its quasi-identifier QI, there may exist different generalized tables
that satisfy k-anonymity. Among all possible generalized tables, we are interested in a table that
minimizes information loss, meaning that is k-anonymous and does not remove, through gener-
alization and suppression, more information than necessary. As an example, consider the private
table in Figure 18.1 with QI = {ZIP, MaritalStatus, Sex} and suppose that k = 3. The gen-
eralized table in Figure 18.5a corresponding to the top element 〈Z2,M2,S1〉 in DGHDT , which is
composed of 10 identical tuples (all the cells in each column have been generalized to the same
value), is 3-anonymous but it removes more information than necessary. In fact, the generalized
table corresponding to 〈Z2,M1,S0〉 in Figure 18.5b is 3-anonymous and it is more specific than the
table corresponding to 〈Z2,M2,S1〉, since it contains more specific values for MaritalStatus
and Sex attributes.

The goal of k-anonymity is to compute a generalized k-anonymous table, while maintaining as
much information as possible. This concept is captured by the definition of k-minimal generalization.
The formal definition of k-minimal generalization requires the introduction of the concept of
distance vector.

DEFINITION 18.6 (Distance vector) Let Ti(A1, . . . , An) and Tj(A1, . . . , An) be two tables
such that TiTj. The distance vector of Tj from Ti is the vector DVi,j = [d1, . . . , dn], where dz ,
z = 1, . . . , n, is the length of the unique path between dom(Az, Ti) and dom(Az, Tj) in the domain
generalization hierarchy DGHDz .

The dominance relationship ≤ on integers is then extended on the set of distance vectors as
follows. Given two distance vectors DV = [d1, . . . , dn] and DV ′ = [d′

1, . . . , d′
n], DV ≤ DV ′ iff di ≤ d′

i,

ZIP MaritalStatus Sex
220 ∗ ∗ not_released not_released
220 ∗ ∗ not_released not_released
220 ∗ ∗ not_released not_released
220 ∗ ∗ not_released not_released
220 ∗ ∗ not_released not_released
220 ∗ ∗ not_released not_released
220 ∗ ∗ not_released not_released
220 ∗ ∗ not_released not_released
220 ∗ ∗ not_released not_released
220 ∗ ∗ not_released not_released

(a) 〈Z2,M2,S1〉

ZIP MaritalStatus Sex
220 ∗ ∗ been_married F
220 ∗ ∗ been_married F
220 ∗ ∗ never_married M
220 ∗ ∗ never_married M
220 ∗ ∗ never_married M
220 ∗ ∗ been_married F
220 ∗ ∗ been_married M
220 ∗ ∗ been_married M
220 ∗ ∗ been_married M

(b) 〈Z2,M1,S0〉

ZIP MaritalStatus Sex
2203∗ been_married F
2203∗ been_married F
2203∗ never_married M
2203∗ never_married M
2203∗ never_married M
2203∗ been_married F
2204∗ been_married M
2204∗ been_married M
2204∗ been_married M

(c) 〈Z1,M1,S0〉

FIGURE 18.5 Examples of generalized tables.
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i = 1, . . . , n. For eachPT[QI] defined on domain tuple DT, we can therefore define a partially ordered
hierarchy of distance vectors, denoted VLDT , containing the distance vectors of all the generalized
tables of PT[QI]. Each VLDT can be graphically represented as an isomorphic lattice to DGHDT .
The height of a distance vector DV in VLDT , denoted height(DV ,VLDT), is equal to the sum of the
elements in DV. The height of VLDT corresponds to the height of its top element. As an example,
Figure 18.4b illustrates the VLDT lattice defined on DT = 〈Z0,M0,S0〉 and therefore isomorphic to
the DGH in Figure 18.4a.

Note that given an element in DGHDT and the corresponding generalized table, Definition 18.5
allows any amount of suppression to achieve k-anonymity. However, we are interested in a table
obtained by suppressing the minimum number of tuples necessary to achieve k-anonymity at a given
level of generalization.

It is worth noting that, given a hierarchy of distance vectors VLDT , the generalized tables corre-
sponding to the distance vectors at the same height and ensuring minimality in suppression may
suppress a different number of tuples. Since the joint use of generalization and suppression permits
to maintain as much information as possible in the released table, the question is whether it is
better to generalize, loosing data precision, or to suppress, loosing completeness. The compromise
proposed by Samarati [35] consists in establishing a threshold MaxSup to the maximum number of
tuples that can be suppressed; within this threshold, generalization decides minimality. Given this
threshold on the number of tuples that can be suppressed, a k-minimal generalization is defined as
follows.

DEFINITION 18.7 (k-Minimal generalization) Let Ti and Tj be two tables such that Ti  Tj,
and let MaxSup be the specified threshold of acceptable suppression. Tj is said to be a k-minimal
generalization of table Ti iff:

1. Tj satisfies k-anonymity enforcing minimal required suppression, that is, Tj satisfies
k-anonymity and ∀Tz : Ti  Tz, DVi,z = DVi,j, Tz satisfies k-anonymity ⇒ |Tj| ≥ |Tz|

2. |Ti| − |Tj| ≤ MaxSup

3. ∀Tz : Ti  Tz and Tz satisfies conditions 1 and 2 ⇒ ¬(DVi,z < DVi,j).

This definition states that a generalization Tj of a table Ti is k-minimal if it satisfies k-anonymity
(condition 1), it does not suppress more tuples than MaxSup (condition 2), and there does not exist
another generalization of Ti satisfying these conditions and characterized by a distance vector lower
than that of Ti (condition 3). As an example, consider the private table in Figure 18.1 with QI =
{ZIP, MaritalStatus, Sex} and suppose that k = 3 and MaxSup= 2. The generalized table in
Figure 18.5c is a k-minimal generalization forPT. As a matter of fact, it is 3-anonymous (condition 1),
it suppresses less than 2 tuples (condition 2), and the generalized tables characterized by distance
vectors lower than [1, 1, 0] do not satisfy these two conditions: the generalized table corresponding
to [1, 0, 0] requires to suppress at least 7 tuples; and the generalized tables corresponding to [0, 1, 0]
and [0, 0, 0] require to suppress all the tuples.

Given a private table PT, there may exist more than one k-minimal generalization since DGHDT
is a lattice and two solutions may be noncomparable. Furthermore, the definition of k-minimal
generalization only captures the concept that the least amount of generalization and the minimal
required suppression to achieve k-anonymity is applied. Different preference criteria can be applied
in choosing a preferred minimal generalization, among which [35]:

• minimum absolute distance prefers the generalization(s) with the smallest absolute dis-
tance, that is, with the smallest total number of generalization steps (regardless of the
hierarchies on which they have been taken);
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• minimum relative distance prefers the generalization(s) with the smallest relative distance,
that is, that minimizes the total number of relative steps (a step is made relative by dividing
it over the height of the domain hierarchy to which it refers),

• maximum distribution prefers the generalization(s) with the greatest number of distinct
tuples,

• minimum suppression prefers the generalization(s) that suppresses less tuples, that is, the
one with the greatest cardinality.

18.3.1 Problem Complexity

All the models with hierarchies investigated in the literature (AG_TS, AG_, CG_, and _CS), as well
as _AS, are NP-hard. The complexity results of all these models with hierarchies derive from the
NP-hardness of _CS and _AS. To formally prove the NP-hardness of such problems, and without
loss of generality, each table T can be seen as a matrix of m rows (tuples) and n columns (attributes).
Each row xi, i = 1, . . . , m, is an n-dimensional string defined on an alphabet Σ, where each c ∈ Σ

corresponds to an attribute value. For instance, the projection over QI of the private table in
Figure 18.1 is a matrix with 10 rows and each row is a string of three characters of the alphabet Σ =
{22030, 22032, 22045, 22047, married, single, divorced, widow, F,M}.

The NP-hardness of _AS has been proved for |Σ| ≥ 2 [32], while the NP-hardness of the _CS
problem for |Σ| ≥ 3 has been proved with a reduction from the “Edge partition into triangles”
problem [3], which is an improvement on the NP-hardness proved for _AS when the size of alphabet
Σ is equal to the number n of attributes. NP-hardness of _CS and _AS clearly implies NP-hardness of
CG_ and AG_, respectively. This implication holds since suppression can be considered as a special
case of generalization, where all hierarchies have height of 1. Note also that NP-hardness of AG_
implies NP-hardness of AG_TS, where, as in the existing proposals, tuple suppression is regulated
with the specification of a maximum number of tuples that can be suppressed. Nevertheless, the
computational complexity of the general AG_TS model (where the number of tuples that can be
suppressed is no more a constant value given as input, but it should be minimized as part of the
solution) is still an open issue. Note that the decisional versions of _AS, _CS, AG_, AG_TS, and
CG_ are obviously in NP [3].

We now give the proof of NP-hardness for _CS and we briefly describe the result for _AS.

THEOREM 18.1 The _CS 3-anonymity problem is NP-hard even for a ternary alphabet.

PROOF The proof [3] is a reduction from the NP-hard problem of “Edge partition into trian-
gles” [25], which can be formulated as follows: given a graph G = (V , E) with |E| = 3m for some
integer m, can the edges of G be partitioned into m triangles with disjoint edges?

To facilitate the description of the reduction from “Edge partition into triangles,” the proof will
first describe the simpler reduction from “Edge partition into triangles and 4-stars” and then it will
describe a reduction from “Edge partition into triangles.” The overall proof therefore consists in two
main steps. First, we show that, given a graph G = (V , E) with |E| = 3m , we can construct a table T
such that an optimal 3-anonymous solution for T costs at most 9m (i.e., T is obtained by suppressing
at most 9m cells from PT) if and only if G can be partitioned into a collection of m disjoint triangles
and 4-stars (a 4-star is a graph with 3 edges and 4 vertices, having one degree 3 and the others
degree 1). Second, we show how to define a table T′ from G such that an optimal 3-anonymous
solution for T′ costs at most 9m

⌈
log2(3m + 1)

⌉
if and only if G can be partitioned into a collection

of m disjoint triangles. In the following, we use character ∗ to denote suppressed cells.

Edge partition into triangles and 4-stars. Given a graph G = (V , E) with |E| = 3m and |V| = n, we
can construct a table T that contains 3m rows (one for each edge) and n attributes (one for each
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1 0 1 0
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FIGURE 18.6 An example of construction of T from a graph, as described in the proof of Theorem 18.1.

vertex). The row corresponding to edge (i, j) has 1 in positions corresponding to attributes i and j;
0 otherwise.

Suppose that G can be partitioned into a collection of m disjoint triangles and 4-stars. Consider
first a triangle with vertices i, j, and k. By suppressing the cells in the rows corresponding to edges
(i, j), (i, k), and (j, k) and columns i, j, and k, we get 3 identical rows containing 3 ∗s each and 0
anywhere else. Consider now a 4-star with vertices i, j, k, and h and edges (i, h), (j, h), and (k, h). By
suppressing the cells in the rows corresponding to edges (i, h), (j, h), and (k, h) and columns i, j, and
k, we get 3 identical rows containing 3 ∗s each, with a single 1 (corresponding to attribute h) and 0
anywhere else. Since for each triangle and for each 4-star we obtain three identical generalized tuples
by suppressing 9 cells, table T is 3-anonymous of cost 9m. As a simple example, consider the tables
in Figure 18.6, where the first three rows correspond to a triangle and the last three rows to a 4-star.
The anonymized table on the right side shows the suppressed cells.

Suppose to have a 3-anonymous table TA of cost at most 9m that is a generalization of T. We
want to show that the graph G corresponding to T can be partitioned into a collection of m disjoint
triangles and 4-stars. Since G is a simple graph and therefore there are no edges with the same
end vertices, any 3 rows in the corresponding table T are distinct and differ in at least 3 positions;
otherwise there would be multiple edges. This implies that each modified row in the anonymized
table TA contains at least 3 ∗s, as explained above, and the overall number of ∗s in TA is at least
9m. From the previous hypothesis, we have that the cost of TA is exactly 9m, and each row of TA
contains 3 ∗s. Therefore TA contains only clusters of 3 identical rows. In fact, any tuple in the
anonymized table TA belonging to a group of more than 3 equal tuples would contain at least 4 ∗s.
The corresponding graph contains then only edges composing either triangles or 4-stars. In fact,
while each modified row in a triangle has 3 ∗s and 0 elsewhere (see Figure 18.6), each modified tuple
in a 4-star contains 3 ∗s, a single 1, and 0 elsewhere (see Figure 18.6). No other configuration is
possible. The overall solution corresponds to a partition of edges into triangles and 4-stars.

We now show the reduction from the “Edge partition into triangles” problem.

Edge partition into triangles. To prove that _CS 3-anonymity is reduced from “Edge partition into
triangles,” the informal idea is to make 4-stars costing more ∗s than triangles. A slightly different
construction of the table from a graph G = (V , E) with |E| = 3m and |V| = n is then required. Let
t = ⌈

log2(3m + 1)
⌉

. We define a new table T′ where each row has t blocks of n columns. Consider
an arbitrary ordering of the edges in E and express the rank of an edge e = (v1, v2) in binary notation
b1b2 . . . bt . In the tuple corresponding to edge e, each block has 0 in all columns but the columns
corresponding to the vertices v1 and v2, for which two configurations are possible: conf0 has a 1 in
column v1 and a 2 in column v2, and conf1 has a 2 in column v1 and a 1 in column v2. The lth block
in the row corresponding to e has configuration confbl . For instance, with respect to the graph shown
in Figure 18.6, the edges are ranked from 1 (001 in binary notation) to 6 (110 in binary notation).
Figure 18.7 illustrates table T′ corresponding to the graph. We now show that the cost of the optimal
3-anonymity solution of T′ is at most 9mt if and only if E can be partitioned into m disjoint triangles.
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T ′
i j k h i j k h i j k h

001 (i, j) 1 2 0 0 1 2 0 0 2 1 0 0
010 (i, k) 1 0 2 0 2 0 1 0 1 0 2 0
011 (j, k) 0 1 2 0 0 2 1 0 0 2 1 0
100 (i, h) 2 0 0 1 1 0 0 2 1 0 0 2
101 (j, h) 0 2 0 1 0 1 0 2 0 2 0 1
110 (k, h) 0 0 2 1 0 0 2 1 0 0 1 2

=⇒

T ′
A (T ′ anonymized)

i j k h i j k h i j k h
(i, j) ∗ ∗ ∗ 0 ∗ ∗ ∗ 0 ∗ ∗ ∗ 0

(i, k) ∗ ∗ ∗ 0 ∗ ∗ ∗ 0 ∗ ∗ ∗ 0
(j, k) ∗ ∗ ∗ 0 ∗ ∗ ∗ 0 ∗ ∗ ∗ 0
(i, h) ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
(j, h) ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

(k, h) ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

FIGURE 18.7 An example of construction of T′ from the graph in Figure 18.6, as described in the proof of
Theorem 18.1

Suppose that E can be partitioned into m disjoint triangles. As previously discussed, every triangle
in such a partition corresponds to a cluster with 3t ∗s in each tuple. Thus, we get a 3-anonymity
solution of cost 9mt.

Suppose to have a 3-anonymity solution of cost at most 9mt. Again, any 3 tuples differ in at least
3t columns and the cost of any solution is at least 9mt. Hence, the solution cost is exactly 9mt and
each modified row has exactly 3t ∗s. Thus, each cluster has exactly 3 equal rows. We now show, by
contradiction, that the corresponding edges form a triangle and cannot be a 4-star. Suppose, on the
contrary, that the 3 rows form a 4-star. Let h be the common vertex and consider the integer {1, 2}
assigned by each of the 3 edges to h in conf0. Two of the three edges must have assigned the same
digit to h. However, since these two edges differ in rank, there must exist at least one block where
they have a different configuration (and therefore, a different digit in the column corresponding to
h). Thus, the rows corresponding to the 3 edges contain an additional ∗ corresponding to column
h in addition to the 3t ∗s corresponding to the remaining 3 columns (e.g., see the last 3 tuples of
Figure 18.7). This contradicts the fact that each row has exactly 3t ∗s. Therefore, E can be partitioned
into m disjoint triangles. �

The corresponding theorem for _AS has been proved with a proof similar to the one that was
proposed for _CS [32]. The result is the following.

THEOREM 18.2 The _AS problem for k > 2 is NP-hard for any alphabet Σ such that |Σ| ≥ 2.

The proof is a reduction from the “k-dimensional perfect matching” problem: given a k-hypergraph
G = (V , E) is there a subset S of G with |V|/k hyperedges such that each vertex of G is contained in
exactly one hyperedge of S?

By orchestrating Theorems 18.1 and 18.2 and the observations given in this section, we have the
following result.

COROLLARY 18.1 Problems _AS, _CS, AG_, AG_TS, and CG_ are NP-hard for k > 2, and for
any alphabet Σ such that |Σ| > 2.

18.3.2 Algorithms for k-Anonymity

Since the hierarchy-based generalization has been proposed first, the solutions based on such a
type of hierarchy have been studied in more depth than the ones based on the recoding-based
generalization. Here, we present two exact algorithms, both belonging to the AG_TS class, and both
aimed at finding a k-minimal solution for a given PT [28,35]. We also briefly describe the most
important approximation algorithms proposed for k-anonymizing a private table.



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C018 Finals Page 16 2009-10-6

18-16 Special Topics and Techniques

Besides the two exact algorithms described in the following, Sweeney [37] proposed an exact
algorithm (AG_TS class) that exhaustively examines all potential generalizations (with suppression)
for identifying a minimal one satisfying the k-anonymity requirement. This approach is however
impractical for large datasets.

18.3.2.1 Samarati’s Algorithm

The first algorithm introduced for k-anonymizing a private table PT was proposed along with the
definition of k-anonymity [35]. This algorithm follows the minimum absolute distance criterion (see
Section 18.3) to determine a k-minimal generalization of PT.

Given a private table PT such that |PT| ≥ k,∗ the algorithm restricts its analysis to PT[QI],
where QI= {A1, . . . , An} is defined on the domain tuple DT = 〈D1, . . . , Dn〉 (i.e., dom(Ai,PT)= Di,
i = 1, . . . , n).

Given a domain generalization hierarchy DGHDT , each path from the bottom to the top element in
DGHDT represents a generalization strategy that is characterized by a locally minimal generalization
defined as follows.

DEFINITION 18.8 (Locally minimal generalization) Let DGHDT be a domain generalization
hierarchy, k be the anonymity threshold, and MaxSup be the suppression threshold. Any path in
DGHDT is characterized by a locally minimal generalization, which is the lowest generalization in the
path that satisfies k-anonymity and suppresses a number of tuples lower than MaxSup.

A locally minimal generalization represents the k-anonymous generalization that maintains the
most information with respect to a given generalization strategy.

Example 18.1

Consider the table in Figure 18.1 and the domain generalization and distance vector hierarchies
in Figure 18.4. If k = 3 and MaxSup= 2, along path 〈Z0,M0,S0〉 → 〈Z1,M0,S0〉 → 〈Z2,M0,S0〉 →
〈Z2,M1,S0〉 → 〈Z2,M2,S0〉 → 〈Z2,M2,S1〉, the generalized table corresponding to 〈Z2,M1,S0〉 (see
Figure 18.5b) is a locally minimal generalization.

The definition of locally minimal generalization can be exploited to compute k-minimal general-
izations, on the basis of the following theorem.

THEOREM 18.3 [35] Let Ti(A1, . . . An)=PI[QI] be a table to be generalized and let
DT = 〈D1, . . . , Dn〉 (Dz = dom(Az , Ti), z = 1, . . . , n) be the domain tuple of its attributes. Every
k-minimal generalization of Ti is a locally minimal generalization for some strategy in DGHDT.

Note that a locally minimal generalization may not correspond to a k-minimal generalization, since
a generalization may be locally minimal along one path but not along another one. With respect to
Example 18.1, the locally minimal generalization 〈Z2,M1,S0〉 is not a k-minimal generalization, since
the generalized table corresponding to 〈Z1,M1,S0〉 (see Figure 18.5c) is k-anonymous, suppresses
a number of tuples lower than MaxSup and contains more specific values for the ZIP attribute.
Exploiting Theorem 18.3, a naive method to compute a k-minimal generalization consists in finding
all locally minimal generalizations by visiting all the paths in DGHDT , starting from the bottom and
stopping at the first generalization that both satisfies k-anonymity and suppresses a number of tuples

∗ Note that if 1 ≤ |PT| < k, a k-anonymous version of PT does not exist.
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lower than MaxSup. By discarding the locally minimal generalizations that are dominated by other
locally minimal generalizations, only k-minimal generalizations of PT are maintained. However,
since the number of paths in DGHDT may be very high, such a naive strategy is not viable. The key
idea exploited by Algorithm 18.1 in Figure 18.8 to reduce the computational time is that the number
of tuples that need to be suppressed to satisfy k-anonymity decreases while going up in a path.

THEOREM 18.4 [35] Let Ti=PT[QI] be a table to be generalized and Tj and Tz be two of
its generalizations (i.e., TiTj and TiTz) enforcing minimal required suppression. Then, DVi,j <

DVi,z ⇒ |Tj| ≤ |Tz|.

From Theorem 18.4, it follows that given two generalized tables Tj and Tz of PT such that
DVi,j < DVi,z, if Tj is k-anonymous and suppresses a number of tuples lower than MaxSup, also Tz
is k-anonymous and suppresses a number of tuples lower than MaxSup. Furthermore, if there is no
solution that guarantees k-anonymity suppressing a number of tuples lower than MaxSup at height
h, there cannot exist a solution at height h′ < h that guarantees it. Such a consequence is exploited
by the Algorithm 18.1 to compute a k-minimal generalization for PT[QI], by performing a binary
search on the heights of distance vectors.

The algorithm takes as input the projection T over quasi-identifying attributes of the private table
PT, the anonymity constraint k, the suppression threshold MaxSup, and the domain generalization
hierarchies for the attributes composing the quasi-identifier. During the initialization phase, the
algorithm first builds VLDT (i.e., the distance vector lattice based on the domain generalization
hierarchies) and a matrix VT, with a row for each distinct tuple t in T with less than k occurrences
and a column for each distinct tuple in T. Each entry VT[x, y] of the matrix contains the distance
vector [d1, . . . , dn] between tuples x = 〈v1 . . . vn〉 and y = 〈v′

1 . . . v′
n〉, where di, i = 1, . . . , n, is the

distance from the domain of vi and v′
i to the domain to which they generalize to the same value.

The binary search phase visits the lattice VLDT as follows. Variable high is first initialized to the
height of VLDT and all the generalized tables corresponding to distance vectors at height � high

2 �
are first evaluated. If there is at least one generalized table satisfying k-anonymity and suppressing
a number of tuples lower than MaxSup, the algorithm evaluates the generalized tables at height
� high

4 �, otherwise those at height � 3high
4 �, and so on. The algorithm stops when it reaches the lowest

height in VLDT where there is at least a generalized table satisfying k-anonymity and the MaxSup
constraint.

To check whether or not at a given height h there is a table that satisfies k-anonymity and the
MaxSup suppression threshold, for each distance vector vec at height h the algorithm calls function
Satisfy. Function Satisfy computes the number of tuples req_sup that need to be suppressed for
achieving k-anonymity in table Tvec corresponding to the vec distance vector. For each row x in
VT, Satisfy computes the sum c of the occurrences of tuples y (column of the matrix) such that
VT[x, y]≤vec. As a matter of fact, all tuples such that VT[x, y]≤vec will be generalized to the same
value in Tvec as x. Therefore, if c < k, c is added to req_sup since the considered tuples will be outliers
for Tvec and will be therefore suppressed to satisfy k-anonymity. If req_sup is lower thanMaxSup, Tvec
satisfies k-anonymity and the MaxSup threshold and Satisfy returns true; otherwise it returns false.

Example 18.2

Consider the private table in Figure 18.1 with QI = {ZIP, MaritalStatus, Sex} and the corre-
sponding hierarchies in Figure 18.4. Also, suppose that k = 3, and MaxSup= 2. The algorithm builds
matrix VT illustrated in Figure 18.9, which is composed of seven rows (all quasi-identifying values
appear less than 3 times in PT) and 7 columns since there are 7 distinct values for QI in PT (t1 = t2,
t4 = t5, and t8 = t9).
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Algorithm 18.1 (Samarati’s Algorithm)

INPUT
T = PT[QI]: private table
k: anonymity requirement
MaxSup: suppression threshold
∀A ∈ QI, DGHA: domain generalization hierarchies

OUTPUT
sol: distance vector corresponding to the k-minimal generalization of PT[QI]

MAIN
Let VLDT be the distance vector hierarchy
/* matrix initialization phase */
Outlier:= ∅ /* set of outlier values */
order(T) /* order the tuples in the table */
V := ∅ /* set of distinct tuples */
counter[t1] := 1 /* first tuple */
for i:=2 . . . |T| do

if ti �= t(i−1) then /* if the i-th is different from the (i − 1)th tuple */
V := V∪{ti}
counter[ti] := 1
if counter[t(i−1)]< k then Outlier:= Outlier∪{t(i−1)}

else counter[ti] := counter[ti] + 1
for j:=1 . . . |V | do

for i:=1 . . . |Outlier| do
VT[i,j] := distance(vj,outlieri)

/* binary search phase */
low:= 0
high:= height(�,VLDT )
sol:= �
while low<high do

h:= � low+high
2 �

Vectors:= {vec|height(vec,VLDT )=h}
reach_k:= false
while Vectors�= ∅ ∧ reach_k �=true do

let vec be a vector in Vectors
Vectors := Vectors − {vec}
if Satisfy(T,vec,VT,|Outlier|,|V |) then

sol:= vec
reach_k := true

if reach_k=true then high := h
else low := h+1

return(sol)

SATISFY(T,vec,VT,rows,columns)
req_sup := 0
for i:=1 . . . rows do

c := 0
for j:=1 . . . columns do

if VT[i,j]≤vec then
c := c + counter[vj]

if c<k then req_sup := req_sup + c
if req_sup<MaxSup then return(true)
else return(false)

FIGURE 18.8 Algorithm that computes a k-minimal generalization.
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1 2 3 4 5 6 7
t1/t2 t3 t4/t5 t6 t7 t8/t9 t10

1 t1/t2 [0,0,0] [0,2,1] [1,2,1] [1,1,0] [2,1,1] [2,1,1] [2,2,0]
2 t3 [0,2,1] [0,0,0] [1,0,0] [1,2,1] [2,2,0] [2,2,0] [2,0,1]
3 t4/t5 [1,2,1] [1,0,0] [0,0,0] [0,2,1] [2,2,0] [2,2,0] [2,0,1]
4 t6 [1,1,0] [1,2,1] [0,2,1] [0,0,0] [2,0,1] [2,1,1] [2,2,0]
5 t7 [2,1,1] [2,2,0] [2,2,0] [2,0,1] [0,0,0] [1,1,0] [1,2,1]
6 t8/t9 [2,1,1] [2,2,0] [2,2,0] [2,1,1] [1,1,0] [0,0,0] [0,2,1]
7 t10 [2,2,0] [2,0,1] [2,0,1] [2,2,0] [1,2,1] [0,2,1] [0,0,0]

FIGURE 18.9 An example of the VT matrix computed with respect to the table in Figure 18.1.

By exploiting the hierarchies in Figure 18.4, the algorithm computes the distance vectors between
pairs of tuples. For instance, VT[1,4] = [1, 1, 0], which is the distance vector of the generalized table
at which t1 = t2 = 〈22030, married, F〉 and t6 = 〈22032, divorced, F〉 are generalized to the same value
〈2203*, been_married, F〉.

Once VT has been computed, the algorithm starts with the binary search phase and evaluates
first the generalizations at height �5/2�= 2, that is, the tables corresponding to distance vectors
[2, 0, 0], [1, 1, 0], [1, 0, 1], [0, 1, 1], and [0, 2, 0]. The table corresponding to [1, 1, 0] satisfies 3-anonymity
suppressing only one tuple. It is easy to see that for each row but the last one of the VT matrix in
Figure 18.9, there are 3 tuples that are generalized to the same tuple. The algorithm then evaluates
tables at height �5/4�= 1, that is, the tables corresponding to distance vectors [1, 0, 0], [0, 1, 0], and
[0, 0, 1]. Since none of these tables is 3-anonymous and suppresses a number of tuples lower than
MaxSup, the solution returned by the algorithm is [1, 1, 0], which corresponds to 〈Z1,M1,S0〉.

The time complexity of the algorithm in Figure 18.8 is exponential in the number (n) of
attributes in QI.

First, the algorithm builds the domain generalization hierarchy for QI (VLDT) from the given
domain generalization hierarchies of the individual attributes in QI. This step requires a complexity
of O(|DGH|) in time. Second, the algorithm sorts the tuples in the table with a standard sorting
algorithm in polynomial time. The third step initializes the matrix VT, and it requires a time
proportional to its dimension (O(m2 · n)). The last step computes a minimal generalization with a
binary search in the lattice that verifies the anonymity of the generalized tables corresponding to
each node of the lattice considered. Note that, even if this is a binary search, the lattice contains, in
the middle level, a huge number of possible generalizations. For instance, even if we assume that QI
contains only attributes with domain generalization hierarchies of height 2, the number of possible
generalizations in the middle level of the corresponding DGH is

( n
n/2

) ∈ O(2n/2). Therefore, in the
worst case, the time complexity of the binary search phase is upperbounded by |DGH| · (n ·m), where
|DGH| = n · ∏n

i = 1 hi with hi the height of the domain generalization hierarchy of the single attribute
Ai in QI. The overall time complexity of the algorithm is then O((n · m) · (m + |DGH|)), where
|DGH| ∈ O(n · (hmax)

n) and hmax = max{h1, . . . , hn}.

18.3.2.2 Incognito

The Incognito algorithm [28] has been proposed for computing a k-minimal generalization by using
a domain generalization hierarchy DGHDT on the domain tuple of the quasi-identifier, where the
vertices in DGHDT are only the vertices that correspond to k-anonymous generalized tables.

Since the computational cost of the k-anonymization algorithms is mainly due to the verification
of the k-anonymity condition on a great number of generalizations of the private tablePT, Incognito
reduces the number of tables for which this verification is necessary by exploiting the observation
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that if a table T with quasi-identifier QI is k-anonymous, T is k-anonymous with respect to any
quasi-identifiers Q⊂QI.

DEFINITION 18.9 (Subset property) Let T(A1, . . . , An) be a table and QI= {A1, . . . , Am} be its
quasi-identifier. If T is k-anonymous with respect to QI, T is k-anonymous with respect to any
Q ⊆QI.

This subset property represents a necessary (not sufficient) condition for k-anonymity. As a
matter of fact, a table T can be k-anonymous with respect to QI only if T is k-anonymous with
respect to any subset of QI. Incognito then excludes a priori the generalizations in DGHDT that
cannot be k-anonymous with respect to QI. To this purpose, Incognito iteratively builds all the
domain generalization hierarchies on subsets of QI, excluding at each step the vertices representing
generalizations that do not satisfy k-anonymity (see Figure 18.10).

At the first iteration, for each Ai∈QI, Incognito builds DGHDi with Di = dom(Ai,PT). For
each DGHDi , Incognito then follows a bottom-up breadth-first search on the domain generalization
hierarchy. If a table Tv corresponding to vertex v inDGHDi satisfies k-anonymity, Incognito marks true

Algorithm 18.2 (Incognito Algorithm)

INPUT
T = PT[QI]: private table where QI = {A1, . . . , An} and DT = 〈dom(A1,PT), . . . , dom(An,PT)〉
k: anonymity requirement
∀D ∈ DT , DGHD: domain generalization hierarchies where for all v ∈ DGHD, mark(v) is set false

OUTPUT
DGHD: restricted version of DGHDT

MAIN
for i=1 . . . n do

Di := {D|D⊆ DT ∧ |D| = i} /* all subsets of i elements in QI */
for each D ∈ Di do

if i �= 1 then DGHD := Compose(D)
for h=0 . . . height(�) do /* � represents the root node in DGHD */

/* height(v) denotes the length of the path from the bottom element in DGHD to v */
Vh := {v|v ∈ DGHD ∧ height(v)=h ∧ mark(v)=false}
for each v ∈ Vh do

let Tv be the generalized table corresponding to vertex v
if Satisfy(Tv,k) then

for each v′|v′ ∈ DGHD ∧ v ≤ v′ do mark(v′):=true
return(DGHD)

COMPOSE(D)
DGHD := (V ,E)
i := 1
for each Di ∈ {D′ ⊂ D:|D′| = |D| − 1} do

V i := {v|v ∈ DGHDi ∧ mark(v)=true}
i := i + 1

V := V1 × . . . × Vi
for each v ∈ V do mark(v) := false
E := {(vi,vj)|vi,vj∈V ,vi ≤ vj, � ∃vz ∈V ,vi ≤ vz ∧ vz ≤ vj}
return(DGHD)

FIGURE 18.10 Algorithm that computes reduced generalization hierarchies.
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v and all vertices v′, such that v ≤ v′, without explicitly computing the generalizations corresponding
to v′ to check if they are k-anonymous.∗

At the second iteration, for each subset {Ai,Aj}⊆QI, Incognito builds DGH〈Di,Dj〉 with
Di = dom(Ai,PT) and Dj = dom(Aj,PT). The domain generalization hierarchy DGH〈Di,Dj〉 is built
by combining (through function Compose) DGHDi and DGHDj . For the subset property the Com-
pose function removes from DGH〈Di,Dj〉 all those vertices that represent domain tuples containing
generalized domains for Di (or Dj) marked false in DGHDi (or DGHDj ).

At iteration i, the algorithm builds the domain generalization hierarchies on subsets of QI
composed of i attributes, using the vertices marked true in the domain generalization hierar-
chies computed at iteration i − 1. It terminates at iteration i = |QI|, when it evaluates the domain
generalization hierarchy for the whole quasi-identifier.

Example 18.3

Consider the private table in Figure 18.1 with QI = {ZIP, MaritalStatus, Sex} and assume
that k = 3 and MaxSup= 2. Figure 18.11 illustrates, on the left-hand side, the complete domain
generalization hierarchies for all the subsets of QI, and on the right-hand side, the subhierarchies
computed by Incognito at each iteration.
Iteration 1

• DGH〈Z0〉. Vertices 〈Z0〉, 〈Z1〉, and 〈Z2〉 are marked true, since table T〈Z0〉 satisfies 3-
anonymity by suppressing a number of tuples lower than MaxSup.

• DGH〈M0〉. Vertex 〈M0〉 is marked false, since to satisfy 3-anonymity, in table T〈M0〉 we need
to suppress more than 3 tuples. Vertex 〈M1〉 and vertex 〈M2〉 are marked true since table
T〈M1〉 satisfies 3-anonymity by suppressing a number of tuples lower than MaxSup.

• DGH〈S0〉. Vertices 〈S0〉 and 〈S1〉 are marked true, since table T〈S0〉 satisfies 3-anonymity
by suppressing a number of tuples lower than MaxSup.

Iteration 2

• DGH〈Z0,M0〉. Since 〈M0〉 has been marked false in the previous iteration, this hierarchy does
not include vertices 〈Z0,M0〉, 〈Z1,M0〉, and 〈Z2,M0〉. Vertex 〈Z0,M1〉 is marked false, since
T〈Z0,M1〉 satisfies 3-anonymity only if more than 3 tuples are suppressed. Vertices 〈Z0,M2〉,
〈Z1,M2〉, 〈Z2,M2〉, 〈Z1,M1〉, and 〈Z2,M1〉 are instead marked true, since tables T〈Z0,M2〉 and
T〈Z1,M1〉 satisfy 3-anonymity by suppressing a number of tuples lower than MaxSup.

• DGH〈Z0,S0〉. Vertex 〈Z0,S0〉 is marked false since T〈Z0,S0〉 satisfies 3-anonymity only if
more than MaxSup tuples re suppressed. Vertices 〈Z0,S1〉, 〈Z1,S1〉, 〈Z2,S1〉, 〈Z1,S0〉,
and 〈Z2,S0〉 are marked true, since tables T〈Z0,S1〉 and T〈Z1,S0〉 satisfy 3-anonymity by
suppressing a number of tuples lower than MaxSup.

• DGH〈M0,S0〉. Since 〈M0〉 has been marked false in the previous iteration, this hierarchy does
not include vertices 〈M0,S0〉 and 〈M0,S1〉. All the other vertices in the hierarchy are marked
true, since table T〈M1,S0〉 satisfies 3-anonymity by suppressing a number of tuples lower
than MaxSup.

Iteration 3

• DGH〈Z0,M0,S0〉. Since DGH〈Z0,M0〉 does not contain vertices 〈Z0,M0〉, 〈Z1,M0〉, and 〈Z2,M0〉,
and vertex 〈Z0,M1〉 has been marked false, this hierarchy does not contain vertices

∗ Incognito applies the monotonicity property of k-anonymity stating that if a table T is k-anonymous all its generalized
tables are k-anonymous.
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Complete Hierarchies Incognito Subhierarchies
Iteration 1 Z2 M2

Z1 M1 S1

Z0 M0 S0

Z2 M2

Z1 M1 S1

Z0 S0

Iteration 2 Z2 , M2

Z1, M2 Z2 ,M1

Z0 , M2 Z1 , M1 Z2 , M0

Z0 , M1 Z1, M0

Z0 , M0

Z2 , M2

Z1 , M2 Z2 , M1

Z0 , M2 Z1 , M1

Z2 , S1

Z1, S1 Z2 , S0

Z0 , S1 Z1, S0

Z0 , S0

Z2 , S1

Z1 , S1 Z2 , S0

Z0 , S1 Z1, S0

M2 , S1

M1, S1 M2 , S0

M0 , S1 M1, S0

M0, S0

M2 , S1

M1 , S1 M2 , S0

M1 , S0

Iteration 3 Z2, M2, S1

Z2, M2 , S0 Z2, M1, S1 Z1, M2,S1

Z2, M1 , S0 Z2, M0,S1 Z1, M1, S1 Z1, M2 , S0 Z0, M2,S1

Z2, M0, S0 Z1, M1, S0 Z1, M0,S1 Z0, M1, S1 Z0, M2,S0

Z1, M0, S0 Z0, M1, S0 Z0, M0,S1

Z0, M0, S0

Z2, M2, S1

Z2, M2, S0 Z2, M1, S1 Z1, M2, S1

Z2, M1,S0 Z1, M1, S1 Z1, M2, S0 Z0, M2, S1

Z1, M1, S0

FIGURE 18.11 Subhierarchies computed by Incognito for the table in Figure 18.1.

〈Z0,M0,S0〉, 〈Z1,M0,S0〉, 〈Z2,M0,S0〉, 〈Z0,M0,S1〉, 〈Z1,M0,S1〉, 〈Z2,M0,S1〉, 〈Z0,M1,S0〉,
and 〈Z0,M1,S1〉. Analogously, since vertex 〈Z0,S0〉 has been marked false in DGH〈Z0 ,S0〉,
this hierarchy does not contain vertex 〈Z0,M2,S0〉. Vertices 〈Z1,M1,S0〉, 〈Z1,M1,S1〉,
〈Z1,M2,S0〉, 〈Z1,M2,S1〉, 〈Z2,M1,S0〉, 〈Z2,M1,S1〉, 〈Z2,M2,S0〉, and 〈Z2,M2,S1〉are marked
true, since table T〈Z1,M1,S0〉 satisfies 3-anonymity by suppressing a number of tuples lower
than MaxSup. Analogously, vertex 〈Z0,M2,S1〉 is marked true, since table T〈Z0,M2,S1〉
satisfies 3-anonymity by suppressing a number of tuples lower than MaxSup.
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Incognito iteratively builds the domain hierarchies of increasing dimension until the hierarchy
DGHDT containing the entire QI is built. While in most cases some hierarchies are not built entirely,
since some vertices are removed at iteration i due to the results obtained at iteration i − 1, in the
worst case all the hierarchies are completely built. Let Dom be the set of all ground and generalized
domains for the quasi-identifier QI, n be the number of attributes composing QI, and m be the
number of tuples in PT. We can note that each subset of Dom appears exactly in one of the domain
generalization hierarchies on subsets of QI, therefore the cost of all the hierarchies computed in the
worst case by Incognito is upperbounded by (n · 2Dom), where n is the upperbound of the cost of
each single vertex (since each vertex has at most one component for each attribute in QI) and 2Dom
is the number of possible vertices. Since Incognito, in the worst case, tests if table PT, generalized
according to each subset of Dom, is k-anonymous and suppresses a number of tuples lower than
MaxSup, its complexity is in O((n · m) · n · 2Dom).

18.3.2.3 Approximation Algorithms

Exact algorithms for solving the k-anonymity problem for AG_TS and AG_ are, due to the
complexity of the problem, exponential in the size of the quasi-identifier. The exact algorithms
for models _CS and CG_ can be much more expensive, since the computational time can be expo-
nential in the number of cells in the table.

The first approximation algorithm for _CS was proposed by Meyerson and Williams [32] and
guarantees a O(k log(k))-approximation. The best-known polynomial approximation algorithm
for _CS guarantees a O(k)-approximate solution [2]. Such an O(k)-approximate algorithm con-
structs a complete weighted graph from the original private table PT. Each vertex in the graph
corresponds to a tuple in PT, and the edges are weighted with the number of different attribute val-
ues between the two tuples represented by extreme vertices. The algorithm then constructs, starting
from the graph, a forest composed of trees containing at least k vertices each, which represent the
groups of tuples of at least k elements that are generalized to the same value for k-anonymization.
Some cells in the vertices are suppressed to guarantee that all the tuples in the same tree have the
same quasi-identifier value (i.e., to achieve k-anonymity). The cost of a vertex is evaluated as the
number of cells suppressed, and the cost of a tree is the sum of the costs of its vertices. The cost
of the final solution is equal to the sum of the costs of its trees. In constructing the forest, the
algorithm limits the maximum number of vertices in a tree to be 3k − 3. Partitions with more
than 3k − 3 elements are decomposed, without increasing the total solution cost. With the con-
struction of trees with no more than 3k − 3 vertices, the authors prove that their solution is a
O(k)-approximation.

An approximation algorithm for CG_ is described in [3] as a direct extension of the approximation
algorithm for _CS [2]. For taking into account the generalization hierarchies, each edge has a weight
that is computed as follows. Given two tuples ti and tj and an attribute A, the generalization cost
hti,tj(A) associated with A is the lowest level of the value generalization hierarchy VGHdom(A,PT) such
that tuples ti and tj have the same generalized value for A. The weight w(e) of the edge e = (ti, tj) is
therefore w(e) = ΣAhti,tj(A)/lA , where lA is the number of levels in VGHdom(A,PT). The solution of
this algorithm is guaranteed to be a O(k)-approximation.

Recently, Park and Shim [33] described an algorithm for _CS with O(log k)-approximation ratio,
but the overall time complexity is O((nm)2k).

Besides algorithms that compute k-anonymized tables for any value of k, ad hoc algorithms for
specific values of k have also been proposed. For instance, to find better results for Boolean attributes,
in the cases where k = 2 or k = 3, an ad hoc approach has been provided [3]. The algorithm for k = 2
exploits the minimum-weight [1, 2]-factor built on the graph constructed for the 2-anonymity. The
[1, 2]-factor for a graph G is a spanning subgraph of G built using only vertices with no more than 2
outgoing edges. Such a subgraph is a vertex-disjoint collection of edges and pairs of adjacent vertices
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and can be computed in polynomial time. Each component in the subgraph is treated as a cluster,
and a 2-anonymized table is obtained by suppressing each cell for which the vectors in the cluster
differ in value. This procedure is a 1.5-approximation algorithm. The approximation algorithm for
k = 3 is similar and guarantees a 2-approximation solution.

18.4 k-Anonymity with Recoding-Based Generalization

The algorithms described in the previous section assume that the generalizations follow a predefined
hierarchy. However, also a recoding-based generalization can be adopted for k-anonymity [6,24,27]
that exploits an order relationship among values in the attribute domains. The algorithms adopting a
recoding-based generalization are therefore not forced to follow a predefined strategy for generalizing
values.

DEFINITION 18.10 (Recoding function) Let D = {v1, . . . , vx} be a domain on which a total order
relationship is defined. A recoding function ρ : D → 2|D| for D partitions the domain in a set of
(possibly disjoint) intervals I1, . . . , Iy (y ≤ x), such that

⋃y
i = 1 Ii = D and ∀vi ∈ Ia, ∀vj ∈ Ib, with

a �= b, vi ≤ vj iff a < b.

As an example, consider attribute MaritalStatus and the VGHM0 in Figure 18.3. A possible
order among the values inM0 is {married, widow, divorced, single}. A recoding function can partition
M0 into two intervals I1 = [married, widow] and I2 = [divorced, single].

Recoding-based generalization associates with each interval Ij a value vj representing the values
of the ground domain belonging to Ij. Any value in PT that belongs to Ij is then generalized to vj.

The main advantage of a recoding-based generalization strategy is that it is possible to analyze
solutions that would not be investigated adopting a hierarchy-based generalization, and this might
improve the quality of the final solution. However, since recoding-based generalization strategies are
based on the total order among attribute values, they are influenced by such an ordering, which may
be difficult to define when the attribute domain does not have a characterizing ordering relationship.
Furthermore, when the domain is categorical,∗ it might be difficult to represent the values obtained
by the generalization process, since the set of values that need to be indistinguishable in the released
table might not be similar. In some cases, the only way to describe an interval of values is the
direct enumeration of its elements. For instance, the two subsets [married, widow] and [divorced,
single] are described by enumerating their elements, while the set [married, widow, divorced] can
be described as been_married.

18.4.1 Algorithms for k-Anonymity

We now describe two k-anonymization algorithms adopting recoding-based generalization: k-
Optimize and Mondrian multidimensional k-anonymity.

18.4.1.1 k-Optimize

Bayardo and Agrawal [6] propose an AG_TS algorithm called k-Optimize, based on a recoding-
based generalization defined on the quasi-identifying attributes. k-Optimize determines a solution
minimizing a predefined cost function that measures the loss of information due to generalization
and suppression.

∗ An attribute is categorical if it can assume a limited and specified set of values on which arithmetic operations cannot
be defined. For instance, attribute MaritalStatus is categorical.
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k-Optimize assumes the existence of a total order relationship among the attributes composing
QI, and a total order relationship on each of the domains of the quasi-identifying attributes. It uses
these total order relationships to associate an integer value, called index, with each interval in any
domain of the quasi-identifier attributes. Note that, at initialization time, any value in any domain
of QI represents an interval itself. The index assignment reflects the total order relationship among
quasi-identifying attributes and within their domains.

Example 18.4

Consider the private table in Figure 18.1 with QI = {ZIP, MaritalStatus, Sex} and suppose
that ZIP precedes MaritalStatus that, in turn, precedes Sex. Suppose also that the values
within the domain of each of these attributes follow the same order as the leaves in the hierarchies in
Figure 18.3. Figure 18.12 illustrates the index values assigned assuming that each value represents an
interval. As it is visible from the figure, due to the order among attributes, the index values associated
with the intervals of the ZIP domain are lower than the index values associated with the intervals of
the domains of MaritalStatus and Sex. Furthermore, within each domain the assignment of
the index values follow the total order among intervals.

Given a set of indexes I , a generalization is represented by the union of individual index values.
As an example, with reference to Figure 18.12, the union of index values 1 and 2 means that the
ZIP values 22030 and 22032 have been generalized to the same indistinguishable value. Since only
contiguous index values can be unioned for generalization purposes, their union is represented by the
least index value. This implies that given a set I of index values, if an index value I does not appear in
I , the index I has been generalized to the nearest value appearing in I and lower than I. For instance,
with respect to the set of indexes in Figure 18.12, the set I = {1, 3, 5, 8, 9, 10} implicitly indicates that
index 2 has been generalized to the same value as 1, 4 to the same value as 3, and 6 and 7 to the same
value as 5. Since the least value in any attribute domain will certainly appear in any generalization,
it can be omitted in the representation of I , assuming that it always implicitly belongs to the
generalized domain. Consequently, the set I = {1, 3, 5, 8, 9, 10} can be represented as I = {3, 8, 10}.
This set of index values represents the following interval values: {[1,2],[3,4]}, corresponding to
{[22030,22032],[22045,22047]}; {[5,6,7],[8]}, corresponding to {[married,widow,divorced],[single]};
and {[9],[10]}, corresponding to {[M],[F]}. Note that the empty set { } represents the most general
anonymization. For instance, with reference to Example 18.4, { } corresponds to the generalizations
{1} for attribute ZIP, {5} for attribute MaritalStatus, and {9} for attribute Sex, which in
turn correspond to the generalized values ZIP: {[22030, 22032, 22045, 22047]}; MaritalStatus:
{[married,widow,divorced,single]}; and Sex: {[M,F]}.

Each generalized table that can be obtained fromPT adopting a recoding-based generalization can
be represented as a subset of the indexes I associated with the original domains of quasi-identifying
attributes. Each of these solutions is associated with a cost, reflecting the information loss caused by
the chosen generalization and by the tuples suppressed to achieve k-anonymity.

To compute the optimal generalized table, k-Optimize builds a set enumeration tree over the set I
of index values, where each node corresponds to a generalized table of the original private table PT.
The root node of the tree is the empty set. The children of a node node enumerate the sets that can
be formed by appending a single element of I to node, with the restriction that this single element

ZIP MaritalStatus Sex
〈[22030] [22032] [22045] [22047] 〉 〈[married] [widow] [divorced] [single]〉 〈[M] [F]〉

1 2 3 4 5 6 7 8 9 10

FIGURE 18.12 Index assignment to attributes ZIP, MaritalStatus, and Sex.
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Algorithm 18.3 (k-Optimize Algorithm)

INPUT
I: set of index values corresponding to the original domains of PT[QI]
k: anonymity requirement

OUTPUT
I′: set of index values representing the k-anonymous generalized table

MAIN
root := { }
best.cost := ∞
best.sol := null
Optimize(root,best)

OPTIMIZE(node,best)
if Satisfy(node) then

cost := Cost(node)
if cost≤best.cost then

best.cost := cost
best.sol := node

for each i∈ {idx|idx ∈ I ∧ (∀j ∈ node, idx ≥ j ∨ node = ∅)} do
child := node ∪ {i}
lb := LowerBound(child)
if lb≤best.cost then

best := Optimize(child,best)
else

Prune(root,node) /* prune nodes having node as a subset */
return(best)

FIGURE 18.13 k-Optimize algorithm adopting a preorder traversal strategy.

must follow every element already in node, according to the given total order. Figure 18.14 illustrates
a set enumeration tree over I = {2, 3, 4} (e.g., this tree could represent the set enumeration tree
for attribute ZIP). The consideration of a tree guarantees the existence of a unique path between
the root and each node. The visit of the set enumeration tree using a standard traversal strategy is
equivalent to the evaluation of each possible solution to the k-anonymity problem.

Algorithm k-Optimize (see Figure 18.13) visits the set enumeration tree built on the basis of the
given private table PT, keeping track of the best generalization (variable best) found at each step.
For each visited node node in the tree that satisfies the k-anonymity constraint (function Satisfy), it
computes (function Cost) the cost cost of the generalization strategy represented by node. If the cost
of the solution associated with node is lower than best.cost, that is, the lowest cost found during the
visit at that point, node becomes the new locally best solution and its cost becomes the comparison
term for the following visited nodes. Since the number of nodes in the tree is 2|I|, this approach is
not practical and the authors have therefore proposed heuristics and pruning strategies to reduce
the computational costs of the k-Optimize algorithm [6]. The idea is that if none of the nodes in
the subtree rooted at a child child of node can have a cost lower than the locally optimal solution
computed before visiting child, k-Optimize prunes the subtree rooted at child without visiting the
solutions it contains. To this purpose, for each visited node node, k-Optimize computes the lower
bound of the cost function for the subtree rooted at each of its children child (function LowerBound),
that is, the lowest possible cost that a solution in the subtree can have. The lower bound for a subtree
child is computed by noting that the solutions in the subtree rooted at child need to suppress a greater
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{ }

{2}

{2, 3} {3, 4}{2, 4}

{2, 3, 4}

{3} {4}

FIGURE 18.14 An exam-
ple of set enumeration tree
over set I = {2, 3, 4} of
indexes.

number of tuples than node to guarantee k-anonymity, since they repre-
sent more specific solutions. If this lower bound is higher than the locally
optimal solution, the subtree rooted at child is pruned. Note that when
a subtree is pruned also additional nodes can be removed from the tree
(procedure Prune). For instance, consider the set enumeration tree in
Figure 18.14 and suppose that node {2, 4} is pruned. This means that all
the solutions that contain index values 2 and 4 are not optimal, therefore
also node {2, 3, 4} can be pruned.
k-Optimize can always compute the best solution in the space of the
generalization strategies. Since the algorithm tries to improve the solution
at each visited node evaluating the corresponding generalization strategy,
it is possible to set a maximum computational time, and obtain a good,
but nonoptimal, solution.

18.4.1.2 Mondrian Multidimensional Algorithm

LeFevre et al. [27] propose a CG_ algorithm for anonymizing a private table PT based on multi-
dimensional global recoding, by extending the single-dimensional recoding-based generalization to
the multidimensional case.

On the basis of the order of values defined for all the domains of attributes composing QI, a
multidimensional generalization function defines a set of multidimensional regions. These regions
correspond to the intervals defined in the single-dimensional scenario. Let QI= {A1, . . . , An} be a
quasi-identifier and D = {D1, . . . , Dn} be the set of ground domains of the attributes A1, . . . , An.
Each domain in D is a dimension for the multidimensional space, where PT[QI] can be represented
as a set of points: each tuple t ∈ PT[QI] represents a point in the multidimensional space defined
by D and its coordinates are the values assumed by the quasi-identifying attributes in t.

A multidimensional region within such a space is represented by two tuples p = (p1, . . . , pn)
and v = (v1, . . . , vn) such that pi ≤ vi, i = 1, . . . , n. A tuple t = (t1, . . . , tn) belongs to the region
represented by 〈p, v〉 if pi ≤ ti ≤ vi, i = 1, . . . , n. A multidimensional region can therefore be seen
as an n-dimensional rectangular, whose edges are parallel to the axis. As an example, consider the
private table in Figure 18.1 and suppose thatQI= {MaritalStatus,Sex}. Figure 18.15a provides
a graphical representation of the multidimensional space determined by D = {M0, S0}, where the
domain of attributeSex is represented on the x-axis and the domain of attributeMaritalStatus

(a)
M F 

married

widow

divorced

single

2

2

11

13

MaritalStatus
married
married
single
single
single
(widow, divorced, single)
(married, widow, divorced)
(married, widow, divorced)
(married, widow, divorced)
(widow, divorced, single)

(b)

Sex
F
F

F

F
M
M
M

M
M
M

FIGURE 18.15 An example of strict multidimensional partitioning (a) and corresponding generalized table (b).
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is represented on the y-axis. Regions are delimited by lines parallel to the axis and points are
associated with the number of occurrences of the corresponding quasi-identifier values in PT[QI].
A strict multidimensional partitioning is a set of multidimensional regions that cover the whole space
defined on D.

DEFINITION 18.11 (Strict multidimensional partitioning) Let QI be a quasi-identifier and
D= {D1, . . . , Dn} be the set of domains for the attributes composing it. A strict multidi-
mensional partitioning is a set of nonoverlapping multidimensional regions covering the space
defined by D.

A strict multidimensional partitioning of the space defined byD represents the generalized table T
obtained by making all the tuples belonging to the same multidimensional region indistinguishable,
that is, by generalizing the tuples in the same region to the same generalized tuple. For instance,
Figure 18.15b represents a possible generalized table corresponding to the regions in Figure 18.15a,
where the generalized values of attributes MaritalStatus and Sex are obtained by listing all
values that belong to a given region.

A strict multidimensional partitioning for a private table PT is k-anonymous if any multidimen-
sional region in the space defined by D contains either zero or at least k tuples of PT. The problem of
computing the optimal (i.e., the one that minimizes information loss) strict k-anonymous multidi-
mensional partitioning is NP-hard, since its decisional version can be reduced from the well-known
partition problem [27]. It is important to note here that this result is not implied by the NP-hardness
of the hierarchy-based k-anonymity problem demonstrated in [32], since the two problems are
different and cannot be reduced one to the other.

Given the set of points along with the number of their occurrences induced by private table PT
on the multidimensional space defined by D, a multidimensional cut for such a set of points is an
axis-parallel cut that produces two disjoint sets of points. A multidimensional cut perpendicular
to dimension Di, corresponding to attribute Ai in QI, is performed at a given value v of Di. Any
tuple t such that t[Ai] ≤ v will belong to one partition, while any tuple t such that t[Ai] > v will
belong to the other one. A multidimensional cut is allowable with respect to a given k-anonymity
constraint if and only if the resulting regions contain a set of points representing at least k tuples of
the original table (i.e., the sum of the occurrences of the points in the region obtained is at least k). The
recursive application of allowable multidimensional cuts on the original set of points representing
PT generates a multidimensional strict partitioning.

DEFINITION 18.12 (Minimal strict multidimensional partitioning) A strict multidimensional
partitioning, composed of regions R1, . . . , Rr , is minimal if there does not exist an allowable multi-
dimensional cut for any of the sets of points in its regions.

For instance, for k = 2, the strict multidimensional partitioning in Figure 18.15a is minimal, since
none of its regions can be further split obtaining two regions containing at least 2 tuples each.

The maximum number of points contained in any region Ri in a minimal strict multidimensional
partitioning is 2n(k−1)+o, where n = |QI| is the number of dimensions (i.e., attributes composing
the quasi-identifier), k is the k-anonymity constraint, and o is the maximum number of occurrences
of a quasi-identifier value in PT (i.e., the maximum number of copies of the same point in the
multidimensional space), as formally proved in [27].

The algorithm proposed in [27], and illustrated in Figure 18.16, is a greedy solution to the minimal
multidimensional k-anonymity problem. The algorithm receives in input the set partition of points
together with their occurrences that represent a private table PT, and the k value. The algorithm
cuts the given n-dimensional space in two nonoverlapping spaces and is recursively applied to each
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Algorithm 18.4 (Mondrian Algorithm)

INPUT
partition={p|p = 〈p1, . . . , pn〉 ∧ pi ∈ Di, i = 1, . . . , n〉}: set of points that represent private table PT[QI]
k: anonymity requirement

OUTPUT
T : k-anonymized table for PT[QI]

MAIN
Anonymize(partition)

ANONYMIZE(partition)
if(no allowable multidimensional cut for partition) then

return Generalize(partition) /* generalize all the tuples in partition to the same value */
else

dim := ChooseDimension(partition) /* choose the dimension for the cut */
fs := frequency_set(partition, dim) /* frequency of the values in the domain of dim */
split_val := find_median(fs) /* find the split point as the median for dim wrt fs */
lhs := {p∈partition|pdim≤split_val} /* first partition created */
rhs := {p∈partition|pdim>split_val} /* second partition created */
return Anonymize(rhs)∪Anonymize(lhs) /* recursive call */

FIGURE 18.16 Mondrian multidimensional k-anonymity algorithm.

resulting space, until the minimal strict multidimensional partitioning is reached. At each recursive
call, the algorithm chooses the dimension with the widest (normalized) range of values. It then splits
the region by performing a strict multidimensional cut perpendicular to the chosen dimension,
adopting as a split value the median of partition projected on the chosen dimension. If the cut is
allowable, the algorithm is recursively called on each of the two regions obtained; otherwise the
cut is not performed. As an example, consider the private table in Figure 18.1 and suppose that
QI={MaritalStatus, Sex}. Figure 18.17 represents an example of step-by-step execution of the
algorithm in Figure 18.16, where k = 2. The algorithm first chooses theSex dimension and performs
a cut at value “M,” obtaining the regions in Figure 18.17b. The algorithm is then recursively called
on the region characterized by Sex= M. This call causes a cut on attribute MaritalStatus at
value “single.” The two resulting regions (Figure 18.17c) cannot be further partitioned and, therefore
the algorithm executes the recursive call on the region characterized by Sex= F. This call causes a
cut on attribute MaritalStatus at value “widow.” The two resulting regions cannot be further
partitioned. The result obtained by the algorithm is then represented in Figure 18.17d.

This algorithm is greedy, since it chooses the dimension to exploit for the next cut on the
basis of the local properties of the multidimensional region. It represents a O(n)-approximation
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FIGURE 18.17 Spatial representation (a) and possible partitioning (b–d) of the table in Figure 18.1.
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algorithm for the k-anonymity problem (with recoding-based generalization and adopting strict
multidimensional cuts), supposing o/k to be a constant ratio. The time complexity for the given
algorithm is O((n · m) · log(n · m)), when (n · m) is the number of cells composing the original
private table.

Besides strict multidimensional partitioning, also relaxed multidimensional partitioning can be
adopted for the k-anonymity problem. The main difference of relaxed multidimensional partitioning
with respect to strict multidimensional partitioning is that the regions covering the multidimen-
sional space defined by D can be potentially overlapping. When adopting relaxed multidimensional
partitioning, each tuple in PT is generalized following the values of one of the regions to which the
point corresponding to the tuple belongs. Therefore, duplicate values in PT can be generalized to
different values in the released table. The Mondrian algorithm proposed can be adapted to operate
also with relaxed multidimensional partitioning. In this case, it computes a 2-approximate solution
of the problem.

18.5 Attribute Disclosure Protection

Even if k-anonymity represents a solution to the problem of identity disclosure, since it protects
respondents from attacks aimed at reducing the uncertainty about their identities, it does not protect
from attribute disclosure. As a matter of fact, attribute disclosure is possible even on tables protected
against identity disclosure.

Machanavajjhala, Gehrke, and Kifer define two possible attacks to k-anonymous tables:
homogeneity attack (already noted in [35]) and background knowledge attack [31]. Consider a
k-anonymized table, where there is a sensitive attribute and suppose that all tuples with a specific
value for the quasi-identifier have the same sensitive attribute value. Under these homogeneity
assumptions, if an attacker knows the quasi-identifier value of a respondent and knows that this
respondent belongs to the population represented in the table, the attacker can infer which is
the value for the sensitive attribute for the known respondent, since all the tuples with the given
quasi-identifier value have the same value for the sensitive attribute. For instance, consider the
3-anonymous table in Figure 18.18, where Disease is a sensitive attribute. If Alice knows
that her friend Hellen is a married female living in an area with ZIP code 22030, she can infer
that Hellen suffers from hypertension, since all tuples with 〈2203∗,been_married,F〉 as a
quasi-identifier value are characterized by Disease=“hypertension.”

The background knowledge attack is instead based on a priori knowledge of the attacker of
some additional external information. For instance, with reference to the 3-anonymous table in
Figure 18.18, suppose that Alice knows that Bob is a single man living in 22032 area. Alice can

ZIP MaritalStatus Sex Disease
2203∗ been_married F hypertension
2203∗ been_married F hypertension
2203∗ never_married M obesity
2203∗ never_married M HIV
2203∗ never_married M obesity
2203∗ been_married F hypertension
2204∗ been_married M obesity
2204∗ been_married M HIV
2204∗ been_married M HIV

FIGURE 18.18 An example of 3-anonymous table.
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then infer that Bob suffers of obesity or HIV. Suppose now that Alice knows that Bob is thin.
Alice can infer with probability equal to 1 that Bob suffers of HIV.

To prevent homogeneity and background knowledge attacks, Machanavajjhala, Gehrke, and Kifer
introduce the notion of �-diversity [31].

DEFINITION 18.13 (�-Diversity principle) Let T(A1, . . . , An,S) be a table, QI= {Ai, . . . , An} be
its quasi-identifier, � be a user-defined threshold, and S be a sensitive attribute. A set of tuples in T
having the same value for QI, called q-block, is said to be �-diverse if it contains at least � different
values for S. T is said to be �-diverse if all its q-blocks are �-diverse.

If a k-anonymous table is �-diverse, the homogeneity attack is no more applicable, since each q-
block has at least � (≥2) distinct sensitive attribute values. Analogously, the background knowledge
attack becomes more complicate as � increases, because the attacker needs more knowledge to
individuate a unique value associable with a predefined respondent. For instance, if � = 2, only two
of the three q-blocks in the table in Figure 18.18 are �-diverse, while the third is not �-diverse (�= 1).

Machanavajjhala et al. [31] prove that �-diversity satisfies the monotonicity property with respect
to DGHDT . Monotonicity means that if Ti guarantees �-diversity, any Tj, such that TiTj satisfies
�-diversity. This implies that any algorithm originally thought for k-anonymity can also be used
to achieve �-diversity, by simply checking the �-diversity property every time a table is tested for
k-anonymity.

Note that the original definition of �-diversity considers the presence of one sensitive attribute
only and cannot be simply extended to sets of attributes, since �-diversity may be violated even if
each sensitive attribute separately satisfies it. If the private table contains more than one sensitive
attribute, �-diversity can be achieved by ensuring that the given table is �-diverse with respect to
each sensitive attribute Si separately, running the algorithm considering, as a quasi-identifier, QI
unioned with all sensitive attributes but Si.

After the introduction of �-diversity, the problem of attribute disclosure has received much
attention, and different proposals have been studied [39,40]. p-sensitive k-anonymity [39] is another
approach very similar to �-diversity that considers the case of table PT with more than one sensitive
attribute.

(α, k)-anonymity [40] takes a different approach to the attribute disclosure problem. It supposes
that not all the values in the domain of a sensitive attribute are equally sensitive. For instance,
the obesity value for attribute Disease is not sensitive, while the HIV value is sensitive. To the
aim of protecting the association of quasi-identifying values with sensitive values, (α, k)-anonymity
imposes a different constraint to k-anonymous tables. If dom(S,PT) has only one sensitive value s,
every q-block must have a relative frequency of s not greater than α, meaning that the number of
occurrences of s in the block divided by the cardinality of the block cannot be greater than α.

DEFINITION 18.14 ((α,k)-Anonymity) Let Ti(A1, . . . , An,S) and Tj(A1, . . . , An,S) be two tables
with QI= {A1, . . . , An} such that Ti[QI]Tj[QI], S be a sensitive attribute, s be the only sensitive
value in dom(S, Ti), and 0 < α < 1 be a user-defined threshold. Tj is α-deassociated with respect
to QI and s if the relative frequency of s in every q-block is not greater than α. Tj is said to be
(α, k)-anonymous if it satisfies both the k-anonymity and the α-deassociation constraints.

For instance, consider the 3-anonymous table in Figure 18.18, and suppose that the unique
sensitive value for Disease is HIV. Suppose also that α = 0.4 and k = 3. The table in Figure 18.18
is not (0.4, 3)-anonymous because the last q-block does not satisfy the 0.4-deassociation constraint,
since the sensitive value appears twice in a block of 3 tuples with a relative frequency of 0.67. The
other two q-blocks are 0.4-deassociated.
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The (α, k)-anonymization problem is NP-hard since, considering a binary alphabet, it can be
reduced from the edge partition into the 4-cliques problem [40]. Since also (α, k)-anonymity is a
monotonic property with respect to DGHDT , the classical k-anonymity algorithms can be adopted to
achieve it. However, a local recoding strategy that adopts a top-down approach (i.e., starting from
a completely generalized table, it selectively specializes the table without violating (α, k)-anonymity
constraint) can produce better results [40].

Although �-diversity protects data against attribute disclosure, this protection leaves space to
attacks based on the distribution of values inside q-blocks. Li et al. [29] show that �-diversity suffers
from two attacks: the skewness attack and the similarity attack. As an example of skewness attack,
consider the 2-diverse table in Figure 18.19 and the binary sensitive attribute Diabetes, which
is characterized by a skewed distribution. The table has a q-block having 2 out of 3 tuples with
a positive value for Diabetes and only one tuple with a negative value for it. Even if the table
satisfies 2-diversity, it is possible to infer that respondents in the given q-block have 67% probability
of contracting diabetes, compared to the 30% of the whole population. Furthermore, if the values
for the sensitive attribute S in a q-block are distinct but semantically similar, an external recipient
can however infer important information on it by applying a similarity attack. For instance, with
reference to the table in Figure 18.19, it is possible to infer that single males living in the 2203∗ area
have the cholesterol value between 250 and 260, since all the tuples in this q-block have these values
for the considered sensitive attribute.

To counteract these attacks, Li et al. [29] introduce the t-closeness requirement, which is a stronger
requirement than �-diversity.

DEFINITION 18.15 (t-Closeness principle) Let Ti(A1, . . . , An,S) and Tj(A1, . . . , An,S) be two
tables such that Ti[A1, . . . , An]Tj[A1, . . . , An], S be a sensitive attribute, and t be a user-defined
threshold. A q-block in Tj satisfies t-closeness if the distance between the distribution of S in this
q-block and the distribution of S in Ti is lower than t. Tj satisfies t-closeness if all its q-blocks satisfy
t-closeness.

By imposing that the distribution of sensitive values in the released table must be similar to
the distribution in the private table, t-closeness helps in preventing both skewness and similarity
attacks. As a matter of fact, all the sets of tuples with the same QI value in the released table have
approximately the same sensitive value distribution as the whole original population. t-closeness
is a difficult property to achieve since t-closeness requires to measure the distance between two
distributions of values, either numerical or categorical. In [29], the authors propose to adopt the
Earth Mover’s Distance (EMD) measure. The advantage of this measure is that, as demonstrated
in the paper, it can be easily integrated with the Incognito algorithm due to its generalization and

ZIP MaritalStatus Sex Diabetes Cholesterol
2203∗ been_married F N 230
2203∗ been_married F N 220
2203∗ never_married M Y 250
2203∗ never_married M Y 260
2203∗ never_married M N 250
2203∗ been_married F N 275
2204∗ been_married M N 285
2204∗ been_married M Y 210
2204∗ been_married M N 190

FIGURE 18.19 An example of 3-anonymous and 2-diverse table.
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subset properties, which imply monotonicity with respect to both the number of attributes and the
generalization level chosen.

18.6 Conclusions

The management of privacy in today’s global infrastructure is a complex issue, since it requires the
combined application of solutions coming from technology (technical measures), legislation (law
and public policy), ethics, and organizational/individual policies and practices. We focused on the
technological aspect of privacy, which involves three different but related dimensions: privacy of the
user, privacy of the communication, and privacy of the information (data protection). The chapter
discussed the data protection dimension of privacy, which is more generally related to the collection,
management, use, and protection of personal information. The data protection aspect requires the
investigation of different problems including the problem of protecting the identities (anonymity) of
the users to whom the data refer. This problem is becoming more and more difficult because of the
increased information availability and ease of access as well as the increased computational power
provided by today’s technology. Many techniques have been developed for protecting data released
publicly or semipublicly from improper disclosure.

In this chapter, we presented a specific technique that has been receiving considerable attention
recently, and that is captured by the notion of k-anonymity. We discussed the concept of k-anonymity
and described two classes of algorithms for its enforcement, which differ by the generalization
technique (i.e., hierarchy-based or recoding-based) adopted. We also discussed recent proposals
for attribute disclosure protection, which are aimed at extending the k-anonymity algorithms with
additional properties.
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This chapter gives an introduction to the theoretical foundations of query languages for relational
databases. It thus addresses a significant part of database theory. Special emphasis is put on the
expressive power of query languages and the computational complexity of their associated evaluation
and static analysis problems.

19.1 Introduction

Most personal or industrial data is simply stored in files and accessed via simple programs. This
approach works well for small applications but is not generic and does not scale. New applications
require new software, and classical software can hardly cope with huge data sets.

Database management systems (DBMS) have been built to provide a generic solution to this issue.
Usually, a DBMS enforces a clear distinction between how the data is stored on disk and how it is
accessed via queries. When querying a database, one should not be concerned about how and where

19-1
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the data is physically stored, but only with the logical structure of the data. This concept is called the
data independence principle.

Moreover a DBMS comes with an optimization engine containing evaluation heuristics, index
structures, and data statistics that greatly improve the performance of the system and induce high
scalability. Typical DBMS now handle gigabytes of data easily.

The roots of database theory lie in the work of Codd on the relational model, identifying the
relational calculus and the relational algebra. Several other models were later proposed, e.g., the object
oriented model and, more recently, the semistructured model of XML. The relational model is now
the most widely used by DBMS. For this reason, and for lack of space, we mainly consider the relational
model in this chapter. Only in the last section we shall briefly discuss other major data models.

Theoretical database research has covered areas such as the design of query languages, schema
design, query evaluation (clustering, indexing, optimization heuristics, etc.), storage and transaction
management, and concurrency control to name just a few. In this chapter we only address the theory
of query languages, which forms the core of database theory. For gaining an in-depth knowledge
of database theory we refer the reader to the textbooks [2,3,83], to the survey articles that regularly
appear in the Database Principles Column of SIGMOD Record, and to the Proceedings of the ACM
Symposium on Principles of Database Systems (PODS) and the International Conference on Database
Theory (ICDT). For theoretical results on schema design and integrity constraints we further refer
to Kanellakis’ handbook chapter [69].

The intention of this chapter is not to give a complete historical account. Sometimes we favor more
recent presentations over the original papers. Full references can usually be found in the cited work.

The present chapter is organized as follows: In Section 19.2 we introduce the relational model
and its basic definitions. In the same section, we also describe the aspects of query languages we are
mostly interested in—expressive power, evaluation complexity, and complexity of static analysis. In
Section 19.3 we discuss the most basic relational query language, conjunctive queries. In Section 19.4
we describe the relational algebra and the relational calculus whose expressive power is usually
considered a yardstick for relational query languages. We study restricted query languages that can
be evaluated more efficiently and allow for automatic static analysis in Section 19.5. In contrast, in
Section 19.6 we cover more expressive query languages which support recursion and counting. In
Section 19.7 we conclude with a brief survey on query languages for some other data models.

19.2 General Notions

In this section we define the general concepts used in database theory. We present the relational
model and the notions of query and query language. We also introduce the key properties of query
languages relevant for this article: their expressive power, how they are evaluated, their complexity,
and optimization and static analysis that can be performed on them.

19.2.1 The Relational Model

In the early years of databases, when it became clear that file systems are not an adequate solution for
storing and processing large amounts of interrelated data, several database models were proposed,
including the hierarchical model and the network model (see, e.g., [102]).

One central idea at the time was that querying a database should not depend on how and where
data is actually stored. This is known as the data independence principle.

One of the biggest breakthroughs in computer science came when Codd introduced the relational
model in 1970 [25]. In this chapter we will focus on the relational model, as it is still dominating the
databases industry. Furthermore, most classical results in database theory have been obtained for
the relational model.
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OPERAS Composer Piece
Puccini Turandot
Wagner Tristan
Britten Peter Grimes
Puccini Tosca

Monteverdi Orfeo
Bizet Carmen

PEOPLE Artist Type Birthday
Puccini Composer 12/22
Nilsson Soprano 05/17

Pavarotti Tenor 10/12
Bizet Composer 10/25

Callas Soprano 12/2

CAST Theatre Piece Artist
Scala Turandot Pavarotti

Bayreuth Tristan Nilsson
Covent Garden Peter Grimes Vickers

Met Tosca Callas
Scala Turandot Raisa

FIGURE 19.1 An example database with three relations.

In a nutshell, the basic idea of relational databases is to store data in tables or, seen from a more
mathematical point of view, in relations. Figure 19.1 displays our simple running example of a
relational database with three relations containing information on operas. Each table header gives
some structural information on the relation, called the relation schema. Formally, a relation schema
R consists of the relation name (OPERAS in the first table), the number of columns, its arity arity(R),
and names for each column, the attributes. The actual content of a relation is given by the set of rows
of the table, the tuples of the relation. Each tuple has one entry for each attribute of the relation. We
assume that each entry comes from a fixed, infinite domain of potential database elements. Elements
in this domain are often called constants or data values.

A database schema σ is simply a finite set of relation schemas where no two relations have the
same name. For the purpose of this article, we ignore the fact that a database schema usually also
includes a set of integrity constraints like key or foreign key constraints. We refer to [3,69] for a
discussion of the theoretical issues raised by integrity constraints.

Finally, a database instance (or, for short, database) D over a database schema σ has one (finite)
relation RD of arity arity(R) for each relation schema R of σ. If the database instance is clear from
the context, we often write R instead of RD. Each element in RD is called a tuple of R in D. The set of
values occurring in a database instance D, its active domain, is denoted by adom(D).

19.2.2 Queries

Of course, the main purpose of storing data in a database is to be able to query it. As an example,
someone might be interested in knowing all the operas written by Puccini. The result of this query
on our example database in Figure 19.1 consists of Turandot and Tosca. More precisely, in the
terminology of relational databases, it consists of the relation with the two unary tuples having
Turandot and Tosca in their Piece column, respectively.

In general, a query q is just a mapping which takes a database instance D and maps it to a relation
q(D) of fixed arity. As we aim at evaluating queries by computers, we further require that this
mapping be computable.

Some subtleties are associated with the term computable query, which we discuss next. First of
all, the notion of computability is usually defined for functions mapping strings to strings. Thus,
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to fit this definition, we have to represent each database instance and each query result as a string.
A complication arises from the fact that the tuples of a relation are unordered. —This is actually
where the correspondence between tables and relations fails: when we represent a relation by a
table, we have to put the rows into some order. But this order is not considered as fixed for a
particular relation. Thus, all row permutations of a table represent the same relation. — Coming
back to the computability issue: there are at least as many strings representing a relation as there
are permutations of its tuples. However, the result of the query should not depend on the particular
order chosen in the encoding of a relation. More precisely, if one encoding is a permutation of the
other, then the output for the one should be a corresponding permutation of the output for the other.
Similarly, if the data values of a database are changed consistently, the values in the result should
change accordingly. A query fulfilling all these requirements is called generic, and by computable
query we actually mean computable generic query.∗

The following list of queries on our database example from Figure 19.1 will be used for illustrating
the concepts introduced later.

1. List the artists performing in an opera written by Puccini.
2. List the theaters playing Puccini or Bizet.
3. Is there an artist performing in at least two theaters?
4. Is any theater showing a piece whose composer’s birthday is 12/22?
5. Is any artist performing in an opera whose composer’s birthday is the same as the artist’s

birthday?
6. List all artists who never performed in an opera written by Bizet.
7. List all artists who have performed in Bayreuth but neither at the Scala nor at the Met.
8. Is the total number of operas in the database even?

Apart from differences in the complexities of the queries, one can already observe a difference
between queries with a yes/no answer, like queries (3) and (4) above, and queries that produce a set
of tuples like queries (1) and (2). We refer to the former kind as Boolean queries.†

19.2.3 Query Languages

So far we have stated our example queries in natural language. This is (to date) not suitable
for processing queries with a computer. Thus, there is a need for query languages that allow
users to pose queries in a semantically unambiguous way. It is important to remark that one
wants to avoid the use of general programming languages for querying databases for various rea-
sons: they usually require more effort, they are error-prone, and they are not conducive to query
optimization.

Ideally, a query language allows users to formulate their queries in a simple and intuitive way,
without having any special proficiency in the technicalities of the database besides knowledge of the
(relevant part of the) database schema. In particular, the user should not need to specify how the
query is processed but only which properties the result should have. Query languages of this kind
are called declarative.

∗ The first formal definition of a database query was given in [18]. A detailed treatment of the genericity issue and the
question how constants can be handled is found in [3,63].
† Technically, Boolean queries can be seen as 0-ary queries, where the answer “no” corresponds to the empty result set
and the answer “yes” corresponds to the result set containing the empty tuple.
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The evaluation of a query is usually done in several stages:

1. A compilation transforms it into an algebra expression (see Section 19.3.5).
2. Using heuristic rules, this expression is rewritten into one that promises a more efficient

evaluation.
3. From the latter expression, different query evaluation plans are constructed (e.g., taking

into account different access paths for the data), and one of them is chosen based on
statistical information on the actual content of the current database.

4. This evaluation plan is executed using efficient algorithms for each single operation.

Several important issues arise.

Expressive power: What can and what cannot be expressed in the query language at hand?
Complexity of evaluation: How complex is it to actually evaluate the queries expressible in the

query language?
Complexity of static analysis: How difficult is it to analyze and optimize queries to ensure a

good evaluation performance?

Of course, SQL is the lingua franca for relational databases. Nevertheless, in this article we will
concentrate on languages (e.g., the relational algebra and the relational calculus) which are better
suited for theoretical investigations of the above-mentioned questions. Actually, these languages
were developed first and SQL can be conceived as a practical syntax for the relational calculus. The
compilation of SQL into the algebra is based on the fundamental result that the calculus can be
translated into the algebra.

19.2.4 Expressive Power

The expressive power of a query language is the set of queries it can express. This is an important
measure for comparing different query languages. For instance, it can tell whether some features are
redundant or not. Understanding the expressive power of a query language is a challenging task.
Showing that a query is not expressible amounts to proving a lower bound, and lower bounds are
often difficult to get.

Nevertheless, the close relationship of relational query languages with mathematical logic allows
to apply methods from that field to gain insight in the expressive abilities and limitations of query
languages. Indeed, there has been a strong mutual interaction with finite model theory [81].

19.2.5 Evaluation and Its Complexity

It is not surprising that there is a trade-off between the expressive power of a query language and
the computational resources needed to evaluate a query stated in this language. This evaluation
complexity can be studied from different angles, depending on the scenario at hand. We will quickly
describe some of these different aspects next.

The first distinction is between Boolean (yes/no) queries and queries with a relation as output. In
the latter case one might ask any of the following two questions:

a. What effort is needed to compute the full query result?
b. Given a tuple, what effort is needed to determine whether it is contained in the query

result?

Many of the complexity investigations concentrate on decision problems, thus they mostly deal
with Boolean queries or with question (b) above. Nevertheless, many results can be easily transferred
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from Boolean queries to general queries. In fact, most query languages Q have the property that an
algorithm for efficiently evaluating Boolean Q-queries can be used to construct an algorithm that
efficiently evaluates arbitrary (non-Boolean) Q-queries: Given a database D and a query q whose
result is a relation of arity r, a naive approach is to successively consider each possible result tuple
t̄, evaluate the Boolean query “Does t̄ belong to q(D)?”, and output t̄ if the answer is “yes.” Then,
however, the delay between outputting two consecutive tuples in q(D) might be rather long, as a large
number of candidate tuples (and according Boolean queries) might have to be processed prior to
finding the next tuple that belongs to the query result. This delay can be avoided if, prior to checking
whether tuple t̄ = (t1, . . . , tr) belongs to q(D), the algorithm first checks whether q(D) contains any
tuple whose first component is t1—and if the answer is “no”—tuples with first component t1 will not
be further considered. This way of exploring the space of potential result tuples leads to an algorithm
for computing q(D) such that the delay between outputting any two consecutive tuples in q(D)

requires to process only a number of Boolean queries that is polynomial in the size of the database
and the query q.∗ In this way, an efficient algorithm for evaluating Boolean Q-queries leads to an
efficient algorithm for evaluating arbitrary Q-queries (provided that Q satisfies some mild closure
properties ensuring, e.g., that if q ∈ Q and t1 is a data value, then the query “Does q(D) contain a
tuple whose first component is t1?” is also expressible in Q). Bearing this in mind, Boolean queries
will be in the focus of our exposition.

We refer to the algorithmic problem of evaluating a Boolean query in a query language Q by
Eval(Q).

The second distinction has to do with the durability of queries and databases. Sometimes the same
query is posed millions of times against an ever changing database. It may therefore be “compiled”
once and forever, and it is reasonable to spend quite some effort on optimizing the query evaluation
plan. In this scenario, it makes sense to consider the query as a fixed entity and to express the
complexity in terms of the size of the database only. This is called the data complexity of a query.
A further interest in data complexity stems from the observation that very often the database is by
magnitudes larger than the query.

In other scenarios, the database never changes, but lots of different queries are posed against
it. Then, one is interested in measuring the cost in terms of the size of the query, this is called
query complexity. In the most general scenario of combined complexity, the database changes and
many different queries are asked, and therefore the complexity is measured in the size of both,
the query and the database. For most query languages, the data complexity is considerably lower
than the combined complexity, whereas the query complexity usually is the same as the combined
complexity. We therefore will restrict attention to data complexity and combined complexity.

We express complexities in terms of standard complexity classes like PTime, NP, ExpTime,
LogSpace, and PSpace. We will also mention some parallel complexity classes like AC0 (the class of
all problems solvable by uniform constant depth, polynomial size circuits with not, and, and or gates
of unbounded fan-in), the class TC0 (the analog of AC0 where also threshold gates are available),
and LogCFL (the class of all problems that are logspace-reducible to a context-free language); for
precise definitions we refer the reader to [109]. Recall that

AC0 ⊂ TC0 ⊆ LogSpace ⊆ LogCFL ⊆ PTime ⊆ NP ⊆ PSpace ⊆ ExpTime.

As mentioned before, it is usually a fair assumption that databases are big while the queries are
small. Thus, algorithms which are bad in terms of the size of the query but perform well in terms
of the database size are often considered as feasible. A systematic way of studying phenomena of
this kind is provided by the framework of parameterized complexity. We will present some results

∗ A systematic study of the so-called polynomial (or even constant) delay algorithms has been initiated recently, see
[8,9,29,37,51].
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in this vein and refer to the (somewhat feasible) class FPT of fixed parameter tractable problems
and the (presumably infeasible) classes W[1], W[P], and AW[∗], for which the following inclusions
hold: FPT ⊆ W[1] ⊆ W[P] and W[1] ⊆ AW[∗]. For the precise parametric notions we refer to the
survey [52] and the book [40].

19.2.6 Static Analysis and Its Complexity

In the context of data complexity we already mentioned queries that are evaluated many times and
therefore deserve to be optimized toward fast evaluation. Even queries that are evaluated once on very
large data deserve optimizations. Query optimizers use cost models to decide what optimizations
are worth doing. There are usually several ways of compiling a query into an evaluation plan and,
even more, there are already several ways of expressing a query in the query language at hand. This
often corresponds to several equivalent characterizations of the same query and sometimes induces
radically different evaluation procedures after compilation. But which one should the system use?
This task is attacked during query optimization.

Many optimization tasks rely on three simple questions: (1) Does query q ever produce a nonempty
result? (2) Does query q1 always produce the same result as query q2? (3) Does query q1 always
produce a subset of the results of query q2? We refer to the first question as the satisfiability problem
(or, nonemptiness problem) to the second as the equivalence problem, and to the third as the
containment problem. By Sat(Q) we denote the algorithmic problem of deciding for a given query
in language Q whether there is at least one database on which the query has a nonempty result. We
write Equiv(Q) and Cont(Q) for the problems of deciding whether for given queries q1, q2 from Q
and every database D, q1(D) = q2(D), respectively, q1(D) ⊆ q2(D). We abbreviate the former by
q1 ≡ q2 and the latter by q1 ⊆ q2.

Of course q1 ≡ q2 iff q1 ⊆ q2 and q2 ⊆ q1. Furthermore, q1 is satisfiable iff it is not equivalent
to the query that always produces the empty result set. On the other hand, the equivalence problem
reduces to the containment problem and, if the query language is closed under complementation
and conjunction, the containment problem reduces to the emptiness problem.

The whole area of reasoning about semantic properties of queries is called static analysis. In terms
of automatic static analysis, one is interested in finding out whether static analysis for a given query
language is decidable at all and, if so, what its exact complexity is.

19.2.7 Conclusion

The expressive power, the complexity of evaluation, and static analysis are correlated properties
of a query language. More expressive power usually increases the complexity of query evaluation
and static analysis. But even if two query languages have the same expressive power, they may
vastly differ in terms of the complexity of static analysis and query evaluation. The reason for this
is that even if every query of one language can be translated into an equivalent query of the other
language, the translation may turn a short query into a huge one. Thus, apart from expressive
power and complexity, the succinctness of queries is also a natural measure for comparing query
languages. Although well-investigated for languages used in specification and automated verification,
a systematic study of the succinctness of database query languages has started only recently (see, e.g.,
[33,57]). Somewhat related is Papadimitriou’s work on the complexity of knowledge representation,
where he compares the succinctness of various representation formalisms (see e.g., [45,87]).

There is a trade-off between the expressive power of a query language and the complexity of
query evaluation. As an example, if the data complexity of a query language is in PTime then
this query language cannot express any NP-complete property unless PTime = NP. Succinctness
considerations can help to investigate the relationship between different languages with respect to
combined complexity.
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In the end, designers usually try to get the best expressive power with the least complexity for the
application area at hand.

19.3 The Simplest Language: Conjunctive Queries

We start with a simple query language, the conjunctive queries, whose expressive power is subsumed
by most of the query languages we will consider and which is already able to express many common
“every day queries.” In particular, it corresponds to the very basic features of SQL.

After introducing the rule-based conjunctive queries, we study their expressive power and com-
plexity. We then turn to a restriction, the acyclic conjunctive queries, for which query evaluation
and static analysis have considerably lower complexity. Finally, we present a different mechanism,
the SPJR algebra, for defining conjunctive queries.

19.3.1 Conjunctive Queries: Definition

We recall query (1) from Section 19.2.2, asking for all artists performing in an opera written by
Puccini. In SQL this can be simply expressed by

SELECT Artist
FROM CAST, OPERAS

WHERE CAST.Piece = OPERAS.Piece AND Composer = Puccini

This query can be expressed more concisely in the following rule-based way:

PARTISTS(x) : − CAST(z, y, x), OPERAS(Puccini, y). (19.1)

This expression can be interpreted as a “tuple producing facility” in the following way: for each
assignment of values to the variables x, y, and z, for which (z, y, x) is a tuple in the CAST relation and
(Puccini, y) is a tuple in the OPERAS relation, (x) is a tuple in the result relation PARTISTS.

As an example, the assignment x �→ Pavarotti, y �→ Turandot, z �→ Scala fulfills all requirements
and produces the tuple (Pavarotti).

In general, a conjunctive query consists of a single rule of the form

Q(x̄) : − R1(t̄1), . . . , R�(t̄�),

where Q is the name of the relation that is defined by the query. Its arity is the arity of the tuple x̄ (the
PARTISTS query, for example, has arity one). The atom to the left of the symbol : − is called the head
of the query, whereas the expression to the right of the symbol : − is called the body of the query.
The tuples x̄ and t̄1, . . . , t̄� consist of variables and/or constants. The atoms Ri(t̄i) are such that Ri is
the name of a relation occurring in the database schema and whose arity coincides with the length
of the tuple t̄i. The t̄i are not necessarily disjoint and altogether have to contain all variables of x̄. The
above query’s result Q(D) over a database D is obtained as follows: for each possible assignment α

of values to the variables present in x̄, t̄1, . . . , t̄� such that, for each i ∈ {1, . . . , �}, the resulting tuple
α(t̄i) belongs to the database relation RD

i , the tuple α(x̄) is in Q(D).
The set of all conjunctive queries is denoted by CQ. The reader should note that the name

“conjunctive queries” is really justified: a variable assignment has to fulfill a conjunction of conditions
to produce an output tuple.

19.3.2 Limitations of the Expressive Power of CQ

Given two databases D1 and D2 over the same schema, we write D1 ⊆ D2 if RD1 ⊆ RD2 , for each
relation name R. A query q is said to be monotone if D1 ⊆ D2 implies q(D1) ⊆ q(D2). For example,
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query (1) is monotone while query (6), asking for artists who never performed in an opera written
by Bizet, is not: by adding the tuple (Scala, Carmen, Pavarotti) to the CAST relation, Pavarotti would
no longer be in the result of that query.

It is not hard to obtain the following (see, e.g., [3] for a proof):

THEOREM 19.1 CQ can define only monotone queries.

As a consequence, query (6) is not expressible in CQ. Even though monotonicity is a useful tool
for testing nonexpressiveness in CQ, it does not yield a complete characterization of CQ. In fact,
there are monotone queries that cannot be expressed in CQ. An example is query (2) asking about
theaters playing Puccini or Bizet.

19.3.3 Complexity of CQ

Next we discuss the complexity of evaluation and static analysis for conjunctive queries.

Evaluation. The naive way of evaluating a conjunctive query is by trying out each possible variable
assignment, resulting in about |adom(D)|k steps if k is the overall number of variables in the query.
The complexity of this method is exponential in the number of variables and thus in the size of the
query. If the query is considered fixed, however, it is polynomial in the size of the database. Using
the terminology introduced in Section 19.2.5, the following complexity results hold.

THEOREM 19.2

a. The data complexity of Eval(CQ) is in AC0 [65] and thus, in particular, in LogSpace.
b. The combined complexity of Eval(CQ) is NP-complete [20].
c. The parameterized complexity of Eval(CQ) (with the size of the query as parameter) is

W[1]-complete [88].

Statement (c) basically says that, as in the above naive algorithm, an exponent that grows with
increasing k can never be avoided. Specifically, it says that if the (widely believed) complexity
theoretic conjecture “W[1] 	= FPT” is true, then there is no algorithm that solves Eval(CQ) in time
f (k) · |adom(D)|c, where f is an arbitrary computable function, k is the size of the input query, D is the
input database, and c is an arbitrary integer. It is not difficult to see that statement (c) is equivalent to
the following statement: if W[1] 	= FPT, then there does not exist a pair (Aopt, Aeval) of algorithms
such that Aopt is an algorithm of arbitrary complexity that optimizes an input conjunctive query q,
and Aeval is an algorithm that takes as input the optimized query and a database D and computes the
query’s result q(D) in time polynomial in the size of D (see [52] for details).

Statement (b) seems to indicate that the evaluation of conjunctive queries against a relational
database is intractable, clearly contradicting everyday experience. Some explanations for this counter
intuitive phenomenon will be given in Section 19.4.3. The proof of statement (b) is by a straightfor-
ward reduction of the NP-complete clique problem for undirected graphs to the query evaluation
problem for conjunctive queries: an input instance (G, k) for the clique problem is simply mapped
to a database representing the graph G and a conjunctive query asking whether G contains a clique
of size k.

Static Analysis. It is not difficult to see that every conjunctive query q := Q(x̄) : −R1(t̄1), · · · , R�(t̄�)
is satisfiable. In fact, there is a canonical database Dq witnessing this: to construct Dq just put, for
every i, the tuple t̄i into relation Ri. Then, Q(Dq) at least contains the tuple x̄. For example, the
canonical database for the example query (19.1) has the tuple (z, y, x) in CAST and (Puccini, x) in
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OPERAS, hereby viewing x, y, and z as ordinary data values. Thus, the problem Sat(CQ) is trivially
solvable, since every conjunctive query is satisfiable.

As a matter of fact, a very similar approach also works for Cont(CQ).

THEOREM 19.3 [20] Let q1(x̄) and q2(x̄) be two conjunctive queries with the same free variables x̄.
Then q1 ⊆ q2 if and only if x̄ ∈ q2(Dq1).

This theorem is very often stated in terms of homomorphisms: Given two databases D1 and D2
we say that h : adom(D1) → adom(D2) is a homomorphism from D1 to D2 if, for each relation R,
ā ∈ RD1 implies h(ā) ∈ RD2 . The homomorphism theorem [20] then states that, with the notation
of Theorem 19.3, q1 ⊆ q2 if and only if there is a homomorphism from Dq2 to Dq1 fixing x̄. The
following is a corollary of Theorem 19.3 and Theorem 19.2b.

THEOREM 19.4 [20] The containment problem Cont(CQ) and the equivalence problem Equiv(CQ)

are NP-complete.

Furthermore, conjunctive queries can be minimized in the following sense: There is an algorithm
which takes as input a conjunctive query q and outputs an equivalent conjunctive query q′ such
that the number of atoms in the body of q′ is as small as possible (cf., e.g., the textbooks [3,102] for
details).

19.3.4 Acyclic Conjunctive Queries

We have seen that the combined complexity and the parameterized complexity of evaluating conjunc-
tive queries are NP-complete and W[1]-complete, respectively, and thus the worst-case complexity
can, to the best of our knowledge, be expected to be exponential in the size of the query. Nevertheless,
for practical purposes and if the query structure is “simple,” there are smarter evaluation algorithms
than the naive “test all possible variable assignments” approach mentioned above.

To illustrate this, let us consider the query (4) asking whether any theatre plays a piece whose
composer’s birthday is 12/22. We can express this by the Boolean conjunctive query

BANSWER() : − CAST(z, y, x), OPERAS(x′, y), PEOPLE(x′, Composer, 12/22).

One possible evaluation plan for this query is as follows. First, combine CAST and OPERAS to obtain
an intermediate relation R in the following way: combine each tuple in CAST with all tuples in OPERAS

that have the same entry in the Piece column (due to the two occurrences of y). For our example
database, the resulting relation R is shown in Figure 19.2. Afterward, let S be the relation (also
shown in Figure 19.2) that consists of all tuples t̄ from R for which there is a tuple in PEOPLE with
entries Composer and 12/22 in the Type and Birthday column and whose entry in the Artist column
coincides with t̄’s entry in the Composer column. Finally, the answer returned by the BANSWER query
is “yes” if and only if the relation S is nonempty.

The evaluation order of this strategy can be depicted as a tree as shown in Figure 19.3a. Note that
in this tree, the relation atoms of the query occur at the leaves, and the inner nodes correspond to
intermediate results. From the root, the final result can be obtained by dropping some (maybe all or
none) of the columns.

Even though it does not hurt in this small example, it could be annoying that the arity of the
intermediate relation R is larger than the arities of the input relations. Furthermore, R is basically
the cartesian product of two relations, joined in their Piece column. For a larger query this might
result in a wide table which on a “real life” database could grow very large.
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R Theatre Piece Artist Composer
Scala Turandot Pavarotti Puccini

Bayreuth Tristan Nilsson Wagner
Covent Garden Peter Grimes Vickers Britten

Met Tosca Callas Puccini
Scala Turandot Raisa Puccini

S Theatre Piece Artist Composer
Scala Turandot Pavarotti Puccini
Met Tosca Callas Puccini

Scala Turandot Raisa Puccini

FIGURE 19.2 Intermediate results for the BANSWER query.

(a)

S (z, y, x, x΄)

R (z, y, x, x PEOPLE (x   

CAST (z, y, x) OPERAS (x
(b)

S΄ (x

Cast (z, y, x)R΄ (x

OPERAS (x PEOPLE (x΄, y)

΄) ΄,Composer, 12/22)

΄, y)

΄, y)

΄, y) ΄, Composer, 12/22)

FIGURE 19.3 Two different evaluation trees for the PSOPRANO query. (a) An evaluation tree. (b) A more efficient
evaluation tree.

Nevertheless, a closer look at the query shows that these problems can be avoided when using
a different evaluation plan, depicted in Figure 19.3b. Even though at first sight it looks similar to
the original plan, it has an important extra property: all tuples that enter the intermediate relation
R′ have to be tuples from relation OPERAS, and the same holds true for relation S′. In particular,
the intermediate relations do not grow in arity, and their content is never obtained by an expensive
product operation but rather by a kind of filter operation selecting tuples from one relation, controlled
by the other relation. One could say that each intermediate relation is guarded by one of the input
relations. Evaluation trees with this property are sometimes called join trees, and queries for which
such a join tree exists are called acyclic. We denote the class of acyclic conjunctive queries by ACQ.
For example, query (4) is acyclic whereas query (5) is not.

If a join tree is given for a Boolean query q, the query can be evaluated by processing the join tree
bottom-up. It is easy to see that each intermediate step can be performed in polynomial time. As it
is possible to test in polynomial time (even in LogSpace [47,91]) whether a join tree exists, and to
actually compute one if this is the case, it follows that Eval(ACQ) is in PTime [111].

Note that the intuition given above is accurate only for Boolean queries. But analogous notions
of join trees and acyclic queries also exist for non-Boolean queries (see [3] for details) that can be
evaluated efficiently by processing a join tree in a bottom-up phase followed by a top-down phase
and, possibly, another bottom-up phase (see [39,111] for an explanation of the bottom-up and
top-down phases). The class of acyclic queries has been characterized in various ways (cf. [3]); the
term “acyclic” is due to a characterization referring to acyclic hypergraphs [12].

A precise complexity analysis yields the following result, showing that query evaluation and static
analysis of acyclic queries not only belong to PTime but can even be efficiently parallelized.

THEOREM 19.5 [47]

a. The combined complexity of Eval(ACQ) is LogCFL-complete.
b. The containment problem Cont(ACQ) is LogCFL-complete.
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In this sense acyclic queries behave nicely, and it is natural to wonder whether there are further
classes of well-behaved queries. Indeed, there are several extensions and variations of the notion of
acyclicity.

One line of variations is based on the treewidth of query graphs (see [39,47] for the basic concept
and references to the literature). For a conjunctive query q, the graph of q is the graph whose
vertices are the variables of q and which has an (undirected) edge between two vertices whenever
the corresponding variables occur in the same atom in the body of q. Given a class C of graphs,
let CQ[C] be the set of conjunctive queries q such that the graph of q is in C. For instance, if A
is the set of acyclic graphs, then CQ[A] is a subset of ACQ. In order to generalize this we let, for
each number k, CQk be the class of conjunctive queries whose graph has treewidth at most k. It
is known that, for any number k, an analogue of Theorem 19.5 holds (a PTime upper bound was
obtained already in [23]), and static analysis is also tractable for conjunctive queries of bounded
treewidth.

THEOREM 19.6 [47]

a. For any number k ≥ 1, the combined complexity of Eval(CQk) is LogCFL-complete.
b. For any number k ≥ 1, Cont(CQk) is LogCFL-complete.

When the schema is fixed, relative to a plausible complexity theoretic assumption, even a precise
characterization of the tractable graph-based classes of conjunctive queries is known.

THEOREM 19.7 [58] Assume that W[1] 	= FPT and let C be a recursively enumerable class of
graphs. Then the combined complexity of Eval(CQ[C]) is in PTime if and only if C has bounded
treewidth.

Even more, an extension of the above result providing a complete characterization of all tractable
classes of conjunctive queries over a fixed schema has been obtained in [53].

When (the arity of) the schema is not fixed, a larger class of tractable queries can be found by
considering the hypergraph of a query instead of the graph. The hypergraph of query q has one
hyperedge per query atom A (in the body of q) which contains all nodes corresponding to variables
in A. In [48], the concepts of hypertree decompositions and hypertreewidth were introduced. It
was shown that the acyclic conjunctive queries are precisely the queries whose hypergraph has a
hypertree decomposition of hypertree-width 1, and that for each number k ≥ 1, the statement
of Theorem 19.5a can be generalized from ACQ to the class of all conjunctive queries that have
a hypertree decomposition of hypertreewidth at most k. Various other classes of tractable queries
based on hypergraph decompositions have been proposed in the literature; we refer to [94] for a
survey.

19.3.5 Relational View

So far we considered only SQL and rule-based conjunctive queries as query languages. They are
both declarative in the sense that they specify answers by their properties rather than by operations
used to construct them. We already talked about evaluation plans in Section 19.3.4. A concise way
to express evaluation plans is offered by the relational algebra. It consists of a few simple operators
for manipulating relations. For the following it is useful to think of a relation as a table where each
row (column) of the table corresponds to a tuple (attribute) of the relation.

The operators of the relational algebra that are needed for expressing conjunctive queries are
(1) extraction of rows of a table (selection), (2) extraction of columns of a table (projection), (3)
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gluing together two tables along some columns (join), and (4) renaming of columns. For example,
σComposer=“Puccini”(OPERAS) is a selection which extracts all rows where the composer (i.e., the first
attribute) is “Puccini”. The expression πTheatre,Piece(CAST) extracts the first two columns of the CAST

relation. Note that the resulting table only has four rows. The expression CAST �� OPERAS is a join
which combines each row of the CAST table with each row of the OPERAS table, provided they have
the same value, in each column with the same name, i.e., provided they match on the Piece attribute.
Thus, the resulting table is the relation R depicted in Figure 19.2; it has four columns and five rows.
Query (1) can thus be expressed by πArtist

(
σComposer=‘Puccini’(CAST �� OPERAS)

)
, whereas the query

asking for all sopranos who perform in an opera written by Puccini is expressed by

πArtist
(
σComposer=“Puccini”(CAST �� OPERAS) �� σType=“Soprano”(PEOPLE)

)
.

The algebra consisting of the four operators of selection, projection, join, and renaming is called the
SPJR algebra. Note that the SPJR algebra can express unsatisfiable queries, e.g., σComposer=“Puccini”
(σComposer=“Verdi”(OPERAS)) will never return any opera. There is a straightforward polynomial time
algorithm to test whether an SPJR query is satisfiable.

However, the ability to express unsatisfiable queries is the only difference between SPJR and CQ
with respect to expressive power. It is not difficult to see the following (cf. [3] for details).

THEOREM 19.8 CQ and satisfiable SPJR have the same expressive power. Moreover, queries can be
translated from either language to the other in polynomial time.

Recall that basic SQL queries are formed using the following syntax:

select attributes
from relations
where test.

Conjunctive queries are essentially those which can be expressed by SQL queries where the test part
contains only conjunctions of equality tests.

19.4 The Gold Standard: Codd-Complete Languages

We recall from Section 19.3.2 that conjunctive queries can only express monotone queries, i.e.,
queries which never produce smaller result sets if something is added to the database. Of course,
there are interesting nonmonotone queries, e.g., query (6) from Section 19.2.2. Furthermore, simple
disjunctions like query (2) are not expressible in CQ either. In this section we consider extensions
of CQ that are capable of expressing such queries: Codd-equivalent languages such as the relational
algebra, the relational calculus, and the nonrecursive rule-based queries. After introducing these
query languages, we study their expressive power and their complexity.

19.4.1 Codd-Equivalent Query Languages: Definition

The rule-based queries of Section 19.3.1 can be extended by (1) allowing queries to consist of more
than one rule, (2) allowing relations defined by one or more rules to be used in the body of other
rules, and (3) allowing negated atoms in the body of rules. A query is thus a finite set of rules of the
form

Q(x̄) : − A1(t̄1), . . . , A�(t̄�)
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where the atoms Ai(t̄i) are either of the form S(t̄i) or of the form ¬S(t̄i), where S is either a relation
name of the database schema or the name of a relation symbol used in the head of one of the rules
of the query.∗

Nevertheless, recursion is not allowed. More formally, the following directed graph is not allowed
to contain a directed cycle: the graph’s nodes are the relation names, and there is an edge from R1 to
R2 if R1 appears in the body of a rule having R2 in its head.

As an example, the following rules

STARS(x) : − CAST(Scala, y, x)

STARS(x) : − CAST(Met, y, x)

RESULT(x) : − CAST(Bayreuth, y, x), ¬STARS(x)

describe query (7) from Section 19.2.2, selecting all artists who have performed in Bayreuth but
neither at the Scala nor at the Met. We call such queries nonrecursive rule-based queries.

The same expressive power can be obtained in two other ways:

1. By adding the relational union and difference operators to the SPJR algebra one gets the
full relational algebra.

2. The relational calculus consists of the logical formulas of the predicate calculus (i.e.,
first-order logic FO) which use the relations of the database schema plus equality as
relation symbols, and do not use any function symbols. We will sometimes briefly write
FO to denote the relational calculus.

Query (7) from Section 19.2.2, for example, can be expressed by the relational algebra expression

πArtist(σTheatre=“Bayreuth”(CAST)) − πArtist(σTheatre=“Met”(CAST) ∪ σTheatre=“Scala”(CAST)))

and by the relational calculus formula ϕRESULT(x) :=(∃y CAST(Bayreuth, y, x) ∧ ∀y ¬(
CAST(Scala, y, x) ∨ CAST(Met, y, x)

) )
When fixing the precise semantics of the relational calculus, some care needs to be taken to

decide over which domain variables should range. One possible solution is to let the quantifiers
range only over elements in the active domain of the underlying database; another way is to let them
range over the entire domain of potential data values but to restrict the syntax in a “safe” way to avoid
infinite query results and to ensure efficient evaluation. A similar problem occurs in the context of
negations in nonrecursive rule-based queries. Again, to avoid infinite query results, one can either
restrict attention to the active domain of the underlying database or impose the syntactic restriction
that in every rule each variable has to occur in at least one positive atom of the rule’s body. It turns
out that both variants have the same expressive power. A discussion of these issues can be found in
[3]. In the rest of this chapter we will assume that all quantifiers range over the active domain.

The widely used query language SQL combines and extends features of both, relational calculus
and algebra.

Codd’s following theorem summarizes one of the most fundamental results in database theory.

THEOREM 19.9 [26] Relational calculus, relational algebra, and nonrecursive rule-based queries
have the same expressive power.

Furthermore, translations are effective, and the translation from relational calculus to relational
algebra and vice versa can be done in polynomial time. In particular, it is always possible to compile

∗ Recall from Section 19.3.1 that the body of a rule consists of the atoms to the right of the symbol : − and the head of a
rule is the atom to the left of the symbol : −.
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a query expressed in the relational calculus into an expression of the relational algebra. The latter
can then be evaluated efficiently.

Query languages with (at least) the expressive power of the relational algebra or the relational
calculus are called Codd-complete.∗ Languages which have exactly the same expressive power as the
relational algebra are called Codd-equivalent.

It should be noted that conjunctive queries (cf. Section 19.3) correspond exactly to formulas of
the relational calculus that use only conjunction and existential quantification, i.e., to formulas of
the form ∃x̄

(
R1(x̄1) ∧ · · · ∧ R�(x̄�)

)
.

19.4.2 Limitations of the Expressive Power

Even though Codd-equivalent query languages like the relational algebra can express many everyday
queries against a relational database, they still cannot express “everything.” Theorem 19.9 is a key
to understanding the precise expressive power of such languages: it relates them to the relational
calculus, therefore allowing logic-based methods to prove that certain queries cannot be expressed.

In a nutshell, Codd-equivalent languages cannot count and cannot express recursion. For example,
they can neither ask “Which artist performed in more operas than any other artist?” nor “Is the total
number of operas in the database even?” Furthermore, in a database that consists of a parent–child
relation, they cannot ask whether A is an ancestor of B.

All these statements can be directly proved by Ehrenfeucht–Fraïssé games, as is explained, e.g.,
in [81]. Very often, however, the impossibility to express a certain query can also be concluded in a
simpler way, either by using 0-1 laws or by using locality. We present both notions next.

0-1 laws. Let q be a Boolean query and let σ be its schema, i.e., the set of relation names it mentions.
For the moment, we consider only databases with schema σ whose active domain is an initial segment
{1, . . . , n} of the natural numbers. We are interested in the ratio of databases of size n on which
q yields the answer “yes” compared to all databases of size n, when n approaches infinity. More
precisely, we denote by μn(q) the number of database instances over σ with active domain {1, . . . , n}
on which q evaluates to “yes,” divided by the number of all databases with schema σ and active
domain {1, . . . , n}. A Boolean query q is almost surely true (respectively, almost surely false) if the
limit μ(q) := limn→∞ μn(q) exists and is 1 (respectively, 0).

For instance, it is not hard to see that for query (8) from Section 19.2.2, i.e., for the query
EVENOPERAS asking whether the number of operas in the database is even, μ(EVENOPERAS) = 1/2.

A query language Q is said to have the 0-1 law if every Boolean query of Q that does not mention
any constants from the domain of potential data values is almost surely true or almost surely false.

THEOREM 19.10 [38,44] Codd-equivalent query languages have the 0-1 law.

A simple consequence of this is that EVENOPERAS cannot be expressed by Codd-equivalent query
languages. Also, many other counting queries q either have no limit μ(q) or a limit different from
0 and 1 and thus are not expressible by Codd-equivalent languages. Note, however, that counting “up
to a constant threshold” is possible with Codd-complete languages; for example query (3), asking
whether there is an artist starring in at least two theaters, can be expressed in the relational calculus
via ∃x∃y1∃z1∃y2∃z2

(
CAST(z1, y1, x) ∧ CAST(z2, y2, x) ∧ ¬z1=z2

)
.

Locality. Unfortunately, the 0-1 law is not a very natural tool in the presence of non-Boolean queries.
However, locality arguments can often be used to extend inexpressibility results to non-Boolean
queries. In a nutshell, a query language is called local if it cannot express queries that depend on

∗ Codd himself called these query languages relationally complete [26].
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an unbounded number of tuples “connecting” one data item with another one (for example, the
query ANCESTOR(x, y) which asks whether person x is an ancestor of person y in a parent–child
database).

To be more precise, the Gaifman-graph GD of a database D is the undirected graph whose vertices
are the elements of the active domain of the database, and there is an edge between two vertices
whenever they appear in a tuple of a relation of D. The distance between two elements of D is
their distance in GD. For any number k, the k-neighborhood ND

k (ā) of a tuple ā of elements is the
sub-database induced by all elements of D that have distance at most k from some element of ā.
For example, the k-neighborhood of a person in the parent-child database consists of all persons to
which he or she is related by at most k parent–child tuples and all tuples of the database containing
only such persons.

A query q is called Gaifman-local if there exists a number k such that for any database D and any
tuples ā and b̄ of D (of the right arity for q), if whenever ND

k (ā) is isomorphic to ND
k (b̄) then ā ∈ q(D)

iff b̄ ∈ q(D).
Obviously, there is no such k for the ANCESTOR query, i.e., the ANCESTOR query is not Gaifman-

local. The following theorem therefore tells us that Codd-equivalent languages cannot express this
query.

THEOREM 19.11 [41,62] Codd-equivalent languages can only express Gaifman-local queries.

Theorem 19.11 can be considered a formalization of the intuitive statement that Codd-equivalent
languages lack recursion.

There are other notions of locality like Hanf-locality and bounded number of degrees property
that hold for Codd-equivalent languages and some of their extensions. In particular, Hanf-locality
can be used to prove that certain Boolean queries respecting the 0-1 law (e.g., connectivity of a graph)
cannot be expressed by Codd-equivalent languages. We refer the interested reader to [80,81] and
the references therein.

19.4.3 Complexity

Evaluation. Each operator of the relational algebra can be evaluated in a straightforward way. For
example, the naive processing of a join operation R1 �� R2 roughly requires |R1| · |R2| steps since
each tuple in R1 is combined with all the tuples in R2. In general, the evaluation of a query which
involves intermediate results of arity k can be evaluated on a database D in time O(|adom(D)|k).
Likewise, formulas of the relational calculus can be evaluated by essentially turning each quantifier
into a FOR-loop, resulting in a similar complexity.

Parts (b) and (c) of the following theorem show that, in the worst case, this upper bound cannot be
significantly improved unless some widely believed complexity theoretic assumptions fail. Recall that
we denote the relational calculus by FO because it is based on first-order logic formulas. Although
formulated for FO, the following theorem also holds for the relational algebra.

THEOREM 19.12

a. The data complexity of Eval(FO) is in AC0 [65] and thus, in particular, in LogSpace.
b. The combined complexity of Eval(FO) is PSpace-complete [99,106].
c. The parameterized complexity of Eval(FO) (with the size of the query as parameter) is

AW[∗]-complete [36].
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The results above show that evaluating Codd-equivalent queries in a scenario where the query is
not fixed is rather difficult in general. Just as in the case of Theorem 19.2 for conjunctive queries, this
seems to contradict the empirical experience that SQL queries can usually be evaluated reasonably
fast. The explanation for this has several facets.

First of all, Theorems 19.2 and 19.12 talk about worst cases. The queries constructed in the proofs
are of a very complicated structure that usually does not occur in practice. This observation is the
starting point for many investigations on how the structure of queries influences the evaluation
complexity. We will come back to this issue in Section 19.5.

A second aspect is that in practice, queries are rather small whereas databases are large. Thus, data
complexity seems to be a better measure than combined complexity—and Theorem 19.12a tells us
that the data complexity is very low.

Furthermore, the structure of the database can have an impact on the complexity, and usually
databases are not “arbitrarily complicated.” In fact, the parameterized complexity of Eval(FO) gets
feasible when attention is restricted to certain classes of database instances. For example, in [32] it
is shown that over classes of databases that locally exclude a minor (see [32] for the definition), the
parameterized complexity of Eval(FO) is fixed parameter tractable, i.e., belongs to the complexity
class FPT. This result subsumes most of the previously known fixed parameter tractability results
for query evaluation; see [54] for a survey. Nevertheless, restricting the structure of databases does
not help to improve the evaluation complexity in the setting of Theorem 19.12b since the combined
complexity of Eval(FO) is PSpace-complete already on databases with only two data items.

Finally, the massive amounts of data handled by database systems usually reside in external mem-
ory. When processing such data, the input/output communication between fast internal memory
and slower external memory is a major performance bottleneck: during the time required for a
single random access to external memory, a huge number of computation steps could be performed
on data present in internal memory. Indeed, modern database technology uses clever heuristics to
minimize the costs caused by accesses to external memory (cf., e.g., [90,108]). Classical complexity
classes such as PTime and NP, however, measure complexity only by counting the total number of
computation steps, but do not take into account the existence of different storage media. In recent
years, machine models that distinguish between external memory and internal memory have also
been proposed and studied (for an overview, see the surveys [96,108] and the references therein).

Static analysis. In general, static analysis for Codd-complete languages is impossible.

THEOREM 19.13 [101] The satisfiability problem Sat(FO) is undecidable.

As a consequence, one immediately obtains that also the equivalence problem Equiv(FO) and the
containment problem Cont(FO) are undecidable. The next section presents a couple of restrictions
of FO for which static analysis is decidable.

19.5 Toward Lower Complexity: Restricted Query Languages

In this section we revisit the idea that queries in practice, even if they go beyond conjunctive queries,
are not arbitrarily complicated. We consider restrictions of the relational calculus FO (and other
Codd-equivalent languages) which are not Codd-complete, but for which static analysis is decidable
and the combined complexity of query evaluation is considerably lower than that of full FO.

First, we concentrate on simple extensions of conjunctive queries by adding either union or
inequalities. Afterward, we consider a restriction of the relational calculus in which the number of
variables is bounded. Finally, we consider a variant of the relational algebra in which the use of joins
is restricted. We will see that in the latter case the resulting query language corresponds to a variant
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of the relational calculus in which the use of quantifiers is restricted, and also to a variant of the
nonrecursive rule-based queries in which single rules are based on acyclic conjunctive queries.

19.5.1 Extensions of Conjunctive Queries

There are several simple ways to extend the rule-based approach of CQ in order to gain more
expressive power. For instance one could allow other kinds of atoms in the body of a rule, typically
atoms of the form x 	= y. One could also consider defining a query using several rules instead of
just a single rule. We denote by CQ(	=) the extension of CQ allowing inequality atoms in the body
of a rule. The class UCQ of unions of conjunctive queries is the extension of CQ allowing a finite
number of rules in the definition of a query. We use UCQ(	=) to denote the combination of the two
extensions. For instance, query (3) of Section 19.2.2 can be expressed in CQ(	=), and query (2) can
be expressed in UCQ, while none of them is expressible in CQ.

It is easy to see that UCQ, CQ(	=), and UCQ(	=) have exactly the same data complexity and
combined complexity as CQ. The satisfiability problem Sat(CQ(	=)) (and therefore also
Sat(UCQ(	=))) can be decided in polynomial time. The containment problem for the three lan-
guages is still decidable, but slightly more difficult than that of CQ. In the theorem below, ΠP

2 refers
to the second level of the polynomial time hierarchy (recall that (NP ∪ co-NP) ⊆ ΠP

2 ⊆ PSpace).

THEOREM 19.14

a. If Q is one of the query languages CQ(	=), UCQ, UCQ(	=), then

i. The data complexity of Eval(Q) is in AC0 and thus, in particular, in LogSpace.

ii. The combined complexity of Eval(Q) is NP-complete.

b. The containment problem for CQ(	=), UCQ(	=) is ΠP
2 -complete [93,105]. The containment

problem for UCQ is NP-complete.

For more information on extensions of conjunctive queries see [73,93,105] and the references
therein.

19.5.2 Bounding the Number of Variables

A natural way of restricting the relational calculus is to bound the number of variables used in
formulas. For each number k ≥ 1 let FOk be the restriction of FO to formulas that use at most k
variables. Note that variables may be re-quantified inside a formula.

It turns out that bounding the number of variables to k improves the evaluation complexity for
every k but enables static analysis only for k = 2.

THEOREM 19.15

a. For each k ≥ 2, the combined complexity of Eval(FOk) is PTime-complete [107].
b. The satisfiability problem Sat(FO2) is decidable [84].

As a consequence, Equiv(FO2) and Cont(FO2) are also decidable.
c. For each k ≥ 3, the satisfiability problem Sat(FOk) is undecidable∗ [14,59,68].

As a consequence, also Equiv(FOk) and Cont(FOk) are undecidable.

∗ Undecidability of (not necessarily finite) satisfiability of FO3 follows from [68]. That finite satisfiability is undecidable
as well follows from [59], see [14] for a discussion.
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In the same way as full FO, the k-variable fragment FOk also has a rule-based counterpart, the
so-called NRSD-programs of strict treewidth at most (k−1). This is a restriction of the nonrecursive
rule-based queries where the query graph of every single rule has a strict tree decomposition of width
at most (k − 1); see [39] for details.

A survey on FOk and related finite variable logics can be found in [49].

19.5.3 The Semijoin Algebra

When looking at the relational algebra one notices that, in terms of complexity of query evaluation,
the most troublesome operation is join. The arity of R1 �� R2 is usually larger than that of R1 and
R2, and the size of R1 �� R2 can be as large as the product of |R1| and |R2|. An interesting restriction
of the join operator �� is the semijoin operator �. Given two relations R and S, R� S consists of all
tuples of R that can be joined with some tuple in S in the sense of the operator ��. In particular, R� S
has the same attribute names as R, and the result of R� S always is a subset of R.

The semijoin algebra SA (cf. [76,77]) is the variant of relational algebra where the join operator ��

is replaced by the semijoin operator�. Strictly speaking, the semijoin algebra is defined in a slightly
different framework where attributes do not have names and are addressed via column numbers
instead. The reader might think of the semijoin algebra as being equipped with operators for selection,
projection, renaming, union, difference, semijoin, and an additional operator with which columns
of a relation can be duplicated (see [78] for details).

It is not difficult to see that for every database D and every semijoin algebra query q, the result
q(D) consists of so-called stored tuples, i.e., tuples that are obtained from tuples in D by projecting
to and, possibly, duplicating some attributes. In particular, for each fixed semijoin algebra query
q, the output size of q is at most linear in its input size, i.e., the number of tuples in the query
result q(D) is at most linear in the number n of tuples in the input database D. Of course, this also
holds for all subexpressions of q. A remarkable result from [77] shows that the reverse is also true:
Any relational algebra query all of whose subexpressions compute relations of size O(n) is in fact
expressible in the semijoin algebra. Furthermore, every query not expressible in the semijoin algebra
has a subexpression that may produce results of size Ω(n2).

The complexity of query evaluation of the semijoin algebra is much lower than that of the relational
algebra, and static analysis is decidable.

THEOREM 19.16 [76]

a. Eval(SA) can be solved in time O(k ·n), where k denotes the size of the query and n denotes
the size of the input database.
In particular, the combined complexity of Eval(SA) is in PTime.

b. The satisfiability problem Sat(SA) is ExpTime-complete.
As a consequence, Equiv(SA) and Cont(SA) are also ExpTime-complete.

The semijoin algebra cannot express all conjunctive queries, but at least it can express all acyclic
conjunctive queries whose result is a set of stored tuples. Moreover, it can also express many natural
nonconjunctive queries, e.g., query (7): the relational algebra formulation of this query given in
Section 19.4.1 in fact belongs to the semijoin algebra.

In the same way as the relational algebra, the semijoin algebra also has a logical and a rule-based
counterpart.

The logical counterpart is the guarded fragment of FO, denoted by GF (see [6]). GF is a fragment
of FO where first-order quantifications have to be guarded by atomic formulas. More precisely, GF
is defined as follows: All atomic formulas belong to GF. If ϕ and ψ belong to GF then also ¬ϕ,
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(ϕ ∧ ψ) and (ϕ ∨ ψ) belong to GF. If α is an atomic formula and ϕ is a GF-formula whose free
variables belong to the variables of α, then for every tuple x̄ of variables, the formulas ∃x̄ (α∧ϕ) and
∀x̄ (α → ϕ) belong to GF. A GF-formula is called strictly guarded if it either has no free variable or
it is of one of the forms (α∧ϕ) and ∃x̄ (α∧ϕ), where α is an atomic formula and ϕ is a GF-formula
whose free variables belong to the variables of α. We say that a GF-formula is guarded by stored
tuples if it is a disjunction of strictly guarded GF-formulas.

The rule-based counterpart of SA is based on the restriction of the non-recursive rule-based
queries where every single rule is a variant of an acyclic conjunctive query in which also negated
atoms may occur. The resulting queries are called strictly acyclic NRSD-programs; for the precise
definition we refer to [39]. A slightly different rule-based characterization is proposed in [46], the
so-called recursion-free Datalog LITE.

The following theorem summarizes the relation between SA, GF, and their rule-based counter-
parts.

THEOREM 19.17

a. SA has the same expressive power as the class of GF-formulas that are guarded by stored
tuples [76].

b. The class of GF-formulas that are guarded by stored tuples has the same expressive power
as the strictly acyclic NRSD-programs [39].

c. Recursion-free Datalog LITE can express the same Boolean queries as sentences in the
guarded fragment GF [46].

The translations between SA, GF, and the rule-based languages that are provided by the proof of
the Theorem 19.17 are effective. The translations from GF to SA, to strictly acyclic NRSD-programs,
and to recursion-free Datalog LITE, respectively, can be done in polynomial time. The translations
in the opposite directions are a bit more involved.∗

19.6 Toward More Expressiveness: Recursion and Counting

As pointed out in Section 19.4.2, Codd-equivalent query languages neither support recursion nor
counting. Having these limitations in mind, it is natural to extend Codd-equivalent languages by
recursion or counting capabilities while maintaining as much of the desirable algorithmic properties
as possible. The query language SQL, in particular, contains constructs for counting and, starting with
the SQL:1999 standard, also for expressing queries involving recursion. Corresponding extensions
of the relational algebra and relational calculus have been investigated in [80].

In this section, we consider rule-based query languages with recursion and logics that are enhanced
by fixpoint operators and counting. Furthermore, we discuss the possibility of finding a query lan-
guage that precisely expresses the polynomial-time computable queries. Finally, we briefly consider
more expressive languages that are capable of defining also queries of higher complexity.

19.6.1 Rule-Based Queries with Recursion

The query language datalog is a rule-based language that allows more than one rule, recursion, but
no negation. A simple example is the following program which defines in a parent–child database a
relation ANCESTOR(x, y) consisting of all pairs (a, b) for which a is an ancestor of b:

∗ The translations from [39,46,76] induce an exponential blow-up in terms of the size of the queries. It remains open if
more efficient translations exist.
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ANCESTOR(x, y) : − PARENT(x, y)
ANCESTOR(x, y) : − PARENT(x, z), ANCESTOR(z, y).

More formally, a datalog program over a database schema σ consists of finitely many finite rules of
the form Q(x̄) : −R1(t̄1), . . . , R�(t̄�) where the relation symbol Q does not belong to σ, and each
variable in x̄ occurs in at least one of the tuples t̄1, . . . , t̄�. Relation symbols occurring in the head of
some rule are called intensional relation symbols, whereas the symbols in σ are called extensional
relation symbols. The body of each rule of a datalog program consists of atoms with intensional or
extensional relation symbols. The schema σP of a datalog program P consists of the symbols in σ

and the intensional relation symbols of P.
Given a database D of schema σ, a datalog program P is evaluated as follows: start with empty

intensional relations and proceed step-wise, by adding tuples that satisfy a rule of the program, until
nothing changes. Formally, the semantics of a datalog program P can be defined in various equivalent
ways. One possibility is to associate with P an operator TP, the so-called immediate consequence
operator, which maps a database E of schema σP to a database TP(E) of the same schema: Extensional
relations R remain unchanged, i.e., RTP(E) = RE. For each intensional relation symbol Q, the relation
QTP(E) is obtained as follows: take all rules of P whose head contains Q, view each of these rules as
a conjunctive query, and let QTP(E) be the union of the results of these conjunctive queries when
applied to database E.

The result of P when applied to a database D of schema σ is the database P(D) of schema σP
obtained as follows: let D0 be the extension of D to schema σP where all intensional relations are
empty, and repeatedly apply the operator TP to obtain databases D1 := TP(D0), D2 := TP(D1),
D3 := TP(D2), etc. that is, Di is obtained by starting with D0 and applying the operator TP for i
times. As TP is a monotone operator∗, the sequence of the Di is increasing, i.e., D0 ⊆ D1 ⊆ D2 ⊆ · · · .
Since the active domain of each Di consists of constants occurring in P and of elements from the
active domain of the original (finite) database D, a fixpoint will be reached eventually, i.e., there
exists a number j such that Dj = Dj+1. The result of P on D is defined as P(D) := Dj. It is not difficult
to see that j is of size polynomial in the size of D and that P(D) can be computed in time polynomial
in the size of D (with the exponent depending on the particular datalog program P). Furthermore,
P(D) is actually the least fixpoint of TP that contains D.

A datalog query is a datalog program together with a designated intensional relation symbol which
specifies the relation defined by the query. In the following we write “Datalog” to denote the class of
all datalog queries.

Concerning limitations of the expressive power it should be noted that, similarly as CQ (see
Theorem 19.1), Datalog can define only monotone queries (this immediately follows from the
fact that TP is a monotone operator). Thus, the expressive power of Datalog is incomparable to
the expressive power of Codd-equivalent query languages: On the one hand, there are simple
nonmonotone queries, e.g., query (6) from Section 19.2.2, that are expressible in the relational
calculus FO but not in Datalog. On the other hand, there are recursive queries, e.g., the ANCESTOR

query, that can be expressed in Datalog but not in FO.
There are many results on algorithmic properties of Datalog. We only mention the main results

here; for a survey the reader is referred to [31]. In terms of query evaluation, the following holds.

THEOREM 19.18

a. The data complexity of Eval(Datalog) is PTime-complete (implicit in [64,106]).
b. The combined complexity of Eval(Datalog) is ExpTime-complete (implicit in [106]).

∗ In the sense that for all databases E and E′ of schema σP , E ⊆ E′ implies that TP(E) ⊆ TP(E′).
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Concerning the worst-case complexity of Eval(Datalog), it is known (even without relying on any
complexity theoretic assumption) that the exponential dependence on the size of the input query
cannot be avoided: there exists a sequence of (Boolean) Datalog queries qk of size polynomial in
k, such that qk(D) can be computed in time |adom(D)|k but not in time |adom(D)|k−1. The proof
even holds for a suitable fixed database schema σ; the arity of the intensional relation symbols of
qk, however, has to grow with increasing k. When restricting attention to relations of a fixed arity,
the parameterized complexity of Eval(Datalog) is known to be W[1]-complete, i.e., the same as for
conjunctive queries (cf. Theorem 19.2c). Details can be found in [88].

In terms of static complexity the following holds.

THEOREM 19.19

a. The satisfiability problem Sat(Datalog) is decidable.
b. The equivalence problem Equiv(Datalog) and the containment problem Cont(Datalog)

are undecidable [98].

The proof of (a) is easy (see [3] for details). Concerning equivalence and containment, it should be
noted that they are undecidable for datalog queries. Their “uniform” variants for datalog programs,
asking whether all intensional relations defined by one program are equivalent to, respectively,
included in the corresponding intensional relations of another datalog program, are decidable
[92]. Furthermore, query containment becomes decidable if one of the two involved queries is
nonrecursive [22,99].

Apart from equivalence and containment, another key problem relevant for static analysis of
Datalog is the boundedness problem, asking for a given datalog query q whether or not the recursion
depth necessary for evaluating q is bounded by a number that only depends on the query but not
on the input database. This problem is closely related to the problem whether a given datalog query
is expressible in FO, i.e., without using recursion. It is known that the boundedness problem is
undecidable [42].

In the literature, various restrictions of Datalog have been identified for which the problems
of boundedness, equivalence, and containment are decidable (see, e.g., [22,28] and the references
therein). Also variants of Datalog that can be evaluated in linear time w.r.t. data complexity have
been considered, e.g., Datalog LITE [46].

19.6.2 Relational Calculus with Fixpoints

In Section 19.6.1 we have seen how to extend conjunctive queries with a recursion mechanism via
fixpoints. It is natural to consider a similar extension for the relational calculus.

Similarly to the immediate consequence operator TP from Section 19.6.1, a formula of the relational
calculus FO can define an operator on relations as follows: Let R be a relation symbol that is not
present in the given database schema σ, and let k be the arity of R. Let ϕ(x̄) be a formula with k free
variables over the extended schema σ∪{R}. Then, on any database D of schema σ, the formula ϕ(x̄)

defines an operator ϕD between k-ary relations over the active domain of D. Given a k-ary relation
R̂, ϕD(R̂) is the result of the query ϕ(x̄) when applied to the extension of D in which the relation
symbol R is interpreted by the relation R̂.

Analogous to the iterated application of the operator TP in Section 19.6.1, we can now consider
the iterated application of the operator ϕD, yielding a sequence of relations R0 := ∅, R1 := ϕD(R0),
R2 := ϕD(R1), . . . , i.e., Ri is obtained by starting with the empty relation and applying the operator
ϕD for i times. Note that, unlike with datalog, there exist FO-formulas ϕ (for example, the formula
ϕ(x̄) := ¬R(x̄)) for which the sequence R0, R1, R2, . . . is not increasing and does not reach a fixpoint.
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There are several natural ways of ensuring that only those operators are considered for which the
sequence R0, R1, R2, . . . is increasing and eventually reaches a fixpoint. In the following, we present
two of them: monotone operators and inflationary operators.

Monotone operators and the logic LFP. It is easy to see that if ϕD is a monotone operator, then
R0 ⊆ R1 ⊆ R2 ⊆ · · · , and a fixpoint will be reached eventually, i.e., there exists a j such that
Rj = Rj+1. Furthermore, this fixpoint is in fact the least fixpoint∗ of the operator ϕD. So it would be
natural to semantically restrict attention to those formulas ϕ for which the operator ϕD is monotone
for all databases D. Unfortunately, this kind of monotonicity of a formula is undecidable (see, e.g.,
the textbook [81]). Of course it makes little sense to define a query language based on an undecidable
property of formulas, because then it is not even decidable if a given string belongs to the query
language or not.

Fortunately, there is a second option which enforces monotonicity at the syntactic (rather than the
semantic) level: restrict attention to those formulas ϕ in which R occurs only positively, i.e., within
the scope of an even number of negations. It is straightforward to see that this implies that on every
database D the operator ϕD is monotone. The opposite is of course not true but it turns out that any
fixpoint obtained by a monotone formula can also be obtained by a positive formula [61]. Hence the
syntactic restriction is harmless in terms of expressive power of the corresponding fixpoint logics.

This syntactic restriction leads to the least fixpoint logic (LFP), which extends first-order logic FO
by the following rule: If ϕ(x̄) is an LFP-formula in which R occurs only positively, then [lfpR,x̄ϕ](x̄)

is also an LFP-formula. The semantics of this formula is as follows: The result of query [lfpR,x̄ϕ](x̄)

on a database D is the limit of the sequence R0 := ∅, R1 := ϕD(R0), R2 := ϕD(R1), R3 := ϕD(R2)
etc., and thus the least fixpoint of ϕD.

For example, if ϕ(x, y) is the formula PARENT(x, y) ∨ ∃z(PARENT(x, z) ∧ R(z, y)), then
[lfpR,xyϕ](x, y) is an LFP-formula that defines the ancestor relation for parent–child databases.

Inflationary operators and the logic IFP. Another way of ensuring that the considered sequence of
relations R0, R1, R2, . . . is increasing is to use instead of ϕD the operator ID

ϕ which maps a relation
R̂ to the relation ID

ϕ(R̂) := R̂ ∪ ϕD(R̂). By definition, the sequence based on this operator, i.e.,
the sequence R0 := ∅, R1 := ID

ϕ(R0), R2 := ID
ϕ(R1), . . . is increasing and thus eventually reaches

a fixpoint (no matter what ϕ(x̄) looks like). This fixpoint is called the inflationary fixpoint of ϕ.
The inflationary fixpoint logic (IFP) extends first-order logic FO by the following rule: If ϕ(x̄) is a
IFP-formula, then [ifpR,x̄ϕ](x̄) is also an IFP-formula. The semantics of this formula is as follows:
The result of query [ifpR,x̄ϕ](x̄) on a database D is the fixpoint reached by the sequence R0 := ∅,
R1 := ID

ϕ(R0), R2 := ID
ϕ(R1), R3 := ID

ϕ(R2), etc.

Complexity and expressive power of LFP and IFP. From the definition of the logics it is not difficult
to see that the data complexity of evaluating queries definable in LFP or IFP belongs to PTime.
In fact, query evaluation of these languages has the following complexity.

THEOREM 19.20

a. The data complexity of Eval(IFP) and Eval(LFP) is PTime-complete [64,106].
b. The combined complexity of Eval(IFP) and Eval(LFP) is ExpTime-complete [106].

Since LFP and IFP are extensions of FO, static analysis of these languages is impossible in general
(cf. Theorem 19.13). Concerning the expressive power of LFP and IFP, the following is known.

∗ That is, Rj ⊆ S, for every relation S with ϕD(S) = S.
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THEOREM 19.21 [61] IFP can express exactly the same queries as LFP.

Note that in the definition of the logics LFP and IFP, nesting of fixpoints is explicitly allowed.
Restricting attention to formulas where just a single fixpoint operator may be applied to a first-order
formula does not change the expressive power, since nested fixpoints can always be simulated by a
single fixpoint (of potentially higher arity) [64].

It is also possible to get the same expressive power using an extension of Datalog with negation.
Even though the definition of the semantics of this extension is not an obvious issue (see [3]), it
turns out that with the so-called well-founded semantics it has the same expressive power as IFP and
LFP [43].

Even though recursion adds a lot of expressive power to the relational calculus, it does not help to
count. Indeed, the following holds.

THEOREM 19.22 [13] LFP and IFP have the 0-1 law.

Consequently, e.g., the EVENOPERAS query, i.e., query (8) from Section 19.2.2, is not definable in
LFP or IFP.

For more details on fixpoint logics the reader is referred to the textbooks [3,81].

19.6.3 Relational Calculus with Counting

SQL has several numerical features and counting features which are actually used in practice much
more often than the recursion mechanisms. In Section 19.4.2 we have seen, however, that the
relational calculus basically cannot count: it even cannot express the query EVENOPERAS, asking
whether the number of operas in the database is even.

The simplest way to extend the relational calculus with counting facilities is to explicitly include
them in the syntax: We consider the extension FO+C of FO with counting quantifiers. FO+C is a
two-sorted logic with the second sort being the natural numbers. The formula

∃i
(∃j (i=j+j) ∧ ∃ !i y ( ∃x OPERAS(x, y) )

)
is an example of a FO+C-formula which expresses the EVENOPERAS query. Specifically, the formula
states that there is a number i which is even (since there exists an integer j with i = j + j) such that
the number of names y of pieces listed in the OPERAS-relation is exactly i. This formula combines
the three kinds of quantifiers allowed in FO+C: Apart from the usual quantifiers ranging over
elements of the active domain, it uses quantifiers of the form ∃i that range over natural numbers
(to be precise, the variables ranging over natural numbers only take values which are at most the
size of the active domain of the underlying database). Furthermore, if variable i is interpreted by a
natural number n, then a formula of the form ∃ !i y ϕ(y) expresses that there are exactly n distinct
elements a (in the active domain of the underlying database) for which ϕ(a) holds. Apart from these
quantifiers, FO+C also contains arithmetic predicates such as the linear order <, the addition +,
and the multiplication ×.

Since FO+C contains FO, static analysis is impossible in general (cf. Theorem 19.13). The com-
plexity of query evaluation for FO+C is not much higher than that of the relational calculus.

THEOREM 19.23

a. The data complexity of Eval(FO+C) is in TC0 [11] and thus, in particular, in LogSpace.
b. The combined complexity of Eval(FO+C) is PSpace-complete.
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Concerning the proof of (b), the inclusion in PSpace is straightforward, and the PSpace-hardness
immediately follows from Theorem 19.12b.

By definition, FO+C extends the relational calculus with facilities for counting and for doing
arithmetic. However, FO+C fails to express simple recursive queries, e.g., the ANCESTOR query.
Actually, it is still Gaifman-local [79]. For a more detailed overview of FO+C and related logics, we
refer to [79,95] and the references therein.

19.6.4 The Quest for PTime

As we have seen in Sections 19.6.2 and 19.6.3, recursion or counting can be added to FO while
keeping the data complexity of query evaluation in polynomial time. Often, a query is considered
tractable iff it can be evaluated in polynomial time w.r.t. data complexity. It would, of course, be
desirable to have a query language that is capable of expressing exactly the tractable queries, i.e.,
exactly those queries that can be evaluated in polynomial time w.r.t. data complexity. The quest for
such a query language is often stated as “Is there a language capturing PTime?”

We have seen that both FO+C and IFP fail to capture all of PTime: for example, FO+C cannot
express the ANCESTOR query and IFP cannot express the EVENOPERAS query, but both queries can
easily be evaluated in time polynomial in the size of the underlying database. It thus is natural to
wonder whether the combination of IFP and FO+C (as it accounts for counting and recursion at the
same time) does capture PTime. Let IFP+C be the language extending FO with both, inflationary
fixpoints and counting. IFP+C has several nice properties, e.g., it can express the EVENOPERAS query
and the ANCESTOR query, and its data complexity of query evaluation belongs to PTime. However it
fails to capture all PTime-computable queries.

THEOREM 19.24 [16] There exists a query that can be evaluated in polynomial time (w.r.t. data
complexity) but that is not expressible in IFP+C.

Nevertheless, when restricting attention to particular classes of databases, IFP+C and, in some
cases, even IFP do capture all of PTime. The following theorem summarizes some results in this
vein. Here, an ordered database is a database which contains a relation that is a linear order on the
database’s active domain.

THEOREM 19.25

a. IFP captures PTime on the class of all ordered databases [64,106].
b. IFP+C captures PTime on all classes of databases of bounded treewidth [56] and on the

class of databases corresponding to planar graphs [50].

Note that (a) implies that IFP and IFP+C have the same expressive power on the class of ordered
databases. Specifically, they express exactly those queries that can be evaluated in polynomial time
data complexity.

Several generalizations of Theorem 19.25 (to larger classes of databases) and 19.24 (to certain
restricted classes of databases) are known; see, e.g., [30,34].

The question of whether there is a query language or logic capturing PTime originated in the
work of Chandra and Harel [18,19] and is considered one of the main challenging open problems
in database theory and finite model theory. The logic must be reasonable in a sense defined by
Gurevich [60] (in particular it must have an effective syntax). More details on the “quest for PTime”
can be found in [55,86] and the references given therein.



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C019 Finals Page 26 2009-10-5

19-26 Special Topics and Techniques

19.6.5 Beyond PTime

All the query languages considered so far in this chapter are capable of expressing only queries that
can be evaluated in polynomial time w.r.t. data complexity. Sometimes, however, there is a need for
query languages that can define also more complex queries.

A simple way of extending the expressive power of LFP or IFP is to drop the requirement that the
sequence R0, R1, R2, . . . is monotone: Similarly to the definition of LFP, we consider the sequence
obtained by iterated application of the operator ϕD, starting with R0 := ∅. Now, however, ϕ may
be an arbitrary formula such that the sequence R0, R1, R2, . . . is not necessarily increasing. Thus,
depending on the particular formula ϕ and the database D at hand, the sequence may or may not
reach a fixpoint. If no fixpoint is reached, the partial fixpoint is, by convention, defined to be the
empty relation ∅. This leads to the partial fixpoint logic PFP which extends first-order logic FO by
the following rule: If ϕ(x̄) is a PFP-formula, then [pfpR,x̄ϕ](x̄) is also a PFP-formula. The semantics
of this formula is as follows: The result of query [pfpR,x̄ϕ](x̄) on a database D is the fixpoint of
the sequence R0 := ∅, R1 := ϕD(R0), R2 := ϕD(R1), R3 := ϕD(R2), etc., if such a fixpoint exists;
otherwise, it is defined to be the empty relation ∅.

Notice that all the intermediate relations Ri are of size polynomial in the size of the database.
Furthermore, convergence (respectively, nonconvergence) to a fixpoint can be detected in PSpace.
Altogether, this leads to an algorithm for evaluating a PFP-query in space polynomial in the size of
the underlying database (where the exponent depends on the particular PFP-query).

Some more results on PFP are summarized in the following theorem.

THEOREM 19.26

a. The data complexity of Eval(PFP) is PSpace-complete [106].
b. PFP has the 0-1 law [74].
c. PFP captures PSpace on the class of all ordered databases [106].
d. IFP has the same expressive power as PFP if, and only if, PTime = PSpace [5].

It is straightforward to see that all IFP queries can be expressed in PFP, i.e., PFP has at least the
expressive power of IFP. Part (d) of Theorem 19.26 tells us that showing that the expressive power of
PFP is strictly larger than that of IFP (on the class of arbitrary databases) is no easier than showing the
(widely believed but, up to date, unproven) complexity theoretic assumption that PTime 	= PSpace.
On the other hand, part (b) implies that the EVENOPERAS query, i.e., query (8) from Section 19.2.2,
cannot be expressed in PFP. This query, however, can easily be evaluated in polynomial time. Thus,
on the class of arbitrary databases, PFP is not capable of expressing all tractable queries, let alone, all
PSpace computable queries. Thus, PFP does not capture PSpace on the class of all databases. When
restricting attention to the class of all ordered databases, however, Theorem 19.26c tells us that PFP
precisely captures PSpace.

To conclude this section let us briefly consider a different (and widely used) way of extending
the expressive power of query languages: Most database systems allow embedding of SQL queries
into more powerful programming languages like C++ and java. This gives the user the capabilities
to express arbitrary queries. The price to pay, however, is twofold: First of all, no optimization is
performed except for, possibly, the SQL parts of the query. Furthermore, embedding a query language
in a programming language implies that it is possible to specify queries that are not computable, i.e.,
queries for which there exists no evaluation algorithm that, on any input database D, stops after a
finite number of steps and outputs the query result.

Several formalizations of the approach of embedding a query language into a programming
language have been considered in the literature. We refer to Chapter 17 of [3] for a discussion on
such and other highly expressive languages.
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19.7 Toward More Flexibility: Query Languages for Other
Data Models

Throughout the previous sections we restricted attention to the relational data model. In the present
section we conclude with a brief discussion of some other major data models.

Set semantics vs. bag semantics. The relational model is based on the so-called set semantics: no
relation can have two (or more) identical tuples. During the evaluation of a query, however, it is
often the case that identical tuples are generated, for instance when projecting a relation on one of its
attributes. Eliminating duplicates is a costly operation as it often requires to sort the tuples in order
to identify duplicates. Moreover, in some applications, counting the numbers of duplicates may be
desirable, e.g., for the query “How many shows are performed in the MET each year?”. Therefore,
in most relational database systems duplicates are not eliminated unless explicitly requested by the
query (this is the role of the SELECT DISTINCT construct of SQL).

Instead of the set semantics (considered throughout the previous sections of this chapter), the
relational model can also be equipped with a bag semantics. With bag semantics, the number of
occurrences of a tuple in the output of a CQ query corresponds to the number of variable assignments
satisfying the query.

With respect to query evaluation, the change from set semantics to bag semantics does not cause
a considerable change in complexity (at least not for the “worst-case” analysis), since the complexity
of intermediate sorting steps usually is dominated by the complexity of evaluating joins.

However, going from set semantics to bag semantics does change the complexity of static analysis,
since the containment problem and the equivalence problem must take into account the number of
occurrences of tuples in the query result. For example, two queries are equivalent iff they produce
the same tuples with the same multiplicities. This makes a dramatic difference. Indeed, considering
the class CQ of conjunctive queries under bag semantics, it is known that the equivalence problem
Equiv(CQ) is as hard as testing graph isomorphism (and hence it is in NP) [21]. For the containment
problem under bag semantics, however, it is still an open question whether Cont(CQ) is decidable.

For the class UCQ of unions of conjunctive queries and for the extension CQ(	=) of conjunc-
tive queries where also inequalities are allowed as atoms, the containment problems Cont(UCQ)

and Cont(CQ(	=)) become undecidable [66,67]. Recall from Theorem 19.14 that under set seman-
tics these two problems are decidable. Concerning, however, the equivalence problem under bag
semantics, it is known that Equiv(CQ(	=)) is decidable and belongs to PSpace [27].

The nested relational model. A further limitation of the relational model is given by the so-called
first normal form which restricts attribute values to being atomic. In this sense, relations in the
relational model are flat. The nested relational model (or complex value model) contains nested-type
constructors which allow to build nested relations from atomic types by using tuple constructors and
set constructors. Apart from suitable generalizations of the operators of the (flat) relational algebra,
it has operators for nesting and unnesting relations. An equivalence between the logical calculus
and the algebra can be established just as in the flat case [1,89]. Interestingly, the nested operators
do not add any expressive power to the relational algebra for flat queries on flat databases [89]. This
result was generalized in [110] for nonflat queries. On the other hand, adding a powerset operator
to the nested relational algebra strongly extends its expressive power, e.g., it allows to express the
ANCESTOR query [1]. Apart from the references mentioned above, we refer to [3,15] for more detailed
information.

Object-oriented databases. Object-oriented databases further extend the nested relational model
toward the object oriented paradigm. Each object, or entity, is given a unique identifier (OID). In
the relational model this would correspond to adding an extra “ID” attribute to each relation and
requiring that this attribute be a key. The model also allows OID as a possible attribute for an
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object. Query languages can be derived from those for nested relations, cf., for example, the language
OQL [24], which was implemented in the O2 database system [10]. A logical foundation for the
object-oriented model was presented in [71]. For further information we refer to [3,4,17,35,104].

Constraint databases. Another feature of the relational model is that all relations are finite. There
are many applications where this restriction can be seen as a limitation, for instance in spatial
databases where a relation may correspond to a set of points in the plane. The constraint database
framework is an elegant way of extending the relational model beyond finite relations. The idea is
to manipulate implicit presentations of relations instead of explicit presentations that list all tuples.
This is done by first specifying a logical framework, for instance first-order logic on the field of reals.
Then, each (possibly infinite) relation is represented by a formula of the logical framework. In the
case of first-order logic over the real field, this defines precisely the semialgebraic relations. Then,
depending of the logical framework and on the query language at hand, query evaluation can or
cannot be performed effectively. Typically, if the logical framework is first-order logic and admits
quantifier elimination, as in the real field, then first-order queries can be evaluated (actually in PTime
data complexity for the case of the real field). Since the seminal paper on constraint databases [70],
this area has generated a lot of theoretical work concerning various logical frameworks, and several
prototypes have been developed. The main application is in spatiotemporal databases. For a short
introduction to constraint databases we refer to [103]; a comprehensive survey is provided in the
book [75].

The semistructured data model. With the Internet, data is geographically distributed, and vast
amounts of data are frequently exchanged between several database (and nondatabase) systems. The
rigid structure of a relational database, enforced by its schema, makes it difficult to use the relational
data model for transferring data from one site to another. To this end a new, more flexible model
has been introduced: the semistructured model (see [2] for a comprehensive overview). The general
idea is that data is now “self-describing,” i.e., its structure is part of the data. The most widespread
implementation of the semistructured model is the Extensible Markup Language (XML), specified
by the World Wide Web Consortium. An XML document is a well-formed nested sequence of
opening and closing tags in between which text and data values can be found. The tag structure
can be seen as a labeled tree; it provides the “structure” of the document. A crucial difference with
the relational setting is that data is now queried also by its position in the (possibly deeply nested)
document tree. Hence, XML query languages must combine navigation in the document tree with
other, more classical, database functionalities such as joins. Many query languages for XML have
been proposed. They are designed for differing purposes, e.g., navigating to (or extracting) positions
in a document, transforming documents into new documents, and posing Boolean queries about
documents. The most important XML query languages, XPath, XSLT, and XQuery are maintained
by the World Wide Web Consortium and are still under development, see http://www.w3.org/XML/
for up-to-date information.

The theoretical foundations build upon concepts from automata theory and mathematical logic,
among them tree automata, monadic second-order logic, and logics with navigating features similar
to those in temporal logic. For details see [72,82,97] and the references therein.

The data stream model. The data stream model considers data that is not stored but, instead, arrives
in multiple, continuous, rapid, and time-varying streams. Typical application areas for which data
stream processing is relevant are, e.g., IP network traffic analysis, mining text message streams, or
processing data generated by sensor networks. In all these application areas it is not feasible to simply
load the arriving data into a traditional relational DBMS and query it there. Instead, the streaming
data has to be processed on-the-fly by using only a limited amount of memory. Instead of the precise
query answers provided by traditional DBMS, queries against data streams are often evaluated by
randomized algorithms that produce approximate solutions. Systems-oriented overviews of query
languages for data streams and general purpose data stream mangagement systems (DSMS) can be
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found in [7,100]. A survey of machine models and lower bounds for stream-based query processing
is given in [96]. For an introduction to efficient algorithms for data stream processing see [85].

Many other data models have been considered in the literature, each with its own query languages,
and it seems that there will always be new data models and database applications. The area of query
languages will thus be evolving in the foreseeable future, and there remain a lot of challenges for
research.
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20.1 Introduction

Scheduling theory is concerned with the optimal allocation of scarce resources to activities over time.
The practice of this field dates to the first time two humans contended for a shared resource and
developed a plan to share it without bloodshed. The theory of the design of algorithms for scheduling
is younger, but still has a significant history—the earliest papers in the field were published more
than forty years ago.

Scheduling problems arise in a variety of settings, as is illustrated by the following examples:

20-1
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Example 20.1

Consider the central processing unit of a computer that must process a sequence of jobs that arrive
over time. In what order should the jobs be processed in order to minimize, on average, the time
that a job is in the system from arrival to completion?

Example 20.2

Consider a team of five astronauts preparing for the reentry of their space shuttle into the atmosphere.
There is a set of tasks that must be accomplished by the team before reentry. Each task must be carried
out by exactly one astronaut, and certain tasks cannot be started until other tasks are completed.
Which tasks should be performed by which astronaut, and in which order, to ensure that the entire
set of tasks is accomplished as quickly as possible?

Example 20.3

Consider a factory that produces different sorts of widgets. Each widget must first be processed by
machine 1, then machine 2, and then machine 3, but different widgets require different amounts of
processing time on different machines. The factory has orders for batches of widgets; each order has
a date by which it must be completed. In what order should the machines work on different widgets
in order to insure that the factory completes as many orders as possible on time?

More generally, scheduling problems involve jobs that must scheduled on machines subject to certain
constraints to optimize some objective function. The goal is to specify a schedule that specifies when
and on which machine each job is to be executed.

Researchers have studied literally thousands of scheduling problems, and it would be impossible
even to enumerate all known variants in the space of this chapter. Our goal is more modest. We
wish to make the reader familiar with an assortment of algorithmic techniques that have proved
useful for solving a large variety of scheduling problems. We will demonstrate these techniques
by drawing from a collection of “basic problems” that model important issues arising in many
scheduling problems, while at the same time remaining simple enough to permit elegant and useful
analysis. These basic problems have received much attention, and their centrality was reinforced by
two influential surveys [13,29]. All three examples above fit into the basic problem framework.

In this survey we focus exclusively on algorithms that provably run, in the worst case, in time
polynomial in the size of the input. If the algorithm always gives an optimum solution, we call it an
exact algorithm. Many of the problems that we consider, however, are NP-hard, and it thus seems
unlikely that polynomial-time algorithms exist to solve them. In these cases we will be interested in
approximation algorithms; we define a ρ-approximation algorithm to be an algorithm that runs in
polynomial time and delivers a solution of value at most ρ times the optimum.

The rest of this chapter is organized as follows. We complete this introduction by laying out a
standard framework covering the basic scheduling problems and a notation for describing them.
We then explore various techniques that can be used to solve them. In Section 20.2 we present a
collection of heuristics that use some simple rule to assign a priority to each job and then schedule
the jobs in priority order. These heuristics are useful both for solving certain problems optimally
in polynomial time, and for giving simple but high-quality approximations for certain NP-hard
scheduling problems. Many scheduling problems require a more complex approach than a simple
priority rule; in Section 20.3 we study algorithms that are more sophisticated in their greedy choices.
In Section 20.4 we discuss the application of some basic tools of combinatorial optimization, such as
network optimization and linear programming, to the design of scheduling algorithms. We then turn
exclusively toNP-hard problems. In Section 20.5 we introduce the notion of a relaxation of a problem,
and show how to use relaxations to design approximation algorithms. Finally, in Section 20.6 we
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discuss enumeration and scaling techniques by which certain other NP-hard scheduling problems
can be approximated arbitrarily closely in polynomial time.

20.1.1 The Framework of Basic Problems

A scheduling problem is defined by three separate elements: the machine environment, the
optimality criterion, and a set of side constraints and characteristics. We first discuss the sim-
plest machine environment, and use that to introduce a variety of optimality criteria and side
constraints. We then introduce and discuss more complex machine environments.

20.1.1.1 The One-Machine Environment

In all of our scheduling problems we begin with a set J of n jobs, numbered 1, . . . , n. In the one-
machine environment we have one machine that can process at most one job at a time. Each job
j has a processing requirement pj; namely, it requires processing for a total of pj units of time on
the machine. If each job must be processed in an uninterrupted fashion, we have a nonpreemptive
scheduling environment, whereas if a job may be processed for a period of time, interrupted and
continued at a later point in time, we have a preemptive environment. A schedule S for the set J
specifies, for each job j, which pj units of time the machine uses to process job j. Given a schedule S,
we denote the completion time of job j in schedule S by CS

j .
The goal of a scheduling algorithm is to produce a “good” schedule, but the definition of “good” will

vary depending on the application. In Example 20.2 above, the goal is to process the entire batch of jobs
as quickly as possible, or, in other words, to minimize the completion time of the last job finished in the
schedule. In Example 20.1 we care less about the completion time of the last job in the batch as long as,
on average, the jobs receive good service. Therefore, given a set of jobs and a machine environment,
we must specify an optimality criterion; the goal of a scheduling algorithm will be to construct
a schedule that optimizes this criterion. The two optimality criteria discussed in our examples are
among the most basic optimality criteria: the average completion time of a schedule and its makespan.
We define the makespan CS

max = maxj CS
j of a schedule S to be the maximum completion time of

any job in S, and the average completion of schedule S to be 1
n

∑n
j=1 CS

j . Note that optimizing the
average completion time is equivalent to optimizing the sum of completion times

∑n
j=1 CS

j .
We next turn to side constraints and characteristics that modify the one-machine environment.

A number of side constraints and characteristics are possible; for example, we must specify whether
or not preemption is allowed. Two other possible constraints model the arrival of jobs over time or
the possibility of logical dependence between jobs. In a scheduling environment with release date
constraints, we associate with each job j a release date rj; job j is only available for processing at time
rj or later. In a scheduling environment with precedence constraints we are given a partial order ≺
on the set J of jobs; if j′ ≺ j then we may not begin processing job j until job j′ is completed.

Although we are early in our discussion of scheduling models, we already have enough information
to define a number of problems. We refer to various scheduling problems in the now-standard nota-
tion defined by [13]. A problem is denoted by α|β|γ, where (1) α denotes the machine environment,
(2) β denotes various side constraints and characteristics, and (3) γ denotes an optimality criterion.

For the one-machine environment α is 1. For the optimality criteria we have introduced so far, γ
is either

∑
Cj or Cmax. At this point in our discussion, β is a subset of rj, prec, and pmtn, where these

denote respectively the presence of (nontrivial) release date constraints, precedence constraints, and
the ability to schedule preemptively. Any of the side constraints not explicitly listed are assumed not
to be present—e.g., we default to a nonpreemptive model unless pmtn is given in the side constraints.
As an illustration, 1||∑ Cj denotes the problem of nonpreemptively scheduling independent jobs
on one machine so as to minimize their average completion time, while 1|rj|∑ Cj denotes the variant
of the problem in which jobs have release dates. As another example, 1|rj, pmtn,prec|Cmax denotes
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the problem of preemptively scheduling jobs with release dates and precedence constraints on one
machine so as to minimize their makespan. Note that Example 20.1, given above, can be modeled
by 1|rj|∑ Cj, or, if preemption is allowed, by 1|rj, pmtn|∑ Cj.

Two other possible elements of a scheduling application might lead to different objective functions
in the one-machine environment. It is possible that not all jobs are of equal importance, and thus,
when measuring average service provided to a job, one might wish to weight the average so as to
give more importance to certain jobs. We model this by assigning a weight wj > 0 to each job j, and
generalize the

∑
Cj criterion to the average weighted completion time of a schedule, 1

n
∑n

j=1 wjCj.
In the scheduling notation this optimality criterion is denoted by

∑
wjCj.

It is also possible that each job j may have an associated due date dj by which it should be completed.
This gives rise to two different optimality criteria. Given a schedule S, we define Lj = CS

j − dj
to be the lateness of job j, and we will be interested in constructing a schedule that minimizes
Lmax = maxn

j=1 Lj, the maximum lateness of any job in the schedule. Alternatively, we concern
ourselves with constructing a schedule that maximizes the number of jobs that complete by their
due dates. To capture this, given a schedule S we define Uj = 0 if CS

j ≤ dj and Uj = 1 otherwise; we
can thus describe our optimality criterion as the minimization of

∑
Uj, or more generally,

∑
wjUj.

As illustrations, 1|rj|Lmax denotes the problem of nonpreemptively scheduling, on one machine,
jobs with release dates and due dates so as to minimize the maximum lateness of any job, and
1|prec|∑ wjUj denotes the problem of nonpreemptively scheduling precedence-constrained jobs on
one machine so as to minimize the total (summed) weight of the late jobs. Deadlines are not listed
in the side constraints since they are implicit in the objective function.

Finally, we will consider one scheduling problem that deals with a more general optimality
criterion. For each job j, we let fj(t) be any function that is nondecreasing with the completion time
of the job, and, with respect to a schedule S, define fmax = maxn

j=1 fj(CS
j ). The specific problem that

we will consider (in Section 20.3) is 1|prec|fmax—the scheduling of precedence-constrained jobs on
one machine so as to minimize the maximum value of fj(Cj) over all j ∈ J .

20.1.1.2 More Complex Machine Environments: Parallel Machines and the Shop

Having introduced all of the optimality criteria, side characteristics and conditions that we will use
in this survey, we now discuss more complex machine environments.

We first discuss parallel machine environments. In these environments we are given m machines.
A job j with processing requirement pj can be processed on any one of the machines, or, if preemption
is allowed, started on one machine, and when preempted potentially continued on another machine.
A machine can process at most one job at a time and a job can be processed by at most one machine
at a time.

In the identical parallel machine environment the machines are identical, and job j requires pj units
of processing time when processed on any machine. In the uniformly related machines environment
each machine i has a speed si > 0, and thus job j, if processed entirely on machine i, would take a
total of pj/si time to process. In the unrelated parallel machines environment we model machines
that have different capabilities and thus their relative performance on a job is unrelated. In other
words, the speed of machine i on job j, sij, depends on both the machine and the job; job j requires
pj/sij processing time on machine i. We define pij = pj/sij.

In the shop environment, which primarily models various sorts of production environments, we
again have m machines. In this setting a job j is made up of operations, with each operation requiring
processing on a specific one of the m machines. Different operations may take different amounts of
time (possibly 0). In the open shop environment, the operations of a job can be processed in any
order, as long as no two operations are processed on different machines simultaneously. In the job
shop environment, there is a total order on the operations of a job, and one operation cannot be
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started until its predecessor in the total order is completed. A special case of the job shop is the flow
shop, in which the order of the operations is the same—each job requires processing on the same
machines and in the same order, but different jobs may require different amounts of processing on
the same machine. Typically in the flow shop and open shop environment, each job is processed
exactly once on each machine.

In the scheduling notation, the identical, uniformly related and unrelated machine environments
are denoted respectively by P, Q, and R. The open, flow and job shop environments are denoted
by O, F, and J. When the environment has a fixed number of machines the number is included
in the environment specification; so, for example, P2 denotes the environment with two identical
parallel machines. Note that Example 20.2 can be modeled by P5|prec|Cmax, and Example 20.3 can
be modeled by F3|rj|∑ Uj.

20.2 Priority Rules

The most obvious approach to solving a scheduling problem is a greedy one: whenever a machine
becomes available, assign some job to it. A more sophisticated variant of this approach is to give
each job a priority derived from the particular optimality criterion, and then, whenever a machine
becomes available, assign the available job of highest priority to it. In this section we discuss such
scheduling strategies for one machine, parallel machine and shop problems. In all of our algorithms,
the priority of a job can be determined without reference to other jobs. This typically gives a simple
scheduling algorithm that runs in O(n log n) time—the bottleneck being the time needed to sort the
jobs by priority. We also discuss the limitations of these approaches, giving examples where they do
not perform well.

20.2.1 One Machine

We first focus on algorithms for single-machine problems in which we give each job a priority, sort
by priorities, and schedule in this order. To establish the correctness of such algorithms, it is often
possible to apply an interchange argument. Suppose that there is an optimal schedule with jobs
processed in nonpriority order. It follows that some adjacent pair of jobs in the schedule has inverted
priorities. We show that if we swap these two jobs, the scheduling objective function is improved,
thus contradicting the claim that the original schedule was optimal.

20.2.1.1 Average Weighted Completion Time: 1‖∑
wjCj

In perhaps the simplest scheduling problem, our objective is to minimize the sum of completion
times

∑
Cj. Intuitively, it makes sense to schedule the largest job at the end of the schedule to ensure

that it does not contribute to the delay on any other job. We formalize this by defining the shortest
processing time (SPT) algorithm: order the jobs by nondecreasing processing time (breaking ties
arbitrarily) and schedule in that order.

THEOREM 20.1 SPT is an exact algorithm for 1‖∑ Cj.

PROOF To establish the optimality of the schedule constructed by SPT we use an interchange
argument. Suppose for the purpose of contradiction that the jobs in the optimal schedule are not
scheduled in nondecreasing order of completion time. Then there is some pair of jobs j and k such
that j immediately precedes k in the schedule but pj > pk.
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Suppose we exchange jobs j and k. All jobs other than j and k still start, and thus complete, at
the same time as they did before the swap. All that changes is the completion times of jobs j and k.
Suppose that originally job j started at time t and ended at time t + pj, so that job k started at time
t + pj and finished at time t + pj + pk. It follows that the original contribution of these two jobs to
the sum of completion times, namely (t + pj) + (t + pj + pk) = 2t + 2pj + pk, is replaced by their
new contribution of 2t + 2pk + pj. This gives a net decrease of pj − pk in

∑
Cj, which is positive if

pj > pk, implying that our original ordering was not optimal—a contradiction.

This algorithm and its proof of optimality generalize to the optimization of average weighted
completion time, 1‖∑ wjCj. Intuitively, we would like to schedule as much weight as possible with
each unit of processing time. This suggests scheduling jobs in nonincreasing order of wj/pj; the
optimality of this rule can be established by a simple generalization of the previous interchange
argument.

THEOREM 20.2 [39] Scheduling jobs in nonincreasing order of wj/pj gives an optimal schedule for
1‖∑ wjCj.

20.2.1.2 Maximum Lateness: 1‖Lmax

A simple greedy algorithm also solves 1‖Lmax, in which we seek to minimize the maximum job
lateness. A natural strategy is to schedule the job that is closest to being late, which suggests the
earliest duedate (EDD) algorithm: order the jobs by nondecreasing due dates (breaking ties arbitrarily)
and schedule in that order.

THEOREM 20.3 [23] EDD is an exact algorithm for 1‖Lmax.

PROOF We again use an interchange argument to prove that the schedule constructed by EDD is
optimal. Assume without loss of generality that all due dates are distinct, and number the jobs so that
d1 < d2 < · · · < dn. Among all optimal schedules, we consider the one with the fewest inversions,
where an inversion is a pair of jobs j, k such that j < k but k is scheduled before j. Suppose the given
optimal schedule S is not the EDD schedule. Then there is a pair of jobs j and k such that dj < dk
but k immediately precedes j in the schedule.

Suppose we exchange jobs j and k. This does not change the completion time or lateness of any
job other than j and k. We claim that we can only decrease max(Lj, Lk), so we do not increase
the maximum lateness. Furthermore, since j < k, swapping jobs j and k decreases the number of
inversions in the schedule. It follows that the new schedule has the same or better lateness than the
original one but fewer inversions, a contradiction.

To prove the claim, note that in schedule S CS
j > CS

k but dj < dk. It follows that max(LS
j , LS

k) =
CS

j −dj. Under the exchange, job j’s completion time, and thus lateness, decreases. Job k’s completion
time rises to CS

j , but this gives it a lateness of CS
j − dk < CS

j − dj. Thus, the maximum of the two
latenesses has decreased.

20.2.1.3 Preemption and Release Dates

We now consider the more complex one-machine environment in which jobs may arrive over
time, as modeled by the introduction of release dates. The greedy heuristics of Sections 20.2.1.1
and 20.2.1.2 are not immediately applicable, since jobs of high priority might be released relatively
late and thus not be available for processing before jobs of lower priority. The most natural idea
to cope with this complication is to always process the available (released) job of highest priority.
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In a preemptive setting, this would mean, upon the release of a job of higher priority, preempting
the currently running job and switching to the “better” job. We will show that this idea in fact yields
optimal scheduling algorithms.

We thus define the shortest remaining processing time (SRPT) algorithm: at each point in time,
schedule the job with SRPT, preempting when jobs of shorter processing time are released. We
also generalize EDD : upon the release of jobs with earlier dues dates than the job currently being
processed, preempt the current job and process the job with EDD.

THEOREM 20.4 [2,22] SRPT is an exact algorithm for 1|rj, pmtn|∑ Cj, and EDD is an exact
algorithm for 1|rj, pmtn|Lmax

PROOF As before, we argue by contradiction, using a similar greedy exchange argument. However,
instead of exchanging entire jobs, we exchange pieces of jobs, which is now allowed in our preemptive
environment.

We focus on 1|rj, pmtn|∑ Cj. Consider a schedule in which available job j with the SRPT is not
being processed at time t, and instead available job k is being processed. Let p′

j and p′
k denote the

remaining processing times for jobs j and k after time t, so p′
j < p′

k. In total, p′
j + p′

k time is spent
on jobs j and k after time t. We now perform an exchange. Take the first p′

j units of time that were
devoted to either of jobs j and k after time t, and use them instead to process job j to completion.
Then, take the remaining p′

k units of time that were spent processing jobs j and k, and use them to
schedule job j. This exchange preserves feasibility since both jobs were released by time t.

In the new schedule, all jobs other than j and k have the same completion times as before. Job k
finishes when job j originally finished. But job j, which needed p′

j < p′
k additional work, finishes before

job k originally finished. Thus we have reduced Cj + Ck without increasing any other completion
time, meaning we have reduced

∑
Cj, a contradiction.

The argument that EDD solved 1|rj, pmtn|Lmax goes much the same way. If at time t, job j with
the earliest remaining due date is not being processed and job k with a later due date is, we reallocate
the time spent processing job k to job j. This makes job j finish earlier, and makes job k finish when
job j did originally. This cannot increase objective function value.

By considering how SRPT and EDD function if all jobs are available at time 0, we conclude that
on one machine, in the absence of release dates, the ability to preempt jobs does not yield schedules
with improved

∑
Cj or Lmax optimality criteria. This is not the case when jobs have release dates;

intuitively, a problem such as 1|rj|∑ Cj seems more difficult, as one cannot simply preempt the
current job for a newly-arrived better one, but rather must decide whether to start a worse job or
wait for the better one. This intuition about the additional difficulty of this setting is justified—
1|rj|∑ Cj and 1|rj|Lmax are in fact NP-complete problems. We discuss approximation algorithms
for these problems in Sections 20.5.2 and 20.6.3.

We also note that these ideas have their limitations, and do not generalize to the
∑

wjCj criterion–
1|rj, pmtn|∑ wjCj is NP-hard. Finally, we note that SRPT and EDD are on-line algorithms—their
decisions about which job to schedule currently do not require any information about which jobs
are to be released in the future. See [38] for a comprehensive survey of online scheduling.

20.2.2 The Two-Machine Flow Shop

We now consider a more complex machine environment in which we want to minimize the makespan
in a flow shop. In general, this problem is NP-hard, even in the case of three machines. However,
in the special case of the two-machine flow shop F2‖Cmax, a priority-based ordering approach due
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to Johnson [24] yields an exact algorithm. We denote the operations of job j on the first and second
machines as a pair (aj, bj). Intuitively, we want to get jobs done on the first machine as quickly as
possible so as to minimize idleness on the second machine due to waiting for jobs from the first
machine. This suggests using anSPT rule on the first machine. On the other hand, it would be useful
to process the jobs with large bj as early as possible on the second machine, while machine 1 is still
running, so they will not create a large tail of processing on machine 2 after machine 1 is finished.
This suggests some kind of longest processing time first (LPT) rule for machine 2.

We now formalize this intuition. We partition our jobs into two sets. A is the set of jobs j for which
aj ≤ bj, while B is the set for which aj > bj. We construct a schedule by first ordering all the jobs in
A by nondecreasing aj value, and then all the jobs in B by nonincreasing bj values. We process jobs
in this order on both machines. This is called Johnson’s rule.

It may be surprising that we do not reorder jobs to process them on the second machine. It turns
out that for two-machine flow shops, such reordering is not necessary. A schedule in which all jobs
are processed in the same order is called a permutation schedule.

LEMMA 20.1 An instance of F2‖Cmax always has an optimal schedule that is a permutation
schedule.

Note that for three or more machines there is not necessarily an optimal permutation schedule.

PROOF Consider any optimal schedule, and number the jobs according to the time at which they
complete on machine 1. Suppose that job k immediately precedes job j in the order in which jobs are
completed on machine 2, but j < k. Let t be the time at which job k is started on machine 2. It follows
that job k has completed on machine 1 by time t. Numbering j < k means that j is processed earlier
than k on machine 1, so it follows that job j also has completed on machine 1 by time t. Therefore,
we can swap the order of jobs j and k on machine 2, and still have a legal schedule (since no other
job’s start time changes) with the same makespan. We can continue performing such swaps until
there are none left to be done, implying that jobs on machine 2 are processed in the same order as
those on machine 1.

Having limited our search for optimal schedules to permutation schedules, we present a clever
argument given by Lawler et al. [29] to establish the optimality of the permutation schedule specified
by Johnson’s rule.

Renumber the jobs according to the ordering given by Johnson’s rule. Notice that in a permutation
schedule for F2‖Cmax, there must be a job k that is started on machine 2 immediately after its
completion on machine 1; for example, the job that starts immediately after the last idle time on
machine 2. The makespan of the schedule is thus determined by the processing times of k jobs on
machine 1 and n − k + 1 jobs on machine 2, which is just a sum of n + 1 processing times. If we
reduce all the ai and bi by the same value p, then every sum of n + 1 processing times decreases by
(n + 1)p, so the makespan of every permutation schedule is reduced by (n + 1)p.

Now note that if a job has ai = 0 it is scheduled first in some optimal permutation schedule,
since it delays no jobs on machine 1 and only “buys time” for jobs that are processed later than it on
machine 2. Similarly, if a job has bi = 0, it is scheduled last in some optimal schedule.

Therefore, we can construct an optimal permutation schedule by repeatedly finding the minimum
operation size amongst all the aj and bj values of the unscheduled jobs, subtracting that value from
all of the operation sizes, and then scheduling the job with the new zero processing time according
to the above rules. Now observe that the schedule constructed is exactly the schedule that orders the
jobs by Johnson’s rule. We have therefore proved the following.
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THEOREM 20.5 [24] Johnson’s rule yields an optimal schedule for F2‖Cmax.

20.2.3 Parallel Machines

We now turn to the case of parallel machines. In the move to parallel machines, many problems
that are easily solvable on one machine become NP-hard; the focus therefore tends to be on
approximation algorithms. In some cases, the simple priority-based rules we used for one machine
generalize well. That is, we assign a priority to every job, and, whenever a machine becomes available,
it starts processing the job that has the highest remaining priority. The schedules created by such
algorithms, which immediately give work to any machine that becomes idle, will be referred to as
busy schedules.

In this section, we also introduce a new method of analysis. Instead of arguing correctness based
on interchange arguments, we give lower bounds on the quality of the optimal schedule. We then
show that our algorithm produces a schedule whose quality is within some factor of the lower
bound, thus demonstrating a fortiori that it is within this factor of the optimal schedule. This is a
general technique for approximation, and it has the pleasing feature that we are able to guarantee
that we are within a certain factor of the optimal value, without knowing what that optimal value is.
Sometimes we can show that our greedy algorithm achieves the lower bound, thus demonstrating
that the algorithm is actually optimal.

In this section, we devote most of our attention to the problem of minimizing the makespan
(schedule length) on m parallel machines, and study the behavior of the greedy algorithm for
the problem. We remark that for the average-completion-time problem P‖∑ Cj, the greedy SPT
algorithm also turns out to yield an optimal schedule. We discuss this further in Section 20.4.1.

As was mentioned in Section 20.2.1, P‖Cmax is trivial when m = 1, as any schedule with no
idle time will be optimal. Once we have more than one machine, things become more complicated.
With preemption, it is possible to greedily construct an optimal schedule in polynomial time. In
the nonpreemptive setting, however, it is unlikely that there is a polynomial time exact algorithm,
since the problem is NP-complete via a simple reduction from the NP-complete partition problem
[7]. We will thus focus on finding an approximately optimal solution. First, we will show that any
busy schedule gives a 2-approximation. We will then see how this can be improved with a slightly
smarter algorithm, the LPT algorithm, which is a 4/3-approximation algorithm. In Section 20.6 we
will show that a more complicated algorithm can guarantee an even better quality of approximation.

Our analyses of these algorithms are all based on comparing their performance to certain lower
bounds on the quality of the optimal schedule; their performance compared to the optimum can
only be better. Our algorithms will make use of two simple lower bounds on the makespan C∗

max of
the optimal schedule:

C∗
max ≥

n∑
j=1

pj/m (20.1)

C∗
max ≥ pj for all jobs j. (20.2)

The first lower bound says that the schedule is at least as long as the average machine load, and the
second says that the schedule is at least as long as the size of any job. To demonstrate the power
of these lower bounds, we begin with the preemptive problem, P|pmtn|Cmax. In this case, we show
how to find a schedule that matches the maximum of the two lower bounds given above. We then
use the lower bounds to establish performance guarantees for approximation algorithms for the
nonpreemptive case.
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20.2.3.1 Minimizing Cmax with Preemptions

We give a simple algorithm, called McNaughton’s wrap-around rule [32], that creates an optimal
schedule for P|pmtn|Cmax with at most m − 1 preemptions. This algorithm is different from many
scheduling algorithms in that it creates the schedule machine by machine, rather than over time.

Observing that the lower bounds Equations 20.1 and 20.2 still apply to preemptive schedules,
we will give a schedule of length D = max{∑j pj/m, maxj pj}. We order the jobs arbitrarily. Then
we begin placing jobs on the machines, in order, filling machine i up until time D before starting
machine i + 1. Thus, a job of length pj may be split, assigned to the last t units of time of machine
i and the first pj − t units of time on machine i + 1, for some t. It is now easy to verify that since
there are no more than mD units to be processed, every job is scheduled, and because D − t ≥ pj − t
for any t, a job is scheduled on at most one machine at any time. Thus we have created an optimal
preemptive schedule.

THEOREM 20.6 [32] McNaughton’s wrap-around rule gives an optimal schedule for P|pmtn|Cmax.

20.2.3.2 List Scheduling for P‖Cmax

In contrast to P|pmtn|Cmax, P‖Cmax is NP-hard. We consider the performance of the list scheduling
(LS) algorithm, which is a generic greedy algorithm: whenever a machine becomes available, process
any unprocessed job.

THEOREM 20.7 [11] LS is a 2-approximation algorithm for P‖Cmax.

PROOF Let j′ be the last job to finish in the schedule constructed by LS and let sj′ be the time
that j′ begins processing. Cmax is therefore sj′ + pj′ . All machines must be busy up to time sj′ , since
otherwise job j′ could have been started earlier. The maximum amount of time that all machines can
be busy is

∑n
j=1 pj/m, and so we obtain that

Cmax ≤ sj ′ + pj ′

≤
n∑

j=1

pj + pj ′

≤ C∗
max + C∗

max = 2C∗
max.

The last inequality comes from lower bounds Equations 20.1 and 20.2 above.

This algorithm can easily be implemented in O(n + m) time. By a similar analysis, the algorithm
guarantees an approximation of the same quality even if the jobs have release dates [14].

20.2.3.3 Longest Processing Time First for P‖Cmax

It is useful to think of the analysis of LS in the following manner. Every job starts being processed
before time

∑n
j=1 pj, and hence the schedule length is no more than

∑n
j=1 pj plus the length of the

longest job that is running at time
∑n

j=1 pj.
This motivates the natural idea that it is good to run the longer jobs early in the schedule and the

shorter jobs later. This is formalized in the LPT rule: sort jobs in nonincreasing order of processing
time and list schedule in that order.



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C020 Finals Page 11 2009-9-25

Scheduling Algorithms 20-11

THEOREM 20.8 [12] LPT is a 4/3-approximation algorithm for P‖Cmax.

PROOF We start by simplifying the problem. Suppose that j′, the last job to finish in our schedule,
is not the last job to start. Remove all jobs that start after time sj ′ . This does not affect the makespan
of our schedule, since these jobs must have run on other machines. Furthermore, it can only decrease
the optimal makespan for the modified instance. Thus, if we prove an approximation bound for this
new instance, it applies a fortiori to our original instance.

We can therefore assume that the last job to finish is the last to start, namely the smallest job. In
this case, by the analysis of Theorem 20.7 above, LPT returns a schedule of length no more than
C∗

max + pmin. We now consider two cases:

Case 1: pmin ≤ C∗
max/3. In this case C∗

max + pmin ≤ C∗
max + (1/3)C∗

max ≤ (4/3)C∗
max.

Case 2: pmin > C∗
max/3. In this case, all jobs have pj > C∗

max/3, and hence in the optimal schedule
there are at most 2 jobs per machine. Number the jobs in order of nonincreasing pj. If n ≤ m, then
the optimal schedule trivially puts one job on each machine. We thus consider the remaining case
with m < n ≤ 2m. In this case, we claim that, for each j = 1, . . . , m the optimal schedule pairs job j
with job 2m + 1 − j if 2m + 1 − j ≤ n and places job j by itself otherwise. This can be shown to be
optimal via a simple interchange argument. We finish the proof by observing that this is exactly the
schedule that LPT would construct.

This algorithm needs to sort the jobs, and can be implemented in O(m + n log n) time. If we are
willing to spend substantially more time, we can obtain a (1 + ε)-approximation algorithm for any
fixed ε> 0; see Section 20.6.

20.2.3.4 List Scheduling for P|prec|Cmax

Even when our input contains precedence constraints, LS is still a 2-approximation algorithm.
Given a precedence relation prec, we say that a job is available at time t if all its predecessors
have completed processing by time t. Recall that in LS, whenever a machine becomes idle, any
available job is scheduled. Before giving the algorithm, we give one additional lower bound that is
relevant to scheduling with precedence constraints. Let ji1 , ji2 , . . . , jik be any set of jobs such that
ji1 ≺ ji2 ≺ · · · ≺ jik , then

C∗
max ≥

k∑
�=1

pi� . (20.3)

In other words, the total processing time of any chain of jobs is a lower bound on the makespan.

THEOREM 20.9 [11] LS is a 2-approximation algorithm for P|prec|Cmax.

PROOF Let j1 be the last job to finish. Define j2 to be the latest-finishing predecessor of j1, and
inductively define j�+1 to be the latest-finishing predecessor of j�, continuing until reaching jk, a
job with no predecessors. Let C = {j1, . . . , jk}. We partition time into two sets, A, the points in
time when a job in C is running, and B, the remaining time. Observe that during all times in B, all
machines must be busy, for if they were not, there would be a job from C that had all its predecessors
completed and would be ready to run. Hence, Cmax ≤ |A| + |B| ≤ ∑

j∈C pj + ∑n
j=1 pj ≤ 2C∗

max,
where the last inequality follows by applying lower bounds Equations 20.1 and 20.3. Note that |A| is
the total length of intervals in A.
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For the case when all processing times are exactly one, P|prec|Cmax is solvable in polynomial time
if there are only two machines [27], and isNP-complete if there are an arbitrary number of machines
[40]. The complexity of the problem in the case when there are a fixed constant number of machines
is one of the more famous open problems in scheduling.

20.2.3.5 List Scheduling for O‖Cmax

LS can also be applied to O‖Cmax. Recall that in this problem, each job must be processed for disjoint
intervals of time on several different machines. By an analysis similar to that used for P‖Cmax, we will
show that any algorithm that constructs a busy schedule for O‖Cmax is a 2-approximation algorithm.
Let Pmax be the maximum total processing time, summed over all machines, for any one job, and
let Πmax be the maximum total processing time, summed over all jobs, of any one machine. Clearly,
both Pmax and Πmax are lower bounds on the makespan of the optimal schedule. We show that any
busy schedule has makespan at most Pmax + Πmax.

To see this, consider the machine M′ that finishes processing last, and consider the last job j′ to
finish on machine M′. At any time during the schedule, either M′ is processing a job or job j′ is being
processed (if neither of these is true, then LS would require that j′ be running on M′, a contradiction).
However, the total length of time during which j′ undergoes processing is at most Pmax. During all
the remaining time in the schedule, machine M′ must be busy. But machine M′ is busy for at most
Πmax time units. Thus the total length of the schedule is at most Pmax + Πmax, as claimed. Since
Pmax + Πmax ≤ C∗

max + C∗
max = 2C∗

max, we obtain

THEOREM 20.10 (Racsmány, see [3]) LS is a 2-approximation algorithm for O‖Cmax.

20.2.4 Limitations of Priority Rules

For many problems, simple scheduling rules do not yield good schedules, and thus given a schedul-
ing problem, the algorithm designer should be careful about applying one of these rules without
justification. In particular, for many problems, particularly those with precedence constraints and
release dates, the optimal schedule has unforced idle time. That is, if one is constructing the schedule
over time, there may be a time t when there is an idle machine m and an available job j, but scheduling
job j on machine m at time t will yield a suboptimal schedule.

Consider the problem Q‖Cmax and recall that for P‖Cmax, LS is a 2-approximation algorithm.
Consider a two-job two-machine instance in which s1 = 1, s2 = x, p1 = 1, p2 = 1, and x > 2. Then
LS, SPT, and LPT all schedule one job on machine 1 and one on machine 2, and the makespan is
thus 1. However, the schedule that places both jobs on machine 2 has makespan 2/x < 1. By making
x arbitrarily large, we see that none of these simple algorithms, which all have approximation ratio
at least x/2, have bounded approximation ratios.

For this problem there is actually a simple heuristic that comes within a factor of 2 of optimal, but
for some problems, such as Q|prec|Cmax and R‖Cmax, there is no simple algorithm known that comes
anywhere close to optimal. We also note that even though LS is a 2-approximation for O‖Cmax, for
F‖Cmax busy schedules can be of makespan Ω(m) times optimal [10].

20.3 Sophisticated Greedy Approaches

As we have just argued, for many problems, the priority algorithms that consider jobs in isolation, as
in Section 20.2, are not sufficient. In this section, we consider algorithms that do more than sort jobs
by some priority measure—they take other jobs into account when making a decision about where
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to schedule a job. The algorithms we study here are “incremental” in nature: they start with an empty
solution and grow it, one job at a time, until the optimal solution is revealed. At each step the decision
about which job to add to the growing solution is made greedily, but is based on the current context
of jobs which have already been scheduled. We present two examples which are classic examples of
the dynamic programming paradigm, and several others that are more specialized.

All the algorithms share an analysis based on the idea of optimal substructure. Namely, if we
consider the optimal solution to a problem, we can often argue that its “subparts” (e.g., prefixes of
the optimal schedule) are optimal solutions to “subproblems” (e.g., the problem of scheduling the
set of jobs in that prefix). This lets us argue that as our algorithms build their solution incrementally,
they are building optimal solutions to bigger and bigger subproblems of the original problem, until
they reach an optimal solution to the entire problem.

20.3.1 An Incremental Greedy Algorithm for 1‖fmax

The first problem we consider is 1‖fmax, which was defined in Section 20.1. In this problem, each job
has some nondecreasing penalty function on its completion time Cj, and the goal is to find a schedule
minimizing the maximum fj(Cj). As one example, 1‖Lmax is captured by setting fj(t) = t − dj.

A greedy strategy still applies, when suitably modified. It is convenient, instead of talking about
scheduling the “most penalizing” (e.g., EDD) job first, to talk about scheduling the “least penalizing”
(e.g., latest due date) job last. Let p(J ) = ∑

j∈J pj be the total processing time of the entire set of
jobs. Note that some job must complete at time p(J ). We find the job j that minimizes fj(p(J )),
and schedule this job last. We then (recursively) schedule all the remaining jobs before j so as to
minimize their maximum penalty. We call this algorithm Least-Cost-Last.

Observe the difference between this and our previous scheduling rules. In this new scheme, we
cannot determine the best job to schedule second-to-last until we know which job is scheduled
last (we need to know the processing time of the last job in order to know the processing time of
the recursive subproblem). Thus, instead of a simple O(n log n)-time sorting algorithm based on
absolute priorities, we are faced with an algorithm that inspects k jobs in order to identify the job to
be scheduled kth, giving a total running time of O(n + (n − 1) + · · · + 1) = O(n2).

This change in algorithm is matched by a change in analysis. Since the notion of which job is
worst can change as the schedule is constructed, there is no obvious fixed priority to which we can
apply a local exchange argument. Instead, as with P|pmtn|Cmax in Section 20.2.3.1, we show that
our algorithm’s greedy decisions are in agreement with a provable lower bound on the quality of
the optimal schedule. Our algorithm produces a schedule that matches the lower bound and must
therefore be optimal.

Let f ∗
max(S) denote the optimal value of the objective function if we are only scheduling the jobs

in S. Consider the following two facts about f ∗
max:

f ∗
max(J ) ≥ min

j∈N
fj(p(J ))

f ∗
max(J ) ≥ f ∗

max(J − {j})
The first of these statements follows from the fact that some job must be scheduled last. The second
follows from the fact that if we have an optimal schedule for J and remove a job from the schedule,
then we do not increase the completion time of any job. Therefore, since the fj are increasing
functions, we do not increase any penalty.

We use these inequalities to prove by induction that our schedule is optimal. According to our
scheduling rule, we schedule last the job j minimizing fj(p(J )). By induction, this gives us a schedule
with objective max{fj(p(J )), f ∗

max(J − {j})}. But since each of these quantities is (by the equations
above) a lower bound on the optimal f ∗

max(J ), we see that in fact we obtain a schedule whose value
is a lower bound on f ∗

max(J ), and thus must in fact equal f ∗
max(J ).
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20.3.1.1 Extension to 1|prec|fmax

Our argument from Section 20.3.1 continues to apply even if we introduce precedence constraints.
In the 1|prec|fmax problem, a partial order on jobs is given, and we must build a schedule that does
not start a job until all jobs preceding it in the partial order have completed. Our above algorithm
applies essentially unchanged to this case. Note that the last job in the schedule must be a job with no
successors. We therefore build an optimal schedule by scheduling last the job j that, among jobs with
no successors, minimizes fj(P(J )). We then recursively schedule all other jobs before it. The proof
of optimality goes exactly as before, using the fact that if L is the set of all jobs without successors,
then

f ∗
max(J ) ≥ min

j∈L
fj(P(J ))

This is the same as the first equation above, except that the minimum is taken only over jobs without
successors. The remainder of the proof proceeds unchanged.

THEOREM 20.11 [26] Least-Cost-Last is an exact algorithm for 1|prec|fmax.

It should also be noted that, once again, the fact that our algorithm is greedy makes preemption
a moot point. One job needs to finish last, and it immediately follows that we can do no better than
executing all of that job last. Thus, our greedy algorithm continues to be optimal.

20.3.1.2 An Alternative Approach

Moore [33] gave a different approach to 1‖fmax that may be faster in some cases. His scheme is based
on a reduction to the maximum lateness problem and its solution by the EDD rule. To see how an
algorithm for Lmax can be applied to 1‖fmax, suppose we want to know whether there is a schedule
with fmax ≤ B. We can decide this as follows. Give each job j a deadline dj equal to the maximum t
for which fj(t) ≤ B. It is easy to see that a schedule has fmax ≤ B precisely when every job finishes by
its specified deadline, i.e., Lmax ≤ 0. Thus, we have converted the feasibility problem for fmax into
an instance of the lateness problem. The optimization problem may therefore be solved by a binary
search for the correct value of B.

20.3.2 Dynamic Programming for 1‖∑
wjUj

We now consider 1‖∑ wjUj problem, in which the goal is to minimize the total weight of late jobs.
This problem is weakly NP-complete. That is, although it is NP-complete, for integral weights it is
possible to solve the problem exactly in O(n

∑
wj) time, which is polynomial if the wj are bounded

by a polynomial. The necessary algorithm is a classical dynamic program that builds the solution
out of solutions to smaller problems (a detailed introduction to dynamic programming can be
found in many algorithms textbooks, see, for example [6]). This O(n

∑
wj) dynamic programming

algorithm has several consequences. First, it immediately yields an O(n2)-time algorithm for 1‖∑ Uj
problem–just take all weights to be 1. Furthermore, we will show in Section 20.6 that this algorithm
can be used to derive a fully polynomial approximation scheme for the general problem that finds a
schedule with

∑
wjUj within (1 + ε) of the optimum in time polynomial in 1/ε and n.

The first observation to make is that under this objective, a schedule partitions the jobs into two
types: those completed by their due dates, and those not completed. Clearly, we might as well process
all the jobs that meet their due date before processing any that do not. Furthermore, the processing
order of these jobs might as well be determined using the EDD rule from Section 20.2.1.2 when all
jobs can be completed by their due date (implying nonpositive maximum lateness), EDD, which
minimizes maximum lateness, will clearly find a schedule that does so.



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C020 Finals Page 15 2009-9-25

Scheduling Algorithms 20-15

It is therefore convenient to discuss feasible subsets of jobs that can all be scheduled together to
complete by their due dates. The question of finding a minimum weight set of late jobs can then be
equivalently restated as finding a maximum weight feasible subset of the jobs.

To solve this problem, we aim to solve a harder one: namely, to identify the fastest-completing
maximum weight feasible subset. We do so via dynamic programming. Order the jobs according to
increasing due date. Let Twj denote the minimum completion time of a weight w-or-greater feasible
subset of 1, . . . , j, or ∞ if there is no such subset. Note that T0j = 0, while Tw0 = ∞ for all w > 0.
We now give a dynamic program to compute the other values Twj. Consider the fastest completing
weight w-or-greater feasible subset S of {1, . . . , j + 1}. Either j + 1 ∈ S or it is not. If j + 1 /∈ S,
then S ⊆ {1, . . . , j} and is then clearly the fastest completing weight w-or-greater subset of {1, . . . , j},
so S completes in time Twj. If j + 1 ∈ S, then since we can schedule feasible subsets using EDD ,
j + 1 can be scheduled last. The jobs preceding it have weight at least w − wj+1, and clearly form
the minimum-completion-time subset of 1, . . . , j with this weight. Thus, the completion time of this
feasible set is Tw−wj+1,j + pj+1. It follows that

Tw,j+1 =
{

min
(

Tw,j, Tw−wj+1 + pj+1

)
if Tw−wj+1,j + pj ≤ dj+1

Twj otherwise

Now observe that there is clearly no feasible subset of weight exceeding
∑

wj, so we can stop our
dynamic program once we reach this value of w. This takes O(n

∑
wj) time. Once we have all the

values Twj, we can find the maximum weight feasible subset by identifying the largest value of w for
which some Twj (and thus Twn) is finite.

This gives a standard O(n
∑

j wj) time dynamic program for computing Twn for every relevant
value w; the maximum w for which Twn is finite is the maximum total weight of jobs that can be
completed by their due date.

THEOREM 20.12 [30] Dynamic programming yields an O(n
∑

wj)-time algorithm for exactly
solving 1‖∑ wjUj.

We remark that a similar dynamic program can be used to solve the problem in time O(n
∑

pj),
which is effective when the processing times are polynomially bounded integers. We also note that
a quite simple greedy algorithm due to Moore [33] can solve the unweighted 1‖∑ Uj problem in
O(n log n) time.

20.3.3 Dynamic Programming for P‖Cmax

For a second example of the applicability of dynamic programming, we return to the NP-hard
problem P‖Cmax, and focus on a special case that is solvable in polynomial time—the case in which
the number of different job processing times is bounded by a constant. While this special case
might appear to be somewhat contrived, in Section 20.6 we will show that it can form the core of a
polynomial approximation scheme for P‖Cmax.

LEMMA 20.2 [18] Given an instance of P‖Cmax in which the pj take on at most s distinct values,
there exists an algorithm which finds an optimal solution in time nO(s).

PROOF Assume for now that we are given a target schedule length T. We again use dynamic
programming. Let the different processing times be z1, . . . , zs. The key observation is that the set of
jobs on a machine can be described by an s-dimensional vector V = (v1, . . . , vs), where vk is the
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number of jobs of length zk. There are at most ns such vectors since each entry has value at most
n. Let V be the set of all such vectors whose total processing time (that is,

∑
vizi) is less than T. In

the optimal schedule, every machine is assigned a set of jobs corresponding to a vector from this set.
We now define M(x1, . . . , xs) to be the minimum number of machines needed to schedule a job set
consisting of xi jobs of size zi, for i = 1, . . . , s. We observe that

M (x1, . . . , xs) = 1 + min
V∈V

M (x1 − v1, . . . , xs − vs) .

The minimization is over all possible vectors that could be processed by the “first” machine counted
by the quantity 1, and the recursive expression denotes the best way to process the remaining work.
Thus we need to compute a table with ns entries, where each entry depends on O(ns) other entries,
and therefore the computation takes time O(n2s).

It remains to handle the assumption that we know T. The easiest way to do this is to perform a
binary search on all possible values of T. A slightly more sophisticated approach is to search only
over the O(ns) makespans of vectors describing sets of jobs, as one of these clearly determines the
makespan of the solution.

20.4 Matching and Linear Programming

Networks and linear programs are central themes in combinatorial optimization, and are useful
tools in the solution of many problems. Therefore, it is not surprising that these techniques can
be applied profitably to scheduling problems as well. In this section, we discuss applications of
bipartite matching and linear programming to the exact solution of certain scheduling problems; in
Section 20.5 we will revisit both techniques in the design of approximation algorithms for NP-hard
problems.

20.4.1 Applications of Matching

Given a bipartite graph on two sets of vertices A and B and an edge set E ⊆ A × B, a matching M
is a subset of the edges, such that each vertex A and B is an endpoint of at most one edge of M.
A natural matching that is useful in scheduling problems is one that matches jobs to machines; the
matching constraints force each job to be scheduled on at most one machine, and each machine to
be processing at most one job. If A has no more vertices than B, we call a matching perfect if every
vertex of A is in some matching edge. It is also possible to assign weights to the edges, and define
the weight of a matching to be the sum of the weights of the matching edges. The key fact that we
use in this section is that minimum-weight perfect matchings can be computed in polynomial time
(see, e.g., [1]).

20.4.1.1 Matching to Schedule Positions for R‖∑
Cj

In this section we give a polynomial-time algorithm for R‖∑ Cj that matches jobs to positions in
the schedule on each machine. For any schedule, let κik be the kth-from-last job to run on machine
i, and let �i be the number of jobs that run on machine i. By observing that the completion time of a
job is equal to the sum of the processing times of the jobs that run before it, we have that

∑
j

Cj =
m∑

i=1

�i∑
k=1

Cκik =
m∑

i=1

�i∑
k=1

�i∑
x=k

pi,κxi =
m∑

i=1

�i∑
k=1

kpi,κki . (20.4)

From this, we see that the kth from last job to run on a machine contributes exactly k times
its processing time to the sum of completion times. Based on this observation, Horn [21] and
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Bruno et al. [4] proposed formulating R‖∑ Cj problem as a minimum-weight bipartite matching
problem. We define a bipartite graph G = (V , E) with V = A∪B as follows. A will contain n vertices
vj, one for each of the n jobs j = 1, . . . , n. B will contain nm nodes wik, where vertex wik represents
the kth-from-last position on machine i, for i = 1, . . . , m and k = 1, . . . , n. We include in E an edge
(vj, wik) between every node in A and every node in B. Using Equation 20.4 we define the weights
on the edges from A to B as follows: edge (vj, wik) is assigned weight kpij.

We now argue that a minimum-weight perfect matching in this graph corresponds to an optimal
schedule. First, note that for each valid schedule there is a perfect matching in G. Not every perfect
matching in G corresponds to a schedule, since a job might be assigned to the kth from last position
while less than k jobs are assigned to that machine; however, such a perfect matching is clearly
not of minimal weight—a better matching can be obtained by pushing the k′ < k jobs assigned to
that machine into the k′ from last slots. Therefore, a schedule of minimum total completion time
corresponds to a minimum-weight perfect matching in the bipartite graph.

THEOREM 20.13 [4,21] There is a polynomial-time algorithm for R‖∑ Cj.

In the special case of parallel identical machines, it remains true that the kth-from-last job to
run on a machine contributes exactly k times its processing time to the sum of completion times.
Since in this case the processing time of each job is the same on any machine, the algorithm is clear:
schedule the m largest jobs last on each machine, schedule the next m largest jobs next to last, etc.
The schedule constructed is exactly that constructed by the SPT algorithm.

COROLLARY 20.1 [5] SPT is an exact algorithm for P‖∑ Cj.

20.4.1.2 Matching Jobs to Machines: O|pmtn|Cmax

For our second example of the utility of matching, we give an algorithm for O|pmtn|Cmax due to
Gonzalez and Sahni [9]. This algorithm will not find just one matching, but rather a sequence of
matchings, each of which will correspond to a partial schedule, and then concatenate all of these
partial schedules together. Recall from our discussion of O‖Cmax in Section 20.2 that two lower
bounds on the makespan of a nonpreemptive schedule are the maximum machine load Πmax and
the maximum job size Pmax. Both of these remain lower bounds when preemption is allowed. In
the nonpreemptive setting, a simple greedy algorithm gives a schedule with makespan bounded by
Pmax + Πmax. We now show that when preemption is allowed, matching can be used to achieve a
makespan equal to max(Pmax, Πmax).

The intuition behind the algorithm is the following. Consider the schedule at any point in time.
At this time, each machine is processing at most one job. In other words, the schedule at each point
in time defines a matching between jobs and machines. We aim to find a matching that forms a part
of the optimal schedule, and process jobs according to it for some time. Our goal is that processing
the matched jobs on their matched machines for some amount of time t, and adjusting Pmax and
Πmax to reflect the decreased remaining processing requirements, should reduce max(Pmax, Πmax)
by t. It follows that if we repeat this process for a total amount of time equal to max(Pmax, Πmax), we
will reduce max(Pmax, Πmax) to 0, implying that there is no work remaining in the system.

What properties should our matching of jobs to machines have? Recall that our goal is to reduce
our lower bound. Call a job tight if its total processing cost is Pmax. Call a machine tight if its total
load is Πmax. Clearly, it is necessary that every tight job undergo processing in our matching, since
otherwise we will fail to subtract t from Pmax. Similarly, it is necessary that every tight machine
be in the matching in order to ensure that we reduce Πmax by t. Lastly, we can only execute the
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matching for t time if every job–machine pair in the matching actually requires t units of processing.
In other words, we are seeking a matching in which every tight machine and job is matched,
and each matching edge requires positive processing time. Such a matching is referred to as a
decrementing set. That it always exists is a nontrivial fact (about stochastic matrices) whose proof is
beyond the scope of this survey; we refer the reader to Lawler and Labetoulle’s presentation of this
algorithm [28].

To find a decrementing set, we construct a (bipartite) graph with a node representing each job
and machine, and include an edge between machine node i and job node j if job j requires a nonzero
amount of processing on machine i. In this graph we require a matching that matches each tight
machine or job node; this can easily be found with a variant of traditional matching algorithms. Note
that we must include the nontight nodes in the matching problem, since tight nodes can be matched
to them.

Once we have found our decrementing set via matching, we have machines execute the jobs
matched to them until one of the matched jobs completes its work on its machine, or until a new job
or machine becomes tight (this can happen because some jobs and machines are not being processed
in the matching). Whenever this happens, we find a new decrementing set. For simplicity, we assume
that Pmax = Πmax; this can easily be arranged by adding dummy operations, which can only make
our task harder. Since our decrementing set includes every tight job and machine, it follows that
executing for time t will reduce both Pmax and Πmax by t. It follows that after Pmax = Πmax time,
both quantities will be reduced to 0. Clearly this means that we are done in time equal to the lower
bound.

One might worry that the number of decrementing set calculations we must perform could be
nonpolynomially bounded, making our approximation algorithm too slow. But this turns out not to
happen. We only compute a new decrementing set when a job or machine finishes or when a new job
or machine becomes tight. Each job–processor pair can finish only once, meaning that this occurs
only nm times during our schedule. Also, each job or machine stays tight forever after it becomes
tight; thus, new tight jobs and machines only occur n + m times. Thus, constructing our schedule of
optimal length requires only mn + m + n matching computations.

THEOREM 20.14 [9] There is a polynomial-time algorithm for O|pmtn|Cmax, that finds an (optimal)
schedule of makespan max(Pmax, Πmax).

20.4.2 Linear Programming

We now discuss the application of linear programming to the design of scheduling algorithms.
A linear program is given by a vector of variables x = (x1, . . . , xn), a set of m linear constraints of the
form ai1x1 +ai2x2 +· · ·+ainxn ≤ bi, 1 ≤ i ≤ m, and a cost vector c = (c1, . . . , cn); the goal is to find
an x that satisfies these constraints and that minimizes cx = c1x1 + c2x2 + · · · + cnxn. Alternatively
but equivalently, some of the inequality constraints might be given as equalities, and/or we may have
no objective function and desire simply to find a feasible solution to the set of constraints. Many
optimization problems can be formulated as linear programs, and thus solved efficiently, since a
linear program can be solved in polynomial time [25].

In this section we consider R|pmtn|Cmax. To model this problem as a linear program, we use nm
variables xij, 1 ≤ i ≤ m, 1 ≤ j ≤ n. Variable xij denotes the fraction of job j that is processed on
machine i; for example, we would interpret a linear-programming solution with x1j = x2j = x3j = 1

3
as assigning 1

3 of job j to machine 1, 1
3 to machine 2 and 1

3 to machine 3.
We now consider what sorts of linear constraints on the xij are necessary to ensure that they

describe a valid solution to an instance of R|pmtn|Cmax. Clearly the fraction of a job assigned to any
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machine must be nonnegative, so we will create nm constraints

xij ≥ 0.

In any schedule, we must fully process each job. We capture this requirement with the n constraints:

m∑
i=1

xij = 1, 1 ≤ j ≤ n.

Note that, along with the previous constraints, these constraints imply that xij ≤ 1 ∀ i, j.
Our objective, of course, is to minimize the makespan D of the schedule. Recall that the amount of

processing that job j would require, if run entirely on machine i, is pij. Therefore, for a set of fractional
assignments xij, we can determine the amount of time machine i will work: it is just

∑
xijpij, which

must be at most D. We model this with the m constraints

n∑
j=1

pijxij ≤ D, for i = 1, . . . , m.

Finally, we must ensure that no job is processed for more than D time; we model this with the n
constraints

m∑
i=1

xijpij ≤ D, 1 ≤ j ≤ n.

To summarize, we formulate the problem as the following linear program:

min D (20.5)
m∑

i=1
xij = 1, for j = 1, . . . , n, (20.6)

n∑
j=1

pijxij ≤ D, for i = 1, . . . , m, (20.7)

n∑
i=1

pijxij ≤ D, for j = 1, . . . , n, (20.8)

xij ≥ 0, for i = 1, . . . , m, j = 1, . . . , n. (20.9)

It is clear that any feasible schedule for our problem yields an assignment of values to the xij
that satisfies the constraints of our above linear program. However, it is not completely clear that
solving the linear program yields a solution to the scheduling problem; this linear program does not
specify the ordering of the jobs on a specific machine, but simply assigns the jobs to machines while
constraining the maximum load on any machine. It thus fails to explicitly require that a job not be
processed simultaneously on more than one machine.

Interestingly enough, we can resolve this difficulty with an application of open shop scheduling.
We define an open shop problem by creating an operation oij for each positive variable xij, and
define the size of oij to be xijpij. We then find an optimal preemptive schedule for this instance, using
the matching-based algorithm discussed in Section 20.4 We know that both the maximum machine
load and maximum job size of this open shop instance are bounded above by D, and therefore the
makespan of the resulting open shop schedule is at most D. If we now reinterpret the operations
of each job in the open shop schedule as fragments of the original job in the unrelated machines
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instance, we see that we have given a preemptive schedule of length D in which no two fragments of
a job are scheduled simultaneously.

We thus have established the following.

THEOREM 20.15 [28] There is an exact algorithm for R|pmtn|Cmax.

We will see further applications of linear programming to the development of approximation
algorithms for NP-hard scheduling problems in Section 20.5.

20.5 Using Relaxations to Design Approximation
Algorithms

We now turn exclusively to the design of approximation algorithms for NP-hard scheduling prob-
lems. Recall that a ρ-approximation algorithm is one that is guaranteed to find a solution with value
within a multiplicative factor of ρ of the optimum. Many of the approximation algorithms in this
area are based on a relaxation of the NP-hard problem. A relaxation of a problem is a version of the
problem with some of the requirements or constraints removed (“relaxed”). For example, we might
consider 1|rj, pmtn|∑ Cj to be a relaxation of 1|rj|∑ Cj in which the “no preemption” constraint
has been relaxed. A second example of a relaxation might be a version of the problem in which we
relax the constraint that a machine processes at most one job at a time; a solution to this relaxation
may have several jobs scheduled at one time on the same machine.

A solution to the original problem is a solution to the relaxation, but a solution to the relaxation
is not necessarily a solution to the original problem. This is clearly illustrated by our nonpreemp-
tive/preemptive example—a nonpreemptive schedule is a legal solution to a preemptive problem,
although perhaps not an optimal one, but the converse is not true. It follows that in the case of a
minimization problem, the value of the optimal solution to the relaxation is a not-necessarily-tight
lower bound on the optimal solution to the original problem.

An idea that has proven quite useful is to define first a relaxation of the problem which can be
solved in polynomial time, and then to give an algorithm to convert the relaxation’s solution into a
valid solution to the original problem, with some degradation in the quality of solution. The key to
making this work well is to find a relaxation that preserves enough of the structure of the original
problem to make the optimal relaxed solution “similar” to the original optimum, so that the relaxed
solution does not degrade too much when converted to a valid solution.

In this section we discuss two sorts of relaxations of scheduling problems and their use in the
design of approximation algorithms, namely the preemptive version of a nonpreemptive problem
and a linear-programming relaxation of a problem.

There are generally two different ways to infer a valid schedule from the relaxed solution: one is to
infer an assignment of jobs to machines while the other is to infer a job ordering. We give examples
of both methods.

Before going any further, we introduce the notion of a relaxed decision procedure (RDP), which
we will use both in Section 20.5.1 and later in Section 20.6. A ρ-RDP for a minimization problem
accepts as input a target value T, and returns either no, asserting that no solution of value ≤ T exists,
or returns a solution of value at most ρT. A polynomial-time ρ-RDP can easily be converted into
a ρ-approximation algorithm for the problem via binary search for the optimum T; see [18,19] for
more details. This simple idea is quite useful, as it essentially lets us assume that we know the value
T of an optimal solution to a problem. (Note that this is a different use of the word relax than the
term “relaxation.”)
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20.5.1 Rounding a Fractional Assignment to Machines: R‖Cmax

In this section we give a 2-RDP for R‖Cmax. Recall the linear program that we used in giving an
algorithm for R|pmtn|Cmax. If, instead of the constraints xij ≥ 0, we could constrain the xij to
be 0 or 1, the solution would constitute a valid nonpreemptive schedule. Furthermore, note that
these integer constraints combined with the constraints 20.7 make the constraints 20.8 unnecessary
(if a job is assigned integrally to a machine, constraint 20.7 ensures that is a fast enough machine,
thus satisfying constraint 20.8 for that job). In other words, the following formulation has a feasible
solution if and only if there is a nonpreemptive schedule of makespan D.

m∑
i=1

xij = 1, for j = 1, . . . , n, (20.10)

n∑
j=1

pijxij ≤ D, for i = 1, . . . , m, (20.11)

xij ∈ {0, 1}, for i = 1, . . . , m, j = 1, . . . , n . (20.12)

This is an example of an integer linear program, in which the variables are constrained to be
integers. Unfortunately, in contrast to linear programming, finding a solution to an integer linear
program is NP-complete. However, this integer programming formulation will still be useful.
A very common method for obtaining a relaxation of an optimization problem is to formulate it
as an integer linear program, and then to relax the integrality constraints. One obtains a fractional
solution and then rounds the fractions to integers in a fashion that (hopefully) does not degrade the
solution too dramatically.

In our setting, we relax the constraints 20.12 to xij ≥ 0. We will also add an additional set of
constraints that will ensure that the fractional solutions to this linear program have enough structure
to be useful for approximation. Specifically, we disallow any part of a job j being processed on a
machine i on which it could not complete in D time in a nonpreemptive schedule. Specifically, we
include the following constraints:

xij = 0, if pij ≥ D. (20.13)

(In fact, instead of adding constraints, we can simply remove such variables from the linear program.)
As argued above, this constraint is actually implicit in the integer program given by the constraints
20.10 through 20.12, but was no longer guaranteed when we relaxed the integer constraints. Our
new constraints can be seen as a replacement for the constraints 20.8 that we did not need in the
integer formulation. Note also that these new constraints are only linear constraints when D is fixed.
This is why we use an RDP instead of taking the more obvious approach of writing a linear program
to minimize D.

To recap, constraints 20.10, 20.11, and 20.13 along with xij ≥ 0 constitute a linear-programming
relaxation of R‖Cmax. Our RDP attempts solve this relaxation, obtaining a solution x̄ij, 1 ≤ i ≤ m,
1 ≤ j ≤ n. If there is no feasible solution, our RDP can output no—nonpreemptive schedule has
makespan D or less. If the linear program is feasible, we will give a way to derive an integral
assignment of jobs to machines from the fractional solution. Our job is made much easier by the
fact, which we cite from the theory of linear programming, that we can find a so-called basic solution
of this linear program that has at most n + m positive variables. Since these n + m positive variables
must be distributed amongst n jobs, there are at most m jobs that are assigned in a fractional fashion
to more than one machine.

We may now state our rounding procedure. For each (machine, job) pair (i, j) such that x̄ij = 1,
we assign job j to machine i. We call the schedule of these jobs S1. For the remaining at most m jobs,
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we simply construct a matching of the jobs to machines such that each job is matched to a machine
it is already partially assigned to. We schedule each job on the machine to which it is matched, and
call the schedule of these jobs S2.

We defer momentarily the question of whether such a matching exists, and analyze the makespan
of the resulting schedule, which is at most the sum of the makespans of S1 and S2. Since the xij form
a feasible solution to the relaxed linear program, the makespan of S1 is at most D. Since S2 schedules
at most one job per machine, and assigns j to i only if xij > 0, meaning pij < D, the makespan of S2 is
at most D (this argument is the reason we had to add constraint 20.13 to our linear program). Thus
the overall schedule has length at most 2D.

The argument that a matching always exists is somewhat complex and can only be sketched here.
We create a graph G in which there is one node for each machine and one for each job, and an edge
between each machine node i and job node j if xij > 0. We are again helped by the theory of linear
programming, as the linear program we solved is a generalized assignment problem. As a result, for
any basic solution, the structure of G is a forest of trees and 1-trees, which are trees with one edge
added; for further details see [1]. We need not consider jobs that are already integrally assigned, so
for every pair (i, j) such that xij = 1, we remove from G the nodes representing machine i, job j and
their mutual edge (note that the constraints imply that this machine and job is not connected to any
other machine or job). In the forest that remains, the only leaves are machine nodes, since every
remaining job node represents a job that is fractionally assigned by the linear program and thus has
an edge to at least two machines.

It is now straightforward to find a matching in G. We first consider the 1-trees, and in particular
consider the unique cycle in each 1-tree. The nodes in these cycles alternate between machine nodes
and job nodes, with an equal number of each. We arbitrarily choose an orientation of the cycle
and assign each job to the machine that follows it in the oriented cycle. We then remove all of the
matched nodes from G. What remains is a forest of trees; furthermore, it is possible that for each of
these trees we have created at most one new leaf that is a job node. We then root each of the trees
in the forest, either at its leaf job node, or, if it does not have one, at an arbitrary vertex. Finally, we
assign each job node to one of its children machine nodes in the rooted tree. Each machine node has
at most one parent, and thus is assigned at most one job. We have thus successfully matched all job
nodes to machine nodes, as we required.

Thus, there exists a 2-RDP for R‖Cmax, and we have the following theorem.

THEOREM 20.16 [31] There is a 2-approximation algorithm for R‖Cmax.

20.5.2 Inferring an Ordering from a Preemptive Schedule for 1|rj|
∑

Cj

In this section and the next we discuss techniques for inferring an ordering of jobs from a relaxation.
In this section we consider the problem 1|rj|∑ Cj. Recall, as mentioned in Section 20.2.1, that this
problem is NP-hard. However, we can find a good relaxation by the simple expedient of allowing
preemption. Specifically, we use 1|rj, pmtn|∑ Cj as a relaxation of 1|rj|∑ Cj. We have seen that
1|rj, pmtn|∑ Cj can be solved without linear programming, simply by using the SRPT rule. We will
make use of this relaxation by extracting from it the order of completion of the jobs in the optimal
preemptive schedule, and create a nonpreemptive schedule with the same order of completion.

Our algorithm, which we call Convert-Preempt-Schedule, is as follows. We first obtain
an optimal preemptive schedule P for the instance in question. We then order the jobs in their
order of completion in P; assume by renumbering that CP

1 ≤ · · · ≤ CP
n . We schedule the jobs

nonpreemptively in the same order. If at some point the next job in the order has not been released,
we wait idly until its release date and then schedule it.
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THEOREM 20.17 [35] Convert-Preempt-Schedule is a 2-approximation algorithm for
1|rj|∑ Cj.

PROOF The nonpreemptive schedule N constructed by Convert-Preempt-Schedule
can be understood as follows. For each job j, consider the point of completion of the last piece of j
scheduled in P, insert pj extra units of time into the schedule at the completion point of j in P (delaying
by an additional pj time the part of the schedule after CP

j ) and then schedule j nonpreemptively in the
newly inserted block of length pj. Then, remove from the schedule all of the time originally allocated
to processing job j. Finally, cut out any idle time in the resulting schedule that can be removed
without changing the scheduled order of the jobs or violating a release date constraint. The result is
exactly the schedule computed by Convert-Preempt-Schedule.

Note that the completion of job j is only delayed by insertion of blocks for jobs that finish earlier
in P and hence

CN
j ≤ CP

j +
∑
k≤j

pk.

However,
∑

k≤j pk ≤ CP
j , since all of these jobs completed before j in P, and therefore

n∑
j=1

CN
j ≤ 2

n∑
j=1

CP
j .

The theorem now follows from the fact that the total completion time of the optimal preemptive
schedule is a lower bound on the total completion time of the optimal nonpreemptive schedule.

20.5.3 An Ordering from a Linear-Programming Relaxation
for 1|rj, prec|∑wjCj

In this section we generalize the techniques of Section 20.5.2, applying them not to a preemptive
schedule but instead to a linear-programming relaxation of 1|rj, prec|∑ wjCj.

20.5.3.1 The Relaxation

We begin by describing the linear-programming relaxation of our problem. Unlike our previous
relaxation, this one does not arise from relaxing the integrality constraints of an integer linear
program. Rather, we give several classes of inequalities that would be satisfied by feasible solutions
to 1|rj, prec|∑ wjCj. These constraints are necessary but not sufficient to describe a valid solution to
the problem.

The linear-programming formulation that we considered for R‖Cmax assigned jobs to machines
but captured no information about the ordering of jobs on a machine. For 1|rj, prec|∑ wjCj the
ordering of jobs on a machine is a critical element of a high-quality solution, so we seek a formulation
that can model this. We do this by making time explicit in the formulation: we will have n variables
Cj, one for each of the n jobs; Cj will represent the completion time of job j in a schedule.

Consider the following formulation in these Cj variables, solutions to which correspond to optimal
solutions of 1|rj, prec|∑ wjCj.

minimize
n∑

j=1

wjCj (20.14)
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subject to

Cj ≥ rj + pj, j = 1, . . . , n, (20.15)
Ck ≥ Cj + pk, for each pair j, k such that j ≺ k, (20.16)

Ck ≥ Cj + pk or Cj ≥ Ck + pj, for each pair j, k. (20.17)

Unfortunately, the last set of constraints are not linear constraints. Instead, we use a class of valid
inequalities, introduced by Wolsey [41] and Queyranne [37]. Recall that we denote the entire set of
jobs {1, . . . , n} as J , and, for any subset S ⊆ J , we define p(S) = ∑

j∈S pj and p2(S) = ∑
j∈S p2

j . We
claim that for any feasible one-machine schedule (independent of constraints and objective)

∑
j∈S

pjCj ≥ 1
2

(
p2(S) + p(S)2), for each S ⊆ J . (20.18)

We show that these inequalities are satisfied by the completion times of any valid schedule for one
machine and thus in particular by the completion times of a valid schedule for 1|rj, prec|∑ wjCj.

LEMMA 20.3 [37,41] Let C1, . . . , Cn be the completion times of jobs in any feasible schedule on
one machine. Then the Cj must satisfy the inequalities

∑
j∈S

pjCj ≥ 1
2

(
p(S)2 + p2(S)

)
for each S ⊆ J . (20.19)

PROOF We assume that the jobs are indexed so that C1 ≤ · · · ≤ Cn. Consider first the case
S = {1, . . . , n}. Clearly for any job j, Cj ≥ ∑j

k=1 pk. Multiplying by pj and summing over all j,
we obtain

n∑
j=1

pjCj ≥
n∑

j=1

pj

j∑
k=1

pk = 1
2

(
p2(S) + p(S)2) .

Thus Equation 20.19 holds for S = {1, . . . , n}. The general case follows from the fact that for any
other set of jobs S, the jobs in S are feasibly scheduled by the schedule of {1, . . . , n}—just ignore the
other jobs. So we may view S as our entire set of jobs and apply the previous argument.

In the special case of 1‖∑ wjCj the constraints 20.19 give an exact characterization of the problem
[37,41]; specifically, any set of Cj that satisfy these constraints must describe the completion times
of a feasible schedule, and thus these linear constraints effectively replace the disjunctive constraints
20.17. When we extend the formulation to include constraints 20.15 and 20.16, we no longer have
an exact formulation, but rather a linear-programming relaxation of 1|rj, prec|∑ wjCj.

We note that this formulation has an exponential number of constraints; however, it can be solved
in polynomial time by the use of the ellipsoid algorithm for linear programming [37,41]. We also
note that in the special case in which we just have release dates, a slightly strengthened version can
(remarkably) be solved optimally in O(n log n) time [8].

20.5.3.2 Constructing a Schedule from a Solution to the Relaxation

We now show that a solution to this relaxation can be converted efficiently to an approximately
optimal schedule. For simplicity, we ignore release dates and consider only 1|prec|∑ wjCj. Our
approximation algorithm, which we call Schedule-by-C̄j, is simple to state. We first solve the
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linear-programming relaxation given by Equations 20.14, 20.16 and 20.18 and call the solution
C̄1, . . . , C̄n; we renumber the jobs so that C̄1 ≤ C̄2 ≤ · · · ≤ C̄n. We then schedule the jobs in the
order 1, . . . , n. Since there are no release dates there is no idle time. Note that this ordering of the
jobs respects the precedence constraints, because if the C̄j satisfy Equation 20.14 then j ≺ k implies
that C̄j < C̄k.

To analyze Schedule-by-C̄j, we begin by understanding why it is not an optimal algorithm.
Unfortunately, C̄1 ≤ · · · ≤ C̄n being a feasible solution to Equation 20.18 does not guarantee that, in
the schedule in which job j is designated to complete at time C̄j (thus defining its start time), at most
one job is scheduled at any point in time. More formally, the intervals (C̄j − pj, C̄j], j = 1, . . . , n, are
not constrained to be disjoint. If C̄1 ≤ · · · ≤ C̄n actually corresponded to a valid schedule, then C̄j

would be no less than
∑j

k=1 pk for all j. We will see that, although the formulation does not guarantee
this property, it does yield a relaxation of it, which is sufficient for the purposes of approximation.

THEOREM 20.18 [17] Schedule-by-C̄j is a 2-approximation algorithm for 1|prec|∑ wjCj.

PROOF Since C̄j optimized a relaxation, we know that
∑

wjC̄j is a lower bound on the true
optimum. It therefore suffices to show that our algorithm gets within a factor of 2 of this lower bound.
So we let C̃1, . . . , C̃n denote the completion times in the schedule found by Schedule-by-C̄j, and
show that

∑
wjC̃j ≤ 2

∑
wjC̄j.

Since the jobs have been renumbered so that C̄1 ≤ · · · ≤ C̄n, taking S = {1, . . . , j} gives

C̃j = p(S).

We now show that C̄j ≥ 1
2 p(S). (Again, if the C̄j were feasible completion times in an actual schedule,

we would have C̄j ≥ p(S). This relaxed version of the property is the key to the approximation.)
We use inequality Equation 20.18 for S = {1, 2, . . . , j}.

j∑
k=1

pkC̄k ≥ 1
2

(
p2(S) + p(S)2) ≥ 1

2
p(S)2. (20.20)

Since C̄k ≤ C̄j, for each k = 1, . . . , j, we have

C̄jp(S) = C̄j

j∑
k=1

pk ≥
j∑

k=1

C̄kpk ≥ 1
2

p(S)2.

Dividing by p(S), we obtain that C̄j is at least 1
2 p(S). We therefore see that C̃j ≤ 2C̄j and the result

follows.

20.6 Polynomial Approximation Schemes Using Enumeration
and Rounding

For certain NP-hard scheduling problems there is a limit to our ability to approximate them in
polynomial time; for example, Lenstra, Shmoys, and Tardos proved that there is no ρ-approximation
algorithm, with ρ < 3/2, for R‖Cmax unless P = NP [31]. For certain problems, however, we can
approximate their optimal solutions arbitrarily closely in polynomial time. In this section we present
three polynomial time approximation schemes (PTAS); that is, polynomial-time algorithms that, for
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any constant ρ > 1, deliver a solution whose objective value is at most ρ times optimal. The running
time will depend on ρ—the smaller ρ is, the slower the algorithm will be.

We will present two approaches to the design of such algorithms. The first approach is based on
rounding processing times or weights to small integers so that we can apply pseudopolynomial-time
algorithms such as that for 1‖∑ wjUj. A second approach is based on identifying the “important”
jobs—those that have the greatest impact on the solution—and processing them separately. In one
version, illustrated for P‖Cmax, we round the large jobs so that there are only a constant number
of large job sizes, schedule them using dynamic programming, and then schedule the small jobs
arbitrarily. In a second version, illustrated for 1|rj|Lmax, we enumerate all possible schedules for the
large jobs, and then fill in the small jobs around them.

20.6.1 From Pseudopolynomial to PTAS: 1‖∑
wjUj

In Section 20.3, we gave an O(n
∑

wj) time algorithm for 1‖∑ wjUj. Since this gives an algorithm
that runs in polynomial time when the weights are polynomial in n, a natural idea is to try to reduce
any instance to such a special case. We will scale the weights so that the optimal solution is bounded
by a polynomial in n; this will allow us to apply our dynamic programming algorithm to weights of
polynomial size.

Assume for now that we know W∗, the value of
∑

wjUj in the optimal schedule. Multiply every
weight by n/(εW∗); now the optimal

∑
wjUj becomes n/ε. Clearly, a schedule with

∑
wjUj within a

multiplicative (1 +ε)-factor of optimum under these weights is also within a multiplicative (1 +ε)-
factor of optimum under the original weights. Thus, it suffices to find a schedule with

∑
wjUj at

most (1 + ε)n/ε = n/ε + n under the new weights.
To do so, increase the weight of every job to the next larger integer. This increases the weight of

each job by at most 1 and thus, for any schedule, increases
∑

wjUj by at most n. Under these new
weights,

∑
wjUj for the original optimal schedule is now at most n/ε + n, so the optimal schedule

under these integral weights has
∑

wjUj ≤ n/ε + n. Since all weights are integers, we can apply
the dynamic programming algorithm of Section 20.3 to find an optimal schedule for the rounded
instance. Since we only rounded up, the same schedule under the original weights can only have
a smaller

∑
wjUj. Thus, we find a schedule with weight at most n/ε + n in the (scaled) original

weights, i.e., a (1 + ε) times optimum schedule.
The running time of our dynamic program is proportional to n times the sum of the (new) weights.

This might be a problem, since the weights can be arbitrarily large. However, any job with new weight
exceeding n/ε + n must be scheduled before its deadline. We therefore identify all such jobs, and
modify our dynamic program: Twj becomes the minimum time needed to complete all these jobs
that must complete by their deadlines plus other jobs from 1, . . . , j of total weight w. The dynamic
programming argument goes through unchanged, but now we consider only jobs of weight O(n/ε).
It follows that the largest value of w that we consider is O(n2/ε), which means that the total running
time is O(n3/ε).

It remains to deal with our assumption that we know W∗. One approach is to use the RDP
scheme that performs a binary search on W∗. Of course, we do not expect to arrive at W∗ exactly,
but note that an estimate will suffice. If we test a value W′ with W∗/α ≤ W′ ≤ W∗, the analysis
above will go through with the running time increased by a factor of α. So we can wait for the RDP
binary search to bring us within (say) a constant factor of W∗ and then solve the problem.

Of course, if the weights w are extremely large, our binary search could go through many iterations
before finding a good value of W′. An elegant trick lets us avoid this problem. We will solve the
following problem: find a schedule that minimizes the weight of the maximum-weight late job. The
value of this schedule, W′, is clearly a lower bound on W∗, as all schedules that minimize

∑
wjUj

must have a late job of weight at least W′. Further, W∗ is at most nW′, since the schedule returned
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must have at most n late jobs each of which has weight at most W′. Hence our value W′ is within
a factor of n of optimal. Thus O(log n) binary search steps suffice to bring us within a constant
factor of W∗.

To compute W′, we formulate a 1||fmax problem. For each job j,

fj(Cj) =
{

wj if Cj > dj
0 if Cj ≤ dj.

This will compute the schedule that minimizes the weight of the maximum weight late job. By the
results in Section 20.2.1, we know we can compute this exactly in polynomial time.

THEOREM 20.19 There exists a O(n3(log n)/ε)-time (1+ε)-approximation algorithm for 1‖∑wjUj.

20.6.2 Rounding and Dynamic Programming for P‖Cmax

We now return to the problem of P‖Cmax. Recall that in Lemma 20.2 we gave a polynomial-time
algorithm for a special case in which there are a constant number of different job sizes. For the
general case, we will focus mainly on the big jobs. We will round and scale these jobs so that there
is at most a constant number of sizes of big jobs, and apply the dynamic programming algorithm
of Section 20.3 to these rounded jobs. We then finish up by scheduling the small jobs greedily. By
the definition of big and small, the overall contribution of the small jobs to the makespan will be
negligible.

We will give a (1 + ε)-RDP for this problem that can be transformed as before into a (1 + ε)-
approximation algorithm. We therefore assume that we have a target optimum schedule length T,
We also assume for the rest of this section that εT, ε2T, ε−1 and ε−2 are integers. The proofs can
easily be modified to handle the case of arbitrary rational numbers.

We first show how to handle the large jobs.

LEMMA 20.4 [18] Let I be an instance of P‖Cmax, let T be a target schedule length, and ε> 0.
Assume that all pj ≥ εT. Then, for this case, there is a (1 + ε)-RDP for P‖Cmax.

PROOF We assume T ≥ maxj pj, since otherwise we immediately know that the problem is
infeasible. Form instance I′ from I with processing times p′

j by rounding each pj down to an integer
multiple of ε2T. This creates an instance in which

1. 0 ≤ pj − p′
j ≤ ε2T

2. There are at most T
ε2T = 1

ε2 different job sizes

3. In any feasible schedule, each machine has at most T
εT = 1

ε
jobs

Thus, we can apply Lemma 20.2 to instance I′ and obtain an optimal solution to this scheduling
problem; let its makespan be D. If D > T, then we know that there is no schedule of length ≤ T
for I, since job sizes in I′ are no greater than those in I. In this case we can answer “no schedule of
length ≤ T exists.” If D ≤ T, then we will answer “there exists a schedule of length ≤ (1 + ε)T.” We
now show that this answer will be correct. We simply take our schedule for I′ and replace the rounded
jobs with the original jobs from I. By 1 and 3 in the above list, we add at most ε2T to the processing
time of each job, and since there are at most 1

ε
jobs per machine, we add at most εT to the processing

time per machine. Thus we can create a schedule with makespan at most T + εT = (1 + ε)T.
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We now give the complete algorithm. The idea will be to remove the “small” jobs, use Lemma 20.4
to schedule the remaining jobs, and then add the small jobs back greedily. Given input I0, target
schedule length T, and ρ = 1 + ε> 1, we execute the following algorithm.

Let R be the set of jobs with pj ≤ εT. Let I = I0 − R
Apply Lemma 20.4 to I, T, and ρ.
If this algorithm returns no,
(†) then output “no schedule of length ≤ T exists.”

else
for each job j in R

if there is a machine i with load ≤ T,
then add job j to machine i

(∗) else return “no schedule of length ≤ T exists”
return “yes, a schedule of length ≤ ρT exists”

THEOREM 20.20 [18] The algorithm above is a ρ-RDP for P‖Cmax.

PROOF If the algorithm outputs “yes, a schedule of length ≤ ρT exists,” then it has constructed
such a schedule, and is clearly correct. If the algorithm outputs “no schedule of length ≤ T exists”
online (†), then it is because no schedule of length T exists for instance I. But instance I is a subset
of the original jobs and so if no schedule exists for I, then no schedule exists for I0, and the output is
correct. If the algorithm outputs “no schedule of length ≤ T exists” online (∗), then at this point in
the algorithm, every machine must have more than T units of processing on it. Thus, we have that∑

j pj > mT, which means that no schedule of length ≤ T exists.

The running time is dominated by the dynamic programming in Lemma 20.2. It is polynomial
in n, but the exponent is a polynomial in 1/ε. While for ρ very close to 1, the running time is
prohibitively large, for larger, fixed values of ρ, a modified algorithm yields good schedules with
near-linear running times; see [18] for details.

20.6.3 Exhaustive Enumeration for 1|rj|Lmax

We now turn to the problem of minimizing the maximum lateness in the presence of release dates.
Recall from Section 20.2 that without release dates EDD is an exact algorithm for this problem. Once
we add release dates the problem becomes NP-hard. As we think about approximation algorithms,
we come upon an immediate obstacle, namely that the objective function can be 0 or even negative,
and hence a solution of value at most ρC∗

max is clearly impossible. In order to get around this, we
must guarantee that the value of the objective function is positive. One simple way to do so is to
decrease all the dj’s uniformly by some value δ. This decreases the objective value by exactly δ and
does not change the structure of the optimal solution. In particular, if we pick δ large enough so that
all the dj’s are negative, we are guaranteed that Lmax is positive.

Forcing dj to be negative is somewhat artificial and so we do not concentrate on this interpretation
(note that by taking δ arbitrarily large, we can make any algorithm into an arbitrarily good approx-
imation algorithm). We instead use an equivalent but natural delivery time formulation which, in
addition to modeling a number of applications, is a key subroutine in computational approaches to
shop scheduling problems [29]. In this formulation, each job, in addition to having a release date
rj and a processing time pj, has a delivery time qj. A delivery time is an amount of time that must
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elapse between the completion time of a job on a machine and when it is truly considered finished.
Our objective is now to minimize maxj{Cj +qj}. To see the connection to our original problem, note
that by setting qj = −dj (recall that we made all dj negative, so all qj are positive), the delivery-time
problem is equivalent to minimizing maximum lateness, and in fact we will overload Lj and define
it as Cj + qj.

20.6.3.1 Jackson’s Rule Is a 2-Approximation Algorithm

In the delivery-time model, EDD translates to Longest Delivery Time First. This is often referred to
as Jackson’s rule [23]. Let L∗

max be the optimum maximum lateness. The following two lower bounds
for this problem are the easily derived analogs of Equations 20.1 and 20.2:

L∗
max ≥

∑
j

pj, (20.21)

L∗
max ≥ rj + pj + qj for all j. (20.22)

LEMMA 20.5 Jackson’s Rule is a 2-approximation algorithm for the delivery time version
of 1|rj|Lmax.

PROOF Let j ′ be a job for which Lj ′ = Lmax. Since Jackson’s rule creates a schedule with no
unforced idle time, we know that there is no idle time between time rj ′ and Cj ′ . Let J′ be the set of
jobs that run between rj ′ and Cj ′ . Then

Lj ′ = Cj ′ + qj ′ (20.23)

= rj ′ +
∑
j∈J′

pj + qj ′ (20.24)

≤ (
rj ′ + qj ′

) +
∑

j

pj (20.25)

= 2L∗
max, (20.26)

where the last line follows by applying the two lower bounds (20.21) and (20.22).

20.6.3.2 A PTAS Using Enumeration

The presentation of this section follows that of Hall [16]. The original approximation scheme for
this problem is due to Hall and Shmoys [15].

To obtain an algorithm with an improved performance guarantee, we need to look more carefully
at when Jackson’s rule can go wrong. Let sj be the starting time of job j, let rmin(S) = minj∈S rj, let
qmin(S) = minj∈S qj, and recall that p(S) = ∑

j∈S pj. Then clearly, for any S ⊆ J

L∗
max ≥ rmin(S) + p(S) + qmin(S). (20.27)

Now consider a job j ′ for which Lj ′ = Lmax. Let ti be the latest time before sj ′ at which the machine
is idle, and let a be the job that runs immediately after this idle time. Let S be the set of jobs that run
between sa and Cj ′ . We call S a critical section. Because of the idle time immediately before sa, we
know that for all j ∈ S, rj ≥ ra. In other words we have a set of jobs, all of which were released after
time ra, and which end with the job that achieves Lmax. Now if for all j ∈ S qj ≥ qj ′ , then we claim
that Łj ′ = L∗

max. This follows from the fact that

Lmax = Lj ′ = ra + p(S) + qj ′ = rmin(S) + p(S) + qmin(S),
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and that the right-hand side, by Equation 17.27, is also a lower bound on L∗
max. So, as long as, in a

critical section, the job with the shortest delivery time is last, we have an optimal schedule. Thus, if
Jackson’s rule is not optimal, there must be a job b in the critical section which has qb < qj ′ . We
call the latest-scheduled job in the critical section with qb < qj ′ an interference job. The following
lemma shows the relationship between the interference job and its effect on Lmax.

LEMMA 20.6 Let b be an interference job in a schedule created by Jackson’s rule. Then Lmax <

L∗
max + pb.

Thus, if interference jobs have small processing times, Jackson’s rule does very well. To make sure
that this is the case, we will handle the large jobs separately, to ensure that they are not interference
jobs, and then use Jackson’s rule on the remaining jobs.

Let us assume for now that we know the optimal schedule for instance I. Let s∗j be the starting
time of job j in the optimal schedule, and let δ > 0 be a parameter to be chosen later. Partition the
jobs into small jobs S = {j : pj < δ} and big jobs B = {j : pj ≥ δ}. We create instance Ĩ as follows:
if j ∈ S, then r̃j = rj, p̃j = pj, and q̃j = qj, otherwise, r̃j = s∗j , p̃j = pj, and q̃j = L∗

max(I) − pj − s∗j .
Instance Ĩ is no easier than instance I, since we have not decreased any release dates or delivery times.
Yet, the optimal schedule for I remains an optimal schedule for Ĩ, by construction. In Ĩ we have given
the large jobs a release date equal to their optimal starting time, and a delivery time that is equal to
the schedule length minus their completion time, and hence have constrained the large jobs to run
exactly when they would run in the optimal schedule for instance I. Thus, in an optimal schedule
for Ĩ, the big jobs run at exactly time r̃j and have Lj = r̃j + p̃j + q̃j = L∗

max.
Now we claim that if we run Jackson’s rule on Ĩ, the big jobs will not be interference jobs.

LEMMA 20.7 If we run Jackson’s rule on Ĩ, no job b ∈ B will be an interference job.

PROOF Assume that some job b ∈ B is an interference job. As above, define the critical section,
and jobs a and j ′. Since b is an interference job, we know that q̃j ′ > q̃b and r̃j ′ > r̃b. We also know
that r̃b = s∗b , and so j ′ must run after b in the optimal schedule for I. Applying Equation 20.27 to the
set consisting of jobs b and j ′, we get that

L∗
max ≥ r̃b + p̃b + p̃j ′ + q̃j ′ ≥ rb + pb + pj ′ + q̃b = L∗

max + pj ′ ,

which is a contradiction.

So if we run Jackson’s rule on Ĩ, we get a schedule whose length is at most L∗
max(I) + δ. Choosing

δ = ε
∑

j pj, and recalling that L∗
max ≥ ∑

pj, we get a schedule of length at most (1 + ε)L∗
max.

Further, there can be at most
∑

j pj/(ε
∑

j pj) = 1/ε big jobs. The only problem is that we don’t
know Ĩ.

We now argue that it is not necessary to know Ĩ. First, observe that the set of big jobs is purely
a function of the input, and ε. Now, if we knew the starting times of the big jobs in the optimal
schedule for I, we would know Ĩ, and could run Jackson’s rule on the job in S, inserting the big jobs
at the appropriate time. This implies a numbering of the big jobs, i.e., each big job ji is, for some
k, the kth job in the schedule for Ĩ. Thus, we really only need to know k, and not the starting time
for job ji. Thus we just enumerate all possible numberings for the big jobs. There are n1/ε such
numberings. Given a numbering, we can run Jackson’s rule on the small jobs, and insert the big jobs
at the appropriate places in O(n log n) time, and thus we get an algorithm that in O(n1+1/ε log n)

time finds a schedule with Lmax ≤ (1 + ε)L∗
max.
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20.7 Research Issues and Summary

In this chapter we have surveyed some of the basic techniques for deterministic scheduling. Schedul-
ing is an old and therefore mature field, but important opportunities for research contributions
remain. In addition to some of the outstanding open questions (see the survey by Lawler et al. [29])
it is our feeling that the most meaningful research contributions will be either new and innova-
tive techniques for attacking old problems or new problem definitions that model more realistic
applications.

There are other schools of approach to the design of algorithms for scheduling, such as those relying
on techniques from artificial intelligence or from computational optimization. It will be quite valuable
to forge stronger connections between these different approaches to solving scheduling problems.

20.8 Further Information

We conclude by reminding the reader what this chapter is not. In no way is this chapter a comprehen-
sive survey of even the most basic and classical results in scheduling theory, and it is certainly not an
up-to-date survey on the field. It also essentially entirely ignores “nontraditional” models, and does
not touch on stochastic scheduling or on any of the other approaches to scheduling and resource
allocation. The reader interested in a comprehensive survey of the field should consult the textbook
by Pinedo [34] and the survey by Lawler et al. [29]. These sources provide pointers to a number
of other references. In addition, we also recommend an annotated bibliography by Hoogeveen et
al. that contains information on recent results in scheduling theory [20], the surveys by Queyranne
and Schulz on polyhedral formulations [36], by Hall on approximation algorithms [16], and by
Sgall on online scheduling [38]. Research on deterministic scheduling theory is published in many
journals; for example see Mathematics of Operations Research, Operations Research, SIAM Journal
on Computing, and Journal of the ACM.

Defining Terms

n: Number of jobs.
m: Number of machines.
pj: Processing time of job j.
CS

j : Completion time of job j in schedule S.
wj: Weight of job j.
rj: Release date of job j; job j is unavailable for processing before time rj.
dj: Due date of job j.
Lj: = Cj − dj the lateness of job j.
Uj: 1 is job j is scheduled by dj and 0 otherwise.
α|β|γ: Denotes scheduling problem with machine environment α, optimality criterion γ, and

side characteristics and constraints denoted by β.

Machine environments:

1: One machine.

P: Parallel identical machines.

Q: Parallel machines of different speeds.

R: Parallel unrelated machines.
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O: Open shop.

F: Flow shop.

J: Job shop.

Possible characteristics and constraints:

pmtn: Job preemption allowed.

rj: Jobs have nontrivial release dates.

prec: Jobs are precedence-constrained.

Optimality criteria:∑
Cj: Average (sum) of completion times.∑

wjCj: Weighted average (sum) of completion times.

Cmax: Makespan (schedule length).

Lmax: Maximum lateness over all jobs.∑
Uj: Number of on-time jobs.∑

wjUj: Weighted number of on-time jobs.
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21.1 Introduction

Game theory was founded by von Neumann and Morgenstern and can be defined as the study of
mathematical models of interactive decision making. Game theory provides general mathematical
techniques for analyzing situations in which two or more individuals, called players, make decisions
that will influence one another’s welfare. The dominant aspect of game theory is the belief that each
player is rational, in the sense that he/she makes decisions consistently in pursuit of his/her own
objectives, and this rationality is common knowledge.

This chapter is an introduction to the basic concepts and the advances of a new field, that of
computational (or algorithmic) game theory. This field is a fertile interaction between the very deep
and older field of game theory on the one hand, and of the younger field of algorithms and complexity
on the other.

In the seminal paper of (Papadimitriou, 2001), the interaction between game theory and theoretical
computer science was considered as a potential “object of the next great modeling adventure” of the
field of computer scientists. In that work, it was pointed out that a fusion of algorithmic ideas and
game theoretic concepts might yield to the most appropriate mathematical tools and insights for
understanding the socio-economic complexity of the Internet. Furthermore, some game theoretic

21-1
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concepts (e.g., Nash equilibria) are related to fundamental computational issues, such as finding
solutions that are guaranteed to exist via nonconstructive methods, or approximating them. On the
other hand, game theoretic concepts have been used by theoretical computer scientists as a means of
studying the computational complexity of algorithms: proving lower bounds can be seen as a game
between the algorithm designer and an adversary.

In this chapter we deal with some basic topics of computational game theory. Namely, we study
the computational complexity of Nash equilibria (which constitute the most important solution
concept in game theory) and review the related algorithms proposed in the literature. Then, given
the apparent difficulty of computing exact Nash equilibria, we study the efficient computation of
approximate notions of Nash equilibria. Next we deal with several computational issues related to
the class of congestion games, which model the selfish behavior of individuals when competing on
the usage of a common set of resources. Finally, we study the price of anarchy (in the context of
congestion games), which is defined as a measure of the performance degradation due to the lack of
coordination among the involved players.

As this new field of computational game theory evolves, important research results have already
appeared in several directions that are not touched here, because of lack of space and because of
our selection of what are the most basic topics. For example, mechanism design, cooperative games,
Bayesian games and their computational issues are not considered in this chapter. We hope that the
interested reader will be motivated by this chapter to also look into those new research lines.

21.2 Underlying Principles

21.2.1 Strategic Form Games

In the language of game theory, a game refers to any situation in which two or more decision makers
interact. In this chapter we focus on finite games in strategic form:

DEFINITION 21.1 A finite strategic form game is any Γ of the form

Γ = 〈N, (Ci)i∈N , (ui)i∈N〉, (21.1)

where
N is a finite nonempty set, and, for each i ∈ N
Ci is a finite nonempty set
ui is a function from C = ×j∈NCj into the set of real numbers R

In the aforementioned definition, N is the set of players in the game Γ . For each player i ∈ N, Ci is
the set of actions available to player i. When the strategic form game Γ is played, each player i must
choose one of the actions in the set Ci. For each combination of actions c = (cj)j∈N ∈ C (one for
each player), the number ui(c) represents the payoff that player i would get in this game if c were
the combination of actions implemented by the players. When we study a strategic form game, we
assume that all the players choose their actions simultaneously.

Given any strategic form game Γ = 〈N, (Ci)i∈N , (ui)i∈N〉, a (mixed) strategy σi for any player i ∈ N
is a probability distribution over his/her set of actions Ci. Therefore, for each ci ∈ Ci, the number
σi(ci) represents the probability that player i would choose ci. A pure strategy for player i is a strategy
that poses probability 1 to a specific action in Ci and zero to the rest; we slightly abuse notation and
denote ci the pure strategy that poses probability 1 to action ci ∈ Ci. Let Δ(Ci) denote the set of all
possible strategies of player i, that is the set of all possible distributions on Ci.

The support of strategy σi ∈ Δ(σi) is the subset of actions of player i that are assigned strictly
positive probability:
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support(σi) = {ci ∈ Ci | σi(ci) > 0}. (21.2)

A strategy profile σ = (σi)i∈N is a combination of strategies, one for each player, so the set of all
strategy profiles is ×j∈NΔ(Cj).

For any strategy profile σ, let ui(σ) denote the expected payoff that player i would get when the
players independently choose their actions according to σ. That is,

ui(σ) =
∑
c∈C

⎛
⎝∏

j∈N

σj(cj)

⎞
⎠ ui(c) ∀i ∈ N. (21.3)

For any strategy profile σ, any player i ∈ N, and any τi ∈ Δ(Ci), we denote (τi, σ−i) the strategy
profile in which the ith component is τi while all the other components are as in σ. Thus

ui(τi, σ−i) =
∑
c∈C

⎛
⎝ ∏

j∈N\{i}
σj(cj)

⎞
⎠ τi(ci)ui(c) ∀i ∈ N. (21.4)

A game Γ = 〈N, (Ci)i∈N , (ui)i∈N〉 is symmetric if all the players share the same action set, and the
payoffs for playing a particular strategy depend only on the other strategies employed, not on who
is playing them. Formally:

DEFINITION 21.2 A finite game in strategic form Γ = 〈N, (Ci)i∈N , (ui)i∈N〉 is symmetric if
Ci = Cj = Ĉ for all i, j ∈ N, and ui(ci, c−i) = uj(cj, c−j) for ci = cj ∈ Ĉ and c−i = c−j ∈ Ĉ|N|−1, for
all i, j ∈ N.

21.2.2 Nash Equilibria

The most important solution concept in a strategic game is the Nash equilibrium (Nash, 1951).
A Nash equilibrium is a strategy profile σ̂ that corresponds to a steady state, in the sense that no
player has a reason to change his/her strategy if everyone else adheres to σ̂.

DEFINITION 21.3 Given a strategic form game Γ = 〈N, (Ci)i∈N , (ui)i∈N〉, a strategy profile σ̂ is a
Nash equilibrium of Γ if

ui(σ̂) ≥ ui(σi, σ̂−i) ∀i ∈ N, ∀σi ∈ Δ(Ci), (21.5)

or equivalently

ui(σ̂) ≥ ui(ci, σ̂−i) ∀i ∈ N, ∀ci ∈ Ci, (21.6)

or equivalently

σ̂i(ci) > 0 =⇒ ci ∈ arg maxdi∈Ci
ui(di, σ̂−i) ∀i ∈ N, ∀ci ∈ Ci. (21.7)

Thus, in a Nash equilibrium σ̂, σ̂i is a best reply to σ̂−i for all i ∈ N, in the sense that it maximizes
the expected payoff received by player i given the strategies σ̂−i chosen by the rest of the players.

We can now state the general existence theorem of (Nash, 1951):

THEOREM 21.1 Given any finite game in strategic form Γ = 〈N, (Ci)i∈N , (ui)i∈N〉, there exists at
least one Nash equilibrium σ̂ ∈ ×i∈NΔ(Ci).

A Nash equilibrium is pure if all players’ strategies are pure.
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21.2.3 Bimatrix Games

Bimatrix games are two-player games such that the payoff functions can be described by two real
matrices R and C. In particular, an n × m bimatrix game Γ = 〈R, C〉 is a two-player strategic game,
where R and C are n × m matrices. The n rows of R and C correspond to the actions of player 1 (the
row player) and the m columns of R and C correspond to the actions of player 2 (the column player).
Denote [n] the set of actions available to the row player, that is, [n] = {1, 2, . . . , n}. Similarly, let
[m] = {1, 2, . . . , m} be the action set of the column player. For any matrix A, denote aij the element
in the ith row and jth column of A. Then the payoff that the players receive in the pure strategy
profile (i, j) ∈ [n] × [m] are rij for the row player and cij for the column player.

A strategy x = (x1 . . . xn)
T for the row player is a probability distribution on rows, written as an

n × 1 vector of probabilities. We denote P
n the set of all probability vectors in R

n, that is,

P
n =

{
x ∈ R

n |
n∑

i=1
xi = 1 and xi ≥ 0 ∀i ∈ [n]

}
. (21.8)

Similarly, a strategy for the column player is any y ∈ P
m. The expected payoff that the players receive

in the strategy profile (x, y) are xTRy for the row player and xTCy for the column player.
In the following, we denote by ei the probability vector in which the ith component is 1 and all

other components are 0. The size of ei will be clear from the context.
Using the aforementioned notation, we restate the definition of a Nash equilibrium for the case

of a bimatrix game:

DEFINITION 21.4 A strategy profile (x, y) is a Nash equilibrium for the n × m bimatrix game
Γ = 〈R, C〉 if

1. For all i ∈ [n], eT
i Ry ≤ xTRy and

2. For all j ∈ [m], xTCej ≤ xTCy.

While in a Nash equilibrium no player can increase his/her payoff by unilaterally changing his/her
strategy, in anε-Nash equilibrium no player can increase his/her payoff by more thanεby unilaterally
changing his/her strategy:

DEFINITION 21.5 For any ε≥ 0 a strategy profile (x, y) is an ε-Nash equilibrium for the n × m
bimatrix game Γ = 〈R, C〉 if

1. For all i ∈ [n], eT
i Ry ≤ xTRy + ε and

2. For all j ∈ [m], xTCej ≤ xTCy + ε.

A stronger notion of approximate Nash equilibrium is the ε-well supported Nash equilibrium (or
well-supported ε-approximate Nash equilibrium). This is an ε-Nash equilibrium with the additional
property that each player plays only approximately best-response pure strategies with nonzero
probability:

DEFINITION 21.6 (ε-well-supported Nash equilibrium) For any ε≥ 0 a strategy profile (x, y) is
an ε-well-supported Nash equilibrium for the n × m bimatrix game Γ = 〈R, C〉 if

1. For all i ∈ [n],
xi > 0 =⇒ eT

i Ry ≥ eT
k Ry − ε ∀k ∈ [n]



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C021 Finals Page 5 2009-9-25

Computational Game Theory: An Introduction 21-5

2. For j ∈ [m],
yj > 0 =⇒ xTCej ≥ xTCek − ε ∀k ∈ [m].

Note that both notions of approximate equilibria are defined with respect to an additive error
term ε. Although (exact) Nash equilibria are known not to be affected by any positive scaling of the
payoff matrices, it is important to mention that approximate notions of Nash equilibria are indeed
affected. Therefore, the commonly used assumption in the literature when referring to approximate
Nash equilibria is that the bimatrix game is positively normalized, that is, both matrices entries lie
in [0, 1], and this assumption is adopted here. This is mainly done for the sake of comparison of
the results on approximate equilibria. Therefore, when referring to ε-Nash equilibria and ε-well-
supported Nash equilibria, ε lies in [0, 1] and we seek for some ε as close to 0 as possible.

21.3 Computational Complexity of Nash Equilibria

21.3.1 The Complexity Class PPAD

The complexity class PPAD (standing for Polynomial Parity Argument in a Directed graph), intro-
duced in (Papadimitriou, 1994), is described in terms of an algorithm, which implicitly defines a
finite, though exponentially large in the size of the input, directed graph consisting of lines and cycles
and having a standard source node. We are asking for any node, other than the standard source, with
indegree + outdegree = 1. The existence of such a node is established via the graph-theoretic parity
argument in a directed graph, which states that a directed graph G, each node of which has indegree
at most 1 and outdegree at most 1, is a disjoint union of paths and cycles. Specifically, the number of
endpoints (i.e., sources and sinks) must be even. Thus, given one endpoint, there must be another.
A problem in PPAD is essentially a search problem for which the solution sought is guaranteed to
exist by an inefficiently constructive proof.
PPAD is defined by its complete problem ANOTHER END OF DIRECTED LINES (or AEL in short)

(Papadimitriou, 1994): The input instance of the problem implicitly defines a directed graph G of
an exponential number of vertices (in the size of the input), each with at most one incoming edge
and at most one outgoing edge. A starting vertex 0 with indegree 0 and outdegree 1 is given, and the
output is a sink node, or a source other than 0. However, the graph is not directly given as the input,
since then the problem would be solvable in polynomial time. Instead, the graph is generated by a
given boolean circuit of polynomial size (e.g., log |G|).

Formally, AEL is defined as follows. The input instance is a pair (C, 0n) where C is a boolean circuit
with n input bits. For each x ∈ {0, 1}n, let C(x) denote the output of C when the input is x. A directed
graph G = (V , E) with V = {0, 1}n can be generated by C as follows:

1. For each vertex v ∈ V , C(v) is an ordered pair (u, w). Each of u and w is either a vertex
in V or nil.

2. Edge (u, v)∈ E if and only if v is the second component of C(u) and u is the first
component of C(v).

C must satisfy C(0n) = (nil, u 	= nil) and the first component of C(u) is 0n. These conditions on C
imply that 0n is a source of G, and we need to find either a source or a sink in G other than 0n.

A search problem is in PPAD if it can be reduced in polynomial time to AEL. Moreover, it is
PPAD-complete if there is a polynomial time reduction from AEL to it.

21.3.2 Complexity of Nash Equilibrium

Despite the certain existence of Nash equilibria in finite games, the computational complexity of
finding a Nash equilibrium used to be a wide open problem for several years. Call r-NASH the problem
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of computing a Nash equilibrium in a game with r players. (Daskalakis et al., 2006a) showed that
r-NASH is PPAD-complete for all r ≥ 4. The proof used a reduction from a new three-dimensional
discrete fixed point problem named three-dimensional Brouwer (that was proved to be PPAD-
complete) to a particular type of game. Two concurrent and independent works, (Chen and Deng,
2005) and (Daskalakis and Papadimitriou, 2005), showed that three-Nash is PPAD-complete as
well; the former used a direct reduction from 4-Nash while the latter used a variant of the proof in
(Daskalakis et al., 2006a).

Finally, in (Chen and Deng, 2006) it was shown that two-Nash is PPAD-complete via a reduction
from two-dimensional Brouwer, which is defined as follows:

two-dimensional Brouwer: The input is a pair (C, 0n) where C is a circuit with 3n input bits and
6 output bits Δ+

1 , Δ−
1 , Δ+

2 , Δ−
2 , Δ+

3 , Δ−
3 . It specifies a function φ of a very special form. Let

An = {r ∈ Z
3 | 0 ≤ ri ≤ 2n − 1, i = 1, 2, 3} (21.9)

and

Bn = {r ∈ An | ∃i : ri = 0 or ri = 2n − 1}. (21.10)

For each r ∈ An, we define a cubelet in [0, 1]3 as

{q ∈ R
3 | ri2−n ≤ qi ≤ (ri + 1)2−n, i = 1, 2, 3} (21.11)

and let cr denote its center point. Function φ is defined on the set of 23n centers. For every center
cr (where r ∈ An), φ(cr) ∈ {e1, e2, e3, e4} ⊂ Z

3, and φ(cr) is specified by the output bits of C(r) as
follows:

• If Δ+
1 = 1 and the other five bits are 0, then φ(cr) = e1 = (1, 0, 0)

• If Δ+
2 = 1 and the other five bits are 0, then φ(cr) = e2 = (0, 1, 0)

• If Δ+
3 = 1 and the other five bits are 0, then φ(cr) = e3 = (0, 0, 1)

• If Δ−
1 = Δ−

2 = Δ−
3 = 1 and the other three bits are 0, then φ(cr) = e4 = (−1, −1, −1).

For all r ∈ An, the six output bits of C(r) are guaranteed to fall into one of the four cases aforemen-
tioned. C also satisfies the following boundary condition: For each r ∈ Bn, if there exists 1 ≤ i ≤ 3
such that ri = 0, letting � be the largest index such that r� = 0, then φ(cr) = e�; otherwise,
φ(cr) = e4. A vertex of the cubelet is called panchromatic if, among the eight cubelets adjacent to it,
there are four that have all four vectors e1, e2, e3, and e4. The output of three-dimensional Brouwer
is a panchromatic vertex of φ.

Now let U = (C, 0n) be an input instance of 3-dimensional Brouwer and let m be the smallest
integer such that K = 2m > (|C| + n)2. (Chen and Deng, 2006) show how to construct a two-player
game GU in which both players have 2K strategies and prove that every ε-Nash equilibrium (x, y) of
GU must satisfy a set of constraints. These constraints imply that, given any ε-Nash equilibrium of
game GU where ε = 2−(m+4n), a panchromatic vertex of function φ can be computed in polynomial
time. This implies that 3-dimensional Brouwer reduces to 2-Nash.

21.4 Algorithms for Computing Nash Equilibria

21.4.1 n-Person Games

We will now describe a general procedure for finding Nash equilibria of any finite strategic form
game Γ = 〈N, (Ci)i∈N , (ui)i∈N〉. Although there are infinitely many strategy profiles, there is only
a finite number of subsets of C that can be supports of Nash equilibria, so we can find all Nash
equilibria of Γ by exhaustively searching over all possible supports.
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For each player i ∈ N, let Di be some nonempty subset of Ci, representing the set of actions of
i that are assigned positive probability. If there exists a Nash equilibrium σ with support ×i∈NDi,
then there must exist numbers ωi ∈ R for all i ∈ N such that the following equations are satisfied:

∑
c−i∈C−i

⎛
⎝ ∏

j∈N\{i}
σj(cj)

⎞
⎠ ui(di, c−i) = ωi ∀i ∈ N, ∀di ∈ Di (21.12)

σi(ei) = 0 ∀i ∈ N, ∀ei ∈ Ci\Di (21.13)∑
ci∈Di

σi(ci) = 1 ∀i ∈ N. (21.14)

Condition 21.12 asserts that each player gets the same payoff ωi if he/she chooses any of his/her
actions that are assigned positive probability. Conditions 21.13 and 21.14 follow from the assumption
that σ is a strategy profile with support ×i∈NDi.

These three conditions give us
∑

i∈N(|Ci| + 1) equations in the same number of unknowns
(namely, the payoffs ωi and the probabilities σi(ci) for each i ∈ N, ci ∈ Ci). For games with more
than two players, Equation 21.12 becomes nonlinear in σ; however, we can still solve the system of
Equations 21.12 through 21.14.

Note however that the solutions of Equations 21.12 through 21.14 do not necessarily correspond
to Nash equilibria of Γ since there are three difficulties that may arise. First, no solution may exist.
Second, a solution might not correspond to a strategy profile σ if σi(di)< 0 for some i ∈ N, di ∈ Di.
So we must require

σi(di) ≥ 0 ∀i ∈ N, ∀di ∈ Di. (21.15)

Third, a solution may fail to be an equilibrium if there exists a strategy ei ∈ Ci\Di for some player
i ∈ N that would give player i a better payoff against σ−i. So we must require

ωi ≥ ui(ei, σ−i) ∀i ∈ N, ∀ei ∈ Ci\Di. (21.16)

Any solution ((σi)i∈N , (ωi)i∈N) to Equations 21.12 through 21.14 that also satisfies Equations 21.15
and 21.16 is a Nash equilibrium of Γ . Furthermore, if there is no solution that satisfies Equations 21.12
through 21.16 then there is no Nash equilibrium with support ×i∈NDi. Nash’s existence theorem
guarantees that, if we exhaustively search over all possible ×i∈N |Ci| supports, we will find at least
one support ×i∈NDi for which Equations 21.12 through 21.16 are satisfied.

21.4.2 Two Person Games

Consider an n × m bimatrix game Γ = 〈R, C〉. Let N = [n] and M = [m] denote the action set
of the row and column player respectively. Given a fixed strategy y ∈ P

m for the column player, a
best-response of the row player to y is a probability vector x ∈ P

n that maximizes the expression
xTRy. Therefore, x is a solution to the linear program

maximize xTRy

subject to
∑
i∈N

xi = 1

xi ≥ 0 ∀i ∈ N. (21.17)

The dual of the linear program (Equation 21.17) is

minimize u
subject to u ≥ (Ry)i ∀i ∈ N. (21.18)
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By the strong duality theorem of linear programming, Equations 21.17 and 21.18 have the same
optimal value. Let

E = [1 1 . . . 1] ∈ R
1×N (21.19)

e = 1. (21.20)

Then, a feasible solution x is optimal if and only if there is a dual solution u fulfilling u ≥ (Ry)i for
all i ∈ N and xTRy = u, that is xTRy = xTETu, or equivalently

xT(ETu − Ry) = 0. (21.21)

Since x and ETu − Ry are nonnegative, Equation 21.21 states that the have to be complementary in
the sense that they cannot both have positive components in the same position. Therefore, for each
positive component of x, the respective component of ETu − Ry is zero and u is the maximum of
the components in Ry. Thus, any pure strategy i ∈ N of the row player is a best response to y if and
only if the ith component of ETu − Ry is zero.

Similarly, given a fixed strategy x ∈ P
n for the row player, a best-response of the column player

to x is a probability vector y ∈ P
m that maximizes the expression xTCy. Therefore, y is a solution to

the Linear Program

maximize xTCy

subject to
∑
j∈M

yj = 1

yj ≥ 0 ∀j ∈ M. (21.22)

The dual of the linear program (Equation 21.22) is

minimize v
subject to v ≥ (CTx)j ∀j ∈ M. (21.23)

Now let

F = [1 1 . . . 1] ∈ R
1×M (21.24)

f = 1. (21.25)

Here, a primal-dual pair (y, v) of feasible solutions is optimal if and only if

yT(FTv − CTx) = 0. (21.26)

The earlier conditions for both players yield:

THEOREM 21.2 The bimatrix game Γ = 〈R, C〉 has the Nash equilibrium (x, y) if and only if for
suitable u, v ∈ R

Ex = e (21.27)
Fy = f (21.28)

(ETu − Ry)i ≥ 0 ∀i ∈ N (21.29)

(FTv − CTx)j ≥ 0 ∀j ∈ M (21.30)
xi ≥ 0 ∀i ∈ N (21.31)
yj ≥ 0 ∀j ∈ M (21.32)

and Equations 21.21 and 21.26 hold.
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The conditions in the aforementioned theorem define a special case of a linear complementarity
problem (LCP) (von Stengel, 2002). The most important method for finding a solution of the LCP
defined by the theorem is the Lemke–Howson algorithm, which we will describe later in this section.

21.4.2.1 Zero-Sum Games

Consider the case where Γ = 〈R, C〉 is a zero-sum game, that is C = −R. If the row player chooses
strategy x, he/she can be sure of winning only miny xTRy. Thus, the optimal choice for the row
player is given by maxx miny xTRy. Similarly, the optimal choice for the column player is given by
maxy minx xTCy = miny maxx xTRy.

Then, the problem of computing the column player’s optimal strategy can be expressed as

minimize u
subject to u − (Ry)i ≥ 0 ∀i ∈ N∑

j∈M

yj = 1 (21.33)

yj ≥ 0 ∀j ∈ M. (21.34)

The dual of this linear program has the form

maximize v
subject to v − (RTx)j ≤ 0 ∀j ∈ M∑

i∈N
xi = 1 (21.35)

xi ≥ 0 ∀i ∈ N. (21.36)

It is easy to verify that the aforementioned linear program describes the problem of finding an
optimal strategy for the row player. Therefore, the problem of computing a Nash equilibrium for a
zero-sum game is solvable in polynomial time. Moreover, by strong LP duality, maxx miny xTRy =
miny maxx xTRy.

21.4.2.2 The Lemke–Howson Algorithm

In this section we present the classical algorithm by (Lemke and Howson, 1964) that computes a
Nash equilibrium of a nondegenerate bimatrix game Γ = 〈R, C〉.

DEFINITION 21.7 A bimatrix game Γ = 〈R, C〉 is called nondegenerate if the number of pure
best responses to a strategy never exceeds the size of its support.

It is useful to assume that the actions sets of the players are disjoint. In particular, we assume
that the action set of the row player is N = {1, . . . , n} and the action set of the column player is
M = {n + 1, . . . , n + m}. For each i ∈ N and j ∈ M, define

X(i) = {x ∈ P
n | xi = 0} (21.37)

X(j) =
{

x ∈ P
n |

n∑
i=1

cijxi ≥
n∑

i=1
cikxi ∀k ∈ M

}
(21.38)

Y(j) = {y ∈ P
m | yj = 0} (21.39)
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Y(i) =
⎧⎨
⎩y ∈ P

m |
m∑

j=1

rijyj ≥
n∑

j=1

rkjyj ∀k ∈ N

⎫⎬
⎭. (21.40)

Any strategy x ∈ P
n and y ∈ P

m is labelled with certain elements of N ∪ M as follows: for each
k ∈ N ∪ M, x has label k if x ∈ X(k) and y has label k if y ∈ Y(k). So the labels of a strategy x (y)
of the row (column) player denote the actions of the row (column) player that are assigned zero
probability and the actions of the column (row) player that are best responses to x (y). Since, in
any Nash equilibrium of the game, any action of a player is either a best response to the opponent’s
strategy or is played with probability zero, it follows that a strategy profile (x, y) is a Nash equilibrium
if and only if x and y are completely labelled, that is, the union of the labels of x and y is the set
N ∪ M.

THEOREM 21.3 A strategy profile (x, y) is a Nash equilibrium of the bimatrix game Γ = 〈R, C〉 if
and only if, for all k ∈ N ∪ M, x ∈ X(k) or y ∈ Y(k) (or both).

Now, since the game is nondegenerate, only finitely many strategies of the row player have n
labels and only finitely many strategies of the column player have m labels. Using these finitely many
strategies we define two graphs G1 and G2 as follows. Let G1 be the graph whose nodes are the
strategies x ∈ P

n of the row player with exactly n labels, with an additional node 0 ∈ R
n that has

all labels in N. There is an edge between any two nodes x, x′ of G1 if and only if x and x′ differ in
exactly one label. Similarly, let G2 be the graph whose nodes are the strategies y ∈ P

m of the column
player with exactly m labels, with an additional node 0 ∈ R

m that has all labels in M. There is an
edge between any two nodes y, y′ of G2 if and only if y and y′ differ in exactly one label.

Now define the product graph G1 × G2 as the graph whose nodes are all pairs (x, y) such that x is
a node of G1 and y is a node of G2. There is an edge between any two nodes (x, y) and (x′, y′) if and
only if (1) x = x′ is a node of G1 and (y, y′) is an edge of G2 or (2) y = y′ is a node of G2 and (x, x′)
is an edge of G1.

For any k ∈ N ∪ M, call a node (x, y) of G1 × G2 k-almost completely labelled if any label
� ∈ N ∪ M\{k} is a label of x or a label of y. Since two adjacent nodes x and x′ in G1 have exactly
n − 1 common labels, the edge ((x, y), (x′, y)) is also called k-almost completely labelled if y has the
remaining m labels except k. Similarly, since two adjacent nodes y and y′ in G2 have exactly m − 1
common labels, the edge ((x, y), (x, y′)) is called k-almost completely labelled if x has the remaining
n labels except k.

A Nash equilibrium (x, y) is a node in G1 ×G2 adjacent to exactly one node (x′, y′) that is k-almost
completely labelled. In particular, if k is a label of x, then x is joined to the node x′ in G1 sharing the
remaining n − 1 labels, and y = y′. If k is a label of y, then y is joined to the node y′ in G2 sharing
the remaining m − 1 labels, and x = x′. Moreover, a k-almost completely labelled node (x, y) that is
completely labelled has exactly 2 neighbors in G1 × G2. These are obtained by dropping the unique
duplicate label that x and y have in common, joining to an adjacent node either in G1 and keeping
y fixed, or in G2 and keeping x fixed. This defines a unique k-almost completely labelled path in
G1 × G2 connecting the completely labelled artificial equilibrium (0, 0) to an actual equilibrium
of Γ . The Lemke–Howson algorithm starts from (0, 0), follows the path where label k is missing, and
terminates at a Nash equilibrium of Γ .

THEOREM 21.4 (Lemke and Howson, 1964; Shapley, 1974) Let Γ = 〈R, C〉 be a nondegenerate
bimatrix game and k ∈ N ∪M. Then the set of k-almost completely labelled nodes and edges in G1 ×G2
consists of disjoint paths and cycles. The endpoints of the paths are the equilibria of the game and the
artificial equilibrium (0, 0). The number of Nash equilibria of Γ is odd.
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Savani and von Stengel (2004) proved that the Lemke–Howson algorithm may require an expo-
nential number of steps for a specific class of inputs. Moreover, note that the Lemke–Howson
algorithm can be extended to degenarate bimatrix games as well, by “lexicographically perturbation”
(von Stengel, 2002).

21.5 Approximate Equilibria

21.5.1 A Nonpolynomial Algorithm

In Althöfer (1994) it is showed that, for any n×1 probability vector p there exists an n×1 probability
vector p̂ with logarithmic support in n, so that for a fixed matrix C, maxj

∣∣∣pTCej − p̂TCej

∣∣∣ ≤ ε, for
any constant ε> 0. Using this fact, Lipton et al. (2003) proved that, for any bimatrix game and
for any constant ε> 0, there exists an ε-Nash equilibrium with only logarithmic support (in the
number n of available pure strategies). The proof is based on the probabilistic method and yields a
nonpolynomial algorithm for computing an ε-Nash equilibrium for any ε> 0.

We will now formally state and prove the aforementioned result. First we give the definition of
a k-uniform strategy: Given an n × m bimatrix game Γ = 〈R, C〉, a k-uniform strategy for the row
(column) player is the uniform distribution on a multiset S of actions of the row (column) player,
with |S| = k.

THEOREM 21.5 (Lipton et al., 2003) For any Nash equilibrium (x̂, ŷ) of an n × n bimatrix game
Γ = 〈R, C〉 and for every ε> 0, there exists, for every k ≥ 12 ln n

ε2 , a pair of k-uniform strategies x, y,
such that:

1. (x, y) is an ε-Nash equilibrium,
2. |xTRy − x̂TRŷ| < ε,
3. |xTCy − x̂TCŷ|< ε.

PROOF For the given ε> 0, fix some k ≥ 12 ln n
ε2 . Form a multiset A by sampling k times from

the set of actions of the row player, independently at random and according to the distribution x̂,
and a multiset B by sampling k times from the set of actions of the column player, independently
at random and according to the distribution ŷ. Let x be the strategy for the row player that assigns
probability 1

k to each member of A and 0 each action not in A. Similarly, let y be the strategy for the
row player that assigns probability 1

k to each member of B and 0 each action not in B. Note that, if
an action occurs α times in the multiset, then it is assigned probability α

k .
Define the following events:

φ1 =
{
|xTRy − x̂TRŷ| < ε/2

}
(21.41)

π1,i = {
eT

i Ry < xTRy + ε
} ∀i ∈ {1, . . . , n} (21.42)

φ2 =
{
|xTCy − x̂TCŷ| < ε/2

}
(21.43)

π2,j = {
xTCej < xTCy + ε

} ∀j ∈ {1, . . . , n} (21.44)

GOOD = φ1 ∩ φ2

n⋂
i=1

π1,i

n⋂
j=1

π2,j. (21.45)

We wish to show that Pr{GOOD} > 0, which would imply that there exists some choice of the multisets
A and B such that x and y satisfy the three conditions in the statement of the theorem.
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In order to bound the probabilities of the events π1,i’s and π2,j’s we introduce the following events:

ψ1,i = {
eT

i Ry < eT
i Rŷ + ε/2

} ∀i ∈ {1, . . . , n} (21.46)

ψ2,j =
{

xTCej < x̂TCej + ε/2
}

∀i ∈ {1, . . . , n}. (21.47)

Now assume that

|xTRy − x̂TRŷ| < ε/2 (21.48)

or equivalently

−ε/2 < xTRy − x̂TRŷ < ε/2. (21.49)

Furthermore, assume that

eT
i Ry < eT

i Rŷ + ε/2 (21.50)

for some i ∈ {1, . . . , n}. Then,

eT
i Ry < eT

i Rŷ + ε/2 (21.51)

≤ x̂TRŷ + ε/2 (since (x̂, ŷ) is a Nash equilibrium) (21.52)

< xTRy + ε (due to assumption 21.49). (21.53)

Therefore,

ψ1,i ∩ φ1 ⊆ π1,i ∀i ∈ {1, . . . , n} (21.54)

and similarly it can be shown that

ψ2,j ∩ φ2 ⊆ π2,j ∀j ∈ {1, . . . , n}. (21.55)

The expression eT
i Ry is essentially a sum of k independent random variables each of expected value

eT
i Rŷ. Each such random variable takes values in the interval [0, 1]. Therefore, we can apply a

standard tail inequality (Hoeffding, 1963) in order to bound the probability of ψc
1,i (i.e., the comple-

ment of event ψ1,i) occurring, and thus we get:

Pr{ψc
1,i} ≤ exp

(
−kε2

2

)
. (21.56)

Similarly,

Pr{ψc
2,j} ≤ exp

(
−kε2

2

)
. (21.57)

In order to bound the probabilities of the events φc
1 and φc

2 we define the following events:

φ1a =
{
|xTRŷ − x̂TRŷ| < ε/4

}
(21.58)

φ1b = {|xTRy − xTRŷ| < ε/4
}

(21.59)

φ2a =
{
|x̂TCy − x̂TCŷ| < ε/4

}
(21.60)

φ2b =
{
|xTCy − x̂TCy| < ε/4

}
. (21.61)
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We can easily see that φ1a ∩ φ1b ⊆ φ1 and φ2a ∩ φ2b ⊆ φ2. The expression xTRŷ is a sum of k
independent random variables, each of expected value x̂TRŷ and each taking values in the interval
[0, 1]. Therefore, we can apply the Hoeffding bound again and get:

Pr{φc
1a} ≤ 2 exp

(
−kε2

8

)
(21.62)

and, using similar arguments,

Pr{φc
1b} ≤ 2 exp

(
−kε2

8

)
. (21.63)

Therefore,

Pr{φc
1} ≤ 4 exp

(
−kε2

8

)
. (21.64)

Similar reasoning yields that

Pr{φc
2} ≤ 4 exp

(
−kε2

8

)
. (21.65)

Now

Pr{GOODc} ≤ Pr{φc
1} + Pr{φc

2} +
n∑

i=1
Pr{πc

1,i} +
n∑

j=1

Pr{πc
2,j} (21.66)

≤ Pr{φc
1} + Pr{φc

2} +
n∑

i=1

(
Pr{ψc

1,i} + Pr{φc
1}
)

+
n∑

j=1

(
Pr{ψc

2,j} + Pr{φc
2}
)

(21.67)

≤ 8n exp
(

−kε2

8

)
+ 8 exp

(
−kε2

8

)
+ 2n exp

(
−kε2

2

)
. (21.68)

Now, since k ≥ 12 ln n/ε2,

Pr{GOODc} ≤ 8n exp
(

−3 ln n
2

)
+ 8 exp

(
−3 ln n

2

)
+ 2n exp (−6 ln n) (21.69)

= 8n · n− 3
2 + 8 · n− 3

2 + 2n · n−6 (21.70)
< 1, (21.71)

and therefore, Pr{GOOD} >0 as needed.

COROLLARY 21.1 (Lipton et al., 2003) For an n × n bimatrix game Γ = 〈R, C〉, there exists an
algorithm for computing all k-uniform ε-Nash equilibria, for any ε> 0.

PROOF For the given ε> 0, fix k = 12 ln n
ε2 . By exhaustive search, we can find all possible pairs

of multisets A and B. For each such pair, we can check in polynomial time if the pair of k-uniform
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strategies is an ε-Nash equilibrium. By Theorem 21.5, at least one pair of multiset exists such that
the corresponding k-uniform strategies are ε-Nash equilibrium strategies. The running time of the
algorithm is nonpolynomial, since there are

(
n + k − 1

k

)2
≤
(

(n + k − 1)e
k

)2k
= O

(
n

ln n
ε2
)

possible pairs of multisets to check.

As pointed out in Althöfer (1994), no algorithm that examines supports smaller than about ln n
can achieve an approximation better than 1

4 . Moreover, (Chen et al., 2006) proved the following:

THEOREM 21.6 (Chen et al., 2006) The problem of computing a 1
nΘ(1) -Nash equilibrium of a n × n

bimatrix game is PPAD-complete.

Theorem 21.6 asserts that, unless PPAD ⊆ P, there exists no fully polynomial time approximation
scheme for computing equilibria in bimatrix games. However, this does not rule out the existence of
a polynomial approximation scheme for computing an ε-Nash equilibrium when ε is an absolute
constant, or even when ε = Θ

(
1

poly(ln n)

)
. Furthermore, as observed in (Chen et al., 2006), if the

problem of finding an ε-Nash equilibrium were PPAD-complete when ε is an absolute constant,
then, due to Theorem 21.5, all PPAD problems would be solved in O(nln n) time, which is unlikely
to be the case.

Two concurrent and independent works (Daskalakis et al., 2006b; Kontogiannis et al., 2006) were
the first to make progress in providing ε-Nash equilibria for bimatrix games and some constant
0 < ε< 1. In particular, the work of (Kontogiannis et al., 2006) proposes a simple linear-time
algorithm for computing a 3

4 -Nash equilibrium for any bimatrix game:

THEOREM 21.7 (Kontogiannis et al., 2006) Consider any n × m bimatrix game Γ = 〈R, C〉 and let
ri1,j1 = maxi,j rij and ci2,j2 = maxi,j cij. Then the pair of strategies (x̂, ŷ) where x̂i1 = x̂i2 = ŷj1 = ŷj2 =
1
2 is a 3

4 -Nash equilibrium for Γ .

The aforementioned technique can be extended so as to obtain a parameterized, stronger
approximation:

THEOREM 21.8 (Kontogiannis et al., 2006) Consider a n × m bimatrix game Γ = 〈A, B〉. Let λ∗
1

(λ∗
2) be the minimum, among all Nash equilibria of Γ , expected payoff for the row (column) player

and let λ = max{λ∗
1, λ∗

2}. Then, there exists a 2+λ
4 -Nash equilibrium that can be computed in time

polynomial in n and m.

The work of (Daskalakis et al., 2006b) provides a simple algorithm for computing a 1
2 -Nash

equilibrium: Pick an arbitrary row for the row player, say row i. Let j = arg maxj′ cij′ . Let k =
arg maxk′ rk′j. Thus, j is a best-response column for the column player to the row i, and k is a best-
response row for the row player to the column j. Let x̂ = 1

2 ei + 1
2 ek and ŷ = ej, that is, the row

player plays row i or row k with probability 1
2 each, while the column player plays column j with

probability 1. Then:

THEOREM 21.9 (Daskalakis et al., 2006b) The strategy profile (x̂, ŷ) is a 1
2 -Nash equilibrium.
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Later, there was a series of results improving the constant for polynomial time constructions of
approximate Nash equilibria. A polynomial construction (based on Linear Programming) of a
0.38-Nash equilibrium is presented in (Daskalakis et al., 2007), and consequently Bosse et al. (2007)
proposed a 0.36392-Nash equilibrium based on the solvability of zero sum bimatrix games. Finally,
Tsaknakis and Spirakis (2007) proposed a new methodology for determining approximate Nash
equilibria of bimatrix games and based on that, they provided a polynomial time algorithm for
computing 0.3393-approximate Nash equilibria. To our knowledge this is currently the best result
for approximate Nash equilibria in bimatrix games.

For the more demanding notion of well-supported approximate Nash equilibrium, Daskalakis
et al. (2006b) propose an algorithm, which, under a quite interesting and plausible graph theoretic
conjecture, constructs in polynomial time a 5

6 -well-supported Nash equilibrium. However, the status
of this conjecture is still unknown. In Daskalakis et al. (2006b), it is also shown how to transform a
[0, 1]-bimatrix game to a win–lose bimatrix game (i.e., a bimatrix game where each matrix entry is
either 0 or 1) of the same size, so that each ε-well-supported Nash equilibrium of the resulting game
is 1+ε

2 -well-supported Nash equilibrium of the original game.
The work of Kontogiannis and Spirakis (2007) provides a polynomial algorithm that computes a

1
2 -well-supported Nash equilibrium for arbitrary win–lose games. The idea behind this algorithm is
to split evenly the divergence from a zero-sum game between the two players and then solve this zero-
sum game in polynomial time (using its direct connection to Linear Programming). The computed
Nash equilibrium of the zero-sum game considered is indeed proved to be also a 1

2 -well-supported
Nash equilibrium for the initial win–lose game. Therefore:

THEOREM 21.10 (Kontogiannis and Spirakis, 2007) For any win–lose bimatrix game, there is a
polynomial time constructible profile that is a 1

2 -well-supported Nash equilibrium of the game.

In the same work, Kontogiannis and Spirakis (2007) parameterize the aforementioned methodology
in order to apply it to arbitrary bimatrix games. This new technique leads to a weaker φ-well-
supported Nash equilibrium for win–lose games, where φ =

√
5−1
2 is the golden ratio. Nevertheless,

this parameterized technique extends nicely to a technique for arbitrary bimatrix games, which
assures a

(√
11
2 − 1

)
-well-supported Nash equilibrium in polynomial time:

THEOREM 21.11 (Kontogiannis and Spirakis, 2007) For any bimatrix game, a 0.658-well-supported
Nash equilibrium is constructible in polynomial time.

21.6 Potential Games and Congestion Games

21.6.1 Potential Games

Potential games, defined in (Monderer and Shapley, 1996), are games with the property that the
incentive of all players to unilaterally deviate from a pure strategy profile can be expressed in one
global function, the potential function.

Fix an arbitrary game in strategic form Γ = 〈N, (Ci)i∈N , (ui)i∈N〉 and some vector b = (b1, . . . ,
b|N|) ∈ R

|N|
>0 . A function P : C → R is called

• An ordinal potential for Γ if, ∀c ∈ C, ∀i ∈ N, ∀a ∈ Ci,

P(a, c−i) − P(c) > 0 ⇐⇒ ui(a, c−i) − ui(c) > 0. (21.72)
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• A b-potential for Γ if, ∀c ∈ C, ∀i ∈ N, ∀a ∈ Ci,

P(a, c−i) − P(c) = bi · (ui(a, c−i) − ui(c)) . (21.73)

• An exact potential for Γ if it is a b-potential for Γ where bi = 1 for all i ∈ N.

It is straightforward to see that the existence of an ordinal, exact, or b-potential function P for
a finite game Γ guarantees the existence of pure Nash equilibria in Γ : each local optimum of P
corresponds to a pure Nash equilibrium of Γ and vice versa. Thus, the problem of finding pure
Nash equilibria of a potential game Γ is equivalent to finding the local optima for the optimization
problem with state space the pure strategy space C of the game and objective the potential function
of the game.

Furthermore, the existence of a potential function P for a game Γ = 〈N, (Ci)i∈N , (ui)i∈N〉 implies
a straightforward algorithm for constructing a pure Nash equilibrium of Γ : The algorithm starts
from an arbitrary strategy profile c ∈ C and, at each step, one single player performs a selfish step,
that is, switches to a pure strategy that strictly improves his/her payoff. Since the payoff of the
player increases, P increases as well. When no move is possible, that is, when a pure strategy profile
ĉ is reached from which no player has an incentive to unilaterally deviate, then ĉ is a pure Nash
equilibrium and a local optimum of P. This procedure however does not imply that the computation
of a pure Nash equilibrium can be done in polynomial time, since the improvements in the potential
can be very small and too many.

21.6.2 Congestion Games

Rosenthal (1973) introduced a class of games, called congestion games, in which each player chooses
a particular subset of resources out of a family of allowable subsets for his/her (his/her action set),
constructed from a basic set of primary resources for all the players. The delay associated with each
primary resource is a non-decreasing function of the number of players who choose it, and the total
delay received by each player is the sum of the delays associated with the primary resources he/she
chooses. Each game in this class possesses at least one Nash equilibrium in pure strategies, which
follows from the existence of an exact potential.

A congestion model 〈N, E, (Πi)i∈N , (de)e∈E〉 is defined as follows. N denotes the set of players
{1, . . . , n}. E denotes a finite set of resources. For i ∈ N let Πi be the set of strategies of player i, where
each �i ∈ Πi is a nonempty subset of resources. For e ∈ E let de : {1, . . . , n} → R denote the delay
function, where de(k) denotes the cost (e.g., delay) to each user of resource e, if there are exactly k
players using e.

The congestion game associated with this congestion model is the game in strategic form 〈N,
(Πi)i∈N , (ui)i∈N〉, where the payoff functions ui are defined as follows: Let Π ≡ ×i∈NΠi. For all � =
(�1, . . . , �n) ∈ Π and for every e ∈ E let σe(�) be the number of users of resource e according to the
configuration �: σe(�) = |{i ∈ N : e ∈ �i}| . Define ui : Π → R by ui(�) = −∑e∈�i

de(σe(�)).
In a network congestion game the families of subsets Πi are represented implicitly as paths in a

network. We are given a directed network G = (V , E) with the edges playing the role of resources, a
pair of nodes (si, ti) ∈ V × V for each player i and the delay function de for each e ∈ E. The strategy
set of player i is the set of all paths from si to ti. If all origin–destination pairs (si, ti) of the players
coincide with a unique pair (s, t) we have a single-commodity network congestion game and then
all users share the same strategy set, hence the game is symmetric.

In a weighted congestion model we allow the users to have different demands, and thus affect the
resource delay functions in a different way, depending on their own weights. A weighted congestion
model 〈N, (wi)i∈N , E, (Πi)i∈N , (de)e∈E〉 is defined as follows. N denotes the set of players {1, 2, . . . , n},
wi denotes the demand of player i and E denotes a finite set of resources. For i ∈ N let Πi be the set
of strategies of player i, where each �i ∈ Πi is a nonempty subset of resources. For each resource
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e ∈ E let de(·) be the delay per user that requests its service, as a function of the total usage of this
resource by all the users.

The weighted congestion game associated with this congestion model is the game in strategic
form 〈(wi)i∈N , (Πi)i∈N , (ui)i∈N〉, where the payoff functions ui are defined as follows. For any con-
figuration � ∈ Π and for all e ∈ E, let Λe(�) = {i ∈ N : e ∈ �i} be the set of players using resource
e according to �. The cost λi(�) of user i for adopting strategy �i ∈ Πi in a given configuration �

is equal to the cumulative delay λ�i(�) on the resources that belong to �i:

λi(�) = λ�i(�) =
∑

e∈�i

de(θe(�)) (21.74)

where, for all e ∈ E, θe(�) ≡ ∑
i∈Λe(�) wi is the load on resource e with respect to the

configuration �. The payoff function for player i is then ui(�) = −λi(�). A configuration � ∈ Π

is a pure Nash equilibrium if and only if, for all i ∈ N,

λ�i(�) ≤ λπi(πi, �−i) ∀πi ∈ Πi (21.75)

where (πi, �−i) is the same configuration as � except for user i that has now been assigned to
path πi.

In a weighted network congestion game the strategy sets Πi are represented implicitly as si − ti
paths in a directed network G = (V , E).

Since the payoff functions ui of a congestion game can be implicitly computed by the resource
delay functions de, in the following we will denote a general (weighted or unweighted) congestion
game by 〈N, E, (Πi)i∈N , (wi)i∈N , (de)e∈E〉. We drop (wi)i∈N from this notation when referring to an
unweighted congestion game.

The following theorem (Rosenthal, 1973; Monderer and Shapley, 1996) proves the strong con-
nection of unweighted congestion games with the exact potential games.

THEOREM 21.12 (Rosenthal, 1973; Monderer and Shapley, 1996) Every (unweighted) congestion
game is an exact potential game.

PROOF Fix an arbitrary (unweighted) congestion game Γ = 〈N, E, (Πi)i∈N , (de)e∈E〉. For any
pure strategy profile � ∈ Π, the function

Φ(�) =
∑

e∈∪i∈N�i

σe(�)∑
k=1

de(k) (21.76)

(introduced in (Rosenthal, 1973)) is an exact potential function for Γ . �

The converse of Theorem 21.12 does not hold in general; however, Monderer and Shapley (1996)
proved that every (finite) exact potential game Γ is isomorphic to an unweighted congestion game.

21.6.2.1 The Complexity Class PLS

A crucial class of problems containing the family of weighted congestion games is PLS (standing for
polynomial local search) (Johnson et al., 1988). This is the subclass of total functions in NP that are
guaranteed to have a solution because of the fact that “every finite directed acyclic graph has a sink.”
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A local search problem Π has a set of instances DΠ which are strings. To each instance x ∈ DΠ,
there corresponds a set SΠ(x) of solutions, and a standard solution s0 ∈ SΠ(x). Each solution
s ∈ SΠ(x) has a cost fΠ(s, x) and a neighborhood NΠ(s, x). The search problem is, given an instance
x ∈ DΠ, to find a locally optimal solution s∗ ∈ SΠ(x). That is, if the objective is to minimize the cost
function, then we are seeking for some s∗ ∈ arg mins∈NΠ(s∗,x){fΠ(s, x)}. Similarly, if the objective is
to maximize the cost function, then we are seeking for some s∗ ∈ arg maxs∈NΠ(s∗,x){fΠ(s, x)}.

DEFINITION 21.8 A local search problem Π is in PLS if its instances DΠ and solutions SΠ(x) for
all x ∈ DΠ are binary strings, there is a polynomial p such that the length of the solutions SΠ(x) is
bounded by p(|x|), and there are three polynomial-time algorithms AΠ, BΠ, CΠ with the following
properties:

1. Given a binary string x, AΠ determines whether x ∈ DΠ, and if so, returns some initial
solution s0 ∈ SΠ(x).

2. Given an instance x ∈ DΠ and a string s, BΠ determines whether s ∈ SΠ(x), and if so,
computes the value fΠ(s, x) of the cost function at s.

3. Given an instance x ∈ DΠ and a solution s ∈ SΠ(x), CΠ determines whether s is a
local optimum of fΠ(·, x) in its neighborhood NΠ(s, x), and if not, returns a neighbor
s′ ∈ NΠ(s, x) having a better value (i.e., fΠ(s′, x)< fΠ(s, x) for a minimization problem
and fΠ(s′, x)> fΠ(s, x) for a maximization problem).

21.6.2.2 Complexity of Pure Nash Equilibria in Congestion Games

Fabrikant et al. (2004) characterized the complexity of computing pure Nash equilibria in congestion
games. They showed that, for unweighted single commodity network congestion games, a pure Nash
equilibrium can be constructed in polynomial time. On the other hand, they showed that, even for
symmetric congestion games it is PLS-complete to compute a pure Nash equilibrium.

THEOREM 21.13 (Fabrikant et al., 2004) There is a polynomial time algorithm for finding a pure
Nash equilibrium in symmetric network congestion games.

PROOF The algorithm is a reduction to min-cost flow. Given the single-source single-destination
network G = (V , E) and the delay functions de, we replace each edge e with n parallel edges between
the same nodes, each with capacity 1, and with costs de(1), . . . , de(n). It is straightforward to see
that any min-cost flow in the resulting network (which can be computed in polynomial time) is
integral and it corresponds to a pure strategy profile of the congestion game that minimizes its exact
potential function, thus, it corresponds to a pure Nash equilibrium.

Note that the aforementioned theorem holds only for symmetric network congestion games, and
not for all symmetric congestion games.

THEOREM 21.14 (Fabrikant et al., 2004) It is PLS-complete to find a pure Nash equilibrium in
unweighted congestion games of the following sorts:

1. General congestion games.
2. Symmetric congestion games.
3. Multi-commodity network congestion games.
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PROOF In order to prove (1) we shall use the following problems:
NOTALLEQUAL3SAT: Given a set N of binary variables and a collection C of clauses such that

∀c ∈ C, |c| ≤ 3, is there an assignment of values to the variables so that no clause has all its literals
assigned the same value?

POSNAE3FLIP: Given an instance (N, C) of NOTALLEQUAL3SAT with positive literals only and a
weight function w : C → R, find an assignment of values to the variables such that the total weight of
the unsatisfied clauses and the totally satisfied (i.e., with all their literals set to 1) cannot be decreased
by a unilateral flip of the value of any variable.

POSNAE3FLIP is known to be PLS-complete. Given an instance of POSNAE3FLIP, we construct a
congestion game as follows. The set of players is exactly the set of variables. For each three-clause
c of weight wc we have two resources ec and e′

c, with delay 0 if there are two or fewer players,
and wc otherwise. Player v has two actions: one action contains all resources ec for clauses that
contain v, and one action that contains all resources e′

c for the same clauses. Smaller clauses are
implemented similarly. Clearly, a flip of a variable corresponds to the change in the pure strategy
of the corresponding player. The changes in the total weight due to a flip equal the changes in the
cumulative delay over all the resources. Thus, any pure Nash equilibrium of the congestion game is
a local optimum (and therefore a solution) of the POSNAE3FLIP problem, and vice versa.

The proof of (2) is by reduction of the nonsymmetric case to the symmetric case. Given an
unweighted congestion game Γ = 〈N, E, (Πi)i∈N , (de)e∈E〉, we construct a symmetric congestion
game Γ̂ = 〈N, E, Π̂, (d̂e)e∈E〉 as follows. First we add to the set of resources n distinct resources:
Ê = E ∪ {ei}i∈N . The delays of these resources are d̂ei(k) = M for some sufficiently large constant
M if k ≥ 2, and 0 if k = 1. The old resources maintain the same delay functions. Each player has
the same action set Π̂ = ∪i∈N{πi ∪ {ei} : πi ∈ Πi}. By setting the constant M sufficiently large, in
any pure Nash equilibrium of Γ each of the distinct resources is used by exactly one player (these
resources act as if they have capacity 1 and there are only n of them). Therefore, in any pure Nash
equilibrium, each one of the n players chooses a different subset of resources. So, for any pure Nash
equilibrium in Γ̂ we can easily get a pure Nash equilibrium in Γ by simply dropping the unique
new resource used by each of the players. This is done by identifying the “anonymous” players of Γ̂

according to the unique resource they use, and match them with the corresponding players of Γ .
The proof of (3) is rather complicated and will not be presented here; we refer the interested

reader to (Fabrikant et al., 2004).

Next, we deal with the existence and the tractability of pure Nash equilibria in weighted network
congestion games. In Fotakis et al. (2005) it was shown that it is not always the case that a pure Nash
equilibrium exists:

THEOREM 21.15 (Fotakis et al., 2005) There exist instances of weighted single-commodity network
congestion games with resource delays being either linear or 2-wise linear function of the loads, for
which there is no pure Nash equilibrium.

Furthermore, it was shown that there may exist no exact potential function even for the simplest
case of weighted congestion games:

THEOREM 21.16 (Fotakis et al., 2005) There exist weighted single-commodity network congestion
games which are not exact potential games, even when the resource delays are identical to their loads.

This fact, however, does not rule out the possibility that there exists some non-exact potential
for a weighted network congestion game. Actually, Fotakis et al. (2005) proved the existence of
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a b-potential function for any weighted multi-commodity network congestion game with linear
resource delays:

THEOREM 21.17 (Fotakis et al., 2005) For any weighted multi-commodity network congestion game
with linear resource delays (i.e., de(x) = aex+ ce, e ∈ E, ae, ce ≥ 0), at least one pure Nash equilibrium
exists and can be computed in pseudo-polynomial time.

PROOF The result follows from the existence of the b-potential function

Φ(�) =
∑
e∈E

⎛
⎝aeθ

2
e(�) + ceθe(�) +

∑
i:�i=e

(aew2
i + cewi)

⎞
⎠ (21.77)

where bi = 1
2wi

for all i ∈ N.

21.7 The Price of Anarchy

In a gamelike situation, the price of anarchy (or coordination ratio), introduced in (Koutsoupias and
Papadimitriou, 1999), is a measure of the performance degradation due to the selfish behavior of the
involved players (and therefore due to the lack of coordination among the players). In general, it is
defined with respect to a global social cost function, capturing the performance of a strategy profile.
Then the price of anarchy equals the ratio of the worst social cost over all Nash equilibria and the
optimum value of the social cost.

21.7.1 The Price of Anarchy in Finite Games

In the following, we will focus on the characterization of the price of anarchy in the context of
network congestion games. The social cost in this setting can be defined in several ways, such as the
maximum congestion over all edges of the network, the average congestion of the edges, the sum of
the costs over all players, and so on. In the following, we define the social cost as the maximum cost
paid over all agents.

Formally, consider a weighted network congestion game Γ = 〈N, E, (Πi)i∈N , (wi)i∈N , (de)e∈E〉
and let G = (V , E) be the corresponding network. Let p = (pj

i)i∈N,j∈Πi be an arbitrary strategy
profile, that is, pj

i is the probability that player i ∈ N chooses action j ∈ Πi. Then the social cost in this
congestion game is

SC(p) =
∑

�∈Π

Pr(p, �) · max
i∈N

{λ�i(�)} (21.78)

where Pr(p, �) = ∏
i∈N p�i

i is the probability of pure strategy profile � occurring, with respect to
the strategy profile p.

The social optimum of this game is defined as

OPT = min
�∈Π

{
max
i∈N

{λ�i(�)}
}

. (21.79)
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The price of anarchy is then defined as the ratio of the social cost of the worst Nash equilibrium
and OPT:

R = max
p is a NE

SC(p)

OPT
. (21.80)

In the seminal paper (Koutsoupias and Papadimitriou, 1999) it was proved that the price of
anarchy for the special case of a network consisting of two parallel links is R = 3/2, while for m
parallel links, R = Ω

(
log m

log log m

)
and R = O

(√
m log m

)
. For m identical parallel links, Mavronicolas

and Spirakis (2001) proved that R = Θ
(

log m
log log m

)
for the fully mixed Nash equilibrium, that is, for

the Nash equilibrium where each player poses nonzero probability to each link. For the case of m
identical parallel links it was shown in (Koutsoupias et al., 2003) that R = Θ

(
log m

log log m

)
. In Czumaj

and Vöecking (2002), it was finally shown that R = Θ
(

log m
log log m

)
for the general case of nonidentical

parallel links (and players of varying demands).
As pointed out in (Fotakis et al., 2005), there exist weighted network congestion games with

resource delays linear to their loads for which the price of anarchy is unbounded. This result holds
even for the simple case of an �-layered network, that is, a single-commodity network (V , E) where
every source–destination path has length exactly�and each node lies on a directed source–destination
path. However, if resource delays are identical to their loads, the following holds:

THEOREM 21.18 (Fotakis et al., 2005) The price of anarchy of any single-commodity network
congestion game with resource delays identical to their loads, is at most

8e
(

m
log log m

+ 1
)

,

where m = |E| is the number of available resources, that is, the number of edges of the network.

Christodoulou and Koutsoupias (2005) considered the price of anarchy of pure Nash equilibria in
congestion games with linear latency functions. For asymmetric games, they showed that the price
of anarchy when the social cost is defined as the maximum congestion over all resources is Θ(

√
n)

where n is the number of players. For all other cases of symmetric or asymmetric games and for both
maximum and average social cost, the price of anarchy was shown to be 5/2, and these results were
extended to latency functions that are polynomials of bounded degree.

Gairing et al. (2006) studied an interesting variant of the price of anarchy in weighted congestion
games on parallel links, where the social cost is the expectation of the sum, over all links, of latency
costs; each latency cost is modeled as a certain polynomial function evaluated at the delay incurred
by all users choosing the link.

The main argument for using worst-case demands in the definition of the price of anarchy is that
the distribution of the players’ demands is not known, and the worst-case distribution prevailing in
this definition is the one in which the worst-case demand occurs with probability one. Mavronicolas
et al. (2005) introduced the notion of Diffuse Price of Anarchy in order to remove this assumption
while avoiding to assume full knowledge about the distribution of demands. Roughly speaking, the
diffuse price of anarchy is the worst-case, over all allowed probability distributions, of the expectation
(according to each specific probability distribution) of the ratio of social cost over optimum in the
worst-case Nash equilibrium.
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21.7.2 The Price of Anarchy in Selfish Wardrop Flows

In the following we study the price of anarchy for a different model of a network congestion game:
We are given a network with distinguished source–destination pairs of nodes, a rate of traffic (flow
demand) between each pair, and a latency function for each edge specifying the time needed to
traverse the edge given the congestion. The objective is to route traffic such that the total latency is
minimized.

21.7.2.1 Flows and Game Theory

Consider a directed network G = (V , E) with vertex set V , edge set E, and k source–destination
pairs of vertices {s1, t1}, . . . , {sk, tk}. Let [k] = {1, . . . , k}. Denote the set of (simple) si − ti paths by
Pi, and define P = ∪k

i=1Pi. A flow is a function f : P → R≥ 0. In the following, and for the sake of
simplicity, we use the notation fP instead of f (P) to refer to the flow of path P ∈ P .

For a fixed flow f define fe = ∑
P∈P :e∈P fP. Associated to each pair {si, ti} (i ∈ [k]) is a finite and

positive flow demand ri, which captures the amount of flow needed to be routed between source si
and destination ti. A flow f is said to be feasible if, for all i ∈ {1, . . . , k},

∑
P∈Pi

fP = ri. For each edge
e ∈ E, we are given a latency function �e : R≥0 → R≥0. We assume that, for all e ∈ E, function �e()
is nondecreasing, continuously differentiable, and �e(x)x is convex. A network routing instance (or
simply an instance) is the triple (G, (ri)i∈[k], (�e)e∈E).

The path latency �P( f ) of path P ∈ P with respect to flow f is the sum of the latencies of the edges
in P, that is, �P( f ) = ∑

e∈P �e( fe). The cost C( f ) of a flow f is defined as the total latency incurred
by f , that is,

C( f ) =
∑
P∈P

�P( f )fP (21.81)

=
∑
P∈P

(∑
e∈P

�e( fe)

)
fP (21.82)

=
∑
e∈E

( ∑
P∈P :e∈P

fP

)
�e( fe) (21.83)

=
∑
e∈E

�e( fe)fe. (21.84)

DEFINITION 21.9 A flow f feasible for instance (G, (ri)i∈[k], (�e)e∈E) is at Nash equilibrium if, for
all i ∈ [k], for all P1, P2 ∈ Pi such that P1 	= P2, and for allδ ∈ [0, fP1 ], we have�P1( f ) ≤ �P2(f̃ ), where

f̃ =
⎧⎨
⎩

fP − δ if P = P1
fP + δ if P = P2
fP otherwise

. (21.85)

LEMMA 21.1 (Wardrop’s principle) A flow f feasible for instance (G, (ri)i∈[k], (�e)e∈E) is at Nash
equilibrium if and only if, for all i ∈ [k] and for all P1, P2 ∈ Pi with fP1 > 0, �P1( f )≤ �P2( f ).

In particular, if f is at Nash equilibrium, then all si − ti paths to which f assigns some positive
amount of flow have equal latency, say Li( f ). We can thus express the cost C( f ) of a flow f at Nash
equilibrium as follows:
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C( f ) =
∑
P∈P

�P( f )fP (21.86)

=
k∑

i=1

∑
P∈Pi

�P( f )fP (21.87)

=
k∑

i=1

∑
P∈Pi

Li( f )fP (21.88)

=
k∑

i=1
Li( f )

∑
P∈Pi

fP (21.89)

=
k∑

i=1
Li( f )ri. (21.90)

21.7.2.2 Optimal Flows

An optimal flow is a feasible flow that minimizes total latency. Since the cost of a flow f can be
expressed as C( f ) = ∑

e∈E �e( f )fe, the problem of finding the optimal flow is a special case of the
following nonlinear program:

Program NLP:
minimize

∑
e∈E ce( fe)

subject to
∑

P∈Pi
fP = ri ∀i ∈ [k]

fe = ∑
P∈P :e∈P fP ∀e ∈ E

fP ≥ 0 ∀P ∈ P
where, in our problem, ce( fe) = �e( fe)fe.

For simplicity we have given a formulation with an exponential number of variables (since the
number of paths is in general exponential in the number of edges), but it is not difficult to give an
equivalent compact formulation (with decision variables only on edges and explicit conservation
constraints) that requires only polynomially many variables and constraints.

Now, since function �e( fe)fe is convex, its local optima and global optima coincide. Denote
c′

e(x) = d
dx ce(x) the derivative of ce and let c′

P( f ) = ∑
e∈P c′

e( fe). Then:

LEMMA 21.2 (Beckmann et al., 1956; Dafermos and Sparrow, 1969) A flow f is optimal for a
convex program of the form NLP if and only if, for every i ∈ [k] and P1, P2 ∈ Pi with fP1 > 0,
c′

P1
( f )≤ c′

P2
( f ).

Lemmata 21.1 and 21.2 yield:

COROLLARY 21.2 (Beckmann et al., 1956) Let (G, (ri)i∈[k], (�e)e∈E) be an instance in which �e(x)x
is convex for all e ∈ E, and let �∗

e ( fe) = (�e( fe)fe)′ = �e( fe) + �′
e( fe)fe. Then a flow f feasible for

(G, (ri)i∈[k], (�e)e∈E) is optimal if and only if it is at Nash equilibrium for instance (G, (ri)i∈[k], (�∗
e )e∈E).

The following lemma, originally proved by Beckmann et al. (1956) and later reproved by
Dafermos and Sparrow (1969), guarantees the existence of flows at Nash equilibrium:
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LEMMA 21.3 An instance (G, (ri)i∈[k], (�e)e∈E) with continuous, nondecreasing latency functions
admits a feasible flow at Nash equilibrium. Moreover, if f , f̃ are flows at Nash equilibrium, then
C( f ) = C(f̃ ).

21.7.2.3 The Price of Anarchy

DEFINITION 21.10 For an instance (G, (ri)i∈[k], (�e)e∈E) with an optimal flow f ∗ and a flow at
Nash equilibrium f , the price of anarchy R is

R = C( f )
C( f ∗)

. (21.91)

Roughgarden (2002) proved that for general, continuous, nondecreasing latency functions, it is
actually the class of allowable latency functions and not the specific topology of a network that
determines the price of anarchy. In the same setting, Roughdarden and Tardos (2002) showed that
the cost of a flow at Nash equilibrium is at most equal to the cost of an optimal flow for double flow
demands.

Roughdarden and Tardos (2002) focused on the case of linear latency functions, that is, �e(x) =
aex + be for all e ∈ E. By giving specialized versions of Lemmas 21.1 and 21.2 for this setting, they
gave an upper bound of 4/3 to the price of anarchy (as well as examples for which this bound is
tight).

Defining Terms

Bimatrix game: A bimatrix game is a two-player finite strategic form game, such that the players’
payoffs can be described by two real matrices R and C, where each row corresponds to an action of
the first player and each column corresponds to an action of the second player. The payoffs when
the first player chooses his/her ith action and the second player chooses his/her jth action are given
by the (i, j)th element of matrix R for the first player, and by the (i, j)th element of matrix C for the
second player.
Finite strategic form game: A finite strategic form game is defined by a nonempty finite set of
players, and, for each player, a nonempty finite set of actions and a payoff function mapping each
combination of actions (one for each player) to a real number.
Mixed strategy: A mixed strategy for a player is any probability distribution on his/her set of actions.
Nash equilibrium: A strategy profile is a Nash equilibrium if no player can increase his/her payoff
by unilaterally deviating from the profile.
ε-Nash equilibrium: A strategy profile is an ε-Nash equilibrium if no player can increase his/her
payoff by more than ε by unilaterally deviating from the profile.
Price of anarchy: In a gamelike situation, the price of anarchy (or coordination ratio) is a measure of
the performance degradation due to the selfish behavior of the involved players (and therefore due
to the lack of coordination among the players). In general, it is defined with respect to a global social
cost function, capturing the performance of a strategy profile. Then the price of anarchy equals the
ratio of the worst social cost over all Nash equilibria and the optimum value of the social cost.
Pure strategy: A pure strategy for a player is a mixed strategy that poses probability 1 to exactly one
of his/her actions, and 0 to all the rest.
Strategy profile: A strategy profile is a combination of (pure or mixed) strategies, one for each
player.
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Support: The support of a strategy of some player is the subset of actions that are assigned nonzero
probability.
ε-Well-supported Nash equilibrium: A strategy profile is an ε-well-supported Nash equilibrium
if it is an ε-Nash equilibrium with the additional property that each player plays with nonzero
probability only those actions that guarantee him/her a payoff no less than the payoff that the
specific strategy profile gives him/her, in addition to ε.
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22.1 Introduction

Search is a universal problem-solving mechanism in artificial intelligence (AI). In AI problems, the
sequence of steps required for the solution of a problem is not known a priori, but often must be
determined by a trial-and-error exploration of alternatives. The problems that have been addressed
by AI search algorithms fall into three general classes: single-agent pathfinding problems, game
playing, and constraint-satisfaction problems.

Classic examples in the AI literature of single-agent pathfinding problems are the sliding-tile
puzzles, including the 3 × 3 eight puzzle (see Figure 22.1) and its larger relatives the 4 × 4 fifteen

22-1
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FIGURE 22.1 Eight puzzle search tree fragment.

puzzle and 5 × 5 twenty-four puzzle. The eight puzzle consists of a 3 × 3 square frame containing
eight numbered square tiles and an empty position called the blank. The legal operators are to
slide any tile that is horizontally or vertically adjacent to the blank into the blank position. The
problem is to rearrange the tiles from some random initial configuration into a particular desired
goal configuration. The sliding-tile puzzles are common testbeds for research in AI search algorithms
because they are very simple to represent and manipulate, yet finding optimal solutions to the N ×N
generalization of the sliding-tile puzzles is NP-complete [38]. Another well-known example of a
single-agent pathfinding problem is Rubik’s cube. Real-world examples include theorem proving,
the traveling salesman problem, and vehicle navigation. In each case, the task is to find a sequence
of operations that maps an initial state to a goal state.

A second class of search problems include games, such as chess, checkers, Othello, backgammon,
bridge, poker, and Go. The third category is constraint-satisfaction problems, such as the N-queens
problem or Sudoku. The task in the N-queens problem is to place N queens on an N ×N chessboard,
such that no two queens are on the same row, column, or diagonal. The Sudoku task is to fill each
empty cell in a 9 × 9 matrix with a digit from zero through nine, such that each row, column, and
nine 3 × 3 submatrices contain all the digits zero through nine. Real-world examples of constraint-
satisfaction problems are ubiquitous, including boolean satisfiability, planning, and scheduling
applications.

We begin by describing the problem-space model on which search algorithms are based. Brute-
force searches are then considered including breadth-first, uniform-cost, depth-first, depth-first
iterative-deepening, bidirectional, frontier, and disk-based search algorithms. Next, we introduce
heuristic evaluation functions, including pattern databases, and heuristic search algorithms includ-
ing pure heuristic search, the A∗ algorithm, iterative-deepening-A∗, depth-first branch-and-bound,
the heuristic path algorithm, and recursive best-first search. We then consider single-agent algo-
rithms that interleave search and execution, including minimin lookahead search, real-time-A∗,
and learning-real-time-A∗. Next, we consider game playing, including minimax search, alpha-beta
pruning, quiescence, iterative deepening, transposition tables, special-purpose hardware, multiplayer
games, and imperfect and hidden information. We then examine constraint-satisfaction algorithms,
such as chronological backtracking, intelligent backtracking techniques, constraint recording, and
local search algorithms. Finally, we consider open research problems in this area. The performance
of these algorithms, in terms of the costs of the solutions they generate, the amount of time the
algorithms take to execute, and the amount of computer memory they require are of central concern
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throughout. Since search is a universal problem-solving method, what limits its applicability is the
efficiency with which it can be performed.

22.2 Problem Space Model

A problem space is the environment in which a search takes place [32]. A problem space consists of
a set of states of the problem, and a set of operators that change the state. For example, in the eight
puzzle, the states are the different possible permutations of the tiles, and the operators slide a tile
into the blank position. A problem instance is a problem space together with an initial state and a
goal state. In the case of the eight puzzle, the initial state would be whatever initial permutation the
puzzle starts out in, and the goal state is a particular desired permutation. The problem-solving task
is to find a sequence of operators that map the initial state to a goal state. In the eight puzzle the goal
state is given explicitly. In other problems, such as the N-Queens Problem, the goal state is not given
explicitly, but rather implicitly specified by certain properties that must be satisfied by any goal state.

A problem-space graph is often used to represent a problem space. The states of the space
are represented by nodes of the graph, and the operators by edges between nodes. Edges may be
undirected or directed, depending on whether their corresponding operators are reversible or not.
The task in a single-agent path-finding problem is to find a path in the graph from the initial node
to a goal node. Figure 22.1 shows a small part of the eight puzzle problem-space graph.

Although most problem spaces correspond to graphs with more than one path between a pair of
nodes, for simplicity they are often represented as trees, where the initial state is the root of the tree.
The cost of this simplification is that any state that can be reached by two different paths will be
represented by duplicate nodes in the tree, increasing the size of the tree. The benefit of a tree is that
the absence of multiple paths to the same state greatly simplifies many search algorithms.

One feature that distinguishes AI search algorithms from other graph-searching algorithms is the
size of the graphs involved. For example, the entire chess graph is estimated to contain over 1040

nodes. Even a simple problem like the Twenty-four puzzle contains almost 1025 nodes. As a result,
the problem-space graphs of AI problems are never represented explicitly by listing each state, but
rather are implicitly represented by specifying an initial state and a set of operators to generate new
states from existing states. Furthermore, the size of an AI problem is rarely expressed as the number
of nodes in its problem-space graph. Rather, the two parameters of a search tree that determine the
efficiency of various search algorithms are its branching factor and its solution depth. The branching
factor is the average number of children of a given node. For example, in the eight puzzle the average
branching factor is

√
3, or about 1.732. The solution depth of a problem instance is the length of a

shortest path from the initial state to a goal state, or the length of a shortest sequence of operators
that solves the problem. For example, if the goal were in the bottom row of Figure 22.1, the depth of
the problem instance represented by the initial state at the root would be three moves.

22.3 Brute-Force Search

The most general search algorithms are brute-force searches, since they do not require any domain-
specific knowledge. All that is required for a brute-force search is a state description, a set of
legal operators, an initial state, and a description of the goal state. The most important brute-force
techniques are breadth-first, uniform-cost, depth-first, depth-first iterative-deepening, bidirectional,
and frontier search. In the descriptions of the algorithms in the following text, to generate a node
means to create the data structure corresponding to that node, whereas to expand a node means to
generate all the children of that node.
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FIGURE 22.2 Order of node generation for breadth-first search.

22.3.1 Breadth-First Search

Breadth-first search expands nodes in order of their depth from the root, generating one level of the
tree at a time until a solution is found (see Figure 22.2). It is most easily implemented by maintaining
a first-in first-out queue of nodes, initially containing just the root, and always removing the node
at the head of the queue, expanding it, and adding its children to the tail of the queue.

Since it never generates a node in the tree until all the nodes at shallower levels have been generated,
breadth-first search always finds a shortest path to a goal. Since each node can be generated in
constant time, the amount of time used by breadth-first search is proportional to the number of
nodes generated, which is a function of the branching factor b and the solution depth d. Since the
number of nodes in a uniform tree at level d is bd, the total number of nodes generated in the worst
case is b+b2 +b3 +· · ·+bd, which is O(bd), the asymptotic time complexity of breadth-first search.

The main drawback of breadth-first search is its memory requirement. Since each level of the tree
must be stored in order to generate the next level, and the amount of memory is proportional to
the number of nodes stored, the space complexity of breadth-first search is also O(bd). As a result,
breadth-first search is severely space-bound in practice, and will exhaust the memory available on
typical computers in a matter of minutes.

22.3.2 Uniform-Cost Search

If all edges do not have the same cost, then breadth-first search generalizes to uniform-cost search.
Instead of expanding nodes in order of their depth from the root, uniform-cost search expands nodes
in order of their cost from the root. At each step, the next node n to be expanded is one whose cost
g(n) is lowest, where g(n) is the sum of the edge costs from the root to node n. The nodes are stored
in a priority queue. This algorithm is similar to Dijkstra’s single-source shortest-path algorithm [7].
The main difference is that uniform-cost search runs until a goal node is chosen for expansion, while
Dijkstra’s algorithm runs until every node in a finite graph is chosen for expansion.

Whenever a node is chosen for expansion by uniform-cost search, a lowest-cost path to that node
has been found. The worst-case time complexity of uniform-cost search is O(bc/e), where c is the
cost of an optimal solution, and e is the minimum edge cost. Unfortunately, it also suffers the same
memory limitation as breadth-first search.

22.3.3 Depth-First Search

Depth-first search removes the space limitation of breadth-first and uniform-cost search by always
generating next a child of the deepest unexpanded node (see Figure 22.3). Both algorithms can be
implemented using a list of unexpanded nodes, with the difference that breadth-first search manages
the list as a first-in first-out queue, whereas depth-first search treats the list as a last-in first-out stack.
More commonly, depth-first search is implemented recursively, with the recursion stack taking the
place of an explicit node stack.
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FIGURE 22.3 Order of node generation for depth-first search.

The advantage of depth-first search is that its space requirement is only linear in the maximum
search depth, as opposed to exponential for breadth-first search. The reason is that the algorithm only
needs to store a stack of nodes on the path from the root to the current node. The time complexity
of a depth-first search to depth d is O(bd), since it generates the same set of nodes as breadth-first
search, but simply in a different order. Thus, as a practical matter, depth-first search is time-limited
rather than space-limited.

The primary disadvantage of depth-first search is that it may not terminate on an infinite tree,
but simply go down the left-most path forever. For example, even though there are a finite number
of states of the eight puzzle, the tree fragment shown in Figure 22.1 can be infinitely extended down
any path, generating an infinite number of duplicate nodes representing the same states. The usual
solution to this problem is to impose a cutoff depth on the search. Although the ideal cutoff is the
solution depth d, this value is rarely known in advance of actually solving the problem. If the chosen
cutoff depth is less than d, the algorithm will fail to find a solution, whereas if the cutoff depth is
greater than d, a large price is paid in execution time, and the first solution found may not be an
optimal one.

22.3.4 Depth-First Iterative-Deepening

Depth-first iterative-deepening (DFID) combines the best features of breadth-first and depth-first
search [18,46]. DFID first performs a depth-first search to depth one, then starts over, executing a
complete depth-first search to depth two, and continues to run depth-first searches to successively
greater depths, until a solution is found (see Figure 22.4).

Since it never generates a node until all shallower nodes have been generated, the first solution
found by DFID is guaranteed to be via a shortest path. Furthermore, since at any given point it is
executing a depth-first search, saving only a stack of nodes, and the algorithm terminates when it
finds a solution at depth d, the space complexity of DFID is only O(d).

Although DFID spends extra time in the iterations before the one that finds a solution, this extra
work is usually insignificant. To see this, note that the number of nodes at depth d is bd, and each of
these nodes are generated once, during the final iteration. The number of nodes at depth d−1 is bd−1,
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FIGURE 22.4 Order of node generation for depth-first iterative-deepening search.
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and each of these are generated twice, once during the final iteration, and once during the penultimate
iteration. In general, the number of nodes generated by DFID is bd + 2bd−1 + 3bd−2 + · · · + db.
This is asymptotically O(bd) if b is greater than one, since for large values of d the lower order terms
are insignificant. In other words, most of the work goes into the final iteration, and the cost of the
previous iterations is relatively small. The ratio of the number of nodes generated by DFID to those
generated by breadth-first search on a tree is approximately b/(b−1). In fact, DFID is asymptotically
optimal in terms of time and space among all brute-force shortest-path algorithms on a tree [18].

If the edge costs differ from one another, then one can run an iterative deepening version of
uniform-cost search, where the depth cutoff is replaced by a cutoff on the g(n) cost of a node. At
the end of each iteration, the threshold for the next iteration is set to the minimum cost of all nodes
generated but not expanded on the previous iteration.

On a graph with multiple paths to the same node, however, breadth-first search may be much more
efficient than depth-first or depth-first iterative-deepening search. The reason is that a breadth-first
search can easily detect all duplicate nodes, whereas a depth-first search can only check for duplicates
along the current search path. Thus, the complexity of breadth-first search grows only as the number
of states at a given depth, while the complexity of depth-first search depends on the number of paths
of a given length. For example, in a square grid, the number of nodes within a radius r of the origin
is O(r2), whereas the number of paths of length r is O(3r), since there are three children of every
node, not counting its parent. Thus, in a graph with a large number of very short cycles, breadth-first
search is preferable to depth-first search, if sufficient memory is available. For two approaches to the
problem of pruning duplicate nodes in depth-first search, see [8,47].

22.3.5 Bidirectional Search

Bidirectional search is a brute-force algorithm that requires an explicit goal state instead of simply
a test for a goal condition [36]. The main idea is to simultaneously search forward from the initial
state, and backward from the goal state, until the two search frontiers meet. The path from the initial
state is then concatenated with the inverse of the path from the goal state to form the complete
solution path.

Bidirectional search still guarantees optimal solutions. Assuming that the comparisons for iden-
tifying a common state between the two frontiers can be done in constant time per node, by hashing
for example, the time complexity of bidirectional search is O(bd/2) since each search need only
proceed to half the solution depth. Since at least one of the searches must be breadth-first in order
to find a common state, the space complexity of bidirectional search is also O(bd/2). As a result,
bidirectional search is space bound in practice.

22.3.6 Frontier Search

Best-first searches, such as breadth-first, uniform-cost, and bidirectional search, store both a closed
list of expanded nodes, and an open list of nodes that have been generated but not yet expanded.
Another approach to the memory limitation of these algorithms, called frontier search, is to store
only the open list, and delete nodes once they are expanded [25]. To keep from regenerating the
parent of a node, frontier search stores with each node a bit for each operator that would generate
an expanded node. This reduces the space complexity of a breadth-first search, for example, from
the size of the problem space to the width of the problem space, or the maximum number of nodes
at any given depth. For example, the size of a two dimensional grip graph is quadratic in the radius,
while the width of the graph is only linear. Alternatively, the immediate parents of those nodes on
the open list can be stored [49].
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The main drawback of frontier search is that once the search completes, the solution path is not
available, since the expanded nodes have been deleted. One way to reconstruct the solution path is
to perform a bidirectional frontier search, from both the initial state and the goal state. Once the
two search frontiers meet, then we have a middle node approximately half-way along an optimal
solution path. Then, we can use divide and conquer frontier search to recursively generate a path
from the initial state to the middle state, and from the middle state to the goal state. Frontier search
can also be used to reduce the memory of heuristic best-first searches described in the following text.

22.3.7 Disk-Based Search Algorithms

Another approach to the memory limitation of graph-search algorithms is to store search nodes on
magnetic disk instead of main memory. Currently, two terabyte disks can be bought for about $300,
which is almost three orders of magnitude cheaper than semiconductor memory. The drawback of
disk storage, however, is that the latency to access a single byte can be as much as ten milliseconds,
which is about five orders of magnitude slower than semiconductor memory. The main reason to
store generated nodes is to detect duplicate nodes, which is usually accomplished by a hash table in
memory. A hash table cannot be directly implemented on magnetic disk, however, because of the
long latencies for random access.

An alternative technique is called delayed duplicate detection. Rather than checking for duplicate
nodes every time a node is generated, duplicate detection is delayed, for example, until the end
of a breadth-first search iteration. At that point the queue of nodes on disk can be sorted by
their state representation, using only sequential access algorithms, bringing duplicate nodes to
adjacent locations. Then, a single sequential pass over the sorted queue can merge duplicate nodes
in preparation for the next iteration of the search. This technique can also be combined with frontier
search to further reduce the storage needed. See [27] for more details.

Another disk-based search algorithm is called structured duplicate detection [53].

22.3.8 Combinatorial Explosion

The problem with all brute-force search algorithms is that their time complexities often grow
exponentially with problem size. This is called combinatorial explosion, and as a result, the size of
problems that can be solved with these techniques is quite limited. For example, while the eight
puzzle, with about 105 states, is easily solved by brute-force search, and the fifteen puzzle, with over
1013 states, can be searched exhaustively using brute-force frontier search, storing nodes on disk
[26], the 5 × 5 twenty-four puzzle, with 1025 states, is completely beyond the reach of brute-force
search.

22.4 Heuristic Search

In order to solve larger problems, domain-specific knowledge must be added to improve search
efficiency. In AI, heuristic search has a general meaning, and a more specialized technical meaning.
In a general sense, the term heuristic is used for any advice that is often effective, but is not guaranteed
to work in every case. Within the heuristic search literature, however, the term heuristic usually refers
to the special case of a heuristic evaluation function.

22.4.1 Heuristic Evaluation Functions

In a single-agent path-finding problem, a heuristic evaluation function estimates the cost of an
optimal path between a pair of states. For a fixed goal state, a heuristic evaluation h(n) is a function
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of a node n, which estimates the distance from node n to the goal state. For example, the Euclidean
or airline distance is an estimate of the highway distance between a pair of locations. A common
heuristic function for the sliding-tile puzzles is called the Manhattan distance. It is computed by
counting the number of moves along the grid that each tile is displaced from its goal position, and
summing these values over all tiles.

The key properties of a heuristic evaluation function are that it estimate actual cost, and that
it is efficiently computable. For example, the Euclidean distance between a pair of points can be
computed in constant time. The Manhattan distance between a pair of states can be computed in
time proportional to the number of tiles.

Most heuristic functions are derived by generating a simplified version of the problem to be
solved, then using the cost of an optimal solution to the simplified problem as a heuristic evaluation
function for the original problem. For example, if we remove the constraint that we must drive
on the roads, the cost of an optimal solution to the resulting helicopter navigation problem is the
Euclidean distance. In the sliding-tile puzzles, if we remove the constraint that a tile can only be
slid into the blank position, then any tile can be moved to any adjacent position at any time. The
optimal number of moves required to solve this simplified version of the problem is the Manhattan
distance.

Since they are derived from relaxations of the original problem, such heuristics are also lower
bounds on the costs of optimal solutions to the original problem, a property referred to as admissi-
bility. For example, the Euclidean distance is a lower bound on road distance between two points,
since the shortest path between a pair of points is a straight line. Similarly, the Manhattan distance is
a lower bound on the actual number of moves necessary to solve an instance of a sliding-tile puzzle,
since every tile must move at least as many times as its Manhattan distance to its goal position, and
each move moves only one tile.

22.4.2 Pattern Database Heuristics

Pattern databases are heuristics that are precomputed and stored in lookup tables for use during
search [1]. For example, consider a table with a separate entry for each possible configuration of a
subset of the tiles in a sliding tile puzzle, called the pattern tiles. Each entry stores the minimum
number of moves required to move the pattern tiles from the corresponding configuration to their
goal configuration. Such a value is a lower bound on the number of moves needed to reach the goal
from any state where the pattern tiles are in the given configuration, and can be used as an admissible
heuristic during search.

To construct such a table, we perform a breadth-first search backward from the goal state, where a
state is defined by the configuration of the pattern tiles. As each such configuration is reached for the
first time, we store in the pattern database the number of moves needed to reach that configuration.
This table is computed once before the search, and can be used for multiple searches that share the
same goal state. The number of tiles in a pattern is limited by the amount of memory available to
store an entry for each possible configuration of pattern tiles.

If when computing a pattern database we only count moves of the pattern tiles, then we can add
the values from different pattern databases based on disjoint sets of tiles, without overestimating
actual cost [24]. Thus, we can partition all the tiles in a problem into disjoint sets of pattern tiles,
and sum the values from the different databases to get a more accurate but still admissible heuristic
function.

A number of algorithms make use of heuristic evaluations, including pure heuristic search, the
A∗ algorithm, iterative-deepening-A∗, depth-first branch-and-bound, the heuristic path algorithm,
recursive best-first search, and real-time-A∗. In addition, heuristic evaluations can be employed in
bidirectional search, and are used in two-player games as well.
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22.4.3 Pure Heuristic Search

The simplest of these algorithms, pure heuristic search, expands nodes in order of their heuristic
values h(n) [9]. As a best-first search, it maintains a closed list of those nodes that have been expanded,
and an open list of those nodes that have been generated but not yet expanded. The algorithm begins
with just the initial node on the open list. At each step, a node on the open list with the minimum
h(n) value is expanded, generating all of its children, and is placed on the closed list. The heuristic
function is applied to each of the children, and they are placed on the open list, sorted by their
heuristic values. The algorithm continues until a goal node is chosen for expansion.

In a graph with cycles, multiple paths will be found to the same node, and the first path found
may not be the shortest. When a shorter path is found to an open node, the shorter path is saved
and the longer one discarded. When a shorter path to a closed node is found, the node is moved to
open, and the shorter path is associated with it. The main drawback of pure heuristic search is that
since it ignores the cost of the path so far to node n, it does not find optimal solutions.

22.4.4 A∗ Algorithm

The A∗ algorithm [14] combines features of uniform-cost search and pure heuristic search to
efficiently compute optimal solutions. A∗ is a best-first search in which the cost associated with a
node is f (n) = g(n) + h(n), where g(n) is the cost of the path from the initial state to node n, and
h(n) is the heuristic estimate of the cost of a path from node n to a goal. At each point a node with
lowest f value is chosen for expansion. Ties among nodes of equal f value are broken in favor of
nodes with lower h values. The algorithm terminates when a goal node is chosen for expansion.

A∗ finds an optimal path to a goal if the heuristic function h(n) is admissible, meaning it never
overestimates actual cost. For example, since airline distance never overestimates actual highway
distance, and Manhattan distance never overestimates actual moves in the sliding-tile puzzles, A∗
using these evaluation functions will find optimal solutions to these problems. In addition, A∗ makes
the most efficient use of a given heuristic function in the following sense: among all shortest-path
algorithms using a given heuristic function h(n), A∗ expands the fewest number of nodes [5].

The main drawback of A∗, and indeed of any best-first search, is its memory requirement. Since
the open and closed lists are stored in memory, A∗ is severely space-limited in practice, and will
exhaust the available memory on current machines in minutes. For example, while it can be run
successfully on the eight puzzle, it cannot solve most random instances of the fifteen puzzle before
exhausting memory. Frontier-A∗ only stores the open list, which ameliorates the memory limitation,
but does not eliminate it. An additional drawback of A∗ is that managing the open and closed lists
is complex, and takes time.

22.4.5 Iterative-Deepening-A∗

Just as depth-first iterative-deepening solved the space problem of breadth-first search, iterative-
deepening-A∗ (IDA∗) eliminates the memory constraint of A∗, without sacrificing solution opti-
mality [18]. Each iteration of the algorithm is a depth-first search that keeps track of the cost,
f (n) = g(n) + h(n), of each node generated. As soon as a node is generated whose cost exceeds a
threshold for that iteration, it is deleted, and the search backtracks before continuing along a different
path. The cost threshold is initialized to the heuristic estimate of the initial state, and is increased in
each successive iteration to the lowest cost of all the nodes that were generated but not expanded
during the previous iteration. The algorithm terminates when a goal state is reached whose cost does
not exceed the current threshold.
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Since IDA∗ performs a series of depth-first searches, its memory requirement is linear in the
maximum search depth. In addition, if the heuristic function is admissible, IDA∗ finds an optimal
solution. Finally, by an argument similar to that presented for depth-first iterative-deepening, IDA∗
expands the same number of nodes, asymptotically, as A∗ on a tree, provided that the number of
nodes grows exponentially with solution cost. These facts, together with the optimality of A∗, imply
that IDA∗ is asymptotically optimal in time and space over all heuristic search algorithms that find
optimal solutions on a tree. The additional benefits of IDA∗ are that it is much easier to implement,
and often runs faster than A∗, since it does not incur the overhead of managing the open and closed
lists. Using appropriate admissible heuristic functions, IDA∗ can optimally solve random instances
of the fifteen puzzle [18], the twenty-four puzzle [24], and Rubik’s cube [22].

22.4.6 Depth-First Branch-and-Bound

For many problems, the maximum search depth is known in advance, or the search tree is finite. For
example, the traveling salesman problem (TSP) is to visit each of a given set of cities and return to
the starting city in a tour of shortest total distance. The most natural problem space for this problem
consists of a tree where the root node represents the starting city, the nodes at level one represent
all the cities that could be visited first, the nodes at level two represent all the cites that could be
visited second, and so on. In this tree, the maximum depth is the number of cities, and all candidate
solutions occur at this depth. In such a space, a simple depth-first search guarantees finding an
optimal solution using space that is only linear in the depth.

The idea of depth-first branch-and-bound (DFBnB) is to make this search more efficient by
keeping track of the best solution found so far. Since the cost of a partial tour is the sum of the costs
of the edges traveled so far, whenever a partial tour is found whose cost equals or exceeds the cost
of the best complete tour found so far, the branch representing the partial tour can be pruned, since
all its descendents must have equal or greater cost. Whenever a lower-cost complete tour is found,
the cost of the best tour is updated to this lower cost. In addition, an admissible heuristic function,
such as the cost of the minimum spanning tree of the remaining unvisited cities, can be added to
the cost so far of a partial tour to increase the amount of pruning. Finally, by ordering the children
of a given node from smallest to largest estimated total cost, a low-cost solution can be found more
quickly, further improving the pruning efficiency.

Interestingly, IDA∗ and DFBnB exhibit complementary behavior. Both are guaranteed to return
an optimal solution using only linear space, assuming that their cost functions are admissible. In
IDA∗, the cost threshold is always a lower bound on the optimal solution cost, and increases in each
iteration until it reaches the optimal cost. In DFBnB, the cost of the best solution found so far is
always an upper bound on the optimal solution cost, and decreases until it reaches the optimal cost.
While IDA∗ never expands any nodes whose cost exceeds the optimal cost, its overhead consists of
expanding some nodes more than once. While DFBnB never expands any node more than once,
its overhead consists of expanding some nodes whose cost exceed the optimal cost. For problems
whose search trees are of bounded depth, or for which it is easy to construct a good solution, such
as the TSP, DFBnB is usually the algorithm of choice for finding an optimal solution. For problems
with infinite search trees, or for which it is difficult to construct a low-cost solution, such as the
sliding-tile puzzles or Rubik’s cube, IDA∗ is usually the best choice. Both IDA∗ and DFBnB suffer
the same limitation of all linear-space search algorithms, however, which is that they can generate
exponentially more nodes on a graph with many short cycles, relative to a best-first search.

22.4.7 Complexity of Finding Optimal Solutions

The time complexity of a heuristic search algorithm depends on the accuracy of the heuristic function.
For example, if the heuristic evaluation function is an exact estimator, then A∗ runs in linear time,
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expanding only those nodes on an optimal solution path. Conversely, with a heuristic that returns
zero everywhere, A∗ becomes brute-force uniform-cost search, with exponential complexity. In
general, the effect of a good heuristic function is to reduce the effective depth of search required [23].

22.4.8 Heuristic Path Algorithm

Since the complexity of finding optimal solutions to these problems is still exponential, even with a
good heuristic function, in order to solve significantly larger problems, the optimality requirement
must be relaxed. An early approach to this problem was the heuristic path algorithm (HPA) [35].
HPA is a best-first search, where the cost of a node n is computed as f (n) = g(n)+w∗h(n). Varying
w produces a range of algorithms from uniform-cost search (w = 0), through A∗ (w = 1), to pure
heuristic search (w = ∞). Increasing w beyond 1 generally decreases the amount of computation,
while increasing the cost of the solution generated. This trade-off is often quite favorable, with small
increases in solution cost yielding huge savings in computation [21]. Furthermore, it can be shown
that the solutions found by this algorithm are guaranteed to be no more than a factor of w greater
than optimal [2], but often are significantly better.

Breadth-first search, uniform-cost search, pure heuristic search, A∗, and the heuristic path algo-
rithm are all special cases of best-first search. In each step of a best-first search, the node that is best
according to some cost function is chosen for expansion. These best-first algorithms differ only in
their cost functions: the depth of node n for breadth-first search, g(n) for uniform-cost search, h(n)

for pure heuristic search, g(n) + h(n) for A∗, and g(n) + w ∗ h(n) for the heuristic path algorithm.

22.4.9 Recursive Best-First Search

The memory limitation of the heuristic path algorithm can be overcome simply by replacing the
best-first search with IDA∗ using the same weighted evaluation function. However, with w ≥ 1, IDA∗
is no longer a best-first search, since the total cost of a child can be less than that of its parent, and thus
nodes are not necessarily expanded in best-first order. An alternative algorithm is recursive best-first
search (RBFS) [21]. RBFS simulates a best-first search in space that is linear in the maximum search
depth, regardless of the cost function used. Even with an admissible cost function, RBFS generates
fewer nodes than IDA∗, and is generally superior to IDA∗, except for a small increase in the cost per
node generation.

It works by maintaining on the recursion stack the complete path to the current node being
expanded, as well as all siblings of nodes on that path, along with the cost of the best node in the
subtree explored below each sibling. Whenever the cost of the current node exceeds that of some
other node in the previously expanded portion of the tree, the algorithm backs up to their closest
common ancestor, and continues the search down the new path. In effect, the algorithm maintains
a separate threshold for each subtree diverging from the current search path. See [21] for full details
on RBFS.

22.5 Interleaving Search and Execution

In the discussion above, it is assumed that a complete solution can be computed, even before the first
step of the solution is executed. This is in contrast to the situation in two-player games, discussed
below, where because of computational limits and uncertainty due to the opponent’s moves, search
and execution are interleaved, with each search determining only the next move to be made. This
paradigm is also applicable to single-agent problems. In the case of autonomous vehicle navigation,
for example, information is limited by the horizon of the vehicle’s sensors, and it must physically
move to acquire more information. Thus, only a few moves can be computed at a time, and those
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moves must be executed before computing the next. Below we consider algorithms designed for this
scenario.

22.5.1 Minimin Search

Minimin search determines individual single-agent moves in constant time per move [19]. The
algorithm searches forward from the current state to a fixed depth determined by the informational
or computational resources available. At the search horizon, the A∗ evaluation function f (n) =
g(n) + h(n) is applied to the frontier nodes. Since all decisions are made by a single agent, the value
of an interior node is the minimum of the frontier values in the subtree below that node. A single
move is then made to a neighbor of the current state with the minimum value.

Most heuristic functions obey the triangle inequality characteristic of distance measures. As a
result, f (n) = g(n) + h(n) is guaranteed to be monotonically nondecreasing along a path. Further-
more, since minimin search has a fixed depth limit, we can apply depth-first branch-and-bound to
prune the search tree. The performance improvement due to branch-and-bound is quite dramatic,
in some cases extending the achievable search horizon by a factor of 5 relative to brute-force minimin
search on sliding-tile puzzles [19].

Minimin search with branch-and-bound is an algorithm for evaluating the immediate neighbors
of the current node. As such, it is run until a best child is identified, at which point the chosen move
is executed in the real world. We can view the static evaluation function combined with lookahead
search as simply a more accurate, but computationally more expensive, heuristic function. In fact,
it provides an entire spectrum of heuristic functions trading off accuracy for cost, depending on the
search horizon.

22.5.2 Real-Time-A∗

Simply repeating minimin search for each move ignores information from previous searches and
results in infinite loops. In addition, since actions are committed based on limited information, often
the best move may be to undo the previous move. The principle of rationality is that backtracking
should occur when the estimated cost of continuing the current path exceeds the cost of going back
to a previous state, plus the estimated cost of reaching the goal from that state. Real-time-A∗ (RTA∗)
implements this policy in constant time per move on a tree [19].

For each move, the f (n) = g(n) + h(n) value of each neighbor of the current state is computed,
where g(n) is now the cost of the edge from the current state to the neighbor, instead of from the
initial state. The problem solver moves to a neighbor with the minimum f (n) value, and stores in
the previous state the best f (n) value among the remaining neighbors. This represents the h(n) value
of the previous state from the perspective of the new current state. This is repeated until a goal is
reached. To determine the h(n) value of a previously visited state, the stored value is used, while for
a new state the heuristic evaluator is called. Note that the heuristic evaluator may employ minimin
lookahead search with branch-and-bound as well.

In a finite problem space in which there exists a path to a goal from every state, RTA∗ is guaranteed
to find a solution, regardless of the heuristic evaluation function [19]. Furthermore, on a tree, RTA∗
makes locally optimal decisions based on the information available at the time of the decision.

22.5.3 Learning-Real-Time-A∗

If a problem is to be solved repeatedly with the same goal state but different initial states, we would
like our algorithm to improve its performance over time. Learning-real-time-A∗ (LRTA∗) is such
an algorithm. It behaves almost identically to RTA∗, except that instead of storing the second-best f
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value of a node as its new heuristic value, it stores the best value instead. Once one problem instance
is solved, the stored heuristic values are saved and become the initial values for the next problem
instance. While LRTA∗ is less efficient than RTA∗ for solving a single problem instance, if it starts
with admissible initial heuristic values, over repeated trials its heuristic values eventually converge
to their exact values, at which point the algorithm returns optimal solutions.

22.6 Game Playing

The second major application of heuristic search algorithms in AI is game playing. One of the original
challenges of AI, which in fact predates the term artificial intelligence, was to build a program that
could play chess at the level of the best human players [48], a goal finally achieved in 1997 [18].
The earliest work in this area focussed on two-player perfect information games, such as chess and
checkers, but recently the field has broadened considerably.

22.6.1 Minimax Search

The standard algorithm for two-player perfect-information games is minimax search with heuristic
static evaluation [44]. The simplest version of the algorithm searches forward to a fixed depth in
the game tree, limited by the amount of time available per move. At this search horizon, a heuristic
evaluation function is applied to the frontier nodes. In this case, the heuristic is a function that
takes a board position and returns a number that indicates how favorable that position is for one
player relative to the other. For example, a very simple heuristic evaluator for chess would count the
total number of pieces on the board for one player, weighted by their relative strength, and subtract
the weighted sum of the opponent’s pieces. Thus, large positive values would correspond to strong
positions for one player, called MAX, whereas negative values of large magnitude would represent
advantageous situations for the opponent, called MIN.

Given the heuristic evaluations of the frontier nodes, values for the interior nodes in the tree are
recursively computed according to the minimax rule. The value of a node where it is MAX’s turn to
move is the maximum of the values of its children, while the value of a node where MIN is to move
is the minimum of the values of its children. Thus, at alternate levels of the tree, the minimum or
the maximum values of the children are backed up. This continues until the values of the immediate
children of the current position are computed, at which point one move is made to the child with
the maximum or minimum value, depending on whose turn it is to move.

22.6.2 Alpha-Beta Pruning

One of the most elegant of all AI search algorithms is alpha-beta pruning. It was invented in the
late 1950s, and a thorough treatment of the algorithm can be found in [28]. The idea, similar to
branch-and-bound, is that the minimax value of the root of a game tree can be determined without
examining all the nodes at the search frontier.

Figure 22.5 shows some examples of alpha-beta pruning. Only the pictured nodes are generated
by the algorithm, with the heavy black lines indicating pruning. At the square nodes MAX is to
move, while at the circular nodes it is MIN’s turn. The search proceeds depth-first to minimize
the memory required, and only evaluates a frontier node when necessary. First, nodes e and f are
statically evaluated at 4 and 5, respectively, and their minimum value, 4, is backed up to their parent
node d. Node h is then evaluated at 3, and hence the value of its parent node g must be less than or
equal to 3, since it is the minimum of 3 and the unknown value of its right child. The value of node
c must be 4 then, because it is the maximum of 4 and a value that is less than or equal to 3. Since
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FIGURE 22.5 Alpha-beta pruning example.

we have determined the minimax value of node c, we do not need to evaluate or even generate any
more children of node g.

Similarly, after statically evaluating nodes k and l at 6 and 7, respectively, the backed up value of
their parent node j is 6, the minimum of these values. This tells us that the minimax value of node i
must be greater than or equal to 6, since it is the maximum of 6 and the unknown value of its right
child. Since the value of node b is the minimum of 4 and a value that is greater than or equal to 6, it
must be 4, and hence we prune the remaining children of node i.

The right half of the tree shows an example of deep pruning. After evaluating the left half of the
tree, we know that the value of the root node a is greater than or equal to 4, the minimax value of
node b. Once node p is evaluated at 1, the value of its parent node o must be less than or equal to
1. Since the value of the root is greater than or equal to 4, the value of node o cannot propagate to
the root, and hence we need not generate any more children of node o. A similar situation exists
after the evaluation of node r as 2. At that point, the value of node o is less than or equal to 1, and
the value of node q is less than or equal to 2; hence, the value of node n, which is the maximum of
the values of nodes o and q, must be less than or equal to 2. Furthermore, since the value of node m
is the minimum of the value of node n and that of its brothers, and node n has a value less than or equal
to 2, the value of node m must also be less than or equal to 2. This causes the remaining children of
node m to be pruned, since the value of the root node a is greater than or equal to 4. Thus, we compute
the minimax value of the root of the tree to be 4 by generating only seven leaf nodes in this case.

Since alpha-beta pruning performs a minimax search while pruning much of the tree, its effect
is to allow a deeper search in the same amount of time. This raises the question of how much does
alpha-beta improve performance? The efficiency of alpha-beta pruning depends upon the order in
which nodes are encountered at the search frontier. For any set of frontier node values, there exists
some ordering of the values such that alpha-beta will not perform any cutoffs at all. In that case, all
frontier nodes must be evaluated, and the time complexity is O(bd).

On the other hand, there is an optimal or perfect ordering in which every possible cutoff is
realized. In that case, the asymptotic time complexity is reduced from O(bd) to O(bd/2). Another
way of viewing the perfect ordering case is that for the same amount of computation, one can search
twice as deep with alpha-beta pruning as without. Since the search tree grows exponentially with
depth, doubling the search horizon is a dramatic improvement.

In between worst-possible ordering and perfect ordering is random ordering, which is the average
case. Under random ordering of the frontier nodes, alpha-beta pruning reduces the asymptotic time
complexity to approximately O(b3d/4) [33]. This means that one can search 4/3 times as deep with
alpha-beta than with simple minimax, yielding a 33% improvement in search depth.

In practice, however, the time complexity of alpha-beta is closer to the best case of O(bd/2) due to
node ordering. The idea of node ordering is that instead of generating the children of a node in an
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arbitrary order, we can order the tree based on static evaluations of the interior nodes. In particular,
the children of MAX nodes are expanded in decreasing order of their static values, while the children
of MIN nodes are expanded in increasing order of their static values.

22.6.3 Other Techniques

A wide variety of additional techniques are employed in modern game-playing programs, including
quiescent search, iterative deepening, transposition tables, opening books, end-game databases, and
special-purpose hardware. We consider each of these in turn.

22.6.3.1 Quiescence

The idea of quiescence is that the static evaluator should not be applied to positions whose values
are unstable, such as those occurring in the middle of a piece trade. In those positions, a small
secondary search is conducted until the static evaluation becomes more stable. In games such as
chess or checkers, this can be achieved by not statically evaluating any position that allows capture
moves, but exploring capture moves one level deeper.

22.6.3.2 Iterative Deepening

Iterative deepening is used to solve the problem of where to set the search horizon [45], and in fact
predated its use as a memory-saving device in single-agent search. In a tournament game, there is
a limited amount of time allowed for moves. Unfortunately, it is very difficult to accurately predict
how long it will take to perform an alpha-beta search to a given depth. The solution is to perform
a series of searches to successively greater depths. When time runs out, the move recommended by
the last completed search is made.

22.6.3.3 Transposition Tables

The search graphs of most games contain multiple paths to the same node, often reached by making
the same moves in a different order, referred to as a transposition of the moves. Since alpha-beta
is a depth-first search, it does not detect such duplicate nodes. A transposition table is a table of
previously encountered game states, together with their backed-up minimax values. Whenever a
new state is generated, if it is stored in the transposition table, its stored value is used instead of
researching the tree below the node. Transposition tables can also be used in single-agent depth-first
searches to detect some duplicate nodes.

22.6.3.4 Opening Books

Just like people, programs often learn and store the best first few moves of a game, since many games
start from a common initial state. Such an opening book can be hand-coded by a human game
expert, or automatically learned from deep off-line searches.

22.6.3.5 End-Game Databases

In many games, such as checkers, the number of positions near the end of the game is small relative
to the mid-game. This allows the precomputation and storage of end-game databases, which contain
the true value, such as win, lose, or draw, of a large number of positions near the end of the game.
For example, the Chinook checkers program stores on disk a database of all positions with 10 or
fewer pieces on the board, along with their exact values [42]. When a position in the database is
encountered during search, the stored value is used, rather than searching the position any further.
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22.6.3.6 Special-Purpose Hardware

While the basic algorithms are described above, much of the performance advances in computer
chess in previous decades came from faster hardware. The faster the machine, the deeper it can search
in the time available, and the better it plays. Despite the rapidly advancing speed of general-purpose
computers, the best machines in the 1980s and 1990s included special-purpose hardware designed
and built only to play chess. For example, IBM’s DeepBlue could evaluate about 200 million chess
positions per second [17].

22.6.4 Significant Milestones

The most significant milestones in this area include defeating the human world champion at chess,
and solving the game of checkers.

In May 1997, IBM’s DeepBlue defeated Gary Kasparov, the world champion, in a six-game
exhibition match, achieving a long-anticipated goal in artificial intelligence [18]. Currently, the best
chess machines are general-purpose computers that rely entirely on software for their performance,
and play comparably to the best humans.

In April 2007, Jonathan Schaeffer’s Chinook group at the University of Alberta announced that
they had solved the game of checkers [43], proving that when both sides play perfectly, checkers is a
draw. This is by far the most complex game solved to date, using two dozen computers running for
about 18 years. The combination of its opening book, its mid-game search, and 10-piece end-game
databases allows Chinook to play perfect checkers.

22.6.5 Multiplayer Games, Imperfect and Hidden Information

Minimax search with static evaluation and alpha-beta pruning is most appropriate for two-player
games with perfect information and alternating moves among the players. This paradigm extends
in a straightforward way to more than two players, but alpha-beta becomes much less effective [20].

Games with chance elements, such as the roll of the dice in backgammon, for example, tend to
limit search algorithms because of the need to search over all possible chance outcomes. In addition
to chance, card games have information that is available to some players but hidden from others,
such as cards in different hands in Bridge. Poker is a very difficult challenge in this area, combining
all of the above complexities, as well as active deception and the need to model the opponents.

One technique that has been effective in handling hidden information is Monte-Carlo sampling
[12]. Given a decision to be made, such as the play of a card in bridge, we can randomly generate a
set of hands that is consistent with the information known about those hands at the current point
in time. Given this particular set of hands, we then use perfect-information techniques, such as
alpha-beta minimax, to determine the optimal play in this case. We then repeat the experiment,
generating another random set of hands, consistent with the information available, and compute
the optimal move in that case. After generating about 100 different random hands, we then play the
card that was most often the optimal card to play over all the randomly generated hands.

22.7 Constraint-Satisfaction Problems

In addition to single-agent path-finding problems and game playing, the third major application
of heuristic search is constraint-satisfaction problems. The N-queens problem and the popular
Sudoku puzzle are classic examples. Other examples include graph coloring, boolean satisfiability,
and scheduling problems.

Constraint-satisfaction problems are usually modelled as follows: There is a set of variables, a set
of values for each variable, and a set of constraints on the values that the variables can be assigned.
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A unary constraint on a variable specifies a subset of all possible values that can be assigned to
that variable. A binary constraint between two variables specifies which possible combinations of
assignments to the pair of variables is legal. For example, in the N-queens problem, the variables would
represent individual queens, and the values would be their positions on the board. The constraints
are binary constraints on each pair of queens that prohibit them from occupying positions on the
same row, column, or diagonal.

22.7.1 Chronological Backtracking

The brute-force approach to constraint satisfaction is called chronological backtracking. One selects
an order for the variables, and an order for the values, and starts assigning values to the variables
one at a time. Each assignment is made so that all constraints involving any of the instantiated
variables are satisfied. The reason for this is that once a constraint is violated, no assignment to the
remaining variables can possibly satisfy that constraint. Once a variable is reached which has no
remaining legal assignments, then the last variable that was assigned is reassigned to its next legal
value. The algorithm continues until either one or all complete, consistent assignments are found,
resulting in success, or all possible assignments are shown to violate some constraint, resulting in
failure. Figure 22.6 shows the tree generated by chronological backtracking to find all solutions to
the four-queens problem. The tree is searched depth-first to minimize memory requirements.

22.7.2 Intelligent Backtracking

One can improve the performance of chronological backtracking using a number of techniques,
such as variable ordering, value ordering, backjumping, and forward checking.

The order in which variables are instantiated can have a large effect on the size of a search tree. The
idea of variable ordering is to order the variables from most constrained to least constrained [10,37].
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FIGURE 22.6 Tree generated to solve the four queens problem.
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For example, if any variable has only a single value remaining that is consistent with the previously
instantiated variables, it should be assigned that value immediately. In general, the variables should
be instantiated in increasing order of the size of their remaining domains. This can either be done
statically at the beginning of the search, or dynamically, reordering the remaining variables each
time a variable is assigned a new value.

The order in which the values of a given variable are chosen determines the order in which the tree
is searched. Since it does not effect the size of the tree, it makes no difference if all solutions are to be
found. If only a single solution is required, however, value ordering can decrease the time required
to find a solution. Thus, one should order the values from least constraining to most constraining,
in order to minimize the time required to find a first solution [6,13].

The idea of backjumping is that when an impasse is reached, instead of simply undoing the last
decision made, the decision that actually caused the failure should be modified [11]. For example,
consider a three-variable problem where the variables are instantiated in the order x, y, z. Assume
that values have been chosen for both x and y, but that all possible values for z conflict with the value
chosen for x. In chronological backtracking, the value chosen for y would be changed, and then all
the possible values for z would be tested again, to no avail. A better strategy in this case is to go back
to the source of the failure, and change the value of x, before trying different values for y and z.

When a variable is assigned a value, forward checking checks each remaining uninstantiated
variable to make sure that there is at least one assignment for each of them that is consistent with the
current assignments. If not, the original variable is reassigned to its next value. Forward checking
subsumes backjumping.

22.7.3 Constraint Recording

In a constraint-satisfaction problem, some constraints are explicitly specified, and others are implied
by explicit constraints. Implicit constraints may be discovered either during a backtracking search,
or in advance in a preprocessing phase. The idea of constraint recording is that once these implicit
constraints are discovered, they should be saved explicitly so that they do not have to be rediscovered.

A simple example of constraint recording in a preprocessing phase is called arc consistency [10,
29,31]. For each pair of variables x and y that are related by a binary constraint, we remove from the
domain of x any values that do not have at least one corresponding consistent assignment to y, and
vice versa. In general, several iterations may be required to achieve complete arc consistency. Path
consistency is a generalization of arc consistency where instead of considering pairs of variables,
we examine triples of constrained variables. The effect of performing arc or path consistency before
backtracking is that the resulting search space can be dramatically reduced. In some cases, this
preprocessing of the constraints can eliminate the need for search entirely.

22.7.4 Local Search Algorithms

Backtracking searches a space of consistent partial assignments to variables, in the sense that all
constraints among instantiated variables are satisfied, and looks for a complete consistent assignment
to the variables, or in other words a solution. An alternative approach is to search a space of
inconsistent but complete assignments to the variables, until a consistent complete assignment is
found. This approach is known as heuristic repair [30] or more generally stochastic local search.
For example, in the N-queens problem, this algorithm places all N queens on the board at the
same time, and then moves queens one at a time until a solution is found. The natural heuristic,
called min-conflicts, moves a queen that is in conflict with the most other queens, to a position
where it conflicts with the fewest other queens. What is surprising about this simple strategy is how
well it performs, relative to backtracking. While backtracking techniques can solve on the order of
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hundred-queen problems, heuristic repair can solve million-queen problems, often with only about
50 individual queen moves!

This strategy has been extensively explored in the context of boolean satisfiability. The problem of
boolean satisfiability starts with a formula in propositional logic in conjunctive normal form. This is
an AND of a set of clauses, each of which is an OR of a set of literals, each of which is either an atomic
proposition or a negated atomic proposition. For example, the boolean formula (a + b) · (a′ + b′)
is in conjunctive normal form if + represents OR, · represents AND, and ′ represents negation. The
problem is to determine if there exists some assignment to the variables such that the entire formula
evaluates to true, or in other words, all the clauses are satisfied. For example, the above formula is
satisfiable, since assigning a to true and b to false will satisfy both clauses. If each clause has three
literals, called 3-SAT, the problem is NP-complete.

The greedy satisfiability (GSAT) algorithm [40] starts with a random assignment of boolean values
to the variables of a satisfiability problem, and flips the assignment of a variable that results in the
largest net increase in the number of satisfied clauses. It continues until either a solution is found, or
until a specified number of flips are performed, at which point it starts over with a different random
initial assignment. WalkSAT [41] adds another random element to this algorithm. With a certain
probability, it flips a variable that GSAT would flip, and with one minus that probability, it chooses
a random unsatisfied clause, and flips a randomly chosen variable in that clause.

The main drawback of these local-search approaches is that they are not complete, in that they are
not guaranteed to find a solution in a finite amount of time, even if one exists. If there is no solution,
these algorithms will run forever, whereas complete backtracking algorithms will eventually discover
that a problem is not solvable.

The best complete algorithms for boolean satisfiability are based on the DPLL algorithm [3]. These
algorithms assign values to variables one at a time, and propagate the consequences of assignments
using unit propagation, backtracking when a partial assignment cannot be extended any further. Both
complete algorithms and stochastic local search are areas of active research for boolean satisfiability.
Currently, local search algorithms seem to perform best on difficult random problems that are
satisfiable, while the complete algorithms tend to perform better on more structured problems.

While constraint-satisfaction problems appear somewhat different from single-agent path-finding
problems and two-player games, there is a strong similarity among the algorithms employed. For
example, backtracking can be viewed as a form of branch-and-bound, where a node is pruned when
any constraint is violated. Similarly, heuristic repair can be viewed as a heuristic search where the
evaluation function is the total number of constraints that are violated, and the goal is to find a state
with zero constraint violations.

22.8 Research Issues and Summary

22.8.1 Research Issues

A primary research problem in this area is the development of faster algorithms. All the above
algorithms are limited by efficiency either in the size of problems that they can solve optimally, or
in the quality of the decisions they can make, or solutions they can find within practical time limits.
Thus, there is a continual demand for faster algorithms.

One approach to faster algorithms is parallel search. Most search algorithms have a tremendous
amount of potential parallelism, since the basic step of node generation and evaluation is often
performed billions or trillions of times. As a result, many such algorithms are readily parallelized
with nearly linear speedups. The algorithms that are difficult to parallelize are branch-and-bound
algorithms, such as alpha-beta pruning, because the results of searching one part of the tree determine
whether another part of the tree needs to be examined at all.
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Since the performance of a search algorithm depends critically on the quality of the heuristic
evaluation function, another important research area is the automatic generation of such functions.
This was pioneered in the area of two-player games by Arthur Samuel’s landmark checkers program
that learned to improve its evaluation function through repeated play [39]. The development of
pattern databases, described above, is another approach to automatic heuristic construction.

While the first games to be addressed with AI techniques were two-player perfect information
games such as chess and checkers, the field has branched out to consider games with random
elements, such as backgammon, hidden information, such as card games, and multiple players.
Recently the game of poker has seen a great deal of activity, both from search-based and game-
theoretic approaches. The game of Go continues to be very challenging for computers, both because
of its large branching factor, and the difficulty of evaluating nonterminal positions.

Another important area in computer game-playing is developing automated opponents for video
games. The electronic entertainment industry is larger than the motion-picture industry, and most
of these games have agents that must be computer controlled. In addition to low-level issues such as
path planning for multiple agents, these games require high-level strategy as well.

22.8.2 Summary

We have described search algorithms for three different classes of problems. In single-agent path-
finding problems, the task is to find a sequence of operators that map an initial state to a desired goal
state. Much of the work in this area has focussed on finding optimal solutions to such problems,
often making use of admissible heuristic functions to speed up the search without sacrificing solution
optimality. In the area of game playing, finding optimal solutions is infeasible, and research has
focussed on algorithms for making the best move decisions possible given a limited amount of
computing time. This approach has also been applied to single-agent problems as well. In constraint-
satisfaction problems, the task is to find a state that satisfies a set of constraints. While all three of
these types of problems are different, the same set of ideas, such as brute-force search and heuristic
evaluation functions, can be applied to all three.

22.9 Further Information

The classic reference in this area is [34]. A number of papers were collected in an edited volume
devoted to search [16]. The constraint-satisfaction area is covered by [4], and stochastic local
search is covered in [15]. Most new research in this area initially appears in the Proceedings
of the Association for the Advancement of on Artificial Intelligence (AAAI) or the Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI). The Preeminent journals
in this area include Artificial Intelligence (AIJ), and the Journal of Artificial Intelligence Research
(JAIR).

Defining Terms

Admissible: A heuristic is said to be admissible if it never overestimates actual distance from a given
state to a goal. An algorithm is said to be admissible if it always finds an optimal solution to a problem
if one exists.
Branching factor: The average number of children of a node in a problem-space graph.
Constraint-satisfaction problem: A problem where the task is to identify a state that satisfies a set
of constraints.



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C022 Finals Page 21 2009-10-6

Artificial Intelligence Search Algorithms 22-21

Depth: The length of a shortest path from the initial state to a goal state.
Heuristic evaluation function: A function from a state to a number. In a single-agent problem, it
estimates the distance from the state to a goal. In a game, it estimates the merit of the position with
respect to one player.
Node expansion: Generating all the children of a given state.
Node generation: Creating the data structure that corresponds to a problem state.
Operator: An action that maps one state into another state, such as a twist of Rubik’s cube.
Problem instance: A problem space together with an initial state of the problem and a desired set
of goal states.
Problem space: A theoretical construct in which a search takes place, consisting of a set of states
and a set of operators.
Problem-space graph: A graphical representation of a problem space, where states are represented
by nodes, and operators are represented by edges.
Search: A trial-and-error exploration of alternative solutions to a problem.
Search tree: A problem-space graph with a unique path to each node.
Single-agent path-finding problem: A problem where the task is to find a sequence of operators
that map an initial state to a goal state.
State: A configuration of a problem, such as the arrangement of the parts of a Rubik’s cube at a given
point in time.
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23.1 Introduction

Examples of natural languages are Chinese, English, and Italian. They are called natural as they
evolved in a more or less natural way without too many deliberate considerations. This sets them
apart from formal languages, among which are programming languages, which are designed to
allow easy processing by computer algorithms. Typically, programs in programming languages,
such as C or Java, can be processed (compiled) in close to linear time in their length.

One particular feature that most programming languages have in common, and that allows for
their fast processing, is the absence of ambiguity. That is, only one structure, called a parse or parse
tree, can be assigned to any program, and this parse can have only one meaning. Furthermore, the
design of many programming languages is such that the single parse can be found deterministically,
which means that every parsing step contributes a fragment of the resulting parse. As parses have a
size linear in the length of the input, this explains why parsing is possible in linear time. Subsequent
processing of the parse, for example in order to compile to machine code, is also commonly possible
in close to linear time.

Natural languages are quite different in this respect. Like programs in a programming language,
sentences in a natural language can be assigned parses, but often the sentences are ambiguous
and allow more than one parse. Even for a single parse, there may be ambiguity in the meanings
of words or expressions. The existence of ambiguity in natural language is witnessed by frequent
misunderstandings in daily life, but it is also an essential feature of poetry and puns.

The field of natural language processing (NLP) studies algorithms, tools, and techniques for
the automatic processing of natural languages. A related if not synonymous term is computational
linguistics, which stresses that the field can be seen as a subfield of linguistics, which is the study of
(natural) language.

23-1
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Language can be investigated from different perspectives. At the lowest level, phonetics and
phonology study the sounds that spoken language consists of and the rules that govern them.
Morphology is the study of the internal structure of words. Syntax is the study of how words are
combined to form sentences. The meaning and the use of language are studied by semantics and
pragmatics, and the structure of human communication is studied by discourse.

The problem of parsing, with which we started our exposition, concerns the syntax of language.
Although interesting algorithms exist for the other levels of language as well, this chapter will
concentrate on algorithms related to syntax, as these form the most mature and well-understood
part of NLP.

Next to parsing, many other tasks studied in NLP are relevant to syntax. One such task is grammar
induction, which involves finding the syntactic structure of a language on the basis of examples.
Another task is machine translation, which includes transforming syntactic structure from one
language to that of another. A selection of algorithms that concerns these tasks will be discussed
further in the remainder of this chapter.

23.2 Example

We illustrate the problem of ambiguity by an example. Familiarity with context-free grammars
(CFGs) (see Chapter 20 of Algorithms and Theory of Computation Handbook: General Concepts and
Techniques) is assumed.

The sentence:

(1) Our company is training workers

has one obvious meaning to most readers. However, in principle, at least two other meanings exist.
This becomes clear if we replace some words by other words of the same type:

(2) Our problem is training workers
(3) Our company hires training workers

The three readings of (1) correspond to the three parses in Figure 23.1 assuming the CFG in the
following. This grammar is intended for illustrative purposes and represents a rough approximation
of a tiny part of English at best. We let S stand for “sentence,” NP for “noun phrase,” N for “noun,”

(a)

S

NP VP

PosPr N Aux VP

Our is V NPcompany

training N

workers

S

NP VP

PosPr N NPV

Our is VPcompany

NPV

workers

training N

(b)

S

NP VP

PosPr N NPV

Our is AP Ncompany

training workers

(c)

FIGURE 23.1 Three parses for “our company is training workers.”
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PosPr for “possessive pronoun,” VP for “verb phrase,” Aux for “auxiliary verb,” V for “verb,” and
AP for “adjective phrase.”

S → NP VP
NP → N
NP → PosPr N
NP → AP N
NP → VP
N → company
N → workers

PosPr → our
VP → Aux VP
VP → V NP
Aux → is

V → training
V → is

AP → training

An important observation is that the number of parses can be exponential in the length of the
sentence. An easy way to illustrate this is to extend the above example by conjunction, to allow
sentences of the following form:

(4) Robin’s company is training workers and Sandy’s company is training workers and [ . . . ]

Such a sentence has at least 3k parses, where k is the number of times the ambiguous construction
from (1) is repeated.

The exponential behavior entails that in practice it is not feasible to enumerate all parses of a
sentence. Therefore, one often represents the set of all parses by a structure commonly referred to as
a parse forest, also called more explicitly a shared-packed parse forest. The term “parse forest” has
become popular since the release of Tomita’s book (1986), but the underlying concept existed long
before that as we see in the next section.

Two observations underlie parse forests. The first is that alternative subparses of a substring with
the same nonterminal at the root can be “packed” together, and be treated as one with regard to
larger subparses of larger substrings. In Figure 23.1, this pertains to the two subparses for “training
workers” with NP at the root in parses (b) and (c). The second observation is that an identical
subparse can be “shared” among several larger subparses. An example in Figure 23.1 is the subparse
of “training workers” with root labeled VP, which is the same in parses (a) and (b).

A graphical representation of a parse forest is given in Figure 23.2. Packing is represented by a
rectangle enclosing two or more nodes. We see sharing where a node has more than one parent.

In the following section, we discuss the construction of parse forests. Thereafter, we also address
the problem of selecting the intended parse tree within a parse forest.

23.3 Context-Free Parsing by Intersection

The underlying principle of parse forests was already discovered by Bar-Hillel et al. (1964), who
found a constructive proof that the intersection of a context-free language and a regular language is
again a context-free language. The input to this construction is a CFG and a finite automaton. Instead
of a graph representation as in Figure 23.2, the output is itself a CFG, which is called the intersection
grammar. In this representation, sharing amounts to multiple occurrences of a nonterminal in
right-hand sides, and packing amounts to multiple occurrences of a nonterminal in left-hand sides.
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S

VP

VP

NP

NP NP

VP

PosPr

Our company is

N V

V AP NP

Aux

training

workers

N

FIGURE 23.2 The three parses in a parse forest.

[0, S, 5] → [0,NP, 2] [2, VP, 5]
[0,NP, 2] → [0, PosPr, 1] [1,N, 2]
[0, PosPr, 1] → [0, our, 1]
[1,N, 2] → [1, company, 2]
[2, VP, 5] → [2, Aux, 3] [3, VP, 5]
[2, VP, 5] → [2, V, 3] [3,NP, 5]
[2, Aux, 3] → [2, is, 3]
[2, V, 3] → [2, is, 3]
[3,NP, 5] → [3, VP, 5]
[3,NP, 5] → [3, AP, 4] [4,N, 5]
[3, VP, 5] → [3, V, 4] [4,NP, 5]
[3, V, 4] → [3, training, 4]
[3, AP, 4] → [3, training, 4]
[4,NP, 5] → [4,N, 5]
[4,N, 5] → [4, workers, 5]

[0, our, 1] → our
[1, company, 2] → company
[2, is, 3] → is
[3, training, 4] → training
[4,workers, 5] → workers

FIGURE 23.3 Parse forest in the representation as intersection grammar.

We simplify the discussion here by assuming a special type of finite automaton that recognizes
just one string, say w = a1 · · · an. The states of the automaton represent the positions between
adjacent symbols. In addition, the initial state 0 and the final state n represent the positions at the
left and right ends of w. By this simplification, the nonterminals of the intersection grammar are
triples [i, X, j], where i and j are input positions, and X is a terminal or nonterminal from the input
grammar. For each subparse with root labeled [i, X, j] (0 ≤ i ≤ j ≤ n) in the intersection grammar,
there is a corresponding subparse of ai+1 · · · aj with root labeled X in the original grammar. Triples
of this form, as well as related objects to be discussed in the sequel, are also referred to as (parse)
items. The start symbol of the intersection grammar is [0, S, n], where S is the start symbol of the
input grammar.

As an example, Figure 23.3 shows the parse forest from Figure 23.2 in the representation as
intersection grammar.

Let G be the input CFG and w the input string of length |w| = n. An easy way to construct the
intersection grammar G∩ is by the following algorithm:

INTERSECTION(G, w) {let a1 · · · an = w}
1: G∩ ← CFG with start symbol [0, S, n] and empty set of rules
2: for all rules A → X1 · · · Xm from G do
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3: for all sequences of positions i0, . . . , im (0 ≤ i0 ≤ · · · ≤ im ≤ n) do
4: add the rule [i0, A, im] → [i0, X1, i1] · · · [im−1, Xm, im] to G∩
5: for all i (1 ≤ i ≤ n) do
6: add the rule [i − 1, ai, i] → ai to G∩
7: return G∩
In general, the above algorithm produces more rules than needed. Formally, we say a nonterminal

in a CFG is generating if at least one terminal string can be derived from that nonterminal. We
say a nonterminal is reachable if a string containing that nonterminal can be derived from the start
symbol. A nonterminal is called useless, if it is nongenerating or unreachable or both. A grammar is
called reduced, if it does not contain any rules with useless nonterminals.

In the running example, [0, VP, 2] is nongenerating, as “our company” is not a verb phrase.
Therefore, the presence of a rule [0, VP, 2] → [0, Aux, 1] [1, VP, 2] makes the intersection grammar
nonreduced.

The set of generating nonterminals can be computed by the following algorithm. It is applicable
to any CFG, not just to those with nonterminals of the form [i, A, j]. We let Σ denote the terminal
alphabet, and Σ∗ the set of strings of terminal symbols including the empty string ε.

GENERATING(G)

1: OLDGEN ← ∅
2: GEN ← {A | A → v, v ∈ Σ∗}
3: while GEN 	= OLDGEN do
4: OLDGEN ← GEN
5: GEN ← {A | A → α, α ∈ (Σ ∪ OLDGEN)∗}
6: return GEN

This algorithm can be implemented to run in linear time in the number of nonterminal occurrences
in G in the following way. For each rule, we maintain a counter containing the number of nontermi-
nals in the right-hand side that has not yet been added to GEN. If a nonterminal A is newly added to
GEN, the counters of rules in which A occurs in the right-hand side are decremented. If a counter
of any rule becomes 0, the left-hand side nonterminal is added to GEN unless it has already been
added. By this implementation, at most one step is needed for each nonterminal occurrence in the
grammar.

The problem of finding the set of reachable nonterminals can also be solved in linear time, by
simple reduction to graph-reachability. We conclude that a grammar can be reduced in linear time
by computing the generating and reachable nonterminals, and then eliminating all rules in which
nonterminals that are not generating or not reachable occur.

In practice, it is preferable to combine the construction of an intersection grammar with its
reduction, which diminishes the space requirements of intermediate results. The procedure starts
by computing a set of generating nonterminals. The difference with the earlier procedure is that this
phase now precedes the explicit construction of rules of the intersection grammar.

The algorithm does, however, store and return items of the form [i, A → α • β, j], where A → αβ

is a rule from G and α 	= ε. Informally, the dot divides the right-hand side into a (nonempty) prefix
and a suffix, and the input positions i and j delimit a substring that can be derived from the prefix.
More precisely, if we assume α = X1 · · · Xm, then an item of this form represents that [i0, X1, i1],
. . . , [im−1, Xm, im] are all generating nonterminals for some choice of i = i0, i1, . . . , im−1, im = j. An
item [i, A → α • β, j] can thereby be seen as a partial result toward establishing that [i, A, j′] may be
a generating nonterminal, for some j′ ≥ j. Such items together with the familiar items of the form
[i, A, j] are gathered in a single set GEN.

The algorithm maintains an agenda with newly obtained items that are still to be put in GEN. New
items are also combined with existing items to derive yet more items, until the agenda is empty.
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GENERATINGINTERSECTION(G, w) {let a1 · · · an = w}
1: GEN ← ∅
2: AGENDA ← {[i − 1, ai, i] | 1 ≤ i ≤ n} ∪ {[i, A, i] | A → ε, 0 ≤ i ≤ n}
3: while AGENDA 	= ∅ do
4: remove some ITEM from AGENDA
5: if ITEM /∈ GEN then
6: GEN ← GEN ∪ {ITEM}
7: if ITEM = [j, X, k] then
8: for all [i, A → α • Xβ, j] ∈ GEN do
9: AGENDA ← AGENDA ∪ {[i, A → αX • β, k]}

10: for all A → Xβ do
11: AGENDA ← AGENDA ∪ {[j, A → X • β, k]}
12: if ITEM = [i, A → α • Xβ, j] then
13: for all [j, X, k] ∈ GEN do
14: AGENDA ← AGENDA ∪ {[i, A → αX • β, k]}
15: if ITEM = [i, A → α •, j] then
16: GEN ← GEN ∪ {[i, A, j]}
17: return GEN

The rules of the reduced intersection grammar are now constructed in a top–down manner,
which ensures that only reachable nonterminals are considered. The process is initiated by a call
INTERSECTIONFILTERED(0, S, n), where S is the start symbol of the input grammar and n = |w|. A set
DONE, which is initially ∅, is maintained to prevent that rules would be constructed more than once
by repeated calls of INTERSECTIONFILTERED with the same arguments. All new rules are composed of
nonterminals that were found to be generating earlier. This guarantees that the intersection grammar
is reduced.

INTERSECTIONFILTERED(i, X, j)
1: if [i, X, j] /∈ DONE then
2: DONE ← DONE ∪ {[i, X, j]}
3: if X is terminal a then
4: add [i, a, j] → a to G∩
5: else {X is nonterminal A}
6: if i = j and A → ε then
7: add [i, A, j] → ε to G∩
8: for all A → X1 · · · Xm (m > 0) and sequences

[i0, A → X1 · · · Xm−1Xm •, im], [im−1, Xm, im],
[i0, A → X1 · · · Xm−1 • Xm, im−1], [im−2, Xm−1, im−1],
. . . ,
[i0, A → X1 • · · · Xm−1Xm, i1], [i0, X1, i1] ∈ GEN,

where i0 = i and im = j do
9: add [i0, A, im] → [i0, X1, i1] · · · [im−1, Xm, im] to G∩

10: for all k (1 ≤ k ≤ m) do
11: INTERSECTIONFILTERED(ik−1, Xk, ik)

If r is the length of the longest right-hand side of a rule from the input grammar G, then the size
|G∩| ofG∩ isO(|G| · nr+1). The size of a CFG is defined as the sum of the number of nonterminal and
terminal occurrences in its rules. Also the time and space complexities of the intersection process
itself are given by O(|G| · nr+1), irrespective of whether reduction is integrated into the intersection
process, or done afterward.
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[i − 1, ai, i]
{
1 ≤ i ≤ n (a)

[i,A, i]
{

A → ε

0 ≤ i ≤ n (b)

[i,A → α •, j]
[i,A, j] (c)

[j,X, k]
[j,A → X • β, k]

{
A → Xβ (d)

[i,A → α • Xβ, j]
[j,X, k]

[i,A → αX • β, k] (e)

FIGURE 23.4 The algorithm GENERATINGINTERSECTION as deduction system.

If the input grammar is in binary form (that is r = 2), then the complexity is O(|G| · n3). This
is also the time and space complexities of the best practical recognition and parsing algorithms for
CFGs. (See, for example, the CYK algorithm discussed in Chapter 20 of Algorithms and Theory of
Computation Handbook: General Concepts and Techniques). Grammars that are not in binary form
can be easily brought in binary form by a construction that is linear in the size of the input grammar.

It is also possible to integrate binarization into the construction of the intersection grammar by
using items of the form [i, A → α • β, j], α 	= ε, as nonterminals. The intersection grammar then
contains, among others, rules of the form [i, A → αX • β, k] → [i, A → α • Xβ, j] [j, X, k] and
[i, A → X • β, j] → [i, X, j].

An important observation is that GENERATINGINTERSECTION has time complexity O(|G| · n3) but
its space complexity is only O(|G| · n2). If the objective is recognition rather than parsing, then
it suffices to check whether [0, S, n] is in GEN and the application of INTERSECTIONFILTERED is not
needed.

The extraction of a single and arbitrary parse from GEN has time complexity O(|G| · n2). This
can be explained as follows. There are O(|G| · n) items of the form [i0, A → X1 · · · Xk • · · · Xm, ik],
k ≥ 2, that are consistent with a given parse of the input string. Such items are considered while
we are extracting the parse from GEN in a top–down manner, much as in INTERSECTIONFILTERED.
For each, we may need to check at most O(n) values ik−1 between i0 and ik to determine whether
[i0, A → X1 · · · • Xk · · · Xm, ik−1], [ik−1, Xk, ik] ∈ GEN.

One may extend GENERATINGINTERSECTION such that it stores a list of the relevant ik−1 with items
[i0, A → X1 · · · Xk • · · · Xm, ik]. This allows a single parse to be extracted in O(|G| · n) time, but the
storage costs then grow to O(|G| · n3).

Algorithms, such as GENERATINGINTERSECTION, are sometimes presented in the form of a deduction
system. A deduction system consists of a collection of inference rules, each consisting of a list of
antecedents, which stand for items that we have already derived, and, below a horizontal line, the
consequent, which stands for an item that we derive from the antecedents. At the right of an inference
rule, we may also write a number of side conditions, which need to be fulfilled for the inference rule
to be applicable. The side conditions here refer to rules from the grammar and the input string.

A deduction system has a natural interpretation as dynamic programming algorithm, exemplified
by our code for GENERATINGINTERSECTION, as realization of the deduction system in Figure 23.4. An
easy way to determine the time complexity of the dynamic programming algorithm is to look at
the number of possible instantiations of each inference rule. The inference rule in Figure 23.4e is
the most expensive as it involves three input positions and one position within a grammar rule. The
number of applications is therefore O(|G| · n3), which confirms our earlier observations about the
time complexity of GENERATINGINTERSECTION.

23.4 Lexicalization

A central issue in modeling the syntax of natural languages is the extreme sensitivity to the choice
of lexical elements, that is, the words of the language. Let us return to the Example in Section 23.2.
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The appropriate parse of “our company is training workers” is that of Figure 23.1a. However, if we
replace the word “company” with the word “problem,” the appropriate parse becomes the structure
reflected by Figure 23.1b instead. A CFG of the kind presented in Section 23.2 cannot model such
effects, as it treats “company” and “problem” uniformly as nouns (strings derived from N).

A solution is to incorporate a terminal symbol (lexical element) in each nonterminal. This terminal
is such that it plays an important role in the syntactic and semantic contents of the derived string.
The model we consider here is called bilexical context-free grammar (2-LCFG). In various guises,
this model is used extensively in natural language parsing. It allows us to write rules of the form
S[training] → NP[company] VP[training], which expresses that a noun phrase whose main element
is “company” can combine with a verb phrase whose main element is “training.” By the same token,
one might exclude a rule of the form S[training] → NP[problem] VP[training], since, typically, a
problem cannot be the subject of training.

More precisely, a 2-LCFG is a CFG with nonterminal symbols of the form A[a], where a is a
terminal symbol and A is a symbol drawn from a small set of so-called delexicalized nonterminals,
which we denote as VD. Every rule in a 2-LCFG has one of the following forms: A[b] → B[b] C[c],
A[c] → B[b] C[c], or A[a] → a. Note that in binary rules (those with two members in the right-hand
side), the terminal symbol associated with the left-hand side nonterminal is always inherited from
one of the nonterminals in the right-hand side.

For technical reasons, we assume the existence of a dummy terminal $ to the right of each sentence,
and nowhere else. A dummy nonterminal with the same name allows terminal $ to be derived by
$[$] → $. The start symbol of a 2-LCFG is S[$] and there are rules expanding it to S[a] $[$], where
a is typically the main verb of a sentence to be derived. Figure 23.5 presents a possible parse tree for
the running example, assuming a 2-LCFG.

Let Σ denote the set of terminal symbols. In the worst case, a 2-LCFG can have Θ(|VD|3 · |Σ|2)
binary rules. Whereas VD is typically small, the set Σ can grow very large in practical applications.
When parsing with a 2-LCFG, it is therefore preferable to restrict the grammar to those rules
that contain lexical elements actually occurring within the input sentence w. Based on the time
complexity of general context-free parsing, as discussed in the previous sections, we then obtain a
time complexity of O(|VD|3 · |w|5), under the assumption that |w| < |Σ|, which always holds in
practical applications. In terms of sentence length, this is much worse than the time complexity of
unlexicalized parsing.

is

VP (training)

V (training)

training

$

$ ($)

S ($)

S (training)

VP (training)NP (company)

PosPr (our)

Our company

N (company) Aux (is)

workers

N (workers)

NP (workers)

FIGURE 23.5 A parse of “our company is training workers,” assuming a 2-LCFG.
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[h − 1,A, h, h]
{

A[ah] → ah
1 ≤ h ≤ n + 1 (a)

[−,B, h, j]
[j,C, h′, k]

[B, h,A, j, k]
{

A[ah] → B[ah] C[ah′ ] (b)

[i,B, h′, j]
[j,C, h,−]
[i, j,A,C, h]

{
A[ah] → B[ah′ ] C[ah] (c)

[i,A, h, j]
[i,A, h,−] (d)

[i,A, h, j]
[−,A, h, j] (e)

[i,B, h, j]
[B, h,A, j, k]
[i,A, h, k] (f)

[j,C, h, k]
[i, j,A,C, h]
[i,A, h, k] (g)

FIGURE 23.6 Deduction system for bilexical recognition. We assume w = a1 · · · an, an+1 = $.

B(ah) B(ah) A(ah) A(ah)

B(ah)

C(ah’)

ai ah aj

aj

aj

ak

ak

ah

ah ah akai

ah’

?

?

?aj

(e) (b) (f)

FIGURE 23.7 Illustration of the use of inference rules (e), (b), and (f) of bilexical recognition.

The time complexity can be reduced by a factor of |w| by a recognition algorithm that was
specifically designed for lexicalized grammars. It uses items of the form [i, A, h, j]. In terms of the
items used in Section 23.3, this has the same meaning as [i, A[ah], j], which now includes a lexicalized
nonterminal A[ah]. A new feature is that some steps of the algorithm require temporarily ignoring
either i or j, which is indicated by substituting one or the other by a hyphen.

We also need items of the form [B, h, A, j, k] to indicate that [−, B, h, j] and [j, C, h′, k] were derived,
for some C and h′ such that A[ah] → B[ah] C[ah′ ] is a rule. This represents an intermediate step in
establishing [i, A, h, k], temporarily ignoring the left boundary i of the substring derived from the
left child B[ah], and forgetting the right child C[ah′ ]. In a following step, i is reconstituted by access
to an original item [i, B, h, j].

The items of the form [i, j, A, C, h] have a symmetrical meaning, that is, they indicate that [i, B, h′, j]
and [j, C, h, −] were derived, for some B and h′ such that A[ah] → B[ah′ ] C[ah] is a rule.

The algorithm is given in Figure 23.6 as deduction system, and an illustration of the use of an
important combination of inference rules is given in Figure 23.7. The deduction of [i, A, h, k] from
[i, B, h, j] and [j, C′, h, k] via a grammar rule A[ah] → B[ah] C[ah′ ] is very similar to a step of the CYK
algorithm for general CFGs. The current algorithm does the same in three different steps represented
by inference rules (e), (b), and (f). Each of these involves no more than four input positions and
three delexicalized nonterminals. This corresponds to O(|VD|3 · n4) applications of each inference
rule, which is also the total time complexity of the algorithm.

23.5 Probabilistic Parsing

In natural language systems, parsing is commonly one stage of processing among several others.
The effectiveness of the stages that follow parsing generally relies on having obtained a small set of



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C023 Finals Page 10 2009-10-5

23-10 Special Topics and Techniques

preferred parses, ideally only one from among the full set of parses, represented as a parse forest
or intersection grammar. This is called (syntactic) disambiguation. There are roughly two ways to
achieve this. First, some kind of filter may be applied to the full set of parses, to reject all but a
few. This filter may look at the meanings of words and phrases, for example, and may be based on
linguistic knowledge that is very different in character from the grammar that was used for parsing.

A second approach is to augment the parsing process so that probabilities are attached to parses
and subparses. The higher the probability of a parse or subparse, the more confident we are that it
is correct. This is called probabilistic parsing. The simplest form of probabilistic parsing relies on an
assignment of probabilities to individual rules from a CFG. These probabilities are then multiplied
upon a combination of rules to form parses.

As an example, consider the following probabilistic CFG, which extends the grammar from the
running example with the probabilities between parentheses. As before, the example is meant to
illustrate technical concepts, but has no linguistic pretences.

S → NP VP (1)

NP → N (0.4)

NP → PosPr N (0.3)

NP → AP N (0.2)

NP → VP (0.1)

N → company (0.6)

N → workers (0.4)

PosPr → our (1)

VP → Aux VP (0.3)

VP → V NP (0.7)

Aux → is (1)

V → training (0.9)

V → is (0.1)

AP → training (1)

In the aforementioned grammar, the probabilities of rules with a given nonterminal in the left-hand
side always sum to 1. A probabilistic grammar for which this holds is called proper. The condition
of properness is strongly related to the fact that CFGs are a generative formalism, that is, a grammar
defines a set of objects by offering a number of operations to step-wise turn (partial) objects into
larger objects. In the case of probabilistic CFGs that are proper, the range of applicable operations
at each step of a left-most derivation forms a probability distribution.

With the aforementioned grammar, the most probable parse of “our company is training workers”
is that of Figure 23.1a. Its probability is the product of the probabilities of all applied rules (or more
precisely, rule occurrences). This is 1 · 0.3 · 1 · 0.6 · 0.3 · 1 · 0.7 · 0.9 · 0.4 · 0.4 = 0.0054432.

With a probabilistic input grammar G, the intersection grammar G∩ constructed for a given input
string w is also probabilistic. A rule of the form [i0, A, im] → [i0, X1, i1] · · · [im−1, Xm, im] is assigned
the same probability as the rule A → X1 · · · Xm in the input grammar G. The rules of the form
[i − 1, ai, i] → ai are assigned the probability 1.

The intersection grammar is not proper, in general, but it has the attractive feature that parses of
w in G have the same probability as the corresponding parses in G∩. This means that the problem
of finding the most probable parse of w in G can be translated to the problem of finding the most
probable parse in G∩. The latter problem is simpler than the original problem, as the input string no
longer needs to be considered explicitly. In fact, we investigate this problem below for an arbitrary
probabilistic CFG G, which may or may not be the result of intersection.

The algorithm in Figure 23.8 is a special case of an algorithm by Knuth, which generalizes Dijkstra’s
algorithm to compute the shortest path in a weighted graph. It finds the probability pmax(A) of the
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MOSTPROBABLEPARSE(G)

1: E ← Σ

2: repeat
3: F ← {A | A /∈ E ∧ ∃A → X1 · · · Xm[X1, . . . ,Xm ∈ E]}
4: if F ← ∅ then
5: report failure and halt
6: for all A ∈ F do
7: q(A) ← max

π=(A→X1···Xm):
X1,...,Xm∈E

p(π) · pmax(X1) · . . . · pmax(Xm)

8: choose A ∈ F such that q(A) is maximal
9: pmax(A) ← q(A)

10: E ← E ∪ {A}
11: until S ∈ E
12: output pmax(S)

FIGURE 23.8 Knuth’s generalization of Dijkstra’s algorithm, applied to finding the most probable parse in a proba-
bilistic CFG G.

most probable subparse with root labeled A. The value pmax(S), where S is the start symbol, then gives
us the probability of the most probable parse. The algorithm can be easily extended to return the
parse itself. For notational convenience, we let pmax(a) = 1 for each terminal a. The set of terminals
is here denoted as Σ.

In each iteration, the value of pmax(A) is established for a nonterminal A; the set E contains all
grammar symbols X for which pmax(X) has already been established. Initially, this is Σ, as we let
pmax(a) = 1 for each a ∈ Σ. The set F contains those nonterminals not yet in E that are candidates
to be added next. Each nonterminal A in F is such that a subparse with root labeled A exists
consisting of a rule A → X1 · · · Xm and subparses with roots labeled X1, . . . , Xm matching the values
of pmax(X1), . . . , pmax(Xm) found earlier. The nonterminal A for which such a subparse has the
highest probability is then added to E .

In a practical implementation, F and q would not be constructed anew for each iteration. They
would merely be revised every time a nonterminal A is added to E . This revision consists in removing
A from F and finding new rules whose right-hand side nonterminals are now all in E . This allows
adding new elements to F and/or updating q to assign higher values to elements in F . Typically, F
would be organized as a priority queue.

Knuth’s algorithm can be combined with a construction of the intersection grammar. If the
grammar has no cycles, several simplified algorithms exist. A particularly simple algorithm is an
extended form of CYK parsing for grammars in Chomsky normal form, which computes values
pmax([i, A, j]) after computing all values pmax([i′, A′, j′]) with i < i′ < j′ ≤ j or i ≤ i′ < j′ < j.

The probability of an ambiguous string is defined as the sum of the probabilities of all parses of
that string. In contrast to finding the most probable derivation, the problem of finding the most
probable string is generally difficult. The decision version of this problem is NP-complete if there is
a specified bound on the string length, and undecidable otherwise.

Probabilistic parsing is particularly effective for lexicalized grammars as it allows a fine-grained
encoding of dependencies between lexical elements. For example, the rule S[training] → NP
[company] VP[training] could be given a high probability, whereas S[training] → NP
[problem] VP[training] is given a low probability.

Probabilistic CFGs for natural languages are normally induced on the basis of samples of language
use, rather than explicitly written by people. The simplest algorithms of grammar induction rely
on input consisting of a multiset of parses also known as a tree bank. Tree banks are often the
result of manual or (partially) automated annotation of a number of texts, for example, newspaper
articles.
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The nonterminal label of a node in the tree bank together with the label of its children form a rule.
The probability of such a rule, say A → α, can be estimated as

C(A → α)

C(A)
, (23.1)

where
C(A) is the number of nodes in the input data with label A
C(A → α) is the number of occurrences of rule A → α in the tree bank

The probabilities of lexicalized rules are often computed as the product of probabilities of a number
of features that together determine the rule. For example, the probability of A[b] → B[b] C[c] can be
expressed as the probability of B given A and b, times the probability of C as second member in the
right-hand side, given A, b, and B, times the probability of c given A, b, B, and C as second member.
The last probability can be approximated as, for example, the probability of c given b and C. Such
approximations lead to a reduced number of parameters, which can be estimated more accurately if
the available tree bank is small.

23.6 Translation

Automatic translation between natural languages is one of the most challenging applications in
NLP. State-of-the-art approaches to this task are based on syntactic models, usually enriched with
statistical parameters. In this section we consider one such model, called synchronous context-free
grammar (SCFG), which is a notational variant of the syntax-directed translation schemata originally
developed in the theory of compilers (Aho and Ullman, 1972).

An SCFG consists of synchronous rules, each obtained by pairing two CFG rules with the same
left-hand side. The right-hand sides of such a pair of CFG rules must consist of identical multisets of
nonterminals, possibly ordered differently, and possibly combined with different terminal symbols.
Furthermore, there is an explicit bijection that pairs occurrences of identical nonterminals in the
two right-hand sides.

As an example, the synchronous rule 〈VP → VB 1 PP 2 , VP → PP 2 VB 1 ga〉 states that an
English verb phrase composed of the two constituents VB (“verb in base form”) and PP (“prepo-
sitional phrase”) can be translated into Japanese by swapping the order of the translations of these
constituents and by inserting the word “ga” at the right. Note the use of integers within boxes as
superscripts to indicate a bijection between nonterminal occurrences in the two context-free rules.

An SCFG can derive pairs of sentences as follows. Starting with the pair of nonterminals 〈S 1 , S 1 〉,
synchronous rules are applied to rewrite pairs of nonterminals that have the same index. At the
application of a rule, the indices in the newly added nonterminals are consistently renamed, in order
to avoid clashes with the indices introduced at previous rewriting steps. The rewriting stops when
all nonterminals have been rewritten.

The following toy SCFG will be the running example of this section:

s1 : 〈 S → A 1 C 2 , S → A 1 C 2 〉
s2 : 〈 C → B 1 S 2 , C → B 1 S 2 〉
s3 : 〈 C → B 1 S 2 , C → S 2 B 1 〉
s4 : 〈 C → B 1 , C → B 1 〉
s5 : 〈 A → a1, A → a2 〉
s6 : 〈 A → a1, A → ε 〉
s7 : 〈 B → b1, B → b2 〉
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In the represented translation, nonterminals B and S can be optionally inverted (rule s2 or rule s3),
and the terminal symbol a2, which is the translation of a1 (by rule s5), can be optionally deleted
(rule s6).

An example derivation of the string pair 〈a1b1a1b1, a2b2b2〉 by the above SCFG is

〈S 1 , S 1 〉 ⇒s1 〈A 2 C 3 , A 2 C 3 〉
⇒s3 〈A 2 B 4 S 5 , A 2 S 5 B 4 〉
⇒s1 〈A 2 B 4 A 6 C 7 , A 2 A 6 C 7 B 4 〉
⇒s4 〈A 2 B 4 A 6 B 8 , A 2 A 6 B 8 B 4 〉
⇒s5 〈a1B 4 A 6 B 8 , a2A 6 B 8 B 4 〉
⇒s7 〈a1b1A 6 B 8 , a2A 6 B 8 b2〉
⇒s6 〈a1b1a1B 8 , a2B 8 b2〉
⇒s7 〈a1b1a1b1, a2b2b2〉.

In the same way as a derivation in a CFG can be associated with a parse tree, a derivation in an
SCFG can be associated with a pair of parse trees. These trees differ only in the (terminal) labels of
the leaf nodes and in the ordering of siblings, as illustrated by Figure 23.9. We will refer to the two
trees in a pair as the input tree and the output tree.

Given an SCFG G and a string w, the expression w ◦ G denotes the set of all pairs of parse trees
associated with derivations in G whose input tree has a yield w. Note that all the strings that are
translations of w under G can be easily enumerated if we can enumerate the elements of w ◦ G.

The set w ◦ G can have size exponential in |w|, and the number of possible translations of w
under G can likewise be exponential. (There may even be an infinite number of translations, if there
are synchronous rules whose left components are epsilon rules or unit rules.) In Section 23.3, we
discussed a compact representation of a large set of parse trees in the form of a CFG. Below, this is
extended to a construction of an SCFG G′ that represents w ◦G in a compact way. This construction
is called left composition, and in full generality it can be applied to a finite automaton and an SCFG.
As in Section 23.3, we simplify the discussion by assuming a special type of finite automaton that
recognizes just one string w = a1 · · · an.

S S

A C

C C

A C

a1

b1 b2

B

A A

a1 a2

b1 b2

B B

BS S

FIGURE 23.9 A pair of trees associated with a derivation in an SCFG. The dotted lines link pairs of nonterminal
occurrences that had the same index during the rewriting process.
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We further assume, without the loss of generality, that synchronous rules from G are either of the
form 〈A → α, A → α′〉, where α and α′ are nonempty strings of indexed nonterminals, or of the
form 〈A → x, A → y〉, where x and y can each be a terminal symbol or the empty string. In the former
case, we use a permutation π to denote the bijective relation pairing the nonterminal occurrences in
α and α′, and write the synchronous rule as

〈
A → B 1

1 · · · B m
m , A → B π(1)

π(1) · · · B π(m)

π(m)

〉
.

The nonterminals of G′ have the form [i, A, j], where i and j denote input positions within w, and
A is a nonterminal from G.

LEFTCOMPOSITION(w,G) {let a1 · · · an = w}
1: G′ ← SCFG with start nonterminal [0, S, n] and empty set of synchronous rules
2: for all

〈
A → B 1

1 · · · B m
m , A → B π(1)

π(1) · · · B π(m)

π(m)

〉
from G do

3: for all i0, . . . , im (0 ≤ i0 ≤ . . . ≤ im ≤ n) do
4: add to G′ the synchronous rule 〈[i0, A, im] → [i0, B1, i1] 1 · · · [im−1, Bm, im] m ,

[i0, A, im] → [iπ(1)−1, Bπ(1), iπ(1)] π(1) · · · [iπ(m)−1, Bπ(m), iπ(m)] π(m) 〉
5: for all i (1 ≤ i ≤ n) and 〈A → ai, A → y〉 from G do
6: add to G′ the synchronous rule 〈[i − 1, A, i] → ai, [i − 1, A, i] → y〉
7: for all i (0 ≤ i ≤ n) and 〈A → ε, A → y〉 from G do
8: add to G′ the synchronous rule 〈[i, A, i] → ε, [i, A, i] → y〉
9: return G′

This construction may introduce many nonterminals into G′ that are useless in the same way as
algorithm INTERSECTION from Section 23.3 introduces useless nonterminals. Available techniques to
eliminate useless nonterminals from G′ are very similar to techniques discussed earlier.

If we remove the left components from synchronous rules of G′, then we obtain a CFG G′′ that
generates parse trees for all the possible translations of w under G. These parse trees differ from the
output trees in w ◦ G only in the labels of nodes. In the former, there are labels of the form [i, A, j]
where as in the latter there are labels A.

Returning to the running example, consider the input string w = a1b1a1b1. With the SCFG
given earlier, this string can be translated into the five strings a2b2a2b2, a2a2b2b2, a2b2b2, b2a2b2,
or b2b2. There are eight pairs of trees in w ◦ G as there are three derivations with output a2b2b2 and
two derivations with output b2b2. After applying left composition and reduction of the grammar,
we obtain

〈 [0, S, 4] → [0, A, 1] 1 [1, C, 4] 2 , [0, S, 4] → [0, A, 1] 1 [1, C, 4] 2 〉
〈 [1, C, 4] → [1, B, 2] 1 [2, S, 4] 2 , [1, C, 4] → [1, B, 2] 1 [2, S, 4] 2 〉
〈 [1, C, 4] → [1, B, 2] 1 [2, S, 4] 2 , [1, C, 4] → [2, S, 4] 2 [1, B, 2] 1 〉
〈 [2, S, 4] → [2, A, 3] 1 [3, C, 4] 2 , [2, S, 4] → [2, A, 3] 1 [3, C, 4] 2 〉
〈 [3, C, 4] → [3, B, 4] 1 , [3, C, 4] → [3, B, 4] 1 〉
〈 [0, A, 1] → a1, [0, A, 1] → a2 〉
〈 [0, A, 1] → a1, [0, A, 1] → ε 〉
〈 [1, B, 2] → b1, [1, B, 2] → b2 〉
〈 [2, A, 3] → a1, [2, A, 3] → a2 〉
〈 [2, A, 3] → a1, [2, A, 3] → ε 〉
〈 [3, B, 4] → b1, [3, B, 4] → b2 〉

The size of an SCFG G, written as |G|, is defined as the sum of the number of nonterminal and
terminal occurrences in its synchronous rules. Let r be the length of the longest right-hand side of a
context-free rule that is the input or output component of a synchronous rule. The time and space
complexities of left composition are both O(|G| · nr+1), where n is the length of the input string.
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In many practical applications, it is possible to factorize synchronous rules in such a way that the
parameter r is reduced to a small integer. In the general case, however, an SCFG cannot be cast
into an equivalent form with r bounded by some constant. This implies exponential behavior in the
worst case.

Next to the left composition of SCFG G with input string w1 there is the right composition of G
with output string w2. The definition of right composition is the natural mirror image of that of left
composition, and it results in an SCFG G′ that represents a set of tree pairs denoted by G ◦ w2.

Left and right compositions may be combined, one after the other in either order, to construct an
SCFG representing a set of tree pairs w1 ◦ G ◦ w2, that is, the set of all derivations of G with input
w1 and output w2. Important applications include inducing machine translation components from
text that were manually translated.

23.7 Further Information

The formal properties of CFGs are discussed, among others, by Hopcroft and Ullman (1979) and
Sippu and Soisalon-Soininen (1988). Interesting observations about the intersection of context-free
languages and regular languages, as relating to the distinction between parsing and recognition, are
due to Lang (1994), which offers a different perspective from that of, for example, Ruzzo (1979).

The algorithm GENERATINGINTERSECTION is close to a bottom-up variant of the parsing algorithm
by Graham et al. (1980). The presentation of recognition algorithms as deduction systems is com-
monly identified with Shieber et al. (1995) and Sikkel (1997). The underlying idea, however, can be
traced back to Cook (1970). The time complexity of deduction systems, implemented as dynamic
programming algorithms, was discussed by McAllester (2002).

The algorithm in Figure 23.6 has been adapted from Eisner and Satta (1999).
The problem of finding the most probable derivation is discussed by Knuth (1977) and Nederhof

(2003) in the general case, and by Jelinek et al. (1992) for grammars in Chomsky normal form.
The problem of finding the most probable string is discussed by Paz (1971), Casacuberta and de la
Higuera (2000), Sima’an (2002), and Blondel and Canterini (2003).

The result that general SCFGs cannot be cast in a normal form with a bound on rule length is from
Aho and Ullman (1969). NP-hardness of problems relating to translation are discussed in Satta and
Peserico (2005).

The running example from the beginning of this chapter is adapted from Manning and Schütze
(1999), which is recommended as a good introduction to statistical natural language processing. A
good general textbook on NLP is Jurafsky and Martin (2000).

The main journal of NLP is Computational Linguistics. Of at least equal importance are several
annual and biennial conferences, among which are Annual Meeting of the Association for Com-
putational Linguistics (ACL), European Chapter of the ACL (EACL), North American Chapter of
the ACL (NAACL), International Conference on Computational Linguistics (COLING), Empirical
Methods in Natural Language Processing (EMNLP) and Human Language Technology (HLT).

Defining Terms

Ambiguity: Existence of more than one interpretation of an element of language, for example,
existence of several parses of one sentence, or several possible meanings of a word.
Disambiguation: The process of identifying one preferred interpretation from a set of interpretations
of an ambiguous element of language.
Formal language: Language that is defined with mathematical rigor.
Grammar induction: Acquiring a grammar out of a sample of language.
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Linguistics: The study of natural language.
Machine translation: Automated translation between natural languages.
Natural language: Language used in human communication that evolved without too many delib-
erate considerations.
Natural language processing: Automated analysis, generation or translation of language.
(Parse) item: Element stored in the table of a parsing or recognition algorithm representing existence
of certain subparses.
Parse (tree): Structural interpretation of a sentence.
Parse forest: Structure containing a number of parses of one sentence.
Syntax: The study of the structure of sentences, as composed of words.
Tree bank: Multiset of parses representing an annotation of a sample of language use.
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24.1 Introduction

This chapter is concerned with designing algorithms for machines constructed from multiple pro-
cessors. In particular, we discuss algorithms for machines in which the processors are connected
to each other by some simple, systematic, interconnection patterns. For example, consider a chess
board, where each square represents a processor (for example, a processor similar to one in a home
computer) and every generic processor is connected to its four neighboring processors (those to the
north, south, east, and west). This is an example of a mesh computer, a network of processors that
is important for both theoretical and practical reasons.

The focus of this chapter is on algorithmic techniques. Initially, we define some basic terminology
that is used to discuss parallel algorithms and parallel architectures. Following this introductory
material, we define a variety of interconnection networks, including the mesh (chess board), which are
used to allow processors to communicate with each other. We also define an abstract parallel model
of computation, the PRAM, where processors are not connected to each other, but communicate
directly with a global pool of memory that is shared amongst the processors. We then discuss several
parallel programming paradigms, including the use of high-level data movement operations, divide-
and-conquer, pipelining, and master–slave. Finally, we discuss the problem of mapping the structure
of an inherently parallel problem onto a target parallel architecture. This mapping problem can arise

24-1
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in a variety of ways, and with a wide range of problem structures. In some cases, finding a good
mapping is quite straightforward, but in other cases it is a computationally intractable NP-complete
problem.

24.2 Terminology

In order to initiate our investigation, we first define some basic terminology that will be used
throughout the remainder of this chapter.

24.2.1 Shared Memory versus Distributed Memory

In a shared memory machine, there is a single global image of memory that is available to all
processors in the machine, typically through a common bus, set of busses, or switching network, as
shown in Figure 24.1a. This model is similar to a blackboard, where any processor can read or write
to any part of the board (memory), and where all communication is performed through messages
placed on the board.

As shown in Figure 24.1b, each processor in a distributed memory machine has access only to
its private (local) memory. In this model, processors communicate by sending messages to each
other, with the messages being sent through some form of an interconnection network. This model
is similar to that used by shipping services, such as the United States Postal Service, Federal Express,
DHL, or UPS, to name a few. For example, suppose Tom in city X needs some information from
Sue in city Y . Then Tom might send a letter requesting such information from Sue. However, the
letter might get routed from city X to a facility (i.e., “post office”) in city W, then to a facility
in city Z, and finally to the facility in city Y before being delivered locally to Sue. Sue will now
package up the information requested and go to a local shipping facility in city Y , which might
route the package to a facility in city Q, then to a facility in city R, and finally to a facility in city
X before being delivered locally to Tom. Note that there might be multiple paths between source
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FIGURE 24.1 (a) Shared memory and (b) distributed memory machines.
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and destination, that messages might move through different paths at different times between the
same source and destination depending on congestion, availability of the communication path, and
so forth. Also note that routing messages between processors that are closer to each other in terms
of the interconnection network (fewer hops between processors) typically require less time than is
required to route messages between pairs of processors that are farther apart (more hops between
processors in terms of the interconnection network). In such message-passing systems, the overhead
and delay can be significantly reduced if, for example, Sue sends the information to Tom without
him first requesting the information. It is particularly useful if the data from Sue arrives before Tom
needs to use it, for then Tom will not be delayed waiting for critical data. This analogy represents
an important aspect of developing efficient programs for distributed memory machines, especially
general-purpose machines in which communication can take place concurrently with calculation so
that the communication time is effectively hidden.

For small shared memory systems, it may be that the network is such that each processor can
access all memory cells in the same amount of time. For example, many symmetric multiprocessor
(SMP) systems have this property. However, since memory takes space, systems with a large number
of processors are typically constructed as modules (i.e., a processor/memory pair) that are connected
to each other via an interconnection network. Thus, while memory may be logically shared in such
a model, in terms of performance each processor acts as if it is distributed, with some memory being
“close” (fast access) to the processor and some memory being “far” (slow access) from the processor.
Notice the similarity to distributed memory machines, where there is a significant difference in
speed between a processor accessing its own memory versus a processor accessing the memory
of a distant processor. Such shared memory machines are called NUMA (nonuniform memory
access) machines, and often the most efficient programs for NUMA machines are developed by
using algorithms efficient for distributed memory architectures, rather than using ones optimized
for uniform access shared memory architectures.

Efficient use of the interconnection network in a parallel computer is often an important consid-
eration for developing and tuning parallel programs. For example, in either shared or distributed
memory machines, communication will be delayed if a packet of information must pass through
many communication links. Similarly, communication will be delayed by contention if many packets
need to pass through the same link. As an example of contention at a link, in a distributed memory
machine configured as a binary tree of processors, suppose that all leaf processors on one side of
the machine need to exchange values with all leaf processors on the other side of the machine. Then
a bottleneck occurs at the root since the passage of information proceeds in a sequential manner
through the links in and out of the root. A similar bottleneck occurs in a system if the interconnect
is merely a single Ethernet-based bus.

Both shared and distributed memory systems can also suffer from contention at the destinations.
In a distributed memory system, too many processors may simultaneously send messages to the
same processor, which causes a processing bottleneck. In a shared memory system, there may be
memory contention, where too many processors try to simultaneously read or write from the same
location.

Another common feature of both shared and distributed memory systems is that the programmer
has to be sure that computations are properly synchronized, i.e., that they occur in the correct order.
This tends to be easier in distributed memory systems, where each processor controls the access to
its data, and the messages used to communicate data also have the side-effect of communicating
the status of the sending processor. For example, suppose processor W is calculating a value, which
will then be sent to processor R. If the program is constructed so that R does not proceed until
the message from W arrives, then it is guaranteed of using the correct value in the calculations.
In a shared memory system, the programmer needs to be more careful. For example, in the same
scenario, W may write the new value to a memory location that R reads. However, if R reads before
W has written, then it may proceed using the wrong value. This is known as a race condition, where
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the correctness of the calculation depends on the order of the operations. To avoid this, various
locking or signaling protocols need to be enforced so that R does not read the location until after
W has written to it. Race conditions are a common source of programming errors, and are often
difficult to locate because they disappear when a deterministic, serial debugging approach is used.

24.2.2 Flynn’s Taxonomy

In 1966, Michael Flynn classified computer architectures with respect to the instruction stream, that
is, the sequence of operations performed by the computer, and the data stream, that is, the sequence
of items operated on by the instructions (Flynn, 1966). While extensions and modifications to
Flynn’s taxonomy have appeared, Flynn’s original taxonomy (Flynn, 1972) is still widely used. Flynn
characterized an architecture as belonging to one of the following four classes.

• Single-instruction stream, single-data stream (SISD)
• Single-instruction stream, multiple-data stream (SIMD)
• Multiple-instruction stream, single-data stream (MISD)
• Multiple-instruction stream, multiple data stream (MIMD)

Standard serial computers fall into the SISD category, in which one instruction is executed per unit
time. This is the so-called von Neumann model of computing, in which the stream of instructions
and the stream of data can be viewed as being tightly coupled, so that one instruction is executed per
unit time to produce one useful result. Modern “serial” computers include various forms of modest
parallelism in their execution of instructions, but most of this is hidden from the programmer and
only appears in the form of faster execution of a sequential program.

A SIMD machine typically consists of multiple processors, a control unit (controller), and an
interconnection network, as shown in Figure 24.2. The control unit stores the program and broadcasts
the instructions to all processors simultaneously. Active processors simultaneously execute the
identical instruction on the contents of each active processor’s own local memory. Through the use
of a mask, processors may be in either an active or inactive state at any time during the execution of the
program. Masks can be dynamically determined, based on local data or the processor’s coordinates.
Note that one side-effect of having a centralized controller is that the system is synchronous, so
that no processor can execute a second instruction until all processors are finished with the first
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FIGURE 24.2 A SIMD machine.
(PE is used to represent a process-
ing element.)

instruction. This is quite useful in algorithm design, as it eliminates
many race conditions and makes it easier to reason about the status
of processors and data.

MISD machines consist of two or more processors that simulta-
neously perform not necessarily identical instructions on the same
data. This model is rarely implemented.

A MIMD machine typically consists of multiple processors and
an interconnection network. In contrast to the single-instruction
stream model, the multiple-instruction stream model allows each
of the processors to store and execute its own program, providing
multiple instruction streams. Each processor fetches its own data
on which to operate. (Thus, there are multiple data streams, as
in the SIMD model.) Often, all processors are executing the same
program, but may be in different portions of the program at any
given instant. This is the single-program multiple-data (SPMD)
style of programming, and is an important mode of programming
because it is rarely feasible to have a large number of different
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programs for different processors. The SPMD style, like the SIMD architectures, also makes it
somewhat simpler to reason about the status of data structures and processors.

MIMD machines have emerged as the most commonly used general-purpose parallel computers,
and are available in a variety of configurations. Both shared and distributed memory machines are
available, as are mixed architectures where small numbers of processors are grouped together as a
shared memory SMP, and these SMPs are linked together in a distributed memory fashion.

24.2.3 Granularity

When discussing parallel architectures, the term granularity is often used to refer to the relative
number and complexity of the processors. A fine-grained machine typically consists of a relatively
large number of small, simple processors (in terms of local memory and computational power),
while a coarse-grained machine typically consists of relatively few processors, each of which is large
and powerful. Fine-grained machines typically fall into the SIMD category, where all processors
operate in lockstep fashion (i.e., synchronously) on the contents of their own small, local, memory.
Coarse-grained machines typically fall into the shared memory MIMD category, where processors
operate asynchronously on the large, shared, memory. Medium-grained machines are typically built
from commodity microprocessors, and are found in both distributed and shared memory models,
almost always in MIMD designs.

For a variety of reasons, medium-grained machines currently dominate the parallel computer
marketplace in terms of the number of installations. Such medium-grained machines typically
utilize commodity processors and have the ability to efficiently perform as general-purpose (parallel)
machines. Therefore, such medium-grained machines tend to have cost/performance advantages
over systems utilizing special-purpose processors. In addition, they can also exploit much of the
software written for their component processors. Fine-grained machines are difficult to use as
general-purpose computers because it is often difficult to determine how to efficiently distribute the
work to such simple processors. However, fine-grained machines can be quite effective in tasks such
as image processing or pattern matching.

By analogy, one can also use the granularity terminology to describe data and algorithms. For
example, a database is a coarse-grained view of data, while considering the individual records in the
database is a fine-grained view of the same data.

24.3 Interconnection Networks

In this section, we discuss interconnection networks that are used for communication among proces-
sors in a distributed memory machine. In some cases, all communications are handled by processors
sending messages to other processors that they have a direct connection to, where messages destined
for processors farther away must be handled by a sequence of intermediate processors. In other
cases the processors send messages into, and receive messages from, an interconnection network
composed of specialized routers that pass the messages. Most large systems use the latter approach.
We use the term node to represent the processors, in the former case, or the routers in the latter
case, i.e., in any system, messages are passed from node to node in the interconnection network.

First, we define some terminology. The degree of node R is the number of other nodes that R is
directly connected to via bi-directional communication links. (There are straightforward extensions
to systems with unidirectional links.) The degree of the network is the maximum degree of any node
in the network. The distance between two nodes is the number of communication links on a shortest
path between the nodes. The communication diameter of the network is the maximum, over all pairs
of nodes, distance between the nodes. The bisection bandwidth of the network corresponds to the
minimum number of communication links that need to be removed (or cut) in order to partition the
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network into two pieces, each with the same number of nodes. Goals for interconnection networks
include minimizing the degree of the nodes (to minimize the cost of building them), minimizing
the communication diameter (to minimize the communication time for any single message), and
maximizing the bisection bandwidth (to minimize contention when many messages are being sent
concurrently). Unfortunately, these design goals are in conflict. Other important design goals include
simplicity (to reduce the design costs for the hardware and software) and scalability (so that similar
machines, with a range of sizes, can be produced). We informally call simple scalable interconnections
regular networks. Regular networks make it easier for users to develop optimized code for a range
of problem sizes.

Before defining some network models (i.e., distributed memory machines characterized by their
interconnection networks, or the interconnection network used in a shared memory machine), we
briefly discuss the parallel random access machine (PRAM), which is an idealized parallel model of
computation, with a unit-time communication diameter. The PRAM is a shared memory machine
that consists of a set of identical processors, where all processors have unit-time access to any
memory location. The appeal of a PRAM is that one can ignore issues of communication when
designing algorithms, focusing instead on obtaining the maximum parallelism possible in order to
minimize the running time necessary to solve a given problem. The PRAM model typically assumes
a SIMD strategy, so that operations are performed synchronously. If multiple processors try to
simultaneously read or write from the same memory location, then a memory conflict occurs. There
are several variations of the PRAM model targeted at handling these conflicts, ranging from the
exclusive read exclusive write (EREW) model, which prohibits all such conflicts, to concurrent read
concurrent write (CRCW) models, which have various ways of resolving the effects of simultaneous
writes. One popular intermediate model is the concurrent read exclusive write (CREW) PRAM,
in which concurrent reads to a memory location is permitted, but concurrent writes are not. For
example, a classroom is usually conducted in a CREW manner. In the classroom, many students
can read from the blackboard simultaneously (concurrent read), while if several students are writing
simultaneously on the blackboard, they are doing so in different locations (exclusive write).

The unit-time memory access requirement for a PRAM is not scalable (i.e., it is not realistic for a
large number of processors and memory). However, in creating parallel programs, it is sometimes
useful to describe a PRAM algorithm and then either perform a stepwise simulation of every PRAM
operation on the target machine, or perform a higher-level simulation by using global operations.
In such settings, it is often useful to design the algorithm for a powerful CRCW PRAM model, since
often the CRCW PRAM can solve a problem faster or more naturally than an EREW PRAM. Since
one is not trying to construct an actual PRAM, objections to the difficulty of implementing CRCW
are not relevant; rather, having a simpler and/or faster algorithm is the dominant consideration.

In the remainder of this section, several specific interconnection networks are defined. See
Figure 24.3 for illustrations of these. The networks defined in this section are among the most
commonly utilized networks. However, additional networks have appeared in both the literature
and in real machines, and variations of the basic networks described here are numerous. For example,
many small systems use only a bus as the interconnection network (where only one message at a time
can be transmitted), reconfigurable meshes extend the capabilities of standard meshes by adding
dynamic interconnection configuration (Li and Stout, 1991), and Clos networks have properties
between those of completely connected crossbar systems and hypercubes.

24.3.1 Ring

In a ring network, the n nodes are connected in a circular fashion so that node Ri is directly
connected to nodes Ri−1 and Ri+1 (the indices are computed modulo n, so that nodes R0 and Rn−1
are connected). While the degree of the network is only 2, the communication diameter is �n/2�,
which is quite high, and the bisection bandwidth is only 2, which is quite low.
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(a)

(b) (c) (d)

FIGURE 24.3 Sample interconnection networks (a through d): ring, mesh, hypercube, and tree.

24.3.2 Meshes and Tori

The n nodes of a two-dimensional square mesh network are configured so that an interior node
Ri,j is connected to its four neighbors, nodes Ri−1,j, Ri+1,j, Ri,j−1, and Ri,j+1. The four corner nodes
are each connected to their two neighbors, while the remaining nodes that are on the edge of the
mesh are each connected to three neighbors. So, by increasing the degree of the network to 4, as
compared to the degree 2 of the ring, the communication diameter of the network is reduced to
2(

√
n −1), and the bisection bandwidth is increased to

√
n. The diameter is further reduced, to

2�√n/2�, and the bisection bandwidth is increased, to 2
√

n, in a two-dimensional torus, which has
all the connections of the two-dimensional mesh plus connections between the first and the last
nodes in each row and column. Meshes and tori of higher dimensions can be constructed, where
the degree of a d-dimensional mesh or torus is 2d, and, when n is a perfect dth power, the diameter
is either d(n1/d − 1) or d�n1/d/2�, respectively, and the bisection bandwidth is either n(d−1)/d or
2n(d−1)/d, respectively. Notice that the ring is a one-dimensional torus.

For a two-dimensional mesh, and similarly for higher-dimensional meshes, the mesh can be
rectangular, instead of square. This allows a great deal of flexibility in selecting the size of the mesh,
and the same flexibility is available for tori as well.

24.3.3 Hypercube

A hypercube with n nodes, where n is an integral power of 2, has the nodes indexed by the integers
{0, . . . , n − 1}. Viewing each integer in this range as a (log2 n)-bit string, two nodes are directly
connected if and only if their indices differ by exactly one bit. Some advantages of a hypercube are
that the communication diameter is only log2 n and the bisection bandwidth is n/2. A disadvantage
of the hypercube is that the number of communication links needed by each node grows as log2 n,
unlike the fixed degree for nodes in ring and mesh networks. This makes it difficult to manufacture
reasonably generic hypercube nodes that could scale to extremely large machines, though in practice
this is not a concern because the cost of an extremely large machine would be prohibitive.

24.3.4 Tree

A complete binary tree of height k, k ≥ 0 an integer, has n = 2k+1 −1 nodes. The root node is at level
0 and the 2k leaves are at level k. Each node at level 1, . . . , k − 1 has two children and one parent, the
root node does not have a parent node, and the leaves at level k do not have children nodes. Notice
that the degree of the network is 3 and that the communication diameter is 2k = 2�log2 n�. One
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severe disadvantage of a tree is that when extensive communication occurs, all messages traveling
from one side of the tree to the other must pass through the root, causing a bottleneck. This is
because the bisection bandwidth is only 1. Fat trees, introduced by Leiserson (1985), alleviate this
problem by increasing the bandwidth of the communication links near the root. This increase can
come from changing the nature of the links, or, more easily, by using parallel communication links.
Other generalizations of binary trees include complete t-ary trees of height k, where each node at
level 0, . . . , k − 1 has t children. There are (tk+1 − 1)/(t − 1) nodes, the maximum degree is t + 1,
and the diameter is 2k = 2�logt n�.

24.4 Designing Algorithms

Viewed from the highest level, many parallel algorithms are purely sequential, with the same overall
structure as an algorithm designed for a more standard “serial” computer. That is, there may be
an input and initialization phase, then a computational phase, and then an output and termination
phase. The differences, however, are manifested within each phase. For example, during the compu-
tational phase, an efficient parallel algorithm may be inherently different from its efficient sequential
counterpart.

For each of the phases of a parallel computation, it is often useful to think of operating on an
entire structure simultaneously. This is an SIMD-style approach, but the operations may be quite
complex. For example, one may want to update all entries in a matrix, tree, or database, and view this
as a single (complex) operation. For a fine-grained machine, this might be implemented by having a
single (or few) data item per processor, and then using a purely parallel algorithm for the operation.
For example, suppose an n × n array A is stored on an n × n two-dimensional torus, so that A(i, j)
is stored on processor Pi,j. Suppose one wants to replace each value A(i, j) with the average of itself
and the four neighbors A(i−1, j), A(i+1, j), A(i, j−1), and A(i, j+1), where the indices are computed
modulo n (i.e., “neighbors” is in the torus sense). This average filtering can be accomplished by just
shifting the array right, left, up, and down by one position in the torus, and having each processor
average the four values received along with its initial value.

For a medium- or coarse-grained machine, operating on entire structures is most likely to be
implemented by blending serial and parallel approaches. On such an architecture, each processor
uses an efficient serial algorithm applied to the portion of the data in the processor, and communicates
with other processors in order to exchange critical data. For example, suppose the n × n array of
the previous paragraph is stored in a p × p torus, where p evenly divides n, so that A(i, j) is stored
in processor P�ip/n�,�jp/n�. Then, to do the same average filtering on A, each processor Pk,l still needs
to communicate with its torus neighbors Pk±1,l, Pk,l±1, but now sends them either the leftmost or
rightmost column of data, or the topmost or bottommost row. Once a processor receives its boundary
set of data from its neighboring processors, it can then proceed serially through its subsquare of
data and produce the desired results. To maximize efficiency, this can be performed by having each
processor send the data needed by its neighbors, then perform the filtering on the part of the array that
it contains that does not depend on data from the neighbors, and then finally perform the filtering
on the elements that depend on the data from neighbors. Unfortunately, while this maximizes the
possible overlap between communication and calculation, it also complicates the program because
the order of computations within a processor needs to be rearranged.

24.4.1 Global Operations

To manipulate entire structures in one step, it is useful to have a collection of operations that
perform such manipulations. These global operations may be very problem-dependent, but certain
ones have been found to be widely useful. For example, the average filtering example above made
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use of shift operations to move an array around. Broadcast is another common global operation,
used to send data from one processor to all other processors. Extensions of the broadcast operation
include simultaneously performing a broadcast within every (predetermined and distinct) subset
of processors. For example, suppose matrix A has been partitioned into submatrices allocated to
different processors, and one needs to broadcast the first row of A so that if a processor contains any
elements of column i, then it obtains the value of A(1, i). In this situation, the more general form of
a subset-based broadcast can be used.

Besides operating within subsets of processors, many global operations are defined in terms of
a commutative, associative, semigroup operator ⊗. Examples of such semigroup operators include
minimum, maximum, or, and, sum, and product. For example, suppose there is a set of values
V(i), 1 ≤ i ≤ n, and the goal is to obtain the maximum of these values. Then ⊗ would represent
maximum, and the operation of applying ⊗ to all n values is called reduction. If the value of the
reduction is broadcast to all processors, then it is sometimes known as report. A more general form
of the reduction operation involves labeled data items, i.e., each data item is embedded in a record
that also contains a label, where at the end of the reduction operation the result of applying ⊗ to all
values with the same label will be recorded in the record.

Global operations provide a useful way to describe major actions in parallel programs. Further,
since several of these operations are widely useful, they are often made available in highly optimized
implementations. The language APL provided a model for several of these operations, and some
parallel versions of APL have appeared. Languages such as C* (Thinking Machines Corporation,
1991), UPC (El-Ghazawi et al., 2005), OpenMP (OpenMP Architecture Review Board, 2005), and
FORTRAN 90 [Brainerd, Goldberg, and Adams, 1990] also provide for some forms of global
operations, as do message-passing systems such as MPI (Snir et al., 1995). Reduction operations
are so important that most parallelizing compilers detect them automatically, even if they have no
explicit support for other global operations.

Besides broadcast, reduction, and shift, other important global operations include the following.

Sort: Let X = {x0, x1, . . . , xn−1} be an ordered set such that xi < xi+1, for all 0 ≤ i < n − 1.
(That is, X is a subset of a linearly ordered data type.) Given that the n elements of X are
arbitrarily distributed among a set of p processors, the sort operation will (re)arrange the
members of X so that they are ordered with respect to the processors. That is, after sorting,
elements x0, . . . , x�n/p� will be in the first processor, elements x�n/p�+1, . . . , x�2n/p� will
be in the second processor, and so forth. Note that this assumes an ordering on the
processors, as well as on the elements.

Merge: Suppose that sets D1 and D2 are subsets of some linearly ordered data type, and D1 and
D2 are each distributed in an ordered fashion among disjoint sets of processors P1 and
P2, respectively. Then the merge operation combines D1 and D2 to yield a single sorted
set stored in ordered fashion in the entire set of processors P = P1 ∪ P2.

Associative read/write: These operations start with a set of master records indexed by unique
keys. In the associative read, each processor specifies a key and ends up with the data in
the master record indexed by that key, if such a record exists, or else a flag indicating
that there is no such record. In the associative write, each processor specifies a key and a
value, and each master record is updated by applying ⊗ to all values sent to it. (Master
records are generated for all keys written.)

These operations are extensions of the CRCW PRAM operations. They model a PRAM
with associative memory and a powerful combining operation for concurrent writes. On
most distributed memory machines the time to perform these more powerful operations
is within a multiplicative constant of the time needed to simulate the usual concurrent
read and concurrent write, and the use of the more powerful operations can result in
significant algorithmic simplifications and speedups.
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Compression: Compression moves data into a region of the machine where optimal inter-
processor communication is possible. For example, compressing k items in a fine-grain
two-dimensional mesh will move them to a

√
k × √

k subsquare.
Scan (parallel prefix): Given a set of values ai, 1 ≤ i ≤ n, the scan computation determines

si = a1 ⊗a2 ⊗· · ·⊗ai, for all i. This operation is available in APL. Note that the hardware
feature known as “fetch-and-op” implements a variant of scan, where “op” is ⊗ and the
ordering of the processors is not required to be deterministic.

All-to-all broadcast: Given data D(i) in processor i, every processor j receives a copy of D(i),
for all i 	= j.

All-to-all personalized communication: Every processor Pi has a data item D(i, j) that is sent to
processor Pj, for all i 	= j.

FIGURE 24.4 The maximal
points of the set are shaded.

Example: Maximal point problem
As an example of the use of global operations, consider the following
problem from computational geometry. Let S be a finite set of planar
(i.e., two-dimensional) points. A point p = (px, py) in S is a maximal
point of S if px > qx or py > qy, for every point (qx, qy) 	= p in S. The
maximal point problem is to determine all maximal points of S (See
Figure 24.4). The following parallel algorithm for the maximal point
problem was apparently first noted by Atallah and Goodrich (1986).

1. Sort the n planar points in reverse order by x-coordinate,
with ties broken by reverse order by y-coordinate. Let
(ix, iy) denote the coordinates of the ith point after the
sort is complete. Therefore, after sorting, the points will
be ordered so that if i < j then either ix > jx or ix = jx
and iy > jy.

2. Use a scan on the iy values, where the operation ⊗ is taken to be maximum. The resulting
values {Li} are such that Li is the largest y-coordinate of any point with index less than i.

3. The point (ix, iy) is an extreme point if and only if iy > Li.

The running time T(n) of this algorithm is given by

T(n) = Sort(n) + Scan(n) + O(1), (24.1)

where Sort(n) is the time to sort n items and Scan(n) is the time to perform the scan. On all parallel
architectures known to the authors, Scan(n) = O(Sort(n)), and hence on such machines the time
of the algorithm is Θ(Sort(n)). It is worth noting that for the sequential model (Kung et al., 1975),
have shown that the problem of determining maximal points is as hard as sorting.

24.4.2 Divide-and-Conquer

Divide-and-conquer is a powerful algorithmic paradigm that exploits the repeated subdivision
of problems and data into smaller, similar problems/data. It is quite useful in parallel computation
because the logical subdivisions into subproblems can correspond to physical decomposition among
processors, where eventually the problem is broken into subproblems that are each contained within
a single processor. These small subproblems are typically solved by an efficient sequential algorithm
within each processor.

As an example, consider the problem of labeling the figures of a black/white image, where the
interpretation is that of black objects on a white background. Two black pixels are defined to be
adjacent if they are vertical or horizontal neighbors, and connected if there is a path of adjacent black
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FIGURE 24.5 Divide-and-
conquer for labeling figures. The
14 labels shown were generated
after each quadrant performed
its own, local, labeling algorithm.
While the labels are unique, they
need to be resolved globally.
Notice that once the labels are
resolved (not shown), the image
will have only five unique labels,
corresponding to the five figures.

pixels between them. A figure (i.e., connected component) is defined
to be a maximally connected set of black pixels in the image. The
figures of an image are said to be labeled if every black pixel in the
image has a label, with two black pixels having the same label if and
only if they are in the same figure.

We utilize a generic parallel divide-and-conquer solution for this
problem, given, for example, in (Miller and Stout, 1996, p. 30). Sup-
pose that the n × n image has been divided into p subimages, as
square as possible, and distributed one subimage per processor. Each
processor labels the subimage it contains, using whatever serial algo-
rithm is best and using labels that are unique to the processor (so
that no two different figures can accidentally get the same label).
For example, often the label used is a concatenation of the row and
column coordinates of one of the pixels in the figure. Notice that, so,
as long as the global row and column coordinates are used, the labels
will be unique. After this step, the only figures that could have an
incorrect global label are those that lie in two or more subimages, and
any such figures must have a pixel on the border of each subimage
it is in (see Figure 24.5). To resolve these labels, a record is prepared
for each black pixel on the border of a subimage, where the record
contains information about the pixel’s position in the image, and its
current label. There are far fewer such records than there are pixels
in the original image, yet they contain all of the information needed to determine the proper global
labels for figures crossing subimages. The problem of reconciling the local labels may itself be solved
via divide-and-conquer, repeatedly merging results from adjacent regions, or may be solved via
other approaches. Once these labels have been resolved, information is sent back to the processors
generating the records, informing them of the proper final label.

One useful feature of many of the networks described in the section on Interconnection Networks
is that they can be divided into similar subnetworks, in a manner that matches the divide-and-
conquer paradigm. For example, if the component labeling algorithm just described were performed
on a mesh computer, then each subregion of the image would correspond to a subsquare of the
mesh. As another example, consider an implementation of quicksort on a hypercube. Suppose a
pivot is chosen and that the data is partitioned into items smaller than the pivot and items larger
than the pivot. Further, suppose that the hypercube is logically partitioned into two subcubes, where
all of the small items are moved into one subcube and all of the large items are moved into the other
subcube. Now, the quicksort routine may proceed recursively within each subcube. Because the
recursive divide-and-conquer occurs within subcubes, all of the communication will occur within
the subcubes and not cause contention with the other subcube.

24.4.3 Master–Slave

One algorithmic paradigm based on real-world organization paradigms is the master–slave (some-
times referred to as manager–worker) paradigm. In this approach, one processor acts as the master,
directing all of the other slave processors. For example, many branch-and-bound approaches to
optimization problems keep track of the best solution found so far, as well as a list of subproblems
that need to be explored. In a master–slave implementation, the master maintains both of these
items and is responsible for parceling out the subproblems to the slaves. The slaves are responsible
for processing the subproblems and reporting the result to the master (which will determine if it is
the current best solution), reporting new subproblems that need to be explored to the master, and
notifying the master when it is free to work on a new subproblem. There are many variations on this
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theme, but the basic idea is that one processor is responsible for overall coordination, and the other
processors are responsible for solving assigned subproblems. Note that this is a variant of the SPMD
style of programming, in that there are two programs needed, rather than just one.

24.4.4 Pipelining and Systolic Algorithms

Another common parallel algorithmic technique is based on models that resemble an assembly line.
A large problem, such as analyzing a number of images, may be broken into a sequence of steps
that must be performed on each image (e.g., filtering, labeling, scene analysis). If one had three
processors, and if each step takes about the same amount of time, one could start the first image
on the first processor that does the filtering. Then the first image is passed on to the next processor
for labeling, while the first processor starts filtering the second image. In the third time step, the
initial image is at the third processor for scene analysis, the second image is at the second processor
for labeling, and the third image is at the first processor for filtering. This form of processing is
called pipelining, and it maps naturally to a parallel computer configured as a linear array (i.e.,
a one-dimensional mesh or, equivalently, a ring without the wraparound connection).

This simple scenario can be extended in many ways. For example, as in a real assembly line, the
processors need not all be identical, and may be optimized for their task. Also, if some task takes
longer to perform than others, then more than one processor can be assigned to it. Finally, the flow
may not be a simple line. For example, an automobile assembly process may have one line working
on the chassis, while a different line is working on the engine, and eventually these two lines are
merged. Such generalized pipelining is called systolic processing. For example, some matrix and
image-processing operations can be performed in a two-dimensional systolic manner (see Ullman,
1984).

24.5 Mappings

Often, a problem has a natural structure to be exploited for parallelism, and this needs to be mapped
onto a target machine. Several examples follow.

• The average filtering problem, discussed in the Section 24.4, has a natural array structure
that can easily be mapped onto a mesh computer. If, however, one had the same problem,
but a tree computer, then the mapping might be much more complicated.

• Some artificial intelligence paradigms exploit a blackboard-like communication mecha-
nism that naturally maps onto a shared memory machine. However, a blackboard-like
approach is more difficult to map onto a distributed-memory machine.

• Finite-element decompositions have a natural structure whereby calculations at each grid
point depend only on values at adjacent points. A finite-element approach is frequently
used to model automobiles, airplanes, and rocket exhaust, to name a few. However,
the irregular (and perhaps dynamic) structure of such decompositions might need to
be mapped onto a target-parallel architecture that bears little resemblance to the finite-
element grid.

• A more traditional example consists of porting a parallel algorithm designed for one
parallel architecture onto another parallel architecture.

In all of these examples, one starts with a source structure that needs to be mapped onto a target
machine. The goal is to map the source structure onto the target architecture so that calculation and
communication steps on the source structure can be efficiently performed by the target architecture.
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Usually, the most critical aspect is to map the calculations of the source structure onto the processors
of the target machine, so that each processor performs the same amount of calculations. For example,
if the source is an array, and each position of the array represents calculations that need to be
performed, then one tries to map the array onto the machine so that all processors contain the same
number of entries. If the source model is a shared-memory paradigm with agents reading from
a blackboard, then one would map the agents to processors, trying to balance the computational
work.

Besides trying to balance the computational load, one must also try to minimize the time spent on
communication. The approaches used for these mappings depend on the source structure and target
architecture, and some of the more widely used approaches are discussed in the following Sections.

24.5.1 Simulating Shared Memory

If the source structure is a shared memory model, and the target architecture is a distributed memory
machine, then besides mapping the calculations of the source onto the processors of the target, one
must also map the shared memory of the source onto the distributed memory of the target.

To map the memory onto the target machine, suppose that there are memory locations 0 . . . n−1 in
the source structure, and p processors in the target. Typically one would map locations 0 . . . �n/p−1�
to processor 0 of the target machine, locations �n/p� . . . �2n/p − 1� to processor 1, and so forth.
Such a simple mapping balances the amount of memory being simulated by each target processor,
and makes it easy to determine where data are located. For example, if a target processor needs to
read from shared memory location i, it sends a message to target processor �ip/n� asking for the
contents of simulated shared memory location i.

Unfortunately, some shared memory algorithms utilize certain memory locations far more often
than others, which can cause bottlenecks in terms of getting data in and out of processors holding
the popular locations. If popular memory locations form contiguous blocks, then this congestion
can be alleviated by stripping (mapping memory location i to processor i mod p) or pseudorandom
mapping (Rau, 1991). Replication (having copies of frequently read locations in more than one
processor) or adaptive mapping (dynamically moving simulated memory locations from heavily
loaded processors to lightly loaded ones) are occasionally employed to relieve congestion, but such
techniques are more complicated and involve additional overhead.

24.5.2 Simulating Distributed Memory

It is often useful to view distributed memory machines as graphs. Processors in the machine are
represented by vertices of the graph, and communication links in the machine are represented by
edges in the graph. Similarly, it is often convenient to view the structure of a problem as a graph,
where vertices represent work that needs to be performed, and edges represent values that need to be
communicated in order to perform the desired work. For example, in a finite-element decomposition,
the vertices of a decomposition might represent calculations that need to be performed, while the
edges correspond to the flow of data. That is, in a typical finite-element problem, if there is an edge
from vertex p to vertex q, then the value of q at time t depends on the values of q and p at time t − 1.
(Most finite-element decompositions are symmetric, so that p at time t would also depend on q at
time t − 1.) Questions about mapping the structure of a problem onto a target architecture can then
be answered by considering various operations on the related graphs.

An ideal situation for mapping a problem onto a target architecture is when the graph representing
the structure of a problem is a subgraph of the graph representing the target architecture. For
example, if the structure of a problem was represented as a connected string of p vertices and the
target architecture was a ring of p processors, then the mapping of the problem onto the architecture
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would be straightforward and efficient. In graph terms, this is described through the notion of
embedding. An embedding of an undirected graph G = (V , E) (i.e., G has vertex set V and edges E)
into an undirected graph G′ = (V ′, E′) is a mapping φ of V into V ′ such that

• Every pair of distinct vertices u, v ∈ V , map to distinct vertices φ(u), φ(v) ∈ V ′.
• For every edge {u, v} ∈ E, {φ(u), φ(v)} is an edge in E′.

Let G represent the graph corresponding to the structure of a problem (i.e., the source structure)
and let G′ represent the graph corresponding to the target architecture. Notice that if there is an
embedding of G into G′, then values that need to be communicated may be transmitted by a single
communication step in the target architecture represented by G′. The fact that embeddings map
distinct vertices of G to distinct vertices of G′ ensures that a single calculation step for the problem
can be simulated in a single calculation step of the target architecture.

One reason that hypercube computers were quite popular is that many graphs can be embed-
ded into the hypercube (graph). An embedding of the one-dimensional ring of size 2d into a
d-dimensional hypercube is called a d-dimensional Gray code. In other words, if {0, 1}d denotes the
set of all d-bit binary strings, then the d-dimensional Gray code Gd is a 1–1 map of 0 . . . 2d − 1 onto
{0, 1}d, such that Gd(j) and Gd((j + 1) mod 2d) differ by a single bit, for 0 ≤ j ≤ 2d − 1. The most
common Gray codes, called reflected binary Gray codes, are recursively defined as follows: Gd is a
1–1 mapping from {0, 1, . . . , 2d − 1} onto {0, 1}d, given by G1(0) = 0, G1(1) = 1, and for d ≥ 2,

Gd(x) =
{

0Gd−1(x) 0 ≤ x ≤ 2d−1 − 1
1Gd−1(2d − 1 − x) 2d−1 ≤ x ≤ 2d − 1. (24.2)

Alternatively, the same Gray code can be defined in a nonrecursive fashion as Gd(x) = x ⊕ �x/2�,
where x and �x/2� are interpreted as d-bit strings. Further, the inverse of the reflected binary Gray
code can be determined by

G−1
d (y0 . . . yd−1) = x0 . . . xd−1, (24.3)

where xd−1 = yd−1, and xi = yd−1 ⊕ · · · ⊕ yi for 0 ≤ i < d − 1.
Meshes can also be embedded into hypercubes. Let M be a d-dimensional mesh of size m1 ×

m2 × · · · × md, and let r = ∑d
i=1log2 mi�. Then M can be embedded into the hypercube of size 2r .

To see this, let ri = log2 mi�, for 1 ≤ i ≤ d. Let φ be the mapping of mesh node (a1, . . . , ad) to
the hypercube node which has as its label the concatenation Gr1(a1) · · · Grd(ad), where Gri denotes
any ri-bit Gray code. Then φ is an embedding. Wrapped dimensions can be handled using reflected
Gray codes rather than arbitrary ones. (A mesh M is wrapped in dimension j if, in addition to
the normal mesh adjacencies, vertices with indices of the form (a1, . . . , aj−1, 0, aj+1, . . . , ad) and
(a1, . . . , aj−1, mj − 1, aj+1, . . . , ad) are adjacent. A torus is a mesh wrapped in all dimensions.) If
dimension j is wrapped and mj is an integral power of 2, then the mapping φ suffices. If dimension j
is wrapped and mj is even, but not an integral power of 2, then to ensure that the first and last nodes
in dimension j are mapped to adjacent hypercube nodes, use φ, but replace Grj(aj) with

{
Grj(aj) if 0 ≤ aj ≤ mj/2 − 1
Grj(aj + 2rj − mj) if mj/2 ≤ aj ≤ mj − 1, (24.4)

where Grj is the rj-bit reflected binary Gray code. This construction ensures that Grj(mj/2 − 1) and
Grj(2rj − mj/2) differ by exactly one bit (the highest order one), which in turns ensures that the
mapping takes mesh nodes neighboring in dimension j to hypercube neighbors.
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Any tree T can be embedded into a (|T| − 1)-dimensional hypercube, where |T| denotes the
number of vertices in T, but this result is of little use since the target hypercube is exponentially
larger than the source tree. Often one can map the tree into a more reasonably sized hypercube,
but it is a difficult problem to determine the minimum dimension needed, and there are numerous
papers on the subject.

In general, however, one cannot embed the source structure into the target architecture. For
example, a complete binary tree of height two, which contains seven processors, cannot be embed-
ded into a ring of any size. Therefore, one must consider weaker mappings, which allow for the
possibility that the target machine has fewer processors than the source, and does not contain the
communication links of the source. A weak embedding of a directed source graph G = (V , E) into
a directed target graph G′ = (V ′, E′) consists of

• A map φv of V into V ′.
• A map φe of E onto paths in G′, such that if (u, v) ∈ E then φe((u, v)) is a path from

φv(u) to φv(v).

(Note that if G is undirected, each edge becomes two directed edges that may be mapped to different
paths in G′. Most machines that are based on meshes, tori, or hypercubes have the property that a
message from processor P to processor Q may not necessarily follow the same path as a message sent
from processor Q to processor P, if P and Q are not adjacent.) The map φv shows how computations
are mapped from the source onto the target, and the map φe shows the communication paths that
will be used in the target.

There are several measures that are often used to describe the quality of a weak embedding (φv, φe)
of G into G′, including the following.

Processor Load: The maximum, over all vertices v′ ∈ V ′, of the number of vertices in V mapped
onto v′ by φv. Note that if all vertices of the source structure represent the same amount
of computation, then the processor load is the maximum computational load by any
processor in the target machine. The goal is to make the processor load as close as
possible to |V|/|V ′|. If vertices do not all represent the same amount of work, then one
should use labeled vertices, where the label represents the amount of work, and try to
minimize the maximum, over all vertices v′ ∈ V ′, of the sum of the labels of the vertices
mapped onto v′.

Link load (link congestion): The maximum, over all edges (u′, v′) ∈ E′, of the number of edges
(u, v) ∈ E such that (u′, v′) is part of the path φe((u, v)). If all edges of the source
structure represent the same amount of communication, then the link load represents
the maximum amount of communication contending for a single communication link in
the target architecture. As for processor load, if edges do not represent the same amount
of communication, then weights should be balanced instead.

Dilation: The maximum, over all edges (u, v) ∈ E, of the path length of φe((u, v)). The dilation
represents the longest delay that would be needed to simulate a single communication
step along an edge in the source, if that was the only communication being performed.

Expansion: The ratio of the number of vertices of G′ divided by the number of vertices of G.
As was noted in the example of trees embedding into hypercubes, large expansion is
impractical. In practice, usually the real target machine has far fewer processors than the
idealized source structure, so expansion is not a concern.

In some machines, dilation is an important measure of communication delay, but in most modern
general-purpose machines it is far less important because each message has a relatively large start-up
time that may be a few orders of magnitude larger than the time per link traversed. Link contention
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may still be a problem in such machines, but some solve this by increasing the bandwidth on links
that would have heavy contention. For example, as noted earlier, fat-trees (Leiserson, 1985) add
bandwidth near the root to avoid the bottlenecks inherent in a tree architecture. This increases the
bisection bandwidth, which reduces the link contention for communication that poorly matches the
basic tree structure.

For machines with very large message start-up times, often the number of messages needed
becomes a dominant communication issue. In such a machine, one may merely try to balance
calculation load and minimize the number of messages each processor needs to send, ignoring
other communication effects. The number of messages that a processor needs to send can be easily
determined by noting that processors p and q communicate if there are adjacent vertices u and v in
the source structure such that φv maps u to p and v to q.

For many graphs that cannot be embedded into a hypercube, there are nonetheless useful weak
embeddings. For example, keeping the expansion as close to 1 as is possible (given the restriction
that a hypercube has a power of 2 processors), one can map the complete binary tree onto the
hypercube with unit link congestion, dilation two, and unit processor contention. See, for example,
(Leighton, 1992).

In general, however, finding an optimal weak embedding for a given source and target is an
NP-complete problem. This problem, sometimes known as the mapping problem, is often solved
by various heuristics. This is particularly true when the source structure is given by a finite-element
decomposition or other approximation schemes for real entities, for in such cases the sources are
often quite large and irregular. Fortunately, the fact that such sources often have an underlying
geometric basis makes it easier to find fairly good mappings rather quickly.

For example, suppose the source structure is an irregular grid representing the surface of a
three-dimensional airplane, and the target machine is a two-dimensional mesh. One might first
project the airplane onto the x–y plane, ignoring the z-coordinates. Then one might locate a median
x-coordinate, call it x̄, where half of the plane’s vertices lie to the left of x̄ and half to the right. The
vertices may then be mapped so that those that lie to the left of x̄ are mapped onto the left half of the
target machine, and those vertices that lie to the right of x̄ are mapped to the right half of the target.
In the left half of the target, one might locate the median y-coordinate, denoted ȳ, of the points
mapped to that half, and map the points above ȳ to the top-left quadrant of the target, and map
points below ȳ to the bottom-left. On the right half a similar operation would be performed for the
points mapped to that side. Continuing in this recursive, divide-and-conquer manner, eventually the
target machine would have been subdivided down into single processors, at which point the mapping
would have been determined. This mapping is fairly straightforward, balances the processor load,
and roughly keeps points adjacent in the grid near to each other in the target machine, and hence
it does a reasonable approximation of minimizing communication time. This technique is known
as recursive bisectioning, and is closely related to the serial data structure known as a K-d tree
(Bentley, 1975).

An approach which typically results in less communication is to form a linear ordering of the
vertices via their coordinates on a space-filling curve, and then divide the vertices into intervals of
this ordering. Typically either Z-ordering (aka Morton-ordering) or Peano–Hilbert curves are used
for this purpose. Peano–Hilbert curves are also used as orderings of the processors in meshes, where
they are sometimes called proximity orderings (Miller and Stout, 1996, p. 150).

Neither recursive bisectioning nor space-filling curves minimize the number of messages sent by
each processor, and hence if message start-up time is quite high it may be better to use recursive
bisectioning where the plane is cut along only, say, the x-axis at each step. Each processor would
end up with a cross-sectional slab, with all of the source vertices in the given range of x-coordinates.
If grid edges are not longer than the width of such a slab, then each processor would have to send
messages to only two processors, namely the processor with the slab to the left and the processor
with the slab to the right.
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Other complications can arise because the nodes or edges of such sources may not all represent
the same amount of computation or calculation, respectively, in which case weighted mappings
are appropriate. A variety of programs are available that perform such mappings, and over time
the quality of the mapping achieved, and the time to achieve it, has significantly improved. For
irregular source structures, such packages are generally superior to what one would achieve without
considerable effort.

A more serious complication is that the natural source structure may be dynamic, adding nodes
or edges over time. In such situations one often needs to dynamically adjust the mapping to keep
the computational load balanced and keep communication minimal. This introduces additional
overhead, which one must weigh against the costs of not adjusting the imbalance. Often the dynamical
remappings are made incrementally, moving only a little of the data to correct the worst imbalances.
Deciding how often to check for imbalance, and how much to move, typically depends quite heavily
on the problem being solved.

24.6 Research Issues and Summary

The development of parallel algorithms and efficient parallel programs lags significantly behind that
of algorithms and programs for standard serial computers. This makes sense due to the fact that
commercially available serial machines have been available for approximately twice as long as have
commercially available parallel machines. Parallel computing, including distributed computing,
cluster computing, and grid computing, is in a rapidly growing phase, with important research and
development still needed in almost all areas. Extensive theoretical and practical work continues
in discovering parallel programming paradigms, in developing a wide range of efficient parallel
algorithms, in developing ways to describe and manage parallelism through new languages or
extensions of current ones, in developing techniques to automatically detect parallelism, and in
developing libraries of parallel routines.

Another factor that has hindered parallel algorithm development is the fact that there are many
different parallel computing models. As noted earlier, architectural differences can significantly
affect the efficiency of an algorithm, and hence parallel algorithms have traditionally been tied to
specific parallel models. One advance is that various hardware and software approaches are being
developed to help hide some of the architectural differences. Thus, one may have, say, a distributed
memory machine, but have a software system that allows the programmer to view it as a shared
memory machine. While it is true that a programmer will usually only be able to achieve the
highest performance by directly optimizing the code for a target machine, in many cases acceptable
performance can be achieved without tying the code to excessive details of an architecture. This
then allows the code to be ported to a variety of machines, encouraging code development. In the
past, extensive code revision was needed every time the code was ported to a new parallel machine,
strongly discouraging many users who did not want to plan for an unending parade of changes.

Another factor that has limited parallel algorithm development is that most computer scientists
were not trained in parallel computing and have a limited knowledge of domain-specific areas
(chemistry, biology, mechanical engineering, civil engineering, physics, and architecture, to name
but a few). As the field matures, more courses will incorporate parallel computing and the situation
will improve. There are some technological factors that argue for the need for rapid improvement
in the training of programmers to exploit parallelism. The history of exponential growth in the
clock rate of processors has come to a close, with only slow advances predicted for the future, so
users can no longer expect to solve ever more complex problems merely through improvements in
serial processors. Meanwhile, cluster computers, which are distributed memory systems where the
individual nodes are commodity boards containing serial or small shared memory units, have become
common throughout industry and academia. These are low-cost systems with significant computing
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power, but unfortunately, due to the dearth of parallel programmers, many of these systems are used
only to run concurrent serial programs (known as embarrassingly parallel processing), or to run
turnkey parallel programs (such as databases).

Parallelism is also becoming the dominant improvement in the capabilities of individual chips.
Some graphics processing units (GPUs) already have over a hundred simple computational units
that are vector processing systems, which can be interpreted as implementing SIMD operations.
There is interest in exploiting these in areas such as data mining and numeric vector computing,
but so far this has primarily been achieved for proof of concept demonstrations. Most importantly,
standard serial processors are all becoming many-core chips with parallel computing possibilities,
where the number of cores per chip is predicted to have exponential growth. Unfortunately it is very
difficult to exploit their potential, and they are almost never used as parallel computers. Improving
this situation has become an urgent problem in computer science and its application to problems in
the disciplinary fields that require large multi-processor systems.

24.7 Further Information

A good introduction to parallel computing at the undergraduate level is Parallel Computing: Theory
and Practice by Michael J. Quinn (1994). This book provides a nice introduction to parallel com-
puting, including parallel algorithms, parallel architectures, and parallel programming languages.
Parallel Algorithms for Regular Architectures: Meshes and Pyramids by Russ Miller and Quentin F.
Stout focuses on fundamental algorithms and paradigms for fine-grained machines. It advocates an
approach of designing algorithms in terms of fundamental data movement operations, including
sorting, concurrent read, and concurrent write. Such an approach allows one to port algorithms
in an efficient manner between architectures. Introduction to Parallel Algorithms and Architectures:
Arrays, Trees, Hypercubes is a comprehensive book by F. Thomson Leighton (1992) that also focuses
on fine-grained algorithms for several traditional interconnection networks. For the reader interested
in algorithms for the PRAM, An Introduction to Parallel Algorithms by J. JáJá covers fundamental
algorithms in geometry, graph theory, and string matching. It also includes a chapter on random-
ized algorithms. Finally, a new approach is used in Algorithms Sequential & Parallel by Miller and
Boxer (2005), which presents a unified approach to sequential and parallel algorithms, focusing on
the RAM, PRAM, Mesh, Hypercube, and Pyramid. This book focuses on paradigms and efficient
implementations across a variety of platforms in order to provide efficient solutions to fundamental
problems.

There are several professional societies that sponsor conferences, publish books, and publish
journals in the area of parallel algorithms. These include the Association for Computing Machinery
(ACM), which can be found at http://www.acm.org, The Institute for Electrical and Electronics
Engineers, Inc. (IEEE), which can be found at http://www.ieee.org, and the Society for Industrial and
Applied Mathematics (SIAM), which can be found at http://www.siam.org.

Since parallel computing has become so pervasive, most computer science journals cover work
concerned with parallel and distributed systems. For example, one would expect a journal on
programming languages to publish articles on languages for shared-memory machines, distributed-
memory machines, networks of workstations, and so forth. For several journals, however, the
primary focus is on parallel algorithms. These journals include the Journal for Parallel and Distributed
Computing, published by Academic Press (http://www.apnet.com), the IEEE Transactions on Parallel
and Distributed Systems (http://computer.org/pubs/tpds), and for results that can be expressed
in a condensed form, Parallel Processing Letters, published by World Scientific. Finally, several
comprehensive journals should be mentioned that publish a fair number of articles on parallel
algorithms. These include the IEEE Transactions on Computers, Journal of the ACM, and SIAM
Journal on Computing.
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Unfortunately, due to very long delays from submission to publication, most results that appear
in journals (with the exception of Parallel Processing Letters) are actually quite old. (A delay of 3–5
years from submission to publication is not uncommon.) Recent results appear in a timely fashion in
conferences, most of which are either peer or panel reviewed. The first conference devoted primarily
to parallel computing was the International Conference on Parallel Processing (ICPP), which had
its inaugural conference in 1972. Many landmark papers were presented at ICPP, especially during
the 1970s and 1980s. This conference merged with the International Parallel Processing Symposium
(IPPS) (http://www.ippsxx.org), resulting in the International Parallel and Distributed Symposium
(IPDPS) (http://www.ipdps.org). IPDPS is quite comprehensive in that in addition to the conference,
it offers a wide variety of workshops and tutorials.

A conference that tends to include more theoretical algorithms is the ACM Symposium on Paral-
lelism in Algorithms and Architectures (SPAA) (http://www.spaa-conference.org). This conference
is an offshoot of the premier theoretical conferences in computer science, ACM Symposium on
Theory of Computing (STOC) and IEEE Symposium on Foundations of Computer Science (FOCS).
A conference which focuses on very large parallel systems is SC ’XY (http://www.supercomp.org),
where XY represents the last two digits of the year. This conferences includes the presentation
of the Gordon Bell Prize for best parallelization. Awards are given in various categories, such as
highest sustained performance and best price/performance. Other relevant conferences include the
International Supercomputing Conference (http://www.supercomp.de) and the IEEE International
Conference on High Performance Computing (http://www.hipc.org).

Finally, the IEEE Distributed Systems Online site, http://dsonline.computer.org, contains links
to conferences, journals, people in the field, bibliographies on parallel processing, online course
material, books, and so forth.

Defining Terms

Distributed memory: Each processor has access to only its own private (local) memory, and
communicates with other processors via messages.
Divide-and-conquer: A programming paradigm whereby large problems are solved by decomposing
them into smaller, yet similar, problems.
Global operations: Parallel operations that affect system-wide data structures.
Interconnection network: The communication system that links together all of the processors and
memory of a parallel machine.
Master–slave (manager–worker): A parallel programming paradigm whereby a problem is broken
into a collection of smaller problems, with a master processor keeping track of the subproblems and
assigning them to the slave processors.
Parallel random access machine (PRAM): A theoretical shared-memory model, where typically
the processors all execute the same instruction synchronously, and access to any memory location
occurs in unit time.
Pipelining: A parallel programming paradigm that abstracts the notion of an assembly line. A task
is broken into a sequence of fixed subtasks corresponding to the stations of an assembly line. A series
of similar tasks are solved by starting one task through the subtask sequence, then starting the next
task through as soon as the previous task has finished its first subtask. At any point in time, several
tasks are in various stages of completion.
Shared memory: All processors have the same global image of (and access to) all of the memory.
Single-program multiple-data (SPMD): The dominant style of parallel programming, where all of
the processors utilize the same program, though each has its own data.
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25.1 Introduction

The subject of this chapter is the design and analysis of parallel algorithms. Most of today’s algorithms
are sequential, that is, they specify a sequence of steps in which each step consists of a single operation.
These algorithms are well suited to today’s computers, which basically perform operations in a
sequential fashion. Although the speed at which sequential computers operate has been improving
at an exponential rate for many years, the improvement is now coming at greater and greater cost.
As a consequence, researchers have sought more cost-effective improvements by building “parallel”
computers—computers that perform multiple operations in a single step. In order to solve a problem
efficiently on a parallel computer, it is usually necessary to design an algorithm that specifies multiple
operations on each step, i.e., a parallel algorithm.

As an example, consider the problem of computing the sum of a sequence A of n numbers.
The standard algorithm computes the sum by making a single pass through the sequence, keeping

25-1



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C025 Finals Page 2 2009-10-6

25-2 Special Topics and Techniques

a running sum of the numbers seen so far. It is not difficult however, to devise an algorithm for
computing the sum that performs many operations in parallel. For example, suppose that, in parallel,
each element of A with an even index is paired and summed with the next element of A, which has
an odd index, i.e., A[0] is paired with A[1], A[2] with A[3], and so on. The result is a new sequence
of �n/2� numbers that sum to the same value as the sum that we wish to compute. This pairing and
summing step can be repeated until, after �log2 n� steps, a sequence consisting of a single value is
produced, and this value is equal to the final sum.

The parallelism in an algorithm can yield improved performance on many different kinds of com-
puters. For example, on a parallel computer, the operations in a parallel algorithm can be performed
simultaneously by different processors. Furthermore, even on a single-processor computer the paral-
lelism in an algorithm can be exploited by using multiple functional units, pipelined functional units,
or pipelined memory systems. Thus, it is important to make a distinction between the parallelism in
an algorithm and the ability of any particular computer to perform multiple operations in parallel.
Of course, in order for a parallel algorithm to run efficiently on any type of computer, the algorithm
must contain at least as much parallelism as the computer, for otherwise resources would be left
idle. Unfortunately, the converse does not always hold: some parallel computers cannot efficiently
execute all algorithms, even if the algorithms contain a great deal of parallelism. Experience has
shown that it is more difficult to build a general-purpose parallel computer than a general-purpose
sequential computer.

The remainder of this chapter consists of nine sections. We begin in Section 25.2 with a discus-
sion of how to model parallel computers. Next, in Section 25.3 we cover some general techniques
that have proven useful in the design of parallel algorithms. Sections 25.4 through 25.8 present
algorithms for solving problems from different domains. We conclude in Section 25.9 with a dis-
cussion of current research topics, a collection of defining terms, and finally sources for further
information.

Throughout this chapter, we assume that the reader has some familiarity with sequential algorithms
and asymptotic notation and analysis.

25.2 Modeling Parallel Computations

The designer of a sequential algorithm typically formulates the algorithm using an abstract model
of computation called the random-access machine (RAM) model [2], Chapter 1. In this model, the
machine consists of a single processor connected to a memory system. Each basic CPU operation,
including arithmetic operations, logical operations, and memory accesses, requires one time step.
The designer’s goal is to develop an algorithm with modest time and memory requirements. The
RAM model allows the algorithm designer to ignore many of the details of the computer on which
the algorithm will ultimately be executed, but captures enough detail that the designer can predict
with reasonable accuracy how the algorithm will perform.

Modeling parallel computations is more complicated than modeling sequential computations
because in practice parallel computers tend to vary more in organization than do sequential com-
puters. As a consequence, a large portion of the research on parallel algorithms has gone into
the question of modeling, and many debates have raged over what the “right” model is, or about
how practical various models are. Although there has been no consensus on the right model, this
research has yielded a better understanding of the relationship between the models. Any discussion
of parallel algorithms requires some understanding of the various models and the relationships
among them.

In this chapter we divide parallel models into two classes: multiprocessor models and work-depth
models. In the remainder of this section we discuss these two classes and how they are related.
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25.2.1 Multiprocessor Models

A multiprocessor model is a generalization of the sequential RAM model in which there is more
than one processor. Multiprocessor models can be classified into three basic types: local-memory
machine models, modular memory machine models, and parallel random-access machine (PRAM)
models. Figure 25.1 illustrates the structure of these machine models. A local-memory machine
model consists of a set of n processors each with its own local-memory. These processors are
attached to a common communication network. A modular memory machine model consists of
m memory modules and n processors all attached to a common network. An n-processor PRAM
model consists of a set of n processors all connected to a common shared memory [32,37,38,77].

The three types of multiprocessors differ in the way that memory can be accessed. In a local-
memory machine model, each processor can access its own local memory directly, but can access
the memory in another processor only by sending a memory request through the network. As in the
RAM model, all local operations, including local memory accesses, take unit time. The time taken
to access the memory in another processor, however, will depend on both the capabilities of the
communication network and the pattern of memory accesses made by other processors, since these
other accesses could congest the network. In a modular memory machine model, a processor accesses
the memory in a memory module by sending a memory request through the network. Typically
the processors and memory modules are arranged so that the time for any processor to access any
memory module is roughly uniform. As in a local-memory machine model, the exact amount of
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FIGURE 25.1 The three types of multiprocessor machine models: (a) a local-memory machine model; (b) a modular
memory machine model; and (c) a PRAM model.
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time depends on the communication network and the memory access pattern. In a PRAM model,
a processor can access any word of memory in a single step. Furthermore, these accesses can occur
in parallel, i.e., in a single step, every processor can access the shared memory.

The PRAM models are controversial because no real machine lives up to its ideal of unit-time access
to shared memory. It is worth noting, however, that the ultimate purpose of an abstract model is not
to directly model a real machine, but to help the algorithm designer produce efficient algorithms.
Thus, if an algorithm designed for a PRAM model (or any other model) can be translated to an
algorithm that runs efficiently on a real computer, then the model has succeeded. In Section 25.2.4
we show how an algorithm designed for one parallel machine model can be translated so that it
executes efficiently on another model.

The three types of multiprocessor models that we have defined are broad and allow for many
variations. The local-memory machine models and modular memory machine models may differ
according to their network topologies. Furthermore, in all three types of models, there may be
differences in the operations that the processors and networks are allowed to perform. In the
remainder of this section we discuss some of the possibilities.

25.2.1.1 Network Topology

A network is a collection of switches connected by communication channels. A processor or memory
module has one or more communication ports that are connected to these switches by communi-
cation channels. The pattern of interconnection of the switches is called the network topology. The
topology of a network has a large influence on the performance and also on the cost and difficulty of
constructing the network. Figure 25.2 illustrates several different topologies.

The simplest network topology is a bus. This network can be used in both local-memory machine
models and modular memory machine models. In either case, all processors and memory modules
are typically connected to a single bus. In each step, at most one piece of data can be written onto the
bus. This data might be a request from a processor to read or write a memory value, or it might be the
response from the processor or memory module that holds the value. In practice, the advantage of
using a bus is that it is simple to build and, because all processors and memory modules can observe
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FIGURE 25.2 (a) Bus, (b) two-dimensional mesh, and (c) hypercube network topologies.
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the traffic on the bus, it is relatively easy to develop protocols that allow processors to cache memory
values locally. The disadvantage of using a bus is that the processors have to take turns accessing the
bus. Hence, as more processors are added to a bus, the average time to perform a memory access
grows proportionately.

A two-dimensional mesh is a network that can be laid out in a rectangular fashion. Each switch
in a mesh has a distinct label (x, y) where 0 ≤ x ≤ X − 1 and 0 ≤ y ≤ Y − 1. The values X and Y
determine the length of the sides of the mesh. The number of switches in a mesh is thus X · Y . Every
switch, except those on the sides of the mesh, is connected to four neighbors: one to the north, one
to the south, one to the east, and one to the west. Thus, a switch labeled (x, y), where 0 < x < X − 1
and 0 < y < Y − 1, is connected to switches (x, y + 1), (x, y − 1), (x + 1, y), and (x − 1, y). This
network typically appears in a local-memory machine model, i.e., a processor along with its local
memory is connected to each switch, and remote memory accesses are made by routing messages
through the mesh. Figure 25.2b shows an example of an 8 × 8 mesh.

Several variations on meshes are also popular, including three-dimensional meshes, toruses, and
hypercubes. A torus is a mesh in which the switches on the sides have connections to the switches
on the opposite sides. Thus, every switch (x, y) is connected to four other switches: (x, y + 1 mod Y),
(x, y − 1 mod Y), (x + 1 mod X, y), and (x − 1 mod X, y). A hypercube is a network with 2n switches
in which each switch has a distinct n-bit label. Two switches are connected by a communication
channel in a hypercube if and only if the labels of the switches differ in precisely one bit position. A
hypercube with 16 switches is shown in Figure 25.2c.

A multistage network is used to connect one set of switches called the input switches to another set
called the output switches through a sequence of stages of switches. Such networks were originally
designed for telephone networks [15]. The stages of a multistage network are numbered 1 through
L, where L is the depth of the network. The switches on stage 1 are the input switches, and those on
stage L are the output switches. In most multistage networks, it is possible to send a message from any
input switch to any output switch along a path that traverses the stages of the network in order from
1 to L. Multistage networks are frequently used in modular memory computers; typically processors
are attached to input switches, and memory modules are attached to output switches. A processor
accesses a word of memory by injecting a memory access request message into the network. This
message then travels through the network to the appropriate memory module. If the request is to
read a word of memory, then the memory module sends the data back through the network to
the requesting processor. There are many different multistage network topologies. Figure 25.3a, for
example, shows a depth-2 network that connects 4 processors to 16 memory modules. Each switch in
this network has two channels at the bottom and four channels at the top. The ratio of processors to
memory modules in this example is chosen to reflect the fact that, in practice, a processor is capable
of generating memory access requests faster than a memory module is capable of servicing them.

A fat-tree is a network structured like a tree [56]. Each edge of the tree, however, may represent
many communication channels, and each node may represent many network switches (hence the
name “fat”). Figure 25.3b shows a fat-tree with the overall structure of a binary tree. Typically the

(a) (b)

Memory modules

Stage 2 (output switches)

Stage 1 (input switches)

Processors

FIGURE 25.3 (a) 2-level multistage network and (b) fat-tree network topologies.
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capacities of the edges near the root of the tree are much larger than the capacities near the leaves.
For example, in this tree the two edges incident on the root represent 8 channels each, while the
edges incident on the leaves represent only 1 channel each. A natural way to construct a local-
memory machine model is to connect a processor along with its local memory to each leaf of the
fat-tree. In this scheme, a message from one processor to another first travels up the tree to the least
common-ancestor of the two processors, and then down the tree.

Many algorithms have been designed to run efficiently on particular network topologies such as
the mesh or the hypercube. For extensive treatment such algorithms, see [55,67,73,80]. Although
this approach can lead to very fine-tuned algorithms, it has some disadvantages. First, algorithms
designed for one network may not perform well on other networks. Hence, in order to solve a
problem on a new machine, it may be necessary to design a new algorithm from scratch. Second,
algorithms that take advantage of a particular network tend to be more complicated than algorithms
designed for more abstract models like the PRAM models, because they must incorporate some of
the details of the network. Nevertheless, there are some operations that are performed so frequently
by a parallel machine that it makes sense to design a fine-tuned network-specific algorithm. For
example, the algorithm that routes messages or memory access requests through the network should
exploit the network topology. Other examples include algorithms for broadcasting a message from
one processor to many other processors, for collecting the results computed in many processors in
a single processor, and for synchronizing processors.

An alternative to modeling the topology of a network is to summarize its routing capabilities in
terms of two parameters, its latency and bandwidth. The latency, L, of a network is the time it takes
for a message to traverse the network. In actual networks this will depend on the topology of the
network, which particular ports the message is passing between, and the congestion of messages in the
network. The latency is often modeled by considering the worst-case time assuming that the network
is not heavily congested. The bandwidth at each port of the network is the rate at which a processor
can inject data into the network. In actual networks this will depend on the topology of the network,
the bandwidths of the network’s individual communication channels and, again, the congestion
of messages in the network. The bandwidth often can be usefully modeled as the maximum rate
at which processors can inject messages into the network without causing it to become heavily
congested, assuming a uniform distribution of message destinations. In this case, the bandwidth can
be expressed as the minimum gap g between successive injections of messages into the network.

Three models that characterize a network in terms of its latency and bandwidth are the Postal
model [14], the Bulk-Synchronous Parallel (BSP) model [85], and the LogP model [29]. In the
Postal model, a network is described by a single parameter L, its latency. The Bulk-Synchronous Par-
allel model adds a second parameter g, the minimum ratio of computation steps to communication
steps, i.e., the gap. The LogP model includes both of these parameters, and adds a third parameter
o, the overhead, or wasted time, incurred by a processor upon sending or receiving a message.

25.2.1.2 Primitive Operations

A machine model must also specify the types of operations that the processors and network are per-
mitted to perform. We assume that all processors are allowed to perform the same local instructions
as the single processor in the standard sequential RAM model. In addition, processors may have spe-
cial instructions for issuing nonlocal memory requests, for sending messages to other processors, and
for executing various global operations, such as synchronization. There may also be restrictions on
when processors can simultaneously issue instructions involving nonlocal operations. For example a
model might not allow two processors to write to the same memory location at the same time. These
restrictions might make it impossible to execute an algorithm on a particular model, or make the
cost of executing the algorithm prohibitively expensive. It is therefore important to understand what
instructions are supported before one can design or analyze a parallel algorithm. In this section we
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consider three classes of instructions that perform nonlocal operations: (1) instructions that perform
concurrent accesses to the same shared memory location, (2) instructions for synchronization, and
(3) instructions that perform global operations on data.

When multiple processors simultaneously make a request to read or write to the same resource—
such as a processor, memory module, or memory location—there are several possible outcomes.
Some machine models simply forbid such operations, declaring that it is an error if two or more
processes try to access a resource simultaneously. In this case we say that the model allows only
exclusive access to the resource. For example, a PRAM model might only allow exclusive read
or write access to each memory location. A PRAM model of this type is called an exclusive-read
exclusive-write (EREW) PRAM model. Other machine models may allow unlimited access to a
shared resource. In this case we say that the model allows concurrent access to the resource. For
example, a concurrent-read concurrent-write (CRCW) PRAM model allows both concurrent read
and write access to memory locations, and a CREW PRAM model allows concurrent reads but only
exclusive writes. When making a concurrent write to a resource such as a memory location there
are many ways to resolve the conflict. The possibilities include choosing an arbitrary value from
those written (arbitrary concurrent write), choosing the value from the processor with lowest index
(priority concurrent write), and taking the logical or of the values written. A final choice is to allow
for queued access. In this case concurrent access is permitted but the time for a step is proportional
to the maximum number of accesses to any resource. A queue-read queue-write (QRQW) PRAM
model allows for such accesses [36].

In addition to reads and writes to nonlocal memory or other processors, there are other impor-
tant primitives that a model might supply. One class of such primitives support synchronization.
There are a variety of different types of synchronization operations and the costs of these opera-
tions vary from model to model. In a PRAM model, for example, it is assumed that all processors
operate in lock step, which provides implicit synchronization. In a local-memory machine model
the cost of synchronization may be a function of the particular network topology. A related oper-
ation, broadcast, allows one processor to send a common message to all of the other processors.
Some machine models supply more powerful primitives that combine arithmetic operations with
communication. Such operations include the prefix and multiprefix operations, which are defined in
Sections 25.4.2 and 25.4.3.

25.2.2 Work-Depth Models

Because there are so many different ways to organize parallel computers, and hence to model them,
it is difficult to select one multiprocessor model that is appropriate for all machines. The alternative
to focusing on the machine is to focus on the algorithm. In this section we present a class of
models called work-depth models. In a work-depth model, the cost of an algorithm is determined
by examining the total number of operations that it performs, and the dependencies among those
operations. An algorithm’s work W is the total number of operations that it performs; its depth D is
the longest chain of dependencies among its operations. We call the ratio P = W/D the parallelism
of the algorithm.

The work-depth models are more abstract than the multiprocessor models. As we shall see
however, algorithms that are efficient in work-depth models can often be translated to algorithms that
are efficient in the multiprocessor models, and from there to real parallel computers. The advantage
of using a work-depth model is that there are no machine-dependent details to complicate the design
and analysis of algorithms. Here we consider three classes of work-depth models: circuit models,
vector machine models, and language-based models. We will be using a language-based model in
this chapter, so we will return to these models in Section 25.2.5. The most abstract work-depth
model is the circuit model. A circuit consists of nodes and directed arcs. A node represents a basic
operation, such as adding two values. Each input value for an operation arrives at the corresponding
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FIGURE 25.4 Summing 16 numbers on a tree. The total depth (longest chain of dependencies) is 4 and the total work
(number of operations) is 15.

node via an incoming arc. The result of the operation is then carried out of the node via one or more
outgoing arcs. These outgoing arcs may provide inputs to other nodes. The number of incoming
arcs to a node is referred to as the fan-in of the node and the number of outgoing arcs is referred
to as the fan-out. There are two special classes of arcs. A set of input arcs provide input values to
the circuit as a whole. These arcs do not originate at nodes. The output arcs return the final output
values produced by the circuit. These arcs do not terminate at nodes. By definition, a circuit is not
permitted to contain a directed cycle. In this model, an algorithm is modeled as a family of directed
acyclic circuits. There is a circuit for each possible size of the input.

Figure 25.4 shows a circuit for adding 16 numbers. In this figure all arcs are directed toward the
bottom. The input arcs are at the top of the figure. Each + node adds the two values that arrive on
its two incoming arcs, and places the result on its outgoing arc. The sum of all of the inputs to the
circuit is returned on the single output arc at the bottom.

The work and depth of a circuit are measured as follows. The work is the total number of nodes.
The work in Figure 25.4, for example, is 15. (The work is also called the size of the circuit.) The
depth is the number of nodes on the longest directed path from an input arc and an output arc. In
Figure 25.4, the depth is 4. For a family of circuits, the work and depth are typically parameterized
in terms of the number of inputs. For example, the circuit in Figure 25.4 can be easily generalized to
add n input values for any n that is a power of two. The work and depth for this family of circuits is
W(n) = n − 1 and D(n) = log2 n.

Circuit models have been used for many years to study various theoretical aspects of parallelism,
for example to prove that certain problems are difficult to solve in parallel. See [48] for an overview.

In a vector model an algorithm is expressed as a sequence of steps, each of which performs an
operation on a vector (i.e., sequence) of input values, and produces a vector result [19,69]. The work
of each step is equal to the length of its input (or output) vector. The work of an algorithm is the
sum of the work of its steps. The depth of an algorithm is the number of vector steps.

In a language model, a work-depth cost is associated with each programming language construct
[20,22]. For example, the work for calling two functions in parallel is equal to the sum of the work
of the two calls. The depth, in this case, is equal to the maximum of the depth of the two calls.

25.2.3 Assigning Costs to Algorithms

In the work-depth models, the cost of an algorithm is determined by its work and by its depth.
The notions of work and depth can also be defined for the multiprocessor models. The work W
performed by an algorithm is equal to the number of processors multiplied by the time required for
the algorithm to complete execution. The depth D is equal to the total time required to execute the
algorithm.
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The depth of an algorithm is important, because there are some applications for which the time
to perform a computation is crucial. For example, the results of a weather forecasting program are
useful only if the program completes execution before the weather does!

Generally, however, the most important measure of the cost of an algorithm is the work. This can
be argued as follows. The cost of a computer is roughly proportional to the number of processors in
the computer. The cost for purchasing time on a computer is proportional to the cost of the computer
multiplied by the amount of time used. The total cost of performing a computation, therefore, is
roughly proportional to the number of processors in the computer multiplied by the amount of time,
i.e., the work.

In many instances, the cost of running a computation on a parallel computer may be slightly larger
than the cost of running the same computation on a sequential computer. If the time to completion
is sufficiently improved, however, this extra cost can often be justified. As we shall see, however,
there is often a tradeoff between time-to-completion and total work performed. To quantify when
parallel algorithms are efficient in terms of cost, we say that a parallel algorithm is work-efficient if
asymptotically (as the problem size grows) it requires at most a constant factor more work than the
best sequential algorithm known.

25.2.4 Emulations among Models

Although it may appear that a different algorithm must be designed for each of the many parallel
models, there are often automatic and efficient techniques for translating algorithms designed for
one model into algorithms designed for another. These translations are work-preserving in the sense
that the work performed by both algorithms is the same, to within a constant factor. For example,
the following theorem, known as Brent’s Theorem [24], shows that an algorithm designed for the
circuit model can be translated in a work-preserving fashion to a PRAM model algorithm.

THEOREM 25.1 [Brent’s Theorem] Any algorithm that can be expressed as a circuit of size (i.e., work)
W and depth D and with constant fan-in nodes in the circuit model can be executed in O(W/P + D)

steps in the CREW PRAM model.

PROOF The basic idea is to have the PRAM emulate the computation specified by the circuit
in a level-by-level fashion. The level of a node is defined as follows. A node is on level 1 if all of its
inputs are also inputs to the circuit. Inductively, the level of any other node is one greater than the
maximum of the level of the nodes that provide its inputs. Let li denote the number of nodes on
level i. Then, by assigning �li/P� operations to each of the P processors in the PRAM, the operations
for level i can be performed in O(�li/P�) steps. Concurrent reads might be required since many
operations on one level might read the same result from a previous level. Summing the time over all
D levels, we have

TPRAM(W, D, P) = O

( D∑
i=1

⌈
li
P

⌉)

= O

( D∑
i=1

(
li
P

+ 1
))

= O

(
1
P

( D∑
i=1

li

)
+ D

)

= O (W/P + D) .
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The last step is derived by observing that W = ∑D
i=1 li, i.e., that the work is equal to the total number

of nodes on all of the levels of the circuit.

The total work performed by the PRAM, i.e., the processor-time product, is O(W + PD). This
emulation is work-preserving to within a constant factor when the parallelism (P = W/D) is at
least as large as the number of processors P, for in this case the work is O(W). The requirement that
the parallelism exceed the number of processors is typical of work-preserving emulations.

Brent’s Theorem shows that an algorithm designed for one of the work-depth models can be
translated in a work-preserving fashion to a multiprocessor model. Another important class of
work-preserving translations are those that translate between different multiprocessor models. The
translation we consider here is the work-preserving translation of algorithms written for the PRAM
model to algorithms for a modular memory machine model that incorporates the feature of network
topology. In particular we consider a butterfly machine [55, Chapter 3.6] model in which P processors
are attached through a butterfly network of depth log P to P memory banks. We assume that, in
constant time, a processor can hash a virtual memory address to a physical memory bank and an
address within that bank using a sufficiently powerful hash function. This scheme was first proposed
by Karlin and Upfal [47] for the EREW PRAM model. Ranade [72] later presented a more general
approach that allowed the butterfly to efficiently emulate CRCW algorithms.

THEOREM 25.2 Any algorithm that takes time T on a P-processor PRAM model can be translated
into an algorithm that takes time O(T(P/P′+log P′)), with high probability, on a P′-processor butterfly
machine model.

Sketch of proof: Each of the P′ processors in the butterfly emulates a set of P/P′ PRAM processors.
The butterfly emulates the PRAM in a step-by-step fashion. First, each butterfly processor emulates
one step of each of its P/P′ PRAM processors. Some of the PRAM processors may wish to perform
memory accesses. For each memory access, the butterfly processor hashes the memory address to
a physical memory bank and an address within the bank, and then routes a message through the
network to that bank. These messages are pipelined so that a butterfly processor can have multiple
outstanding requests. Ranade proved that if each processor in the P-processor butterfly sends at
most P/P′ messages, and if the destinations of the messages are determined by a sufficiently powerful
random hash function, then the network can deliver all of the messages, along with responses, in
O(P/P′ + log P′) time. The log P′ term accounts for the latency of the network, and for the fact that
there will be some congestion at memory banks, even if each processor sends only a single message.

This theorem implies that the emulation is work preserving when P ≥ P′ log P′, i.e., when the
number of processors employed by the PRAM algorithm exceeds the number of processors in the
butterfly by a factor of at least log P′. When translating algorithms from one multiprocessor model
(e.g., the PRAM model), which we call the guest model, to another multiprocessor model (e.g., the
butterfly machine model), which we call the host model, it is not uncommon to require that the num-
ber of guest processors exceed the number of host processors by a factor proportional to the latency
of the host. Indeed, the latency of the host can often be hidden by giving it a larger guest to emulate.
If the bandwidth of the host is smaller than the bandwidth of a comparably sized guest, however, it
is usually much more difficult for the host to perform a work-preserving emulation of the guest.

For more information on PRAM emulations, the reader is referred to [43,86].

25.2.5 Model Used in This Chapter

Because there are so many work-preserving translations between different parallel models of com-
putation, we have the luxury of choosing the model that we feel most clearly illustrates the basic
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ideas behind the algorithms, a work-depth language model. Here we define the model that we use
in this chapter in terms of a set of language constructs and a set of rules for assigning costs to the
constructs. The description here is somewhat informal, but should suffice for the purpose of this
chapter. The language and costs can be properly formalized using a profiling semantics [22].

Most of the syntax that we use should be familiar to readers who have programmed in Algol-
like languages, such as Pascal and C. The constructs for expressing parallelism, however, may
be unfamiliar. We will be using two parallel constructs—a parallel apply-to-each construct and a
parallel-do construct—and a small set of parallel primitives on sequences (one-dimensional arrays).
Our language constructs, syntax and cost rules are loosely based on the NESL language [20].

The apply-to-each construct is used to apply an expression over a sequence of values in parallel.
It uses a set-like notation. For example, the expression

{a ∗ a : a ∈ [3, −4, −9, 5]}
squares each element of the sequence [3, −4, −9, 5] returning the sequence [9, 16, 81, 25]. This can
be read: “in parallel, for each a in the sequence [3, −4, −9, 5], square a.” The apply-to-each construct
also provides the ability to subselect elements of a sequence based on a filter. For example

{a ∗ a : a ∈ [3, −4, −9, 5]|a > 0}
can be read: “in parallel, for each a in the sequence [3, −4, −9, 5] such that a is greater than 0,
square a.” It returns the sequence [9,25]. The elements that remain maintain the relative order from
the original sequence.

The parallel-do construct is used to evaluate multiple statements in parallel. It is expressed by
listing the set of statements after the keywords in parallel do. For example, the following fragment
of code calls FUNCTION1 on (X) and assigns the result to A and in parallel calls FUNCTION2 on (Y) and
assigns the result to B.

in parallel do
A := FUNCTION1(X)

B := FUNCTION2(Y)

The parallel-do completes when all of the parallel subcalls complete.
Work and depth are assigned to our language constructs as follows. The work and depth of a

scalar primitive operation is one. For example, the work and depth for evaluating an expression
such as 3 + 4 is one. The work for applying a function to every element in a sequence is equal to the
sum of the work for each of the individual applications of the function. For example, the work for
evaluating the expression

{a ∗ a : a ∈ [0..n)},

which creates an n-element sequence consisting of the squares of 0 through n − 1, is n. The depth
for applying a function to every element in a sequence is equal to the maximum of the depths of the
individual applications of the function. Hence, the depth of the previous example is one. The work
for a parallel-do construct is equal to the sum of the work for each of its statements. The depth is
equal to the maximum depth of its statements. In all other cases, the work and depth for a sequence
of operations are equal to the sums of the work and depth for the individual operations.

In addition to the parallelism supplied by apply-to-each, we use four built-in functions on
sequences, distribute, ++ (append), flatten, and ← (write,) each of which can be implemented
in parallel. The function distribute creates a sequence of identical elements. For example, the
expression

distribute(3, 5)
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creates the sequence
[3, 3, 3, 3, 3].

The ++ function appends two sequences. For example [2, 1]++[5, 0, 3] create the sequence
[2, 1, 5, 0, 3]. The flatten function converts a nested sequence (a sequence in which each element
is itself a sequence) into a flat sequence. For example,

flatten([[3, 5], [3, 2], [1, 5], [4, 6]])
creates the sequence

[3, 5, 3, 2, 1, 5, 4, 6].
The ← function is used to write multiple elements into a sequence in parallel. It takes two arguments.
The first argument is the sequence to modify and the second is a sequence of integer-value pairs that
specify what to modify. For each pair (i, v) the value v is inserted into position i of the destination
sequence. For example

[0, 0, 0, 0, 0, 0, 0, 0] ← [(4, −2), (2, 5), (5, 9)]
inserts the −2, 5 and 9 into the sequence at locations 4, 2, and 5, respectively, returning

[0, 0, 5, 0, −2, 9, 0, 0].
As in the PRAM model, the issue of concurrent writes arises if an index is repeated. Rather than
choosing a single policy for resolving concurrent writes, we will explain the policy used for the
individual algorithms. All of these functions have depth one and work n, where n is the size of the
sequence(s) involved. In the case of ←, the work is proportional to the length of the sequence of
integer-value pairs, not the modified sequence, which might be much longer. In the case of ++, the
work is proportional to the length of the second sequence.

We will use a few shorthand notations for specifying sequences. The expression [−2..1] specifies
the same sequence as the expression [−2, −1, 0, 1]. Changing the left or right bracket surrounding
a sequence to a parenthesis omits the first or last elements, e.g., [−2..1) denotes the sequence
[−2, −1, 0]. The notation A[i..j] denotes the subsequence consisting of elements A[i] through A[j].
Similarly, A[i, j) denotes the subsequence A[i] through A[j−1]. We will assume that sequence indices
are zero based, i.e., A[0] extracts the first element of the sequence A.

Throughout this chapter our algorithms make use of random numbers. These numbers are
generated using the functions rand_bit(), which returns a random bit, and rand_int(h), which
returns a random integer in the range [0, h − 1].

25.3 Parallel Algorithmic Techniques

As in sequential algorithm design, in parallel algorithm design there are many general techniques
that can be used across a variety of problem areas. Some of these are variants of standard sequential
techniques, while others are new to parallel algorithms. In this section we introduce some of these
techniques, including parallel divide-and-conquer, randomization, and parallel pointer manipula-
tion. We will make use of these techniques in later sections.

25.3.1 Divide-and-Conquer

A divide-and-conquer algorithm first splits the problem to be solved into subproblems that are easier
to solve than the original problem, and then solves the subproblems, often recursively. Typically
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the subproblems can be solved independently. Finally, the algorithm merges the solutions to the
subproblems to construct a solution to the original problem.

The divide-and-conquer paradigm improves program modularity, and often leads to simple
and efficient algorithms. It has therefore proved to be a powerful tool for sequential algorithm
designers. Divide-and-conquer plays an even more prominent role in parallel algorithm design.
Because the subproblems created in the first step are typically independent, they can be solved in
parallel. Often the subproblems are solved recursively and thus the next divide step yields even
more subproblems to be solved in parallel. As a consequence, even divide-and-conquer algorithms
that were designed for sequential machines typically have some inherent parallelism. Note however,
that in order for divide-and-conquer to yield a highly parallel algorithm, it is often necessary
to parallelize the divide step and the merge step. It is also common in parallel algorithms to
divide the original problem into as many subproblems as possible, so that they can all be solved in
parallel.

As an example of parallel divide-and-conquer, consider the sequential mergesort algorithm.
Mergesort takes a set of n keys as input and returns the keys in sorted order. It works by splitting
the keys into two sets of n/2 keys, recursively sorting each set, and then merging the two sorted
sequences of n/2 keys into a sorted sequence of n keys. To analyze the sequential running time of
mergesort we note that two sorted sequences of n/2 keys can be merged in O(n) time. Hence the
running time can be specified by the recurrence

T(n) =
{

2T(n/2) + O(n) n > 1
O(1) n = 1 (25.1)

which has the solution T(n) = O(n log n). Although not designed as a parallel algorithm, mergesort
has some inherent parallelism since the two recursive calls are independent, thus allowing them to
be made in parallel. The parallel calls can be expressed as

ALGORITHM: MERGESORT(A)

1 if (|A| = 1) then return A
2 else
3 in parallel do
4 L := MERGESORT(A[0..|A|/2))

5 R := MERGESORT(A[|A|/2..|A|))
6 return MERGE(L, R)

Recall that in our work-depth model we can analyze the depth of an algorithm that makes parallel
calls by taking the maximum depth of the two calls, and the work by taking the sum of the work of
the two calls. We assume that the merging remains sequential so that the work and depth to merge
two sorted sequences of n/2 keys is O(n). Thus for mergesort the work and depth are given by the
recurrences

W(n) = 2W(n/2) + O(n) (25.2)
D(n) = max(D(n/2), D(n/2)) + O(n) (25.3)

= D(n/2) + O(n) (25.4)

As expected, the solution for the work is W(n) = O(n log n), i.e., the same as the time for the
sequential algorithm. For the depth, however, the solution is D(n) = O(n), which is smaller than
the work. Recall that we defined the parallelism of an algorithm as the ratio of the work to the depth.
Hence, the parallelism of this algorithm is O(log n) (not very much). The problem here is that the
merge step remains sequential, and is the bottleneck.
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As mentioned earlier, the parallelism in a divide-and-conquer algorithm can often be enhanced by
parallelizing the divide step and/or the merge step. Using a parallel merge [52], two sorted sequences
of n/2 keys can be merged with work O(n) and depth O(log log n). Using this merge algorithm, the
recurrence for the depth of mergesort becomes

D(n) = D(n/2) + O(log log n) (25.5)

which has solution D(n) = O(log n log log n). Using a technique called pipelined divide-and-
conquer the depth of mergesort can be further reduced to O(log n) [26]. The idea is to start the
merge at the top level before the recursive calls complete.

Divide-and-conquer has proven to be one of the most powerful techniques for solving problems in
parallel. In this chapter, we will use it to solve problems from computational geometry, for sorting,
and for performing fast Fourier transforms (FFT). Other applications range from solving linear
systems to factoring large numbers to performing n-body simulations.

25.3.2 Randomization

Random numbers are used in parallel algorithms to ensure that processors can make local deci-
sions that, with high probability, add up to good global decisions. Here we consider three uses of
randomness.

25.3.2.1 Sampling

One use of randomness is to select a representative sample from a set of elements. Often, a problem
can be solved by selecting a sample, solving the problem on that sample, and then using the solution
for the sample to guide the solution for the original set. For example, suppose we want to sort
a collection of integer keys. This can be accomplished by partitioning the keys into buckets and
then sorting within each bucket. For this to work well, the buckets must represent nonoverlapping
intervals of integer values, and each bucket must contain approximately the same number of keys.
Random sampling is used to determine the boundaries of the intervals. First each processor selects a
random sample of its keys. Next all of the selected keys are sorted together. Finally these keys are used
as the boundaries. Such random sampling is also used in many parallel computational geometry,
graph, and string matching algorithms.

25.3.2.2 Symmetry Breaking

Another use of randomness is in symmetry breaking. For example, consider the problem of selecting
a large independent set of vertices in a graph in parallel. (A set of vertices is independent if no two
are neighbors.) Imagine that each vertex must decide, in parallel with all other vertices, whether
to join the set or not. Hence, if one vertex chooses to join the set, then all of its neighbors must
choose not to join the set. The choice is difficult to make simultaneously for each vertex if the local
structure at each vertex is the same, for example if each vertex has the same number of neighbors. As
it turns out, the impasse can be resolved by using randomness to break the symmetry between the
vertices [58].

25.3.2.3 Load Balancing

A third use of randomness is load balancing. One way to quickly partition a large number of data
items into a collection of approximately evenly sized subsets is to randomly assign each element to a
subset. This technique works best when the average size of a subset is at least logarithmic in the size
of the original set.
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25.3.3 Parallel Pointer Techniques

Many of the traditional sequential techniques for manipulating lists, trees, and graphs do not translate
easily into parallel techniques. For example, techniques such as traversing the elements of a linked
list, visiting the nodes of a tree in postorder, or performing a depth-first traversal of a graph appear
to be inherently sequential. Fortunately these techniques can often be replaced by parallel techniques
with roughly the same power.

25.3.3.1 Pointer Jumping

One of the oldest parallel pointer techniques is pointer jumping [88]. This technique can be applied
to either lists or trees. In each pointer jumping step, each node in parallel replaces its pointer with
that of its successor (or parent). For example, one way to label each node of an n-node list (or tree)
with the label of the last node (or root) is to use pointer jumping. After at most �log n� steps, every
node points to the same node, the end of the list (or root of the tree). This is described in more detail
in Section 25.4.4.

25.3.3.2 Euler Tour Technique

An Euler tour of a directed graph is a path through the graph in which every edge is traversed exactly
once. In an undirected graph each edge is typically replaced by two oppositely directed edges. The
Euler tour of an undirected tree follows the perimeter of the tree visiting each edge twice, once on
the way down and once on the way up. By keeping a linked structure that represents the Euler tour
of a tree it is possible to compute many functions on the tree, such as the size of each subtree [83].
This technique uses linear work, and parallel depth that is independent of the depth of the tree. The
Euler tour technique can often be used to replace a standard traversal of a tree, such as a depth-first
traversal.

25.3.3.3 Graph Contraction

Graph contraction is an operation in which a graph is reduced in size while maintaining some of its
original structure. Typically, after performing a graph contraction operation, the problem is solved
recursively on the contracted graph. The solution to the problem on the contracted graph is then used
to form the final solution. For example, one way to partition a graph into its connected components
is to first contract the graph by merging some of the vertices with neighboring vertices, then find
the connected components of the contracted graph, and finally undo the contraction operation.
Many problems can be solved by contracting trees [64,65], in which case the technique is called tree
contraction. More examples of graph contraction can be found in Section 25.5.

25.3.3.4 Ear Decomposition

An ear decomposition of a graph is a partition of its edges into an ordered collection of paths.
The first path is a cycle, and the others are called ears. The end-points of each ear are anchored
on previous paths. Once an ear decomposition of a graph is found, it is not difficult to determine
if two edges lie on a common cycle. This information can be used in algorithms for determining
biconnectivity, triconnectivity, 4-connectivity, and planarity [60,63]. An ear decomposition can be
found in parallel using linear work and logarithmic depth, independent of the structure of the graph.
Hence, this technique can be used to replace the standard sequential technique for solving these
problems, depth-first search.
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25.3.4 Other Techniques

Many other techniques have proven to be useful in the design of parallel algorithms. Finding small
graph separators is useful for partitioning data among processors to reduce communication [75,
Chapter 14]. Hashing is useful for load balancing and mapping addresses to memory [47,87]. Iterative
techniques are useful as a replacement for direct methods for solving linear systems [18].

25.4 Basic Operations on Sequences, Lists, and Trees

We begin our presentation of parallel algorithms with a collection of algorithms for performing
basic operations on sequences, lists, and trees. These operations will be used as subroutines in the
algorithms that follow in later sections.

25.4.1 Sums

As explained near the beginning of this chapter, there is a simple recursive algorithm for computing
the sum of the elements in an array.

ALGORITHM: SUM(A)

1 if |A| = 1 then return A[0]
2 else return SUM({A[2i] + A[2i + 1] : i ∈ [0..|A|/2)})

The work and depth for this algorithm are given by the recurrences

W(n) = W(n/2) + O(n) (25.6)

D(n) = D(n/2) + O(1) (25.7)

which have solutions W(n) = O(n) and D(n) = O(log n). This algorithm can also be expressed
without recursion (using a while loop), but the recursive version foreshadows the recursive
algorithm for the SCAN function.

As written, the algorithm only works on sequences that have lengths equal to powers of 2.
Removing this restriction is not difficult by checking if the sequence is of odd length and separately
adding the last element in if it is. This algorithm can also easily be modified to compute the “sum”
using any other binary associative operator in place of +. For example the use of max would return
the maximum value in the sequence.

25.4.2 Scans

The plus-scan operation (also called all-prefix-sums) takes a sequence of values and returns a
sequence of equal length for which each element is the sum of all previous elements in the original
sequence. For example, executing a plus-scan on the sequence [3, 5, 3, 1, 6] returns [0, 3, 8, 11, 12].
An algorithm for performing the scan operation [81] is shown below.

ALGORITHM: SCAN(A)

1 if |A| = 1 then return [0]
2 else
3 S = SCAN({A[2i] + A[2i + 1] : i ∈ [0..|A|/2)})
4 R = {if (i MOD 2) = 0 then S[i/2] else S[(i − 1)/2] + A[i − 1] : i ∈ [0..|A|)}
5 return R
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The algorithm works by element-wise adding the even-indexed elements of A to the odd-indexed
elements of A, and then recursively solving the problem on the resulting sequence (Line 3). The
result S of the recursive call gives the plus-scan values for the even positions in the output sequence
R. The value for each of the odd positions in R is simply the value for the preceding even position in
R plus the value of the preceding position from A.

The asymptotic work and depth costs of this algorithm are the same as for the SUM operation,
W(n) = O(n) and D(n) = O(log n). Also, as with the SUM operation, any binary associative operator
can be used in place of the +. In fact the algorithm described can be used more generally to solve
various recurrences, such as the first-order linear recurrences xi = (xi−1 ⊗ ai−1) ⊕ bi−1, 0 < i < n,
where ⊗ and ⊕ are both binary associative operators [51].

Scans have proven so useful in the design of parallel algorithms that some parallel machines
provide support for scan operations in hardware.

25.4.3 Multiprefix and Fetch-and-Add

The multiprefix operation is a generalization of the scan operation in which multiple independent
scans are performed. The input to the multiprefix operation is a sequence A of n pairs (k, a), where
k specifies a key and a specifies an integer data value. For each key value, the multiprefix operation
performs an independent scan. The output is a sequence B of n integers containing the results of
each of the scans such that if A[i] = (k, a) then

B[i] = sum({b : (t, b) ∈ A[0..i) | t = k})
In other words, each position receives the sum of all previous elements that have the same key. As
an example,

MULTIPREFIX([(1, 5), (0, 2), (0, 3), (1, 4), (0, 1), (2, 2)])
returns the sequence

[0, 0, 2, 5, 5, 0]
The fetch-and-add operation is a weaker version of the multiprefix operation, in which the order of
the input elements for each scan is not necessarily the same as the order in the input sequence A. In
this chapter we do not present an algorithm for the multiprefix operation, but it can be solved by a
function that requires work O(n) and depth O(log n) using concurrent writes [61].

25.4.4 Pointer Jumping

Pointer jumping is a technique that can be applied to both linked lists and trees [88]. The basic
pointer jumping operation is simple. Each node i replaces its pointer P[i] with the pointer of the
node that it points to, P[P[i]]. By repeating this operation, it is possible to compute, for each node in
a list or tree, a pointer to the end of the list or root of the tree. Given a set P of pointers that represent
a tree (i.e., pointers from children to parents), the following code will generate a pointer from each
node to the root of the tree. We assume that the root points to itself.

ALGORITHM: POINT_TO_ROOT(P)

1 for j from 1 to �log |P|�
2 P := {P[P[i]] : i ∈ [0..|P|)}

The idea behind this algorithm is that in each loop iteration the distance spanned by each pointer,
with respect to the original tree, will double, until it points to the root. Since a tree constructed
from n = |P| pointers has depth at most n − 1, after �log n� iterations each pointer will point to the
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FIGURE 25.5 The effect of two iterations of algorithm POINT_TO_ROOT. (a) The input tree P = [4, 1, 6, 4, 1, 6, 3].
(b) The tree P = [1, 1, 3, 1, 1, 3, 4] after one iteration of the algorithm. (c) The final tree P = [1, 1, 1, 1, 1, 1, 1].

root. Because each iteration has constant depth and performs Θ(n) work, the algorithm has depth
Θ(log n) and work Θ(n log n).

Figure 25.5 illustrates algorithm POINT_TO_ROOT applied to a tree consisting of seven nodes.

25.4.5 List Ranking

The problem of computing the distance from each node to the end of a linked list is called list
ranking. Function POINT_TO_ROOT can be easily modified to compute these distances, as shown below.

ALGORITHM: LIST_RANK(P)

1 V = {if P[i] = i then 0 else 1 : i ∈ [0..|P|)}
2 for j from 1 to �log |P|�
3 V := {V[i] + V[P[i]] : i ∈ [0..|P|)}
4 P := {P[P[i]] : i ∈ [0..|P|)}
5 return V

In this function, V[i] can be thought of as the distance spanned by pointer P[i] with respect to the
original list. Line 1 initializes V by setting V[i] to 0 if i is the last node (i.e., points to itself), and 1
otherwise. In each iteration, Line 3 calculates the new length of P[i]. The function has depth Θ(log n)

and work Θ(n log n).
It is worth noting that there are simple sequential algorithms that perform the same tasks as both

functions POINT_TO_ROOT and LIST_RANK using only O(n) work. For example, the list ranking problem
can be solved by making two passes through the list. The goal of the first pass is simply to count the
number of elements in the list. The elements can then be numbered with their positions from the end
of the list in a second pass. Thus, neither function POINT_TO_ROOT nor LIST_RANK are work-efficient,
since both require Θ(n log n) work in the worst case. There are, however, several work-efficient
parallel solutions to both of these problems.

The following parallel algorithm uses the technique of random sampling to construct a pointer
from each node to the end of a list of n nodes in a work-efficient fashion [74]. The algorithm is easily
generalized to solve the list-ranking problem.
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1. Pick m list nodes at random and call them the start nodes.
2. From each start node u, follow the list until reaching the next start node v. Call the list

nodes between u and v the sublist of u.
3. Form a shorter list consisting only of the start nodes and the final node on the list by

making each start node point to the next start node on the list.
4. Using pointer jumping on the shorter list, for each start node create a pointer to the last

node in the list.
5. For each start node u, distribute the pointer to the end of the list to all of the nodes in

the sublist of u.

The key to analyzing the work and depth of this algorithm is to bound the length of the longest
sublist. Using elementary probability theory, it is not difficult to prove that the expected length of
the longest sublist is at most O((n log m)/m). The work and depth for each step of the algorithm are
thus computed as follows.

1. W(n, m) = O(m) and D(n, m) = O(1)

2. W(n, m) = O(n) and D(n, m) = O((n log m)/m)

3. W(n, m) = O(m) and D(n, m) = O(1)

4. W(n, m) = O(m log m) and D(n, m) = O(log m)

5. W(n, m) = O(n) and D(n, m) = O((n log m)/m)

Thus, the work for the entire algorithm is W(m, n) = O(n+m log m), and the depth is O((n log m)/m).
If we set m = n/ log n, these reduce to W(n) = O(n) and D(n) = O(log2 n).

Using a technique called contraction, it is possible to design a list ranking algorithm that runs in
O(n) work and O(log n) depth [8,9]. This technique can also be applied to trees [64,65].

25.4.6 Removing Duplicates

This section presents several algorithms for removing the duplicate items that appear in a sequence.
Thus, the input to each algorithm is a sequence, and the output is a new sequence containing exactly
one copy of every item that appears in the input sequence. It is assumed that the order of the items
in the output sequence does not matter. Such an algorithm is useful when a sequence is used to
represent an unordered set of items. Two sets can be merged, for example, by first appending their
corresponding sequences, and then removing the duplicate items.

25.4.6.1 Approach 1: Using an Array of Flags

If the items are all nonnegative integers drawn from a small range, we can use a technique similar to
bucket sort to remove the duplicates. We begin by creating an array equal in size to the range, and
initializing all of its elements to 0. Next, using concurrent writes we set a flag in the array for each
number that appears in the input list. Finally, we extract those numbers with flags that have been
set. This algorithm is expressed as follows.

ALGORITHM: REM_DUPLICATES(V)

1 RANGE := 1+ MAX(V)

2 FLAGS := distribute (0,RANGE) ← {(i, 1) : i ∈ V}
3 return {j : j ∈ [0..RANGE)| FLAGS[j] = 1}

This algorithm has depth O(1) and performs work O(|V|+ MAX(V)). Its obvious disadvantage is
that it explodes when given a large range of numbers, both in memory and in work.
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FIGURE 25.6 Each key attempts to write its index into a hash table entry.

25.4.6.2 Approach 2: Hashing

A more general approach is to use a hash table. The algorithm has the following outline. The
algorithm first creates a hash table that contains a prime number of entries, where the prime is
approximately twice as large as the number of items in the set V . A prime size is best, because it
makes designing a good hash function easier. The size must also be large enough that the chance of
collisions in the hash table is not too great. Let m denote the size of the hash table. Next, the algorithm
computes a hash value hash(V[j], m) for each item V[j] ∈ V , and attempts to write the index j into
the hash table entry hash(V[j], m). For example, Figure 25.6 describes a particular hash function
applied to the sequence [69,23,91,18,42,23,18]. We assume that if multiple values are simultaneously
written into the same memory location, one of the values will be correctly written (the arbitrary
concurrent write model). An item V[j] is called a winner if the index j is successfully written into
the hash table. In our example, the winners are V[0], V[1], V[2], and V[3], i.e., 69, 23, 91, and 18.
The winners are added to the duplicate-free sequence that is being constructed, and then set aside.
Among the losers, we must distinguish between two types of items, those that were defeated by an
item with the same value, and those that were defeated by an item with a different value. In our
example, V[5] and V[6] (23 and 18) were defeated by items with the same value, and V[4] (42)
was defeated by an item with a different value. Items of the first type are set aside because they are
duplicates. Items of the second type are retained, and the algorithm repeats the entire process on
them using a different hash function. In general, it may take several iterations before all of the items
have been set aside, and in each iteration the algorithm must use a different hash function.

The code for removing duplicates using hashing is shown below.

ALGORITHM: REMOVE_DUPLICATES(V)

1 m := NEXT_PRIME(2 ∗ |V|)
2 TABLE := distribute(−1, m)

3 i := 0
4 RESULT := {}
5 while |V| > 0
6 TABLE := TABLE ← {(hash(V[j], m, i), j) : j ∈ [0..|V|)}
7 WINNERS := {V[j] : j ∈ [0..|V|) | TABLE[hash(V[j], m, i)] = j}
8 RESULT := RESULT ++ WINNERS

9 TABLE := TABLE ← {(hash(k, m, i), k) : k ∈ WINNERS}
10 V := {k ∈ V | TABLE[hash(k, m, i)] �= k}
11 i := i + 1
12 return RESULT

The first four lines of function REMOVE_DUPLICATES initialize several variables. Line 1 finds the first
prime number larger than 2 ∗ |V| using the built-in function NEXT_PRIME. Line 2 creates the hash
table, and initializes its entries with an arbitrary value (−1). Line 3 initializes i, a variable that simply
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counts iterations of the while loop. Line 4 initializes the sequence RESULT to be empty. Ultimately,
RESULT will contain a single copy of each distinct item from the sequence V .

The bulk of the work in function REMOVE_DUPLICATES is performed by the while loop. While there
are items remaining to be processed, the code performs the following steps. In Line 6, each item V[j]
attempts to write its index j into the table entry given by the hash function hash(V[j], m, i). Note that
the hash function takes the iteration i as an argument, so that a different hash function is used in
each iteration. Concurrent writes are used so that if several items attempt to write to the same entry,
precisely one will win. Line 7 determines which items successfully wrote indices in Line 6, and stores
the values of these items in an array called WINNERS. The winners are added to the RESULT in Line 8.
The purpose of Lines 9 and 10 is to remove all of the items that are either winners or duplicates
of winners. These lines reuse the hash table. In Line 9, each winner writes its value, rather than its
index, into the hash table. In this step there are no concurrent writes. Finally, in Line 10, an item is
retained only if it is not a winner, and the item that defeated it has a different value.

It is not difficult to prove that, provided that the hash values hash(V[j], m, i) are random and
sufficiently independent, both between iterations and within an iteration, each iteration reduces the
number of items remaining by some constant fraction until the number of items remaining is small.
As a consequence, D(n) = O(log n) and W(n) = O(n).

The remove-duplicates algorithm is frequently used for set operations. For instance, given the
code for REMOVE_DUPLICATES, it is easy to write the code for the set union operation.

25.5 Graphs

Graph problems are often difficult to parallelize since many standard sequential graph techniques,
such as depth-first or priority-first search, do not parallelize well. For some problems, such as
minimum-spanning tree and biconnected components, new techniques have been developed to
generate efficient parallel algorithms. For other problems, such as single-source shortest paths, there
are no known efficient parallel algorithms, at least not for the general case.

We have already outlined some of the parallel graph techniques in Section 25.3. In this section
we describe algorithms for breadth-first search (BFS), for finding connected components, and for
finding minimum spanning trees. These algorithms use some of the general techniques. In particular,
randomization and graph contraction will play an important role in the algorithms. In this chapter
we limit ourselves to algorithms on sparse undirected graphs. We suggest the following sources for
further information on parallel graph algorithms [75, Chapters 2–8], [45, Chapter 5], [35, Chapter 2].

25.5.1 Graphs and Graph Representations

A graph G = (V , E) consists of a set of vertices V and a set of edges E in which each edge connects two
vertices. In a directed graph each edge is directed from one vertex to another, while in an undirected
graph each edge is symmetric, i.e., goes in both directions. A weighted graph is a graph in which
each edge e ∈ E has a weight w(e) associated with it. In this chapter we use the convention that
n = |V| and m = |E|. Qualitatively, a graph is considered sparse if m is much less than n2 and dense
otherwise. The diameter of a graph, denoted D(G), is the maximum, over all pairs of vertices (u, v),
of the minimum number of edges that must be traversed to get from u to v.

There are three standard representations of graphs used in sequential algorithms: edge lists,
adjacency lists, and adjacency matrices. An edge list consists of a list of edges, each of which is a
pair of vertices. The list directly represents the set E. An adjacency list is an array of lists. Each
array element corresponds to one vertex and contains a linked list of the indices of the neighboring
vertices, i.e., the linked list for a vertex v contains the indices of the vertices {u|(v, u) ∈ E}). An
adjacency matrix is an n × n array A such that Aij is 1 if (i, j) ∈ E and 0 otherwise. The adjacency
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FIGURE 25.7 Representations of an undirected graph: (a) a graph G with 5 vertices and 5 edges; (b) an edge-list
representation of G; and (c) the adjacency-list representation of G. Values between square brackets are elements of an
array, and values between parentheses are elements of a pair.

matrix representation is typically used only when the graph is dense since it requires Θ(n2) space,
as opposed to Θ(n + m) space for the other two representations. Each of these representations can
be used to represent either directed or undirected graphs.

For parallel algorithms we use similar representations for graphs. The main change we make is
to replace the linked lists with arrays. In particular the edge-list is represented as an array of edges
and the adjacency-list is represented as an array of arrays. Using arrays instead of lists makes it
easier to process the graph in parallel. In particular, they make it easy to grab a set of elements in
parallel, rather than having to follow a list. Figure 25.7 shows an example of our representations
for an undirected graph. Note that for the edge-list representation of the undirected graph each
edge appears twice, once in each direction (this property is important for some of the algorithms
described in this chapter∗). To represent a directed graph we simply only store the edge once in the
desired direction. In the text we will refer to the left element of an edge pair as the source vertex and
the right element as the destination vertex.

In designing algorithms, it is sometimes more efficient to use an edge list and sometimes more
efficient to use an adjacency list. It is therefore important to be able to convert between the two
representations. To convert from an adjacency list to an edge list (representation (c) to representation
(b) in Figure 25.7) is straightforward. The following code will do it with linear work and constant
depth:

flatten({{(i, j) : j ∈ G[i]} : i ∈ [0..|G|})
where G is the graph in the adjacency list representation. For each vertex i this code pairs up i with
each of i’s neighbors. The flatten is used since the nested apply-to-each will return a sequence of
sequences that needs to be flattened into a single sequence.

To convert from an edge list to an adjacency list is somewhat more involved, but still requires only
linear work. The basic idea is to sort the edges based on the source vertex. This places edges from a
particular vertex in consecutive positions in the resulting array. This array can then be partitioned
into blocks based on the source vertices. It turns out that since the sorting is on integers in the range
[0..|V|), a radix sort can be used (see Section 25.6.2), which requires linear work. The depth of the
radix sort depends on the depth of the multiprefix operation (see Section 25.4.3).

25.5.2 Breadth-First Search

The first algorithm we consider is parallel BFS. BFS can be used to solve problems such as determining
if a graph is connected or generating a spanning tree of a graph. Parallel BFS is similar to the sequential
version, which starts with a source vertex s and visits levels of the graph one after the other using a

∗ If space is of serious concern, the algorithms can be easily modified to work with edges stored in just one direction.
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FIGURE 25.8 Example of parallel BFS: (a) a graph G; (b) the frontier at each step of the BFS of G with s = 0;
and (c) a BFS tree.

queue to keep track of vertices that have not yet been visited. The main difference is that each level is
going to be visited in parallel and no queue is required. As with the sequential algorithm each vertex
will only be visited once and each edge at most twice, once in each direction. The work is therefore
linear in the size of the graph, O(n + m). For a graph with diameter D, the number of levels visited
by the algorithm will be at least D/2 and at most D, depending on where the search is initiated. We
will show that each level can be visited in constant depth, assuming a concurrent write model, so
that the total depth of parallel BFS is O(D).

The main idea of parallel BFS is to maintain a set of frontier vertices that represent the current level
being visited, and to produce a new frontier on each step. The set of frontier vertices is initialized
with the singleton s (the source vertex). A new frontier is generated by collecting all of the neighbors
of the current frontier vertices in parallel and removing any that have already been visited. This is
not sufficient on its own, however, since multiple vertices might collect the same unvisited vertex.
For example, consider the graph in Figure 25.8. On step 2 vertices 5 and 8 will both collect vertex 9.
The vertex will therefore appear twice in the new frontier. If the duplicate vertices are not removed
the algorithm can generate an exponential number of vertices in the frontier. This problem does not
occur in the sequential BFS because vertices are visited one at a time. The parallel version therefore
requires an extra step to remove duplicates.

The following function performs a parallel BFS. It takes as input a source vertex s and a graph G
represented as an adjacency-array, and returns as its result a BFS tree of G. In a BFS tree each vertex
visited at level i points to one of its neighbors visited at level i − 1 (see Figure 25.8c). The source s is
the root of the tree.

ALGORITHM: BFS(s, G)

1 FRONT := [s]
2 TREE := distribute(−1, |G|)
3 TREE[s] := s
4 while (|FRONT| �= 0)

5 E := flatten({{(u, v) : u ∈ G[v]} : v ∈ FRONT})
6 E′ := {(u, v) ∈ E | TREE[u] = −1}
7 TREE := TREE ← E′
8 FRONT := {u : (u, v) ∈ E′ | v = TREE[u]}
9 return TREE
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In this code FRONT is the set of frontier vertices, and TREE is the current BFS tree, represented
as an array of indices (pointers). The pointers (indices) in TREE are all initialized to −1, except
for the source s which is initialized to point to itself. Each vertex in TREE is set to point to its
parent in the BFS tree when it is visited. The algorithm assumes the arbitrary concurrent write
model.

We now consider each iteration of the algorithm. The iterations terminate when there are no more
vertices in the frontier (Line 4). The new frontier is generated by first collecting into an edge-array
the set of edges from current frontier vertices to the neighbors of these vertices (Line 5). An edge
from v to u is kept as the pair (u, v) (this is backwards from the standard edge representation and
is used below to write from v to u). Next, the algorithm subselects the edges that lead to unvisited
vertices (Line 6). Now for each remaining edge (u, v) the algorithm writes the source index v
into the BFS tree entry for the destination vertex u (Line 7). In the case that more than one edge
has the same destination, one of the source indices will be written arbitrarily—this is the only place
that the algorithm uses a concurrent write. These indices become the parent pointers for the BFS
tree, and are also used to remove duplicates for the next frontier set. In particular, the algorithm
checks whether each edge succeeded in writing its source by reading back from the destination. If
an edge reads the value it wrote, its destination is included in the new frontier (Line 8). Since only
one edge that points to a given destination vertex will read back the same value, no duplicates will
appear in the new frontier.

The algorithm requires only constant depth per iteration of the while loop. Since each vertex
and its associated edges are visited only once, the total work is O(m + n). An interesting aspect
of this parallel BFS is that it can generate BFS trees that cannot be generated by a sequential BFS,
even allowing for any order of visiting neighbors in sequential BFS. We leave the generation of an
example as an exercise. We note, however, that if the algorithm used a priority concurrent write (see
Section 25.2.5) on Line 7, then it would generate the same tree as a sequential BFS.

25.5.3 Connected Components

We now consider the problem of labeling the connected components of an undirected graph. The
problem is to label all the vertices in a graph G such that two vertices u and v have the same label
if and only if there is a path between the two vertices. Sequentially the connected components of
a graph can easily be labeled using either depth-first or breadth-first search. We have seen how to
perform a BFS, but the technique requires depth proportional to the diameter of a graph. This is fine
for graphs with small diameter, but does not work well in the general case. Unfortunately, in terms
of work, even the most efficient polylogarithmic-depth parallel algorithms for depth-first search
and BFS are very inefficient. Hence, the efficient algorithms for solving the connected components
problem use different techniques.

The two algorithms we consider are based on graph contraction. Graph contraction works by
contracting the vertices of a connected subgraph into a single vertex. The techniques we use allow the
algorithms to make many such contractions in parallel across the graph. The algorithms therefore
proceed in a sequence of steps, each of which contracts a set of subgraphs, and forms a smaller
graph in which each subgraph has been converted into a vertex. If each such step of the algorithm
contracts the size of the graph by a constant fraction, then each component will contract down to a
single vertex in O(log n) steps. By running the contraction in reverse, the algorithms can label all the
vertices in the components. The two algorithms we consider differ in how they select subgraphs for
contraction. The first uses randomization and the second is deterministic. Neither algorithm is work
efficient because they require O((n + m) log n) work for worst-case graphs, but we briefly discuss
how they can be made work efficient in Section 25.5.3.3. Both algorithms require the concurrent
write model.
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25.5.3.1 Random-Mate Graph Contraction

The random-mate technique for graph contraction is based on forming a set of star subgraphs and
contracting the stars. A star is a tree of depth one—it consists of a root and an arbitrary number
of children. The random-mate algorithm finds a set of nonoverlapping stars in a graph, and then
contracts each star into a single vertex by merging each child into its parent. The technique used to
form the stars uses randomization. For each vertex the algorithm flips a coin to decide if that vertex
is a parent or a child. We assume the coin is unbiased so that every vertex has a 50% probability
of being a parent. Now for each child vertex the algorithm selects a neighboring parent vertex and
makes that parent the child’s root. If the child has no neighboring parent, it has no root. The parents
are now the roots of a set of stars, each with zero or more children. The children either belong to
one of these stars or are left on their own (if they had no neighboring parents). The algorithm now
contracts these stars. When contracting, the algorithm updates any edge that points to a child of
a star to point to the root. Figure 25.9 illustrates a full contraction step. This contraction step is
repeated until all components are of size 1.

To analyze the number of contraction steps required to complete we need to know how many
vertices the algorithm removes on each contraction step. First we note that a contraction step is only
going to remove children, and only if they have a neighboring parent. The probability that a vertex
will be deleted is therefore the probability that a vertex is a child multiplied by the probability that at
least one of its neighbors is a parent. The probability that it is a child is 1/2 and the probability that at
least one neighbor is a parent is at least 1/2 (every vertex that is not fully contracted has one or more
neighbors). The algorithm is therefore expected to remove at least 1/4 of the remaining vertices at
each step, and since this is a constant fraction, it is expected to complete in O(log n) steps. The full
probabilistic analysis is somewhat involved since it is possible to have a streak of bad flips, but it is
not too hard to show that the algorithm is very unlikely to require more than O(log n) contraction
steps.

The following algorithm uses random-mate contraction for labeling the connected components
of a graph. The algorithm works by contracting until each component is a single vertex and then
expanding so that it can label all vertices in that component with the same label. The input to the
algorithm is a graph G in the edge-list representation (note that this is a different representation
than used in BFS), along with the labels of the vertices. The labels of the vertices are assumed to be
initialized to be unique indices in the range 0..|V| − 1. The output of the algorithm is a label for
each vertex such that two vertices will have the same label if and only if they belong to the same
component. In fact, the label of each vertex will be the original label of one of the vertices in the
component.
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FIGURE 25.9 Example of one step of random-mate graph contraction. (a) The original graph G. (b) G after selecting
the parents randomly. (c) The stars formed after each child is assigned a neighboring parent as its root (each star is
shaded). (d) The graph after contracting each star and relabeling the edges to point to the roots. Children with no
neighboring parent remain in the graph.



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C025 Finals Page 26 2009-10-6

25-26 Special Topics and Techniques

ALGORITHM: CC_RANDOM_MATE(LABELS,E)

1 if (|E| = 0) then return LABELS

2 else
3 CHILD := {rand_bit() : v ∈ [1..n]}
4 HOOKS := {(u, v) ∈ E | CHILD[u] and ∧¬ CHILD[v]}
5 LABELS := LABELS ← HOOKS

6 E′ := {(LABELS[u], LABELS[v]) : (u, v) ∈ E | LABELS[u] �= LABELS[v]}
7 LABELS′ := CC_RANDOM_MATE(LABELS,E′)
8 LABELS′ := LABELS′ ← {(u, LABELS′ [v]) : (u, v) ∈ HOOKS}
9 return LABELS′

The algorithm works recursively by (a) executing one random-mate contraction step, (b) recursively
applying itself to the contracted graph, and (c) expanding the graph by passing the labels from each
root of a contracted star [from step (a)] to its children. The graph is therefore contracted while going
down the recursion and expanded while coming back up. The termination condition is that there are
no remaining edges (Line 1). To form stars for the contraction step the algorithm flips a coin for each
vertex (Line 3) and subselects all edges HOOKS that go from a child to a parent (Line 4). We call these
edges hook edges and they represent a superset of the star edges (each child can have multiple hook
edges, but only one root in a star). For each hook edge the algorithm writes the parent’s label into the
child’s label (Line 5). If a child has multiple neighboring parents, then one of the parent’s labels is
written arbitrarily—we assume an arbitrary concurrent write. At this point each child is labeled with
one of its neighboring parents, if it has one. The algorithm now updates each edge by reading the labels
from its two endpoints and using these as its new endpoints (Line 6). In the same step, the algorithm
removes any edges that are within the same star. This gives a new sequence of edges E′. The algorithm
has now completed the contraction step, and calls itself recursively on the contracted graph (Line 7).
The LABELS′ returned by the recursive call are passed on to the children of the stars, effectively expand-
ing the graph (Line 8). The same hooks that were used for contraction can be used for this update.

Two things should be noted about this algorithm. First, the algorithm flips coins on all of the
vertices on each step even though many have already been contracted (there are no more edges
that point to them). It turns out that this will not affect our worst-case asymptotic work or depth
bounds, but it is not difficult to flip coins only on active vertices by keeping track of them—just
keep an array of the labels of the active vertices. Second, if there are cycles in the graph, then the
algorithm will create redundant edges in the contracted subgraphs. Again, keeping these edges is not
a problem for the correctness or cost bounds, but they could be removed using hashing as discussed
in Section 25.4.6.

To analyze the full work and depth of the algorithm we note that each step only requires constant
depth and O(n+m) work. Since the number of steps is O(log n) with high probability, as mentioned
earlier, the total depth is O(log n) and the work is O((n + m) log n), both with high probability. One
might expect that the work would be linear since the algorithm reduces the number of vertices on
each step by a constant fraction. We have no guarantee, however, that the number of edges is also
going to contract geometrically, and in fact for certain graphs they will not. In Section 25.5.3.3 we
discuss how to improve the algorithm so that it is work-efficient.

25.5.3.2 Deterministic Graph Contraction

Our second algorithm for graph contraction is deterministic [41]. It is based on forming a set of
disjoint subgraphs, each of which is tree, and then using the POINT_TO_ROOT routine (Section 25.4.4)
to contract each subgraph to a single vertex. To generate the trees, the algorithm hooks each vertex
into a neighbor with a smaller label (by hooking a into b we mean generating a directed edge from
a to b). Vertices with no smaller-labeled neighbors are left unhooked. The result of the hooking is
a set of disjoint trees since hooking only from larger to smaller guarantees there are no cycles, and
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FIGURE 25.10 Tree-based
graph contraction. (a) A graph
G and (b) the hook edges
induced by hooking larger to
smaller vertices and the sub-
graphs induced by the trees.

every node is hooked into at most one parent. Figure 25.10 shows an
example of a set of trees created by hooking. Since a vertex can have
more than one neighbor with a smaller label, a given graph can have
many different hookings. For example, in Figure 25.10 vertex 2 could
have hooked into vertex 1, rather than vertex 0.

The following algorithm performs the tree-based graph contraction.
We assume that the labels are initialized to the indices of the vertices.

ALGORITHM: CC_TREE_CONTRACT (LABELS,E)

1 if (|E| = 0)

2 then return LABELS

3 else
4 HOOKS := {(u, v) ∈ E | u > v}
5 LABELS := LABELS ← HOOKS

6 LABELS := POINT_TO_ROOT(LABELS)

7 E′ := {(LABELS[u],LABELS[v]) : (u, v) ∈ E | LABELS[u] �= LABELS[v]}
8 return CC_TREE_CONTRACT(LABELS, E′)

The structure of the algorithm is similar to the random-mate graph
contraction algorithm. The main differences are how the hooks are
selected (Line 4), the pointer jumping step to contract the trees (Line 6),
and the fact that no relabeling is required when returning from the
recursive call. The hooking step simply selects edges that point from
larger numbered vertices to smaller numbered vertices. This is called
a conditional hook. The pointer jumping step uses the algorithm in
Section 25.4.4. This labels every vertex in the tree with the root of the
tree. The edge relabeling is the same as in the random-mate algorithm.
The reason the contraction algorithm does not need to relabel the vertices after the recursive call is
that the pointer jumping step does the relabeling.

Although the basic algorithm we have described so far works well in practice, in the worst case it
can take n − 1 steps. Consider the graph in Figure 25.11a. After hooking and contracting only one
vertex has been removed. This could be repeated up to n − 1 times. This worst-case behavior can be
avoided by trying to hook in both directions (from larger to smaller and from smaller to larger) and
picking the hooking that hooks more vertices. We make use of the following lemma.
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FIGURE 25.11 A worst-case graph: (a) a star graph G with the maximum index at the root of the star; (b) G after one
step of contraction; (c) G after two steps of contraction.
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LEMMA 25.1 Let G = (V , E) be an undirected graph in which each vertex has at least one neighbor.
Then either |{u | (u, v) ∈ E, u < v}| ≥ |V|/2 or |{u | (u, v) ∈ E, u > v}| > |V|/2.

PROOF Every vertex must either have a neighbor with a lesser index or a neighbor with a greater
index. This means that if we consider the set of vertices with a lesser neighbor and the set of vertices
with a greater neighbor, then one of those sets must consist of at least one half the vertices.

This lemma will guarantee that if we try hooking in both directions and pick the better one we will
remove at least 1/2 of the vertices on each step, so that the number of steps is bounded by �log2 n�.

We now consider the total cost of the algorithm. The hooking and relabeling of edges on each
step takes O(m) work and constant depth. The tree contraction using pointer jumping on each step
requires O(n log n) work and O(log n) depth, in the worst case. Since there are O(log n) steps, in the
worst case the total work is O((m + n log n) log n) and depth O(log2 n). However, if we keep track
of the active vertices (the roots) and only pointer jump on active vertices, then the work is reduced
to O((m + n) log n), since the number of vertices decreases geometrically in each step. This requires
the algorithm to expand the graph on the way back up the recursion as done for the random-mate
algorithm. The total work with this modification is the same work as the randomized technique,
although the depth has increased.

25.5.3.3 Improved Versions of Connected Components

There are many improvements to the two basic connected component algorithms we described.
Here we mention some of them.

The deterministic algorithm can be improved to run in O(log n) depth with the same work bounds
[13,79]. The basic idea is to interleave the hooking steps with the pointer jumping steps. The one
tricky aspect is that we must always hook in the same direction (e.g., from smaller to larger), so as not
to create cycles. Our previous technique to solve the star-graph problem therefore does not work.
Instead each vertex checks if it belongs to any tree after hooking. If it does not then it can hook to
any neighbor, even if it has a larger index. This is called an unconditional hook.

The randomized algorithm can be improved to run in optimal work, O(n + m) [33]. The basic
idea is to not use all of the edges for hooking on each step, and instead use a sample of the edges.
This technique, first applied to parallel algorithms, has since been used to improve some sequential
algorithms, such as deriving the first linear-work algorithm for finding a minimum spanning tree [46].

Another improvement is to use the EREW model instead of requiring concurrent reads and writes
[42]. However this comes at the cost of greatly complicating the algorithm. The basic idea is to keep
circular linked lists of the neighbors of each vertex, and then to splice these lists when merging vertices.

25.5.3.4 Extensions to Spanning Trees and Minimum Spanning Trees

The connected-component algorithms can be extended to finding a spanning tree of a graph or
minimum spanning tree of a weighted graph. In both cases we assume the graphs are undirected.

A spanning tree of a connected graph G = (V , E) is a connected graph T = (V , E′) such that
E′ ⊆ E and |E′| = |V| − 1. Because of the bound on the number of edges, the graph T cannot have
any cycles and therefore forms a tree. Any given graph can have many different spanning trees.

It is not hard to extend the connected-component algorithms to return the spanning tree. In
particular, whenever components are hooked together the algorithm can keep track of which edges
were used for hooking. Since each edge will hook together two components that are not connected
yet, and only one edge will succeed in hooking the components, the collection of these edges across all
steps will form a spanning tree (they will connect all vertices and have no cycles). To determine which
edges were used for contraction, each edge checks if it successfully hooked after the attempted hook.



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C025 Finals Page 29 2009-10-6

Parallel Algorithms 25-29

A minimum spanning tree of a connected weighted graph G = (V , E) with weights w(e) for e ∈ E
is a spanning tree T = (V , E′) of G such that

w(T) =
∑
e∈E′

w(e) (25.8)

is minimized. The connected-component algorithms can also be extended to find a minimum
spanning tree. Here we will briefly consider an extension of the random-mate technique. Let us
assume, without loss of generality, that all of the edge weights are distinct. If this is not the case, then
lexicographical information can be added to the edges weights to break ties. It is well known that if
the edge weights are distinct, then there is a unique minimum spanning tree. Furthermore, given
any W ⊂ V , the minimum weight edge from W to V − W must be in the minimum spanning tree.
As a consequence, the minimum edge incident on a vertex will be in the minimum spanning tree.
This will be true even after we contract subgraphs into vertices, since each subgraph is a subset of V .

For the minimum-spanning-tree algorithm, we modify the random-mate technique so that each
child u instead of picking an arbitrary parent to hook into, finds the incident edge (u, v) with
minimum weight and hooks into v if it is a parent. If v is not a parent, then the child u does nothing
(it is left as an orphan). Figure 25.12 illustrates the algorithm. As with the spanning-tree algorithm,
we keep track of the hook edges and add them to a set E′. This new rule will still remove 1/4 of the
vertices on each step on average since a vertex has 1/2 probability of being a child, and there is 1/2
probability that the vertex at the other end of the minimum edge is a parent. The one complication
in this minimum spanning-tree algorithm is finding for each child the incident edge with minimum
weight. Since we are keeping an edge list, this is not trivial to compute. If the algorithm used an
adjacency list, then it would be easy, but since the algorithm needs to update the endpoints of the
edges, it is not easy to maintain the adjacency list. One way to solve this problem is to use a priority
concurrent write. In such a write, if multiple values are written to the same location, the one coming
from the leftmost position will be written. With such a scheme the minimum edge can be found
by presorting the edges by weight so the lowest weighted edge will always win when executing a
concurrent write. Assuming a priority write, this minimum-spanning-tree algorithm has the same
work and depth as the random-mate connected-components algorithm.
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FIGURE 25.12 Example of the minimum-spanning-tree algorithm. (a) The original weighted graph G. (b) Each child
(light) hooks across its minimum weighted edge to a parent (dark), if the edge is incident on a parent. (c) The graph
after one step of contraction. (d) The second step in which children hook across minimum weighted edges to parents.
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There is also a linear-work logarithmic-depth randomized algorithm for finding a minimum-
spanning tree [27], but it is somewhat more complicated than the linear-work algorithms for finding
connected components.

25.6 Sorting

Sorting is a problem that admits a variety of parallel solutions. In this section we limit our discussion
to two parallel sorting algorithms, QuickSort and radix sort. Both of these algorithms are easy
to program, and both work well in practice. Many more sorting algorithms can be found in the
literature. The interested reader is referred to [3,45,55] for more complete coverage.

25.6.1 QuickSort

We begin our discussion of sorting with a parallel version of QuickSort. This algorithm is one of the
simplest to code.

ALGORITHM: QUICKSORT(A)

1 if |A| = 1 then return A
2 i := rand_int(|A|)
3 p := A[i]
4 in parallel do
5 L := QUICKSORT({a : a ∈ A | a < p})
6 E := {a : a ∈ A | a = p}
7 G := QUICKSORT({a : a ∈ A | a > p})
8 return L++E++G

We can make an optimistic estimate of the work and depth of this algorithm by assuming that
each time a partition element p is selected, it divides the set A so that neither L nor H has more than
half of the elements. In this case, the work and depth are given by the recurrences

W(n) = 2W(n/2) + O(n) (25.9)

D(n) = D(n/2) + 1 (25.10)

which have solutions W(n) = O(n log n) and D(n) = O(log n). A more sophisticated analysis [50]
shows that the expected work and depth are indeed W(n) = O(n log n) and D(n) = O(log n),
independent of the values in the input sequence A.

In practice, the performance of parallel QuickSort can be improved by selecting more than one
partition element. In particular, on a machine with P processors, choosing P − 1 partition ele-
ments divides the keys into P sets, each of which can be sorted by a different processor using a fast
sequential sorting algorithm. Since the algorithm does not finish until the last processor finishes, it is
important to assign approximately the same number of keys to each processor. Simply choosing
p − 1 partition elements at random is unlikely to yield a good partition. The partition can be
improved, however, by choosing a larger number, sp, of candidate partition elements at random,
sorting the candidates (perhaps using some other sorting algorithm), and then choosing the candi-
dates with ranks s, 2s, . . . , (p − 1)s to be the partition elements. The ratio s of candidates to partition
elements is called the oversampling ratio. As s increases, the quality of the partition increases, but
so does the time to sort the sp candidates. Hence there is an optimum value of s, typically larger
than one, that minimizes the total time. The sorting algorithm that selects partition elements in this
fashion is called sample sort [23,76,89].
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25.6.2 Radix Sort

Our next sorting algorithm is radix sort, an algorithm that performs well in practice. Unlike Quick-
Sort, radix sort is not a comparison sort, meaning that it does not compare keys directly in order
to determine the relative ordering of keys. Instead, it relies on the representation of keys as b-bit
integers.

The basic radix sort algorithm (whether serial or parallel) examines the keys to be sorted one “digit”
position at a time, starting with the least significant digit in each key. Of fundamental importance is
that this intermediate sort on digits be stable: the output ordering must preserve the input order of
any two keys with identical digit values in the position being examined.

The most common implementation of the intermediate sort is as a counting sort. A counting sort
first counts to determine the rank of each key—its position in the output order—and then permutes
the keys by moving each key to the location indicated by its rank. The following algorithm performs
radix sort assuming one-bit digits.

ALGORITHM: RADIX_SORT(A, b)

1 for i from 0 to b − 1
2 FLAGS := {(a >> i) mod 2 : a ∈ A}
3 NOTFLAGS := {1 − b : b ∈ FLAGS}
4 R0 := SCAN(NOTFLAGS)

5 s0 := SUM(NOTFLAGS)

6 R1 := SCAN(FLAGS)

7 R := {if FLAGS[j] = 0 then R0[j] else R1[j] + s0 : j ∈ [0..|A|)}
8 A := A ← {(R[j], A[j]) : j ∈ [0..|A|)}
9 return A

For keys with b bits, the algorithm consists of b sequential iterations of a for loop, each iteration
sorting according to one of the bits. Lines 2 and 3 compute the value and inverse value of the bit in
the current position for each key. The notation a >> i denotes the operation of shifting a to the
right by i bit positions. Line 4 computes the rank of each key that has bit value 0. Computing the
ranks of the keys with bit value 1 is a little more complicated, since these keys follow the keys with
bit value 0. Line 5 computes the number of keys with bit value 0, which serves as the rank of the first
key that has bit value 1. Line 6 computes the relative order of the keys with bit value 1. Line 7 merges
the ranks of the even keys with those of the odd keys. Finally, Line 8 permutes the keys according to
rank.

The work and depth of RADIX_SORT are computed as follows. There are b iterations of the for loop.
In each iteration, the depths of Lines 2, 3, 7, 8, and 9 are constant, and the depths of Lines 4, 5, and 6
are O(log n). Hence the depth of the algorithm is O(b log n). The work performed by each of Lines 2
through 9 is O(n). Hence, the work of the algorithm is O(bn).

The radix sort algorithm can be generalized so that each b-bit key is viewed as b/r blocks of r bits
each, rather than as b individual bits. In the generalized algorithm, there are b/r iterations of the for
loop, each of which invokes the SCAN function 2r times. When r is large, a multiprefix operation can
be used for generating the ranks instead of executing a SCAN for each possible value [23]. In this case,
and assuming the multiprefix operation runs in linear work, it is not hard to show that as long as
b = O(log n) (and r = log n, so that there are only O(1) iterations), the total work for the radix sort
is O(n), and the depth is the same order as the depth of the multiprefix operation.

Floating-point numbers can also be sorted using radix sort. With a few simple bit manipulations,
floating-point keys can be converted to integer keys with the same ordering and key size. For
example, IEEE double-precision floating-point numbers can be sorted by first inverting the mantissa
and exponent bits if the sign bit is 1, and then inverting the sign bit. The keys are then sorted as if
they were integers.
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25.7 Computational Geometry

Problems in computational geometry involve calculating properties of sets of objects in k-dimensional
space. Some standard problems include finding the minimum distance between any two points in a
set of points (closest-pair), finding the smallest convex region that encloses a set of points (convex-
hull), and finding line or polygon intersections. Efficient parallel algorithms have been developed for
most standard problems in computational geometry. Many of the sequential algorithms are based on
divide-and-conquer and lead in a relatively straightforward manner to efficient parallel algorithms.
Some others are based on a technique called plane sweeping, which does not parallelize well, but for
which an analogous parallel technique, the plane sweep tree has been developed [1,10]. In this section
we describe parallel algorithms for two problems in two dimensions—closest pair and convex hull.
For convex hull we describe two algorithms. These algorithms are good examples of how sequential
algorithms can be parallelized in a straightforward manner.

We suggest the following sources for further information on parallel algorithms for computational
geometry: [6,39], [45, Chapter 6], and [75, Chapters 9 and 11],

25.7.1 Closest Pair

The closest-pair problem takes a set of points in k dimensions and returns the two points that are
closest to each other. The distance is usually defined as Euclidean distance. Here we describe a
closest-pair algorithm for two-dimensional space, also called the planar closest-pair problem. The
algorithm is a parallel version of a standard sequential algorithm [16,17], and for n points, it requires
the same work as the sequential versions, O(n log n), and has depth O(log2 n). The work is optimal.

The algorithm uses divide-and-conquer based on splitting the points along lines parallel to the
y-axis, and is expressed as follows.

ALGORITHM: CLOSEST_PAIR(P)

1 if (|P| < 2) then return (P, ∞)

2 xm := MEDIAN({x : (x, y) ∈ P})
3 L := {(x, y) ∈ P | x < xm}
4 R := {(x, y) ∈ P | x ≥ xm}
5 in parallel do
6 (L′, δL) := CLOSEST_PAIR(L)

7 (R′, δR) := CLOSEST_PAIR(R)

8 P′ := MERGE_BY_Y(L′, R′)
9 δP := BOUNDARY_MERGE(P′, δL, δR, xm)

10 return (P′, δP)

This function takes a set of points P in the plane and returns both the original points sorted along
the y-axis, and the distance between the closest two points. The sorted points are needed to help
merge the results from recursive calls, and can be thrown away at the end. It would not be difficult to
modify the routine to return the closest pair of points in addition to the distance between them. The
function works by dividing the points in half based on the median x value, recursively solving the
problem on each half and then merging the results. The MERGE_BY_Y function merges L′ and R′ along
the y-axis and can use a standard parallel merge routine. The interesting aspect of the algorithm is
the BOUNDARY_MERGE routine, which works on the principle described by Bentley and Shamos [16,17],
and can be computed with O(log n) depth and O(n) work. We first review the principle and then
show how it can be performed in parallel.

The inputs to BOUNDARY_MERGE are the original points P sorted along the y-axis, the closest distance
within L and R, and the median point xm. The closest distance in P must be either the distance δL,
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x = xm

x = xl x = xr

L M R

FIGURE 25.13 Merging
two rectangles to determine
the closest pair. Only eight
points can fit in the 2δ × δ

dashed rectangle.

the distance δR, or a distance between a point in L and a point in R.
For this distance to be less than δL or δR, the two points must lie within
δ = min(δL, δR) of the line x = xm. Thus, the two vertical lines at
xl = xm − δ and xr = xm + δ define the borders of a region M in
which the points must lie (see Figure 25.13). If we could find the closest
distance in M, call it δM , then the closest overall distance would be
δP = min(δL, δR, δM).

To find δM we take advantage of the fact that not many points can be
packed close together within M since all points within L or R must be
separated by at least δ. Figure 25.13 shows the tightest possible packing
of points in a 2δ×δ rectangle within M. This packing implies that if the
points in M are sorted along the y-axis, each point can determine the
minimum distance to another point in M by looking at a fixed number
of neighbors in the sorted order, at most 7 in each direction. To see
this consider one of the points along the top of the 2δ × δ rectangle.
To determine if there are any points below it that are closer than δ

we need only to consider the points within the rectangle (points below
the rectangle must be further than δ away). As Figure 25.13 illustrates,

there can be at most 7 other points within the rectangle. Given this property, the following function
performs the border merge.

ALGORITHM: BOUNDARY_MERGE(P, δL, δR, xm)

1 δ := min(δL, δR)

2 M := {(x, y) ∈ P | (x ≥ xm − δ) ∧ (x ≤ xm + δ)}
3 δM := min({min({distance(M[i], M[i + j]) : j ∈ [1..7]})
4 : i ∈ [0..|P| − 7)}
5 return min(δ, δM)

For each point in M this function considers the seven points following it in the sorted order and
determines the distance to each of these points. It then takes the minimum overall distances. Since
the distance relationship is symmetric, there is no need to consider points appearing before a point
in the sorted order.

The work of BOUNDARY_MERGE is O(n) and the depth is dominated by the taking the minimum,
which has O(log n) depth.∗ The work of the merge and median steps in CLOSEST_PAIR are also O(n),
and the depth of both are bounded by O(log n). The total work and depth of the algorithm can
therefore be expressed by the recurrences

W(n) = 2W(n/2) + O(n) (25.11)

D(n) = D(n/2) + O(log n) (25.12)

which have solutions W(n) = O(n log n) and D(n) = O(log2 n).

25.7.2 Planar Convex Hull

The convex-hull problem takes a set of points in k dimensions and returns the smallest convex region
that contains all the points. In two dimensions the problem is called the planar convex-hull problem,
and it returns the set of points that form the corners of the region. These points are a subset of the

∗ The depth of finding the minimum or maximum of a set of numbers can actually be improved to O(log log n)

with concurrent reads [78].
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original points. We will describe two parallel algorithms for the planar convex-hull problem. They
are both based on divide-and-conquer, but one does most of the work before the divide step, and
the other does most of the work after.

25.7.2.1 QuickHull

The parallel QuickHull algorithm is based on the sequential version [71], so named because of its
similarity to the QuickSort algorithm. As with QuickSort, the strategy is to pick a “pivot” element,
split the data into two sets based on the pivot, and recurse on each of the sets. Also as with QuickSort,
the pivot element is not guaranteed to split the data into equal-sized sets, and in the worst case the
algorithm requires O(n2) work. In practice, however, the algorithm is often very efficient, probably
the most practical of the convex hull algorithms. At the end of the section we briefly describe how
the splits can be made so that the work is guaranteed to be bounded by O(n log n).

The QuickHull algorithm is based on the recursive function SUBHULL, which is expressed as follows.

ALGORITHM: SUBHULL(P, p1, p2)
1 P′ := {p ∈ P | LEFT_OF?(p, (p1, p2))}
2 if (|P′| < 2)

3 then return [p1] + +P′
4 else
5 i := MAX_INDEX({DISTANCE(p, (p1, p2)) : p ∈ P′})
6 pm := P′[i]
7 in parallel do
8 Hl := SUBHULL(P′, p1, pm)

9 Hr := SUBHULL(P′, pm, p2)
10 return Hl + +Hr

This function takes a set of points P in the plane and two points p1 and p2 that are known to lie on
the convex hull, and returns all the points that lie on the hull clockwise from p1 to p2, inclusive of p1,
but not of p2. For example in Figure 25.14 SUBHULL([A, B, C, . . . , P], A, P) would return the sequence
[A, B, J, O].

The function SUBHULL works as follows. Line 1 removes all the elements that cannot be on the hull
because they lie to the right of the line from p1 to p2. Determining which side of a line a point lies
on can easily be calculated with a few arithmetic operations. If the remaining set P′ is either empty
or has just one element, the algorithm is done. Otherwise the algorithm finds the point pm farthest
from the line (p1, p2). The point pm must be on the hull since as a line at infinity parallel to (p1, p2)
moves toward (p1, p2), it must first hit pm. In Line 5 the function MAX_INDEX returns the index of the

A [ B F ] J [ O ] P N [ C E ]
A B J O P N C

A [ B D F G H J K M O ] P [ C E I L N ]

B
F H

J

O

PMKG
D

E
I L

N

A

C
[ A B C D E F G H I J K L M N O P ]

FIGURE 25.14 An example of
the QuickHull algorithm.

maximum value of a sequence, which is then used to extract the point
pm. Once pm is found, SUBHULL is called twice recursively to find the
hulls from p1 to pm, and from pm to p2. When the recursive calls
return, the results are appended.

The following function uses SUBHULL to find the full convex hull.

ALGORITHM: QUICKHULL(P)

1 X := {x : (x, y) ∈ P}
2 xmin := P[MIN_INDEX(X)]
3 xmax := P[MAX_INDEX(X)]
4 return SUBHULL(P, xmin, xmax) + + SUBHULL(P, xmax, xmin)

We now consider the cost of the parallel QuickHull, and in particu-
lar the SUBHULL routine, which does all the work. The call to MAX_INDEX
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FIGURE 25.15 Contrived
set of points for worst-case
QuickHull.

uses O(n) work and O(log n) depth. Hence, the cost of everything other
than the recursive calls is O(n) work and O(log n) depth. If the recursive
calls are balanced so that neither recursive call gets much more than half
of the data then the number of levels of recursion will be O(log n). This
will lead to the algorithm running in O(log2 n) depth. Since the sum of
the sizes of the recursive calls can be less than n (e.g., the points within
the triangle AJP will be thrown out when making the recursive calls to
find the hulls between A and J and between J and P), the work can be
as little as O(n), and often is in practice. As with QuickSort, however,
when the recursive calls are badly partitioned the number of levels of
recursion can be as bad as O(n) with work O(n2). For example, consider
the case when all the points lie on a circle and have the following unlikely
distribution. The points xmin and xmax appear on opposite sides of the

circle. There is one point that appears half way between xmin and xmax on the sphere and this point
becomes the new xmax. The remaining points are defined recursively. That is, the points become
arbitrarily close to xmin (see Figure 25.15).

Kirkpatrick and Seidel [49] have shown that it is possible to modify QuickHull so that it makes
provably good partitions. Although the technique is shown for a sequential algorithm, it is easy to
parallelize. A simplification of the technique is given by Chan et al. [25]. Their algorithm admits
even more parallelism and leads to an O(log2 n)-depth algorithm with O(n log h) work where h is
the number of points on the convex hull.

25.7.2.2 MergeHull

The MergeHull algorithm [68] is another divide-and-conquer algorithm for solving the planar
convex hull problem. Unlike QuickHull, however, it does most of its work after returning from the
recursive calls. The function is expressed as follows.

ALGORITHM: MERGEHULL(P)

1 if (|P| < 3) then return P
2 else
3 in parallel do
4 HL = MERGEHULL(P[0..|P|/2))

5 HR = MERGEHULL(P[|P|/2..|P|))
6 return JOIN_HULLS(HL, HR)

This function assumes the input P is presorted according to the x coordinates of the points. Since
the points are presorted, HL is a convex hull on the left and HR is a convex hull on the right. The
JOIN_HULLS routine is the interesting part of the algorithm. It takes the two hulls and merges them
into one. To do this it needs to find lower and upper points l1 and u1 on HL and l2 and u2 on HR

u1
b1

b2 l2l1

u2

FIGURE 25.16 Merging two
convex hulls.

such that l1, l2 and u1, u2 are successive points on H (see Figure 25.16).
The lines b1 and b2 joining these upper and lower points are called the
upper and lower bridges, respectively. All the points between l1 and u1
and between u2 and l2 on the “outer” sides of HL and HR are on the
final convex hull, while the points on the “inner” sides are not on the
convex hull. Without loss of generality we only consider how to find
the upper bridge b1. Finding the lower bridge b2 is analogous.

To find the upper bridge one might consider taking the points with
the maximum y values on HL and HR. This approach does not work
in general, however, since u1 can lie as far down as the point with the
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FIGURE 25.17 A bridge
that is far from the top of the
convex hull.

minimum x or maximum x value (see Figure 25.17). Instead there is a
nice solution due to Overmars and van Leeuwen [68] based on a dual
binary search. Assume that the points on the convex hulls are given in
order (e.g., clockwise). At each step the binary-search algorithm will
eliminate half of the remaining points from consideration in either HL
or HR or both. After at most log |HL| + log |HR| steps the search will be
left with only one point in each hull, and these will be the desired points
u1 and u2. Figure 25.18 illustrates the rules for eliminating part of HL
or HR on each step.

We now consider the cost of the algorithm. Each step of the binary
search requires only constant work and depth since we need only to
consider the two middle points M1 and M2, which can be found in
constant time if the hull is kept sorted. The cost of the full binary search to find the upper bridge is
therefore bounded by D(n) = W(n) = O(log n). Once we have found the upper and lower bridges
we need to remove the points on HL and HR that are not on H and append the remaining convex hull

Case (a) Case (b)

M2M1 M2M1

Case (c) Case (d)

M2M1
M2

M1

Case (e) Case (f )

M2

s

M1
M2M1

FIGURE 25.18 Cases used in the binary search for finding the upper bridge for MergeHull. The points M1 and M2

mark the middle of the remaining hulls. In case (a), all of HL and HR lie below the line through M1 and M2. In this
case, the line segment between M1 and M2 is the bridge. In the remaining cases, dotted lines represent the parts of the
hulls HL and HR that can be eliminated from consideration. In cases (b) and (c), all of HR lies below the line through
M1 and M2, and either the left half of HL or the right half of HL lies below the line. In cases (d) through (f), neither HL

nor HR lies entirely below the line. In case (e), the region to eliminate depends on which side of a line separating HL

and HR the intersection of the tangents appears. The mirror images of cases (b) through (e) are also used. Case (f) is
actually an instance of case (d) and its mirror image.



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C025 Finals Page 37 2009-10-6

Parallel Algorithms 25-37

points. This requires linear work and constant depth. The overall costs of MERGEHULL are therefore

D(n) = D(n/2) + O(log n) = O(log2 n) (25.13)

W(n) = 2W(n/2) + O(n) = O(n log n) (25.14)

This algorithm can be improved to run in O(log n) depth using one of two techniques. The first
involves modifying the search for the bridge points so that it runs in constant depth with linear work
[12]. This involves sampling every

√
nth point on each hull and comparing all pairs of these two

samples to narrow the search down to regions of size
√

n in constant depth. The regions can then be
finished in constant depth by comparing all pairs between the two regions. The second technique
[1,11] uses divide-and-conquer to separate the point set into

√
n regions, solves the convex hull on

each region recursively, and then merges all pairs of these regions using the binary-search method.
Since there are

√
n regions and each of the searches takes O(log n) work, the total work for merging is

O
((√

n
)2 log n

)
= O(n log n) and the depth is O(log n). This leads to an overall algorithm that runs

in O(n log n) work and O(log n) depth. The algorithms above require concurrent reads (CREW).
The same bounds can be achieved with exclusive reads (EREW) [66].

25.8 Numerical Algorithms

There has been an immense amount of work on parallel algorithms for numerical problems. Here we
briefly discuss some of the problems and results. We suggest the following sources for further infor-
mation on parallel numerical algorithms [75, Chapters 12–14], [45, Chapter 8], [53, Chapters 5,10,
and 11] and [18].

25.8.1 Matrix Operations

Matrix operations form the core of many numerical algorithms and led to some of the earliest work
on parallel algorithms. The most basic matrix operation is matrix multiplication. The standard triply
nested loop for multiplying two dense matrices is highly parallel since each of the loops can be
parallelized:

ALGORITHM: MATRIX_MULTIPLY(A, B)

1 (l, m) := dimensions(A)

2 (m, n) := dimensions(B)

3 in parallel for i ∈ [0..l) do
4 in parallel for j ∈ [0..n) do
5 Rij := sum({Aik ∗ Bkj : k ∈ [0..m)})
6 return R

If l = m = n, this routine does O(n3) work and has depth O(log n), due to the depth of the
summation. This has much more parallelism than is typically needed, and most of the research
on parallel matrix multiplication has concentrated on what subset of the parallelism to use so that
communication costs can be minimized. Sequentially it is known that matrix multiplication can
be performed using less than O

(
n3) work. Strassen’s algorithm [82], for example, requires only

O
(
n2.81) work. Most of these more efficient algorithms are also easy to parallelize because they are

recursive in nature (Strassen’s algorithm has O(log n) depth using a simple parallelization).
Another basic matrix operation is to invert matrices. Inverting dense matrices has proven to be

more difficult to parallelize than multiplying dense matrices, but the problem still supplies plenty
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of parallelism for most practical purposes. When using Gauss–Jordan elimination, two of the three
nested loops can be parallelized, leading to an algorithm that runs with O

(
n3) work and O(n) depth.

A recursive block-based method using matrix multiplication leads to the same depth, although the
work can be reduced by using a more efficient matrix-multiplication algorithm. There are also more
sophisticated, but less practical, work-efficient algorithms with depth O

(
log2 n

)
[28,70].

Parallel algorithms for many other matrix operations have been studied, and there has also been
significant work on algorithms for various special forms of matrices, such as tridiagonal, triangular,
and sparse matrices. Iterative methods for solving sparse linear systems has been an area of significant
activity.

25.8.2 Fourier Transform

Another problem for which there is a long history of parallel algorithms is the discrete Fourier
transform (DFT). The FFT algorithm for solving the DFT is quite easy to parallelize and, as with
matrix multiply, much of the research has gone into reducing communication costs. In fact the
butterfly network topology is sometimes called the FFT network, since the FFT has the same
communication pattern as the network [55, Section 3.7]. A parallel FFT over complex numbers can
be expressed as follows:

ALGORITHM: FFT(A)

1 n := |A|
2 if (n = 1) then return A
3 else
4 in parallel do
5 EVEN := FFT({A[2i] : i ∈ [0..n/2)})
6 ODD := FFT({A[2i + 1] : i ∈ [0..n/2)})
7 return {EVEN[j]+ ODD[j]e2πij/n : j ∈ [0..n/2)} + +{EVEN[j]− ODD [j]e2πij/n : j ∈ [0..n/2)}

The algorithm simply calls itself recursively on the odd and even elements and then puts the results
together. This algorithm does O(n log n) work, as does the sequential version, and has a depth of
O(log n).

25.9 Research Issues and Summary

Recent work on parallel algorithms has focused on solving problems from domains such as pattern
matching, data structures, sorting, computational geometry, combinatorial optimization, linear
algebra, and linear and integer programming. For pointers to this work, see Section 25.10.

Algorithms have also been designed specifically for the types of parallel computers that are available
today. Particular attention has been paid to machines with limited communication bandwidth. For
example, there is a growing library of software developed for the BSP model [40,62,85].

The parallel computer industry has been through a period of financial turbulence, with several
manufacturers failing or discontinuing sales of parallel machines. In the past few years, however, a
large number of inexpensive small-scale parallel machines have been sold. These machines typically
consist of 4–8 commodity processors connected by a bus to a shared-memory system. As these
machines reach the limit in size imposed by the bus architecture, manufacturers have reintroduced
parallel machines based on the hypercube network topology (e.g., [54]).
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25.10 Further Information

In a chapter of this length, it is not possible to provide comprehensive coverage of the subject
of parallel algorithms. Fortunately, there are several excellent textbooks and surveys on parallel
algorithms including [4–6,18,30,31,35,45,48,53,55,67,75,80].

There are many technical conferences devoted to the subjects of parallel computing and computer
algorithms, so keeping abreast of the latest research developments is challenging. Some of the best
work in parallel algorithms can be found in conferences such as the ACM Symposium on Parallel
Algorithms and Architectures, the IEEE International Parallel and Distributed Processing Sympo-
sium, the International Conference on Parallel Processing, the International Symposium on Parallel
Architectures, Algorithms, and Networks, the ACM Symposium on the Theory of Computing, the
IEEE Symposium on Foundations of Computer Science, the ACM–SIAM Symposium on Discrete
Algorithms, and the ACM Symposium on Computational Geometry.

In addition to parallel algorithms, this chapter has also touched on several related subjects, includ-
ing the modeling of parallel computations, parallel computer architecture, and parallel programming
languages. More information on these subjects can be found in [7,43,44,86], and [21,34], respectively.
Other topics likely to interest the reader of this chapter include distributed algorithms [59] and VLSI
layout theory and computation [57,84].

Defining Terms

CRCW: A shared memory model that allows for concurrent reads and concurrent writes to the
memory.
CREW: This refers to a shared memory model that allows for concurrent reads but only EWs to the
memory.
Depth: The longest chain of sequential dependencies in a computation.
EREW: A shared memory model that allows for only ERs and EWs to the memory.
Graph contraction: Contracting a graph by removing a subset of the vertices.
List contraction: Contracting a list by removing a subset of the nodes.
Multiprefix: A generalization of the scan (prefix sums) operation in which the partial sums are
grouped by keys.
Multiprocessor model: A model of parallel computation based on a set of communicating sequential
processors.
Pipelined divide-and-conquer: A divide-and-conquer paradigm in which partial results from recur-
sive calls can be used before the calls complete. The technique is often useful for reducing the depth
of an algorithm.
Pointer jumping: In a linked structure, replacing a pointer with the pointer it points to. Used for
various algorithms on lists and trees.
PRAM model: A multiprocessor model in which all processors can access a shared memory for
reading or writing with uniform cost.
Prefix sums: A parallel operation in which each element in an array or linked-list receives the sum
of the previous elements.
Random sampling: Using a randomly selected sample of the data to help solve a problem on the
whole data.
Recursive doubling: The same as pointer jumping.
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Scan: A parallel operation in which each element in an array receives the sum of all the previous
elements.
Tree contraction: Contracting a tree by removing a subset of the nodes.
Symmetry breaking: A technique to break the symmetry in a structure such as a graph which can
locally look the same to all the vertices. Usually implemented with randomization.
Work: The total number of operations taken by a computation.
Work-depth model: A model of parallel computation in which one keeps track of the total work
and depth of a computation without worrying about how it maps onto a machine.
Work-efficient: A parallel algorithm is work-efficient if asymptotically (as the problem size grows)
it requires at most a constant factor more work than the best known sequential algorithm (or the
optimal work).
Work-preserving: A translation of an algorithm from one model to another is work-preserving if
the work is the same in both models, to within a constant factor.
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26.1 Introduction

The study of distributed systems and algorithms helps in understanding the specific features of
these systems compared to classic centralized systems: information is local (each element of the
system only holds a fraction of the information, and must obtain more by communicating with
other elements) and time is local (the elements of the system can run their instructions at different
speeds). These two factors result in nondeterministic behaviors, as two consecutive executions of
the same distributed system are likely to be different. The fact that certain elements of the system
can become faulty increases even further this nondeterminism and the difficulty of predicting the
overall system’s behavior.

When the number of components in a distributed system is increased, the possibility for one or
several of these components to become faulty also increases. When the production costs of these
components are reduced to achieve economies of scale, the rate of potential defects again increases.
Finally, when the components of the systems are deployed in an environment that is not necessarily
controlled, the risks of faults occurring become impossible to overlook.

26.1.1 Fault Taxonomy in Distributed Systems

A first criterion for classifying faults in distributed systems is localization in time. Usually, three
types of possible faults are distinguished:

1. Transient faults: Faults that are arbitrary in nature can strike the system, but there is a
point in the execution beyond which these faults no longer occur.

26-1
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2. Permanent faults: Faults that are arbitrary in nature can strike the system, but there is a
point in the execution beyond which these faults always occur.

3. Intermittent faults: Faults that are arbitrary in nature can strike the system at any moment
in the execution.

Transient faults and permanent faults are, of course, specific cases of intermittent faults. However,
with a system in which intermittent faults rarely occur, a system that tolerates transient faults can
be useful, because the useful life span can be long enough.

A second criterion is the nature of the faults. An element of the distributed system can be
represented by an automaton, whose states represent the possible values of the element’s variables,
and whose transitions represent the code run by the element. We can then distinguish the following
faults depending on whether they involve the state or the code of the element:

1. State-related faults: Changes in an element’s variables may be caused by disturbances in
the environment (e.g., electromagnetic waves), attacks (e.g., buffer overflow) or simply
faults on the part of the equipment used. For example, it is possible for some variables to
have values that they are not supposed to have if the system is running normally.

2. Code-related faults: An arbitrary change in an element’s code is most often the result of
an attack (e.g., the replacement of an element by a malicious opponent), but certain less
serious types correspond to bugs or a difficulty in handling the load. There are several
different subcategories of code-related faults:

a. Crashes: At a given moment during the execution, an element stops its execution
permanently and no longer performs any action.

b. Omissions: At different moments during the execution, an element may omit to
communicating with the other elements of the system, either in transmission or in
reception.

c. Duplications: At different moments during the execution, an element may perform
an action several times, even though its code states that this execution must be
performed only once.

d. Desequencing: At different moments during the execution, an element may perform
the right actions, but in the wrong order.

e. Byzantine faults: These simply correspond to an arbitrary type of fault, and are,
therefore, the faults that cause the most harm.

Crashes are included in omissions (an element that no longer communicates is perceived by the
rest of the system as an element that has ended its execution). Omissions are trivially included
in Byzantine faults. Duplications and desequencing are also included in Byzantine faults, but are
generally regarded as behaviors strictly related to communication capabilities.

A third criterion is the extent (or span) of the faults, that is, how many of the individual system
components can be hit by faults or attacks.

26.1.2 Fault-Tolerant Algorithm Categories

When faults occur on one or several of the elements that comprise a distributed system, it is essential
to be able to deal with them. If a system tolerates no fault whatsoever, the failure of a single one
of its elements can compromise the execution of the entire system: This is the case for a system in
which an entity has a central role (such as the DNS). In order to preserve the system’s useful life
span, several ad hoc methods have been developed, which are usually specific to a particular type of
fault that is likely to occur in the system in question. However, these solutions can be categorized
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depending on whether the effect is visible or not to an observer (e.g., a user). A masking solution
hides the occurrence of faults to the observer, whereas a nonmasking solution does not present this
characteristic: If The effect of faults is visible over a certain period of time, then the system resumes
behaving properly.

A masking approach may seem preferable at first, since it applies to a greater number of applica-
tions. Using a non-masking approach to regulate air traffic would make collisions possible following
the occurrence of faults. However, a masking solution is usually more costly (in resources and in
time) than a nonblocking solution, and can only tolerate faults so long as they have been anticipated.
For problems such as routing, where being unable to transport information for a few moments will
not have catastrophic consequences, a non-masking approach is perfectly well suited. Two major
categories for fault-tolerant algorithms can be distinguished:

1. Robust algorithms: These use redundancy on several levels of information, of commu-
nications, or of the system’s nodes, in order to overlap to the extent that the rest of the
code can safely be executed. They usually rely on the hypothesis that a limited number
of faults will strike the system, so as to preserve at least a majority of correct elements
(sometimes more if the faults are more severe). Typically, these are masking algorithms.

2. Self-stabilizing algorithms: These rely on the hypothesis that the faults are transient (in
other words, limited in time), but do not set constraints regarding the extent of the faults
(which may involve all of the system’s elements). An algorithm is self-stabilizing [19,20]
if it manages, in a finite time, to present an appropriate behavior independent from the
initial state of its elements, meaning that the variables of the elements may exist in a
state that is arbitrary (and impossible to achieve by running the application normally).
Typically, self-stabilizing algorithms are non-masking, because between the moment
when the faults cease and the moment when the system has stabilized to an appropriate
behavior, the execution may turn out to be somewhat erratic.

Robust algorithms are quite close to what we conceive intuitively as fault-tolerance. If an element
is susceptible to faults, then each element is replaced with three identical elements, and each time
an action is undertaken, the action is performed three times by each of the elements, and the action
actually undertaken is the one that corresponds to the majority of the three individual actions.
Self-stabilization would seem to be related more to the concept of convergence in mathematics or
control theory, where the objective is to reach a fixed point regardless of the initial position; the fixed
point corresponds here to an appropriate execution. Being capable of starting with an arbitrary state
may seem odd (since it would seem that the initial states of the elements are always well known), but
studies [70] have shown that if a distributed system is subjected to stopping and restarting-type node
failures (which correspond to a definite failure followed by a reinitialization), and communications
cannot be totally reliable (some communications may be lost, duplicated or, desequenced), then an
arbitrary state of the system can actually be achieved. Even if the probability of the execution that
leads to this arbitrary state is negligible in normal conditions, it is not impossible for an attack on
the system to attempt to reproduce such an execution. In any case, and regardless of the nature of
what led the system to this arbitrary state, a self-stabilizing algorithm is capable of providing an
appropriate behavior in a finite amount of time. In fact, self-stabilizing distributed algorithms are
found in a number of protocols used in computer networks [46,64].

Figure 26.1 sums up the relative capabilities of self-stabilizing and robust algorithms, respectively.
The three axes take into account the three possibilities to classify faults in distributed systems that are
described in Section 26.1.1. With a self-stabilizing algorithm, an external user may experience erratic
behavior (the stabilizing phase) after the faults have actually ceased, while a robust algorithm will
always appear as behaving properly. In contrast, a self-stabilizing algorithm makes no assumption
about the extent or the nature of the faults, while robust systems will generally put constraints
on those. The rest of the chapter is organized as follows: Section 26.2 presents the most common
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FIGURE 26.1 (a) Self-stabilization vs. (b) robustness.

hypotheses that are made in the self-stabilizing literature. Section 26.3 gives several examples of
self-stabilizing algorithms, using various kinds of problems, hypotheses, and proof techniques.
Section 26.4 presents the main variants of self-stabilization and concludes the chapter.

26.2 Models

Traditionally, a distributed system is usually represented by a graph, in which the nodes are the
system’s machines and the edges represent the ability of two machines to communicate. Thus, two
machines are connected if they are capable of communicating information to one another (e.g., using
a network connection). In some cases, the edges of the graph are oriented so as to represent the fact
that the communication can only take place one way (e.g., wireless communication from a satellite
to an antenna on the ground). From now on, we will indiscriminately use the words machine, node,
or process depending on the context.

26.2.1 System Hypotheses

In the context of self-stabilization, the hypotheses made for the system generally do not include,
as with robust algorithms, conditions on the completeness or the globality of the communications.
Many algorithms run on systems with nodes that only communicate locally. However, several
hypotheses may be crucial for the algorithm to run properly, and involve the hypotheses made
regarding the scheduling of the system:

1. Atomicity of the communications: most of the self-stabilizing algorithms discussed in the
literature use communication primitives with a high level of atomicity. At least three
historic models are found in the literature:

a. The state model (or shared memory model [19]): In one atomic step, a node can
read the state of each of the neighboring nodes, and update its own state.

b. The shared register model [24]: In one atomic step, a node can read the state of one
of its neighboring nodes, or update its own state, but not both simultaneously.

c. The message passing model [1,25,50]: This is the classic model for distributed
algorithms, for which in one atomic step, a node sends a message to one of the
neighboring nodes, or receives a message from one of the neighboring nodes, but
not both simultaneously.
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With the recent study of the self-stabilization property in wireless and ad hoc sensor
networks, several models for local diffusion with potential collisions have appeared. In
the model that presents the highest degree of atomicity [53], a node can, in one atomic
step, read its own state and partially write the state of each of the neighboring nodes. If
two nodes simultaneously write the state of a common neighbor, a collision occurs and
none of the information is written. A more realistic model [43] consists of defining two
distinct and atomic actions for local diffusion on one hand and the reception of a locally
diffused message on the other.
In the case of bidirectional communications, it is possible to simulate a model using
another model. For example, [20] shows how to transform the shared memory model
into a message passing model. In the models that are specific to wireless networks, [52]
shows how to transform the local diffusion model with collisions into a shared memory
model; in a similar fashion [41] shows that the model in [43] can be transformed into a
shared memory model. There are two problems with these transformations:

a. the transformation uses up resources (time, memory, energy in the case of sensors),
which could be avoided using a direct solution in the model closest to the considered
system;

b. the transformation is only possible in systems with bidirectional communications:
this is due to the fact that acknowledgments have to be sent regularly to ensure that
the highest level model is properly simulated.

2. Spatial scheduling: Historically, self-stabilizing algorithms rely on the hypothesis that two
neighboring nodes cannot execute their codes simultaneously. This makes it possible to
break symmetry in certain configurations [4,65]. Usually, three main possibilities are
distinguished for scheduling, depending on which constraints are wanted:

a. Central scheduling: At a given moment, only one of the system’s nodes can run its
code;

b. Global (or synchronous) scheduling: At a given moment, all of the system’s nodes
run their codes;

c. Distributed scheduling: At a given moment, an arbitrary subset of the system’s nodes
runs its code. This type of spatial scheduling is the most realistic.

Other variations are also possible (e.g., a k-locally central scheduling [60]: at a given
moment, in each neighborhood of node at distance at most k, only one of the nodes exe-
cutes its code), but in practice, they are equivalent to one of the three models mentioned
above (see [67,69]). The more constrained the spatial scheduling model is, the easier it is
to solve problems. For example, [4] shows that it is impossible to color an arbitrary graph
in a distributed and deterministic fashion. On the other hand, [36] shows that if the spa-
tial scheduling is locally central, then such a solution is possible. Some algorithms, which
rely on the hypothesis of one of these models, can be run in another model, as before, at
the price of a greater consumption of resources. Because the most general model is the
distributed model, it may be transformed into a more constrained model using a mutual
exclusion algorithm [14,19,38] (for the central model), or a synchronization algorithm
[2] (for the global model).

3. Temporal scheduling: The first self-stabilizing [19] algorithms were independent of the
concept of time, that is, they were written in a purely asynchronous model, where no
hypothesis is stated regarding the relative speeds of the system’s nodes. Later on, schedul-
ing models with heavier constraints began to appear, particularly for the description of
real systems. Schedulers are usually divided into three main types:
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FIGURE 26.2 Taxonomy of system hypotheses in self-stabilization.

a. Arbitrary (aka unfair, adversarial) scheduling: no hypothesis is made regarding
the respective execution properties of the system’s nodes, other than the simple
progression (at each moment, at least one node executes some actions);

b. Fair scheduling: each node runs local actions infinitely often;

c. Bounded scheduling: between the executions of two actions for the same system
node, each node executes a bounded number of actions.

Other variations are possible (e.g., [48] makes a distinction between weak fairness and
strong fairness), but as before, the more constrained the temporal scheduling model
is, the easier it is to solve problems. Bounded scheduling can be constrained further
in order to obtain synchronous (or global) scheduling. As with the variations on the
previous models, there are algorithms for transforming the execution from one model to
another. For example, alternators [35,45,54] can be used to construct a bounded model
based on a fair or arbitrary model. On the other hand, because of its unbounded nature,
the strict fair model cannot be (strictly) constructed from the arbitrary model.

The general taxonomy of common system hypotheses made in self-stabilizing literature is pre-
sented in Figure 26.2. An arrow from a hypothesis a to a hypothesis b implies that a is stronger than
b, that is, an algorithm pa assuming a is weaker than an algorithm pb assuming b. That is, pb will work
under hypotheses b and a, but pa will only work with hypothesis a. Since the kinds of scheduling
presented in this section are quite different from the notion of scheduling used, for example, in
parallel algorithms, the most used term to refer to those hypotheses in the self-stabilizing literature
is the daemon. The two terms are used interchangeably in the remaining of the text.

26.2.2 Program Model

For the formal description of our program, we use simplified UNITY notation [33]. A program
consists of a set of processes. A process contains a set of constants that it can read but not update.
A process maintains a set of variables. Each variable ranges over a fixed domain of values. We use
small case letters to denote singleton variables, and capital ones to denote sets. Some variables are
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persistent from one activation of the process to the next, and are called state variables, while some
other are wiped out between two activations of a process, and are called local variables. When there
is no ambiguity, the generic term variable refers to a state variable.

An action has the form 〈name〉 : 〈guard〉 −→ 〈command〉. A guard is a Boolean predicate. In
the shared memory model, this predicate is over the variables of the process and its communication
neighbors. In the shared register model, this predicate is over the variables of the process and a
single input register. In the message passing model, this predicate is over the variables of the process
and the receive(m) primitive. In this context, receive(m) evaluates to true if a message matching m
has been received, and to false otherwise. A command is a sequence of statements assigning new
values to the variables of the process (in all communication models) and sending messages (using
the send(m) primitive) in the message passing model. Besides assignments, conditionals and loops
are also available (with the if-fi and do-od constructions, respectively). We refer to a variable var
and an action ac of process p as var.p and ac.p, respectively. We make use of two operators: [] denotes
alternation (that is, a[]b denotes the fact that either a or b is executed, but not both, and the choice
is nondeterministic) while ∗[] denotes iteration (that is, ∗[a] denotes the fact that a is repetitively
evaluated). A parameter is used to define a set of actions as one parametrized action. For example,
let j be a parameter ranging over values 2, 5, and 9; then a parametrized action ac.j defines the set of
actions: ac.(j := 2) [] ac.(j := 5) [] ac.(j := 9).

A configuration of the system is the assignment of a value to every variable of each process from the
variable’s corresponding domain (and possibly a similar assignment of message contents in channels
between processes in case of the message passing model). Each process contains a set of actions. An
action is enabled in some configuration if its guard is true at this state. A computation is a maximal
sequence of configurations such that for each configuration si, the next configuration si+1 is obtained
by executing the command of an action that is enabled in si. Maximality of a computation means
that the computation is infinite or it terminates in a state where none of the actions are enabled.
Such state is a fix-point.

A configuration conforms to a predicate if this predicate is true in this configuration; otherwise
the state violates the predicate. By this definition, every state conforms to predicate true and none
conforms to false. Let R and S be predicates over the configuration of the system. Predicate R is
closed with respect to the program actions if every configuration of the computation that starts
in a configuration conforming to R also conforms to R. Predicate R converges to S if R and S are
closed and any computation starting from a configuration conforming to R contains a configuration
conforming to S. The program stabilizes to R if true converges to R.

DEFINITION 26.1 (Self-stabilization) Starting from an arbitrary initial configuration, any execu-
tion of a self-stabilizing algorithm contains a subsequent configuration from which every execution
satisfies the specification.

26.3 Designing Self-Stabilizing Algorithms

In the context of self-stabilization, depending on the problem that we wish to solve, the minimum
time required for going back to a correct configuration varies significantly. Problems are generally
divided into two categories:

1. Static problems: We wish to perform a task that consists of calculating a function that
depends on the system in which it is assessed. For example, it can consist of coloring the
nodes of a network so as to never have two adjacent nodes with the same color; another
example is the calculation of the shortest paths to a destination [21].
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2. Dynamic problems: We wish to perform a task that performs a service for upper layer
algorithms. The model transformation algorithms such as token passing fall into this
category.

The example designs that are featured in this section are Maximal Matching (Section 26.3.1),
Generalized Diners (Section 26.3.2), Census (Section 26.3.3), and Token Passing (Section 26.3.4).
The first two are written for the state model (aka. shared memory model) and the last two for
the message passing model. Maximal Matching and Census are instances of static problems, while
Generalized Diners and Token Passing are instances of dynamic ones. The proof techniques used
to show the self-stabilization properties of the presented algorithms include attractors, potential
functions, and Markov chains. The examples that are presented in this section previously appeared
in [12,16,27,58].

26.3.1 Maximal Matching

Algorithm. In the following, we present and motivate our algorithm for computing a maximal
matching. The algorithm is self-stabilizing and does not make any assumption on the network
topology. A set of edges M ⊆ E is matching if and only if x, y ∈ M implies that x and y do not share
a common end point. A matching M is maximal if no proper superset of M is also a matching. Note
that a maximal matching differs from a maximum matching, that is required to have maximum
cardinality among all possible maximal matchings. In the remaining of the section, n denotes the
number of nodes and m denotes the number of edges, respectively.

Each process i has a variable points_to.i pointing to one of its neighbors or to null. We say that
processes i and j are married to each other if and only if i and j are neighbors and their points_to-values
point to each other. In this case we will also refer to i as being married without specifying j. However,
we note that in this case j is unique. A process which is not married is unmarried. Figure 26.3
depicts two possible configurations of our algorithm: In Figure 26.3a, some nodes point to some
other without the converse being true (leaving those nodes unmatched) while Figure 26.3b depicts
a maximal matching configuration.

We also use a variable matched.i to let neighboring processes of i know if process i is married or
not. To determine the value of matched.i we use a predicate PRmarried(i) which evaluates to true
if and only if i is married. Thus predicate PRmarried(i) allows process i to know if it is currently
married and the variable matched.i allows neighbors of i to know if i is married. Note that the value
of matched.i is not necessarily equal to PRmarried(i).

Our self-stabilizing scheme is given in Algorithm 2. It is composed of four mutually exclusive
guarded rules as described below.

The update rule updates the value of matched.i if it is necessary, while the three other rules can
only be executed if the value of matched.i is correct. In the marriage rule, an unmarried process
that is currently being pointed to by a neighbor j tries to marry j by setting points_to.i = j. In

(a) (b)

FIGURE 26.3 Possible configurations of Algorithm 2. (a) A possible arbitrary initial configuration and (b) a legitimate
maximal matching configuration.



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C026 Finals Page 9 2009-10-19

Self-Stabilizing Algorithms 26-9

the seduction rule, an unmarried process that is not being pointed to by any neighbor, points
to an unmarried neighbor with the objective of marriage. Note that the identifier of the chosen
neighbor has to be larger than that of the current process. This is enforced to avoid the creation
of cycles of pointer values. In the abandonment rule, a process i resets its points_to.i value to null.
This is done if the process j which it is pointing to does not point back at i and if either (1) j is
married, or (2) j has a lower identifier than i. Condition (1) allows a process to stop waiting for an
already married process while the purpose of Condition (2) is to break a possible initial cycle of
points_to-values.

We note that if PRmarried(i) holds at some point of time then from then on it will remain true
throughout the execution of the algorithm. Moreover, the algorithm will never actively create a cycle
of pointing values since the seduction rule enforces that j > i before process i will point to process j.
Moreover, all initial cycles are eventually broken since the guard of the abandonment rule requires
that j ≤ i.

Algorithm 2 MM: A self-stabilizing maximal matching algorithm
process i
const

N: communication neighbors of i
parameter

r : N
var

matched.i : {true, false}
points_to.i : {null} ∪ N

predicate
PRmarried(i) ≡ (points_to.i = r ∧ points_to.r = i)

∗[
update: matched.i �= PRmarried(i) −→

matched.i := PRmarried(i)
[]

marriage: matched.i = PRmarried(i) ∧ points_to.i = null ∧ points_to.r = i −→
points_to.i := r

[]
seduction: matched.i = PRmarried(i) ∧ points_to.i = null ∧ ∀k ∈ N : points_to.k �= i

∧(points_to.r = null ∧ r > i ∧ ¬matched.r) −→
points_to.i := Max{j ∈ N : (points_to.j = null ∧ j > i ∧ ¬matched.j)}

[]
abandonment: matched.i = PRmarried(i) ∧ points_to.i = j ∧ points_to.j �= i

∧(matched.j ∨ j ≤ i) −→
points_to.i := null

]

Proof of Correctness. The proof of correctness presented in this section demonstrates how to cope
with an adversarial daemon. Intuitively, we can only assume progress of the computation (i.e., at least
one node that is activatable makes a move), so the main goal of the proof is to show that whatever the
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FIGURE 26.4 Proving self-stabilization with unfair scheduling.

choices of the daemon are, only a finite number of moves can be made by each node before reaching
a legitimate configuration, as there exists no chain of consecutive configurations that form a loop
in the set of illegitimate configurations (see Figure 26.4). For the maximal matching problem, the
situation is facilitated by the fact that a final configuration is eventually reached, in which a maximal
matching is constructed.

In the following, we will first show that when Algorithm 2 has reached a stable configuration
it also defines a maximal matching. We will then bound the number of steps the algorithm needs
to stabilize for the adversarial daemon. We now proceed to show that if Algorithm 2 reaches a
stable configuration then the points_to and matched-values will define a maximal matching M where
(i, j) ∈ M if and only if (i, j) ∈ E, points_to.i = j, and points_to.j = i while both matched.i and
matched.j are true. A configuration is stable (or terminal) if no processes are eligible to execute a
move. In order to perform the proof, we define the following five mutually exclusive predicates:

PRmarried(i) ≡ ∃j ∈ N(i) : (points_to.i = j and points_to.j = i)
PRwaiting(i) ≡ ∃j ∈ N(i) : (points_to.i = j and points_to.j �= i and ¬PRmarried(j))
PRcondemned(i) ≡ ∃j ∈ N(i) : (points_to.i = j and points_to.j �= i and PRmarried(j))
PRdead(i) ≡ (points_to.i = null) and (∀j ∈ N(i) : PRmarried(j))
PRfree(i) ≡ (points_to.i = null) and (∃j ∈ N(i) : ¬PRmarried(j))

Note first that each process will evaluate exactly one of these predicates to true. Moreover, also
note that PRmarried(i) is the same as in Algorithm 2. We now show that in a stable configuration
each process i evaluates either PRmarried(i) or PRdead(i) to true, and when this is the case, the
points_to-values define a maximal matching. To do so, we first note that in any stable configuration
the matched-values reflects the current status of the process.
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LEMMA 26.1 In a stable configuration we have matched.i = PRmarried(i) for each i ∈ V .

PROOF This follows directly because if matched.i �= PRmarried(i) then i is eligible to execute the
update rule.

We show in the following three lemmas that no process will evaluate either PRwaiting(i),
PRcondemned(i), or PRfree(i) to true in a stable configuration.

LEMMA 26.2 In a stable configuration PRcondemned(i) is false for each i ∈ V .

PROOF If there exists at least one process i in the current configuration such that
PRcondemned(i) is true then points_to.i is pointing to a process j ∈ N(i) that is married to
a process k where k �= i. From Lemma 26.1 it follows that in a stable configuration we have
matched.i = PRmarried(i) and matched.j = PRmarried(j). Thus in a stable configuration the pred-
icate (matched.i = PRmarried(i) ∧ points_to.i = j ∧ points_to.j �= i ∧ matched.j) evaluates to
true. But then process i is eligible to execute the abandonment rule contradicting that the current
configuration is stable.

LEMMA 26.3 In a stable configuration PRwaiting(i) is false for each i ∈ V .

PROOF Assume that the current configuration is stable and that there exists at least one process
i such that PRwaiting(i) is true. Then it follows that points_to.i is pointing to a process j ∈ N(i) such
that points_to.j �= i and j is unmarried. Note first that if points_to.j = null then process j is eligible
to execute a marriage move. Moreover, if j < i then process i can execute an abandonment move.
Assume, therefore, that points_to.j �= null and that j > i. It then follows from Lemma 26.2 that
¬PRcondemned(j) is true and since j is not married we also have ¬PRmarried(j). Thus PRwaiting(j)
must be true. Repeating the same argument for j as we just did for i, it follows that if both i and
j are ineligible for a move then there must exist a process k such that points_to.j = k, k > j, and
PRwaiting(k) also evaluate to true. This sequence of processes cannot be extended indefinitely since
each process must have a higher identifier than the preceding one. Thus there must exist some
process in V that is eligible for a move and the assumption that the current configuration is stable is
incorrect.

LEMMA 26.4 In a stable configuration PRfree(i) is false for each i ∈ V .

PROOF Assume that the current configuration is stable and that there exists at least one process
i such that PRfree(i) is true. Then it follows that points_to.i = null and that there exists at least one
process j ∈ N(i) such that j is not married.

Next, we look at the value of the different predicates for the process j. Since j is not married it
follows that PRmarried(j) evaluates to false. Moreover, from Lemmas 26.2 and 26.3 we have that both
PRwaiting(j) and PRcondemned(j) must evaluate to false. Finally, since i is not married we cannot
have PRdead(j). Thus we must have PRfree(j). But then the process with the smaller identifier of
i and j is eligible to propose to the other, contradicting the fact that the current configuration is
stable.
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From Lemmas 26.2 through 26.4 we immediately get the following corollary.

COROLLARY 26.1 In a stable configuration either PRmarried(i) or PRdead(i) holds for every
i ∈ V .

We can now show that a stable configuration also defines a maximal matching.

THEOREM 26.1 In any stable configuration the matched and points_to-values define a maximal
matching.

PROOF From Corollary 26.1 we know that in a stable configuration either PRmarried(i) or
PRdead(i) holds for every i ∈ V . Moreover, from Lemma 26.1 it follows that matched.i is true if and
only if i is married. It is then straightforward to see that the points_to-values define a matching.

To see that this matching is maximal assume to the contrary that it is possible to add one more
edge (i, j) to the matching so that it still remains a legal matching. To be able to do so we must
have points_to.i = null and points_to.j = null. Thus we have ¬PRmarried(i) and ¬PRmarried(j)
which again implies that both PRdead(i) and PRdead(j) evaluates to true. But according to the
PRdead predicate, two adjacent processes cannot be dead at the same time. It follows that the current
matching is maximal.

In the following we will show that Algorithm 2 will reach a stable configuration after at most
3 · n + 2 · m steps under the distributed adversarial daemon.

First we note that as soon as two processes are married they will remain so for the rest of the
execution of the algorithm.

LEMMA 26.5 If processes i and j are married in a configuration C, that is, points_to.i = j and
points_to.j = i, then they will remain married in any ensuing configuration C′.

PROOF Assume that points_to.i = j and points_to.j = i in some configuration C. Then process
i can neither execute the marriage nor the seduction rule since these require that points_to.i = null.
Similarly, i cannot execute the abandonment rule since this requires that points_to.j �= i. The exact
same argument for process j shows that j also cannot execute any of the three rules: marriage,
seduction, and abandonment. Thus the only rule that processes i and j can execute is update but this
will not change the values of points_to.i or points_to.j.

A process discovers that it is married by executing the update rule. Thus this is the last rule a
married process will execute in the algorithm. This is reflected in the following.

COROLLARY 26.2 If a process i executes an update move and sets matched.i = true then i will
not move again.

PROOF From the predicate of the update rule it follows that when process i sets matched.i = true
there must exist a process j ∈ N(i) such that points_to.i = j and points_to.j = i. Thus from Lemma
26.5 the only subsequent move i can make is an update move. But since the value of matched.i is
correct and points_to.i and points_to.j will not change again, this will not happen.

Since a married process cannot become “unmarried” we also have the following restriction on the
number of times the update rule can be executed by any process.
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COROLLARY 26.3 Any process executes at most two update moves.

We will now bound the number of moves from the set {marriage, seduction, abandonment}. Each
such move is performed by a process i in relation to one of its neighbors j. We denote any such move
made by either i or j with respect to the other as an i, j-move.

LEMMA 26.6 For any edge (i, j) ∈ E, there can at most be three steps in which an i, j-move is
performed.

PROOF Let (i, j) ∈ E be an edge such that i < j. We then consider four different cases depend-
ing on the initial values of points_to.i and points_to.j. Note from Algorithm 2 that the only val-
ues that points_to.i and points_to.j can take on are points_to.i ∈ {null} ∪ N(i) and points_to.j ∈
{null} ∪ N(j). For each case, we will show that there can at most be three steps in which i, j-moves
occur.

1. points_to.i �= j and points_to.j �= i. Since i < j the first i, j-move cannot be process j
executing a seduction move. Moreover, as long as points_to.i �= j, process j cannot execute
a marriage move. Thus process j cannot execute an i, j-move until after process i has first
made an i, j-move. It follows that the first possible i, j-move is that i executes a seduction
move simultaneously as j makes no i, j-move. Note that at the starting configuration of this
move, we must have ¬matched.j. If the next i, j-move is performed by j simultaneously
as i performs no move then this must be a marriage move which results in points_to.i = j
and points_to.j = i. Then by Lemma 26.5 there will be no more i, j-moves. If process
i makes the next i, j-move (independently of what process j does) then this must be an
abandonment move. But this requires that the value of matched.j has changed from false
to true. Then by Corollary 26.2 process j will not make any more i, j-moves and since
points_to.j �= null and points_to.j �= i for the rest of the algorithm, it follows that process
i cannot execute any future i, j-move. Thus there can at most be two steps in which
i, j-moves are performed.

2. points_to.i = j and points_to.j �= i. If the first i, j-move only involves process j then
this must be a marriage move resulting in points_to.i = j and points_to.j = i and from
Lemma 26.5, neither i nor j will make any future i, j-moves. If the first i, j-move involves
process i then this must be an abandonment move. Thus in the configuration prior to this
move we must have matched.j = true. It follows that either matched.j �= PRmarried(j)
or points_to.j �= null. In both cases process j cannot make an i, j-move simultaneously
as i makes its move. Thus following the abandonment move by process i we are at Case
(1) and there can at most be two more i, j-moves. Hence, there can at most be a total of
three steps with i, j-moves.

3. points_to.i �= j and points_to.j = i. If the first i, j-move only involves process i then this
must be a marriage move resulting in points_to.i = j and points_to.j = i and from Lemma
26.5 neither i nor j will make any future i, j-moves. If the first i, j-move involves process
j then this must be an abandonment move. If process i does not make a simultaneous
i, j-move then this will result in configuration (1) and there can at most be two more
steps with i, j-moves for a total of three steps containing i, j-moves. If process i does
make a simultaneous i, j-move with process j executing an abandonment move, then this
must be a marriage move. We are now at a similar configuration as Case (2) but with
¬matched.j. If the second i, j-move involves process i then this must be an abandonment
move implying that matched.j has changed to true. It then follows from Corollary 26.2
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that process j (and therefore also process i) will not make any future i, j-move leaving a
total of two steps containing i, j-moves. If the second i, j-move does not involve i then
this must be a marriage move performed by process j resulting in points_to.i = j and
points_to.j = i and from Lemma 26.5 neither i nor j will make any future i, j-moves.

4. points_to.i = j and points_to.j = i. In this case it follows from Lemma 26.5 that neither
process i nor process j will make any future i, j-moves.

It should be noted in the proof of Lemma 26.6 that only an edge (i, j) where we initially have either
points_to.i = j or points_to.j = i (but not both) can result in three i, j-moves, otherwise the limit is
two i, j-moves per edge. When we have three (i, j)-moves across an edge (i, j) we can charge these
moves to the process that was initially pointing to the other. In this way each process will at most
be incident on one edge for which it is charged three moves. From this observation we can now give
the following bound on the total number of steps needed to obtain a stable solution.

THEOREM 26.2 Algorithm 2 will stabilize after at most 3 · n + 2 · m steps under the distributed
adversarial daemon.

PROOF From Corollary 26.2 we know that there can be at most 2n update moves, each of which
can occur in a separate step. From Lemma 26.6 it follows that there can at most be three i, j-moves
per edge. But as observed, there is at most one such edge incident on each process i for which process
i is charged for, otherwise the limit is two i, j-moves. Thus the total number of i, j-moves is at most
n + 2 · m and the result follows.

From Theorem 26.2 it follows that Algorithm 2 will use O(m) moves on any connected system
when assuming a distributed daemon. Since the distributed daemon encompasses the sequential
daemon this result also holds for the sequential daemon. To see that this is a tight bound for the
stabilization time, consider a complete graph in which each process in, in−1, . . . , i1 has a unique
identifier such that in > in−1 > · · · > i1. We will now show that there exists an initial configuration
and a sequence of moves such that Ω(m) moves are executed before the system reaches a stable
configuration. Consider that initially every process is unmarried and not pointing to anyone. Then
the processes in−1, . . . , i1 will be eligible to execute seduction moves and point to in. Following this,
in may now execute a marriage move, and become married to in−1. Thus the processes in−2, . . . , i1
are now eligible to execute abandonment moves. Observe that following these moves, two moves
have been executed for every edge incident to in, and the processes in−2, . . . , i1 are once again not
pointing to any other process. Furthermore, by Lemma 26.5 we know that neither in nor in−1 will
execute any further nonupdate moves (note that no moves were executed for any edge incident on
in−1, with the exception of the edge (in, in−1)). In the same manner, we can now reason that in
addition to the above, two moves are executed for every edge incident on in−2 (with the exception
of those incident on in or in−1). Repeating this argument gives that Ω(m) nonupdate moves are
executed before the system reaches a stable configuration.

26.3.2 Generalized Diners

Algorithm. An instance of the generalized diners problem defines for each process p a set of
communication neighbors N.p and a set of conflict neighbors M.p. Both relations are symmetric.
That is, for any two processes p and q if p ∈ N.q then q ∈ N.p. The same applies to M.p. Throughout
the computation each process requests critical section (CS for short) access an arbitrary number of
times: from zero to infinity. A program that solves the generalized diners satisfies the following two
properties for each process p:
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safety—if the action that executes the CS is enabled in p, it is disabled in all processes of M.p;
liveness—if p wishes to execute the CS, it is eventually allowed to do so.

In this section it is assumed that in any computation, the action execution is weakly fair. That is,
if an action is enabled in all but finitely many states of an infinite computation then this action is
executed infinitely often.

K-hop diners is a restriction of generalized diners. In k-hop diners, for each process p, M.p contains
all processes whose distance to p in the graph formed by the communication topology is no more
than k.

The main idea of the algorithm is to coordinate CS request notifications between multiple conflict
neighbors of the same process. We assume that for each process p there is a tree that spans M.p. This
tree is rooted in p. A stabilizing breadth-first construction of a spanning tree is a relatively simple
task [20].

The processes in this tree propagate CS request of its root. The request reflects from the leaves
and informs the root that its conflict neighbors are notified. This mechanism resembles information
propagation with feedback [9].

The access to the CS is granted on the basis of the priority of the requesting process. Each process
has an identifier that is unique throughout the system. A process with lower identifier has higher
priority. To ensure liveness, when executing the CS, each process p records the identifiers of its lower
priority conflict neighbors that also request the CS. Before requesting it again, p then waits until all
these processes access the CS.

Each process p has access to a number of constants. The set of identifiers of its communication
neighbors is N, and its conflict neighbors is M. For each of its conflict neighbors r, p knows
the appropriate spanning tree information: the parent identifier—dad.p.r, and a set of ids of its
children—KIDS.p.r.

Process p stores its own request state in variable state.p.p and the state of each of its conflict
neighbors in state.p.r. Notice that p’s own state can be only idle or req, while for its conflict
neighbors p also has rep. To simplify the description, depending on the state, we refer to the process
as being idle, requesting, or replying. In YIELD, process p maintains the ids of its lower priority
conflict neighbors that should be allowed to enter the CS before p requests it again. Variable needcs is
an external Boolean variable that indicates if CS access is desired. Notice that CS entry is guaranteed
only if needcs remains true until p requests the CS.

There are five actions in the algorithm. The first two: join and enter manage CS entry of p itself.
The remaining three—forward, back, and stop—propagate CS request information along the tree.
Notice that the latter three actions are parametrized over the set of p’s conflict neighbors.

Action join states that p requests the CS when the application variable needcs is true, p itself, as
well as its children in its own spanning tree, is idle and there are no lower priority conflict neighbors
to wait for. As action enter describes, p enters the CS when its children reply and the higher priority
processes do not request the CS themselves. To simplify the presentation, we describe the CS
execution as a single action.

Action forward describes the propagation of a request of a conflict neighbor r of p along r’s tree.
Process p propagates the request when p’s parent dad.p.r is requesting and p’s children are idle.
Similarly, back describes the propagation of a reply back to r. Process p propagates the reply either if
its parent is requesting and p is the leaf in r’s tree or all p’s children are replying. The second disjunct
of back is to expedite the stabilization of Algorithm 3. Action stop resets the state of p in r’s tree to
idle when its parent is idle. This action removes r from the set of lower priority processes to await
before initiating another request.

The operation of Algorithm 3 in legitimate states is illustrated in Figure 26.5. We focus on the
conflict neighborhood M.a of a certain node a. We consider representative nodes in the spanning
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Algorithm 3 KDP : A self-stabilizing k-hops diners algorithm
process p
const

M: k-hop conflict neighbors of p
N: communication neighbors of p
(∀q : q ∈ M : dad.p.q ∈ N, KIDS.p.q ⊂ N)

parent id and set of children ids for each k-hop neighbor
parameter

r : M
var

state.p.p : {idle, req},
(∀q : q ∈ M : state.p.q : {idle, req, rep}),
YIELD : {∀q : q ∈ M : q > p} lower priority processes to wait for
needcs : boolean, application variable to request the CS

∗[
join: needcs ∧ state.p.p = idle ∧ YIELD = ∅ ∧

(∀q : q ∈ KIDS.p.p : state.q.p = idle) −→
state.p.p := req

[]
enter: state.p.p = req ∧

(∀q : q ∈ KIDS.p.p : state.q.p = rep) ∧
(∀q : q ∈ M ∧ q < p : state.p.q = idle) −→

/* Critical Section */
YIELD := {∀q : q ∈ M ∧ q > p : state.p.q = rep},
state.p.p := idle

[]
forward: state.p.r = idle ∧ state.(dad.p.r).r = req ∧

((KIDS.p.r = ∅) ∨ (∀q : q ∈ KIDS.p.r : state.q.r = idle)) −→
state.p.r := req

[]
back: state.p.r = req ∧ state.(dad.p.r).r = req ∧

((KIDS.p.r = ∅) ∨ (∀q : q ∈ KIDS.p.r : state.q.r = rep)) ∨
state.p.r �= rep ∧ state.(dad.p.r).r = rep −→

state.p.r := rep
[]

stop: (state.p.r �= idle ∨ r ∈ YIELD) ∧
state.(dad.p.r).r = idle −→

YIELD := YIELD \ {r},
state.p.r := idle

]

tree of M.a. Specifically, we consider one of a’s children—e, a descendant—b, b’s parent—c and one
of b’s children—d.

Initially, the states of all processes in M.a are idle. Then, a executes join and sets state.a.a to req
(see Figure 26.5a). This request propagates to process b, which executes forward and sets state.b.a to
req as well (Figure 26.5b). The request reaches the leaves and bounces back as the leaves change their
state to rep. Process b then executes back and changes its state to rep as well (Figure 26.5c). After the
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FIGURE 26.5 Phases of Algorithm 3 operation. (a) a initiates request, (b) b propagates request, (c) b propagates
reply, (d) b resets, and (e) color code.

reply reaches a and if none of the higher priority processes are requesting the CS, a executes enter.
This action resets state.a.a to idle. This reset propagates to b which executes stop and also changes
state.b.a to idle (Figure 26.5d).

Proof of Correctness. The proof of correctness that is presented in this section demonstrates the
use of attractors (see Figure 26.6). An attractor a is a predicate on configurations that is closed for
any subsequent execution, and that attracts any execution starting from any arbitrary initial state.
In other words, any execution of the system has a configuration that satisfies a. Usually, attractors
are nested as presented in Figure 26.6, meaning that each nested attractor is a refinement of the
previous one. Figure 26.6a presents the notion of nested attractors that do not require a fairness
condition: starting from any state, only a finite number of steps may be executed before a particular
intermediate attractor is satisfied. In contrast, Figure 26.6b presents some paths that are cycling, that
is, there exists an execution such that the attractor is never reached (e.g., the cycle of light gray nodes
with f label). However, for every configuration in a cyclic path, there exists another path that leads
to a configuration that satisfies the attractor. Assuming weak fairness (i.e., in all but finitely many
configurations, if it is possible that a particular action makes the configuration satisfy the attractor,
then this action is eventually executed), we are able to prove that the attractor is eventually satisfied.
Of course, there can be such nested attractors as well.

We present Algorithm 3 correctness proof as follows. We first state a predicate we call InvK and
demonstrate that Algorithm 3 stabilizes to it in Theorem 26.3. We then proceed to show that if InvK
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FIGURE 26.6 Proving self-stabilization with attractors. (a) Without fairness condition and (b) with fairness condition.

holds, then Algorithm 3 satisfies the safety and liveness properties of the k-hop diners in Theorems
26.4 and 26.5, respectively.

Throughout this section, unless otherwise specified, we consider the conflict neighbors of a
certain node a (see Figure 26.5). That is, we implicitly assume that a is universally quantified over
all processes in the system. We focus on the following nodes: e ∈ KIDS.a.a, b ∈ M.a, c ≡ dad.b.a
and d ∈ KIDS.b.a.

Since we discuss the states of e, b, c, and d in the spanning tree of a, it is clear from the context, we
omit the specifier of the conflict neighborhood. For example, we use state.b for state.b.a. Moreover,
for clarity, we attach the identifier of the process to the actions it contains. For example, forward.b
is the forward action of process b.

Our global predicate consists of the following predicates that constrain the states of each individual
process and the states of its communication neighbors. The predicate below relates the states of the
root of the tree a to the states of its children.

(state.a = idle) ⇒ (∀e : e ∈ KIDS.a : state.e �= req) (Inv.a)

The following sequence of predicates relates the state of b to the state of its neighbors.

state.b = idle ∧ state.c �= rep ∧ (∀d : d ∈ KIDS.b : state.d �= req) (I.b.a)
state.b = req ∧ state.c = req (R.b.a)
state.b = rep ∧ (∀d : d ∈ KIDS.b : state.d = rep) (P.b.a)

We denote the disjunction of the above three predicates as follows:

I.b.a ∨ R.b.a ∨ P.b.a (Inv.b.a)

The following predicate relates the states of all processes in M.a.

(∀a :: Inv.a ∧ (∀b : b ∈ M.a : Inv.b.a)) (InvK)

To aid in exposition, we mapped the states and transitions for individual processes in Figure 26.7.
Note that to simplify the picture, for the intermediate process b we only show the states and transitions
if Inv.f .a holds for each ancestor f of b. For b, the I.b, R.b, and P.b denote the states conforming to the
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FIGURE 26.7 State transitions for an individual process. (a) Intermediate process b if Inv holds for ancestors and (b)
root process a.

respective predicates, while the primed versions I′.b and P′.b signify the states where b is respectively
idle and replying but Inv.b.a does not hold. Notice that if Inv.c.a holds for b’s parent c, the primed
version of R does not exist. Indeed, to violate R, b should be requesting while c is either idle or
replying. However, if Inv.c.a holds and c is in either of these two states, b cannot be requesting.

For a, IR.a and RR.a denote the states where a is respectively idle and requesting while Inv.a
holds. In states IR′.a, a is idle while Inv.a does not hold. Notice that since state = req falsifies the
antecedent of Inv.a, the predicate always holds if a is requesting. The state transitions in Figure 26.7
are labeled by actions whose execution effects them. Loopback transitions are not shown.

THEOREM 26.3 Algorithm 3 stabilizes to InvK.

PROOF By the definition of stabilization, InvK should be closed with respect to the execution of
the actions of Algorithm 3, and Algorithm 3 should converge to InvK. We prove the closure first.

Closure. To aid in the subsequent convergence proof, we show a property that is stronger than
just the closure of InvK. We demonstrate the closure of the following conjunction of predicates:
Inv.a and Inv.b.a for a set of descendants of a up to a certain depth of the tree. To put it another
way, in showing the closure of Inv.b.a for b we assume that the appropriate predicates hold for all
its ancestors. Naturally, the closure of InvK follows. By definition of predicate closure, we need to
demonstrate that if the predicate holds in a certain state, the execution of any action in this state
does not violate the predicate.

Let us consider Inv.a and the root process a first. Notice that the only two actions that can
potentially violate Inv.a are enter.a and forward.e. Let us examine each action individually. If enter.a
is enabled, each child of a is replying. Hence, when it is executed and it changes the state of a to idle,
Inv.a holds. If forward.e is enabled, a is requesting. Thus, executing the action and setting the state
of e to req does not violate Inv.a.

Let us now consider Inv.b.a for an intermediate process b ∈ M.a. We examine the effect of the
actions of b, b’s parent—c, and one of b’s children—d in this sequence.

We start with the actions of b. If I.b holds, forward.b is the only action that can be enabled. If it is
enabled, c is requesting. Thus, if it is executed, R.b holds and Inv.b.a is not violated. If R.b holds then
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back.b is the only action that can be enabled. However, if back.b is enabled and R.b holds, then all
children of b are replying. If back.b is executed, the resultant state conforms to P.b. If P.b holds, then
stop.b can exclusively be enabled. If P.b holds and stop.b is enabled, then c is idle and all children of
b are replying. The execution of back.b sets the state of b to idle. The resulting state conforms to I.b
and Inv.b.a is not violated.

Let us examine the actions of c. Recall that we are assuming that Inv.c and the respective invariants
of all of b’s ancestors hold. If I.b holds, forward.c and join.c (in case b is a child of a) are the actions
that can possibly be enabled. If either is enabled, b is idle. The execution of either action changes the
state of c to req. I.b and Inv.b.a still hold. If R.b holds, none of the actions of c are enabled. Indeed,
actions forward.c, back.c, join.c and enter.c are disabled. Moreover, if R.b holds, c is requesting: Since
Inv.c holds, c must be in R.c which means that c’s parent is not idle. Hence, stop.c is also disabled.
Since P.b does not mention the state of c, the execution of c’s actions does not affect the validity of P.b.

Let us now examine the actions of d. If I.b holds, the only possibly enabled action is stop.d. The
execution of this action changes the state of d to idle, which does not violate I.b. R.b does not mention
the state of d. Hence, its action execution does not affect R.b. If P.b holds, all actions of d are disabled.
This concludes the closure proof of InvK.

Convergence. We prove convergence by induction on the depth of the tree rooted in a. Let us show
convergence of a. The only illegitimate set of states is IR′.a. When a conforms to IR′.a, a is idle and
at least one child e is requesting. In such a state, all actions of a that affect its state are disabled.
Moreover, for every child of a that is idle, all relevant actions are disabled as well. For the child
of a that is not idle, the only enabled action is stop.e. After this action is executed, e is idle. Thus,
eventually IR.a holds.

Let a conform to Inv.a. Moreover, let every descendant process f of a up to depth i conform to
Inv.f .a. Let the distance from a to b be i + 1. We shall show that Inv.b.a eventually holds. Notice that
according to the preceding closure proof, the conjunction of Inv.a and Inv.f .a for each process f in
the distance no more than i is closed.

Note that according to Figure 26.7, there is no loop in the state transitions containing primed
states. Hence, to prove that b eventually satisfies Inv.b.a we need to show that b does not remain in a
single primed set of states indefinitely. Process b can satisfy either I′.b or P′.b. Let us examine these
cases individually.

Let b ∈ I′.b. Since Inv.c.a holds, if b is idle, c cannot satisfy P.c. Thus, for b to satisfy I′.b, at least
one child d of b must be requesting. However, if b is idle then stop.d is enabled. Notice that when b
is idle, none of its non-requesting children can start to request. Thus, when this stop is executed for
every requesting child of b, b leaves I′.b.

Suppose b ∈ P′.b. This means that there exists at least one child d of b that is not replying.
However, for every such process d, back.d is enabled. Notice that when b is replying, none of its
replying children can change state. Thus, when back is executed for every non-replying child of b, b
leaves P′.b.

Hence, Algorithm 3 converges to InvK.

THEOREM 26.4 If InvK holds and enter.a is enabled, then for every process b ∈ M.a, enter.b is
disabled.

PROOF If enter.a is enabled, every child of a is replying. Due to InvK, this means that every
descendant of a is also replying. Thus, for every process x ∈ M.a whose priority is lower than
a’s priority, enter.x is disabled. Note also, that since enter.a is enabled, for every process y ∈ M.a
whose priority is higher than a’s, state.a.y is idle. According to InvK, none of the ancestors of
a in y’s tree, including y’s children, are replying. Thus, enter.y is disabled. In short, when enter.a
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is enabled, neither higher nor lower priority processes of M.a have enter enabled. The theorem
follows.

LEMMA 26.7 If InvK holds and some process a is requesting, then eventually either a stops
requesting or none of its descendants are idle.

PROOF Notice that the lemma trivially holds if a stops requesting. Thus, we focus on proving the
second claim of the Lemma. We prove it by induction on the depth of a’s tree. Process a is requesting
and so it is not idle. By the assumption of the Lemma, a will not be idle. Now let us assume that this
lemma holds for all its descendants up to distance i. Let b be a descendant of a whose distance from
a is i + 1 and let b be idle.

By inductive assumption, b’s parent c is not idle. Due to InvK, if b is idle, c is not replying. Hence,
c is requesting. If there exists a child d of b that is not idle, then stop.d is enabled at d. When stop.d is
executed, d is idle. Notice that when b and d are idle, all actions of d are disabled. Thus, d continues
to be idle. When all children of b are idle and its parent is requesting, forward.b is enabled. When
it is executed, b is not idle. Notice, that the only way for b to become idle again is to execute stop.b.
However, by inductive assumption c is not idle. This means that stop.b is disabled. The lemma
follows.

LEMMA 26.8 If InvK holds and some process a is requesting, then eventually all its children in
M.a are replying.

PROOF Notice that when a is requesting, the conditions of Lemma 26.7 are satisfied. Thus,
eventually, none of the descendants of a are idle. Notice that if a process is replying, it does not start
requesting without being idle first (see Figure 26.7). Thus, we have to prove that each individual
process is eventually replying. We prove it by induction on the height of a’s tree.

If a leaf node b is requesting and its parent is not idle, back.b is enabled. When it is executed, b is
replying. Assume that each node whose longest distance to a leaf of a’s tree is i is replying. Let b’s
longest distance to a leaf be i + 1. By assumption, all its children are replying. Due to Lemma 26.7,
its parent is not idle. In this case back.b is enabled. After it is executed, b is replying. By induction,
the lemma holds.

LEMMA 26.9 If InvK holds and the computation contains infinitely many states where a is idle,
then for every descendant in a’s tree there are infinitely many states where it is idle as well.

PROOF We first consider the case where the computation contains a suffix where a is idle in every
state. In this case we prove the lemma by induction on the depth of a’s tree with a itself as a base
case. Assume that there is a suffix where all descendants of a up to depth i are idle. Let us consider
process b whose distance to a is i + 1 and this suffix. Notice that this means that c remains idle in
every state of this suffix. If b is not idle, stop.b is enabled. Once it is executed, no relevant actions are
enabled at b and it remains idle afterward. By induction, the lemma holds.

Let us now consider the case where no computation suffix of continuously idle a exists. Yet,
there are infinitely many states where a is idle. Thus, a leaves the idle state and returns to it
infinitely often. We prove by induction on the depth of the tree that every descendant of a behaves
similarly. Assume that this claim holds for the descendants up to depth i. Let b’s distance to
a be i + 1.
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When InvK holds, the only way for b’s parent c to leave idle is to execute forward.c (see Figure 26.7).
Similarly, the only way for c to return to idle is to execute stop.c while c is replying.∗ However,
forward.c is enabled only when b is idle. Moreover, according to InvK when c is requesting, b is not
idle. Thus, b leaves idle and returns to it infinitely many times as well. By induction, the lemma
follows.

LEMMA 26.10 If InvK holds and process a is requesting such that and a’s priority is the highest
among the processes that ever request the CS in M.a, then a eventually executes the CS.

PROOF If a is requesting, then, by Lemma 26.8, all its children are eventually replying. Therefore,
the first and second conjuncts of the guard of enter.a are true. If a’s priority is the highest among all
the requesting processes in M.a, then each process z, whose priority is higher than that of a is idle.
According to Lemma 26.9, state.a.z is eventually idle. Thus, the third and last conjunct of enter.a is
enabled. This allows a to execute the CS.

LEMMA 26.11 If InvK holds and process a is requesting, a eventually executes the CS.

PROOF Notice that by Lemma 26.8, for every requesting process, the children are eventually
replying. According to InvK, this implies that all the descendants of the requesting process are also
replying. For the remainder of the proof we assume that this condition holds.

We prove this lemma by induction on the priority of the requesting processes. According to
Lemma 26.10, the requesting process with the highest priority eventually executes the CS. Thus, if
process a is requesting and there is no higher priority process b ∈ M.a which is also requesting then,
by Lemma 26.10, a eventually enters the CS.

Suppose, on the contrary, that there exists a requesting process b ∈ M.a whose priority is higher
than a’s. If every such process b enters the CS finitely many times, then, by the repeated application
of Lemma 26.10, there is a suffix of the computation where all processes with priority higher than
a’s are idle. Then, by Lemma 26.10, a enters the CS. Suppose there exists a higher priority process b
that enters the CS infinitely often. Since a is requesting, state.b.a = rep. When b executes the CS, it
enters a into YIELD.b. We assume that b enters the CS infinitely often. However, b can request the
CS again only if YIELD.b is empty. The only action that takes a out of YIELD.b is stop.b. However,
this action is enabled if state.b.a is idle. Notice that, if InvK holds, the only way for the descendants
of a to move from replying to idle is if a itself moves from requesting to idle. That is a executes the
CS. Thus, each process a requesting the CS eventually executes it.

LEMMA 26.12 If InvK holds and process a wishes to enter the CS, a eventually requests.

PROOF We show that a wishing to enter the CS eventually executes join.a. We assume that a is
idle and needcs.a is true. Then, join.a is enabled if YIELD.a is empty. Note that a adds a process to
YIELD only when it executes the CS. Thus, as a remains idle, processes can only be removed from
YIELD.a.

Let us consider a process b ∈ YIELD.a. If b executes the CS finitely many times, then there is
a suffix of the computation where b is idle. According to Lemma 26.9, for all descendants of b,
including a, state.a.b is idle. If this is the case stop.a is enabled. When it is executed b is removed
from YIELD.a.

∗ The argument is slightly different for c = a as it executes join.a and enter.a instead.
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Let us consider the case, where b executes the CS infinitely often. In this case, b enters and leaves
idle infinitely often. According to Lemma 26.9, state.a.b is idle infinitely often. Moreover, a moves
to idle by executing stop.a, which removes b from YIELD.a. The lemma follows.

The Theorem in the following text follows from Lemmas 26.11 and 26.12.

THEOREM 26.5 If InvK holds, a process wishing to enter the CS is eventually allowed to do so.

We draw the following corollary from Theorems 26.3 through 26.5.

COROLLARY 26.4 Algorithm 3 is a self-stabilizing solution to the k-hop diners problem.

26.3.3 Census

Algorithm. Each node i has a unique identifier and is aware of its input degree δ−.i (the number of
its incident arcs), which is also placed in noncorruptible memory. A node i arbitrarily numbers its
incident arcs using the first δ−.i natural numbers. When receiving a message, the node i knows the
number of the corresponding incoming link (that varies from 1 to δ−.i).

Each node maintains a local memory. The local memory of i is represented by a list denoted
by (i1; i2; . . . ; ik). Each iα is a nonempty list of pairs 〈identifier,colors〉, where identifier is a node
identifier, and where colors is an array of Booleans of size δ−.i. Each Boolean in the colors array is
either true (denoted by •) or false (denoted by ◦). We assume that natural operations on Boolean
arrays, such as unary not(denoted by ¬), binary and (denoted by ∧), and binary or (denoted by ∨)
are available.

The goal of the Census algorithm is to guarantee that the local memory of each node contains the
list of lists of identifiers (whatever the colors value in each pair 〈identifier,colors〉) that are predecessors
of i in the communication graph. Each predecessor of i is present only once in the list. For the Census
task to be satisfied, we must ensure that the local memory of each node i can contain as many lists
of pairs as necessary. We assume that a minimum of

(n − 1) × (
log2(k) + δ−.i

)
bits space is available at each node i, where n is the number of nodes in the system and k is the
number of possible identifiers in the system.

For example,

((j, [• ◦ ◦]; q, [◦ • ◦]; t, [◦ ◦ •])(z, [• • •]))
is a possible local memory for node i, assuming that δ−.i equals 3. From the local memory of node
i, it is possible to deduce the knowledge that node i has about its ancestors. With the previous
example, node j is a direct ancestor of i (it is in the first list of the local memory of i) and this
information was carried through incoming channel number 1 (only the first position of the colors
array relative to node j is true). Similarly, nodes q and t are direct ancestors of i and this information
was obtained through incoming links 2 and 3, respectively. Then, node z is at distance 2 from i, and
this information was received through incoming links numbered 1, 2, and 3.

Each node sends and receives messages. The contents of a message is represented by a list denoted
by (i1; i2; . . . ; ik). Each iα is a nonempty list of identifiers.

For example,

((i)(j; q; t)(z))
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is a possible contents of a message. It means that i sent the message (since it appears first in the
message), that i believes that j, q, and t are the direct ancestors of i, and that z is an ancestor at
distance 2 of i.

The distance from i to j is denoted by d.i.j, which is the minimal number of arcs from i to j. We
assume that the graph is strongly connected, so the distance from i to j is always defined. Yet, since
the graph may not be bidirectional, d.i.j may be different from d.j.i. The age of i, denoted by χ.i, is
the greatest distance d.j.i for any j in the graph. The network diameter is then equal to

max
i

χ.i = D

Our algorithm can be seen as a knowledge collector on the network. The local memory of a
node then represents the current knowledge of this node about the whole network. The only certain
knowledge a node may have about the network is local: its identifier, its incoming degree, and the
respective numbers of its incoming channels. This is the only information that is stored in non-
corruptible memory. In a nutshell, Figure 26.8 provides a possible corrupted initial configuration (in
Figure 26.8a, where some information is missing and some information is incorrect, for example,
nodes x, y, and z are nonexistent) and a legitimate configuration (in Figure 26.8b, where the link
contents are not displayed).

The algorithm for each node consists in updating in a coherent way its knowledge upon receipt
of other process’ messages, and communicating this knowledge to other processes after adding its
constant information about the network. More precisely, each information placed in a local memory
is related to the local name of the incoming channel that transmitted this information. For example,
node i would only emit messages starting with singleton list (i) and then not containing i since it is
trivially an ancestor of i at distance 0. Coherent update consists in three kinds of actions: the first
two being trivial coherence checks on messages and local memory, respectively.

Check Message Coherence Since all nodes have the same behavior, when a node receives a
message that does not start with a singleton list, the message is trivially considered as
erroneous and is ignored. For example, messages of the form ((j; q; t)(k)(m; y)(p; z)) are
ignored.

Check Local Coherence Regularly and at each message receiving, a node checks for local
coherence. We only check here for trivial inconsistencies (see the problem() helper
function later): a node is incoherent if there exist at least one pair 〈identifier, colors〉 such
that colors= [◦ · · · ◦] (which means that some information in the local memory was not
obtained from any of the input channels). If a problem is detected upon time-out, then
the local memory is reinitialized, else if a problem is detected upon a message receipt,
the local memory is completely replaced by the information contained in the message.

Trust Most Recent Information When a node receives a message through an incoming chan-
nel, this message is expected to contain more recent and thus more reliable information.
The node removes all previous information obtained through this channel from its local
memory. Then it integrates new information and only keeps old information (from its
other incoming channels) that does not clash with new information.

For example, assume that a message mess = ((j)(k; l)(m)(p; q ; r; i)) is received by node i through
its incoming link 1 and that δ−

i = 2. The following informations can be deduced

1. j is a direct ancestor of i (it appears first in the message),
2. k and l are ancestors at distance 2 of i and may transmit messages through node j,
3. m is an ancestor at distance 3 of i,
4. p, q, and r are ancestors at distance 4 of i, j obtained this information through m.
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FIGURE 26.8 Two possible configurations for Algorithm 4. (a) A possible corrupted initial configuration and
(b) a legitimate configuration (messages not displayed).

These informations are compatible with a local memory of i such as:

((j, [•◦]; q, [◦•])( k, [•◦]; e, [◦•]; w, [◦•])(m, [◦•]; y, [••])(p, [•◦]; z, [◦•]; h, [•◦]))

Upon the receipt of message mess at i, the following operations take place: (1) the local memory of
i is cleared from previous information coming from link 1, (2) the incoming message is “colored”
by the number of the link (here each identifier α in the message becomes a pair α, [•◦] since it is
received by link number 1 and not by link number 2), and (3) the local memory is enriched as in the
following (where “←” denotes information that was acquired upon receipt of a message, and where



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C026 Finals Page 26 2009-10-19

26-26 Special Topics and Techniques

“→” denotes information that is to be forwarded to the node output links):

( (q, [◦•]) (e, [◦•]; w, [◦•]) (m, [◦•]; y, [◦•]) (z, [◦•]) )

← ( (j, [•◦]) (k, [•◦]; l, [•◦]) (m, [•◦])
(

p, [•◦]; q, [•◦];
r, [•◦]; i, [•◦]

)
)

→ ( (j, [•◦]; q, [◦•])
(

k, [•◦]; e, [◦•];
w, [◦•]; l, [•◦]

)
(m, [••]; y, [◦•])

(
p, [•◦]; z, [◦•];
q, [•◦]; r, [•◦]

)
)

This message enabled the modification of the local memory of node i in the following way: l is
a new ancestor at distance 2. This was acquired through incoming link number 1 (thus through
node j). Nodes m and y are confirmed to be ancestors at distance 3, but mess sends information
via nodes j and q, while y only transmits its informations via node q. Moreover, q and r are part of
the new knowledge of ancestors at distance 4. Finally, although i had information about h (h, [•◦])
before receiving mess, it knows now that the information about h is obsolete.

The property of resilience to intermittent link failures of our algorithm is mainly due to the fact
that each message is self-contained and independently moves toward a complete correct knowledge
about the network. More specifically:

1. The fair loss of messages is compensated by the infinite spontaneous retransmission by
each process of their current knowledge.

2. The finite duplication tolerance is due to the fact that our algorithm is idempotent in the
following sense: If a process receives the same message twice from the same incoming
link, the second message does not modify the knowledge of the node.

3. The desequencing can be considered as a change in the relative speeds of two messages
toward a complete knowledge about the network. Each message independently gets more
accurate and complete, so that their relative order is insignificant. A formal treatment of
this last and most important part can be found in the later part of this section.

We now describe helper functions that will enhance the readability of our algorithm. Those
functions operate on lists, integers, and pairs 〈identifier,colors〉. The specifications of those functions
use the following notations: l denotes a list of identifiers, p denotes an integer, lc denotes a list of
pair 〈identifier,colors〉, Ll denotes a list of lists of identifiers, and Llc denotes a list of lists of pairs
〈identifier,colors〉.

We assume that classical operations on generic lists are available: \ denotes the binary operator
“minus” (and returns the first list from which the elements of the second have been removed), ∪
denotes the binary operator “union” (and returns the list without duplicates of elements of both
lists), + denotes the binary operator “concatenate” (and returns the list resulting from concatenation
of both lists), � denotes the unary operator that returns the number of elements contained in the list,
and [] takes an integer parameter p so that l[p] returns a reference to the pth element of the list l if
p ≤ �l (in order that it can be used on the left part of an assignment operator “:=”), or expand l with
p − �l empty lists and returns a reference to the pth element of the updated list if p > �l.

colors(p) → array of Booleans returns the array of Booleans that correspond to the pth incom-
ing link, that is, the array that is such that [ ◦ · · · ◦︸ ︷︷ ︸

p−1times

• ◦ · · · ◦︸ ︷︷ ︸
δ−.i−ptimes

].

clean(lc, p) → list of couples returns the empty list if lc is empty and a list of pairs lc2 such that
for each 〈identifierlc, colorslc〉 ∈ lc, if colorslc ∧ ¬colors(p) �= [◦ · · · ◦], then 〈identifierlc,
colorslc ∧ ¬colors(p)〉 is in lc2, else 〈identifierlc, ∗〉 is not in lc2.

emit(i, Llc) sends the message resulting from (i)+ identifiers(Llc) on every outgoing link of i.
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identifiers(Llc) →list of list of identifiers returns the empty list if Llc is empty and returns a
list Ll of list of identifiers (such that each pair 〈identifier,colors〉 in Llc becomes identifier
in Ll) otherwise.

merge(lc, l, p) → list of couples returns the empty list if lc and l are both empty and⋃
〈i,c〉∈lc

i∈l

(〈i, c ∨ colors(p)〉) ∪
⋃

〈i,∗〉/∈lc
i∈l

(〈i, colors(p)〉)

otherwise.
new(lc, l) → list of couples returns the empty list if lc is empty and the list of pairs 〈identifier,

colors〉 whose identifier is in lc but not in l otherwise.
problem(Llc) →Boolean returns true if there exist two integers p and q such that p ≤ �(Llc)

and q ≤ �(Llc[p]) and Llc[p][q] is of the form 〈identifier, colors〉 and all Booleans in colors
are false (◦). Otherwise, this function returns false.

In addition to its local memory, each node makes use of the following local variables when
processing messages: α is the current index in the local memory and message main list, i_ pertinent is
a Boolean that is true if the αth element of the local memory main list contains pertinent information,
m_ pertinent is a Boolean that is true if the αth element of the message main list contains pertinent
information, known is the list of all identifiers found in the local memory and message found up
to index α, temp is a temporary list that stores the updated αth element of the local memory
main list.

We are now ready to present our Census Algorithm (noted Algorithm 4 in the remaining of
the paper). This algorithm is message driven: processes execute their code when they receive an
incoming message. In order to perform correctly in configurations where no messages are present,
Algorithm 4 also uses a spontaneous action that will emit a message.

Proof of Correctness. The intuitive reason for self-stabilization of the protocol is as follows: any-
time a node sends a message, it adds up its identifier and pushes further in the list of lists included in
every message potential fake identifiers. As the network is strongly connected, the message eventually
goes through every possible cycle in the network, and every node on every such cycle removes its
identifier from a list at a certain index (corresponding to the length of the cycle). So, after a message
has visited all nodes, there exists at least one empty list in the list of lists of the message, and all fake
identifiers are all included beyond this empty list. Since every outgoing message is truncated from
the empty list onward, no fake identifier remains in the system forever.

The proof of correctness that is presented in this section demonstrates the use of potential func-
tions (see Figure 26.9, where each configuration c1, c2, |dots is associated with a number f1, f2, |dots
obtained through the potential function for this configuration). Intuitively, a potential function
maps configurations into a finite set endowed with a total order (typically the set of natural integers),
and exhibits the following property: When an action of the distributed system is executed to move
from one configuration to the other, the potential function decreases. Since the set is finite and
the order well founded, the lowest element is eventually reached. Now if the lowest element of the
potential function matches the set of legitimate configurations of the problem specification, this
implies stabilization. Of course, the difficult part of the proof lies in finding a suitable such potential
function.

In this section, we show that Algorithm 4 is a self-stabilizing Census algorithm. In more details,
independently of the initial configuration of network channels (noninfinitely full) and of the initial
configuration of local memories of nodes, every node ends up with a local memory that reflect
the contents of the network, even if unreliable communication media is used for the underlying
communication between nodes.
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Algorithm 4 CA: A self-stabilizing census algorithm
process i
const

δ−.i: input degree of i
parameter

message: list of lists of identifiers
var

local_memory.i: list of lists of pairs
lvars

α: integer
i_ pertinent, m_ pertinent: boolean
known, temp: list of identifiers

∗[
problem: problem(local_memory.i) −→

local_memory.i := ()

emit(i, local_memory.i)
[]

update: receive(message) from link p −→
i_ pertinent:= ¬ problem(local_memory.i)
m_ pertinent:= (�(message[1]) = 1)

α := 0;known:= (i);
do m_ pertinent ∨ i_ pertinent −→

α := α + 1;temp:= ()

local_memory.i[α] := clean(local_memory.i[α], p)

if i_ pertinent −→
temp:= new(local_memory.i[α],known)

temp= () −→ i_ pertinent:=false
fi
if m_ pertinent −→

if message[α]\known= () −→
m_ pertinent:=false

[] temp:= merge(temp,message[α]\known, p)

fi
fi
if temp �= () −→

local_memory.i[α] := temp
known:=known∪ identifiers(temp)

fi
od
local_memory.i := (local_memory.i[1], . . . , local_memory.i[α])

[]
resend: true −→

emit(i, local_memory.i)
]
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FIGURE 26.9 Proving self-stabilization with potential functions.

First, we define a formal measure on messages that circulate in the network and on local memories
of the nodes. This measure is either the distance between the current form of the message and its
canonical form (that denotes optimal knowledge about the network), or between the current value
of the local memories and their canonical form (when a node has a perfect knowledge about the
network). We use this measure to compute the potential function result of a configuration (in the
sequel, the result of this potential function is called the configuration weight).

Then, we show that after a set of emissions and receptions of messages, the weight of a configuration
decreases. An induction shows that this phenomenon continue to appear and that the weight of a
configuration reaches 0, that is, a configuration where each message is correct and where each
node has an optimal knowledge about the network. We also show that such a configuration (whose
weight is 0) is stable when a message is emitted or received. According to the previous definitions, a
configuration of weight 0 is a legitimate configuration after finite time.

These two parts prove, respectively, the convergence and closure of our algorithm, and establish
its self-stabilizing property.

As the Census problem is static and deterministic, when we consider only node local memories,
there is a single legitimate configuration. This legitimate configuration is when each node has a
global correct knowledge about the network. It is also the stable configuration the system would
reach had it been started from a zero knowledge configuration (where the local memory of each
node is null, and where no messages are in transit in the system).

In this legitimate configuration, all circulating messages are of the same kind. Moreover, on every
particular link, all messages have the same contents. The canonical form of a message circulating on
a link between nodes j and i is the list of lists starting with the singleton list (j) followed by the χ.j
lists of ancestors of j at distance between 1 and χ.j. The canonical form of node i’s local memory is
the list of lists of pairs Llc of the χ.j lists of pairs 〈 identifier,colors〉 such that: (1) identifiers(Llc) is the
list of the χ.i lists of ancestors of i at distance 1 to χ.i, and (2) if a shortest path from node j to node i
passes through the pth input channel of i, then the Boolean array colors associated to node j in Llc
has colors[p] = •. For the sake of simplicity, we will also call the αth list of a canonical message or a
canonical local memory a canonical list.
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PROPOSITION 26.1 The canonical form of node i’s local memory and that of its incoming and
outgoing channels are coherent.

PROOF If node i’s local memory is in canonical form, then the emit action trivially produces a
canonical message.

Conversely, upon receipt by node i of a canonical message through incoming link j, the local
memory of i is replaced by a new identical canonical memory. Indeed, clean first removes from
the αth list of i’s local memory all pairs 〈identifier, colors〉 such that colors= colors(p), yet by the
definition of canonical memory, each such identifier is that of a node such that the shortest path
from identifier to i is of length α and passes through j. Moreover, the list l used by merge is the list
of nodes at distance α − 1 of node i, so for any identifier appearing in l, two cases may occur:

1. There exists a path from identifier to i that is of length < α, then identifiers∈ known and
it does not appear in the new list of length α,

2. There exists a shorter path from identifier to i through j of lengthα, then 〈identifier, colors(p)〉
is one of the elements that were removed by clean and this information is put back into
node i’s local memory.

COROLLARY 26.5 The set of legitimate configurations is closed.

PROOF Starting from a configuration where every message and every local memory is canonical,
none of the local memories is modified, and none of the emitted message is non-canonical.

We define a weight on configurations as a function on system configurations that returns a positive
integer. As configurations of weight zero are legitimate, the weight of a configuration c denotes the
“distance” from c toward a legitimate configuration.

In order to evaluate the weight of configurations, we define a measure on messages and local
memory of nodes as an integer written using D + 2 digits in base 3 (where D denotes the graph
diameter). The weight of a configuration is then the pair of the maximum weight of local memories,
and the maximum weight of circulating messages. For sake of clarity, a single integer will denote
the weight of the configuration when both values are equal. Let m be a circulating message on a
communication link whose canonical message is denoted by m̃. Note that since a canonical message
is of size ≤ D + 1, we have m̃[D + 2] = (). The weight of m is the integer written using D + 2 base
3 digits and whose αth digit is: (1) 0, if m[α] = m̃[α], (2) 1, if m[α] ← m̃[α], and (3) 2, if m[α] ⇑
m̃[α]. Then, 3D+2 −1 is the biggest weight for a message, and corresponds to a message that is totally
erroneous. At the opposite, 0 is the smallest weight for a message, and corresponds to a canonical
message, or to a message that begins with a canonical message.

Let m be the local memory of a node i whose canonical local memory is m̃. The weight of
m is the integer written using D + 1 digits (in base 3) and whose αth digit is: (1) 0, if m[α] =
m̃[α], (2) 1, if m[α] �= m̃[α] and identifiers(m[α]) ⊆ identifiers( m̃[α]) and for any 〈 identifier,
colors1 〉 of m[α], the associated 〈 identifier,colors2〉 in m̃[α] satisfies: (colors1∧colors2) = colors1,
and (3) 2, otherwise. Then 3D+1 − 1 is the biggest weight of a local memory and denotes a totally
erroneous local memory. At the opposite, 0 is the smallest weight and denotes a canonical local
memory.

Let us notice that in both cases (weight of circulating messages and of nodes local memories),
the αth digit 0 associated to the αth list denotes that this particular list is in its final form (the
canonical form). The αth digit 1 means that the αth list is coherent with the αth canonical list, but
still lacks some information. On the contrary, the αth digit 2 signals that the related αth position
contains informations that shall not persist and that are thus unreliable. The weight of a message
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indicates how much of the information it contains is pertinent. After defining message weight and, by
extension, configuration weights, we first prove that starting from an arbitrary initial configuration,
only messages of weight lower or equal to 3D+1 − 1 are emitted, which stands for the base case for
our induction proof.

LEMMA 26.13 In any configuration, only messages of weight lower than 3D+1 may be emitted.

PROOF Any message that is emitted from a node i on a link from i to j is by function emit. This
function ensures that this message starts with the singleton list (i). This singleton list is also the first
element of the canonical message for this channel. Consequently, the biggest number that may be
associated to a message emitted by node i starts with a 0 and is followed by D + 1 digits equal to 2.
Its overall weight is at most 3D+1 − 1.

LEMMA 26.14 Assume α ≥ 1. The set of configurations whose weight is strictly lower than 3α−1

is an attractor for the set of configuration whose weight is strictly lower than 3α.

PROOF A local memory of weight strictly lower that 3α contains at most α erroneous lists, and
it is granted that it starts with D + 2 − α canonical lists.

By definition of the emit function, each node i that owns a local memory of weight strictly below
3α shall emit the singleton list (i) followed by D + 2 − α canonical lists. Since canonical messages
sent by a node and its canonical local memory are coherent, it must emit messages that contain at
least D + 2 − α + 1 canonical lists, which means at worst α − 1 erroneous lists. The weight of any
message emitted in such a configuration is then strictly lower than 3α−1.

It follows that messages of weight exactly 3α which remain are those from the initially considered
configuration. Hence they are in finite number. Such messages are either lost or received by some
node in a finite time. The first configuration that immediately follows the receiving or loss of those
initial messages is of weight (3α (local memory), 3α−1 (messages)).

The receiving by each node of at least one message from any incoming channel occurs in finite
time. By the time each node receives a message, and according to the local memory maintenance
algorithm, each node would have been updated. Indeed, the receiving of a message from an input
channel implies the cleaning of all previous information obtained from this channel. Consequently,
in the considered configuration, all lists in the local memory result from corresponding lists in the
latest messages sent through each channel. Yet, all these latest messages have a weight strictly lower
than 3α−1 and by the coherence property on canonical forms, they present information that are
compatible with the node canonical local memory, up to index D+3−α. By the same property, and
since all input channels contribute to this information, it is complete. In the new configuration, each
node i maintains a local memory whose first D + 3 − α lists are canonical, and thus the weight of
its local memory is 3α−1. Such a configuration is reached within finite time and its weight is (3α−1

(local memory), 3α−1 (messages)).

PROPOSITION 26.2 The set of configurations whose weight is 0 is an attractor for the set of all
possible configurations.

PROOF By induction on the maximum degree of the weight on configurations, the base case
is proved by Lemma 26.13, and the induction step is proved by Lemma 26.14. Starting from any
initial configuration whose weight is greater that 1, a configuration whose weight is strictly inferior is
eventually reached. Since the weight of a configuration is positive or zero, and that the order defined
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on configurations weights is total, eventually a configuration whose weight is zero is eventually
reached. By definition, this configuration is legitimate.

THEOREM 26.6 Algorithm 4 is self-stabilizing.

PROOF Consider a message m of weight 0. Two cases may occur: (1) m is canonical, or (2) m
starts with a canonical message, followed by at least one empty list, (possibly) followed by several
erroneous lists. Assume that m is not canonical, then it is impossible that m was emitted, since the
truncate part of Algorithm 4 ensures that no message having an empty list can be emitted; then m
is an erroneous message that was present in the initial configuration.

Similarly, the only local memories that may contain an empty list are those initially present (e.g.,
due to a transient failure).

As a consequence, after the receipt of a message by each node and after the receipt of all initial
messages, all configurations of weight 0 are legitimate (they only contain canonical messages and
canonical local memories).

By Proposition 26.2, the set of legitimate configurations is an attractor for the set of all possible
configurations, and Corollary 26.5 proves closure of the set of legitimate configurations. Therefore,
Algorithm 4 is self-stabilizing.

In the convergence part of the proof, we only assumed that computations were maximal, and that
message loss, duplication, and desequencing could occur. In order to provide an upper bound on
the stabilization time for our algorithm, we assume strong synchrony between nodes and a reliable
communication medium between nodes. Note that these assumptions are used for complexity results
only, since our algorithm was proven correct even in the case of asynchronous unfair computations
with link intermittent failures. In the following D denotes the network diameter.

LEMMA 26.15 Assuming a synchronous reliable system S , the stabilization time of Algorithm 4
is O(D).

PROOF Since the network is synchronous, we consider system steps as: (1) each node receives all
messages that are located at each of its incoming links and updates its local memory according to the
received information, and (2) each node sends as many messages as received on each of its outgoing
links. Intuitively, within one system step, each message is received by one process and sent back.
Within one system step, all messages are received, and messages of weight strictly inferior to that of
the previous step are emitted (see the proof of Lemma 26.14). In the same time, when a process has
received messages from each of its incoming links, its weights are bounded by 3D+1−α, where D is
the network diameter, and α is the number of the system step (see the proof of Lemma 26.14). Since
the maximal initial weight of a message and of a local memory is 3D+2, after O(D) system steps, the
weight of each message and of each local memory is 0, and the system has stabilized.

26.3.4 Token Passing

Algorithm. The “benchmark” self-stabilizing algorithm for dynamic problems (and the first pub-
lished algorithm [19]) is the mutual exclusion algorithm on a unidirectional ring. Mutual exclusion
is ensured by circulating a “token” (a local predicate at a given node) fairly in the system. In a
self-stabilizing context, it is necessary to recover both from configuration where there is no initial
token and where there exists several superfluous ones (see e.g., Figure 26.10a for a possible inital
configuration with several tokens, and Figure 26.10b for a legitimate configuration with a single
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FIGURE 26.10 Possible configurations of a self-stabilizing token passing algorithm. (a) A possible arbitrary initial
configuration, and (b) a possible legitimate configuration.

token). In practice, several criteria need to be taken into account: the stabilization time, the service
time (maximum time between two token passings on a given node), the memory used (in bits), and
the transparency with respect to underlying communication algorithms.

Due to impossibility results in uniform networks (unidirectional rings where nodes cannot be
distinguished from one another), probabilistic self-stabilization was introduced [39]. A probabilistic
self-stabilizing algorithm has the property of reaching a legitimate configuration in finite time with
probability 1. The algorithm of [39] can intuitively be viewed as follows: each process i maintains a
local predicate that states whether it has a token, and executes the following code: at each pulse, if
i is currently holding a token (i.e., the token predicate is true), it transmits it to its successor with
probability p, and keeps it with probability 1 − p. The original paper [39] performs in synchronous
odd-sized networks and uses a combinatorial trick to guarantee the presence of at least one token
(this trick was further refined to handle the case of arbitrary-sized networks [6] and arbitrary minimal
number of tokens [37]).

While the original version of the algorithm is written for the shared memory model, we present a
version of the algorithm that is written for the message passing model. So, we have to rely on time-
outs to recover from configurations with no tokens. We consider that the protocol has a parameter k
that is used as a time-out value; k should be big enough so that the time-out is not triggered if a token
is already present, but given the probabilistic nature of the token propagation, this is guaranteed
only with high probability. Our protocol is presented as Algorithm 4.

Proof of Correctness. To show stabilization, it is sufficient to prove that starting from a configu-
ration with several tokens, every execution ends up in a configuration with exactly one token. The
proof is by showing that in any configuration with two tokens (or more) there is a positive probability
that the two tokens merge (the “last” one always get a “transmit” to the successor, while the “first”
one always get a “keep” at the current node). When two tokens merge, they stay so. Overall, a con-
figuration with m tokens is always reachable from a configuration with m + 1 tokens with a strictly
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Algorithm 5 T P : A probabilistically self-stabilizing token passing algorithm
process i
const

p.i: predecessor of i on the ring
s.i: successor of i on the ring

parameter
k: integer
p: probability to pass the token

var
token.i: {null, token}
timeout.i: integer

function
random(x): draws a random number z in [0..1], returns true if z ≤ x, false otherwise.

macro
send_token ≡

if token.i = token ∧ random(p) −→
send(token) to s.i
token.i := null

fi
∗[

token: timeout.i > 0 ∧ receive(token) from p.i −→
token.i := token
timeout.i := k
send_token

[]
elapse: timeout.i > 0 −→

timeout.i := timeout.i − 1
send_token

[]
timeout: timeout.i = 0 −→

token.i := token
]

positive probability, while a configuration with m+1 tokens is never reachable from a configuration
with m tokens. As a result, a configuration with exactly one token is eventually reached.

The intuitive proof argument being settled, we focus here on the complexity of the stabilization
time. Since the scheduler is synchronous, there is no nondeterministic choice other than probabilistic
in every execution, and Markov chains are an attractive tool to compute expected bounds for the
stabilization time. We follow the terminology of [63] about Markov Chains. The classical hypothesis
can be used since the network has a synchronous behavior; for an asynchronous setting, see [28].
Let Pn×n be a stochastic matrix, that is the sum of every line is equal to 1. A discrete Markov Chain,
denoted by (Xt)t≤0 on a set of states X is a sequence of random variables X0, X1, . . . with Xi ∈ X
and so that Xi+1 only depends on Xi and Pr(Xi+1 = y|Xi = x) = px,y. The matrix P is called the
transition probability matrix. A node x leads to a node y if ∃j ≥ i, Pr(Xj = y|Xi = x) > 0. A state y
is an absorbing state if y does not lead to any other state. The expected hitting time or hitting time
E

y
x is the average number of steps starting from node x to reach node y for the first time. We will

make use of the following theorem for Markov chains:



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C026 Finals Page 35 2009-10-19

Self-Stabilizing Algorithms 26-35

THEOREM 26.7 The vector of hitting times E
t = (Et

x : x ∈ V) is the minimal nonnegative solution
of the following system of linear equations:{

E
t
t = 0

E
t
x = 1 + ∑

y �=t px,yE
t
y for x ∈ V

Applying Theorem 26.7 to a specific Markov chain, we obtain a useful Lemma for the analysis of
Algorithm 4:

LEMMA 26.16 Let Cd be a chain of d + 1 states 0, 1, . . . , d and q ∈]0, 1/2]. If state 0 is absorbing
and the transition matrix is of the form:⎧⎨

⎩
pi,i−1 = pi,i+1 = q for 1 ≤ i ≤ d − 1
pi,i = 1 − 2q for 1 ≤ i ≤ d − 1
pd,d = 1 − q

then, the hitting time to state 0 starting from state i is E
0
i = i

2q (2d − i + 1).

PROOF We make a use of Theorem 26.7 for the computation of E
0
i . We have⎧⎨

⎩
E

0
1 = 1 + (1 − 2q)E0

1 + qE
0
2

E
0
i = 1 + qE

0
i−1 + (1 − 2q)E0

i + qE
0
i+1 for 2 ≤ i ≤ d − 1

E
0
d = 1 + (1 − q)E0

d + qE
0
d−1

Noting that E
0
i = ∑i

j=1 E
j−1
j , we are interested by E

j−1
j for 1 ≤ j ≤ d. Therefore, E

d−1
d =

1 + (1 − q)Ed−1
d = 1/q and

E
j−1
j = 1 + (1 − 2q)E

j−1
j + qE

j−1
j+1

= 1 + (1 − 2q)E
j−1
j + q

(
E

j
j+1 + E

j−1
j

)
= 1/q + E

j
j+1

= d − j
q

This implies that E
0
i = ∑i

j=1(d − j)/q = 1
q

(
di − i(i−1)

2

)
.

THEOREM 26.8 In a unidirectional n-sized ring containing an arbitrary number k of tokens (k ≥ 2),
the stabilization time of Algorithm 4 is n2

8p(1−p)
≤ E(T) ≤ n2

2p(1−p)

(
π2

6 − 1
)

+ n log n
p(1−p)

. For constant
p, E(T) = Θ(n2).

PROOF For any k ≥ 2, the evolution of the ring with exactly k tokens under Algorithm 26.3.4
can be described by a Markov chain Sk whose state space is the set of k-tuples of positive integers
whose sum is equal to n (these integers represent the distances between successive tokens on the
ring), with an additional state δ = (0, . . . , 0) to represent transitions to a configuration with fewer
than k tokens. To prove the upper bound of the Theorem, we will prove an upper bound on the
hitting time of this state δ, independently of the initial state. Consider two successive tokens on the
ring. On any given round, each will move forward, independently of the other, with probability p,
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and stay in place with probability 1 − p. Thus, with probability p(1 − p), the distance between them
will decrease by 1; with the same probability, it will increase by 1; and, with probability 1−2p(1−p),
the distance will remain the same. Thus, locally, the distance between consecutive tokens follows the
same evolution rule as that of the chain Cn of Lemma 26.16.

What follows is a formal proof, using the technique of couplings of Markov chains, that the
expected time it takes for two tokens among k to collide is no longer than the expected time for Cn/k
to reach state 0.

For any state x = (x1, . . . , xk) of Sk, let m(x) = mini xi denote the minimum distance between
two successive tokens, and let i(x) = min{j : xj = m(x)} denote the smallest index where this
minimum is realized. Let (Xt)t≥0 denote a realization of the Markov chain Sk. We define a coupling
(Xt , Yt)t≥0 of the Markov chains Sk and Cd, where d = �n/k� and q = p(1 − p), as follows :

• Y0 = m(X0);

• Yt+1 = min
{

d, Yt +
(

Xi(Xt)
t+1 − Xi(Xt)

t

)}
In other words, the evolution of Yt is determined by selecting two tokens that are separated by the

minimum distance in Xt , and making the change in Yt reflect the change in distance between these
two tokens (while capping Yt at d).

A trivial induction on t shows that Yt ≥ m(Xt) holds for all t, so that (Xt) will reach state δ no
later than (Yt) reaches 0. Thus, the time for Sk to reach δ (i.e., the time during which the ring has
exactly k tokens) is stochastically dominated by the time for Cd to reach 0. By Lemma 26.16, the
expectation of this time is no longer than

d(d + 1)

2q
≤ 1

2q

(
n2

k2 + n
k

)

Summing over all values of k from 2 to n, we get, for the expected stabilization time T,

E(T) ≤ 1
2p(1 − p)

n∑
k=2

[
n2

k2 + n
k

]

≤ 1
2p(1 − p)

((
π2

6
− 1

)
n2 + n ln(n)

)

The lower bound comes from the fact that, when k = 2, the expected time for Cn/2 to reach state
0 from state n/2 is at least n2

8p(1−p)
.

REMARK 26.1 Our upper bound on the expected convergence time is minimal for p = 1/2. The
precise study of Algorithm 4 show that the convergence time hardly depends on the initial number
of tokens: for n high enough and p = 1/2, E(T) > n2/2 for two initial tokens at distance n/2, and
E(T) < 1.3n2 for n tokens.

26.4 Research Issues and Summary

In its core formulation, self-stabilization is a useful paradigm for forward recovery in distributed
systems and networks. Because self-stabilization only considers the effect of faults, there is no
assumption about the nature or the extent of faults. In practice, when a faulty component is diagnosed
in a self-stabilizing network (e.g., because it exhibits erratic behavior), it is sufficient to remove this
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FIGURE 26.11 Taxonomy of self-stabilization main variants.

component from the system to recover proper behavior automatically [64], as a self-stabilizing
system does not require any kind of initialization.

On the negative side, “eventually” does not give any complexity guarantee on the stabilization
time, and in some cases, it is possible that a single hazard triggers a correction wave in the whole
network. Moreover, the fact that a system participant is not able to detect stabilization (arbitrary
memory corruption could lead the participants believe that the system is stabilized when it is not)
prevents safety-related specifications from having self-stabilizing solutions. Those limitations led
to defining new forms of self-stabilization, that are presented in Figure 26.11 and detailed in the
remaining of the section. In Figure 26.11, each arrow denotes the (transitive) relation “provides
weaker guarantees than” between two variants of self-stabilization.

26.4.1 Weaker than Self-Stabilization

The guarantees that are given are weaker than that of self-stabilization, and this permits in general to
solve strictly more difficult specifications than those than can be solved by a self-stabilizing system.
Thus problems that are provably intractable in a strict self-stabilizing setting may be come solvable.
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This permits to widen the scope of self-stabilization to new applications, while maintaining attractive
fault-tolerance properties to the developed applications.

1. Restricting the nature of the faults. This approach, that we denote by probable stabiliza-
tion consists of considering that truly arbitrary memory corruptions are highly unlikely.
Probabilistic arguments are used to establish that, in general, memory corruptions that
result from faults can be detected using traditional techniques from information theory,
such as data redundancy or error detection and correction codes. In particular, in [42],
error detection codes are used to determine that memory corruption has occurred, with
a high probability. If the article only considers the case where a single corruption arises
(in other words, only one node in the system is affected by this corruption), it makes it
possible to return to a normal behavior in a single correction step. For a system, even
a large-scale one, where memory corruptions are localized in each neighborhood and
are not malicious (i.e., they can be detected using techniques such a cyclic redundancy
checks), this approach is well indicated.

2. Restricting the extent of the faults. If we assume that the faults that can occur only
ever concern a very small part of the network, it is possible to design algorithms that
converge more quickly than traditional self-stabilizing algorithms. In order to have a
formal framework, we consider that the distance to a legitimate configuration is equal to
the number of nodes whose memories have to be changed in order to achieve a legitimate
configuration (as with a Hamming distance). Of course, it is possible that even if we are
at a distance k from a legitimate configuration, more than k nodes have, in fact, corrupted
memories. From the perspective of returning to a normal state, only the closest legitimate
configuration is considered. Studies that attempt to minimize the stabilization time in
context where few faults occur usually divide stabilization into two levels [55]:

a. “visible” stabilization: Here, only the output variables of the algorithm are involved.
The output variables are typically used by the system’s user. For example, if we
consider a tree construction algorithm, only the pointer oriented toward the parent
node is included in the output variables.

b. “internal” stabilization: Here, all of the algorithm’s variables are involved. This type
of stabilization corresponds to the traditional concept of self-stabilization.

In many studies, only the “visible” stabilization is performed quickly (i.e., in time relative
to the number of faults that strike the system, rather than in time relative to the size of said
system), while the “internal” stabilization most of the time remains proportional to the
size of the network. Algorithms that present this constraint are not capable of tolerating
a high frequency of faults. Consider an algorithm whose time for visible stabilization
depends on k (the number of faults) and whose internal stabilization depends on n
(the size of the system). Now, if a new fault occurs while the visible stabilization is
being performed, but not during the internal stabilization, this can lead to a global state
containing a number of faults greater than k, and there is no longer any guarantee on
the new time for visible stabilization. The notion of k-stabilization [7] is defined as self-
stabilization, when restricting the starting configurations to those configurations that
are at a distance of k or less from a legitimate configuration. Because of the less hostile
environment, it is possible to solve problems that are impossible in the case of general
self-stabilization [44,69], and to offer reduced visible stabilization times. A particular
instance of k-stabilization is node-stabilization [68]: in the initial configuration, links do
not contain any message, yet the memory of the nodes may be arbitrarily corrupted, as
this would happen if the networking equipments of a system were shut down but not the
computing devices.
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3. Restricting the stabilization guarantees.
a. Section 26.3.4 already presented the concept of probabilistic stabilization. Prob-

abilistic stabilization weakens the convergence requirement by only requiring
expected finite time convergence with probability 1. In [13,14], weak and strong
variants of probabilistic stabilization are presented: a weak probabilistic algo-
rithm only guarantees correctness with probability 1, while a strong probabilistic
algorithm guarantees certain correctness (i.e., when a legitimate configuration is
reached, all subsequet executions from this configuration conform to the specifica-
tion). For example, the algorithm presented in Section 26.3.4 falls in the category
of weak probabilistic algorithms [27].

b. The notion of pseudo-stabilization [11] removes the guarantee of reaching a con-
figuration from which the behavior satisfies the specification. Instead, pseudo-
stabilization guarantees that every execution has a suffix that satisfies the speci-
fication. The main weakening here is that there is no guarantee that the system
ever stabilizes (as it may never reach a legitimate configuration). However, for an
external observer, the behavior of the system is eventually correct.

c. Weak stabilization [34] breaks the requirement that every execution reaches a
legitimate configuration. Instead, weak stabilization guarantees that from every
possible initial configuration c, there exists at least one execution starting from
c that reaches a legitimate configuration. Recently, a strong connection between
weak stabilization and probabilistic stabilization was demonstrated [18]: essentially
a weak stabilizing protocol can be turned into a probabilistic stabilizing algorithm
that operates under a probabilistic daemon (i.e., a distributed scheduler whose
choices are probabilistic).

26.4.2 Stronger than Self-Stabilization

The guarantees that are given are stronger than that of self-stabilization, and this permits in general
to solve strictly less difficult specifications than those than can be solved by a self-stabilizing system.
That is, the set of problems than can be solved is strictly smaller than the set of problems that can
be solved by strictly self-stabilizing algorithms, yet the guarantees are stronger and may even match
those of robust algorithms.

1. Stronger safety guarantees.
a. Predicate-preserving stabilization refers to the fact that in addition to being self-

stabilizing, the algorithm also preserves some distributed predicate on configurations,
either in the stabilizing phase or in the stabilized phase, in spite of the occurrence
of new faults (of limited nature). One such instance is the algorithm described in
Section 26.3.3, where message losses, duplications, and desequencings are tolerated
both in the stabilizing and stabilized phases. Another instance is that of route-
preserving stabilization [47]: the algorithm maintains a shortest path spanning
tree in a self-stabilizing way, and has an additional property of path preservation,
meaning that if a tree is initially constructed toward a destination, any message
transmitted toward that destination reaches it in a finite time, even if the cost of
every edge in the system continuously changes. Super-stabilization [22,40,49] is a
special instance of predicate-preserving stabilization. This property states that a
super-stabilizing algorithm is self-stabilizing on one hand and, on the other, pre-
serves a predicate (typically a safety predicate) when changes in topology occur in
a legitimate configuration. Thus, changes in topology are limited: if these changes
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occur during the stabilization phase, the system can never stabilize. On the other
hand, if they occur only after a correct global state is achieved, the system remains
stable.

b. Fault-tolerant self-stabilization is characteristic of algorithms that aim at providing
tolerance to both arbitrary transient faults (self-stabilization) and permanent ones
(robustness), the two main trends in distributed fault-tolerance (see Section 27.1).
While mostly impossibility results were obtained in this context [3,8] except for
some particular problems such as time synchronization [26], recent results [17] hint
that the ultimate properties found in fault-tolerant algorithms are more related to
pseudo-stabilization than to self-stabilization.

c. Strict stabilization [62] refers to a different scheme to tolerate both transient and
permanent Byzantine faults. The Byzantine contamination radius is defined as the
maximum distance from which the effect of Byzantine nodes can be felt. This
contamination radius must obviously be as small as possible. A problem is r-
restrictive if its specification prohibits combinations of states in a configuration
for nodes at a distance of r at the most. For example, the problem of coloring
nodes in a network is 1-restrictive, since two neighboring nodes cannot have the
same color. On the other hand, the tree construction problem is r-restrictive (for
any r between 1 and n − 1) because the correction implies that all of the parents
that are chosen must form a tree. The main Theorem in [62] states that if a
problem is r-restrictive, the best contamination radius that can be obtained is r.
The follow-up paper [61] provides a Byzantine-insensitive link coloring algorithm:
the subset of correct nodes, once stabilized, cannot be influenced again by Byzantine
processes.

d. For problems such as tree construction that have r-restrictive specifications for
some arbitrary r, the weaker notion of strong stabilization has been introduced [59].
While strict stabilization contains the action of Byzantine processes in space, strong
stabilization contains the action of Byzantine processes in time: even if a Byzantine
process may execute an infinite number of malicious actions in a infinite execution,
the correct processes may only be impacted a finite number of times. However,
and similarly to pseudo-stabilization, there is no bound on the time after which
Byzantine actions are harmless (a Byzantine process may execute only correct
actions over a long-unbounded-period of time, and then arbitrarily behave for some
time, making correct processes execute a finite (bounded) number of corrective
actions).

2. Stronger complexity guarantees.

a. For certain problems, a memory corruption can cause a cascade of corrections in
the entire system [5], yet it would be natural for the stabilization to be quicker when
the number of failures that strike the system is smaller. This is the principle behind
time-adaptive self-stabilization [10,23,56], also known as scalable stabilization [32]
and fault local stabilization [57]. Note that time adaptive protocols have the property
of fault containment [31] in the sense that a visible fault cannot spread on the whole
network: it is contained near to its initial location before it disappears. It is possible
to arrange self-stabilizing, k-stabilizing, and time-adaptive algorithms into classes,
depending on the difficulty in solving problems that can be solved in each case. For
example, if it is possible to solve a problem in a self-stabilizing way, it is also possible
to solve it in a k-stabilizing way (if you can do more, you can do less). Likewise, if
it is possible to solve a problem in a time-adaptive way, it is also possible to solve it
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without trying to constrain the visible stabilization time. Thus, the class of problems
that can be solved in a time-adaptive way is a subset of the class of problems that can
be solved in a self-stabilizing way, which is itself a subset of the class of problems
that have k-stabilizing solutions. These inclusions are strict: Some problems can be
solved in a k-stabilizing way, but not in a self-stabilizing [69], others can be solved
in a self-stabilizing way, but not in a time-adaptive way [29].

b. Given a problem specification, a snap-stabilizing system [9] is guaranteed to per-
form according to this specification regardless of the initial state. That is, a snap-
stabilizing system has a stabilization time of 0. It is important to note that a
snap-stabilizing protocol does not guarantee that the system never works in a fuzzy
manner. Actually, the main idea behind the snap-stabilization is the following: the
protocol is seen as a function and the function ensures two properties despite the
arbitrary initial configuration of the system:

i. Upon an external (w.r.t. the protocol) request at a process p, the process p
(called the initiator) starts a computation of the function in finite time using
special actions called starting actions;

ii. If the process p starts an computation, then the computation performs an
expected task.

With such properties, the protocol always satisfies its specifications. Indeed, when
the protocol receives a request, this means that an external application (or a user)
requests the computation of a specific task provided by the protocol. In this case, a
snap-stabilizing protocol guarantees that the requested task is executed as expected.
On the contrary, when there is no request, there is nothing to guarantee. Due to
the “start” and “correctness” properties it has to ensure, snap-stabilization requires
specifications based on a sequence of actions (“request,” “start,”. . . ) rather than
a particular subset of configurations (e.g., the legitimate configurations). Most of
the literature on snap-stabilization deals with the shared memory model only, with
the notable recent exception of [15]. Due to the 0 stabilization time complexity,
snap-stabilization actually also guarantees stronger safety properties (e.g., mutual
exclusion in [15]) than those of self-stabilization.

There remains the special case of k-time adaptive stabilization. In our classification, it is both
a weakening of self-stabilization in the sense that fewer faults are allowed, and a strengthening of
self-stabilization in the sense that the stabilization time complexity guarantee is proportional to the
number of faults that hit the network.

26.5 Further Information

Advances on all aspects of self-stabilization are reported in the annual Symposium on Stabilization,
Safety, and Security of distributed systems (SSS). Theoretical aspects of self-stabilization are also cov-
ered by theoretical distributed computing conferences such as Principles of Distributed Computing
(PODC), Distributed Computing (DISC), On Principles of Distributed Systems (OPODIS), and
International Colloquium on Structural Information and Communication Complexity (Sirocco).
Practical aspects of self-stabilization are covered by International Conference on Distributed Com-
puting Systems (ICDCS), Dependable Systems and Networks (DSN), Symposium on Reliable
Distributed Systems (SRDS), and the many conferences dedicated to sensor networks and auto-
nomic computing.
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A book [20] published in 2000 is dedicated to self-stabilization, and [30,51,66] all include a
chapter on self-stabilization. Ref. [46] surveys self-stabilization in network protocols, while Ref. [69]
describes self-stabilization with respect to scalability properties.

Defining Terms

Configuration: Global state of the system at a particular time.
Daemon: Predicate on executions, used to abstract system hypotheses.
Execution: Maximal sequence of configurations.
Self-stabilization: Property of a distributed system to eventually converge to a configuration from
which every execution assuming a particular daemon conforms to a particular specification.
Specification: Predicate on executions.
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27.1 Introduction

Communication networks have become ubiquitous today. The Internet, the global computer com-
munication network that interconnects millions of computers, has become an indispensable part of
our everyday life. This chapter discusses theoretical and algorithmic underpinnings of distributed
communication networks focusing mainly on themes motivated by the Internet. The Internet is a
distributed wide area communication network that connects a variety of end systems or hosts by a
network of communication links and packet switches (e.g., routers). A packet switch takes a packet
arriving on one of its incoming communication links and forwards that packet on one of its outgoing
communication links. From the sending host to the receiving host, the sequence of communication
links and packet switches is known as a route or a path through the network. Throughout we will
use the term node to denote a host (processor) or a packet switch.

The Internet is a complex system, but fortunately it has a layered architecture which is extremely
helpful in understanding and analyzing its functionality. This is called the network protocol stack
and is organized as follows. The understanding of different layers of the stack allows us to tie the

27-1
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theoretical and algorithmic results that will be discussed to specific functions and protocols in the
Internet.
Application layer: The application layer is closest to the end user. This layer interacts with
software applications that implement a communicating component. The layered architecture allows
one to create a variety of distributed application protocols running over multiple hosts. The appli-
cation in one host uses the protocol to exchange packets of data with the application in another
host. Some examples of application layer implementations include Telnet, File Transfer Proto-
col (FTP), Simple Mail Transfer Protocol (SMTP), and the Hypertext Transfer Protocol (HTTP).
An application architecture determines how a network application is structured over the various
hosts. The traditional application architecture paradigm has been the client–server paradigm. In
a client–server architecture, there is an always-on host, called the server, which services requests
from many other hosts, called clients. For example, all the above applications—Web, FTP, Tel-
net, and e-mail—are client-server based. The last few years has seen the emergence of a new
paradigm called Peer-to-Peer (P2P) architecture. In P2P architecture, there is no concept of a
dedicated, always-on, server. Instead hosts, called peers, communicate directly and a peer can act
both as a client (while requesting information) or as a server (when servicing requests for other
peers). Many of today’s most popular and traffic-intensive applications, such as file distribution
(e.g., BitTorrent), file searching (e.g., Gnutella/LimeWire), and Internet telephony (e.g., Skype)
are P2P based. A key application of P2P is the decentralized searching and sharing of data and
resources. The P2P paradigm is inherently scalable as the peers serve the dual role of clients and
servers.

Transport layer: The transport layer segments the data for transport across the network. Generally,
the transport layer is responsible for making sure that the data is delivered error free and in the
proper sequence. Flow control (i.e., sender/receiver speed matching) and congestion control (source
throttles its transmission rate as a response to network congestion) occur at the transport layer.
Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) are the two transport
protocols of the Internet, with only the former providing flow and congestion controls.

Network layer: The network layer is responsible for breaking data into packets (known as datagrams)
and moving the packets from the source to the destination. The network layer defines the network
address. It includes the Internet Protocol (IP), which defines network addresses called IP addresses.
Because this layer defines the logical network layout, routers can use this layer to determine how to
forward packets. Internet’s routing protocols are a key part of this layer. The routing protocols help in
configuring the forwarding tables of the routers, which indicates to which of the neighbors a packet is
to be forwarded based on its destination address. There are two types of protocols based on whether
the routing is made within an autonomous system (intra-AS routing) or between autonomous
systems (inter-AS routing). Shortest path routing is typically used for intra-AS routing. A protocol
called Border Gateway Protocol (BGP) is used for inter-AS routing.

Link layer: Link layer’s functionality is to move data from one node to an adjacent node over a single
link on the path from the source to the destination host. Services offered by link layer include link
access, reliable delivery, error detection, error correction, and flow control. A key protocol of link
access called medium access control addresses the multiple access problem: how multiple nodes that
share a single broadcast link can coordinate their transmissions so as to avoid collisions. Examples
of link layer protocols include Ethernet, the main wired local area network (LAN) technology, and
802.11 wireless LAN, and token ring.

Physical layer: The physical layer is responsible for moving individual bits of data from one node
to the next and its protocols are dependent on the actual transmission medium of the link (copper
wire, fiber-optic cables, etc.)
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27.1.1 Overview

In Section 27.3, we discuss routing algorithms that are a key part of the network layer’s functionality.
In Section 27.4, we discuss the basics of queuing theory, which is needed for modeling network delay
and understanding the performance of queuing strategies. We consider the traditional stochastic
queuing theory as well as the adversarial queuing theory. We will then discuss the theory of contention
resolution protocols in Section 27.5 that addresses the multiple access problem, a problem handled by
the link layer. In Section 27.6, we will address theoretical issues behind congestion/flow control and
resource allocation, an important functionality of the transport layer, in particular, the TCP protocol.
In Section 27.7, we will discuss P2P networks, the new emerging paradigm at the application layer.

An underlying theme of this chapter is the emphasis on distributed or decentralized algorithms
and protocols. These require only local information (as opposed to global information) which is
typically the only information available to the nodes to begin with. Also distributed algorithms are
more robust since they do not rely on a central node that might fail. Distributed algorithms can
react rapidly to a local change at the point of change. This is especially very useful for problems,
such as routing. Distributed algorithms are inherently scalable and this is crucial for deployment in a
large-scale communication network. Section 27.2 gives a brief introduction to distributed computing
model and complexity measures that will be used later.

27.2 Distributed Computing Model

We will focus on the message-passing model of distributed computing where the network is modeled
as a graph with nodes (vertices) connected by communication links (edges). There can be weights
associated with the links that might denote the delay, or the capacity (bandwidth) of the link. Each
edge e supports message passing between the two nodes associated with the endpoints of e. Messages
can be sent in both directions (we will assume that the graph is undirected unless otherwise stated).
For example, at the network layer of the Internet, nodes correspond to hosts and packet switches
(routers), each identified by a unique identifier called the IP address, and the messages exchanged
between them are basic data transmission units called packets. Alternatively, at the application
layer (as in a P2P network), nodes could correspond to hosts (computers) and edges to TCP/IP
connections that are maintained between pairs of nodes.

In the message-passing model, information is communicated in the network by exchanging
messages. We assume that each node has a unique identity number (e.g., IP address) and at the
beginning of computation, each vertex v accepts as input its own identity number and the weights of
the edges adjacent to v. Thus, a node has only local knowledge limited to itself and its neighbors. We
assume that each processor knows its neighbors, in the network and that it communicates directly
only with its neighbors.

Two important models can be distinguished based on processor synchronization. In a synchronous
model, each processor has an internal clock and the clocks of all processors are synchronized. The
processor speeds are uniform and each processor takes the same amount of time to perform the same
operation. Thus communication is synchronous and occurs in discrete clock “ticks” (time steps). In
one time step, each node v can send an arbitrary message of size O(log n) (n is the number of nodes
in the network) through each edge e = (v, u) that is adjacent to v, and the message arrives at u by
the end of this time step. (Note that a O(log n)-size address is needed to uniquely address all nodes.)
We will assume that the weights of the edges are at most polynomial in the number of vertices n,
and therefore, the weight of a single edge can be communicated in one time step. This model of
the distributed computation is called the (synchronous) CONGEST (log n) model or simply the
CONGEST model [39]. The CONGEST model is not very realistic for the Internet. However, it
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has been widely used as model to study distributed algorithms and captures the notion that there
is a bound on the amount of messages that can be sent in a unit time. At the other extreme is the
LOCAL model [39], where there is no such bound. We will adopt the CONGEST model here.

In an asynchronous model, no assumptions are made about any internal clocks or on the speeds
of the processors. The steps in an asynchronous algorithm are determined by conditions or events
and not by clock ticks. However, we do make two reasonable timing assumptions. First, we assume
that messages do arrive (eventually) and in the same order they are sent (i.e., there is first-in
first-out (FIFO) queuing). Second, we assume that if a processor has an event that requires it to
perform a task, then it will eventually perform the task. Between the two extreme models, we can
define “intermediate” models that are partially synchronous, where the processors have some partial
information about timing (e.g., almost synchronized clocks or approximate bounds on message
delivery time, etc.), not the complete information as they do in the synchronous model. Although
intermediate models can provide a more realistic model of real networks, such as the Internet, we
will restrict our attention to synchronous and asynchronous models in this chapter. Algorithms
designed for the synchronous model can often be translated to work for the asynchronous model
(see below), and algorithms for the latter will work for an intermediate model as well.

There are two important complexity measures for comparing distributed algorithms. The first is
the time complexity, or the time needed for the distributed algorithm to converge to the solution.
In the synchronous model, time is measured by the number of clock ticks called rounds (processors
compute in “lock step”). For an asynchronous algorithm, this definition is meaningless since a single
message from a node to a neighbor can take a long time to arrive. Therefore the following definition
is used: time complexity in an asynchronous model is the time units from start to finish, assuming
that each message incurs a delay of at most one time unit [39]. Note that this definition is used only
for performance evaluation and has no effect on correctness issues. The second important measure
is message complexity, which measures the total number of messages (each of size O(log n)) that are
sent between all pairs of nodes during the computation.

We will assume synchronous (CONGEST ) model unless otherwise stated, since it is simpler and
easier to design algorithms for this model. Using a tool called synchronizers, one can transform a
synchronous algorithm to work in an asynchronous model with no increase in time complexity and
at the cost of some increase in the message complexity [39].

27.3 Routing Algorithms

We discuss three basic routing modes that are used in the Internet: unicast, broadcast, and multicast.
In unicast, a node sends a packet to another specific node; in broadcast, a node sends a packet to
every node in the network; in multicast, a node sends a packet to a subset of nodes. We focus on
fundamental distributed network algorithms that arise in these routing modes.

27.3.1 Unicast Routing

Unicast routing (or just simply routing) is the process of determining a “good” path or route to send
data from the source to the destination. Typically, a good path is one that has the least cost. Consider
a weighted network G = (V , E, c) with positive real-valued edge (link) costs given by the cost
function c. The cost of a path p = (e1, . . . , ek) is defined as c(p) = ∑k

i=1 c(ei). For a source–
destination pair (s, t) ∈ (V × V), the goal is to find a least-cost (or shortest) path, i.e., a path from s
to t in G that has minimum cost. If all edges in the graph have cost 1, the shortest path is the path with
the smallest number of links between the source and the destination. The Internet uses least-cost
path routing. One way to classify routing algorithms is according to whether they are global or local:
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• A global routing algorithm computes the least-cost path between a source and a desti-
nation using complete, global knowledge of the network. In practice, it happens to be
referred to as a link state (LS) algorithm.

• A local routing algorithm computes the least-cost path in an iterative, distributed fashion.
No node has complete information about all the edge costs. In practice, it happens to be
referred to as a distance vector (DV) algorithm.

The LS and DV algorithms are essentially the only routing algorithms used in the Internet today.

27.3.1.1 A Link State Routing Algorithm

A LS algorithm knows the global network topology and all link costs. One way to accomplish this is
by having each node broadcasts its identity number and costs of its incident edges to all other nodes
in the network using a broadcasting algorithm, e.g., flooding. (Broadcast algorithms are described
in Section 27.3.3.) Each node can then run the (centralized) link state algorithm and compute the
same set of shortest paths as any other node. A well-known LS algorithm is the Dijkstra’s algorithm
for computing least-cost paths. This algorithm takes as input a weighted graph G = (V , E, c), a
source vertex s ∈ V and computes shortest paths (and their values) from s to all nodes in V .
Dijkstra’s algorithm and its run-time analysis is given in Chapter 6. Note that this run-time is the
time needed to run the algorithm in a single node. The message complexity and the time complexity
of the algorithm is determined by the broadcast algorithm. For example, if broadcast is done by
flooding (cf. Section 27.3.3.1) then the message complexity is O(|E|2), since O(|E|) messages have
to be broadcast, each of which causes O(|E|) messages to be sent by flooding. The time complexity
is O(|E|D), where D is the diameter of the network. Internet’s Open Shortest Path First (OSPF)
protocol uses a LS routing algorithm as mentioned earlier. Since the LS algorithm is centralized, it
may not scale well when the networks become larger.

27.3.1.2 A Distance Vector Algorithm

The DV algorithm is distributed and asynchronous. It is distributed because information is exchanged
only between neighbors. Nodes then perform local computation and distribute the results back to
its neighbors. This process continues till no more information is exchanged between neighbors. The
algorithm is asynchronous in that it does not require all of the nodes to operate in lock step with
each other.

The DV algorithm that is described below is called the distributed Bellman–Ford (DBF) algorithm.
It is used in the Routing Information Protocol (RIP) and the Border Gateway Protocol (BGP) of the
Internet.

We will describe the basic idea behind the DBF algorithm [2,15]. Suppose we want to compute
the shortest (least-cost) path between s and all other nodes in a given undirected graph G = (V , E, c)
with real-valued positive edge weights. During the algorithm, each node x maintains a distance label
a(x) which is the current known shortest distance from s to x, and a variable p(x) that contains the
identity of the previous node on the current known shortest path from s to x. Initially, a(s) = 0,
a(x) = ∞, and p(x) are undefined for all x �= s. When the algorithm terminates, a(x) = d(s, x),
where d(s, x) is the shortest path distance between s and x, and p(x) holds the neighbor of x on the
shortest path from x to s. Thus, if node x wants to route to s along the shortest path it has to forward
its data to p(x).

The DBF consists of two basic rules: the update rule and the send rule. The update rule determines
how to update the current label according to a message from a neighboring node. The send rule
determines what values to send to its neighbors and is applied whenever a node adopts a new
label.
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Update rule: Suppose x with a label a(x) receives a(z) from a neighbor z. If a(z) + c(z, x) < a(x),
then it updates a(x) to a(z) + c(z, x) and sets p(x) to be z. Otherwise a(x) and p(x) are not changed.

Send rule: Let a(x) be a new label adopted by x. Then x sends a(x) to all its neighbors.

27.3.1.2.1 Correctness and Analysis of the DBF Algorithm
We assume a synchronous setting where computation takes place in discrete rounds, i.e., all nodes
simultaneously receive messages from their neighbors, perform the update rule (if necessary), and
send the message to their neighbors (if update was performed). The following theorem gives the
correctness and the complexity of the DBF algorithm.

THEOREM 27.1 If all nodes work in a synchronous way, then the DBF algorithm terminates after at
most n rounds. When it terminates, a(x) = d(s, x) for all nodes x. The message complexity is O(n|E|).

PROOF Fix a vertex x ∈ V , we prove that the algorithm computes a shortest path from s to x.
Let P = v0, v1, . . . , vk, where v0 = s and vk = x be a shortest path from s to x. Note that k < n.
We prove by induction on i that after the ith round, the algorithm has computed the shortest path

from s to vi, i.e., a(vi) = d(s, vi).
The hypothesis holds for v0 = s in round zero.
Assume that it holds for j ≤ i − 1. After the ith iteration

a[vi] ≤ a[vi−1] + c(vi−1, vi) (27.1)

which is the shortest path from s to vi, since P is the shortest path from s to vi, and the right-hand
side is the distance between s to vi on that path.

Since, in each round O(|E|) messages are exchanged, the total message complexity is O(n|E|). �

From the above proof, it can be seen that the algorithm will compute the correct values even
if the nodes operate asynchronously. An important observation is that the algorithm is “self-
terminating”—there is no signal that the computation should stop; it just stops. The earlier rules
can easily be generalized to compute the shortest path between all pairs of nodes by maintaining in
each node x a distance label ay(x) for every y ∈ V . This is called the distance vector of x. Each node
stores its own distance vector and the distance vectors of each of its neighbors. Whenever something
changes, say the weight of any of its incident edges or its distance vector, the node will send its
distance vector to all of its neighbors. The receiving nodes then update their own distance vectors
according to the update rule.

A drawback of the DBF algorithm is that convergence time can be made arbitrarily large, if the
initial distance labels are not correct. Consider the following simple network consisting of 4 nodes
and 3 links shown in Figure 27.1. The goal is to compute the shortest paths to D. Initially each link
has weight 1 and each node had calculated the shortest path distance to D. Thus the distances of A,
B, and C to D are 3, 2, and 1, respectively. Now suppose the weight of edge (C, D) changes from 1
to a large positive number, say L. Assuming a synchronous behavior, in the subsequent iteration, C
will set its distance label to D as 3, since B supposedly has a path of length 2 to D. In the following
iteration, B will change its distance estimate to 4, since the best path it has is through C. This will

111 L DCBA

FIGURE 27.1 An example network for count-to-infinity problem.
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FIGURE 27.2 An example where the number of messages in the DBF algorithm is Ω(2n).

continue until C distance label reaches L. Thus the number of iterations taken to converge to the
correct shortest path is proportional to L. This problem is referred to as the “count-to-infinity”
problem and shows that the algorithm can be very slow in reacting to a change in an edge cost. Some
heuristics have been proposed to alleviate this problem; we refer to [5,27] for details.

27.3.1.2.2 An Approximate Distributed Bellman–Ford Algorithm
The DBF algorithm can suffer from exponential message complexity in an asynchronous setting.
For example, consider the graph shown in Figure 27.2. There are 2n distinct paths from s to t, each
one with a distinct length. It is possible, in an asynchronous environment, to create an execution
instance of DBF such that t will receive Ω(2n) messages [2]. Awerbuch et al. [2] proposed a simple
modification to the DBF algorithm that will result in a polynomial message complexity. However,
the modified algorithm may not compute a shortest path, but will instead compute an approximate
shortest path, in particular, the paths computed can be worse than the shortest path by at most a
constant factor. Thus this can be called a distributed approximation algorithm. The only difference
between the modified algorithm and the DBF algorithm is in the update rule.

Multiplicative update rule: Let α = 1 + 1/n. Suppose x, with a label a(x) receives a(z) from a
neighbor z. If a(z) + c(x, z) < a(z)/α, then a(x) is updated to a(z) + c(x, z) and p(x) is set to z.

Theorem 27.2 gives the performance of the modified DBF. For a proof we refer to [2].

THEOREM 27.2 The length of the computed path between s and x (for any node x) at the end of
the execution of the algorithm is at most e.d(s, x), where e is the base of the natural logarithm. The
number of messages sent is bounded by O(|E|n log(nΔ)), where Δ is the largest edge cost.

27.3.2 Multicommodity Flow-Based Routing

A drawback of shortest path routing is that each source and destination is selected independent
of other paths. It is quite possible that least-cost paths can cause a high congestion, i.e., many
paths may go through the same edge. Alternate to least-cost paths routing, a broad class of routing
algorithms is based on viewing packet traffic as flows between sources and destinations in a network.
In this approach, the routing problem is formulated as a constrained optimization problem known
as a multicommodity network flow problem with the goal of optimizing some appropriate global
objective. In a multicommodity flow problem, we are given a directed network G = (V , E) with
capacity C(i, j) for each directed edge (i, j). Let ri(j) be the traffic rate (or demand) from source i
to destination j. While routing traffic from source to destination, we obtain a flow, i.e., traffic can
be split and routed along multiple paths. Let fik(j) denote the traffic flow destined for j that is sent
on edge (i, k). The goal is to find paths between source–destination pairs and to determine the
amount of flow on these paths under a set of constraints and objectives. Two types of constraints are
standard:
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Capacity constraint: The flow through an edge cannot exceed its capacity, i.e.,∑
j

fik(j) ≤ C(i, k). (27.2)

Flow conservation constraint: The amount of flow for j coming into node i equals the amount of
traffic for j leaving node i, i.e.,

ri(j) +
∑

k

fki(j) =
∑

k

fik(j). (27.3)

We have the following different problems based on different objective functions:
Maximum multicommodity flow: The objective is to maximize the sum of the traffic rates, i.e., total
throughput, that can be delivered in the network. Formally, we want to

maximize
∑

i,j

ri(j),

subject to capacity and flow conservation constraints.
Maximum concurrent flow problem: The objective is to maximize the fraction of traffic routed for
each source–destination pair. This can be considered a “fairer” objective compared to the maximum
multicommodity flow. Formally, the objective is to maximize the fraction μ subject to capacity and
flow constraints. The latter may be rewritten as

μri(j) +
∑

k

fki(j) =
∑

k

fik(j). (27.4)

Both the above problems can be solved using linear programming formulations. These algorithms
are complex and are not easy to implement distributively. Awerbuch and Leighton [3] gave a local
control algorithm for solving the above problems. It gives an (1 + ε)-approximation for a desired
ε > 0. See Chapter 7 for a description of this algorithm. This algorithm can be implemented in a
distributed manner.
Minimum delay routing problem (MDRP): The objective is to minimize the average delay subject
to capacity and flow conservation constraints. The average delay on a link is assumed to be an
increasing (convex) function of the amount of traffic on the link. Thus the average delay per packet
on link (i, k) is given by Dik(fik), where Dik is a continuous and increasing (convex) function and fik
is the total traffic on link (i, k). (Dik(fik) tends to infinity as fik approaches Cik.) The objective is to
minimize the total average delay given by

DT =
∑
i,k

Dik(fik). (27.5)

27.3.2.1 A Distributed Algorithm for Minimum Delay Routing

The problem is complicated since the objective function is not linear and the challenge is to come
up with a distributed algorithm. We briefly describe a distributed algorithm due to Gallager [17].

Let ti(j) be the total flow (traffic) at node i destined for j; thus ti(j) = ri(j) + ∑
k fki(j).

Let φik(j) be the fraction of the node flow ti(j) that is routed over edge (i, k). Since node flow ti(j)
at node i is the sum of the input traffic and the traffic routed to i from other nodes

ti(j) = ri(j) +
∑

�

t�(j)φ�i(j) ∀i, j. (27.6)
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The above equation implicitly expresses the flow conservation at each node. Now we can express fik,
the traffic on link (i, k) as

fik =
∑

j

ti(j)φik(j). (27.7)

The variable set φ is called the routing variable and it satisfies the following conditions:

1. φik(j) = 0, if (i, k) is not an edge or if i = j.
2.

∑
k φik(j) = 1 for all j.

Note that the traffic flow set t = {ti(j)} and link flow set F = {fik} can be obtained from r = {ri(j)}
and φ = {φik(j)}. Therefore DT can be expressed as a function of r and φ using Equations 27.6
and 27.7. The MDRP can be restated as follows:

For a given network G = (V , E), and input traffic flow set ri(j), and delay function Dik(fik) for each
link (i, k), find the variable set φ that minimizes the average delay subject to the above conditions
on φ, and the capacity and flow constraints.

We will assume that for each i, j (i �= j) there is a routing path from i to j, thus there is a sequence of
nodes i, k, �, . . . , m, such that φik(j) > 0, φk�(j) > 0, . . . φmj(j) > 0. Gallager shows that the above
conditions guarantee that the set of Equation 27.6 has a unique solution for t.

27.3.2.1.1 Necessary and Sufficient Conditions for Optimality
Gallager derived the necessary and sufficient conditions that must be satisfied to solve MDRP. These
conditions are summarized in Theorem 27.3.

THEOREM 27.3 [17] The necessary condition for a minimum of DT with respect to φ for all i �= j
and (i, k) ∈ E is

∂DT

∂φik(j)

{ = λij : φik(j) > 0
≥ λij : φik(j) = 0 (27.8)

where λij is some positive number.
The sufficient condition to minimize DT with respect to φ for all i �= j and (i, k) ∈ E is

D′
ik(fik) + ∂DT

∂rk(j)

⎧⎪⎪⎨
⎪⎪⎩

= ∂DT

∂ri(j)
: φik(j) > 0

≥ ∂DT

∂rk(j)
: φik(j) = 0

(27.9)

where
∂DT
∂rk(j) is called the marginal distance from i to j
∂DT

∂φik(j) is called the marginal delay
D′

ik(fik) is the marginal link delay.

Thus Gallager’s optimality conditions mandate two properties:

1. For a given node i and a destination j, the marginal link delays should be same for all
links (i, k) for which there is nonzero flow, i.e., φik(j) > 0. Furthermore, this marginal
delay must be less than or equal to the marginal delay on the links on which the traffic
flow is zero. This is the necessary condition.

2. Under optimal routing at node i with respect to a particular destination j, the marginal
distance through a neighbor k plus the marginal link delay should be equal to the marginal
distance from node i if traffic is forwarded through k. It should be greater if no traffic is
forwarded through k. This is the sufficiency condition.
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Gallager’s algorithm for MDRP: Gallager’s algorithm iteratively computes the routing variables φik(j)
in a distributed manner. The idea is to progress incrementally toward the optimality conditions.
Each node i incrementally decreases those routing variables φik(j) for which the marginal delay
D′

ik(fik)+ ∂DT
∂rk(j) is large and increases those for which it is small. The decrease is by a small quantity ε;

the excess fraction is moved over to the link (i, m) that has the smallest marginal delay (the current
best link).

Gallager proves that for suitably small ε, the above iterative algorithm converges to the minimum
delay routing solution. The choice of ε is critical in determining the convergence and its rate.
A small ε may take a large time to converge, while a large ε may cause the system to diverge or
oscillate around the minimum. Gallager’s algorithm uses a blocking technique to make sure that the
routes are loop-free at every instant. Loop-freedom ensures that the traffic that is routed along a path
does not come back along a cycle. The algorithm ensures that if the routing variables are loop-free
to begin with, then they will be loop-free during the execution of the algorithm. Thus, one way to
start the algorithm is to assign the routing variables based on shortest path routing, i.e., they are set
to 1 for the edges along the shortest paths, and 0 otherwise. To change the routing variables, each
node needs to calculate marginal delays. This can be done in a distributed manner by propagating
the value from the destination (its marginal delay is zero) as follows. For each destination j, each
node i waits until it has received the value ∂DT

∂rk(j) from each of its downstream neighbors k �= j (i.e.,
neighbors that are closer to j on a routing path from i to j). The node i then calculates ∂DT

∂ri(j) (additional
information needed are φik(j) and D′

ik(fik), which are known locally) and broadcasts to all of its
neighbors. Loop-freedom is essential to guarantee that this procedure is free from deadlocks [17].

27.3.2.2 Confluent Flow Routing

Most flows in today’s communication networks, especially the Internet, are confluent. A flow is said
to be confluent if all the flows arriving at a node destined for a particular destination depart from
the node along a single edge. Internet flows are confluent because Internet routing is destination
based. (Recall from our discussion of shortest-path routing, the forwarding tables of the routers are
set to have one entry per destination.) Destination-based routing makes forwarding simple and the
forwarding table size linear in the number of the nodes in the network. Both shortest path routing
and BGP routing are destination based. One can study multicommodity flow problems with the
condition that flows must be confluent. The primary goal is to find the confluent flows that minimize
maximum congestion in the network. The congestion of an edge (node) is defined as the total
amount of flow going through the edge (node). Formally, we consider the following problem studied
in [11].
Minimum congestion ratio routing: We are given a directed graph G = (V , E) with n nodes, m
edges, and capacities C(i, j) for each (i, j) ∈ E. Represent the traffic associated with a particular
destination as a separate commodity. Let there be a total of k commodities. Let commodity i be
associated with destination ti and a set Si ⊂ V sources. The commodity demand, given by a
function d : {1, . . . , k} × V → R+, specifies the demand of each commodity for each vertex. A flow
f : {1, . . . , k} × V × V → R (specifies the amount of flow of each commodity type through each
pair of vertices) is confluent if for any commodity i, there is at most one outgoing flow at any node v.
(It is easy to see that for any commodity i, flow f induces a set of arborescences, each of which is
rooted at a destination ti.) Given a flow f , the congestion ratio at an edge (u, v) with c(u, v) > 0,
denoted by r(u, v) is the ratio between the total flow

∑
i∈{1,...,k} f (i, u, v) on this edge and the capacity

of the edge C(u, v). The congestion ratio of flow f is the maximum congestion ratio among all edges.
The minimum congestion ratio problem is to find a confluent flow to satisfy all the demands with
minimum congestion ratios.
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The above problem is NP-hard to solve optimally [12]. Hence the focus is to look for an approxi-
mately optimal solution that can be implemented in a distributed fashion. We present an algorithm
due to Chen et al. [11] called the locally independent rounding algorithm (LIRA). The main idea is
to cast the above problem as an integer linear program and then solve its relaxation. The relaxation
is the standard multicommodity flow problem where confluence constraints need not be satisfied.
Let Di = ∑

v∈V d(i, v), i.e., the total demand for commodity i. Let x : {1, . . . , k} × V × V → [0, 1]
and ρ ∈ R+. x(i, u, v) will denote the fraction of the total commodity i that enters node u that leaves
for v. If the flow is confluent, x(i, u, v) will be 0 or 1 for all i ∈ {1, . . . , k} and u, v ∈ V . If x(i, u, v)
is allowed to be fractional, we get a splittable flow (need not be confluent). The following linear
program computes a splittable flow with minimum congestion ratio:

Minimize r
subject to∑

v∈V

f (i, u, v) = d(i, u), ∀u �= ti, ∀i (27.10)

∑
i∈{1,...,k}

f (i, u, v) ≤ rc(u, v), ∀u, v ∈ V (27.11)

0 ≤ x(i, u, v) ≤ 1, ∀u, v ∈ V , ∀i ∈ {1, . . . , k} (27.12)∑
w∈V

x(i, v, w) = 1, ∀v ∈ V , ∀i ∈ {1, . . . , k} (27.13)

0 ≤ f (i, u, v) ≤ Dix(i, u, v)∀u, v ∈ V , ∀i ∈ {1, . . . , k}. (27.14)

Equation 27.10 captures flow conservation and Inequality 27.11 captures capacity constraints.
The above multicommodity problem can be solved approximately in a distributed manner by using
the local control algorithm of Awerbuch and Leighton [3] (see Section 27.3.2). This gives a 1 + ε

approximation. The splittable flow computed by this algorithm is then made confluent by using the
technique of randomized rounding (see Chapter 33) as follows. Let f be the flow computed by the
algorithm in [3]. Then each node chooses for each commodity a unique outgoing edge independently
at random. Node u chooses, for commodity i, edge (u, v) with probability

p(i, u, v) = f (i, u, v)∑
(u,v′)∈E f (i, u, v′)

. (27.15)

This rounding algorithm can be easily implemented in a distributed manner since each node makes
its own choice based on local information.

The following theorem can be shown [11].

THEOREM 27.4 Given a splittable flow f with congestion ratio C, the above rounding algorithm
produces a confluent flow φ with O(max(C, D/cmin log n)) congestion ratio with high probability,
where D = maxiDi and cmin is the minimum edge capacity.

Note that if C = Ω(D/cmin log n), then LIRA is a constant factor approximation algorithm for the
multicommodity flow problem. If C = Ω(D/cmin), then LIRA achieves a logarithmic approximation.
These performance guarantees do not hold, if these conditions are not true. Note that Ω(D/cmaxδ) is
a lower bound on C, where δ is the maximum degree of a node. If capacities are more or less uniform
and the maximum degree is not large then these conditions are reasonable. Stronger bounds on
various special cases of the confluent flow problem have been established. We refer to [10,12] for
details.



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C027 Finals Page 12 2009-9-25

27-12 Special Topics and Techniques

27.3.3 Broadcast Routing

Broadcasting is another important communication mode: sending a message from a source node to
all other nodes of the network. We will consider two basic broadcasting approaches: flooding and
spanning tree-based routing.

27.3.3.1 Flooding

Flooding is a natural and basic algorithm for broadcast. Suppose a source node s wants to send a
message to all nodes in the network. s simply forwards the message over all its edges. Any vertex
v �= s, upon receiving the message for the first time (over an edge e) forwards it on every other
edge. Upon receiving the message again it does nothing. It is easy to check that this yields a correct
broadcast algorithm. The complexity of flooding can be summarized by Theorem 27.5.

THEOREM 27.5 The message complexity of flooding isΘ(|E|)and the time complexity isΘ(Diam(G))

in both the synchronous and asynchronous models.

PROOF The message complexity follows from the fact that each edge delivers the message at least
once and at most twice (one in each direction). To show the time complexity, we use induction on t
to show that after t time units, the message has already reached every vertex at a distance of t or less
from the source. �

27.3.3.2 Minimum Spanning Tree Algorithms

The minimum spanning tree (MST) problem is an important and commonly occurring primitive in
the design and operation of communication networks. The formal definition of the problem, some
properties of MST, and several sequential algorithms are given in Chapter 6. Of particular interest
here, is that an MST can be used naturally for broadcast. Any node that wishes to broadcast simply
sends messages along the spanning tree [27]. The advantage of this method over flooding is that
redundant messages are avoided. The message complexity is O(n), which is optimal.

Here we focus on distributed algorithms for this problem and few more properties of MST. The
first distributed algorithm for the MST problem was given by Gallager et al. [18] in 1983. This
algorithm is known as GHS algorithm and will work in an asynchronous model also.

27.3.3.2.1 GHS Algorithm
GHS algorithm assumes that the edge weights are distinct. If all the edges of a connected graph have
distinct weights, then the MST is unique. Suppose, to the contrary, there are two different MSTs, T
and T′. Let e be the minimum-weight edge that is in T but not in T′. The graph {e}∪T′ must contain
a cycle, and at least one edge in this cycle, say e′, is not in T, as T contains no cycles. Since the edge
weights are all distinct and e′ is in one but not both of the trees, the weight of e is strictly less than the
weight of e′. Thus {e} ∪ T′ − {e′} is a spanning tree of smaller weight than T′; this is a contradiction.

We are given an undirected graph G = (V , E). Let T be the MST on G. A fragment F of T is
defined as a connected subgraph of T, that is, F is a subtree of T. An outgoing edge of a fragment
is an edge in E where one adjacent node to the edge is in the fragment and the other is not. The
minimum-weight outgoing edge (MOE) of a fragment F is the edge with minimum weight among
all outgoing edges of F. As an immediate consequence of the blue rule for MST (see Chapter 6 in
[47]), the MOE of a fragment F = (VF , EF) is an edge of the MST. Consider a cut (VF , V − VF) of G.
The MOE of F is the minimum-weight edge in the cut (VF , V − VF), and therefore the MOE is an
edge of the MST. Thus adding the MOE of F to F along with the node at the other end of MOE yields
another fragment of the MST. The algorithm starts with each individual node as a fragment by itself
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and ends with one fragment—the MST. That is, at the beginning there are |V| fragments and at the
end there is a single fragment, which is the MST. All fragments find their MOE simultaneously in
parallel. Initially, each node (a singleton fragment) is a core node; subsequently each fragment will
have one core node (determined as explained below). To find the MOE of a fragment, the core node
in the fragment broadcasts a message to all nodes in the fragment using the edges in the fragment.
Each node in the fragment, after receiving the message, finds the minimum outgoing edge adjacent
to it and reports to the core node. Once the MOE of the fragment is found, the fragment attempts
to combine with the fragment at the other end of the edge. Each fragment has a level. A fragment
containing only a single node is at level 0. Let the fragment F be at level L, the edge e be the MOE of
F, and the fragment F′ be at the other end of e. Let L′ be the level of F′. We have the following rules
for combining fragments:

1. If L < L′, fragments F and F′ are combined into a new fragment at level L′, and the core
node of F′ is the core node of the new fragment.

2. If L = L′ and fragments F and F′ have the same minimum-weight outgoing edge, F and
F′ are combined into a new fragment at level L + 1. The node incident on the combining
edge with the higher identity number is the core node of the new fragment.

3. Otherwise, fragment F waits until fragment F′ reaches a level high enough to apply any
of the above two rules of combining.

The waiting of the fragments in the above procedure cannot cause a deadlock. The waiting is done
to reduce the communication cost (number of messages) required for a fragment to find its MOE.
The communication cost is proportional to the fragment size, and thus communication is reduced
by small fragments joining into large ones rather than vice versa. The maximum level a fragment can
reach is log n, where n = |V|. The algorithm takes O(n log n + |E|) messages and O(n log n) time. It
can be shown that any distributed algorithm for MST problem requires Ω(n log n + |E|) messages
[48]. Thus the communication (message) complexity of GHS algorithm is optimal. However, its
time complexity is not optimal.

27.3.3.2.2 Kutten and Peleg’s Algorithm
Kutten and Peleg’s [28] distributed MST algorithm runs in O(D + √

n log∗ n) time, where D is
the diameter of the graph G. The algorithm consists of two parts. In the first part, similar to
GHS algorithm, this algorithm begins with each node as a singleton fragment. Initially, all of these
singleton fragments are active fragments. Each active fragment finds its MOE and merges with
another fragment by adding MOE to the MST. Once the depth of a fragment reaches

√
n, it becomes

a terminated fragment. A terminated fragment stops merging onto other fragments. However, an
active fragment can merge onto a terminated fragment. The depth of a fragment is measured by
broadcasting a message from the root of the fragment up to the depth of at most

√
n and by using

a counter in the message. At the end of the first part, the size (number of nodes) of a fragment is
at least

√
n, and there are at most

√
n fragments. The first part of the algorithm takes O(

√
n log∗ n)

time (see [28] for details).
In the second part of the algorithm, a breadth-first tree B is built on G. Then the following pipeline

algorithm is executed. Let r(B) be the root of B. Using the edges in B, r(B) collects weights of the
interfragment edges, computes the MST, T′, of the fragments by considering each fragment as a
super node. It then broadcasts the edges in T′ to the other nodes using the breadth-first tree B.

This pipeline algorithm follows the principle used by Kruskal’s algorithm. Each node v, except
the root r, maintains two lists of interfragment edges, Q and U. Initially, Q contains only the
interfragment edges adjacent to v, and U is empty. At each pulse, v sends the minimum-weight edge
in Q that does not create a cycle with the edges in U to its parent and moves this edge from Q to U. If
Q is empty, v sends a terminate message to its parent. The parent after receiving an edge from a child,
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adds the edge in its Q list. A leaf node starts sending edges upward at pulse 0. An intermediate node
starts sending at the first pulse after it has received at least one message from each of its children.

Observe that the edges reported by each node to its parent in the tree are sent in nondecreasing
weight order, and each node sends at most

√
n edges upward to its parent. Using the basic principle

of Kruskal’s algorithm, it can be easily shown that the root r(B) receives all the interfragment edges
required to compute T′ correctly. To build B, it takes O(D) time. Since the depth of B is D and each
node sends at most

√
n edges upward, the pipeline algorithm takes O(D + √

n) time. Thus the time
complexity of Kutten and Peleg’s algorithm is O(D + √

n log∗ n). The communication complexity
of this algorithm is O(|E| + n1.5).

Peleg and Rabinovich [40] showed that Ω̃(D + √
n) time ∗ is required for the distributed con-

struction of MST. Elkin [16] showed that even finding an approximate MST in distributed time on

graphs of small diameter (e.g., O(log n)) within a ratio H requires Ω

(√
n

H log n

)
time.

27.3.3.2.3 Khan and Pandurangan’s Approximation Algorithm
Khan and Pandurangan [24] gave an algorithm for O(log n)-approximate MST that runs in Õ(D+L)

time. L is called local shortest path diameter. L can be small in many classes of graphs, especially
those of practical interest such as wireless networks. In the worst case, L can be as large as n − 1.

Khan and Pandurangan’s algorithm [24] is based on simple scheme called the Nearest Neighbor
Tree (NNT) scheme. The tree constructed using this scheme is called nearest neighbor tree, which is
an O(log n)-approximation to MST. The NNT scheme is as follows: (1) each node chooses a unique
rank from a totally ordered set, and (2) each node, except the one with the highest rank, connects
via the shortest path to the nearest node of higher rank, that is, add the edges in the shortest path
to the NNT. The added edges can create cycle with the existing (previously added) edges of NNT.
Cycle formation is avoided by removing some existing edges.

The following notations and definitions are used to describe the algorithm:

• |Q(u, v)| or simply |Q|—the number of edges in path Q from u to v.
• w(Q)—the weight of the path Q, which is defined as the sum of the weights of the edges

in path Q.
• P(u, v)—a shortest path (in the weighted sense) from u to v.
• d(u, v)—the (weighted) distance between u and v, that is, d(u, v) = w(P(u, v)).
• W(v)—the weight of the largest edge adjacent to v. W(v) = max(v,x)∈E w(v, x).
• l(u, v)—the number of the edges in the shortest path from u to v. If there are more than

one shortest path from u to v, l(u, v) is the number of edges of the shortest path having
the least number of edges, i.e., l(u, v) = min{|P(u, v)| | P(u, v) is a shortest path from
u to v}.

ρ-neighborhood. ρ-neighborhood of a node v, denoted by Γρ(v), is the set of the nodes that are
within distance ρ from v. Γρ(v) = {u | d(u, v) ≤ ρ}.

(ρ, λ)-neighborhood. (ρ, λ)-neighborhood of a node v, denoted by Γρ,λ(v), is the set of all nodes u
such that there is a path Q(v, u) such that w(Q) ≤ ρ and |Q| ≤ λ. Clearly, Γρ,λ(v) ⊆ Γρ(v).

Local Shortest Path Diameter (LSPD). LSPD is denoted by L(G, w) (or L for short) and defined by
L = maxv∈V L(v), where L(v) = maxu∈ΓW(v)(v) l(u, v).

27.3.3.2.3.1 Rank Selection. The nodes select unique ranks as follows. First a leader is elected by a
leader election algorithm (e.g., see [35]). (Or assume that there is one such node, say which initiates
the algorithm.) Let s be the leader node. The leader picks a number p(s) from the range [b − 1, b],

∗ The Ω̃ notation hides logarithmic factors.
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where b is a (real) number arbitrarily chosen by s, and sends this number p(s) along with its ID
(identity number) to all of its neighbors. As soon as a node u receives the first message from a
neighbor v, it picks a number p(u) from [p(v)−1, p(v)) so that it is smaller than p(v), and sends p(u)

and ID(u) to its neighbors. If u receives another message later from another neighbor v′, u simply
stores p(v′) and ID(v′), and does nothing else. p(u) and ID(u) constitute u’s rank r(u) as follows.
For any two nodes u and v, r(u) < r(v) iff (1) p(u) < p(v), or (2) p(u) = p(v) and ID(u) < ID(v).
At the end of execution of the above procedure of rank selection (1) each node knows the ranks of
all of its neighbors, (2) the leader s has the highest rank among all nodes in the graph, and (3) each
node v, except the leader, has one neighbor u, i.e., (u, v) ∈ E, such that r(u) > r(v).

27.3.3.2.3.2 Connecting to a Higher-Ranked Node. Each node v, except the leader s, executes the
following algorithm simultaneously to find the nearest node of higher rank and connect to it. Each
node v needs to explore only the nodes in ΓW(v)(v) to find a node of higher rank. This is because at
the end of rank selection procedure, v has at least one neighbor u such that r(u) > r(v), and if u is a
neighbor of v, then d(u, v) ≤ W(v).

Each node v executes the algorithm in phases. In the first phase, v sets ρ = 1. In the subsequent
phases, it doubles the value of ρ; that is, in the ith phase, ρ = 2i−1. In a phase of the algorithm, v
explores the nodes in Γρ(v) to find a node u (if any) such that r(u) > r(v). If such a node with higher
rank is not found, v continues to the next phase with ρ doubled. Node v needs to increase ρ to at
most W(v). Each phase of the algorithm consists of one or more rounds. In the first round, v sets
λ = 1. In the subsequent rounds, values for λ are doubled. In a particular round, v explores all nodes
in Γρ,λ(v). At the end of each round, v counts the number of nodes it has explored. If the number
of nodes remains the same in two successive rounds of the same phase (i.e., v already explored all
nodes in Γρ(v)), v doubles ρ and starts the next phase. If at any point of time v finds a node of higher
rank, it terminates its exploration.

Since all of the nodes explore their neighborhoods simultaneously, many nodes may have over-
lapping ρ-neighborhoods. This might create a congestion of the messages in some edges that may
result in increased running time of the algorithm, in some cases by a factor of Θ(n). Consider the
network given in Figure 27.3. If r(v) < r(ui) for all i, when ρ ≥ 2 and λ ≥ 2, an exploration message
sent to v by any ui will be forwarded to all other uis. Note that values for ρ and λ for all uis will not
necessarily be the same at a particular time. Thus congestion at any edge (v, ui) can be as much as
the number of such nodes ui, which can be, in fact, Θ(n) in some graphs. However, to improve the
running time of the algorithm, the congestion on all edges is controlled to be O(1) by sacrificing the
quality of the NNT, by a constant factor, as explained below.
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FIGURE 27.3 A network with
possible congestion in the edges
adjacent to v. Weight of the edges
(v, ui) is 1 for all i, and 9 for the rest
of the edges. Assume r(v) < r(ui)

for all i.

If at any time step, a node v receives more than one, say k > 1,
messages from different originators ui, 1 ≤ i ≤ k, v forwards only
one message and replies back to the other originators as follows.
Let ui be in phase ρi. For any pair of originators ui and uj, if
r(ui) < r(uj) and ρj ≤ ρi, v sends back a found message to ui telling
that ui can connect to uj (note that the weight of the connecting
path w(Q(ui, uj)) ≤ 2ρi) instead of forwarding ui’s message. Now,
there are at least one ui left to which v did not send the found
message back. If there is exactly one such ui, v forwards its message;
otherwise, v takes the following actions. Let us be the node with
lowest rank among the rest of the uis (i.e., those uis which were
not sent a found message by v), and ut , with t �= s, be an arbitrary
node among the rest of uis. Now, it must be the case that ρs < ρt
(otherwise, v would send a found message to us), i.e., us is in an
earlier phase than ut . This can happen if in some previous phase,
ut exhausted its ρ-value with smaller λ-value leading to a smaller
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number of rounds in that phase and a quick transition to the next phase. Node v forwards explore
message of us only and sends back wait messages to all ut (t �= s). A node after receiving a wait
message simply repeats its exploration phase with the same ρ and λ.

Suppose a node ui found a higher ranked node uj via the path Q(ui, uj). If ui’s nearest node of
higher rank is u′, then w(Q) ≤ 4d(ui, u′). Assume that uj is found when ui explored the (ρ, λ)-
neighborhood for some ρ and λ. Then d(ui, u′) > ρ/2, otherwise, ui would find u′ as a node of
higher rank in the previous phase and would not explore the ρ-neighborhood. Now, uj could be
found by ui in two ways: (1) The explore message originated by ui reaches uj and uj sends back a
found message. In this case, w(Q) ≤ ρ. (2) Some node v receives two explore messages originated by
ui and uj via the paths R(ui, v) and S(uj, v) respectively, where r(ui) < r(uj) and w(S) ≤ ρ; and v (on
behalf of uj) sent a found message to ui. In this case, w(Q) = w(R) + w(S) ≤ 2ρ, since w(R) ≤ ρ.
Thus, in both cases, we have w(Q) ≤ 4d(ui, u′).

The cost of the NNT produced by this algorithm is at most 4�log n�∗c(MST). The time complexity
of the algorithm is O(D + L log n) and the message complexity is O(|E| log L log n). For more details
of this algorithm, the proof of correctness, and the analysis of approximation ratio, time complexity,
and message complexity, readers are referred to [24].

27.3.4 Multicast Routing

We can view multicasting as a generalization of broadcasting, where the message has to be sent to
only a (required) subset of nodes. This formulation leads to the minimum cost Steiner tree problem,
a generalization of the MST problem (see also Chapter 7). The Steiner tree connects the required set
of nodes and can possibly use other nodes in the graph (these are called Steiner nodes). Finding the
minimum cost Steiner tree in a arbitrary weighted graph is NP-hard. The following approximation
algorithm is well known (e.g., [49]). Transform the given graph G = (V , E, w) as a complete metric
graph G′ = (V , E′, w′) where the pairwise edge costs in E′ are the corresponding pairwise (weighted)
shortest path distances in G, i.e., w′(u, v) = dist(u, v), where dist(u, v) is the shortest path distance
between u and v in G. It can be shown that an MST T′ on the required set of nodes in G′ is a
2-approximation to the optimal Steiner tree in G. To get a 2-approximate Steiner tree in G, we
replace the edges in T′ by the corresponding shortest paths in G. This may possibly create cycles, so
some edges may have to be deleted.

Thus, distributed algorithms for minimum-cost Steiner tree are at least as involved as those for the
MST problem. Distributed approximation algorithms have been recently proposed for this problem.
Based on the MST approximation described above, an O(n log n)-time 2-approximate distributed
algorithm has been proposed in [9]. The NNT approach of [24] described in Section 27.3.3.2 yields a
faster O(log n)-approximation with the same time bounds. Another advantage of the NNT approach
is that this algorithm works with virtually no change. Indeed the basic algorithm is as follows: every
required node chooses a unique rank and connects to its closest required node of higher rank.

27.4 Queuing

Queuing theory is the primary methodological framework for analyzing network delay. We study
two different approaches here, the first characterized by the stochastic modeling of arrival and service
times (Section 27.4.1), and the second by a more general adversarial model (Section 27.4.3).

27.4.1 Stochastic Queuing Models

In a typical queuing system, scenario is characterized by a variable set of customer(s) who contend
for (limited) resources served by server(s). A customer leaves the system once it receives the service.
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We note that integral to queuing situations is the idea of uncertainty in, for example, interarrival
times and service times. Hence, stochastic models are used to model queuing systems.

Our study of queuing is basically motivated by its use in the study of communication systems
and computer networks. Nodes, especially, routers and switches in a network may be modeled
as individual queues. The whole system may itself be modeled as a queuing network providing
the required service to the data that need to be carried. Queuing theory provides the theoretical
framework for the design and the study of such networks.

For a single queuing system where customers are identified based on their arrival order, we denote
the following:

N(t) = number of customers in the queue at time t
α(t) = number of customers who arrived in [0, t]

Ti = time spent in the system by customer i

Assume that the following three limits exist:

N = lim
t→∞

1
t

t�
0

N(t) (27.16)

λ = lim
t→∞

α(t)
t

(27.17)

T = lim
t→∞

∑α(t)
i=1 Ti

α(t)
(27.18)

where
N is called the steady-state time average of the number of customers in the system
λ is the steady-state arrival rate of customers
T the steady-state time average customer delay.

These three quantities are related by the following basic equation known as Little’s Lemma holds:
N = λT (see [45] for a proof).

27.4.1.1 The M/M/1 System

The name M/M/1 reflects the standard queuing theory nomenclature: (1) The first letter indicates
the nature of the arrival process. For example, M stands for memoryless, i.e., a Poisson arrival process,
G stands for a general distribution of interarrival times, D stands for deterministic interarrival times.
(2) The second letter indicates the nature of the probability of the server process. For example, M
stands for memoryless, i.e., an exponential service time model; G for general, and D for deterministic
(3) The last number indicates the number of servers (can range from 1 to ∞). The queue discipline
that we will assume (unless otherwise stated) is FIFO. This specifies how to determine which customer
to serve next from among the set of customers waiting for service. We will assume a Poisson arrival
process throughout; this makes the models amenable to precise analysis.

The M/M/1 system is a simple and basic queuing system where there is a single queue with a single
server. Customers arrive according to a Poisson process with rate λ. The probability distribution of
the service time is exponential with mean 1

μ
s. The successive interarrival times and service times

are statistically independent of each other.
Using a Markov chain analysis, the following properties of the M/M/1 queuing system can be

shown (see for e.g., [5]):

1. The expected number of customers in the system at steady state is N = λ
μ−λ

.

2. The average delay per customer is (by Little’s Lemma) T = N/λ = 1
μ−λ

.
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3. The average time spent by the packet waiting in the queue (not including the transmission
time) is W = T − 1/μ.

4. The average number of customers in the queue is NQ = λW = ρ2

1−ρ
, where ρ = λ/μ is

called the utilization factor.

We look at an application of M/M/1 queues to communication networks. We assume that packets
arrive according to a Poisson process to an edge and the packet transmission rate is exponentially
distributed. Interarrival and service times are independent, i.e., the length of the arriving packet does
not affect the arrival time of the next packet (this is not true in reality when you have a network of
queues, see [5]).
Statistical multiplexing verses time-division multiplexing: These are two basic schemes of multiplexing
traffic in a communication link. In statistical multiplexing, the packets from different traffic streams
are merged into a single queue and transmitted on a first-come first-serve basis. In time division
multiplexing (TDM), with m traffic streams, the edge capacity is essentially subdivided into m parts
and each part is allocated to one traffic stream.

Given m identical Poisson processes each with arrival rate λ/m, which scheme gives better delay
results? We assume that the average packet service time is 1/μ. Then statistical multiplexing gives a
delay corresponding to an arrival rate λ and a service rate μ, i.e., T = 1

μ−λ
. On the other hand, TDM,

i.e., transmitting through m separate channels, gives a much bigger per packet delay T′ = m
μ−λ

since
the service rate per channel now reduces to μ

m . This is the reason why in packet-switched networks,
such as the Internet, where traffic is mostly irregular and bursty, statistical multiplexing is used. In
circuit-switched networks, such as telephone networks, where each traffic stream is more or less
“regular” (as opposed to Poisson), TDM is preferred. The reason is that there will be no waiting time
in the queue, if such a stream is transmitted on a dedicated line.

27.4.1.2 M/G/1 System

In this system, we have a single server, an infinite waiting room, exponentially distributed interarrival
times (with parameter λ), and an arbitrary service time distribution for which at least the mean value
and the standard deviation are known. The service discipline is FIFO. Let Xi be the service time of the
ith customer. Xi’s are identically distributed, mutually independent, and independent of interarrival
times.

E[X] = 1/μ = average service time.
E[X2] = second moment service time.
The expected waiting time in queue for a customer in this system is given by the Pollaczek–

Khintchine formula (P–K formula).
P–K formula: The expected waiting time in queue in a stable M/G/1 system is

W = λE[X2]
2(1 − ρ)

, (27.19)

where ρ = λ/μ. See [5] for a proof. Using Little’s law, the expected number of customers in the
queue is

NQ = λW = λ2E[X2]
2(1 − ρ)

. (27.20)

27.4.1.3 M/G/∞ System

In M/G/∞ system, arrivals are Poisson with rate λ; however, service times are assumed to be
independent with distribution G, i.e., the service of a customer is independent of the services of the
other customers and of the arrival processes.
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Let X(t) denote the number of customers arrived in the system till time t (some or all of them
might have already left the system). Conditioning Pr(N(t) = j) over X(t) we get

Pr(N(t) = j) =
∞∑

n=0
Pr(N(t) = j|X(t) = n)e−λt λt

n! , (27.21)

because Pr(X(t) = n) = e−λt λt
n! due to Poisson arrival with rate λ.

The probability that a customer who arrives at time x will still be present at t is 1 − G(t − x).
Let p be the probability that an arbitrary customer who arrives during the interval [0, t] is still in

the network at time t. We know, for a Poisson distribution, given that an arrival happens at time
interval [0, t], then the arrival is uniform in this interval. Therefore, dx

t is the probability that an
arbitrary customer arrives in the interval dx. Thus,

p =
t�

0

(1 − G(t − x))
dx
t

=
t�

0

(1 − G(x))
dx
t

, (27.22)

independently of the others. Then,

P(N(t) = j|X(t) = n) =
{ (n

j
)
pj(1 − p)n−j : j = 0, 1, . . . , n

0 : j > n
. (27.23)

Thus,

Pr(N(t) = j) =
∞∑

n=j

(
n
j

)
pj(1 − p)n−je−λt λt

n! (27.24)

= e−λt (λtp)j

j!
∞∑

n=j

(λt(1 − p))n−j

(n − j)! (27.25)

= e−λtp (λtp)j

j! . (27.26)

Hence, we find that N(t) is Poisson distributed with mean λ
� t

0 (1 − G(x))dx.

27.4.1.4 Application to P2P Networks

A P2P network (cf. Section 27.7) can be modeled as an M/M/∞ system.
The arrival of new nodes is Poisson distributed with rate λ. The duration of time a node stays

connected to the network is independently and exponentially distributed with parameter μ. Without
the loss of generality, let λ = 1 and let N = 1/μ.

THEOREM 27.6 [37] If t
N → ∞ then with high probability, N(t)| = N ± o(N).

PROOF The number of nodes in the network at time t, N(t), is Poisson distributed with mean
λ

� t
0 (1 − G(x))dx, which is N(1 − e−t/N).
If t/N → ∞, E[N(t)] = N + o(N).
Now, using a Chernoff bound for the Poisson distribution [1], for t = Ω(N), and for some

constants b and c > 1:

Pr
(

N(t) − E[N(t)]| ≤ √
bN log N

)
≥ 1 − 1/Nc. (27.27)

�
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27.4.2 Communication Networks Modeled as Network of Queues

So far we have only looked at a single stand-alone queueing system. However, most real systems
are better represented as a network of queues. An obvious example is the Internet, where we can
model each outgoing link of each router as a single queueing system, and where an end-to-end path
traverses a multitude of intermediate routers. In a queuing network, a customer finishing service in
a service facility is immediately proceeding to another service facility or is leaving the system.

When we look at a network of queues, the analysis of the system becomes much more complex.
The main reasons are

• Even if the input queue is an M/M/1 queue, this is not true for any internal node.
• The interarrival times in the downstream queues are highly correlated with the service

times of the upstream queues.
• The service times of the same packet in different queues are not independent.

To illustrate with a simple example, consider two edges of equal capacity in tandem connecting
two queues, 1 and 2, with the first queue feeding the second. Assume that packet arrives according to
a Poisson process with independent exponentially distributed packet lengths. Then the first queue
behaves as an M/M/1, but the second queue does not. This is because the interarrival times at the
second queue are strongly correlated with the packet lengths: longer packets will wait less at the
second queue than shorter packets, since their transmission time at the first queue takes longer,
thereby giving more time for the second queue to empty out.

To deal with this situation, Kleinrock [25] introduced the following independence assumption:
Adopt an M/M/1 model for each communication link regardless of the interaction of the traffic

on this link with traffic on other links.
Although, the Kleinrock independence assumption is typically violated in real networks, the cost

function that is based on the Kleinrock assumption represents a useful measure of performance in
practice. This turns out to be a reasonable approximation for networks involving Poisson stream
arrivals at the entry points, packet lengths that are nearly exponentially distributed, a densely
connected network, and moderate-to-heavy traffic loads.

One basic classification of queueing networks is the distinction between open and closed queuing
networks. In an open network, new customers may arrive from outside the system (coming from
a conceptually infinite population) and later on leave the system. In a closed queuing network, the
number of customers is fixed and no customer enters or leaves the system. An example for an open
queuing network may be the Internet, where new packets arrive from outside the system (in fact,
from the users).

27.4.2.1 Jackson’s Theorem

Jackson’ theorem is an important result in the analysis of a network of queues, which shows that
under certain conditions a network of queues behaves as a collection of M/M/1 queues.

Assume a system of K FIFO queues.
Let ni(t) be the number of customers at queue i at time t.
Let n(t) = (n1(t), . . . , nK(t)) be the states of the system at time t.
The steady-state probability of the system being in state (n1, . . . , nK) is denoted as P(n). From

this steady state probability, we can derive the marginal probability Pi(ni) that the node i contains
exactly ni customers. In some cases, it is possible to represent the state probabilities as follows:

P(n) = 1
G(n)

P1(n1) × · · · × PK(nK), (27.28)

where G(n) is the so-called normalization constant (it depends on the number of customers in the
system). In the case of an open queuing network we have always G(n) = 1, in the case of a closed
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queuing network G(n) must be chosen such that the normalization condition
∑

P(n) = 1 holds.
Equation 27.28 represents a product form solution. A nice property of this equation is that we can
decompose the system and look at every service center separately.

The theorem of Jackson specifies the conditions under which a product form solution in open
queuing networks exist. These conditions are the following:

• The number of customers in the network is not limited.
• New customers arrive at queue i according to a Poisson process with rate ri (some or all

ri’s may be 0).
• Service at queue i is exponential with rate μi.
• A customer can leave the system from any node (or a subset).
• When a customer is served at queue i it proceeds with probability Pij to queue j, and with

probability 1 − ∑
j Pij it leaves the system.

• All choices are independent of previous choices.
• In every node the service discipline is FIFO.

Let λi be the arrival rate to queue i

λi = ri +
K∑

j=1

λjPji, i = 1, . . . , K. (27.29)

Assume that the above system has a unique solution and let ρi = λi/μi. Then Jackson’s theorem
can be stated as

THEOREM 27.7 If in an open network the condition ρi < 1 holds for i = 1, . . . , K, then under
the above-mentioned conditions the system has a steady state (n1, . . . , nK) and the steady-state
probability of the network can be expressed as the product of the state probabilities of the individual
nodes: limt→∞ Pt(n) = P(n) = P1(n1) × · · · × PK(nK) and Pj(nj) = ρ

nj
j (1 − ρj) nj ≥ 0.

The theorem implies that the system operates as a collection of independent M/M/1 queues,
though the arrival process to each of the queues is not necessarily Poisson.

An application of Jackson’s theorem can be seen in routing on the butterfly network (Chapter 3.6
in [30]) with Poisson arrivals to the inputs, and exponential transition time through the edges.

Assume that the arrival rate of packets to each of the inputs is λ.
Then the arrival rate to each of the internal nodes is λ.
Let μ > λ, i.e., ρ < 1. Then the system is stable. Since for an n input butterfly network there are

log n links (queues) from any input node to a output node, the expected time in the system for a
customer (packet) is ≤ log n

μ−λ
.

27.4.3 Adversarial Queuing

Adversarial queuing theory [8] addresses some of the restrictions inherent in probabilistic analysis
and queuing theory based on time-invariant stochastic generation. This theory is aimed at the
systemic study of queuing with little or no probabilistic assumption. Adversarial queuing is based
on an adversarial generation of packets in dynamic packet routing, where packets are injected
continuously into the network.
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27.4.3.1 The Adversarial Model

A routing network is a directed graph. Time proceeds in discrete time steps. A packet must travel
along a path from its source to its destination. When a packet reaches its destination, it is absorbed.
During each step, a packet may be sent from its current node along one of the outgoing edges from
that node. At most one packet may travel along any edge of the network in a step. A packet that
wishes to travel along any edge at a particular time step but is not sent can wait in a queue for that
edge. The delay of a packet is the number of steps, which the packet spends waiting in queues. At
each step, an adversary injects a set of packets and specifies the route for each packet. The route
of each packet is fixed at the time of injection (nonadaptive routing). The following load condition
is imposed: Let τ be any sequence of w consecutive time steps (where w is some positive integer)
and N(τ, e) the number of packets injected by the adversary during time interval τ that traverse
edge e. Then, for every sequence τ and for every edge e, a (w, ρ)-adversary injects new packets with
N(τ, e)/w ≤ ρ. ρ is called the rate of injection with window size w. Clearly, if ρ > 1, an adversary
would congest some edge and the network would be unstable.

If there are more than one packet waiting in the queue of an edge e, a scheduling policy determines
which packet is to be moved along edge e in each time step. A scheduling policy is greedy if it moves
a packet along an edge whenever there is a packet in the queue. A network system is stable if there
is a finite number M such that the number of packets in any queue is bounded by M. The following
theorem shows a general stability result for adversarial queuing.

THEOREM 27.8 In a directed acyclic graph, with any greedy scheduling and any adversarial packet
generation with rate ρ = 1, a network system is stable.

PROOF Let Qt(e) be the number of packets in the queue of edge e at time t, and At(e) the number
of packets that have been injected into the system by time t, are still in the system (not absorbed
yet), and are destined to cross edge e. Clearly Qt(e) ≤ At(e). Since the injection rate is 1, there exists
some window size w such that for any window of time (t − w, t] and for any edge e, the adversary
can inject at most w packets. Then for any t′ such that t − w < t′ < t

At′(e) ≤ At−w(e) + w. (27.30)

For an edge e, let e1, e2, . . . , ek be the edges entering the tail of e. A function ψ is defined as follows:

ψ(e) = max{2w, Q0(e)} +
k∑

i=1
ψ(ei). (27.31)

The theorem is proved by showing that for all t = lw ≥ 0 (l ≥ 1) and for all edges e

At(e) ≤ ψ(e) (27.32)

Since the graph is directed acyclic, it is easy to see that ψ(e) is finite and is a function of the number
of nodes in the network; but it does not depend on time t. Thus, as Qt(e) ≤ At(e), Inequality 27.32
gives the stability of the network.

Inequality 27.32 is proved by induction on l. The claim holds when l = 0. Now assume t = lw for
l ≥ 1. Consider the following two cases.

Case 1. At−w(e) ≤ w + ∑k
i=1 ψ(ei):

At(e) ≤ At−w(e) + w ≤ 2w +
k∑

i=1
ψ(ei) ≤ ψ(e). (27.33)
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Case 2. At−w(e) > w + ∑k
i=1 ψ(ei):

By induction hypothesis, At−w(ei) ≤ ψ(ei). Further, notice that At−w(e) is at most Qt−w(e) +∑k
i=1 At−w(ei). Thus,

Qt−w(e) ≥ At−w(e) −
k∑

i=1
At−w(ei) (27.34)

≥ w +
k∑

i=1
ψ(ei) −

k∑
i=1

At−w(ei) (27.35)

≥ w. (27.36)

That is, there are at least w packets in the queue of edge e at the beginning of time step t − w.
Thus, by a greedy scheduling, w packets cross e in the next w time steps; but the adversary can inject
at most w packets into the system for edge e. Therefore, At(e) ≤ At−w(e). By induction hypothesis,
At−w(e) ≤ ψ(e). Thus, At(e) ≤ ψ(e). �

If the network contains cycles, the system may not be stable for some scheduling policies, such
as FIFO and LIS (Longest in System, where priority is given to the packets that have been in the
network for the longest amount of time). However, some scheduling policies, such as FTG (Furthest
to go, where priority is given to the packet that has the largest number of edges still to be traversed),
are stable in a directed network with cycles and adversarial packet generation with rate 1. For proofs
of these claims and further details, readers are referred to [8].

Adversarial queuing theory also deals with stochastic adversaries. A (w, ρ) stochastic adversary
generates packets following some probability distribution such that E[N(τ, e)]/w ≤ ρ. The adversary
can follow different probability distributions at different time steps. If ρ = 1, an adversary can inject
zero packets with probability 1/2 and two packets with probability 1/2, which is analogous to a
random walk on line [0, ∞), and can make the system unstable; after t steps, the expected queue
size is approximately

√
t. Hence it is assumed that ρ < 1. Further constraint is imposed on the pth

moment for p > 2: there exist constants p > 2 and V such that for all sequence τ of w consecutive
time steps and all edge e, E[Np(τ, e)] ≤ V . A network system with arbitrary directed acyclic graph,
an arbitrary greedy scheduling, and stochastic adversaries with rate ρ < 1 is stable [8].

27.5 Multiple Access Protocols

Multiple access channels provide a simple and efficient means of communication in distributed
networks, such as the Ethernet and wireless networks. Ethernet is a broadcast LAN, i.e., when
a station (node) wants to transmit a message to one or more stations, all stations connected to
the Ethernet LAN will receive it. Since several nodes share the same broadcast channel and only
one message can be broadcast at each step, a multiple access protocol (or a contention resolution
protocol) is needed to coordinate the transmissions and avoid collisions. Such a protocol decides
when to transmit a message and what to do in the event of a collision.

We assume that one message can be sent at a given time. If more than one message is sent at
a given time, no message is received (i.e., a collision occurs). A station can check if the “channel”
is free. Note that this does not eliminate collisions. Unfortunately, collisions can still occur, since
there is a noneligible delay between the time when a station begins to transmit and the other stations
detect the transmission. Hence, if two or more stations attempt to transmit within this window of
time, a collision will occur. A station can detect if the message it sent was broadcast successfully. A
station’s protocol uses only that station’s history of success and failure transitions (such a protocol



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C027 Finals Page 24 2009-9-25

27-24 Special Topics and Techniques

is called acknowledgment-based); it has no knowledge about other stations, or even the number of
other active stations. In the case of a collision, the messages (that were not sent) are queued at their
respective stations for retransmission at some point in the future. It is not a good idea to retransmit
immediately, since this would result in another collision. Rather, messages are retransmitted after
some delay, which is chosen probabilistically. Such a strategy is called a backoff strategy defined
formally below.

Backoff protocol:
Each station follows the following protocol:

1. The backoff counter b is initially set to 0.
2. While the station queue is not empty do

a. with probability 1/f (b) try to broadcast.

b. If the broadcast succeeded b = 0, else b = b + 1.

In principle, f can be an arbitrary function. We have different classes of backoff protocols depend-
ing on f .

Exponential backoff: f (b) = 2b (The Ethernet uses 2min[b,10]).
Linear backoff: f (b) = b + 1.
Polynomial backoff: f (b) = (b + 1)α (for some constant α > 1).

27.5.1 Analysis Model

The key theoretical question is: Under what condition, backoff protocols have good performance?
For example, is exponential backoff better than polynomial backoff? To answer this rigorously we
need a model and a performance measure. We consider the following model [21].

Time is partitioned into steps. At the beginning of a step, each station receives a new message with
probability λi, for 1 ≤ i ≤ N, where N is the number of stations in the system. The arrival of new
messages is assumed to be independent over time and among stations. (Note that no assumptions are
made about the independence of the state of the system from one time step to the next, or between
stations.) The overall arrival rate is defined to be λ = ∑N

i=1 λi. Arriving messages are added to the
end of the queues located at each station. Queues can be of infinite size. The system starts with empty
queues. The acknowledgment of a collision or successful transmission is taking place within one
step. Message lengths are assumed to be smaller than the duration of a time step.

The main performance measure is stability. Let Wavg(t) be the average waiting time of messages
(packets) that entered the system at time t. Let L(t) be the number of messages in queues at the end
of step t. We say that a system is stable if E[Wavg(t)] and E[L(t)] are both bounded with respect to t.
(By Little’s Lemma E[L(t)] = λE[Wavg(t)] if both exist and are finite).

There are important differences between the above model and real life, e.g., the Ethernet [21]. For
example, in the Ethernet, the backoff counter is never allowed to exceed a specified value bmax = 10.
A problem with placing such a bound is that any protocol becomes unstable for any fixed λ and
large enough N [21]. Another difference is that in the Ethernet these messages are discarded if they
are not delivered within a specified amount of time. Discarding messages contributes to stability but
at the cost of losing a nonzero fraction of the messages. Also assumptions regarding message arrival
distribution, message length, and synchronization may not be fully realistic.

We next state two key results of [21]. The first states that the exponential backoff protocol is
unstable for any finite N > 2 when the arrival rate at each station is λ/N, for λ ≥ λ0 ≈ 0.6.
Previous results showed similar instability results but assumed infinite number of stations (which
renders the result somewhat less realistic). The second states that polynomial backoff protocol is
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stable for any α > 1 and any λ < 1. This was surprising because if the number of station is infinite,
it can be shown that polynomial backoff is unstable [22]. The main approach in showing the above
results is by analyzing the behavior of the associated Markov chain. For backoff protocols, with
finite number of stations, one can associate every possible configuration of backoff counters and
queues (b, q) = {(b1, . . . , bN , q1, . . . , qN)|bi ≥ 0, qi ≥ 0 for 1 ≤ i ≤ N} with a unique state of the
Markov chain. The initial state is identified with (0, . . . , 0). A potential function method is then
used to analyze the evolution of the chain. For showing instability results, for example, the potential
function is chosen such that the expected change in potential is at least a fixed positive constant (thus
the function grows linearly with time) and this is then shown to imply that the protocol is unstable.
For example, the following potential function is used to show that the exponential backoff function
is unstable.

Define a potential function of the system at time t:

Φ(t) = C
N∑

i=1
qi +

N∑
i=1

2bi − N, (27.37)

where
C = 2N − 1
qi = number of packets queued at station i at time t
bi = the value of the backoff counter at station i at time t.

The main thrust of the proof is to show that E[Φ(t)] increases by a constant δ in each step. This
will then imply that the system is unstable because of Lemma 27.1.

LEMMA 27.1 If there is a constant δ > 0 (independent of t) such that for all t > 0

E[ΔΦ(t)] = E[Φ(t) − Φ(t − 1)] ≥ δ, (27.38)

then the system is unstable.

PROOF A message enters the queue of station i at time t with probability λi = λ/N.
The expected wait time of this message is at least qi + 2bi .
For vectors q̄ and b̄, let P(t, q̄, b̄) be the probability that at time t, and for some station i = 1, . . . , N,

the queue of station i has qi items and the counter of i is bi.

E[Wavg(t)] ≥
∑
q,b

N∑
i=1

λi(qi + 2bi)P(t, q̄, b̄). (27.39)

E[Φ(t)] =
∑
q,b

N∑
i=1

(Cqi + 2bi − 1)P(t, q̄, b̄). (27.40)

Thus,

E[Wavg(t)] ≥ λ

CN
Φ(t) ≥ tδ

λ

CN
Φ(0). (27.41)

E[Wavg(t)] → ∞ as t → ∞. (27.42)

�
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Once a protocol is determined to be stable (for a given arrival rate), the next step is to compute
the expected delay that a message incurs, i.e., E[Wavg], which is an important performance measure,
especially for high-speed communication networks. The work of Hastad et al. [21] also showed that
long delays are unavoidable in backoff protocols: they showed that the delay of any stable exponential
or polynomial backoff protocol is at least polynomial in N.

We next consider a protocol due to Raghavan and Upfal [41] that gives a protocol that guarantees
a delay of O(log N), provided the total arrival rate λ is less than a fixed constant λ′ ≈ 1/10. The
main feature of this protocol is that each sender has a transmission buffer of size O(log N) and a
queue. (The protocol assumes that each station knows N.) Messages awaiting transmission are stored
in the buffer or in the queue. Throughout the execution of the protocol a sender is in one of the
two states: a normal state or a reset state. We need the following definitions. Let μ, α, γ be suitably
chosen fixed constants (these are fixed in the proof) [41]. Count_attempts(s) keeps a count of the
number of times station s tries to transmit a message from its buffer in the 4μN log N most recent
steps. Failure_counts(s) stores the failure rates in transmission attempts of packets from the buffer
of s in the most recent μ log N attempts. Random_number() is a function that returns a random
number uniformly chosen in the range [0, 1] independent of the outcomes of previous calls to the
function.

Communication protocol for station s:
While in the normal state repeat:

1. Place new messages in the buffer.
2. Let X denote the number of packets in the buffer.

if Random_number() ≤ X/8α log N then

(a) Try to transmit a random message from the buffer.

(b) Update Count_attempts(s) and Failure_counts(s).

else
if Random_number() ≥ 1 − 1/N2 the transmit the message at the head of the queue.

3. If (Count_attempts(s) ≥ μ log n and Failure_counts(s) > 5/8) or if (X > 2α log N) then

(a) Move all messages in the buffer to the end of the queue.

(b) Switch to the reset state for 4μN2 log N + γ log N steps.

While in the reset state repeat:

1. Append any new messages to the queue.
2. If Random_number() ≤ 1/N2 then transmit the message at the head of the queue.

The main intuition behind the protocol is that most of the time, things behave normally, i.e.,
there is not too many collisions and the buffer size is O(log N) and the delay is O(log N). However,
there can be bad events (e.g., every station generates a packet in every one of N10 consecutive steps),
but these happen with very low probabilities. The reset state and the queue are then used as an
emergency mechanism to handle such cases. Note that the delay for sending messages in the queue
is polynomial in N, but this happens with a very low probability so that the overall expectation is
still O(log N).

Raghavan and Upfal also show that for a class of protocols that include backoff protocols, if the
total arrival rate λ is less than some fixed constant λ1 < 1, then the delay must be Ω(N). Using
a more sophisticated protocol, Goldberg et al. [20] are able to show a constant expected delay for
arrival rate up to 1/e. This protocol is practical, if one assumes that the clocks of the stations are
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synchronized. If not, it is shown that O(1) delay can still be achieved, but the constant is too large to
be practical.

27.6 Resource Allocation and Flow Control

Congestion and flow controls key ingredients of modern communication networks (typically imple-
mented in the transport layer), which allows many users to share the network without causing
congestion failure. Of course, congestion control can be trivially enforced if users do not send any
packets! Thus, in addition to congestion control, we would like to maximize network throughput.
It is possible to devise schemes that can maximize network throughput, for example, while denying
access to some users. We would like to devise congestion control schemes that operate with high
network utilization, while at the same time ensuring that all users get a fair share of resources. This
can be cast as an optimization problem (defined formally below) and can be solved in a centralized
fashion. However, to be useful in a network, we need to devise schemes for solving this distributively.
The additive increase/multiplicative decrease scheme of Internet’s flow control (TCP) (see, e.g., [27])
is an attempt to solve the above resource allocation problem. The framework we study next provides
a provably good distributed algorithm for optimal resource allocation and flow control, and can be
viewed as a rigorous generalization of the simple flow control scheme of TCP.

27.6.1 Optimization Problem

Consider a network that consists of a set L = {1, . . . , L} links of capacity cl, l ∈ L. The network is
shared by a set S = {1, . . . , S} of sources (users). The goal is to share the network resources (i.e., link
bandwidths) in a fair manner. Fairness is captured as follows. Each user s has an associated utility
function Us(xs) (an increasing and strictly concave function)—the utility of the source as a function
of its transmission rate xs. We assume that a fair resource allocation tries to maximize the sum of
the utilities of all the users in the network. We assume that the route of each source is fixed, i.e.,
L(s) ⊆ L is a set of links that source s uses. For each link l, let S(l) = {s ∈ S|l· ∈ L(s)} be the set of
sources that use link l. Note that l ∈ L(s) if and only if s ∈ S(l).

The resource allocation problem can be formulated as the following nonlinear program (e.g.,
[23,32]). The objective is to choose source rates x = {xs, s ∈ S} so as to

maxxs≥0
∑

s
Us(xs)

subject to∑
s∈S(l)

xs ≤ cl, l = 1, . . . , L. (27.43)

The constraint says that the aggregate source rate at any link l does not exceed the capacity. If
the utility functions are strictly concave, then the above nonlinear program has a unique optimal
solution. To solve this optimization problem directly, one should have the knowledge of the utility
functions and the routes of all sources in the network. This requires coordination among all sources
the which is not practical in large networks such as the Internet. Our goal is a distributed solution,
where each source adapts its transmission rate based only on local information. We next describe
a distributed solution due to Low and Lapsley [32] that works on the dual of the above nonlinear
problem (Equation 27.43).
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27.6.2 Dual Problem

To set up the dual, we define the Lagrangian

L(x, p) =
∑

s
Us(xs) −

∑
l

pl

⎛
⎝ ∑

s∈S(l)

xs − cl

⎞
⎠ (27.44)

=
∑

s

⎛
⎝Us(xs) − xs

∑
l∈L(s)

pl

⎞
⎠ +

∑
l

plcl. (27.45)

p = {p1, . . . , pL} are the Lagrange multipliers. The first term is separable in xs, and hence

maxxs

∑
s

⎛
⎝Us(xs) − xs

∑
l∈L(s)

pl

⎞
⎠ =

∑
s

maxxs

⎛
⎝Us(xs) − xs

∑
l∈L(s)

pl

⎞
⎠ . (27.46)

The objective function of the dual problem is thus (e.g., see [6])

minpl≥0 D(p) :=
∑

s
maxxs≥0

⎛
⎝Us(xs) − xs

∑
l∈L(s)pl

⎞
⎠ +

∑
l

plcl. (27.47)

The first term of the dual-objective function D(p) is decomposable into S separable subproblems,
one for each source. Furthermore, a key observation that emerges from the dual formulation is that
each source can individually compute its optimal source rate without the need to coordinate with
other sources, provided it knows the optimal Lagrange multipliers. One can naturally interpret the
Langrange multiplier, pl, as the price per unit bandwidth at link l. Then

∑
l∈L(s) pl is the total price

per unit bandwidth for all links in the path of s. Thus, the optimal rate of a source depends only on
the aggregate price on its route and can be computed by solving a simple maximization problem:

xs(p) = U ′−1
s

⎛
⎝ ∑

l∈L(s)

pl

⎞
⎠ , (27.48)

where U ′−1
s (.) denotes the inverse of the derivative of Us. Of course, to compute xs we first need to

compute the minimal prices that we focus on next.
The dual problem of computing the optimal prices is solved by using the gradient projection

method (see e.g., [6]). This yields the following adjustment rule that progressively converges to the
optimal:

pl(t + 1) = max

⎛
⎝pl(t) + (γ

∑
s∈S(l)

xs(p(t)) − γcl), 0

⎞
⎠ , (27.49)

where γ > 0 is the stepsize parameter (has to be sufficiently small for convergence [33]). The above
formula has nice interpretation in the language of economics: if the demand

∑
s∈S(l) xs(p(t)) for

bandwidth at link l exceeds the supply cl, then raise the price pl(t); otherwise, reduce price pl(t).
Another key observation is that, given the aggregate source rate

∑
s∈S(l) xs(p(t)) that goes through

link l, the adjustment rule is completely distributed and can be implemented by individual links (or
the routers) using only local information. Equations 27.48 and 27.49 suggest the following iterative
(and synchronous) distributed algorithm:
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1. Link l’s algorithm: In step t ≥ 1, a link l receives rates xs(t) from all sources s ∈ S(l) (xs(0)

can be zero) that go through link l. It then computes a new price pl(t + 1) (pl(0) = 0)
based on Equation 27.49 and communicates the new price to all sources s ∈ S(l) that use
link l.

2. Source s’s algorithm: In step t ≥ 1, a source s receives from the network the aggregate
price

∑
l∈L(s) pl of links on its path. It then chooses a new transmission rate xs(p(t + 1))

computed by Equation 27.48 and communicates this new rate to links l ∈ L(s) in its path.

Low and Lapsley [32] show the convergence of the algorithm when the stepsize parameter is appro-
priately chosen. They further show that the algorithm can be extended to work in an asynchronous
setting where the sources and the links need not compute in lockstep.

27.7 Peer-to-Peer Networks

P2P network is a highly dynamic network: nodes (peers) and edges (currently established connec-
tions) appear and disappear over time. In contrast to a static network, a P2P network has no fixed
infrastructure with respect to the participating peers, although the underlying network (Internet)
can be static. Thus a P2P network can be considered as an overlay network over an underlying
network, where the communication between adjacent peers in the P2P network may in fact go
through one or more intermediate peers in the underlying network. Peers communicate using only
local information since a peer does not have global knowledge of the current topology, or even the
identities (e.g., IP addresses) of other peers in the current network.

In a dynamic network, even maintaining a basic property such as connectivity becomes nontrivial.
Consider search—a common and pervasive P2P application. Clearly, connectivity is important for
reachability of search queries. Having a network of low diameter is also important. Consider P2P
systems running the Gnutella protocol [50]. They use a flooding-like routing algorithm: queries
fan-out from the source node and the search radius is limited by a “Time to Live (TTL)” parameter
(this is set to an initial value at the source node, and is decreased in each hop). Thus a low diameter is
not only helpful in enlarging the scope of search but also in reducing the associated network traffic.
At the same time, it is desirable to have nodes with bounded degree; this will also help the traffic
explosion problem in Gnutella-like networks by reducing the fan-out in each stage.

27.7.1 A Distributed Protocol for Building a P2P Network

A fundamental challenge is to design distributed protocols that maintain network connectivity and
low diameter, and which operates without having global knowledge. We next discuss the protocol
due to Pandurangan, Raghavan, and Upfal [37], which is a distributed protocol for constructing and
maintaining connected, low-diameter, constant-degree P2P networks. The protocol specifies what
nodes a newly arriving node should connect, and when and how to replace lost connections (edges)
when an existing node leaves. The model assumes that an incoming node knows the identities (IP
addresses) of a small number of existing nodes (at least one such address is needed to get access to
the network).

We assume that there is a central element called the host server which, at all times, maintains a
cache containing a list of nodes (i.e., their IP addresses). In particular, assume that the host server
maintains K nodes at all times, where K is a constant. The host server is reachable by all nodes at all
times; however, it need not know the topology of the network at any time, or even the identities of
all nodes currently on the network. We only expect that (1) when the host server is contacted on its
IP address it responds and (2) any node on the P2P network can send messages to its neighbors.
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Before we state the protocol, we need some terminology. When a node is in the cache, we refer
to it as a cache node. It accepts connections from all other nodes. A node is new when it joins the
network, otherwise it is old. The protocol ensures that the degree (number of neighbors) of all nodes
will be in the interval [D, C + 1], for two constants D and C.

A new node first contacts the host server, which gives it D random nodes from the current cache
to connect to. The new node connects to these, and becomes a d-node; it remains a d-node until it
subsequently either enters the cache or leaves the network. The degree of a d-node is always D. At
some point the protocol may put a d-node into the cache. It stays in the cache until it acquires a total
of C connections, at which point it leaves the cache as a c-node. A c-node might lose connections
after it leaves the cache, but its degree is always at least D. A c-node has always one preferred
connection made precise below. The protocol is summarized below as a set of rules applicable to
various situations that a node may find itself in.

27.7.1.1 P2P Protocol for Node v

1. On joining the network: Connect to D cache nodes, which are chosen uniformly at random
from the current cache. Note that D < K.

2. Reconnect rule: If a neighbor of v leaves the network, and that connection was not a
preferred connection, connect to a random node in the cache with probability D/d(v),
where d(v) is the degree of v before losing the neighbor.

3. Cache replacement rule: When a cache node v reaches degree C while in the cache (or if v
drops out of the network), it is replaced in the cache by a d-node from the network. Let
r0(v) = v, and let rk(v) be the node replaced by rk−1(v) in the cache. The replacement
d-node is found by the following rule:

k = 0;
while (a d-node is not found) do

search neighbors of rk(v) for a d-node;
k = k + 1;

endwhile

4. Preferred node rule: When v leaves the cache as a c-node, it maintains a preferred
connection to the d-node that replaced it in the cache. If v is not already connected to
that node, this adds another connection to v. Thus the maximum degree of a node is
C + 1. Also, a c-node can follow a chain of preferred connections to reach a cache node.

5. Preferred reconnect rule: If v is a c-node and its preferred connection is lost, then v
reconnects to a random node in the cache and this becomes its new preferred connection.

Finally, note that the degree of a d-node is always D. Moreover, every d-node connects to a c-node.
A c-node may lose connections after it leaves the cache, but its degree is always at least D. A c-node
has always one preferred connection to another c-node.

27.7.2 Protocol Analysis

To analyze the protocol, we assume the M/M/∞ model (see Section 27.4). In other words, we have a
“stochastic adversary,” which deletes and inserts nodes. (A worst-case adversary is trivial to analyze
this setting, since such an adversary can make sure that the network is always disconnected.) This
also turns out to be a reasonable model (it approximates real-life P2P networks quite well [43]).
Under this model the steady-state size of the network depends only on the ratio λ/μ = N (see
Section 27.4.1). Let Gt be the network at time t (G0 has no vertices).
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27.7.3 Connectivity

Theorem 27.9 shows that the protocol keeps the network connected with large probability at any
instant of time (after an initial time period of Ω(log N)).

THEOREM 27.9 There is a constant a such that at any given time t > a log N,
Pr(Gt is connected) ≥ 1 − O

(
log2 N

N

)
.

The main idea in the proof of the above theorem is using the preferred connections as a “backbone”:
we can show that at all times, each node is connected to some cache node directly or through a
path in the network. The backbone is kept connected with large probability by incoming nodes:
here the “randomness” in choosing the cache node by an incoming node proves crucial. Also, an
important consequence from the proof is that the above theorem does not depend on the state of
the network at time t − c log N; therefore it can be shown to recover rapidly from fragmentation—a
nice “self-correcting” property of the protocol. More precisely we have the following corollary:

THEOREM 27.10 There is a constant c such that if the network is disconnected at time t,
Pr(Gt+c log N is connected) ≥ 1 − O

(
log2 N

N

)
.

Also, if the network is not connected then it has a connected component of size N(1 − o(1)).

The theorem also shows that if the network becomes disconnected, then a very large fraction of
the network remains connected with high probability.

27.7.4 Diameter

The key result of [37] is that of the diameter of Gt : it is only logarithmic in the size of the network at
any time t with large probability.

THEOREM 27.11 At any any time t (after the network has converged, i.e., t/N → ∞), with
high probability, the largest connected component of Gt has diameter O(log N). In particular, if the
network is connected

(
which has probability 1 − O

(
log2 N

N

))
then, with high probability, its diameter

is O(log N).

The high-level idea of the proof is to show that the network at any time resembles a random
graph, i.e., the classical Erdos–Renyi or G(n, p) random graph (n is the number of vertices and p is the
probability of having an edge between any two vertices) [7]. The intuition underlying the analysis
is that connections are chosen randomly, and thus the topology should resemble a G(n, p) random
graph. In a G(n, p) random graph, the connectivity threshold is log n/n. That is, if p (probability that
an edge occurs between two nodes) is greater than (1 + ε) log n/n then almost surely the graph is
connected with O(log n) diameter; if it is less than (1 − ε) then almost surely the graph will not be
connected (for every constant ε > 0) [7,13].

First, it can be shown that there is a very small (≈ 1/N) probability that any two c-nodes are
connected to each other (note that d-nodes are connected to c-nodes); however, this alone is not
sufficient to guarantee low diameter since this is below the threshold needed for connectivity. We
appeal to a key idea from the theory of G(n, p) graphs: if p = c/n, for a suitably large constant c,
then almost surely, there is a giant connected component in the graph whose size is polynomial in
n and has O(log n) diameter [7,13]. The protocol of Pandurangan et al. [37] is designed in such a
way that a fraction of nodes have a so-called preferred connection to a set of random nodes and
these connections are always maintained. Using these preferred connections one can (indirectly)
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show that the giant component that emerges from the random process is indeed the whole graph.
A number of works have subsequently used random graphs to efficiently design P2P with good
properties, see e.g., [14,19,29].

In a dynamic network, there is the additional challenge of quantifying the work done by the
algorithm to maintain the desired properties. An important advantage of the aforementioned pro-
tocol is that it takes O(log N) (N is the steady-state network size) work per insertion/deletion. In a
subsequent paper, using the same stochastic model, Liben-Nowell, Balakrishnan, and Karger [31]
show that Ω(log N) work is also required to maintain connectivity. A drawback of the protocol of
[37] is that it is not fully decentralized—the entering node needs to connect to a small set of random
nodes, which is assumed to be available in a centralized fashion. A number of subsequent papers
have addressed this and devised fully decentralized protocols, which guarantee similar properties
[14,19,29,31,36].

Before we end our discussion on P2P, we briefly mention another important design approach
referred to as a Distributed Hash Table (DHT) (see e.g., [36,42,46]). A DHT does two things:
(1) creates a fully decentralized index that maps file identifiers to peers and (2) allows a peer to
search for a file very efficiently (typically logarithmically in the size of the network) without flooding.
Such systems have been called structured P2P networks, unlike Gnutella, for example, which are
unstructured. In unstructured networks, there is no relation between the file identifier and the peer
where it resides. Many of the commercially deployed P2P networks are unstructured.

27.8 Research Issues and Summary

This chapter has focussed on theoretical and algorithmic underpinnings of today’s communication
networks, especially the Internet. The topics covered are routing algorithms (including algorithms for
broadcast and multicast), queuing theory (both stochastic and adversarial), multiple access problem,
resource allocation/flow control, and P2P network protocols. We have given only a brief overview
of many of these, which illustrates the basic theoretical problems involved and the approaches taken
to solve them. Tools and techniques from a variety of areas are needed—distributed algorithms,
probabilistic models and analysis, graph theoretic algorithms, and nonlinear optimization to name
a few. “Further Information” gives pointers to gain background on these tools and techniques, and
further reading on these topics.

There are many research challenges. Designing efficient distributed approximation algorithms for
fundamental network optimization problems, such as minimum Steiner tree and minimum delay
routing, is an important goal. Designing provably efficient P2P networks remains a key problem at
the application layer. The goal is to design provably fast protocols for building and maintaining P2P
networks with good topological properties, while at the same time guaranteeing efficient and robust
services, such as search and file sharing. For these we need efficient distributed algorithm that works
well on dynamic networks. Another problem is understanding confluent flows and its impact on
routing in the Internet. Developing realistic network models will be a key step in analysis.

27.9 Further Information

A good introduction to computer networks and the Internet is [27]. Bertsekas and Gallager’s book
[5] provides an introduction to communication networks blending theory and practice. Kleinrock’s
books [26] are standard references for Queuing theory. Further information on adversarial queuing
theory can be found in [8]. References for distributed algorithms include [35,48]. The book by Peleg
[39] focuses on the locality aspects of distributed computing. A survey of various P2P schemes can
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be found in [34]. For more details on resource allocation and congestion control, we refer to the
survey of Low and Srikant [33].

Some topics that we have not covered here include topology models for the Internet, the traffic
modeling, and the quality of service. For a survey on these issues we refer to [38]. There is large body of
work concerning packet routing in tightly coupled interconnection networks (parallel architectures,
such as trees, meshes, and hypercubes). Leighton’s book [30] is a good reference for this. Scheideler’s
book [44] deals with universal routing algorithms, i.e., algorithms that can be applied to arbitrary
topologies.

The theory of communication networks is one of the most active areas of research with explosive
growth in publications in the last couple of decades. Research gets published in many different
conferences. Outlets for the theoretical aspects of distributed computing and networks include ACM
Symposium on Principles of Distributed Computing (PODC), International Symposium on Distributed
Computing (DISC), ACM Symposium on Parallel Algorithms and Architectures, and International
Conference on Distributed Computing Systems (ICDCS). Traditional theory conferences, such as
ACM Symposium on Theory of Computing (STOC), and IEEE Symposium on Foundation of Computer
Science (FOCS), and ACM-SIAM Symposium on Discrete Algorithms (SODA), also contain papers
devoted to theoretical aspects of communication networks. The IEEE Conference on Computer
Communications (INFOCOM) conference covers all the aspects of networking, including theory.

Defining Terms

Arborescence: An arborescence in a directed graph is a subgraph such that there is a unique path
from a given root to any other node in the subgraph.
Circuit-switched networks: A communication network where a physical path (channel) is obtained
for and dedicated to a single connection between two end-points in the network for the duration of
the connection.
Confluent flow: A flow is said to be confluent if all the flows arriving at a node destined for a
particular destination departs from the node along a single edge.
Congestion: The congestion of an edge is defined as the total amount of flow going through the
edge.
Count-to-infinity problem: A problem that shows that distance vector routing algorithm can be
slow in converging to the correct values in case of a change in link costs.
Diameter: The diameter of a network is the number of links in a (unweighted) shortest path between
the furthest pair of nodes.
Distance vector: In some routing algorithms, each node maintains a vector, where the ith component
of the vector is an estimate of its distance to the ith node in the network.
Dynamic network: A network in which the topology changes from time to time.
IP address: An IP address (Internet Protocol address) is a unique address that the network devices,
such as routers, host computers, and printers, use in order to identify and communicate with each
other on a network utilizing the Internet Protocol.
Minimum spanning tree: A minimum spanning tree is a tree spanning all nodes in the networks
that has the minimum cost among all possible such trees. The cost of a tree is the sum of the costs
of all edges in the tree.
Multiple access problem: The problem of coordinating the simultaneous transmissions of multiple
nodes in a common link.
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Overlay network: A structured virtual topology over a physical network. A link in the overlay
network is a virtual or logical link, which corresponds to a path, perhaps through many physical
links, in the underlying network.
Packet-switched networks: A communication network where messages are divided into packets
and each packet is then transmitted individually. The packets can follow different routes to its
destination. Once all the packets forming a message arrive at the destination, they are combined into
the original message.
Route: A route of a packet is a sequence of links through which the packet travels in the network.
Routing network: A routing network is a directed graph where the data packets flow along the edges
and in the directions of the edges.
Scheduling policy: A scheduling policy is a method of selecting a packet to be forwarded next along
an edge from the packets waiting in the queue of that edge.
Shortest path or least-cost path: The path between source and destination that has the minimum
cost. The cost of a path is the sum of the costs of the links in the path.
Shortest path routing: Finding a shortest path between the source and the destination, and routing
the packets through the links along the shortest path.
Splittable flow: A flow that need not be confluent.
Transmission buffer: A buffer in a node to temporarily store the packets that are ready for trans-
mission.
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Network Algorithmics studies techniques for efficient network protocol implementations. It is
primarily about two things: a set of fundamental networking performance bottlenecks, and a set of
interdisciplinary techniques to address these bottlenecks.

Network Algorithmics is an interdisciplinary approach because it encompasses such fields as archi-
tecture and operating systems (for speeding up servers), hardware design (for speeding up network
devices such as routers), and algorithm design (for designing scalable algorithms). Network Algo-
rithmics is also a systems approach because it exploits the fact that routers and servers are systems,
in which efficiencies can be gained by moving functions in time and space between subsystems.

Bottlenecks arise from the simultaneous desire to make networks easy to use while at the same time
realizing the performance of the raw hardware. Ease of use comes from the use of powerful network
abstractions such as socket interfaces and prefix-based forwarding. Such abstractions can exact a large
performance penalty compared to the raw transmission capacity of optical links. The bottlenecks
are different for the two fundamental categories of networking devices, endnodes and routers.

Endnodes are the endpoints of the network and include personal computers, workstations, and
large servers. To run an arbitrary code, personal endnodes typically have an operating system that
mediates between applications and the network. To ease software development, most operating
systems are structured as layered software; to protect the operating system from other applications,
operating systems implement a set of protection mechanisms; finally, core operating system routines
such as schedulers and allocators are written using general mechanisms that target as wide a class of
applications as possible. Unfortunately, the combination of layered software, protection mechanisms,
and excessive generality can slow down networking software greatly even with the fastest processors.

Unlike endnodes, routers are special-purpose devices devoted to networking. Thus there is very
little structural overhead within a “router,” with only the use of a very lightweight operating system
and a clearly separated forwarding path that often is completely implemented in hardware. Instead

∗ Portions of this work are from the book, Network Algorithmics: An Interdisciplinary Approach to Designing Fast
Networked Devices, by George Varghese. Published by Morgan Kaufmann Publisher. Copyright 2005 Elsevier. Inc. All
rights reserved.

28-1



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C028 Finals Page 2 2009-9-25

28-2 Special Topics and Techniques

of structure, the fundamental problems faced by routers are caused by scale and services. Optical
links keep getting faster, going from 1 to 40 Gbps links. Besides bandwidth scaling, there is also
population scaling as endpoints get added to the Internet as more enterprises go online. While
scaling has historically driven the design of routers, recently it has become important to instrument
routers to provide network guarantees—delay in times of congestion, protection during attacks, and
availability when failures occur. Finding ways to implement these new services at high speeds will
be a major challenge for router vendors in the next decade.

In the rest of the chapter, we make these concepts more specific by providing examples from
Router Algorithmics (Section 28.2) and Endnode Algorithmics (Section 28.3). Before we do so, we
provide a brief survey of the measures we use and a model of memory technologies. This is because
optimizing memory accesses is crucial for both endnode and router algorithmics.

28.1 Measures and Memories

The goodness of the algorithms in this chapter is measured by space (the amount of memory) and
speed (the number of memory accesses) for various operations. In conventional algorithms, speed is
measured by the amount of processing steps (e.g., instructions). However, to a first approximation we
will ignore such processing steps. This is reasonable in hardware design because complex processing
steps can often be done in a single clock cycle. This is also reasonable in software designs because
instruction cycle times are fast compared to memory access times.

Thus the main measures are the memory required for an algorithm and the number of memory
accesses for each operation of the algorithm. Unfortunately, this requires more qualification because
there are different types of memories. More precisely, the main space measure is the amount of fast
memory (cache in software, SRAM in hardware). If a design only uses slow memory (main memory
in software, DRAM in hardware) then the amount of memory used is often irrelevant because such
memory is typically cheap and plentiful. Similarly, if a design uses both fast and slow memory, the
main speed measure is the number of slow memory accesses (because fast memory accesses can be
ignored in comparison). If a design uses only fast memory, then the speed measure is the number of
fast memory accesses.

The distinction between slow (dynamic random access memory, DRAM) and fast (static RAM,
SRAM) memories is worth internalizing before we proceed further. A SRAM contains N registers
addressed by log N address bits A. SRAM is so named because the underlying transistors storing a
bit refresh themselves and so are “static.” Besides transistors to store the bits, an SRAM also needs a
decoder that decodes A into a unary value used to select the right register. Accessing an SRAM on-
chip is only slightly slower than accessing a register because of the added decode delay. It is possible
to obtain on-chip SRAMs with 0.5 ns access times. Access times of 1–2 ns for on-chip SRAM and
5–10 ns for off-chip SRAM are common. On-chip SRAM is limited to around 64 Mbits today. The
Level 1 and Level 2 caches in modern processors are built from SRAM.

In order to refresh itself, an SRAM bit cell requires at least five transistors. Thus SRAM is always
less dense or more expensive than memory technology based on dynamic RAM (DRAM). A DRAM
cell uses only a single transistor connected to an output capacitance that can be manufactured to
take much less space than the transistors in an SRAM. Loss due to leakage via the capacitance is fixed
by refreshing the DRAM cell externally within a few ms. Main memory in modern computers is
often DRAM. DRAM chips appear to quadruple in capacity every 3 years [FPCe97] and are heading
toward 1 Gigabit on a single chip.

It seems clear that DRAM will always be denser but slower than SRAM. There are, however, a
number of interesting combinations of DRAMs and SRAMs that are useful in network algorithmics.

Interleaved DRAMs: While memory latency is critical for computation speed, memory throughput
(often called bandwidth) is also important for many network applications. Suppose a DRAM has
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a word size of 32 bits and a cycle time of 100 ns. Then the throughput using a single copy of the
DRAM is limited to 32 bits every 100 ns. Clearly, throughput can be improved using accesses to
multiple DRAMs. Multiple DRAMs (called banks) can be strung together on a single bus. While using
multiple memory banks is a very old idea, it is only in the last 10 years that memory designers have
integrated several banks into a single memory chip where the address and data lines for all banks are
multiplexed using a common high-speed network called a bus. Prominent examples include SDRAM
with two banks, and RDRAM with 16 banks. Memory interleaving is often used with pipelining any
data structure such as a tree can be split into separate banks of the interleaved memory such as
RAMBUS. While the first lookup has moved on to the second level of the tree in say Bank 2, a second
lookup can be scheduled to the first level (i.e., the root level) of the tree in say Bank 1.

Wide Word Parallelism: A common theme in many networking designs is to use wide memory
words that can be processed in parallel. This can be implemented using DRAM and exploiting page
mode, or by using SRAM and making each memory word wider. Note that in software designs wide
words can be exploited by aligning data structures to the cache line size (the width of bits loaded on
every access); in hardware designs, one can choose the width of memory (up to say 5000 bits or so
after which electrical issues may be problematic) to fit the problem.

28.2 Router Algorithmics

We model a router in Figure 28.1 as a box with a set of input links on the left, and a set of output links
on the right; the task of the router is to switch a packet from an input link to the appropriate output
link based on the packet destination address. A router has three main performance bottlenecks:
lookup, switching, and output queuing.

Lookup: Each packet arriving on an input link contains a 32 bits IP address. The router has a
forwarding information database (FIB) that contains prefixes with their associated output links.
Prefixes are used as a form of variable length “area code” to compress the FIB. Even core routers
store only several hundred thousand prefixes compared to the several hundred million assigned
Internet addresses. A prefix like 01∗, where the ∗ denotes the usual “don’t care” symbol, matches IP
addresses that start with 01.

Router

Input link i

B1

B2

B3

Address lookup

Switching

Scheduling
Output link

FIGURE 28.1 A model of a router labeled with the three main bottlenecks in the forwarding path: address lookup
(B1), switching (B2), and output scheduling (B3).
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Suppose that the FIB contains only two prefixes 100∗ with associated output link 6, and prefix 1∗
has output link 2. Thus a packet whose destination address starts with 100 matches both prefix 100∗
and 1∗. The disambiguating rule that IP routers use is to match an address to the longest matching
prefix. Assuming no longer matching prefixes, this packet should be forwarded to output link 6.

Many routers today also offer a more complex lookup called packet classification where the lookup
takes as input the destination address as well as source address and TCP ports that we also briefly
describe.

Switching: In Figure 28.1, after address lookup determines the output link, the packet must be
switched to the corresponding output link. While early routers used a single bus for switching, for
performance reasons, most routers use a crossbar switch that uses several parallel buses, one for
each input and one for each output. An input and an output are connected by turning on transistors
connecting the corresponding input bus and output bus. While the data path is conceptually easy,
a challenging problem is to match available inputs and outputs every packet arrival time, finding a
maximal match that avoids conflicts.

Output Scheduling: Once the packet in Figure 28.1 has been looked up and switched to output link
6, output link 6 may be congested and thus the packet may have to be placed in a queue for output
link 6. Many older routers simply place the packet in a first-in first-out (FIFO) transmission queue.
However, some routers employ more sophisticated packet scheduling to provide fair bandwidth
allocation and delay guarantees.

Besides the major tasks of lookups, switching and queuing, there are also a number of other tasks
that are less time critical such as validating header fields and checksums, computing routes to populate
the forwarding table (often done in software by separate route processors), management protocols
such as Simple Network Management Protocol (SNMP) and Internet Control Message Protocol
(ICNP). ICNP is basically a protocol for sending error messages such as “time-to-live exceeded.”

28.2.1 Lookups

Figure 28.1 described address lookups as a key function of a router. For most routers, address lookup
is really the longest matching prefix lookup. In this section we will describe a series of techniques
for prefix lookups starting with unibit tries (used in early routers) to simple multibit tries (used
in several routers) to compressed multibit tries (probably the best current technique, and used in
possibly the fastest router today, Cisco’s CRS-1).

The simplest technique is the unibit trie. Consider the sample prefix database of Figure 28.2. This
database will be used to illustrate the algorithmic solutions in this section. It contains 9 prefixes
called P1 to P9, with the bit strings shown in the figure. In the figure, an address D that starts with 1
followed by a string of 31 zeroes will match P4, P6, P7, and P8. The longest match is P7.

P1 = 101*
P2 = 111*
P3 = 11001*
P4 = 1*
P5 = 0*
P6 = 1000*
P7 = 100000*
P8 = 100*
P9 = 110*

FIGURE 28.2
Sample prefix
database used
for lookup
algorithms.

Figure 28.3 shows a unibit trie for the sample database of Figure 28.2. A unibit trie
is a tree in which each node is an array containing a 0-pointer and a 1-pointer. At the
root all prefixes that start with 0 are stored in the subtrie pointed to by the 0-pointer,
and all prefixes that start with a 1 are stored in the subtrie pointed to by the 1-pointer.
Each subtrie is then constructed recursively in a similar fashion using the remaining
bits of the prefixes allocated to the subtrie.

There are two other fine points to note. In some cases, a prefix may be a substring
of another prefix. For example, P4 = 1∗ is a substring of P2 = 111∗. In that case, the
smaller string P4 is stored inside a trie node on the path to the longer string. For
example, P4 is stored at the right child to the root; note that the path to this right child
is the string 1, which is the same as P4.

Finally, in the case of a prefix like P3 = 11001, after we follow the first three bits,
we might naively expect to find a string of nodes corresponding to the last two bits.
However, since no other prefixes share more than the first 3 bits with P3, these nodes
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FIGURE 28.3 The one bit trie for the sample database of Figure 28.2.

would only contain 1-pointer a piece. Such a string of trie nodes with only 1-pointer each is a called
a one-way branch.

Clearly one-way branches can greatly increase wasted storage by using whole nodes (containing
at least two pointers) when only a single bit suffices. One-way branches are best compressed as in
Figure 28.3, using a text string (i.e., “01”) to represent the pointers that would have been followed in
the one-way branch.

To search for the longest matching prefix of a destination address D, the bits of D are used to trace
a path through the trie. The path starts with the root and continues until search fails by ending at
an empty pointer, or at a text string that does not completely match. While following the path, the
algorithm keeps track of the last prefix encountered at a node in the path. When search fails, this is
the longest matching prefix that is returned.

For example, if D begins with 1110, the algorithm starts by following the 1-pointer at the root to
arrive at the node containing P4. The algorithm remembers P4, and uses the next bit of D (a 1) to
follow the 1-pointer to the next node. At this node, the algorithm follows the 1-pointer to arrive at
P2. When the algorithm arrives at P2, it overwrites the previously stored value (P4) by the newer
prefix found (P2). At this point, search terminates because P2 has no outgoing pointers.

The literature on tries [Knu73] does not use text strings to compress one-way branches as in
Figure 28.3. Instead, the classical scheme, called a Patricia trie, uses a skip count. This count records
the number of bits in the corresponding text string, not the bits themselves. For example, the
text string node “01” in our example would be replaced with the skip count “2” in a Patricia trie.
Unfortunately, this works very badly with prefix matching, an application that Patricia tries were not
designed to handle in the first place. When search fails, a search in a Patricia trie has to backtrack, and
go back up the trie searching for a possible shorter match. Unfortunately, the BSD implementation
of IP forwarding [WS95] decided to use Patricia tries as a basis for best matching prefix. Text strings
are a much better idea than using skip counts as in Patricia tries.

Multibit Tries: Most large memories use DRAM. DRAM has a large latency (around 60 ns)
compared to register access times (2–5 ns). Since a unibit trie may have to make 32 accesses for
a 32 bits prefix, the worst-case search time of a unibit trie is at least 32∗80 = 2.56 μs. Now this
disadvantage can be worked around by pipelining the 32 memory accesses as described at the end of
Section 28.1, as was done in early high-speed routers. However, the hardware complexity increases
with the number of pipeline levels (32 is high). Thus in either case, it is worth reducing the height of
the trie. This clearly motivates multibit trie search.

To search a trie in strides of 4 bits, the main problem is dealing with prefixes like 10101∗ (length 5)
whose lengths are not a multiple of the chosen stride length 4. If we search 4 bits at a time, how can
we ensure that we do not miss prefixes like 10101∗?
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Controlled prefix expansion solves this problem by transforming an existing prefix database into
a new database with less prefix lengths, but with potentially more prefixes. By eliminating all lengths
that are not multiples of the chosen stride length, expansion allows faster multibit trie search at the
cost of an increased database size.

For example, removing odd prefix lengths reduces the number of prefix lengths from 32 to 16, and
would allow trie search two bits at a time. To remove a prefix like 101∗ of length 3, observe that 101∗
represents addresses that begin with 101, which in turn represents addresses that begin with 1010∗
or 1011∗. Thus 101∗ (of length 3) can be replaced by two prefixes of length 4 (1010∗ and 1011∗), both
of which inherit the forwarding information associated with 101∗. However, the expanded prefixes
may collide with an existing prefix at the new length. In that case, the expanded prefix is removed.
The existing prefix is given priority because it was originally of longer length.

Figure 28.4 shows a trie for the database of Figure 28.2 using expanded tries with a fixed stride
length of 3. Thus each trie node uses 3 bits. The replicated entries within trie nodes in Figure 28.4
correspond exactly to expanded prefixes. For example, notice that P6 in Figure 28.2 has three
expansions (100001, 100010, 100011).

These three expanded prefixes are pointed to by the 100-pointer in the root node of Figure 28.4
(because all three expanded prefixes start with 100) and are stored in the 001, 010, and 011 entries
of the right child of the root node. Notice also that the entry 100 in the root node also has a stored
prefix P8 (besides the pointer pointing to P6’s expansions), because P8 = 100∗ is itself an expanded
prefix.

Thus each trie node element is a record containing two entries: a stored prefix and a pointer.
Trie search proceeds 3 bits at a time. Each time a pointer is followed, the algorithm remembers the
stored prefix (if any). When search terminates at an empty pointer, the last stored prefix in the path
is returned.

For example, if address D begins with 1110, search for D starts at the 111 entry at the root node,
which has no outgoing pointer but a stored prefix (P2). Thus search for D terminates with P2.
A search for an address that starts with 100000 follows the 100 pointer in the root (and remembers
P8). This leads to the node on the lower right, where the 000 entry has no outgoing pointer but a
stored prefix (P7). The search terminates with result P7. Both the pointer and stored prefix can be
retrieved in one memory access using wide memories.

Lulea Compressed Tries: Unfortunately, the use of larger strides can increase speed but considerably
waste memory. For example, a router that wishes to do lookups in 4 memory accesses may use strides

000
001
010

100
101
110
111

011

000
001
010

100
101
110
111

011

000
001
010

100
101
110
111

011

P5
P5
P5
P5
P8

P2

P3
P3

P7
P6
P6
P6

P1
P9

FIGURE 28.4 Expanded trie (that has two strides of 3 bits each) corresponding to prefix database of Figure 28.2.
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of 8, which in turn will result in 256 element trie nodes which can be very wasteful of memory. This
is particularly a problem if the lookup is to be implemented using SRAM (e.g., on chip memory).
The Lulea technique is a way to have one’s cake and eat it: the use of large strides for faster access
and yet a way to compress the lookup structure using bitmap compression to considerably reduce
storage.

We know that a string with repetitions (e.g., AAAABBAAACCCCC) can be compressed using a
bitmap denoting repetition points (i.e., 10001010010000) together with a compressed sequence (i.e.,
ABAC). Similarly, the root node of Figure 28.4 contains a repeated sequence (P5, P5, P5, P5) caused
by expansion.

The Lulea scheme [DBCP97] avoids this obvious waste by compressing repeated information
using a bitmap and a compressed sequence without paying a high penalty in search time. This allows
the entire database to fit into expensive SRAM or on-chip memory. It does, however, pay a high
price in insertion times.

Some expanded trie entries (e.g., the 110 entry at the root of Figure 28.4) have two values, a pointer
and a prefix. To make compression easier, the algorithm starts by making each entry have exactly
one value by pushing forwarding information associated with prefixes down to the trie leaves. Since
the leaves do not have a pointer, we only have forwarding information at leaves, and only pointers
at non-leaf nodes. This process is called leaf pushing.

For example, to avoid the extra stored prefix in the 110 entry of the root node of Figure 28.4, the
P9 stored prefix is pushed to all the entries in the leftmost trie node with the exception of the 010 and
011 entries (both of which continue to contain P3). Similarly, the P8 stored prefix in the 100 root
node entry is pushed down to the 100, 101, 110, and 111 entries of the rightmost trie node. Once this
is done, each node entry contains either a stored prefix or a pointer, but not both. More precisely,
by stored prefix we mean some representation of the stored prefix and its associated fowarding
information.

The Lulea scheme starts with a conceptual leaf-pushed expanded trie and replaces consecutive
identical elements with a single value. A node bitmap (with 0’s corresponding to removed positions)
is used to allow fast indexing on the compressed nodes.

Consider the root node in Figure 28.4. After leaf pushing the root has the sequence P5, P5, P5,
P5, ptr1, P1, ptr2, P2 (ptr1 is a pointer to the trie node containing P6 and P7, and ptr2 is a pointer
to the node containing P3). After replacing consecutive values by the first value we get P5, -, -, -,
ptr1, P1, ptr2, P2 as shown in the middle frame of Figure 28.5. The rightmost frame shows the final
result with a bitmap indicating removed positions (10001111) and a compressed list (P5, ptr1, P1,
ptr2, P1).

If there are N original prefixes and pointers within an original (unexpanded) trie node, the number
of entries within the compressed node can be shown to be never more than 2N + 1. Intuitively, this
is because N prefixes partition the address space into at most 2N + 1 disjoint subranges and each
subrange requires at most one compressed node entry.

Search uses the number of bits specified by the stride to index into the current trie node, starting
with the root and continuing until a null pointer is encountered. However, while following pointers,
an uncompressed index must be mapped to an index into the compressed node. This mapping is
accomplished by counting bits within the node bitmap.

Consider the data structure on the right of Figure 28.5. Consider a search for an address that starts
with 100111. If we were dealing with just the uncompressed node on the left of Figure 28.5, we could
use 100 to index into the fifth array element to get ptr1. However, we must now obtain the same
information from the compressed node representation on the right of Figure 28.5.

Instead, we use the first three bits (100) to index into the root node bitmap. Since this is the second
bit set (the algorithm needs to count the bits set before a given bit), the algorithm indexes into the
second element of the compressed node. This produces a pointer ptr1 to the rightmost trie node.
Next, imagine the rightmost leaf node of Figure 28.4 (after leaf pushing) also compressed in the same
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FIGURE 28.5 Compressing the root node of Figure 28.4 (after leaf pushing) using the Lulea bitmap compression
scheme.

way. The node contains the sequence P7, P6, P6, P6, P8, P8, P8, P8. Thus the corresponding bitmap
is 11001000, and the compressed sequence is P7, P6, P8.

Thus in the rightmost leaf node, the algorithm uses the next 3 bits (111) of the destination address
to index into bit 8. Since there is no pointer to follow in the equivalent uncompressed node, the
search terminates at this point. However, to retrieve the best matching prefix (if any) stored at this
node, the algorithm must find any prefix stored before this entry.

This would be trivial with expansion as the value P8 would have been expanded into the 111
entry, but since the expanded sequence of P8 values has been replaced by a single P8 value in the
compressed version, the algorithm has to work harder. Thus the Lulea algorithm counts the number
of bits set before position 8 (which happens to be 3), and then indexes into the 3rd element of the
compressed sequence. This gives the correct result, P8.

The Lulea paper [DBCP97] describes a trie that uses fixed strides of 16, 8, and 8. But how can the
algorithm efficiently count the bits set in a large bitmap? For example, a 16 bits stride uses 64 kbits.

To speed up counting set bits, the algorithm accompanies each bitmap with a summary array
that contains a cumulative count of the number of set bits associated with fixed size “chunks” of
the bitmap. More precisely, the summary array S[j] for j ≥ 1 contains the number of bits set in the
bitmap from positions 0 to jc, where c is the chosen chunk size. Using 64 bits chunks, the summary
array takes at most 25% beyond the storage required for the bitmap.

Using the summary array, counting the bits set up to position i now takes two steps. First, access
the summary array at position j, where j = i ÷ c (i.e., j is the number of the chunk containing bit i).
Then access chunk j and count the bits in chunk j up to position i. The sum of the two values gives
the count of bits set up to position i.

Despite compact storage, the Lulea scheme has two disadvantages. First, counting bits requires at
least one extra memory reference per node. Second, leaf pushing makes worst-case insertion times
large. A prefix added to a root node can cause information to be pushed to thousands of leaves.
The full Tree bitmap scheme, which we study next, overcomes these problem by abandoning leaf
pushing and using two bitmaps per node.

Tree Bitmap: The Tree bitmap [EDV04] scheme starts with the goal of achieving the same storage
and speed as the Lulea scheme, but adds the goal of fast insertions. While we have argued that fast
insertions are not as important as fast lookups, they clearly are desirable. Also, if the only way to
handle an insertion or deletion is to rebuild the Lulea compressed trie, then a router must keep two
copies of its routing database, one that is being built and one that is being used for lookups. This can
potentially double the storage cost from 32 to 64 bits per prefix. This in turn can halve the number
of prefixes that can be supported by a chip which places the entire database in on-chip SRAM.

To obtain fast insertions and hence avoid the need for two copies of the database, the first problem
in Lulea that must be handled is the use of leaf-pushing. When a prefix of small length is inserted,
leaf pushing can result in pushing down the prefix to a large number of leaves, making insertion
slow.
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FIGURE 28.6 The Tree bitmap scheme allows the compression of Lulea without sacrificing fast insertions by using
two bitmaps per node. The first bitmap describes valid versus null pointers, and the second bitmap describes internally
stored prefixes.

The first and main idea in the Tree bitmap scheme is that there are two bitmaps per trie node, one
for all the internally stored prefixes and one for the external pointers. Figure 28.6 shows the Tree
bitmap version of the root node in Figure 28.5.

Recall that in Figure 28.5, the prefixes P8 = 100∗ and P9 = 110∗ in the original database are
missing from the picture on the left side of Figure 28.5 because they have been pushed down to the
leaves to accommodate the two pointers (ptr1 that points to nodes containing longer prefixes such
as P6 = 1000∗, and ptr2 that points to nodes containing longer prefixes such as P3 = 11001∗). This
results in the basic Lulea trie node in which each element contains either a pointer or a prefix, but
not both. This allows the use of a single bitmap to compress a Lulea node, as shown on the extreme
right of Figure 28.5.

By contrast, the same trie node in Figure 28.6 is split into two compressed arrays, each with its
own bitmap. The first array, shown vertically, is a pointer array which contains a bitmap denoting
the (two) positions where non-null pointers exist, and a compressed array containing the non-null
pointers ptr1 and ptr2.

The second array, shown horizontally, is the internal prefix array which contains a list of all the
prefixes contained within the first 3 bits. The bitmap used for this array is very different from the
Lulea encoding, and has 1 bit set for every possible prefix stored within this node. Possible prefixes
are listed lexicographically from starting from ∗, followed by 0∗ and 1∗, and then on to the length two
prefixes (00∗, 01∗, 10∗, 11∗), and finally the length three prefixes. Bits are set when the corresponding
prefixes occur within the trie node.

Thus in Figure 28.6, the prefixes P8 and P9 which were leaf pushed in Figure 28.5 have been
resurrected, and now correspond to bits 12 and 14 in the internal prefix bitmap. In general, for an r
bit trie node, there are 2r+1 − 1 possible prefixes of lengths ≤ r, which requires the use of a 2r+1 − 1
bitmap. The scheme gets its name because the internal prefix bitmap represents a trie in a linearized
format: each row of the trie is captured top-down from left to right.

The second idea in the Tree bitmap scheme is to keep the trie nodes as small as possible to reduce
the required memory access size for a given stride. Thus a trie node is of fixed size, and only contains
a pointer bitmap, an internal prefix bitmap, and child pointers. But what about the forwarding
information (i.e., the next router to which packets destined to a prefix should be sent) associated
with stored prefixes?

The trick is to store the forwarding information associated with the internal prefixes stored within
each trie node in a separate array associated with this trie node. Putting forwarding information in
a separate result array potentially requires two memory accesses per trie node (one for the trie node,
and one to fetch the result node for stored prefixes).

However, a simple lazy evaluation strategy is to not access the result nodes till search terminates.
Upon termination, the algorithm makes a final access to the correct result node. This is the result
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node that corresponds to the last trie node encountered in the path that contained a valid prefix. This
adds only a single memory reference at the end, in addition to the one memory reference required
per trie node.

The third idea is to use only one memory access per node, unlike Lulea which uses at least two
memory accesses. Lulea needs two memory accesses per node because it uses large strides of 8 or
16 bits. This increases the bitmap size so much that the only feasible way to count bits is to use an
additional chunk array that must be accessed separately. The Tree bitmap scheme gets around this
by simply using smaller stride nodes, say of 4 bits. This makes the bitmaps small enough that the
entire node can be accessed by a single wide access (we are exploiting locality). Combinatorial logic
can be used to count the bits.

Tree Bitmap Search Algorithm: The search algorithm starts with the root node and uses the first
r bits of the destination address (corresponding to the stride of the root node, 3 in our example) to
index into the pointer bitmap at the root node at position P. If there is a 1 in this position, there is
a valid child pointer. The algorithm counts the number of 1s to the left of this 1 (including this 1)
and denote this count by I. Since the pointer to the start position of the child pointer block (say y) is
known and so is the size of each trie node (say S), the pointer to the child node can be calculated as
y + (I ∗ S).

Before moving on to the child, the algorithm must also check the internal bitmap to see if there are
one or more stored prefixes corresponding to the path through the multibit node to position P. For
example, suppose P is 101 and a 3 bits stride is used at the root node bitmap as in Figure 28.6. The
algorithm first checks to see whether there is a stored internal prefix 101∗. Since 101∗ corresponds
to the 13th bit position in the internal prefix bitmap, the algorithm can check if there is a 1 in that
position (there is one in the example). If there was no 1 in this position, the algorithm would back
up to check whether there is an internal prefix corresponding to 10∗. Finally, the algorithm checks
for the prefix 1∗.

This search algorithm appears to require a number of iterations proportional to the logarithm of
the internal bitmap length. However, for bitmaps of up to 512 bits or so in hardware, this is just a
matter of simple combinatorial logic. Intuitively, such logic performs all iterations in parallel, and
uses a priority encoder to return the longest matching stored prefix.

Once it knows there is a matching stored prefix within a trie node, the algorithm does not
immediately retrieve the corresponding forwarding information from the result node associated
with the trie node. Instead, the algorithm moves to the child node while remembering the stored
prefix position and the corresponding parent trie node. The intent is to remember the last trie node
T in the search path that contained a stored prefix, and the corresponding prefix position.

Search terminates when it encounters a trie node with a 0 set in the corresponding position of the
extending bitmap. At this point, the algorithm makes a final access to the result array corresponding
to T to read off the forwarding information. Further tricks to reduce memory access width are
described in Eatherton’ MS Thesis [Eat95], which describes a number of other useful ideas.

Intuitively, insertions in Tree bitmap are very similar to insertions in a simple multibit trie without
leaf pushing. A prefix insertion may cause a trie node to be changed completely; a new copy of the
node is created and linked in atomically to the existing trie. Compression results in [EDV04] show
that Tree bitmap has all the features of the Lulea scheme in terms of compression and speed, along
with fast insertions. Tree bitmap also has the ability to be tuned for hardware implementations
ranging from the use of RAMBUS-like memories to on-chip SRAM.

28.2.2 Switching

Early routers used a simple bus to switch packets between input and output links. A bus is a wire
that allows only one input to send to one output at a time. Today, however, almost every core router
uses an internal crossbar switch that allows disjoint link pairs to communicate in parallel, to increase
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effective throughput. Each router must match input links (that wish to send packets) to output links
(that can accept packets from the corresponding links) in the duration of reception of a single packet.
This is 8 ns for a 40 bytes packet at 40 Gbps.

Now caches cannot be relied upon to finesse lookups because of the rarity of large trains of packets
to the same destination. Similarly, it is unlikely that two consecutive packets at a switch input port
are destined to the same output port. This makes it hard to amortize the switching overhead over
multiple packets.

Thus to operate at wire-speed the switching system must decide which input and output links
should be matched in a minimum packet arrival time. This makes the control portion of an Internet
switch (that sets up connections) much harder to build than say a telephone switch. A second
important difference between telephone switches and packet switches is the need for packet switches
to support multicast connections. Multicast complicates the scheduling problem even further because
some inputs require sending to multiple outputs.

To simplify the problem, most routers internally segment variable size packets into fixed size cells
before sending to the switch fabric. Mathematically, the switching component of a router reduces
to solving a bipartite matching problem: the router must match as many input links as possible
(to as many output links as possible) in a fixed cell arrival time. While optimal algorithms for
bipartite matching are well known to run in milliseconds, solving the same problem every 8 ns at 40
Gbps requires some systems thinking. For example, the solutions described in this section will trade
accuracy for time, use hardware parallelism and randomization, and exploit the fact that typical
switches have 32–64 ports to build fast priority queue operations using bitmaps.

Simpler Approaches: Before describing bus and crossbar-based switches, it is helpful to consider
one of the simplest switch implementations based on shared memory. Packets are read into a memory
from the input links and are read out of memory to the appropriate output links. Such designs have
been used as part of Time Slot Interchange switches in telephony for years. They also work well for
networking for small size switches.

The main problem is memory bandwidth. If the chip takes in eight input links and has eight
output links, the chip must read and write each packet or cell once. Thus the memory has to run
at 16 times the speed of each link. Up to a point, this can be solved by using a wide memory access
width. The idea is that the bits come in serially on an input link and are accumulated into an input
shift register. When a whole cell has been accumulated, the cell can be loaded into the cell-wide
memory. Later they can be read out into the output shift register of the corresponding link and be
shifted out onto the output link.

A second simpler approach used in early routers was to use a bus. Buses have speed limitations
because of the number of different sources and destinations that a single shared bus has to handle.
These sources and destinations add extra electrical loading that slows down signal rise times and
ultimately the speed of sending bits on the bus. Other electrical effects include the effect of multiple
connectors (from each line card) and reflections on the line.

Crossbar Switches: The classical way to get around the bottleneck of a single bus is to use a crossbar
switch. A crossbar switch essentially has a set of 2N parallel buses, one bus per source line card,
and one bus per destination line card. If one thinks of the source buses as being horizontal and the
destination buses as being vertical, the matrix of buses forms what is called a crossbar.

Potentially, this provides an N-fold speedup over a single bus, because in the best case all N buses
will be used in parallel at the same time to transfer data instead of a single bus. Of course, to get this
speedup requires finding N disjoint source–destination pairs at each time slot. Trying to get close to
this bound is the major scheduling problem studied in this section.

Head-of-line Blocking: The simplest way to schedule a crossbar is to use a single queue at each
input link and try to match the packet at the head of every input queue to any available output. This
can easily be done by a simple centralized scheduler using fairly simple logic or by more elegant
distributed algorithms such as the take-a-ticket scheduler described in [SKO+94].
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FIGURE 28.7 Example of head of line blocking caused by schemes like take-a-ticket. For each output port, a horizontal
time scale is drawn labeled with the input port that sent a packet to that output port during the corresponding time
period, and the blank mark if there is none. Note the large number of blanks showing potentially wasted opportunities
that limit parallelism.

Any such scheduler will miss transmission opportunities as shown in Figure 28.7. The figure
shows a switch with three input ports A, B, and C and four output ports 1, 2, 3, and 4. There is a
queue of packets at each input, and each input packet is labeled with the output port to which it is
destined. Thus input port A has a packet for output port 1 at the head of its queue, followed by a
packet destined to port 2, and lastly a packet destined to port 3.

At the right of the picture is a time–space picture showing transmissions. Assume fixed size
packets or cells. Note that in the first time slot (first column) only one packet can be scheduled
because the heads of all input queues are destined for output port 1. Because output port 1 can
only accept 1 packet (say from input port A), the other input ports B and C are starved and cannot
transmit. In the next time slot, output port 1 grants to say B and A can send its second packet to
output port 2. However, input port C is starved. Continuing in this fashion (always being fair in
round-robin fashion when multiple inputs contend for the same output) we take six cell times to
send all packets.

Note that that there were nine potential transmission opportunities in three iterations because
there are three input ports and three iterations. However, after the end of three cell times, there is
one packet in B’s queue and two in C’s queue. Thus only six of potentially nine packets have been
sent, thus taking limited advantage of parallelism.

It is easy to see visually from the right of Figure 28.7 that only roughly half of the transmission
opportunities (more precisely, 9 out of 24) are used. Now, of course, no algorithm can do better
for certain scenarios. However, other algorithms such as iSLIP [Mea97] (described next) can extract
more parallel opportunities, and finish the same nine packets in four iterations instead of six.

In the first iteration of Figure 28.7, all inputs have packets waiting for output 1. Since only one
(i.e., A) can send a packet to output 1 at a time, the entire queue at B (and C) is stuck waiting for A
to complete. Since the entire queue is held hostage by the progress of the head of the queue or line,
this is called head of line (HOL) blocking. iSLIP and PIM (both described below) get around this
limitation by allowing packets behind a blocked packet to make progress (for example, the packet
destined to output port 2 in the input queue at B can be sent to output port 2 in iteration 1 of
Figure 28.7) at the cost of a more complex scheduling algorithm.

The loss of throughput caused by HOL blocking can be analytically captured using a simple traffic
models. A classic analysis [KHM87] shows that the utilization with HOL is close to 58%. Given that
we can lose roughly half the throughput of an expensive switch because of head of line blocking, it
is worthwhile finding a way to avoid it and get 100% throughput as long as the extra hardware cost
for the new mechanism is small.

Simulated Output Queuing: A natural response to HOL is to use output queuing in place of input
queuing. Suppose that packets can somehow be sent to an output port without any queuing at the
input. Then it is impossible for a packet P destined to a busy output port to block another packet
behind it. This is because packet P is sent off to the queue at the output port where it can only block
packets sent to the same output port.
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The simplest way to do this would be to design the switch to be N times faster than the input
links. Then even if all N inputs send to the same output in a given cell time, all N cells can be sent
through the switch to be queued at the output. Thus pure output queuing requires an N-fold speedup
within the fabric, which is expensive or infeasible.

A practical implementation of output queuing was provided by the Knockout [YHA87] switch
design. The idea was to optimize for the common case where k << N cells arrive at the same time
at an input port so the the fabric runs only k times as fast as an input link. This can be done using
k parallel buses. The main technical challenge is to fairly handle the case where the expected case is
violated and M > k cells get sent to the same output at the same time.

A simple tournament tree (implemented using a tree of 2 by 2 switching elements that randomly
chooses a winner) can fairly pick a winner. However, picking the other k − 1 choices from the
same tree actually results in unfairness. Instead k tournament trees are used with the losers of all
previous tournaments fed into subsequent tournaments. Speed is regained by pipelining so that later
tournament trees do have to wait till previous tournaments have completed.

While the Knockout switch is important to understand because of the techniques it introduced,
it is complex to implement and makes assumptions about traffic distributions. These assumptions
are untrue for real topologies in which more than k clients frequently gang up to concurrently send
to a popular server. More importantly, researchers devised relatively simple ways to combat HOL
blocking without going to output queuing.

Avoiding HOL Blocking using Virtual Output Queues: The main idea is to retrofit input queuing
to avoid head-of-line blocking. PIM does so by allowing an input port to schedule not just the head
of its input queue, but also other cells that can make progress when the head is blocked. At first
glance, this looks very hard. There could be a hundred thousand cells in each queue; attempting
to maintain even 1 bit of scheduling state for each cell will take too much memory to store and
process.

However, the first significant observation is that cells in each input port queue can only be destined
to N possible output ports. If cell P1 is before cell P2 in input queue X, and both P1 and P2 are
destined for the same output queue Y , then P1 must be sent before P2. We need not schedule any
cells other than the first cell sent to every distinct output port. Thus we decompose the single input
queue at each port into a separate input queue per output at each input port. These are called virtual
output queues (VOQs).

The second significant observation is that communicating the scheduling needs of any input port
takes only a bitmap of N bits, where N is the size of the switch. In the bitmap, a 1 in position i implies
that there is at least one cell destined to output port i. Thus if each of N input ports communicates
an N bits vector describing its scheduling needs, the scheduler only needs to process N2 bits. For
small N ≤ 32, this is not a great deal of bits to communicate via control buses or to store in control
memories.

The first algorithm to introduce VOQs was parallel iterative matching or PIM [AOST93]. PIM is
a very simple matching algorithm. In the first iteration, every input sends requests to every output it
has a packet destined to. If an output port gets multiple requests, it randomly picks one input port
to send a grant to. If an input port gets multiple grants, it randomly chooses one grant to accept and
a match is made between that input and that output in the crossbar. While the worst-case time to
reach a maximal match for N inputs is N iterations, a simple argument shows that expected number
of iterations is closer to log N. The DEC AN-2 implementation [AOST93] used three iterations for
a 30-port switch.

While PIM was a seminal scheme because it introduced the idea that HOL could be avoided at
reasonable hardware cost using VOQs, it has two problems. First, it uses randomization and second
(more importantly) it uses a logarithmic number of iterations.

iSLIP [Mea97] is a very popular and influential scheme that essentially “derandomizes” PIM
and also achieves very close to maximal matches after just one or two iterations. The base idea
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is extremely simple. Instead of using random selection to pick fairly among multiple contenders,
iSLIP uses a round robin pointer (per input and output port) to rotate the priority fairly among
ports. While the round-robin pointers can be initially synchronized and cause something akin to
head-of-line blocking, they tend to break free and result in maximal matches over the long run, at
least as measured in simulation. Thus the subtlety in iSLIP is not the use of round-robin pointers,
but the apparent lack of long-term synchronization among N such pointers running concurrently.

More precisely, each output (respectively input) maintains a pointer g initially set to the first
input (respectively output) port. When an output has to choose between multiple input requests, it
chooses the lowest input number ≥g. Similarly, when an input port has to choose between multiple
output port requests, it chooses the lowest output port number that is ≥a, where a is the pointer
of the input port. If an output port is matched to an input port X, then the output port pointer is
incremented to the first port number greater than X in circular order (i.e., g becomes X + 1 unless
X was the last port, in which case g wraps around to the first port number).

This simple device of a “rotating priority” allows each resource (output port, input port) to be
shared reasonably fairly across all contenders at the cost of 2N extra pointers of size log2 N bits each.
This is, of course, in addition to the N2 bits of scheduling state needed on every iteration.

Figure 28.8 shows the first few iterations of the same scenario as Figure 28.7 using a two-iteration
iSLIP. Since each row is an iteration of a match, each match is shown using two rows. Thus the three
rows of Figure 28.8 show the first two iterations of the first match (called a round in the figure) and
the first iteration of the second match.

The upper left picture starts with each input port sending requests to each output port for which
it has a cell destined. Each output port has a so-called grant pointer g, which is initialized for all
outputs to be A. Similarly, each input has a so-called accept pointer called a, which is initialized for
all inputs to 1.
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FIGURE 28.8 One and a half rounds of a sample iSLIP scenario.
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When output 1 receives requests from all three input ports, it grants to A because A is the smallest
input greater than or equal to g1 = A. By contrast, in say PIM, port 1 randomly chooses say input
port B. At this stage the determinism of iSLIP seems a real disadvantage because A has sent requests
to output ports 3 and 4 as well. Because 3 and 4 also have grant pointers g3 = g4 = A, ports 3 and 4
grant to A as well, ignoring the claims of B and C. As before, since C is the lone requester for port 4,
C gets the grant from 4.

When the popular A gets three grants back from ports 1, 2, and 3, A accepts 1. This is because Port
1 is the first output ≥ A’s accept pointer aA which was equal to 1. Similarly C chooses 4. Having done
so, A increments aA to 2 and C increments aC to 1 (one greater than 4 in circular order is 1). Only
at this stage does output 1 increment its grant pointer g1 to B (one greater than the last successful
grant) and port 4 similarly increments to A (one greater than C in circular order).

Note that although ports 2 and 3 gave grants to A, they do not increment their grant pointers
because A spurned their grants. If they did, it would be possible to construct a scenario where output
ports keep incrementing their grant pointer beyond some input port I after unsuccessful grants,
thereby continually starving input port I. Note also that the match is only of size 2; thus this iSLIP
scenario can be improved by a second iteration shown in the second row of Figure 28.8. Notice that at
the end of the first iteration the matched inputs and outputs are not connected by solid lines (denoting
data transfer). This data transfer will await the end of the final (in this case second) iteration.

The second iteration (middle row of Figure 28.8) starts with only inputs unmatched on previous
iterations (i.e, B) requesting, and only to hitherto unmatched outputs. Thus B requests to 2 and 3
(and not to 1 though B has a cell destined to 1 as well). Both 2 and 3 grant B, and B chooses 2 (lowest
greater than or equal to its accept pointer of 1). One might think that B should increment its accept
pointer to 3 (1 plus the last accepted which was 2). However, to avoid starvation iSLIP does not
increment pointers on iterations other than the first, for reasons that will be explained.

Thus even after B is connected to 2, 2’s grant pointer remains at A and B’s accept pointer remains
at 1. Since this is the final iteration, all matched pairs, including pairs such as A, 1 matched in prior
iterations, are all connected and data transfer (solid lines) occurs.

The third row provides some insight into how the initial synchronization of grant and accept
pointers gets broken. Because only one output port has granted to A, that port (i.e., 1) gets to move
on and this time provide priority to ports beyond A. Thus even if A had a second packet destined to
1 (which it does not in this example), 1 would still grant to B.

Note also that iSLIP may look worse than PIM because it required two iterations per match for
iSLIP to achieve the same match sizes that PIM can do using one iteration per match. However, this
is more illustrative of the startup penalty that iSLIP pays rather than a long-term penalty. In practice,
as soon as the iSLIP pointers desynchronize, iSLIP does very well with just one iteration, and some
commercial implementations use just one iteration: iSLIP is extremely popular. The Cisco GSR, one
of the most popular routers in the market, uses iSLIP.

One might summarize iSLIP as PIM with the randomization replaced by round-robin scheduling
of input and output pointers. However, this characterization misses out on two subtle aspects of
iSLIP. These are

• Grant pointers are incremented only in the third phase after a grant is accepted: Intuitively,
if O grants to an input port I, there is no guarantee that I will accept. Thus if O were to
increment its grant pointer beyond O, it can cause traffic from I to O to be persistently
starved. Even worse, [Mea97] shows that this simplistic round-robin scheme reduces the
throughput to just 63% (for Bernoulli arrivals) because the pointers tend to synchronize
and move in lock-step.

• All pointers are incremented only after the first iteration accept is granted: Once again,
this rule prevents starvation but the scenario is more subtle.

iSLIP can also be extended to handle priorities and multicast traffic.
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28.2.3 Packet Classification

Routers have evolved from traditional destination-based forwarding devices to what are called
packet classification routers. In modern routers, the route and resources allocated to a packet are
determined by the destination address as well as other header fields of the packet such as the
source address and TCP/UDP port numbers. Packet classification unifies the forwarding functions
required by firewalls, resource reservations, QoS routing, unicast routing, and multicast routing. In
classification, the forwarding database of a router consists of a potentially large number of rules on
key header fields. A given packet header can match multiple rules. So each rule is given a cost, and
the packet is forwarded using the least cost matching rule.

Several variants of packet classification have already established themselves in the Internet. First,
many routers implement firewalls [CB95] at trust boundaries, such as the entry and exit points of
a corporate network. A firewall database consists of a series of packet rules that implement security
policies. A typical policy may be to allow remote login from within the corporation, but to disallow
it from outside the corporation.

Second, the need for predictable and guaranteed service has led to proposals for reservation
protocols like DiffServ [SWG] that reserve bandwidth between a source and a destination. Third, the
cries for routing based on traffic type have become more strident recently—for instance, the need to
route Web traffic between Site 1 and Site 2 on say Route A and other traffic on say Route B.

Formalization of Packet Classification: Assume that the information relevant to a lookup is con-
tained in K distinct header fields in each message. These header fields are denoted H[1], H[2], . . . ,
H[K], where each field is a string of bits. For instance, the relevant fields for an IPv4 packet could
be the Destination Address (32 bits), the Source Address (32 bits), the Protocol Field (8 bits), the
Destination Port (16 bits), the Source Port (16 bits), and TCP flags (8 bits). Thus, the combination
(D, S, TCP-ACK , 63, 125), denotes the header of an IP packet with destination D, source S, protocol
TCP, destination port 63, source port 125, and the ACK bit set.

A classifier or rule database router consists of a finite set of rules, R1, R2, . . . , RN . Each rule is a
combination of K values, one for each header field. Each field in a rule is allowed three kinds of
matches: exact match, prefix match, or range match. In an exact match, the header field of the packet
should exactly match the rule field—for instance, this is useful for protocol and flag fields. In a prefix
match, the rule field should be a prefix of the header field—this could be useful for blocking access
from a certain subnetwork. In a range match, the header values should lie in the range specified by
the rule—this can be useful for specifying port number ranges.

Each rule Ri has an associated directive dispi, which specifies how to forward the packet matching
this rule. The directive specifies if the packet should be blocked. If the packet is to be forwarded, the
directive specifies the outgoing link to which the packet is sent, and perhaps also a queue within that
link if the message belongs to a flow with bandwidth guarantees.

A packet P is said to match a rule R if each field of P matches the corresponding field of R—
the match type is implicit in the specification of the field. For instance, if the destination field is
specified as 1010∗, then it requires a prefix match; if the protocol field is UDP, then it requires an
exact match; if the port field is a range, such as 1024–1100, then it requires a range match. For
instance, let R = (1010∗, ∗, TCP, 1024–1080, ∗) be a rule, with disp = block. Then, a packet with
header (10101. . .111, 11110. . .000, TCP, 1050, 3) matches R and is therefore blocked. The packet
(10110. . .000, 11110. . .000, TCP, 80, 3), on the other hand, does not match R.

Since a packet may match multiple rules in the database, each rule R in the database is associated
with a non-negative number, cost(R). Ambiguity is avoided by returning the least cost rule matching
the packet’s header. The cost function generalizes the implicit precedence rules that are used in
practice to choose between multiple matching rules.

As an example of a rule database, consider the topology and firewall database [CB95] shown
in Figure 28.9, where a screened subnet configuration interposes between a company subnetwork
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Destination Source Destination Port Source Port Protocol and Flags Disp Comments
M ∗ 25 ∗ ∗ Allow Inbound e-mail
M ∗ 53 ∗ UDP Allow DNS Access
M S 53 ∗ ∗ Allow Secondary DNS
M ∗ 23 ∗ ∗ Allow Incoming SSH
TI TO 123 123 UDP Allow NTP
∗ Net ∗ ∗ ∗ Allow Outgoing packets
Net ∗ ∗ ∗ TCP ack Allow Return packs OK
∗ ∗ ∗ ∗ ∗ Block Drop all else

FIGURE 28.9 The top half of the figure shows the topology of a small company, and the bottom half shows a sample
firewall database for this company as described in the book by Cheswick and Bellovin [CB95]. The block flags are not
shown in the figure; the first 7 rules have block = false (i.e., allow) and the last rule has block = true (i.e., block). We
assume that all the addresses within the company subnetwork (shown on top left) start with the prefix Net including
M and TI.

(shown on top left) and the rest of the Internet (including hackers). There is a so-called bastion host
M within the company that mediates all access to and from the external world. M serves as the mail
gateway and also provides external name server access. TI, TO are Network Time Protocol (NTP)
sources, where TI is internal to the company and TO is external. S is the address of the secondary
name server which is external to the company.

Clearly, the site manager wishes to allow communication from within the network to TO and
S, and yet wishes to block hackers. The database of rules shown on the bottom of Figure 28.9
implements this intention. Assume that all addresses of machines within the company’s network
start with the prefix Net. Thus M and TI both match the prefix Net. All packets matching any of
the first seven rules are allowed; the remaining (last rule) are dropped by the screening router. As
an example, consider a packet sent to M from S with UDP destination port equal to 53. This packet
matches Rules 2, 3, and 8, but must be allowed through because the first matching rule is Rule 2.

Note that the description above uses N for the number of rules and K for the number of packet
fields. K is sometimes called the number of dimensions for reasons that will become clearer.

Before we describe algorithmic solutions to the problem of packet classification, we first describe
a conceptually simple but hardware-intensive solution called ternary CAMs.

CAMs: A ternary content addressable memory (TCAM) is a content addressable memory where
the first cell that matches a data item will be returned using a parallel lookup in hardware. A ternary
CAM allows each stored bit of data to be either a 0, a 1, or a wildcard. Thus clearly ternary CAMs
can be used for rule matching as well as for prefix matching. However, the CAMs must provide wide
lengths—for example, the combination of the IPv4 destination, source, and two port fields is 96 bits.

However, CAMs have smaller density and consume larger power than algorithmic solutions using
SRAMs. For packet classification, CAMs also have the problem of rule multiplication caused by
ranges. In CAM solutions, each range has to be replaced by a potentially large number of prefixes,
thus causing extra entries. Some algorithmic solutions can handle ranges in rules without converting
ranges to rules. While better CAM cell designs that reduce density and power requirements may
emerge, it is still important to understand the corresponding advantages and disadvantages of
algorithmic solutions. The remainder of this section is devoted to this topic.

Geometric View of Classification: A geometric view of classification was introduced by Lakshman
and Stidialis [LS98]. Observe that we can view a 32 bits prefix like 00∗ as a range of addresses from
000. . .00 to 001. . .11 on the number line from 0 to 232 − 1. If prefixes correspond to line segments
geometrically, two-dimensional rules correspond to rectangles, three-dimensional rules to cubes,
and so on. A given packet header is a point. The problem of packet classification reduces to finding
the lowest cost box that contains the given point.
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The first advantage of the geometric view is that it enables the application of algorithms from
computational geometry. For example, Lakshman and Stiliadis [LS98] adapt a technique from
computational geometry known as fractional cascading to do binary search for two field rules
matching in O(log N) time, where N is the number of rules. In other words, two-dimensional
rule matching is asymptotically as fast as one-dimensional rule matching using binary search.
Unfortunately, the constants for fractional cascading are quite high. Perhaps this suggests that
adapting existing geometric algorithms may actually not result in the most efficient algorithms.

A second advantage of the geometric viewpoint is that it is suggestive and useful. For example, a
very useful concept that the geometric view provides is the number of disjoint (i.e., nonintersecting)
classification regions. Since rules can overlap, this is not the number of rules. For example in
two dimensions, with N rules one can create N2 classification regions by having N/2 rules that
correspond geometrically to horizontal strips together with N/2 rules that correspond geometrically
to vertical strips. The intersection of the N/2 horizontal strips with the N/2 vertical strips creates
O(N2) disjoint classification regions. Similar constructions can be used to generate O(NK) regions
for K-dimensional rules.

Using the geometric viewpoint just described, it is easy to adapt a lower bound from computational
geometry. Thus, it is known that general multidimensional range searching over N ranges in k
dimensions requires Ω((log N)K−1) worst-case time if the memory is limited to about linear size
[Cha9a,Cha9b] or requires O(NK) size memory. While log N could be reasonable (say 10 memory
accesses), log4 N will be very large (say 10, 000 memory accesses). Notice that this lower bound
is consistent with solutions for the two-dimensional case that take linear storage but are as fast
as O(log N).

The lower bound implies that for perfectly general rule sets, algorithmic approaches to classifica-
tion either require a large amount of memory or a large amount of time. Unfortunately, classification
at high speeds, especially for core routers, requires the use of limited and expensive SRAM. Thus
the lower bound seems to imply that CAM are required for reasonably sized classifiers (say 10,000
rules) that must be searched at high speeds (e.g., 40 Gbps).

Bit Vector Schemes: A surprisingly simple practical scheme is one due tp Lakshman and
Staliadis [LS98]. The database of Figure 28.9 is first sliced into columns, one for each field i. All
possible values of field i are stored in a Table corresponding to field i. Along with each possible value
M of field i, the algorithm stores the set of rules S(M) that match M in field i as a bit vector. When a
packet arrives, each of its header fields is examined in Table i to find the longest match. Thus if field
i matches M(i), we know the set S(M(i)) of rules that match the packet in field i. By intersecting the
sets S(M(i)) for all i, we get the rules that match in all the fields.

For example, Figure 28.10 shows the sliced database together with bit vectors for each sliced field
value. The bit vector has 8 bits, one corresponding to each of the eight possible rules in Figure 28.9.
Bit j is set for value M in field i if value M matches Rule j in field i.

Despite the elegance, note that since there are N rules, the bitmaps are N bits long. Hence,
computing the AND requires O(N) operations. So the algorithm is effectively doing linear search.
The only reason it is practical for databases of thousands of rules is that we can use wide word
memory parallelism to process a large bitmap of 1000 bits in one cycle.

Decision Tree Approaches: The idea is to build a decision tree where each node in the tree tests bits
on some field. Depending on the values of the test, a new branch is taken to another decision tree
node because certain sets of rules have been eliminated by each test. We now describe a Decision
Tree approach called HiCuts [GM99a].

Figure 28.11 shows a fragment of a HiCuts decision tree on the database of Figure 28.9. The nodes
contain range comparisons on values of any specified fields, and the edges are labeled with True or
False. Thus the root node tests whether the destination port field is less than 50. The fragment only
follows the case when this test is false. Looking at Figure 28.9 notice that this branch eliminates R1
(i.e., rule 1) and R4, because these rules contain port numbers 25 and 23, respectively.
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FIGURE 28.10 The database of Figure 28.9 together with bit vectors for every possible sliced value. The bit vector
has 8 bits, one corresponding to each of the eight possible rules in Figure 28.9. Bit j is set for value M in field i if value
M matches Rule j in field i. The last slice (flags prefixes) corresponds to the protocol and flags column in Figure 28.9.
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FIGURE 28.11 The HiCuts data structure is essentially a range tree which has pointers corresponding to some ranges
of some dimension variable with linear search at end.

The next test checks whether the source address is equal to that of the secondary name server S
in Figure 28.9. If this test evaluates to true, then R5 is eliminated (because it contains TO) and so is
R6 (because it contains Net and S does not belong to the internal prefix Net). This leads to a second
test on the destination port field. If the value is not 53, the only possible rules that can match are R7
and R8.

Thus on a packet header in which the destination port is 123 and the source is S, the search
algorithm takes the right branch at the root, the left branch at the next node, and a right branch at
the final node. At this point the packet header is compared to rules R7 and R8 using linear search.

The algorithm needs an efficient decision tree building algorithm that minimizes the worst-case
height, and yet has reasonable storage. Rather than consider the general optimization problem,
which is NP-complete, HiCuts [GM99a] uses the following more restricted heuristic based on the
repeated use of the following greedy strategy.

Pick a field: The HiCuts paper suggests first picking a field to cut on at each stage based on the
number of distinct field values in that field. For example, in Figure 28.11, this heuristic would pick
the destination port field.
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Pick the number of cuts: For each field, rather than just pick one range check as in Figure 28.11,
one can pick k ranges or cuts. Of course, these can be implemented as separate range checks as in
Figure 28.11. To choose k, the algorithm suggested in [GM99b] is to keep doubling k and to stop
when the storage caused by the k cuts exceeds a prespecified threshold.

Several details are needed to actually implement this somewhat general framework. Assuming the
cuts or ranges are equally spaced, the storage cost of k cuts on a field is estimated by counting the
sum of the rules assigned to each of the k cuts. Clearly, cuts that cause rule replication will have a
large storage estimate. The threshold that defines acceptable storage is a constant (called spfac for
space factor) times the number of rules at the node. The intent is to keep the storage linear in the
number of rules up to a tunable constant factor.

Finally, the process stops when all decision tree leaves have no more than binth (bin threshold)
rules. binth controls the amount of linear searching at the end of tree search. The current state of the
art appears to be a generalization of HiCuts called HyperCuts [BSV03], which takes the decision tree
approach a step further by allowing the use of several cuts in a single step using multidimensional
array indexing. Because each cut is now a general hypercube, the scheme is called HyperCuts.
HyperCuts appears to work significantly faster than HiCuts on many real databases [BSV03].

28.2.4 Output Scheduling

Returning to our model of a router (Figure 28.1), recall that once the packet arrives at the output
port, the packet could be placed in a FIFO queue. If congestion occurs and the output link buffers
fill up, packets arriving at the tail of the queue are dropped. Many routers use such a default output
link scheduling mechanism that is often referred to as FIFO with tail-drop.

However, there are other options. First, we could place packets in multiple queues based on
packet headers and schedule these output queues according to some scheduling policy. Second,
even if we had a single queue we need not always drop from the tail when buffers overflow; we
can even, surprisingly, drop a packet when the packet buffer is not full. These options are useful to
provide router support for congestion and to providing QoS guarantees to flows. Minimally, such
QoS guarantees involve sharing bandwidth and ideally requires guaranteeing delays to say video and
audio flows. We now describe some of these scheduling options for routers.

Random Early Detection (RED): RED is a packet scheduling algorithm implemented in most
modern routers even at the highest speeds, and has become a de facto standard. In a nutshell, a
RED router monitors the average output queue length; when it goes beyond a threshold, it randomly
drops arriving packets with a certain probability even though there may be space to buffer the packet.
The dropped packet acts as a signal to the source to slow down early, preventing a large number of
dropped packets later.

The implementation of RED is more complex than it seems. For example, we need to calculate the
output queue size using a weighted average with weight w. The weight w is used to bias the average
toward older samples. The weighted average calculation can be made efficient by only allowing the
w to be a reciprocal of a power of two so that multiplications reduce to easy bit shifting. There is a
certain amount of interpolation to be done as well, which can also be done easily using shifts if the
parameters are powers of 2.

Token Bucket Policing: So far with RED we assumed that all packets are placed in a single output
queue; the RED drop decision is taken at the input of this queue. In addition, many ISPs require
limiting the rate of traffic for a flow. More specifically, an ISP may want to limit NEWS traffic in its
network to no more than 1 Mbps. Such examples of bandwidth limiting can be easily accomplished
by a technique called token bucket policing which uses only a single queue per flow and a single
counter per flow.

Conceptually there is a bucket per flow that fills with “tokens” at the specified average rate of R
per sec The bucket has size limited to the specified burst size of B tokens. Thus when the bucket is
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full all incoming tokens are dropped. When packets arrive for a flow, they are allowed out only if the
bucket contains a number of tokens equal to the size of packet in bits. If not, the packet is queued
until sufficient tokens arrive. Since there can be at most B tokens, a burst is limited to at most B
bits followed by the more steady rate of R bits per second. This can be easily implemented using a
counter and a timer per flow.

Unfortunately, token bucket shaping requires a separate queue for each flow, which is expensive.
If one wishes to limit oneself to a single queue, a simpler technique is to use a token bucket policer.
The idea would be to simply drop any packet that arrives to find the token bucket empty. In other
words, a policer is a shaper without the buffer. A policer only needs a counter and a timer per flow,
which is simple to implement at high speeds using the efficient timer implementations.

Providing Bandwidth Guarantees: Another requirement for customers is to provide predictable
bandwidth guarantees to some streams, say voice over IP (VoIP) traffic. An ideal scheme called
bit-by-bit round robin [DKS89] sends one bit out from each queue in round-robin order. Since bits
cannot be split within packets, simulated bit-by-bit round robin [DKS89] suggests doing a discrete
time simulation of the perfectly fair bit-by-bit system, and then sending packets out in the same
order they would have in the bit-by-bit system. It was also discovered that this algorithm could
also provide good delay bounds for say video traffic. Unfortunately, the sorting required is hard to
implement at gigabit speeds.

While bit-by-bit round robin provides both bandwidth guarantees and delay bounds, many
applications can benefit from just bandwidth guarantees. Now, the simplest scheduler to implement
is packet-by-packet round robin where the scheduler serves one packet from each active queue
in each round. Unfortunately, packet-by-packet round robin (unlike the more complex bit-by-bit
round robin) is unfair. If Queue 1 only has large packets and Queue 2 only has small packets, then
Queue 1 will get more bandwidth in terms of bits per second than Queue 2.

By relaxing the specification to focus only on bandwidth guarantees, it is possible to fix the
unfairness of packet-by-packet round robin without simulating bit-by-bit round robin. Each queue
is given a quantum which is like a periodic salary that gets credited to the queue’s bank account on
every round-robin cycle. A queue cannot spend (i.e., send packets of the corresponding size) more
than is contained in its account. However, the balance remains in the account for possible spending
in the next round-robin cycle.

More precisely, for each queue i, the Deficit Round Robin (DRR) algorithm keeps a quantum size
Qi and a deficit counter Di. The larger the quantum size assigned to a queue, the larger the share
of the bandwidth it receives. On each round-robin scan, the algorithm will service as many packets
as possible for queue i with size < Qi + Di. If packets remain in queue i’s queue, the algorithm
stores the “deficit” or remainder in Di for the next opportunity. It is easy to prove that the DRR
algorithm is fair in the long term for any combination of packet sizes, and that it takes only a few
more instructions to implement than packet-by-packet round robin.

Delay Guarantees: Bandwidth guarantees are good for throughput but may not suffice for latency-
critical traffic like voice or video. The problem is that if an occasional voice packet arrives it needs
to be scheduled before a round-robin scheduler finally moves its pointer to this queue. First, let us
consider what an ideal delay bound should be in Figure 28.12. The left figure shows three video flows
that traverse a common output link; the flows have reserved five, eight, and two bandwidth units,
respectively, of a 15-unit output link. The right figure shows the ideal “view” of Video 2 if it had
its own dedicated router with an output link of eight units. Thus the ideal delay bound is the delay
that a flow would have received in isolation assuming an output link bandwidth equal to its own
reservation.

In theory, the simulated bit-by-bit round-robin algorithm [DKS89] guarantees isolation and delay
bounds. Thus it was used as the basis for the IntServ proposal as a scheduler that could integrate
video, voice, and data. However, bit-by-bit round robin is expensive to implement.
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FIGURE 28.12 Defining what an ideal delay bound should be.

Strict bit-by-bit round robin takes O(n) time per packet, where n is the number of concurrent
flows. Faster approximations that take O(log(n)) time were introduced by Stiliadis and Verma [SV96]
and Bennett and Zhang [BZ96]. We will only provide some intuition behind another variant of these
algorithms called Virtual Clock [Zha91].

Suppose the rate of flow F is r. What is the departure time of a packet p of flow F arriving at a
router dedicated to F that always transmits at r bits per second? Well, if p arrives before the previous
packet from flow F (say prev) is transmitted, then p has to wait for prev to depart; otherwise p gets
transmitted right away. Thus in an ideal system, packet p will depart by: Maximum (Arrival Time(p),
Departure Time (prev)) + Length(p)/r. This is a recursive equation and can easily be solved if we
know the arrival times of all packets in flow F up to and including packet p. We now use p’s departure
time in the ideal system as a deadline in the real system.

The packet deadlines translate into a scheduling algorithm using a classic real-time scheduler
called Earliest Deadline First: the scheduler sorts the deadlines of all packets at the head of each flow
queue. The scheduler then sends the packet with the earliest deadline first. This earliest deadline
packet scheduler is called Virtual Clock [Zha91]. Finally, note that sorting can be done (at some
expense) using hardware heaps [BL00]. In practice, however, most routers implement DRR but do
not implement algorithms that guarantee delay bounds.

28.3 Endnode Algorithmics

From router algorithms, we now turn to endnode algorithmics. Our purpose is two fold. First, having
learned about some of the important techniques for building a high-performance router, it is worth
understanding some of the basic bottlenecks and techniques for building a high performance server,
say a Web server. Second, the principles used in endnode algorithms are often different from router
algorithmics. There is less of a focus on hardware or even clever algorithms. Instead, there is more
of a focus on systems issues and on combating structural overheads caused by existing operating
systems and architectures.

We now proceed to examine two major endnode bottlenecks: copying and control overhead.

28.3.1 Avoiding Redundant Copying

Figure 28.13 shows the sequence of data transfers involved in reading file data from the disk to the
sending of the corresponding segments via the network adaptor. The file is read from disk into
the application buffer via say a read() system call. The combination of the HTTP response and the
application buffer is then sent to the network over the TCP connection to the client by say a write()
system call. The TCP code in the network subsystem of the kernel breaks up the response data into
network-sized segments, and transmits them to the network adaptor after adding a TCP checksum
to each segment.
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FIGURE 28.13 Redundant copies involved in handling a GET request at a server.

The details are more complex. First, the file is read into a piece of kernel memory called the file
cache (Copy 1). This is useful to serve subsequent requests to a popular file. The file is then copied
from the file cache into the Web server application buffer (Copy 2, see Figure 28.13).

The Web server then does a write() to the corresponding socket. Since the application can freely
reuse its buffer (or even deallocate it) at any time after the write(), the network subsystem in the
kernel cannot simply transmit out of the application buffer. Thus UNIX (and many other operating
systems) provide what is known as copy semantics. The application buffer specified in the write()
call is copied to a socket buffer (another buffer within the kernel, at a different address in memory
than either the file cache or the application buffer). This is called Copy 3 in Figure 28.13. Finally,
each segment is sent out to the network (after IP and link headers have been pasted) by copying the
data from the socket buffer to memory within the network adaptor. This is called Copy 4.

In between, the TCP software in the kernel must make a pass over the data to compute the
TCP checksum. The TCP checksum essentially computes the sum of 16 bits words in each TCP
segment’s data.

Each of the four copies and the checksum consume resources. All four copies and the checksum
calculation consume bandwidth on the memory bus. The copies between memory locations (Copies
2 and 3) are actually worse than the others because they require one READ and one WRITE across
the bus for every word of memory transferred. The TCP checksum requires only one READ for
every word, and a single WRITE to append the final checksum. Finally, Copies 1 and 4 can be as
expensive as Copies 2 and 3 if the CPU orchestrates the copy (so-called programmed I/O); however,
if the devices themselves copy (so-called direct memory access or DMA), the cost is only a single
READ or WRITE per word across the bus.

The copies also consume I/O bus bandwidth and ultimately memory bandwidth itself. A memory
that supplies a word of size W bits every x nanoseconds has a fundamental limit on throughput of
W/x bits per nanosecond. For example, even assuming DMA, these copies ensure that the memory
bus is used 7 times for each word in the file sent out by the server. Thus the Web server throughput
cannot exceed T/7 where T is the smaller of the speed of the memory and the memory bus.

Secondly, and more basically, the extra copies consume memory. The same file (Figure 28.13)
could be stored in the file cache, the application buffer, and the socket buffer. While memory seems
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to be cheap and plentiful (especially when buying a PC!), it does have some limits, and Web servers
would like to use as much as possible for the file cache to avoid slow disk I/O. Thus triply replicating
a file reduces the file cache by a factor of three, which in turn reduces the cache hit rate and server
performance.

In summary, redundant copies hurt performance in two fundamental and orthogonal ways. First,
by using more bus and memory bandwidth than strictly necessary, the Web server runs slower than
bus speeds even when serving documents that are in memory. Second, by using more memory than
it should the Web server will have to read an unduly large fraction of files from disk instead of from
the file cache.

Avoiding Copies using Shared memory: Modern UNIX variants [Ste98] provide a convenient
system call known as mmap() to allow an application like a server to map a file into its virtual
memory address space. Other operating systems provide equivalent functions. Conceptually, when
a file is mapped into an application’s address space, it is as if the application has cached a copy of the
file in its memory. This seems very redundant because the file system also maintains cached files.
However, using the magic of virtual memory the cached file is really only a set of mappings so that
other applications and the file server cache can gain common access to one set of physical pages for
the file.

Avoiding File System Copies by I/O Splicing: While some have tried to move applications within
the kernel to avoid copies, a much more maintainable idea keeps the server application in user space.
This is done using a simple idea called I/O splicing to eliminate all the copying in Figure 28.13. I/O
splicing is shown in Figure 28.14 and was first introduced in [FP93]. The idea is to introduce a new
system call that combines the old call to read a file with the old call to send a message to the network.
By allowing the kernel to splice together these two hitherto separate system calls, all redundant
copies can be avoided. Many systems have system calls such as SendFile() which are now used by
several commercial vendors.

Memory

Memory bus
Copy 1

Copy 2

Network adaptor

Network

Disk

I/O Bus

CPU

Web server application
SendFile()

Kernel File cache buffer

FIGURE 28.14 In I/O splicing, all the indirection caused by copying to and from user space buffers is removed by a
single system call that “splices” together the I/O stream from the disk with the I/O stream to the network. As always,
Copy 1 can be removed for files in the cache.
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28.3.2 Reducing Control Overhead

Figure 28.13 reviewed the copying overhead involved in a Web server by showing the potential
copies involved in responding to a GET (a request to get data) at a server. By contrast, Figure 28.15
shows the potential control overhead involved in a large Web server that handles many clients.

For the purposes of understanding the possible control overhead involved in serving a GET
request, the relevant aspects are slightly different from that in the earlier section on copy overhead.
First, assume the client has sent a TCP SYN request to the server that arrives at the adaptor from
which it is placed in memory. The kernel is then informed of this arrival via an interrupt. The kernel
notifies the Web server via the unblocking of an earlier system call; the Web server application will
accept this connection if it has sufficient resources.

In the second step of processing, some server process parses the Web request. For example,
assume the request is GET File 1. In the third step, the server needs to locate where the file is on
disk, for example by navigating directory structures that may also be stored on disk. Once the file
is located, in the fourth step, the server process initiates a read to the file system (another system
call). If the file is in the file cache, the read request can be satisfied quickly; failing a cache hit, the file
subsystem initiates a disk seek to read the data from disk. Finally, after the file is in an application
buffer, the server sends out the HTTP response by writing to the corresponding connection (another
system call).

So far the only control overhead appears to be that of system calls and interrupts. However, that
is because we have not examined closely the structure of the networking and application code.

First, if the networking code is structured naively, with a single process per layer in the stack, then
the process scheduling overhead (in the order of 100s of microseconds) of processing a packet can
easily be much larger than a single packet arrival time. This potential scheduling overhead is shown
in Figure 28.15 with a dashed line to the TCP/IP code in the kernel. Fortunately, most networking
code is structured more monolithically with minimal control overhead, although there are some
clever techniques that can do even better.
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FIGURE 28.15 Control overhead involved in handling a GET request at a server.



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C028 Finals Page 26 2009-9-25

28-26 Special Topics and Techniques

Second, our description of Web processing has focused on a single client. Since we are assuming
a large Web server that is working concurrently on behalf of thousands of clients, it is unclear how
the Web server should be structured. At one extreme, if each client is a separate process (or thread)
running the Web server code, concurrency is maximized (because when client 1 is waiting for a
disk read, client 2 could be sending out network packets) at the cost of high process scheduling
overhead.

On the other hand, if all clients are handled by a single event-driven process, then context
switching overhead is minimized, but the single process must internally schedule the clients to
maximize concurrency. In particular, it must know when file reads have completed and when
network data has arrived.

Many operating systems provide a system call for this purpose that we have generically called
FindActive(). For example, in UNIX the specific name for this generic routine is the select() system
call. While even an empty system call is expensive because of the kernel-to-application boundary
crossing, an inefficient select() implementation can be even more expensive.

Thus there are challenging questions as to how to structure both the networking and server code
in order to minimize scheduling overhead and maximize concurrency. For this reason, Figure 28.15
shows the clients partitioned into groups, each of which is implemented in a single process or thread.
Note that placing all clients in a single group yields the event-driven approach, while placing each
client in a separate group yields the process (or thread) per client approach.

Thus an unoptimized implementation can incur considerable process switching overhead (100s
of microseconds) if the application and networking code is poorly structured. Even if process
structuring overhead is removed, system calls can cost 10s of microseconds, and interrupts can cost
microseconds. To put these numbers in perspective, observe that on a 10-Gigabit Ethernet link, a
40-byte packet can arrive at a PC every 3.2 μs.

We now begin attacking the bottlenecks described in Figure 28.15.
Event Driven Schedulers: In terms of programming, the simplest way to implement a Web server is

to structure the processing of each client as a separate process. Thus the web server application does
not need to perform scheduling between clients; the operating system does this automatically on the
application’s behalf. However, process context switching and restoring is expensive. To avoid such
process scheduling costs, the application must implement its own internal scheduler that juggles the
state of each client.

For example, the application may have to implement a state machine that remembers that Client
1 is in Stage 2 (HTTP processing), while Client 2 is in Stage 3 (waiting for disk I/O), and Client 3 is
Stage 4 (waiting for a socket buffer to clear up to send the next part of the response).

However, the kernel has an advantage over an application program because the kernel sees all I/O
completion events. For example, if Client 1 is blocked waiting for I/O, in a per thread implementation,
when the disk controller interrupts the CPU to say that the data is now in memory, the kernel can
now attempt to schedule the Client 1 thread.

Thus if the Web server application is to do its own scheduling between clients, the kernel must
pass information across the API to allow a single threaded application to view the completion of all
I/O that it has initiated. Many operating systems provide such a facility that we generically called
FindActive() in Figure 28.15. For example, Windows NT 3.5 has a I/O Completion Port (IOCP)
mechanism, and UNIX provides the select() system call.

The main idea is that the application stays in a loop invoking the FindActive() call. Assuming there
is always some work to do on behalf of some client, the call will return with a list of I/O descriptors
(e.g., file 1 data is now in memory, connection 5 has received data) with pending work. When the
Web server processes these active descriptors, it loops back to making another FindActive() call.

If there is always some client that needs attention (typically true for a busy server), there is no need
to sleep and invoke the costs of context switching (e.g., scheduler overhead, Translation Lookaside
Buffer misses) when scheduling between clients. Application-specific internal scheduling is more
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FIGURE 28.16 Reading and writing to memory is not mediated by the kernel.

efficient than invoking the general purpose, external CPU scheduler, because the application knows
the minimum set of context that must be saved when moving from client to client.

Avoiding System Calls: We now turn our attention to one more bottleneck in Figure 28.15. When
an application wants to send data, it must somehow tell the adaptor where the data is. Similarly, when
the application wants to receive data, it must specify buffers where the received packet data should
be written to. Today, in UNIX this is typically done using system calls where the application tells
the kernel about data it wishes to send, and buffers it wishes to receive to. Even if we implement the
protocol in user-space the kernel must service these system calls for every packet sent and received.

This appears to be required because there can be several applications sending and receiving
data from a common adaptor; since the adaptor is a shared resource, it seems unthinkable for an
application to write directly to the device registers of a network adaptor without kernel mediation
to check for malicious or erroneous use. Or is it?

A simple analogy suggests that alternatives may be possible. In Figure 28.16 we see that when an
application wants to set the value of a variable X equal to 10, it does not actually make a call to the
kernel. If this were the case, every read and write in a program would be slowed down very badly.
Instead, the hardware determines the virtual page of X, translates it to a physical page (say 10) via
a cache called the Translation Lookaside Buffer (TLB), and then allows direct access as long as the
application has Page 10 mapped into its virtual memory.

If Page 10 is not mapped into the applications virtual memory, the hardware generates an
exception and causes the kernel to intervene to determine why there is a page access violation. Notice
that the kernel was involved in setting up the virtual memory for the application (only the kernel
should be allowed to do so for reasons of security), and may be involved if the application violates
its page accesses that the kernel set up. However, the kernel is not involved in every access. Could we
hope for a similar approach for application access to adaptor memory to avoid wasted system calls?

To see if this is possible we need to examine more carefully what information an application sends
and receives from an adaptor. Clearly, we must prevent incorrect or malicious applications from
damaging other applications or the kernel itself. Figure 28.17 shows an application that wishes to
receive data directly from the adaptor. Typically, an application that does so must queue a descriptor.
A descriptor is a small piece of information that describes the buffer in main memory where the data
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FIGURE 28.17 Application device channels.
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for the next packet (for this application) should be written to. Thus we should consider carefully and
separately both descriptor memory as well as the actual buffer memory.

We can deal with descriptor memory quite easily by recalling that the adaptor memory is memory
mapped. Suppose the adaptor has 10,000 bytes of memory which is considered memory on the
bus, and the physical page size of the system is 1000 bytes. This means that the adaptor has 10
physical pages. Suppose we allocate two physical pages to each of five high-performance applications
(e.g., Web, FTP) that want to use the adaptor to transfer data. Suppose the Web application gets 2
physical pages 9 and 10, and FTP gets pages 3 and 4. Then the kernel maps the physical pages 9 and 10
into the Web application’s page table, and physical pages 3 and 4 into the FTP application’s page table.

Now the Web application can write directly to physical pages 9 and 10 without any danger; if
it tries to write into pages 3 and 4, the virtual memory hardware will generate an exception. Thus
we are exploiting existing hardware in the form of the TLB (recall this is the Translation Lookaside
Buffer) to protect access to pages. So now let us assume that page 10 is a sequence of free buffer
descriptors written by the Web application; each buffer descriptor describes a page of main memory
(assume this can be done using just 32 bits) that will be used to receive the next packet described for
the Web application.

For example, Page 10 could contain the sequence 18, 12 (see Figure 28.17). This means that the
Web application has currently queued physical pages 18 and 12 for the next incoming packet and
its successor. We assume that pages 18 and 12 are in main memory and are physically locked pages
that are assigned to the Web application by the kernel when the Web application first started.

When a new packet arrives for the Web application, the adaptor will demultiplex the packet to the
descriptor page 10 using a packet filter, and then it will write the data of the packet (using DMA) to
page 18. When it is done, the adaptor will write the descriptor 18 to a page of written page descriptors,
say Page 9, that the Web application is authorized to read. It is up to the Web application to finish
processing written pages and periodically queue new free buffer descriptors to the adaptor.

This sounds fine but there is a serious security flaw. Suppose the Web application, through malice
or error, writes the sequence 155, 120 to its descriptor page (which it can do). Suppose further that
Page 155 is in main memory and is where the kernel stores its data structures. When the adaptor
gets the next packet for the Web application it will write it to page 155, overwriting the kernel data
structures. This causes a serious problem, at least causing the machine to crash.

The reader may wonder why virtual memory hardware cannot detect this problem. The reason
is that virtual memory hardware (observe the position of the TLB in Figure 28.16) only protects
against unauthorized access by processes running on the CPU. This is because the TLB intercepts
every READ (or WRITE) access done by the CPU and can do checks. However, devices like adaptors
that do DMA bypass the virtual memory system and directly access memory.

This is not a problem in practice because applications cannot program the devices (like disks,
adaptors) to read or write to specific places at the application’s command. Instead, access is always
mediated by the kernel. If we are getting rid of the kernel, then we have to ensure that everything the
application can instruct the adaptor to do is carefully scrutinized.

The solution used in the Application Device Channel (ADC) [DDP94] solution is to have the
kernel pass the adaptor a list of valid physical pages that each application using the adaptor directly
can access. This can be done once the application first starts and before data transfer begins. In other
words, the time-consuming computation involved in authorizing pages is shifted in time from the
data transfer phase to application initialization. For example, when the Web application first starts
it can ask the kernel for two physical pages, say 18 and 12, and then ask the kernel to authorize the
use of these pages to the adaptor.

The kernel is then bypassed for normal data operation. However, if now the Web application
queues the descriptor 155, and a new packet arrives, the adaptor will first check the number 155
against its authorized list for the application (i.e., 18, 12). Since it is not in the list, the adaptor will
not overwrite the kernel data structures (phew!).
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In summary, ADCs are based on shifting protection functions in space from the kernel to the
adaptor, using some precomputed information (list of allowed physical pages, passed from the kernel
to the adaptor augmented with the normal virtual memory hardware.

VIA [CIC97] stands for virtual interface architecture, and is a commercial standard proposed by
Microsoft and Intel that advocates the ideas in ADCs. The term virtual interface makes sense because
one can think of an application device channel as providing each application with their own virtual
interface that they can manipulate without kernel intervention.

28.4 Conclusions

In this chapter we have described a set of bottlenecks for endnodes and routers and a set of the most
effective known techniques for overcoming these bottlenecks. While the techniques seem ad hoc,
the following is an attempt at a systematic classification based on 15 principles that can be seen to
underlie the specific techniques described earlier.

• P1, Avoid obvious waste in common situations: In a system, there may be wasted resources
in special sequences of operations. If these patterns occur commonly, it may be worth
eliminating the waste. An example is making multiple copies of a packet between operat-
ing system and user buffers. Notice that each operation (single packet copy) considered
by itself has no obvious waste. It is the sequence of operations that has obvious waste.

• P2, Shift computation in time: Systems have an aspect in space and time. Many efficiencies
can be gained by shifting computation in time. Two generic methods that fall under time-
shifting are

• P2a, Precomputation refers to computing quantities before they are actually used to save
time at the point of use. The Lulea and Tree BitMap algorithms precompute information
when prefixes are inserted.

• P2b, Lazy evaluation refers to postponing expensive operations at critical times. A famous
example of lazy evaluation is Copy-on-write [Wik89]. Suppose we have to copy a virtual
address space A to another space B for process migration. Copy-on-write makes page table
entries in B’s virtual address space point to the corresponding page in A. When a process
using B writes to a location, then a separate copy of the corresponding page in A is made
for B, and the write is performed. Since we expect the number of pages that are written
in B to be small compared to the total number of pages, this avoids unnecessary copying.

• P3, Relax specifications: When a system is first designed top-down, functions are par-
titioned among subsystems. When implementation difficulties arise, the basic system
structure may have to be redone.
Two techniques that arise from this principle are
3a, Trading Certainty for Time: A simple example is stochastic fair queuing [McK91]
that reduces the memory for DRR even further by hashing flows into buckets and doing
DRR only on the buckets.
3b, Shifting Computation in Space: This refers to moving computation from one subsys-
tem to another as shifting computation in space. In networking, for example, the need for
routers to fragment packets has recently been avoided by having end systems calculate a
packet size that will pass all routers.

• P4, Leverage other system components: For example, algorithms are designed to fit the
features offered by the hardware. Some techniques that fall under this principle are
P4a, Exploit local access costs: The Tree Bitmap algorithm, for example, crucially relies
on the ability of hardware to do wide memory accesses.
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P4b, Trade memory for speed: The obvious technique is to use more memory such as
lookup tables to save processing time. A less obvious technique is to compress a data
structure to make it more likely to fit into cache because cache accesses are cheaper than
memory accesses as in the Lulea IP lookup algorithm.

• P5, Add hardware to improve performance: The following list of specific hardware tech-
niques are often used in networking hardware.
5a, Use memory interleaving and pipelining: All the IP lookup algorithms described in
this chapter can be sped up by assigning each level of the tree to a separate bank in
memory such as RAMBUS and pipelining.
5b, Use wide word parallelism: A common theme in many networking designs such as
the bit vector scheme for packet classification described above is to use wide memory
words that can be processed in parallel.
5c, Combine DRAM and SRAM: While the use of SRAM as a cache for DRAM databases
is classical, a more creative idea is described in [RV03,SIPM02] where a large number of
high-speed counters are implemented by storing only the low-order bits of each counter
in SRAM, while the entire counter is backed up in DRAM.

• P6, Replace inefficient general-purpose routines: It can pay to design an optimized and
specialized routine such as the SendFile() call described earlier that can splice data from
the file system to the network without going through user space.

• P7, Avoid unnecessary generality: For example, RED calculations in routers can be speeded
up by restricting parameters to powers of 2.

• P8, Do not confuse specification and implementation: Implementors are free to change
the reference implementation as long as the two implementations have the same external
effects. The use of ADCs, for example, is an unusual structuring technique.

• P9, Pass information like hints in module interfaces: A hint is information passed from
a client to a service which, if correct, can avoid expensive computation by the service. A
complex example of such a hint in networking is a so-called packet filter by which users
pass to the kernel a specification of which packets they wish to receive.

• P10, Pass information in protocol headers: For distributed systems, the logical extension
to prior Principle P9 is to pass information such as hints in message headers. Two classic
examples in networking including tag switching and multi protocol label switching (in
which lookup hints are passed between routers) and differentiated services (where type
of service information is passed from the edge routers to core routers).

• P11, Optimize the expected case: It pays to make common behaviors efficient, even at
the cost of making uncommon behaviors more expensive. This is more often used for
endnode bottlenecks. A classic example in networking is so-called header prediction
where the cost of processing a TCP packet can be greatly reduced by assuming that the
next packet received is closely related to the last packet processed.

• P12, Add or exploit state to gain speed: If an operation is expensive, consider maintaining
additional but redundant state to speed up the operation. For example, the Lucent Bit
vector scheme adds extra bitmaps to the basic structure.

• P13, Exploit degrees of freedom: It helps to be aware of the variables that are under one’s
control, and the evaluation criteria used to determine good performance. For example,
a major breakthrough in switching occurred with the realization that the use of per-
output/input queues and a matching algorithm could finesse the problem of head-of-line
blocking.

• P14, Use special techniques for finite universes such as integers: When dealing with small
universes such as moderately sized integers, techniques like bucket sorting, array lookup,
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and using bitmaps are often more efficient than general-purpose sorting and searching
algorithms. Once again, the switch scheduling algorithm iSLIP relies on the fact that
computing the first bit set in a bitmap is feasible for reasonable bit widths (up to 64 bits)
which works fine for small switches of up to 64 ports.

• P15, Use algorithmic techniques: Even where there are major bottlenecks such as virtual
address translation, systems designers finesse the need for clever algorithms by passing
hints, using caches, and performing table lookup. In many cases, Principles 1–14 need to
be applied before any algorithmic issues become bottlenecks. Even when this is done the
real breakthroughs may arise from applying algorithmic thinking as opposed to merely
reusing existing algorithms. For example, Patricia tries with skip counts are not the
lookup algorithm of choice compared to say Tree bitmap.

Finally, networking continues to change and new bottlenecks are beginning to emerge in security,
measurement, and application-aware processing. While the specific techniques and bottlenecks
described in this chapter may change or become less important as time passes, we hope that the
ways of thinking embodied in the 15 principles will continue to remain relevant. More details of this
approach and a description of other bottlenecks can be found in the textbook [Var05]. The author
is grateful to Rick Adams of Elsevier for permission to use material and figures from [Var05].
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29.1 Introduction

A Grid is a virtual computer created through the interconnection of geographically dispersed, and
usually heterogeneous, computing and data resources. In this chapter, we focus on the algorithmic
issues to be addressed when trying to efficiently deploy one or several applications on a Grid (or,
more generally, on a distributed and heterogeneous collection of computing resources).

The most obvious problem with Grids is their heterogeneity. For instance, any Grid will contain
processors of different characteristics and the running time of any application will thus depend
on processors that have been enrolled to execute it. The obvious pitfall for a parallel computation
using processors of different speeds would be to slow down its execution at the pace of the least
efficient processor. An intuitive approach to circumvent this problem would be to pick only fast
processors or, at least, to pick processors of equivalent processing power. As shown in Section 29.2.2,
this intuition can lead to very poor performance. Indeed, in some cases, it is not computing power
that matters, but communication capabilities. In a Grid, of course, the communication capabilities
of the different entities will be also heterogeneous. Communications in Grids can be even more a
problem than in traditional parallel computers because of the irregularity of the interconnection
network and also because of longer distance, and thus slower, communication links. In Grids,
resources are abundant, but the resources used to solve a problem must be carefully chosen: resource
selection is key to performance.

29-1
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Grid resources are not only heterogeneous, they are also irregular. In general, a Grid has no
reason to have a nice hierarchical design pattern: it is built through a time-evolving aggregation
of time-evolving platforms bought and assembled by independent and not necessarily cooperating
organizations. To efficiently deploy on such a platform any parallel application that is not embar-
rassingly parallel, we need some accurate platform model∗ and some accurate application model.

Problem:

• Very accurate models are intractable. Using such models forbids to have any significant
insight of the problem characteristics and thus of what efficient solutions should be.

• Tractable models are often over-simplistic and do not enable to predict the actual behavior
of practical applications.

These classical issues of platform modeling and application modeling may seem even more difficult
in a Grid computing framework, as Grid platforms are likely to be of very large scale. However,
because Grids are complex and difficult to efficiently exploit, their typical use is restricted to run very
large and time-consuming applications. For such applications, we can relax classical optimization
problems, such as the absolute minimization of the total execution time (or makespan), and, for
instance, concentrate on throughput maximization. The latter objective is much simpler, while it
can be shown to provide an asymptotically optimal solution for the execution time. In other words,
it is sometimes less difficult to efficiently schedule 10,000 tasks on a heterogeneous Grid than to
schedule 10 tasks on a homogeneous cluster.

Section 29.2 aims at assessing the importance of three key ingredients of Grid algorithmic tech-
niques: (1) static approaches; (2) application models; and (3) platform models. In Section 29.3 we
cover in detail an interesting case study, that of matrix product under memory constraints. Matrix
product is the archetype of parallel algorithms; we revisit this well-known computational kernel
in a client–server framework: we deal with the problem of multiplying two very large matrices,
which initially reside on the disk of a master processor. The master aims at enrolling adequately
chosen worker processors in order to perform the computation. Because the matrices would not
fit in the main memory of the workers, communication overhead will be the main bottleneck. We
present a theoretical study of this problem and, from its conclusions, we derive practical algorithms.
We conclude this chapter by stating some research directions in Section 29.4, by defining terms in
Section 29.5, and by pointing to additional sources of information in Section 29.6.

29.2 Underlying Principles

In this section, we illustrate the impact of three key components of algorithm design and scheduling
techniques for Grid applications. In Section 29.2.1, we emphasize the importance of static approaches,
which are likely to achieve much better performance than their dynamic counterparts in the presence
of heterogeneous resources, as they can predict, and thus avoid, the pitfalls due to the heterogeneity
of resources. Then, in Section 29.2.2, we revisit an application model and show the benefits of
a steady-state approach aimed at throughput optimization (as opposed to a traditional approach
targeted to the search of a minimal makespan). Along the way, we stress the impact of resource
selection on application performance: a careful resource selection may enable to reduce execution
time while sparing resources. Finally, in Section 29.2.3, we stress the need to carefully define platform
models, showing that slightly different models can lead to greatly different complexity results and to
solutions of different practical importance.

∗ We may also need such a model to deploy any embarrassingly parallel application that requires large volumes of input
data: these data will induce large communications which can suffer from potential communication bottlenecks.
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29.2.1 The Importance of Static Approaches

In this section, we show that dynamic strategies may be the victims of the obvious pitfalls of platform
heterogeneity: applications are run at the pace of the least efficient processor. Hence the importance
of static approach or semi-static approach.

To illustrate this point, we deal first with the simple problem of distributing independent chunks
of computation to heterogeneous processors. We then use the result of this first study to design
optimal allocation schemes for finite-difference computations over a tiled iteration space.

29.2.1.1 Distributing Independent Chunks

Given B independent chunks of computations, each of equal size (i.e., each requiring the same
amount of work), how can we assign these chunks to p physical processors P1, P2, . . ., Pp of
respective execution times w1, w2, . . ., wp, so that the workload is best balanced? Here the execution
time is understood as the number of time units needed to perform one chunk of computation, that
is, processor Pi executes any computation chunk in wi time units. Obviously, the model is crude,
as communication costs are ignored. Still, how should we distribute chunks to processors? The
intuition is that the load of Pi, that is, the number ni of chunks assigned to it, should be inversely
proportional to wi. The processing time for Pi will be niwi, and we must ensure that

∑p
i=1 ni = B.

The goal is to minimize the total execution time:

Texe = max∑p
i=1 ni=B

(ni × wi).

Consider a toy example with three processors of (relative) execution times w1 = 3, w2 = 5, and
w3 = 8. In Table 29.1, we report the optimal allocations for B = 1 up to B = 10. These allocations are
computed incrementally, using a simple dynamic programming algorithm. Let C = (n1, n2, . . . , np)

with
∑p

i=1 ni = B denote the optimal solution for B chunks. The execution time is max1≤i≤p niwi.
The entry “selected processor” denotes the index of the processor chosen to receive the next chunk.
We select index j such that

(nj + 1)wj = min
1≤i≤p

(ni + 1)wi,

and Pj is assigned the (B + 1)th chunk.
For instance at step 4, i.e., to allocate the fourth chunk, we start from the solution for three chunks,

i.e., (n1, n2, n3) = (2, 1, 0). Which processor Pi should receive the fourth chunk, i.e., which ni should
be increased? There are three possibilities (n1 + 1, n2, n3) = (3, 1, 0), (n1, n2 + 1, n3) = (2, 2, 0), and
(n1, n2, n3 + 1) = (2, 1, 1) of execution times 9 (P1 is the slowest), 10 (P2 is the slowest), and 8 (P3
is the slowest), respectively. Hence we select j = 3 and we retain the solution (n1, n2, n3) = (2, 1, 1).

TABLE 29.1 Running the Dynamic Programming Algorithm with Three Processors:
w1 = 3, w2 = 5, and w3 = 8

Number of Chunks B n1 n2 n3 Texe Selected Processor

0 0 0 0 1
1 1 0 0 3 2
2 1 1 0 5 1
3 2 1 0 6 3
4 2 1 1 8 1
5 3 1 1 9 2
6 3 2 1 10 1
7 4 2 1 12 1
8 5 2 1 15 2
9 5 3 1 15 3

10 5 3 2 16
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The complexity of the dynamic programming algorithm is O(pB) (it can be easily improved to
O(log(p)B)).

Even though we have determined the optimal allocation, we point out that the load is not perfectly
balanced among processors. For instance with B = 10, the load of P1 and P2 is 15 time-units while
that of P3 is 16. In fact, it is easy to see that a perfect load-balancing can be achieved only for values
of B which are multiples of Bopt = L

(∑p
i=1

1
w1

)
, where L = lcm(w1, w2, . . . , wp). In the example,

L = 120 and Bopt = 79. Out of these 79 chunks, 40 go to P1, 24 to P2, and 15 to P3, so that the
execution time of each processor is 120.

Finally, we have to acknowledge that statically computing the optimal allocation may have been
somewhat useless! Indeed, we always have the possibility to use a fully dynamic scheme, where pro-
cessors pick up a new chunk as soon as they are finished with their current one. This dynamic scheme
will self regulate and automatically converge to the optimal distribution. The next example shows
that dynamic strategies may well achieve much poorer performance than their static counterparts.

29.2.1.2 Finite-Difference Computations

Consider the two-dimensional rectangular iteration space represented in Figure 29.1. Tiles are
rectangular, and their edges are parallel to the axes. All tiles have the same fixed size. The size of
the tiled iteration space is N1 × N2. Dependencies between tiles are summarized by the vector pair{(

1
0

)
,
(

0
1

)}
. In other words, the computation of a tile cannot be started before both its left and

lower neighbor tiles have been executed. Such computations are the representative of finite-difference
methods (Wolfe (1996)).

Assume, as before, that there are p different-speed processors, processor Pi, 1 ≤ i ≤ p, with
an execution time wi. Assume also that the columns of tiles are assigned to processors, so as to
increase both the locality and the granularity of the computations. What is the best distribution of
tile columns to processors so that the execution time is minimized? As before, we use a crude model
and neglect all communication costs.∗

When targeting homogeneous processors, a natural approach is to use a pure cyclic allocation
of tile columns to processors (Ohta et al., 1995; Andonov and Rajopadhye, 1997; Högstedt et al.,
1997), or again to use a dynamic approach where processors request a new tile column as soon as
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FIGURE 29.1 A tiled iteration space with horizontal and vertical dependencies.

∗ The following results and conclusions can be extended to include communication costs, assuming for instance that
processors are arranged along a (virtual) ring (Boulet et al., 1999).
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FIGURE 29.2 Stepwise
execution with homoge-
neous processors (num-
bers in tiles denote
execution steps).

they are finished with their current one. Both approaches lead to the same
execution pattern where the execution progresses up along each column (see
Figure 29.2). However, we will see that such a cyclic allocation leads to very
poor performance with heterogeneous processors.

Indeed, the best execution time that we can hope for is

Topt ≈ N1 × N2∑p
i=1

1
wi

.

Here, Topt is the total number of tiles divided by the cumulated speed of the
computing platform, and it is a lower bound on the actual optimal execution
time (even if the load is perfectly balanced, there will be some idle time at the
beginning and the end of the execution). However, using a cyclic allocation,
the execution progresses at the pace of the slowest processor, and we are far
from reaching Topt. Because of dependencies, the dynamic approach (that
allocates the next column to the next available processor) reduces to the

cyclic allocation: hence it becomes very inefficient in a heterogeneous framework.
Consider again the example with three processors, where w1 = 3, w2 = 5, and w3 = 8. As

illustrated in Figure 29.3, the execution time will be

Texe ≈ 8
3

N1N2 ≈ 2.67 N1N2 instead of Topt ≈ 120
79

N1N2 ≈ 1.52 N1N2.

Instead of using a cyclic allocation, we better assign blocks of B consecutive columns to processors.
If we take B = 10 and run the dynamic programming algorithm of Table 29.1, we obtain Texe ≈
1.6 N1N2 as illustrated in Figure 29.4. Because the load is not perfectly balanced when using a block
size B = 10, we do not achieve an execution time equal to Topt, but we are much closer! Had we
used B = 79, we would have obtained the latter value.

For the general case with p processors Pi of execution time wi, we (asymptotically) reach Topt
using the following algorithm:

P1

P2

P3

j

w1 = 3
w2 = 5
w3 = 8

i

FIGURE 29.3 Cyclic allocation with three processors progressing at the pace of the slowest one.

P1

P2

P3

j

w1 = 3
w2 = 5
w3 = 8

i

FIGURE 29.4 Block allocation with three processors achieving a good load balancing.
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1. Compute L = lcm(w1, w2, . . . , wp) (in the example, L = lcm(3, 5, 8) = 120).
2. Assign first n1 = L/w1 columns to P1, next n2 = L/w2 columns to P2, and so on.
3. Set the block size, or the period of the allocation, to B = n1 + n2 + · · · + np (in the

example, B = n1 + n2 + n3 = 40 + 24 + 15 = 79).
4. Change schedule:

• Sort processors so that n1w1 ≤ n2w2 ≤ · · · ≤ npwp.
• Process tiles horizontally within blocks.

We point out that each processor must now progress horizontally across its columns, while in the
previous version it was progressing vertically along each column and finishing the execution of that
column before starting the execution of the next one.

To summarize, the static approach consists in allocating panels of B tile columns to the p pro-
cessors in a periodic fashion. Inside each panel, processors receive an amount of columns inversely
proportional to their speed. Within each panel, the work is well-balanced, and dependencies do not
slow down the execution.

The heterogeneity of the platform had a deep impact on the form of the optimal solution: the
shapes of the optimal solutions for the homogeneous and heterogeneous cases are quite different.
Furthermore, the intuitive dynamic approach is very inefficient: only a static approach can avoid
falling in the trap laid off by the heterogeneity of processors.

29.2.2 The Importance of Application Models

We illustrate here the well-known fact that application models have a deep impact on our capacity
to analyze and solve problems. This is especially true in the case of Grid computing as we must
reconsider some assumptions and approaches that we have been long accustomed to, but which
may now be no longer meaningful. This is because of the particularities of Grid platforms and of the
applications to be executed on such platforms. To make this point, we consider an application made
of a large number of same-size independent jobs to be executed on a tree-shape platform; studying
this example in the steady-state framework enables us to find, in polynomial time, asymptotically
optimal solutions for a problem that is NP-complete in the classical framework.

Along the way, we will show that resource selection can have a deep impact on performance: a
careful resource selection will enable us to reduce execution time while sparing resources. Further-
more, the rule for the selection of resources, in our example, is rather counter-intuitive: processing
speeds do not matter!

29.2.2.1 Motivation

The traditional objective of scheduling algorithms is to minimize the total execution time, or
makespan: given a task graph and a set of computing resources, find a mapping of the tasks onto the
processors, and order the execution of the tasks so that: (1) task precedence constraints are satisfied;
(2) resource constraints are satisfied; and (3) a minimum schedule length is provided. However,
makespan minimization turns out to be NP-hard in most practical situations (Shirazi et al., 1995;
Ausiello et al., 1999). The advent of more heterogeneous architectural platforms is likely to even
increase the computational complexity of the process of mapping applications to machines.

An idea to circumvent the difficulty of makespan minimization is to lower the ambition of the
scheduling objective. Instead of aiming at the absolute minimization of the execution time, why
not consider asymptotic optimality? After all, the number of tasks to be executed on the computing
platform is expected to be very large: otherwise why deploy the corresponding application on a
computational Grid? To state this informally: if there is a nice (meaning, polynomial) way to derive,
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say, a schedule whose length is two hours and three minutes, as opposed to an optimal schedule that
would run for only two hours, we would be satisfied.

This approach has been pioneered by Bertsimas and Gamarnik (1999). Steady-state scheduling
allows one to relax the scheduling problem in many ways. The costs of the initialization and clean-
up phases are neglected. The initial integer formulation is replaced by a continuous or rational
formulation. The precise ordering and allocation of tasks and messages are not required, at least in
the first step. The main idea is to characterize the activity of each resource during each time unit:
which (rational) fraction of time is spent computing, which is spent receiving or sending to which
neighbor. Such activity variables are gathered into a linear program, which includes conservation
laws that characterize the global behavior of the system. The actual schedule then arises naturally
from these quantities.

29.2.2.2 Master–Worker Tasking

In this section, we deal with the master–worker paradigm on a heterogeneous platform, where
resources have different speeds of computation and communication. The target platform is composed
of one specific node M, referred to as the master, together with p workers P1 to Pp (see Figure 29.5).
The master initially holds (or generates the data for) a large collection of independent, identical
tasks to be allocated to the workers. The question for the master is to decide on the number of tasks
(i.e., task files) to forward to each of the workers. Due to heterogeneity, these workers may receive
different amounts of work (maybe none for some of them).
We enforce the following rules of execution:

• The master sends tasks to workers sequentially, and without preemption.
• There is a full computation/communication overlap for each worker.
• Worker Pi receives a task in ci time-units.
• Worker Pi processes a task in wi time-units.
• The master M does not compute any task (but a master with computation time wm can

be simulated as a worker with same computation time and zero communication time).

We are using quite a realistic model of execution, which is called the one-port model and corresponds
to the mode of operation of non-threaded MPI (Message Passing Interface) libraries. Because the
number of tasks to be executed on the computing platform is expected to be large, we target steady-
state optimization problems rather than standard makespan minimization problems. The optimal
steady-state scheduling can be characterized very efficiently, with low-degree polynomial complexity.
It is defined as follows: for each worker processor, determine the fraction of time spent computing,
and the fraction of time spent receiving tasks; for the master, determine the fraction of time spent
communicating along each communication link. The objective is that the (averaged) overall number
of tasks processed at each time-step is maximum.

M

ci

cp

c2

c1

P1 P2 Pi Pp

wpwiw2w1

FIGURE 29.5 The heterogeneous star platform.
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Formally, after a start-up phase, we want the resources to operate in a periodic mode, where worker
Pi executes αi tasks per time-unit. We point out that αi is a rational number, not an integer, so that
there will remain some work to reconstruct a true schedule with an integer number of tasks. First
we express the constraints for computations: Pi needs αi · wi to compute αi tasks, and it computes
these within one time-unit, so necessarily

αi · wi ≤ 1.

As for communications, the master M sends tasks sequentially to the workers, and it takes αi · ci
time-units to send αi tasks along the link to Pi, so necessarily

p∑
i=1

αi · ci ≤ 1. (29.1)

Finally, the objective is to maximize throughput, namely

ρ =
∑

i
αi.

Altogether, we have a linear programming problem in rational numbers, we obtain rational values
for all variables in polynomial time (polynomial in p, the size of the heterogeneous platform). When
we have the optimal solution, we take the least common multiple of the denominators, and multiply
all variables by this quantity, thereby deriving an integer period T for the steady-state operation,
together with an integer number of messages going through each link. Because it arises from the
linear program, log T is indeed a number polynomial in the problem size, but T itself is not. Hence,
describing what happens at every time-step during the period would be exponential in the problem
size. Instead, we have a more compact description of the schedule: we only need the duration of the
p time intervals during which the master is sending tasks to each worker (some possibly zero), and
the duration of the p time intervals during which each worker is computing (again, some possibly
zero).

It turns out that the linear program is so simple that it can be solved analytically:

1. Sort the workers by increasing communication times. Re-number them so that c1 ≤ c2 ≤
· · · ≤ ck.

2. Let q be the largest index so that
∑q

i=1
ci
wi

≤ 1. If q < p let ε = 1 − ∑q
i=1

ci
wi

, otherwise
let ε = 0.

3. Then ρ = ∑q
i=1

1
wi

+ ε
cq+1

.

When q = p the result is expected: it basically says that workers can be fed with tasks fast enough
so that they are all kept computing steadily. However, if q < p the result is surprising: in the situation
when the communication bandwidth is limited, some workers will partially starve; in the optimal
solution, these are those with slow communication rates, whatever their processing speeds. In other
words, a slow processor with a fast communication link is to be preferred to a fast processor with
a slow communication link. The optimal strategy is bandwidth-centric as it delegates work to the
fastest communicating workers, and it does not matter if these workers are computing slowly (but
slow workers will not contribute much to the overall throughput).

Consider the example shown in Figure 29.6. Note that in steady-state mode, communications
for the next tasks occur in parallel with the computations for the current tasks. Figure 29.7 shows
that 11 tasks are computed every 18 time-units, so that ρ = 11/18 ≈ 0.6. If we had used a
purely demand-driven strategy (with workers posting requests and the master serving them in FIFO
order), we would have computed only 5 tasks every 36 time-units, therefore achieving a throughput
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M

21

1 1 163

3 10
20

Fully active Discarded

FIGURE 29.6 An example for the bandwidth-centric strategy.

Tasks Communication Computation

6 Tasks to P1

3 Tasks to P2

2 Tasks to P3

6c1 = 6

3c2 = 6

2c3 = 6

6w1 = 18

3w2 = 18

2w3 = 2

FIGURE 29.7 Achieved throughput for the bandwidth-centric strategy.

of only ρ = 5/36 ≈ 0.14. In fact, we see in this example that the demand-driven strategy end
up with a round-robin distribution of tasks to all workers, regardless of the heterogeneity of the
communication links (and we could make the comparison arbitrarily worse, simply by increasing
the value of c5). The conclusion is that even if resources are cheap and abundant, resource selection
is key to performance.

29.2.2.3 Extension to Tree-Shaped Platforms

In fact, minimizing the total execution time to schedule a bag of independent tasks on a heterogeneous
star platform is a problem of polynomial complexity (Beaumont et al., 2002). But still, we may prefer
to use the regular periodic schedule provided by the steady-state approach than the irregular schedule
returned by the makespan minimization algorithm of Beaumont et al. (2002). In any case, we have
no choice when moving to general tree-shaped platforms: the makespan minimization problem
becomes NP-hard (Dutot, 2003), while the steady-state approach can be smoothly extended from
star to tree platforms. We now outline this extension.

For a node Pi in the tree, let wi denote the time it needs to compute a task, and αi the (fractional)
number of tasks that it executes every time unit. For any edge Pi → Pj in the tree, let ci,j denote the
time needed to send a task from Pi to Pj, and let sent(Pi → Pj) denote the (fractional) number of
tasks sent by Pi to Pj every time unit. The master M = P0 is the root of the tree. If Pi1 , Pi2 , . . . , Pik
denote its children in the tree, we have an equation quite similar to Equation 29.1:

k∑
j=1

sent(P0 → Pij)c0,ij ≤ 1.

If the master computes tasks as well, then we have:

α0w0 ≤ 1.

Consider now an internal node Pi. Let Pi0 denote its parent in the tree, and let Pi1 , Pi2 , . . . , Pik
denote its children in the tree. As before, there are equations to constrain the computations and the
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communications of Pi:

αiwi ≤ 1 and
k∑

j=1

sent(Pi → Pij)ci,ij ≤ 1.

But there is another constraint to write, namely a conservation law: the number of tasks received by
Pi is equal to the sum of the number of tasks that it executes itself plus the number of tasks that it
sends to its children:

sent(Pi0 → Pi) = αi +
k∑

j=1

sent(Pi → Pij).

It is important to understand that the conservation law applies to the steady-state operation: overall,
the flow of incoming tasks equals the flow of tasks consumed in place plus the flow of outgoing tasks.
The law links tasks that arrive during different periods: incoming tasks arrive during the current
period while consumed and outgoing tasks had arrived during the previous period.

Finally, if Pi is a tree leaf whose parent is Pi0 , we easily derive that

αiwi ≤ 1 and sent(Pi0 → Pi) = αi.

The total throughput to optimize is given by

ρ =
∑
allPi

αi.

We have built a linear program, and we can follow the same steps as for star-shaped platforms to
define the period and reconstruct the final schedule.

29.2.2.4 Asymptotic Optimality

We keep the previous notations to prove that the solution to the steady-state scheduling problem
is asymptotically optimal. Given a tree platform and a time bound T, let nbopt(T) be the optimal
number of tasks that can be computed by any schedule, be it periodic or not, within T time units.
We have the following result:

PROPOSITION 29.1 nbopt(T) ≤ ρ × T.

PROOF Consider an optimal schedule. Consider any node Pi, with parent Pi0 and children
Pi1 , Pi2 , . . . , Pik . Let ti(T) be the total number of tasks that are executed by Pi within the T time units.
Similarly, for each edge ei,ij : Pi → Pij in the tree, let ti,ij(T) be the total number of tasks that have
been forwarded by Pi to Pij within the T time units. The following equations hold true:

• ti(T) · wi ≤ T (time for Pi to process its tasks)
• ∑k

j=1 ti,ij(T) · ci,ij ≤ T (time for Pi to forward outgoing tasks in the one-port model)

• ti0,i(T) = ti(T) + ∑k
j=1 ti,ij(T) (conservation equation)

Let αi = witi(T)
T , and sent(Pi → Pij) = ci,ij ti,ij (T)

T . All the equations of the previous linear program
hold, hence

∑
i

αi
wi

≤ ρ, the optimal value. Going back to the original variables, we derive

nbopt(T) =
∑

i
ti(T) ≤ ρ × T
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Essentially Proposition 29.1 says that no schedule can execute more tasks than the optimal steady-
state. There remains to bound the potential loss due to the initialization and the clean-up phase.
Consider the following algorithm (assume T is large enough):

• Solve the linear program: compute the maximal throughput ρ, compute all the values
αi and sent(Pi → Pj), and determine Tperiod. For each processor Pi, determine peri,
the total number of tasks that it receives per period. Note that all these quantities are
independent of T: they depend only upon wi and cij, characteristics of the platform.

• Initialization: the master sends peri tasks to each processor Pi. This requires I units of
time, where I is a constant independent of T.

• Let J be the maximum time for each processor to consume peri tasks (J = maxi{peri ·wi}).
Again, J is a constant independent of T.

• Let r = �T−I−J
Tperiod

�.

• Steady-state scheduling: during r periods of duration Tperiod, operate the platform in
steady state.

• Clean-up: do not forward any task but consume in place all remaining tasks. This requires
at most J time units. Do nothing during the very last units (T − I − J may not be evenly
divisible by Tperiod).

The number of tasks processed by the above algorithm within T time units is equal to nb(T) =
(r + 1) × Tperiod × ρ.

PROPOSITION 29.2 The previous scheduling algorithm based upon steady-state operation is
asymptotically optimal:

lim
T→+∞

nb(T)

nbopt(T)
= 1.

PROOF Using Proposition 29.1, nbopt(T) ≤ ρT. From the description of the algorithm, we have
nb(T) = ((r + 1)Tperiod) · ρ ≥ (T − I − J) · ρ. Hence the result as I, J, Tperiod, and ρ are constants
independent of T.

29.2.2.5 Why Steady-State Scheduling?

In addition to its simplicity, which enables one to tackle more complex problems, steady-state
scheduling enjoys two main advantages over traditional scheduling:

• Efficiency: Steady-state scheduling provides, by definition, a periodic schedule, which is
described in compact form and is thus possible to implement efficiently in practice. This
is to be contrasted with the need for classical schedules to list the starting dates and target
processors for each task in the application.

• Adaptability: Because the schedule is periodic, it is possible to dynamically record the
observed performance during the current period, and to inject this information into
the algorithm that will compute the optimal schedule for the next period. This makes it
possible to react on the fly to resource availability variations, which is the common case
for example on non-dedicated Grid platforms.
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29.2.2.6 Conclusion

We have seen that when we target Grid platforms, we have to reconsider our usual assumptions on
application modeling. Indeed, relaxing some classical hypotheses can enable to solve optimization
problems, which would otherwise be too difficult, while the cost of the relaxation itself may be
negligible. Among the classical hypotheses and methods, one should reconsider the choice of the
objective function: rather than optimizing the makespan, the minimization of the applications’
flow-times, slowdowns, or other quality of service metrics, or the maximization of the platform
throughput may be more relevant.

29.2.3 The Importance of Platform Models

We illustrate here the well-known fact that platform models have a deep impact on our capacity to
analyze problems and to find solutions of practical importance. As anyone would have guessed, we
will see that the more accurate and complex the platform model, the more difficult is the optimization
problem. We will also see that using a more accurate platform model—which may forbid us to derive
optimal solutions in polynomial-time—strategies that are.

To show the impact and the importance of platform models, we focus on the mapping of iterative
algorithms. Such algorithms typically operate on a large collection of application data, which is
partitioned over the processors. At each iteration, some independent calculations are carried out in
parallel, and then some communications take place. This scheme is very general, and encompasses
a broad spectrum of scientific computations, from mesh based solvers (e.g., elliptic PDE solvers) to
signal processing (e.g., recursive convolution), and image processing algorithms (e.g., mask-based
algorithms such as thinning). Our aim here is twofold. The first one is to show the impact of the
network model on problem complexity. The second one is to stress the importance of an accurate
model.

An abstract view of the problem is the following: an iterative algorithm repeatedly operates on a
large rectangular matrix of data samples. This data matrix is split into vertical slices that are allocated
to the computing resources (processors). At each step of the algorithm, the slices are updated locally,
and then boundary information is exchanged between consecutive slices. This (virtual) geometrical
constraint advocates that processors be organized as a virtual ring. Then each processor will only
communicate twice, once with its (virtual) predecessor in the ring, and once with its (virtual)
successor. Note that there is no reason a priori to restrict to a uni-dimensional partitioning of the
data, and to map it onto a uni-dimensional ring of processors: more general data partitionings,
such as two-dimensional, recursive, or even arbitrary slicings into rectangles, could be considered.
But uni-dimensional partitionings are very natural for most applications, and, as will be shown, the
problem to find the optimal one is already difficult.

The target architecture is a fully heterogeneous platform, composed of different-speed processors
that communicate through links of potentially different bandwidths. On the architecture side, the
problem is twofold: (1) select the processors that will participate in the solution and decide for their
ordering that will represent the arrangement into a ring; (2) assign communication routes from
each participating processor to its successor in the ring. One major difficulty of this ring embedding
process is that some of the communication routes may have to share some physical communication
links: indeed, the communication networks of heterogeneous platforms typically are sparse, i.e., far
from being fully connected. If two or more routes share the same physical link, we have to decide
which portion of the link bandwidth is to be assigned to each route. Once the ring and the routing
have been decided, there remains to determine the best partitioning of the application data. Clearly,
the quality of the final solution depends on many application and architecture parameters, and we
should expect the optimization problem to be very difficult to solve.
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29.2.3.1 Framework

29.2.3.1.1 Computing Costs
The target computing platform is modeled as a directed graph G = (P, E). Each node Pi in the graph,
1 ≤ i ≤ |P| = p, models a computing resource, and is weighted by its relative execution time wi: Pi
requires wi time-steps to process a unit-size task.

29.2.3.1.2 Communication Costs
Graph edges represent communication links and are labeled with available bandwidths. If there is an
oriented link e ∈ E from Pi to Pj, let be denote the bandwidth of the link. It will take Dc/be time-units
to transfer a single message of size Dc from Pi to Pj using link e. Note that all messages have same
size Dc, since only boundary information is exchanged between consecutive processors.

29.2.3.1.3 Application Parameters: Computations
Let Dw be the total size of the work to be performed at each step of the algorithm. Processor Pi will
accomplish a share αi ·Dw of this total work, where αi ≥ 0 for 1 ≤ i ≤ p and

∑p
i=1 αi = 1. Note that

we allow αj = 0 for some index j, meaning that processor Pj does not participate in the computation.
Indeed, there is no reason a priori for all resources to be involved, especially when the total work is
not very large: the extra communications incurred by adding more processors may slow down the
whole process, despite the increased cumulated speed. Also note that we allow αi · Dw to be rational:
we assume the total work to be a divisible load (Bharadwaj et al., 1996; Gallet et al., 2009).

29.2.3.1.4 Application Parameters: Communications in the Ring
We arrange participating processors along a ring (yet to be determined). After updating its data
slice of size αi · Dw, each active processor Pi sends a message of fixed length Dc (typically some
boundary data) to its successor and one to its predecessor. We assume that the successor of the last
processor is the first processor, and that the predecessor of the first processor is the last processor.
To illustrate the relationship between Dw and Dc, we can view the original data matrix as a large
rectangle composed of Dw columns of height Dc, so that one single column is exchanged between
any pair of consecutive processors in the ring. Let succ(i) and pred(i) denote the successor and the
predecessor of Pi in the virtual ring. The time needed to transfer a message of size Dc from Pi to Pj
is Dc · ci,j, where the communication delay ci,j will be instantiated in the following text according to
whether links are assumed to be homogeneous or heterogeneous, to be shared or dedicated.

29.2.3.1.5 Objective Function
The total cost of a single step in the iterative algorithm is the maximum, over all participating
processors, of the time spent computing and communicating:

Tstep = max
1≤i≤p

I{i}[αi · Dw · wi + Dc · (ci,pred(i) + ci,succ(i))] (29.2)

where I{i}[x] = x if Pi is involved in the computation, and 0 otherwise. Here we use a model
where each processor sequentially sends messages to its two neighbors, and we implicitly assume
asynchronous receptions. (Other architectural models could be worth investigating.)

In summary, our goal is to determine the best way to select q processors out of the p processors
available, to assign them computational workloads, to arrange them along a ring and, if needed, to
share the network bandwidth so that the total execution time per step is minimized. We denote our
optimization problem as BUILDRING(p, wi, E, be, Dw, Dc): knowing the number of processors and
their respective execution times, the existing communication links and their respective bandwidths,
the overall amount of work and the size of the border that two successive processors are exchanging,
what is the shortest achievable iteration step Tstep? The decision problem associated to the BUILDRING
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optimization problem is BUILDRINGDEC(p, wi, E, be, Dw, Dc, K): is there a solution to BUILDRING, such
that Tstep is no greater than K?

We look at the complexity of our problem with respect to the model used for representing the
interconnection network. We start from a simplistic model that we gradually make more accurate
and thus more complicated. Along the way, we study how the problem complexity evolves.

29.2.3.2 Fully Connected Platforms with Homogeneous Communication Links

Here, we assume that all communication links have the same characteristics and that each pair of
processors is connected by a direct (physical) network link. This corresponds, for example, to a
cluster where processors are linked through a switch. Under these assumptions, we do not have
to care about communication routing, or whether two distinct communications may use the same
physical link.

By hypothesis, we have ci,j = c for all i and j, where c is a constant (it is the inverse of the bandwidth
of any link). We have only two cases to consider: (1) only one processor is active; (2) all processors
are involved. Indeed, as soon as a single communication occurs, we can have several ones happening
in parallel for the same cost, and the best is then to divide the computing load among all resources. In
the former case, the only active processor is obviously the fastest one and Tstep = Dw · min1≤i≤p wi.
In the latter case, the load is most balanced when the execution time is the same for all processors:
otherwise, removing a small fraction of the load of the processor with largest execution time, and
giving it to a processor finishing earlier, would decrease the maximum computation time. This leads
to αi.wi = Constant for all i, with

∑p
i=1 αi = 1. We derive that Tstep = Dw · wcumul + 2Dc · c,

where wcumul = 1∑p
i=1

1
wi

. If the platform is given, there is an application-dependent threshold

determining whether only the fastest computing resource, as opposed to all the resources, should
be involved. Given Dc, the fastest processor will do all the job for small values of Dw, namely, when
Dw ≤ Dc · 2c

min1≤i≤p wi−wcumul
. For larger values of Dw, all processors should be involved.

29.2.3.3 Fully Connected Platforms with Heterogeneous Communication Links

We are now assuming a more general model, where communication links can have different charac-
teristics but where the interconnection network is still assumed to be complete. As the interconnec-
tion network is still complete, we assume that if a communication must occur from a processor Pi
to a processor Pj, it happens along the direct physical link connecting these two processors. There-
fore, as previously, we do not have to care about communication routing, or whether two distinct
communications may use the same physical link.

Before formally stating the complexity of our problem on such a platform, let us consider the
special case where all processors are involved in an optimal solution. All the p processors require
the same amount of time to compute and communicate: otherwise, we would once again slightly
decrease the computing load of the processor completing its assignment last (computations followed
by communications) and assign extra work to another one. Hence (see Figure 29.8 for an illustration)
we have

Tstep = αi · Dw · wi + Dc · (ci,pred(i) + ci,succ(i))

for all i. Since
∑p

i=1 αi = 1, and defining wcumul = 1∑p
i=1

1
wi

as before, we obtain

Tstep

Dw · wcumul
= 1 + Dc

Dw

p∑
i=1

ci,pred(i) + ci,succ(i)

wi
. (29.3)

Therefore, Tstep will be minimal when
∑p

i=1
ci,pred(i)+ci,succ(i)

wi
is minimal. This will be achieved by the

ring that corresponds to the shortest Hamiltonian cycle in the graph G = (P, E), where each edge
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FIGURE 29.8 Summary of computation and communication times with q = 5 processors.

ei,j is given the weight di,j = ci,j
wi

+ cj,i
wj

. Therefore, if all processors are involved, our optimization
problem is equivalent to a traveling salesman problem. This hints at the NP-completeness of the
problem. Formally, the following theorem states that, as soon as the communication links become
heterogeneous, the optimization problem becomes NP-complete (see [Legrand et al., 2004] for a
detailed proof):

THEOREM 29.1 BUILDRINGDEC(p, wi, E = {(Pj, Pk)}1≤j,k≤p,j�=k, be, Dw, Dc,K) is NP-complete.

29.2.3.4 Heterogeneous Platforms

R
b
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e
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d
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P2

FIGURE 29.9 A small-size
cluster.

We are now considering general (sparse) interconnection networks.
The problem becomes even harder. Formally, the decision problem
associated to the BUILDRING optimization problem turns out to be NP-
complete. To really show the complexity induced by the fact that the
interconnection network is no longer complete, we consider the toy
example presented in Figure 29.9. This example contains five processors
and five bidirectional communication links. For the sake of simplicity,
processors P1 to P4 are labeled in the order that they appear in the 4-
processor ring that we construct leaving out the other processor, R. Also,
links are labeled with letters from a to e instead of indices; we use bx to
denote the bandwidth of link x.

29.2.3.4.1 Routing
There may no longer exist a direct route between any two processors. We then assume that we can
freely decide how to route messages from one processor to another. We thus have to define the
communication path Si (S stands for successor) from Pi to Psucc(i). Similarly, we have to define the
communication path Pi (P stands for predecessor) from Pi to Ppred(i). In our example, for S1, we
arbitrarily choose to use links a and b so that the communication path from P1 to its successor P2 is
S1 = {a, b}. But for the path P2 we may use links b, d, and e so that the communication path from
P2 to its predecessor P1 is P2 = {b, d, e}. Here is the complete and the arbitrary list of paths (note
that many other choices could have been made):

• From P1: to P2, S1 = {a, b} and to P4, P1 = {e}
• From P2: to P3, S2 = {c} and to P1, P2 = {b, d, e}
• From P3: to P4, S3 = {c, b, d} and to P2, P3 = {c}
• From P4: to P1, S4 = {e} and to P3, P4 = {d, b, c}
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29.2.3.4.2 Communication Costs
It takes Dc/be time-units to transfer a single message of size Dc through link e. When a communication
uses several links, the overall speed is defined by the link with the smallest available bandwidth. When
there are several messages sharing the link, each of them receives a portion (to be determined) of the
available bandwidth. For instance, if there are two messages sharing link e, and if the first message
is allocated two-thirds of the bandwidth, i.e., 2be/3, then the second message cannot use more
than be/3. We assume that the portions of the bandwidth allocated to the messages can be freely
determined by the user, the only rule is that the sum of all these portions cannot exceed the total link
bandwidth. Let si,m be the portion of the bandwidth bem of the physical link em that has been allocated
to the path Si. Of course if a link er is not used in the path, then si,r = 0. Let ci,succ(i) = 1

minem∈Si si,m
:

then Pi requires Dc ·ci,succ(i) time-units to send its message of size Dc to its successor Psucc(i). Similarly,
let pi,m be the portion of the bandwidth bem of the physical link em that has been allocated to the
path Pi, and ci,pred(i) = 1

minem∈Pi pi,m
. Then Pi requires Dc.ci,pred(i) time-units to send its message of

size Dc to its predecessor Ppred(i). Because of the resource constraints on the link bandwidths, the
allocated bandwidth portions must satisfy the following set of inequations:

Link a: s1,a ≤ ba Link b: s1,b + s3,b + p2,b + p4,b ≤ bb
Link c: s2,c + s3,c + p3,c + p4,c ≤ bc Link d: s3,d + p2,d + p4,d ≤ bd
Link e: s4,e + p1,e + p2,e ≤ be

Finally, we write the communication costs of the communication paths. For P1, because S1 =
{a, b}, we get c1,2 = 1

min(s1,a,s1,b)
; and because P1 = {e}, we get c1,4 = 1

p1,e
. We proceed likewise for P2

to P4.
Now that we have all the constraints, we can (try to) compute the αi, si,j, and pi,j minimizing

the objective function Tstep. Equation 29.4 summarizes the whole system of (in)equations, which is
quadratic in the unknowns αi, si,j, ci,j, and pi,j.∗ For instance, the constraint s1,a · c1,2 ≥ 1 comes
from the condition c1,2 = 1

min(s1,a,s1,b)
. The fact that this system is quadratic is easily explained by the

fact that we are allocating bandwidths, while we are trying to optimize time, which is the inverse of
bandwidths.

MINIMIZE max
1≤i≤4

(αi · Dw · wi + Dc · (ci,i−1 + ci,i+1)) subject to∑4
i=1 αi = 1

s1,a ≤ ba s1,b + s3,b + p2,b + p4,b ≤ bb s2,c + s3,c + p3,c + p4,c ≤ bc
s3,d + p2,d + p4,d ≤ bd s4,e + p1,e + p2,e ≤ be
s1,a · c1,2 ≥ 1 s1,b · c1,2 ≥ 1 p1,e · c1,4 ≥ 1
s2,c · c2,3 ≥ 1 p2,b · c2,1 ≥ 1 p2,d · c2,1 ≥ 1
p2,e · c2,1 ≥ 1 s3,c · c3,4 ≥ 1 s3,b · c3,4 ≥ 1
s3,d · c3,4 ≥ 1 p3,c · c3,2 ≥ 1 s4,e · c4,1 ≥ 1
p4,d · c4,3 ≥ 1 p4,b · c4,3 ≥ 1 p4,c · c4,3 ≥ 1

(29.4)

29.2.3.4.3 Conclusion
To build up System 29.4, we have used arbitrary communication paths. There are of course many
other paths to be tried. Worse, there are many other rings to be tried, made with the same processors
arranged differently or using other processors. The number of processors q must be varied too. In
other words, if we assume that (1) the processor selection was performed; (2) the selected processors

∗ We did not express in Equation 29.4 the inequations stating that all the unknowns are nonnegative.
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were arranged into a ring; and that (3) the communication paths were defined, then the remaining
load (and bandwidth) distribution problem is solved by a closed-form expression in the case of
complete graphs and by a quadratic system in the general case.

Having a more realistic network model, first assuming that the network is no more homogeneous,
and then that it is no more complete, each time makes our problem far more complicated. The
question now is whether we gain anything by considering more accurate models that forbid us to
derive optimal solutions in polynomial-time.

29.2.3.5 Heuristics

We use Equation 29.3 as a basis for a greedy algorithm to grow a solution ring iteratively. The greedy
heuristic starts by selecting the best pair of processors. Then, it iteratively includes a new node in
the current solution ring. Assume that we have already selected a ring of r processors. For each
remaining processor Pk, we search where to insert it in the current ring: for each pair of successive
processors (Pi, Pj) in the ring, we evaluate with Equation 29.3 the quality of the ring obtained by
inserting Pk between Pi and Pj. Together with the ring, we have 2r communicating paths, and a
certain portion of the initial bandwidth has been allocated to these paths. To build the two new paths
involving Pk, we reason on the graph G = (V , E, b) where each edge is labeled with the remaining
available bandwidth: b(em) is no longer the initial bandwidth of edge em, but what has been left by
the 2r paths. We then build the required communication paths, allocate them bandwidths using the
max–min fairness heuristic (Bertsekas and Gallager, 1987), and then obtain a value for Tstep. We
retain the processor and the pair that minimize Tstep. Finally, among the solution that only uses
the fastest processor and the rings built for each ring size in [2, p], we pick the solution having the
smallest Tstep. It is important to try all the values of the ring size as Tstep may not vary monotonically
with the ring size.

A concise way to describe the heuristic is the following: we greedily grow a ring by peeling off the
bandwidths to insert new processors. When we are done with the heuristic, we have a q-processor
ring, q workloads, 2q communicating paths, bandwidth portions, and communication costs for these
paths, and a feasible value of Tstep.

To assess the importance of having an accurate communication model, we compare the above
heuristic run on the exact platform graph, to the very same heuristic run on the clique version of the
same platform: the platform graph is then a complete graph of same vertices where each (virtual)
edge is labeled by the bandwidth of the shortest-path (in terms of bandwidth) of the corresponding
computing nodes of the actual platform. Clearly, the value of Tstep achieved by the second heuristic
may well not be feasible as the actual network is not fully connected. Therefore, to compute the
actual performance of the solution built, we keep the ring, and the communicating paths between
adjacent processors in the ring, and we compute feasible bandwidth values using the max–min
fairness heuristic.

We only report the conclusion of the experiments (Legrand et al., 2004). When both heuristics
are compared on actual platforms, the first one, that takes possible link contentions into account,
clearly outperforms the second when communication matters, i.e., when the communication-to-
computation ratio is high.

29.2.3.6 Conclusion

Here we have studied the complexity of a particular problem, namely, the load-balancing of iterative
computations with respect to the model of the interconnection network. As expected, the more
accurate and complex the network model, the more difficult the optimization problem. Then,
one may wonder whether using an accurate network model—which forbids us to derive optimal
solutions in polynomial-time—is more of a loss than a gain. In other words, we may wonder whether
a solution, optimal for a simpler model, and roughly adapted to the general case, would not have
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better performance than a solution directly designed for the general case, but relying on a bunch
of non-guaranteed heuristics. Using models of actual platforms, one can evaluate the heuristics
designed for two different models of interconnection networks. The comparison is meaningful as
the heuristic for the more general model is equivalent to the other heuristic when used on the simpler
model. The evaluation clearly shows that, in this context, we must use accurate platform models in
order to design better heuristics and to better harness the processing power of Grid platforms.

29.3 Case Study: Matrix Product under Memory Constraints

29.3.1 Introduction

Matrix product is a key computational kernel in many scientific applications, and it has been
extensively studied on parallel architectures. Two well-known parallel versions are Cannon’s algo-
rithm (Cannon, 1969) and the ScaLAPACK outer product algorithm (Blackford et al., 1997).
Typically, parallel implementations work well on 2D processor arrays, because the input matrices are
sliced horizontally and vertically into square blocks that are mapped one-to-one onto the physical
resources; several communications can take place in parallel, both horizontally and vertically. Even
better, most of these communications can be overlapped with (independent) computations. All these
characteristics render the matrix product kernel quite amenable to an efficient parallel implemen-
tation on 2D processor arrays. On a Grid, however, the computing resources are interconnected by
a sparse network: there are no direct links between any pair of processors and assuming the inter-
connection network to be a 2D grid would lead to communication contentions and performance
degradations. A new parallelization approach should thus be undertaken.

Furthermore, as the Grid may contain long-distance, and thus slow-communicating, network
links, it becomes necessary to include the cost of both the initial distribution of the matrices to
the processors and of collecting back the results. These input/output operations have always been
neglected in the analysis of the conventional algorithms. This is because only Θ(n2) coefficients need
to be distributed in the beginning, and gathered at the end, as opposed to the Θ(n3) computations∗
to be performed (where n is the problem size). The assumption that these communications can be
ignored could have made sense on dedicated parallel machines like the Intel Paragon, but it is no
longer reasonable on heterogeneous platforms. Furthermore, when processors cannot store all the
matrices in their memory, the total volume of communication required can be larger than Θ(n2) as
the same matrix element may have to be sent several times to the same processor.

We therefore adopt an application scenario where input files are read from a fixed repository
(a disk on a data server). Computations will be delegated to available resources in the target architec-
ture, and results will be returned to the repository. This calls for a master–worker paradigm, or more
precisely for a computational scheme where the master (the processor holding the input data) assigns
computations to other resources, the workers. In this centralized approach, all matrix files originate
from, and must be returned to, the master. The master distributes both data and computations to
the workers. Finally, because we investigate the parallelization of large problems, we cannot assume
that full matrix panels can be stored in worker memories and be reused for subsequent updates (e.g.,
as in ScaLAPACK).

To summarize, the target platform is composed of several workers with different computing
powers, different bandwidth links to/from the master, and different, limited, memory capacities.
The first problem is resource selection. Which workers should be enrolled in the execution? All
of them, or maybe only the faster computing ones, or else only the faster-communicating ones?

∗ Of course, there are Θ(n3) computations if we only consider algorithms that uses the standard way of multiplying
matrices; this excludes Strassen’s and Winograd’s algorithms (Cormen et al., 1990).
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Once participating resources have been selected, there remain several scheduling decisions to take:
How to minimize the number of communications? In which order workers should receive input
data and return results? What amount of communications can be overlapped with (independent)
computations?

The rest of this section surveys recent work by Dongarra et al. (2008a,b). In Section 29.3.2, we
state the scheduling problem precisely, and we introduce some notations. Next, in Section 29.3.3,
we proceed with the analysis of the total communication volume that is needed in the presence of
memory constraints. We show how to improve a well-known bound by Toledo (1999) and Ironya
et al. (2004), and we outline an algorithm (Dongarra et al., 2008a) almost achieving this bound on
platforms with a single worker. We deal with homogeneous platforms in Section 29.3.4, and with
heterogeneous ones in Section 29.3.5. We report on some MPI experiments in Section 29.3.6, and
we conclude in Section 29.3.7.

29.3.2 Framework and Notations

Here, we formally state the hypotheses on the application and on the target platform.

29.3.2.1 Application

We deal with the computational kernel C ← C + A · B. We partition the three matrices A, B, and
C as illustrated in Figure 29.10. More precisely

• We use a block-oriented approach. The atomic elements that we manipulate are not
matrix coefficients but instead square blocks of size q × q (hence with q2 coefficients).
This is to harness the power of Level 3 BLAS routines (Blackford et al., 1996). Typically,
q = 80 or 100 when using ATLAS-generated routines (Whaley and Dongarra, 1998;
Clint Whaley et al., 2001).

• The input matrix A is of size nA × nAB :

– We split A into r horizontal stripes Ai, 1 ≤ i ≤ r, where r = nA/q.

– We split each stripeAi into t square q×q blocksAi,k, 1 ≤ k ≤ t, where t = nAB/q.

... ...

...

...

k, j ...

i, ji, k

r Stripes

t Blocks
of size q × q

s Stripes

...

r × s Blocks

FIGURE 29.10 Partition of the three matrices.
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• The input matrix B is of size nAB × nB :

– We split B into s vertical stripes Bj, 1 ≤ j ≤ s, where s = nB/q.

– We split each stripe Bj into t square q × q blocks Bk,j, 1 ≤ k ≤ t.

• We compute C = C +A · B. Matrix C is accessed (both for input and output) by square
q × q blocks Ci,j, 1 ≤ i ≤ r, 1 ≤ j ≤ s; there are r × s such blocks.

We point out that, with such a decomposition, all stripes and blocks have same size. This will greatly
simplify the analysis of communication costs.

29.3.2.2 Platform

We target a star network S = {P0, P1, P2, . . . , Pp}, composed of a master P0 and of p workers Pi,
1 ≤ i ≤ p (see Figure 29.11). Because we manipulate large data blocks, we adopt a linear cost
model, both for computations and communications (i.e., we neglect start-up overheads). We have
the following notations:

• It takes X.wi time-units to execute a task of size X on Pi.
• It takes X.ci time units for the master P0 to send a message of size X to Pi or to receive a

message of size X from Pi.

Our star platforms are thus fully heterogeneous, both in terms of computations and of commu-
nications. Without the loss of generality, we assume that the master has no processing capability
(otherwise, add a fictitious extra worker paying no communication cost to simulate computation at
the master).

For the communication model, we once again use the strict one-port model, which is defined as
follows:

• The master can only send data to, and receive data from, a single worker at a given
time-step, and it cannot be enrolled in more than one communication at any time-step.

• A given worker cannot start an execution before it has terminated to receive the needed
data from the master; similarly, it cannot start sending the results back to the master
before finishing the computation.

Network links

Master

ci

pi

mi

Memory

Workers

wi

FIGURE 29.11 Fully heterogeneous platform.
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Our final assumption is related to memory capacity; we assume that a worker Pi can only store mi
blocks (either from A, B, and/or C). For large problems, this memory limitation will considerably
impact the design of the algorithms, as data reuse will be greatly dependent on the amount of
available buffers.

29.3.3 Minimization of the Communication Volume

The initial assumption is that communication costs dominate the problem. Therefore, we do not
directly target makespan minimization, but communication volume minimization. Experiments, in
Section 29.3.6, will show that the communication-volume minimization approach effectively leads
to algorithms with shorter makespans.

We thus want to derive a lower bound on the total number of communications (sent from, or
received by, the master) that are needed to execute any matrix multiplication algorithm. As we
are only interested in minimizing the total communication volume, we can simulate any parallel
algorithm on a single worker and we only need to consider the one-worker case.

We deal with the following formulation of the problem:

• The master sends blocks Aik, Bkj, and Cij.
• The master retrieves final values of blocks Cij.
• We enforce limited memory on the worker; only m buffers are available, which means

that at most m blocks of A, B, and/or C can simultaneously be stored in the worker.

First, we improve a lower bound on the communication volume established by Toledo (1999)
and Ironya et al. (2004). Then, we describe an algorithm that aims at reusing C blocks as much as
possible after they have been loaded, and we assess its performance.

29.3.3.1 Lower Bound on the Communication Volume

To derive the lower bound, the idea is to estimate the number of computations made, thanks to m con-
secutive communication steps (once again, the unit here is a matrix block). Using Loomis–Whitney
inequality (Ironya et al., 2004), one can then show that a lower bound for the communication-to-
computation ratio is

CCRopt ≥
√

27
8m

.

29.3.3.2 The Maximum Reuse Algorithm

The aforementioned lower bound on the communication volume is obtained when the three matrices
A, B, and C are equally accessed during a sequence of communications. This may suggest to allocate
one-third of the memory to each of these matrices. In fact, Toledo (1999) uses this memory layout.
A closer look to the problem shows that the multiplied matrices, A and B, have the same behavior
that differs from the behavior of the result matrix C. Indeed, if an element of C is no longer used, it
cannot be simply discarded from the memory as the elements of A and B are, but it must be sent
back to the master. Intuitively, sending an element of C to a worker also costs the communication
needed to retrieve it from the worker, and is thus twice as expensive as sending an element of A or
B. Hence the motivation to design an algorithm, which reuses as much as possible the elements of C.

Cannon’s algorithm (Cannon, 1969) and the ScaLAPACK outer product algorithm (Blackford
et al., 1997) both distribute square blocks of C to the processors. Intuitively, squares are better than
elongated rectangles because their perimeter (which is proportional to the communication volume)
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1 μ μ2

FIGURE 29.12 Memory layout for the maximum reuse algorithm when m = 21: μ = 4; one block is used for A, μ

for B, and μ2 for C.

is smaller for the same area. We use the same approach here, even if there are no optimality results
to justify it.

The maximum reuse algorithm uses the memory layout illustrated in Figure 29.12. Four consec-
utive execution steps are shown in Figure 29.13. Assume that there are m available buffers. First we
find μ as the largest integer, such that 1+μ+μ2 ≤ m. The idea is to use one buffer to storeA blocks,
μ buffers to store B blocks, and μ2 buffers to store C blocks. In the outer loop of the algorithm,
a μ × μ square of C blocks is loaded. Once these μ2 blocks have been loaded, they are repeatedly
updated in the inner loop of the algorithm until their final value is computed. Then the blocks are
returned to the master, and μ2 new C blocks are sent by the master and stored by the worker. As
illustrated in Figure 29.12, we need μ buffers to store a row of B blocks, but only one buffer for A
blocks: A blocks are sent in sequence, each of them is used in combination with a row of μ B blocks
to update the corresponding row of C blocks. This leads to the following sketch of the algorithm:

Outer loop: while there remain C blocks to be computed

• Store μ2 blocks of C in worker’s memory: {Ci,j | i0 ≤ i < i0 + μ, j0 ≤ j < j0 + μ}.
• Inner loop: For each k from 1 to t

FIGURE 29.13 Four steps of the maximum reuse algorithm, with m = 21 and μ = 4. The elements of C updated are
displayed on white on black.
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1. Send a row of μ elements {Bk,j | j0 ≤ j < j0 + μ}.

2. Sequentially send μ elements of column {Ai,k | i0 ≤ i < i0 + μ}. For each Ai,k,
update μ elements of C.

• Return results to master.

The performance of one iteration of the outer loop of the maximum reuse algorithm can be readily
determined:

• We need 2μ2 communications to send and retrieve C blocks.
• For each value of t

– We need μ elements of A and μ elements of B.

– We update μ2 blocks.

In terms of block operations, the communication-to-computation ratio achieved by the algorithm
is thus

CCR = 2μ2 + 2μt
μ2t

= 2
t

+ 2
μ

.

For large problems, i.e., large values of t, we see that CCR is asymptotically close to the value
CCR∞ = 2√

m . We point out that, in terms of data elements, the communication-to-computation
ratio is divided by a factor q. Indeed, a block consists of q2 coefficients but an update requires q3

floating-point operations. Also, the ratio CCR∞ achieved by the maximum reuse algorithm is lower
by a factor

√
3 than the ratio achieved by the blocked matrix-multiply algorithm of Toledo (1999).

Finally, we remark that the performance of the maximum reuse algorithm is quite close to the lower
bound derived earlier:

CCR∞ = 2√
m

=
√

32
8m

.

29.3.4 Algorithms for Homogeneous Platforms

We now adapt the maximum reuse algorithm to fully homogeneous platforms. We have a limitation
on the memory capacity. So we must first decide which part of the memory will be used to store
which part of the original matrices, in order to maximize the total number of computations per
time unit.

We load into the memory of each worker μ blocks of A and μ blocks of B to compute μ2 blocks
of C (in other words, we waste some memory in order to decrease the number of communications
and the synchronization effects). In addition, we need 2μ extra buffers, split into μ buffers for A and
μ for B, in order to overlap computation and communication steps. In fact, μ buffers for A and μ

for B would suffice for each update, but we need to prepare for the next update while computing.
Overall, the number μ2 of C blocks that we can simultaneously load into memory is defined by the
largest integer μ such that: μ2 + 4μ ≤ m.

We have to determine the number of participating workers P. On the communication side, we
know that in a round (computing a C block entirely), the master exchanges with each worker 2μ2

blocks of C (μ2 sent and μ2 received), and sends μt blocks of A and μt blocks of B. Also during
this round, on the computation side, each worker computes μ2t block updates. If we enroll too
many processors, the communication capacity of the master will be exceeded. There is a limit on
the number of blocks sent per time unit, hence on the maximal processor number P, which we
compute as follows: P is the smallest integer, such that 2μtc ×P ≥ μ2tw. Indeed, this is the smallest
value to saturate the communication capacity of the master required to sustain the corresponding
computations. Finally, we cannot use more processors than are available and, in the context of
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matrix multiplication, we have c = q2τc and w = q3τa, where τc and τa, respectively, represent the
elementary communication and computation times. Hence we obtain the formula:

P = min
{

p,
⌈

μq
2

τa

τc

⌉}
.

Finally, the participating workers receive data in a round-robin fashion.

29.3.5 Algorithms for Heterogeneous Platforms

We now consider the general problem, i.e., when processors are heterogeneous in terms of memory
size as well as computation or communication time. As in the previous section, mi is the number
of q × q blocks that fit in the memory of worker Pi, and we need to load into the memory of
Pi 2μi blocks of A, 2μi blocks of B, and μ2

i blocks of C. This number of blocks loaded into the
memory changes from worker to worker, because it depends upon their memory capacities. We first
compute all the different values of μi, μi being the largest integer, such that: μ2

i + 4μi ≤ mi. To
adapt the maximum reuse algorithm to heterogeneous platforms, the first idea would be to adopt
a steady-state-like approach. The problem with such a solution, however, is that workers may not
have enough memory to execute it! Therefore, this solution cannot always be realized in practice
and, to avoid such memory problems, resource selection will be performed through a step-by-step
simulation. However, we point out that a steady-state solution can be seen as an upper bound of the
performance that can be achieved.

The different memory capacities of the workers imply that we assign them chunks of different
sizes. This requirement complicates the global partitioning of the C matrix among the workers. To
take this into account, while simplifying the implementation, the algorithm only assigns full matrix
column blocks. This is done in a two-phase approach.

In the first phase, the allocation of blocks to processors is pre-computed using a processor selection
algorithm later described. We start as if we had a huge matrix of size ∞ × ∑p

i=1 μi. Each time a
processor Pi is chosen by the processor selection algorithm, it is assigned a square chunk of μ2

i C
blocks. As soon as some processor Pi has enough blocks to fill up μi block columns of the initial
matrix, we decide that Pi will indeed execute these columns during the parallel execution. Therefore
we maintain a panel of

∑p
i=1 μi block columns and fill them out by assigning blocks to processors.

We stop this phase as soon as all the r × s blocks of the initial matrix have been allocated columnwise
by this process. Note that worker Pi will be assigned a block column after it has been selected � r

μi
�

times by the algorithm.
In the second phase we perform the actual execution. Messages will be sent to workers according

to the previous selection process. The first time a processor Pi is selected, it receives a square chunk
of μ2

i C blocks, which initializes its repeated pattern of operation; the following t times, Pi receives
μi A and μi B blocks, which requires 2μici time-units.

To decide which processor to select at each step of the first phase, one can imagine two variants
of an incremental algorithm, a global one that aims at optimizing the overall communication-to-
computation ratio, and a local one that selects the best processor for the next stage.

29.3.5.1 Global Selection Algorithm

The intuitive idea for this algorithm is to select the processor that maximizes the ratio of the total
work achieved so far (in terms of block updates) over the completion time of the last communication.
The latter represents the time spent by the master so far, either sending data to workers or staying
idle waiting for the workers to finish their current computations. Estimating computations is easy:
Pi executes μ2

i block updates per assignment. Communications are slightly more complicated to
deal with; we cannot just use the communication time 2μici of Pi for the A and B blocks because
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we need to take its ready time into account. Indeed, if Pi is currently busy executing work, it cannot
receive additional data too much in advance because its memory is limited. Please see Dongarra et al.
(2008b) for further details.

29.3.5.2 Local Selection Algorithm

The global selection algorithm picks, as the next processor, the one that maximizes the ratio of the
total amount of work assigned over the time needed to send all the required data. Instead, the local
selection algorithm chooses, as destination of the ith communication, the processor that maximizes
the ratio of the amount of work assigned by this communication over the time during which the
communication link is used to performed this communication (i.e., the elapsed time between the
end of (i − 1)th communication and the end of the ith communication). As previously, if processor
Pj is the target of the ith communication, the ith communication is the sending of μj blocks of A
and μj blocks of B to processor Pj, which enables it to perform μ2

j updates.

29.3.6 MPI Experiments

An experimental evaluation enables to assess the practical importance of the algorithm designed
above.

29.3.6.1 Platforms

We used a heterogeneous cluster composed of twenty-seven processors. It is composed of four
different homogeneous sets of machines. The different sets are composed of (1) 8 SuperMicro
servers 5013-GM, with processors P4 2.4 GHz; (2) 5 SuperMicro servers 6013PI, with processors P4
Xeon 2.4 GHz; (3) 7 SuperMicro servers 5013SI, with processors P4 Xeon 2.6 GHz; (4) 7 SuperMicro
servers IDE250W, with processors P4 2.8 GHz.

All nodes have 1 GB of memory and are running the Linux operating system. The nodes are con-
nected with a switched 10 Mbps Fast Ethernet network. As this platform may not be as heterogeneous
as we would like, we sometimes artificially modify its heterogeneity. In order to artificially slow down
a communication link, we send the same message several times to one worker. The same idea works
for processor speeds: we ask a worker to compute a given matrix-product several times in order
to slow down its computation capability. In all experiments, except the last batch, we used nine
processors: one master and eight workers.

29.3.6.2 Algorithms

We chose four different algorithms from the literature that we compare our algorithms to. The closest
work addressing our problem is Toledo’s out-of-core algorithm (Toledo, 1999). Hence, this work
serves as the baseline reference. Then we studied hybrid algorithms, i.e., algorithms which use our
memory layout and are based on classical principles, such as round-robin, min–min (Maheswaran
et al., 1999), or a dynamic demand-driven approach. Here, we only report on the latter as the round-
robin and mini-min based algorithms had far worse performance. The first two algorithms below
use our memory allocation, the only difference between them is the order in which the master sends
blocks to workers.

Heterogeneous algorithm (Het) is our algorithm.
Overlapped Demand-Driven, Optimized Memory Layout (ODDOML) is a demand-driven

algorithm. In our memory layout, two buffers of size μi are reserved for matrix A, and
two for matrix B. In order to use the two available extra buffers (the second for A and
the second for B), one sends the next block to the first worker, which can receive it. This
would be a dynamic version of our algorithm, if it took worker selection into account.
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Block Matrix Multiply (BMM) is Toledo’s algorithm (Toledo, 1999). It splits each worker
memory equally into three parts and allocates one slot for a square block of A, another
for a square block of B, and the last one for a square block of C, with the square blocks
having the same size. It sends blocks to the workers in a demand-driven fashion. First a
worker receives a block of C, then it receives corresponding blocks of A and B in order
to update C, until C is fully computed.

Note that the two algorithms using our optimized memory layout are considering matrices as
composed of square blocks of size q × q = 80 × 80, while BMM loads three panels, each of size
one-third of the available memory, for A, B, and C.

When launching an algorithm on the platform, the very first step we do is to determine the
platform’s parameters. For that purpose, we launch a benchmark on it, in order to get the memory
size, the communication speed, and the computation speed. The different speeds are determined by
sending and computing a square block of size q × q ten times on each worker, and computing the
median of the times obtained. This step represents at most 2% of the total time of execution. The
times reported also take into account the decision process of the algorithms.

29.3.6.3 Evaluation Methodology

In the first three sets of experiments, we have only one parameter of heterogeneity, either the amount
of memory, the communication speed, or the computation speed. We test the algorithms on such
platforms with five matrices of increasing sizes. As we do not want to change several parameters at
a time, we only change the value of parameter s (rather than, for instance, always consider square
matrices). MatrixA is of size 8000×8000 whereasB is of increasing sizes 8000×64000, 8000×80000,
8000 × 96000, 8000 × 112000, and 8000 × 128000. For the other 14 experiments, which correspond
to fully heterogeneous platforms, A is of size 8000 × 8000 and B is of size 8000 × 80000. The
heterogeneous workers have different memory capacities, which implies that each algorithm, even
BMM, assigns them chunks of different sizes. In order to simplify the global partitioning of matrix
C, we decide to only assign workers full matrix column blocks.

As we want to assess the performance of the studied algorithms independently of matrix sizes, we
look at the relative cost of the algorithms rather than at their absolute execution times. The relative
cost of a given algorithm on a particular instance is equal to the execution time, or makespan,
achieved on that instance by the algorithm, divided by the minimum over all studied algorithms of
the makespan achieved on that instance. Using relative cost also enables us to build statistics on the
performance of algorithms.

Besides relative cost, we take into account the number of processors used. To assess the efficiency
of a given algorithm, we look at its relative work, which is equal, for a given instance, to its makespan
times the number of enrolled processors, divided by the minimum of this value over all studied
algorithms.

29.3.6.4 Experimental Results

Figure 29.14 summarizes all our MPI experiments. Figure 29.14a and b respectively presents the
relative cost and the relative work obtained for each experiment by our heterogeneous algorithm
(Het), by Toledo’s algorithm (BMM), and by the best of the dynamic heuristics using our memory
layout (ODDOML). The results show the superiority of our memory allocation. Furthermore, if we
add the resource selection of Het, not only do we achieve, most of the time, the best makespan,
but also the best relative work as we also spare resources. Using our memory layout (ODDOML)
rather than Toledo’s (BMM) enables us to gain 19% of execution time on average. When this is
combined with resource selection, this enables us to gain additionally 10%, which is 27% against
Toledo’s running time. We achieve this significant gain while sparing resources. Our Het algorithm
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FIGURE 29.14 Summary of experiments. (a) Relative cost and (b) relative work.

is on average 1% away from the best achieved makespan. At worst Het is 14% away from the best
makespan, ODDOML 61%, and BMM 128%. Altogether, we have thus been able to design an
efficient, thrifty, and reliable algorithm.

29.3.7 Conclusion

Through a careful study of necessary communications, we have been able to design an algorithm
minimizing the overall amount of communications. Experiments have then shown that the overall
execution time of this algorithm was minimal when compared to existing approaches, stressing once
again the importance of communications. This case study illustrates two facts that we had already
emphasized: (1) a static approach can be more effective than classical dynamic approaches; and
(2) resource selection enables to reduce execution time while limiting the number of participating
resources.
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29.4 Research Issues and Summary

In this chapter, we have discussed how to extend classic algorithm design and scheduling strategies to
deal with Grid computing platforms. In the context of heterogeneous computations, static strategies
have several drawbacks. Indeed, the network may be non-dedicated, and possible variations in the
available computing power of processors have to be taken into account. Nevertheless, as we have
shown, the best solution may not involve fully dynamic strategies as these can easily fall in the pitfalls
laid by the heterogeneity of resources. One should rather consider mixed strategies: problems due to
variations in processor speeds can be addressed by remapping data and computations from time to
time between well identified static phases. We have shown that both accurate communication models
and sophisticated resource selection strategies play a key role in the design of efficient solutions.

We believe that the design of efficient data allocation techniques for regular problems, similar
to the ScaLAPACK library on homogeneous platforms, relies both on the design of efficient static
distribution schemes (to cope with heterogeneity) and on the design of efficient remapping strategies
(to cope with speed variations during the computations). However, the difficulty of algorithmic issues
is not to be underestimated. Data decomposition, scheduling heuristics, and load balancing were
already known to be difficult problems in the context of classical parallel architectures. They become
extremely difficult in the context of heterogeneous clusters, not to mention Grid platforms.

Future research directions include scheduling structured applications on cluster and Grid plat-
forms. Several solutions already exist, but most are over-simplistic (e.g., using very crude platform
models or not taking communication costs into account) or target not so-pertinent objectives (e.g.,
trying to schedule applications one-by-one and independently when several are competing for the
same resources). There is, thus, much room for improvement. This is especially true when one wants
to schedule a collection of identical task-graphs concurrently submitted (by one or several users) to
a Grid platform. (Such a work pattern is sometimes called a workflow.) This case can occur when
the same application is run on different inputs, possibly when different users use the same reference
application. A bag of identical tasks as dealt with in Section 29.2.2 is a very simple instance of this
problem. The first extension of this case would be to move from independent tasks to more complex
direct acyclic graphs (DAGs), such as collections of pipelines, fork-joins, or series-parallel graphs.
The second extension is to consider several collections that execute concurrently and that compete
for CPU and network resources. In both cases, finding the best trade-offs between performance-
oriented criteria (throughput, response time, slowdown, or stretch) and maybe other criteria, such
as reliability or energy minimization, is quite a difficult algorithmic challenge.

Another difficult challenge comes from the many sources of uncertainties in the definition of
the algorithmic problem: the many application and platform parameters are only approximatively
known, and may evolve over time. These uncertainties may require the design and the use of robust
solutions able to cope with them, that is, whose performance do not significantly suffer from these
uncertainties. One may also have to look for fault tolerance solutions, as faults may become an
important problem in platforms containing a very large number of resources.

29.5 Further Information

Steady-state scheduling was pioneered by Bertsimas and Gamarnik (1999). Beaumont et al. (2005)
have written a survey of steady-state scheduling on heterogeneous clusters. The other platform model
used in this chapter, the divisible load model, is surveyed in Gallet et al. (2009). More references
on this model can be found in Robertazzi (2003). About platform modeling, we refer the interested
reader to Casanova (2005) specifically for network modeling issues, and more generally to Cappello
et al. (2005).
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There is a very abundant literature on scheduling and load balancing strategies for parallel and/or
distributed systems. The survey (Shirazi et al., 1995) is a good starting point to this work. The most
famous heuristic to schedule a task graph on an heterogeneous platform is HEFT (Topcuoglu et al.,
2002) but, as we have already stated, there is still plenty of room to design far more powerful solutions
to that problem.

Finally, Section 29.2.2 is mainly based on Beaumont et al. (2005), Section 29.2.3 on Legrand et al.
(2004), and Section 29.3 on Dongarra et al. (2008a,b).

Defining Terms

Heterogeneity: resources are said to be heterogeneous when they do not all have exactly the same
characteristics. For instance, the set of processors in a Grid is heterogeneous if they do not all have
the same processing capabilities or the same amount of memory.
Makespan: the makespan of an application is the time at which the application’s execution is
completed.
Resource selection: is the problem of deciding which, among all available resources, should be used
to solve a given problem.
Scheduling: is the problem of deciding at what time (when), and on which resource (where), to
execute each of the (atomic) tasks that must be executed on the given platform.
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30.1 Introduction

The increasing needs for conducting complex computations have motivated computational out-
sourcing. Many users conduct complex computations only occasionally, and buying expensive
computing equipment only for these occasional tasks is a waste of resources. In the situation like
this, outsourcing their computational tasks to a third party (or a group of third parties) is a more
viable solution. Moreover, the increasing reach and speed of the Internet have made computational
outsourcing much convenient.

Although computational outsourcing frees users from conducting the computation by themselves,
it introduces two challenging security issues. The first is privacy. Computational outsourcing usually
involves sending input data to a third party. These data might contain private information. For
example, if the task is to conduct data mining on a medical database to discover useful knowledge,
the database often needs to be sent to the party that conducts the computation. This causes a major
threat to privacy, because the patients’ private information is in the database. A number of studies
have been focusing on this privacy issue [1–4].

The other issue is integrity, i.e., to guarantee that computation tasks are carried out properly.
Once computing power becomes a commodity, there will be incentives for the third parties to cheat,
namely, they might not conduct the actual computation, but still claim that they have done so.

30-1
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It is important to guarantee the correctness of those computations. This chapter focuses on the
integrity issue.

A promising computational outsourcing paradigm is a computational grid, which is a novel,
evolving infrastructure that provides unified, coordinated access to computing resources such as
processor cycles, storage, etc. Wide varieties of systems, from small workstations to supercomputers,
are linked to form a grid, thus presenting what is essentially a powerful virtual computer. All the
complexities involved in managing resources of a grid are hidden from the clients, providing seamless
access to computing resources. As a great advancement towards cost reduction, computational grids
can be used as a replacement for supercomputers that are presently used in many computationally
intensive scientific problems [5,6].

The class of problems dealt by grid computing is that which involves tremendous computations
and can be broken down into independent tasks. A general grid computing environment includes
a supervisor and a group of participants who allow the idle cycles of their processors to be used
for computations. The participants need know the tasks assigned to others, nor do they need to
communicate with other participants. After the participants complete their tasks, they report back
the results to the supervisor.

The past few years have seen a tremendous growth in grid computing with its effect being felt
in the biotechnology industry (e.g., DNA sequencing and drug discovery), entertainment industry,
financial industry, etc. The success of the projects like SETI@home [7], IBM smallpox research [8],
GIMPS [9] has made the potential of grid computing visible.

For instance, IBM’s smallpox research [8] uses grid computing to find potential drugs to counter
the smallpox virus. Its main task is to screen hundreds of thousands of molecules, a task that can take
years even with supercomputers. Using grid computing, any computer can be invited to participate
and assist in this important effort. By downloading and running the software, participants can add
their CPUs to the global grid. Every time their computers are idle, the computing resources can be
contributed to the grid, accelerating the screening process while dramatically reducing the cost of the
project. The result is that rather than spending years, it will be possible to screen hundreds of millions
of molecules in just months. Another highly profiled grid computing project is SETI@home[7], which
is a scientific experiment that uses Internet-connected computers in the Search for Extraterrestrial
Intelligence (SETI). SETI@home has more than 4.5 million users (according to 2004 statistics)
contributing their computers’ unused processing power, to form a 15 teraflops grid, faster than
IBM’s powerful supercomputer ASCI White (12 teraflops). Also the cost of the SETI grid is only
500K dollars, whereas ASCI White costs 110 million dollars [7].

On December 2, 2003, Michael Shafer a volunteer in the GIMPS project discovered the largest
known prime number, 220996011 − 1. He used a 2 GHz Pentium 4 DEll Dimension PC for 19 days
to prove the number prime. The new number, expressed as 2 to the 20,996,011th power minus 1,
has 6,320,430 decimal digits and was discovered on November 17. It is more than two million digits
larger than the previous largest known prime number. Tens of thousands of people have volunteered
the use of their PCs in this worldwide project that has harnessed the power of 211,000 computers,
in effect creating a supercomputer capable of performing 9 trillion calculations per second. This
enabled GIMPS to find the prime in just 2 years instead of the 25,000 years a single PC would have
required.

However, the untrusted environments in which the computations are performed tend to cast
suspicion on the veracity of the results returned by the participants. The ease with which anyone can
become a part of the grid poses a big threat to the computation being performed. The true identity
of the participant may not be known to the supervisor. The supervisor does not have any control over
the participants’ machines and cannot prevent them from manipulating the codes provided. Thus,
the participant may not have performed the necessary computations but claim to have done so. This
cheating behavior, if undetected, may render the results useless. Project managers from SETI@home
have reportedly uncovered attempts by some users “to forge the amount of time they have donated in
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order to move up on the Web listings of top contributors” [10]. Yet SETI participants are volunteers
who do not get paid for the cycles they contribute. When participants are paid for their contribution,
they have strong incentives to cheat for maximizing their gain.

Therefore, we need methods to detect the cheating behavior in grid computing. This objective can
be formulated as the following uncheatable grid computing problem:

PROBLEM 30.1 (Uncheatable Grid Computing). A participant is assigned a task to compute f (x)

for all the inputs x ∈ D = {x1, . . . , xn}, where n = |D|; the participant needs to return the results of
interest to the supervisor. A dishonest participant might compute f (x) for only x ∈ D′, where D′ is
a subset of D, but claim to have computed f for all the inputs. How does the supervisor efficiently
detect whether the participant is telling the truth or a lie?

A straightforward solution is to double check every result. The supervisor can assign the same
task to more than one participant and compare the results. This simple scheme leads to the wastage
of processor cycles that are precious resources in grid computing. Moreover, it introduces O(n)

communication cost for each participant. Note that in grid computing, the supervisor only needs
the participant to return the results of interest, which is usually a very small number compared to n.
Therefore, O(n) overhead is substantial.

An improved solution is to use sampling techniques. The supervisor randomly selects a small
number of inputs from D (we call these randomly selected input samples or sample inputs); it only
double checks the results of these sample inputs. If the dishonest participant computes only one half
of the inputs, the probability that he or she can successfully cheat the supervisor is one out of 2m,
where m is the number of samples. If we make m large enough, e.g., m = 50, cheating is almost
impossible. This solution has a very small computational overhead (O(m)), because m � n. However,
this scheme still suffers from the O(n) communication cost because it requires the participant to
send all the results back to the supervisor, including those that are of no interest to the supervisor.

To reduce the communication cost, a commitment-based sampling (CBS) scheme was devel-
oped [11]. The scheme reduces the communication overhead to O(m log n). Because n is usually
large (e.g., n = 240), this result is a substantial improvement.

The organization of the chapter is as follows: We will discuss related work in Section 30.2.
In Section 30.3, we formally model grid computing and its threat, and define uncheatable grid
computing. In Section 30.4, we describe a naive solution. In Section 30.5, we present the CBS scheme
for uncheatable grid computing. Section 30.6 further improves the CBS scheme by getting rid of the
unappealing interaction. In Section 30.7, we present an implementation of the CBS scheme on two
docking programs: Autodock and FTDock. Finally, Section 30.8 draws the conclusion and lays out
the future work.

30.2 Related Work

30.2.1 Ringer Scheme

To defeat cheating in grid computing, Golle and Mironov proposed a ringer scheme [12]. The ringer
scheme is designed for a class of distributed computations called inversion of a one-way function
(IOWF),∗ and the solution can secure such computations against cheating. The IOWF computation
is defined as the following:

∗ A function f is a one-way function, if for a general value of y in the domain of function f , it is impossible to find a value
x such that f (x) = y.
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Let f : D �→ T be a one-way function, and y = f (x) for some x ∈ D. Given f and y only,
the objective of the computation is to discover x by exhaustive search of the domain D.

In the basic ringer scheme, during the initialization stage, the supervisor randomly selects several
inputs xi ∈ D. These inputs are called ringers, and they are kept secret with the supervisor. The
supervisor then computes ringer images yi = f (xi) for each xi. In addition to assigning the grid
computing task (inputs D, the function f , and the screener function S), the supervisor also assigns
the ringer images to the participant.

Not only does the participant need to compute f on x for all x ∈ D and return the results of
interest, but also has to return all the ringers corresponding to the precomputed ringer images. The
supervisor then verifies whether the participant has found all the ringers assigned to it or not. If yes,
then the supervisor is assured with high probability that the participant has indeed conducted all the
computations. Because participants cannot distinguish ringers from nonringers, their cheating can
be caught if they cheat on ringers. By choosing the appropriate number of ringers, the probability
for catching cheaters is quite high.

Szajda et al. extend the ringer scheme to deal with other general classes of computations, including
optimization and Monte Carlo simulations [13]. They propose effective ways to choose ringers for
those computations. It is still unknown whether the schemes proposed in [13] can be extended
further to generic computations.

30.2.1.1 Limitations of the Ringer Scheme

The ringer scheme is limited to a specific computation, the IOWF computation. Therefore, the
function f has to be a one-way function; otherwise the participant can calculate f −1 on the ringer
images and find their corresponding secret ringers, without conducting the computations on all
inputs.

However, if we can convert any generic function f into a one-way function, we can make the
ringer scheme work for generic computations. There is a quite straightforward way to achieve this,
as shown in the following:

f̂ (x) = h(x, f (x)),

where function h is a one-way function.
Because h is a one-way function, there is no easy way for a cheating participant to construct f̂ −1,

even if it knows f and f −1. Namely, given f̂ (x), to find x is no easier than the brute-force approach,
i.e., trying all possible values of x. After this conversion, any generic function f is converted to a
one-way function f̂ , and we can use the ringer scheme on the new function f̂ .

30.2.1.2 New Attack When |T| Is Small

The above improvement lifts the limitation of the original ringer scheme however, it does come with
a cost: the new scheme is now subject to the following attack when the size (represented as |T|) of
the output domain T is small:

1. For ∀x ∈ D and ∀y ∈ T, the cheating participant computes h(x, y).
2. If h(x, y) matches with a ringer, output x.

The above attack uses brute-force method to try all the possible combinations of x and y. Because
the ringers are unique, the participant can use this method to identify them without computing f at
all. Let hc be the cost of computing h(x, y), and fc be the cost of computing f (x). The total cost for
the brute-force attack is |D| × |T| × hc. Since the cost of conducting f (x) for all x ∈ D is |D| × fc,
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in order to make the brute-force attack more expensive than the honest computing, the following
inequality must hold:

|T| · hc ≥ fc.

It appears that to defeat the above brute-force attack, we just need to increase the cost of h(x, y).
We can easily achieve this by conducting many rounds of hash function. Unfortunately, increasing
hc increases the computational overhead on the participant side because

Overall computation cost = (fc + hc) · |D|.
An alternative to defeat the attack is to increase |T|. This can be achieved by also treating the

intermediate results in the computation as outputs. The cost of the brute-force attack can exceed
the cost of the task, if we include enough intermediate results in outputs. However, introducing
intermediate results makes the scheme application dependent, whether there exists a generic scheme
is still unknown.

30.2.2 Redundancy Scheme

Another approach for uncheatable grid computing is to double check computation results by simply
having other participants redo them entirely. This is the method used by SETI@home to deal with
cheating users. Golle and Stubblebine [14] proposed an efficient scheme based on probabilistic
redundant execution. In this scheme, for each task, the supervisor draws a random number n from
a predetermined probability distribution; then the supervisor randomly picks n participants and
assigns a copy of this task to each participant. The verification succeeds, if all the participants return
the same results; otherwise, the same process will be repeated until the verification succeeds.

30.2.3 The Input-Chaff Injection Scheme

Du and Goodrich proposed schemes for efficiently performing uncheatable grid computing to
search for high-value rare events [15]. The schemes are intended to prevent the participants from
not reporting the results, if they have found the high-value rare events in grid computing. The
technique is called chaff injection, which involves introducing elements to task inputs or outputs
that provide rare-event obfuscation. Output-chaff injection applies to contexts where rare events
are not immediately identifiable by clients. It involves the use of one-way hash functions applied
to computation outcomes in a way that defends against coalitions of hoarding clients. Input-chaff
injection applies to contexts where rare events are easily identified by clients (as in the SETI@home
application for finding patterns of intelligence in extraterrestrial signals). It involves the injection of
a number of obfuscated inputs that will test positive as rare events.

30.2.4 Other Related Work

There are also some alternative ways to defeat cheating, which have not been specifically addressed
in the literature. For example, one method would be to use tamper-resistant software. In this case,
a code obfuscater would be used to convert task programs to equivalent programs that are much
harder to understand and reverse-engineer. Thus, it would become hard for malicious attackers to
modify the program to accomplish what he wants. Nevertheless, the tamper-resistant approach is
only heuristically secure, and many tamper-resistant schemes cannot withstand attacks from really
determined attackers [16], including groups of colluding cheaters.

The problem addressed in this chapter is close to another body of literature: the problem of
malicious hosts in the study of mobile agents [17,18]. Several practical solutions have been proposed,
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which include remote auditing [16,19], code obfuscation with timing constraints [20], computing
with encrypted functions [21], replication, and voting [22]. The major difference between the mobile-
agent setting and the grid computing framework is the threat model. The mobile-agent work assumes
a malicious cheating model, i.e., a malicious host can do whatever it takes to cheat; this includes
spending more CPU cycles than the honest behavior. However, this chapter studies a different
model, in which it is irrational for a participant to cheat with a cost more expensive than the honest
behavior.

Cryptographic protocol, such as private information retrieval (PIR) [23] and probabilistically
checkable proofs (PCP) [24], can also be used to achieve uncheatable grid computing. However,
their expensive computation cost makes them an inappropriate choice for grid computing in practice.

30.3 Problem Definition

30.3.1 Model of Grid Computing

We consider a grid computing in which untrusted participants are taking part. The computation is
organized by a supervisor. Formally, such computations are defined by the following elements [12]:

• A function f : X �→ T defined on a finite domain X. The goal of the computation is to
evaluate f for all x ∈ X. For the purpose of distributing the computation, the supervisor
partitions X into subsets. The evaluation of f on subset Xi is assigned to participant i.

• A screener S. The screener is a program that takes as input a pair of the form (x; f (x)) for
x ∈ X, and returns a string s = S(x; f (x)). S is intended to screen for “valuable” outputs
of f that are reported to the supervisor by means of the string s. We assume that the run
time of S is of negligible cost compared to the evaluation of f .

30.3.2 Models of Cheating

A participant can choose to cheat for a variety of reasons. These reasons can be categorized into two
models. We assume that the participant is given a domain D ⊂ X, and its task is to compute f (x) for
all x ∈ D. From now on, we use D as the domain of f for the participant.

30.3.2.1 Semi-Honest Cheating Model

In this model, the participant follows the supervisor’s computations with one exception: for x ∈
Ď ⊂ D, the participant uses f̌ (x) as the result of f (x). Function f̌ is usually much less expensive
than function f ; for instance, f̌ can be a random guess. In other words, the participant does not
compute the required function f on inputs x ∈ Ď. The goal of the cheating participant in this model
is to reduce the amount of computations, such that it can maximize its gain by performing more
tasks during the same period of time. If the participants are getting paid, the semi-honest participant
might be guided by the lure of money.

30.3.2.2 Malicious Cheating Model

In this model, the behavior of the participant can be arbitrary. For example, a malicious participant
might have calculated function f for all x ∈ D, but when it computes the screener function S, instead
of computing S(x; f (x)), it might compute S(x; z), where z is random number. In other words, the
participant intentionally returns wrong results to the supervisor, for the purpose of disrupting the
computations. A malicious cheater may be a competitor, or a nonserious participant playing pranks.



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C030 Finals Page 7 2009-9-25

Uncheatable Grid Computing 30-7

To maximize their gains, rational cheaters tend to use minimal cost to falsify the contributions
they have never made. Their behaviors fall into the semi-honest cheating model. Therefore, in this
paper, we focus on the semi-honest cheating model.

30.3.3 Definition of Uncheatable Grid Computing

Assume that a participant is assigned the task that consists of computing f (x) for all x ∈ D, where
D = {x1, . . . , xn}. If a participant computes the function f only on x ∈ D′, where D′ ⊆ D, we define
the honesty ratio r as the value of |D′|

|D| . Honesty ratio is the fraction of the overall computation actually
performed by the participant. When the participant is fully honest, the honesty ratio is r = 1; when
it only conducts 50% of the required computations, its honesty ratio is r = 0.5.

DEFINITION 30.1 (Uncheatable Grid Computing). Let Pr(r) be the probability that a participant
with honesty ratio r can cheat without being detected by the supervisor. Let Ccheating be the expected
cost of successful cheating, and Ctask be the overall computation cost of the required task. We say
grid computing is uncheatable, if one of the following or both inequalities are true:

Pr(r) < ε for a given ε (0 < ε ≤ 1)

or Ccheating > Ctask

In other words, uncheatable grid computing either makes the probability of successful cheating
negligible or makes the cost of successful cheating even more expensive than the cost of honestly
conducting the entire task. Since honestly performing the tasks is now less time-consuming, a
semi-honest cheater is more likely to avoid short cuts to complete his task.

30.4 Naive Sampling Schemes

30.4.1 Parallel Tasks

Assume that the task of a participant is divided into n independent subtasks T1, . . ., Tn, with Ii being
the input for Ti and Oi being the output for Ti, for i = 1, . . . , n. Our goal is to verify whether the
participant has conducted these subtasks.

One way to verify is to use probabilistic sampling, namely after the computation, the participant
sends all the results O1, . . ., On of the subtasks to the supervisor. (If each result Oi contains a
large amount of data, the participant can send hash(Oi) to the supervisor, instead of Oi. This way,
the communication cost can be significantly reduced). The supervisor then randomly selects m of
them to verify. If any of these subtask verifications fails to reproduce the same results as sent by the
participant, the supervisor concludes that the participant is cheating. If the participant has conducted
all the subtasks, it can pass the verification. However, if the participant has only conducted r portion
of the total n tasks (we call 0 ≤ r ≤ 1 the honesty ratio), the probability that the supervisor fails to
detect the cheating is the following:

Pr(cheating succeeds) = (r + (1 − r)q)m, (30.1)

where q is the probability for the participant to guess the correct answer without conducting the
actual computation.

Since r + (1 − r)q is less than 1 when q is less than 1, the above probability can be arbitrarily small
if we choose m that is large enough.



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C030 Finals Page 8 2009-9-25

30-8 Special Topics and Techniques

30.4.2 Sequential Tasks

The above scheme assumes that the n subtasks are independent to each other, they can be verified
independently. In a sequential task, task Ti actually depends on the results from Tj, where j =
1, . . . , i−1. For the semisequential computation model, we show that we can verify the computation
using the same way as that for the parallel computation.

30.4.2.1 Semisequential Model

Figure 30.1.a depicts our scheme. The participant also sends O1, . . . , On to the supervisor. The super-
visor treats each Ti as an independent subtask (although in reality all the subtasks are dependent),
with the inputs being Oi−1 and Ii, and the output being Oi. The supervisor can use the sampling
scheme to verify whether some selected subtasks are correctly computed from the given inputs.

Although one of the input, Oi−1, for each subtask Ti cannot be verified (its verification requires the
verification of Ti−1, Ti−2, . . ., T1), the other input, Ii, can be verified, because they are independent
of the output of each task and can usually be derived from the original input that is known to both
the supervisor and the participants. It is important that at least one of the inputs should be verified,
otherwise, the reusing attack is possible. We will describe such an attack next in the purely sequential
model. Here, we assume that the cost of computing Ti from Ii and Oi−1 is approximately the same
regardless of what the value of Oi−1 is.

It should be noted that for this model, the participant can no longer send hash(Oi); it must send
Oi because Oi is needed as an input when we verify the task Ti+1. Therefore, if the size of Oi is
large and the number of subtasks is large, this sampling scheme might not be efficient because of the
overwhelming communication overhead.

30.4.2.2 Purely-Sequential Model

It looks like that we can use a similar scheme to conduct the sampling for the purely sequential
model. The scheme is depicted in Figure 30.1.b. However, this scheme suffers from a reusing attack.

As shown in Figure 30.2, the participant can break the chain at any of the links and replace the
second part of the chain with a new chain. As long as all the computations on this new chain are
correct, the sampling scheme cannot detect any misbehaviors, unless the link at the breaking point
is selected as one of the samples. However, the chance of selecting the breaking point is low because
only one single breaking point is needed to launch this attack.

T1

T2

Tn

O1

O2

OnOn–1

O1

I

(b)

T1

T2

Tn

O1

O2

On
On−1

In

I2
O1

I1

(a)

FIGURE 30.1 Verifying sequential computation model: (a) semisequential model and (b) purely sequential model.
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Link broken by the participant

O3
T4
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O4 On–1

I2 I4 I5 InI1

O5O2O1
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FIGURE 30.2 Attack for sequential tasks.

Therefore, in order to cheat, the participant can reuse existing (correct) computations, and use
them for the second part of the chain. The participant can get away from the cheating as long as the
subtasks before and after the breaking point are not sampled simultaneously.

30.4.3 Limitation of the Naive Sampling Scheme

The major problem with the naive sampling scheme is the communication cost, which is O(n), where
n is the total number of subtasks. Although the communication cost might not cause a problem at
the participant side, it can cause a problem at the supervisor side. For example, if the task of grid
computing is to break a 64-bit password using the brute-force method, the total communication cost
at the supervisor side is O(264), which is about 16 million terabytes. Very few networks can handle
such a heavy network load.

To solve this problem, we describe a CBS scheme, which reduces the communication overhead
from O(n) to O(m log n). Because m � n and n can be large (e.g., n = 230), this result is a substantial
improvement.

30.5 Commitment-Based Sampling Scheme

To reduce communication costs, we cannot ask each participant to send back all the outputs; it is
desirable if we can ask the participants to send back the results for those sample inputs. However,
doing this is nontrivial, because we have to prevent the participant from computing the results for the
sample inputs after it learns which inputs are samples. For example, if xk is selected as a sample, the
supervisor needs f (xk) from the participant to check whether the participant has correctly calculated
f (xk). However, without a proper security measure, the participant who has not computed f (xk) can
always compute it after learning xk is a sample. This defeats the purpose of sampling. Therefore, a
security measure must guarantee that the value of f (xk) sent by the participant is calculated before
it knows that xk is a sample.

One way to solve the above problem is to use commitment. Before the participant knows that
xk is a sample, it needs to send the commitment for f (xk) to the supervisor. Once the participant
commits, it cannot change f (xk) without being caught. The supervisor then tells xk to the participant,
which has to reply with the original value of f (xk) that was committed. Since any input has an equal
probability to become a sample, the participant has to commit all the results for those n inputs.
Obviously, the participant cannot afford to send the commitment for each single input, because
the O(n) communication cost makes it no better than the naive sampling scheme. The participant
cannot hash all these n results together to form one single commitment either: although this method
achieves the commitment for all results, it makes verifying a single result difficult, because the
supervisor needs to know all the other n − 1 results.

In summary, we need a commitment scheme that (1) allows all the n results to be committed
efficiently, and (2) allows the verification of each single result to be performed efficiently. We use the
Merkle tree [25] to achieve these goals.
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30.5.1 Commitment-Based Sampling Scheme

The Merkle tree (also called hash tree) is a complete binary tree equipped with a function hash and
an assignment Φ, which maps a set of nodes to a set of a fixed-size strings. In a Merkle tree, the
leaves of the tree contain the data, and the Φ value of an internal tree node is the hash value of the
concatenation of the Φ values of its two children.

To build a Merkle tree for our problem, the participant constructs n leaves L1, . . . , Ln. Then it
builds a complete binary tree with these leaves. The Φ value of each node is defined as the following
(we use V to denote an internal tree node, and Vleft and Vright to denote V ’s two children):

Φ(Li) = f (xi) for i = 1, . . . , n,
Φ(V) = hash(Φ(Vleft)||Φ(Vright)), (30.2)

where “||” represents the concatenation of two strings, and the function hash is a one-way hash
function such as MD5(128 bit) or SHA1(160 bit). To make a commitment on all the data on the
leaves, the participant just needs to send Φ(R) to the supervisor, where R is the root of the Merkle
tree. Figure 30.3 depicts an example of the Merkle tree built for our purpose.

After receiving the commitment, the supervisor randomly selects a number of samples and sends
them to the participant. The participant needs to provide the evidence to show that before making
the commitment, it has already computed f for those samples. Let x be a sample, and L be x’s
corresponding leaf node in the tree. Let λ denote the path from L to the root (not including the
root), and let H represent the length of the path. In order to prove its honesty regarding f (x), the
participant sends f (x) to the supervisor; in addition, for each node v ∈ λ, the participant also sends
Φ(v’s sibling) to the supervisor. We use λ1, . . . , λH to represent these Φ values.

To verify the participant’s honesty on sample x, the supervisor first verifies the correctness of f (x).
If f (x) sent by the participant is incorrect, the participant is caught cheating immediately. Even if
f (x) from the participant is correct, it cannot prove the participant’s honesty because the participant
who did not compute f (x) can compute the correct f (x) after knowing that x is the sample. The
supervisor uses the commitment Φ(R) made by the participant to ensure that the correct f (x) is

Selected
sample x3

· · ·· · ·L4L1 L2 L3 Ln

B

C D

A

F

B: Φ(B) = hash (Φ(L3)||Φ(L4))
C: Φ(C ) = hash (Φ(A)||Φ(B))

R: Φ(R) = hash(Φ(E )||Φ(F ))

E: Φ(E ) = hash (Φ(C)||Φ(D))

Φ(Li) = f (xi), for i = 1 ... n

Φ(R) is used as the commitment

FIGURE 30.3 CBS scheme: the Merkle tree and the verification.
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used at the time of building the Merkle tree. To achieve this, the supervisor uses f (x) (correct) and
λ1, . . . , λH to reconstruct the root of the Merkle tree R′, thus getting Φ(R′). Only if Φ(R′) = Φ(R)

will the supervisor trust that the participant has correctly computed f (x) before building the Merkle
tree. The communication cost of this process is proportional to the height of the tree. Because the
Merkle tree is a complete binary tree with n leaves, its height is O(log n), where n = |D|.

We demonstrate how the verification works using an example depicted in Figure 30.3. Assume
that x3 is selected as a sample, whose corresponding leaf node in the tree is L3. The participant
finds the path from L3 to the root (depicted by the double lines). Then the participant sends to the
supervisor f (x3) and all the Φ values of the sibling nodes (L4, A, D, and F) along the path. The sibling
nodes are depicted by the black nodes in the figure. To verify whether, before committing Φ(R), the
participant has computed f (x3) or not, the supervisor first makes sure if f (x3) is correct. Then, the
supervisor reconstructs the root R′ from f (x3), Φ(L4), Φ(A), Φ(D), and Φ(F).∗ If Φ(R′) = Φ(R),
we can say that the participant knows f (x3) before building the Merkle tree.

The scheme described above is called the CBS scheme. Its steps are described in the following:

Step 1: Building Merkle Tree. Using Equation 30.2, the participant builds a Merkle tree with leaf
nodes L1, . . . , Ln, and Φ(Li) = f (xi), for i = 1, . . . , n. The participant then sends Φ(R) to the
supervisor.
Step 2: Sample Selection. The supervisor randomly generates m numbers (i1, . . ., im) in the domain
[1, n], and sends these m numbers to the participant. These numbers are the sample inputs.
Step 3: Participant’s Proof of Honesty. For each i ∈ {i1, . . . , im}, the participant finds the path λ from
the leaf node Li to the root R; then, for each node v ∈ λ, the participant sends to the supervisor
Φ(v’s sibling). These Φ values are denoted by λ1, . . . , λH . The participant also sends f (xi) to the
supervisor.
Step 4: Supervisor’s Verification. For each i ∈ {i1, . . . , im}, the supervisor verifies whether f (xi) from
the participant is correct.

1. If f (xi) is incorrect, the verification stops and the participant is caught cheating.
2. If f (xi) is correct, using the recursive procedure defined in Equation 30.2, the supervisor

reconstructs the root Φ(R′) of the hash tree from f (xi) and λ1, . . . , λH . If Φ(R) = Φ(R′),
the verification stops and the participant is caught cheating. If Φ(R) = Φ(R′), the
verification succeeds for the sample i.

If the above verification succeeds for all i ∈ {i1, . . . , im}, the supervisor is convinced with a high
probability that the participant has not cheated.
To verify whether f (xi) is correct does not necessarily mean that the supervisor has to recompute
f (xi). There are many computations whose verification is much less expensive than the computations
themselves. For example, factoring large numbers is an expensive computation, but verifying the
factoring results is trivial.

Regarding the communication cost, for each sample, the participant needs to send O(log n) data to
the supervisor. Therefore, the total communication overhead for m samples is O(m log n). Actually,
due to path overlaps, the actual communication cost could be less than m log n, so m log n is the
upper bound on the communication cost.

∗ The reconstruction of R′ can be conducted using the following procedure: with f (x3) and Φ(L4), we can compute
Φ(B); then, with Φ(A), we can compute Φ(C); then, with Φ(D), we can compute Φ(E); finally, we can compute Φ(R′)
from Φ(E) and Φ(F).
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30.5.2 Security Analysis

In the following theorem, we use L to denote input x’s corresponding leaf node. We use T to denote
the Merkle tree built by the participant, and we use R to denote the root of the tree.

Let λ be the path from the leaf L to the root R, and let λ1, . . . , λH represent the Φ values of the
sibling nodes along the path λ. According to the property of the Merkle tree, Φ(R) can be computed
using Φ(L) and λ1, . . . , λH . We use Λ(Φ(L), λ1, . . . , λH) = Φ(R) to represent this calculation,
where Φ(R) is already committed to the supervisor by the participant.

THEOREM 30.1 (Soundness). If the participant has computed f (x) at the time of building the
Merkle tree, it will succeed in proving its honesty on x within the CBS algorithm.

PROOF If the participant is indeed honest, according to the CBS scheme, when building the
Merkle tree, we have Φ(L) = f (x). Therefore, during the verification, the supervisor gets

Φ(R′) = Λ(f (x), λ1, . . . , λH) = Λ(Φ(L), λ1, . . . , λH) = Φ(R).

Therefore, according to the CBS scheme, the participant succeeds in proving its honesty on x.

THEOREM 30.2 (Uncheatability). In the CBS scheme, it is computationally infeasible to convince
the supervisor if the participant did not compute f (x) at the time of Merkle tree construction, i.e., for
an input x, a value other than f (x) is used while constructing the Merkle tree.

PROOF According to the CBS scheme, the participant sends f (x) and λ′
1, . . . , λ′

H to the super-
visor. After verifying the correctness of f (x), the supervisor uses Φ(R′) = Λ(f (x), λ′

1, . . . , λ′
H) to

reconstruct the root (denoted by R′) of the tree. The supervisor believes that the participant is honest
on f (x) only if Φ(R′) = Φ(R).

If the participant is dishonest and Φ(L) = f (x), to cheat successfully, the participant must find
λ′

1, . . . , λ′
H , such that

Λ(f (x), λ′
1, . . . , λ′

H) = Λ(Φ(L), λ1, . . . , λH) = Φ(R).

Because Λ consists of a series of one-way hash functions, given Φ(R), when Φ(L) = f (x),
according to [25], as long as the underlying one-way hash function is strong (e.g., SHA-2 family), it
is computationally infeasible to find λ′

1, . . . , λ′
H that satisfy the above equation. This proves that it

is computationally infeasible for the dishonest participant to convince the supervisor that it knows
f (x) at the time of building the Merkle tree.

In the following theorem, let q be the probability that the participant can guess the correct result
of f (x), i.e., Prguess(Φ(L) = f (x)) = q. Let D′ be the set of inputs that are computed honestly by the
participant, so honesty ratio is r = |D′|

|D| .

THEOREM 30.3 When m samples are used in the CBS scheme, the probability that a participant
with honesty ratio r can cheat successfully is

Pr(cheating succeeds) = (r + (1 − r)q)m. (30.3)
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FIGURE 30.4 Required sample size versus cheating efforts (ε = 0.0001).

PROOF Since each sample is uniformly randomly selected, the probability that a sample x
belongs to D′ is r. When x ∈ D′, i.e., the participant has indeed computed f (x), according to The-
orem 30.1, the participant should be able to convince the supervisor of its honesty on sample x.
When x ∈ D − D′, i.e., the participant did not compute f (x) when building the tree, according
to Theorem 30.2, it is computationally infeasible for the participant to cheat unless Φ(L) hap-
pens to equal f (x). Since Prguess(Φ(L) = f (x)) = q, when x ∈ D − D′, the probability to cheat
successfully is q.

Combining both cases of x ∈ D′ and x ∈ D − D′, for one sample x, the probability that the
participant can prove its honesty on sample x is (r + (1 − r)q). Therefore, the probability that the
participant can prove its honesty on all m samples is (r + (1 − r)q)m.

Therefore, if we want to keep the probability of successful cheating below a small threshold ε, i.e.,
(r + (1 − r)q)m ≤ ε, we just need to find the sample size m, such that

m ≥ log ε

log (r + (1 − r)q)
. (30.4)

Figure 30.4 shows how large m should be for different honesty ratios r, given ε = 0.0001. For
example, let us consider a situation where the participant has conducted only one half of the task,
which means only one half of the leaf nodes in the Merkle tree contain the actually computed results,
and the other half contain guessed results. When the probability of guessing the correct results is
0.5 (i.e., q = 0.5), we need at least 33 samples to ensure the probability of successful cheating to be
below ε = 0.0001. When q ≈ 0 (i.e., it is almost impossible to make a correct guess on f (x) without
computing it), we only need 14 samples.

30.5.3 Storage Usage Improvement

It should be noted that the CBS scheme requires the participant to store the entire Merkle tree in its
memory or hard disk, and the amount of space required is O(|D|). Today’s hard disk technologies
make it possible for a participant to accept tasks with |D| as large as 230 (by using giga bytes of
storage); however, the storage might not be enough when |D| is much larger than 230. For example,
as mentioned by [12], it is possible to assign a task of size 240 to a participant. If we use 128-bit hash
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functions, 240 inputs require 16,000 GB (16 Terabytes) to store only the leaf nodes and 32,000 GB to
store the complete Merkle tree, which is unrealistic nowadays.

We noticed that if a task is as large as 240, then computing f (x) must be very fast; otherwise, it
might take the participant unreasonably long time to finish the task. Based on this observation, we
can make a trade-off between time and storage in the following way: Assume that the height of the
entire Merkle tree is H = log |D|, and the root is at level 0. Instead of storing the entire Merkle tree,
the participant only stores the tree up to level H − �, where 0 < � < H. Figure 30.5a depicts the
part of the tree that needs to be stored. The total amount of storage required is O

( |D|
2�

)
, a decrease

of 2�-folds.
To prove that it has computed f (x) (in Step 3 of the CBS scheme), the participant must find the

path from the sample x’s corresponding leaf node to the root, and then send to the supervisor the
Φ values of the sibling nodes along this path. Unfortunately because the lower part of the Merkle
tree is not saved, the sibling nodes in the lower part of the tree cannot be obtained from the storage.
The shading area in Figure 30.5a represents the subtree that contains the sample x but not saved
in the storage. Figure 30.5b depicts an example of the unsaved subtree. From the figure, we can see
that the nodes V1, V2, and V3 are also the sibling nodes along the path, but their Φ values are not
saved. To provide their Φ values to the supervisor, the participant must recompute them. From
Figure 30.5b, it is not difficult to see that recomputing those Φ values requires the rebuilding of the
whole subtree depicted in the shading area. For each sample, this cost includes computing f for 2�

times and computing the hash function for 2� − 1 times. Therefore, the cost of the rebuilding is
m · (2�fc + (2� − 1)hc), where fc is the cost of computing f (x) for one input, and hc is the cost of
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FIGURE 30.5 Storage usage improvement: (a) Storing partial merkle tree; and (b) details in the shading area.
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computing the one-way hash function. Because 2� is significantly larger than 1, we simply take the
cost to be m · 2� · (fc + hc).

We use the relative computation overhead (rco) to indicate how this computation overhead
impacts the entire task. The rco is defined as the ratio of the total computation overhead for m
samples to the cost of computing the entire Merkle tree based on D (the cost is approximate to
|D| · (fc + hc)). Let S = 2H−�+1 represent the amount of space for storing the partial tree. Hence, we
have the following formula:

rco = m · 2� · (fc + hc)

|D| · (fc + hc)
= m · 2�

2H = m
2(H−�)

= 2m
S

.

The above equation indicates that rco is only affected by m and S, and not by the amount of inputs
in D. The more storage a participant uses for storing the tree, the lower is the relative computation
overhead. For example, when m = 64, if we use 4G (232) hard disk space to store the partial Merkle
tree, we have rco = 2−25. This means that, regardless of how large a task is, compared to the cost
of the task, the computation overhead at the participant side is negligible when we use 4G disk
space. Therefore, even for a task of size 240, using 4G disk space provides a feasible solution both
storage-wise and computation-wise.

30.5.4 Comparison with the Extended Ringer Scheme

The performance of the CBS and the extended ringer scheme is similar in general, but the CBS
scheme has more advantage under the following circumstances:

1. In the CBS scheme, the supervisor needs to verify whether f (x) sent by the participant
is correct or not. For many computations, the verification of f (x) can be much more
efficient than computing f (x) itself. For example, if f (x) is to find a Hamiltonian cycle
in a graph x, the computation is expensive because the Hamiltonian-cycle problem is
NP-complete [26]. However, verifying whether a cycle is a Hamiltonian cycle in x can
be achieved in polynomial time. Therefore, the supervisor does not need to recompute
f (x) for such computations in CBS scheme. This is not true for the ringer scheme. Since
the ringer scheme needs to precompute f (x), the recomputation is inevitable. Therefore,
for the computations whose verification is much more efficient than the computations
themselves (such as NP-complete problems), the CBS scheme can achieve significant
savings for the supervisor.

2. When f (x) is a nondeterministic function, the ringer scheme will not work. Given
the same inputs, a nondeterministic function may return different results each time
it is executed. For example, a nondeterministic Hamiltonian-cycle computation might
output different Hamiltonian cycles in the same graph each time they are executed. The
ringer scheme does not work for the nondeterministic function, because the participant
might not be able to regenerate the same results as those precomputed ringer images.
However, the CBS scheme still works as long as the nondeterministic function is verifiable.
Unfortunately, when a nondeterministic function is difficult to verify, the CBS scheme
also becomes inapplicable.

3. As we mentioned before, the extended ringer scheme does not work well when |T|
is small; we have to introduce the intermediate results to make |T| significantly large.
However, introducing the intermediate results can be application-dependent. The CBS
scheme does not have such a problem, and it works well even when |T| is small.
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30.6 Noninteractive CBS Scheme

The CBS scheme has an extra round of interaction between the supervisor and the participant.
This interaction involves the participant sending the commitment and the supervisor sending the
samples. The interaction ensures that the supervisor sends the samples only after it receives the
commitment. Although the communication cost of this extra round of interaction is not a concern,
the interaction is often found less appealing because of the implementation issues involved in grid
computing.

In many grid computing architectures, the supervisor might not be able to directly interact
with the participants. For example, in the grid architecture for computational economy (GRACE)
architecture [27], which represents a futuristic paradigm of a service-oriented computing industry,
there exists a grid resource broker (GRB), which acts as a mediator between the supervisor and
the participant. The GRB provides middleware services in the form of resource management and
assignment of tasks. The GRB is responsible for finding more resources (participants) and scheduling
of tasks among the resources depending on their availability and capability. GRACE provides services
that help resource owners and user-agents maximize their objective functions. The resource providers
can contribute their resource to the grid and charge for services. They can use GRACE mechanism
to define their charging and access policies and the GRB works according to those policies.

In the GRACE architecture, the supervisor assigns a big bulk of tasks to GRB, and relies on GRB
to interact with, and assign tasks to, the participants. The supervisor does not even know which
participant is conducting what tasks. If the supervisor wants to verify the participant’s honesty on its
own using the CBS scheme, it will be difficult because GRB hides the participants from the supervisor.

It will be more desirable if we can conduct CBS without that extra round of interaction. One way
to achieve this is to let the participant generate the sample choices. Obviously, if the participant is to
select the samples, the sample selection must satisfy the following properties:

1. The samples are selected after the Merkle tree is built: If the samples are selected before
building the Merkle tree, the verification procedure will never detect cheating. It will
verify only those computations which have actually been performed by the participant.

2. The samples must be hard to predict: If the samples can be predicted by the participant,
the participant can just perform the tasks on the samples beforehand and renders the
verification process useless.

When the supervisor selects the samples, the above two requirements are easily enforced because
the supervisor does not tell the participant the sample choices until the participant sends the
commitment. How can we enforce these requirements when we rely on the participant to generate
the sample choices?

30.6.1 Noninteractive CBS Scheme

The CBS scheme can be modified, such that the sample choices are generated by the participant.
This improved scheme is called the noninteractive (NI-CBS) scheme. Since the only different part
of this improved scheme is the sample selection step, we will not repeat the steps that are the same
as in the CBS scheme.

Step 1: Building Merkle Tree. This step is exactly like the CBS scheme. At the end, the participant
sends Φ(R) to the supervisor.
Step 2: Sample Selection. Let g be a one-way hash function. Assume that D = {x1, . . . , xn} is assigned
to the participant. The participant uses the following method to generate m numbers {i1, . . . , im} in
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the domain [1, n]:
ik = (gk(Φ(R)) mod n) + 1 for k = 1, . . . , m, (30.5)

where

gk(Φ(R)) =
{

g(Φ(R)), for k=1,
g(gk−1(Φ(R))), for k=2. . . m.

Inputs xi, for i ∈ {i1, . . . , im}, are the selected samples. In other words, the kth sample is the result
of applying the one-way hash function g on R for k times.
Step 3: Participant’s Proof of Honesty. This step is also exactly like the CBS scheme.
Step 4: Supervisor’s Verification. Using Equation 30.5, the supervisor regenerates the sample choices
{i1, . . . , im} from Φ(R). It then uses Step 4 of the CBS scheme to verify the participant’s results.

30.6.2 Security Analysis

Assume the participant has conducted the computations only for the inputs in D′, where D′ ⊂ D, and
the honesty ratio is r = |D′|

|D| < 1. Also assume that the sample choices generated by the participant
are S1, . . . , Sm. To guarantee a successful cheating, the participant needs to make sure that all the
Si for i = 1, . . . , m fall into D′. Assuming the perfect randomness of the one-way hash values,
the probability that all these m sample choices are in the set of D′ is rm. Namely when building the
Merkle tree, the participant can use whatever values to replace f (x) for x ∈ D − D′, the probability
to produce the sample choices that are all in set D′ is rm.

The one-way hash function acts as an unbiased random-bit generator for the sample generation.
For the participant to cheat, it has to be able to predict the output of the one-way function. However,
there is no way for the participant to force the one-way function to produce certain values or to
guess which values it will produce. It is also computationally infeasible for the participant to work
in the reverse way, i.e., the participant cannot select the samples first, and then build a Merkle tree
that generates these selected samples. The one-way function is, in effect, the supervisor’s surrogate
in the NI-CBS scheme.

Unfortunately, the noninteractive feature brings up a potential attack. In the CBS scheme, the
participant has only one chance to cheat. If the supervisor chooses to use m = 10 samples, the
participant with honesty ratio r = 0.5 has a probability of 1 in 210 to cheat successfully. If one
cheating attempt fails, the supervisor will not give the participant more chances to cheat. The
probability of 1 in 210 tends to be small enough for the interactive scheme, but it is still too large for
the noninteractive scheme. The participant can use the following strategy to cheat:

1. Build the Merkle tree, using random numbers as the results of f (x) for the inputs x that
are not in D′ (i.e., x ∈ D − D′).

2. Compute the sample selections from the root of the Merkle tree. If they are all within D′,
cheating is successful; otherwise pick other random numbers as f (x) for x ∈ D − D′.

3. Revise the Merkle tree based on the newly selected values, and repeat Step 2 until the
cheating becomes successful.

The participant can use the above strategy to repeatedly make many cheating attempts until it
finds out that all the m generated samples are in D′. Since the process is noninteractive, the supervisor
knows nothing about these attempts.

There are two ways to defeat this strategy: one way is to increase the number of samples. For
example, we can use 128 samples, because making 2128 attempts is a computationally infeasible task.
However, this also increases the computation cost for the verification at the supervisor side, because
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the supervisor now has to verify 128 computations, much more than it needs to be done in the CBS
scheme.

Another way to defeat the cheating strategy is to let the participant pay for all those cheating
attempts. If the cost of conducting the cheating becomes more expensive than the cost of conducting
all the required computations (i.e., computing f (x) for all x ∈ D), the cheating brings no benefit. To
achieve this, we increase the cost of sample generation. Let Cg be the cost of the one-way function
g, and Cf be the cost of function f . Because the probability that each attempt being successful is
rm, the expected number of attempts the participant needs to make is 1

rm . Therefore, to make the
expected cost of the total cheating attempts more expensive than the total cost of the task, we need
the following inequality:

1
rm · m · Cg ≥ n · Cf . (30.6)

To achieve the above inequality, we can increase either m or Cg . Increasing m is straightforward;
increasing Cg needs some further explanation. Most of the one-way functions are very fast. To find
a one-way function g such that Cg satisfies the above inequality, we just need to let g ≡ (h)k, namely
applying the one-way hash function h for k times, where k is a number that makes Cg expensive
enough. If we let the left side of the inequality to be just slightly greater than the right side, this extra
cost of g does not bring significant overhead to the supervisor or the honest participant because the
ratio between the cost of the sample generation (m · Cg) and the cost of the entire task (n · Cf ) is
about rm, which can be significantly small when we choose a proper value for m.

30.7 Experimental Study

Drug discovery process has long been acknowledged as an expensive and computationally intensive
procedure. This process starts with identifying a protein that causes a disease. Subsequently, millions
of molecules are tested for finding lead molecules that will bind with the protein to modulate
the disease. Instead of doing laborious experiments in laboratories, which normally takes years of
analyzing all the lead molecules, molecular modeling is used to do the simulations of the same
computations in few hours. Researchers have investigated methods to accelerate this matching
process (also known as docking), and the most recent one involves the PC grid computing.

Drug discovery is one of the most successful grid computing projects, which makes use of the idle
time of computers connected to the Internet. Millions of volunteers donate their otherwise unused
computer time for the projects such as FightAIDS@Home [28], Smallpox drug discovery [8], Cancer
drug discovery, and bioterrorism [29].

To determine the effectiveness of the CBS scheme, the CBS scheme is applied to some popular
drug discovery programs, in particular, to two molecular docking programs, AutoDock [30] and
FTDock [31]. AutoDock is based on simulated annealing method for docking flexible molecules.
FightAIDS@Home [28], a PC grid computing project, uses this software for searching drugs for
AIDS. FTDock finds the best matching configuration for two molecules by searching and scoring
all the possible translations and orientations. In FTDock, Fast Fourier Transform (FFT) is used to
score each configuration as a surface correlational value.

In the experimental analysis, the following are conducted:

• Software Modules for CBS have been designed and developed in C++ and C in UNIX
platform.

• CBS has been integrated with AutoDock and FTDock software.
• Time analysis is performed for AutoDock and FTDock to compare the time taken by the

CBS versus the time taken for the actual task.
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TABLE 30.1 AutoDock-CBS

Total Steps Total Time (s) SA Time (s) CBS Time (s) %
100, 000 115.56 102.34 6.9 6.7
200, 000 221.85 207.69 13.63 6.6
300, 000 311.8 297.74 20.52 6.8
500, 000 512.61 498.7 34.29 6.8

1, 000, 000 1022.7 1008.71 68.19 6.7

30.7.1 AutoDock

AutoDock is developed and distributed as a free software by The Scripps Research Institute,
California, USA. AutoDock is implemented in C++, and is available for a variety of platforms.
For the implementation, a Sun Enterprise 450 with four UltraSPARC-II 296 MHz processors run-
ning SunOS 5.8 is used. The Autodock version 3.0 consists of simulated annealing and genetic
algorithm methods of docking; in the experimental study, only simulated annealing is used.

The simulated annealing function writes out the energy value of each randomly generated config-
uration. The CBS module, which is integrated to the simulated annealing, accumulates each of these
energy values. At the end of the annealing procedure, a Merkle tree is constructed by the CBS tree
function.

Table 30.1 shows timings of docking runs and the time taken by the CBS algorithms. The total
steps are the number of leaves in the Merkle tree. The total time (without using CBS algorithm) is
split into setup time and the simulated annealing (SA) time. The time taken by the CBS is listed
under the CBS column. The percentage columns list the percentage of the task time (i.e., SA time)
that is taken by the CBS algorithms. It is found that the overhead for the CBS algorithm is less than
7% compared to the actual SA time. This test was performed using 1hvr as protein and xk2A as
inhibitor.

30.7.2 FTDock

FTDock is developed and distributed by the Biomolecular Modeling Laboratory of Cancer Research,
London, UK. Implemented in C, it uses a Fast Fourier Transform for finding the surface comple-
mentarity of two molecules for all possible translations and rotations. For calculating the Fourier
Transform, it uses the Fastest Fourier Transform in the West (FFTW) library. FFTW is a C subroutine
library for computing the discrete Fourier transform (DFT) and is available at [32].

At each run of DFT, it generates N3 ( N is the size of the grid) scores. The CBS module constructs
the Merkle tree for all of these scores. In FTDock, it is possible to define how many scores are ranked.
In that case, CBS works on only the selected data values. After accumulating all the scores, CBS tree
routine creates the root hash and also builds the Merkle tree.

As shown in Table 30.2, the actual computation time (FFT time) is proportional to the total number
of scores. For the experimental study, KALLIKREIN A and TRYPSIN INHIBITOR (CRYSTAL
FORM II) [33] are used as protein and inhibitor, respectively. All these experiments are conducted
on Sun Enterprise 450 with four UltraSPARC-II 296 MHz processors running SunOS 5.8. From the

TABLE 30.2 FTDock-CBS

Total Scores Total Time (s) FFT Time (s) CBS Time (s) %
1, 000 1718.07 100.96 0.04 0.04
2, 000 1810.09 201.38 0.1 0.05
5, 000 2115.93 505.85 0.21 0.04

10, 000 2646.24 1036.74 0.44 0.04
15, 000 3093.07 1500.34 0.63 0.04
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experiments, it is observed that the CBS calculations take less than 0.05% of the time taken for the
actual task, FFT.

30.8 Conclusion and Future Work

This chapter describes the CBS scheme to detect cheating participants in grid computing. To prevent
the participant from changing the computation results after learning the samples, the CBS scheme
uses the Merkle tree for the participant to commit its results before learning the sample selections. The
CBS scheme can be used for generic computations in grid computing. It is efficient in communication
as well as in computation. Based on the CBS scheme, two important issues are addressed: (1) how
to reduce the storage requirement, and (2) how to convert the CBS scheme from an interactive
scheme to a noninteractive scheme. The experimental study shows that CBS scheme takes only a
small portion of the actual task for docking computations used in drug discovery projects.

One assumption made in the CBS scheme and the ringer scheme is that |D| should be significantly
large. When each participant is assigned a task with very few inputs, the sampling scheme and the
ringer scheme does not work well. For example, when |D| = 1, i.e., each task consists of only one
input, the cost of generating the precomputed results (for the ringer scheme) or the cost of verifying
a sample (for the CBS scheme) is as expensive as conducting the task. Therefore, these two schemes
are no better than the naive double-check-every-result scheme. Developing efficient schemes for a
situation when |D| is small is a good topic for future work.
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31.1 Introduction

During the last decades, we have witnessed exciting new developments in computation theory
and practice, from entirely novel perspectives. DNA Computing, known also under the names of
molecular computing, biocomputing, or biomolecular computing, is an emergent field lying at the
crossroads of computer science and molecular biology. It is based on the idea that data can be
encoded as DNA strands, and molecular biology tools can be used to perform arithmetic and logic
operations.

This chapter intends to give the reader a basic understanding of the tools and methods used in
DNA computing, and a snapshot of theoretical and experimental research in this field. It includes
descriptions of a representative DNA computing experiment, of the design of autonomous and
programmable molecular computers, and of models of DNA memories. It describes research into
computation in and by living cells, as well as into DNA self-assembly, a process that can be used
for computation or can produce either static DNA nanostructures or dynamic DNA nanomachines.
This chapter is intended to offer the reader a glimpse of the astonishing world of DNA computing,
rather than being an exhaustive review of the research in the field.

31-1
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The chapter is organized as follows.∗ Section 31.2 introduces basic molecular biology notions
about DNA as an information-encoding medium, and the bio-operations that can be performed
on DNA strands. As a representative example of a DNA bio-algorithm, in which a computational
problem is solved exclusively by bio-operations performed on DNA strands in test tubes, Section
31.3 describes an experiment demonstrated by Adleman’s team, that solved a 20-variable instance of
the 3-SAT problem. Section 31.4 exemplifies the research on molecular autonomous programmable
DNA computers by the description of Benenson automata and their potential applications to smart
drug design. Section 31.5 presents research into DNA memory technology such as nested primer
molecular memory (Section 31.5.1), and organic DNA memory (Section 31.5.2), as well as explores
the topic of optimal DNA sequence design for DNA computing purposes (Section 31.5.3). Section
31.6 explores the fascinating possibilities offered by in vivo computing, that is, computation in and
by living cells, as well as the potential insights it could offer into understanding the computational
processes in nature. Section 31.7 describes one of the most important directions of research in DNA
computing, with significant implications for the rapidly evolving field of nanotechnology: DNA
computing by self-assembly. It includes descriptions of experimental computation by self-assembly
(Section 31.7.1), of static intricate DNA nanostructures (Section 31.7.2), and of impressive DNA
nanomachines (Section 31.7.3). Finally, Section 31.8 offers conclusions and brief comments on the
latest developments in the field of DNA computing.

31.2 Molecular Biology Basics

This chapter was written with the expectation that the reader is a computer scientist with a limited
knowledge of biology. This section provides the basic notions of molecular biology (DNA structure
and DNA bio-operations) necessary for understanding the text.

DNA (deoxyribonucleic acid) is found in every cellular organism as the storage medium for
genetic information, [39]. DNA is a polymer whose monomer units are nucleotides, and the polymer
is known as a “polynucleotide.” More precisely, DNA is a linear chain made up of four different
types of nucleotides, each consisting of a base (Adenine, Cytosine, Guanine, or Thymine) and a
sugar-phosphate unit. The sugar-phosphate units are linked together by covalent bonds to form the
backbone of the DNA single strand. Since nucleotides may differ only by their bases, a DNA strand
can be viewed as simply a word over the four-letter alphabet {A, C, G, T}. A DNA single strand
has an orientation, with one end known as the 5′ end, and the other as the 3′ end, based on their
chemical properties. By convention, a word over the DNA alphabet represents the corresponding
DNA single strand in the 5′ −→ 3′ orientation, that is, GGTTTTT stands for the DNA single strand
5′-GGTTTTT-3′. A short single-stranded polynucleotide chain, usually less than 20 nucleotides
long, is called an oligonucleotide. A DNA strand is sometimes called an n-mer, where n signifies its
length, that is, the number of its nucleotide monomers.

A crucial feature of DNA single strands is their Watson–Crick complementarity, [91]: A is comple-
mentary to T, and G is complementary to C. Two complementary DNA single strands with opposite
orientation will bind to each other by hydrogen bonds between their individual bases to form a stable
DNA double strand with the backbones at the outside and the bound pairs of bases lying inside. In
a DNA double strand, two complementary bases situated on opposite strands, and bound together
by hydrogen bonds, form a base-pair (bp).

∗ The general audience for whom this paper is intended, our fields of expertize, and the space available for this chapter,
affected both the depth and the breadth of our exposition. In particular, the list of research topics presented here is by
no means exhaustive, and it is only meant to give a sample of DNA computing research. Moreover, the space devoted to
various fields and topics was influenced by several factors and, as such, has no relation to the respective importance of
the field or the relative size of the body of research in that field.
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As an example, the DNA single strand 5′- AAAAACC - 3′ will bind to the DNA single strand
5′-GGTTTTT-3′ to form the 7 base-pair-long (7bp) double strand

5′ − AAAAACC − 3′

3′ − TTTTTGG − 5′ .

Formally, the Watson–Crick complement of a DNA single strand w will be denoted by WK(w) or
←
w .

Using our convention on directionality of strands, note that WK(AAAAACC) = GGTTTTT.
Another nucleic acid that has been used for computations is RNA, [23]. Ribonucleic acid or RNA is

a nucleic acid that is similar to DNA, but differs from it in three main aspects: RNA is typically single-
stranded while DNA is usually double-stranded, RNA nucleotides contain the sugar ribose, while
DNA nucleotides contain the sugar deoxyribose, and in RNA the nucleotide Uracil, U, substitutes
for Thymine, which is present in DNA.

The genome consists of DNA sequences, some of which are genes that can be transcribed into
messenger RNA (mRNA), and then translated into proteins according to the genetic code that maps
each 3-letter RNA segment (called codon) into an amino acid. Several designated triplets, called start
(stop) codons, signal the initiation (termination) of a translation. A protein is a sequence over the
20-letter alphabet of amino acids.

There are many possible DNA bio-operations that can be used for computations, [2,38,64], such as:
hybridization by Watson–Crick complementarity, cut-and-paste operations achievable by enzymes,
the synthesis of desired DNA strands up to a certain length, making exponentially many copies of
a DNA strand, the separation of strands by length, the extraction of DNA strands that contain a
certain subsequence, and reading-out a DNA strand. These bio-operations, some briefly explained
later, have all been used to control DNA computations and DNA robotic operations.

DNA single strands with opposite orientation will join together to form a double helix in a
process called base-pairing, annealing, or hybridization. The reverse process—a double-stranded
helix coming apart to yield its two constituent single strands—is called melting. As the name
suggests, melting is achieved by raising the temperature, and annealing by lowering it.

One class of enzymes, called restriction endonucleases, each recognize a specific short sequence of
DNA, known as a restriction site. Any double-stranded DNA that contains the restriction site within
its sequence is cut by the enzyme at that location in a specific pattern. Depending on the enzyme,
the cutting operation leaves either two “blunt-ended” DNA double strands or, more often, two
DNA strands that are double-stranded but have single-stranded overhangs known as “sticky-ends.”
Another enzyme, called DNA ligase, can link together two partially double-stranded DNA strands
with complementary sticky-ends, by sealing their backbones with covalent bonds. The process is
called ligation.

The separation of DNA strands by length is possible by using a technique called gel electrophoresis.
The negatively charged DNA molecules are placed at the top of a wet gel, to which an electric field
is applied, drawing them to the bottom. Larger molecules travel more slowly through the gel. After
a period, the molecules spread out into distinct bands according to their size.

The extraction of DNA single strands that contain a specific subsequence v, from a heterogeneous
solution of DNA single strands, can be accomplished by affinity purification. After synthesizing
strands Watson–Crick complementary to v, and attaching them to magnetic beads, the heteroge-
neous solution is passed over the beads. Those strands containing v anneal to its Watson–Crick
complementary sequence and are retained. Strands not containing v pass through without being
retained.

The DNA polymerase enzymes perform several functions including the replication of DNA by a
process called Polymerase Chain Reaction, or PCR. The PCR replication reaction requires a guid-
ing DNA single strand called template, and an oligonucleotide called primer, that is annealed to
the template. The DNA polymerase enzyme then catalyzes DNA synthesis by successively adding
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nucleotides to one end of the primer. The primer is thus extended at its 3′ end, in the direction 5′ to
3′ only, until the desired strand is obtained that starts with the primer and is complementary to the
template. If two primers are used, the result is the exponential multiplication of the subsequence of
the template strand that is flanked by the two primers, in a process called amplification, schematically
explained in the following. For the purpose of this explanation, if x is a string of letters over the DNA
alphabet {A, C, G, T}, then x will denote its simple complement, for example,

AACCTTGG = TTGGAACC.

Let us assume now that one desires to amplify the subsequence between x and y from the DNA

double strand
5′ − αxβyδ − 3′

3′ − ᾱx̄β̄ȳδ̄ − 5′ , where α, x, β, y, δ are DNA segments. Then, one uses as primers

the strand x and the Watson–Crick complement of y. After heating the solution and thus melting
the double-stranded DNA into its two constituent strands, the solution is cooled and the Watson–
Crick complement of y anneals to the “top” strand, while x anneals to the “bottom” strand. The
polymerase enzyme extends the 3′ ends of both primers into the 5′ to 3′ direction, producing

partially double-stranded strands
5′ − αxβyδ − 3′

3′ − ᾱx̄β̄ȳ − 5′ and
5′ − xβyδ − 3′

3′ − ᾱx̄β̄ȳδ̄ − 5′ . In a similar fashion, the

next heating–cooling cycle will result in the production of the additional strands 5′ − xβy − 3′ and
3′ − x̄β̄ȳ − 5′. These strands are Watson–Crick complementary and will, from now on, be produced
in excess of the other strands, since both are replicated during each cycle. At the end, an order of 2n

copies of the desired subsequences flanked by x and y will be present in the solution, where n is the
number of the heating–cooling cycles.

The earlier and other bio-operations have all been harnessed in biocomputing. To encode infor-
mation using DNA, one can choose an encoding scheme mapping the original alphabet onto strings
over {A, C, G, T}, and proceed to synthesize the information-encoding strings as DNA single strands.
A biocomputation consists of a succession of bio-operations, [20], such as the ones described in
this section. The DNA strands representing the output of the biocomputation can then be read out
(using a sequencer) and decoded.

31.3 Adleman’s 3-SAT Experiment

The idea of using DNA molecules as the working elements of a computer goes back to 1994, [1],
when Adleman solved a 7-node instance of the Hamiltonian Path Problem by exclusively using DNA
strands to encode information, and molecular biology techniques as algorithmic instructions. This
section describes another, more complex, DNA computing experiment that solves a large instance
of the 3-SAT problem, [15].

The 3-SAT problem is an NP-complete computational problem for which the fastest known
sequential algorithms require exponential time. The problem became a testbed for the performance
of DNA computers after Lipton, [54], demonstrated that it was well suited to take advantage of the
parallelism afforded by molecular computation. In 2002, Adleman and his group solved a 20-variable
3-SAT problem, [15]. Unlike the initial proof-of-concept DNA computing experiment, this was the
first experiment that demonstrated that DNA computing devices can exceed the computational
power of an unaided human. Indeed, the answer to the problem was found after an exhaustive
search of more than 1 million (220) possible solution candidates.

The input to a 3-SAT problem is a Boolean formula in 3CNF, that is, in conjunctive normal form
where each conjunct has only at most three literals. This formula is called satisfiable if there exists
a truth value assignment to its variables that satisfies it, that is, that makes the whole formula true.
Thus, the output to the 3-SAT problem is “yes” if such a satisfying truth value assignment exists, and
“no” otherwise.
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The input formula of Adleman’s experiment was the 20-variable, 24-clause, 3CNF formula:
Φ = (x3 ∨ x16 ∨ x18) ∧ (x5 ∨ x12 ∨ x9) ∧ (x13 ∨ x2 ∨ x20) ∧ (x12 ∨ x9 ∨ x5) ∧ (x19 ∨ x4 ∨ x6) ∧ (x9 ∨
x12∨x5)∧(x1∨x4∨x11)∧(x13∨x2∨x19)∧(x5∨x17∨x9)∧(x15∨x9∨x17)∧(x5∨x9∨x12)∧(x6∨x11∨
x4)∧(x15∨x17∨x7)∧(x6∨x19∨x13)∧(x12∨x9∨x5)∧(x12∨x1∨x14)∧(x20∨x3∨x2)∧(x10∨x7∨x8)∧
(x5 ∨x9 ∨x12)∧(x18 ∨x20 ∨x3)∧(x10 ∨x18 ∨x16)∧(x1 ∨x11 ∨x14)∧(x8 ∨x7 ∨x15)∧(x8 ∨x16 ∨x10),

where xi denotes the negation of xi, 1 ≤ i ≤ 20. This formula Φ was designed so as to have a unique
satisfying truth assignment. The unique solution is: x1 = F, x2 = T, x3 = F, x4 = F, x5 = F, x6 = F,
x7 = T, x8 = T, x9 = F, x10 = T, x11 = T, x12 = T, x13 = F, x14 = F, x15 = T, x16 = T, x17 = T,
x18 = F, x19 = F, x20 = F.

Adleman’s solution was based on the following nondeterministic algorithm.

Input: A Boolean formula Φ in 3CNF.
Step 1: Generate the set of all possible truth value assignments.
Step 2: Remove the set of all truth value assignments that make the first clause false.
Step 3: Repeat Step 2 for all the clauses of the input formula.
Output: The remaining (if any) truth value assignments.

To implement this algorithm, one needs to first encode the input data as DNA strands. This was
achieved as follows. Every variable xk, k = 1, . . . , 20, was associated with two distinct 15-mer DNA
single strands called “value sequences.” One of them, denoted by XT

k , represented true (T), while the
second, denoted by XF

k , represented false (F).
The following are some examples of the particular 15-mer sequences—none of which contained

the nucleotide G—synthesized and used in the experiment:

XT
1 = TTACACCAATCTCTT, XF

1 = CTCCTACAATTCCTA,

XT
20 = ACACAAATACACATC, XF

20 = CAACCAAACATAAAC.

Each of the possible 220 truth assignments was represented by a 300-mer “library strand” consisting
of the ordered catenation of one 15-mer value sequence for each variable, that is, by a strand

α1α2 . . . α20, where αi ∈ {XT
i , XF

i }, 1 ≤ i ≤ 20.

To obtain these “library strands,” the 40 individual 15-mer sequences (each present in multiple
copies in solution) were assembled using the mix-and-match combinatorial synthesis technique
of [23].

The biocomputation wetware essentially consisted of a glass “library module” filled with a gel
containing the library, as well as one glass “clause module” for each of the 24 clauses of the formula.
Each clause module was filled with gel containing probes (immobilized DNA single strands) designed
to bind only library strands encoding truth assignments statisfying that clause.

The strands were moved between the modules with the aid of gel electrophoresis, that is, by
applying an electric current that resulted in the migration of the negatively charged DNA strands
through the gel.

The protocol started with the library passing through the first “clause module,” wherein library
strands containing the truth assignments satisfying the 1st clause were captured by the immobilized
probes, while library strands that did not satisfy the first clause continued into a buffer reservoir.
The captured strands were then released by raising the temperature, and used as input to the second
clause module, and so on. At the end, only the strand representing the truth assignment that satisfied
all the 24 clauses remained.

The output strand was PCR amplified with primer pairs corresponding to all four possible true–
false combinations of assignments for the first and last variable x1 and x20. None except the primer
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pair (XF
1 , WK(XF

20)) showed any bands, thus indicating two truth values of the satisfying assignment,
namely x1 = F and x20 = F. The process was repeated for each of the variable pairs (x1, xk),
2 ≤ k ≤ 19, and, based on the lengths of the bands observed, value assignments were given to the
variables. These experimentally derived values corresponded to the unique satisfying assignment for
the formula Φ, thus concluding the experiment.

One of the remarkable features of this DNA computing experiment was that simple bio-operations
could carry on a complex computation such as the one needed for solving a relatively large instance
of 3-SAT.

31.4 Benenson Automata

Following Adleman’s, [1], proof-of-concept demonstration of DNA computing, several research
teams embarked on the quest for a DNA implementation of a Universal Turing Machine. In
the process, they demonstrated various molecular scale autonomous programmable computers
([10–12,56,74]) allowing both input and output information to be in molecular form. In this section
we illustrate one such programmable computer, [10], known as the “Benenson automaton.”

S0 S1

a

b

b
a

FIGURE 31.1 A finite
automaton with two states
S0 and S1 over the alphabet
set {a, b}, that accepts only
words with an even number
of letters b.

In [10] the authors construct a simple two-state automaton,
Figure 31.1, over a two-letter alphabet set, by using double-stranded
DNA molecules and restriction enzymes.

Any particular two-state automaton will have a subset of the eight
possible transition rules, and a subset of the two-state set as final states.
The automaton implemented by Benenson et al. takes strings of symbols
over the two-letter alphabet {a, b} as input, and accepts only those strings
that contain an even number of letters b (see Figure 31.1).

The main engine of the Benenson automaton is the FokI enzyme,
a member of an unusual class of restriction enzymes that recognize a
specific DNA sequence and cleave nonspecifically a short distance away
from that sequence. FokI binds the sequence

5′ − GGATG − 3′

3′ − CCTAC − 5′ ,

and cleaves DNA (regardless of the sequence composition) 9 bp away on the “top” strand, and 13
bp away on the “bottom” strand, leaving thus four-letter-long sticky ends.

The input symbols, a, b, and the terminator t, are encoded respectively as the 6bp sequences:

a :
5′ − CTGGCT − 3′

3′ − GACCGA − 5′ b :
5′ − CGCAGC − 3′

3′ − GCGTCG − 5′ t :
5′ − TGTCGC − 3′

3′ − ACAGCG − 5′

An example of the encoding of an input string can be seen in the first line of Figure 31.3. The
input ab is encoded as a DNA double strand that contains a restriction site for FokI, followed closely
by the catenation of the encodings for the symbol string abt.

Every state/symbol pair is encoded as a 4-mer DNA strand in the following way. The state/symbol
pair S0a is encoded as 5′ − GGCT − 3′ (the 4-mer suffix of the encoding for the symbol a), while S1a
is encoded as 5′ − CTGG − 3′ (the 4-mer prefix of the encoding for a). The encodings are chosen in
a similar way for the state/symbol pairs involving the input symbol b, and the terminator symbol t.
This method permits the encoding of a symbol to be interpreted in two ways: If the 4-mer suffix of the
encoded symbol is detected, then the symbol is interpreted as being read in state S0; and if the 4-mer
prefix of the encoded symbol is detected, then the symbol is being interpreted as being read in state S1.

There are two output detection molecules. S0-D is a 161-mer DNA double strand with an overhang
3′−AGCG−5′, which “detects” the last state of the computation as being S0. S1-D is a 251-mer DNA



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C031 Finals Page 7 2009-10-19

DNA Computing: A Research Snapshot 31-7

22

28

GGT

GGT

GGATGTAC

GGATGA

T1: S0 S0

S0

a

a

22GGT
GGATGACGAC

T2: S0 S1

28

21

GGT

GGT

GGATGACG

GGATGG

T3: S0

T7: S1

S0

S0

b

b

15GGT
GGATGACGAC

T4: S0 S1

15GGT
GGATGACG

T6: S1 S1

a

a

30GGT
GGATGACG

T8: S1 S1

b

bT5: S1

FokI recognition site

CCTACATGCCGA CCTACTGCTGCCGA CCTACTGCGTCG CCTACTGCTGGTCG

CCTACTGCGCGTCCTACCGCGTCCTACTGCGACCCCTACTGACC

FIGURE 31.2 Transition molecules encoding the set of all possible transition rules of a two-state automaton. The
boxes represent DNA double-strands of length equal to the number inside the box. (Adapted from Benenson, Y. et al.,
Nature, 414, 430, 2001.)

double strand with an overhang 3′ − ACAG − 5′, which detects the last state of the computation
as being S1. The two output detection molecules have different lengths, so that they can be easily
differentiated by gel electrophoresis.

The eight possible transition molecules of a two-state Benenson automaton are shown in
Figure 31.2. Each has a four-letter overhang, for example, 3′ − CCGA −5′ for T1, that can selectively
bind to DNA molecules encoding the current state/symbol pair, as detailed in the following example.

The automaton processes the encoding for the input string ab as shown in Figure 31.3. First, the
FokI enzyme recognizes its restriction site and cleaves the input encoding the symbols abt, thereby
exposing the 4-nucleotide sticky-end 5′ − GGCT − 3′ that encodes the state/symbol pair S0a.

The transition molecule T1 encoding the automaton rule S0a −→ S0 “detects” this state/symbol,
by binding exactly to the cleaved input molecule and forming a fully double-stranded DNA molecule
with the aid of the enzyme ligase.

The transition molecule T1, now incorporated in the current molecule, contains a FokI recognition
site. Moreover, the 3bp “spacer” sequence that follows the FokI restriction site in T1 ensures that the
next cleaving of FokI will expose a suffix of the encoding of the next input symbol b, which will be
correctly interpreted as S0b.∗

The overhang of the current DNA molecule is now 5′ − CAGC − 3′, which is interpreted as S0b.
The sticky-end of this sequence fits the transition rule T4, encoding the automaton rule S0b −→ S1.
Thus, the combination of the current DNA strand with T4 and the enzyme ligase leads to another
fully double-stranded DNA strand.

A last use of FokI exposes the overhang 5′ − TGTC − 3′ of the current DNA molecule. This
is a prefix of the terminator, which is interpreted as S1t. The overhang is complementary to the
sticky-end 3′ − ACAG − 5′ of the detector molecule S1-D, corresponding to the last state of
the computation being S1. The state S1 is not final, and thus the outcome of the computation is
that the input ab is not accepted by this automaton.

Note that any two-state two-symbol automaton could be built using the aforementioned method.
The automaton could be made to perform a different task by choosing a different set of transition
molecules.

As an exciting application, Benenson et al. [12] demonstrated how the aforementioned method
can be used for medical diagnosis and treatment. As a proof of principle, Benenson et al. [12]
programmed an automaton to identify and analyze the mRNA of disease-related genes associated
with models of small-cell lung cancer and prostate cancer, and to produce a single-stranded DNA
molecule modeled after an anticancer drug.

∗ Note that, if the automaton would have had instead the transition rule T2, encoding S0a −→ S1, then the length of
the “spacer” in T2 would have been 5bp, placing the position of the cut 2bp more to the left. This would have exposed a
prefix of the encoding for b, which would have been correctly interpreted as S1b.
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3 0 0

FokI

3 0 0G G C T C G C A G C T G T C G C
G C G T C G A C A G C G

T 1

ligase

3 0 0

3 0 0C A G C T G T C G C
A C A G C G

FokI

ligase

3 0 0

FokI

3 0 0

G G A T G
C C T A C2 1 C T G G C T C G C A G C T G T C G C

G A C C G A G C G T C G A C A G C G7

G G A T G T A C G G C T C G C A G C T G T C G C
C C T A C A T G C C G A G C G T C G A C A G C G

2 2G G T

G G A T G A C G A C C A G C T G T C G C
C C T A C T G C T G G T C G A C A G C G1 5G G T

< S 0 , a >

< S 1 , t >

ligase

< S 0 , b >

T 4

3 0 02 5 1 T G T C G C
A C A G C G

< S 1 - D >

T G T C G C
C G

FIGURE 31.3 Example of the computation of a Benenson automaton corresponding to Figure 31.1, for the input ab.
The numbers in the boxes indicate the lengths of the corresponding double-stranded DNA sequences. (Adapted from
Benenson, Y. et al., Nature, 414, 430, 2001.)

The computational process of this automaton was formalized in [86]. The authors of [86] study the
computational power of Benenson automata and show that they are capable of computing arbitrary
Boolean functions.

31.5 DNA Memory

This section discusses various aspects of DNA-encoded information. A brief description of sev-
eral models for a DNA memory is followed by a more detailed description of the Nested Primer
Molecular Memory (NPMM) (Section 31.5.1), and in vivo Organic DNA Memory (Section 31.5.2).
In addition, Section 31.5.3 provides a discussion on the various approaches to the optimal design
of information-encoding DNA sequences for DNA computing, including software simulations,
algorithmic methods, and theoretical studies.
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There are several reasons to consider DNA memory as an alternative to all the currently available
implementations of memories. The first is the extraordinary information-encoding density that can
be achieved by using DNA strands. Indeed, the possibility of storing vast amounts of data in a
small space is probably one of the most alluring features of DNA computing. In [71], Reif reported
a calculation based on the facts that a mole contains 6.02 × 1023 DNA base monomers, and the
mean molecular weight of a monomer is approximately 350 g/mole. Thus, 1 g of DNA contains
2.1 × 1021 DNA bases. Since there are 4 DNA bases that can encode 2 bits, it follows that 1 gram
of DNA can store approximately 4.2 × 1021 bits. Thus, DNA has the potential of storing data on
the order of 1010 more compactly than conventional storage technologies. In addition, the robust-
ness of DNA data ensures the maintenance of the archived information over extensive periods of
time [4,18,85].

The idea of a content-addressable DNA memory, able to store binary words of fixed length, was
first proposed by Baum in [8]. In his model, each word in the memory would be a DNA single
strand constructed as follows. Two distinct DNA sequences would be assigned to each component,
the first encoding a “1,” and the other encoding a “0.” DNA molecules encoding a particular binary
word would then be obtained by catenating the appropriate DNA sequences corresponding to
its bits, in any order. This DNA memory would be associative, or content addressable. Given a
subset of the component values, one could retrieve any words consistent with these values from
the DNA memory as follows. For each component, one could synthesize the complement of the
corresponding subsequence of encoding DNA, and affix it to a solid support, for example, a magnetic
bead. This complement would then bond to DNA memory molecules that contain that subsequence,
that is, code for that component value. These molecules could then be extracted magnetically.
After iterative extractions based on each component, one would end up with DNA molecules
matching the constraints exactly. As calculated in [8], the storage that is in principle possible using
these techniques is astonishing, making it possible to imagine DNA memories vastly larger than
the brain.

Several other authors, [16,46,60,71,88], have proposed various DNA memory models. Almost all
of this research consists of preliminary experiments on a very small scale. Recently, Yamamoto et al.
proposed a DNA memory with over 10 million addresses [99]. Their proposed DNA memory is
addressable by using nested PCR, was named NPMM, and will be discussed in more detail in the
Section 31.5.1.

31.5.1 Nested Primer Molecular Memory

NPMM, [99], is a pool of DNA strands wherein each strand codes both data information and its
corresponding address information. The data information is a DNA sequence that uses a suitable
encoding to express the information as a sequence over the DNA alphabet {A, C, G, T}. The address
information consists of several components expressed as DNA sequences flanking the data. For
example, data could be stored as

[CLi, BLj, ALk, DATA, ARq, BRr , CRs],
where i, j, k, q, r, s ∈ {0, . . . , 15}, and each of the components, for example, CL0, represents a 20-mer
DNA sequence. To retrieve the data, one uses nested PCR consisting of three steps. The first step
is to use PCR with the primer pair (CLi, WK(CRs)). As a result, one can extract from the memory
solution the set of DNA molecules starting with CLi and ending in CRs. This is because PCR results
in a significant difference in concentration between the amplified molecules (starting with CLi
and ending with CRs), and nonamplified molecules. The latter can be disregarded for all practical
purposes. The second PCR is performed with primer pair (BLj, WK(BRr)). At this point we possess
DNA-encoded data that was flanked by CLiBLj and BRrCRs. The third step is PCR using primer pair
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(ALk, WK(ARq)). This will result in the target DNA-encoding data with “left address” CLiBLjALk
and “right address” CRqBRrARs. The molecules can then be sequenced and decoded to allow the
retrieval of the target DNA-encoded data.

The aforementioned NPMM model can realize both enormous address space and high specificity.
The hierarchical address structure enables a few DNA sequences to express very large address
spaces. One of the main disadvantages of NPMM is that during PCR mutations can occur. This
can be avoided by proper selection of DNA sequences, which will be discussed in detail in Section
31.5.3. The authors discuss, in [99], the limitation of scaling up the proposed DNA memory by
using a theoretical model based on combinatorial optimization with some experimental restrictions.
The results reveal that the size of the address space of this model of DNA memory is close to the
theoretical limit.

31.5.2 Organic DNA Memory

The development of a DNA memory technology utilizing living organisms has a much greater
potential than any of the existing counterparts to render long life expectancy of data, [97,98]. Since a
naked DNA molecule is easily destroyed in any open environment, a living organism can act as a host
that protects the information-encoding DNA sequence. In [97], the authors propose a candidate for
a living host for DNA memory sequences, that tolerates the addition of artificial gene sequences and
survives extreme environmental conditions.

The experiment had several key stages, [97]. In the first stage, in the process of identifying can-
didates to carry the embedded DNA molecules, the authors considered several microorganisms,
and chose two well-understood bacteria, Escherichia coli, and Deinococcus radiodurans. In partic-
ular, Deinococcus can survive extreme conditions including cold, dehydration, vacuum, acid, and
radiation, and is therefore, known as a polyextremophile.

During the information encoding stage, a certain encoding scheme was chosen, that assigned
3-mer sequences to various symbols. For example, AAA encoded the digit “0,” AAC the digit “1,”
and AGG the letter “A” of the English alphabet. Each of the encoding DNA sequences contained
only three of the four DNA nucleotides. Using this encoding, any English text could be codified as a

Message

Sentinels

FIGURE 31.4 A recom-
binant plasmid with two
DNA fragments as sen-
tinels protecting the
DNA-encoded message in
between. (Reproduced from
Wong, P. et al., Commun.
ACM, 46, 95, 2003.)

DNA sequence, and the text chosen for this experiment was “And the
oceans are wide.”

In addition, several DNA sequences were chosen to act as “sentinels”
and tag the beginning and the end of the encoded messages, for later
identification and retrieval. These sequences were chosen by searching
the genomes of both E. coli and Deinococcus, and identifying a set of
fixed-size DNA sequences that do not exist in either genome, yet sat-
isfy all the genomic constraints and restrictions. Twenty five such DNA
sequences, 20 base-pairs each, were selected, in such a way so as not to
cause unnecessary mutation or damage to the bacteria. All sequences
contained multiple stop codons TAA, TGA, and TAG as subsequences.
Without their presence, the bacterium could misinterpret the memory
strands, transcribe them into mRNA, and then translate the mRNA into
artificial proteins that could destroy the integrity of the embedded mes-
sage, or even kill the bacterium.

A 46bp DNA sequence was then created, consisting of two different
20bp selected “sentinel” sequences, connected by a 6bp sequence that was
the recognition site of a particular enzyme. This double-stranded DNA
molecule was cloned into a recombinant plasmid (a circular double-
stranded DNA sequence)—see Figure 31.4.
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The embedded DNA was then inserted into cloning vectors (circular DNA molecules that can
self-replicate within a bacterial host). The resultant vectors were then transferred into E.coli by
high-voltage shocks, allowing the vector to multiply.

The vector and the encoded DNA were then incorporated into the genome of Deinococcus for per-
manent information storage and retrieval. Using prior knowledge of the sequences at both borders,
the message was retrieved by PCR, read-out, and decoded into the original English text it encoded.

The proposed organic DNA memory has an enormous potential capacity for storing information,
especially considering that 1mL of liquid can contain up to 109 bacteria. Potential disadvantages are
random mutations, but these are unlikely given the well developed natural mechanisms that exist in
cells for detecting and correcting errors.

31.5.3 Design of DNA Sequences

In most DNA-based computations, there are three basic stages: (1) encoding the input data
using single- or double-stranded DNA molecules, (2) performing the biocomputation using bio-
operations, and finally (3) decoding the result. One of the main problems in DNA computing is
associated with step (1), and concerns the design of optimal information-encoding oligonucleotides
to ensure that mismatched pairing due to the Watson–Crick complementarity is minimized, and
that undesirable bonds between DNA strands are avoided.

Indeed, in laboratory experiments, the complementarity of the bases may pose potential problems
if some DNA strands form nonspecific hybridizations and partially anneal to strands that are not
their exact complements, or if they stick to themselves or to each other in unintended ways. There are
several approaches to addressing this so-called sequence design problem. In this chapter, we discuss
the software simulation approach, the algorithmic approach, and the theoretical approach to the
design of DNA strands optimal for DNA computing.

31.5.3.1 Software Simulation

Software simulation tools verify the computation protocol correctness before it is carried out in a
laboratory experiment. Several software packages [24,25,32,33] written for DNA computing purposes
are available. For example, the software Edna simulates biochemical processes and reactions that
can occur during a laboratory experiment.

Edna, [28], is a simulation tool that uses a cluster of PCs and simulates the processes that could
happen in test tubes. Edna can be used to determine if a particular choice of encoding strategy is
appropriate, to test a proposed protocol and estimate its performance and reliability, and even to
help assess the complexity of the protocols. Test tube operations are assigned a cost that takes into
account many of the reaction conditions. The measure of complexity used by Edna is the sum of
the costs added up over all operations in a protocol. Other features offered by the software allow the
prediction of DNA melting temperature (the temperature at which a DNA double strand “melts” into
its two constituent single strands), taking into account various reaction conditions. All molecular
interactions simulated by the software are local and reflect the randomness inherent in biomolecular
processes.

31.5.3.2 Algorithmic Method

In most DNA-based computations there is an assumption that a strand will bind only to its perfect
Watson–Crick complement. For example, the results of DNA computations are retrieved from the
test tubes by using strands that are complementary to the ones used for computation.

In practice, it is, however, possible that a DNA molecule will bind to another molecule, which
differs from its perfect complementary molecule by one or even several nucleotides. One way to
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avoid this is to ensure that two molecules in the solution differ in more than one location. This
property can be formalized in terms of the Hamming distance.

Given two words w1, w2 of equal length, the Hamming distance H(w1, w2) is defined as the number
of locations in which the words w1 and w2 are distinct. For a set of words, the Hamming distance
constraint requires that any two words w1 and w2 in the set have H(w1, w2) ≥ d. If we are dealing
with DNA words, another constraint necessary to avoid mishybridizations is H(w1, WK(w2)) ≥ d,
where WK(w) denotes the Watson–Crick complement of w. Yet another consideration is that, when
retrieving the results from the solution, hybridization should occur simultaneously for all molecules
in the solution. This implies that the respective melting temperatures should be comparable for all
hybridization reactions that are taking place. This is the third main constraint that the set of words
under consideration needs to adhere to.

To address the problem of designing DNA code words according to these three constraints, an
algorithm based on a stochastic local search method was proposed in [89]. The melting temperature
constraint is simplified to the constraint requiring that, for each strand, the number of C and G
nucleotides amounts to 50% of its total nucleotide count. The algorithm produces a set of DNA
sequences of equal length that satisfy the Hamming distance and the temperature constraints. The
algorithm is based on the following:

Input: Number k of words needed to produce, and the word length n.
Step 1: Produce a random set of k words of length n.
Step 2: Modify the set so that the set satisfies the first constraint.
Step 3: Repeat Step 2 for all the given constraints.
Output: The set of words (if one can be found).

More specifically, for Step 2 two words w1 and w2 are chosen from the set that violate at least one of
the constraints. With a probability 1 − θ, θ being the noise parameter, one of these words is altered
by randomly substituting one base in a way that maximally decreases the number of constraint
violations. The algorithm terminates either when there are no more constraint violations in the set
of words or when the number of loop iterations has exceeded some maximum threshold. Empirical
results prove this technique to be effective and the noise parameter θ is empirically determined to
be optimal as 0.2, regardless of the problem instance.

31.5.3.3 Theoretical Studies

In this section, we discuss the formal language theoretical approach to the problem of designing code
words, introduced in [35]. We begin by reviewing some basic notions and notations. An alphabet is
a finite, nonempty set of symbols. Let Σ be such an arbitrary alphabet. Then Σ∗ denotes the set of all
words over this alphabet, including the empty word λ. Σ+ is the set of all nonempty words over Σ.
Σi is the set of all words over Σ of length i. We also denote by Subk(L), the set of all subwords of
length k of words from the set L. For more details of formal language theory, theory of codes, and
combinatorics on words the reader is referred to [14,34,55,75,83,102].

Every biomolecular protocol involving DNA generates molecules whose sequences of nucleotides
form a language over the four-letter alphabet Δ = {A, G, C, T}. The Watson–Crick complementarity
of the nucleotides defines a natural involution θ, A �→ T and G �→ C which is an antimorphism
on Δ∗. An involution θ is a mapping such that θ2 is the identity. An antimorphism θ is such that
θ(uv) = θ(v)θ(u) for all words u, v from Δ∗. For example, if u = AGACT, then the Watson–Crick
complement θ(u) is AGTCT.

Given a DNA language, that is, a language over the DNA alphabet Δ, undesirable Watson–
Crick bonds between its words can be avoided if the language satisfies certain properties. There
are two types of unwanted hybridizations: intramolecular and intermolecular. The intramolecular



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C031 Finals Page 13 2009-10-19

DNA Computing: A Research Snapshot 31-13

u
xv

FIGURE 31.5 Intramolecu-
lar hybridization (hybridiza-
tion within the same
molecule). A DNA sequence
of the type uv

←
u x, where

←
u

denotes the Watson–Crick
complement of u, will form
a secondary structure called
a hairpin. Such hairpin
structures are avoided by
hairpin-free languages and by
θ-k-m-subword codes.

hybridization happens when two sequences, one being the reverse
complement of the other, appear within the same DNA strand (see
Figure 31.5). In this case the DNA strand forms a hairpin.

Suppose we want to avoid the type of hybridization shown in Figure
31.5. A language L is called (Jonoska et al., [36]) a θ-k-m-subword code
if for all words u ∈ Σk we have Σ∗uΣmθ(u)Σ∗ ∩ L = ∅. An analogous
definition of hairpin-free languages was given in [41]. In this definition,
Σ is an arbitrary alphabet and θ is any antimorphic involution. If Σ

is taken to be the DNA alphabet Δ, then this property is essentially
saying that the DNA sequences from the set L do not form the hairpin
structures illustrated in Figure 31.5.

DNA strand sets that avoid all types of unwanted intermolecular
bindings (See Figure 31.6) were introduced in [36], and called θ-k-codes.
A language L is said to be a θ-k-code if θ(x) �= y for all x, y ∈ Subk(L).
The relationship θ(x) = y indicates that the molecules corresponding

to x and y can form chemical bonds between them as shown in Figure 31.6. For a suitable k, a
θ-k-code avoids all kinds of unwanted intermolecular hybridizations.

The θ-k-code property is meant to ensure that DNA strands do not form unwanted hybridizations
during DNA computations. Sets theoretically designed to have this property have been successfully
tested in practical wet-lab experiments [36]. In [44], the concept of θ-k-code has been extended to
the Hamming bond-free property: H(θ(x), y) > d for any subwords x, y ∈ Subk(L), where d is an
empirically chosen positive integer parameter.

Suppose we use codes that have the language properties we have described, what may happen dur-
ing the course of computation is that the properties initially present deteriorate over time. This leads
to another study, which investigates how bio-operations such as cutting, pasting, splicing, contextual
insertion, and deletion affect the various bond-free properties of DNA languages. Invariance under
these bio-operations has been studied in [36,37,40]. Bounds on the sizes of some other codes with
desirable properties that can be constructed are explored by Marathe et al. [57].

The approach to DNA-encoded information and its properties described in this section has been
meaningful to both DNA computing experimental research, and to DNA computing theoretical
research by establishing a mathematical framework for describing and reasoning about DNA-
encoded information. In addition, the notions defined and investigated in this context proved to
be fruitful from the purely computer science point of view. Indeed, it turns out that some of these
notions generalize classical concepts in coding theory and combinatorics of words such as primitive,

u  = k

u

u

u

u

u

u

FIGURE 31.6 Intermolecular hybridizations (hybridizations between different molecules): If one DNA molecule
contains a subword u of length k, and the other one contains the subword ← u, then the molecules will bind to each
other, as shown in this figure. Such hybridizations are avoided by θ-k-subword codes.
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commutative, conjugate, and palindromic words, as well as prefix, suffix, infix, and comma-free
codes (see, e.g., [19,35,40,42,43]).

31.6 Computation in Living Cells

An example of the attempts to understand nature as computation is the research on computation
in and by living cells. This is also sometimes called cellular computing, or in vivo computing, and
one particular area of study in this field concerns the computational capabilities of gene assembly in
unicellular organisms called ciliates [22,50].

Ciliates, unicellular protozoa named for their wisp-like cover of cilia, possess two types of nuclei:
an active macronucleus containing the functional genes, and a functionally inert micronucleus that
contributes only to genetic information exchange. In the process of conjugation, after two ciliates
exchange genetic information and form new micronuclei, they have to assemble in real-time new
macronuclei necessary for their survival. This is accomplished by a process that involves reordering
some fragments of DNA from the micronuclear DNA (permutations and some inversions) and
deleting other fragments. The process of obtaining the macronuclear DNA from the micronuclear
DNA, by removing the noncoding sequences and permuting the coding fragments to obtain the cor-
rect order, is called gene rearrangement [66] (see Figure 31.7). The function of the various noncoding
eliminated sequences is unknown and they represent a large portion (up to 98%) of the micronu-
clear sequences. As an example, the micronuclear Actin I gene in Oxytricha nova is composed of 9
coding segments present in the permuted order 3-4-6-5-7-9-2-1-8, and separated by 8 noncoding
sequences. Instructions for the gene rearrangement (also called gene unscrambling) are apparently
carried in the micronuclear DNA itself: pointer sequences present at the junction between coding
and noncoding sequences, as well as certain RNA “templates,” permit reassembly of the functional
macronuclear gene.

1

1 3 5 7 6 2
4

2 3 4 5 6 7

In the macronucleus, gene-sized
chromosomes assemble from
their scrambled building blocks;
telomere repeats (boxes) mark
and protect the surviving ends.

In the macronucleus, coding
regions of DNA are dispersed
over the long chromosome.

FIGURE 31.7 Overview of gene rearrangement in ciliates. Dispersed micronuclear coding fragments 1–7 (bottom)
reassemble during macronuclear development to form the functional gene copy (top). (From Landweber, L. and Kari,
L., The evolution of cellular computing: Nature’s solution to a computational problem, Proceedings of the DNA 4,
University of Pennsylvania, Philadelphia, PA (Reproduced from L. Kari, H. Rubin, and D. Wood, Eds.); Biosystems,
52, 3, 1999.)
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The process of gene assembly is interesting from both the biological and the computational point
of view. From the computational point of view, this study led to many novel and challenging research
themes, [22]. Among others, it was proved that various models of gene assembly have full Turing
machine capabilities, [50]. From the biological point of view, the joint effort of computer scientists
and biologists led to a plausible hypothesis (supported already by some experimental data) about
the “bioware” that implements the process of gene assembly, which is based on the new concept of
template-guided recombination, [3,63,67].

Other approaches to cellular computing include developing of an in vivo programmable and
autonomous finite-state automaton within E. coli, [59], and designing and constructing in vivo
cellular logic gates and genetic circuits that harness the cell’s existing biochemical processes
[49,92,93].

31.7 DNA Self-Assembly

One of the most important achievements of DNA computing has been its contribution to the
extensive body of research in nanosciences, by providing computational insights into a number
of fundamental issues. Perhaps, the most prominent is its contribution to the understanding of
self-assembly, which is among the key concepts in nanosciences (see [70] for an overview of self-
assembly written for computer scientists). Self-assembly originates in the formal two-dimensional
model of tiling defined and studied by Wang, [90]. Tiles are squares with “coloured edges” that,
when placed on the plane, form a valid tiling only if the colours at their abutting edges are equal.
Tiling systems can be used to simulate the computation of a universal Turing Machine (see, e.g.,
[13,90]). Winfree et al. [94,95], were the first to implement the concepts of computational tiling by
using self-assembling “DNA tiles.” This section describes several models of self-assembly, as well as
applications of self-assembly to computation, (Section 31.7.1), to the creation of static DNA shapes
and patterns (Section 31.7.2), as well as to engineering dynamic DNA nanomachines (Section 31.7.3).

31.7.1 DNA Self-Assembly for Computation

Molecular self-assembly is an automatic process in which molecules assemble into covalently
bonded, well-defined stable structures without guidance or management from an outside source.

FIGURE 31.8 DNA Holiday
junction. Four DNA single
strands can be designed so as
to form a branched structure in
which each single strand partici-
pates in two consecutive double-
stranded “branches.”

There are two types of self-assembly, namely, intramolecular self-
assembly and intermolecular self-assembly. Most often the term
molecular self-assembly refers to intermolecular self-assembly, while
the intramolecular analog is more commonly called folding.

One of the important features of DNA used in self-assembly is that
DNA has many rigid, well-characterized forms that are not a linear
double helix. For example, one can build DNA structures called Hol-
iday junctions, [77], wherein four DNA single strands self-assemble
and create a branched structure, as seen in Figure 31.8. This can be
accomplished by designing each of the four DNA single strands to
be partially complementary to one of the others, so that each strand
participates in two consecutive double-stranded “branches.”

This type of complex self-assembled DNA structures have been used
by Winfree et al. who introduced a two-dimensional self-assembly
model for DNA computation, [95]. In this model, using techniques
similar to the ones described earlier (demonstrated, e.g., in [27]),
rectangular DNA structures are built, with four sticky single-stranded
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ends at their corners. These DNA structures behave as “tiles” and can be designed to perform two-
dimensional assembly as follows. Depending on their composition, the sticky ends of a tile (which
are single-stranded DNA strands) will attach only to Watson–Crick complementary correspond-
ing ends from other tiles. This results in spontaneous self-assemblies of the tiles into essentially
planar conformations that can be designed so as to perform any deterministic or nondeterministic
computation.

Yokomori et al., [101], introduced another self-assembly model that is Turing-universal. Other
computations that have been achieved by the self-assembly of complex DNA nanostructures include
bit-wise cumulative XOR, [56], and binary counters [5]. As another example, Seelig et al. [76]
reported the design and experimental implementation of DNA-based digital logic circuits. The
authors demonstrate AND, OR, and NOT gates, signal restoration, amplification, feedback, and
cascading.

Regarding intramolecular self-assembly, Hagiya et al. [31] and Sakamoto et al. [74], proposed a
new method of DNA computing that involves a self-acting DNA molecule containing, on the same
strand, the input, program, and working memory. The computation, also called Whiplash PCR,
proceeds as follows (see Figure 31.9). The single DNA strand contains at its 5′ end state transitions
of the type A −→ B, each encoded as a DNA rule block “

←
B − ←

A −stopper sequence.” The 3′ end of
the DNA sequence contains, at any given time, the encoding of the “current state,” say A. In Step (1),
cooling the solution will lead the 3′ end of the DNA strand, A, to attach to its complement in the
corresponding rule block, namely to

←
A . In Step (2), PCR is used to extend the now-attached end A

by the encoding of the new state B, and the extension process is stopped by the stopper sequence.
Then, in Step (3), by raising the temperature, the new current state B detaches and becomes loose,
and the next state transition cycle can begin.

The main motivation for using this model is that self-acting molecules can compute in parallel,
in a single-tube reaction, allowing for a multiple program, multiple input architecture. Hagiya et al.,
[31], showed how to theoretically learn μ-formulas using this model. Subsequently, Winfree [96]
showed how to solve several NP-complete problems in O(1) biosteps using whiplash PCR.

Rule block 15΄

B

(1)

(3)

(2)

B B

A

A

A

CStopper StopperB

B A AC B B

A

A

A

Rule block 2 3΄

FIGURE 31.9 Whiplash PCR (
←
A denotes the Watson–Crick complement of A). The 5′ end of the DNA strand

contains rule blocks “
←
B − ←

A − stopper sequence” coding for state transitions of the type A → B. The 3′ end contains
the encoding of the current state A. In Step (1), cooling the solution leads the 3′ end A to attach to the corresponding
part of the rule block. In Step (2), PCR extends the now-attached end encoding the state A, by the new state B,
stopping at the stopper sequence. Raising the temperature results, in Step (3), in the loose end encoding the new state
B becoming detached and ready for the next state transition cycle.
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31.7.2 DNA Nanoscale Shapes

DNA nanotechnology (see [78] for a comprehensive survey), uses the unique molecular recognition
properties of DNA to create intricate structures such as self-assembling branched DNA complexes
with useful properties.

DNA is a building block ideally suited for nanostructures, as it combines self-assembly properties
with programmability. In nanotechnology, DNA is used as a structural material rather than as
a carrier of biological information. Using DNA, impressive nanostructures have been created,
including two- and three-dimensional structures. Examples include DNA nanostructures such as
Sierpinski triangles [73], and cubes [17,78].

Another design theme was introduced in [81]. The authors report that a single strand of DNA (1669
nucleotides long) was folded into a highly rigid nanoscale octahedron structure, of a diameter of about
22 nanometers. The long strand of DNA was designed so as to have a number of self-complementary
regions, which would induce the strand to fold back on itself to form a sturdy octahedron. Folding
the DNA into the octahedral structure simply required the heating and the cooling of the solution
containing the DNA, magnesium ions, and five 40-mer accessory DNA sequences. Moreover, this
design permitted the assembly of the first clonable DNA three-dimensional nanostructure.

Rothemund, [72], presented a simple model that uses several short strands of DNA to direct the
folding of a long single strand of DNA into desired shapes. The author demonstrates the generality
of the method, called “scaffolded DNA origami,” that permits the fabrication (out of DNA) of any
two-dimensional shape roughly 100 nm in diameter. The techniques used are similar to the ones
used in the design of the Holiday junction (Section 31.7), in that the constituent DNA strands form
complex structures by their design, which makes it possible for some single strands to participate in
two DNA helices—they wind along one helix, then switch to another.

The design process of a DNA origami involves several steps. The first step is to build an approximate
geometric model of the desired shape. The shape is approximated by cylinders that are models of the
DNA double-helices that will ultimately be used for the construction. The second step is to fill the
shape by folding a single long “scaffold strand” back and forth in a raster pattern such that, at each
moment, the scaffold strand represents either the “main” strand or the “complement” strand of a
double helix. (The process is analogous to drawing out a shape using a single line, and without taking
the pencil off the paper.) Once the geometric model and the folding path have been designed, the
third step is to use a computer program to generate a set of “staple strands” that provide Watson–
Crick complements for the scaffold. The staple strands are designed to bind to portions of the scaffold
strand, holding it thus together into the desired shape. The staple strands are then fine-tuned to
minimize strain in the construction and optimize the binding specificity and binding energy.

To test this method, Rothemund [72] used as a scaffold circular genomic DNA (7249 nucleotide
long) from the virus M13mp18. Approximately 250 short staple strands were synthesized and mixed
with the scaffold, in 100-fold excess to it. The strands annealed in less than 2 h and AFM (Atomic
Force Microscopy) imaging showed that indeed the desired shape was realized. The generality of the
method was proved by assembling six different shapes such as squares, triangles, five-pointed stars,
and smiley faces (Figure 31.10).

This method not only provides access to structures that approximate the outline of any desired
shape, but also enables the creation of structures with arbitrary-shaped holes or surface patterns. In
addition, it seems likely that scaffolded DNA origami can be adapted to design three-dimensional
structures.

31.7.3 DNA Nanomachines

In addition to static DNA nanoscale shapes and patterns, an impressive array of ingenious DNA
nanomachines (see [6,53] for comprehensive reviews), were designed with potential uses to
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(a) (b) (c)

FIGURE 31.10 (a) A folding path that creates a “DNA smiley.” An even number of double helices are filled into the
desired shape. (b), (c) A long single-stranded DNA self-assembles into the desired shape (Atomic Force Microscopy
images). (Reproduced from Rothemund, P., Nature, 440, 297, 2006.)

nanofabrication, engineering, and computation. DNA nanomachines, that is, DNA-based nano-
devices that convert static DNA structures into machines that can move or change conformation,
have been developed rapidly since one of the earliest examples was reported in 1998, [100]. They
include molecular switches that can be driven between two conformations [52], DNA “tweezers”
[103], DNA “walkers” that can be moved along a track [80,82] and autonomous molecular motors
[7,30,69].

We illustrate some of the construction principles used with the construction of a device referred
to as “molecular tweezers,” [103]. The DNA tweezers consist of two partially double-stranded DNA
arms connected by a short single DNA strand acting as a flexible hinge (Figure 31.11). The resulting
structure is similar in form to a pair of open tweezers. A so-called set strand is designed in such a
way as to be complementary to both single stranded “tails” at the end of the arms. The addition of
this set strand to the mixture will result in its annealing to both tails of the arms, bringing thus the
arms of the tweezers together in a “closed” configuration. A short region of the set strand remains
single stranded even after it hybridizes to the arms. This region is used as a toehold that allows a
new “reset strand” to strip the set strand from the arms, by hybridizing with the set strand itself. The
tweezers are thus returned to the “open” configuration. A number of variations on the tweezers have
also been reported [21,26,58,84].

Considerable efforts have been expended on realizing “walking devices.” Several molecular
machines, which can walk along a track have been proposed [65,79,80,82,87]. Shin and Pierce [82],

Set

Closed

Open

Waste

Reset

Branch
migration

FIGURE 31.11 A DNA nanomachine, “DNA tweezers,” driven by repeated sequential additions of “set” and “reset”
strands. In the open state, the DNA tweezer consists of two double helical arms (with short single-stranded tails),
connected by a single stranded hinge. Hybridization of the tails with the set strand closes the arms. The set strand
can be removed via branch migration, by which the fully complementary “reset strand” strips the set strand from the
tweezer tails, returning it to the open state. (Reproduced from Liedl, T. et al., Nanotoday, 2, 36, 2007.)
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introduced a DNA device with two distinguishable feet that “walks” directionally on a linear DNA
track with four distinct single strands periodically protruding from it and acting as anchors. The
walker is double-stranded and has two single-stranded extensions acting as “legs.” Specific attach-
ment strands bind the legs to the single-stranded extensions anchors periodically placed along the
double-stranded track. Each step requires the sequential addition of two strands: the first lifts the
back foot from the track, by strand displacement—a process by which an invading single DNA strand
can “displace” one of the constituent strands of a double-strand, by replacing it with itself, provided
the newly formed structure is more stable. The second strand places the released foot ahead of the
stationary foot. Brownian motion provides movement, and the order of adding the “instruction”
strands ensures directionality. A similar walking device, based on the movement pattern of inch-
worms, was developed by Sherman and Seeman, [80]: here the front foot steps forward and the back
foot catches up.

The walkers described earlier need “fuel DNA,” and cannot walk autonomously. Recently, [79]
suggested a three-leg molecular walking machine that can walk autonomously in two or three
dimensions on a designed route. It uses an enzyme as a source of power, and a track of DNA
equipped with many single-stranded DNA anchors arranged in a certain pattern.

We end this section by mentioning research on DNA nanodevices in conjunction with the cell’s
genetic mechanisms. Cellular organisms exhibit complex biochemical interaction networks com-
prising genes, RNA and proteins. These include gene activation and inhibition, gene transcription
into RNA, and the translation of RNA into proteins. By adapting parts of these genetic mechanisms,
one can engineer novel molecular machinery in vitro and potentially in vivo, [53]. Several attempts
have been made to use genetic mechanisms to control DNA-based nanodevices, [47,48,61,62]. For
example, pioneering work by Noireaux, Bar-Ziv and Libchaber, [61,62], demonstrates the principles
of “cell-free genetic circuit assembly,” wherein the term cell-free refers to the fact that the experiments
were performed in vitro, not in vivo. Overall, the successful combination of DNA-based nanodevices
with genetic machinery points to promising possible applications to biotechnology, bioengineering,
and medicine.

31.8 Conclusion

The excitement that the first DNA computing experiment created in 1994 was primarily due to the
fact that computing with DNA offered a completely new way of both looking at and performing
computations: by cutting and pasting DNA strands using enzymes, by using the Watson–Crick
complementarity of DNA strands, by selecting DNA strands containing a certain pattern, and so
on. This novel way of viewing computation has the potential to change the very meaning of the
word “compute,” and DNA computing has already made significant contributions to the field of
computer science. At the same time, research into the computational abilities of cellular organisms
has the potential to uncover the laws governing biological information and to enable us to harness
the computational power of cells.

This chapter was intended to give the reader a snapshot of DNA computing research by addressing
both theoretical and experimental aspects, both “classical” and very recent trends, the impact of
molecular computation on the theory and technology of computation, as well as on understanding
of the basic mechanisms of bioprocesses.

DNA computing is a rapidly developing field and the recent years already saw some interesting
new developments. Experimental advances include self-assembly of cylinders and Möbius strips
[29], and new designs for DNA nanomachines, fueled by light, [51]. Progress in the theory of DNA
computing include studies of pseudoknot-free DNA/RNA words, [45], of the time-optimal self-
assembly of three-dimensional shapes [9], and the proposal of a simple scalable DNA-gate motif for
the purpose of synthesizing large-scale circuits [68].
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It is envisaged that research into in vitro and in vivo DNA computing constitutes just a preliminary
step that may ultimately lead to molecular computing becoming a viable complementary tool for
computation, as well as providing more insight into the computational nature of bioprocesses taking
place in living organisms.
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32.1 Introduction

The functioning of a living cell is governed by an intricate network of interactions among different
types of molecules. A collection of long DNA molecules called chromosomes, that together constitute
the genome of the organism, encode for much of the cellular molecular apparatus including various
types of RNAs and proteins. Short DNA sequences that are part of chromosomal DNA, called genes,
can be transcribed repeatedly to result in various types of RNAs. Some of these RNAs act directly,
such as micro (miRNA), ribosomal (rRNA), small nuclear (snRNA), and transfer (tRNA) RNAs.
Many genes result in messenger RNAs (mRNAs), which are translated to corresponding proteins, a
diverse and important set of molecules critical for cellular processes. A plethora of small molecules
that are outside the hereditarily derived genes–RNAs–proteins system, called metabolites, play a
crucial role in biological processes as intermediary molecules that are both products and inputs to
biochemical enzymatic reactions.

These complex interactions define, regulate, and even initiate and terminate biological processes,
and also create the molecules that take part in them. They are pervasive in all aspects of cell function,
including the transmission of external signals to the interior of the cell, controlling processes that
result in protein synthesis, modifying protein activities and their locations in the cell, and driving
biochemical reactions. Gene products coordinate to execute cellular processes—sometimes by acting
together, such as multiple proteins forming a protein supercomplex (e.g., the ribosome), or by
acting in a concerted way to create biochemical pathways and networks (e.g., metabolic pathways
that break down food, and photosynthetic pathways that convert sunlight to energy in plants).
It is the same gene products that also regulate the expression of genes, often through binding to
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cis-regulatory sequences upstream of genes, to calibrate gene expression for different processes and
to even decide which pathways are appropriate to trigger based on external stimuli.

The genomic revolution of the past two decades provides the parts list for systems biology.
Advances in high-throughput experimental techniques are enabling measurements of mRNA, pro-
tein, and metabolite levels, and the detection of molecular interactions on a massive scale. In parallel,
automated parsing and manual curation have extracted information on molecular interactions that
have been deposited in the scientific literature over decades of small-scale experiments. In combi-
nation, these efforts have provided us with large-scale publicly-available datasets of molecular inter-
actions and measurements of molecular activity, especially for well-studied model organisms such
as Saccharomyces cerevisiae (baker’s yeast), Caenorhabditis elegans (a nematode), and Drosophila
melanogaster (the fruitfly), pathogens such as Plasmodium falciparum (the microbe that causes
malaria), and for Homo sapiens itself.

These advances are transforming molecular biology from a reductionist, hypothesis-driven exper-
imental field into an increasingly data-driven science, focused on understanding the functioning of
the living cell at a systems level. How do the molecules within the cell interact with each other over
time and in response to external conditions? What higher-level modules do these interactions form?
How have these modules evolved and how do they confer robustness to the cell? How does disease
result from the disruption of normal cellular activities? Understanding the complex interactions
between these diverse and large body of molecules at various levels, and inferring the complex
pathways and intermediaries that govern each biological process, are some of the grand challenges
that constitute the field of systems biology. The data deluge has resulted in an ever-increasing
importance placed on the computational analysis of biological data and computationally-driven
experimental design. Research in this area of computational systems biology (CSB) spans a con-
tinuum of approaches [IL03] that includes simulating systems of differential equations, Boolean
networks, Bayesian analysis, and statistical data mining.

Computational systems biology is a young discipline in which the important directions are still in
a state of flux and being defined. In this chapter, we focus primarily on introducing and formulating
the most well-studied classes of algorithmic problems that arise in the phenomenological and data-
driven analyses of large-scale information on the behavior of molecules in the cell. We focus on
research where the problem formulations and algorithms developed have actually been applied to
biological data sets. Where possible, we refer to theoretical results and tie the work in the CSB
literature to research in the algorithms community. The breadth of topics in CSB and the diversity of
the connections between CSB and theoretical computer science preclude an exhaustive coverage of
topics and literature within the scope of this short chapter. We caution the reader that our treatment
of the topics and their depth and citation to relevant literature are by no means exhaustive. Rather,
we attempt to provide a self-contained and logically interconnected survey of some of the important
problem areas within this discipline, and provide pointers to a reasonable body of literature for
further exploration by the reader. By necessity, this chapter introduces a number of biological terms
and concepts that a computer scientist may not be familiar with. A glossary at the end of the chapter
provides an easy resource for cross-reference.

32.2 An Illustrative Example

To elucidate how a typical biological process may unfold, and help explain some of the models used
in systems biology, consider a generic process by which a eukaryotic cell responds to an external
signal, e.g., a growth factor. See Figure 32.1 for a specific illustration of such a process. The growth
factor binds to a specific receptor protein on the cell surface. The receptor protein dimerizes (i.e.,
protein molecules with bound growth factors themselves bind to each other). The dimerized form of
the receptor is active; it phosphorylates (adds phosphate groups to) other proteins in the cytoplasm
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FIGURE 32.1 An illustration of a cellular signaling network (a Wikipedia image released by the author into the public
domain).

of the cell, which in turn physically interact with or phosphorylate other proteins. Multiple such
signaling cascades may be activated. The cascade culminates in the activation of a transcription
factor (TF); the TF moves to the nucleus, where it binds to target sites on genomic DNA that
recognize the TF. The TF recruits the cellular apparatus for transcription, resulting in the expression
of numerous genes. These genes are converted to proteins in the ribosome of the cell, and then
transported to various locations within the cell to perform their activities. Some proteins may be
TFs themselves and cause the expression of other genes. Others may catalyze enzymatic reactions
that produce or consume metabolites. Synthesized proteins may activate other signaling or reaction
cascades. Ultimately, the initial binding of the growth factor with its receptor changes the levels and
the activities of numerous genes, proteins, metabolites, and other compounds, and modulates global
responses, such as cell migration, adhesion, and proliferation.

High-throughput experiments shed light on many of these interaction types. Interactions between
signaling proteins (e.g., kinases and phosphatases) and their substrates constitute directed protein
phosphorylation networks. Undirected protein–protein interaction (PPI) networks represent physi-
cal interactions between proteins. Directed transcriptional regulatory networks connect TFs to genes
they regulate. Biochemical networks describe metabolic reactions with information on the enzymes
that catalyze each reaction. Taken together, the known molecular interactions for an organism con-
stitute its wiring diagram, a graph where each node is a molecule and each edge is a directed or
undirected interaction between two molecules. As generally conceived, a wiring diagram contains
molecules and interactions of many types.
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Wiring diagrams usually contain direct interactions between molecules. Sometimes they are
augmented with indirect interactions. A prominent example is a genetic interaction: two genes have
a genetic interaction if the action of one gene is modified by the other. An extreme case of a genetic
interaction is a synthetically lethal interaction, where knocking out each of two genes does not kill the
cell but knocking out both genes results in cell death. For other examples of indirect or conceptual
interactions, see functional linkage networks (FLNs) in Section 32.3 and reverse-engineered gene
networks in Section 32.6.2.

32.3 Gene Function Prediction

The genomes of more than 600 organisms (including more than 70 eukaryotes) have been completely
sequenced [LMTK08]. However, a fundamental roadblock to progress in systems biology is the poor
state of knowledge about the biological functions of the genes in sequenced genomes [Kar04,RKKe04,
Rob04]. Many genes of unknown function might support important cellular functions. Discovering
the functions of these genes will provide critical insights into the biology of many organisms. In
addition, discovering these functions will improve our ability to annotate genomes that are sequenced
in the future.

The phrase “gene function” has a variety of meanings. It often refers to the molecular function of
the protein the gene codes for, e.g., whether the protein catalyzes a reaction or binds DNA to regulate
the expression of a target gene. More generally, the phrase refers to the context in which the protein
acts in the cell, e.g., the component of the cell it is localized to; the pathway or biological process
it is a member of; the cell type the gene is expressed in (in the case of multi-cellular organisms);
or the developmental stage during which the gene is active. In this section, we will restrict our
attention to three structured, controlled vocabularies (ontologies) developed by the Gene Ontology
(GO) Consortium [ABBB00]: molecular function, cellular component, and biological process. Each
ontology is a Directed Acyclic Graph (DAG) where each function is connected to parent functions by
relationships such as “is_a” or “part_of”. By design, a function represents a more specific biological
concept than any of its parents. GO annotations follow the true path rule: if a gene is annotated with
a function, then the gene must be annotated with all parents of that function.

A powerful method for predicting gene function relies on the evolutionary conservation of gene
and protein sequences. Thus, if a gene in an organism has a nucleotide sequence, amino-acid
sequence, or protein structure very similar to that of a gene with a known function [GJF07], then the
function can be transferred to the first gene. These methods are primarily useful for determining the
molecular function of a gene, which often depends directly on the structure of the protein encoded
by the gene. Further, these methods do not provide annotations for the more than 40% of eukaryotic
genes that do not have high sequence or structural similarity to genes in other organisms [EKO03].

A promising approach to gene function prediction starts by constructing an Functional Linkage
Network (FLN) connecting genes of interest. In such a network, each node is a gene and each edge
connects two genes that may share the same function based on some experimental or computational
evidence. For instance, two genes may be linked if they have similar expression profiles in some
experiment; if the proteins they code for interact physically or catalyze reactions involving the
same metabolite; or, if knocking-out or silencing the expression of both genes produces the same
phenotype. Constructing biologically meaningful FLNs from functional genomic data is an active
area of research. Most existing methods proceed by estimating the probability that a given pair
of genes should be functionally linked based on a given type of data and then integrating signals
from multiple data sets [MT07,LLC+08]. Many such FLNs are available in publicly accessible
databases [BCS06].

In this section, we focus on the problem of predicting gene functions assuming that an FLN is
given as input. We denote the FLN by an undirected graph G = (V , E), where V is the set of nodes
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FIGURE 32.2 A subgraph of an FLN in S. cerevisiae for the biological process “ribosome biogenesis.” Each node
is a gene. Each edge corresponds to two genes whose protein products interact. Using the notation in the text, the
rectangles are members of V+

f (where f is ribosome biogenesis), the circles are elements of V0
f , and the diamonds

are in V−
f . To improve readability, we display only interactions involving genes in V0

f . (Figure taken from Karaoz, U.
et al., Proc. Natl. Acad. Sci. U S A., 101, 2888, 2004.)

and E is the set of edges. For an edge (u, v) ∈ E, let 0 ≤ wuv ≤ 1 denote the weight of the edge in E
between u and v; we interpret wuv as a measure of confidence that u and v should be annotated with
the same function. Note that the edge (u, v) suggests that u and v could perform the same function
in the cell but does not specify what that function is. Let f be a function of interest in the GO. We
cast the problem of predicting which nodes (genes) in G have the function f as a semi-supervised
learning problem [CSZ06]. We partition V into three subsets V+

f , V0
f , and V−

f corresponding to
positive examples, unknown examples, and negative examples, respectively. A node v is in V+

f if v
is annotated either with f or with a descendant of f in the GO DAG; v is in V0

f if v �∈ V+
f and there

is a function f ′ that is an ancestor of f that annotates v; and v is a member of V−
f otherwise. See

Figure 32.2 for an example.
For each gene in V0

f , our goal is to predict whether that gene should be an element of V+
f or V−

f .
We formulate the problem in general terms as computing a (mathematical) function r : V → R

that is smooth over the nodes of G, i.e., for every edge (u, v) ∈ E, the larger wuv is, the closer r(u)

and r(v) are. After computing such a function, we predict every node v ∈ V0
f such that r(v) ≥ t,

for some input threshold t, as being annotated with f . Note that r(v) is directly compared with the
threshold, and not with the r(u) values for each node u connected to v. This is because edge weights
are used to ensure that r is smooth—i.e, for a highly weighted edge (u, v), it is likely both u and v are
classified the same way due to the closeness of r(u) and r(v). There are a number of ways to ensure
that r is smooth. A popular technique [ZGL03] is to fix r(u) = 1 for each u ∈ V+

f , r(u) = −1 for
every u ∈ V−

f , and to compute r so that it minimizes the energy

E(G, r) =
∑

(u,v)∈E
u∈V0

f or v∈V0
f

wuv(r(u) − r(v))2. (32.1)
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For a node v ∈ V , let Nv denote the neighbors of v in G. Karaoz et al. [KMLe04] restrict r(v) to be
either −1 or 1; in this case, they can equivalently minimize

−
∑

(u,v)∈E
u∈V0

f or v∈V0
f

wuvr(u)r(v).

An algorithm that iterates over all the nodes in V0
f and for each node v sets

r(v) = sgn

(∑
u∈Nv

wuvr(u)

)
(32.2)

until the r(v) values converge will yield a value of energy that is at most half as large as the smallest
value possible [KBDS93]. Nabieva et al. [NJAe05] and Murali et al. [MWK06] note that this problem
can also be solved by computing minimum cuts in an appropriately transformed version of G.
Nabieva et al. solve the problem as a special case of the NP-hard minimum multiway k-cut problem
using integer linear programming. However, their approach allows a gene to have only one among
a set of k functions. The approach adopted by Murali et al. transforms G into a flow network; they
compute the minimum s–t cut in this graph using standard approaches [GT88].

Other approaches to gene function prediction based on FLNs include the use of frameworks such
as Markov Random Fields, support vector machines (SVMs), and decision trees. We refer the reader
to three recent surveys for discussions of these and other approaches [NBH07,SUS07,PCTMe08].

A thorny issue in gene function prediction is that biological experiments rarely report that a
gene does not perform a particular function. Hence, the set V−

f is hard to define accurately. A few
approaches attempt to predict gene functions only from V+

f and V0
f [CX04,NJAe05]. How best to

exploit the hierarchical dependence between functions in GO is an active research problem [BST06,
PCTMe08]. There may be other types of dependencies between functions, e.g., genes annotated with
function f1 may have a surprisingly large number of edges in G to genes annotated with function f2.
What is the best way to detect such dependencies and utilize them to predict gene function? Finally,
the question of systematically using FLNs to transfer function between organisms has received
surprisingly little attention [NK07,SSKe05].

32.4 Gene Expression Analysis

Gene expression is the process by which a gene is first transcribed to a messenger RNA (mRNA) and
then translated into a protein. The expression level of a gene is the number of copies of its mRNA
that is present in a cell. Genome sequencing and the concomitant advent of DNA microarrays have
allowed biologists to simultaneously measure the expression levels of all the genes in a sample of
cells; the expression level so measured is an average over all the cells in the sample. DNA microarrays
have revolutionized biological research since they capture a snapshot of the activity of all genes in the
cells in the sample. A typical gene expression dataset usually consists of measurements from multiple
samples under a particular experimental condition; the samples can correspond to multiple time-
points after exposing cells to a particular treatment or stimulus or to multiple patients diagnosed
with a particular disease.

32.4.1 Gene Expression Clustering

Let V denote the set of genes in an organism. The gene expression data set for a condition consists
of a set of samples S, each with an expression level for each gene in V ; we denote by gS the vector of
expression levels for gene g in the samples in S. Let d = |S| and n = |V|. Typically, d � n.
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A natural problem that arises now is to cluster the vectors VS = {gS | g ∈ V}.∗ Clustering allows
the grouping of genes based on the similarity of their responses to the condition; since similarly
expressed genes may perform the same function in the cell, such clusters can be the basis for
constructing FLNs for gene function prediction (see Section 32.3). Two popular methods are k-means
clustering and hierarchical clustering. In k-means clustering, the goal is to partition V into k sets
such that the sum of squared distances from each gene to the centroid of the partition it belongs to
is minimized. This problem is known to be NP-hard even for k = 2 when d and n are part of the
input [DFKe04]. Feldman et al. developed a polynomial-time approximation scheme (PTAS) for
this problem [FMS07]. Given parameters ε, λ > 0, their algorithm computes a (1 + ε)-approximate
solution in time O(nkd + d(k/ε)O(1) + 2Õ(k/ε)) with a probability of at least 1 − λ. In practice, most
applications of k-means clustering use Lloyd’s heuristic [Llo82]—start with a random set of k centers
and repeatedly apply the following two steps until convergence: (1) associate each gene with the
center closest to it and (2) move each center to the centroid of the genes associated with it. Har-Peled
and Sadri [HPS05] prove that the number of iterations taken by the variants of this algorithm is
polynomial in |V|, k, and the spread of VS, which is defined as the diameter of VS divided by the
distance between the two closest genes. Denoting by Δ2

k(VS) the optimal solution to the k-means
problem for VS, Ostrovsky et al. [ORSS06] developed a linear-time constant-factor approximation
algorithm and a PTAS that return a (1 + ε)-optimal solution with constant probability in time
O(2O(k(1+ω2)/ε)dn), when VS is ω-separated, i.e., if Δ2

k(VS)/Δ
2
k−1(VS) ≤ ω2.

The agglomerative version of hierarchical clustering is typically used to analyze gene expression
data [ESBB98]. It starts by putting each gene in a separate cluster and repeatedly merging the closest
pair of clusters. Typically, these algorithms continue until only one cluster remains. To specify this
algorithm completely, it suffices to define the measure of distance between two genes and between two
sets of genes. Let δ(a, b) denote the distance between two genes a and b, and let A and B be two sets of
genes. In single-linkage clustering, we define the distance δ(A, B) = mina∈A,b∈B δ(a, b); hierarchical
clustering under this model is equivalent to computing the minimum spanning tree of the complete
graph whose nodes are genes and an edge between two genes has weight equal to the distance between
them. For the frequently used Pearson correlation metric, Seal et al. [SKA05] provide an O(n log n)

algorithm for single-linkage clustering by exploiting the geometric transformation that the Pearson
correlation coefficient between two gene expression vectors is equal to the cosine of the angle
between the corresponding vectors. In complete-linkage clustering, δ(A, B) = maxa∈A,b∈B δ(a, b),
whereas in average-linkage clustering, δ(A, B) is the distance between the centroids of A and B.
Naive algorithms usually run in O(dn2) time and may require O(n2) space (for storing all pair-wise
distances between genes). Krznaric and Levcopoulos [KL02] present an O(n log n) time and O(n)

space algorithm for complete linkage clustering under the L1 and L∞ metrics; for every other fixed
Lt metric, their algorithm approximates the complete linkage clustering to an arbitrarily-small factor
with the same bounds. Borodin et al. present sub-quadratic algorithms for approximate versions of
the agglomerative clustering problem [BOR04].

Displaying a hierarchical clustering is problematic since the order in which the leaves of the
underlying tree should be laid out is unclear. This issue is important since practitioners still use
visualizations of the clustering to detect important or interesting patterns in the data. Bar-Joseph
et al. [BJDGe03] compute an ordering of the leaves that minimizes the sum of the similarity between
adjacent leaves in the ordering in O(4tn3) time. They also present a method that allows up to t
(a user-specified number) clusters to be merged at any step; the method runs in O(n3) time.

Given a hierarchical clustering of the genes, for every k > 1, it is possible to obtain an induced
k-clustering of the genes, i.e., a partition of the genes into k clusters by stopping the clustering

∗ Clustering the vectors corresponding to the samples is also useful. For the sake of concreteness, we focus on clustering
the vectors corresponding to the genes.
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algorithm when only k clusters remain. Dasgupta and Long [DL05] consider whether there is a
hierarchical clustering such that for every k > 1, there is an induced k-clustering that is close to the
optimal k-clustering of the genes. Defining the cost of a clustering to be the largest radius of one
of its clusters, they modify Gonzalez’s approximation algorithm for the k-center problem [Gon85]
to produce a hierarchical clustering such that for every k, the induced k-clustering has cost at most
eight times the optimal k-clustering. They also present a randomized algorithm that achieves an
approximation factor of 2e ≈ 5.44.

32.4.2 Gene Expression Biclustering

The clustering algorithms discussed in the previous section suffer from two primary drawbacks.
First, they operate in the space spanned by all the samples; thus, they may not detect the patterns
of clustering that are apparent only in a sub-space of R

d. Second, since many algorithms partition
the set of genes into clusters, they are unable to correctly deal with genes that perform multiple
functions; such genes should participate in multiple clusters but will be placed in at most one cluster.

Biclustering (also known as projective or subspace clustering) has emerged as a powerful algo-
rithmic tool for tackling these problems. A typical definition of a bicluster is a pair (U, T), where
U ⊂ V and T ⊂ S such that the genes in U are clustered well in the samples in T but are not
clustered well in the samples in S − T. In this formulation, a bicluster includes only a subset of
genes and samples. Hence, algorithms that compute biclusters capture condition-specific patterns of
co-expression. Biclustering algorithms allow a gene or a sample to participate in multiple biclusters,
each of which may correspond to a different pathway or biological process. Different biclusters may
contain different numbers of genes and/or samples. A number of different methods have emerged for
computing biclusters in gene expression data; two papers provide excellent surveys [MO04,TSS06].

A powerful approach to computing biclusters rests on representing gene expression data as a
bipartite graph connecting genes to samples. Algorithms use different criteria to decide which
gene-sample pairs to connect in such a graph. A bicluster is usually modeled as a bipartite clique
(biclique) (U, T), where U ⊂ V and T ⊂ S. The goal is to compute one or more bicliques of large size
in the graph, where the size of a biclique is usually defined as |U||T|. Finding the biclique with the
largest number of edges in an unweighted bipartite graph is known to be NP-hard [Pee03]. Ambühl
et al. [AMS07] extend results by Khot [Kho06] to prove that this problem is hard to approximate,
i.e., it does not have a PTAS under the assumption that NP does not have randomized algorithms
that run in sub-exponential time. Lonardi et al. [LSY06] propose a random-sampling algorithm to
compute the largest bicluster (formalized as a biclique in a bipartite graph). We describe a related
approach by Mishra et al. [MRS04] in more detail. These authors consider ε-bicliques: each gene in
such a biclique is connected to at least a (1 − ε) fraction of the samples in the biclique. They pose
the problem of computing an ε-biclique that has at least a (1 − 2b) fraction of the number of edges
in the maximum biclique, for a small constant b ≥ 0. They present a random-sampling algorithm
that is efficient if the largest biclique has at least some fraction ρG of the genes and some fraction
ρS of the samples. Under this assumption, their algorithm runs in time linear in d, logarithmic in n,
quasi-polynomial in ρG and ρS, and exponential in poly(1/ε).

Mishra et al. also propose a strategy for computing multiple bicliques. Simply computing the k
largest bicliques for some value of k may be unsatisfactory: these bicliques may have considerable
overlap in their edge sets, and highly overlapping bicliques may not capture the diversity of biclusters
present in the data. To preclude this possibility, the authors introduce the notion of δ-domination:
one biclique δ-dominates another if the number of edges in the second biclique that do not belong to
the first is at most a δ fraction of the size of the union of the two edge sets. Next, they introduce the
notion of when a collection C of k ε-bicliques is diverse: when for every pair (U ′, T′) and (U ′′, T′′) of
bicliques in C, neither δ-dominates the other. Finally, they introduce the notion of when a collection
C of k ε-bicliques swamps a biclique (U ′, T′): either one of the k bicliques in C δ-dominates (U ′, T′),
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or (U ′, T′) does not contain many more edges than any biclique in C. Armed with these definitions,
they pose the problem of computing a collection C of k ε-bicliques that are diverse and swamp every
large biclique in the graph (a biclique is large if it contains at least some fraction ρG of the genes
and some fraction ρS of the samples). Their algorithm runs in time linear in d, logarithmic in n,
quasi-polynomial in k, ρG and ρS, and exponential in poly(1/ε).

Tanay et al. [TSS02] construct a bipartite graph between genes and samples that represents a
discretized version of the data. They assess edge weights in this graph based on a statistical model.
They define a bicluster to be a bipartite clique (biclique) of large total edge weight. Under the
assumption that each gene is connected to at most a constant number of samples, they simply
enumerate all bipartite cliques in this graph. In practice, they supplement this approach with local
searches to improve the weight of bipartite cliques and with hashing techniques to speed up the
search. In a follow-up paper, they extend their formulation to integrate the analysis of different
types of genome-wide data [TSKS04]. In this work, the bipartite graph connects genes to properties.
Properties include the expression of a gene in a sample, the regulation of a gene by a transcription
factor, and the response of a gene to a chemical treatment. In another follow-up study, Tanay
et al. [TSKS05] extended these techniques to analyze gene expression data from a new study in the
context of a large compendium of data from prior studies; they recast the new dataset in terms of
biclusters computed from the other datasets and biclusters discovered only upon the addition of the
new data.

Motivated by the approach proposed by Tanay et al., Tan [Tan08] considers the problem of
finding the biclique of largest total weight in a weighted bipartite graph where edge weights are
positive or negative integers. Under the assumption that the absolute value of the ratio of the
smallest edge weight to the largest edge weight is in the range Ω(nδ−1/2) ∩ O(n1/2−δ),∗ where
δ > 0 is an arbitrarily-small constant, Tan shows that this problem is hard to approximate within
a factor of ε for some ε > 0 unless RP = NP. Tan et al. [TCZZ07] prove that other formulations of
biclustering [LO02,BDCKY02] are also hard to approximate.

Sa
m
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e 3

Sample 1

Bicluster 1

Bicluster 3Bicluster 2

Sample 2

FIGURE 32.3 Example of ortho-
gonal biclusters. Samples 2 and 3
belong to bicluster 1, samples 1 and
2 are elements of bicluster 2, and all
three samples are in bicluster 3. A
dashed face of a box indicates the
dimension along which the box is
unbounded.

The approaches discussed earlier are applicable when real-valued
gene expression data are discretized. When such a discretization is
not preferred, a geometric viewpoint may be more appropriate.
From this perspective, the approaches discussed earlier compute
orthogonal biclusters, i.e., each bicluster is a projection of a subset of
the genes into an orthogonal subspace of R

d spanned by a subset of
samples. See Figure 32.3 for examples of such biclusters. This image
is based on the approach proposed by Procopiuc et al. [PJAM02].
In this model, a gene is an element of a bicluster if and only if
the gene’s expression levels in the samples in the bicluster span an
interval of width at most w, where w > 0 is a parameter. They
consider dense projective clusters, i.e., those that contain at least an
α-fraction of the samples, 0 ≤ α ≤ 1. In addition, they introduce a
condition that specifies the trade-off between the number of genes
and the number of samples in a bicluster; this condition depends
on a parameter β. Under this formulation, they present a Monte
Carlo algorithm to compute a bicluster with the largest number of
genes and with width at most 2w with probability of at least 1/2,
in O(ndlog(2/α)/ log(1/(2β))) time. Melkman and Shaham [MS04]
describe a closely-related algorithm for the following model: for
every pair of genes participating in a bicluster, the ratio of the

∗ We have rewritten Tan’s condition assuming n ≥ d.
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expression levels of this pair of genes in each of the samples in the bicluster is a constant depending
only on the two genes. They introduce the notion of sleeve-width to allow noise in this model.

Attention has also been paid to the problem of non-orthogonal projective clustering. The typical
formulation of this problem seeks to approximate a set V of n points in R

d by a collection F of k shapes
in R

d. The shapes in F may be points, lines, j-dimensional subspaces (j < d), or non-linear shapes.
By assigning each point in V to the closest subspace in F, we obtain a projective clustering of V .
Algorithms attempt to minimize a value such as the sum of the distances from each point to the closest
shape, the sum of the squares of these distances, or the largest of these, yielding the k-median, k-mean,
or k-centre projective clustering problems, respectively. When k or d is part of the input, Megiddo
and Tamir [MT83] have shown that many versions of these problems are NP-Hard. Feldman
et al. [FFSS07] summarize known results for approximating the quality of the best clustering. They
point out that all such approximations must be super-polynomial in k, unless P = NP. Motivated
by this observation, they consider (α, β) bi-criteria approximation algorithms that compute α j-
dimensional flats whose quality is within a β factor of the best approximation by k such flats. Their
algorithm achieves the performance guarantees of α(k, j, n) = log n(jk log log n)O(j) and β(j) = 2O(j)

in time dn(jk)O(j) with probability of at least 1/2. Their algorithm applies simultaneously to the
median, mean, and centre versions of the problem.

We note that orthogonal projective clustering algorithms are more likely to be useful in practice,
since they are easier to interpret: each bicluster is simply a set of genes and a set of samples.
Moreover, existing orthogonal biclustering algorithms allow different computed biclusters to have
differing numbers of genes and samples, a property essential to capturing the diversity of different
biological processes.

32.5 Structure of the Wiring Diagram

In Section 32.2, we defined a wiring diagram as the network composed of the known molecular inter-
actions for an organism. Specifically, the wiring diagram is a graph where each node is a molecule
and each edge is a directed or undirected interaction between two molecules. A pair of molecules
may be connected by multiple edges; each edge is usually annotated with information on the type
of the interaction, e.g., physical interaction, phosphorylation, or regulation. As mentioned earlier,
wiring diagrams are now available for a number of organisms. Some types of networks (e.g., PPI
networks) have been experimentally studied on a much larger scale and for many more organisms
than others (e.g., transcriptional regulatory networks [HGLR04]). Limitations in experimental tech-
niques lead to considerable noise in available networks; they contain erroneous interactions (false
positives) and miss many interactions (false negatives). Assessing error rates at the level of experi-
ment types and individual interactions is an area of active research [SSR+06]. There are other types
of uncertainties inherent in these data. For example, we may know that a set of proteins interact to
form a protein complex, but we may not know precisely which pairs of proteins interact within the
complex [BVH07].

Nevertheless, the computational studies of wiring diagrams (especially, PPI network and tran-
scriptional regulatory networks) have yielded numerous insights into their structure and evolution.
Preliminary studies of the PPI networks and metabolic networks suggested that their degree distri-
butions follow the power law [AJB00,JTA+00]. More specifically, the fraction of nodes with degree
d ≥ 1 is proportional to d−γ, with typical values of γ ranging between 2 and 3. More recent studies
have cast doubts on these results arguing that power law distributions may arise from experimental
biases and artifacts caused by sampling [HDBe05,SWM05].

What systems-level insights into cellular function can wiring diagrams reveal? One of the guiding
principles of systems biology is that molecules within the cell organize themselves into modules
[HHLM99]. A module may be loosely defined as a group of interacting molecules that act coherently
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in the cell. Modules can share both nodes and edges, especially since many genes and proteins are
multi-functional. Modules can be hierarchical in the sense that one module may contain another. In a
sense, such modules constitute building blocks of wiring diagrams. Examples of modules are densely
interacting proteins (perhaps forming complexes), protein sub-networks that may be evolutionarily
conserved in many organisms, biochemical pathways that synthesize a particular compound, and
sets of genes that have co-evolved and are found in multiple genomes.

32.5.1 Network Decomposition

Graph clustering, or automatic decomposition of a network into modules or communities, has a
rich history, with many problem formulations and techniques [CF06]. In the context of systems
biology, a number of papers have studied the problem of decomposing the wiring diagram, mainly
PPI networks, into modules [SI06]. These methods use various ad hoc heuristics, e.g., repeatedly
removing the edge with the largest betweenness centrality [DDS05], local searches around multi-
ple seeds [BH03,Bad03], and approaches akin to simulated annealing [SM03]. We describe a few
approaches that find a partition or cover of an undirected graph into multiple modules using
principled ideas.

Given an undirected graph G = (V , E), Hartuv and Shamir [HS00] define an induced subgraph
H of G to be highly connected if the minimum number of edges that must be removed in order to
disconnect H is at least half the number of nodes in H. They present an output-sensitive recursive
algorithm to compute all highly connected subgraphs of G. For each subgraph returned, the algorithm
runs in time taken to compute the minimum cut in G.

Newman [New06] measures the quality of a partitioning of G into two subgraphs G1 and G2 using
the notion of modularity, defined as

1
4|E|

∑
(u,v)

(
wuv − dudv

|E|
)

susv, (32.3)

where the summation is over all pairs of nodes in V , wuv = 1 if (u, v) ∈ E and 0 otherwise, du is the
degree of node u ∈ V , and su = 1 (respectively, −1) if u ∈ G1 (respectively, G2). He optimizes this
quantity by computing the leading eigenvector of a symmetric matrix whose values are the elements
within the summation. To find multiple modules, he recursively applies this algorithm, stopping
when the largest eigenvalue for a subgraph is 0. Brandes et al. [BDGe06] prove that maximizing
modularity is strongly NP-complete.

The −dudv/|E| term in Equation 32.3 arises from the fact that if the edges in G are rewired
randomly while maintaining the degree of the nodes, then the probability that u and v are connected
is dudv|E| . Intuitively, subtracting this quantity accounts for any modularity that a random graph with
the same degree sequence as G may have. This notion arises repeatedly in CSB: what is the probability
that an observed network module may arise in random data? A typical approach to answering this
question empirically is to sample multiple times from the distribution of random networks with the
same degree sequence as G, run the network decomposition algorithm on each sample, and use the
distribution of module sizes thus obtained to estimate the desired probability. The Markov Chain
Monte Carlo method is useful in this situation, but current algorithms have large run-times making
them unsuitable for graphs with tens of thousands of nodes [GMZ03]. Given a degree sequence where
the maximum degree dmax = O(|E|1/4−τ), where τ is any positive constant, Bayati et al. [BKS07]
develop an algorithm that runs in O(|E|dmax) time and generates any graph with the given degree
sequence with probability within 1 ± o(1) factor of uniform. They also use an approach called
“sequential importance sampling” to convert this algorithm into a fully polynomial randomized
approximation scheme. Specifically, for any ε, δ > 0, with probability at least 1 − δ, the output of
their algorithm is a graph with the given degree sequence; this graph is drawn from the set of all such



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C032 Finals Page 12 2009-10-19

32-12 Special Topics and Techniques

FIGURE 32.4 An illustra-
tion of a CPIM. Circles rep-
resent proteins. Solid lines
connect interacting proteins.
Dashed lines connect ortholo-
gous proteins. The figure con-
tains two PPI networks, one
on the left and the other on
the right. The darker sub-
networks and the pairs of
orthologous proteins in those
sub-networks (the nodes and
the edges within the shaded
oval) constitute a CPIM.

graphs with uniform probability upto a multiplicative error of 1 ± ε.
Their algorithm runs in time O(|E|dmaxε

−2 log(1/δ)).

32.5.2 Evolutionarily Conserved Modules

It has been observed that many PPIs are evolutionarily conserved
between different species [YLLe04], i.e., if proteins a and b in one
organism interact and if a (respectively, b) is orthologous to protein a′
(respectively, b′) in another organism, then a′ and b′ interact. It is natu-
ral to ask whether larger sets of interactions may be conserved and how
such sets could be automatically computed from PPI networks for two
different organisms. In the CSB community, a number of approaches
have been developed that use evolutionary constraints to compute such
Conserved Protein Interaction Modules (CPIMs) [SI06]. See Figure 32.4
for an illustration.

A number of these approaches [KYLe04,SIKe04,KKTS06,SSI05]
share many common features. They combine the PPI networks of two
species into a single alignment graph. A node in the alignment graph
represents two orthologous proteins, one from each PPI network. An
edge in the alignment graph represents an interaction that is conserved
in both PPI networks. These methods add an edge to the alignment graph
only if the proteins contributing to the nodes are connected through at
most one intermediate protein in the respective PPI networks. The weight of an edge represents the
likelihood that the corresponding interactions are conserved; this weight depends on the degree of
orthology between the proteins and on assessed confidence estimates that the individual PPIs indeed
take place in the cell. After constructing the alignment network, these authors find CPIMs by using
various approaches to compute paths, complexes, and subgraphs of high weight in the alignment
network and then expanding each such subgraph into the constituent PPIs. Sharan et al. [SSKe05]
generalize this idea to more than two PPI networks. Liang et al. [LXTN06] propose a method where
each node in the alignment graph is a pair of conserved PPIs. They develop criteria to connect two
such nodes and reduce the problem of computing CPIMs to the problem of finding all maximal
cliques in the alignment graph.

Narayanan and Karp have recently presented the Match-and-Split algorithm [NK07]. Like other
methods, they define a pair of proteins to be similar if their sequence similarity is at least some
threshold. They use combinatorial criteria to decide when the local neighborhoods of a pair of
orthologs match. Under their model, they prove that a given pair of proteins can belong to at most
one CPIM. This observation leads to a top-down partitioning algorithm that finds all maximal
CPIMs in polynomial time.

32.5.3 Network Motifs

Milo et al. [MSOIe02] pioneered the study of network motifs and the bottom-up assembly of complex
networks from such motifs. Informally, given two graphs G and H (where H is connected), we say
that H occurs in G if H is isomorphic to a subgraph of G. We say that H is a network motif of G if
the number of times that H occurs in G is surprisingly large (we make this notion precise below).
Network motifs may play a key role in processing information in regulatory networks [SOMMA02].

A typical approach to computing network motifs (1) identifies the number of subgraphs of G that is
isomorphic to a candidate network motif H, (2) determines the probability that H occurs at least this
many times in random graphs with the same degree sequence as G, and (3) declares H to be a network
motif if this probability is smaller than a user-specified threshold. These methods usually enumerate
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isomorphic subgraphs explicitly, which can be computationally expensive. Wernicke [Wer06] defines
the concentration of a k-node subgraph H to be the ratio of the number of occurrences of H in G to
the total number of occurrences of all connected k-node subgraphs in G. He presents a randomized
algorithm that computes an unbiased estimator of the concentration of every connected k-node
subgraph that occurs in G. He also shows how to adapt theorems by Bender and Canfield [Ben74,
BC78] to estimate the expected concentration of a given k-node subgraph in random graphs with
the same degree sequence as G without explicitly generating such random graphs.

Wiring diagrams contain the interactions of multiple types. Yeger-Lotem et al. [YLSKe04] and
Zhang et al. [ZKWe05] consider the question of finding multi-colored network motifs. Researchers
have also considered whether motifs might assemble into larger structures [GK07,ZKWe05] and
how such relationships between consolidated subgraphs may reveal insights into the structure of the
wiring diagram.

32.6 Condition-Specific Analysis of Wiring Diagrams

As described in the previous section, existing wiring diagrams are tremendous resources for systems
biology, since they integrate information on multiple types of molecular interactions obtained from
a variety of different experimental sources. However, such an experiment often does not yield
information on when an interaction is activated within the cell. Therefore, the potential impact
of wiring diagrams is diluted since they typically represent the universe of interactions that take
place across diverse contexts in the cell. Another deficiency of existing wiring diagrams is that they
are highly incomplete in spite of decades of small-scale experimentation and recent advances in
high-throughput screening. For instance, a recent estimate [STdSe08] suggests that the human PPI
network may contain 650,000 edges, about an order of magnitude greater than the number obtained
by combining multiple existing databases [DMS08]. Note that this estimate is solely for PPIs. Our
knowledge of other types of interactions (e.g., between transcription factors and their target genes,
between small molecules and metabolites, or between recently-discovered regulatory molecules,
such as microRNAs and their targets) is even more scarce than for PPIs. In this section, we focus on
two classes of methods developed to address the two issues raised above.

32.6.1 Response Networks

Many algorithms have been developed to integrate the wiring diagram with gene expression mea-
surements for a single condition (e.g., the time-course of response of a cell to a stress or data from
patients diagnosed with a particular disease) in order to compute the sub-network of interactions
that is perturbed in that condition. These approaches take a wiring diagram G = (V , E) and a gene
expression dataset VS = {gS | g ∈ V} as input, where S is the set of samples. Their goal is to compute
the subgraph GS of G such that the genes in GS show the most similar expression patterns over all
subgraphs of G.

A common experimental design is to divide the set S of samples into two classes, a set corre-
sponding to a treatment and a set corresponding to a control. In this situation, gene expression
measurements are better represented by the estimates of differential expressions for each gene. It
is possible to use a hypothesis testing framework to assess how different the expression levels of a
gene in the treatment samples are from its expression levels in the control samples, e.g., by using
the t-test. For each gene g, this computation yields a p-value 0 ≤ pg ≤ 1 representing the statistical
significance of the difference between the two sets of expression levels of the gene. Given such a
data set, Ideker et al. [IOSS02] apply an assumption that pg arises from a normal distribution, and
compute a z-score zg = N−1(pg), where N−1 is the inverse of the normal distribution function.
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They define the z-score z(G′) of a subgraph G′ of G to be the sum of the z-scores of the nodes in G′
divided by the square root of the number of nodes in G′. Their goal is to compute the subgraph of G
with the largest z-score. After showing that a version of this problem is NP-complete, they proceed
to use simulated annealing to solve the problem.

Murali and Rivera [MR08] propose a method that is applicable when S contains enough samples
to estimate the co-expression of any pair of genes. For every edge e = (g, h) in E, they compute
a weight we that is the absolute value of Pearson’s correlation coefficient between gS and hS. They
define the density of a subgraph G′ of G as the total weight of the edges in G′ divided by the number
of nodes in G. Their goal is to compute the subgraph of G with largest density. This problem can be
solved in polynomial time using parametric network flows [GGT89]. In practice, they use the greedy
algorithm suggested by Charikar [Cha00], which computes a subgraph at least half as dense as the
densest subgraph.

These two approaches have the drawback that they consider co-expression relationships only
between pairs of genes that are adjacent in G. We have discussed earlier that G is incomplete for
many organisms. In such situations, these approaches may ignore many co-expressed pairs of genes.
Ulitsky and Shamir [US07] propose an innovative approach to mitigate this problem. They compute
an undirected graph XS where two genes are connected if they are highly co-expressed. In this graph,
their goal is to find dense subgraphs under the constraint that each dense subgraph must induce a
connected network in G. Thus, two genes may belong to a dense subgraph in XS even if they are not
directly connected in G. Ulitsky and Shamir develop a statistical model for this problem and propose
a number of heuristics to compute multiple dense modules [US07].

In principle, these problems are related to the question of computing the largest clique in a graph,
a problem well-known to be NP-complete [GJ79], and hard to approximate [Hås99]. Apart from the
two papers mentioned above [Cha00,GGT89], theoretical studies of similar problems have usually
dealt with unweighted graphs. Feige et al. [FKP01] compute the densest k-vertex subgraph of a
given graph, namely, the subgraph with k vertices that contains the most edges among all k-vertex
subgraphs. They develop an approximation algorithm for the problem, with approximation ratio
O(nδ), for some δ < 1/3. Khot proves that this problem does not admit a PTAS [Kho06].

Holzapfel et al. [HKMT06] pose the γ-CLUSTER problem, where given an undirected graph G
and a natural number k, they ask if G has a subgraph on k vertices whose average degree is at least
γ(k); they allow γ : N → Q+ to be any function that can be computed in polynomial time and
satisfies γ(k) ≤ k − 1, for all k ∈ N. For γ(k) = k − 1, this problem is the clique problem. In
contrast, for γ(k) = 2, the problem can be solved in polynomial time. They show that the problem
remains NP-complete if γ = 2 + Ω(1/k1−ε) for some ε > 0 and has a polynomial-time algorithm
for γ = 2 + O(1/k).

The spectral radius of an undirected graph G is the largest eigenvalue of the adjacency matrix of
the graph. It is well-known that the spectral radius of a graph is at least as large as its average degree.
Andersen and Cioaba [AC07] pose the (k, λ)-spectral radius problem: does G have a subgraph on
at most k vertices whose spectral radius is at least λ? When such a subgraph exists, they present an
approximation algorithm that runs in O(nΔk2) time, where Δ is the maximum degree of the graph,
that outputs a subgraph with spectral radius of at least λ/4 and with at most Δk2 vertices.

32.6.2 Reverse-Engineering Gene Networks

The algorithms described in the previous section assume that a wiring diagram is available.
However, as mentioned at the beginning of Section 32.6, existing wiring diagrams are incom-
plete. To surmount this difficulty, methods have been developed to reverse engineer interactions
between genes from gene expression data. The primary assumption underlying these techniques
is that if two genes are highly co-expressed, i.e., if their expression levels under one or more
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conditions have high correlations, then the genes may have a functional interaction. Based on
this hypothesis, numerous methods have been developed to infer interactions between pairs of
genes [BBAIB07,MS07]. Approaches investigated for gene network construction include gene rele-
vance networks [BK99,DWFS98], Gaussian graphical models [dlFBHM04,SS05], mutual informa-
tion (MI) based networks [BMSe05,BK00,ZAA08], and Bayesian networks [FLN00,Y+02].

In spite of the excitement surrounding these approaches, there is considerable debate about a
number of issues. How should the co-expression between two genes be measured and what are
the relative advantages of each measure? For example, Pearson’s correlation coefficient can be
computed in time linear in the number of samples and estimated with confidence even for relatively
few samples, but it can only capture linear dependencies. More complex methods typically come with
greater computational cost and/or the need for a large number of samples. Does the co-expression
of two genes imply stable binding between the proteins that the genes code for, or a cause-and-effect
relationship between the genes? These issues have been discussed in a number of papers in the last
few years [MS07,BBAIB07,ZSA08,SBA07].

An important problem that arises in gene network construction is to find a sufficient number of
samples relative to the network size to be inferred. One could limit the network size if the goal is
to infer a subnetwork focused around a biological process that involves a subset of genes, but this
requires knowing the genes in advance. In many cases, one would want to infer a gene network
to precisely identify such subnetworks and discover unknown genes that may be a part of such
networks. There are tens of thousands of genes in any complex organism, and in many cases it is
impossible to find a reliable way to limit analysis to only a subset of them. The number of samples can
be significantly increased by tapping into the public repositories of gene expression profiles resulting
from microarray experiments carried out by many laboratories worldwide. Even so, the number of
available samples falls short of what is ideally required by the underlying computational methods,
with even the number of genes in an organism significantly outnumbering the number of available
samples at present. In addition, the use of such large number of samples raises computational
and statistical challenges. Gene expression data is inherently noisy and significantly influenced by
many experiment-specific attributes. As a result, it is not meaningful to directly compare expression
levels across multiple samples. Finally, little is known about general regulatory mechanisms (e.g.,
post-transcriptional effects) and thus no satisfactory models of genetic regulation are available.

To provide more insight into the construction of gene networks, we present MI based methods in
greater detail. MI can capture non-linear dependencies, the underlying algorithms have polynomial
complexity, and recent work demonstrates that these methods generate networks with good quality.
Let n denote the number of genes and m denote the number of samples. In MI based methods,
the expression level of gene gi is taken to be random variable Xi, for which we have m recorded
observations. The MI between a pair of genes gi and gj, denoted by I(Xi; Xj), is given by

I(Xi; Xj) = H(Xi) + H(Xj) − H(Xi, Xj)

where the entropy H(X) of a continuous variable X is given by

H(X) = −
�

pX(ξ) log pX(ξ)dξ

and pX is a probability density function for X. In this case pXi , pXj , and the joint probability density
function pXi,Xj are unknown and have to be estimated based on available gene expression samples.

To reverse engineer gene networks using this approach, a method for computing the MI between a
pair of genes and a criterion for assessing when the MI value is significant are needed. Several different
techniques to estimate MI have been proposed [K+07], differing in precision and complexity. Simple
histogram methods [BK00] are very fast but inaccurate, especially when the number of observations
is small. Gaussian kernel estimators utilized by Margolin et al. [MNBe06] provide good precision but
take O(m2) run-time. Daub et al. [DSSK04] propose a linear time method that is competitive with the
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Gaussian kernel estimator. Their method is based on binning, which in its simplest form estimates the
probability density of a random variable by dividing samples into fixed number of bins and counting
samples per bin. Such a method is imprecise and sensitive to the selection of boundaries of bins
[MRL95]. Daub et al. overcome this by using B-splines as a smoothing criterion: each observation
belongs to k bins simultaneously with weights given by B-spline functions up to order k.

A standard way to assess the significance of MI values between gi and gj is to randomly permute
the expression values of one of the genes, say gi, and computing the MI again based on the permuted
expression values of gi and the unaltered expression values of gj. A large number of such permutation
tests are conducted, and I(Xi; Xj) is deemed significant if it is greater than the MI value of at least a
fraction 1 − ε of the permutations tested. Such testing is expensive, particularly when repeated for
the

(n
2
)

gene pairs. Zola et al. [ZAA08] propose a method to make a permutation test applicable to
all gene pairs, thereby reducing the complexity of permutation testing by a factor of Θ(n2).

A particularly vexing issue in network inference is the difficulty of distinguishing indirect inter-
actions from direct interactions. Consider three genes gi, gj, and gk, where gi directly interacts with
gj and gj directly interacts with gk, but gi and gk have no direct interaction. If all three genes are
up-regulated in a condition, all three pairs of expression profiles will be correlated. Disentangling
direct interactions from indirect ones is difficult, and becomes more complex with larger sets of genes
that interact in more intricate ways. MI methods address this using Data Processing Inequality (DPI)
[CT91], which states that in the case of the example mentioned above, I(Xi, Xk) ≤ I(Xi, Xj) and
I(Xi, Xk) ≤ I(Xj, Xk). After computing the MI between all pairs of genes, the DPI is run in reverse
by identifying such triplets of gene pairs and removing the one with the smallest MI value in each
triplet [MNBe06,ZAA08]. Margolin et al. [MNBe06] prove that this algorithm correctly recovers
the interaction network if the MI values can be estimated without errors, the network contains only
pairwise interactions, and the network is a tree. They show that their algorithm can reconstruct
networks with loops under certain other assumptions. ARACNe, the software implementation of
their algorithm, runs in O(n3 + n2m2) time. Zola et al. [ZAA08] developed a parallel method for MI
based inference that combines Daub et al.’s O(m) time B-spline MI estimator with a new method for
reducing permutation testing complexity by Θ(n2). Their software implementation TINGe scales to
whole genome networks and much larger number of samples than previous approaches.

An illustration of a gene network inferred using the MI approach is shown in Figure 32.5. The
network in Figure 32.5a shows interactions among 4,000 yeast genes with node size reflecting the
degree of the node. A closer look at the connectivity among some of the genes involved in response to
oxidative stress is shown in Figure 32.5b. Given the complexity of networks, the visualization and the
navigation of these networks are of considerable importance to biologists. Shannon et al. developed
a widely used software environment, termed Cytoscape, for this purpose [SMe03], which allows
third party plugins for further enhancing the functionality of the environment as necessary. Another
problem is that of comparing across multiple network inference methods, all the more important due
to the diversity of approaches that are applied. While a few biologically validated networks exist, it is
useful to have a wide array of benchmark data sets with different numbers of genes, samples, quality
of samples, etc. It is common practice to validate network inference algorithms using synthetically
generated networks by programs, such as SynTReN [dBLNe06] and COPASI [HSe06]. SynTReN
takes a gene network as input (such as, a biologically validated network of yeast), and creates a
synthetic benchmark network of a specified size with similar or desired topological properties, and
the desired number of samples with user-specified noise. COPASI is capable of generating time series
data—such data is particularly valuable in inferring the directionality of interactions. For example
one may infer that gene gi regulates gene gj, if a time delay is observed between the rise in expression
value of gj when compared to the rise in expression value of gi. Time series data can be especially
valuable for gene network construction, but requires access to carefully timed experiments. Thus,
undirected network inference using large public data repositories continues to be of value to gather
sufficient number of samples to build robust gene networks.
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(a)

(b)

FIGURE 32.5 (a) Yeast regulatory network on 4000 genes inferred by TINGe software. The size of a node is
proportional to its degree in the graph. (b) A closer look at the connectivity between some of the genes involved in
response to oxidative stress.

32.7 Outlook and Resources for Further Study

Although the field is young, research in CSB is taking place at an intense level commensurate with the
importance and the potential applications of this field. This is hardly surprising given the potential for
broad impact in critical areas such as health and human disease, and the management of agricultural
and animal resources. In this interdisciplinary field, apart from computer science and molecular
biology, many other disciplines contribute to knowledge discovery including chemical engineering,
physics, control theory, and statistics. In keeping with the scope and expected audience of this
handbook, our coverage of topics is heavily influenced by areas with substantial contributions from
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computer science, and the role of algorithms and theory even within that. Not covered in detail here
are many topics related to contributions with techniques from other areas of computer science, such
as text mining for annotation and network extraction, heterogeneous data integration, models of
network evolution, and data and graph mining. A number of techniques normally considered outside
the realm of algorithms and theory have also been utilized in making substantial contributions to
systems biology. Examples include metabolic flux analysis, physics driven models, and modeling
of biological processes as complex control systems, although algorithmic questions naturally arise
when these models eventually result in the need for computational solutions.

The field of systems biology is expected to grow quite rapidly, aided by both an increasing avail-
ability of experimental data, and a continued discovery and refinement of computational models
and techniques. On the experimental side, high-throughput experimental techniques are continu-
ally improved and increasing amounts of such data are being generated, e.g., comprehensive gene
expression profile measurements for various organisms. The predominant culture in the commu-
nity of open data sharing through web portals is a significant driver of innovation, drawing in
scientists from many fields with no interest in conducting the experiments per se, or in developing
such expertise. New experimental techniques to measure the various aspects of cellular activity are
expected to come on line, along with refined measurement capability for existing instrumentation.
To match these experimental advances on the computational end, we need better graph theoretic
models of biological processes, approaches to reason about networks, and techniques for modeling
experiments and their results. In the future, we envision the routine use of computational models as
a mechanism for suggesting useful experiments for biologists and the incorporation of the results of
these experiments into more refined models of the cell.

For the reader interested in further forays into the field or keeping abreast of this rapidly growing
field, a number of resources are available, some of which we mention here. The open access PLoS
Computational Biology journal publishes a series on “Getting started in . . . ,” which is a valuable
resource for understanding many topics relevant to systems biology. The Nature Insights series
provides an editorial and a compendium of commentaries on specific focus topics. Nature also
launched a series of “Connections essays” to explore how large number of interacting components
result in systems level behavior. Finally, Nature Cell Biology and Nature Reviews Molecular Cell
Biology have partnered together to publish several review articles in various subfields of systems
biology. We encourage readers of the chapter to tap into these and other resources for further study
of this fascinating and emerging area of scientific discovery. Finally, computational biology is a vast
research area and to permit a reasonable exposition within this chapter, we limited ourselves to the
emerging important area of systems biology. Readers interested in a comprehensive introduction to
the field of computational biology are referred to the handbook edited by one of the authors [Alu06].
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Glossary

Molecules

Cis-element A short DNA sequence found in the upstream non-coding region of the gene that con-
trols the transcriptional activity of a gene via transcription factors or other DNA-binding elements.
Enzyme A protein that catalyzes a biochemical reaction.
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Gene A DNA sequence (a substring of a chromosome) that is involved in encoding one or more
functional products, such as an RNA or a protein. The sequence includes coding regions that code
for the functional product(s), and non-coding regions, such as introns.
Homolog A gene whose nucleotide sequence exhibits similarity to another gene or a set of genes.
Kinase A protein that adds a phosphate group to a protein, the substrate.
Ortholog A gene in one organism is orthologous to a gene in another organism if both genes have
evolved from the same gene in a common ancestral organism. Orthology is usually established by
comparing genetic sequences.
Phosphatase A protein that removes a phosphate group from a protein.
Promotor A regulatory sequence of DNA located in the upstream 5’ non-coding region of the gene
that controls the transcription of the gene.
Protein A chain of amino acids synthesized in a specific order from the transcription and the
translation of a gene via the genetic code.
Transcription factor A protein that binds to a specific DNA sequence (cis-element) in the promoter
region of a gene to control its transcription.

Interactions

Biochemical reaction A process where an enzyme interacts with one or more molecules (substrate)
to produce a product.
Genetic interaction Interaction between a set of genes where the action of one gene is modified by
another gene or a set of genes.
Phosphorylation Addition of a phosphate group to organic molecules by enzymes called kinases.
Protein–protein interaction An association between a set of protein molecules to form long-term
protein complexes.
Transcriptional regulatory interaction An interaction between a transcription factor and a pro-
motor of a gene to regulate gene expression.

Processes

Gene expression The conversion of a gene (DNA sequence) into functional gene product, such as
RNA or protein.
Post-translational modification Changes made to a protein after translation, such as the addition
of a chemical group, or the formation of a protein complex, or making structural changes to the
protein.
Protein translation The process of converting messenger RNA, the product of gene expression, into
a chain of amino acids using the genetic code.
Signal transduction A process by which signals are transmitted by proteins and other molecules
from the outside of a cell to its interior or within a cell.

Gene Functions

Biological process A series of events accomplished by one or more ordered assemblies of molecular
functions.
Cellular component A component of the cell.
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Gene Ontology A standard nomenclature that is used to describe genes and gene product attributes
across organisms.
Molecular function An activity, such as catalytic or binding activity, that occurs at the molecular
level.
Phenotype An observable characteristic or trait of an organism.
Protein localization Positioning of a protein in an appropriate cellular area (e.g., an organelle, an
interior membrane, etc.) where its activity is needed.

Organisms

Eukaryote An organism whose cells contain nuclei. Genomic DNA is contained within the nucleus
of each cell.
Model organism An organism that is extensively studied with the expectation that knowledge gained
here provides valuable insights into other related organisms.
Prokaryote An organism whose cells do not have nuclei.
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33.1 Introduction

Computational finance is a cross-disciplinary area that relies on mathematics, statistics, finance, and
computational algorithms to make critical decisions. One of the core tasks in this area is to analyze
and measure the risk component that a financial portfolio would create. Portfolio would generally
comprise of stocks, bonds, and other instruments, such as derivatives. Derivatives are financial
instruments that depend on some other assets, such as stocks. They are also referred commonly as
options.

An option is a contract in which the buyer (holder) has the right but no obligation to buy (call)
or sell (put) an underlying asset (for example, a stock) at a predetermined price (strike price) on or
before a specified date (expiration date). The seller (also known as writer) has the obligation to honor
the terms specified in the contract (option). The holder pays an option premium to the writer [44].

Option pricing is one of the fundamental problems in finance which has led to two Nobel prizes
to be awarded. In 1998, Myron S. Scholes and Robert C. Merton received the Nobel prize for the
Black–Scholes–Merton (BSM) model [6]. Recently, Charles Engle received a Nobel prize in 2003
for his autoregressive conditional heteroskedasticity (ARCH) model [32]. There are a multitude of
financial instruments traded on the markets. The class of instruments known as American options

33-1
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are claims to payoffs at a time chosen by the holder of the security. These contracts give the holder
the right to exercise the option prior to the expiration date in order to achieve maximum profit.
Therefore, determining an optimum exercise policy is a key issue in pricing American securities.
The solution for the optimal exercise policy must typically be performed numerically, and is usually
a computationally intensive problem.

There are many numerical techniques proposed in the literature for option pricing, such as
binomial lattice approach [68] for the asset price and then roll backward the tree checking at each
node if early exercise is optimal. Binomial lattice approach is one of the traditionally used computing
models [23] in the finance community due to its intuitiveness and the ease of implementation.
Another traditional model is the Monte-Carlo (MC) [10] simulation of price movements. This is
done by evaluating the option value from many simulated trajectories of the asset price and taking
the average. The accuracy of the final price depends on the number of simulations performed. These
trajectory calculations are independent of each other and hence lead to embarrassingly parallel
situations (for example, see [66]). Some of the computational fluid dynamics techniques, such as
finite-differencing [31,67] and finite-element methods [75], are emerging as important techniques
for option pricing problem by solving the Black–Scholes and other models manifested as partial
differential equations (PDE). Recently, fast Fourier transform (FFT) has been shown [16] to be
suitable for option pricing problems. Also, it is shown [24] that FFT method can be used to study
multifactor models for this problem and shown to be quite effective in terms of computational times
when compared to other numerical techniques, such as MC and PDE approaches.

Economic and financial models used for evaluation and forecasting purposes typically lead to
large dynamic, nonlinear problems that have to be solved for a certain time span. In particular,
many of the problems in finance demand efficient algorithms and high-performance computing
capabilities [2,74]. All the techniques mentioned earlier are suitable for parallel computing. However,
parallel computing is not yet widely popular in the field of finance, though there is recognition
for its need. The prices and the price dynamics of goods and financial securities the investor
purchases determine the investor’s overall budget. An investor has many assets to choose from
over many periods and the market dynamics determine the price of each asset. Computational
requirement under such conditions are large and when there are market frictions the computational
requirements increase dramatically [41]. An important aspect of the portfolio optimization problem
is the objective function that represents the investor’s preferences. The need of investors to manage
the risks associated with their portfolios, vis-à-vis, their liabilities also prompted the development
of mathematical models for portfolio management. These models trace their roots to Markowitz’s
mean-variance optimization models [40]. Academics and practitioners are turning increasingly
to mathematical models and computer simulations in order to understand the peculiarities of
financial markets and to develop risk-management tools. One of the notable models is the highly
celebrated Black–Scholes model for option pricing [6]. Immense computing power available now
need to be harnessed in an effective manner to address the ever-increasing demand from the
practitioners, for example, for solving the complex mathematical models for the risk management
through portfolio adjustments. However, more and more models are developed these days for pricing
the risks of equities, stocks, bonds, derivatives of these instruments without much attention to their
solubility or tractability. The need to compute the solutions for such models dictates the design and
development of efficient algorithms that not only solve the problem in hand but also try to utilize the
supercomputing power of the present day. In other words, parallel algorithms are in great demand
for financial problems, especially for long-dated options with many underlying assets. Many of the
computational finance problems are shown to be well suited for solution on parallel architectures
of many kinds [21,51]. However, the adoption of parallel computing to the modern day finance
has been very modest [74]. Moreover, volatility of the market place demands the processing of
information quickly and accurately in order to react in a very short time to avoid potential huge
losses.
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This chapter introduces the readers to the field of finance and algorithmic research opportunities
therein. Though there are several problems in finance, such as portfolio optimization, calibration, and
marking-to-the-market, this chapter focuses on option pricing problem, which forms the backbone
of the above problems. In the next section, the basic idea of options is introduced followed by
some definitions and explanations through numerical examples. Complex or exotic options and
their solution techniques are introduced next. In Section 33.2 the design and the development of
parallel algorithms for binomial lattice approach to solve the option pricing problem are discussed.
In Section 33.3 the design and the development of parallel algorithms for quasi-Monte-Carlo (QMC)
simulation to solve the option pricing problem are discussed. In Section 33.4 the design and the
development of parallel algorithms for FFT technique to solve the option pricing problem are
discussed. Some fundamental ideas of evolutionary algorithms for the option pricing problem are
discussed in Section 33.5 followed by a list of keywords.

33.2 Binomial Lattice Algorithm for Pricing Options

This section discusses the design and the development of parallel algorithms for option pricing
problem using the binomial lattice approach.

33.2.1 One-Step Binomial Method

One of the early models for option pricing is the Nobel prize winning BSM model [6] that is
based on efficient market hypothesis. Black–Scholes developed a model to alleviate risk involved in
financial investments. Merton [54] augmented it with stochastic calculus resulting in a stochastic
PDE for the option. This model is valid for simple European options and a major assumption was
that underlying stock would have constant volatility. A closed-form solution is available only for
simplified BSM model with many assumptions, especially since numerical techniques for solving
PDE were not popular to the finance community. This scenario changed in 1979 when discrete time
approach was proposed by Cox–Ross–Rubenstein (CRR) [23]. The CRR binomial model is a simple
and intuitive numerical technique developed for pricing options. The binomial option pricing model
has proved over time to be the most flexible, and popular approach to price options. If constructed
assuming the same initial conditions, binomial model agrees asymptotically with the BSM model.
Moreover, binomial model can be used for pricing American style options. The standard binomial
option pricing model assumes that the binomial tree is recombining with constant volatility, constant
risk-less return, and constant payout return. However, these could be relaxed unlike the BSM Model.

Binomial model uses a binomial tree (Figure 33.1) structure to price options. The contract period
between valuation (current) date and expiration date is divided into a certain number of time steps.
Each node in the tree represents a possible price of the stock (underlying asset) at a particular time.
In binomial method, knowing asset price is the basis for computing option value. The valuation of

t = T

$30
($9)

Stock price could be 

Strike price $21

$15
($0)

t = 0
Today

$20

FIGURE 33.1 One-step
binomial model.

the binomial tree is iterative; it starts from the leaf nodes and works
backwards toward the root node, which represents the valuation date.

In Figure 33.1, the interest is in valuing a European Call Option for
current date whose underlying stock is priced at $20. At the end of the
preset period, say 3 months, since the stock price is $30, and the strike
price is $21, the value of the option is $9; whereas if the stock price at the
end of 3 months had been $15 the value of the option is $0.

In deriving the one-step binomial model (refer [9,23,59]), a portfolio
of stocks and options is set up in such a way that there is no uncertainty
about the value of the portfolio at the end of the life of the derivative,
say, three months. This amounts to assuming that the option is risk-free
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and arbitrage-free. That is, since the portfolio has no risk, the return earned on it must equal the
risk-free interest rate, which is the case with the BSM Model. This assumption would enable us to
determine the option value as well as the cost of setting up the portfolio.

Consider a portfolio with a long position in Δ shares of stocks and a short position in one call
option. First calculate the value of Δ that makes the portfolio risk-less. If the stock price goes up to
$30 from the current price of $20, value of the share is 30Δ and value of the option is $9 (since strike
price is $21). Therefore, the total value of the portfolio is 30Δ − 9. If the stock price goes down to
$15 from the current price of $20, the value of the share is 15Δ and the value of the option is $0.
Therefore, the total value of the portfolio is 15Δ. The portfolio will become risk-neutral if the value of
Δ is chosen such that the value of the portfolio remains the same in both cases, i.e., 30Δ − 9 = 15Δ.
The risk-less portfolio, therefore, comprises of 0.6 shares of stock in long position and one short
position of option. If the stock price goes up, the value of the portfolio is: 30 ∗ 0.6 − 9 = 9. If the
stock price goes down, the value of the portfolio is: 15 ∗ 0.6 = 9. That is, regardless of the behavior
of the stock price, value of the portfolio remains same at the end of the life of the derivative. This
implies risk-neutral portfolios must, in the absence of arbitrage, earn the risk-free rate of interest.
If the risk-free interest rate is 12% per annum, then the value of the portfolio today must be the
present value (also known as discounted value) of 9. That is, using the growth rate formula [44],
9e−rt = 9e−0.12∗0.25 = 8.734. Therefore, for a guaranteed return value of $9 at the end of 3 months,
the investment today should be $8.734.

33.2.1.1 Option Value

If the stock price today is known to be $20, denoting the option price by f, the value of the portfolio
today is, therefore, 20 ∗ 0.6 − f = 8.734 and f = 3.266. That is, when arbitration opportunity is
excluded, the current value of the option must be $3.266. If the option value is larger than this
amount, the portfolio would cost less than $8.734 to set up and would earn more than the risk-free
interest rate.

33.2.1.2 Generalized One-Step Binomial Model

Generalizing these statements, the one-step binomial model of finding the current option value can
be formulated as follows [23,73]:

Let the terms S and f represent the current stock price and derivative price. During the life of the
derivative, stock price S can (1) either move up from S to a new level Su (u > 1); or (2) move down
from S to a new level Sd (d < 1). The proportional increase in S when the up movement is (u − 1)

t = 0 t = T
Su

Sd
fd

fu

Sf

FIGURE 33.2 Gen-
eralized one-step bino-
mial model.

and the proportional decrease in S when the down movement is (1−d). When
the stock price moves up from S −→ Su, we suppose that the pay-off from
derivative is fu and when it goes down from S −→ Sd, it is fd (Figure 33.2).

First we find a closed form formula for the Δ defined before using these
general terms. If the stock price goes up from S −→ Su, the value of the
portfolio at the end of the life of the derivative is SuΔ − fu and likewise for
the other possibility it is SdΔ − fd. For the risk-neutral portfolio, therefore,
SuΔ − fu = SdΔ − fd or S(u − d)Δ = fu − fd or

Δ = fu − fd
S(u − d)

(33.1)

Emphasizing again, this would result in risk-neutral portfolio earning at least
the risk-free interest rate. Equation 33.1 is the ratio of the change in the
derivative price to the change in the stock price at time T. Let r be the risk-free
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interest rate. Using the growth rate formula, the present value of the portfolio must be (SuΔ−fu)e−rΔt .
Since the cost of setting up the portfolio is SΔ− f , for a risk-less portfolio SΔ− f = (SuΔ− fu)e−rΔt .
Substituting Equation 33.1 and manipulating one can get

f = e−rΔt (
pfu + (1 − p)fd

)
(33.2)

where

p = erΔt − d
u − d

(33.3)

Equations 33.2 and 33.3 comprise the one-step binomial model in pricing a derivative. The
expression for p given in Equation 33.3 is interpreted as the probability of an up movement in the
stock price. The expression

(
pfu + (1 − p)fd

)
in Equation 33.2 is referred to as the expected payoff

from the derivative.

33.2.2 Two-Step Binomial Trees

Following the same steps as mentioned earlier, the two-step binomial model [23] can be described.
At each step, let us assume for simplicity, the increase or the decrease of stock price is at the same
rate, say 10% (Figure 33.3).

At each step the stock price either goes up by u times the initial value or goes down by d times the
initial value. Applying Equation 33.2 repeatedly, we get the following relations:

fu = e−rΔt (
pfuu + (1 − p)fud

)
(33.4)

Su

fu

fud

fdd

Su2

Sd2

Sd

Sud
Sf

fd

FIGURE 33.3 General two-
step binomial model.

fd = e−rΔt (
pfud + (1 − p)fdd

)
(33.5)

f = e−rΔt (
pfu + (1 − p)fd

)
(33.6)

Substituting Equations 33.4 and 33.5 into Equation 33.6 one can get

f = e−2rΔt (
p2fuu + 2p(1 − p)fud + (1 − p)2fdd

)
(33.7)
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33.2.2.1 Numerical Example

22

t = T

t = 0

24.2

19.8

16.2

3.2
D

E

F

Strike price = $21

B

A

1.2825
0

0

0
C

3 months
3 months

18

20

2.026

FIGURE 33.4 Numerical
example of a two-step binomial
model.

Figure 33.4 describes the two-step binomial method in detail. Node
A is current time. Nodes B and C represent all the possible prices of
the stock down the road for 3 months. Similarly, nodes D, E, and F
represent possible prices the stock would take, 3 months from B or C.
The generation of a path consisting of possible prices in the future is
known as downsizing operation. Tracking back to root node is known
as upswing operations. The periods (Δt) are assumed to be equal, for
simplicity. Also for simplicity, we assume that the up or the down
movement of the stock price is at a constant rate, say 10% (i.e., u = 1.1
and d = 0.9). (These nodes could be located at different intervals.
Similarly, the increase or decrease in the stock price need not be at the
equal proportion as assumed for this example.)

At D, E, and F (leaf nodes) the option prices are nothing but the
local pay-off from the derivative. They can be directly calculated from
the strike price and the speculated stock price. Therefore, at D, the option price = stock price −
strike price = 24.2−21 = $3.2. At nodes E and F since the stock price < strike price, the option value
at these nodes is $0. Also at C, the option price is $1. At B during the downswing, a first calculation
suggests the option value to be $0 (since stock price($22) − strike price($21) = 1). Assuming a 10%
increase or decrease (i.e., u = 1.1 and d = 0.9), at B, p can be calculated using Equation 33.3 to be
p = 0.6523. Therefore, the option value at B can be calculated using Equation 33.2 as 2.026 in the
upswing. If the assumption had been an American option, it would be undesirable to exercise the
option at node B during the first pass, since the option value at node B is zero; whereas waiting for
the second pass suggests a better option value. It is to be noted here that the block of nodes B, D, and
E comprises what is required for a one-step binomial model, and hence the corresponding formula
can be applied.

Having determined the stock prices and the option values at B and C, the option value at A can
be calculated to be 1.2825 again by applying the one-step binomial formula given by Equation 33.2.
Recall that the binomial tree is constructed in such a way that the up and down movements are at
the same rate at each node and that the time steps are also of equal length. This assumption led to
a constant p at each node in this example. These restrictions are relaxed in a realistic analysis of
portfolios.

33.2.3 Binomial Lattice Pricing Algorithm

The recursive algorithm described earlier proceeds in two phases. First, lattice is constructed. Second,
work backward through the lattice from time T in order to compute the present value of the
option. (Mathematical convergence of the option price computed under the binomial method to
the true option price is discussed in [30].) To compute the binomial lattice, first divide the time
interval [0, T] into L smaller intervals, each of length Δt = T

L . Over each subinterval, the asset
price is assumed to move up from value S to Su, or down to Sd, with probabilities p and 1 − p,
respectively, as shown in Figure 33.3. It can be shown [73] that if u = eσ

√
Δt , d = e−σ

√
Δt ,

and p = erΔt−d
u−d (where r is the current interest rate and σ is the volatility of the underlying

asset) then over each time interval, the mean and the variance of asset price movements will
match the mean and the variance of the continuous-time risk-neutralized asset price process. In
the second phase of the algorithm, work backward from the leaf nodes at time T to compute
the option price. At the expiration time T and leaf-node i, the value of the option is given by
F(Si, T) = max[0, K − Si], K is the strike price. At time T − 1 and node j, the value of the option
is given by F(Sj, T − 1) = max[K − Sj, (pF(Sju, T) + (1 − p)F(Sjd, T))e−rΔt], the greater of the
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FIGURE 33.5 Binomial tree
adjusted for a known discrete
proportional dividend.

values under immediate exercise of the option, K − Sj, or the expected
value of holding the option for another period, (pF(Sju, T) + (1 −
p)F(Sjd, T))e−rΔt .

33.2.4 Binomial Lattice Algorithm for
Pricing Complex Options

The Modifications of algorithms described in the previous section to
complex options, such as options on dividend-paying assets with focus
only on the nature of these options, are discussed in this section. The
computational complexity of the algorithms changes and the cause for
this additional computational complexity of the algorithms is discussed.

The occurrence of a dividend payment during the life of the option
reduces the price of the asset on the ex-dividend date as shown in Figure 33.5. An ex-dividend date
is the date set by the company (generally few days before the actual dividend date) to pay dividend
to the share holders of the stock.

Consider three different situations as described briefly in the following.

33.2.4.1 Continuous Dividend Yield

If the underlying asset pays a continuous dividend yield at a rate of δ per unit time, then the data
generating process in the Black–Scholes [44] model are given by

dS = (r − δ)Sdt + σSdBt

where dBt is the general Wiener process. As can be realized from this small change, one can price
these options as the plain American puts and calls, with the difference in the formulas for the jump
sizes and the probabilities. Hence, the class of options is a very simple variation of the vanilla options.

33.2.4.2 Known Discrete Proportional Dividend

If there is a one-time proportional dividend payment of δ during the life of the option that occurs
at time τ, then the price at all the nodes of the binary tree preceding the dividend payment date will
be Sujdi−j (for iΔt < τ) and (1 − δ)Sujdi−j for all times after the dividend payment date (i.e. for
iΔt ≥ τ).

To price an option of this type, a binary tree with a one time jump of the tree structure is used.
At the node i where (i − 1)Δt ≤ τ < iΔt the input value is changed to (1 − δ)Su from Su to reflect
the dividend date. Correspondingly, the formulas for the probabilities of up and down movements
and the jump sizes are also modified. Hence, the natural load of computation before and after the
ex-dividend date changes slightly from the earlier option.

33.2.4.3 Known Discrete Cash Dividend

It is a more plausible assumption that the dividend is a known dollar amount rather than a percentage
yield. Therefore, the case of a known discrete cash dividend is considered. The problem here is that
the cash dividend changes the structure of the binary tree. Suppose there is a one time dividend
payment at time τ where iΔt ≤ τ< (i + 1)Δt. At time (i + 1)Δt, the price of the asset will decrease
by the amount of the dividend payment, D. This will make the tree at the subsequent nodes non-
recombining, what was originally recombining.

One way to cope with the non-recombining tree is to use the recursive algorithm. Another is to
consider the asset price S as composed of two parts, certain (the discounted dividend payments) and
uncertain S∗, where S∗ = S for iΔt ≥ τ and S∗ = S − De−r(τ−iΔt) for iΔt ≤ τ. One can model
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S∗ instead of S, and thus obtain a recombining tree. We can construct the tree for S from the tree
for S∗ and thus obtain the value of the option.

33.2.5 Parallel Pricing Algorithms for Single Underlying Assets

Pricing algorithms are described here for options with single asset and extension to multidimensional
derivatives. These algorithms [68,69] are for the base CRR model [23] for option pricing. This
discretized approach [23] approximates the BSM model of option pricing to a large extent by
representing the asset price movement in a lattice and is easy to implement for experimentation.

33.2.5.1 Parallel Recursive (Non-Recombining) Algorithm

Let P be the number of processors. In the recursive algorithm, processor 0 is delegated as the master
processor. Computations start at the first processor at the first level (L = 0), which corresponds
to time t = 0. A non-recombining tree is built until the number of leaf nodes equals the number
of available processors. Each leaf node is assigned to a distinct processor (one of them could be a
master processor itself). Then each processor starts building its own tree. All processors are working
independently on their subtrees without any information interchange. As soon as a processor creates
a tree with a certain depth (= L − log2 P), it starts working backward and computes option price
in every node. Each processor generates the tree and computes the option price recursively. At the
end of the computation, each processor sends its final value to the master processor. The master
processor upon receiving the values corresponding to all leaf nodes from the individual processors,
proceeds with computing the option values recursively until the initial node at t = 0. The recursive
algorithm utilizes a non-recombining binomial lattice, that is, Sud = Sdu = S is not imposed.
The sheer number of nodes created in a non-recombining lattice (2L) restricts the usefulness of
the recursive algorithm to short-dated options. When L is large (to accurately price options with
long times to expiration (large T)), the non-recombining lattice algorithm is inefficient. Therefore,
a recombining tree is created to reduce the number of nodes by utilizing Sud = Sdu = S. The
recombining algorithm is explained in the following text.

33.2.5.2 Parallel Iterative (Recombining) Algorithm

This algorithm starts from level L. The number of levels in the tree and the number of processors
are assumed to be power of two. The number of leaf nodes is always equal to the number of levels
plus one (L + 1). All leaf nodes are evenly distributed among the processors but the last processor
receives an additional node. Initially, the option prices at the leaf nodes are calculated by finding
the difference between a possible stock price and strike (exercise) price, (Si − K), which is the same
as the local pay-off at these nodes. Every processor i, except the processor 0, sends the value of its
boundary node to processor (i − 1). (Higher numbered processor sends data to the lower numbered
neighbors.) In a given processor, for every pair of adjacent nodes at a certain level Li, the processor
computes option price for pair’s parent node, which is at level (Li − 1). The computation proceeds
to the previous level Li−1 and option price computation is repeated with the additional exchange of
boundary node values. Eventually the processor 0 computes the option price at level L = 0.

At each time step t, both algorithms operate in two modes simultaneously: communication and
computation. In the communication mode, adjacent processors exchange data on option values.
Processor 0 only receives data from processor 1. Processors 1 through (P − 1) receive data from
the processor’s higher numbered neighbor and send data to their lower-numbered neighbor. P only
sends data to processor (P − 1). By forcing the lattice to recombine (imposing the condition that
Sud = Sdu = S), the step of constructing the lattice is eliminated. The stock prices are instead
calculated “on-the-fly” with proper indexing scheme. Computation at each node thus involves
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calculating the stock price and the option value. Based on the number of up and down movements
from the initial node, asset price is calculated. This calculation only requires the node and time
indices. For example, the stock price at node j and time Li is calculated as SLi

j = S0 ∗ uLi−2∗(Li−j), for
a recombining tree where u = 1/d.

33.2.6 Parallel Pricing Algorithm for Multiple Underlying Assets

The algorithms described earlier are for options with single underlying asset. As mentioned earlier,
parallel algorithms are in great demand for financial problems, especially for long-dated options
with many underlying assets. Financial derivatives with ten underlying assets are very common in
the market place. One can easily extend the above algorithms for derivatives that have multiple assets
as underlying components. This problem gives rise to immense effort in analyzing the effect of one
of the underlying assets onto the other and the overall effect on the derivative itself. This leads to
multi-dimensional analysis and in the simplest unoptimized form would require ten times more
computing time.

As time periods and the number of assets increase, the interactions among these assets would
modify the computational pattern and this would further increase the computational complexity
for such problems. The problem becomes computationally intractable due to many real-world
constraints to be satisfied in pricing such derivatives. One of the other effects is on managing the
portfolio [41], for which the pricing of these derivatives form a fundamental problem that need to
be solved accurately and expediently.

In experimental studies the number of assets is fixed for a given option, for simplicity. This helps
us to keep the computation time step constant for all the assets once the number of periods L into
which the total period [0, T] is divided into is fixed. This results in having the same tree structure
for all the assets. As explained in the single asset problem, each processor receives a leaf node from
the master processor upon which the processor creates a subtree recursively. Similarly, for i assets,
each processor is allocated i leaf nodes by the master processor. The processor expands on these leaf
nodes and creates a subtree for each of the leaf nodes.

33.2.7 Theoretical Analysis

33.2.7.1 Recombining Algorithm

With an example binomial tree in Figure 33.6 with eight levels and four processors, the number of
computations required for option pricing is analyzed in this section and then extended to larger
trees with L levels and P processors.

33.2.7.1.1 Total Computations
The number of computations performed by each processor excluding the leaf nodes has to be
determined. In the example, the longest path from any of the three leaf nodes in P3 ends at level 6.

The number of nodes allocated to this processor initially is L/P + 1 (=3). Each of these nodes
has a parent node at level 7. One of the two nodes at level 7 is boundary nodes. In the algorithm,
the communication is assumed to take place from higher numbered processors to lower numbered
neighboring processors. Therefore, the boundary node is created in P3. Similarly, these two nodes at
level 7 have parent node at level 6, which is also a boundary node local to the processor. Note that all
these nodes form a triangle starting at level 6. These are the nodes computed by processor P3 locally.
The number of computation, therefore, is 1 + 2 + 3 + · · · + L/P = (L/P) ∗ (L/P + 1)/2.
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This triangle can be superimposed
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FIGURE 33.6 Computational complexity—example with eight levels and four processors.

The longest path from the leaf nodes of processor P2 ends at level 4. Using the aforemen-
tioned technique of triangles the total number of computations performed by processor P2 can be
determined.

By superimposing the structure of local nodes of processor P3 (represented as a triangle) (that is,
the first node (counting from the bottom) at level 6 can be superimposed onto the third node at
the same level). Most of the nodes handled by processor P2 can be covered except for the square
(actually a rhombus in the figure) at the bottom (consisting of first node at level 4, first and second
nodes at level 5, and second node at level 6). The number of nodes on each side of this square is equal
to L/P and hence, the total number of nodes in this square is (L/P)2. Therefore, processor (P2) has
(L/P) ∗ (L/P + 1)/2 + (L/P)2 total nodes for computations.

Therefore, the number of total computations for Pi, i : 0 −→ P − 1 is (L/P)(L/P + 1)/2 + (P −
i − 1)(L/P)2.

33.2.7.1.2 Communication
Recall that at each level, the higher numbered processor sends a data value to the neighboring
lower numbered processor. Therefore, P0 performs no remote communications. Processor P3 sends
(L/P + 1) data values to processor P2 and processor P2 in turn sends (L/P + 1) + L/P data values
to processor P1, etc. In general, processor Pi communicates 1 + (L/P × (P − i)) data values to Pi−1.

Therefore, total number of communication is
∑P−1

i (1 + L/P × (P − i)) = (P − 1)(1 + L/2)
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33.2.7.2 Non-Recombining Algorithm

In this algorithm, the master processor creates P leaves (for each asset in the case of the multi-asset
derivative) and stores them in an array and distributes this array to distinct processors. The processors
create their own subtree with the leaf nodes (of the master processor) as the root and perform the
computations. At the end of the local computations, the processors send back the computed option
values to the master processor in an array (for each of the asset tree in the case of the multi-
asset derivative). Therefore, there are P sends and P receives by the master processor totaling 2P
communications. The number of levels created by the master processor is log2 P. Therefore, to
initially reach set number of levels L, each processor creates a subtree with (L − log2 P) levels.
The number of computations per processor is 2(L−log2 P+1) − 1. Therefore, the total number of
computations in the algorithm is 2L+1 − 1.

33.3 Monte-Carlo Simulation

MC simulation is a widely used method for pricing financial options due to the absence of straightfor-
ward closed form solutions for many financial models. Since Boyle [7] introduced the MC simulation
in pricing option in 1977, the literature in this area has grown very rapidly. For example, Hull and
White [43] employed MC method in stochastic volatility application and obtained more accurate
results than using BSM model [6,54]; the latter often overprices options about 10% and the error is
exaggerated as the time to maturity increases. Schwartz and Torous [62] use MC method to simulate
the stochastic process of prepayment behavior of mortgage holders and the results matched closely
to that actually observed. Fu [34] gives introductory details concerning the use of MC simulation
techniques for options pricing. In spite of the prevailing belief that American-style options cannot be
valued efficiently in a simulation model, Tilley [71], Grant et al. [38], as well as Broadie and Glasser-
man [12] and some others have proposed MC methods for American-style options and obtained
acceptable results. Examples about valuing exotic options can be found in [46]. The literature on MC
methods in valuing options keeps growing. More examples can be found in [8,36]. The traditional
MC methods have been shown to be a powerful and a flexible tool in computational finance [58].

While the traditional MC methods are widely applied in option pricing, however, their disad-
vantages are well known. In particular, for some complex problems that require a large number of
replications to obtain precise results, a traditional MC method using pseudo-random numbers can
be quite slow because its convergence rate is only O(N−1/2), where N is the number of samples.
Different variance reduction techniques have been developed for increasing the efficiency of the
traditional MC simulation, such as control variates, antithetic variates, stratified sampling, Latin
hypercube sampling, moment matching methods, and importance sampling. For detail about these
techniques, please refer to [36]. Another technique for speeding up the MC methods and obtaining
more accurate result is to use low discrepancy (LD) sequences instead of random sequences. The
use of LD sequences in MC method leads to what is known as QMC method. The error bounds in
QMC methods are in the order of (log N)d · N−1 where d is the problem dimension and N is the
number of simulations.

Birge [5] reported how QMC method can be used in option pricing in 1994 and demonstrated
improved estimates through both analytical and empirical evidences. In 1995, Paskov and Traub [57]
performed tests about two LD algorithms (Sobol and Halton) and two randomized algorithms
(classical MC and MC combined with antithetic variables) on Collateralized Mortgage Obligation
(CMO). They obtained more accurate approximations with QMC methods than with traditional MC
methods and concluded that for this CMO the Sobol sequence is superior to the other algorithms.
Acworth et al. [1] compared some traditional MC methods and QMC sequences in option pricing
and drew a similar conclusion. Boyle et al. [8] also found that QMC outperforms traditional MC
and Sobol sequence outperforms other sequences. Galanti and Jung [35] used both pseudo-random
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sequences and LD sequences (Sobol, Halton and Faure) with MC simulations to value some complex
options and demonstrated that LD sequences are a viable alternative to random sequences and the
Sobol sequence exhibits better convergence properties than others. The MC and QMC methods for
option pricing are discussed in this section.

33.3.1 Monte Carlo and Quasi-Monte Carlo Methods

In general, MC and QMC methods are applied to estimate the integral of function f (x) over the
[0, 1]d unit hypercube where d is the dimension of the hypercube,

I =
�

[0,1]d

f (x) dx (33.8)

In MC methods, I is estimated by evaluating f (x) at N independent points randomly chosen from a
uniform random distribution over [0, 1]d and then evaluating the average

Î = 1
N

N∑
i=1

f (xi) (33.9)

From the law of large numbers, Î → I as N → ∞. The standard deviation is
√√√√ 1

N − 1

N∑
i=1

(f (xi) − I)2 (33.10)

Therefore, the error of MC methods is proportional to 1/
√

N.
QMC methods compute the aforementioned integral based on LD sequences. The elements in a

LD sequence are uniformly chosen from [0, 1]d rather than randomly. The discrepancy is a measure
to evaluate the uniformity of points over [0, 1]d. Let {qn} be a sequence in [0, 1]d, the discrepancy
D∗

N of qn is defined as follows, using Niederreiter’s notation [55].

D∗
N(qn) = sup

B∈[0,1)d

∣∣∣∣A(B, qn)

N
− vd(B)

∣∣∣∣ (33.11)

where B is a sub cube of [0, 1)d containing the origin, A(B, qn) is the number of points in qn that
falls into B, and vd(B) is the d-dimensional Lebesgue measure of B. The elements of qn is said to
be uniformly distributed, if its discrepancy D∗

N → 0 as N → ∞. From the theory of uniform
distribution sequences [48], the estimate of the integral using a uniformly distributed sequence
{qn} is Î = 1

N
∑N

n=1 f (qn), as N → ∞ then Î → I. The integration error bound is given by the
Koksman–Hlawka inequality:

∣∣∣∣∣I − 1
N

N∑
n=1

f (qn)

∣∣∣∣∣ ≤ V(f )D∗
N(qn) (33.12)

where V(f ) is the variation of the function in the sense of Hardy and Krause (see [48], which
is assumed to be finite). The inequality suggests that a smaller error can be obtained by using
sequences with smaller discrepancy. The discrepancy of many uniformly distributed sequences
satisfies O((log N)d/N). These sequences are called LD sequences [55]. Inequality 33.12 shows that
the estimates using a LD sequence satisfy the deterministic error bound O((log N)d/N).
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33.3.2 Monte Carlo Simulations for Option Pricing

Under the risk-neutral measure, the price of a fairly valued European call option is the expectation
of the payoff E[e−rT(ST − K)+]∗. In order to compute the expectation, Black and Scholes [6,54]
modeled the stochastic process generating the price of a non-dividend-paying stock as geometric
Brownian motion:

dSt = μSt dt + σ St dWt (33.13)

where W is a standard Wiener Process, also known as Brownian motion. Under the risk-neutral
measure, the drift μ is set to r, the risk-free interest rate.

To simulate the path followed by the asset price S, suppose the life of the option has been divided
into n short intervals of length Δt (Δt = T/n), the updating of the stock price at t +Δt from t is [44]:

St+Δt − St = rStΔt + σStZ
√

Δt (33.14)

where Z is a standard random variable, i.e., Z ∼ (0, 1). This enables the value of SΔt to be calculated
from initial value S0 at time Δt, the value at time 2Δt to be calculated from SΔt , and so on. Hence, a
completed path for S has been constructed.

In practice, in order to avoid discretization errors, it is usual to simulate the logarithm of
the asset price, ln S, rather than S. From Itô’s lemma (see [73]), the process followed by ln S of
Equation 33.14 is

d ln S =
(

r − σ2

2

)
dt + σ dz (33.15)

so that

ln St+Δt − ln St =
(

r − σ2

2

)
dt + σZ

√
Δt (33.16)

or equivalently

St+Δt = St exp[(r − σ2/2)Δt + σ
√

ΔtZ]. (33.17)

Substituting independent samples Z1, . . . , Zn from the normal distribution into Equation 33.17
yields independent samples S(i)

T , i = 1, . . . , n, of the stock price at expiry time T. Hence, the option
value is given by

C = 1
n

n∑
i=1

Ci = 1
n

n∑
i=1

e−rT max
{

S(i)
T − K, 0.0

}
. (33.18)

The QMC simulations follow the same steps as the MC simulations, except that the pseudo-
random numbers are replaced by LD sequences. The basic LD sequences known in literature are
Halton [42], Sobol [65], and Faure [33]. Niederreiter [55] proposed a general principle of generating
LD sequences. In finance, several examples [1,8,35,57] have shown that the Sobol sequence is superior
to others. For example, Galanti and Jung [35] observed that “the Sobol sequence outperforms the
Faure sequence, and the Faure marginally outperforms the Halton sequence. At 15,000 simulations,
the random sequence exhibits an error of 0.07%; the Halton and Faure sequences have errors of 0.1%;
and the Sobol sequence has an error of 0.03%. These errors decrease as the number of simulations
increase.”

∗ (ST − K)+ represents 0 or positive value of the local pay-off.
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33.3.3 Parallel QMC Method for Options

Due to the replicative nature, QMC simulation often consumes a large amount of computing time.
Solution on a sequential computer will require hours and/or even days depending on the size of the
problem [58]. MC simulations are well suited to parallel computing since it is an embarrassingly
parallel problem (no communication between processors [66]). We can employ many processors to
simulate various random walks, then average these values to produce the final result. In this scenario,
the whole simulation time is minimized. There are three parallel techniques in using random
sequence in literature, namely, Leapfrog, Blocking, and Parameterization. In recent times, the earlier
three schemes have been proposed for parallelizing LD sequences (see, for example [13,52,56,61]).
Srinivasan [66] compared the effectiveness of these three strategies in pricing financial derivatives
and concluded that blocking is the most promising method if there are a large number of processors
running at unequal speeds. However, the disadvantages of blocking scheme are well pronounced.
First, if a processor consumes more LD elements than it was assigned, then the sub-sequences could
overlap. Second, if a processor consumes less LD elements than it was assigned, then some elements
will be wasted. The final result will be the same as the sequential computation that uses the same
LD sequence with some gaps. Third, if processors run at unequal speeds, the fastest processor will
finish its task first and wait for the slowest processor at synchronization point; then the overall
computation time will be determined by the time elapsed on the slowest processor. It is wasteful to
do this since the most powerful processors will idle most of the time. Hence, a good parallel algorithm
should distribute computations based on the actual performance of processors at the moment of the
execution of the program. The more powerful a processor is, the more tasks it will be assigned. That
is, data, computations, and communications should be distributed unevenly among processors to
provide the best execution performance. To achieve this, the algorithm must collect information of
the entire computing space and compute the relative performances of actual processors in the run
time; otherwise, the load of processors will be unbalanced resulting in poor performance. Currently,
no parallel programming tool can implement such parallel algorithm except mpC [50]. As a new
parallel programming tool, mpC offers a very convenient way to obtain the statistical information of
the computing space and the power of each processor. By using mpC, a programmer can explicitly
specify the uneven distribution of computations across parallel processors. In addition, mpC has
its own mapping algorithms to ensure that each processor performs computations at the speed
proportional to the volume of computation it performs. Hence, these two way mappings lead to
a more balanced and faster parallel program. An adaptive, distributed QMC algorithm for option
pricing [19,20] that takes into account the performances of both processors and communications is
presented here.

Having known the power of each processors, the volumes of computation assigned to each
processor can be computed as follows: Given N is the total tasks, p is the number of processors,
poweri is the ith processor’s power. Then, the tasks assigned to the ith processor is

taski =
[

N × poweri∑p
i=0 poweri

]
(33.19)

If there are tasks left, then assign it to host processor.
Suppose each simulation consumes q elements of the given LD sequence, and processor i has

ti tasks, then the whole number of elements will be consumed by processor i is B = ti × q. Note
that B is not necessarily N/P where N is the number of points and P is the number of processors.
Hence, the LD sequence is partitioned into uneven blocks. This partition of LD sequence is some-
what like the general blocking scheme in MPI (Message Passing Interface); however, it is superior
to general blocking scheme, in which the LD sequence is partitioned into equal size or the burden
is on the programmer to determine B. B is usually chosen to be greater than N/P to avoid the
problems mentioned earlier in the general blocking scheme with N/P elements per processor.
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That is, if a processor consumes more LD elements than it was assigned, then the sub-sequences
could overlap. In general, it is unclear on the exact number of points of a sequence that a pro-
cessor will consume. Because in QMC simulations, there are no safe stopping rules [36]. Without
experimentation, it is difficulty to know the number of points of a LD sequence needed to achieve a
desired accuracy. Unlike the traditional MC methods, one can use a standard error estimated from
a number of simulations to determine if a desire precision is reached. Hence, the LD numbers must
be generated more than needed. So the discrepancy of the contiguous points in a block might be
different from the discrepancy of the points, which is enough for a sequential run. Therefore, there
is a chance that the result produced from the blocking scheme of QMC is not the same as that of a
sequential computing [66]. Further discussions are available in [19,20].

33.4 Fast Fourier Transform for Option Pricing

Many natural and artificial phenomena, such as business cycles, repeat in constant times. These
phenomena can be approximated by Fourier series. The Fourier transform is used by engineers
in a variety of ways including speech transmission, coding theory, and image processing. The
financial engineers use Fourier inversion technique to price stock options with various models (for
example [63]). Assuming that the characteristic function of the terminal asset price could be derived
analytically, this study [63] uses the Fourier inversion technique to determine the risk-neutral
probability of the profitable option.

Fundamental ideas on the use of FFT in finance are presented in [17,18]. Financial engineers use
Fourier analysis to identify cyclic patterns in asset price movements. Such processes can be either
described in the time domain h, which is a function of time h(t), or in the frequency domain where
the process is specified by giving its amplitude, H, as a function of frequency f, that is H(f ), with
−∞ < f < ∞. One goes back and forth between the representations by means of the continuous
Fourier transform equations, h(t) = � ∞

−∞ H(f )e−2πift df called forward (−i) Fourier transform and
H(f ) = � ∞

−∞ h(t)e2πift dt called reverse (i) Fourier transform. Or their discretized forms given by:
H(f ) = 1

N
∑N−1

t=0 h(t)e2πift/N and h(t) = 1
N

∑N−1
t=0 H(f )e−2πift/N

Since the call value is a function of strike price, by mapping call value and strike price to the earlier
equations, Carr and Madan [16] applied the Fourier transform to the option pricing problem to get

CT(k) = exp(−αk)
π

∞�
0

e−ivkψT(v) dv (33.20)

where
k = log(K)

K is strike price
α is a dampening factor introduced in the model
ψT(v) is the Fourier transform of this call price given as

ψT(v) = e−rTφT(v − (α + 1)i)
α2 + α − v2 + i(2α + 1)v

(33.21)

ψT(v) is odd in its imaginary part and even in its real part, and φT is given by 33.26. Here k is the log
of strike price K (k = log(K)) and is identical to t in the discretized form for Fourier transform given
earlier [70]. That is, the call value needs to be computed at various strike prices of the underlying
assets in the option contract. Furthermore, v corresponds to f , ψT(v) is the Fourier transform of the
call price CT(k) and qT(s) is the risk-neutral density function of the pricing model. The integral in
the right hand side of Equation 33.20 is a direct Fourier transform and lends itself to the application
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of the FFT in the form of summation given by the continuous and discretized forms for Fourier
transform given earlier. This is called Carr–Madan (CM) model.

If M = e−αk/π and ω = e−i then

CT(k) = M
∞�
0

ωvkψT(v) dv (33.22)

If vj = η(j − 1) and applying trapezoid rule for the integral on the right of Equation 33.22, CT(k)
can be written as

CT(k) ≈ M
N∑

j=1

ψT(vj)ω
vjkη, k = 1, . . . , N (33.23)

where the effective upper limit of integration is Nη and vj corresponds to various prices with η

spacing.
To calculate the call values, Equation 33.22 has to be solved analytically. The discrete form of the

earlier equation given as Equation 33.23 is not suitable to feed into the existing FFT algorithms, for
example, Cooley–Tukey [22], Stockham auto sort [53], and Bailey [3]. Hence, the CM model in its
current form cannot be used for faster pricing. This is a major drawback of using CM model for
practical purposes. An explanation on the mathematical reasons for the drawback is presented in
the next section, while proposing a solution for this drawback in the model.

To obtain numerical solution and to take advantage of parallel computing for real time pricing
one needs to improve this mathematical model.

33.4.1 Mapping Mathematical Model to FFT Framework

Recent research on option valuation has successfully applied Fourier analysis to calculate option
prices. As shown earlier in Equation 33.20, to obtain the analytically solvable Fourier transform, the
call price function needs to be multiplied with an exponential factor, eαk (cT(k) = eαkCT(k)), where
α is a dampening coefficient [16]. The calculation of ψT(v) in Equation 33.21 depends on the factor
φT(u), where u = v − (α + 1)i. The calculation of the intermediate function φT(u) requires the
specification of the risk neutral density function, qT(s). The limits on the integral have to be selected
in such a way as to generate real values for the FFT inputs. To generate the closed form expression of
the integral, the integrands, especially the function qT(s), have to be selected appropriately. Without
the loss of generality, one can use uniform distribution for qT(s). This implies the occurrence of a
range of terminal log prices at equal probability, which could, of course, be relaxed and a normal or
other distribution could be employed. Since the volatility is assumed constant (low), the variation in
the drift is expected to cause a stiffness∗ in the system. However, by assuming uniform distribution
for qT(s), variation in drift is eliminated and hence the stiffness is avoided. Therefore, the use of
uniform distribution would make the integration easier.

For computation purposes, the upper limit of Equation 33.22 is assumed as a constant value and
the lower limit is assumed as 0. The upper limit will be dictated based on the terminal spot price.

∗ Stiffness occurs when two processes controlling a physical phenomenon proceeds at two extremely different rates. It
is common in scientific problems, such as chemical reactions and high temperature physics. When a system with such
physical phenomenon is manifested in mathematics, such as differential or integral equation, the mathematical system is
known to be stiff, where solution of such systems of equations would require special techniques to handle the stiffness.
Drift and volatility in the finance systems act as two phenomena affecting the system away from equilibrium, hence may
induce stiffness. The assumptions of uniform distribution for the density function to make the integration easier, in
conjunction with assumed constant volatility, however, naturally avoids this issue.
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In other words, to finish the call option in-the-money,∗ the upper limit will be smaller than the
terminal asset price. Therefore, the equation is

φT(u) =
λ�
0

(cos(vk) + i sin(vk))qT(s) ds (33.24)

Without loss of generality, further modifications are required as derived in the following text.
The purpose of these modifications is to generate feasible and tractable initial input conditions to
the FFT algorithm from these equations. Moreover, these modifications make the implementation
easier. From Equation 33.21

ψT(v) = e−rTφT(v − (α + 1)i)(C − iD)

(C2 + D2)
(33.25)

where C = (α2 + α − v2); and D = (2α + 1)v.
Now,

φT(u) =
λ�
0

eiusqT(s) ds (33.26)

where λ is terminal spot price and integration is taken only in the positive axis.
To calculate φT(v − (α + 1)i), v − (α + 1)i is substituted by u in Equation 33.26 that gives

φT(v − (α + 1)i) =
λ�
0

e(iv+α+1)sqT(s) ds (33.27)

Assuming qT(s) as an uniform distribution function of the terminal log price, Equation 33.27 can
be shown as

φT(v − (α + 1)i) = qT(s)
e(iv+α+1)s

iv + α + 1

∣∣∣∣
λ

0

= qT(s)
iv + α + 1

(
eivλe(α+1)λ − 1

)
= qT(s)(α + 1 − iv)

(α + 1)2 + v2

[(
e(α+1)λ(cos(λv) + i sin(λv)) − 1

) ]

= qT(s)
(α + 1)2 + v2

[[
e(α+1)λi{(α + 1) cos(λv) + v sin(λv)}

− (α + 1) + i
[

e(α+1)λ{(α + 1) sin(λv) − v cos(λv)} + v
] ]

(33.28)

If one sets e(α+1)λ{(α + 1) cos(λv) + v sin(λv)} − (α + 1) = Δ and e(α+1)λ{(α + 1) sin(λv) −
v cos(λv)} + v = Δx then Equation 33.28 can be simplified as

φT(v − (α + 1)i) = qT(s)
(α + 1)2 + v2 (Δ + iΔx) (33.29)

∗ In-the-money call option is a situation where the underlying asset price of the option is larger than the strike price;
at-the-money call means asset price equals the strike price; natural extension is for out-of-the-money call, which cor-
responds to a situation where the asset price is smaller than the strike price. These definitions are reversed for a put
option.
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Substituting Equation 33.29 in Equation 33.25 gives

ψT(v) = A
B(C2 + D2)

[
(CΔ + DΔx) + i(CΔx − DΔ)

]
(33.30)

where, A = e−rTqT(s); B = (α + 1)2 + v2; C = α2 + α − v2; D = (2α + 1)v. This final expression
can be used for parallel FFT algorithm to compute the call price function. The financial input data
set for our parallel FFT algorithm is the calculated data points of ψT(v) for different values of v.

One can then calculate call values for different strike price values vj where j will range from 1 to N.
The lower limit of strike price is 0 and the upper limit is (N − 1)η where η is the spacing in the line
of integration the smaller value of η gives fine grid integration and a smooth characteristics function
of strike price and the corresponding calculated call value.

The value of k on the left side of Equation 33.23 represents the log of ratio of strike and terminal
spot price. The implementation of FFT mathematical model returns N values of k with a spacing
size of γ and these values are fed into a parallel algorithm to calculate N values of CT(k). Here focus
is on the cases in the range of in-the-money to at-the-money call values. The value of k will be 0 for
at-the-money call—that is strike price and exercise price are equal. The value of k will be negative
when we are in-the-money and positive when we are out-of-the-money. If γ is the spacing in the k
then the values for k can be obtained from the following equation:

ku = −p + γ(u − 1) for u = 1, . . . , N (33.31)

Hence, the log of the ratio of strike and exercise price will range from −p to p where p = Nγ
2 . The

substitution of Equation 33.31 in Equation 33.23 gives

CT(ku) ≈ exp(−αku)

π

N∑
j=1

{
e−ivj(−p+γ(u−1))ψT(vj)η

}
for u = 1, . . . , N (33.32)

Replacing vj with (j − 1)η in Equation 33.32,

CT(ku) ≈ exp(−αku)

π

N∑
j=1

{
e−iγη(j−1)(u−1))eipvjψT(vj)η

}
for u = 1, . . . , N (33.33)

The basic equation of FFT is

Y(k) =
N−1∑
j=1

e−i 2π
N (j−1)(k−1)x(j) for k = 1, . . . , N. (33.34)

Comparing Equation 33.33 with the basic FFT equation 33.34 it is easy to note that γη = 2π
N . The

smaller values of η will ensure fine grid for the integration. But, for call prices at relatively large strike
spacings (γ), few strike prices will lie in the desired region near the stock price [16]. Furthermore,
if the values of N are increased, one will get more intermediate points of the calculated call prices
(CT(ku)) corresponding to different strike prices (vj). This helps the investor to capture the call
price movements of an option for different strike prices in the market. With N (=1024) number of
calculated call values, assuming η = 0.25 with the intuition that it will ensure fine grid integration,
γ is calculated as 0.02454. Similar to basic FFT equation, Equation 33.32 can also be parallelized.
An efficient parallel FFT algorithm can compute fast and accurate solutions of equation 33.32. In
the next section a data swapping technique that exploits data locality to reduce communication on
a parallel computer is developed and effectively applied to the improved mathematical model. With
the inputs derived from Equation 33.32, this algorithm can be implemented on a parallel machine.
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33.4.2 Parallel FFT Algorithm

Figure 33.7 illustrates the classical Cooley–Tukey algorithm [22] (also known as FFT network) and
the butterfly computation. There are N (N = 2m) data elements and P (P = 2r) processors where
N > P. A butterfly computation is performed on each of the data points in every iteration where
there are N

2 summations and N
2 differences.

The FFT is inherently a synchronous algorithm. In general, a parallel algorithm for FFT with
blocked data distribution [37] where N

P data is allocated to every processor involves communication
for log P iterations and terminates after log N iterations. The input data points are bit reversed before
feeding to the parallel FFT algorithm. With shuffled input data at the beginning, the first log N−log P
stages require no communication. That is, the data required for the butterfly computation resides in
each local processor. Therefore, during the first (log N − log P) iterations, a sequential FFT algorithm
can be used inside each processor (called local algorithm).

At the end of the (log N − log P)th iteration, the latest computed values for N
P data points exist

in each processor. The last log P stages require remote communications (called remote algorithm).
The partners of each of the N

P data points in processor Pi required to perform the actual butterfly
computation at each iteration reside in a different processor Pj. In a blocked data distribution,
therefore, N

P amount of data is communicated by each processor for log P stages. The message
size is N

P .
In Figure 33.7 a, one can note that calculating Y0 in processor 0 requires two data points, one

of which resides in the local processor (=0), and the other resides in processor 2, and hence
requires one communication to calculate Y0. Similarly, calculating Y1, Y2, and Y3 needs three
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FIGURE 33.7 (a) Cooley-Tukey algorithm and (b) butterfly operation.
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FIGURE 33.8 Data swapping algorithm.

more communications with processor 2. Each processor requires four communications to calculate
four FFT output. In total, 16 communications are required.

In the data swapping algorithm depicted in Figure 33.8 [4] the same blocked data distribution is
applied and the first (log N − log P) stage requires no communication. However, in the last log P
stage thats require communication, some of the data is swapped at each stage leaving the data to
reside in the processor’s local memory after swapping. Therefore, the identity of some of the data
points in each processor changes at every stage of the log P stages.

In Figure 33.8, one can note that calculating the first two output data points in processor 0 needs
two input data points with indices 0 and 8, and node with index 8 does not reside in the local
processor. Therefore, one communication is needed to bring node 8 from processor 2. Similarly,
calculating the next two output data points need one more communication. Therefore, in processor
0, two communications are needed to calculate four output data points. With the same arguments,
each of the processors 1, 2, and 3 needs two communications. In total, eight communications are
required to calculate FFT of 16 data points. Therefore, in the new parallel FFT algorithm, the number
of communications is reduced by half.

It is interesting to note that communication between processors is point to point and swapping
the data could be done by taking advantage of this point. However, in this case, only N

2P amount
of data (message size) is communicated by each processor at every stage. Also note that, data
swapping between processors at each location allows both the upper and lower parts of the butterfly
computations to be performed locally by each processor. This improvement enhances good data
locality and thereby providing performance increase in the new FFT algorithm compared to the
Cooley–Tukey algorithm.
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FIGURE 33.9 Input and output to the data swap algorithm.

Figure 33.9 shows how the data swap algorithm calculates the call values from the input data
set generated from the Equation 33.30. As mentioned in Section 33.4.1, Equation 33.30 calculates
ψT(vj) for different values of vj (strike price), where vj = η(j − 1) and j = 1 · · · N. η is the strike
price spacing and for a fixed strike price range (for example 0–300) larger values of N gives smaller
values of η. With smaller strike price spacing, the data swap algorithm calculates more numbers
of intermediate call values in the specified region of the strike price. This depicts the change in
the call price for smaller change in the strike price. It is observed [4] the data swap algorithm
performs better over the Cooley–Tukey algorithm when the data size (N) increases. Therefore, the
data swap algorithm can capture the call prices for various strike prices faster than the Cooley–Tukey
algorithm.

The data swap algorithm calculates the N number of call values (CT(ku)) where ku is the log of
the ratio of the strike price E and the terminal spot price ST (market price of the underlying asset).
The call values obtained from the data swap algorithm are normalized values with respect to the
terminal spot price. In other words, call values for a given strike price, which is the log of the ratio
of the strike and terminal spot prices, are normalized with terminal spot price as a base. When the
strike price < spot price the call option is in-the-money (the value of ku will be negative) and when
strike and spot price are equal the call option is at-the-money (the value of ku will be zero). Whereas
the call option is out-of-the-money (the value of ku will be positive), if strike price > spot price.
When the call option is in-the-money, the investor would prefer to exercise the option (purchasing
the option) at the strike price and immediately sell the asset in the market at the terminal spot price.
Thus, the holder can profit. When the call option is at-the-money, the profit or loss is zero. But for
the call option out-of-the-money, the investor would not prefer to exercise it as the spot price of the
asset in the market is less than the exercise price (strike price) of the contract.
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33.5 Summary and Further Research

There are various directions of research in computational finance based on commercial and/or
algorithmic interests. This chapter has touched upon some of the techniques that are both of
algorithmic value and commercial value. There are many other engineering techniques and various
other problems in finance, such as portfolio optimization, that require good algorithms and faster
solutions. We finish the chapter with a short discussion on an emerging algorithmic science for
financial applications.

Nature inspired algorithms (also known as Swarm Intelligence or evolutionary algorithms) [26]
have been used in many applications to solve many combinatorial optimization problems, includ-
ing problems in telecommunications [14,15] and dynamic networks, such as mobile ad hoc net-
works [39]. Swarm intelligence is an artificial intelligence technique inspired by animal societies,
such as bees [64,72], termites [60], and ants [27]. These small animals live in a hostile, decentral-
ized environment and communicate with one another through a stigmergic method to accomplish
their tasks, such as finding the food source. Ant Colony Optimization (ACO) is one such swarm
intelligence technique inspired by real ants. The ants communicate with one another by depositing
pheromone (scent) on the ground to attract their fellow ants to follow their trail, one of the stigmergic
approaches in the animal world. As time progresses, the pheromone along longer path evaporates
leaving the ants to converge along shorter paths. The objective of ACO in most applications is to
find the shortest path.

These nature inspired algorithms have prospects in many areas of finance, such as to evolve
trading rules, diagnosis of company’s future, etc. (see [11]). A key advantage of using evolutionary
algorithms to design a trading process is that these algorithms can simultaneously evolve good rules
and good parameters for such rules [11].

For option pricing, the solution space consists of large number of price nodes. The ants have this
large bounded space of price nodes to search through in deciding the best time (node) to exercise
the option. The nodes within the search space are dispersed in many locations and are connected in
some random manner. The goal of ACO in the current application is to find the best node to exercise
the option. This can be achieved by directing a path to the node, thereby allowing other investors to
quickly arrive at the node to exercise prices. This path can be created using a variety of techniques.
However, these approaches can be used on structured graphs only. ACO is a probabilistic approach
that allows the path to be created in a random way. That is, the graph is ad hoc and random. There is
no real structure to the graph. Therefore, ACO allows flexibility by distributing the nodes randomly
and thereby capturing the real market place.

Dorigo [25,29] proposed ACO that involves distributed computation, positive feedback, and a
greedy heuristic to solve a given problem. Distributed computing helps in searching a wide area
of the problem domain, positive feedback helps in finding good solutions and a greedy heuristic is
needed to find solutions in early stages.

In finance, knowing the volatility of a financial instrument makes an investor powerful and could
make precise decisions. However, predicting the volatility of an instrument, say stock price, is a
daunting task and is a research area by itself. Researchers and practitioners, using historical data,
have developed methods for predicting historical volatility. Historical volatility would only reflect
past and the accuracy of stock prices predicted based on historic volatility is questionable. There
have been some efforts in measuring volatility accurately. Implied volatility measures the intrinsic
dependence of past stock prices not only with time but with other factors affecting the price over
a period of time. Keber and Schuster [45] used generalized ant programming to derive analytical
approximations to determine the implied volatility for American put options. Generalized ant
programming is a new method inspired by genetic programming approach introduced by Koza [47]
and Ant Colony System (ACS) [28]. They used experimental data and validation data sets for
computing the implied volatility. Their results outperformed any other approximations.
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The objective of ACO in most applications is to find the shortest path. However, in option
pricing, the interest is not in finding the shortest path, but finding the best node that allows the
investor to exercise the option. Therefore, the general ACO algorithm has to be improved to handle
this problem. In [49], we have developed two bioinspired algorithms for option pricing problem
using ACO.

Defining Terms

American option: An option that allows exercising anytime before the expiration date.
Arbitrage: An act of taking advantage of difference in prices in two different exchanges at a given
time.
Bid: An initiation to buy a security, such as an option or futures contract, at a specified price at a
future time.
Bid-ask spread: The difference between the offered price and the bid price.
Black–Scholes–Merton model: The Nobel prize winning model that calculates the price of an
option, when the exercise price, time to exercise, the interest rate, and the expected volatility of the
price of the underlying asset are given.
Call option: Right to buy a share or other asset at a fixed price (strike price) at some time (expiration
date) in the future. Call buyer is known as Holder. The other party is known as Writer.
in-the-money-Call: When strike price is lower the current market price of the underlying asset, the
call option is said to be in-the-money.
at-the-money-Call: When strike price is equal to the market price of the underlying asset, the call
option is said to be at-the-money.
out-of-the-money-Call: When strike price is higher than the market price of the underlying asset,
the call option is said to be out-of-the-money.
Commodity futures: Contracts to buy or sell commodities on a futures exchange at a price specified
price and future date
Delta hedging (option’s delta): The number of shares/stocks required to hedge against the price
risk of holding an option.
Efficient market hypothesis: This hypothesis states that the process in financial markets reflect
all publicly available information. One of the consequences is that, provided the conditions of an
efficient market are met, individual investors will not achieve risk-adjusted returns above the market
average in the long run.
European option: An option that allows exercising only at expiration date.
Exotic option: An option that has complex pricing mechanism that requires finding minimum,
maximum, or averages of the asset prices; or that the expiration date could be floating; or may have
a barrier price on the asset for the option to kick in, etc.
Futures: Futures are contracts to buy or sell a fixed quantity of an asset—goods or securities—at a
fixed price and a fixed date, regardless of any intervening change in price or circumstances.
Mark-to-Market: When an investment or a liability is revalued to the current market price.
Options: An option gives the right, but not the obligation, to buy or sell something at a given price
and time. A call option gives the right to buy while a put option gives the right to sell. A simple
European or American option is known as Vanilla option.
Option pricing theory: Relates to the valuation of options or various other continent contracts
where value depends on the underlying securities or assets.
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Put option: Right to sell a share or other asset at a fixed price (strike price) at some time (expiration
date) in the future.
Random walk: The convention that in efficient markets, successive price changes are random.
Risk: In investment risk is referred to as the uncertainty of return from any asset.
Risk-free asset: An asset providing a certain return over some holding period.
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802.11, 27-2

A

A∗ algorithm, 22-9
Abelian group, 10-2, 10-19
Abstract complex, 3-4, 3-24
Access structure, 13-2, 13-9, 13-10
Accumulator array, 5-5
ACO, see Ant colony optimization
Active vertex, 25-6, 25-28
Acyclic conjunctive queries, 19-10
Acyclic directed graph, 6-5
Adaptive attack, 12-19
Additive valuation function, 16-8
2-Adic number, 17-10
2-Adic rational approximation, 17-10
2-Adic span, 17-10
Adjacency list, 25-21, 25-22
Adjacency matrix, 25-21
Adleman’s 3-SAT experiment, 31-4
Admissible, 22-8, 22-20
Adversarial daemon, 26-10, 26-14
Adversarial queuing, 27-21
Adversarial schedule, see Arbitrary scheduling
Aesthetic criteria, 6-3
Affine matching, 5-8
Affine spaces, 13-5
Affine transformation, 5-19
AI, see Artificial intelligence
Alexander duality, 3-12
Algebraic nonlinearity, 17-6
Algorithm, 25-1, 25-6
Algorithmic method in design of DNA sequences, 3-11
Algorithmic number theory, see Computational number

theory
Alignment, 5-8
All-prefix-sums, see Plus-scan
Almost planar graph, 6-25
Alphabet, 11-2
Alpha-beta pruning, 22-13
Alpha-beta search, 22-13
Alpha complex, 3-24
Alternating step generator, 17-15
Ambiguity in language, 23-1, 23-15
American option, 33-1, 33-23
Amplification in DNA computing, 31-4, 31-9, 31-16
And, 24-9

Annulus (minimum annulus width problem), 2-14
(a, b)-Anonymity, 18-31
Anonymous channel, 15-4, 15-18
Anonymous signatures, 15-5
Anonymous voted ballots, 15-8
Ant colony optimization (ACO), 33-22, 33-23
Append function, 25-12
Application device channel, 28-28
Application layer, 27-2
Application models, 29-6
Application parameters, 29-13
Apply-to-each, 25-11
Approximate equilibria, 21-11
Approximation algorithm, 20-2
Approximation algorithms for k-anonymity, 18-23
Approximation scheme, 20-25
Arbiter, 12-2, 12-7
Arbitrage, 33-4, 33-23
Arbitrary concurrent write, 25-7, 25-20, 25-24,

25-26
Arbitrary scheduling, 26-6
Arborescence, 27-10, 27-33
Arc consistency, 22-18
Arc modulated therapy, 7-16
Arm of a robot, 4-2
Array of flags, 25-19
Art gallery problem, 1-25
Artificial intelligence, 22-1
Ascending auction, 16-3
Assembly sequence, 4-9
Associative read, 24-9
Associative write, 24-9
Asymmetric cryptosystem, 9-6, 9-13
Asymptotic analysis, 25-2
Asynchronous model, 27-4
Atomicity of communications, 26-4
At-the-money-call, 33-17, 33-18, 33-21, 33-23
Attribute disclosure protection, 18-4, 18-30
Attribute generalization, 18-8
Attributes (matching shape contours), 5-11
Attribute suppression, 18-8
Authentication, 9-5, 9-12, 12-2, 12-27
Authentication code (A-code), 12-3
Authentication tags, 12-3
Authenticator, 12-7, 12-8
Authenticity, 9-5
Autocorrelation, 17-5, 17-21
AutoDock, 30-19

I-1
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Autonomous vehicle navigation, 22-11
Average completion time, 20-3, 20-5

B

Backed up value, 22-13
Backjumping, 22-18
Backoff protocol, 27-24
Backtracking, 22-12, 22-17
Balance, 17-4, 17-21
Balanced incomplete block designs, 13-8
Ballot authentication, 15-2
Ballot secrecy, 15-2
Bandwidth, 25-6, 25-10
Bandwidth guarantees, 28-11
Barcode, 3-15
Base pair, 31-2
Basis, 13-10
Bayes–Nash equilibrium, 16-4
Beaufort cipher, 11-2
Bellman–Ford (approximate distributed), 27-7
Bellman–Ford algorithm, 8-9
Bends, 6-4
Beneath–beyond method, 1-6
Benenson automata, 31-6
Bent function, 17-14
Berlekamp–Massey algorithm, 11-4, 17-8
Best-first search, 22-6
Betti number, 3-12, 3-27
BFS, see Breadth-first search
Bichromatic closest pair problem, 2-2
Bichromatic line segment intersection problem, 2-24
Bichromatic maxima-finding problem, 1-11
Biconnectivity, 25-15
Bid, 33-23
Bid-ask spread, 33-23
Bidder, 16-1
Bidding language, 16-8
Bidding straightforwardly, 16-14
Bidirectional search, 22-6
Bilexical context-free grammar (2-LCFG), 23-8
Bilexical recognition, 23-9
Bimatrix games, 21-4, 21-24
Binary associative operator, 25-16
Binary search, 8-20, 25-36
Binary tree, 25-5
Binomial lattice algorithm, 33-3, 33-6
Biochemical reaction, 32-1, 32-18, 32-19
Biocomputing, see DNA computing
Biological process, 32-1, 32-2, 32-4, 32-8, 32-19
Biomolecular computing, see DNA computing
Bipartite graph, 20-16
Bipartite matching, 20-16
Bipartitioning of graphs, 8-5

Birthday attack, 12-10, 12-14
Bisection width, 24-5
Bisector, 2-4, 2-25
Bit-by-bit round robin, 28-21
BitTorrent, 27-2
Bit vector scheme in packet classification, 28-18
Black–Scholes–Merton model:, 33-1, 33-2, 33-13,

33-23
Blakley’s scheme, 13-4
Blind signatures, 12-24, 15-18
Block cipher, 9-9, 9-13, 11-4
Blocking graph, 4-10
Block matrix multiply algorithm, 29-26
Blum–Micali discrete log generator, 17-18
BnB, see Branch and bound
Boolean basis problem, 1-25
Boolean queries, 19-5
Boolean satisfiability, 22-16
Boundary, 3-10
Boundary (image), 5-20
Boundary homomorphism, 3-11
Boundary of manifold, 3-3
Bounded scheduling, 26-6
Bounded treewidth graph, 16-10
Boxtree, 4-12, 4-21
Branch and bound (BnB), 22-10
Branch and cut algorithm, 6-16
Branching factor, 22-3, 22-20
Breadth-first search (BFS), 8-8, 8-15, 8-16, 22-4, 25-22
Breadth-first traversal, 25-22
Breaking a cipher, 11-1, 11-15
Brent’s Theorem, 25-9
Bridge (geometric), 1-4, 25-35
Broadcast, 24-9, 25-7
Broadcast routing, 27-12
Brute-force search, 22-3
BSP, 25-6
BSP software libraries, 25-38
Bulk-synchronous parallel (BSP) model, 25-6
Bulletin board, 15-4, 15-18
Bundle, 16-8
Bundle prices, 16-15
Bus, 25-4, 25-38
Busy schedule, 20-9
Butterfly and fast Fourier transform (FFT), 25-38
Butterfly emulation of PRAM, 25-10
Butterfly network, 25-10, 25-38
Buyer submodularity, 16-14
Byzantine, 26-2

C

Cache protocol, 25-5
CAD/CAM, 1-1
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Caesar cipher, 9-2
Call option, 3-3, 33-13, 33-17, 33-21, 33-23
CAM, see Content addressable memory
Canonical form of polygonal schema, 3-7
Canonical generators, 3-8
Canonical ordering, 6-8
Canonical triangulation, 3-8
Capacity of organic DNA memory, 31-11
Carmichael number, 10-23
Cartesian A-codes, 12-3
Cascaded clock controlled shift register, 17-16
CBC, see Cipher block chaining
Cech complex, 3-24
Cell decomposition, 4-12
Cell generalization, 18-8
Cell suppression, 18-8
Cellular component, 32-4, 32-19
Cellular signaling network, 32-3
Census self-stabilizing algorithm, 26-23
Central scheduling, 26-5
Certificate, 9-6
CFB, see Cipher feedback
CFG, see Context free grammar
Chain comparison, 2-18
Chain decomposition, 2-17
Channel, see Communication channel
Channel intersection graph, 8-15
Channel in VLSI routing, 8-13, 8-23
Channel routing problem, 8-14, 8-16, 8-23
Characteristic angle vector, 1-22
Characteristics and constraints, 20-32
Cheater detection, 13-9
Cheater identification, 13-9
Cheating, 13-9, 30-6
Checkers, 22-2
Chess, 22-2
Chinese remainder theorem, 10-19
Chordale, 2-7
Chosen ciphertext attack, 11-1
Chosen content attack, 12-6
Chosen plaintext attack, 11-1
Chosen text attack, 12-19
Cipher, 11-2
Cipher block chaining, 9-11
Cipher feedback, 9-12
Ciphertext, 9-2, 9-13, 11-1, 12-27
Ciphertext-only attack, 9-2, 11-1
Circle detection, 5-6
Circle test, 1-24
Circuit, 25-8
Circuit evaluator, 14-9
Circuit generator, 14-9
Circuit simulation, 14-9
Circuit-switched networks, 27-18, 27-33

Circumcircle, 1-22
Cis-element, 32-18
Clarke mechanism, 16-11
Cleartext, 9-2, 9-13
Clock-controlled (shift register, generator), 17-9, 17-15,

17-21
Clock-tree routing, 8-22
Closed list, 22-9
Closed predicate, 26-7
Closest pair, 2-2, 25-32
Closure, 3-5, 13-10
Clustering, 7-14, 8-5
Coarse-grained, 24-5
Coarse-to-fine matching, 5-14
C-obstacle, 4-11, 4-22
Codd-complete languages, 19-13
Codd-equivalence, 19-13
Code-related fault, 26-2
Codewords (minimal), 13-8
Coercion, 15-15
Co-expression between genes, 32-8, 32-14, 32-15
Coface, 3-4
Collecting results, 25-6
Collimators, 7-4
Collinear, 1-3
Collins decomposition, 4-12
Collision avoidance problem, 2-19
Collision-free, 12-9
Collision-free hash functions, 12-9
Collision-free path, 4-2, 4-4
Collisionful keyed hash function, 12-20
Collusion in auctions, 16-12
Columns (of VLSI channel), 8-16
Combinatorial auction, 16-1, 16-8
Combinatorial bounds, 12-4
Combinatorial explosion, 22-7
Combiner, 12-8, 13-3, 13-14, 17-11
Congestion model, 21-16
Commitment-based sampling, 30-9
Commodity futures, 33-23
Common tangent, see Bridge
Communication channel, 25-4
Communication costs in heterogeneous platforms,

29-15
Communication diameter, 24-5
Communication network, see Network
Communication port, 25-4
Communication privacy, 18-3
Communication system, 12-2
Commutative ring, 10-3
Compaction, 8-3, 8-6, 8-23
Comparison sort, 25-31
Competitive auctions, 16-15
Competitive ratio, 4-18
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Complementary items in auctions, 16-7
Complete invariant, 3-7
Complete matching, 2-16
Complete multigraph, 13-13
Complete planner, 4-12, 4-23
Completion time, 20-3
Complexity of k-anonymity, 18-13, 18-14, 18-15
Component-directed, 1-17
Composite shares, 13-13
Composition of secure protocols, 14-13
Compression, 12-18, 12-20, 24-10
Computational geometry (parallel), 25-14, 25-32
Computationally secure MACs, 12-15, 12-18
Computational number theory, 10-8, 10-22
Computational security, 12-2, 12-18, 15-18
Computation in living cells, 31-14
Computer-aided design (CAD), 8-1
Concurrent access, 25-7
Concurrent read, 25-7, 25-9, 25-33
Concurrent-read concurrent-write (CRCW), 25-7,

25-10, 25-39
Concurrent-read exclusive-write (CREW), 25-7, 25-37,

25-39
Concurrent write, 25-7, 25-17, 25-20, 25-23, 25-26
Condition-specific analysis of wiring diagram, 32-13
Confidential attributes, 18-6
Configuration, 4-5, 26-7, 26-42
Configuration space, 4-5, 4-11
Confluent flow, 27-10, 27-33
Congestion games, 21-16
Congestion in routing, 27-2, 27-3, 27-7, 27-10, 27-42
Congestion of messages, 25-6
Congruence, 10-5, 10-28, 11-7
Conjugation, 31-14
Conjunctive queries, 19-8
Connected component, 5-2, 24-10, 24-11, 25-15, 25-21,

25-24
Connected sum, 3-7
Connection number, 17-11
Connection polynomial, 17-7
Connectivity, 25-15, 25-21
4-connectivity, 25-15
Constrained Delaunay triangulation, 1-22, 2-25
Constraint databases, 19-28
Constraint recording, 22-18
Constraints, 20-32, 22-16
Constraint-satisfaction problem, 22-16, 22-20
Constructive placement, 8-4
Containment problem, 19-7
Content addressable memory (CAM) in packet

classification, 28-17
Contention, 24-3
Context free grammar, 23-2, 23-8, 23-12
Context-free parsing, 23-3

Continuous Dijkstra wavefront approach,
2-19

Continuous dividend yield, 33-7
Contour, 3-27
Contour tree, 3-20
Contractibility problem, 3-9
Contractible space, 3-9
Contraction, 25-15, 25-24
Controllability, 4-15
Controlled prefix expansion, 28-6
Control Lie algebra, 4-15
Control overhead reduction, 28-25
Conventional cryptosystem, 9-6, 9-12, 9-13
Convergence of predicate, 26-7
Convex hull, 1-2, 1-26, 25-33, 25-34
Convex layer, 1-7
Convex quadrilaterization, 1-25
Convex set, 1-2
Coppersmith’s method for solving ax = b in GF(2n),

11-13
Coprime, 11-15
Correcting block attack, 12-11
Correlation attack, 17-9, 17-21
Correlation immunity, 17-6, 17-13, 17-21
Cost of algorithm, 25-7, 25-9
Cost of scalar or primitive operation, 25-11
Counter mode, 17-3
Counting sort, 25-31
Count-mode, 2-21
Count-to-infinity problem, 27-33
Covering problem, 1-25
Crash, 26-2
CRCW PRAM, 24-6
CREW PRAM, 24-6
Critical point, 3-18, 3-27
Critical section access, 26-14
Crossbar switches, 28-11
Crossing, 6-4
Crowds, 18-3
Cryptanalysis, 9-1, 9-13, 11-2, 17-9
Cryptographically strong pseudorandom bit generator

(CSPRB), 17-6, 17-21
Cryptology, 12-27
Cryptosystem, 11-1
CSPRB, see Cryptographically strong pseudorandom bit

generator
Cumulative arrays, 13-11
Curse of dimensionality, 3-24
Cusp, 1-19
Cut graph, 3-8
Cutoff depth, 22-5
Cutting theorem, 2-22, 2-25
Cyclic group, 10-2, 10-19, 10-28
Cyclic matching, 5-12
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Cyclic sequence, 1-5
Cyclotomic generator, 17-3, 17-17

D

Daemon, 26-6, 26-42
Database queries, 19-3
Data encryption standard (DES), 9-9, 11-3
Datalog, 19-21
Data stream model, 19-28
DBF algorithm, 27-5
Dealer, 13-3, 13-14
de Bruijn sequence, 17-5
Decipher, 11-1
Decision tree in packet classification, 28-18
Decomposable searching, 2-21, 2-26
Decomposition construction, 13-13
Decomposition of wiring diagram, 32-11
Decreasing marginal utility, 16-3
Decrementing set, 20-18
Decryption, 9-4, 9-13
Deduction system, 23-7, 23-9
Deep Blue, 22-16
Deep pruning, 22-14
Deformation retraction, 3-9
Degenerate critical point, 3-18
Degree of a network, 24-5
Degree of a processor, 24-5
Degree of geometric algorithm, 2-25, 2-26
Degrees of freedom, 4-11, 4-23
Delaunay complex, 3-24
Delaunay edge, 1-23
Delaunay triangulation, 1-22, 2-11, 2-25
Delay function, 21-16
Delay guarantees, 28-21
Delexicalized nonterminals, 23-8
Delivery error, 7-3
Delivery time, 7-3, 20-28
Delta hedging (option’s delta), 33-23
Density (of channel), 8-17, 8-18, 8-21, 8-23
Dependencies, 25-7, 25-39
Depth-first branch and bound (DFBnB), 22-10
Depth-first iterative-deepening (DFID), 22-5
Depth-first search, 8-8, 22-4, 25-24
Depth-first traversal of graph, 25-15
Depth-first traversal of tree, 25-15
Depth in language model, 25-8
Depth of a computation, 25-39
Depth of algorithm, 25-8
Depth of circuit, 25-8 to 25-9
Depth of network, 25-5
Depth of tree, 25-25
Derivative (finance), 33-1
DES, see Data encryption standard

Descending auction, 16-3
Desequencing, 26-2
Designated verifier proof, 15-7, 15-18
Design of information-encoding DNA sequences, 31-11
Design rules for circuit layout, 8-6
Destination vertex, 25-22
Determinant, 1-2
Deterministic graph contraction, 25-26
d-Face, 1-2, 2-4
DFBnB, see Depth-first branch and bound
DFID, see Depth-first iterative-deepening
Diameter of a graph, 2-13, 2-26, 25-21, 27-42
Differential constraint, 4-22
Differential cryptanalysis, 11-5, 11-15, 12-15
Diffie–Hellman key exchange, 11-12
Digital image, 5-21
Digital line, 5-20
Digital signature, 9-6, 9-13, 12-2, 12-20, 12-27
Digital Signature Algorithm (DSA), 11-12, 11-15
Dijkstra’s algorithm, 2-19, 8-9, 8-15, 22-4
Dijkstra’s algorithm in LS routing, 27-5
Dilation, 24-15
Directed acyclic graph (DAG), 8-7, 8-24
Directed graph, 25-21
Directed space, 3-15
Directional blocking graph, 4-10
Disambiguation, 23-15
Disavowal, 12-25
Discrepancy, 33-12
Discrete cash dividend, 33-7
Discrete Fourier transform, 25-38
Discrete log, see Discrete logarithm
Discrete logarithm, 10-7, 10-28, 11-12, 13-7, 13-19,

17-18
Discrete proportional dividend, 33-7
Disenrollment, 13-7
Dispute phase, 12-7
Distance (geometric), 2-9
Distance computation, 4-20
Distance vector, 18-11
Distance vector (DV) algorithm, 27-5
Distributed memory, 24-2, 24-19
Distributed scheduling, 26-5
Distribute function, 25-11, 25-19, 25-23
Divide-and-conquer, 1-4, 2-2, 24-10, 24-19, 25-12, 25-32
Divide-and-conquer attack, 17-13
Divide-and-marriage-before-conquest, 1-4, 2-7
Dividend-paying asset, 33-7
DNA, 31-2
DNA bio-operations, 31-3
DNA computing, 31-1
DNA memory, 31-8
DNA nanomachines, 31-17
DNA nanoscale shapes, 31-17
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DNA origami, 31-17
DNA self-assembly, 31-15
Doglegs (in channel routing), 8-19
Domain generalization relationship, 18-9
Dominant strategy, 16-5
Dominate, 1-10
Do-od, 26-7
Dose simplification, 7-11, 7-14
Double cipher, 11-5
Drift (option pricing), 33-13, 33-16
Dual graph, 6-17
Due date, 20-4
Dummy terminal, nonterminal, 23-8
Duplicates, see Removing duplicates
Duplication fault, 26-2
Dutch auction, 16-2
Dynamic network, 27-33
Dynamic problem, 2-18, 26-8
Dynamic programming, 5-11, 20-14, 20-26
Dynamization, 2-21, 2-26

E

ε-almost strongly-universal2, 12-17
ε-almost universal2, 12-17
Ear decomposition, 25-15
Earliest due date, 20-6, 20-14
ECB, see Electronic code book
ECB mode, 11-6
E-codes, 12-7
Edge-array, 25-24
Edge crossing in a drawing, 6-4, 6-24
Edge detector, 5-20
Edge list, 25-21, 25-25
Edge partition into triangles and stars, 18-13
Edge point, 5-21
Efficiency, see Work efficiency
Efficiency in AI search, 22-3
Efficient market hypothesis, 33-3, 33-23
Eight puzzle, 22-2
Eight queens problem, 22-2
Election official, 15-3
Electronic code book, 9-4, 9-11
Element uniqueness problem, 2-2
ElGamal scheme, 10-7, 11-12, 12-23
Elliptic curve ciphers, 11-13
Embedded submanifold, 3-3
Embedding, 3-3, 24-14
Emergency center problem, 2-13
Empty circle problem, 2-14
Empty circumcircle property, 1-22
Empty square problem, 2-14
Emulation between multiprocessor models, 25-10
Emulation of circuit by PRAM, 25-9

Emulation of EREW by butterfly machine, 25-10
Emulation of PRAM by butterfly machine, 25-10
Emulation of PRAM on butterfly, 25-10
e-Nash equilibrium, 21-24
Encipher, 11-1
Encryption, 9-4, 9-13
Encryption algorithm, 12-27
Encryption mode, 9-12
Endnode algorithmics, 28-22
English auction, 16-2
Enigma machine, 11-3
Entropy, 13-3, 17-3, 17-21
Enumeration (exhaustive), 20-28
Envelope, 2-10
Envelope method, 12-18
Enzyme, 32-3, 32-18
ε-otp-secure, 12-17
EPR-type, 13-21
Equilibrium, 16-4
Equivalence problem, 19-7
EREW PRAM, 24-6
Error-correcting codes, 13-8
Error-norm, 7-6
Ethernet, 27-2
Euclidean algorithm, 10-9
Euclidean distance, 22-8, 25-32
Euclidean minimum weight matching problem, 2-16
Euclidean spanning tree, 8-5
Eukaryote, 32-4, 32-20
Euler Characteristic, 3-8, 3-27
Euler–Fermat theorem, 10-6
Euler–Poincare formula, 3-12
Euler–totient function, 10-6, 10-13
Euler tour, 25-15
European option, 33-3, 33-13, 33-23
Evaluator of circuit, 14-9
Event, 1-18, 2-4
Event driven schedulers, 28-26
Event point, 1-18
Event schedule, 1-18
Eventually periodic sequence, 17-2, 17-7, 17-10
Evolutionarily conserved modules, 32-12
e-well-supported Nash equilibrium, 21-4, 21-24
Exact cover by 3 sets, 16-10
Exchange argument, 20-7, 20-13
Exchanges, 16-15
Exclusive access, 25-7
Exclusive read, 25-7
Exclusive-read exclusive-write (EREW), 25-7, 25-39
Exclusive write, 25-7
Execution, 26-42
Exhaustive enumeration, 20-28
Exhaustive key search, 9-2, 9-13
Exhaustive search, 11-7
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Existential, 12-19
Exotic option, 33-23
Expansion, see Graph expansion
Expansion in DES, 11-5
Expansion in graph embeddings, 24-15
Exponent of floating point number, 25-31
Ex-post equilibrium, 16-15
Expressive power of query language, 19-5
Extended Euclidean algorithm, 10-10
Externality, 16-3, 16-11
Extreme point, 1-2, 1-10

F

Face, 3-4
Factor base, 11-10, 11-12
Factoring, 25-14
Fail-stop signatures, 12-25
FAIRPLAY system, 14-5, 14-11
Fair scheduling, 26-6
False-name bidding, 16-12
False-name-proof auction, 16-13
Families of threshold schemes, 13-7
Family of circuits, 25-8
Fan-in of circuit node, 25-8
Fan-out of circuit node, 25-8
Farthest neighbor, 2-6
Farthest neighbor Voronoi diagram, 2-6
Fast exponentiation, 10-9
Fast Fourier transform (FFT), 25-38
Fast Fourier transform (FFT) use in pricing options,

33-15
Fat tree, 24-8, 25-5
Fault-tolerant algorithm, 26-2
Faulty components, 26-1
FCSR, see Feedback with carry shift register
FEAL cipher, 11-7
Feasible schedule, 20-19
Feasible solution, 20-18
Features of an image, 5-1
Feedback function, 17-6
Feedback with carry shift register (FCSR), 17-10, 17-21
Fermat’s difference of squares factoring method, 11-8
Fermat’s Little Theorem, 11-8
Fetch-and-add, 25-17
FFT, see Fast Fourier transform
F function in DES, 11-5
Field-programmable gate arrays, 8-22
Field splitting, 7-12
Figures, 24-10
File transfer protocol (FTP), 27-2
Filter, 25-11
Filtered space, 3-14
Filtering search, 2-21

Filtration, 3-14
Fine-grained, 24-5
Fingerprint, 12-1, 12-9
Finite-difference computations, 29-4
Finite field, 17-7
Finite strategic form game, 21-24
Firewall, 28-16
Firewall database, rules, 28-16
First-order linear recurrence, 25-17
First-price sealed-bid auction, 16-2
Fixturing, 4-8
Flatness, 2-15
Flats, 13-5
Flatten function, 25-12, 25-22, 25-23
Flooding, 27-12
Floorplan, 8-3, 8-10, 8-23
Flow complex, 3-24
Flow control, 27-27
Flow shop, 20-5, 20-7
Flynn’s taxonomy, 24-4
Force-closure grasp, 4-7
Force directed algorithm, 6-5
Formal language, 23-15
Formal language theory approach in design of DNA

sequences, 31-12
Form-closure grasp, 4-8
Fourier transform, 25-14, 25-38
Fractional solution, 20-21
Free disposal, 16-8
Free path, 4-12
Frequency analysis, 11-2, 11-3
Frequency distribution of letters, 11-2
Frontier in breadth-first search, 25-23
FTDock, 30-19
FTP, see File transfer protocol
Fully connected platform, 29-14
Fully polynomial approximation scheme, 20-14
++ Function, see Append function
< − Function, see Write function
<< Function, see Shift-right function
Functional units, 25-2
Fundamental group, 3-10, 3-27
Futures, 33-23

G

Gallager’s optimality conditions, 27-9
Galois field, 13-16
Game theory, 12-3, 12-7, 16-4
Gap, 25-6
Gate array, 8-2, 8-22
Gate encoding, 14-9
Gaussian elimination, 11-4
Gauss–Jordan elimination, 25-38
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Gauss lemma, 10-16
Geffe generator, 17-12
Gene, 32-19
Gene expression, 32-6, 32-19
Gene expression analysis, 32-6
Gene expression biclustering, 32-8
Gene expression clustering, 32-6
Gene function prediction, 32-4
Gene ontology, 32-4, 32-20
General access structures, 13-10
General cell layout, 8-2, 8-23
Generalization, 18-7
Generalization strategy, 18-10
Generalized diners self-stabilizing algorithm, 26-14
Generalized one-step binomial model, 33-4
Generalized table, 18-11
Generalized Vickrey auction, 16-11
General position, 13-11
Generating function, 17-7
Generation algorithm (MAC), 12-15
Generator of circuit, 14-9
Gene rearrangement, 31-14
Genetic interaction, 32-4, 32-19
Genus, 3-7
Geodesic, 2-9, 2-19
Geodesic minimum matching, 2-16
Geodesic Voronoi diagram, 2-9
Geometric arrangement, 4-6
Geometric complex, 3-24
Geometric duality, 2-5, 2-26
Geometric fitting, 2-17
Geometric hashing, 5-8, 5-9
Geometric realization, 3-5
Geometric sequence, 17-14
Geometric software, 2-25
Geometric view of packet classification, 28-17
Geometry, see Computational geometry
GHS algorithm, 27-12
Gift-wrapping, 1-2
GIMPS, 30-2
Global operations, 24-8, 24-19
Global routing, 8-13, 8-15, 8-23, 27-5
Global scheduling, 26-5
Global selection algorithm, 29-24
Graham scan, 1-2
Grammar induction, 23-2, 23-15
Granularity, 24-5
Graph algorithms, 25-21, (parallel) 25-14
Graph contraction, 25-15, 25-21, 25-24, 25-39
Graph drawing, 6-1, 6-24
Graph expansion, 6-18
Graph partitioning, 8-3, 8-23
Graph separator, 25-16
Grasping, 4-7

Gray codes, 24-14
Greatest common divisor, 10-4, 10-9
Greedy algorithm, 1-21, 8-18, 20-9, 20-13
Grid computing model, 30-6
Grid computing principles, 29-2
Grid drawing, 6-3, 6-7, 6-25
Gripper of a robot, 4-2
Ground domain, 18-7
Group, 10-2, 10-19, 10-28, 11-3
Group-oriented cryptosystem, 13-14
GSAT, 22-19
Guard, 26-7
Guest in emulation, 25-10
GVA, see Generalized Vickrey auction

H

Hagelin machine, 11-3
Hairpin structure, 31-13
Half-edges, 1-23
Half-perimeter estimate (of wire length), 8-5
Hamming weight, 17-5
Hanan grid theorem, 2-12
Hard core predicate, 17-19
Hash function, 11-7, 25-10, 25-20
Hashing (cryptographic), 12-9, 12-27
Hashing for load balancing, 25-16
Hashing for removing duplicates, 25-20
Hash table, 25-20
Hash-then-encrypt, 12-18
Hausdorff distance, 5-18, 5-21
HAVAL, 12-13
Head-of-line (HOL) blocking, 28-11
Height-balanced binary search tree, 1-10, 1-19, 2-5, 2-26
Heisenberg uncertainty principle, 13-21
Hereditary segment tree, 2-24
Hessian, 3-18
Heterogeneity in grid computing, 29-1, 29-29
Heterogeneous communication links, 29-14
Heterogeneous platforms, 29-15, 29-24
Heterogeneous star, 29-7
Heuristic, 22-7
Heuristically secure cryptosystem, 9-5
Heuristic estimate, 22-9
Heuristic evaluation function, 22-7, 22-21
Heuristic path algorithm, 22-11
Heuristic repair, 22-18
Heuristics, 20-2
Heuristic search, 22-7
HiCuts data structure, 28-19
Hierarchical graph, 6-5
Hierarchical layout, 8-3
Hierarchical model, 19-2
Hierarchy-based generalization, 18-7, 18-9
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Hill cipher, 11-3
HOL, see Head-of-line
Hole, 1-25
Homeomorphism, 3-3, 3-27
Homogeneous communication links, 29-14
Homogeneous platforms, 29-23
Homolog, 32-19
Homology group, 3-27
Homomorphic property/encryption, 13-8, 13-10, 13-15,

14-11, 15-6, 15-19
Homomorphic tallying, 15-10
Homophone, 11-2, 11-15
Homophonic substitution cipher, 11-2
Homotopic paths, 3-26
Homotopy, 3-9, 3-27
Homotopy group, 3-10
Honest-but-curious adversary, 14-3
Hook, 25-26
Horizontal visibility map, 1-21
Host, 25-10
Hough transform, 5-5
HTTP, see Hypertext transfer protocol
Hull graph, 1-7, 1-9
Hybridization by Watson–Crick complementarity, 3-3,

31-13
Hypercube, 24-7, 25-4, 25-38
Hypergraph partitioning, 8-5
Hyperplanes, 13-5
Hypertext transfer protocol (HTTP), 27-2
Hypertree decomposition, 16-10
Hypotheses in self-stabilization, 26-4
Hypothesize-and-test, 5-8, 5-15

I

iBundle auction, 16-14
IDA∗, see Iterative-deepening-A∗
Ideal cipher, 9-3
Ideal MAC, 12-19
Ideal schemes for secret sharing, 13-4, 13-12
Ideal security, 17-4
Ideal threshold scheme family, 13-7
Identical parallel machines, 20-4
Identifiable voted ballots, 15-8
Identifiers, 18-6
Identity disclosure protection, 18-4
If-fi, 26-7
Image (digital), 5-21
Immersion, 3-3
Impersonation attack, 12-3
Implied volatility, 33-22
Incentive compatible, 16-5
Incidence matrix, 12-3
Incoercibility, 15-14, 15-15

Incognito algorithm, 18-19
Incrementality, 12-19
Independent chunks distribution, 29-3
Independent set of nodes, 25-14
Indexing, 5-9
Index of coincidence, 9-4, 11-3
Individual rationality, 16-12
Induced topology, 3-3
Inference channel protection, 18-4
Inference rule, 23-7, 23-9
Information privacy, 18-4
Information rate, 13-4
Information theoretic bounds, 12-5
Information theoretic randomness, 17-3
Information theoretic security, 15-19
Information theory, 11-2, 17-1, 17-3, 17-21
Information vector, 13-8
Initialization phase, 13-3
Input-chaff injection, 30-5
Input switch, 25-5
Integer factoring, 11-9
Integer multiplication, 10-9
Integer programming, 8-22, 11-8, 20-21
Integral line, 3-22
Integrated circuits, 8-1
Integrity of answers in grid computing, 30-1
Interchange argument, 20-5
Interconnection networks, 24-5, 24-7
Interdependent valuations, 16-3
Intermittent fault, 26-2
Internal angle, 1-21
Internet, 12-20
Internet protocol (IP), 27-2
Internet telephony, 27-2
Interpretation tree, 5-18
Intersection computation, 2-23, 2-24
Intersection detection, 2-23
Intersection grammar, 23-4
Intersection searching, 2-23
Interval graph coloring, 8-17, 8-23
In-the-money-call, 33-17, 33-18, 33-21, 33-23
Inverse in a monoid, 10-2
I/O splicing to avoid copies, 28-24
IOWF computation, 30-3, 30-4
IP, see Internet protocol
IP address, 27-2, 27-33
iSLIP, 28-13
Isolines, 3-20
Isomorphic simplicial complexes, 3-4
Isosurfaces, 3-21
Iterated knapsack cipher, 11-7
Iterative combinatorial auctions, 16-14
Iterative deepening, 22-15
Iterative-deepening-A∗ (IDA∗), 22-9
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Iterative improvement (in placement), 8-4
Iterative techniques, 25-16, 25-38

J

Jackson’s rule, 20-29
Jackson’s theorem, 27-20
Jacobi symbol, 10-17, 10-22
Japanese auction, 16-2
Job, 20-2
Job shop scheduling, 20-5
Jogs (in VLSI channel routing), 8-19
Johnson’s rule, 20-8

K

k-Anonymity, 18-5, 18-9, 18-24
k-Anonymity algorithms, 18-15
Kasiski method, 9-4, 11-3
k-chain, 3-11
k-cycle, 3-11
Kernighan–Lin algorithm, 8-5
Key distribution phase, 12-7
Keyed hash functions, 12-15, 12-20
Keying a hash function, 12-18
Key of a cipher, 11-1, 12-27
Key recovery attack, 12-19
Key strategies, 12-8
Key stream, 11-4, 11-15
Keystream, 17-11
Keystream generator, 17-2, 17-11, 17-21
Khan and Pandurangan’s algorithm, 27-14
Kinase, 32-3, 32-19
Kinodynamic motion planning, 4-14, 4-23
k-minimal generalization, 18-12, 18-16
Knapsack public-key cipher, 11-7
Knock-knee routing, 8-17
Knockout switch, 28-13
Known-plaintext attack, 9-3, 11-1
Koksman–Hlawka inequality, 33-12
k-Optimize algorithm, 18-24
k-resilient voting scheme, 15-3
k-simplex, 3-4
k-skeleton, 3-5
k-uniform strategy, 21-11
Kutten and Peleg’s algorithm, 27-13

L

Labeling, 24-11
Lagrange theorem, 10-22
Lamport scheme, 12-21
Landmark-based planning, 4-20

Landmarks, 3-24
Language-based model, 25-7
Language constructs, 25-11
Laplacian operator, 5-21
Largest empty corner rectangle, 2-14
Largest empty rectangle, 2-14
Las Vegas algorithm, 1-11
Latency, 25-6
Lateness, 20-4, 20-6
0-1 law, 19-15
Layer assignment, 8-17, 8-24
Layering of a graph, 6-5
Layout (for VLSI circuits), 8-2, 8-23
Layout cost functions, 8-4
Layout features, 8-6, 8-10
Layout of a graph, 6-5, 6-8, 6-16
Lazy sorting, 1-11
l-diversity, 18-31
Leader election in rank selection, 27-14
Leaf sequencing, 7-6, 7-15
Learning-real-time-A∗ (LRTA∗), 22-12
Least cost path routing, 27-4
Left composition, 23-13
Left turn, 1-3
Legendre symbol, 10-16
Lemke–Howson algorithm, 21-9
Lenstra–Lenstra–Lovasz theorem, 11-8
Level of node in circuit, 25-9
Levels of security, 9-5
Lexicalization, 23-7
LFSR, see Linear feedback shift register
λ-geometry, 2-13
Lie bracket, 4-15
Ligation, 31-3
Linear accelerator, 7-2
Linear algebra, 11-9, 11-11, 11-12
Linear complexity, 17-7
Linear congruential generator, 17-11
Linear constraint system, 8-8
Linear cryptanalysis, 11-5
Linear feedback shift register (LFSR), 11-4, 17-3, 17-6,

17-21
Linear integer equations, 10-14
Linear programming, 8-22, 20-16, 20-18
Linear recurrence (first order), 25-17
Linear span, 17-7, 17-21
Linear systems, 25-16, 25-38
Linear work, 25-15, 25-37
Line detection, 5-5
Line sweep, 1-10, 1-18
Linguistics, 23-16
Linkage, 4-22
Link congestion, 24-15
Linked-list, see List
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Link layer, 27-2
Link load, 24-15
Link state (LS) algorithm, 27-5
List, 25-15, 25-17
List contraction, 25-19, 25-39
List ranking, 25-18
List scheduling, 20-10, 20-11
Load balancing, 25-14, 25-16, 29-4, 29-17
Local memory machine model, 25-3
Local routing, 27-5
Local selection algorithm, 29-25
Local variables, 26-6
Locally minimal generalization, 18-16
Logical or, 25-7
LogP model, 25-6
LOKI cipher, 11-7
Longest matching prefix, 28-4, 28-5, 28-10
Lookup, 28-4
Loop, 3-10
Loser of concurrent write, 25-21
Low discrepancy sequences, 33-11, 33-12, 33-13, 33-14

Robotics 4-1
Lower bound on communication volume in matrix

product, 29-21
Lower bridge, 25-35
Lower hull, 1-2
LPT rule, 20-10
LRTA∗, see Learning-real-time-A∗
λ-Steiner ratio, 2-13
Lucifer cipher, 11-7
Lulea algorithm, 28-8

M

MAC, 12-2; see also Message authentication code
Machine, 20-3, 20-31
Machine translation, 23-2, 23-12, 23-16
MAC verification algorithm, 12-15
Makespan, 20-3, 29-2, 29-29
Malicious adversary, 14-3
Malicious cheating model in grid computing, 30-6
Manager-worker, 24-11, 24-19
Manhattan distance, 22-8
Manhattan routing, 8-17, 8-24
Manifold, 3-3, 3-27
Manifold reconstruction, 3-25
Manipulation planning, 4-17
Mantissa of floating point number, 25-31
Map, 2-19
Mapping option model to FFT, 33-16
Mapping problem, 24-16
Mappings, 24-12
Markov chain in probabilistically self-stabilizing token

passing, 26-34

Mark-to-market, 33-23
Marriage-before-conquest, 1-5
Masking of faults, 26-3
Masks, 5-20
Master in grid computing, 29-7
Master-slave, 24-11, 24-19
Master-worker tasking, 29-7
Matching (geometric), 2-15, 2-16
Matching (graph), 5-17, 16-10, 20-16
Matching contours of shapes, 5-11
Matching of feature points, 5-8
Matrix, 25-37
Matrix model of perfect secret sharing, 13-3
Matroids, 13-13
Matyas–Meyer scheme, 12-22
Maxdominance, 1-13
Maxima (geometric), see Maximal elements
Maximal elements, 1-10
Maximal layers, 1-12
Maximal matching self-stabilizing algorithm, 26-8
Maximal point problem, 24-10
Maximal simplex, 3-4
Maximum, 24-9
Maximum finding, 25-34
Maximum matching, 2-16
Maximum reuse algorithm, 29-21
McNaughton’s rule, 20-10
MD4, 12-13
MD5, 12-13
MDST, see Minimum diameter spanning tree
Medial axis, 2-11
Medium-grained, 24-5
Meet-in-the-middle attack, 11-5, 12-11, 12-14
Memory, 22-4
Merge, 1-4, 1-5, 1-23, 24-9
Mergesort, 25-13
Merkle–Hellman knapsack cipher, 11-7
Merkle tree in uncheatable grid computing, 30-10
Mersenne prime, 13-7, 13-16
Mesh, 24-1, 24-7, 25-4
Message authentication code (MAC), 12-2, 12-15, 12-27
Message complexity, 27-4
Message passing interface (MPI), 29-7, 29-25
Message passing model, 26-4, 27-3
Messenger RNA (mRNA), 3-3
M/G/infinity system, 27-18
M/G/1 system, 27-18
MIMD, 24-4
Minimal authorized subsets, 13-10
Minimal codewords, 13-8
Minimal required suppression, 18-12, 18-17
Minimal-time trajectory, 4-19
Minimax search, 22-13
Minimin search, 22-12
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Minimization of communication volume in matrix
product, 29-21

Minimum, 24-9
Minimum absolute distance, 18-12
Minimum delay routing algorithm, 27-8
Minimum diameter spanning tree, 2-13
Minimum distance problem, see Closest pair
Minimum enclosing circle, 2-13
Minimum finding, 25-33; see also Maximum finding
Minimum link path problem, 2-19
Minimum spanning tree, 25-21, 25-28
Minimum spanning tree (geometric), 2-11
Minimum spanning tree in broadcast routing, 27-12,

27-33
Minimum weight matching, 2-16
Minimum width problems, 2-14 to 2-15
MISD, 24-4
Mix-based tallying, 15-12
Mixed strategy, 21-2, 21-24
Mixing transformation, 9-9
Mix networks, 18-2
MLC, see Multileaf collimator
MLC-aperture, 7-2, 7-4, 7-6
M/M/1 system, 27-17
Mobius function, 10-13
Model-based object recognition, 5-7
Model building, 4-19
Modeling parallel computations, 25-2
Modeling sequential computations, 25-2
Model of communication costs, 29-13
Model of computing costs, 29-13
Model organism, 32-2, 32-20
Moderate obstacle, 4-15
Modular memory machine model, 25-3
Molecular biology basics, 31-2
Molecular computing, see DNA computing
Molecular function, 32-4, 32-20
Mondrian multidimensional algorithm, 18-27
Monoid, 10-2
Monotone access structures (MAS), 13-10
Monotone Boolean circuit, 13-11
Monotone matrix, 1-15
Monotone Polygon, 1-19
Monte–Carlo simulation for pricing options, 33-11
Morse function, 3-27
Morse–Smale complex, 3-21
Morse theory, 3-18
Motion planning, 4-11
Moving obstacle, 4-16
MPI, see Message passing interface
m-sequence, 17-7, 17-21
MST, see Minimum spanning tree
Multibit trie, 28-5
Multicast routing, 27-16

Multicommodity flow-based routing, 27-7
Multilayer routing, 8-17, 8-20
Multileaf collimator, 7-4
Multi-level grid theorem, 2-12
Multiple access problem, protocols, 27-23, 27-33
Multiple access to a link, 27-2
Multiple functional units, 25-2
Multiple signature schemes, 12-21
Multiplicative inverse, 10-9, 10-10
Multiplicative update rule, 27-7
Multiplier in knapsack cipher, 11-7
Multiprefix, 25-7, 25-17, 25-22, 25-31, 25-39
Multiprocessor model, 25-2, 25-39
Multiscale tree matching, 5-13
Multisignature schemes, 13-17
Multistage network, 25-5
Myerson auction, 16-6

N

Nash equilibrium, 21-3, 21-24
Natural language, 23-2, 23-16
N-body simulation, 25-14
Nearest neighbor, 2-3, 2-6
Nearest neighbor Voronoi diagram, 2-6
Negligible probability, 14-3
Neighborhood, 3-3
Nerve of an open cover, 3-23
NESL, 25-11
Nested primer molecular memory, 31-9
Nested relational model, 19-27
Net, 8-3
Network, 24-5, 25-3
Network adaptor, 28-22 to 28-29
Network algorithmics principles, 28-29
Network congestion games, 21-16
Network decomposition, 32-11
Network flow, 6-13, 8-5
Network layer, 27-2
Network model, 19-2
Network motifs, 32-12
Network of queues model, 27-20
Network specific algorithm, 25-6
Network topology, 25-4
Next bit test, 17-21
N-hash hash function, 11-7
+ Node, 25-8
Node expansion, 22-4, 22-21
Node generation, 22-4, 22-21
Node ordering, 22-10, 22-14
No externalities assumption, 16-3
Noncanonical polygonal schemas, 3-26
Nonconfidential attributes, 18-6
Noncrossing path, 2-16
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Nondeficit property, 16-12
Nondirectional blocking graph, 4-10
Non-directional blocking graph, 4-10
Non-dividend-paying asset, 33-13
Nonholonomic constraint, 4-14, 4-33
Nonholonomic robot, 4-14
Noninteractive CBS scheme, 30-16
Nonlinear combiner, 17-9, 17-11, 17-22
Nonlinear filter generator, 17-9, 17-14, 17-22
Nonlinearity, 17-5, 17-13
Non-linear operations in AES, 11-7
Nonlinear order, 17-13
Nonobtuse triangulation, 1-22
Nonperfect secret sharing, 13-2, 13-14
Nonrecursive rule-based queries, 19-13
NP-complete, 1-25
NP-completeness of channel routing problems, 8-17,

8-19
NP-completeness of compaction, 8-10
NP-completeness of floor plan sizing, 8-11
NP-completeness of global routing, 8-15
NP-completeness of graph partitioning, 8-5
NP-completeness of layer assignment, 8-17
NP-completeness of layout problems, 8-2, 8-22
NP-completeness of minimum Steiner tree problem,

8-5, 8-15
NP-completeness of via minimization, 8-17
N-person game, 21-6
NP-hard, 1-25
Nucleotides, 31-2
Null-homotopic space, 3-9
NUMA, 24-3
Number field sieve integer factoring algorithm, 11-8,

11-11
Numerical algorithm, 25-37

O

Objective function in grid computing, 29-13
Object-oriented databases, 19-27
Oblivious transfer, 14-8
Obnoxious center problem, 2-14
Observability, 4-1, 4-21
Observer (voting), 15-3
Obstacle, 2-19
Octree, 4-12, 4-21
OFB, see Output feedback
Omission fault, 26-2
One-port model, 29-7
One-step binomial method, 33-3
One-time pad, 9-7, 11-3, 17-1, 17-22
One-time signature schemes, 12-21
One-way hash function, 12-9
Onion peeling, 1-7

Onion routing, 18-2
On-line, 1-6, 1-10
Online auctions, 16-15
On-line planning, 4-17, 4-18
Open cover, 3-23
Open list, 22-6
Open shop, 20-4
Operator, 22-2, 22-21
Optimality criteria, 20-32
Optimal solution, 1-4, 22-9
Optimal substructure, 20-13
Optimal-time control planning, 4-18
Optimization (geometric), 2-11
Option pricing theory, 33-23
Options, 33-23
Or, 24-9
Order κ-nearest neighbor Voronoi diagram, 2-6
Order of an element, 10-19, 10-28
Organic DNA memory, 31-10
Orientable manifold, 3-5
Orientation of a simplex, 3-5
OR language, 16-8
Orthogonal array, 12-4, 12-16
Orthogonal drawing, 6-4, 6-11, 6-25
Ortholog, 32-12, 32-19
Othello, 22-2
Out-of-the-money call, 33-17, 33-18, 33-21, 33-23
Output arc in circuit, 25-8
Output feedback, 9-12, 17-3
Output scheduling, 29-20
Output-sensitive, 1-2, 1-4, 1-5, 1-6
Overhead, 25-6
Overlapped demand-driven optimized-memory-layout

algorithm, 29-25
Overlay network, 27-29, 27-34

P

Packet-by-packet round robin, 28-21
Packet classification, 28-16
Packet switch, 27-1
Packet-switched networks, 27-18, 27-34
Parallel algorithm, 24-1, 25-1
Parallel algorithmic techniques, 25-12
Parallel auctions, 16-7
Parallel computer, 25-1
Parallel divide-and-conquer, 25-12
Parallel-do, 25-11
Parallel FFT algorithm, 33-19
Parallel identical machines, 20-4
Parallelism in an algorithm, 25-2
Parallel iterative (recombining) algorithm, 33-8, 33-9
Parallel iterative matching (PIM), 28-13
Parallelizability, 12-12, 12-19
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Parallel machines, 20-4, 20-9
Parallel pointer manipulation, 25-15
Parallel prefix, 24-10
Parallel pricing algorithms, 33-8, 33-9
Parallel QMC method for pricing options, 33-14
Parallel random-access machine (PRAM), 24-1, 24-6,

24-19, 25-3, 25-7, 25-39
Parallel recursive (non-recombining) algorithm, 33-8,

33-11
Parallel tasks sampling, 30-7
Parametric representation of a line, 5-5
Parse item, 23-16
Parse tree, forest, 23-1, 23-16
Parsing by intersection, 23-3
Part feeding, 4-9
Partial acceptance of bids, 16-10
Partition element, 25-30
Partitioning problem, 1-25
Partition tree, 2-22
Part manipulation, 4-7
Password guessing attacks, 12-20
Path, 3-10
Path-finding problem, 22-3
Path planning in robotics, 4-11
Path problems (geometric), 2-19 to 2-20
PCR, see Polymerase chain reaction
Pedersen commitment, 15-6
Peer to peer (P2P), 27-2, 27-19, 27-29
Penalty function 20-13
Perfect generator, 17-6, 17-19
Perfect matching, 20-16
Perfect protection for spoofing of order i, 12-8
Perfect secrecy, 9-8
Perfect secret sharing, 13-2, 13-3
Performance ratio, 2-12
Performance-related criteria of layout, 8-5
Permanent fault, 26-2
Permutation cipher, 11-7, 11-15
Permutation matrix, 15-13
Permutation schedule, 20-8
Permutations in DES, 11-5
Persistent homology, 3-14, 3-27
Phenotype, 32-4, 32-20
Phosphatase, 32-3, 32-19
Phosphorylation, 32-3, 32-19
Physical complexity, 4-6
Physical layer, 27-2
Piano movers’ problem, 2-19
Pick-a-field heuristic (in HiCuts), 28-19
Pick-the-number-of-cuts heuristic, 28-20
Piecewise linear function, 8-11
PIM, see Parallel iterative matching
Pipelined divide-and-conquer, 25-14, 25-39
Pipelined functional units, 25-2

Pipelined memory system, 25-2
Pipelining, 24-12, 24-19
PIR, see Private information retrieval
Pivot element, 25-34
Placement algorithms, 8-2, 8-4
Placement of circuit components, 8-2, 8-4
Plaintext, 9-2, 9-13, 11-1, 12-27
Plaintext attack, 12-6
Planar (graph, drawing), 6-8, 6-25
Planar graph, 25-32
Planarization, 6-16, 6-25
Planar straight-line graph, 1-18, 1-23
Planar subdivision, 2-17
Planar subgraph, 6-16
Plane sweep, 1-10, 1-18, 25-32
Plane sweep tree, 25-32
Platform models, 29-12
Playfair cipher, 11-3
PLS complexity class, 21-17
Plus-scan, 25-16
Pohlig–Hellman cipher, 11-3, 11-12
Poincare conjecture, 3-10
Point enclosure searching problem, 2-22
Pointer jumping, 25-15, 25-17, 25-18, 25-39
Point location, 2-17
Pollard’s p-1 factoring method, 11-8
Polyalphabetic substitution cipher, 11-2
Polygonal approximation of a curve, 5-21
Polygonal chain, 1-2
Polygonal schema, 3-7
Polygon decomposition, 1-25
Polygon triangulation, 1-19
Polygram substitution cipher, 9-5, 9-13, 11-3
Polyhedron, 1-5, 1-25, 2-20
Polyline drawings, 6-3
Polymerase chain reaction (PCR), 31-3, 31-5, 31-9
Polynomial, 10-15
Polynomial ring, 3-15
Postal model, 25-6
Postorder tree traversal, 8-12, 25-15
Post-translational modification, 32-19
Potential field, 4-12
Potential games, 21-15
Power diagram, 2-7
P2P, see Peer to peer
PPAD complexity class, 21-5
PRAM, see Parallel random-access machine
PRAM emulation by butterfly machine, 25-10
PRAM emulation of circuit model, 25-9
Precedence constraints, 20-3
Prediction of gene function, 32-4
Preemption, 20-3, 20-6
Preemptive schedule, 20-3, 20-10, 20-22
Preference elicitation, 16-3, 16-14
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Prefix, see Scan
Prefix sums, 25-39
Price of anarchy, 21-20, 21-24
Pricing for multiple underlying assets, 33-9
Pricing for single underlying asset, 33-8
Primality tests, 10-23, 10-24
Prime integer, 10-3, 10-29
Prime number for size of hash table, 25-20
Primer pair, 31-5, 31-9
Primitive (in geometric decomposition), 1-18
Primitive element, 10-20, 10-25, 17-7
Primitive polynomial, 17-7
Printed circuit boards, 8-17
Priority concurrent write, 25-7, 25-24, 25-29
Priority queue, 2-5, 2-26
Priority rules, 20-5, 20-12
Privacy, 9-4, 18-1
Privacy amplification, 13-22
Privacy of data in grid computing, 30-1
Private channel, 15-4, 15-19
Private information retrieval (PIR), 18-3
Probabilistic context-free grammar, 23-10
Probabilistic daemon, 26-39
Probabilistic encryption, 9-7, 9-13, 10-26
Probabilistic parsing, 23-9
Probabilistic roadmap, 4-13
Probabilistic sampling, 30-7
Probability of deception, 12-3
Problem instance, 22-3, 22-21
Problem space, 22-3, 22-21
Problem-space graph, 22-3, 22-21
Processor load, 24-15
Processor-time product, 25-10
Product, 24-9
Product cipher, 11-2
Product path, 3-10
Profiling semantics, 25-11
Projective spaces, 13-4
Prokaryote, 32-20
Promotor, 32-19
Propagation criterion of degree k, 17-5
Protein, 32-19
Protein localization, 32-20
Protein-protein interaction, 32-19
Protein translation, 32-19
Proven secure cryptosystem, 9-5, 10-26
Proximity, 2-1
Pruning, 22-13
Pseudopoint, 1-23
Pseudopolynomial, 20-26
Pseudoprime, 10-23, 10-29
Pseudorandom sequence, 17-1, 17-22
Public authenticated broadcast channel, 15-4
Public key, 9-1, 9-6, 9-13, 11-3

Pure heuristic search, 22-9
Purely-sequential model, 30-8
Pure strategy, 21-2, 21-24
Put option, 33-22, 33-24

Q

Quadedge data structure, 3-5
Quadratic residue/nonresidue, 10-15, 10-29, 11-15,

17-19
Quadratic sieve integer factoring algorithm, 11-9
Quality Delaunay triangulation, 1-22
Quantum computers, 13-24, 13-26
Quantum correlation, 13-23
Quantum cryptography, 13-21
Quantum factoring, 13-24
Quantum key distribution, 13-21
Quasi-identifiers, 18-6
Quasilinear preferences, 16-3
Quasi–Monte Carlo method, 33-12
Query evaluation complexity, 19-5
Query languages, 19-4
Queue, 22-4
Queue-read queue-write (QRQW), 25-7
Queuing, 27-16
Quicksort 25-30, 25-34, 25-35
Quiescence 22-15

R

Rabin scheme, 12-22
Race condition, 24-3
Radar, 17-8
Radix sort, 25-22, 25-31
Ramp schemes, 13-14
Rand_bit function, 25-12
Rand_int function, 25-12, 25-30
Random early detection (RED) scheduling in routers,

28-20
Random graph contraction, 25-25
Randomization, 25-14, 25-21
Randomized stream cipher, 17-20
Randomizer (in voting), 15-16
Random mate, 25-25
Random oracle model, 15-11
Random reencryption, 15-12
Random sampling, see Sampling
Random walk, 33-14, 33-24
Range searching, 2-21
Rank selection, 27-14
RBFS, see Recursive best-first search
RC4 17-9, 17-17
Real-time-A∗ (RTA∗), 22-12
Receipt-freeness, 15-14



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C034 Finals Page 16 2009-10-19

I-16 Index

Receive primitive, 26-7
Receiver, 12-2
Recoding-based generalization, 18-7, 18-24
Reconstruction phase, 13-3
Rectangle intersection reporting, 2-24
Rectangular partitioning, 8-11
Rectilinear layout, 8-3, 8-20, 8-24
Rectilinear path, 2-17
Rectilinear polygon, 2-26
Rectilinear spanning tree, 8-5, 8-15
Rectilinear Steiner arborescence problem, 2-13
Recursive best-first search (RBFS), 22-11
Recursive doubling, see Pointer jumping
Recursive partitioning, 8-4
RED, see Random early detection
REDOC-II cipher, 11-7
Reduced intersection grammar, 23-5, 23-6
Reduction algorithm, 3-13
Redundancy scheme, 30-5
Redundant copying avoidance, 28-22
Reeb graph, 3-20, 3-27
Reencryption mix, 15-13
Referenced roundness, 2-15
Regression line, 1-9
Regularization, 1-21, 1-22
Regular vertex, 1-18, 1-19
Relational algebra, 19-12
Relational calculus, 19-14, 19-22
Relational calculus with counting, 19-24
Relational calculus with fixpoints, 19-22
Relational model, 19-2
Relational table, 18-5
Relational view, 19-12
Relative roundness, 2-15
Relaxation, 20-20
Relaxed decision procedure, 20-20
Release date, 20-3
Removing duplicates, 25-19, 25-24
Report, 24-9
Report-mode, 2-21
Representative-based architecture, 14-7
Representative matrix of Boolean function, 13-11
Reserve price, 16-6
Residue class, 10-5
Resource allocation in networking, 27-27
Resource selection, 29-1, 29-29
Response networks, 32-13
Restricted query languages, 19-17
Restriction site, 31-3
Revelation principle, 16-6
Revenue equivalence theorem, 16-5
Reverse auctions, 16-15
Reverse-engineering gene networks, 32-14
r-fold secure, 12-4

Ribonucleic acid (RNA), 31-3
Right composition, 23-15
Right pairs in differential cryptanalysis, 11-6
Right turn, 1-2
Ring, 10-3, 24-6, 24-7
Ringer scheme, 30-3
Risk, 33-24
Risk-free asset, 33-24
Risk-free interest rate, 33-4, 33-6, 33-13, 33-23
River routing, 8-20, 8-24
Rivest–Shamir–Adleman (RSA) public-key cipher, 11-8
Robot algorithm, 4-2, 4-4
Robot coordination, 4-17
Robot localization, 4-20
Robot navigation, 4-4, 4-7, 4-12
Robust algorithm, 26-3
Robustness, 1-1
Rope, 1-3
Rotor machine, 11-3
Round in AES, 11-7
Rounding, 20-21
Roundness, 2-14, 2-15
Round-robin pointers, 28-14, 28-21
Route, 27-1, 27-34
Router algorithmics, 28-3
Routing, 2-19, 25-5, 27-4
Routing based on multicommodity flow, 27-7
Routing in heterogeneous platforms, 29-15
Routing layers in VLSI, 8-16
Routing network, 27-34
Routing of wires in VLSI, 8-2, 8-13, 8-23
Row maxima-searching, 1-15
RSA, 10-7
RSA Data Security, Inc, 17-18
RSA signature scheme, 12-23
RTA∗, see Real-time-A∗
Rubik’s cube, 22-2
Rule-based queries with recursion, 19-20
Running-key cipher, 11-3
Run property, 17-5

S

Saddle, 3-18
Samarati’s algorithm, 18-16
Sample sort, 25-30
Sampling, 25-14, 25-18, 25-30, 25-37, 25-39
Sampling schemes, 30-7
S-boxes in DES, 11-5
Scan, 25-16, 25-31, 25-39
SCFG, see Synchronous context-free grammar
Schedule in grid computing, 29-2, 29-29
Scheduling policy, 27-34
Sci.crypt, 17-17
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Scrambled circuit evaluation, 14-8, 14-11
Scrutinizer (voting), 15-3
SEAL, see Software-optimized encryption algorithm
Seam, 1-5
Search (in AI), 22-1, 22-21
Search horizon, 22-12
Searching (geometric), 2-21 to 2-23
Search time, 2-21
Search tree, 22-3, 22-21
Second-price sealed bid auction, 16-2
Secret modulus in knapsack cipher, 11-7
Secret prefix, 12-18
Secret sharing, 13-2, 13-26
Secret suffix, 12-18
Secure channel, 15-19
Secure circuit evaluation, 14-7
Secure comparator, 15-14
Secure cryptosystem, 9-5
(ε t q L)-secure MAC, 12-20
Secure polynomial evaluation, 14-12
Secure protocol, 14-2
Secure scalar product, 14-12
Secure set operations, 14-13
Security, 9-4
Security analysis (MAC), 12-19
Security parameter, 14-3
Security relative to an assumption, 9-6
Selective, 12-19
Self-clocking generator, 17-16
Selfish wardrop flows, 21-22
Self-shrinking generator, 17-17
Self-stabilization, 26-3, 26-7, 26-42
Self-stabilizing algorithm, 26-3, 26-7
Self-synchronizing keystream generator, 17-2
Self-termination of algorithm, 27-5
Semantic security, 14-11
Semifree path, 4-12
Semigroup, 10-2, 24-9
Semi-honest cheating model in grid computing, 30-6
Semijoin algebra, 19-19
Semisequential model, 30-8
Semistructured data model, 19-28
Send primitive, 26-7
Sensing, 4-19, 4-21
Sentinel sequences, 31-10
Separator, see Graph separator
Sequence of keys, 12-8
Sequential auctions, 16-7
Sequential random-access machine (RAM), 25-2, 25-6
Sequential tasks, 30-8
Set diameter, 1-9
SETI, 30-2
Set intersection (secure protocol), 14-13
Set union (secure protocol), 14-13

SGA-systems, 12-7
SHA, 12-18
Shadows of a secret, see Shares
Shamir’s attack on the Merkle–Hellman knapsack

cipher, 11-7
Shamir’s scheme, 13-5
Shanks’ giant step-baby step algorithm, 11-12
Shape approximation, 7-14
Shape function of, 8-11, 8-24
Shared generation, 13-17
Shared memory, 24-2, 24-19
Shared memory model in self-stabilization, 26-4
Shared-memory use to avoid copies, 28-24
Shares of a secret, 13-2
Shift-right function, 25-31
Shop scheduling, 20-4
Shor’s quantum factoring algorithm, 13-24
Shortest-path algorithms, 22-4
Shortest path edge sequence, 2-20
Shortest path in routing, 27-2, 27-34
Shortest path map, 2-19
Shortest remaining processing time, 20-7
Shrinking generator, 17-16
Side test, 1-3
Sieve, 11-9, 11-15
Signal transduction, 32-19
Signature protocols, 12-24
Signature schemes, 13-17
Signature verification, 13-17
SIMD, 5-3, 24-4
Simmons’ scheme, 13-5
Simple mail transfer protocol (SMTP), 27-2
Simple substitution cipher, 9-2, 11-2
Simplicial complex, 3-3, 3-28
Simplicial homology, 3-11
Simplicity, 2-23
Simulated annealing, 8-4, 8-5, 8-22
Simulated output queuing, 28-12
Simulating circuits, 14-9
Simulation, 24-6
Single-agent path-finding problem, 22-7, 22-21
Single-arc leaf sequencing, 7-1, 7-3, 7-15
Single-layer routing, 8-17, 8-20, 8-24
Single-mended bidders, 16-8
Single-source shortest path, 8-6, 8-7
Singularity theory, 3-20
SISD, 24-4
Site event, 2-4
Size of asynchronous context-free grammar, 23-14
Size of circuit, 25-8
Skeleton, 2-11
Skew (in clock routing), 8-22
Skew Voronoi diagram, 2-9
Slab method, 2-17
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SL2 groups, 12-11
Slicing floorplan, 8-11, 8-24
Sliding-tile puzzles, 22-2
SLS, see Static leaf sequencing
Smallest enclosing circle, 2-13
Smallest enclosing rectangle, 1-9
Smallest path, 2-19
Smart card, 15-16
SMAWK algorithm, 1-16
Smith normal form, 3-14
SMTP, see Simple mail transfer protocol
Snefru hash function, 11-7
Sobel operator, 5-20
Social cost, 21-20, 21-22
Software-optimized encryption algorithm (SEAL), 17-18
Software simulation use in design of DNA sequences,

31-11
Solovay–Strassen primality test, 10-24
Solution depth, 22-3, 22-21
Sort, 24-9
Sorting, 25-30
Source architecture, 24-12
Source vertex, 25-22
Space complexity, 1-1, 22-4
Spanning tree, 8-5, 8-15, 25-21, 25-28; see also

Minimum spanning tree
Sparse graph, 25-21
Sparse linear system, 25-38
Sparse matrix, 25-38
Sparsity (geometric), 2-2
Spatial scheduling, 26-5
Special-purpose hardware, 22-16
Specification, 26-42
Spectral methods, 8-5
Sphere complexity, 17-8
Spike event, 2-4
Splittable flow, 27-11, 27-34
Splitting values, 14-6
SPMD, 24-4, 24-19
Spoofing of order, l 12-3
Spot price, 33-16, 33-17, 33-18, 33-21
Spread spectrum, 17-8
SPT rule, 20-5
Stable configuration, 26-11
Stable manifold, 3-22
Stable sorting algorithm, 25-31
Stack, 22-4
Stage of multistage network, 25-5
Standard cell, 8-2
Standard grading, 3-15
Star (topology), 3-5
Star graph, 25-25
Star-shaped, 2-25
State, 22-2, 22-21

State model in self-stabilization, 26-4
State-related fault, 26-2
State variables, 26-6
Static approaches in grid computing, 29-3
Static leaf sequencing, 7-6, 7-11
Static problem, 26-7
Static query analysis, 19-7
Statistical randomness, 17-4
Steady-state scheduling, 29-2, 29-6, 29-11
Steady-state scheduling rationale, 29-11
Steiner point, 1-22
Steiner ratio, 2-13
Steiner tree, 2-12, 8-5, 8-15, 8-17, 8-24
Steiner vertex, 2-12
Step function, 8-11
Step-once-twice generator, 17-15
Stereo vision, 5-18
Stiffness (option pricing), 33-16
Stochastic queuing models, 27-16
Stop-and-go generator, 17-15
Stopper sequence, 31-16
Straight-line drawing, 6-3, 6-4, 6-7, 6-25
Strassen’s algorithm, 25-37
Strategic bidding, 16-3
Strategic form games, 21-2
Strategy, 16-4, 21-2
Strategy profile, 21-3, 21-24
Strategy-proof, 16-5
Stream cipher, 11-4, 17-1, 17-22
Strict avalanche criterion (SAC), 12-13, 17-5, 17-22
Strict multidimensional partitioning, 18-28
Strike price, 33-1, 33-23, 33-24
Strong fairness, 26-6
Strongly universal class, 12-16
Subcomplex, 3-5
Subsequence distribution, 17-4
Subset property in k-anonymity, 18-20
Substitutability in auctions, 16-7
Substitutable items, 16-7
Substitution attack, 12-3
Substitution cipher, 11-2, 11-15
Successful forgery, 12-18
Sum, 24-9
Sum of sequence of numbers, 25-1, 25-8, 25-16
Superincreasing knapsack weights, 11-7
Supporting line, 1-4
Support of strategy, 21-2, 21-3, 21-24
Suppression, 18-7
Sweep-line status, 1-18
Switch box routing, 8-15, 8-24
Switching packets, 28-10
Switch in network, 25-4
Symmetric cryptosystem, 9-6, 9-13
Symmetric game, 21-3
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Symmetry breaking, 25-14, 25-40; see also Random mate
Synchronization, 25-7
Synchronous context-free grammar (SCFG), 23-12
Synchronous keystream generator, 17-2
Synchronous model, 27-3
Synchronous scheduling, see Global scheduling
Syntax-directed translation, 23-12
Syntax of natural language, 23-2, 23-16
System calls avoidance, 28-27
Systolic, 24-12

T

Take-it-or-leave-it offer, 16-6
Tallier (voting), 15-3
Tap certain bit positions, 11-4
Target architecture, 24-12
t-closeness 18-32
TCP, see Transmission control protocol
t-designs, 12-4
Telephone, 25-5
Telnet, 27-2
Temporal scheduling, 26-5
Terminal, 8-2, 8-24
Three-dimensional mesh, 25-5
Threshold cryptography, 13-14
Threshold decryption, 13-15, 15-6, 15-19
Threshold encryption, 13-15
Threshold generator, 17-12
Threshold RSA signature, 13-19
(t,t) Threshold scheme, 13-7
(t,n)-Threshold schemes, 13-2
Threshold signature, 13-7, 13-15, 13-18, 13-19
Threshold value, 13-2
Throughput maximization, 29-8
Tight job, 20-17
Time complexity, 1-1
Time complexity in asynchronous model, 27-4
Token bucket policing, 28-20
Token passing self-stabilizing algorithm, 26-32
Token ring, 27-2
Tongue-and-groove, 7-5, 7-11
Topological invariant, 3-6
Topological sort, 8-7, 8-11, 8-24
Topological space, 3-2, 3-28
Topological type, 3-3, 3-7
Topology, 3-2, 25-4
Tor, 18-3
Torsion coefficients, 3-12
Torus, 24-7, 25-5
Totally monotone, 1-15
Tracks (of channel), 8-16, 8-18
Trajectory, 4-14, 4-16, 4-23
Transcript (of protocol), 14-3

Transcriptional regulatory interaction, 32-3, 32-19
Transcription factor, 32-13, 32-18, 32-19
Transient fault, 26-1
Translation lookaside buffer (TLB), 28-27
Transmission buffer, 27-26, 27-34
Transmission control protocol (TCP), 27-2
Transmission phase, 12-7
Transmitter, 12-2
Transport layer, 27-2
Transposition cipher, 11-2
Transposition table, 22-15
Trapezoid, 1-18
Trapezoidalization, 1-18
Traveling salesperson problem (TSP), 22-10
Traversal, 25-15
Tree, 24-7, 25-15
Tree bank, 23-11, 23-16
Tree bitmap, 28-8
Tree contraction, 25-15, 25-19, 25-28, 25-40
Tree drawing, 6-7, 6-23
Tree-shaped platform, 29-6
Tree-shaped platform extension, 29-9
t-resilient digital signatures, 13-20
Triangle inequality, 1-16, 2-9, 2-13, 2-16
Triangular matrix, 25-38
Triangulated planar graph, 6-8
Triangulation of a polygon, 1-19
Triangulation of topological space, 3-4
Triconnectivity, 25-15
Tridiagonal matrix, 25-38
Trivial invariant, 3-7
Trivial loop, 3-10
Trusted authority, 12-7, 13-14
Truthful combinatorial auctions, 16-13
Truthful strategy, 16-5
Tuple suppression, 18-8
Twenty-four puzzle, 22-2, 22-3
Two-dimensional mesh, 25-4
Two-person game, see Two-player game
Two-player game, 21-7, 22-13
Two-step binomial trees, 33-5

U

UDP, see User datagram protocol
Unbiased coin, 25-25
Uncertainty, 4-19
Uncheatable grid computing, 30-3, 30-7
Unconditional hook, 25-28
Unconditionally secure MACs, 12-15
Undeniable signatures, 12-25, 13-19
Underlying space, 3-4
Undirected graph, 25-21
Unfair schedules, see Arbitrary scheduling
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Unicast routing, 27-4
Unicity distance of a cipher, 11-2, 17-4
Uniform-cost search, 22-4
UNITY notation, 26-6
Universal classes of hash functions, 12-10, 12-16
UNIX crypt command, 11-3
Unrelated machines, 20-4
Unstable manifold, 3-22
Untappable channel, 15-4, 15-19
Untrusted voting client, 15-16
UOWHF, 12-10
Upper bridge, 25-35
Upper hull, 1-2
User datagram protocol (UDP), 27-2
User privacy, 18-2
Utility, 16-3

V

Validity proof, 15-10, 15-19
Valuation, 16-3
Value generalization relationship, 18-9
Value queries, 16-15
VCG mechanism, see Clarke mechanism
Vector, 25-8; see also Sequence
Vector machine model, 25-8
Verifiable elections, 15-9
Verifiable forgery, 12-19
Verifiable mix, 15-13
Verifiable secret sharing, 13-7, 13-10
Verification, 9-5
Verification algorithm (MAC), 12-15
Vertex guard, 1-25
Vertex resolution, 6-4
Vertex scheme, 3-4
Vertical constraints (of channel), 8-19
Via minimization, 8-17, 8-24
Vickrey auction, see Second-price sealed bid auction
Vietoris-Rips complex, 3-24
Vigenere cipher, 11-2
Virtual clock packet scheduler, 28-22
Virtual output queues (VOQ), 28-13
Virtual valuation, 16-6
Visibility graph, 2-19
Visibility map, 1-18, 1-19
Visible, 1-18
Visualization, 6-4, 6-8, 6-19
VLSI circuits, 8-1, 8-22
Volatility (finance), 33-3, 33-6, 33-16, 33-22, 33-23
Voluntary participation, 16-12
VOQ, see Virtual output queues
Voronoi diagram, 2-3, 3-24
Voter, 15-3
Voting scheme, 15-2

W

Wallet-with-observer, 15-16
Walsh transform, 17-5, 17-13
Watershed, 3-22
Watson–Crick complementarity, 31-2
Wavefront approach, 2-4
WDP, see Winner determination problem
Weak budget balance, see Nondeficit

property
Weak fairness, 26-6, 26-15
(εF t q L)-weakly collision-resistant, 12-20
Weakly NP-complete, 20-14
Wegman–Carter construction, 12-16
Weighted completion time, 20-5
Weighted graph, 25-21
Weighted Voronoi diagram, 2-7, 2-8
Whiplash PCR, 31-16
Win-lose bimatrix game, 21-15
Winner determination problem, 16-9
Winner of concurrent write, 25-20
Wire delay, 8-22
Wire length, 8-2, 8-4
Wiring diagram for an organism, 32-10
Witness complex, 3-24
Work, 25-7, 25-40
Work-depth model, 25-2, 25-7, 25-40
Work efficiency, 25-9, 25-40
Worker in grid computing, 29-7
Work preserving emulation, 25-9, 25-40
Workspace, 2-23
Worst-case complexity, 22-4
Write function, 25-11
Wrong pairs in differential cryptanalysis, 11-6

X

XML query languages, 19-28
XOR gate, 11-4
XOR language, 16-8
XPath, 19-28
XQuery, 19-28
XSLT, 19-28

Y

Yao’s method, 14-9

Z

Zero-crossing operator, 5-21
Zero knowledge proof, 15-7, 15-19
Zero-sum games, 21-9
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